
Performance Assurance Model for Applications
on SPARK Platform

Rekha Singhal(B) and Praveen Singh

Tata Consultancy Services Research, Mumbai, India
rekha.singhal@tcs.com

Abstract. The wide availability of open source big data processing
frameworks, such as Spark, has increased migration of existing appli-
cations and deployment of new applications to these cost-effective plat-
forms. One of the challenges is assuring performance of an application
with increase in data size in production system. We have addressed this
problem in our work for Spark platform using a performance predic-
tion model in development environment. We have proposed a grey box
approach to estimate an application execution time on Spark cluster
for higher data size using measurements on low volume data in a small
size cluster. The proposed model may also be used iteratively to esti-
mate the competent cluster size for desired application performance in
production environment. We have discussed both machine learning and
analytic based techniques to build the model. The model is also flexible to
different configurations of Spark cluster. This flexibility enables the use
of the prediction model with optimization techniques to get tuned value
of Spark parameters for optimal performance of deployed application on
Spark cluster. Our key innovations in building Spark performance pre-
diction model are support for different configurations of Spark platform,
and simulator to estimate Spark stage execution time which includes
task execution variability due to HDFS, data skew and cluster nodes
heterogeneity. We have shown that our proposed approaches are able to
predict within 20% error bound for Wordcount, Terasort, K-means and
few TPC-H SQL workloads.

1 Introduction

The digitization wave has led to challenge of processing high volume and high
velocity data in real time. Apache Spark is one of the commodity cluster plat-
forms available in open source to address this need due to its in-memory process-
ing capability. Application deployment on commodity cluster system has chal-
lenge of assuring its performance over time with increase in data size. Con-
versely, appropriate capacity sizing of production Spark cluster is needed for
desired performance irrespective of increase in data size. This raises the need
for a performance assurance model, which can estimate an application perfor-
mance for larger data sizes and variable cluster sizes before deployment. Here,
by performance we mean application execution time.

c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 131–146, 2018.
https://doi.org/10.1007/978-3-319-72401-0_10



132 R. Singhal and P. Singh

One of the popular black box approaches is to use machine learning tech-
niques to build performance prediction model. This requires identification of
performance sensitive parameters (or relevant features) and collecting their val-
ues for multiple executions of application which may delay deployment. We have
discussed this in detail in Sect. 3. An analytic or mathematical model based on
few measurements is desirable to reduce cost and time to deploy.

An application deployed on Spark platform is executed as a sequence of
Spark jobs. Each Spark job is executed as a directed acyclic graph (DAG) con-
sisting of stages. Each stage has multiple executors running in parallel and each
executor has set of concurrent tasks. This complexity cannot be handled by sim-
ple mathematics alone. We have proposed a hierarchical model for estimating
Spark application execution time. Further, data skew and task execution vari-
ability have been handled by building a simulator for Spark jobs. Literature also
has similar simulator but for Hadoop MR jobs [12]. We have focused on Spark
parameters which can be changed during application execution and hence the
proposed performance prediction model may be used with optimization tech-
niques to get tuned value of Spark parameters for auto tuning. This paper has
following contributions.

– Analysis of Spark’s configurable parameters’ sensitivity to application execu-
tion time with respect to increase in data size. Use of this analysis to define
features to be used by machine learning algorithms for predicting application
execution time on larger data sizes. We have compared accuracy of predic-
tion models based on various ML techniques such as Multi Linear Regression
(MLR), MLR-Quadratic and Support Vector Machine (SVM).

– Analytic based approach to predict an application execution time, on Spark
platform, for larger data and cluster sizes using limited measurements in small
size development environment. This has led to innovation in building simulator
for estimating Spark job’s stages’ execution time. We have also built models
for estimating task’s JVM time, task’s scheduler delay and task’s shuffle time
as function of input data size to support different configurations of Spark
cluster. This capability of the model may also be used to build auto tuner.

The paper is organized as follows. Section 2 discusses the related work. The
Spark platform performance sensitive parameters analysis and machine learning
approach for building performance prediction model are discussed in Sect. 3.
The analytic based performance prediction model is presented in Sect. 4. The
experimental results for validation of the model are presented in Sect. 5. The
extension of the performance prediction models to build auto tuner is formalized
in Sect. 6. Finally, the paper is concluded in Sect. 7.

