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Abstract. In the light of growing data volumes and continuing digiti-
zation in fields such as Industry 4.0 or Internet of Things, data stream
processing have gained popularity and importance. Especially enterprises
can benefit from this development by augmenting their vital, core busi-
ness data with up-to-date streaming information. Enriching this transac-
tional data with detailed information from high-frequency data streams
allows answering new analytical questions as well as improving current
analyses, e.g., regarding predictive maintenance. Comparing such data
stream processing architectures for use in an enterprise context, i.e., when
combining streaming and business data, is currently a challenging task
as there is no suitable benchmark.

In this paper, we give an overview about performance benchmarks in
the area of data stream processing. We highlight shortcomings of exist-
ing benchmarks and present the need for a new benchmark with a focus
on an enterprise context. Furthermore, the ideas behind Senska, a new
enterprise streaming benchmark that shall fill this gap, and its architec-
ture are introduced.
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1 Introduction

Due to the ever increasing velocity and volume of data that is being produced
nowadays, completely new challenges and opportunities arise.

Terms like Smart Factories, Industry 4.0, and Internet of Things (IoT) have
gained traction to describe some of such new developments which bring new
possibilities in how business can be done.

Industrial manufacturing is a particularly interesting domain in this context.
An example for a factory where a high volume of data is captured with high
velocity is the GE battery production plant in New York (state). There are
10,000 different data attributes recorded, some as often as every 250 ms [23].
Modern manufacturing equipment, e.g., injection molding machines, can gen-
erate up to terabytes of sensor data, daily [13]. Such data provides detailed
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information about the current state of machines and allows timely reactions to
events, such as failures or changes in environment. When it comes to unlocking
further efficiency improvements through IoT technologies such as sensors, highly-
optimized production facilities are one of the key areas [17]. Combining gathered
IoT data with existing transactional or business data, e.g., supplier information
or information about machine operators, can lead to a better understanding of
the holistic value chain. This combination of machine or sensor data and busi-
ness data, which allows answering new analytical questions or existing ones in
greater detail, can be described as vertical integration. A practical example of
applying these ideas would be a printing machine, where the humidity is regu-
lated depending on current sensor measurements (streaming data) as well as the
currently used colors and paper (business or historical data) in order to optimize
print quality.

Compared to transactional data, IoT or sensor data, as examples of streaming
data, differ in aspects such as velocity and volume. A brief comparison of both
these kinds of data is shown in Table 1. In order to efficiently handle sensor and
general data streams as well as their analysis, new technologies were created.

Table 1. Comparison of sensor data and business data

Characteristic Sensor data Business data

Volume and velocity Up to multiple
terabytes by a single
machine, daily [13]

Multiple terabytes in total, e.g., for
a 20 years old SAP ERP
installation at a leading Canadian
energy company [21]

Data quality Measurement errors,
lost data

Correctness crucial for business

Data manipulations No updates Updates exist

References Strong time and
location reference

Strong business process reference

Value for enterprises Usually not crucial for
daily business

Essential for daily business

A particularly interesting example for a group of systems that can be lever-
aged for analyzing high frequency data sources are Data Stream Processing Sys-
tems (DSPSs). These systems analyze streams of data on the fly using continuous
queries. Therefore, the generation of output is dependent on the underlying data
streams, i.e., on the arrival of new data points. Moreover, the order of incom-
ing data records is considered, meaning a potential out-of-order arrival at the
DSPS may need to be handled in order to produce correct results. Compared
to traditional Database Management Systems (DBMSs), the concepts employed
in DSPSs differ in some aspects, e.g., with respect to queries, which usually do
not run continuously on DBMSs. Storing data only for as long as it is needed
for analysis not only benefits performance and data throughput, but also saves
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storage costs. As an extension to DBMSs, those benefits of DSPSs can be lever-
aged in enterprise applications. When analyzing data streams in DSPSs, data
can be combined with data from business application databases, allowing for
new business ideas and far-reaching optimizations of existing processes.

A multitude of new DSPSs were developed in recent years, such as Apache
Flink, Apache Storm, Apache Spark Streaming, Apache Samza, Twitter Heron
and Apache Apex [8,11,15]. Contrary to these recently developed systems,
Aurora [3] and STREAM [5], for instance, were already presented in the early
2000’s.

