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Preface

The Transaction Processing Performance Council (TPC) is a nonprofit organization
established in August 1988. Over the years, the TPC has had a significant impact on the
computing industry’s use of industry-standard benchmarks. Vendors use TPC bench-
marks to illustrate performance competitiveness for their existing products, and to
improve and monitor the performance of their products under development. Many
buyers use TPC benchmark results as points of comparison when purchasing new
computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement, and characterization of complex systems. The TPC remains committed
to developing new benchmark standards to keep pace with these rapid changes in
technology. One vehicle for achieving this objective is the TPC’s sponsorship of the
Technology Conference Series on Performance Evaluation and Benchmarking
(TPCTC) established in 2009. With this conference series, the TPC encourages
researchers and industry experts to present and debate novel ideas and methodologies
in performance evaluation, measurement, and characterization.

This book contains the proceedings of the 9th TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2017), held in conjunction with
the 43rd International Conference on Very Large Data Bases (VLDB 2017) in Munich,
Germany, from August 28 to September 5, 2017.

The hard work and close cooperation of a number of people have contributed to the
success of this conference. We would like to thank the members of TPC and the
organizers of VLDB 2017 for their sponsorship; the members of the Program Com-
mittee and Publicity Committee for their support; and the authors and the participants,
who are the primary reason for the success of this conference.

October 2017 Raghunath Nambiar
Meikel Poess
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Industry Standards for the Analytics Era: TPC Roadmap

Raghunath Nambiar1(✉) and Meikel Poess2

1 Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
rnambiar@cisco.com

2 Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065, USA
meikel.poess@oracle.com

Abstract. The Transaction Processing Performance Council (TPC) is a non-
profit organization focused on developing data-centric benchmark standards and
disseminating objective, verifiable performance data to industry. This paper
provides a high-level summary of TPC benchmark standards, technology confer‐
ence initiative, and new development activities in progress.

Keywords: Industry standards · Database benchmarks

1 TPC Benchmark Timelines

Founded in 1988, the Transaction Processing Performance Council (TPC) is a non-profit
corporation dedicated to creating and maintaining benchmarks which measure database
performance in a standardized, objective and verifiable manner. As of November 2017,
21 full members and three associate members comprise the TPC.

To date the TPC has approved a total of sixteen different benchmarks. Of these
benchmarks, twelve are currently active. TPC currently defines two benchmark classes:
Enterprise and Express. See Fig. 1 for the benchmark timelines.

• Enterprise benchmarks are technology agnostic. They are specification based, typi‐
cally complex, and have long development cycles. Their specifications are provided
by the TPC, but their implementation is up to the vendor. The vendor may choose
any commercially available combination of software and hardware products to
implement benchmarks. Examples of enterprise benchmarks are: TPC-C, TPC-E,
TPC-H, TPC-DS, TPC-DI, TPC-VMS

• Express benchmarks are kit based, typically based on exiting workloads have shorter
development cycles. It is required to use TPC provided kits for the publication of
express benchmarks. Examples of express benchmarks: TPCx-HS, TPCx-BB, TPCx-
V, TPCx-IoT

© Springer International Publishing AG 2018
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Fig. 1. TPC benchmark timelines

A high-level summary of current active standards are listed below:

1.1 Transaction Processing

TPC-C: Approved in July of 1992, TPC Benchmark C is an on-line transaction
processing (OLTP) benchmark. TPC-C is more complex than previous OLTP bench‐
marks such as TPC-A because of its multiple transaction types, more complex database
and overall execution structure. TPC-C involves a mix of five concurrent transactions
of different types and complexity either executed on-line or queued for deferred execu‐
tion. The database is comprised of nine types of tables with a wide range of record and
population sizes. TPC-C is measured in transactions per minute (tpmC). While the
benchmark portrays the activity of a wholesale supplier, TPC-C is not limited to the
activity of any particular business segment, but, rather represents any industry that must
manage, sell, or distribute a product or service.

TPC-E: Approved in February of 2007, TPC Benchmark E is an on-line transaction
processing (OLTP) benchmark. TPC-E is more complex than previous OLTP bench‐
marks such as TPC-C because of its diverse transaction types, more complex database
and overall execution structure. TPC-E involves a mix of twelve concurrent transactions
of different types and complexity, either executed on-line or triggered by price or time
criteria. The database is comprised of thirty-three tables with a wide range of columns,
cardinality, and scaling properties. TPC-E is measured in transactions per second (tpsE).
While the benchmark portrays the activity of a stock brokerage firm, TPC-E is not limited
to the activity of any particular business segment, but rather represents any industry that
must report upon and execute transactions of a financial nature.

1.2 Decision Support

TPC-H: The TPC Benchmark™H (TPC-H) is a decision support benchmark. It
consists of a suite of business oriented ad-hoc queries and concurrent data modifications.
The queries and the data populating the database have been chosen to have broad

2 R. Nambiar and M. Poess



industry-wide relevance. This benchmark illustrates decision support systems that
examine large volumes of data, execute queries with a high degree of complexity, and
give answers to critical business questions. The performance metric reported by TPC-
H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@Size),
and reflects multiple aspects of the capability of the system to process queries. These
aspects include the selected database size against which the queries are executed, the
query processing power when queries are submitted by a single stream, and the query
throughput when queries are submitted by multiple concurrent users. The TPC-H Price/
Performance metric is expressed as $/QphH@Size.

TPC-DS: The TPC Benchmark DS (TPC-DS) is a decision support benchmark that
models several generally applicable aspects of a decision support system, including
queries and data maintenance. The benchmark provides a representative evaluation of
performance as a general purpose decision support system. A benchmark result measures
query response time in single user mode, query throughput in multi user mode and data
maintenance performance for a given hardware, operating system, and data processing
system configuration under a controlled, complex, multi-user decision support work‐
load. The purpose of TPC benchmarks is to provide relevant, objective performance
data to industry users. TPC-DS Version 2 enables emerging technologies, such as Big
Data systems, to execute the benchmark [3, 4].

TPC-DI: Historically, the process of synchronizing a decision support system with
data from operational systems has been referred to as Extract, Transform, Load (ETL)
and the tools supporting such process have been referred to as ETL tools. Recently, ETL
was replaced by the more comprehensive acronym, data integration (DI). DI describes
the process of extracting and combining data from a variety of data source formats,
transforming that data into a unified data model representation and loading it into a data
store. The TPC-DI benchmark combines and transforms data extracted from an On-Line
Transaction Processing (OTLP) system along with other sources of data, and loads it
into a data warehouse. The source and destination data models, data transformations and
implementation rules have been designed to be broadly representative of modern data
integration requirements [5].

1.3 Big Data and Analytics

TPCx-HS v1: Big Data technologies like Hadoop has become an important part of the
enterprise IT ecosystem. Introduced in 2014, the TPC Express Benchmark HS (TPCx-
HS) Version 1 is industry’s first ever standard for benchmarking big data systems. It
was developed to provide an objective measure of hardware, operating system and
commercial Apache Hadoop File System API compatible software distributions, and to
provide the industry with verifiable performance, price-performance and availability
metrics. Even though the modeled application is simple, the results are highly relevant
to hardware and software dealing with Big Data systems in general. TPCx-HS stresses
both the hardware and software stacks including the execution engine (MapReduce or
Spark) and Hadoop Filesystem API compatible layers. This workload can be used to

Industry Standards for the Analytics Era: TPC Roadmap 3



assess a broad range of system topologies and implementation of Hadoop clusters. The
TPCx-HS benchmark can be used to assess a broad range of system topologies and
implementation methodologies in a technically rigorous and directly comparable, in a
vendor-neutral manner [6].

TPCx-HS v2: The Hadoop ecosystem is moving fast beyond batch processing with
MapReduce. Introduced in 2016 TPCx-HS V2 is based on TPCx-HS V1 with support
for Apache Spark - a popular platform for in-memory data processing that enables real-
time analytics on Apache Hadoop. TPCx-HS V2 also supports MapReduce (MR2) and
supports publications on traditional on premise deployments and clouds. More infor‐
mation about TPCx-HS v1 can be found at http://www.tpc.org/tpcx-hs/default.asp?
version=1. The TPCx-HS v2 benchmark can be used to assess a broad range of system
topologies and implementation methodologies in a technically rigorous and directly
comparable, in a vendor-neutral manner.

TPCx-BB: TPCx-BB Express Benchmark BB (TPCx-BB) measures the performance
of Hadoop-based Big Data systems. It measures the performance of both hardware and
software components by executing 30 frequently performed analytical queries in the
context of retailers with physical and online store presence. The queries are expressed
in SQL for structured data and in machine learning algorithms for semi-structured and
unstructured data. The SQL queries can use Hive or Spark, while the machine learning
algorithms use machine learning libraries, user defined functions, and procedural
programs [7].

1.4 Virtualization

TPC-VMS: Introduced in 2012, the TPC Virtual Measurement Single System Speci‐
fication (TPC-VMS) leverages the TPC-C, TPC-E, TPC-H and TPC-DS Benchmarks
by adding the methodology and requirements for running and reporting performance
metrics for virtualized databases. The intent of TPC-VMS is to represent a Virtualization
Environment where three database workloads are consolidated onto one server. Test
sponsors choose one of the four benchmark workloads (TPC-C, TPC-E, TPC-H, or TPC-
DS) and runs one instance of that benchmark workload in each of the 3 virtual machines
(VMs) on the system under test. The 3 virtualized databases must have the same attrib‐
utes, e.g. the same number of TPC-C warehouses, the same number of TPC-E Load
Units, or the same TPC-DS or TPC-H scale factors. The TPC-VMS Primary Perform‐
ance Metric is the minimum value of the three TPC Benchmark Primary metrics for the
TPC Benchmarks run in the Virtualization Environment [8].

TPCx-V: The TPC Express Benchmark V (TPCx-V) benchmark measures the
performance of a virtualized server platform under a demanding database workload. It
stresses CPU and memory hardware, storage, networking, hypervisor, and the guest
operating system. TPCx-V workload is database-centric and models many properties of
cloud services, such as multiple VMs running at different load demand levels, and large
fluctuations in the load level of each VM. Unlike previous TPC benchmarks, TPCx-V
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has a publicly-available, end-to-end benchmarking kit, which was developed specifi‐
cally for this benchmark. It loads the databases, runs the benchmark, validates the results,
and even performs many of the routine audit steps. Another unique characteristic of
TPCx-V is an elastic workload that varies the load delivered to each of the VMs by as
much as 16x, while maintaining a constant load at the host level [8].

1.5 Internet of Things (IoT)

TPCx-IoT: TPCx-IoT is the industry’s first benchmark which enables direct compar‐
ison of different software and hardware solutions for IoT gateways. Positioned between
edge architecture and the back-end data center, gateway systems perform functions such
as data aggregation, real-time analytics and persistent storage. TPCx-IoT was specifi‐
cally designed to provide verifiable performance, price-performance and availability
metrics for commercially available systems that typically ingest massive amounts of
data from large numbers of devices, while running real-time analytic queries. The work‐
load is representative of activities typical in IoT gateway systems, running on commer‐
cially available hardware and software platforms. The TPCx-IoT can be used to assess
a broad range of system topologies and implementation methodologies in a technically
rigorous and directly comparable, in a vendor-neutral manner.

2 TPCTC Conference Series

To keep pace with rapid changes in technology, in 2009, the TPC initiated a conference
series on performance analysis and benchmarking. The TPCTC has been challenging
industry experts and researchers to develop innovative techniques for performance eval‐
uation, measurement, and characterization of hardware and software systems. Over the
years it has emerged as a leading forum to present and debate the latest and greatest in
the world of benchmarking. The topics of interest included:

• Big data and analytics
• Complex event processing
• Database Optimizations
• Data Integration
• Disaster tolerance and recovery
• Emerging storage technologies (NVMe, 3D XPoint Memory etc.)
• Hybrid workloads
• Energy and space efficiency
• In-memory databases
• Internet of Things
• Virtualization
• Enhancements to TPC workloads
• Lessons learned in practice using TPC workloads
• Collection and interpretation of performance data in public cloud environments

Industry Standards for the Analytics Era: TPC Roadmap 5



2.1 Summary of the TPCTC Conferences Are Listed Below

The first TPC Technology Conference on Performance Evaluation and Benchmarking
(TPCTC 2009), held in conjunction with the 35th International Conference on Very
Large Data Bases (VLDB 2009) in Lyon, France from August 24th to August 28th,
2009 [9].

The second TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2010) was held in conjunction with the 36th International Conference
on Very Large Data Bases (VLDB 2010) in Singapore from September 13th to September
17th, 2010 [10].

The third TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2011), held in conjunction with the 37th International Conference on
Very Large Data Bases (VLDB 2011) in Seattle, Washington from August 29th to
September 3rd, 2011 [11].

The fourth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2012), held in conjunction with the 38th International Conference on
Very Large Data Bases (VLDB 2012) in Istanbul, Turkey from August 27th to August
31st, 2012 [12].

The fifth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2013), held in conjunction with the 39th International Conference on
Very Large Data Bases (VLDB 2013) in Riva del Garda, Trento, Italy from August
26th to August 30st, 2013 [13].

The sixth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2014), held in conjunction with the 40th International Conference on
Very Large Data Bases (VLDB 2014) in Hangzhou, China, from September 1st to
September 5th, 2014 [14].

The seventh TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2015), held in conjunction with the 41st International Conference on
Very Large Data Bases (VLDB 2015) in Kohala Coast, USA, from August 31st to
September 4th, 2015 [15].

The eighth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2016), held in conjunction with the 42nd International Conference on
Very Large Data Bases (VLDB 2016) in New Delhi, India, from September 5th to
September 9th, 2016.

The ninth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2017), held in conjunction with the 43nd International Conference on
Very Large Data Bases (VLDB 2017) in Munich, India, from August 28th to September
1th, 2017.

TPCTC has had a significant positive impact on the TPC. TPC is able to attract new
members from industry and academia to join the TPC. The formation of working groups
on Big Data, Virtualization, Hyper-convergence, Internet of Things (IoT) and Artificial
Intelligence were a direct result of TPCTC conferences.

6 R. Nambiar and M. Poess



3 Outlook

TPC remains committed to develop relevant standards in collaboration with industry
and research communities and continue to enable fair comparison of technologies and
products in terms of performance, cost of ownership.

Foreseeing the industry transition to digital transformation the TPC has created a
working group to develop set of standards for hardware and software pertaining to
Artificial Intelligence. Companies, research and government institutions who are inter‐
ested in influencing the development of such benchmarks are encouraged to join the
TPC [2].

Acknowledgements. Developing benchmark standards require a huge effort to conceptualize,
research, specify, review, prototype, and verify the benchmark. The authors acknowledge the work
and contributions of past and present members of the TPC.
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Abstract. During the last decade, a multitude of novel systems for scal-
able and distributed data processing has been proposed in both acad-
emia and industry. While there are published results of experimental
evaluations for nearly all systems, it remains a challenge to objectively
compare different system’s performance. It is thus imperative to enable
and establish benchmarks for these systems. However, even if workloads
and data sets or data generators are fixed, orchestrating and execut-
ing benchmarks can be a major obstacle. Worse, many systems come
with hardware-dependent parameters that have to be tuned and spawn
a diverse set of configuration files. This impedes portability and repro-
ducibility of benchmarks. To address these problems and to foster repro-
ducible and portable experiments and benchmarks of distributed data
processing systems, we present PEEL, a framework to define, execute,
analyze, and share experiments. PEEL enables the transparent specifica-
tion of benchmarking workloads and system configuration parameters. It
orchestrates the systems involved and automatically runs and collects all
associated logs of experiments. PEEL currently supports Apache HDFS,
Hadoop, Flink, and Spark and can easily be extended to include further
systems.

1 Introduction and Motivation

During the last decade, the Big Data hype has led to the development of a plethora
of novel systems for scalable data processing. Starting with the MapReduce par-
adigm [10] and its open-source implementation Hadoop [3], numerous successors
have been proposed and implemented either as research prototypes or industry
led open-source systems. Hadoop MapReduce was quickly embraced by prac-
titioners, as it successfully abstracts away the complexity of scheduling a pro-
gram’s distributed execution on large clusters, managing the inter-machine com-
munication as well as coping with machine failures by exposing a simple func-
tional programming API to users. However, as focus shifted from rather simple
extraction and aggregation jobs to the scalable execution of more complex work-
flows, such as inferring statistical models and machine learning algorithms, it
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 9–24, 2018.
https://doi.org/10.1007/978-3-319-72401-0_2
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quickly became apparent that Hadoop was inherently inefficient at executing such
workloads. While many machine learning algorithms can easily be formulated in
the functional MapReduce programming model on a logical level [9], the acyclic
data flow model underlying Hadoop’s implementation and the intricacies of its dis-
tributed implementation lead tounsatisfactoryperformance.Particularly the fixed
Map-Shuffle-Reduce pipeline and the inability to efficiently execute iterative com-
putations turned out to be major drawbacks of Hadoop.

This led to numerous contributions from both the database and systems com-
munities, which address these shortcomings. Systems such as Spark [4,16] or
Stratosphere [5] (now called Flink [1,8]) were among the first systems to support
efficient iterative computations, GraphLab [12] proposed an asynchronous graph-
based execution model, which was subsequently distributed [11]. Pregel [13] and
its open source implementation Giraph [2] provided a vertex-centric programming
abstraction and Bulk Synchronous Parallel (BSP) based execution model.

While nearly all systems have been presented in scientific publications con-
taining an experimental evaluation, it remains a challenge to objectively compare
the performance of each system. Different workloads and implementations, usage
of libraries, data sets and hardware configurations make it hard if not impossible
to leverage the published experiments for such a comparison. Furthermore, it is
a challenge to assess how much of the performance gain is due to a superior
paradigm or design and how much is due to a more efficient implementation,
which ultimately impairs the scientific process due to a lack of verifiability.

For this reason, it is imperative to enable and establish benchmarks for big
data analytics systems. However, even if workloads and data sets or data genera-
tors are fixed, orchestrating and executing benchmarks can be a major challenge.

The principle goal of a system experiment as part of such a benchmark is to
characterize the behavior of a particular system under test (SUT) for a specific
set of values, configured as system and application parameters. The usual way
to achieve this goal is to

1. define a workload application which takes specific parameters (e.g., input and
output path),

2. run it on top of the SUT with a specific configuration (e.g., allocated memory,
degree of parallelism (DOP)) and,

3. measure key performance characteristics (e.g., runtime, throughput, accu-
racy).

Achieving these goals for benchmark experiments on modern data manage-
ment systems such as distributed data processing systems is significantly more
complex than evaluating a traditional RDBMS. Figure 1 illustrates, that rather
than having a single system under test running in isolation, novel data processing
systems require several systems such as a distributed file system and a distributed
data processing system to be executed jointly. Current trends actually advocate
an architecture based on interconnected systems (e.g. HDFS, Yarn, Spark, Flink,
Storm). Each of these systems has to be set up and launched with their own set
of, potentially hardware-dependent, configurations.
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Fig. 1. The general setup: contrary to the setup when benchmarking traditional RDMB
systems (left) where we evaluate only one System under Test (SUT), the landscape
is more complicated when evaluating novel distributed data processing frameworks
(right), as they usually require the interplay between multiple independent systems.
Each of these systems has its own configurations with sets of parameters that have to
be set, and potentially tuned.

Typically, one is not just interested in the insights obtained by a single exper-
iment, but in trends highlighted by a suite of experiments where a certain sys-
tem under test (SUT) configuration or application parameter value is varied
and everything else remains fixed. When running a scale-out experiment with a
varying number of nodes for example, the configuration of both the distributed
file system as well as the distributed data processing system under test have to
be changed, and the systems have to be appropriately orchestrated. This fur-
ther complicates the benchmarking process. Additionally, hardware-dependent
configurations hinder portability and thus reproducibility of benchmarks. When
adjusting the systems is done manually, huge amounts of temporary files and
generated data tend to clog up the disk space, as experiments may be run with-
out proper tear-down of systems and cleaning of temporary directories. When
such experiments are run on a shared cluster, as is often the case in an academic
environment, this issue becomes even more severe.

Contribution: To address these problems and to enable and foster reproducible
experiments and benchmarks of distributed data processing systems, we present
PEEL1, a framework to define, execute, analyze, and share experiments. On
the one hand, PEEL automatically orchestrates experiments and handles the
systems’ setup, configuration, deployment, tear-down and cleanup as well as
automatic log collection. On the other hand, PEEL introduces a unified and
transparent way of specifying experiments, including the actual application code,
system configuration, and experiment setup description. With this transparent
specification, PEEL enables the sharing of end-to-end experiment artifacts, thus
fostering reproducibility and portability of benchmark experiments. PEEL also
allows for the hardware independent specification of these parameters, therefore
enabling portability of experiments across different hardware setups. Figure 2
illustrates the process enabled by our framework. Finally, we make PEEL avail-
able as open-source software on GitHub.

1 https://github.com/peelframework/peel.

https://github.com/peelframework/peel
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Fig. 2. The Peel process: Peel enables the transparent specification of workloads, sys-
tems configurations, and parameters to be varied. It also automatically handles the
distributed orchestration and execution as well as sharing of these experiment bundles.
After successfully running all experiments in a bundle, PEEL automatically extracts,
transforms and loads relevant measurements from collected log files and makes them
available in an RDBMS.

2 Outline

The rest of this paper is structured as follows: In Sect. 3 we introduce the running
example of a supervised machine learning workload, which we will use to explain
the details of defining an experiment. Section 4 introduces experiment definitions.
Next, Sect. 5 describes the basics of a bundle. Section 6 discusses the approach
of a unified, global experiment environment configuration and Sect. 7 illustrates
how PEEL bundles can be deployed and executed on cluster environments, before
Sect. 8 provides an overview, how results can be gathered and analyzed within
the framework. Finally, we describe how PEEL can be extended with additional
systems in Sect. 9.

3 Running Example: Benchmarking a Supervised
Machine Learning Workload

As a running example, we will consider a supervised machine learning workload.
This workload is part of an extensive machine learning benchmark for distributed
data flow systems [7] (please see the paper for further details and experimental
results).

More concretely, we train a logistic regression model for click-through rate
prediction using a batch gradient descent solver. Click-through rate prediction
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for online advertisements forms a crucial building block in the multi-billion dollar
online advertising industry and logistic regression models have their merit for
this task [14,15]. Such prediction models are trained on hundreds of terabytes
of data with hundreds of billions of training samples, which happen to be very
high dimensional. For this reason, we are interested in evaluating the scaling
behavior of the systems not just with respect to growing data set sizes and
increasing number of compute nodes but also with respect to increasing model
dimensionality as suggested in [7].

For the experiments, we use a subset of the Criteo Click Logs2 data set. This
dataset contains feature values and click feedback for millions of ad impressions
drawn from a portion of Criteo’s traffic over a period of 24 days. Since this
data set contains categorical features, we use feature hashing as a pre-processing
step. Feature hashing (also called the hashing trick) vectorizes the categorical
variables by applying a hash function to the feature values and using the hash
values as indices. It thus maps the sparse training data into a space with fixed

Fig. 3. An illustration of the running example: we evaluate batch gradient decent train-
ing of a supervised learning model as a workload on Apache Spark and Apache Flink as
systems under test. The individual experiments depend on two parameters: the number
of physical compute nodes and the dimensionality of the training data set (dimensions),
which specify how the benchmark workload shall be executed. The data generation job
is executed on a system independent of the system under test.

2 http://labs.criteo.com/downloads/download-terabyte-click-logs/.

http://labs.criteo.com/downloads/download-terabyte-click-logs/
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dimensionality, which can be controlled by a parameter. This feature hashing
will be executed as a pre-processing job on Spark.

Figure 3 illustrates the running example. We want to evaluate batch gradient
decent training of a supervised learning model as a workload on Apache Spark
and Apache Flink as a system under test. Only for this part do we want to
time the execution and record the system performance characteristics of the
individual compute nodes involved. In order to evaluate the scalability of the
systems with respect to a varying number of compute nodes as well as a varying
dimensionality of the training data (and thus also the model to be trained) the
two parameters: nodes and dimensions have to be varied accordingly.

For each particular configuration of physical compute nodes, a new distrib-
uted file system (HDFS) has to be set up. Next the raw criteo data, which is
ingested from some external storage, has to be transformed to feature vectors
of the desired dimensionality via feature hashing. Any system may be used for
this step - independent of the actual system under test. In the example, we
choose to run a Spark Job, which writes out the experimentation data into the
temporary HDFS instantiated for the current (cluster) configuration. Next, the
actual system under test (Spark or Flink in our example) will have to be setup
and instantiated with its proper configuration. Once it is up and running, the
benchmark workload can be submitted as a job to the system under test and
its execution is timed. In order to record the performance characteristics on the
individual compute nodes, an additional monitoring system such as dstat will
have to be started on all compute nodes.

After successful execution, the system under test will have to be shut down.
In order to archive all aspects of the benchmark experiments, various logs of the
different systems involved (dstat, system under test) will have to be gathered
from all the compute nodes. Next, all temporary directories have to be cleaned,
and the next system has to be set up and instantiated. Once all systems have
been evaluated for a concrete dimensionality, the data set has to be deleted from
the distributed file system and the next one, with a new dimensionality, has to
be created. When all parameter settings for a particular Node configuration (i.e.
all dimensionalities) have been evaluated, the distributed file system will have
to be torn down and a new one, with a different node configuration, will have to
be set up.

Manually administering all these steps is a tedious and error-prone process
as jobs can run for long periods of time, and may fail. PEEL automatically takes
care of all the steps outlined above and thus reduces the operational complexity
of benchmarking distributed data processing systems significantly. In the follow-
ing sections, we will explore how a workload like the supervised learning example
has to be specified in PEEL in order to benefit from this automation.

4 Experiment Definitions

Experiments are defined using a Spring dependency injection container as a
set of inter-connected beans. Figure 4 displays the available bean types as a
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Fig. 4. A domain model of the PEEL experiment definition elements.

domain model. Beans definitions can be done either in XML or in annotated
Scala classes. Scala is used for all examples in this paper. The beans required to
define an experiment realize the system experiments domain introduced in the
Motivation section.

We discuss the individual beans in light of our example of running batch
gradient descent training of a logistic regression model for click-through rate
prediction. Listing 1.1 shows the complete experiment definition of the definition
of our example.

Listing 1.1. The main experiment definition of our running example.

1 class ExperimentsDimensionScaling extends ApplicationContextAware {
2 var ctx: ApplicationContext = null
3 def setApplicationContext(ctx: ApplicationContext): Unit = {
4 this.ctx = ctx
5 }
6

7 def sparkFeatureHashing(i: String, numF: Int, perc: Double): SparkJob = new SparkJob(
8 timeout = 10000L,
9 runner = ctx.getBean("spark-1.6.2", classOf[Spark]),

10 command =
11 s"""
12 |--class dima.tu.berlin.generators.spark.SparkCriteoExtract \\
13 |$${app.path.datagens}/peel-bundle-datagens-1.0-SNAPSHOT.jar \\
14 |--inputPath=$i \\
15 |--outputPath=$${system.hadoop-2.path.input}/train/$numF/$perc \\
16 |--numFeatures=$numFeatures \\
17 |--percDataPoints=$perc \\
18 """.stripMargin.trim
19 )
20 def ‘bgd.output‘: ExperimentOutput = new ExperimentOutput(
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21 path = "{system.hadoop-2.path.input}/benchmark/",
22 fs = ctx.getBean("hdfs-2.7.1", classOf[HDFS2])
23 )
24 def ‘bgd.input‘(D: Int): DataSet = new GeneratedDataSet(
25 src = sparkFeatureHashing("/criteo/", numFeatures, perc),
26 dst = s"$${system.hadoop-2.path.input}/train/" + numFeatures + "/" + perc,
27 fs = ctx.getBean("hdfs-2.7.1", classOf[HDFS2])
28 )
29 def ‘bgd.flink‘(D: Int, N: String) = new FlinkExperiment(
30 name = s"flink.train.$D",
31 command =
32 s"""
33 |--class dima.tu.berlin.benchmark.flink.mlbench.NewLogReg \\
34 |$${app.path.apps}/peel-bundle-flink-jobs-1.0-SNAPSHOT.jar \\
35 |--trainDir=$${system.hadoop-2.path.input}/train/$D \\
36 |--outputDir=$${system.hadoop-2.path.input}/benchmark/$N/$D/flink/ \\
37 |--degOfParall=$${system.default.config.parallelism.total} \\
38 |--dimensions=$D \\
39 """.stripMargin.trim,
40 config = ConfigFactory.parseString(
41 s"""
42 |system.default.config.slaves = $${env.slaves.$N.hosts}
43 |system.default.config.parallelism.total = $${env.slaves.$N.total.parallelism}
44 """.stripMargin.trim),
45 runs = 3,
46 runner = ctx.getBean("flink-1.0.3", classOf[Flink]),
47 systems = Set(ctx.getBean("dstat-0.7.2", classOf[Dstat])),
48 inputs = Set(‘bgd.input‘(D), classOf[DataSet])),
49 outputs = Set(‘bgd.output‘)
50 )
51 def ‘bgd.spark‘(D: Int, N: String) = new SparkExperiment(
52 name = s"spark.train.$D",
53 command =
54 s"""
55 |--class dima.tu.berlin.benchmark.spark.mlbench.RUN \\
56 |$${app.path.apps}/peel-bundle-spark-jobs-1.0-SNAPSHOT.jar \\
57 |--trainDir=$${system.hadoop-2.path.input}/train /$D \\
58 |--outputDir=$${system.hadoop-2.path.input}/benchmark/$N/$D/spark \\
59 |--numSplits=$${system.default.config.parallelism.total} \\
60 """.stripMargin.trim,
61 config = ConfigFactory.parseString(
62 s"""
63 |system.default.config.slaves = $${env.slaves.$N.hosts}
64 |system.default.config.parallelism.total = $${env.slaves.$N.total.parallelism}
65 """.stripMargin.trim),
66 runs = 3,
67 runner = ctx.getBean("spark-1.6.2", classOf[Spark]),
68 systems = Set(ctx.getBean("dstat-0.7.2", classOf[Dstat])),
69 inputs = Set(‘bgd.input‘(D), classOf[DataSet])),
70 outputs = Set(‘bgd.output‘)
71 )
72 def ‘bgd.dimensions.scaling‘: ExperimentSuite = new ExperimentSuite(
73 for {
74 Dims <- Seq(10, 100, 1000, 10000, 100000, 1000000)
75 Nodes <- Seq("top020", "top010", "top005")
76 Exps <- Seq(‘bgd.spark‘(Dims, Nodes), ‘bgd.flink‘(Dims, Nodes))
77 } yield Exps
78 )
79 }
80 @Bean(name = Array("bgd.dimensions.scaling"))

Experiment: The central class in the domain model shown in Fig. 4 is Experi-
ment. In our example definition in Listing 1.1 we specify two Experiments: one
for Flink (lines 29–50) and one for Spark (lines 51–71). Each experiment specifies
the following properties: the experiment name, the command that executes the
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experiment’s job, the number of runs (repetitions) the experiment is executed,
the inputs required and outputs produced by each run, the runner system that
carries the execution, other systems, upon which the execution of the experiment
depends (e.g. dstat in line 47 for monitoring the resource usage on the compute
nodes) as well as the experiment-specific environment config which is discussed
in Sect. 6.

System: The second important class in the model is System. It specifies the
following properties: the system name, usually fixed per System implementa-
tion, e.g. flink for the Flink system or spark for the Spark system, the system
version (e.g. 1.0.3 for Flink or 1.6.2 for Spark), a configKey under which config
parameters will be located in the environment configuration, usually the same
as the system name, a Lifespan value (one of Provided, Suite, Experiment, or
Run) which indicates when to start and stop the system and a list of systems
upon which the current system depends.

ExperimentSuite: A series of related experiment beans are organized in an
ExperimentSuite. In our example listing, we define an ExperimentSuite in lines
72–78. Recall that our original motivation was to compare the scale-out charac-
teristics of Spark and Flink with respect to both: scaling the nodes and scaling
the model size. To accomplish this, we vary two parameters: Dims which specifies
the dimensionality of the training data and Nodes, which refers to a list of hosts
the experiment should run on. The for-comprehension creates a cartesian prod-
uct of all parameter values and the two experiments. With this, we ensure that
we only generate a new data set whenever either the node configuration or the
desired dimensionality changes, but not for each experiment separately. Exper-
iments typically depend on some kind of input data, represented as abstract
DataSet elements associated with a particular FileSystem in our model. The
following types are currently supported:

– CopiedDataSet - used for static data copied into the target FileSystem;
– GeneratedDataSet - used for data generated by a Job into the target FileSys-

tem.

In the example we rely on a GeneratedDataSet to trigger the Spark job for
feature hashing (lines 24–28). In addition, each experiment bean is associated
with an ExperimentOutput which describes the paths the data is written to
by the experiment workload application (lines 20–23). This meta-information is
used to clean those paths upon execution.

5 Bundle Basics

A bundle packages together the configuration data, datasets, and workload jobs
required for the execution of a particular set of experiments. Table 1 provides an
overview of the top-level elements of such a bundle. It is self-contained and can
be pushed to a remote cluster for execution as well as shared for reproducibility
purposes. The main components of a bundle can be grouped as follows:
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Table 1. The top-level elements of a bundle. (Non-fixed paths can be customized.)

Default path Config parameter Fixed Description

./apps app.path.apps Yes Workload applications

./config app.path.config Yes configurations and experiment definitions.

./datagens app.path.datagens No Data generators

./datasets app.path.datasets No Static datasets

./downloads app.path.downloads No Archived system binaries

./lib app.path.log Yes Peel libraries and dependencies

./log app.path.log Yes Peel execution logs

./results app.path.results No State and log data from experiment runs

./systems app.path.systems No Contains all running systems

./utils app.path.utils No Utility scripts and files

./peel.sh app.path.cli Yes The Peel command line interface

At the center of a bundle is the PEEL command line tool (PEEL CLI), which
provides the basic functionality of PEEL. While running, the Peel CLI spawns
and executes OS processes. It can be used to start and stop experiments, and
to push and pull bundles to and from remote locations. The log folder contains
the stdout and stderr output of these processes, as well as a copy of the actual
console output produced by PEEL itself. The config folder contains *.conf files
written in HOCON3 syntax which defines the environment configuration, as well
the actual experiments defined in scala. The apps folder contains the binaries of
the experiment workload applications. The datasets folder contains static, fixed-
sized datasets required for the experiments. The datagens folder contains pro-
grams for dynamic generation of scalable datasets required for the experiments.
The downloads folder contains system binary archives for the systems in the
experiment environment. The archives are per default extracted in the systems
folder. The results folder contains all the data collected from attempted and suc-
cessful Peel experiment runs in a hierarchy following $suite/$expName.run$NN
naming convention. Finally, the utils folder contains utility scripts (e.g., SQL
queries and gnuplot scripts) that can be used next to or in conjunction with
Peel CLI commands. A PEEL bundle is the unit to be shared when making
available benchmarks that utilize the framework.