2 Related Work

Lot of work has been done in the area of performance prediction [5,7,14] and
auto tuning of applications [4,6,8,9] on big data platforms. Majority of this



Performance Assurance Model for Applications on SPARK Platform 133

work addresses Hadoop technology. [10,11] have concentrated on building per-
formance prediction models, using limited measurements in small size develop-
ment environment, for relational databases and Hive+Hadoop platforms respec-
tively. However, [3,8,13] discuss performance analysis and tuning of Spark clus-
ter. Ahsan [3] has shown that application performance degrades on large data
size primarily due to JVM GC overheads. We have also built task’s JVM predic-
tion model as function of data size for estimating application execution time on
larger data size, as discussed in Sect. 4.3. Machine learning techniques have also
been used by big data community to build performance models [7,14]. We cate-
gorize the related work into two parts- Machine learning (ML) based approach
and Cost based analytic approach.

2.1 ML Based Approach

Machine learning (ML) based approach is a black box method, which has been
explored by big data community primarily to model performance of complex big
data system. ML models are simple to build and are based on measurements
collected during execution of actual workload on actual system. Kay et al. [7]
has proposed generic ML approach with design of experiments and feature selec-
tion for analytic workload on big data platforms. [14] talks about tuning and
performance prediction of Hadoop jobs using machine learning approach. They
have focused on four performance sensitive parameters of Hadoop platform along
with data size to build model. They have compared the accuracy of models built
using different algorithms such as MLR, MLR-quadratic, SVM etc. We have
customized this approach for Spark platform as discussed in Sect. 3.

2.2 Cost Based Approach

Cost based approach employs white box technique, which builds model based
on deeper understanding of a system. However, it uses finite resources to build
model unlike ML approach. Starfish [5] conducts instrumentation of Hadoop to
collect performance measurements and build performance model to estimate a
job execution time as function of various Hadoop platform parameters and data
sizes. This method makes it adaptable for auto tuning by optimizing the model
for different parameter settings. We have used similar methodology for Spark
platform, but without instrumentation, by including Spark platform performance
sensitive parameters as inputs to the prediction model as discussed in Sect. 4.

Panagiotis [8] proposes to tune a large number of Spark parameters using
trial and error rule base created with few measurements. Their focus has been
more on serialization and memory related parameters, however, we are inter-
ested in parallelism and memory related parameters in this paper. Shi et al. [9]
has proposed Produce-Transfer-Consume (PTC) approach to model Hadoop job
execution cost and used this to get optimal setting for Hadoop platforms. They
have identified only few key parameters which are used to tune Hadoop system
for a given job. We have also chosen only few performance sensitive parameters
to build performance prediction model for Spark applications. The proposed



134 R. Singhal and P. Singh

model is formulated along the steps involved in an application execution on
Spark platform. However, we do not perform white box instrumentation rather
conduct our own experiments to collect the desired performance data for each
such step. Wang et al. [13] has proposed an analytic based model for predicting
Spark job performance and is closely related to our work discussed in Sect. 4.
However, their model is restricted to same values for Spark parameters both
in the sample and actual execution of an application. We could overcome this
limitation by including sub models for estimating task JVM time, Shuffle time
and Scheduler delay time. The heterogeneity at data, HDFS and hardware level
for task execution has been handled by a simulator for estimating Spark stage
execution time unlike the mathematical approach proposed in [13].

3 Machine Learning Based Model

Building a machine learning based model requires correct identification of fea-
tures and choice of right machine learning algorithm. Spark platform has more
than 100 parameters to configure [8]. The first challenge is to identify right set
of parameters which impact an application execution time for varying data and
cluster sizes and this set constitutes our feature set. We targeted only those
parameters which could be changed during an application execution.

Fig. 1. Performance sensitivity analysis on 20 GB data size and 2 node cluster

We have conducted performance sensitivity analysis for number of parameters
which are potential candidates for feature selection. The most sensitive parame-
ters identified are the ones, whose changes led to variations in performance of
the application. Our observed feature set in Spark 2.0 constitutes number of
executors, number of cores per executor, executor memory size (this controls
both shuffle memory and JVM heap size) and data size as shown in Fig. 1.

