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Abstract. During the last decade, a multitude of novel systems for scal-
able and distributed data processing has been proposed in both acad-
emia and industry. While there are published results of experimental
evaluations for nearly all systems, it remains a challenge to objectively
compare different system’s performance. It is thus imperative to enable
and establish benchmarks for these systems. However, even if workloads
and data sets or data generators are fixed, orchestrating and execut-
ing benchmarks can be a major obstacle. Worse, many systems come
with hardware-dependent parameters that have to be tuned and spawn
a diverse set of configuration files. This impedes portability and repro-
ducibility of benchmarks. To address these problems and to foster repro-
ducible and portable experiments and benchmarks of distributed data
processing systems, we present PEFEL, a framework to define, execute,
analyze, and share experiments. PEEL enables the transparent specifica-
tion of benchmarking workloads and system configuration parameters. It
orchestrates the systems involved and automatically runs and collects all
associated logs of experiments. PEEL currently supports Apache HDFS,
Hadoop, Flink, and Spark and can easily be extended to include further
systems.

1 Introduction and Motivation

During the last decade, the Big Data hype has led to the development of a plethora
of novel systems for scalable data processing. Starting with the MapReduce par-
adigm [10] and its open-source implementation Hadoop [3], numerous successors
have been proposed and implemented either as research prototypes or industry
led open-source systems. Hadoop MapReduce was quickly embraced by prac-
titioners, as it successfully abstracts away the complexity of scheduling a pro-
gram’s distributed execution on large clusters, managing the inter-machine com-
munication as well as coping with machine failures by exposing a simple func-
tional programming API to users. However, as focus shifted from rather simple
extraction and aggregation jobs to the scalable execution of more complex work-
flows, such as inferring statistical models and machine learning algorithms, it
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quickly became apparent that Hadoop was inherently inefficient at executing such
workloads. While many machine learning algorithms can easily be formulated in
the functional MapReduce programming model on a logical level [9], the acyclic
data flow model underlying Hadoop’s implementation and the intricacies of its dis-
tributed implementation lead to unsatisfactory performance. Particularly the fixed
Map-Shuffle- Reduce pipeline and the inability to efficiently execute iterative com-
putations turned out to be major drawbacks of Hadoop.

This led to numerous contributions from both the database and systems com-
munities, which address these shortcomings. Systems such as Spark [4,16] or
Stratosphere [5] (now called Flink [1,8]) were among the first systems to support
efficient iterative computations, GraphLab [12] proposed an asynchronous graph-
based execution model, which was subsequently distributed [11]. Pregel [13] and
its open source implementation Giraph [2] provided a vertex-centric programming
abstraction and Bulk Synchronous Parallel (BSP) based execution model.

While nearly all systems have been presented in scientific publications con-
taining an experimental evaluation, it remains a challenge to objectively compare
the performance of each system. Different workloads and implementations, usage
of libraries, data sets and hardware configurations make it hard if not impossible
to leverage the published experiments for such a comparison. Furthermore, it is
a challenge to assess how much of the performance gain is due to a superior
paradigm or design and how much is due to a more efficient implementation,
which ultimately impairs the scientific process due to a lack of verifiability.

For this reason, it is imperative to enable and establish benchmarks for big
data analytics systems. However, even if workloads and data sets or data genera-
tors are fixed, orchestrating and executing benchmarks can be a major challenge.

The principle goal of a system experiment as part of such a benchmark is to
characterize the behavior of a particular system under test (SUT) for a specific
set of values, configured as system and application parameters. The usual way
to achieve this goal is to

1. define a workload application which takes specific parameters (e.g., input and
output path),

2. run it on top of the SUT with a specific configuration (e.g., allocated memory,
degree of parallelism (DOP)) and,

3. measure key performance characteristics (e.g., runtime, throughput, accu-

racy).

Achieving these goals for benchmark experiments on modern data manage-
ment systems such as distributed data processing systems is significantly more
complex than evaluating a traditional RDBMS. Figure 1 illustrates, that rather
than having a single system under test running in isolation, novel data processing
systems require several systems such as a distributed file system and a distributed
data processing system to be executed jointly. Current trends actually advocate
an architecture based on interconnected systems (e.g. HDF'S, Yarn, Spark, Flink,
Storm). Each of these systems has to be set up and launched with their own set
of, potentially hardware-dependent, configurations.
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Fig. 1. The general setup: contrary to the setup when benchmarking traditional RDMB
systems (left) where we evaluate only one System under Test (SUT), the landscape
is more complicated when evaluating novel distributed data processing frameworks
(right), as they usually require the interplay between multiple independent systems.
Each of these systems has its own configurations with sets of parameters that have to
be set, and potentially tuned.