6 Environment Configurations

Environments are instantiated with a concrete set of configuration values (for the
systems) and parameter values (for the experiment application). A number of
problems can arise with a näıve approach for manual configuration (per system
and experiment) of the environments:

3 https://github.com/typesafehub/config/blob/master/HOCON.md.

https://github.com/typesafehub/config/blob/master/HOCON.md
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Syntax Heterogeneity. Each system (HDFS, Spark and Flink) has to be con-
figured separately using its own special syntax. This requires basic understand-
ing and knowledge in the configuration parameters for all systems in the stack.
(For example, the number of processing slots is called spark.executor.cores
in Spark and taskmanager.numberOfTaskSlots in Flink.)

Variable Interdependence. The sets of configuration variables associated with
each system are not mutually exclusive. Thus, care has to be taken that the
corresponding values are consistent for the overlapping fragment (e.g., the slaves
list in all systems should be the same).

Value Tuning. For a series of related experiments, all but a very few set of val-
ues remain fixed. These values are suitably chosen based on the underlying host
environment characteristics in order to maximize the performance of the corre-
sponding systems (e.g., memory allocation, degree of parallelism, temp paths for
spilling).

PEEL associates one global environment configuration to each experiment.
In doing this, it promotes:

– configuration reuse through layering
– configuration uniformity through a hierarchical syntax

At runtime, experiments are represented by experiment beans. Each experi-
ment bean holds a HOCON config that is first constructed and evaluated based
on the layering scheme and conventions discussed below, and then mapped to
the various concrete config and parameter files and formats of the systems and
applications in the experiment environment.

In our running example, this means that for varying the number of nodes
between three different configurations (20, 10, and 5 nodes) - each of the six
experiments (3x SparkBGD + 3x FlinkBGD) will have an associated config
property - a hierarchical map of key-value pairs which constitute the configu-
ration of all systems and jobs required for that particular experiment. This is
illustrated in Fig. 5.

Configuration Layers. The configuration system is built upon the concept of
layered construction and resolution. Peel distinguishes between three layers of
configuration:

– Default. Default configuration values for Peel itself and the supported
systems. Packaged as resources in related jars located in the bundle’s
app.path.lib folder.

– Bundle. Bundle-specific configuration values. Located in app.path.config.
Default is the config subfolder of the current bundle.

– Host. Host-specific configuration values. Located in the $HOSTNAME subfolder
of the app.path.config folder.

For each experiment bean defined in an experiment suite, an associated con-
figuration will be constructed according to the entries in Table 2 (higher in the
list means lower priority).



20 C. Boden et al.

Fig. 5. Mapping the environment configurations for the six Batch Gradient Decent
experiments

Table 2. Hierarchy of configurations which are associated with an experiment bean
(higher in the list means lower priority).

Path Description

reference.peel.conf Default Peel config

reference.$systemID.conf Default system config

config/$systemID.conf Bundle-specific system config (opt)

config/hosts/$hostname/$systemID.conf Host-specific system config (opt)

config/application.conf Bundle-specific Peel config (opt)

config/hosts/$hostname/application.conf Host-specific Peel config (opt)

Experiment bean config value Experiment specific config (opt)

System JVM system properties (constant)

First comes the default configuration, located in the peel-core.jar pack-
age. Second, for each system upon which the experiment depends (with corre-
sponding system bean identified by systemID), PEEL tries to load the default
configuration for that system as well as bundle- or host-specific configurations.

Third, bundle- and host-specific application.conf, which is a counterpart
and respectively overrides bundle-wide values defined in reference.peel.conf.

Above follow the values defined the config property of the current experiment
bean. These are typically used to vary one particular parameter in a sequence of
experiments in a suite (e.g. varying the number of workers and the DOP).
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Finally, a set of configuration parameters derived from the current JVM Sys-
tem object (e.g., the number of CPUs or the total amount of available memory)
are appended.

7 Execution Workflow

In the previous Sections we explained the internals and the code required to
configure the environment and define the experiments in a PEEL bundle. In this
section, we will explain how to make use of the commands provided by the Peel
CLI in order to deploy and run the experiments in a bundle.

As a first step, the bundle has to be assembled from the sources with mvn
deploy. For large-scale applications, the environment where the experiments
need to be executed typically differs from the environment of the machine where
the bundle binaries are assembled. In order to start the execution process, the
user therefore needs to first deploy the bundle binaries from the local machine to
the desired host environment. The Peel CLI offers a special command for this. In
order to push the peel-bundle to the remote cluster, one has to run: ./peel.sh
rsync:push remote-cluster-name. The command uses rsync to copy the con-
tents of the enclosing Peel bundle to the target environment. The connection
options for the rsync calls are thereby taken from the environment configuration
of the local environment. The remote environment has to be specified in the
application.conf.

As explained above, PEEL organizes experiments in sequences called exper-
iment suites. The easiest option is to start an entire suite via ./peel.sh
suite:run which will automatically step through the entire execution lifecy-
cle for each experiment:

– Setup Experiment. Ensure that the required inputs are materialized (either
generated or copied) in the respective file system. Check the configuration of
associated descendant systems with provided or suite lifespan against the
values defined in the current experiment config. If the values do not match, it
reconfigures and restarts the system. Set up systems with experiment lifespan.

– Execute Experiment. For each experiment run which has not been com-
pleted by a previous invocation of the same suite: Check and set up systems
with run lifespan, execute experiment run, collect log data from the associ-
ated systems and clear the produced outputs.

– Tear Down Experiment. Tear down all systems with experiment lifespan.

Next to simply running a Full Suite which automatically executes all exper-
iments specified, each of the above steps can be executed individually. This is
particularly useful when developing and debugging a benchmark, as it allows to
validate that each step is executed correctly.

Since PEEL also keeps track of failed experiments, one can simply re-run an
entire suite in order to re-attempt the execution of the failed experiments. PEEL
will automatically skip all experiments, which have already been successfully run.
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8 Results Analysis

The results of all experiments are stored in a folder structure which contains
log file data collected from the systems involved in the experiment. In order to
make sense of the data, Peel ships with an extensible ETL pipeline that extracts
relevant data from the log files, transforms it into a relational schema, and loads
it into a database. One can then analyze various aspects of the obtained results
by querying the underlying result schema with SQL statements.

The experiment suite defined by the running example in Sect. 3 will produce
results similar to Table 3. (for detailed experimental results please see [7])

Table 3. Exemplary table listing the results of experiment runs.

Experiment Nodes Dimensions Runtime in ms

flink.train top023 10 165612

flink.train top023 100 265034

flink.train top023 1000 289115

flink.train top023 10000 291966

flink.train top023 100000 300280

flink.train top023 1000000 315500

spark.train top023 10 128286

spark.train top023 100 205061

spark.train top023 1000 208647

spark.train top023 10000 219103

spark.train top023 100000 222236

spark.train top023 1000000 298778

. . . . . . . . . . . .

Backends. Peel supports multiple relational database engines as a possible back-
end for your experiment data. The decision which backend to use depends on
the scope and complexity of the use case.

H2. The H2 backend is the easy and quick option for beginners. If the experiment
logs are small, this is the best way to go as it requires zero overhead for setup.
With the default H2 connection h2, PEEL will initialize and populate a results
database in a file named h2.mov.db located in the ${app.path.results} folder.

MonetDB. If the experiments generated a lot of data or more advanced ana-
lytics on the extracted database instance are required, we recommend using a
column store like MonetDB.

Analysis. To visually explore and analyze the results of the experiments, one
can connect the database schema produced by Peel with a reporting tool like
JasperReports, an OLAP cube analysis tool like Pentaho, or a visual data explo-
ration tool like Tableau.
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9 Extending Peel

Currently, PEEL supports various versions of the following systems out of the
box: Hadoop MapReduce, Spark, Flink, HDFS, dstat and Zookeeper. However,
the framework can easily be extended. Adding support for a new system is
uncomplicated and only requires the definition of system specific sub-classes
for the System and Experiment base-classes that were discussed in Sect. 4. The
communication between the framework and the systems is typically done by
calling scripts via external processes with the abstractions provided in PEEL.
Thus, the range of systems that can be supported is not strictly limited to JVM-
based ones.

In order to add support for a new system, one simply has to define the
startup and shutdown behavior of the system, the configuration files and their
management, and the way log files are to be collected inside the system class. As
was presented in the example definition in Listing 1.1, the experiment bean then
defines how jobs for the system are started and which arguments are passed. For
cluster configurations without a network file system, PEEL also provides utility
functions to distribute the required system files among the cluster nodes, as well
as the collection of log files.

10 Conclusion

In this paper we introduced PEEL as a Framework for benchmarking distributed
systems and algorithms. PEEL significantly reduces the operational complexity
of performing benchmarks of novel distributed data processing systems. It auto-
matically orchestrates all systems involved, executes the experiments and collects
all relevant log data. Through the central structure of a peel-bundle, a unified
approach to system configurations and its experiment definitions, PEEL fosters
the transparency, portability, and reproducibility of benchmarking experiments.
Based on the running example of a supervised machine learning workload, we
introduced all the major concepts of PEEL, including experiment definitions
and its experimentation process. We have sucessfully used PEEL in practice to
orchestrate the experiments published in [6,7] and hope that it will be a useful
tool for many in the benchmarking community, as PEEL is freely available as
open-source software available at https://github.com/peelframework/peel.
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Abstract. In the light of growing data volumes and continuing digiti-
zation in fields such as Industry 4.0 or Internet of Things, data stream
processing have gained popularity and importance. Especially enterprises
can benefit from this development by augmenting their vital, core busi-
ness data with up-to-date streaming information. Enriching this transac-
tional data with detailed information from high-frequency data streams
allows answering new analytical questions as well as improving current
analyses, e.g., regarding predictive maintenance. Comparing such data
stream processing architectures for use in an enterprise context, i.e., when
combining streaming and business data, is currently a challenging task
as there is no suitable benchmark.

In this paper, we give an overview about performance benchmarks in
the area of data stream processing. We highlight shortcomings of exist-
ing benchmarks and present the need for a new benchmark with a focus
on an enterprise context. Furthermore, the ideas behind Senska, a new
enterprise streaming benchmark that shall fill this gap, and its architec-
ture are introduced.

Keywords: Benchmarking · Benchmark development
Data stream processing · Stream processing · Internet of Things

1 Introduction

Due to the ever increasing velocity and volume of data that is being produced
nowadays, completely new challenges and opportunities arise.

Terms like Smart Factories, Industry 4.0, and Internet of Things (IoT) have
gained traction to describe some of such new developments which bring new
possibilities in how business can be done.

Industrial manufacturing is a particularly interesting domain in this context.
An example for a factory where a high volume of data is captured with high
velocity is the GE battery production plant in New York (state). There are
10,000 different data attributes recorded, some as often as every 250 ms [23].
Modern manufacturing equipment, e.g., injection molding machines, can gen-
erate up to terabytes of sensor data, daily [13]. Such data provides detailed
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 25–40, 2018.
https://doi.org/10.1007/978-3-319-72401-0_3
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information about the current state of machines and allows timely reactions to
events, such as failures or changes in environment. When it comes to unlocking
further efficiency improvements through IoT technologies such as sensors, highly-
optimized production facilities are one of the key areas [17]. Combining gathered
IoT data with existing transactional or business data, e.g., supplier information
or information about machine operators, can lead to a better understanding of
the holistic value chain. This combination of machine or sensor data and busi-
ness data, which allows answering new analytical questions or existing ones in
greater detail, can be described as vertical integration. A practical example of
applying these ideas would be a printing machine, where the humidity is regu-
lated depending on current sensor measurements (streaming data) as well as the
currently used colors and paper (business or historical data) in order to optimize
print quality.

Compared to transactional data, IoT or sensor data, as examples of streaming
data, differ in aspects such as velocity and volume. A brief comparison of both
these kinds of data is shown in Table 1. In order to efficiently handle sensor and
general data streams as well as their analysis, new technologies were created.

Table 1. Comparison of sensor data and business data

Characteristic Sensor data Business data

Volume and velocity Up to multiple
terabytes by a single
machine, daily [13]

Multiple terabytes in total, e.g., for
a 20 years old SAP ERP
installation at a leading Canadian
energy company [21]

Data quality Measurement errors,
lost data

Correctness crucial for business

Data manipulations No updates Updates exist

References Strong time and
location reference

Strong business process reference

Value for enterprises Usually not crucial for
daily business

Essential for daily business

A particularly interesting example for a group of systems that can be lever-
aged for analyzing high frequency data sources are Data Stream Processing Sys-
tems (DSPSs). These systems analyze streams of data on the fly using continuous
queries. Therefore, the generation of output is dependent on the underlying data
streams, i.e., on the arrival of new data points. Moreover, the order of incom-
ing data records is considered, meaning a potential out-of-order arrival at the
DSPS may need to be handled in order to produce correct results. Compared
to traditional Database Management Systems (DBMSs), the concepts employed
in DSPSs differ in some aspects, e.g., with respect to queries, which usually do
not run continuously on DBMSs. Storing data only for as long as it is needed
for analysis not only benefits performance and data throughput, but also saves
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storage costs. As an extension to DBMSs, those benefits of DSPSs can be lever-
aged in enterprise applications. When analyzing data streams in DSPSs, data
can be combined with data from business application databases, allowing for
new business ideas and far-reaching optimizations of existing processes.

A multitude of new DSPSs were developed in recent years, such as Apache
Flink, Apache Storm, Apache Spark Streaming, Apache Samza, Twitter Heron
and Apache Apex [8,11,15]. Contrary to these recently developed systems,
Aurora [3] and STREAM [5], for instance, were already presented in the early
2000’s.

Although a broad variety of systems allows for more choice, picking the sys-
tem or architecture that best suits a given use case becomes more of an issue. As
shown, there is already a wide choice in the group of DSPSs, whose usage rep-
resents just one way of analyzing data streams. An alternative approach could
be storing data streams in a database and analyzing them afterwards.

Due to the lack of satisfying real-world application benchmarks assessing
data stream processing architectures, including the combination of streaming
and transactional data for analyses, this is currently a certainly challenging task.
We aim to tackle this issue by developing an application benchmark focussed
on data stream processing architectures in an enterprise context, Senska - an
Enterprise Streaming Benchmark (ESB). In this paper we present the following
contributions:

– Illustration and motivation of the need for a new application benchmark for
data stream processing

– The design objectives of Senska and their underlying concepts
– A first draft of the overall Senska architecture - design decisions are explained

and selected components are presented in more detail

The remainder of this paper is structured as follows: Sect. 2 presents related
work in the area of benchmarking and highlights the need for a new data stream
processing benchmark. Section 3 introduces Senska, the Enterprise Streaming
Benchmark, including the design objectives, its architecture, the developed query
list, and limitations. Section 4 concludes, giving an overview of Senska and illus-
trating areas for future work.

2 Related Work

As mentioned in [12], only few benchmarks for data stream processing architec-
tures are available compared to the number of benchmarks for DBMSs. A brief
comparison of selected benchmarks is shown in Table 2, which is based on the
overview shown in [12].

The Linear Road Benchmark by Arasu et al. [7] is one of the most, if not
the most popular application benchmark focussing on data stream processing.
It includes a benchmarking toolkit comprising a data generator, a data sender
as well as a result validator. With an execution of a benchmark implementation,
a variable tolling system for a metropolitan area covering multiple expressways
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is simulated. The amount of accumulated tolls is dependent on multiple aspects
of the traffic situation on these expressways.

The data sender emits the streaming data into the system under test (SUT).
This input data contains four different record types, from which position reports
are by far the most abundant records. The remaining data consist of three record
types that express explicit user requests that always expect an answer from the
system. Depending on the overall situation on highways, car position reports
may require the SUT to create an output or not.

With regard to the benchmark workload, Linear Road defines four different
queries with corresponding output types. For complexity reasons, the implemen-
tation of the lastly presented query was even skipped in the two implementations
described in [7]. Besides streaming data, historical data covering ten weeks of
tolling history is generated and partly has to be used in order to produce correct
answers.

As a benchmark result, Linear Road defines one overall metric called L-
Rating. The L-Rating indicates how many expressways a system can handle
without violating the defined maximum response times for each query. The num-
ber of highways is a configurable parameter for the data generation step that is
influencing the amount of input data.

The second benchmark presented in Table 2 is StreamBench [16]. It aims at
benchmarking distributed DSPSs and can be categorized as a micro benchmark,
i.e., it measures atomic operations, such as the execution of a projection rather
than those of more complex applications such as in Linear Road. Thus, when a
system’s performance for real-world scenarios or applications is to be evaluated,
micro benchmark results only have limited validity. However, if, e.g., two distinct
filter operators are to be compared, micro benchmarks have advantages over
application benchmarks due to their simplicity. Measurements contain only the
relevant parts without much overhead, which eases interpreting results.

StreamBench defines seven queries in total. They cover queries with single
and multiple computational steps. Moreover, some queries require to keep a state
in order to produce correct results while others do not. Only one query uses
numerical data, while all others work on textual data. Overall, the seven queries
cover a variety of functionalities, although some typical streaming operations
like window functions are not taken into account.

Additionally, StreamBench defines four workload suites, which influence the
way the benchmark is executed. The suite has an impact on, e.g., data scales,
executed query set, the existence of an intentional node failure, or employed
benchmark result metrics.

StreamBench makes use of two different real-world data sets. One of these
contains textual data while the other one comprises numerical information. Gen-
erally, real-world data sets are always desirable as they represent real scenarios
best and help increasing the benchmark’s relevance. The two data sets used in
StreamBench serve as seeds for data generation. Thus, synthetic data is used and
reality is not represented entirely. Nevertheless, entirely using real-world data in
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a benchmark is certainly an ambitious aim as, e.g., scaling input data can easily
become a challenge if the available data set is too small.

Contrary to Linear Road, StreamBench employs a message broker, which is
used for decoupling data generation and consumption. This approach is similar to
the benchmark architecture proposed in this paper, which is described in Sect. 3.
In particular, Apache Kafka [14] is used as broker in StreamBench. Again, that
is similar to the benchmark described in the present paper. A benchmark tool
for data ingestion, such as the presented data sender that comes with Linear
Road, is not described by the authors of StreamBench.

StreamBench defines different result metrics dependent on the workload
suite. These include latency and throughput. The latter describes the average
number of processed records per second and the amount of processed data in
bytes per second. Both variants are calculated in total as well as per node.
Moreover, three additional metrics are introduced: a durability index (uptime),
a throughput penalty factor (assessing throughput change for node failure), and
a latency penalty factor (assessing latency change for node failure). To the best of
our knowledge, result validation with respect to query outcome is not supported
by a dedicated benchmark tool.

The third benchmark shown in Table 2 is called RIoTBench [20] and focuses
on benchmarking distributed DSPSs. It defines multiple micro benchmark sce-
narios as well as four application benchmark use cases, which represent combined

Table 2. Comparative overview of data stream processing system benchmarks

Linear road StreamBench RIoTBench

Benchmark
type

Application Micro Micro and application

Considered
SUT

DSPS or DBMS Distributed DSPS Distributed DSPS

Domain Smart City
(variable tolling)

Log processing and
network traffic
monitoring

Smart City, Smart
Energy, Health (IoT in
general)

Input data Synthetic
(including
historical data)

Synthetic (real-world
data used as seed)

Synthetic (scaled
real-world data sets)

Benchmark
result
metrics

One self-defined
metric
(throughput
under latency
restriction):
L-Rating

Throughput or
throughput-related,
latency or
latency-related, system
availability

Latency, throughput,
jitter (difference
between expected and
actual output rate),
resource utilization

Query
result
validation

Validation tool
provided

No tool provided No tool provided
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micro benchmarks. These cover Extract, Transform and Load (ETL) processes,
statistics generation, model training, and predictive analytics scenarios.

As input data, RIoTBench uses scaled real-world data sets from different IoT
domains, namely, smart city, smart energy and health. A data sender tool for
ingesting data into the SUT or an application for query result validation are not
provided by the benchmark.

Next to latency, throughput as well as CPU and memory utilization, RIoT-
Bench measures jitter as a metric. It is defined as the difference between expected
and actual output rate during a certain time interval.

Summarizing, we see the need for a new application benchmark for assessing
data stream architectures in an enterprise context for several reasons. First,
currently only two major application benchmarks for data stream processing
exist and only one of them considers characteristics of distributed systems in its
metrics.

Second, historical data is not or only barely taken into account in all of the
presented benchmarks. We believe that this is a crucial aspect in many enter-
prise contexts since, in order to achieve the greatest added value, streaming data
needs to be combined with historical business data. As a consequence of that
gap in benchmarks, questions relating to business use cases, including interfaces
or efficient combination of live and historical data, are currently challenging to
answer. Additionally, the majority of current streaming benchmarks lack tool
support, e.g., for result validation or data ingestion, which complicates imple-
menting these benchmarks and retrieving objective results.

3 Senska: Enterprise Streaming Benchmark

Due to the lack of satisfying ways to comprehensively compare stream processing
architectures for enterprise scenarios, we aim to develop Senska, an enterprise
streaming benchmark, which aims to fill this gap. In this section, the design
objectives, the architecture, the query set, and limitations of Senska are illus-
trated.

3.1 Design Objectives

The design objectives beyond Senska follow the four criteria defined by Gray [10],
namely relevance, portability, scalability and simplicity, which should be fulfilled
by domain-specific benchmarks. These criteria are the basis for several pub-
lications that provide guidelines in the area of benchmark development, which
illustrates their impact [9]. Although these aspects defined by Gray were already
published in the early 90s, we still consider them valid for state-of-the-art bench-
marks.

The chosen domain for Senska is industrial manufacturing since it repre-
sents a natural fit for an enterprise application requiring data stream processing
capabilities, see Sect. 1.
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Relevance. The benchmark architecture, including data characteristics as well
as the defined queries, will represent real-world scenarios and system environ-
ments as realistically as possible.

With respect to data, this ideally entails only employing real-world data in the
benchmark. If no fitting data set can be found, synthetic data which is as close
to real-world data as possible, will be generated. This can be achieved through
generating data based on previously collected real-world data sets which alone
would not be sufficient, similar to how, e.g., StreamBench tackles this issue, see
Sect. 2.

Requirements in the context of input data exist, e.g., with regard to privacy
concerns, size, or attribute variety. So in order to be a fitting data set, it should,
e.g., be possible to publish the data as part of the benchmark, and its size as
well as attribute variety should be appropriate in order to represent real-world
environments.

Regarding data input rate, we aim to support multiple options in order to
allow users to adapt Senska to their situation and be able to react to technology
developments or environmental changes that might lead to increasing input rates
in real-world environments.

Another area where relevance shall be considered are queries, i.e., the logic
that is going to be executed by the system under test. This relevance in the sense
of closeness to real-world scenarios shall be reached by validating the queries with
industry partners from the corresponding benchmark domain, namely industrial
manufacturing and similar industry sectors. This shall lead to a high acceptance
of the benchmark and thus, to a higher credibility of its results as well as a higher
motivation for implementing the benchmark. Although the benchmark focuses
on a single domain, query characteristics, i.e., used functions, e.g., filtering or
aggregating certain values of a data stream, are applicable to other areas and
thus benchmark results can be beneficial for users from different domains. More-
over, Senska architecture and tools could be used for defining a new benchmark
belonging to another domain, i.e., a query set with new data input that is be
used for measurements.

Portability. The benchmark definition shall be as much OS and system inde-
pendent as possible. This enables implementing the benchmark for as many
different environments as possible. Thus, a potentially large number of imple-
mentations can be reached, which helps gaining insights into a system’s or envi-
ronment’s performance. Furthermore, a high number of implementations con-
tributes to a high relevance and result credibility.

Senska aims to ensure portability by not restricting the choice of OS or the
choice of used technologies for benchmark implementation. Although DSPSs
might seem as a natural fit for data stream processing, it could potentially be
exchanged with any other system or implementation that is able to answer the
defined queries. With respect to the benchmark toolkit, compatibility with many
OSs and platforms will be reached by using a JVM language.
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Scalability. The benchmark shall be able to handle smaller as well as bigger
systems with regard to scale-up and scale-out architectures. Therefore, Senska
will take the number of resources available into account when calculating bench-
mark results. Moreover, the provided tools, e.g., for data ingestion, are designed
to handle scale-out architectures. This means no restrictions regarding number
of nodes or CPU will exist in Senska and thus, there are no limits regarding
scalability from the benchmark-side.

Simplicity. The benchmark shall be simple to understand and to use in order
to encourage people implementing it as well as to ensure credibility with respect
to benchmark results. By providing a set of tools that are developed with the
objective of increasing simplicity, people implementing Senska shall be supported
as much as possible. This toolset comprises scripts for setting up the needed sys-
tems for data ingestion and validation, as well as applications for data ingestion,
results validation, and benchmark metrics calculation. Additionally, an optional
component for monitoring the environment will be included that can help iden-
tifying issues and getting an overview of key performance indicators.

3.2 Architecture

Figure 1 shows a high-level overview of our idea of an architecture for benchmarks
with focus on data stream processing. Knowing about this simplified view helps
getting an understanding of the idea beyond Senska’s architecture. It shows three
main components: the data feeder, system under test and the result validator.

Data Feeder System Under Test 
(Query Implementation)

Result Validator

Fig. 1. General architecture for stream processing benchmarks in fundamental model-
ing concepts (FMC)

The data feeder or sender is responsible for ingesting data into the SUT.
The used term SUT is defined as “the system to be evaluated” [18]. In the con-
text of Senska or stream processing benchmarks in general, the SUT processes
incoming data and responds according to the defined queries. Produced results
are ideally evaluated by a result validator in order to ensure correctness of the
query implementations. This component could also calculate benchmark result
metrics, e.g., latency or throughput. Besides calculating such metrics after run-
ning the benchmark, selected aspects might already be monitored when during
each run in order to, e.g., react to failures or unintended behavior as soon as
possible.

A more detailed overview of Senska’s architecture is illustrated in Fig. 2. All
components are described in the following.
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Input Data. Input data is represented through one or more files in CSV or
similar format and represents sensor data from a manufacturing context. It acts
as input for the system with respect to streaming data. In the best case, data will
be entirely real-world data. If no suitable data set can be identified, synthetic
data has to be used. Concretely, a data generation tool will be needed that takes
care of creating the input data, preferably based on an existing real-world data
set in order to keep characteristics. For the use within initial development of
Senska, we use a data set from manufacturing context1 published within the
context of the DEBS Grand Challenge2. The challenge was conducted as part of
the 2012 Conference on Distributed Event-Based Systems. In particular, the data
set contains monitoring data, which was recorded by manufacturing equipment
sensors. It includes about 32.4 million records, which result in an uncompressed
file size of about 5.5 GB. As the end of the file can be reached quickly with high
throughputs, we restart from the beginning when coming to that point in order
to be able to run the benchmark for a certain period of time. That is an approach
which is already proposed in, e.g., StreamBench [16].

System Under Test

Message Broker
(Apache Kafka)

Data Sender 
(Toolkit)

Input Data 
(Sensor Data)

DBMS 
(Transactional Data)

Benchmark  Query 
Implementation 

Result Validator 
and Metric 

Calculator (Toolkit)

Data and Workload 
Generator (Toolkit)

Fig. 2. Architecture of Senska in FMC

Data Sender. As part of the provided toolkit, the Senska data sender reads the
input data and ingests it into the message broker component. The sending inter-
val, i.e., the delay between sending consecutive records, is configurable. Although
it is closer to reality to send records according to the timestamp they may con-
tain, this might not be sufficient to satisfy configured data ingestion rates, i.e., to
benchmark the SUT with certain data input rates. So it might not be possible
to test, e.g., how much throughput an SUT can reach or how an SUT would
behave with a doubled number of input records per second. Moreover, as reality
and amounts of produced of data are rapidly changing, this flexibility allows
staying up-to-date with a changing environment and prevents the benchmark
from becoming outdated because of unrealistic data input rates.

1 ftp://ftp.mi.fu-berlin.de/pub/debs2012/.
2 http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html.

ftp://ftp.mi.fu-berlin.de/pub/debs2012/
http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html
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The data sender, which is under development, is written in Scala and thus
runs within a JVM on most common platforms. This compatibility with most
OSs is the major reason for choosing Scala or a JVM language in general. As
with all the tools in the toolkit, an open-source version of the data sender will
be published with the first version of Senska.

Message Broker. The message broker represents a central part of Senska’s
architecture. It acts as interface between data sender and SUT. Furthermore, it
is storage for query results in the defined setup. The message broker component
in Senska is realized through Apache Kafka [14]. An overview about Kafka in
the context of Senska is illustrated in Fig. 3.

One reason for using Apache Kafka within Senska is its usage in enterprise
software architectures. Among others, a common way of using Kafka is as inter-
face to a DSPS. Thus, its role in Senska reflects reality and so adds relevance
to the benchmark. Such usages of Kafka in combination with a DSPS were pre-
sented by, e.g., Bouygues Telecom [4] and Zalando [22].

An additional reason for using Apache Kafka is scalability with respect to
ingesting data. If the data sender were to directly send data via sockets to
the SUT, a change in the number of sockets would require changing the query
implementations, since the additional connections would need to be handled by
the SUT. Kafka topics provide a solution to this problem. An arbitrary number
of producers can send data to a certain topic, which is internally distributed
across the cluster and partitions by Kafka. The SUT application receives data
from a topic, allowing the number of producers to be adapted. Using Kafka
topics it is therefore possible to scale data ingestion in order to achieve a higher
throughput without modifying query implementations. In order to ensure the
correct order of records within Kafka topics, we use only one partition per topic,
which can be seen in Fig. 3.

Another reason for using Apache Kafka is latency measurements. In order
to achieve latency results that are as correct and comparable as possible, we
leverage Kafka’s timestamp functionality. The timestamps before entering the
SUT and after leaving the DSPS are taken into account for latency calculations.
By doing so, it is possible to keep those calculations independent from the SUT
and thus, no implementation modifications are needed and system-dependent
differences or variations in terms of time measurements can be preempted.

Particularly, there are two types of timestamps Kafka offers to store with the
messages, create time and log append time [2]. Create time is measured when a
message is created and set by the Kafka producer that sends data to the cluster,
and log append time is set by the broker when a message is appended to the
Kafka log. In order to keep the measurements application-independent and so to
avoid, e.g., unintentional application optimizations for reducing latency, we use
log append time. Latency is computed by subtracting the output timestamp,
i.e., log append time of the result record, from the input timestamp, i.e., log
append time of the corresponding or last relevant input record. The downside
of this approach is the included overhead time that is needed for transferring
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Fig. 3. Usage of Apache Kafka within Senska

messages from the broker to the SUT and back, which does not reflect the actual
computation time of the SUT.

Although the exact processing times needed by the SUT are not measured
by doing so, we do not consider this as an issue for the benchmark. Since all
benchmarked systems follow the same approach, the overhead is included in all
measurements and so results remain comparable in similar environments, i.e., if
influencing parts, such as the network connection bandwith between Kafka and
SUT, stay constant. Thus, we believe that the presented latency measurement
approach is an objective way of calculating latencies in the context of Senska. It
allows benchmarking any implementation that is able to retrieve and send data
to and from Kafka. As times are taken independently outside of implementations,
results are comparable and can not be unintentionally distorted by different time
measurement mechanisms.

System Under Test. The SUT comprises two main components: the bench-
mark query implementation and a DBMS. The queries defined by Senska and
can be implemented using any technology, e.g., a DSPS or DBMS features such
as stored procedures. The only requirement on the technology used for the imple-
mentation is the ability to communicate with a DBMS and with the message
broker, i.e., with Apache Kafka. Historical or transactional data is consumed
from a DBMS on demand, i.e., whenever a query requires this data. As the
speed of the DBMS can influence the responsive time of queries, it belongs to
the SUT. Some queries might require updating one or multiple historical data
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records, which is why a bi-directional connection between the query implemen-
tation and the DBMS exists. Query results are returned to the message broker,
except for queries that require updating business data within the DBMS.

Data and Workload Generator. The data and workload generator simulates
realistic usage through inserting business data and executing analytical queries
on the DBMS. By doing so, a real-world usage can be simulated.

Result Validator and Metric Calculator. After finishing a benchmark run,
the result validator and benchmark metrics calculator reads the query output
from Kafka as well as from the DBMS and checks the correctness of results.
This happens by rereading and reprocessing the input data from Kafka that
was ingested into the SUT. Additionally, the benchmark results for the analyzed
system or architecture, i.e., the scores for the benchmark metrics, are calculated.

When looking at Linear Road, the probably most noted benchmark of the
three presented benchmarks in Sect. 2, the high-level architecture shown in Fig. 1
is also valid. Senska as well as Linear Road have, next to the SUT, a data sender
and a data validator component.

A look to Senska’s architecture in Fig. 2 reveals some differences, though.
Linear Road also uses input data files that are sent by a data sender, but there
is no message broker included. So the Linear Road data sender could directly
send the input to the SUT. Furthermore, historical data in Linear Road are plain
files that needs to be handled by the SUT. Thus, a DBMS is not required as
in Senska. Contrary to Linear Road, there is a workload generator for historical
data in Senska.

Similarly to Senska, a query result validator is provided as part of Linear
Road. A data generator component is also included in Linear Road, which creates
streaming and historical data. In Senska, there is a data generator for business
data and, depending on the search of suitable real-world input data sets and as
mentioned before, there might be a generator for streaming data, too.

3.3 Queries

When defining benchmark queries, relevance and simplicity need special consid-
eration. The former one not only includes the closeness of queries to real-world
scenarios, but also the coverage of important stream processing functionality.