3.1 Experimental Set Up and Results

Our experimental setup consists of 5 nodes, each of Intel(R) Xeon(R) CPU
X5365 @ 3.00 GHz, 8 cores and 16 GB RAM. The platform stack consists of Yarn,



Performance Assurance Model for Applications on SPARK Platform 135

Apache Spark 2.01 and HDFS 2.6. We have one master and maximum four slaves
in these experiments. We have formulated set of experiments based on the hard-
ware constraints of the system. For example, the product of ‘number of cores
per executor’ and ‘number of executors’ can vary from 1 to maximum cores in
the cluster. The experimental configurations to collect training data is given
in Table 1. We have built and tested ML prediction models for three types of
workloads − Wordcount, Terasort and K-means [1] for data sizes varying from
5 GB to 15 GB. A linux bash script executes each of the application for all com-
binations of the parameters settings given in Table 1. Few of the combinations
are invalid due to resource mismatch and are skipped. In total we could collect
around 400 data points, as training set, for each application to build ML model.

Table 1. Experimental setup configuration for machine learning model

Configuration parameter Minimum value Maximum value

Number of executors (–num-executor) 2 10

Number of cores per executor (–executor-cores) 1 8

Executor memory (–executor-memory) 1 12

Data size 1 GB 15 GB

Table 2. Accuracy of ML models for different algorithms

Wordcount Terasort K-Means

Model MAPE Model MAPE Model MAPE

Linear 0.2345 Linear 0.3049 Linear 0.2500

MLR-I 0.2445 MLR-I 0.21985 MLR-I 0.2900

MLR-Q 0.2310 MLR-Q 0.2998 MLR-Q 0.2508

SVM 0.2356 SVM 0.1701 SVM 0.2009

SVM tuning 0.2234 SVM tuning 0.0876 SVM Tuning 0.2152

Table 3. Performance tuning results for Applications on 20 GB data size with default
settings on (4 + 1) node cluster where, Ne: Number of executors, Nc: Number of cores
per executor, Nm: Executor memory size in GB

Application Default values Execution
time on
default values

Parameter
optimal values

Optimal
execution time
(Gain%)

Wordcount Ne = 2, Nc = 1,
Nm = 1

1165.1450 Ne = 10, Nc = 2,
Nm = 4

377.02 (67%)

Terasort Ne = 2, Nc = 1,
Nm = 1

884.395 Ne = 4, Nc = 4,
Nm = 1

664.81 (24%)

K-means Ne = 2, Nc = 1,
Nm = 1

14778.06 Ne = 8, Nc = 6,
Nm = 12

875.479 (94%)



136 R. Singhal and P. Singh

A statistical tool R is used to build performance prediction model using vari-
ous algorithms such as Multiple Linear Regression (MLR), MLR with quadratic
effect and SVM with and without tuning [14]. These ML model are used for pre-
dicting application execution time on 20 GB data size. As shown in Table 2, these
algorithms are able to predict with Mean Absolute Percentage Error (MAPE)
22% on average. These performance prediction models are integrated with opti-
mization algorithm in R and could yield up to 94% improvement in application
performance as shown in Table 3. Machine Learning based prediction models
requires lot of resources and time for data collection. Agile development frame-
work does not allow time delay incurred in collecting training data for building
performance assurance model. Therefore, we have built analytic model using one
time measurements as discussed in the next section.

4 Measurement Based Analytic Performance Prediction
Model

We assume a small size Spark cluster with application and its representative
data sets available in development environment. The cluster is assumed to have
atleast one instance of each type of heterogeneous nodes deployed in produc-
tion system. The application is executed in this small cluster on small data size
(DevSize). The application logs created by Spark platform are parsed to collect
granular level performance data as given in Table 4. The problem statement is
to estimate the application execution time for production environment, having
larger data size (say ProdSize) and larger cluster size (say CSprod) with differ-
ent Spark parameter configurations, using the collected measurements. We will
use notations given in Table 4 for further explanation of the model. An appli-
cation is executed as a serial execution of a number of Spark jobs as shown in
Fig. 2. Therefore, the application’s predicted execution time is summation of the
estimated execution time of its jobs launched one after another i.e.

ApplnExecutionT ime =
i=N∑

i=0

pJobTi (1)

A Spark job is executed in a form of directed acyclic graph (DAG), where each
node in the graph represents a stage. A new stage is created whenever next
operation requires data to be shuffled. A job’s execution time is predicted as
summation of the estimated execution time of all its stages i.e.

pJobTi = JobSti +
k=SNi∑

k=0

pStageT k
i + JobClni (2)

Each stage is executed as set of concurrent executors with parallel tasks in
each executor, depending on values of number of executors and number of
cores per executor parameters. If executors allocated per node (i.e. NEp