Although a broad variety of systems allows for more choice, picking the sys-
tem or architecture that best suits a given use case becomes more of an issue. As
shown, there is already a wide choice in the group of DSPSs, whose usage rep-
resents just one way of analyzing data streams. An alternative approach could
be storing data streams in a database and analyzing them afterwards.

Due to the lack of satisfying real-world application benchmarks assessing
data stream processing architectures, including the combination of streaming
and transactional data for analyses, this is currently a certainly challenging task.
We aim to tackle this issue by developing an application benchmark focussed
on data stream processing architectures in an enterprise context, Senska - an
Enterprise Streaming Benchmark (ESB). In this paper we present the following
contributions:

– Illustration and motivation of the need for a new application benchmark for
data stream processing

– The design objectives of Senska and their underlying concepts
– A first draft of the overall Senska architecture - design decisions are explained

and selected components are presented in more detail

The remainder of this paper is structured as follows: Sect. 2 presents related
work in the area of benchmarking and highlights the need for a new data stream
processing benchmark. Section 3 introduces Senska, the Enterprise Streaming
Benchmark, including the design objectives, its architecture, the developed query
list, and limitations. Section 4 concludes, giving an overview of Senska and illus-
trating areas for future work.

2 Related Work

As mentioned in [12], only few benchmarks for data stream processing architec-
tures are available compared to the number of benchmarks for DBMSs. A brief
comparison of selected benchmarks is shown in Table 2, which is based on the
overview shown in [12].

The Linear Road Benchmark by Arasu et al. [7] is one of the most, if not
the most popular application benchmark focussing on data stream processing.
It includes a benchmarking toolkit comprising a data generator, a data sender
as well as a result validator. With an execution of a benchmark implementation,
a variable tolling system for a metropolitan area covering multiple expressways
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is simulated. The amount of accumulated tolls is dependent on multiple aspects
of the traffic situation on these expressways.

The data sender emits the streaming data into the system under test (SUT).
This input data contains four different record types, from which position reports
are by far the most abundant records. The remaining data consist of three record
types that express explicit user requests that always expect an answer from the
system. Depending on the overall situation on highways, car position reports
may require the SUT to create an output or not.

With regard to the benchmark workload, Linear Road defines four different
queries with corresponding output types. For complexity reasons, the implemen-
tation of the lastly presented query was even skipped in the two implementations
described in [7]. Besides streaming data, historical data covering ten weeks of
tolling history is generated and partly has to be used in order to produce correct
answers.

As a benchmark result, Linear Road defines one overall metric called L-
Rating. The L-Rating indicates how many expressways a system can handle
without violating the defined maximum response times for each query. The num-
ber of highways is a configurable parameter for the data generation step that is
influencing the amount of input data.

The second benchmark presented in Table 2 is StreamBench [16]. It aims at
benchmarking distributed DSPSs and can be categorized as a micro benchmark,
i.e., it measures atomic operations, such as the execution of a projection rather
than those of more complex applications such as in Linear Road. Thus, when a
system’s performance for real-world scenarios or applications is to be evaluated,
micro benchmark results only have limited validity. However, if, e.g., two distinct
filter operators are to be compared, micro benchmarks have advantages over
application benchmarks due to their simplicity. Measurements contain only the
relevant parts without much overhead, which eases interpreting results.

StreamBench defines seven queries in total. They cover queries with single
and multiple computational steps. Moreover, some queries require to keep a state
in order to produce correct results while others do not. Only one query uses
numerical data, while all others work on textual data. Overall, the seven queries
cover a variety of functionalities, although some typical streaming operations
like window functions are not taken into account.

Additionally, StreamBench defines four workload suites, which influence the
way the benchmark is executed. The suite has an impact on, e.g., data scales,
executed query set, the existence of an intentional node failure, or employed
benchmark result metrics.

StreamBench makes use of two different real-world data sets. One of these
contains textual data while the other one comprises numerical information. Gen-
erally, real-world data sets are always desirable as they represent real scenarios
best and help increasing the benchmark’s relevance. The two data sets used in
StreamBench serve as seeds for data generation. Thus, synthetic data is used and
reality is not represented entirely. Nevertheless, entirely using real-world data in
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a benchmark is certainly an ambitious aim as, e.g., scaling input data can easily
become a challenge if the available data set is too small.