Typically, one is not just interested in the insights obtained by a single exper-
iment, but in trends highlighted by a suite of experiments where a certain sys-
tem under test (SUT) configuration or application parameter value is varied
and everything else remains fixed. When running a scale-out experiment with a
varying number of nodes for example, the configuration of both the distributed
file system as well as the distributed data processing system under test have to
be changed, and the systems have to be appropriately orchestrated. This fur-
ther complicates the benchmarking process. Additionally, hardware-dependent
configurations hinder portability and thus reproducibility of benchmarks. When
adjusting the systems is done manually, huge amounts of temporary files and
generated data tend to clog up the disk space, as experiments may be run with-
out proper tear-down of systems and cleaning of temporary directories. When
such experiments are run on a shared cluster, as is often the case in an academic
environment, this issue becomes even more severe.

Contribution: To address these problems and to enable and foster reproducible
experiments and benchmarks of distributed data processing systems, we present
PEEL', a framework to define, execute, analyze, and share experiments. On
the one hand, PEEL automatically orchestrates experiments and handles the
systems’ setup, configuration, deployment, tear-down and cleanup as well as
automatic log collection. On the other hand, PEEL introduces a unified and
transparent way of specifying experiments, including the actual application code,
system configuration, and experiment setup description. With this transparent
specification, PEEL enables the sharing of end-to-end experiment artifacts, thus
fostering reproducibility and portability of benchmark experiments. PEEL also
allows for the hardware independent specification of these parameters, therefore
enabling portability of experiments across different hardware setups. Figure 2
illustrates the process enabled by our framework. Finally, we make PEEL avail-
able as open-source software on GitHub.

! https://github.com/peelframework /peel.
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4) Share
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Fig. 2. The Peel process: Peel enables the transparent specification of workloads, sys-
tems configurations, and parameters to be varied. It also automatically handles the
distributed orchestration and execution as well as sharing of these experiment bundles.
After successfully running all experiments in a bundle, PEEL automatically extracts,
transforms and loads relevant measurements from collected log files and makes them
available in an RDBMS.

2 Outline

The rest of this paper is structured as follows: In Sect. 3 we introduce the running
example of a supervised machine learning workload, which we will use to explain
the details of defining an experiment. Section 4 introduces experiment definitions.
Next, Sect.5 describes the basics of a bundle. Section 6 discusses the approach
of a unified, global experiment environment configuration and Sect. 7 illustrates
how PEEL bundles can be deployed and executed on cluster environments, before
Sect. 8 provides an overview, how results can be gathered and analyzed within
the framework. Finally, we describe how PEEL can be extended with additional
systems in Sect. 9.

3 Running Example: Benchmarking a Supervised
Machine Learning Workload

As a running example, we will consider a supervised machine learning workload.
This workload is part of an extensive machine learning benchmark for distributed
data flow systems [7] (please see the paper for further details and experimental
results).

More concretely, we train a logistic regression model for click-through rate
prediction using a batch gradient descent solver. Click-through rate prediction
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for online advertisements forms a crucial building block in the multi-billion dollar
online advertising industry and logistic regression models have their merit for
this task [14,15]. Such prediction models are trained on hundreds of terabytes
of data with hundreds of billions of training samples, which happen to be very
high dimensional. For this reason, we are interested in evaluating the scaling
behavior of the systems not just with respect to growing data set sizes and
increasing number of compute nodes but also with respect to increasing model
dimensionality as suggested in [7].

For the experiments, we use a subset of the Criteo Click Logs® data set. This
dataset contains feature values and click feedback for millions of ad impressions
drawn from a portion of Criteo’s traffic over a period of 24 days. Since this
data set contains categorical features, we use feature hashing as a pre-processing
step. Feature hashing (also called the hashing trick) vectorizes the categorical
variables by applying a hash function to the feature values and using the hash
values as indices. It thus maps the sparse training data into a space with fixed
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Fig. 3. An illustration of the running example: we evaluate batch gradient decent train-
ing of a supervised learning model as a workload on Apache Spark and Apache Flink as
systems under test. The individual experiments depend on two parameters: the number
of physical compute nodes and the dimensionality of the training data set (dimensions),
which specify how the benchmark workload shall be executed. The data generation job
is executed on a system independent of the system under test.