CSp
) can

not be scheduled concurrently, due to non-availability of cores on the node



Performance Assurance Model for Applications on SPARK Platform 137

(i.e. NEp

CSp
∗ NCp < node’s available cores), then the executors are serialized

and executed one after another, and the stage’s estimated execution time is
increased by factor of the number of serialized executors. For simplification, we
assume that Spark parameter configuration is such that executors are running
concurrently at each node. Each executor spawns multiple threads, one for each
task. All tasks launched in an executor share the same JVM memory. Each
task processes a defined size of data set (i.e.block size). For a given data size,
an executor may have multiple waves of such parallel tasks executions on each
core. Since all tasks in a stage are identical and read same data size, therefore,
execution time of stage ‘j’ of job ‘i’ may be estimated as:

pStageT j
i = StgStji + Avg(pTskT j

i ) ∗
⌈

pDSj
i

(BSp ∗ NEp ∗ NCp)

⌉
+ StgClnj

i (3)

However, variation in tasks’ execution time may break the symmetry and
number of tasks assigned per core (or wave count) may not be same at all
cores. Variation in tasks’ execution time could be due to data skew, heteroge-
neous nodes and/or variability in location of HDFS block(s) read by a task-
local, same rack or remote. We have built a stage task execution simulator,
using performance summary created in development environment (in Sect. 4.1),
to capture this variability as discussed in Sect. 4.5. A task execution time consti-
tutes scheduler delay, serialization time, de-serialization time, JVM overheads,
compute time including IO read/write time in HDFS and shuffle IO time. Note
that each task reads either shuffled data or input data and writes shuffled data
or output data. Therefore execution time of a task in stage ‘j’ of job ‘i’ is esti-
mated as:

pTskT j
i = pTskSdji + pTskSerji + pTskCtji + pTskJvmj

i + pTskSf j
i (4)

A task’s serialization and de-serialization time depends on amount of data
processed by a task, which depends on the block size. Since this is a compute
operation, it can be assumed to increase linearly with block size. For same block
size in both the environments, pTskSerji = dTskSerji . A task’s JVM time rep-
resents the overhead in garbage collection while managing multiple threads. The
JVM time estimation depends on type of computation, hardware system and
number of threads, which is discussed in detail in Sect. 4.3. For a given Spark
cluster, an increase in input data size may increase a task’s shuffle data such
that it may not fit in the allocated memory. This results in spill over to disk and
may increase shuffle time non-linearly because of additional disk read and write
operations. We need a model to estimate shuffle read and write time as function
of input data size, cluster size and shuffle memory as discussed in Sect. 4.4.

4.1 Performance Summary

We have observed that variation in task execution time also relates to its launch
time on a core. To capture this variation, we divided a stage tasks into two types



138 R. Singhal and P. Singh

Table 4. Notations used in the analytic model discussed in Sect. 4

Parameter Development Production

Block size BSdev BSprod

Number of executors NEd NEp

Number of cores per executor NCd NCp

Number of jobs in the application N N

Number of stages in job ‘i’ SNi SNi

Job ‘i’ execution time dJobTi pJobTi

Job ‘i’ start up time JobSti JobSti

Job ‘i’ clean up time JobClni JobClni

Job ‘i’ stage ‘j’ execution time dStageT j
i pStageT j

i

Job ‘i’ stage ‘j’ startup time StgStji StgStji
Job ‘i’ stage ‘j’ cleanup time StgClnj

i StgClnj
i

Job ‘i’, stage ‘j’, number of tasks dNT j
i pNT j

i

Job ‘i’, stage ‘j’, size of shuffled data dDSj
i pDSj

i

Job ‘i’, stage ‘j’, task Execution Time dTskT j
i pTskT j

i

Job ‘i’, stage ‘j’, task execution time in ‘k’th wave dTskT jk
i pTskT jk

i

Job ‘i’, stage ‘j’, task serialization + de-serialization
time

dTskSerji pTskSerji

Job ‘i’, stage ‘j’, task JVM time dTskJvmj
i pTskJvmj

i

Job ‘i’, stage ‘j’, task shuffle IO time dTskSfj
i pTskSfj

i

Job ‘i’, stage ‘j’, task scheduler delay dTskSdji pTskSdji
Job ‘i’, stage ‘j’, first wave task compute time dFstTskCtji pFstTskCtji
Job ‘i’, stage ‘j’, first wave task scheduler delay dFstTskSdji pFstTskSdji
Job ‘i’, stage ‘j’, rest wave ‘k’th bucket duration dRstTkBktDurjki pRstTkBktDurjki
Job ‘i’, stage ‘j’, number of rest wave tasks in ‘k’th
bucket