For ensuring the latter one, we use the core set of operations for complex
event processing (CEP) systems presented by [19] as a basis for functionality
that should be covered by the queries. Although this list of operations is defined
for CEP systems, it is applicable to data stream processing in general. Thus, we
slightly modified to the original list to our needs and benchmark specifics, e.g.,
by adding the aspect of combining streaming with DBMS data.
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1. Windowing
2. Transformation
3. Aggregation/Grouping
4. Merging (Union)
5. Filtering (Selection/Projection)

6. Sorting/Ranking
7. Correlation/Enrichment (Join)
8. Machine Learning
9. Combination with DBMS data

Table 3 shows an excerpt of the first queries defined in Senska. Next to the
use cases behind each query, the covered functionalities are given, referencing
the above stated list. Moreover, a query definition and a description are shown.
Queries are defined similar to CQL continuous query language [6].

Table 3. Excerpt of Senska query set

# Use Case Tested
Aspects

Query Definition Description

1 Check
Sensor
Status

1;2;3 SELECT AVG(VALUE),

MIN(VALUE), MAX(VALUE)

FROM STREAM 1

RANGE 20 SECONDS

Calculate sensor statistics
(avg, min, max) for, e.g.,
last 20sec.

2 Predict
Sensor
Values

1;8 SELECT PREDICTION(VALUE,

20 SECONDS)

FROM STREAM 1

RANGE 300 SECONDS

Calculate expected values
for, e.g., the next 20sec, for a
sensor based on data of, e.g.,
last 300sec.

3 Identify
Error I

1;5 SELECT COUNT(VALUE) > 5

FROM STREAM 1

WHERE VALUE > 40

RANGE 60 SECONDS

Log if sensor value exceeds
defined limit for a certain
number of times within a
determined timeframe.

4 Identify
Error II

1;5;7 SELECT * FROM STREAM 1

AS s1, STREAM 2 AS s2

WHERE s1.VALUE > 40 AND

s2.VALUE < 10

RANGE 60 SECONDS

Log if two sensor values
exceeds defined limit within
a determined timeframe.

5 Check
Machine
Power

7;9 SELECT * FROM STREAM 1

AS s, DB TABLE 1 AS t

WHERE s.MACHINE ID =

t.MACHINE ID AND s.POWER

= 0 AND (s.TS >

t.DOWNTIME END OR s.TS <

t.DOWNTIME START)

Log if the machine is in an
unscheduled phase of being
turned off or in stand-by
(assumption: there is always
the next downtime stored in
DB TABLE 1)

Except for 4. Merging (Union) and 6. Sorting/Ranking, all functionalities of
the presented operation list are covered. We aim to test these currently missing
functions with the complete query set.

Currently, there is a first viable example benchmark implementation for the
first query shown in Table 3, which only processes streaming data. For data
processing, a DSPS is used. As shown in Fig. 2, a data sender ingests the data
into a Kafka cluster, which is the interface to the benchmark implementation.
A result validator and metric calculator checks result correctness and computes
latency for the queries.
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3.4 Limitations

One limitation of Senska is its domain, namely industrial manufacturing. Senska,
as every domain-specific benchmark, is focussed on a single application field,
which can differ from other areas such as e-commerce software architectures.
Differences may exist with respect to, e.g., data or query characteristics. Due to
such varieties, there might be other benchmarks representing certain domain-
specific circumstances better than Senska does. Nevertheless, queries defined by
Senska cover functionalities, e.g., windowing or filtering, that can also be relevant
to other domains.

Moreover, Senska only considers a limited data variety for simplicity reasons.
To be more concrete, neither multimedia nor graph data is part of the benchmark
and thus, capabilities of processing such data that a SUT might have will not
be rewarded by Senska. So for scenarios where processing of such data is crucial
Senska might not be the best choice of benchmark. Nevertheless, Senska will be
open for extensions, which allows integrating such aspects.

A third limitation comes with the use of Apache Kafka as central part of
Senska’s architecture. As a consequence, a SUT must be able to retrieve and send
data from and to Kafka. Since there are many clients available for Kafka that
is not considered as a major drawback [1]. Besides, an architecture containing a
message broker in general or Apache Kafka in particular might not be satisfying
for everyone. Reasons can be, e.g., the wish to test another message broker
or to test an architecture without message broker, which could mean retrieving
streaming data within the SUT directly via one or multiple socket connection(s).

4 Conclusion

Within this paper, related work and the need for a new application benchmark
for stream processing in an enterprise context is presented. The concept for such
a new benchmark, namely Senska, is illustrated. Senska focusses on industrial
manufacturing as domain and provides a toolkit for data ingestion into the SUT
as well as query result validation and benchmark metrics calculation. While some
queries can be answered solely using streaming data, other queries require access
to historical transactional data in order to produce correct results.

By developing Senska, it is aimed to fill the gap that exists in the area of
benchmarking enterprise architectures with focus on data stream processing. As
a next step, we want to publish a first version of the benchmark together with an
example implementation of the benchmark queries. Major future tasks are the
search for a suitable input data set, and, if needed, the development of a data
generator for scaling or generating streaming data. The example implementation
has to be finished and the result validator adapted correspondingly. Addition-
ally, the metric set as well as the tool responsible for its calculation have to be
extended in order to cover all relevant aspects. Besides, the components related
to business data have to be developed. Concurrently, the ideas shall be consis-
tently be discussed with industry partners in order to validate design decisions
with respect to relevance.
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Abstract. Network Function Virtualization (NFV) is the transfer of
network functions from dedicated devices to high-volume commodity
servers. It opens opportunities for flexibility and energy savings. Concrete
insights on the flexibility of specific NFV environments require measure-
ment methodologies and benchmarks. However, current benchmarks are
not measuring the ability of a virtual network function (VNF) to scale
either horizontally or vertically. We therefore envision a new benchmark
that measures a VNF’s ability to scale while evaluating its energy effi-
ciency at the same time. Such a benchmark would enable the selection
of a suitable VNF for changing demands, deployed at an existing or new
resource landscape, while minimizing energy costs.

1 Introduction

Data centers in the United States consumed an estimate of 61 billion kWh
annually in 2006, according to a Berkeley National Laboratory reported to
congress [1]. By 2013, the energy consumption has risen to an estimated 93 bil-
lion kWh. National Resource Defense Council (NRDC) [2] projected the power
consumption to climb to 140 billion kWh by 2020. Roughly 5–10% [1] of this con-
sumed energy is used by networking equipment with its power demand expected
to increase proportionally with the increasing server power demand.

The rise of cloud computing, enabling new products such as Software as
a Service (SaaS), calls for increased flexibility in terms of service locality and
network configuration abilities. The introduction of software defined networking
(SDN) allows for greater flexibility in the network configuration. Yet the network
infrastructure is mostly relying on dedicated appliances with limited flexibility
in locality and scalability.

With growing data centers, the demand for performance in network equip-
ment increases as well. Yet typical service demands are not constant over time
but highly variable [3] and large amounts of resources remain unused when the
system is not under peak load. Virtualization allows the on demand allocation
of required resources to a certain task without a decrease in Quality of Ser-
vice (QoS) or Quality of Experience (QoE). With the introduction of Network
Function Virtualization (NFV) by the European Telecommunications Standards
Institute (ETSI) [4], this trend towards virtualization is applied in the network
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domain by replacing dedicated appliances with high-volume commodity servers.
NFVs based on commodity servers might not be more energy efficient than ded-
icated hardware devices when under peak load due to the optimized hardware
within the dedicated network appliances. However, peak load only accounts for
a fraction of the total time the service is available. Combined with the ability to
scale both horizontally and vertically, NFV opens up opportunities for energy
saving and reduced operational costs.

In this paper we describe our vision for scalability and energy efficiency
benchmarking for virtual network functions (VNFs). Different techniques for
auto-scaling in a cloud environment exist [5] today and research is still ongoing.
The introduction of NFV also introduced the ability to scale network functions
horizontally and vertically. This enables network functions to be used in auto-
scaling scenarios in cloud environments. Yet, the differences in scalability of
different or competing VNFs in an NFV environment remains unknown. Dif-
ferent implementations of an otherwise identical network function could behave
differently when scaled. We therefore envision a new benchmark suite that rates
a VNF’s ability to scale horizontally and vertically.

While performance is a key characteristic, energy efficiency gains importance
with the rising demand in flexible networking equipment. An energy efficiency
aware benchmark could show opportunities for energy saving and subsequently
reductions in operational costs. Our main goal for a new VNF benchmark is the
rating of scalability, performance and energy efficiency of VNF implementations
to select and deploy energy efficient VNFs without a decrease in QoS or QoE.
Thus, we not only rate the performance of a VNF when scaled, but combine it
with its energy efficiency for the performance demand.

The remainder of this paper is structured as follows: At first, we give an out-
line of the current state of the art. In Sect. 3, we formulate the problem state-
ment of our envisioned scalability and energy efficiency benchmark. Section 4
describes our vision for a new benchmark followed by an approach to realize
such a benchmark in Sect. 5. This includes preliminary methodology and setup
of the benchmark. Finally, Sect. 6 provides a conclusion and an outlook for the
next tasks towards our vision.

2 State of the Art

Huppler motivates the importance of efficiency benchmarks in his work [9] with
many examples of benchmarks, including the Green500 ranking for supercomput-
ers and TPC-Energy [26]. The latter is also the focus of [10], which introduces the
new metric of energy proportionality. Energy proportionality is designed to rep-
resent a system’s ability to adapt to changes in demand. This underlines the need
for different load levels in energy efficiency benchmarking, also described in the
SPEC Power Methodology [8] that is used for the Standard Performance Eval-
uation Corporation (SPEC) Server Efficiency Rating Tool (SERT) [28], Chauf-
feurWDK [29] and SPECpower ssj2008 [27].

There is also a variety of existing virtualization benchmarks like the
Standard Performance Evaluation Corporation (SPEC) VIRT SC 2013 [23],



Towards a Scalability and Energy Efficiency Benchmark for VNF 43

TPC-VMS [24] and TPCx-V [25]. However, these benchmarks are measuring
the performance of a workload together with the virtualization technique and
software stack. In contrast, we intend for our benchmark to be independent of
the virtualization technique, software stack and hardware, to increase its range
of possible applications and making different VNF implementations directly
comparable.

Lange et al. [14] also states VNFs are more regularly used in higher abstrac-
tion levels, especially when used inside cloud environments. In addition, com-
plexity and concurrency increase as well, due to the abstraction and interac-
tions with other network functions. Subsequently the complexity of performance
benchmarks for VNFs will also rise in complexity. Yet, our focus is not on the
sole performance of VNF. A methodology for performance benchmarking net-
work devices was already published as RFC 2544 [16] in 1999 and extended by
RFC 6201 [17] and RFC 6815 [18]. In [15], the authors analyzed the performance
of a single VNF (virtual router) and identified four performance bottlenecks. The
relevance of these bottlenecks for other VNF types is questionable as only a single
type was evaluated.

The expired RFC draft [20] made an early effort towards a VNF performance
benchmarking methodology. It is listing required documentation and reporting,
such as CPUs, caches, storage system, hypervisor and others. It also categorizes
benchmarks in a 3 × 3 matrix for deployment, operation and de-activation of
VNFs. A second, also expired, RFC draft [19] provides a testbed setup for VNF
benchmarking. Yet, it also focuses only on performance.

In [6], Herbst et al. describe elasticity as the autonomic provisioning and
deprovisioning of resources, such that the provided resources always match the
demand as closely as possible. For a system to be elastic, it must be either
horizontally or vertically scalable. A horizontally scalable system provisions and
deprovisions more virtual or physical machines to a task to accommodate changes
in resource demand. A vertically scalable system must be able to allocate more
computing resources (i.e., CPU cores, memory size and network I/O) to an
existing machine. An elastically managed system can be in three states, shown
in Fig. 1. If the resource demand (red) is higher than the resources currently
supplied (blue), the system is in an underprovisioned state Un for the duration
An. In case the resource supply is higher than the demand, the system is over-
provisioned On for time Bn and has more resources than needed. If the system
is neither overprovisioned nor underprovisioned, it is in an optimal state for a
given demand.

3 Challenges

For a new scalability and energy efficiency benchmark, specifically built for VNF
benchmarking, we identify four main challenges based on Sect. 2. While the per-
formance of a VNF can also be dependend on its location, our benchmark should
measure the performance of a VNF itself. Its score should not reflect the solu-
tion to placement problems, such as the ones shown in [21,22]. The challenges



44 N. Schmitt et al.

Fig. 1. Resource over- and underprovisioning [6] (Color figure online)

we want to address stem mainly from the variety of application domains a VNF
can be deployed in and from the ever increasing abstraction and complexity:

1. As mentioned, VNF implementations should be directly comparable. There-
fore the performance of the VNF must be isolated from the underlying soft-
ware stack, virtualization and hardware. This includes research on metrics
that can represent a VNFs performance independently from these factors.
Yet, it should be taken into consideration that full isolation might not be pos-
sible. In this case, a fixed reference virtualization technique could be selected
to keep the benchmark’s relevance and fairness.

2. We intend to empirically show the correctness of our benchmark. Therefore
a selection of VNFs must be made that not only shows that the benchmark
works but is also representative to a wide variety of possible VNFs under
test. As VNFs can differ significantly depending on the domain, different
evaluation groups could be formed. For example a Carrier Grade Network
address translator (CGN) might be relevant to an Internet Service Provider
(ISP) but less relevant to a video streaming service provider. Finding suitable
VNFs is therefore necessary for empirical evaluation and can also aid in
showing the benchmark’s generality or limitations.

3. VNFs come in many types, all needing a special setup and configuration
for traffic generation and validation. VNFs can have different numbers of
sources (s) and receivers (r), as shown in Fig. 2. These range from simple
configurations with a single source and receiver to VNFs that require multiple
sources or receivers. A n : m relationship between sources and receivers is
also possible as a combination of the two rightmost examples in Fig. 2. VNFs
could also alter the traffic flow in form of a firewall, which blocks packets, or a
Network Address Translator (NAT), changing the packet header information.
The list is not exhaustive nor final and a VNF might not exclusively belong
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Fig. 2. Different VNFs with different needs for configuration and validation

to a single category. Yet, it shows the complexity in potential setups that
must be handled by the benchmark.

4. Regarding vertical scaling, it is not known in advance which step size for
resources should be used when scaling. For horizontal scaling, it is a question
of how many resources should be allocated to each instance. This could be
left to the benchmark user or defined by the benchmark methodology. If left
to the user, the step size and allocation size might get optimized to his or
her use case and might reduce comparability of results. If it is defined by the
methodology, it is questionable if all possible VNFs can be represented and
would further increase the challenge of finding relevant VNFs or VNF groups
with predefined step sizes, able to indicate a VNF’s behavior when scaled.

4 The Vision of a Scalability and Energy Efficiency
Benchmark

Our envisioned benchmark includes two main goals. The first is measuring the
vertical and horizontal scalability of a VNF. The second goal is measuring a
VNF’s energy efficiency when scaled. To make the benchmark versatile for a wide
audience, it should be able to handle a large variety of VNFs with different needs
on traffic generation and validation. We envision a benchmark that is agnostic
to the VNF that is under test and can be freely configured. For our benchmark
we focus on the following resource types as they can largely influence scalability,
performance and power consumption and therefore energy efficiency: (i) number
of CPU cores, (ii) size of main memory, (iii) filesystem I/O bandwidth and (iv)
network bandwidth. Other metrics that are not mentioned can also be taken
into consideration, depending on future research.

Measuring a VNF’s ability to scale allows selecting the best performing VNF
for an existing infrastructure by matching it to the available resource landscape.
If for example only a single but powerful system is available, a vertically scalable
VNF implementation could be deployed, while an environment with many but
less powerful machines might be better suited for a horizontally scalable VNF.
The user can therefore deploy a VNF implementation that suits its available
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resource landscape and achieve optimal performance when the VNF needs to be
scaled. Measuring the scalability and the corresponding performance is also the
first step to our second goal.

Adding energy efficiency to the benchmark allows the user to select a VNF
that is most efficient for the given task. This allows energy savings and in turn
reduces operational costs. Measuring not only the scalability but also the energy
efficiency widens the audience for the benchmark. It can be applied by SaaS
providers to select the most energy efficient VNF for their offerings but can also
allow Infrastructure as a Service (IaaS) users to select a VNF implementation
that is scalable within the provided resource landscape. An example use case is
shown in Fig. 3. Three different VNF implementations with identical functions
are measured and the results are stored in a database. The scalability demand
by the customer and the efficiency demand are shown as the horizontal line.
While VNF 1 satisfies the customers demand, it is not suited for the service
provider. VNF 3 on the other hand is the best solution for the provider but

Fig. 3. Scalability and energy efficiency example use case
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not for the customer. Yet, service provider and customer can both agree on the
second implementation as a compromise. This shows, that results from such a
benchmark can also be used to reach agreements between providers and con-
sumers for a VNF that suits both needs, the customer’s need for satisfactory
performance and the provider’s for minimizing cost.

5 Planned Approach

We have planned the following approach to achieve our vision of a scalability and
energy efficiency benchmark for VNF. It consists of a benchmark methodology
based on existing power and energy efficiency benchmarks and tools. We also
show a preliminary benchmark setup for our approach. The term configuration
used in the following section describes the amount of instances of a VNF for hori-
zontal scaling and the number of different setups in the form of allocated network
bandwidth, CPU count, main memory, filesystem I/O and network bandwidth
for vertical scaling.

5.1 Methodology

Our methodology consists of two distinct parts and aims to comply with key
characteristics for benchmarks, described in [7]. First, we describe the energy
efficiency methodology, followed by the scalability methodology.

Energy Efficiency. For our work, we base our energy efficiency methodology on
the SPEC Power Methodology [8]. Existing work has shown that this methodol-
ogy ensures high accuracy for power measurements [12] and supports the char-
acterization of system power over multiple load levels [13]. The goal is the power
measurement in a steady-state at multiple load levels. DC Power is measured
at the Server’s power inlet. Loads used by the benchmark must have the char-
acteristics of transactional benchmarking loads. In the context of performance
benchmarking, we consider any load that consists of work packets with a clearly
defined and measurable start and end time to be transactional. Transactionality
of loads enables multiple benchmark features, such as throughput measurements,
load calibration, and more. The System Under Test (SUT) is first calibrated to
determine its maximum throughput. To achieve calibration, load is generated at
a level that is guaranteed to exceed the SUT’s capacity and the SUT’s through-
put is measured. The recorded throughput, averaged over multiple calibration
intervals, is assumed to be the maximum (100%) load level achievable by the
SUT. Lower load levels below 100% are reached by adding random exponen-
tially distributed waiting times between transactions. The mean delay is chosen
so that the target transaction rate corresponds to the load level. Figure 4 shows
an example of an efficiency measurement according to [8] with the calibration
and three load levels. All measurement intervals as well as the calibration have a
pre- and post-measurement phase to allow the SUT to reach steady-state before
measurements begin.
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Fig. 4. Energy efficiency benchmark phases [11]

Figure 5 shows an example result from an energy efficiency measurement of
a control plane VNF (SDN controller) for four different load levels, demonstrat-
ing the practical applicability of the envisioned approach. Results from mea-
surements with our methodology should also include reporting requirements on
which configuration was tested under what load. The figure shows that the VNF
under test consumes different amounts of power for each of the load levels. As
performance of the load levels varies by design, the resulting energy efficiency
(the ratio of performance over power) differs as well.

Fig. 5. Example result from an energy efficiency measurement with four load levels

The environmental conditions of the benchmark can have a significant impact
on the power consumption of electrical devices. E.g., a hot environment would
need more powerful cooling systems drawing more power. As a result, it is nec-
essary not only to measure the power consumption but also the environmental
temperature. The temperature for air cooled server systems is measured not
more than 50 mm from the air inlet as described in [8].

Scalability. We currently plan to express a VNF’s scalability as the ratio between
its maximum performance and used resources. For horizontal scaling, used
resources is the number of instances deployed and running. Vertical scaling uses
CPU count, main memory, I/O bandwidth and network bandwidth as the scaled
resource. In addition, a combination of resources might be possible, such that
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main memory and CPU count are scaled at the same time. Yet, benchmarking
all possible resource combinations could increase the number of configurations
and subsequently the benchmarks runtime significantly. Hence, we see the need
to let the benchmark user select the resources that are scaled under well defined
rules to achieve optimal results for the VNF under test. The resources selected
must then be documented and combined with the benchmark results to keep
them comparable. The benchmark should also include the scalability results for
the four resources mentioned in Sect. 4 as a baseline to all benchmark runs.

As energy efficiency is measured simultaneously with scalability, the correct
distribution of load levels across the different configurations becomes an impor-
tant factor. We identified three different possibilities to distribute the load levels
over all configurations as shown in Fig. 6:

(A) The first option is to distribute all measured load levels equally across all
possible configurations and calibrate only once at the configuration with
the highest performance. In the example in Fig. 6, each possible configura-
tion has an equal number of load levels that are determined by the single
calibration C0. This keeps the benchmark runtime low, as only a single cal-
ibration has to be performed. Yet, this option has some drawbacks. First,
if the number of configurations is not fixed in the benchmark, the num-
ber of load levels varies as well. This reduces the comparability between
different VNF implementations that are measured with a different number
of configurations. Even if the number of configurations is fixed, it cannot
be guaranteed by the benchmark that the load levels for a specific config-
uration are representative. Second, in the example, the peak load for the
second configuration is not measured. Neither by L2 nor L3. Also L4 over-
loads the third configuration and possibly invalidating the measurement for
this load level.

(B) The second option is to have a fixed number of load levels per configuration
and calibrate each configuration. The load levels are distributed according
to the SPEC measurement methodology [8], based on the calibration for
the specific configuration. While this option avoids the second problem of
not measuring peak load or overload of a configuration, this option also has
drawbacks. In the example shown in Fig. 6, each configuration has three load
levels, full load, 66% and 33%. For the first configuration, L1 is below the
maximum performance of the second configuration and L2 is near the full
load of configuration three. These load levels are not necessary for elasticity
(see Sect. 2) as the system should adapt to the performance demand and
will not operate in an overprovisioned state, elongating the benchmark’s
runtime unnecessarily.

(C) The third option is to distribute a fixed number of load levels between the
calibrated full load of the current configuration and the next smaller (less
peak performance) configuration. In our example (Fig. 6), the load levels
for the first configuration are distributed between the calibration C0 and
C1. For the second configuration the load levels are between C1 and C2.
The configuration with the lowest maximum performance will distribute
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Fig. 6. Options for scalabilty and energy efficiency load level distribution across mul-
tiple configurations
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its load levels between its calibration (C2 in the example) and the idle
state (L8). This removes unnecessary load levels and increases the relevance
with more load levels. Yet, it introduces an idle measurement at the lowest
configuration.

Of the three introduced options for load level distribution among different
system configurations. We discourage the first option (A) with the most draw-
backs in favor of either option (B) or (C). Between (B) and (C), we see the latter
as the most promising option with the least drawbacks that does not include
possibly unnecessary measurements that, in return, might not be relevant to the
benchmark user.

5.2 Setup

The envisioned setup of our benchmark consists of at least the following com-
ponents: (i) experiment controller, (ii) load generator, (iii) traffic receiver and
validator, (iv) power analyzer, (v) temperature analyzer and (vi) SUT. Option-
ally, a meter controller can also be used for managing the dedicated power and
temperature measurement devices. Each component can be seen in Fig. 7.

Fig. 7. Envisioned benchmark setup

The experiment controller starts and stops the measurements. It collects
all data from the involved components and compiles the final report. Commu-
nication takes place in a dedicated control network so measurements are not
disturbed.

The load generator produces traffic that matches the load level that should be
measured and network related configuration, such as packet size, packet content
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and protocol that must be used to stress the VNF under test. It also distrib-
utes the traffic to all instances of VNFs deployed for measurement. Even though
a dedicated load balancer is possible, we discourage using a load balancer not
delivered together with the benchmark to keep the benchmark reproducible. An
optimized load balancer could skew the results in favor of a specific VNF imple-
mentation, especially if the load balancer and its configuration is not publicly
available for other users to reproduce and verify the results.

After the traffic has passed through the SUT, it must be validated to check if
the VNF performed the operation according to specification. This is done at the
traffic receiver and validator component. Both, the load balancer and validator,
must be configurable to match the VNF that is under test appropriately.

Power and temperature measurements are performed with dedicated mea-
surement devices deployed at the test site. They are either connected directly to
the experiment controller or an optional meter controller if required.

The setup of the SUT varies. It depends on how many instances are deployed
and on how many hypervisors or physical machines they are distributed. This
changes over the course of a benchmark run as the system is scaled. Therefore,
we do not specify any general setup restrictions.

6 Conclusion and Next Steps

In this work, we present a new benchmark for scalability and energy efficiency
specifically for VNFs. Such a benchmark can give customers and service providers
a rating to select a VNF implementation that fits their need. We presented
current work on VNF benchmarking and its methodology as well as virtualization
and energy efficiency benchmarks. Based on the current work, we identify four
key issues due to rising complexity and abstraction in a cloud environment, but
also the flexibility of VNFs and the domain they are used in. We present our
vision and the approach to measure and quantify energy efficiency and scalability
in a single benchmark together with the proposed setup.

To proceed towards our vision, we first must resolve the identified issues in
Sect. 3. The first step is to find an abstraction of the software stack, virtualization
and hardware to make VNF implementations comparable with each other. If this
is not possible, all supporting systems must be accounted for in the benchmark’s
methodology. From this basis we can further proceed to build our methodology
and resolve the remaining problems and technical issues on the way towards
our vision.
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Abstract. BigBench is the new standard (TPCx-BB) for benchmark-
ing and testing Big Data systems. The TPCx-BB specification describes
several business use cases—queries—which require a broad combination
of data extraction techniques including SQL, Map/Reduce (M/R), user
code (UDF), and Machine Learning to fulfill them. However, currently,
there is no widespread knowledge of the different resource requirements
and expected performance of each query, as is the case to more estab-
lished benchmarks. Moreover, over the last year, the Spark framework
and APIs have been evolving very rapidly, with major improvements
in performance and the stable release of v2. It is our intent to com-
pare the current state of Spark to Hive’s base implementation which can
use the legacy M/R engine and Mahout or the current Tez and MLlib
frameworks. At the same time, cloud providers currently offer conve-
nient on-demand managed big data clusters (PaaS) with a pay-as-you-go
model. In PaaS, analytical engines such as Hive and Spark come ready
to use, with a general-purpose configuration and upgrade management.
The study characterizes both the BigBench queries and the out-of-the-
box performance of Spark and Hive versions in the cloud. At the same
time, comparing popular PaaS offerings in terms of reliability, data scal-
ability (1 GB to 10TB), versions, and settings from Azure HDinsight,
Amazon Web Services EMR, and Google Cloud Dataproc. The query
characterization highlights the similarities and differences in Hive an
Spark frameworks, and which queries are the most resource consum-
ing according to CPU, memory, and I/O. Scalability results show how
there is a need for configuration tuning in most cloud providers as data
scale grows, especially with Sparks memory usage. These results can help
practitioners to quickly test systems by picking a subset of the queries
which stresses each of the categories. At the same time, results show how
Hive and Spark compare and what performance can be expected of each
in PaaS.

1 Introduction

A benchmark captures the solution to a problem and guides decision making. For
Big Data Analytics Systems (BDAS) BigBench has been recently standardized
by the Transaction Processing Performance Council (TPC) as TPCx-BB. It has
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 55–74, 2018.
https://doi.org/10.1007/978-3-319-72401-0_5
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been originated from the need to expand previous decision support style bench-
marks i.e., TPC H [21] and DS [22] into semi and non-structured data sources,
and it is the result of many years of collaboration between the database industry
and academia [2,5]. BigBench includes 30 business uses cases—queries—covering
merchandising, pricing optimization, product return, and customer questions.
It’s implementation requires a broader set of data technologies than SQL i.e.,
Map/Reduce (M/R), user code (UDF), Natural Language Processing (NLP),
and Machine Learning; which expand and differentiates from previous SQL-only
benchmarks, as required by today’s enterprise.

BigBench’s original implementation was based on Apache Hadoop and Hive
with Map/Reduce (M/R) as execution engine and Mahout as Machine Learning
(ML) library [2]. However, due to the rapid development of the open source
Big Data ecosystem and BigBench online repository [10], it is now possible—
and convenient—to use e.g., Tez as execution engine and MLlib to lower the
query latency, or even to replace Hive altogether with Spark. However, there
is not only a large set of technologies that a user can choose from, but there
are multiple stable major versions of the frameworks. Moreover, Spark—and
MLlib—have been evolving rapidly over the last year, with major enhancements
in performance and API changes with v2. It is impart our intent to quantify
and understand the performance improvements of such changes from the base
implementation.

At the same time in recent years, new managed enterprise big data ser-
vices have emerged in most cloud providers [13], facilitating software-defined
on-demand big data deployments. These services create compelling technical
reasons for migration to the cloud, such as elasticity of both compute and
storage, while maintaining a simplified infrastructure management i.e. via vir-
tualization. Furthermore, with such services often using a Pay-as-you-Go or
even Pay-as-you-Process pricing model, they are economically attractive to cus-
tomers [13]. Furthermore, cloud providers make the complex configuration and
tuning process [17] transparent to their clients, while providing features such as
data security and governance. On top of this, by having multiple customers, ser-
vice providers can potentially improve their software-stack from user feedback, as
upgrading services more often than smaller companies [16]. As a result, the client
can benefit from the immediate availability of a tested and generically-optimized
platform with upgrade management.

The current cloud and open source Big Data ecosystem, leaves the enter-
prise facing multiple decisions that have can an impact both in the budget as
in the agility of their business. These include selecting both an infrastructure
and services provider, as well as the Big Data frameworks along their config-
uration tuning [17]. With this respect, BigBench becomes the clear choice to
contrast cloud providers and choose the appropriate data framework to make an
appropriate choice. However, as being a new benchmark, still little is understood
of the underlying implementation and expected performance of the queries. To
day, only a handful of official submissions are available [20], as well as a few
publications with detailed per query characterization [2,12].
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The goal of this study is two-fold. First, it provides a first approach to Big-
Bech query characterization to understand both Hive and Spark implementa-
tions. Second, it compares the out-of-the-box performance and data scalability
from 1 GB to 10 TB of popular cloud PaaS solutions. Surveyed services include
Azure HDinsight, Amazon Web Services EMR, and Google Cloud Dataproc, as
well as an on-premises cluster as baseline. The work is the natural extension of
the previous cloud SQL-on-Hadoop comparison, where the same cloud providers
where compared using the TPC-H SQL benchmark [16] and only using Hive.
The reason for not using Spark before, was that the versions, performance and
configuration were not stable or comparable enough among providers. The study
targets medium size clusters of 128-core each. In particular, we benchmark sim-
ilar clusters in each provider consisting of 16 data nodes, with a total of 128
worker CPU cores and about 60 GB of RAM, using networked/block storage
only. The master nodes where chosen with 16-cores each and more than 60 GB
of RAM to sustain the concurrency tests.

Objectives and contributions:

1. A characterization of the different BigBench queries to better understand the
use cases resource requirements and implementation differences of Hive and
Spark.

2. Survey the popular entry level PaaS Hadoop solutions from main cloud
providers and contrast offerings and data scalability using networked/block
storage.

3. Compare the performance of the different versions of the Big Data
Apache/Hadoop ecosystem, as well as the machine learning libraries.

Organization. The rest of the study is organized as follows. Section 2 presents
the cloud providers and cluster hardware and software specs. Section 3 presents
the background of the different technologies as well as the most relevant state-of-
the art in the field. Section 4 presents the methodology used for the testing as well
as the query characterization by resource usage for both Hive and Spark. While
Sect. 5 presents the main query performance results at different data scales.
Section 6 adds to discussion other tests performed with different versions of the
frameworks. While Sect. 6 discusses the results and Sect. 7 provides a summary
and the conclusions.

2 Providers and Systems-Under-Test (SUTs)

The Hadoop PaaS services from 3 major cloud providers are compared:

– HDInsight (HDI) from Microsoft Azure.
– Elastic Map Reduce (EMR) from Amazon Web services (AWS).
– Dataproc (GCD) from Google Cloud Platform.
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The elasticity properties of the 3 providers have been previously stud-
ied [16] using a derived TPC-H benchmark implemented in Hive [11], along
with Rackspace’s Cloud Big Data (CBD) not included in this report. There
were different reasons justifying the selection of each provider. HDI has been
studied previously [15,17], and as such, their APIs are already well-integrated
into the ALOJA platform (see Sect. 3). EMR was the first major Hadoop PaaS
solution, and currently has one of the largest usage shares [13]. Both AWS and
EMR are commonly used as bases of comparison in the literature [23,26,27].
GCD from Google Cloud has been included due to it being identified as a lead-
ing provider [13], as well as for being a new service (GA in 2016) which could
potentially have a differentiated architecture.

HDInsight for HDI, we have used the D4v2 VM instances, which features 8-
cores and 28 GB of RAM. The HDFS on all HDI instances is backed by the Azure
Blob store (through the WASB driver). This means that it is an object-store over
the network. As a consequence, the storage on HDI is decoupled from compute
and can grow elastically, as well as be used from outside the HDFS cluster on
other shared services and users. Local disks, backed by SSD drives on the D-
series, are ephemeral and used for temporary or intermediate data only. The two
included master nodes are of the D14v2 instance type, featuring 16-cores each
and 112 GB of RAM. Deployment times in Azure took close to 20 min on most
builds. The on-demand price for the cluster was $20.68 per hour, billed by the
minute.

Elastic Map Reduce for EMR, the default m4.2xlarge instance was tested.
Is an EBS-only instance. It comes with 8-cores and 32 GB of RAM. EBS stands
for Elastic Block Store, Amazon’s over-the-network storage. EBS has 4 different
throughput (IOPS) plans, according to the technology backing the storage. The
plans being high-performance or regular, for both SSDs and rotational drives;
we chose the default regular SSDs (GPS2). The master node was the m4.4xlarge
with 16-cores and 64 GB of RAM. Deployment times were faster than HDI at
around 10 min. ERM is billed by the hour or fraction of hour, being the only
provider maintaining this high billing. The cluster on-demand price was of $10.96
per hour.

Cloud Dataproc for GCD, we have evaluated the n1-standard-8 instance with
8-cores and 30 GB RAM, with the Google Cloud Storage (GCS)—the network
based storage. In GCD, up to 4 SSDs can be added per node at creation time
and the volumes are not ephemeral as in HDI, but used for HDFS. Deployment
times were surprisingly fast for GCD, with cluster build times at around 1 min.
The master node was of the n1-standard-16 with 16-cores and 60 GB of RAM,
GCD has the option to include one or two master nodes, we choose one. GCD
is billed by the minute. The cluster had an on-demand cost of $10.38 per hour.