Contrary to Linear Road, StreamBench employs a message broker, which is
used for decoupling data generation and consumption. This approach is similar to
the benchmark architecture proposed in this paper, which is described in Sect. 3.
In particular, Apache Kafka [14] is used as broker in StreamBench. Again, that
is similar to the benchmark described in the present paper. A benchmark tool
for data ingestion, such as the presented data sender that comes with Linear
Road, is not described by the authors of StreamBench.

StreamBench defines different result metrics dependent on the workload
suite. These include latency and throughput. The latter describes the average
number of processed records per second and the amount of processed data in
bytes per second. Both variants are calculated in total as well as per node.
Moreover, three additional metrics are introduced: a durability index (uptime),
a throughput penalty factor (assessing throughput change for node failure), and
a latency penalty factor (assessing latency change for node failure). To the best of
our knowledge, result validation with respect to query outcome is not supported
by a dedicated benchmark tool.

The third benchmark shown in Table 2 is called RIoTBench [20] and focuses
on benchmarking distributed DSPSs. It defines multiple micro benchmark sce-
narios as well as four application benchmark use cases, which represent combined

Table 2. Comparative overview of data stream processing system benchmarks

Linear road StreamBench RIoTBench

Benchmark
type

Application Micro Micro and application

Considered
SUT

DSPS or DBMS Distributed DSPS Distributed DSPS

Domain Smart City
(variable tolling)

Log processing and
network traffic
monitoring

Smart City, Smart
Energy, Health (IoT in
general)

Input data Synthetic
(including
historical data)

Synthetic (real-world
data used as seed)

Synthetic (scaled
real-world data sets)

Benchmark
result
metrics

One self-defined
metric
(throughput
under latency
restriction):
L-Rating

Throughput or
throughput-related,
latency or
latency-related, system
availability

Latency, throughput,
jitter (difference
between expected and
actual output rate),
resource utilization

Query
result
validation

Validation tool
provided

No tool provided No tool provided
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micro benchmarks. These cover Extract, Transform and Load (ETL) processes,
statistics generation, model training, and predictive analytics scenarios.

As input data, RIoTBench uses scaled real-world data sets from different IoT
domains, namely, smart city, smart energy and health. A data sender tool for
ingesting data into the SUT or an application for query result validation are not
provided by the benchmark.

Next to latency, throughput as well as CPU and memory utilization, RIoT-
Bench measures jitter as a metric. It is defined as the difference between expected
and actual output rate during a certain time interval.

Summarizing, we see the need for a new application benchmark for assessing
data stream architectures in an enterprise context for several reasons. First,
currently only two major application benchmarks for data stream processing
exist and only one of them considers characteristics of distributed systems in its
metrics.

Second, historical data is not or only barely taken into account in all of the
presented benchmarks. We believe that this is a crucial aspect in many enter-
prise contexts since, in order to achieve the greatest added value, streaming data
needs to be combined with historical business data. As a consequence of that
gap in benchmarks, questions relating to business use cases, including interfaces
or efficient combination of live and historical data, are currently challenging to
answer. Additionally, the majority of current streaming benchmarks lack tool
support, e.g., for result validation or data ingestion, which complicates imple-
menting these benchmarks and retrieving objective results.

3 Senska: Enterprise Streaming Benchmark

Due to the lack of satisfying ways to comprehensively compare stream processing
architectures for enterprise scenarios, we aim to develop Senska, an enterprise
streaming benchmark, which aims to fill this gap. In this section, the design
objectives, the architecture, the query set, and limitations of Senska are illus-
trated.

3.1 Design Objectives

The design objectives beyond Senska follow the four criteria defined by Gray [10],
namely relevance, portability, scalability and simplicity, which should be fulfilled
by domain-specific benchmarks. These criteria are the basis for several pub-
lications that provide guidelines in the area of benchmark development, which
illustrates their impact [9]. Although these aspects defined by Gray were already
published in the early 90s, we still consider them valid for state-of-the-art bench-
marks.

The chosen domain for Senska is industrial manufacturing since it repre-
sents a natural fit for an enterprise application requiring data stream processing
capabilities, see Sect. 1.
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Relevance. The benchmark architecture, including data characteristics as well
as the defined queries, will represent real-world scenarios and system environ-
ments as realistically as possible.

With respect to data, this ideally entails only employing real-world data in the
benchmark. If no fitting data set can be found, synthetic data which is as close
to real-world data as possible, will be generated. This can be achieved through
generating data based on previously collected real-world data sets which alone
would not be sufficient, similar to how, e.g., StreamBench tackles this issue, see
Sect. 2.