dRstTkBktNjk
i pRstTskBktNjk

i

Job ‘i’, stage ‘j’, rest wave task compute time dRstTskCtji pRstTskCtji
Job ‘i’, stage ‘j’, rest wave task scheduler delay dRstTskSdji pRstTskSdji
Job ‘i’, stage ‘j’, rest wave task maximum compute
time

dRstTkMaxCT j
i –

Job ‘i’, stage ‘j’, rest wave task minimum compute
time

dRstTkMinCT j
i –

of tasks - first wave tasks and rest wave tasks as shown in Fig. 2 by emulating the
task scheduling behaviour of Spark platform across NEd ∗NCd cores. An appli-
cation log is parsed to collect list of all dTskT j

i sorted in the order of their launch
time. An array of data structure of size NEd ∗NCd is allocated with each ‘k’th
element storing the ‘k’th core current finish time. Initially all elements are initial-
ized to zero. dNT j

i tasks are scheduled on NEd ∗ NCd cores such that the next
task in the list is scheduled on the core having minimum finish time, leading to
a task allocation structure as shown in Fig. 2. Using the measurements collected
from the Spark application log, dFstTskCT j

i and dFstTskSdji are computed as



Performance Assurance Model for Applications on SPARK Platform 139

Fig. 2. (a) Application execution on Spark (b) Tasks execution in an executor for a
stage Si with 4 cores

average of (dTskT j
i −dTskJvmj

i −dTskSf j
i −dTskSdji ) and average of dTskSdji

respectively of all the tasks in the first wave. Similarly, dRstTskSdji is calculated
as the average of scheduler delay of all tasks in the rest wave. dRstTskCT j

i is
also computed as histogram of (dTskT j

i −dTskJvmj
i −dTskSf j

i −dTskSdji ) for
all rest wave tasks, to capture variability in task execution time. The histogram
has ‘m’ buckets each of size BkSizeji such that

BkSizeji =
(dRstTskMaxCT j

i − dRstTskMinCT j
i )

m
(5)

The ‘k’th bucket duration is from (k− 1) ∗BkSizeji to k ∗BkSizeji . Each of the
rest wave tasks is categorized into one of ‘m’ buckets such that dRstTskCT j

i

falls into the duration of the bucket. dRstTskBktDurjki is computed as average
of dRstTskCT j

i for all tasks in ‘k’th bucket. Performance summary of stage ‘j’
of job ‘i’ consists of dFstTskCT j

i and ‘m’ buckets each with its average duration
dRstTskBktDurjli and dRstTskBktN jl

i number of tasks in ‘l’th bucket. Higher
the value of ‘m’, more variation in task execution time can be captured. However,
it may also increase the time taken to mimic scheduler for rest wave tasks, whose
time complexity is O(n + m) for ‘n’ tasks.

4.2 Task Scheduler Delay Prediction Model

Scheduler delay is the delay incurred while scheduling a task. We have observed
larger scheduler delay for first wave tasks due to task scheduling preparation
overheads. Therefore,

pFstTskSdji = dFstTskSdji ∗ pNT j
i

dNT j
i

pRstTskSdji = dRstTskSdji

(6)



140 R. Singhal and P. Singh

4.3 Task JVM Time Prediction Model

On Spark platform, each executor has single JVM and all tasks scheduled in it
share the same JVM, therefore JVM overheads increases with increase in the
number of concurrent tasks (threads) accessing the same JVM which is con-
trolled by number of cores per executor parameter. Also, we have observed in
our experiments that it increases linearly with number of executors scheduled
concurrently on the same machine. This may be because a JVM manager has
more JVM instances to manage and overheads are assumed to increase linearly
for the model. These overheads are system and application dependent, so we
model the JVM overheads as function of number of cores per executor by tak-
ing average of measured dTskJvmT j

i . The measurements are taken by varying
number of cores per executor and keeping only one executor per machine. We
use regression to estimate JVM overheads for NCp cores per executor in the
production environment. For example, Fig. 3 shows the JVM model used in our
experimental setup for Wordcount and Terasort applications for one executor
per machine. pTskJVM j

i is further extrapolated linearly to the number of con-
current executors per node.