Characterizing BigBench Queries, Hive, and Spark 59

2.1 Software Stack and Versions

While EMR, dating back to 2009, was the first major PaaS Hadoop solution, the
other main providers have caught up in packaging Hadoop with other popular
ecosystem services. Currently, all of the four providers tested ships with both
Hive and Spark v2 for SQL-like analysis on top of Hadoop, as well as other
services and tools i.e., Presto, HBase, Storm, Pig, etc. . There are differences
in security and governance features, but these are not compared in this work.
In relation to the software versions, Azure base their PaaS solutions on the
Hortonworks Data Platform (HDP) [7], a popular Hadoop distribution that users
might already be familiar with. HDI uses Ubuntu Linux 16.04 as Operating
System (OS). During the main experimental period—June 2017—HDI added
support for HDP version 2.6, which features Spark 2.1, but still runs on Hive v1.
AWS uses a custom-built stack for EMR, as well as a custom Linux version called
the Amazon Linux AMI, in this case v 2017.03. The EMR tests were run with the
latest version available at the time of testing, EMR 5.5 featuring both Hive and
Spark at v2. Like AWS, Google’s Cloud Dataproc also uses a custom Hadoop
distribution built using Apache BigTop (as EMR also does), and Debian Linux
8.4 OS. Tests were run on the preview version, as the current v1.1 only featured
Spark 2.0, and we wanted to test the 3 of them with Spark 2.1. A comparison
among Spark versions 1.6.3, 2.0, and 2.1 is provided in Sect. 6. Versions tested for
the SUTs are the default ones offered at time of cluster deployment during June
2017. More information on the software versions can be found on the release
notes of each provider. Relating to data center zones, we have tested HDI at
South Central US, EMR at us-east-1, and GCD at west-europe-1.

Software Configuration Differences. While this work focuses on the out-
of-the-box performance of PaaS services, the difference in execution times from
Sect. 5 for SUTs with similar HW led us to compare configuration choices in
detail as summarized by Table 1. Note that while the Java versions are 1.8, all
providers used the OpenJDK versions, as opposed to Oracle’s JDK as tradition-
ally recommended. At the HDFS level, all providers used their object networked-
based storage. As object stores are typically replicated besides by Hadoop, it was
interesting to see that only GCD and CBD lowered the HDFS replication to 2
copies. Most block sizes were the default at 128 MB, while only EMR used the
default file buffer sizes. EMR and CBD both compressed the map outputs by
default, and each tuned the I/O factor and the I/O MBs.

While there were some differences at the Java/Hadoop level, tuning Hive
had the most significant impact on performance. It was remarkable that GCD
did not have the Tez execution engine enabled by default. Tez reduces the total
BigBench running time by 2–3x as shown in Sect. 3.2. There were also differ-
ences in other Hive parameters among providers, such as using the cost-based
optimizer, vectorized execution and bucket settings. The provider that enabled
most performance improvements in Hive i.e., HDI, got the best results for sim-
ilar HW. In the case of Spark, the main results all use versions 2.1. The main
difference among providers is that GCD has twice the memory per executor, at
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Table 1. Most relevant Hadoop-stack configurations for providers

Category Config EMR HDI GCD

System OS Linux AMI 2017.03 Ubuntu 16.04 Debian 8.4

Java version OpenJDK 1.8.0 121 OpenJDK 1.8.0 131 OpenJDK 1.8.0 121

HDFS File system EBS WASB GCS

Replication 3 3 2

Block size 128MB 128MB 128MB

File buffer size 4KB 128KB 64KB

M/R Output compression SNAPPY FALSE FALSE

IO Factor/MB 48/200 100/614 10 /100

Memory MB 1536 1536 3072

Hive Hive version 2.1 1.2 2.1

Engine Tez Tez M/R

Spark Spark version 2.1.0.2.6.0.2-76 2.1 2.1.0

Driver memory 5G 5G 5G

Executor memory 4G 5G 10G

Executor cores 4 3 4

Executor instances Dynamic 20 Dynamic

dynamicAllocation

enabled

TRUE FALSE TRUE

Executor

memoryOverhead

Default (384MB) Default (384MB) 1,117MB

10 GB. Another interesting difference is that HDI is still setting the number of
executor instances statically, while both EMR and GCD use dynamic allocation.
Dynamic allocation is a recent feature that we are exploring on our on-premises
cluster currently to quantify the trade offs.

3 Background and Related Work

The motivation behind this work is to expand the cloud provider survey [16] from
SQL-only TPC-H using Hive into BigBench. As well as expanding the work to
include Spark and update the results to the current versions and larger cluster
sizes—from 8 to 16 datanodes. The work is integrated into the ALOJA bench-
marking and analysis platform [15,17], which can be used to reproduce the tests
and provide access to the raw results from these tests. The ALOJA project is
an open initiative from the Barcelona Supercomputing Center (BSC) to explore
and automate the characterization of cost-effectiveness for big data deployments.
Furthermore, in a previous study with Ivanov et al., in collaboration with the
SPEC research group in big data benchmarking [6] led to the generation of a
“Big Data Benchmark Compendium” [19], which surveys and classifies the most
popular big data benchmarks. This work represents also an expansion of the
survey by adding BigBench results for Hive and Spark.
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TPCx-BB (BigBench) [5] BigBench is an end-to-end application level bench-
mark specification standardized by TPC as TPCx-BB. It is the result of many
years of collaboration between industry and academia. Covering most Big Data
Analytical properties (3Vs) in 30 business use cases—queries—for a retailer com-
pany in the areas of merchandising, pricing optimization, product return, and
customers. It is also able to scale the data from 1 GB to petabytes of data. The
BigBench v1.2 reference Implementation resulted in:

– 14 declarative queries (SQL): 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24.
– 3 with user code (UDF): 1, 29, 30 (also uses M/R).
– 4 Natural Language Processing (NLP) 10, 18, 19, 27.
– 4 with data preprocessing with M/R jobs: 2, 3, 4, 8.
– 5 with Machine Learning jobs: 5, 20, 25, 26, 28.

Apache Hive [8] has become the de facto data-warehousing engine on top of
Hadoop, providing data summarization, analysis, and most importantly, support
for SQL-like queries. The Hive engine can be controlled using HiveQL, an SQL-
like language designed to abstract the Map/Reduce (M/R) jobs involved in such
queries for analysts. As an example, Hive queries have been gradually replacing
the use of M/R in large companies such as Facebook and Yahoo! [24]. In Hive
the default engine to manage task executions is Hadoop’s M/R. However, in
the latest versions Hive added support for different execution engines. Namely
Tez [24] (from the Stinger project) is a popular drop-in replacement, which
improves on the M/R model to provide lower latency and performance. The Hive
configuration employed by the different SUTs is described further in Sect. 2.1.
For ML, Hive relied originally on the Mahout library, however, it can also use
the MLlib provided by Spark more actively developed as use in the main results
of this work.

Apache Spark [25] similar to Hive, Spark is another popular framework gain-
ing momentum [12]. Spark is a processing engine which provided increased per-
formance over the original Map/Reduce by leveraging in-memory computation.
Spark was originally created in 2009 by the AMPLab at UC Berkeley and was
developed to run independently of Hadoop. The Spark project consists of several
integrated components including: the Spark core as general execution engine and
APIs, Spark SQL for analyzing structured data, Spark Streaming for analyzing
streaming data, MLlib for Machine Learning, and GraphX for graph analyt-
ics. During the past year, the Spark API had suffered significant changes and
improvements, many in the area of performance. Now stabilizing at v2, and with
most cloud providers supporting the current versions, Spark becomes a natural
choice as an integrated framework over Hive and Mahout.

3.1 Related Work

Most recent evaluations of Hadoop systems in the cloud are SQL-only [4,16].
This is the first attempt to measure performance of cloud-based SUTs and make
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comparisons between the main providers using BigBench, which expands use
cases from the SQL-only boundary and includes both Hive and Spark v2 results.
There are already several tests of Amazon’s EMR services in the literature:
Sruthi [23] presents the performance and costs models of EMR (PaaS) vs. AWS
(IaaS) using the Intel HiBench [9] benchmark suite, but only includes a mini-
mal Hive-test benchmark based on Pavlo’s CALDA [14] benchmark, concluding
that PaaS solutions benefit from being provider-optimized. Zhang et al. [26,27]
focuses on scheduling of jobs in EMR and on Hadoop configuration using micro-
benchmarks similar to our previous work [17]. In Floratou et al. [3] describe
the current problems associated with benchmarking SQL-on-Hadoop systems,
and advocate the standardization of the process. We believe that BigBench [5] is
the current reference benchmark for such systems. Relating to BigBench query
results, to day there are only a handful of official submissions are available [20],
as well as a few publications with detailed per query characterization [2,12].
More established benchmarks i.e., TPC-H have been thoroughly analyzed, in
work including the query their choke points as in “TPC-H Analyzed” [1]. It is
the intent to provide here a first look into BigBenche’s choke points. This work
expands on the available BigBench results by including Spark v2, along with
detailed per query characterization, and cloud data scalability results.

3.2 Legacy Execution Engine and Machine Learning Frameworks

In a previous work [18], we have compared the performance of Hive with M/R vs.
Tez as execution engine, as well as Mahout vs. MLlib v1. Figure 1(a) shows pre-
liminary results comparing the Map/Reduce (M/R) execution engine to Tez in
Hive at 100 GB. While Fig. 1(b) shows Hive using the Mahout Machine Learning

(a) Map/Reduce vs Tez (b) Mahout vs. MLlib v1

Fig. 1. Comparison of legacy vs. current Hive execution engine and ML library at
100 GB
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library vs. the newer MLlib from the Spark package. It can be seen that Tez can
be up to 3.9x faster than the classical M/R. For this reason, all of the following
tests are done with Tez when possible. Similarly, for Machine Learning, MLlib
v1 from the Spark package can be at least twice as fast than the now legacy
Mahout framework. For more details refer to [18].

4 Methodology and Query Characterization

The configuration of the tested PaaS services is left as the provider pre-configures
them, so that the out-of-the-box performance can be measured without introduc-
ing bias towards a provider. This means that the HDFS configuration, default
execution engine i.e. M/R or Tez, Hive, and OS are all left unmodified. Our
intentions are not to produce the best results for the hardware as in our pre-
vious works [15,17], but instead to survey different instance combinations, and
test the clusters as the provider intended for general purpose usage. We also
expect each provider to optimize to their respective infrastructures, especially
to their storage services. Where information i.e., underlying physical hardware,
might not be readily available to implement in a custom IaaS fashion. By using
defaults, the aim is to provide an indication of experience that an entry-level
user might be expected to have on a given system without having to invest in
additional fine-tuning. Specific configurations can be found at Sect. 2.1 and at
the providers release page for further reference.

As test methodology, the 30 BigBench queries are run sequentially and at
least 3 times for each SUT and scale factor, capturing running times. We test each
SUT with scale factor 1, 10, 100, 1000 (1 TB), and 10000 (10 TB). The metrics
we present are the execution times of each individual query or in together in the
concurrency tests. Opposed to the final BigBech queries per minute (BBQpm)
metric, only permitted in audited results. The tests were run in June 2017, and
the reported pricing and specs correspond to this period. All of the instances
are using the on-demand (non-discounted) pricing, which usually is the highest,
but simplifies calculations. As a side note, prices should only be regarded as
indicative; in [16] we have noted that in a 4-month test period, prices were
changed at least 2 times for some providers, while also new versions of the
software stack were released.

4.1 Query Characterization

As BigBench is a recent benchmark with constant changes and additions to the
implementation, there is still little knowledge about the difference in queries
besides the official submitted results [20] and the works of [2,12]. Per query
knowledge can be useful to quickly benchmark a new SUT e.g., by cherry-picking
queries that stresses different resources, or that are the most demanding ones.
In this way, a user can perform a smoke test, or spot configuration problems
more rapidly. Also, this knowledge is useful to validate results, optimize the
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Fig. 2. Per query resource consumption radar chart of BigBench at 1 TB for Hive and
Spark. Legend prints CPU, RAM, Disk R/W, and network normalized resource usage
respectively. (Color figure online)

current implementation, or when adding new systems as in more established
benchmarks [1].

Figure 2 presents a radar chart of the 30 BigBench queries by normalized sys-
tem resource utilization, comparing Hive and Spark EMR at 1 TB. The system
resources requirements represent the query’s average utilization so that mea-
surements are not dominated by query times. Results are normalized between
1 (maximum) and 0 (minimum) as they have different units. They include 5
separate metrics including CPU percentage utilization, MEM for main memory
(RAM), Disk Read, Disk Write, and Network R/W. The network resource aver-
ages the R/W as the traffic is only internal and both values aggregate to the
same amount. To obtain these numbers, performance metrics where captured in
ALOJA using the sysstat package.
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The chart can be read as follows: each query, in order is presented in its own
subplot; each radar chart has the 5 resource dimensions (read counter-clockwise);
the larger the area, the more resources consumed; Hive in red long dashes and
Spark in blue short dashes. Additionally, the small legend on the upper left
corner prints the values of each resource in order, and we be used to export
the results (due to space limitations). The EMR SUT was selected to represent
the resource consumption due to GCD using M/R, and as we saw in Sect. 3.2
the performance is not comparable to Tez. HDI was discarded as access to the
storage is counted as network traffic, opposed to EMR and GCD. This resulted
in the chart representing Hive 2.1 and Spark 2.1, both with MLlib v2.

Figure 2 shows visually the highest resource demanding queries, as well as the
similarities and differences between Hive and Spark. The list of query categories
can be found in Sect. 3. The queries with the highest resource usage in both
systems are the M/R style of queries. Query 2 is the highest for Spark and
second for Hive, while Q4 is the highest for Hive and second for Spark. Besides
Q2 and Q4, Q30 is the next with highest resource requirements for both systems,
while Q30 is in the UDF category, it also makes use of M/R style processing.
So in general, the M/R queries need the highest resources and similar behavior
in Hive and Spark. In contrast, the queries with the lowest requirements are
the Natural Language Processing (NLP) group. They are implemented for both
systems using the OpenNLP framework as UDFs.

The SQL-type queries is the second group with the highest requirements for
some queries—also the most numerous, so they cover a wide range of values.
Query 6 has the highest requirement on Hive—but not in Spark, while Q16 is
the highest in Spark and second in Hive. In general, the SQL-type queries are
the most dissimilar between Hive and Spark. Hive+Tez in general have a very
high CPU requirement, while Spark reads more in average from the disks. This
read from disk difference is particularly high for Q14 and Q17, the queries which
requires a cross-join which is discussed further on Sect. 5 as limitation in Spark.

4.2 Hive vs. Spark Approaches

Comparing Hive to Spark, their configuration and execution approach in the 3
providers is quite distinct. While Hive and Tez are configured to use many but
small containers, Spark is configured the opposite way. Spark favors fat con-
tainers, fewer containers, but with more CPUs and memory each. While Hive
is typically setup in the traditional M/R way of independent and redundant
containers, which could be potentially more scalable and fault-tolerant, but also
requires higher disk writes as shown in Fig. 2. Tez also has a higher CPU uti-
lization than Spark, which is not using all of the cluster resources when running
single queries in the power tests. Spark in general has a higher network usage
(shuffling data) and more intensive in disk reads. Surprisingly it uses less mem-
ory than Hive, but this is explained as not all of the available containers per
node are used in single query runs.

Even though the different configuration approaches, about half of the queries
have similar behavior in both systems. These queries being: 2, 4, 3, 10, 18, 19,
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20, 22, 25, 26, 27, 28, 29, and 30; while queries 8, 9, 13, 15, 16, 21, 23 share
some similarities. As mentioned, the SQL queries are the most differentiated,
including queries: 1, 5, 6, 7, 11, 12, 14, 17, 24.

In the ML category, while the query times are significantly different, Hive is
also using the MLlib v2 library from Spark. So both systems have very similar
resource requirements. The ML query with the highest resource needs is Q5,
which performs a logistic regression. Query 5 is analyzed in more detail bellow
and the difference between Hive and Spark as seen in the following section.

CPU Utilization for Query 5 at 1 TB Example. Figures 3(a) and (b) shows
the average CPU utilization percentage for Hive-on-Tez and Spark respectively

(a) Hive-on-Tez + MLlib2

(b) Spark 2.1 + MLlib2

Fig. 3. CPU% utilization over time (s.) comparison for Hive and Spark for query 5 at
1 TB
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for query 5 on HDI. Query 5 was chosen as it was found to have the highest
resource requirements of the Machine Learning queries. For this query, Spark
takes less than half the time as Hive. This is interesting as both are using the
exact MLlib v2 library. While Tez is CPU bound in general, we can see that for
Spark, the main bottleneck is the I/O wait. Taking a closer look into disk and
network utilization, it was found that the I/O wait in Spark is caused by the
network, as the disk requirements are much lower than Hive’s. For this query,
Spark is more optimal on the storage subsystem. While this is an example, we
are currently working in more in-depth comparison of the engines and queries.
Especially, as lower query times can lead to differentiated resource bottlenecks,
i.e., CPU I/O wait.

5 Power Tests from 1GB to 10TB

This section presents the execution times of the 3 providers when increasing the
data scale factor from 1 GB by factors of ten up to 10 TB. The main comparison
is centered at the 1 TB scale, while a brief comparison is made for all the scale
factors for all of the queries. Finally, the results at 10 TB for the SQL-queries is
presented, and the errors found on the scaling process.

Execution Times at 1 TB. Figure 4 presents the total time for the power runs
at 1 TB for both Hive and Spark v2 for the different providers in a bar chart.
Each bar is subdivided into the different query categories: SQL, M/R, ML, and
UDF. The Y-axis shows the number of seconds employed by each section and
in total. Results are separated by provider first, EMR, GCD, and HDI; internally
by Hive and Spark respectively.

Fig. 4. Execution times for a power test at 1 TB by provider and framework (Hive vs.
Spark)
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Results show that Spark is slightly faster than Hive in both HDI—which gets
the fastest results—and EMR. In GCD, Spark gets the second best result while
the Hive results is more than two times the slowest result across providers taking
more than 8 h for the full run. The reason for Hive in GCD being at least twice
as slow is due to GCD not using Tez as the execution engine, and using the
legacy Map/Reduce engine. This result is consistent with previous work [16].

Besides the GCD Hive result, the rest take between 3 and 4 h for the full
run. While results look similar, especially when comparing Hive vs. Spark in
EMR and HDI, times for the different categories of queries differ significantly. In
EMR, only the UDF queries take similar times, while Spark is more than twice
as fast in the SQL queries, but almost twice as slow in the M/R ones. For the
ML queries, in all providers Spark gets the best times, being at least twice as
fast than in Hive. Another result that highlights it the long execution time for
the M/R portion in EMR with Spark, taking more than twice the time in the
rest of the providers. Having a closer look at the M/R portion, it is query 2 the
one that takes most of the time in EMR.

The difference across providers by query type, shows that tuning the con-
figuration from the defaults can lead to significant improvements in execution
times. In this case, while HDI gets the best times for both Hive and Spark, the
ML queries in EMR with Hive take about half the time, while GCD’s ML is
the fastest with Spark. In the case of query 2 for EMR, in a later experiment
increasing Sparks memory, the resulting times where then similar to both HDI
and GCD.

Errors Found During the 1 TB Tests. Up to 1 TB, everything was run with
the out-of-the-box configuration in Hive, except for some queries in Spark at
1 TB:

– Queries 14 and 17 (SQL) requires cross joins to be enabled in Spark v2. A
feature which is disabled by default, and it was using the default value in the
3 providers.

– Queries 2 and 30 required more memory overhead than the default (384 MB)
and containers were being killed. The increased setting was:
spark.yarn.executor.memoryOverhead.

– Queries 3, 4, and 8 required more executor memory, and where fail-
ing with TimSort java.lang.OutOfMemoryError: Java heap space at
org.apache.spark.util. collection.unsafe.sort.UnsafeSortDataFormat.allocate.
The increased setting was: spark.yarn.executor.memory.

Scalability up to 1 TB. Figure 5 presents the scalability and times for both
Hive and Spark for each provider from 1 GB to 1 TB. Note that both axes are in
log scale for visualization purposes of the different scales. One thing to note—
excluding GCD—is that Hive is significantly faster than Spark at the smaller
scales. While from 100 GB, Spark is very close to Hive in both EMR and HDI.
This similarity on results could also mean that a common bottleneck is reached
by both frameworks, and it is part of our ongoing study.
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Fig. 5. Scalability from 1GB to 1 TB for Hive and Spark by provider. Log-log scale.

5.1 Execution Times at 10 TB (SQL-only)

Figure 6 presents the results by query for only the declarative set of the queries—
SQL-only—for both Hive and Spark. The reason for presenting the SQL-only
queries is due to errors in query execution. While with some trial-and-error
tuning we were able to run all of the queries in Hive in HDI and EMR, we
were not able with this cluster sizes to run it successfully with Spark v2 across
providers and Hive (M/R) in GCD. 10 TB seem to be the limits for the current
cluster setup. However, with the SQL-only queries, we can already see some
differences from 1 TB and across providers.

Fig. 6. Execution times of SQL-only queries (14) at 10 TB by provider and framework
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Total duration for the queries is between two and a half to ten hours. Results
at 10 TB are in proportion to the 1 TB results if we only look at this type of
queries in Fig. 4. In the 10 TB case in Fig. 6, again GCD with Hive is by far the
slowest of the systems, while with Spark obtains the second best time. EMR
with Spark is the fastest also at 10 TB for the SQL only, being twice as fast as
with Hive. HDI results are similar in proportion to the 1 TB results compared
to the rest.

At 10 TB, the memory increase for Spark at 1 TB was also needed. As well as
an extra time out setting in HDI for queries 14 and 17 (cross-joins). Cross joins
in Spark 2 are disabled as they are not efficient at the moment. The updated
setting was: spark.sql.broadcastTimeout (default 300). We are still analyzing the
rest of the errors at 10 TB, but it is out of the scope of this study.

Scalability up to 10 TB (SQL-only). Figure 7 presents the scalability and
times for both Hive and Spark for each provider from 1 TB to 10 TB only for the
14 SQL queries. Note that both axes are in log scale for visualization purposes
of the different scales. It is interesting to see in the EMR case that Spark is twice
as fast than Hive at 1 and 10 TB. While on HDI, they obtain similar results.

Fig. 7. Scalability from 1GB to 10TB for Hive and Spark by provider (SQL-only
queries). Log-log scale.

6 Additional Experiments

This sections briefly adds information on additional testing that was done with
different versions of the frameworks.

Spark 2.0.2 vs. 2.1.0 on GCD 1 GB–1TB. On GCD, we have also tested
their software versions 1.1 to the preview version. Here we could see the difference
of Spark 2.0.2 to Spark 2.1.0 on exactly the same hardware. We found that Spark
2.1 is a bit faster at small scales, but slower at 100 GB and 1 TB specifically on
the UDF/NLP queries.
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Spark 1.6.3 vs. 2.1.0 MLlib 1 Vs 2.1 MLlib 2 on HDI 1 GB–1 TB. In
HDI which uses the HDP distribution we could test Spark version 1.6.3 and
Spark 2.1 on exactly the same cluster. We found that Spark 2.1 is always faster
than 1.6.3 this case. In the HDI cluster we also compared MLlib v1 to v2. MLib
v2 makes use of the newer dataframes API, opposed to RDDs in v1. We found
v2 to be only slightly faster than V1.

Throughput Runs. Figure 8 shows the results for Hive and Spark for each
provider as the number of concurrent streams (clients) are increased. Streams
are increased from 1 (no concurrency) to 32 streams. At 32 streams we can see
that the best numbers are obtained by Hive in HDI and EMR. We can also see
a great variation of results in HDI with Spark, as with 16 streams is the slowest
of the systems, but the fastest at 32 streams. This situation also highlights the
variability of cloud results as we have studied previously in [16].

Fig. 8. Throughput runs from 1 to 32 streams at 1 GB scale in Hive and Spark by
provider

7 Conclusions

This study presented first a characterization of the resource consumption by each
BigBench query. As BigBench is a recent benchmark with constant changes to
the implementations, there is still little knowledge about the difference in queries.
Such knowledge can be useful to quickly benchmark a new SUT by cherry-picking
queries that stresses different resources. Also, it is useful to validate results and
compare future implementations. In particular, we have found that the M/R type
queries utilizes the most resources, with query 2 having the highest utilization
of all. For the UDF queries, query 30 is by far the most resource hungry, having
the highest network and disk requirements. On the ML queries, query 5 has the
highest resource requirements, while query 6 from the SQL-only group.
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While Hive-on-Tez in general uses a thin container strategy as in classical
M/R and Spark uses fat containers, results show that more than half of the
queries share similar resource requirements. The SQL-only queries were the ones
with more differences between the frameworks. On our preliminary tests we have
also found that Hive-on-Tez improves the performance up to 4x over Hive-on-
MapReduce as used in GCD. Spark MLlib has also improved the performance
over the Mahout Machine Learning library, and MLlib v2 over v1 using the
dataframes API in a moderate amount. The first BigBench implementation was
for both M/R and Mahout can now be considered legacy and should be avoided.
Spark 2.1 is faster than previous versions, however, Spark improvements are
within the 30% range, and was not found to be as pronounced as in Web articles.
Hive-on-Tez (+ MLlib for ML) are still faster than Spark at lower scales, but this
difference narrows down at larger scales. We are currently investigating if due to
a common hardware bottleneck of framework at scale, but Spark shows improved
performance under concurrency.

Performance was found to be similar among providers for the tested config-
urations. All providers currently have up to date (2.1.0) and well tuned versions
of Spark. This is contrast of our previous study using a TPC-H benchmark the
previous year [16]. All providers using medium-sized, 128-core clusters could run
BigBench up to 1 TB out-of-the-box with minimal memory tuning on Spark.
While at 10 TB, queries start failing and only could complete the SQL-only
queries for both Hive and Spark. While BigBench is a recent benchmark, it can
already help us guide our decision making in Cloud providers, Big Data frame-
works, and Machine Learning libraries. However, it still needs more engines to
be added to the public implementation and more results available.
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Abstract. TPC Express Benchmark HS (TPCx-HS) is industry’s first standard
for benchmarking big data systems. There are many moving parts in a large big
data deployment which includes compute, storage, memory and network col-
lectively called the infrastructure, platform and application and in this paper, we
characterize in detail how each of these components affect performance.

Keywords: Industry standards � Performance � Hadoop � Spark

1 Introduction

Performance is key to any application and more so to a big data deployment as it usually
involves hundreds and thousands of nodes for both data storage and processing. This
paper goes in to the detail on various bottlenecks to performance at each level and to
what extent one could improve the performance by overcoming these bottle necks. Even
a small percentage gain in performance can be a lot of capex reduction in a large
deployment as fewer nodes can take on more tasks. The focus of this paper is on Hadoop
performance characterization and goes into details of tuning and consideration of the
storage – with Solid State Disks (SSD) and Hard Disk Drive (HDD), Networking - with
10 Gbit and 40 Gbit, application - Spark and MapReduce.

1.1 Hadoop Evolution

Apache Hadoop is a software framework used for distributed storage and processing of
big data. The two main components of Apache Hadoop are the Hadoop Distributed File
System (HDFS), and the MapReduce framework. HDFS implements a fault-tolerant
distributed file system. MapReduce is a framework for the parallel processing of data
stored in HDFS. The MapReduce architecture divides the task into many smaller jobs.
The code for each of these jobs is pushed to each server where the data resides. The
framework executes the code on each server in parallel; intermediate results are
returned, then combined for the final result.

The first version of the MapReduce framework, MRv1, implemented an architec-
ture that handled both the processing of jobs and the resource management across the
cluster. This approach had a number of limitations:

• Single point of failure: If the server coordinating all the tasks, called the NameNode,
fails, then all processing fails.
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• Scalability: The architecture is limited to approximately 4000 nodes.
• Lock-in: MRv1 requires the use of MapReduce, which is not the optimal choice for

many workloads.

To address these limitations the open source community developed another
approach to handle job processing and cluster management called MRv2 (also known
as YARN). In MRv2, the responsibilities are handled by separate components. This
addresses the issues of a single point of failure and scalability while also opening the
framework to run other programming models besides MapReduce. This allows mul-
tiple applications to be run on the same cluster at the same time. YARN can assign and
reassign resources for different concurrent applications to allow better utilization of the
cluster’s resources (Fig. 1).

The ability to run new programming models on the cluster opens the door to
address the issues with MapReduce. Parallel data processing as implemented by
Apache Hadoop executes map and reduce phases that output intermediate data sets that
are themselves input to the next map and reduce phase. There can be many such phases
and MapReduce’s key constraint is that it writes the intermediate data sets out to the
disk, and then reads from the disk for the next phase. As such, MapReduce’s speed is
governed by the I/O bandwidth of the storage system.

To overcome the disk, I/O constraint of MapReduce the open source community
developed Apache Spark. Apache Spark addresses the issue by reading the data into

Fig. 1. MRv1 and MRv2 architecture
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memory, storing and transforming it there before producing the final result. As the
majority of operations are performed in memory at electronic speeds the system exe-
cutes much faster. In addition, Apache Spark provides a rich set of functionality for
in-memory processing that is both fault-tolerant and easier to program than MapRe-
duce. It’s in-memory approach enables applications for real-time processing of
streaming data and interactive analysis.

Another solution to the disk I/O constraint issue comes from improvements in
storage technology that have made SSDs a viable choice for data storage in big data
systems. SSDs enable much faster read and write access as they do not have the same
physical limitations of spinning disks and moving heads that hard disk drives have.
Finally, advances in network technology have created faster throughput speeds which
also benefit big data systems.

2 Introduction to TPCx-HS Benchmark

TPCx-HS is the industry’s first standard for benchmarking big data systems [1–3]. It is
designed to provide verifiable performance, price-to-performance, and availability
metrics for hardware and software systems that use big data.

TPCx-HS can be used to assess a broad range of system topologies and imple-
mentation methodologies for Hadoop in a technically rigorous and directly comparable,
vendor-neutral manner [5]. While the modeling is based on a simple application, the
results are highly relevant to big data hardware and software systems.

TPCx-HS benchmarking has three steps:

• HSGen: Generates data and retains it on a durable medium with three-way
replication

• HSSort: Samples the input data, sorts the data, and retains the data on a durable
medium with three-way replication

• HSValidate: Verifies the cardinality, size, and replication factor of the generated
data

The TPCx-HS specification mandates two consecutive runs to demonstrate
repeatability, as depicted in Fig. 2, and the lower value is used for reporting.

TPCx-HS uses three main metrics:

• HSph@SF: Composite performance metric, reflecting TPCx-HS throughput, where
SF is the scale factor

• $/HSph@SF: Price-to-performance metric
• System availability date

TPCx-HS also reports the following numerical quantities:

• TG: Data generation phase completion time, with HSGen reported in hh:mm:ss
format

• TS: Data sort phase completion time, with HSSort reported in hh:mm:ss format
• TV: Data validation phase completion time, reported in hh:mm:ss format
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The primary performance metric of the benchmark is HSph@SF, the effective sort
throughput of the benchmarked configuration. Here is an example (using the sum-
mation method):

HSph@SF ¼ SF
T=3600ð Þ

� �

Here, SF is the scale factor, and T is the total elapsed time for the run-in seconds.
The price-to-performance metric for the benchmark is defined as follows:

$=HSph@SF ¼ P
HSph@SF

Here, P is the total cost of ownership (TCO) of the system under test (SUT).
The system availability date indicates when the system under test is generally

available as defined in the TPC-Pricing specification.

Fig. 2. TPCx-HS Benchmark processing
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3 Performance Characterization

The tests were conducted a series of TPCx-HS to characterize the performance in
various deployment scenarios. The test configuration consisted of Cisco UCS Inte-
grated Infrastructure for Big Data cluster with 17 Cisco UCS C240 M4 Rack Servers.
The Cisco UCS Integrated Infrastructure for Big Data is built using the following
components:

• Cisco UCS 6300 Series Fabric Interconnect, provide high-bandwidth, low-latency
connectivity for servers, with Cisco UCS Manager providing integrated, unified
management for all connected devices. The Cisco UCS 6300 Series Fabric Inter-
connects are a core part of Cisco UCS, providing low-latency, lossless 40 GB
Ethernet, Fibre Channel over Ethernet (FCoE), and Fibre Channel functions with
management capabilities for systems deployed in redundant pairs. Cisco Fabric
Interconnects offer the full active-active redundancy, performance, and exceptional
scalability needed to support the large number of nodes that are typical in clusters
serving big data applications.

• Cisco UCS C240 M4 Rack Server: Cisco UCS C-Series Rack Servers extend
Cisco UCS in standard rack-mount form factors. The Cisco UCS C240 M4 Rack
Server is designed to support a wide range of computing, I/O, and storage-capacity
demands in a compact design. It supports two Intel® Xeon® processor E5-2600 v4
series CPUs, up to 1.5 TB of memory, and 24 small-form-factor (SFF) disk drives
plus two internal SATA boot drives and Cisco UCS Virtual Interface Card
(VIC) 1387 adapters.

The Cisco UCS Integrated Infrastructure for Big Data cluster configuration consists
of two Cisco UCS 6332 fabric interconnects, 17 Cisco UCS C240 M4 servers with two
Intel Xeon processor E5-2680 v4 series CPUs, 256 GB of memory, and 24 SFF disk
drives or 8 SFF 1.6 TB SATA SSD plus two internal SATA boot drives and
Cisco UCS VIC 1387 adapters, as shown in Fig. 3. Table 1 lists the software versions
used.