Requirements in the context of input data exist, e.g., with regard to privacy
concerns, size, or attribute variety. So in order to be a fitting data set, it should,
e.g., be possible to publish the data as part of the benchmark, and its size as
well as attribute variety should be appropriate in order to represent real-world
environments.

Regarding data input rate, we aim to support multiple options in order to
allow users to adapt Senska to their situation and be able to react to technology
developments or environmental changes that might lead to increasing input rates
in real-world environments.

Another area where relevance shall be considered are queries, i.e., the logic
that is going to be executed by the system under test. This relevance in the sense
of closeness to real-world scenarios shall be reached by validating the queries with
industry partners from the corresponding benchmark domain, namely industrial
manufacturing and similar industry sectors. This shall lead to a high acceptance
of the benchmark and thus, to a higher credibility of its results as well as a higher
motivation for implementing the benchmark. Although the benchmark focuses
on a single domain, query characteristics, i.e., used functions, e.g., filtering or
aggregating certain values of a data stream, are applicable to other areas and
thus benchmark results can be beneficial for users from different domains. More-
over, Senska architecture and tools could be used for defining a new benchmark
belonging to another domain, i.e., a query set with new data input that is be
used for measurements.

Portability. The benchmark definition shall be as much OS and system inde-
pendent as possible. This enables implementing the benchmark for as many
different environments as possible. Thus, a potentially large number of imple-
mentations can be reached, which helps gaining insights into a system’s or envi-
ronment’s performance. Furthermore, a high number of implementations con-
tributes to a high relevance and result credibility.

Senska aims to ensure portability by not restricting the choice of OS or the
choice of used technologies for benchmark implementation. Although DSPSs
might seem as a natural fit for data stream processing, it could potentially be
exchanged with any other system or implementation that is able to answer the
defined queries. With respect to the benchmark toolkit, compatibility with many
OSs and platforms will be reached by using a JVM language.
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Scalability. The benchmark shall be able to handle smaller as well as bigger
systems with regard to scale-up and scale-out architectures. Therefore, Senska
will take the number of resources available into account when calculating bench-
mark results. Moreover, the provided tools, e.g., for data ingestion, are designed
to handle scale-out architectures. This means no restrictions regarding number
of nodes or CPU will exist in Senska and thus, there are no limits regarding
scalability from the benchmark-side.

Simplicity. The benchmark shall be simple to understand and to use in order
to encourage people implementing it as well as to ensure credibility with respect
to benchmark results. By providing a set of tools that are developed with the
objective of increasing simplicity, people implementing Senska shall be supported
as much as possible. This toolset comprises scripts for setting up the needed sys-
tems for data ingestion and validation, as well as applications for data ingestion,
results validation, and benchmark metrics calculation. Additionally, an optional
component for monitoring the environment will be included that can help iden-
tifying issues and getting an overview of key performance indicators.

3.2 Architecture

Figure 1 shows a high-level overview of our idea of an architecture for benchmarks
with focus on data stream processing. Knowing about this simplified view helps
getting an understanding of the idea beyond Senska’s architecture. It shows three
main components: the data feeder, system under test and the result validator.

Data Feeder System Under Test 
(Query Implementation)

Result Validator

Fig. 1. General architecture for stream processing benchmarks in fundamental model-
ing concepts (FMC)

The data feeder or sender is responsible for ingesting data into the SUT.
The used term SUT is defined as “the system to be evaluated” [18]. In the con-
text of Senska or stream processing benchmarks in general, the SUT processes
incoming data and responds according to the defined queries. Produced results
are ideally evaluated by a result validator in order to ensure correctness of the
query implementations. This component could also calculate benchmark result
metrics, e.g., latency or throughput. Besides calculating such metrics after run-
ning the benchmark, selected aspects might already be monitored when during
each run in order to, e.g., react to failures or unintended behavior as soon as
possible.