2 http://labs.criteo.com/downloads/download-terabyte-click-logs/ .
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dimensionality, which can be controlled by a parameter. This feature hashing
will be executed as a pre-processing job on Spark.

Figure 3 illustrates the running example. We want to evaluate batch gradient
decent training of a supervised learning model as a workload on Apache Spark
and Apache Flink as a system under test. Only for this part do we want to
time the execution and record the system performance characteristics of the
individual compute nodes involved. In order to evaluate the scalability of the
systems with respect to a varying number of compute nodes as well as a varying
dimensionality of the training data (and thus also the model to be trained) the
two parameters: nodes and dimensions have to be varied accordingly.

For each particular configuration of physical compute nodes, a new distrib-
uted file system (HDFS) has to be set up. Next the raw criteo data, which is
ingested from some external storage, has to be transformed to feature vectors
of the desired dimensionality via feature hashing. Any system may be used for
this step - independent of the actual system under test. In the example, we
choose to run a Spark Job, which writes out the experimentation data into the
temporary HDFS instantiated for the current (cluster) configuration. Next, the
actual system under test (Spark or Flink in our example) will have to be setup
and instantiated with its proper configuration. Once it is up and running, the
benchmark workload can be submitted as a job to the system under test and
its execution is timed. In order to record the performance characteristics on the
individual compute nodes, an additional monitoring system such as dstat will
have to be started on all compute nodes.

After successful execution, the system under test will have to be shut down.
In order to archive all aspects of the benchmark experiments, various logs of the
different systems involved (dstat, system under test) will have to be gathered
from all the compute nodes. Next, all temporary directories have to be cleaned,
and the next system has to be set up and instantiated. Once all systems have
been evaluated for a concrete dimensionality, the data set has to be deleted from
the distributed file system and the next one, with a new dimensionality, has to
be created. When all parameter settings for a particular Node configuration (i.e.
all dimensionalities) have been evaluated, the distributed file system will have
to be torn down and a new one, with a different node configuration, will have to
be set up.

Manually administering all these steps is a tedious and error-prone process
as jobs can run for long periods of time, and may fail. PEEL automatically takes
care of all the steps outlined above and thus reduces the operational complexity
of benchmarking distributed data processing systems significantly. In the follow-
ing sections, we will explore how a workload like the supervised learning example
has to be specified in PEEL in order to benefit from this automation.

4 Experiment Definitions

Experiments are defined using a Spring dependency injection container as a
set of inter-connected beans. Figure4 displays the available bean types as a
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Fig. 4. A domain model of the PEEL experiment definition elements.

domain model. Beans definitions can be done either in XML or in annotated
Scala classes. Scala is used for all examples in this paper. The beans required to
define an experiment realize the system experiments domain introduced in the
Motivation section.

We discuss the individual beans in light of our example of running batch
gradient descent training of a logistic regression model for click-through rate
prediction. Listing 1.1 shows the complete experiment definition of the definition
of our example.

Listing 1.1. The main experiment definition of our running example.

1 class ExperimentsDimensionScaling extends ApplicationContextAware {
2 var ctx: ApplicationContext = null

3 def setApplicationContext(ctx: ApplicationContext): Unit = {

4 this.ctx = ctx

}

7 def sparkFeatureHashing(i: String, numF: Int, perc: Double): SparkJob = new SparkJob(
8 timeout = 10000L,

9 runner = ctx.getBean("spark-1.6.2", classOf [Spark]),

10 command =

11 st

12 |--class dima.tu.berlin.generators.spark.SparkCriteoExtract \\

3 | $${app.path.datagens}/peel-bundle-datagens-1.0-SNAPSHOT. jar \\

1 | --inputPath=$i \\

5 | -—outputPath=$${system.hadoop-2.path.input}/train/$numF/$perc \\
16 | --numFeatures=$numFeatures \\

17 | --percDataPoints=$perc \\

18 """ stripMargin.trim

19 )

20 def ‘bgd.output‘: ExperimentOutput = new ExperimentOutput(
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1 path = "{system.hadoop-2.path.input}/benchmark/",

2 fs = ctx.getBean("hdfs-2.7.1", classO0f [HDFS2])