2 x Cisco UCS 6332 16UP
40-Port Fabric Interconnect

16 x Cisco UCS C240 M4 Servers (Data Nodes)
with 8 x 1.6TB 6G SATA SSD or

24 x 1.8TB 10k rpm SAS HDD and
2 x 240 GB 2.5 inch Enterprise Value 6G SATA SSD (BOOT)

1 x Cisco UCS C240 M4 Servers (Name Node)
with 2 x 1.6TB 6G SATA SSD or

2 x 1.8TB 10K rpm SFF HDD and
2 x 240 GB 2.5 inch Enterprise Value 6G SATA SSD (BOOT)

40GigE

Fig. 3. Cisco UCS integrated infrastructure for big data cluster configuration
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3.1 Cisco UCS Integrated Infrastructure for Big Data Cluster
Configuration

• 16 � Cisco UCS C240 M4 Servers (Data Nodes) with:
• 8 � 1.6-TB 6-Gbps SATA SSD or
• 24 � 1.8-TB/1.2 TB 12-Gbps SAS 10 K-rpm SFF HDD
• 2 � 240-GB 2.5–in. Enterprise Value 6-Gbps SATA SSD (Boot)
• 2 � 40 Gigabit Ethernet
• 2 � Cisco UCS 6332 fabric interconnect
• 1 � Cisco Nexus® 9372PX Switch

4 Hardware and Software: Performance Characterization

In the following section, we will do an in-depth performance analysis with various
permutations of these hardware and software constituents:

• Baseline Performance Tuning parameters (Infrastructure and Operating System)
• Performance tuning parameters of MRv2
• Performance characteristics comparison of MRv1 vs. MRv2
• MRv2 Storage Configuration Comparison (HDD vs. SDD, 2 vs. 4 vs. 8 SSD)
• MRv2 Network Configuration Comparison (10 g vs. 40 g)
• Apache Spark: Comparison of Default Settings to Tuned Parameters
• Apache Spark Storage Comparison: HDD vs. SSD

4.1 Baseline Performance Tuning Parameters

Apache Hadoop is based on a new approach to storing and processing complex data,
with reduced data movement. It distributes the data across the cluster. Each machine in
the cluster stores and also processes the data. Infrastructure and operating system
tunings can have a significant performance impact, depending on the applications and
their respective workloads. Therefore, it is important to individually tune the compute,
network and storage parameters of the system to achieve optimal performance for the
cluster.

Table 1. Software versions

Layer Component Version or Release

Computing Cisco UCS C240 M4 server C240M4.2.0.13d.0.0812161132
Network Cisco UCS 6332 fabric interconnect 3.1 (2b)

Cisco UCS VIC 1387 firmware 4.1 (2d)
Cisco UCS VIC 1387 driver 2.3.0.31

Software Red Hat Enterprise Linux (RHEL) server 7.2 (x86_64)
Cisco UCS Manager 3.1 (2b)

Hadoop Cloudera Enterprise Version 5.10.0
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Hadoop is a complex application designed to address many different types of
workloads. Very often, the default settings are not optimized for the best performance,
instead being defined to work out of the box on the minimum hardware required.
Tuning the Hadoop settings can produce significant performance improvements [4].

The key areas for Hadoop performance tuning are: infrastructure (compute, net-
work and storage), operating systems and Hadoop parameters. These parameters are
covered in-depth in a previous paper I wrote titled “Performance Evaluation and
Benchmarking” as part of Springer’s Lecture Notes in Computer Science Series.

The focus of this paper is to study the MRv2 architecture and compare its per-
formance to MRv1. We will use the MRv1 performance tuning and results from our
earlier study published under: “Lessons Learned: Performance Tuning for Hadoop
Systems.”1

4.2 Apache Hadoop MRv2 Tuning

The default Apache Hadoop MRv2 settings are not optimized for performance. Instead,
they are defined so the system works out of the box with the minimum hardware
requirement. HDFS provides storage for all the data and is a core component of Apache
Hadoop. Fine-tuning the settings here can produce significant performance improve-
ments. The settings discussed in this section have been tested and will provide
improved speed for heavy workloads. Here are the tuning parameters which we used to
tune the cluster for MRv2.

The following are the parameters and tuned values for the test cases run in this
paper (Tables 2 and 3).

• hdfs-site.xml
• mapred-site.xml

Table 2. hdfs-site.xml settings

Parameter Value

dfs.blocksize 1 GB
dfs.datanode.failed.volumes.tolerated 4
dfs.datanode.handler.count 40
dfs.datanode.max.xcievers,
dfs.datanode.max.transfer.threads

32000

dfs.namenode.handler.count 1400
dfs.namenode.service.handler.count 55
dfs.namenode.servicerpc-address 8022
Java Heap Size of NameNode in Bytes 16 GB
Java Heap Size of Secondary NameNode in Bytes 16 GB

1 Note: These settings represent a starting point for tuning a big data system. The actual best values
will vary based on the workload of the system.
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4.3 MRv1 vs MRv2 (YARN)

MRv1, the first version of the Apache Hadoop framework makes use of a job tracker
that creates a set of map and reduce tasks which are then managed by the appropriate
task trackers on each node.

Table 3. mapred-site.xml settings

Parameter Value

Mapreduce.client.submit.file.replication 3
yarn.app.mapreduce.am.command-opts -Djava.net.preferIPv4Stack=TRUE -

Xmx2800m
io.file.buffer.size 128 KB
mapreduce.job.reduce.slowstart.completedmaps 0.85
mapreduce.job.reduces 895
mapreduce.task.timeout 3 min
mapreduce.map.java.opts -Djava.net.preferIPv4Stack=true -XX:

+UseParallelGC -XX:
ParallelGCThreads=8 -XX:-
UseAdaptiveSizePolicy -XX:
+DisableExplicitGC

mapreduce.reduce.java.opts –Djava.net.preferIPv4Stack=true -XX:
+UseParallelGC -XX:
ParallelGCThreads=8 -XX:-
UseAdaptiveSizePolicy -XX:
+DisableExplicitGC

mapreduce.task.io.sort.factor 100
mapreduce.task.io.sort.mb 1500 MB
mapreduce.reduce.shuffle.parallelcopies 30
yarn.nodemanager.heartbeat.interval-ms, yarn.
resourcemanager.nodemanagers.
heartbeat-interval-ms

160 ms

yarn.scheduler.fair.preemption Resource Manager Default Group
zlib.compress.level BEST_SPEED
yarn.app.mapreduce.am.resource.mb 3 GB
ApplicationMaster Java Maximum Heap Size 1 GB
mapreduce.map.memory.mb 2500 MB
mapreduce.reduce.memory.mb 3 GB
mapreduce.map.java.opts.max.heap 2300 MB
mapreduce.reduce.java.opts.max.heap 2800 MB
yarn.nodemanager.resource.memory-mb 246 GB
yarn.nodemanager.resource.cpu-vcores 56
yarn.scheduler.maximum-allocation-mb 246 GB
yarn.scheduler.maximum-allocation-vcores 56
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The next version of the MapReduce framework, MRv2, introduces YARN (Yet
Another Resource Negotiator). YARN separates cluster resource management and
MapReduce specific logic. The Resource Manager tracks and allocates available
resources and an Application Master process is created for each application which is
responsible for the entire life cycle of the MapReduce application.

To understand MRv2 performance compared to MRv1 we did an in-depth study of
the performance of both frameworks by running a TPCx-HS benchmark. This led to the
following observations:

• Overall, in terms of total time taken, MRv1 performed faster than MRv2.
• While MRV2 was faster in HSSort phase, and MRv1 was faster in the HSGen and

HSValidate phases.

The test results here show the comparison of MRv1 vs. MRv2 at a 3-TB scale
factor.

Result: MRv1 vs MRv2 (YARN).
This observed performance penalty is offset by the numerous benefits of the MRv2

framework in terms of scalability, fault-tolerance and support for simultaneously
running multiple applications. The results in Table 4 show that MRv1 is performing
6% better than MRv2.

These results are based on one set of tuning parameters. These parameters will vary
from workload to workload.

Cluster Detail: 16 data nodes each containing 8 � 1.6 TB Intel SSDs and
2 � 40 G Network connectivity (Fig. 4).
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Table 4 lists detailed response times for each benchmark phase.

4.4 MRv2 Storage Configuration Comparison

Apache Hadoop solves the big data problem by breaking the data up into smaller
chunks and storing them across many servers. The processors of each of these indi-
vidual servers are then used to operate on their locally stored data. This use of many
smaller servers with direct attached storage is a key reason Apache Hadoop scales in
such a linear fashion.

The use of this architecture means that the I/O bandwidth, i.e. how fast we can read
and write data, is the key constraint for the system. Recent advances in storage tech-
nology have made solid state disks (SSDs) a viable choice for big data systems.
However, the performance gains from using SSDs are so dramatic that they exceed the
total available bandwidth of the internal throughput of the system. As a result, when
comparing SSDs to HDDs, we have to look at both raw performance and
price-performance.

4.5 MRv2 HDD vs SSD

The choice between hard disk drives and solid-state drives needs to be made based on
the expected workload. HDDs will provide more raw storage capacity at the expense of
throughput while SSDs provide the best performance and price-performance but with a
lower total capacity. There is also an endurance factor with SSDs based on the number
of expected write operations.

The test results here show the comparison of 24 HDDs vs. 8 SSDs using Apache
Hadoop MapReduce version 2 (MRv2) at a 3-TB scale factor.

Result: MRv2 HDD vs SSD.
Results of the tests using MRv2 with HDDs vs. SSDs are shown below. The results

demonstrate that eight SSDs do the work of 24 HDDs with better performance for all
tasks. The results also show that SSDs are a better value with a performance
improvement of 2%

Cluster Detail: 16 data nodes each containing 24 � 1.8 TB 10 K SAS HDDs vs.
8 � 1.6 TB Intel SSDs with 2 � 40 G Network connectivity (Fig. 5).

Table 4. MRv1 vs MRv2 (YARN)

Phase MRv1 MRv2

HSGen 190 215
HSSort 522 503
HSValidate 77 125
Total time 789 843
HSph@SF at 3-TB scale factor 13.52 12.71
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Table 5 lists detailed response times for each benchmark phase.

4.6 SSD Performance Comparison (2 vs 4 vs 8)

One of the key advantages of Apache Hadoop is that it scales linearly with the more
data nodes and more data disk drives.

This test compares the performance of 2 vs 4 vs 8 SSDs in each server, using
Apache Hadoop MapReduce version 2 (MRv2) at a 3-TB scale factor.

Result: SSD Performance Comparison (2 vs 4 vs 8).
Results of the tests using MRv2 with 2 vs 4 vs 8 SSDs are shown below. The

results demonstrate the linear scaling of performance using 8 SSDs. As shown in
Fig. 6, on an individual server basis, Apache Hadoop performance improves with the
number of drives per node.
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Table 5. MRv2 HDD vs SSF

Phase HDD (1.8 TB) SSD (1.6 TB)

HSGen 224 215
HSSort 527 503
HSValidate 107 125
Total time 858 843
HSph@SF at 3-TB scale factor 12.47 12.71
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Cluster Detail: 16 data nodes each containing 2, 4 and 8 � 1.6 TB Intel SSDs and
2 � 40G Network connectivity.

Table 6 lists detailed response times for each benchmark phase.

Test Result: End-to-End Write I/O Bandwidth Utilization.
TPCx-HS enables fair comparisons to be made between software and hardware

systems. It also exercises various subsystems. Figure 7 shows disk write IO bandwidth
utilization for 2, 4 and 8 SSDs using one of the node’s end-to-end run. As we are seeing
in the chart below 8 drives are performing 3 times faster than 2 drives. We are seeing it
scaling linearly as the number of the SSDs increase.
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Table 6. SSD performance comparison (2 vs 4 vs 8)

Phase 2 SSDs 4 SSDs 8 SSDs

HSGen 664 321 215
HSSort 1156 732 503
HSValidate 260 128 125
Total time 2028 1189 843
HSph@SF at 3-TB scale factor 5.32 9.08 12.71
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5 MRv2 Network Configuration Comparison

The impact of the network on big data systems is enormous. An efficient and resilient
network is a crucial part of a good Apache Hadoop cluster because the network is
what connects all the nodes. The network is used to load the data, read the data, and
write the intermediate data sets and final output.

The impact of the failure of a network device is dire. Individual jobs and even entire
applications may need to be restarted with the workloads pushed to remaining available
nodes. The network must be well designed with fault-tolerance, redundancy and
multiple paths between computing nodes. It must also be able to scale with the data.

The network can quickly become the constraining factor, and this is becoming more
common as technologies like Apache Spark and SSDs proliferate. In response to this,
faster networks have been developed. The current generation of 40G networks are
aimed squarely at big data systems with local storage using SSDs or high throughput
HDDs. Upgrading to the latest generation of Cisco UCS fabric interconnects, we
increased the underlying fabric from 10 Gbps to 40 Gbps.

5.1 10G Network vs. 40G Network

Comparing network bandwidth to IO bandwidth can be confusing as networks are
commonly measured in bits per second while IO bandwidth is measured in bytes per
second. Converting the network measurements to bytes:

• Standard 10 Gbps networks = 1.25 Gbps
• New 40 Gbps networks = 5 Gbps
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For servers with 24 1.8 TB drives, the total IO bandwidth is 5.4 Gbps. This is over
four times the available bandwidth of a 10 Gbps network. Big data applications are not
transferring the maximum IO bandwidth across the network all the time. But they do
exceed the bandwidth at times and when they do the performance is directly affected.

One way to characterize this is to execute a performance comparison using both
10 Gbps and 40 Gbps networks. The results are shown below. Note that the perfor-
mance impact will be greater using SSDs as the total IO bandwidth can exceed 7 Gbps.

Result: 10 Gbps Network vs 40 Gbps Network.
Results of the tests using MRv2 with 10 Gbps vs. 40 Gbps are shown below. The

results demonstrate that the 40 Gbps network improves the write bandwidth which
helps the applications to write and read the data faster over the network for all tasks.
Overall, the results show that 40 Gbps performs 14% faster than 10 Gbps.

Cluster Detail: 16 Data Nodes each containing 24 � 1.8 TB 10 K SAS and
2 � 10G vs 40G Network connectivity (Fig. 8).

Table 7 lists detailed response times for each benchmark phase.
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Table 7. 10G Network vs 40G Network

Phase 10G Network 40G Network

HSGen 287 224
HSSort 586 527
HSValidate 122 107
Total time 995 858
HSph@SF at 3-TB scale factor 10.85 12.47
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6 Apache Spark

While MapReduce has become a standard for batch processing, Apache Spark is a
better choice for real-time data processing and interactive analysis. Apache Spark was
developed to overcome the disk I/O constraint of MapReduce. The model for pro-
cessing distributed data in parallel uses many cycles of first mapping the data, then
reducing it. Each of these cycles produces an intermediate output which is input to the
next. MapReduce writes these intermediate sets of output to disk, which is then read
from disk as input to the next cycle. Thus, the overall performance is gated by the
relatively slow speed of disk I/O. Apache Spark addresses this disk I/O bottleneck by
reading the data into memory and then performing all data operations in memory,
eliminating the disk I/O constraint.

6.1 Apache Spark Tuning

Out of the box, Apache Spark is not optimized for performance. Instead, the default
parameters are designed to work without modification on the minimum hardware
requirements.

Tuning the parameter can yield significant performance improvements. The tuning
parameters discussed in this section provide a guideline towards improved performance
for real-time data processing workloads.

Table 8 is the list of Spark parameters which are tuned across the different test cases
covered in this section.

6.2 Comparison of Default Settings to Tuned Parameters

An interesting starting point is a comparison of out of the box performance vs per-
formance with parameters tuned specifically for the System Under Test (SUT).

Table 8. List of Spark tuning parameters

Parameter Value

spark.shuffle.compress true
spark.broadcast.compress true
spark.io.compression.codec org.apache.spark.io.SnappyCompressionCodec
spark.shuffle.spill.compress true
spark.kryo.
referenceTracking

false

spark.executor.
extraJavaOptions

-XX:+PrintFlagsFinal -XX:+PrintReferenceGC -verbose:gc -
XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:
+PrintAdaptiveSizePolicy -XX:
+UnlockDiagnosticVMOptions -XX:
+G1SummarizeConcMark

spark.shuffle.spillAfterRead true
spark.kryoserializer.buffer 2000
spark.default.parallelism 2110
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Result: Default Settings vs Tuned Parameters.
As a part of this experiment, we tuned the Spark for running the TPCx-HS

benchmark on the cluster with below details.
Observation: Spark, with our tuned parameters performed significantly better: 63%

performance improvement over default settings. Note that Apache Spark performs
better when all the data fits in the memory, so with this cluster configuration, the 1 TB
scale factor test performs better than 3 TB scale factor.

Although, in-memory processing provides significant advantages, it also adds an
extra layer of consideration when tuning the system. The results below are based on
one set of tuning parameters. The tunings will vary from workload to workload.

Cluster Detail: 16 Data Nodes each containing 8 � 1.6 TB Intel SSDs and
2 � 40G Network connectivity in both test scenarios (Fig. 9).

Table 9 lists detailed response times for each benchmark phase
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Fig. 9. Spark default settings vs Tuned parameters

Table 9. Spark default settings vs. Tuned parameters

Phase Spark default Spark tuned

HSGen 132 105
HSSort 1029 256
HSValidate 91 40
Total time 1252 401
HSph@SF at 1-TB scale factor 2.85 8.97

Note: Spark test was performed with 1 TB scale factor using
TPCx-HS

90 M. Trivedi



6.3 Apache Spark Storage Comparison: HDD vs SSD

Apache Spark reads the data into memory and processes is it there. This initial read of
the data is constrained by disk I/O. However, if instead of HDDs you use SSDs you can
further improve performance. But, by how much? Answering this question helps to
understand if the additional cost of SSDs is worth it.

Further, if there is more data than will fit in memory, or the intermediate result sets
exceed the amount of available memory, Apache Spark will “spill” the data to disk
(conceptually equivalent to operating system “swapping”). When this happens, disk I/O
as a constraint re-enters the performance equation.

Result: Spark HDD vs SSD
We have done a study of the performance comparison between HDDs and SSDs

using Apache Spark by running the TPCx-HS benchmark on the test setup described
below. This led to the following observation:

The observed performance shows that SSDs performed better with Spark than
HDDs. Spark’s processing engine is designed to use both in-memory and on-disk, so it
performs operations when data does not fit in memory. This is where the high I/O
performance of SSDs overcomes the slower read and write access of HDDs and
Spark’s performance is improved. As a result, with larger data sizes or scale factors
SSDs performance will be better than HDDs.

Cluster Detail: 16 data nodes each containing 24 � 1.8 TB 10 K SAS HDDs vs.
8 � 1.6 TB Intel SSDs with 2 � 40G Network connectivity (Fig. 10).
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Table 10 lists detailed response times for each benchmark phase.

7 Conclusion

This paper provides a summary of lessons learned from performance tuning for the
TPCx-HS benchmark. The tuning parameters and test results have broad applicability
across Hadoop-based applications. In general, we clearly see improvements in per-
formance as the technology advances to address the limitations of the previous gen-
eration. This paper quantifies those improvements providing the data needed to make
informed decisions.
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Abstract. The TPCx-BigBench (TPCx-BB) is a TPC Express bench-
mark, which is designed to measure the performance of big data analyt-
ics systems. It contains 30 use cases that simulate big data processing,
big data storage, big data analytics, and reporting. We have used this
benchmark to evaluate the performance of software and hardware com-
ponents for big data systems. It has very good coverage on different data
types and provides enough scalability to address data size and node scal-
ing problems. We have gained lots of meaningful insights through this
benchmark to design analytic systems. In the meantime, we also found
we cannot merely rely on TPCx-BB to evaluate and design an end-to-end
big data systems. There are some gaps between an analytics system and a
real end-to-end system. The whole data flow of a real end-to-end system
should include data ingestion, which moves data from where it is origi-
nated into a system where it can be stored and analyzed such as Hadoop.
Data ingestion may be challenging for businesses at a reasonable speed in
order to maintain a competitive advantage. However, TPCx-BB cannot
help on performance evaluation of software and hardware for data inges-
tion. Big data is composed of three dimensions: Volume, Variety, and
Velocity. The Velocity refers to the high speed in data processing: real-
time or near real-time. With big data technology widely used, real-time
and near real-time processing become more popular. There is very strict
limitation on bandwidth and latency for real-time processing. TPCx-
BB cannot help on performance evaluation of software and hardware for
real-time processing. This paper mainly discusses these experiences and
lessons in practice using TPCx-BB. Then, we provide some advices to
extend TPCx-BB to cover data ingestion and real-time processing. We
also share some ideas how to implement TPCx-BB coverage.

Keywords: TPCx-BB · End-to-end big data benchmark
Data ingestion · Real-time processing · Big data analytics

1 Introduction

Big data refers to technologies and initiatives that involve data that is too diverse,
fast-changing or massive for conventional technologies, skills and infra-structure
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 93–102, 2018.
https://doi.org/10.1007/978-3-319-72401-0_7
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to address efficiently. To solve the challenges from volume/variety/velocity of big
data, new technologies and architectures are invented. A typical system using new
big data technologies generally contains 3 components: data ingestion, data stor-
age, and data analytic as shown in Fig. 1.

Fig. 1. Big data components

In a big data system, data comes from dynamic, disparate and distrib-
uted sources of differing formats, schemas, protocols, speeds and sizes such as
machines, geo location devices, click streams, files, social feeds, log files and
videos. Data ingestion is to collect, filter, transform and reliably move the data
to a system where it can be stored and processed. Data ingestion may be con-
tinuous or asynchronous, real-time or batched or both depending upon the char-
acteristics of the source and the destination. Data ingestion can be challenging
for businesses at a reasonable speed in order to maintain a competitive advan-
tage. Currently, popular software stacks used in data ingestion include Kafka [1],
Flume [2], Kinesis [3], and Sqoop [4].

Big data storage can handle very large amount of structured/unstructured
data, and be easily scaled to keep up with data growth. It must provide the
bandwidth necessary to deliver data to analytic tools. HDFS [4], HBase [5],
Cassandra [6], MongoDB [7] and Kudu [8] are widely used distributed software
stacks for big data storage.

Big data analytics examine large amounts of data to uncover hidden patterns,
correlations and other insights. Typical scenarios of big data analytics are real-
time and batch cases as well as interactive accesses. Popular execution engines
for big data analytics include MapReduce [9], Spark [10], Storm [11] and Tez
[12]. Many libraries and tools building on these engines are used for interactive
analytics, machine learning and graph processing, including Hive [13], MLlib
[14], Mahout [15], GraphX [16].

With big data technologies grown significantly and widely adopted over
past few years, users need a standard benchmark to evaluate and compare
the performance of big data systems. The benchmark should cover the whole
data flow and all usage scenarios of big data technologies. TPCx-BB [17] is an
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Express Benchmark to measure the performance of big data systems. TPCx-BB
is based on BigBench [18], which is an end-to-end big data analytics framework.
TPCx-BB benchmark addresses the variety, velocity and volume aspects of big
data systems containing structured, semi-structured and unstructured data. 30
queries of TPCx-BB cover different categories of big data analytics from business
prospective.

However, TPCx-BB cannot help evaluate the performance of data ingestion
and real-time processing in big data systems. Users cannot merely rely on TPCx-
BB to evaluate and design an end-to-end big data system. Although TPC-DI
[19] is a standard data ingestion benchmark, it mainly focuses batch mode and
structured data ingestion, not including real-time mode and unstructured data
ingestion. It is better that one benchmark can evaluate the whole data flow and
entire framework of big data systems. So, we advise to extend TPCx-BB covering
data ingestion and real-time processing.

The reminder of this paper is organized as the follows. Section 2 shares
some experiences and lessons in practice using TPCx-BB. We suggest TPCx-BB
extending data ingestion and real-time processing coverage, and provide some
initial ideas how to implement these extensions in Sect. 3. Section 4 involves rel-
ative benchmarks investigation work. Finally, Sect. 5 discusses our future work.

2 Experience and Lessons in Practice Using TPCx-BB

We help many users to deploy big data clusters in past several years. We have
used TPCx-BB to evaluate the performance of software and hardware compo-
nents of big data systems. TPCx-BB has very good coverage on different data
types and provides enough scalability to address data size and node scaling
problems. We have gained lots of meaningful insights through this benchmark
to design an analytic system.

At the meantime, some issues are also found in practice using TPCx-BB,
especially when designing an end-to-end big data system. For example, there
are two real use cases from our customers: one is a continuous video stream
processing system, and the other is a health monitor system. Both cases are
end-to-end solutions with big data technologies.

In the continuous video stream processing system as shown in Fig. 2, raw
videos are continuously sent to data center through gateway. Big data cluster
accepts the stream, encodes the videos, real-time analyzes the video, and also
responses some interactive access for history data.

In the health monitor system, user has decided software stacks for the whole
framework as shown in Fig. 3. Cardiac Event Records (CERs) collect patients’
heart status and upload heart events to data center through smart phones and
gateways. Kafka cluster receives cardiac event records, and then transfers them
to spark streaming cluster for real-time analytics. If any potential healthy risk
is identified by real-time analytics, real-time alert will be generated to inform
patient and doctor. The events are also stored into HDFS. Later, doctor can do
some batch analytics on patient’s history data stored in HDFS, which can help
form a treatment plan.
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Fig. 2. Video stream processing system

Fig. 3. Health monitor system

In both use cases, users want to use some standard benchmarks to get some
insights on the workload characteristics of different software stacks, and some
indications on cluster deployment, plan and optimization. While TPCx-BB was
used for these use cases, several issues were found.

1. End to end data pipeline includes messaging, stream processing, ingestion
and analytics. TPCx-BB only represents the analytics and cannot be used
for messaging, stream processing and ingestion, because the workload char-
acteristics of different software stacks are different.

Figures 4 and 5 are processor frequency and core count scaling of 30
queries of TPCx-BB, and cluster settings are listed in Table 1. In Fig. 4, it
can be found all queries are sensitive with CPU frequency, and scaling effi-
ciency for power test of TPCx-BB is 93% from 1.2 GHz to 1.8 GHz, 88% from
1.2 GHz to 2.3 GHz. Figure 5 tells TPCx-BB is also sensitive with proces-
sor core count, and scaling efficiency for power test is 80% from 9C18T (9
Cores/18 Threads) to 18C36T, 50% from 9C18T to 36C72T. But, disk and
network bandwidth scaling results are very different with processor. As shown
in Figs. 6 and 7, only few long execution queries are sensitive with disk and
network bandwidth, including query 2/4/30. Overall, performance of power
test is only increased by 1%, when increasing network bandwidth from 10 GbE
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Fig. 4. TPCx-BB CPU frequency scaling

to 25 GbE or increasing disk bandwidth from 400 MB to 2500 MB.
While network and disk bandwidth are very important for data ingestion,

we use Kafka as an example to show workload characteristics of data inges-
tion. Kafka is a popular distributed messaging queue, which is widely used
as a critical software component of data ingestion. As shown in Fig. 8, Kafka
throughput is increased by 4.2X and 6.9X, when 1 GbE network updating to
10 GbE and 25 GbE. In Fig. 8, cluster setting is the same with Table 1 except
that node number is 3 not 9. The size of message sending to Kafka is 230 KB,
and there are total 3 customers for this topic of messages.

Based on previous profiling data, TPCx-BB is processor intensive and
modest request on network and disk I/O. But, data ingestion is generally
network and disk I/O intensive. Due to the difference of workload character-
istics between data ingestion and analytics parts, TPCx-BB cannot be used
for representing the whole end-to-end data pipeline of big data systems.

2. Even for the analytics part, real-time analytics are not covered by TPCx-BB.
Latency is a critical metric for real-time processing. In the use case of health
monitor system, latency of real-time alert directly connects with patients’ life,
and any delay would put patients’ life in risks. TPCx-BB doesn’t consider the
latency at all, and user cannot get any indication of latency from TPCx-BB,
because it only focuses on batch analytics.

3. Different components of a big data system are usually running on the same
physical cluster. For example, data ingestion, real-time and batch analytics
often concurrently execute on cluster to share the resources. In the use case
of health monitor system, spark streaming for real-time analytics and spark
for batch analytics co-execute on the same cluster. In this usage scenario,
user cannot just use analytics benchmarks to evaluate the whole system,
because different components have different workload characteristics and dif-
ferent metrics for measurement.
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Fig. 5. TPCx-BB core count scaling

Fig. 6. TPCx-BB network scaling

Fig. 7. TPCx-BB disk scaling
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Fig. 8. Kafka network scaling

Table 1. Cluster settings

Node Count 1 master + 8 slaves(HP DL380 Gen9)

Processor E5-2699 v3 @ 2.30 GHz

DRAM 256G DDR4-2133, 8 channels

Disk Intel SSD DC 3700 2.0 TB

Network Intel 25GbE

Hadoop Version CDH5.5

3 Suggestions for TPCx-BB Extension

Based on real experiences and lessons from TPCx-BB usages, we advise TPCx-
BB extending to cover the whole data flow of end-to-end big data framework.
And, we also provide some initial ideas how to implement the extensions.

1. Extend to involve data ingestion benchmark.
Data ingestion may be real-time or batch depending upon the characteristics
of the source and the destination. Load test of TPCx-BB can be looked as a

Fig. 9. New data ingestion
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very simple batch mode of data ingestion. But, current TPCx-BB does not
involve any sub-component that can measure the performance of real-time
mode of data ingestion.

BigBench is based on a fictitious retailer who sells products to customers
via physical and online stores. In a real world, it is more possible that data
from physical stores is ingested into a system with batch mode, and data from
online stores is ingested with real-time mode. So, we suggest dividing current
load test of TPCx-BB into 2 parts: one is loading data from physical stores
as before; the other is loading data from online store with real-time mode.

As shown in Fig. 9, we still use PDGF [20] to generate raw data. Then,
raw data belonging to physical stores is loaded into data storage component
with optimized storage formats (e.g., ORC or PARQUET) as before. But, raw
data belonging to web store will not be ingested directly anymore. It will be
emitted by new introduced component: producer, which wraps up and sends
raw data to data warehouse. Producer can control stream input rate to data
ingestion component of system under test. With configurable data emit rate,
user can simulate different real-time data stream.

Data ingestion component of system under test receives messages and
extract/transform/load messages to data storage component. Metrics of
real-time data ingestion should involve two sides: throughput and latency.
Throughput is to measure how many bytes are ingested in a unit time, and
latency is the time from a message emitting by producer to be stored in data
warehouse.

2. Extend to involve real-time benchmark
Currently, total 30 queries of TPCx-BB are offline batch analytics, not includ-
ing real-time data analytics which is a popular usage scenario of big data tech-
nology. It is convenient for TPCx-BB to cover real-time analytics by adding
a real-time product recommendation engine into its benchmark suits, since it
already contains a Web Click stream in its dataset. Web Click stream includes
customers’ profile and reviewed web pages, and real-time product recommen-
dation engine can use the information to recommend product to customers,

Fig. 10. Real-time analytics
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as shown in Fig. 10. Now, it is common to use recommendation engine to
promote products to potential customers for online retailers.

Recommendation algorithm is a typical category of machine learning.
Recommending product based on customer’s profile and product’s features
belongs to inference phase of machine learning. When TPCx-BB introduces
product recommendation engine into its benchmark suits, it can represent
not only real-time data analytics, but also inference phase of machine learn-
ing which is another hot direction of big data technology.

The metric of evaluating real-time analytics should also consider two
sides: throughput and latency. Throughput is the number of web click event
handled per second. Latency is response time of generating product recom-
mendation information for each click event. For real-time processing, both
metrics are very important.

As real time analytics is usually tightly coupled with real time ingestion,
they can be merged together with the same data stream emit by producer.
When web click events are inserted into data warehouse, product recommen-
dation information is generated at the same time.

4 Related Work

TPC-DI is a data integration benchmark developed by TPC. The TPC-DI bench-
mark combines and transforms data extracted from a (fictitious) brokerage firm’s
On-Line Transaction Processing (OTLP) system along with other sources of
data, and loads it into a data warehouse. But, TPC-DI only contains batch
mode of data ingestion. The metric of TPC-DI only includes throughput not
latency. So, TPC-DI couldn’t help evaluate the performance of real-time mode
of data ingestion.

Medvedev and Hassani [21] proposed benchmarking metrics to run a series
of experiments to evaluate and test the ingestion and storage performance of the
widely used open source platform - OpenIoT. They provide a detailed analysis
of the experimental outcomes discussing OpenIoT’s data ingestion and storage
performance. So, they only focus on Data Ingestion and Storage Performance of
IoT Platforms.

Yahoo Streaming Benchmarks [22] is a simple advertisement application.
There are a number of advertising campaigns, and a number of advertisements
for each campaign. The job of the benchmark is to read various JSON events
from Kafka, identify the relevant events, and store a windowed count of relevant
events per campaign into Redis. These steps attempt to probe some common
operations performed on data streams. But, it is not end-to-end benchmark for
big data framework, and just for real-time processing evaluation.

Numenta Anomaly Benchmark (NAB) [23] is a benchmark for stream-
ing anomaly detection. NAB comprises two main components: a dataset with
labeled, real-world time-series data, and a scoring system designed for streaming
data. NAB repository now includes ten different anomaly detection algorithms.
Overall, it is a standard open source framework for just evaluating real-time
anomaly detection algorithms.
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5 Future Work

In this paper, we only provide some very initial ideas about how to extend TPCx-
BB covering real-time mode of data ingestion and analytics. For next step work,
we will implement proof of concept and get some results from PoC to evaluate
our ideas.

References

1. Kafka: https://kafka.apache.org/
2. Flume: https://flume.apache.org/
3. Kinesis: https://aws.amazon.com/documentation/kinesis/
4. Sqoop: https://sqoop.apache.org/
5. HDFS: https://hadoop.apache.org/
6. Cassandra: https://cassandra.apache.org/
7. MongoDB: http://camel.apache.org/
8. Kudu: https://kudu.apache.org/
9. MapReduce: https://hadoop.apache.org/

10. Spark: https://spark.apache.org/
11. Storm: https://storm.apache.org/
12. Tez: https://tez.apache.org/
13. Hive: https://hive.apache.org/
14. MLlib: https://spark.apache.org/mllib/
15. Mahout: https://mahout.apache.org/
16. GraphX: https://spark.apache.org/graphx/
17. TPCx-BB: http://www.tpc.org/tpcx-bb/default.asp/
18. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.-A.:

BigBench: towards an industry standard benchmark for big data analytics. In:
SIGMOD 2013, 22–27 June 2013, New York, New York, USA (2013)

19. TPC-DI: http://www.tpc.org/tpcdi/
20. Rabl,T., Frank,M., Sergieh,H.M.,Kosch,H.:Adata generator for cloud-scale bench-

marking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 41–56.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18206-8 4

21. Medvedev, A., Hassani, A., Zaslavsky, A., Jayaraman, P.P., Indrawan-Santiago,
M., Delir Haghighi, P., Ling, S.: Data ingestion and storage performance of IoT
platforms: study of OpenIoT. In: Podnar Žarko, I., Broering, A., Soursos, S.,
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Abstract. We introduce JCC-H, a drop-in replacement for the data and
query generator of TPC-H, that introduces Join-Crossing-Correlations
(JCC) and skew into its dataset and query workload. These correlations
are carefully designed such that the filter predicates on table columns in
the existing TPC-H queries now suddenly can have effects on the value-
, frequency- and join-fan-out-distributions, experienced by operators in
the query plan. The query generator of JCC-H is able to generate para-
meter bindings for the 22 query templates in two different equivalence
classes: query templates that receive “normal” parameters do not expe-
rience skew and behave very similar to default TPC-H queries. Query
templates expanded with the “skewed” parameters, though, experience
strong join-crossing-correlations and skew in filter, aggregation and join
operations. In this paper we discuss the goals of JCC-H, its detailed
design, as well as show initial experiments on both a single-server and
MPP database system, that confirm that our design goals were largely
met. In all, JCC-H provides a convenient way for any system that is
already testing with TPC-H to examine how the system can handle
skew and correlations, so we hope the community can use it to make
progress on issues like skew mitigation and detection and exploitation of
join-crossing-correlations in query optimizers and data storage.