A more detailed overview of Senska’s architecture is illustrated in Fig. 2. All
components are described in the following.
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Input Data. Input data is represented through one or more files in CSV or
similar format and represents sensor data from a manufacturing context. It acts
as input for the system with respect to streaming data. In the best case, data will
be entirely real-world data. If no suitable data set can be identified, synthetic
data has to be used. Concretely, a data generation tool will be needed that takes
care of creating the input data, preferably based on an existing real-world data
set in order to keep characteristics. For the use within initial development of
Senska, we use a data set from manufacturing context1 published within the
context of the DEBS Grand Challenge2. The challenge was conducted as part of
the 2012 Conference on Distributed Event-Based Systems. In particular, the data
set contains monitoring data, which was recorded by manufacturing equipment
sensors. It includes about 32.4 million records, which result in an uncompressed
file size of about 5.5 GB. As the end of the file can be reached quickly with high
throughputs, we restart from the beginning when coming to that point in order
to be able to run the benchmark for a certain period of time. That is an approach
which is already proposed in, e.g., StreamBench [16].

System Under Test

Message Broker
(Apache Kafka)

Data Sender 
(Toolkit)

Input Data 
(Sensor Data)

DBMS 
(Transactional Data)

Benchmark  Query 
Implementation 

Result Validator 
and Metric 

Calculator (Toolkit)

Data and Workload 
Generator (Toolkit)

Fig. 2. Architecture of Senska in FMC

Data Sender. As part of the provided toolkit, the Senska data sender reads the
input data and ingests it into the message broker component. The sending inter-
val, i.e., the delay between sending consecutive records, is configurable. Although
it is closer to reality to send records according to the timestamp they may con-
tain, this might not be sufficient to satisfy configured data ingestion rates, i.e., to
benchmark the SUT with certain data input rates. So it might not be possible
to test, e.g., how much throughput an SUT can reach or how an SUT would
behave with a doubled number of input records per second. Moreover, as reality
and amounts of produced of data are rapidly changing, this flexibility allows
staying up-to-date with a changing environment and prevents the benchmark
from becoming outdated because of unrealistic data input rates.

1 ftp://ftp.mi.fu-berlin.de/pub/debs2012/.
2 http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html.

ftp://ftp.mi.fu-berlin.de/pub/debs2012/
http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html
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The data sender, which is under development, is written in Scala and thus
runs within a JVM on most common platforms. This compatibility with most
OSs is the major reason for choosing Scala or a JVM language in general. As
with all the tools in the toolkit, an open-source version of the data sender will
be published with the first version of Senska.

Message Broker. The message broker represents a central part of Senska’s
architecture. It acts as interface between data sender and SUT. Furthermore, it
is storage for query results in the defined setup. The message broker component
in Senska is realized through Apache Kafka [14]. An overview about Kafka in
the context of Senska is illustrated in Fig. 3.

One reason for using Apache Kafka within Senska is its usage in enterprise
software architectures. Among others, a common way of using Kafka is as inter-
face to a DSPS. Thus, its role in Senska reflects reality and so adds relevance
to the benchmark. Such usages of Kafka in combination with a DSPS were pre-
sented by, e.g., Bouygues Telecom [4] and Zalando [22].

An additional reason for using Apache Kafka is scalability with respect to
ingesting data. If the data sender were to directly send data via sockets to
the SUT, a change in the number of sockets would require changing the query
implementations, since the additional connections would need to be handled by
the SUT. Kafka topics provide a solution to this problem. An arbitrary number
of producers can send data to a certain topic, which is internally distributed
across the cluster and partitions by Kafka. The SUT application receives data
from a topic, allowing the number of producers to be adapted. Using Kafka
topics it is therefore possible to scale data ingestion in order to achieve a higher
throughput without modifying query implementations. In order to ensure the
correct order of records within Kafka topics, we use only one partition per topic,
which can be seen in Fig. 3.

Another reason for using Apache Kafka is latency measurements. In order
to achieve latency results that are as correct and comparable as possible, we
leverage Kafka’s timestamp functionality. The timestamps before entering the
SUT and after leaving the DSPS are taken into account for latency calculations.
By doing so, it is possible to keep those calculations independent from the SUT
and thus, no implementation modifications are needed and system-dependent
differences or variations in terms of time measurements can be preempted.

Particularly, there are two types of timestamps Kafka offers to store with the
messages, create time and log append time [2]. Create time is measured when a
message is created and set by the Kafka producer that sends data to the cluster,
and log append time is set by the broker when a message is appended to the
Kafka log. In order to keep the measurements application-independent and so to
avoid, e.g., unintentional application optimizations for reducing latency, we use
log append time. Latency is computed by subtracting the output timestamp,
i.e., log append time of the result record, from the input timestamp, i.e., log
append time of the corresponding or last relevant input record. The downside
of this approach is the included overhead time that is needed for transferring
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Fig. 3. Usage of Apache Kafka within Senska

messages from the broker to the SUT and back, which does not reflect the actual
computation time of the SUT.