Fig. 3. JVM time estimation model for Wordcount and Terasort applications built on
experimental set up given in Sect. 5

4.4 Task Shuffle Time Prediction Model

A naive approach to estimate a task shuffle time is linear extrapolation i.e.

pTskSf j
i =

∑
∀tasks

dTskSf j
i

dNT j
i

∗ pDSj
i

dDSj
i

(7)

However, it may hold true only for those configurations of production system
where a task’s shuffle data size is small enough to fit in the allocated memory.
Otherwise, shuffle operation leads to spill over to disk and incurs extra disk
IO read/write operations for a task. We model this by estimating shuffle data
size per task and predict if this will lead to spill over. If it does, we estimate
the overheads of spill over and add that to a tasks shuffle time. Spill overheads



Performance Assurance Model for Applications on SPARK Platform 141

are calculated at small data size by constraining the development environment
to generate spurious disk spills. For simplicity, we assume that network is not
a bottleneck here, so communication overhead increases linear to shuffle data
size. Assuming block size unchanged, the size of shuffle data generated per task
remains same.

Shuffle data size per executor is estimated as (pDSj
i

NEp
). We have observed that

shuffle data size in memory increases due to de-serialization. For an executor, if
this increased size is more than allocated shuffle memory (i.e. storage memory
fraction * executor memory size), the shuffle operation will spill over to disk for
the executor tasks. Let say OptSj

i is the largest shuffle data size per executor
which fits into allocated shuffle memory after serialization and does not spill
over to disk, then for measured spill overheads as Spill (in MB) per task in the

development environment and pDSj
i

NEp
> OptSj

i ,

pTskSf j
i =

∑
∀tasks

dTskSf j
i

dNT j
i

∗ pDSj
i

dDSj
i

+

(
pDSj

i

NEp
− OptSj

i

)
∗ Spill

where, pDSj
i = dDSj

i ∗ Prodsize

DevSize

(8)

4.5 Stage Task Execution Simulation

To estimate execution time of a stage, we need to estimate number of tasks,
pNT j

i , and their estimated execution time i.e. pTskT j
i . pNT j

i is estimated as
pDSj

i

BSp
where, pDSj

i is given in Eq. 8. As mentioned in Sect. 4.1, a stage tasks
are divided into first wave and rest wave tasks, therefore we estimate average
execution time for both the waves’ task separately using the performance sum-
mary (Sect. 4.1) created in the development environment and prediction models
discussed in Sects. 4.2, 4.3 and 4.4. Using Eq. 4, for first wave tasks,

pTskT j
i = dFstTskCT j

i +pFstTskSdji +dTskSerji +pTskJvmj
i +pTskSf j

i (9)

Similarly, for rest wave tasks,

∀l=(1,m), pRstTskBktDurjli = dRstTskBktDurjli + pRstTskSdji+

dTskSerji + pTskJvmj
i + pTskSf j

i

∀l=(1,m), pRstTskBktN jl
i =

(pNT j
i − NEp ∗ NCp)

(dNT j
i − NEd ∗ NCd)

∗ dRstTskBktN jl
i

(10)

Stage execution is simulated by scheduling pNT j
i tasks across NEp∗NCp number

of cores. The simulator maintains an array of data structure of size NEp ∗NCp

with each ‘k’th element storing the ‘k’th core current finish time. NEp ∗ NCp

tasks are allocated as the first wave tasks of duration given in Eq. 9 to each of
the cores. Then, all the rest wave tasks are scheduled from each of ‘m’ buckets



142 R. Singhal and P. Singh

of duration given in Eq. 10 in round robin fashion such that a task is scheduled
on the core having minimum finish time so far. Therefore,

pStageT j
i = StgStji + Max on T cores

∑

‘k’thCoreTasks

pTskT jk
i + StgClnj

i

where, T = NEp ∗ NCp

(11)

5 Experimental Results and Analysis

Our experimental setup consists of 5 nodes, each of Intel(R) Xeon(R) CPU X5365
@ 3.00 GHz, 8 cores and 16 GB RAM. Each node has disk capacity of 30 GB.
The platform stack consists of Yarn, Apache Spark 2.01, Hive 1.2.1 and HDFS
2.6. We have one master and maximum four slaves in these experiments. We have
kept executor memory as 4 GB across all experiments in both the development
and production environments. However, model supports different executor mem-
ory size as well. The different experimental configuration are shown in Table 5.
We have tested the prediction model for four types of workloads- Wordcount,
Terasort, K-means [1], two SQL queries from TPC-H [2] benchmarks, for data
sizes varying from 5 GB to 20 GB. The development environment consists of 1
+ 2 node cluster with 5 GB data size. We have executed each application on
1 node cluster by varying –executor-cores parameter to build JVM model for
each application as shown in Fig. 3. Each workload listed in Table 5 is executed
in the development environment to build the model as discussed in Sect. 4. The
analytic model is built in Java. It has two components - Parser for parsing the
Spark application log and Prediction module for building the prediction models
which takes input from the parser to build the model. Equation 1 is used to
predict each application execution time for different production environments
created by possible combinations of parameters listed in Table 5.