3 )

I def ‘bgd.input(D: Int): DataSet = new GeneratedDataSet(

5 src = sparkFeatureHashing("/criteo/", numFeatures, perc),

6 dst = s"$${system.hadoop-2.path.input}/train/" + numFeatures + "/" + perc,

27 fs = ctx.getBean("hdfs-2.7.1", classOf [HDFS2])

28 )

29 def ‘bgd.flink‘(D: Int, N: String) = new FlinkExperiment(

30 name = g"flink.train.$D",

31 command =

32 s

33 |--class dima.tu.berlin.benchmark.flink.mlbench.NewLogReg \\
34 | $${app.path.apps}/peel-bundle-flink-jobs-1.0-SNAPSHOT. jar \\
35 |-—trainDir=$${system.hadoop-2.path.input}/train/$D \\

36 | --outputDir=$${system.hadoop-2.path.input}/benchmark/$N/$D/f1link/ \\
3 | --degOfParall=$${system.default.config.parallelism.total} \\
3

7
8 |--dimensions=$D \\
39 """, stripMargin.trim,

40 config = ConfigFactory.parseString(
o

41 s

12 |system.default.config.slaves = $${env.slaves.$N.hosts}
13 |system.default.config.parallelism.total = $${env.slaves.$N.total.parallelism}
14 """ stripMargin.trim),

15 runs = 3,
46 runner = ctx.getBean("flink-1.0.3", classOf[Flink]),

A7 systems = Set(ctx.getBean("dstat-0.7.2", classOf [Dstatl)),

18 inputs = Set(‘bgd.input‘(D), classOf[DataSet])),

19 outputs = Set(‘bgd.output‘)

0 )

1 def ‘bgd.spark‘(D: Int, N: String) = new SparkExperiment(

2 name = s"spark.train.$D",

3 command =

4 s

|--class dima.tu.berlin.benchmark.spark.mlbench.RUN \\

6 | $${app.path.apps}/peel-bundle-spark-jobs-1.0-SNAPSHOT. jar \\

7 |--trainDir=$${system.hadoop-2.path.input}/train /$D \\

8 | -—outputDir=$${system.hadoop-2.path. input}/benchmark/$N/$D/spark \\
59 | --numSplits=$${system.default.config.parallelism.total} \\

""" stripMargin.trim,

61 config = ConfigFactory.parseString(

62 st
63 |system.default.config.slaves = $${env.slaves.$N.hosts}
64 |system.default.config.parallelism.total = $${env.slaves.$N.total.parallelism}
65 """ stripMargin.trim),
66 runs = 3,
67 runner = ctx.getBean("spark-1.6.2", classOf [Spark]),
68 systems = Set(ctx.getBean("dstat-0.7.2", classOf [Dstat])),
69 inputs = Set(‘bgd.input‘(D), classOf[DataSet])),
70 outputs = Set(‘bgd.output ‘)
1 )
2 def ‘bgd.dimensions.scaling‘: ExperimentSuite = new ExperimentSuite(
3 for {
4 Dims <- Seq(10, 100, 1000, 10000, 100000, 1000000)

Nodes <- Seq("top020", "top010", "top005")

6 Exps <- Seq(‘bgd.spark‘(Dims, Nodes), ‘bgd.flink‘(Dims, Nodes))
7 } yield Exps
8 )

70 |}

80 | @Bean(name = Array("bgd.dimensions.scaling"))

Experiment: The central class in the domain model shown in Fig. 4 is Ezperi-
ment. In our example definition in Listing 1.1 we specify two Experiments: one
for Flink (lines 29-50) and one for Spark (lines 51-71). Each experiment specifies
the following properties: the experiment name, the command that executes the
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experiment’s job, the number of runs (repetitions) the experiment is executed,
the inputs required and outputs produced by each run, the runner system that
carries the execution, other systems, upon which the execution of the experiment
depends (e.g. dstat in line 47 for monitoring the resource usage on the compute
nodes) as well as the experiment-specific environment config which is discussed
in Sect. 6.

System: The second important class in the model is System. It specifies the
following properties: the system name, usually fixed per System implementa-
tion, e.g. flink for the Flink system or spark for the Spark system, the system
version (e.g. 1.0.3 for Flink or 1.6.2 for Spark), a configKey under which config
parameters will be located in the environment configuration, usually the same
as the system name, a Lifespan value (one of Provided, Suite, Experiment, or
Run) which indicates when to start and stop the system and a list of systems
upon which the current system depends.