Although the exact processing times needed by the SUT are not measured
by doing so, we do not consider this as an issue for the benchmark. Since all
benchmarked systems follow the same approach, the overhead is included in all
measurements and so results remain comparable in similar environments, i.e., if
influencing parts, such as the network connection bandwith between Kafka and
SUT, stay constant. Thus, we believe that the presented latency measurement
approach is an objective way of calculating latencies in the context of Senska. It
allows benchmarking any implementation that is able to retrieve and send data
to and from Kafka. As times are taken independently outside of implementations,
results are comparable and can not be unintentionally distorted by different time
measurement mechanisms.

System Under Test. The SUT comprises two main components: the bench-
mark query implementation and a DBMS. The queries defined by Senska and
can be implemented using any technology, e.g., a DSPS or DBMS features such
as stored procedures. The only requirement on the technology used for the imple-
mentation is the ability to communicate with a DBMS and with the message
broker, i.e., with Apache Kafka. Historical or transactional data is consumed
from a DBMS on demand, i.e., whenever a query requires this data. As the
speed of the DBMS can influence the responsive time of queries, it belongs to
the SUT. Some queries might require updating one or multiple historical data
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records, which is why a bi-directional connection between the query implemen-
tation and the DBMS exists. Query results are returned to the message broker,
except for queries that require updating business data within the DBMS.

Data and Workload Generator. The data and workload generator simulates
realistic usage through inserting business data and executing analytical queries
on the DBMS. By doing so, a real-world usage can be simulated.

Result Validator and Metric Calculator. After finishing a benchmark run,
the result validator and benchmark metrics calculator reads the query output
from Kafka as well as from the DBMS and checks the correctness of results.
This happens by rereading and reprocessing the input data from Kafka that
was ingested into the SUT. Additionally, the benchmark results for the analyzed
system or architecture, i.e., the scores for the benchmark metrics, are calculated.

When looking at Linear Road, the probably most noted benchmark of the
three presented benchmarks in Sect. 2, the high-level architecture shown in Fig. 1
is also valid. Senska as well as Linear Road have, next to the SUT, a data sender
and a data validator component.

A look to Senska’s architecture in Fig. 2 reveals some differences, though.
Linear Road also uses input data files that are sent by a data sender, but there
is no message broker included. So the Linear Road data sender could directly
send the input to the SUT. Furthermore, historical data in Linear Road are plain
files that needs to be handled by the SUT. Thus, a DBMS is not required as
in Senska. Contrary to Linear Road, there is a workload generator for historical
data in Senska.

Similarly to Senska, a query result validator is provided as part of Linear
Road. A data generator component is also included in Linear Road, which creates
streaming and historical data. In Senska, there is a data generator for business
data and, depending on the search of suitable real-world input data sets and as
mentioned before, there might be a generator for streaming data, too.

3.3 Queries

When defining benchmark queries, relevance and simplicity need special consid-
eration. The former one not only includes the closeness of queries to real-world
scenarios, but also the coverage of important stream processing functionality.

For ensuring the latter one, we use the core set of operations for complex
event processing (CEP) systems presented by [19] as a basis for functionality
that should be covered by the queries. Although this list of operations is defined
for CEP systems, it is applicable to data stream processing in general. Thus, we
slightly modified to the original list to our needs and benchmark specifics, e.g.,
by adding the aspect of combining streaming with DBMS data.
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1. Windowing
2. Transformation
3. Aggregation/Grouping
4. Merging (Union)
5. Filtering (Selection/Projection)

6. Sorting/Ranking
7. Correlation/Enrichment (Join)
8. Machine Learning
9. Combination with DBMS data

Table 3 shows an excerpt of the first queries defined in Senska. Next to the
use cases behind each query, the covered functionalities are given, referencing
the above stated list. Moreover, a query definition and a description are shown.
Queries are defined similar to CQL continuous query language [6].

Table 3. Excerpt of Senska query set

# Use Case Tested
Aspects

Query Definition Description

1 Check
Sensor
Status

1;2;3 SELECT AVG(VALUE),

MIN(VALUE), MAX(VALUE)

FROM STREAM 1

RANGE 20 SECONDS

Calculate sensor statistics
(avg, min, max) for, e.g.,
last 20sec.