Table 5. Production system configuration for model validation

Configuration parameter Values

Number of executors (–num-executor) 2, 4, 6

Number of cores per executor
(–executor-cores)

2, 4, 6

Executor memory size 4 GB

Cluster size 2, 4

Data size 10 GB, 20 GB

Workload Wordcount, Terasort, Kmeans

SQL1 select sum(l extendedprice * (1 – l discount))
as revenue from Lineitem

SQL2 select sum(l extendedprice * (1 – l discount))
as revenue from Lineitem, Order where
l orderkey = o orderkey



Performance Assurance Model for Applications on SPARK Platform 143

5.1 Discussions

We have validated the model for around 15 production configurations for each of
the workloads. Prediction error is calculated as the ratio of the absolute difference
in the actual execution time and the model’s estimated execution time, to the
actual execution time. We have observed an average 15% prediction error for each
application as shown in Fig. 4 with maximum 30% error. We have observed that
large prediction errors are due to gaps in capturing variations in tasks execution
time i.e. pTskCtji in Eq. 4. The analytic model accuracy has been compared with
that of the machine learning model proposed in Sect. 3 for 20 GB data size on
4 nodes cluster for four different configurations of Spark platform parameters.
Figure 5 shows that prediction accuracy of the analytic model is better than that
of the machine learning model. This is because the ML model uses black box
techniques while the analytic model is based on Spark internal job processing
details. Figure 6 shows the actual execution time vs. predicted execution time
for different production environments for Wordcount, Terasort and K-means
applications.

Fig. 4. Analytic model average prediction
error(%)

Fig. 5. ML vs analytic model accu-
racy

Wordcount application has only one job with two stages. It is a simple map-
reduce application, where the proposed model’s estimations are very close to the
actual execution time. We have observed an average accuracy of 91%. Terasort
is a sorting application with two jobs and two stages in each job. For most of
the test cases we observed an accuracy of atleast 80%, however there is one
outlier on 4 node cluster with 4 executors and 4 cores per executor, where the
estimated execution time is 30% more than the actual. This is because for stage
4, where partially sorted data sets are merged and written back to disk, the model
estimates more number of tasks with larger execution time than the actual. This
is due to uniform extrapolation of number of tasks in each bucket which may
need to be refined using data distribution. K-means application has around 20
jobs, each job with 2 stages. Here, we observed accuracy of 85% percent. Few
outliers with at most error of 23% are due to the variation in task execution
time which may not be captured in the histogram for few jobs. The proposed



144 R. Singhal and P. Singh

Fig. 6. Model validation for Wordcount, Terasort and K-Means applications: Better
accuracy for points closer to the line

simulator uses only four buckets irrespective of type of job or stage- this may
need to be tuned for better accuracy.

We have also validated the model for two simple SQL queries based on TPC-H
benchmarks as shown in Fig. 7. The model may not work for complex SQL queries
having multiple joins. The optimization in Spark 2.0 may lead to execution of
multiple steps of a complex SQL query in a single stage and difficult to get
performance data for each step of SQL query. Whereas, a SQL query execution
time is sensitive to each join operator’s input data sizes, which is not being
considered in our model. SQL1 query is more like an aggregation which has one
job with two stages and SQL2 query has one aggregate and one join operation
which is executed as one job with 4 stages. As shown in Fig. 7 the estimated
values for both SQL queries are closer to the actual value with accuracy of 90%.

Fig. 7. Model validation for TPC-H SQL queries: Better accuracy for points closer to
the line



Performance Assurance Model for Applications on SPARK Platform 145

6 Auto Tuning of Application Execution on Spark

The performance prediction model presented in Sect. 4 can be used iteratively
in an optimization algorithm to get Spark parameters values for an optimal
performance (i.e. minimum execution time) on a given cluster and data size
as given in Fig. 8. The parameters we have considered for tuning are number
of executors, number of cores per executors and executor memory size. Note
that, there is a scope to include more performance parameters as discussed in
[8], however, we have restricted the model for these three parameters only in
this paper.