ExperimentSuite: A series of related experiment beans are organized in an
EzperimentSuite. In our example listing, we define an ExperimentSuite in lines
72-78. Recall that our original motivation was to compare the scale-out charac-
teristics of Spark and Flink with respect to both: scaling the nodes and scaling
the model size. To accomplish this, we vary two parameters: Dims which specifies
the dimensionality of the training data and Nodes, which refers to a list of hosts
the experiment should run on. The for-comprehension creates a cartesian prod-
uct of all parameter values and the two experiments. With this, we ensure that
we only generate a new data set whenever either the node configuration or the
desired dimensionality changes, but not for each experiment separately. Exper-
iments typically depend on some kind of input data, represented as abstract
DataSet elements associated with a particular FileSystem in our model. The
following types are currently supported:

— CopiedDataSet - used for static data copied into the target FileSystem;
— GeneratedDataSet - used for data generated by a Job into the target FileSys-
tem.

In the example we rely on a GeneratedDataSet to trigger the Spark job for
feature hashing (lines 24-28). In addition, each experiment bean is associated
with an FzperimentOutput which describes the paths the data is written to
by the experiment workload application (lines 20-23). This meta-information is
used to clean those paths upon execution.

5 Bundle Basics

A bundle packages together the configuration data, datasets, and workload jobs
required for the execution of a particular set of experiments. Table 1 provides an
overview of the top-level elements of such a bundle. It is self-contained and can
be pushed to a remote cluster for execution as well as shared for reproducibility
purposes. The main components of a bundle can be grouped as follows:
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Table 1. The top-level elements of a bundle. (Non-fixed paths can be customized.)

Default path | Config parameter | Fixed | Description

./apps app.path.apps Yes | Workload applications

./config app.path.config Yes | configurations and experiment definitions.
./datagens |app.path.datagens |No Data generators

./datasets app.path.datasets |No Static datasets

./downloads |app.path.downloads | No Archived system binaries

Jlib app.path.log Yes | Peel libraries and dependencies

./log app.path.log Yes | Peel execution logs

./results app.path.results No State and log data from experiment runs
./systems app.path.systems No Contains all running systems

./utils app.path.utils No Utility scripts and files

./peel.sh app.path.cli Yes | The Peel command line interface

At the center of a bundle is the PEEL command line tool (PEEL CLI), which
provides the basic functionality of PEEL. While running, the Peel CLI spawns
and executes OS processes. It can be used to start and stop experiments, and
to push and pull bundles to and from remote locations. The log folder contains
the stdout and stderr output of these processes, as well as a copy of the actual
console output produced by PEEL itself. The config folder contains *.conf files
written in HOCON? syntax which defines the environment configuration, as well
the actual experiments defined in scala. The apps folder contains the binaries of
the experiment workload applications. The datasets folder contains static, fixed-
sized datasets required for the experiments. The datagens folder contains pro-
grams for dynamic generation of scalable datasets required for the experiments.
The downloads folder contains system binary archives for the systems in the
experiment environment. The archives are per default extracted in the systems
folder. The results folder contains all the data collected from attempted and suc-
cessful Peel experiment runs in a hierarchy following $suite/$expName . run$NN
naming convention. Finally, the wutils folder contains utility scripts (e.g., SQL
queries and gnuplot scripts) that can be used next to or in conjunction with
Peel CLI commands. A PEEL bundle is the unit to be shared when making
available benchmarks that utilize the framework.

6 Environment Configurations

Environments are instantiated with a concrete set of configuration values (for the
systems) and parameter values (for the experiment application). A number of
problems can arise with a naive approach for manual configuration (per system
and experiment) of the environments:

3 https://github.com/typesafehub/config/blob/master /HOCON.md.
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Syntax Heterogeneity. Each system (HDFS, Spark and Flink) has to be con-
figured separately using its own special syntax. This requires basic understand-
ing and knowledge in the configuration parameters for all systems in the stack.
(For example, the number of processing slots is called spark.executor.cores
in Spark and taskmanager.numberOfTaskSlots in Flink.)

Variable Interdependence. The sets of configuration variables associated with
each system are not mutually exclusive. Thus, care has to be taken that the
corresponding values are consistent for the overlapping fragment (e.g., the slaves
list in all systems should be the same).