1 Introduction and Motivation

The past four decades of research into data storage and indexing, query exe-
cution and query optimization have yielded many research contributions, but
also impacted a wealth of systems in broad ICT use, whose reach significantly
surpasses database systems alone, as shown by the popularity of big data frame-
works, such as Spark, for data science, ETL, machine learning and stream
processing, which at heart are also powered by these techniques.

Benchmarks have helped significantly to quantitatively evaluate the proper-
ties of such techniques and have arguably played an important role in maturing
the state-of-the-art in systems. By now, a scalable data management system
with a SQL-like query language needs to meet a high bar of user expectations,
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 103–119, 2018.
https://doi.org/10.1007/978-3-319-72401-0_8
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set by previous database systems, and also codified in a number of database
benchmarks that it will be expected to be able to run. Significant benchmarks
that have influenced the field of analytical database systems are TPC-H [1],
TPC-DS [9], the Star Schema Benchmark [8] and BigBench [5].

Database benchmarks use synthetic data produced by data generators. This
allows controlled generation of any desired dataset scale-factor (SF), which is use-
ful for scalability analysis; yet regrettably so far this synthetic data has been rife
with uniformity, in terms of (a) value distributions, (b) frequency distributions
and (c) join fan-out distributions.1 Any practitioner knows that in deployed use,
as opposed to in benchmark tests, database systems face data that is typically
skewed in all these aspects. To make matters worse, in real data, data tends to
be highly correlated. A well known example of correlation would be a CAR(brand,

model) table, where the predicate brand = Porsche and model = Panamera are cor-
related: after the selection on Panamera, there is 100% certainty that remaining
tuples are Porsche. This type of correlations was long elusive for query optimizers
using the independence assumption, but thanks to ample CPU power nowadays
available, cardinality estimation is increasingly done by executing predicates on
table samples, which catches any correlation within a single table. It was recently
confirmed [7] that faulty cardinality estimation is the main problem for join-order
optimization (which arguably is the most important query optimization prob-
lem), and as such the frontier for systems and for database research into this are
correlations not within the same table, but across different tables. To continue
the example, in a join of Panameras towards a SALES(date, price, brand, type)

table, the optimizer would probably mis-estimate the cardinality of extract(year
from date) between 2000 and 2010 because the Panamera was introduced only
in 2009. Between different referenced items, there can be a hugely different num-
ber of join partners (e.g. Panamera vs Golf or iPhones vs. Nokia handsets, lately).
These sales examples exemplify Join-Crossing-Correlations (JCC), which is as
far as we know a poorly supported aspect of reality in current data manage-
ment systems, and certainly unsupported in the current generation of database
benchmarks.

In this paper we describe a non-invasive variant of the well-known TPC-
H benchmark, that makes it a much harder benchmark to execute effi-
ciently by introducing join crossing correlations and skew in its data and
queries. As we explained above, a join-crossing-correlation means that values
occurring in tuples from one table, can influence the behavior of operations
(joins,filters,aggregations) involving data from other tables, in a query that joins
these tables. Barring the recent Interactive Workload for the LDBC Social Net-
work Benchmark (SNB [3]), which is focused on short-running graph traversal
queries rather than ad-hoc OLAP queries, there do not exist database bench-
marks that test join-crossing correlations; and none that contain join skew.

1 The join fan-out distribution is the distribution of amount of join partners for values
in a primary key (PK) column, towards a particular foreign key (FK) column.
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The goals of JCC-H are as follows:

1. To be a drop-in replacement of TPC-H in terms of data generator and query
generator. The only difference being a single flag -k, that when passed to
dbgen generates skewed/correlated data, and for qgen generates the skewed
query variants (see point 5). The advantage of being a drop-in replacement
is that many existing products and research prototypes already have TPC-
H testing suites that can be leveraged, and also, the nature of the TPC-H
queries is already well-understood by their development teams [1].

2. To introduce severe skew in all foreign key joins: for each referencing table,
25% of all tuples refer to just a handful of PKs (typically: 5). Having a handful
of very frequent values is a known practical issue and one of the effects it
causes is that if table partitioning is used, then the partition in which such
a frequent value happens to fall will be larger than others. Another effect is
that when joining or aggregating in a shuffled fashion, the worker responsible
for the frequent values will be overloaded (receive a lot of network traffic, and
have a lot of CPU work), which will lead to poor load balancing, unless specific
anti-skew measures are taken by the system. A deterioration of speedup when
e.g. comparing single-core to parallel execution is a good indication of the
adverse effects of skew.

3. To correlate the join-fan-out skew created by our modifications to the data
generator to (join-crossing) filter-predicates in the query. The correlation is
carefully generated to create as much effect as possible on the existing 22
query templates. This required a thorough understanding of all 22 TPC-
H queries and drawing up a plan how each query, given its existing filter
predicates, could be affected by join-crossing correlations.

4. To be able to generate different query parameters that cause the queries to
touch different data but behave identically performance-wise. Having such
multiple parameter bindings for usage in concurrent query stream tests is a
useful benchmark feature, as it helps guard against inflating the score of an
ad-hoc query benchmark using query result caching: a query variant can be
executed multiple times in a (throughput) test run, with different parameter
bindings, but with equivalent results in terms of performance, so the results
remain comparable.

5. To create for all or most of the 22 TPC-H queries two query variants:2 one
normal variant whose behavior closely resembles the behavior of the query
on default TPC-H and one skewed variant that causes the skew to surface
during runtime.

6. To make the single-table statistics of the columns from which the query para-
meters are derived look innocuously uniform. That is, it should force the
query optimizer to understand join-crossing-correlations for it to predict that
a different parameter value leads to very different behavior, as the values
(used in equi- or range-comparisons) have similar frequencies in the column
accessed by the filter predicate.

2 As in [6] the two variants stem from exactly the same query template: the only thing
that makes them different are the parameters that get pasted into the template.
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7. To design the “skewed” parameter bindings such that evaluating the query
takes typically much more effort than for a “normal” parameter binding. It
has been observed that for systems, workload scheduling could be eased if
queries that affect very large volumes of data (“whale” queries, as opposed
to normal “fish” queries) could be detected and handled differently. However,
due to errors in cardinality estimation (which are often caused by join-crossing
correlations and skew [7]) this is non-trivial.

A very important non-goal in JCC-H is to make TPC-H more “realistic”,
as has been done for instance in [2] by having the order-customer distribution
over nations more real-life-like. While this may also interesting, we think that
correlations that lead to unexpected and severe skew is a phenomenon that has
been observed in practitioner lore so often that we consider introducing such
correlation and skew a more important step in making TPC-H more “realistic”
than trying to have the value and frequency distributions of it regions, nations,
suppliers, customers, and orders to resemble real life more closely.

In order to fulfill all goals above, we must introduce skew and correlations
primarily based on the predicates found in the 22 queries of TPC-H rather than
on any overarching realism concerns.

This paper is organized as follows: in Sect. 2 we provide a detailed design
of the JCC-H benchmark, while in Sect. 3 we describe our experiments we ran
on multiple database systems, both single-server and MPP. In Sect. 4 we outline
future work and conclude the paper.

2 Benchmark Design

In the remainder we assume the reader to be familiar with the TPC-H bench-
mark, and if not, advise the reader to first study its specification and/or [1].

In the JCC-H data generator we make use of bijective permutation functions
based on a linear permutation polynomial, as also described in [4]. Given a key
domain K∈ [0..N〉, and a fixed, chosen, prime number P , these functions find a
number X where X ∗ P mod N = 1. This number is easily found using linear
search and leads to a hash function: h(K) : K ∗P mod N . This is a perfect hash
in that it delivers an outcome ∈ [0..N〉. Further, the function can be inversed
simply using h−1(H) : H ∗ X mod N . The hash function can be made more
random by adding and subtracting a constant: h(K) : (K ∗ P + C) mod N and
h−1(H) : (H + N − C) ∗ X mod N . This is slightly different from [4], in that
instead of (H −C) we do (H +N −C) and choose C<N such that (H +N −C)
never underflows. This allows to use the fast C/C++ % operator (which is not
a pure mod, but just a remainder).

We chose to modify the existing TPC dbgen, rather than to write a new data
generator from scratch. The reason is that we want the tool to be an exact drop-in
replacement, with exactly the same options and functionality. The TPC-H dbgen

is arguably of a dated design, but it can generate data in parallel, or rather, it
can generate all of its main tables in pieces, and thus with scripting that starts
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multiple data generators generating different pieces at the same time, parallelism
is achieved (in a way that is independent of the parallelism framework).

In order to introduce correlations and skew, in the data generator we decide
what to generate based on the identity of the tuple we are generating. The TPC-
H dbgen does this by passing the primary key of the table to the routine that
generates the record. This number fulfills a similar function as the random seed
used in modern parallel data generators such as PGDF [4]. PDGF introduces
the concept of hierarchical seeds that follow the schema as the seed of each table
referenced by a parent table depends on the seed of the parent. The issue of table
dependencies is only partially addressed in TPC-H, because dbgen generates the
part and partsupp tables at the same time, as well as orders and lineitem. For our
purposes, though, this does not generate enough context to insert all correlations,
and therefore we designed an elaborate mechanism of dependencies that start
with orderkey and propagate down to all other keys, as described next.

2.1 Join Skew and Aggregation Skew

In JCC-H we have introduced join skew in all major joins3:

c-n there are 25 nations, evenly divided in 5 regions. We identify for each region
a “large” nation to which 18% of all customers belong, and 4 “small” nations
to which 0.5% of customers belong (5 * (18 + 4 * 0.5) = 100). The h(c custkey)
determines to which, by dividing the hash range in regions proportional to
these percentages, as displayed in the left side of Fig. 1. Further, each large
nation has one customer (the first in the hash range) that is a “populous
customer”: it will have very many orders. These populous customers have
a special country nation code in their c phone phone numbers (the first two
digits have values 40,50,60,70,80 – normally country codes in TPC-H are
<40), to make them recognizable in Q22.

s-n similar to customer, suppliers are mapped to nations based on h(s suppkey).
There are also 5 populous suppliers, but they are not marked with a correlated
column (which we did with c phone).

o-c there are 5 populous orders, namely those with h(o orderkey)< 5; these
orders will have very many lineitems. They are recognizable in that their
o comment contains the string “1mine2 3gold4”. For the other orders, in 25% of
the cases a populous customer key is chosen (the decision is made determined
by h(o orderkey), in the other cases a normal customer is chosen). In all
cases, the customer is chosen in such a way that h(o orderkey) determines
in which region the customer is located. Thus, by knowing o orderkey, the
data generator knows from which region the customer stems. We choose the
customers from only 100K * SF out of the total 150K * SF customers, because
in default TPC-H, one third of customers also does not have any orders.

3 In this paper, we abbreviate the foreign key joins of TPC-H (and JCC-H) using the
first letters of the table name (ps for partsupp to distinguish it from p for part). For
example, with l-o we mean the join between linetem and orders.
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Fig. 1. JCC-H join connectivity
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ps-p according to our targets, 25% of partsupp should refer (via ps partkey)
to only 5 distinct parts. This mean every such part must have many
distinct suppliers. But even if we take all suppliers, this would give
5 * 10K * SF = 50K * SF different partsupps. Since (ps partkey,ps suppkey)

must be unique, we use 20 populous parts, which link with all suppliers:
20 × 10K * SF = 200K * SF, i.e. 25% of partsupp (whose size is 800K * SF).

ps-s For all non-populous parts, we generate three partsupps, i.e. choose three
suppliers. This is done using a dependency of ps suppkey on h(ps partkey).
We create an affinity between h(ps partkey) and the supplier region. The
three combinations are generated with three different formulas (called class-
A, class-B and class-C suppliers), which guarantee that for a given partkey,
class-A, B, C suppliers are distinct. To be exact, class A selects a populous
supplier (which is always from a large nation) from the affinity region. Class-B
selects a supplier from a small nation from the affinity region. Class C selects
a supplier from a large nation from a distinct region. These three suppliers
are evidently from different nations and therefore distinct.

l-o according to our target, 25% of the lineitem tuples have just 5 distinct
l orderkey values. For this, the 5 populous orders must consist of a lot
of items (300K * SF).4 To generate these, we use the 15 higher populous
parts, and generate all suppliers from a large nation in a different region.
As this amounts to (15 parts) * (0.8 * 5 regions) * (0.8 * 0.2 * 10K * SF suppli-
ers)= 96K * SF, we fall short of the desired 300K * SF lineitems. Therefore, we
repeat this sequence 3.2 times to get there. The skewed lineitems that we gen-
erate like this, have a few extra characteristics: l quantity = 51 (just above
the normal maximum value), l shipmode = “REG AIR”, l shipinstruct =
“DELIVER IN PERSON” and l returnflag = R.

l-ps Given that 25% (i.e. 0.25 * 6000K * SF = 1500K * SF) of the lineitems belong
to populous orders, the other 1500K * SF-5 orders must consist of 3 lineitems
(3 * 1500K * SF = 4500K * SF). For each of the 3 lineitems in an order, we must
generate a partsupp reference. The two latter partsupps are so-called class-B
partsupps, generated from a random partkey. The first partsupp in each non-
populous order is the populous supplier matching the customer region, paired
with one of the 5 populous parts (the one with matching region affinity). As
such, all these first lineitems form just 5 different partsupp combinations,
which is what we want for l-ps join skew.

Please note that when generating a table, we often choose a foreign key
based on certain dependencies or conditions. These dependencies are computed
in the hashed space of the parent key, and lead to choosing a hashed child key.
For instance, as described above (o-c) in the generation of orders, we choose a
customer such that from the orderkey we know the customer region (e.g. #region
= h(o custkey) mod 5). In order to actually generate a key (e.g. o custkey) we
use the inverse hash function h−1(). This exploits the property in TPC-H that

4 A huge order indeed, and realism is not our primary target. However, if one orders
all parts of an entire airplane, or aircraft carrier, it might still be realistic ;-).
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the key space is dense, so given any number H in [0..N〉 then h−1(H) must be a
valid, existing key. The only exception to this rule are in fact orderkeys: there are
holes in the space of orderkeys that TPC-H uses to generate inserts and deletes.
However, JCC-H never needs to compute an orderkey as it is the root of the key
hierarchy, therefore this is not an issue.

Finally, we introduce some correlated columns in the part table, for popu-
lous parts (p(p partkey)< 20). These have p brand = “Brand#55”, p size = 1,
p container = “LG BOX”, p type = “SHINY MINED GOLD” and p name =
“shiny mined gold”. Just doing this would introduce rather infrequent values for
the latter two columns, as they would occur only 20 times. This would be easily
picked up by the query optimizer in those TPC-H queries that have equality
predicates on p type and p name. In order to hide these values in the statistics,
we also give some non-populous parts these values, such that all individual col-
umn frequency distributions remain uniform. However, we guarantee that no
non-populous parts have multiple of these values. Thus, only when selecting on
a conjunction of these, the 20 populous parts will come out. This hiding of infre-
quent combinations is an example of a “simple” anti-correlated columns inside
the same table. The fact that only 20 results come out, might be found by a
multi-column histogram or using sampling (though likely the sample would be
too small to contain a populous part). Still, even if query optimizers could detect
this, this would only be stage one, as the second stage is to recognize the very
different join-fan-out in the ps-p join that these populous parts have.

2.2 Filter Skew

In TPC-H the date dimension has a uniform value distribution. There is in fact
a correlation between o orderdate and the lineitem dates (the latter dates are
within four months of the former). But, during the years, orders and lineitems
are generated at the same pace.

JCC-H introduces a so-called Black Friday, which is one day in the year
where there are many more orders. We actually chose to have this on Memorial
Day, which is a fixed day (May 29), and on this day, 50% of all orders are
placed. Please recall that absolute realism is a non-goal of JCC-H. But, we do
want to test the effects of strong time skew in table generation. After generating
o orderdate we use the normal TPC-H mechanism to generate all lineitem dates
based on it, so they follow after it within four months.

All 5 populous orders (25% of lineitem) are generated on Black Friday. Hence,
even more than 50% of lineitems get ordered on Black Friday, because also 50% of
the non-populous orders are from that date. This is done by moving a fraction of
non-populous orders from their original random date to the Black Friday of that
year. However, we do not do this in 2 out 7 the years, namely 1995 and 1996 (so
25% + 5/7 * 50% of 75% = 52% of lineitems was ordered on Black Friday). The
reason is that 1995 and 1996 should be sanctuaries from join skew. These two
years appear as constants (non-parameters) in default TPC-H Q7 and Q8. Recall
that we want to generate two sets of parameter bindings: skewed bindings and
normal bindings. By omitting generation of skew (i.e. class-A) in the lower 75%
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of lineitem (the area labeled “small orders from same-region suppliers” in Fig. 1)
during 1995–1996, we make it possible to avoid the o-c, l-c, and l-ps join skew
by choosing date ranges from 1995 and 1996.

2.3 Query Parameter Generation

We now discuss how the JCC-H version of qgen substitutes parameter values
into the 22 TPC-H query templates. We generate for each template parameters
for two query variants [6]: one normal set of parameters where JCC-H tries to
behave as close as possible to default TPC-H (no correlations, uniform distribu-
tions) and a skewed set of parameters, where all forms of correlation and skew
come into play. Skewed variant generation is triggered using the -k flag of qgen.

Q1 because the query has no joins and is well-known for its full-scan behavior
(it selects more than 95% of lineitem) and has few group-by values in the aggre-
gation, there is no real opportunity for join-, aggregation- or filter-skew, so Q1
was left unmodified. Both normal and skewed queries use default parameters.

Q2 is a p-ps-s join with a p type LIKE predicate. For the “skewed” query variant
we set the parameter to suffixes of “SHINY MINED GOLD” (of at least 6 char-
acters, e.g. “%INED GOLD”. The “normal” parameters use default bindings.
The effect of this is that skewed queries will select populous parts, and normal
parameters non-populous parts.

Q3 has a date range that is lower-bounded on o orderdate and upper-bounded
on l shipdate. Please recall that l shipdate is always within four months of
o orderdate. Certain existing database systems that take join-crossing statistics
into account and store the tables clustered or partitioned on date, will be able
to unify these bounds on both lineitem and orders into bounded ranges in both
tables (e.g. using MinMax indexes and noting which MinMax ranges of rows in
orders and lineitem join with each other). This is the case already in TPC-H.
For the “skewed” query variants, we always choose a date range in 1993 around
Black Friday. This will include the populous order from 19935, and thus join skew
in l-o. For the “normal” variants, the date range lies in 1995. For orders from
this date, there is no join skew in l-o and o-c. Please be aware that if a system
uses table partitioning for lineitem, then the 5 partitions (or less) in which the
populous orderkeys happen to fall will be larger than the rest. Therefore, the
“normal” query variant will also experience scan-skew just for that reason, even
if the tuples turn out to be not selected by the query. If additional measures are
taken, such as clustering within the partition on a date, or sub-partitioning on
date, then all other table areas than those corresponding to 1995 will be skipped,
e.g. using partition pruning or by exploiting MinMax indexes. In that case, the
“normal” variants of Q3 can avoid all skew.

5 Because there are seven years (1992–1998) and 5 populous orders, there are two
years without populous order and these are 1995 and 1996.
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Q4 contains a 3-month range restriction on o orderdate. For the “skewed” query
variant, this range is picked from the years 1993 and 1994. For the “normal”
variant from 1995 and 1996, which avoids the l-o join skew.

Q5 identical to Q4, except that the range is one year long.

Q6 identical to Q5, except that l shipdate is involved.

Q7 in default TPC-H, there is a hard-coded (non-parametrized) two-year range
restriction on l shipdate. In JCC-H, the range boundaries become parameters,
but for the “normal” query variant retain their old value (1995–1996). In the
“skewed” variant the range is 1993–1994. The existing parameters are two nation
names (between which trade is measured). In the “skewed” variant we pick two
different large nations (from different regions, because there is only one large
nation per region in JCC-H). For the “normal” variant, we pick two small nations
from the same region. As has been described previously under l-ps join skew (and
depicted in Fig. 1), the class-B partsupps match up suppliers from small nations
with customers from the same region (10% of which are from a small nation,
2% out of 20%). Hence the two variants both produce results, but their joins
traverse disjunct joined tuples, where the “skewed” variant will hit strong o-c,
l-o, l-ps join skew, but the “normal” variant not.

Q8 similar to Q7, the hard-coded date restriction on 1995–1996 (on o orderdate)
was turned into a parameter that for the “normal” query variant remains 1995–
1996 and for the “skewed” variant is 1993–1994. In that case, the p type equi-
restriction becomes “SHINY MINED GOLD”. This will select populous parts,
hence focus on join-skew. This skew is absent in 1995–1996.

Q9 contains all joins, and only has a p name LIKE restriction. Similar to Q2, it
is set to a suffix of “shiny mined gold”, for the “skewed” query variant.

Q10 the “normal” variant selects a 3-month o orderdate interval starting on a
day in the first two months of 1995 (this means it misses Black Friday, which in
JCC-H is on May 29), and there is no join skew. The “skewed” query variant
uses other years than 1995–1996 (so there is join skew) and uses a week enclosing
Black Friday.

Q11 the “normal” variant uses a small nation whereas the “skewed” variant uses
a large nation.

Q12 the “normal” variant uses a 1-year l receiptdate restriction of 1995 or
1996, whereas the “skewed” variant uses 1993–1994 and includes “REG AIR” in
the l shipmode restriction.

Q13 the “normal” variant in the o comment NOT LIKE restriction uses a varia-
tion of “%1mine2%3gold4%” where any of the digits can be omitted. This will
eliminate all populous orders. The “skewed” query variant uses the normal para-
meter bindings.

Q14 and Q15 the “normal” query variant uses a 3-month l shipdate restriction
in 1995 or 1996 that excludes the months May-August, whereas the “skewed”
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variant uses 1992, 1993, 1994, 1997 or 1998 where the range includes these four
months (hence it experiences both Black Friday filter skew and join skew).

Q16 the “skewed” query variant makes sure that the p size IN range includes
1, whereas the “normal” variant ensures it never includes it. In both cases,
asking for p brand in-equality on “Brand#55” is avoided. The result is that the
“skewed” variant homes in on the populous parts, whereas the “normal” query
variant only select non-populous parts.

Q17 the skewed variant ask for p brand= “Brand#55” and p container= “LG
BOX” with an identical effect as in Q16.

Q18 this query cannot be easily parametrized, so a WHERE l quantity < :2
parametrized restriction in the inner subquery was added, that in the normal
case limits until 50 (which in default TPC-H is always the case) and in the
skewed case until 100, so it will include the lineitems with join-skew (which have
value 51 there).

Q19 the “skewed” variant restricts p brand in the last disjunction to “Brand#55”
and l quantity to a range that includes 51. The effect is similar to Q16.

Q20 the “normal” variant uses a 1-year l shipdate restriction of 1995 or 1996,
whereas the “skewed” variant uses 1993–1994 and includes prefix of “shiny mined
gold” in the l name LIKE restriction.

Q21 the “normal” variant uses a small nation whereas the “skewed” variant uses
a large nation.

Q22 the “skewed” variant include the c phone area codes 30, 40, 50, 60, 70, 80
in the IN restriction, which selects populous customers. The “normal” variant
uses the default parameter values which never will select such a customer.

Fig. 2. Query 9: l-ps join load balance comparing JCC-H “skewed” with TPC-H
“default” behavior on single-server and MPP systems (X-axis is workload per core).
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3 Experiments

We ran experiments on Actian Vector (VectorWise) on a single-server machine
and also using its MPP version VectorH (Vector on Hadoop) on a small cluster
with relatively slow network. We also ran experiments on a faster cluster with
Hive. The single-server machine is a dual-socket Intel Xeon E5-2650 v2 @ 2.60
GHz with in total 32 vCores (16 real), 256 GB RAM and four disks in RAID0.
The disk configuration is not very relevant as all our results are with the data
cached in-memory. The slow cluster consists of 16 nodes, each having a single-
socket small machine i5-4590S CPU @ 3.00 GHz (4 vCores each), a single 1 TB
magnetic disk and 16 GB of memory and 1 Gb ethernet. Actian Vector was ver-
sion 5.1 and VectorH version 4.2. We used Hive 1.2.2 (Tez 0.8.5) and the fast
cluster it ran on consisted of 8 nodes of each dual Intel Xeon X5660CPUs, 48 GB
RAM, and 10 Gb ethernet. In all cases, the OS is Linux and both clusters ran
Hadoop 2.7.3.

The Vector and VectorH results are listed in Table 2. Figure 3 summarizes
the single-server numbers by normalizing query runtimes towards the default
TPC-H query runtimes of the specific parallelism level (i.e. single-threaded or
using 16 cores). We can observe at first that the green and blue bars, expressing
runtimes of the ‘normal” query variants, are always near 1, which means they
behave very similar to the default TPC-H queries they are normalized to. This
is an important requirement to fulfill goal 5.

Furthermore we can observe, comparing the “normal” queries with the
“skewed” ones, that skewed query variants take significantly more effort to run
than normal ones. One reason for this absolute difference is that indeed the
skewed variant selects more data (goal 7: “whale” queries).

The disparity between normal and skewed gets worse when using all 16 cores.
We have looked into detailed query profiles to establish the reasons for this. In
certain cases, like Q2, Q17 and Q20, the reason is wrong optimizer choices in the
“skewed” query variant. This is caused by cardinality estimates which are very
much off due to the optimizer missing the join-crossing predicate correlations.
When looking at the profile of the skewed variant of query 17 in detail, we can
notice these estimation failures. The selection on part returns 20 tuples, which is
about 0.1% of the estimated cardinality, but as we know, these are the “whale”
tuples of the part relation. As a consequence, joining lineitem with these heavy
hitters produces 1000 times more tuples than estimated. Aggregating on this
join result produces again just 0.03% of estimated tuples, which is also a result
of the wrong initial estimation on the part selection. So the used query plan does
not seem to be the optimal one. Alternatively, in Q2 and Q20, the decision of
query parallelization seem wrong. The system we test with determines the paral-
lelism strategy during query optimization, and when it estimates (wrongly) that
intermediate results will be very small it (mistakenly) chooses not to parallelize
certain query subtrees anymore, because for small data volumes, the overheads
of parallel execution tend not to pay off.

The second reason why the difference between skewed and normal gets bigger
with more parallelism is indeed skew. The query profiles we examined had very
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strong scan skew, filter skew, aggregation skew and join skew. As an example,
we have a more detailed look at query 9 in Fig. 2. These plots show various
characteristics (time and output size) of the execution of the most expensive
join operator (the l-ps join), per active core. On the single-server system as
well as on the MPP system, the join in default TPC-H produces a balanced
join fan-out, shown by the red lines. In contrast to that, the join of the skewed
variant exhibits five peaks. While 5 threads return about 58 million tuples, the
remaining 11 threads return only about 27 million results. The same can be
observed in the MPP system: five nodes produce about 11 million tuples with

Fig. 3. Single-server Vector (Wise) experiments with JCC-H: runtime normalized
towards default TPC-H with the same amount of cores (Color figure online)
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each of their four threads, while the remaining 11 nodes return about 2 million
results per thread. So, in the skewed query variants, the overall runtime of the
join operator is dominated by the threads/nodes that process the parts with the
peak cardinalities, causing the whole operator to run slower than in the default
query variant. Overall, we observe in Fig. 3, that the impact of the skewed query
variants on the parallel experiments (purple bar) is much higher than on the
single-threaded runs (red bar).

Fig. 4. Hive: scalability achieved when hardware is scaled ×4 (2 to 8 nodes) for 100
GB TPC-H (default) and JCC-H (resp. normal and skewed query sets).

Table 1. Experiments on the faster cluster with Hive: query runtime in seconds
(SF = 100)

TPC-H 2 JCC-H 2 JCC-H 2 TPC-H 4 JCC-H 4 JCC-H 4 TPC-H 8 JCC-H 8 JCC-H 8

nodes nodes nodes nodes nodes nodes nodes nodes nodes

normal skewed normal skewed normal skewed

Q1 817.93 985.09 966.68 531.55 696.46 700.11 272.89 502.67 514.47

Q3 306.69 311.02 415.10 177.00 287.87 344.12 105.49 247.68 278.32

Q4 82.62 83.86 92.39 52.47 57.69 81.99 36.30 54.66 56.45

Q5 183.27 159.29 291.59 114.55 111.35 226.38 69.17 84.87 216.59

Q6 60.53 53.63 75.89 46.6 34.63 54.84 30.39 25.12 58.02

Q7 822.66 690.25 1237.07 530.13 410.23 1014.77 271.98 278.45 952.37

Q8 1306.56 1568.00 2402.17 882.11 1150.03 1667.44 624.6 776.87 1254.27

Q9 449.14 406.67 1945.30 371.25 278.72 1789.56 188.48 225.3 1540.54

Q10 243.05 232.23 448.57 191.21 168.56 414.79 97.40 130.04 413.74

Q11 41.27 29.52 68.58 31.92 24.05 49.37 26.47 17.34 45.08

Q12 37.48 34.49 42.33 84.04 25.35 24.53 21.35 19.07 19.67

Q13 139.15 137.98 142.43 95.27 74.26 97.69 42.57 45.58 69.85

Q14 58.73 39.73 82.54 68.38 33.86 58.68 30.85 25.57 63.88

Q16 74.17 73.14 126.20 51.28 44.11 104.99 36.95 37.32 84.34

Q17 855.21 815.78 909.09 438.17 501.61 622.31 281.64 384.19 464.98

Q19 1263.05 1332.35 1484.97 751.50 818.59 1041.23 413.44 632.50 908.99

Q21 1076.77 1023.01 1051.54 631.46 634.80 645.62 446.68 679.46 704.04

Q22 86.34 81.57 84.39 52.93 48.31 56.92 22.55 39.15 49.64
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Table 2. Vector (left) and Vector-on-Hadoop (right) query runtime in seconds
(SF = 100). Note: the Vector and VectorH results are not comparable in absolute terms
(and this is not the point of these experiments), since the machines in the Hadoop
cluster used for VectorH are older and slower than the single-server machine used for
Vector. We can see that relatively, the skewed queries on MPP system VectorH bear a
heavier performance and scalability penalty than on the single-server system.

Vector, 16-core 256GB single-server

TPC-H JCC-H JCC-H TPC-H JCC-H JCC-H
1 core 1 core 1 core 16 cores 16 cores 16 cores

normal skewed normal skewed

Q1 14.96 14.40 14.11 1.12 1.16 1.18
Q2 3.23 2.80 6.13 0.87 0.75 3.04
Q3 1.17 0.68 1.52 0.39 0.35 0.69

Q4 0.73 0.34 0.69 0.23 0.24 0.23
Q5 3.53 3.24 3.66 0.66 0.65 1.20
Q6 0.94 0.81 1.13 0.27 0.22 0.27

Q7 3.54 2.29 8.90 0.64 0.40 2.78
Q8 3.94 3.86 4.46 0.69 0.58 1.96
Q9 18.80 18.23 54.32 2.10 2.22 10.34

Q10 2.62 1.31 7.40 0.55 0.37 1.67
Q11 1.84 0.89 2.89 0.38 0.24 0.58
Q12 1.88 1.29 2.18 0.33 0.24 0.91

Q13 19.42 15.04 15.17 1.27 1.09 1.24
Q14 2.44 0.96 4.13 0.45 0.29 0.78
Q16 6.27 3.99 8.41 0.82 0.54 3.25

Q17 4.33 5.04 21.9 0.58 0.56 3.39
Q18 5.43 2.89 4.21 0.60 0.49 0.62
Q19 11.48 9.72 9.73 1.05 0.99 0.95

Q20 4.45 3.39 8.53 0.60 0.51 4.76
Q21 16.21 12.33 27.85 1.18 1.96 3.65
Q22 4.77 4.90 3.67 0.75 0.75 0.60

VectorH, 16x(2-core,4SMT 16GB) cluster

TPC-H JCC-H JCC-H TPC-H JCC-H JCC-H
16x1 16x1 16x1s 16x4 16x4 16x4

normal skewed normal skewed

0.95 1.36 1.37 0.30 0.91 0.96
0.62 0.66 33.45 0.59 0.46 29.18
1.43 1.72 1.21 0.57 2.36 2.57

0.06 0.10 0.08 0.06 0.05 0.07
1.49 1.08 4.62 1.09 1.51 3.91
0.14 0.10 0.23 0.07 0.07 0.22

1.74 0.69 4.97 1.02 0.79 6.66
0.67 0.79 29.43 0.62 1.45 48.02
6.64 5.98 39.68 3.85 5.67 39.02

1.43 3.36 20.75 4.63 5.48 20.47
0.49 0.12 0.44 0.10 0.10 0.55
0.55 0.21 0.60 0.10 0.10 2.78

1.69 2.18 3.23 1.93 3.99 4.05
0.70 0.28 3.06 0.26 1.06 2.44
1.01 0.74 7.73 1.02 2.58 8.75

0.56 0.54 19.81 0.72 1.39 18.24
0.76 0.46 0.73 0.25 0.40 0.39
1.01 1.00 0.70 1.06 0.92 0.81

3.88 1.91 77.34 4.77 2.08 75.72

1.52 1.81 1.60 1.85 3.99 3.69

The most striking aspect of the VectorH results is that they show that the
skewed queries relatively become much more expensive, with Q2, 8, 9, 10, 17, 20
running into tens of seconds. Also, scalability on these queries is fully gone and
some even run slower on more hardware. We think this shows that when data
movement over the network becomes a factor, the penalties for skew become
higher. Further, MPP systems must do static partitioning of tables, and the fact
that e.g. 5 of the lineitem partitions are much larger due to skew even makes
queries without joins affected: even though Q1 on any database system tends
to scale perfectly, the fact that 5 tasks must now scan a significantly bigger
partition than the other tasks causes imperfect scaling.