2 Predict
Sensor
Values

1;8 SELECT PREDICTION(VALUE,

20 SECONDS)

FROM STREAM 1

RANGE 300 SECONDS

Calculate expected values
for, e.g., the next 20sec, for a
sensor based on data of, e.g.,
last 300sec.

3 Identify
Error I

1;5 SELECT COUNT(VALUE) > 5

FROM STREAM 1

WHERE VALUE > 40

RANGE 60 SECONDS

Log if sensor value exceeds
defined limit for a certain
number of times within a
determined timeframe.

4 Identify
Error II

1;5;7 SELECT * FROM STREAM 1

AS s1, STREAM 2 AS s2

WHERE s1.VALUE > 40 AND

s2.VALUE < 10

RANGE 60 SECONDS

Log if two sensor values
exceeds defined limit within
a determined timeframe.

5 Check
Machine
Power

7;9 SELECT * FROM STREAM 1

AS s, DB TABLE 1 AS t

WHERE s.MACHINE ID =

t.MACHINE ID AND s.POWER

= 0 AND (s.TS >

t.DOWNTIME END OR s.TS <

t.DOWNTIME START)

Log if the machine is in an
unscheduled phase of being
turned off or in stand-by
(assumption: there is always
the next downtime stored in
DB TABLE 1)

Except for 4. Merging (Union) and 6. Sorting/Ranking, all functionalities of
the presented operation list are covered. We aim to test these currently missing
functions with the complete query set.

Currently, there is a first viable example benchmark implementation for the
first query shown in Table 3, which only processes streaming data. For data
processing, a DSPS is used. As shown in Fig. 2, a data sender ingests the data
into a Kafka cluster, which is the interface to the benchmark implementation.
A result validator and metric calculator checks result correctness and computes
latency for the queries.
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3.4 Limitations

One limitation of Senska is its domain, namely industrial manufacturing. Senska,
as every domain-specific benchmark, is focussed on a single application field,
which can differ from other areas such as e-commerce software architectures.
Differences may exist with respect to, e.g., data or query characteristics. Due to
such varieties, there might be other benchmarks representing certain domain-
specific circumstances better than Senska does. Nevertheless, queries defined by
Senska cover functionalities, e.g., windowing or filtering, that can also be relevant
to other domains.

Moreover, Senska only considers a limited data variety for simplicity reasons.
To be more concrete, neither multimedia nor graph data is part of the benchmark
and thus, capabilities of processing such data that a SUT might have will not
be rewarded by Senska. So for scenarios where processing of such data is crucial
Senska might not be the best choice of benchmark. Nevertheless, Senska will be
open for extensions, which allows integrating such aspects.

A third limitation comes with the use of Apache Kafka as central part of
Senska’s architecture. As a consequence, a SUT must be able to retrieve and send
data from and to Kafka. Since there are many clients available for Kafka that
is not considered as a major drawback [1]. Besides, an architecture containing a
message broker in general or Apache Kafka in particular might not be satisfying
for everyone. Reasons can be, e.g., the wish to test another message broker
or to test an architecture without message broker, which could mean retrieving
streaming data within the SUT directly via one or multiple socket connection(s).

4 Conclusion

Within this paper, related work and the need for a new application benchmark
for stream processing in an enterprise context is presented. The concept for such
a new benchmark, namely Senska, is illustrated. Senska focusses on industrial
manufacturing as domain and provides a toolkit for data ingestion into the SUT
as well as query result validation and benchmark metrics calculation. While some
queries can be answered solely using streaming data, other queries require access
to historical transactional data in order to produce correct results.

By developing Senska, it is aimed to fill the gap that exists in the area of
benchmarking enterprise architectures with focus on data stream processing. As
a next step, we want to publish a first version of the benchmark together with an
example implementation of the benchmark queries. Major future tasks are the
search for a suitable input data set, and, if needed, the development of a data
generator for scaling or generating streaming data. The example implementation
has to be finished and the result validator adapted correspondingly. Addition-
ally, the metric set as well as the tool responsible for its calculation have to be
extended in order to cover all relevant aspects. Besides, the components related
to business data have to be developed. Concurrently, the ideas shall be consis-
tently be discussed with industry partners in order to validate design decisions
with respect to relevance.
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