Value Tuning. For a series of related experiments, all but a very few set of val-
ues remain fixed. These values are suitably chosen based on the underlying host
environment characteristics in order to maximize the performance of the corre-
sponding systems (e.g., memory allocation, degree of parallelism, temp paths for
spilling).

PEEL associates one global environment configuration to each experiment.
In doing this, it promotes:

— configuration reuse through layering
— configuration uniformity through a hierarchical syntax

At runtime, experiments are represented by experiment beans. Each experi-
ment bean holds a HOCON config that is first constructed and evaluated based
on the layering scheme and conventions discussed below, and then mapped to
the various concrete config and parameter files and formats of the systems and
applications in the experiment environment.

In our running example, this means that for varying the number of nodes
between three different configurations (20, 10, and 5 nodes) - each of the six
experiments (3x SparkBGD + 3x FlinkBGD) will have an associated config
property - a hierarchical map of key-value pairs which constitute the configu-
ration of all systems and jobs required for that particular experiment. This is
illustrated in Fig. 5.

Configuration Layers. The configuration system is built upon the concept of
layered construction and resolution. Peel distinguishes between three layers of
configuration:

— Default. Default configuration values for Peel itself and the supported
systems. Packaged as resources in related jars located in the bundle’s
app.path.lib folder.

— Bundle. Bundle-specific configuration values. Located in app.path.config.
Default is the config subfolder of the current bundle.

— Host. Host-specific configuration values. Located in the $HOSTNAME subfolder
of the app.path.config folder.

For each experiment bean defined in an experiment suite, an associated con-
figuration will be constructed according to the entries in Table2 (higher in the
list means lower priority).
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Fig. 5. Mapping the environment configurations for the six Batch Gradient Decent
experiments

Table 2. Hierarchy of configurations which are associated with an experiment bean
(higher in the list means lower priority).

Path Description

reference.peel.conf Default Peel config

reference. $systemID. conf Default system config
config/$systemID.conf Bundle-specific system config (opt)
config/hosts/$hostname/$systemID.conf Host-specific system config (opt)
config/application.conf Bundle-specific Peel config (opt)
config/hosts/$hostname/application.conf | Host-specific Peel config (opt)
Experiment bean config value Experiment specific config (opt)
System JVM system properties (constant)

First comes the default configuration, located in the peel-core. jar pack-
age. Second, for each system upon which the experiment depends (with corre-
sponding system bean identified by systemID), PEEL tries to load the default
configuration for that system as well as bundle- or host-specific configurations.

Third, bundle- and host-specific application.conf, which is a counterpart
and respectively overrides bundle-wide values defined in reference.peel.conf.

Above follow the values defined the config property of the current experiment
bean. These are typically used to vary one particular parameter in a sequence of
experiments in a suite (e.g. varying the number of workers and the DOP).
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Finally, a set of configuration parameters derived from the current JVM Sys-
tem object (e.g., the number of CPUs or the total amount of available memory)
are appended.

7 Execution Workflow

In the previous Sections we explained the internals and the code required to
configure the environment and define the experiments in a PEEL bundle. In this
section, we will explain how to make use of the commands provided by the Peel
CLI in order to deploy and run the experiments in a bundle.

As a first step, the bundle has to be assembled from the sources with mvn
deploy. For large-scale applications, the environment where the experiments
need to be executed typically differs from the environment of the machine where
the bundle binaries are assembled. In order to start the execution process, the
user therefore needs to first deploy the bundle binaries from the local machine to
the desired host environment. The Peel CLI offers a special command for this. In
order to push the peel-bundle to the remote cluster, one has to run: ./peel.sh
rsync:push remote-cluster-name. The command uses rsync to copy the con-
tents of the enclosing Peel bundle to the target environment. The connection
options for the rsync calls are thereby taken from the environment configuration
of the local environment. The remote environment has to be specified in the
application.conf.

As explained above, PEEL organizes experiments in sequences called ezper-
iment suites. The easiest option is to start an entire suite via ./peel.sh
suite:run which will automatically step through the entire execution lifecy-
cle for each experiment:

— Setup Experiment. Ensure that the required inputs are materialized (either
generated or copied) in the respective file system. Check the configuration of
associated descendant systems with provided or suite lifespan against the
values defined in the current experiment config. If the values do not match, it
reconfigures and restarts the system. Set up systems with ezperiment lifespan.