Fig. 8. Auto tuner: Optimization of application execution using prediction model

7 Conclusions and Future Work

Spark is a widely deployed commodity based parallel processing framework. The
challenge is to assure performance of applications on Spark cluster for larger
data size before deployment. In this paper, we have presented a model to predict
application execution time for larger data size using finite measurements in small
size development environment. We have presented both machine learning based
approach and analytic model. The analytic model handles data skew and node
heterogeneity by building a simulator for estimating Spark’s stage execution
time. The analytic model is flexible to different Spark configurations since it
also estimates execution time of all components of Spark’s task as function of
the Spark production cluster’s configuration. This capability of the model may be
harnessed to build auto tuner for applications deployed on Spark platform. The



146 R. Singhal and P. Singh

proposed model shows prediction accuracy of atleast 80% for different workloads.
There is scope to extend the model to support more parameters as discussed in
[8]. Further work is needed for extensive validation of the model for different
applications, more combinations of Spark parameters, larger data size, larger
cluster size and also for cloud deployments. We also plan to create synthetic
benchmarks which can be matched to a given applications to enhance the model’s
prediction capability for an unknown application.

References

1. SparkBench: Spark performance tests. https://github.com/databricks/spark-perf
2. TPC-H benchmarks. https://www.tpc.org/tpch
3. Awan, A.J., Brorsson, M., Vlassov, V., Ayguade, E.: How data volume affects spark

based data analytics on a scale-up server. arXiv:1507.08340 (2015)
4. Awan, A.J., Brorsson, M., Vlassov, V., Ayguade, E.: Architectural impact on per-

formance of in-memory data analytics: apache spark case study. arXiv:1604.08484
(2016)

5. Herodotou, H., Babu, S.: Profiling, what-if, analysis, and cost-based optimization
of mapreduce programs. In: The 37th International Conference on Very Large Data
Bases (2011)

6. Jia, Z., Xue, C., Chen, G., Zhan, J., Zhang, L., Lin, Y., Hofstee, P.: Auto-tuning
spark big data workloads on POWER8: prediction-based dynamic SMT threading.
In: Proceedings of the 2016 International Conference on Parallel Architectures and
Compilation (2016)

7. Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.: Making sense of
performance in data analytics frameworks. In: Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2015)
(2015)

8. Petridis, P., Gounaris, A., Torres, J.: Spark parameter tuning via trial-and-error.
arXiv:1607.07348 (2016)

9. Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C.: MRTuner: a toolkit to enable
holistic optimization for mapreduce jobs. PVLDB 7(13), 1319–1330 (2014)

10. Singhal, R., Nambiar, M.: Predicting SQL query execution time for large data
volume. In: ACM Proceedings of IDEAS (2016)

11. Singhal, R., Sangroya, A.: Performance assurance model for HiveQL on large data
volume. In: International Workshop on Foundations of Big Data Computing in
conjunction with 22nd IEEE International Conference on High Performance Com-
puting (2015)

12. Singhal, R., Verma, A.: Predicting job completion time in heterogeneous mapre-
duce environments. In: Proceedings of IPDPS: Heterogeneous Computing Work-
shop, IPDPS (2016)

13. Wang, K., Khan, M.M.H.: Performance prediction for apache spark platform. In:
IEEE 17th International Conference on High Performance Computing and Com-
munications (HPCC) (2015)

14. Yigitbasi, N., Willke, T., Liao, G., Epema, D.: Towards machine learning-based
auto-tuning of mapreduce. In: IEEE 21st International Symposium on Modelling,
Analysis and Simulation of Computer and Telecommunication Systems (2013)

https://github.com/databricks/spark-perf
https://www.tpc.org/tpch
http://arxiv.org/abs/1507.08340
http://arxiv.org/abs/1604.08484
http://arxiv.org/abs/1607.07348

	Performance Assurance Model for Applications on SPARK Platform
	1 Introduction
	2 Related Work
	2.1 ML Based Approach
	2.2 Cost Based Approach

	3 Machine Learning Based Model
	3.1 Experimental Set Up and Results

	4 Measurement Based Analytic Performance Prediction Model
	4.1 Performance Summary
	4.2 Task Scheduler Delay Prediction Model
	4.3 Task JVM Time Prediction Model
	4.4 Task Shuffle Time Prediction Model
	4.5 Stage Task Execution Simulation

	5 Experimental Results and Analysis
	5.1 Discussions

	6 Auto Tuning of Application Execution on Spark
	7 Conclusions and Future Work
	References