The Hive results are in Table 1, where we tested scalability by running the
JCC-H and TPC-H query sets on 2, 4 and 8 nodes. Figure 4 shows that while
TPC-H scales reasonably from 2–8 nodes (though less than a factor 4), especially
the JCC-H “skewed” query set scales very badly. The “normal” query set scales
less badly, but still not so good. The fact that table partitioning is affected by
skew, even affects queries with non-skewed query processing behavior, since the
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skewed partitions (read as Parquet files 6) need to be scanned and this is an
important factor in Hive performance.

4 Conclusion

In this paper, we have introduced a new variant of TPC-H, named JCC-H, that
adds correlations and skew to TPC-H.7 JCC-H was carefully designed to include
very severe join skew as well as filter skew. Moreover, these skewed effects are
observed by the original 22 TPC-H queries only if special parameters are given
to them. That is, for each of the 22 queries there is a “skewed” query variant
and a “normal” query variant (the normal variant is generated by default by
qgen, and the skewed variant when passing -k). The decision to make JCC-H a
drop-in replacement for TPC-H has a number of advantages, as JCC-H can be
dropped into any existing benchmark testing pipeline, and its queries are well
understood by practitioners.

A disadvantage of focusing on the existing 22 TPC-H queries is that there
may be interesting and relevant query patterns where join-crossing correlations
and related skew have even more significant effects. This belief is informed by
the fact that access path selection for TPC-H is relatively straightforward. As
such, it is also of immediate interest to devise additional query patterns for
JCC-H where join-crossing correlation will affect the join execution order, or the
(non-)use of unclustered indexes.
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Abstract. The TPCx-HS Hadoop benchmark has helped drive competition in
the Big Data marketplace and has proven to be a successful industry standard
benchmark for Hadoop systems. However, the Big Data landscape has rapidly
changed since its initial release in 2014. Key technologies have matured, while
new ones have risen to prominence in an effort to keep pace with the exponential
expansion of datasets. For example, Hadoop has undergone a much-needed
upgrade to the way that scheduling, resource management, and execution occur
in Hadoop, while Apache Spark has risen to be the de facto standard for in-
memory cluster compute for ETL, Machine Learning, and Data Science Work‐
loads. Moreover, enterprises are increasingly considering cloud infrastructure for
Big Data processing. What has not changed since TPCx-HS was first released is
the need for a straightforward, industry standard way in which these current tech‐
nologies and architectures can be evaluated. In this paper, we introduce TPCx-
HS v2 that is designed to address these changes in the Big Data technology land‐
scape and stress both the hardware and software stacks including the execution
engine (MapReduce or Spark) and Hadoop Filesystem API compatible layers for
both on-premise and cloud deployments.

Keywords: TPC · Big Data · Benchmark · Hadoop · Spark
Cloud · Performance

1 Introduction

Since its release on August 2014, the TPCx-HS Hadoop benchmark [1] has helped drive
competition in the Big Data marketplace, generating 24 publications spanning 5 Hadoop
distributions, 3 hardware vendors, 2 OS distributions, and 1 virtualization platform [2]
(as of 2017/06/20). By all measures, it has proven to be a successful industry standard
benchmark for Hadoop systems. However, the Big Data landscape has rapidly changed
over the last three years. Key technologies have matured, while new ones have risen to
prominence in an effort to keep pace with the exponential expansion of datasets. More‐
over, enterprises are increasingly considering cloud infrastructure for Big Data
processing. What has not changed, however, is the need for a straightforward, industry
standard way in which these current technologies and architectures can be evaluated
with workloads and metrics that are well understood and easily relatable to the end user.
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In keeping with these important industry trends, we introduce TPCx-HS v2 for
Hadoop and Spark that support not only traditional on-premise deployments but also
cutting edge cloud deployments.

The rest of the paper is organized as follows. Section 2 briefly discusses the Hadoop
ecosystem and the emergence of Spark. In Sect. 3, we present the changes made to TPCx-
HS in version 2 of the benchmark specification and kit. Section 4 follows with an exper‐
imental comparison of Hadoop MapReduce and Spark. Finally, we conclude in Sect. 5.

2 Hadoop Ecosystem

At its core, Apache Hadoop is a software library that provides a framework for distrib‐
uted processing of large datasets using a simple programming model. The popularity of
Hadoop has grown in the last few years because it meets the needs of many organizations
for flexible data analysis. Because of the increased deployment of Hadoop in production,
a rich ecosystem of tools and solutions has developed around it. The number of official
Apache open source projects alone, that are related to Hadoop, have increased from just
1 in 2008 [5] to 26 today [6]. Commercial Hadoop offerings are even more prolific and
diverse, and include platforms and packaged distributions from vendors such as Clou‐
dera, Hortonworks, and MapR, plus a variety of tools for specific Hadoop development,
production, and maintenance tasks. Today, Apache Spark represents an increasingly
important piece of this ecosystem.

2.1 Emergence of Spark

Apache Spark is an open source cluster computing framework that provides an interface
for programming entire clusters with implicit data parallelism and fault-tolerance. It was
developed to overcome some of the bottlenecks of Apache Hadoop, one of which is
around the use of intermediate persistent storage. Spark provides an alternative to
MapReduce that enables workloads to execute in memory, instead of on disk. Spark
accesses data from HDFS but bypasses the MapReduce processing framework, and thus
eliminates the resource-intensive disk operations that MapReduce requires. By using in-
memory computing, Spark workloads typically run significantly faster compared to disk
execution.

According to a Big Data survey report published by the Taneja Group [3], perform‐
ance was cited as one of the main drivers of Spark adoption. Within the report, more
than half of the respondents mentioned actively using Spark, with a notable increase in
usage over the twelve months following the survey. Clearly, Spark is an important
component of any Big Data pipeline today. Interestingly, but not surprisingly, there is
also a significant trend towards deploying Spark in the cloud.

3 TPCx-HS v2

The TPCx-HS benchmark now stresses both the hardware and software stack including
the execution engine (MapReduce or Spark) and Hadoop Filesystem API compatible

TPCx-HS v2: Transforming with Technology Changes 121



layers for both on-premise and cloud deployments. The workload can be used to assess
a broad range of system topologies and implementations of Hadoop/Spark clusters. In
this new version of the kit, there have been changes made to support not only Spark but
also Hadoop 2 APIs. The following sections discuss the need for these changes and
describe what they are.

3.1 Hadoop 2 Support

With Hadoop 2, MapReduce from Hadoop 1 (MRv1) has been split into two compo‐
nents. The cluster resource management capabilities have become YARN (Yet Another
Resource Negotiator) [11], while the MapReduce-specific capabilities remain MapRe‐
duce (MRv2)—albeit with a newer API. This is a significant upgrade to the way sched‐
uling, resource management, and execution occur in Hadoop. It divides resource
management and job lifecycle management into separate components.

The new YARN ResourceManager manages the global assignment of compute
resources to applications, and the per-application ApplicationMaster manages the sched‐
uling and coordination of an application. An application is either a single job (in the
sense of Hadoop 1 MapReduce jobs) or a Directed Acyclic Graph (DAG) of such jobs.
The ResourceManager and per-machine NodeManager daemon, which manages the
user processes on that machine, form the computation unit of the job. The per-application
ApplicationMaster is the framework-specific library and is tasked with negotiating
resources from the ResourceManager and working with the NodeManager(s) to execute
and monitor the tasks. One of the primary issues with MRv1 is that the Map and Reduce
slot configuration is static. This inflexibility can lead to the underutilization of resources
[10]. There is no slot configuration in YARN, allowing it to be more dynamic and hence
more efficient [11]. Another limitation of MRv1 is that the Hadoop framework only
supports MapReduce jobs. YARN supports both MapReduce and non-MapReduce
applications.

3.1.1 MapReduce Kit Changes
While TPCx-HS v1 used the MRv1 API, the MapReduce code in the TPCx-HS v2 kit
has been rewritten to conform to the MRv2 Java API. Since the MRv2 API is not back‐
ward compatible, a side effect of this change is that TPCx-HS v2 will not run on Hadoop
1. As before, job configuration options can be specified on the command line or in
the mapred-site.xml file on the client. The vast majority of job configuration options that
were available in MRv1 work in MRv2/YARN as well. For consistency and clarity,
many options have been given new names. The older names are deprecated, but will still
work for the time being. One more notable difference is the change in record format
between TPCx-HS v1 and v2. The MRv1 code used a 64-bit Linear Congruential Gener‐
ator (LCG) based random number generator, while the new MRv2 code uses a 128-bit
LCG random number generator. As a result, keys now remain in the binary format.
TPCx-HS v2 data is also less compressible as it was changed to reflect the changes in
the GraySort benchmark [8] on which it is based [7]. Results of running the kit with the
new API are detailed in Sect. 4.
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3.2 Spark Support

Spark is a unified engine for distributed data processing. It enables batch, real-time, and
advanced analytics on the Hadoop platform. Spark has a programming model similar to
MapReduce but extends it with a data-sharing abstraction called “Resilient Distributed
Datasets,” or RDDs [9]. RDDs enable Spark to perform fault tolerant distributed in-
memory computations.

Spark can be run in standalone mode or on YARN, both of which are supported by
the TPCx-HS kit. In standalone mode, Spark manages its own cluster and uses a master/
worker architecture. Here, a single driver (master) manages the workers on which the
executors run. When run on YARN, YARN is responsible for allocating resources to
Spark. Spark on YARN supports data locality for data residing in HDFS.

3.2.1 Spark Kit Changes
The TPCx-HS kit utilizes the Spark Scala API, for running the three phases of data
generation, data sorting, and data validation required by the benchmark. The record
generation in the Spark code is similar to the MRv2 code, so both of these results are
comparable. The settings needed for Spark can be added to the Spark default configu‐
ration, for additional tuning. The kit supports running Spark using YARN or in stand‐
alone mode. The YARN configuration settings can be changed as needed for running
Spark applications. The new jar file for Spark is also part of the kit and the user can
choose to run with either Spark or MapReduce as the framework for running the bench‐
mark. The results of the Spark framework tests are outlined in Sect. 4.

3.3 Cloud Support

The TPCx-HS specification now allows for cloud services to be part of the System Under
Test. Moreover, the disclosure requirements have been amended to support public cloud
environments where there is limited visibility into the underlying technology platform.

While there was nothing inherent in the workload or kit that prevented TPCx-HS
from running on public or private cloud infrastructure, changes to the TPCx-HS speci‐
fication were required in order to make the results compliant with the new TPC pricing
policies outlined in the TPC Pricing Specification version 2.0 [4]. In particular, for a
measured configuration the benchmark driver and the System Under Test must all reside
in the same region and for a priced configuration the benchmark driver and the System
Under Test must all reside in the same region. The region of the priced configuration
may be different from the region of the measured configuration. The price of the priced
configuration must include all hardware, software, cloud services, and maintenance
charges over a period of 3 years.
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4 Experimental Results

4.1 Configuration

The 13 HPE ProLiant DL 380 Gen 9 servers used in the test were configured identically,
with two Intel Xeon E5-2683 v4 (“Broadwell”) processors with 16 cores each and 512
GiB of memory. Hyper-Threading was enabled so each server showed 64 logical
processors.

Each server was configured with two 1.2 TB spinning disks in a RAID 1 mirror for
the server operating systems, as well as four 800 GB Non-Volatile Memory Express
(NVMe) solid state disks connected to the PCI bus, and twelve 800 GB SAS Solid State
Disks (SSDs) connected through the HPE Smart Array P840ar/2G raid controller.

Full server configuration details are shown in Table 1.

Table 1. Server configuration. In this document notation such as “GiB” refers to binary quantities
such as gigibytes (2**30 or 1,073,741,824) while “GB” refers to gigabytes (10**9 or
1,000,000,000).

Component Quantity/Type
Server HPE ProLiant DL380 Gen 9
Processor 2× Intel Xeon CPU E5-2683 v4 @ 2.10 GHz

w/16 cores each
Logical Processors (including HyperThreads) 64
Memory 512 GiB (16× 32 GiB DIMMs)
NICs 2× 1 GbE ports + 4 × 10 GbE ports
Hard Drives 2× 1.2 TB 12G SAS 10 K 2.5in HDD – RAID

1 for OS
NVMes 4× 800 GB NVMe PCIe – NodeManager traffic
SSDs 12× 800 GB 12G SAS SSD – DataNode traffic
RAID Controller HPE Smart Array P840ar/2G Controller
Remote Access HPE iLO Advanced

Three of the servers were virtualized with VMware vSphere 6.5 and ran virtual
machines that managed the Hadoop cluster. On the first server, a VM hosted the Gateway
node, running Cloudera Manager and several other Hadoop functions as well as the
gateway for the Hadoop Distributed File System (HDFS), YARN, Spark, and Hive
services. The second and third servers each hosted a Master VM, on which the active
and passive HDFS NameNode and YARN ResourceManager components and associ‐
ated services ran. ZooKeeper, running on all three VMs, provided high availability.

The other 10 servers ran only the worker services, HDFS DataNode, and YARN
NodeManager. Spark executors ran on the YARN NodeManagers.

The full assignment of roles is shown in Table 2. Key software component versions
are shown in Table 3.
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Table 2. Hadoop/Spark roles.

Node Roles
Gateway Cloudera Manager, ZooKeeper Server, HDFS JournalNode, HDFS gateway,

YARN gateway, Hive gateway, Spark gateway, Spark History Server, Hive
Metastore Server, Hive Server2, Hive WebHCat Server, Hue Server, Oozie
Server

Master1 HDFS NameNode (Active), YARN ResourceManager (Standby), ZooKeeper
Server, HDFS JournalNode, HDFS Balancer, HDFS FailoverController,
HDFS HttpFS, HDFS NFS gateway

Master2 HDFS NameNode (Standby), YARN ResourceManager (Active), ZooKeeper
Server, HDFS JournalNode, HDFS FailoverController, YARN JobHistory
Server,

Workers (10) HDFS DataNode, YARN NodeManager, Spark Executor

Table 3. Key software components.

Component Version
Operating System Centos 7.3
Cloudera Distribution of Hadoop 5.10.0
Cloudera Manager 5.10.0
Hadoop 2.6.0+cdh5.10.0+2102
HDFS 2.6.0+cdh5.10.0+2102
YARN 2.6.0+cdh5.10.0+2102
MapReduce2 2.6.0+cdh5.10.0+2102
Hive 1.1.0+cdh5.10.0+859
Spark 1.6.0+cdh5.10.0+457
ZooKeeper 3.4.5+cdh5.10.0+104
Java Oracle 1.8.0_111-b14
MySQL 5.6.35 Community Server

With the NVMe storage providing the highest random read/write IOs per second,
the four NVMe devices in each server were assigned to handle the NodeManager
temporary data, which consists of Hadoop map spills to disk and reduce shuffles. SAS
SSDs provide very high speed sequential reads and writes, so the twelve SSDs in each
server were assigned to the DataNode traffic, consisting of reads and writes of permanent
HDFS data.

The Hadoop and Spark parameters used in the test are shown in Table 4. They fall
into two categories. Parameters such as yarn.nodemanager.resource.cpu-vcores and
yarn.nodemanager.resource.memory-mb assign the resources available to YARN (to
provide to containers running Hadoop map or reduce tasks or Spark executors), while
the rest are application-dependent parameters.
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Table 4. Key Hadoop/Spark cluster parameters used in tests.

Parameter Default Configured
dfs.blocksize 128 MiB 1 GiB
dfs.replication 3 3
mapreduce.task.io.sort.mb 256 MiB 2047 MiB
yarn.nodemanager.resource.cpu-vcores 64
mapreduce.map.cpu.vcores 1 1
mapreduce.reduce.cpu.vcores 1 1
yarn.nodemanager.resource.memory-mb 448 GiB
mapreduce.map.memory.mb 1 GiB 6.25 GiB
mapreduce.reduce.memory.mb 1 GiB 6.25 GiB
Maximum map/reduce tasks per node 64/64
Number of map/reduce tasks used in tests 639/639
spark.executor.cores 1 4
spark.executor.memory 256 MiB 25 GiB
spark.driver.memory 1 GiB 10 GiB
spark.executor.instances 149
Maximum number of Spark executors per node 16
Log Level on HDFS, YARN, Hive INFO WARN

For yarn.nodemanager.resource.cpu-vcores, all 64 logical processors were assigned
to YARN vcores. For yarn.nodemanager.resource.memory-mb, the 512 GiB server
memory was reduced by about 12% to provide memory for the operating system, as well
as the Java heap size required for the DataNode and NodeManager processes, resulting
in 448 GiB usable for containers.

The dfs.blocksize was set at 1 GiB to take advantage of the large memory available
to YARN, and the mapreduce.task.io.sort.mb was consequently set to the largest
possible value, 2047 MiB, to minimize spills to disk during the map processing of each
HDFS block.

The number of vcores assigned to map and reduce processes (mapre‐
duce.map.cpu.vcores and mapreduce.reduce.cpu.vcores) were left at the default value
of 1, meaning that a maximum of 64 map or reduce task containers could run at any one
time on the 64-vcore cluster. It was found through experimentation that using all 64
vcores per server provided the fastest performance, but optimum performance was
achieved by lowering the per-task memory (mapreduce.map.memory.mb and mapre‐
duce.reduce.memory.mb) from the maximum sustainable by the 448-GiB cluster (7
GiB) down to 6.25 GiB. With each of the 10 nodes running 64 YARN containers, a
maximum of 640 task containers could be run simultaneously. One YARN container
was needed to run the YARN Application Master, leaving 639 for maps or reduces.

For Spark the calculations are similar: 16 Spark executors were enabled per node,
each using 4 vcores (spark.executor.cores) and 25 GiB (spark.executor.memory). Spark
automatically adds 10% of Spark executor memory overhead, so the total memory
consumed by 16 Spark executors (16 × 27.5 GiB or 440 GiB) would fit within the 448-
GiB cluster. However, it was found that the best Spark performance was obtained while
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allowing more free memory and vcores, so the final setup used 15 executors per node
or 149 per cluster (again with one YARN container left over for the ApplicationMaster
task).

Spark was run in yarn-client mode, meaning that the Spark master process ran on
the Spark gateway on the Gateway VM. 10 GiB was assigned to this process
(spark.driver.memory).

Finally, the log level of most Hadoop processes was lowered from INFO to WARN
to reduce the amount of log traffic being written on each server.

4.2 Results

The results for the three versions of the code are shown in Table 5. Both the consolidated
benchmark metric (HSph@3TB) in which larger is faster, and the elapsed times for the
three TPCx-HS phases (smaller is better) are shown.

Table 5. Results

Test TPCx-HS Performance
Metric (HSph@3TB)

HSGen Elapsed
Time (S)

HSSort Elapsed
Time (S)

HSValidate
Elapsed Time (S)

MRv1 7.8843 372 918 123
MRv2 7.2974 370 979 127
Spark 8.6281 368 799 79

Utilization of CPU, disks, and network are shown for the three tests in Figs. 1, 2, 3,
4, 5, 6, 7, 8 and 9. One can see how the various resources are utilized through the phases
of the benchmark, as well as the small differences between the two MapReduce versions
and the Spark version.

Fig. 1. MRv1 CPU Utilization on a single
worker node.

Fig. 2. MRv1 Disk Throughput on a single
worker node.
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Fig. 3. MRv1 Network Receive and Transmit
Rates on a single worker node.

Fig. 4. MRv2 CPU Utilization on a single
worker node.

Fig. 5. MRv2 Disk Throughput on a single
worker node.

Fig. 6. MRv2 Network Receive and Transmit
Rates on a single worker node.

Fig. 7. Spark CPU Utilization on a single
worker node.

Fig. 8. Spark Disk Throughput on a single
worker node.
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Fig. 9. Spark Network Receive and Transmit Rates on a single worker node.

5 Conclusion

The TPC has played a crucial role in providing the industry with relevant standards for
total system performance, price-performance, and energy efficiency comparisons. TPC
benchmarks are widely used by database researchers and academia. As Big Data became
an integral part of enterprise IT, TPCx-HS was the TPC’s first major step in creating a
set of industry standards for measuring various aspects of hardware and software systems
dealing with Big Data. It has helped drive competition in the Big Data marketplace and
has proven to be a successful industry standard benchmark for Hadoop systems.

However, the Big Data technology landscape has rapidly changed since the bench‐
mark’s initial release, and in keeping with these changes TPCx-HS has also transformed.
TPCx-HS v2 has advanced not only by supporting the significant leaps in technology,
namely Hadoop 2 (MapReduce v2/YARN) and Spark, but also by accommodating major
new infrastructure and deployment options such as the cloud.
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Abstract. The wide availability of open source big data processing
frameworks, such as Spark, has increased migration of existing appli-
cations and deployment of new applications to these cost-effective plat-
forms. One of the challenges is assuring performance of an application
with increase in data size in production system. We have addressed this
problem in our work for Spark platform using a performance predic-
tion model in development environment. We have proposed a grey box
approach to estimate an application execution time on Spark cluster
for higher data size using measurements on low volume data in a small
size cluster. The proposed model may also be used iteratively to esti-
mate the competent cluster size for desired application performance in
production environment. We have discussed both machine learning and
analytic based techniques to build the model. The model is also flexible to
different configurations of Spark cluster. This flexibility enables the use
of the prediction model with optimization techniques to get tuned value
of Spark parameters for optimal performance of deployed application on
Spark cluster. Our key innovations in building Spark performance pre-
diction model are support for different configurations of Spark platform,
and simulator to estimate Spark stage execution time which includes
task execution variability due to HDFS, data skew and cluster nodes
heterogeneity. We have shown that our proposed approaches are able to
predict within 20% error bound for Wordcount, Terasort, K-means and
few TPC-H SQL workloads.

1 Introduction

The digitization wave has led to challenge of processing high volume and high
velocity data in real time. Apache Spark is one of the commodity cluster plat-
forms available in open source to address this need due to its in-memory process-
ing capability. Application deployment on commodity cluster system has chal-
lenge of assuring its performance over time with increase in data size. Con-
versely, appropriate capacity sizing of production Spark cluster is needed for
desired performance irrespective of increase in data size. This raises the need
for a performance assurance model, which can estimate an application perfor-
mance for larger data sizes and variable cluster sizes before deployment. Here,
by performance we mean application execution time.

c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 131–146, 2018.
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One of the popular black box approaches is to use machine learning tech-
niques to build performance prediction model. This requires identification of
performance sensitive parameters (or relevant features) and collecting their val-
ues for multiple executions of application which may delay deployment. We have
discussed this in detail in Sect. 3. An analytic or mathematical model based on
few measurements is desirable to reduce cost and time to deploy.

An application deployed on Spark platform is executed as a sequence of
Spark jobs. Each Spark job is executed as a directed acyclic graph (DAG) con-
sisting of stages. Each stage has multiple executors running in parallel and each
executor has set of concurrent tasks. This complexity cannot be handled by sim-
ple mathematics alone. We have proposed a hierarchical model for estimating
Spark application execution time. Further, data skew and task execution vari-
ability have been handled by building a simulator for Spark jobs. Literature also
has similar simulator but for Hadoop MR jobs [12]. We have focused on Spark
parameters which can be changed during application execution and hence the
proposed performance prediction model may be used with optimization tech-
niques to get tuned value of Spark parameters for auto tuning. This paper has
following contributions.

– Analysis of Spark’s configurable parameters’ sensitivity to application execu-
tion time with respect to increase in data size. Use of this analysis to define
features to be used by machine learning algorithms for predicting application
execution time on larger data sizes. We have compared accuracy of predic-
tion models based on various ML techniques such as Multi Linear Regression
(MLR), MLR-Quadratic and Support Vector Machine (SVM).

– Analytic based approach to predict an application execution time, on Spark
platform, for larger data and cluster sizes using limited measurements in small
size development environment. This has led to innovation in building simulator
for estimating Spark job’s stages’ execution time. We have also built models
for estimating task’s JVM time, task’s scheduler delay and task’s shuffle time
as function of input data size to support different configurations of Spark
cluster. This capability of the model may also be used to build auto tuner.

The paper is organized as follows. Section 2 discusses the related work. The
Spark platform performance sensitive parameters analysis and machine learning
approach for building performance prediction model are discussed in Sect. 3.
The analytic based performance prediction model is presented in Sect. 4. The
experimental results for validation of the model are presented in Sect. 5. The
extension of the performance prediction models to build auto tuner is formalized
in Sect. 6. Finally, the paper is concluded in Sect. 7.

2 Related Work

Lot of work has been done in the area of performance prediction [5,7,14] and
auto tuning of applications [4,6,8,9] on big data platforms. Majority of this
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work addresses Hadoop technology. [10,11] have concentrated on building per-
formance prediction models, using limited measurements in small size develop-
ment environment, for relational databases and Hive+Hadoop platforms respec-
tively. However, [3,8,13] discuss performance analysis and tuning of Spark clus-
ter. Ahsan [3] has shown that application performance degrades on large data
size primarily due to JVM GC overheads. We have also built task’s JVM predic-
tion model as function of data size for estimating application execution time on
larger data size, as discussed in Sect. 4.3. Machine learning techniques have also
been used by big data community to build performance models [7,14]. We cate-
gorize the related work into two parts- Machine learning (ML) based approach
and Cost based analytic approach.

2.1 ML Based Approach

Machine learning (ML) based approach is a black box method, which has been
explored by big data community primarily to model performance of complex big
data system. ML models are simple to build and are based on measurements
collected during execution of actual workload on actual system. Kay et al. [7]
has proposed generic ML approach with design of experiments and feature selec-
tion for analytic workload on big data platforms. [14] talks about tuning and
performance prediction of Hadoop jobs using machine learning approach. They
have focused on four performance sensitive parameters of Hadoop platform along
with data size to build model. They have compared the accuracy of models built
using different algorithms such as MLR, MLR-quadratic, SVM etc. We have
customized this approach for Spark platform as discussed in Sect. 3.

2.2 Cost Based Approach

Cost based approach employs white box technique, which builds model based
on deeper understanding of a system. However, it uses finite resources to build
model unlike ML approach. Starfish [5] conducts instrumentation of Hadoop to
collect performance measurements and build performance model to estimate a
job execution time as function of various Hadoop platform parameters and data
sizes. This method makes it adaptable for auto tuning by optimizing the model
for different parameter settings. We have used similar methodology for Spark
platform, but without instrumentation, by including Spark platform performance
sensitive parameters as inputs to the prediction model as discussed in Sect. 4.

Panagiotis [8] proposes to tune a large number of Spark parameters using
trial and error rule base created with few measurements. Their focus has been
more on serialization and memory related parameters, however, we are inter-
ested in parallelism and memory related parameters in this paper. Shi et al. [9]
has proposed Produce-Transfer-Consume (PTC) approach to model Hadoop job
execution cost and used this to get optimal setting for Hadoop platforms. They
have identified only few key parameters which are used to tune Hadoop system
for a given job. We have also chosen only few performance sensitive parameters
to build performance prediction model for Spark applications. The proposed
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model is formulated along the steps involved in an application execution on
Spark platform. However, we do not perform white box instrumentation rather
conduct our own experiments to collect the desired performance data for each
such step. Wang et al. [13] has proposed an analytic based model for predicting
Spark job performance and is closely related to our work discussed in Sect. 4.
However, their model is restricted to same values for Spark parameters both
in the sample and actual execution of an application. We could overcome this
limitation by including sub models for estimating task JVM time, Shuffle time
and Scheduler delay time. The heterogeneity at data, HDFS and hardware level
for task execution has been handled by a simulator for estimating Spark stage
execution time unlike the mathematical approach proposed in [13].

3 Machine Learning Based Model

Building a machine learning based model requires correct identification of fea-
tures and choice of right machine learning algorithm. Spark platform has more
than 100 parameters to configure [8]. The first challenge is to identify right set
of parameters which impact an application execution time for varying data and
cluster sizes and this set constitutes our feature set. We targeted only those
parameters which could be changed during an application execution.

Fig. 1. Performance sensitivity analysis on 20 GB data size and 2 node cluster

We have conducted performance sensitivity analysis for number of parameters
which are potential candidates for feature selection. The most sensitive parame-
ters identified are the ones, whose changes led to variations in performance of
the application. Our observed feature set in Spark 2.0 constitutes number of
executors, number of cores per executor, executor memory size (this controls
both shuffle memory and JVM heap size) and data size as shown in Fig. 1.

3.1 Experimental Set Up and Results

Our experimental setup consists of 5 nodes, each of Intel(R) Xeon(R) CPU
X5365 @ 3.00 GHz, 8 cores and 16 GB RAM. The platform stack consists of Yarn,
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Apache Spark 2.01 and HDFS 2.6. We have one master and maximum four slaves
in these experiments. We have formulated set of experiments based on the hard-
ware constraints of the system. For example, the product of ‘number of cores
per executor’ and ‘number of executors’ can vary from 1 to maximum cores in
the cluster. The experimental configurations to collect training data is given
in Table 1. We have built and tested ML prediction models for three types of
workloads − Wordcount, Terasort and K-means [1] for data sizes varying from
5 GB to 15 GB. A linux bash script executes each of the application for all com-
binations of the parameters settings given in Table 1. Few of the combinations
are invalid due to resource mismatch and are skipped. In total we could collect
around 400 data points, as training set, for each application to build ML model.

Table 1. Experimental setup configuration for machine learning model

Configuration parameter Minimum value Maximum value

Number of executors (–num-executor) 2 10

Number of cores per executor (–executor-cores) 1 8

Executor memory (–executor-memory) 1 12

Data size 1 GB 15 GB

Table 2. Accuracy of ML models for different algorithms

Wordcount Terasort K-Means

Model MAPE Model MAPE Model MAPE

Linear 0.2345 Linear 0.3049 Linear 0.2500

MLR-I 0.2445 MLR-I 0.21985 MLR-I 0.2900

MLR-Q 0.2310 MLR-Q 0.2998 MLR-Q 0.2508

SVM 0.2356 SVM 0.1701 SVM 0.2009

SVM tuning 0.2234 SVM tuning 0.0876 SVM Tuning 0.2152

Table 3. Performance tuning results for Applications on 20 GB data size with default
settings on (4 + 1) node cluster where, Ne: Number of executors, Nc: Number of cores
per executor, Nm: Executor memory size in GB

Application Default values Execution
time on
default values

Parameter
optimal values

Optimal
execution time
(Gain%)

Wordcount Ne = 2, Nc = 1,
Nm = 1

1165.1450 Ne = 10, Nc = 2,
Nm = 4

377.02 (67%)

Terasort Ne = 2, Nc = 1,
Nm = 1

884.395 Ne = 4, Nc = 4,
Nm = 1

664.81 (24%)

K-means Ne = 2, Nc = 1,
Nm = 1

14778.06 Ne = 8, Nc = 6,
Nm = 12

875.479 (94%)
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A statistical tool R is used to build performance prediction model using vari-
ous algorithms such as Multiple Linear Regression (MLR), MLR with quadratic
effect and SVM with and without tuning [14]. These ML model are used for pre-
dicting application execution time on 20 GB data size. As shown in Table 2, these
algorithms are able to predict with Mean Absolute Percentage Error (MAPE)
22% on average. These performance prediction models are integrated with opti-
mization algorithm in R and could yield up to 94% improvement in application
performance as shown in Table 3. Machine Learning based prediction models
requires lot of resources and time for data collection. Agile development frame-
work does not allow time delay incurred in collecting training data for building
performance assurance model. Therefore, we have built analytic model using one
time measurements as discussed in the next section.

4 Measurement Based Analytic Performance Prediction
Model

We assume a small size Spark cluster with application and its representative
data sets available in development environment. The cluster is assumed to have
atleast one instance of each type of heterogeneous nodes deployed in produc-
tion system. The application is executed in this small cluster on small data size
(DevSize). The application logs created by Spark platform are parsed to collect
granular level performance data as given in Table 4. The problem statement is
to estimate the application execution time for production environment, having
larger data size (say ProdSize) and larger cluster size (say CSprod) with differ-
ent Spark parameter configurations, using the collected measurements. We will
use notations given in Table 4 for further explanation of the model. An appli-
cation is executed as a serial execution of a number of Spark jobs as shown in
Fig. 2. Therefore, the application’s predicted execution time is summation of the
estimated execution time of its jobs launched one after another i.e.

ApplnExecutionT ime =
i=N∑

i=0

pJobTi (1)

A Spark job is executed in a form of directed acyclic graph (DAG), where each
node in the graph represents a stage. A new stage is created whenever next
operation requires data to be shuffled. A job’s execution time is predicted as
summation of the estimated execution time of all its stages i.e.

pJobTi = JobSti +
k=SNi∑

k=0

pStageT k
i + JobClni (2)

Each stage is executed as set of concurrent executors with parallel tasks in
each executor, depending on values of number of executors and number of
cores per executor parameters. If executors allocated per node (i.e. NEp

CSp
) can

not be scheduled concurrently, due to non-availability of cores on the node
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(i.e. NEp

CSp
∗ NCp < node’s available cores), then the executors are serialized

and executed one after another, and the stage’s estimated execution time is
increased by factor of the number of serialized executors. For simplification, we
assume that Spark parameter configuration is such that executors are running
concurrently at each node. Each executor spawns multiple threads, one for each
task. All tasks launched in an executor share the same JVM memory. Each
task processes a defined size of data set (i.e.block size). For a given data size,
an executor may have multiple waves of such parallel tasks executions on each
core. Since all tasks in a stage are identical and read same data size, therefore,
execution time of stage ‘j’ of job ‘i’ may be estimated as:

pStageT j
i = StgStji + Avg(pTskT j

i ) ∗
⌈

pDSj
i

(BSp ∗ NEp ∗ NCp)

⌉
+ StgClnj

i (3)

However, variation in tasks’ execution time may break the symmetry and
number of tasks assigned per core (or wave count) may not be same at all
cores. Variation in tasks’ execution time could be due to data skew, heteroge-
neous nodes and/or variability in location of HDFS block(s) read by a task-
local, same rack or remote. We have built a stage task execution simulator,
using performance summary created in development environment (in Sect. 4.1),
to capture this variability as discussed in Sect. 4.5. A task execution time consti-
tutes scheduler delay, serialization time, de-serialization time, JVM overheads,
compute time including IO read/write time in HDFS and shuffle IO time. Note
that each task reads either shuffled data or input data and writes shuffled data
or output data. Therefore execution time of a task in stage ‘j’ of job ‘i’ is esti-
mated as:

pTskT j
i = pTskSdji + pTskSerji + pTskCtji + pTskJvmj

i + pTskSf j
i (4)

A task’s serialization and de-serialization time depends on amount of data
processed by a task, which depends on the block size. Since this is a compute
operation, it can be assumed to increase linearly with block size. For same block
size in both the environments, pTskSerji = dTskSerji . A task’s JVM time rep-
resents the overhead in garbage collection while managing multiple threads. The
JVM time estimation depends on type of computation, hardware system and
number of threads, which is discussed in detail in Sect. 4.3. For a given Spark
cluster, an increase in input data size may increase a task’s shuffle data such
that it may not fit in the allocated memory. This results in spill over to disk and
may increase shuffle time non-linearly because of additional disk read and write
operations. We need a model to estimate shuffle read and write time as function
of input data size, cluster size and shuffle memory as discussed in Sect. 4.4.