— Execute Experiment. For each experiment run which has not been com-
pleted by a previous invocation of the same suite: Check and set up systems
with run lifespan, execute experiment run, collect log data from the associ-
ated systems and clear the produced outputs.

— Tear Down Experiment. Tear down all systems with ezperiment lifespan.

Next to simply running a Full Suite which automatically executes all exper-
iments specified, each of the above steps can be executed individually. This is
particularly useful when developing and debugging a benchmark, as it allows to
validate that each step is executed correctly.

Since PEEL also keeps track of failed experiments, one can simply re-run an
entire suite in order to re-attempt the execution of the failed experiments. PEEL
will automatically skip all experiments, which have already been successfully run.
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8 Results Analysis

The results of all experiments are stored in a folder structure which contains
log file data collected from the systems involved in the experiment. In order to
make sense of the data, Peel ships with an extensible ETL pipeline that extracts
relevant data from the log files, transforms it into a relational schema, and loads
it into a database. One can then analyze various aspects of the obtained results
by querying the underlying result schema with SQL statements.

The experiment suite defined by the running example in Sect. 3 will produce
results similar to Table 3. (for detailed experimental results please see [7])

Table 3. Exemplary table listing the results of experiment runs.

Experiment | Nodes | Dimensions | Runtime in ms
flink.train | top023 | 10 165612
flink.train | top023 | 100 265034
flink.train | top023 | 1000 289115
flink.train | top023 | 10000 291966
flink.train | top023 | 100000 300280
flink.train | top023 | 1000000 315500
spark.train | top023 | 10 128286
spark.train | top023 | 100 205061
spark.train | top023 | 1000 208647
spark.train | top023 | 10000 219103
spark.train | top023 | 100000 222236
spark.train | top023 | 1000000 298778

Backends. Peel supports multiple relational database engines as a possible back-
end for your experiment data. The decision which backend to use depends on
the scope and complexity of the use case.

H2. The H2 backend is the easy and quick option for beginners. If the experiment
logs are small, this is the best way to go as it requires zero overhead for setup.
With the default H2 connection h2, PEEL will initialize and populate a results
database in a file named h2.mov.db located in the ${app.path.results} folder.

MonetDB. If the experiments generated a lot of data or more advanced ana-
lytics on the extracted database instance are required, we recommend using a
column store like MonetDB.

Analysis. To visually explore and analyze the results of the experiments, one
can connect the database schema produced by Peel with a reporting tool like
JasperReports, an OLAP cube analysis tool like Pentaho, or a visual data explo-
ration tool like Tableau.
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9 Extending Peel

Currently, PEEL supports various versions of the following systems out of the
box: Hadoop MapReduce, Spark, Flink, HDFS, dstat and Zookeeper. However,
the framework can easily be extended. Adding support for a new system is
uncomplicated and only requires the definition of system specific sub-classes
for the System and Experiment base-classes that were discussed in Sect. 4. The
communication between the framework and the systems is typically done by
calling scripts via external processes with the abstractions provided in PEEL.
Thus, the range of systems that can be supported is not strictly limited to JVM-
based ones.

In order to add support for a new system, one simply has to define the
startup and shutdown behavior of the system, the configuration files and their
management, and the way log files are to be collected inside the system class. As
was presented in the example definition in Listing 1.1, the experiment bean then
defines how jobs for the system are started and which arguments are passed. For
cluster configurations without a network file system, PEEL also provides utility
functions to distribute the required system files among the cluster nodes, as well
as the collection of log files.

10 Conclusion

In this paper we introduced PEEL as a Framework for benchmarking distributed
systems and algorithms. PEEL significantly reduces the operational complexity
of performing benchmarks of novel distributed data processing systems. It auto-
matically orchestrates all systems involved, executes the experiments and collects
all relevant log data. Through the central structure of a peel-bundle, a unified
approach to system configurations and its experiment definitions, PEEL fosters
the transparency, portability, and reproducibility of benchmarking experiments.
Based on the running example of a supervised machine learning workload, we
introduced all the major concepts of PEEL, including experiment definitions
and its experimentation process. We have sucessfully used PEEL in practice to
orchestrate the experiments published in [6,7] and hope that it will be a useful
tool for many in the benchmarking community, as PEEL is freely available as
open-source software available at https://github.com/peelframework /peel.
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