4.1 Performance Summary

We have observed that variation in task execution time also relates to its launch
time on a core. To capture this variation, we divided a stage tasks into two types
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Table 4. Notations used in the analytic model discussed in Sect. 4

Parameter Development Production

Block size BSdev BSprod

Number of executors NEd NEp

Number of cores per executor NCd NCp

Number of jobs in the application N N

Number of stages in job ‘i’ SNi SNi

Job ‘i’ execution time dJobTi pJobTi

Job ‘i’ start up time JobSti JobSti

Job ‘i’ clean up time JobClni JobClni

Job ‘i’ stage ‘j’ execution time dStageT j
i pStageT j

i

Job ‘i’ stage ‘j’ startup time StgStji StgStji
Job ‘i’ stage ‘j’ cleanup time StgClnj

i StgClnj
i

Job ‘i’, stage ‘j’, number of tasks dNT j
i pNT j

i

Job ‘i’, stage ‘j’, size of shuffled data dDSj
i pDSj

i

Job ‘i’, stage ‘j’, task Execution Time dTskT j
i pTskT j

i

Job ‘i’, stage ‘j’, task execution time in ‘k’th wave dTskT jk
i pTskT jk

i

Job ‘i’, stage ‘j’, task serialization + de-serialization
time

dTskSerji pTskSerji

Job ‘i’, stage ‘j’, task JVM time dTskJvmj
i pTskJvmj

i

Job ‘i’, stage ‘j’, task shuffle IO time dTskSfj
i pTskSfj

i

Job ‘i’, stage ‘j’, task scheduler delay dTskSdji pTskSdji
Job ‘i’, stage ‘j’, first wave task compute time dFstTskCtji pFstTskCtji
Job ‘i’, stage ‘j’, first wave task scheduler delay dFstTskSdji pFstTskSdji
Job ‘i’, stage ‘j’, rest wave ‘k’th bucket duration dRstTkBktDurjki pRstTkBktDurjki
Job ‘i’, stage ‘j’, number of rest wave tasks in ‘k’th
bucket

dRstTkBktNjk
i pRstTskBktNjk

i

Job ‘i’, stage ‘j’, rest wave task compute time dRstTskCtji pRstTskCtji
Job ‘i’, stage ‘j’, rest wave task scheduler delay dRstTskSdji pRstTskSdji
Job ‘i’, stage ‘j’, rest wave task maximum compute
time

dRstTkMaxCT j
i –

Job ‘i’, stage ‘j’, rest wave task minimum compute
time

dRstTkMinCT j
i –

of tasks - first wave tasks and rest wave tasks as shown in Fig. 2 by emulating the
task scheduling behaviour of Spark platform across NEd ∗NCd cores. An appli-
cation log is parsed to collect list of all dTskT j

i sorted in the order of their launch
time. An array of data structure of size NEd ∗NCd is allocated with each ‘k’th
element storing the ‘k’th core current finish time. Initially all elements are initial-
ized to zero. dNT j

i tasks are scheduled on NEd ∗ NCd cores such that the next
task in the list is scheduled on the core having minimum finish time, leading to
a task allocation structure as shown in Fig. 2. Using the measurements collected
from the Spark application log, dFstTskCT j

i and dFstTskSdji are computed as
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Fig. 2. (a) Application execution on Spark (b) Tasks execution in an executor for a
stage Si with 4 cores

average of (dTskT j
i −dTskJvmj

i −dTskSf j
i −dTskSdji ) and average of dTskSdji

respectively of all the tasks in the first wave. Similarly, dRstTskSdji is calculated
as the average of scheduler delay of all tasks in the rest wave. dRstTskCT j

i is
also computed as histogram of (dTskT j

i −dTskJvmj
i −dTskSf j

i −dTskSdji ) for
all rest wave tasks, to capture variability in task execution time. The histogram
has ‘m’ buckets each of size BkSizeji such that

BkSizeji =
(dRstTskMaxCT j

i − dRstTskMinCT j
i )

m
(5)

The ‘k’th bucket duration is from (k− 1) ∗BkSizeji to k ∗BkSizeji . Each of the
rest wave tasks is categorized into one of ‘m’ buckets such that dRstTskCT j

i

falls into the duration of the bucket. dRstTskBktDurjki is computed as average
of dRstTskCT j

i for all tasks in ‘k’th bucket. Performance summary of stage ‘j’
of job ‘i’ consists of dFstTskCT j

i and ‘m’ buckets each with its average duration
dRstTskBktDurjli and dRstTskBktN jl

i number of tasks in ‘l’th bucket. Higher
the value of ‘m’, more variation in task execution time can be captured. However,
it may also increase the time taken to mimic scheduler for rest wave tasks, whose
time complexity is O(n + m) for ‘n’ tasks.

4.2 Task Scheduler Delay Prediction Model

Scheduler delay is the delay incurred while scheduling a task. We have observed
larger scheduler delay for first wave tasks due to task scheduling preparation
overheads. Therefore,

pFstTskSdji = dFstTskSdji ∗ pNT j
i

dNT j
i

pRstTskSdji = dRstTskSdji

(6)
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4.3 Task JVM Time Prediction Model

On Spark platform, each executor has single JVM and all tasks scheduled in it
share the same JVM, therefore JVM overheads increases with increase in the
number of concurrent tasks (threads) accessing the same JVM which is con-
trolled by number of cores per executor parameter. Also, we have observed in
our experiments that it increases linearly with number of executors scheduled
concurrently on the same machine. This may be because a JVM manager has
more JVM instances to manage and overheads are assumed to increase linearly
for the model. These overheads are system and application dependent, so we
model the JVM overheads as function of number of cores per executor by tak-
ing average of measured dTskJvmT j

i . The measurements are taken by varying
number of cores per executor and keeping only one executor per machine. We
use regression to estimate JVM overheads for NCp cores per executor in the
production environment. For example, Fig. 3 shows the JVM model used in our
experimental setup for Wordcount and Terasort applications for one executor
per machine. pTskJVM j

i is further extrapolated linearly to the number of con-
current executors per node.

Fig. 3. JVM time estimation model for Wordcount and Terasort applications built on
experimental set up given in Sect. 5

4.4 Task Shuffle Time Prediction Model

A naive approach to estimate a task shuffle time is linear extrapolation i.e.

pTskSf j
i =

∑
∀tasks

dTskSf j
i

dNT j
i

∗ pDSj
i

dDSj
i

(7)

However, it may hold true only for those configurations of production system
where a task’s shuffle data size is small enough to fit in the allocated memory.
Otherwise, shuffle operation leads to spill over to disk and incurs extra disk
IO read/write operations for a task. We model this by estimating shuffle data
size per task and predict if this will lead to spill over. If it does, we estimate
the overheads of spill over and add that to a tasks shuffle time. Spill overheads
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are calculated at small data size by constraining the development environment
to generate spurious disk spills. For simplicity, we assume that network is not
a bottleneck here, so communication overhead increases linear to shuffle data
size. Assuming block size unchanged, the size of shuffle data generated per task
remains same.

Shuffle data size per executor is estimated as (pDSj
i

NEp
). We have observed that

shuffle data size in memory increases due to de-serialization. For an executor, if
this increased size is more than allocated shuffle memory (i.e. storage memory
fraction * executor memory size), the shuffle operation will spill over to disk for
the executor tasks. Let say OptSj

i is the largest shuffle data size per executor
which fits into allocated shuffle memory after serialization and does not spill
over to disk, then for measured spill overheads as Spill (in MB) per task in the

development environment and pDSj
i

NEp
> OptSj

i ,

pTskSf j
i =

∑
∀tasks

dTskSf j
i

dNT j
i

∗ pDSj
i

dDSj
i

+

(
pDSj

i

NEp
− OptSj

i

)
∗ Spill

where, pDSj
i = dDSj

i ∗ Prodsize

DevSize

(8)

4.5 Stage Task Execution Simulation

To estimate execution time of a stage, we need to estimate number of tasks,
pNT j

i , and their estimated execution time i.e. pTskT j
i . pNT j

i is estimated as
pDSj

i

BSp
where, pDSj

i is given in Eq. 8. As mentioned in Sect. 4.1, a stage tasks
are divided into first wave and rest wave tasks, therefore we estimate average
execution time for both the waves’ task separately using the performance sum-
mary (Sect. 4.1) created in the development environment and prediction models
discussed in Sects. 4.2, 4.3 and 4.4. Using Eq. 4, for first wave tasks,

pTskT j
i = dFstTskCT j

i +pFstTskSdji +dTskSerji +pTskJvmj
i +pTskSf j

i (9)

Similarly, for rest wave tasks,

∀l=(1,m), pRstTskBktDurjli = dRstTskBktDurjli + pRstTskSdji+

dTskSerji + pTskJvmj
i + pTskSf j

i

∀l=(1,m), pRstTskBktN jl
i =

(pNT j
i − NEp ∗ NCp)

(dNT j
i − NEd ∗ NCd)

∗ dRstTskBktN jl
i

(10)

Stage execution is simulated by scheduling pNT j
i tasks across NEp∗NCp number

of cores. The simulator maintains an array of data structure of size NEp ∗NCp

with each ‘k’th element storing the ‘k’th core current finish time. NEp ∗ NCp

tasks are allocated as the first wave tasks of duration given in Eq. 9 to each of
the cores. Then, all the rest wave tasks are scheduled from each of ‘m’ buckets
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of duration given in Eq. 10 in round robin fashion such that a task is scheduled
on the core having minimum finish time so far. Therefore,

pStageT j
i = StgStji + Max on T cores

∑

‘k’thCoreTasks

pTskT jk
i + StgClnj

i

where, T = NEp ∗ NCp

(11)

5 Experimental Results and Analysis

Our experimental setup consists of 5 nodes, each of Intel(R) Xeon(R) CPU X5365
@ 3.00 GHz, 8 cores and 16 GB RAM. Each node has disk capacity of 30 GB.
The platform stack consists of Yarn, Apache Spark 2.01, Hive 1.2.1 and HDFS
2.6. We have one master and maximum four slaves in these experiments. We have
kept executor memory as 4 GB across all experiments in both the development
and production environments. However, model supports different executor mem-
ory size as well. The different experimental configuration are shown in Table 5.
We have tested the prediction model for four types of workloads- Wordcount,
Terasort, K-means [1], two SQL queries from TPC-H [2] benchmarks, for data
sizes varying from 5 GB to 20 GB. The development environment consists of 1
+ 2 node cluster with 5 GB data size. We have executed each application on
1 node cluster by varying –executor-cores parameter to build JVM model for
each application as shown in Fig. 3. Each workload listed in Table 5 is executed
in the development environment to build the model as discussed in Sect. 4. The
analytic model is built in Java. It has two components - Parser for parsing the
Spark application log and Prediction module for building the prediction models
which takes input from the parser to build the model. Equation 1 is used to
predict each application execution time for different production environments
created by possible combinations of parameters listed in Table 5.

Table 5. Production system configuration for model validation

Configuration parameter Values

Number of executors (–num-executor) 2, 4, 6

Number of cores per executor
(–executor-cores)

2, 4, 6

Executor memory size 4 GB

Cluster size 2, 4

Data size 10 GB, 20 GB

Workload Wordcount, Terasort, Kmeans

SQL1 select sum(l extendedprice * (1 – l discount))
as revenue from Lineitem

SQL2 select sum(l extendedprice * (1 – l discount))
as revenue from Lineitem, Order where
l orderkey = o orderkey
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5.1 Discussions

We have validated the model for around 15 production configurations for each of
the workloads. Prediction error is calculated as the ratio of the absolute difference
in the actual execution time and the model’s estimated execution time, to the
actual execution time. We have observed an average 15% prediction error for each
application as shown in Fig. 4 with maximum 30% error. We have observed that
large prediction errors are due to gaps in capturing variations in tasks execution
time i.e. pTskCtji in Eq. 4. The analytic model accuracy has been compared with
that of the machine learning model proposed in Sect. 3 for 20 GB data size on
4 nodes cluster for four different configurations of Spark platform parameters.
Figure 5 shows that prediction accuracy of the analytic model is better than that
of the machine learning model. This is because the ML model uses black box
techniques while the analytic model is based on Spark internal job processing
details. Figure 6 shows the actual execution time vs. predicted execution time
for different production environments for Wordcount, Terasort and K-means
applications.

Fig. 4. Analytic model average prediction
error(%)

Fig. 5. ML vs analytic model accu-
racy

Wordcount application has only one job with two stages. It is a simple map-
reduce application, where the proposed model’s estimations are very close to the
actual execution time. We have observed an average accuracy of 91%. Terasort
is a sorting application with two jobs and two stages in each job. For most of
the test cases we observed an accuracy of atleast 80%, however there is one
outlier on 4 node cluster with 4 executors and 4 cores per executor, where the
estimated execution time is 30% more than the actual. This is because for stage
4, where partially sorted data sets are merged and written back to disk, the model
estimates more number of tasks with larger execution time than the actual. This
is due to uniform extrapolation of number of tasks in each bucket which may
need to be refined using data distribution. K-means application has around 20
jobs, each job with 2 stages. Here, we observed accuracy of 85% percent. Few
outliers with at most error of 23% are due to the variation in task execution
time which may not be captured in the histogram for few jobs. The proposed
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Fig. 6. Model validation for Wordcount, Terasort and K-Means applications: Better
accuracy for points closer to the line

simulator uses only four buckets irrespective of type of job or stage- this may
need to be tuned for better accuracy.

We have also validated the model for two simple SQL queries based on TPC-H
benchmarks as shown in Fig. 7. The model may not work for complex SQL queries
having multiple joins. The optimization in Spark 2.0 may lead to execution of
multiple steps of a complex SQL query in a single stage and difficult to get
performance data for each step of SQL query. Whereas, a SQL query execution
time is sensitive to each join operator’s input data sizes, which is not being
considered in our model. SQL1 query is more like an aggregation which has one
job with two stages and SQL2 query has one aggregate and one join operation
which is executed as one job with 4 stages. As shown in Fig. 7 the estimated
values for both SQL queries are closer to the actual value with accuracy of 90%.

Fig. 7. Model validation for TPC-H SQL queries: Better accuracy for points closer to
the line
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6 Auto Tuning of Application Execution on Spark

The performance prediction model presented in Sect. 4 can be used iteratively
in an optimization algorithm to get Spark parameters values for an optimal
performance (i.e. minimum execution time) on a given cluster and data size
as given in Fig. 8. The parameters we have considered for tuning are number
of executors, number of cores per executors and executor memory size. Note
that, there is a scope to include more performance parameters as discussed in
[8], however, we have restricted the model for these three parameters only in
this paper.

Fig. 8. Auto tuner: Optimization of application execution using prediction model

7 Conclusions and Future Work

Spark is a widely deployed commodity based parallel processing framework. The
challenge is to assure performance of applications on Spark cluster for larger
data size before deployment. In this paper, we have presented a model to predict
application execution time for larger data size using finite measurements in small
size development environment. We have presented both machine learning based
approach and analytic model. The analytic model handles data skew and node
heterogeneity by building a simulator for estimating Spark’s stage execution
time. The analytic model is flexible to different Spark configurations since it
also estimates execution time of all components of Spark’s task as function of
the Spark production cluster’s configuration. This capability of the model may be
harnessed to build auto tuner for applications deployed on Spark platform. The
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proposed model shows prediction accuracy of atleast 80% for different workloads.
There is scope to extend the model to support more parameters as discussed in
[8]. Further work is needed for extensive validation of the model for different
applications, more combinations of Spark parameters, larger data size, larger
cluster size and also for cloud deployments. We also plan to create synthetic
benchmarks which can be matched to a given applications to enhance the model’s
prediction capability for an unknown application.

References

1. SparkBench: Spark performance tests. https://github.com/databricks/spark-perf
2. TPC-H benchmarks. https://www.tpc.org/tpch
3. Awan, A.J., Brorsson, M., Vlassov, V., Ayguade, E.: How data volume affects spark

based data analytics on a scale-up server. arXiv:1507.08340 (2015)
4. Awan, A.J., Brorsson, M., Vlassov, V., Ayguade, E.: Architectural impact on per-

formance of in-memory data analytics: apache spark case study. arXiv:1604.08484
(2016)

5. Herodotou, H., Babu, S.: Profiling, what-if, analysis, and cost-based optimization
of mapreduce programs. In: The 37th International Conference on Very Large Data
Bases (2011)

6. Jia, Z., Xue, C., Chen, G., Zhan, J., Zhang, L., Lin, Y., Hofstee, P.: Auto-tuning
spark big data workloads on POWER8: prediction-based dynamic SMT threading.
In: Proceedings of the 2016 International Conference on Parallel Architectures and
Compilation (2016)

7. Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.: Making sense of
performance in data analytics frameworks. In: Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2015)
(2015)

8. Petridis, P., Gounaris, A., Torres, J.: Spark parameter tuning via trial-and-error.
arXiv:1607.07348 (2016)

9. Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C.: MRTuner: a toolkit to enable
holistic optimization for mapreduce jobs. PVLDB 7(13), 1319–1330 (2014)

10. Singhal, R., Nambiar, M.: Predicting SQL query execution time for large data
volume. In: ACM Proceedings of IDEAS (2016)

11. Singhal, R., Sangroya, A.: Performance assurance model for HiveQL on large data
volume. In: International Workshop on Foundations of Big Data Computing in
conjunction with 22nd IEEE International Conference on High Performance Com-
puting (2015)

12. Singhal, R., Verma, A.: Predicting job completion time in heterogeneous mapre-
duce environments. In: Proceedings of IPDPS: Heterogeneous Computing Work-
shop, IPDPS (2016)

13. Wang, K., Khan, M.M.H.: Performance prediction for apache spark platform. In:
IEEE 17th International Conference on High Performance Computing and Com-
munications (HPCC) (2015)

14. Yigitbasi, N., Willke, T., Liao, G., Epema, D.: Towards machine learning-based
auto-tuning of mapreduce. In: IEEE 21st International Symposium on Modelling,
Analysis and Simulation of Computer and Telecommunication Systems (2013)

https://github.com/databricks/spark-perf
https://www.tpc.org/tpch
http://arxiv.org/abs/1507.08340
http://arxiv.org/abs/1604.08484
http://arxiv.org/abs/1607.07348


Benchmarking and Performance Analysis
for Distributed Cache Systems:
A Comparative Case Study

Haytham Salhi1(B), Feras Odeh1(B), Rabee Nasser1(B), and Adel Taweel1,2(B)

1 Birzeit University, Birzeit, Palestine
hsalhi89@gmail.com, ferasodh@gmail.com, rabinasser@gmail.com,

ataweel@birzeit.edu
2 King’s College, London, UK

Abstract. Caching critical pieces of information in memory or local
hard drive is important for applications’ performance. Critical pieces of
information could include, for example, information returned from I/O-
intensive queries or computationally-intensive calculations. Apart from
such, storing large amounts of data in a single memory is expensive
and sometimes infeasible. Distributed cache systems come to offer faster
access by exploiting the memory of more than one machine but they
appear as one logical large cache. Therefore, analyzing and benchmark-
ing these systems are necessary to study what and how factors, such
as number of clients and data sizes, affect the performance. The major-
ity of current benchmarks deal with the number of clients as “multiple-
threads but all over one client connection”; this does not reflect the real
scenarios where each thread has its own connection. This paper consid-
ered several benchmarking mechanisms and selected one for performance
analysis. It also studied the performance of two popular open source dis-
tributed cache systems (Hazelcast and Infinispan). Using the selected
benchmarking mechanism, results show that the performance of distrib-
uted cache systems is significantly affected by the number of concurrent
clients accessing the distributed cache as well as by the size of the data
managed by the cache. Furthermore, the conducted performance analysis
shows that Infinispan outperforms Hazelcast in the simple data retrieval
scenarios as well as most SQL-like queries scenarios, whereas Hazelcast
outperforms Infinispan in SQL-like queries for small data sizes.

Keywords: Benchmarking · Performance analysis
Distributed cache systems · Hazelcast · Infinispan
Retrieval operations

1 Introduction

Studying the performance of distributed cache systems has received much atten-
tion in recent years due to their wide usage in improving latency and throughput
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 147–163, 2018.
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significantly for various applications. In computing, cache is a software com-
ponent that stores portions of datasets which would otherwise either take a
long time to calculate, process, or originate from an underlying back-end sys-
tem [16,21]. Caching is used mainly to reduce additional request round trips and
sometimes to reduce database querying time for frequently used data [16,21].

A typical methodology for analyzing the performance of distributed cache
systems is often done by performing a controlled- and an unbiased-study to
investigate these systems’ factors of influence. There have been extensive empir-
ical studies conducted by researchers [13,24] and industry [2,7,8] that attempt
to look into the performance of these systems. For example, Zhang et al. [24]
analyzed the performance of three systems: Memcached, Redis, and the Resilient
Distributed Datasets (RDD). More recently, Das et al. [13] studied the perfor-
mance for Hazelcast only. Nevertheless, although some of these studies have
studied more than one factor (such as number of client threads) and targeted
many types of cache operations, they studied multiple threads over one client
connection, and little attention has been paid to study number of client connec-
tions, where each client opens its own connection to distributed cache server, as
well as the behavior when varying the data sizes.

Thus, this paper presents the performance analysis of retrieval operations
(including get and SQL-like queries) of two popular open source distrib-
uted cache systems, namely Hazelcast (version 3.6.1) and Infinispan (version
8.1.2.Final), with a focus on two factors: different number of concurrent clients
for different sizes of data managed by the cache. In other words, to be able
to understand some of the intrinsic properties of distributed cache, the paper
studies the performance behavior of the two systems by varying the number of
concurrent client connections for different data sizes, through a controlled study,
which is the main objective of this paper. In addition, the paper considers several
potential benchmarking frameworks and identifies a suitable one, namely Yard-
stick. Yardstick is a benchmarking tool usually intended for general distributed
systems and captures the behavior of performance as a function of time (i.e.,
the duration of benchmark) only, which is not sufficient to understand the exact
performance behavior of distributed cache systems for our factors of interest.
To overcome, an additional mechanism has been developed and integrated into
Yardstick to benchmark distributed caches to capture the varying number of
clients and data sizes to ensure proper synchronization of run-times.

The evaluation results show that there is a clear relationship between the
performance of data retrieval operations and number of concurrent clients as
well as data sizes. In addition, the performance behavior of the two selected
systems can significantly be influenced by other implementation factors such
as data serialization, object formats, and indexing. The rest of this paper is
structured as follows: Sect. 2 presents related work. Section 3 describes the used
study design and setup. Section 4 shows the conducted study results. Section 5
discusses the results and the drawn interpretations. Finally, Sect. 6 draws the
conclusion and future work.
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2 Related Work

Das et al. [13] studied the performance degradation of Hazelcast and suggested to
spawn fewer number of threads that process number of client requests in order
to improve the performance. While this study aimed to perform a controlled
study and add a capability to Yardstick for conducting a performance compar-
ison in the context of multi-client connections, some studies added utilities to
ease the process of performance analysis, such as an emulator e.g., InterSense,
to aid the performance analysis of distributed big-data applications and to facil-
itate the sensitivity analysis of complex distributed applications [22], and other
studies have performed empirical performance analysis on distributed systems
like SQL engines [23]. Several papers proposed different methods for conducting
performance analysis for general distributed systems [11,14,19,20]. However, our
approach focuses on distributed cache systems that use both virtual and physi-
cal configurations, which introduce additional factors that need to be taken into
consideration when conducting performance analysis.

Zhang et al. [24] analyzed the performance for in-memory data management
of three systems: Memcached, Redis, and Resilient Distributed Datasets (RDD)
implemented by Spark. The authors performed a thorough performance analysis
of object operations such as set and get. The results show that none of the sys-
tems handles efficiently both types of workloads. The CPU and I/O performance
of the TCP stack were the bottlenecks for Memcached and Redis. On the other
hand, due to a large startup cost of the get job, RDD does not support efficient
get operation for random objects.

Industry, on the other hand, especially the companies that offer distributed
cache systems, whether open-source or commercial, usually build benchmarks
to show the performance of their system or to compare it with another and
publish their results as white papers or on their web sites, which may carry
some bias. Hazelcast company [7], for example, built benchmark for get and
put operations only, to compare their distributed cache (3.6-SNAPSHOT) with
Red Hat Infinispan 7.2 (a version supported by Red Hat), using Radar-Gun
benchmarking framework1. Based on their results, they claim that they are up to
70% faster than Infinispan [7]. However, this comparative study performed did
not take into account the number of concurrent clients (where each client opens
its own connection to the cluster) nor did consider other retrieval operations,
such as SQL-like queries.

The Hazelcast company built other benchmarks comparing their distributed
cache system to other systems, such as Redis [8], using Radar-Gun framework. In
this study, the Hazelcast company investigated the effect of very small number of
clients (1 and 4) with different number of threads and showed Hazelcast outper-
form Redis for the get operation [8]. In another comparison between Grid Gain
and Apache Ignite [2] performed by Hazelcast, they studied the performance
of several operations including put/get and SQL-like queries, using Yardstick
framework. Others like Grid Gain company [1] built benchmarks, comparing

1 https://github.com/radargun/radargun/wiki.

https://github.com/radargun/radargun/wiki
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between their system and Hazelcast for several operation types such as get, put,
SQL-like as well as transactional operations. In addition, they did the same for
Apache Ignite and Hazelcast [4].

All the above mentioned studies, except the one done by Zhang et al. [24],
show the performance behavior of cache operations as a function of time with a
fixed number of clients, a fixed number of threads per client, and a fixed data
size. These may be sufficient in some cases, but do not, however, reflect real-life
performance behavior, where number of concurrent clients dynamically varies
over the period of system run-time. To address this issue, the authors developed
a mechanism to maintain varying number of concurrent clients and data sizes,
along with the function of time, maintained by Yarkstick.

While other efforts have developed the “Yahoo! Cloud Serving Benchmark”
(YCSB)2 [12] into other extensions like YCSB+T [15] in order to produce metrics
for database operations within transactions and detect anomalies from any work-
load, Yardstick3 was chosen. Yardstick is a powerful framework, well-documented
and intended for benchmarking distributed operations. Its benchmarks can be
developed faster than other frameworks, such as Java Microbenchmarking Har-
ness (JMH)4, Radar Gun, and YCSB [12]. Moreover, Yardstick is open source,
written in Java and allows contributions to enhance and enrich its framework.

3 Study Design and Setup

This section discusses the main aspects of the study design on which the setup
relies. First, it presents the investigated key factors of interest that may have
greater effect on the performance of retrieval operations for distributed cache
systems. Second, it lists the queries that were used, with their specifications and
complexities.

Finally, it describes the used topology of machines, their setup, and the
mechanism of benchmarking.

3.1 Factors of Interest

The performance of a distributed cache system depends on several different
factors including number of concurrent clients [10,18], data sizes [9], type of
operations, complexity of queries, number of distributed caches, and so forth.
Since the dependent variable of interest is the performance of data retrieval
operations, this study is particularly concerned with the effect of two key factors
as follows:

– Number of concurrent clients: The more the number of concurrent clients
a system can handle efficiently, the more efficient the application is [10,18]. To
achieve reasonable performance system outlook, the study is run against eight

2 https://github.com/brianfrankcooper/YCSB/wiki.
3 https://github.com/yardstick-benchmarks/yardstick.
4 http://tutorials.jenkov.com/java-performance/jmh.html.

https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/yardstick-benchmarks/yardstick
http://tutorials.jenkov.com/java-performance/jmh.html
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variations of concurrent client numbers which includes: 1, 2, 4, 8, 16, 32,
64, and 128 clients to log the performance change as the number of clients
grows.

– Data size: As the data size increases in the cache, a distributed cache system
needs to maintain the maximum number of entries it can store [9]. To achieve,
this study examines five variations of data sizes as shown in Table 1. One
million data size (or records) was tested in all cases, except in benchmarking
SQL-like queries due to the huge number of records returned to the clients
which caused memory heap exceptions in some cases.

Variables that may affect the performance of data retrieval operations in a
distributed cache systems, such as those related to the environment (like CPU,
RAM, etc.) or related to the cache itself, were controlled and made similar as
much as possible for both systems. Systems’ internal configurations were kept
on default configurations. Furthermore, indexing on both systems was enabled.

Table 1. Data size variations used in initializing the distributed cache.

Number of entries Size (B)

100 9 KB

1000 89.8 KB

10,000 898 KB

100,000 8.8 MB

1,000,000 87.7 MB

3.2 Queries Specifications

In this study, the map data structure was used as data representation in both
systems. Two main types of queries on this data structure were investigated.
The first, is a basic query type, the get operation, a popular operation on map.
The second, is an SQL-like type, which can be used to retrieve a collection of
objects. In addition, we formulated four SQL-like queries, each with a different
complexity level. The reason behind choosing SQL-like queries is that they are
very useful for retrieving complex data from caches. Table 3 summarizes the
queries with their complexities. The complexity is generally defined as follows:
“The greater the query, in terms of SQL operations (i.e., the number of logical
and comparison operations), the higher the complexity value”. The metric for
calculating the value of a query complexity is described below.

The complexity is computed based on the number of logical operations (e.g.,
AND, OR, LIKE, etc.) and comparison operations (=,>,<, etc.). The defined
metrics assign a complexity value to each query based on the type and the
number of its operations. The complexity value for each query in Table 3 below
is computed by aggregating the complexity values for each operation appearing
in the query. Table 2 shows the complexity value for each operation. The higher
the complexity value, the greater its computation needs in terms of CPU and
memory.
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Table 2. Complexity definitions for each SQL operation.

SQL operation Complexity value

>, <, = 1

AND 1

OR, LIKE 2

In order to be close to a real world scenario, two entities (Employee and Orga-
nization) were used as objects to hold data. Employee entity has four attributes:
id, name (indexed), age (indexed), password, and organization, whereas Organi-
zation has five attributes: id, name (indexed), acronym, and numberOfEmploy-
ees. The relationship between the two entities is a one-to-many association. The
single-attribute index was used for both systems. Moreover, in Hazelcast, non-
ordered index was used in order to make the index settings as much neutralized
as possible to match Infinispan’s index settings.

Table 3. Retrieval queries used in benchmarking with their complexities.

Label Query Complexity

get get(i) where i is a random number N/A

SQL-like0 SELECT employee FROM Employee WHERE age >50 1

SQL-like1 SELECT employee FROM Employee WHERE age >25
AND age <75

3

SQL-like2 SELECT employee FROM Employee WHERE age <25 OR
age >75

4

SQL-like3 SELECT employee FROM Employee WHERE age >50 AND
name like ‘A%’ AND organization.name LIKE ‘%tum%’

7

3.3 Topology and Mechanism

As shown in Fig. 1, the study setup included five machines and one switch to
conduct experiments within a local isolated network, to eliminate external net-
working issues. Out of the five, four machines, named host 1, 2, 3, and 4 were
used to run the client benchmarks. The nodes of cache cluster were set up on
the fifth machine, named workstation. The specifications for the machines are
detailed below.

In this study, HP Z230 Tower Workstation was used as the server machine.
Table 4 lists the specification of the server machine.

For clients, four machines were used, three of them with equal specifications.
The fourth machine has a different CPU (Intel(R) Core(TM) i7-3770 CPU @
3.40 GHz) tough. Table 5 lists the specifications of the client machines. One host
(host 1) was used to manage the running of benchmark clients, and the usage of
the other hosts is described in the algorithms below.

Table 6 lists the network switch specifications used during the study to enable
the networking between the four hosts and the workstation.
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Fig. 1. Topology of experimental setup.

Table 4. Server machine specifications

Environment variable Specs

Operating system Ubuntu 14.04 (64 bit)

Platform Java 1.8 (64 bit)

CPU Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50 GHz

RAM 16 GB

Table 5. Client machines specifications

Environment variable Specs

Operating system Ubuntu 14.04 (64 bit)

Platform Java 1.8 (64 bit)

CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz

Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz

RAM 8 GB

Table 6. Network specifications

Environment variable Specs

Switch Cisco Catalyst 3560-X Series WS-C3560X-24P-S 24 PoE+
715W

Switching Fabric 160 Gbps

DRAM 256 MB (51 2 MB for 3750X-12S and 3750X-24S)

Flash 64 MB (128 MB for 3750X-12S and 3750X-24S)

Total VLANs 1005

VLAN IDs 4 K

In order to set up and run the experiments, a cluster of distributed cache
nodes were set up on the workstation, and a script that generates clients for
requesting cache data on the clients machines (namely host 1, 2, 3, and 4). The
purpose of these four hosts is to run the client drivers. The steps to run the
cache cluster on the workstation are described in Algorithm 1.
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Algorithm 1. RunningDistrbutedCachesOnServer
1: Let cacheSystems =[Hazelcast, Infinispan]
2: Let dataSizes =[100, 1000, 10000, 100000, 1000000]
3: for each cacheSystem ∈ cacheSystems do
4: for each dataSize ∈ dataSizes do
5: Run four nodes
6: Create a distributed map
7: Initiate the map with the data
8: Monitor the CPU/memory usage
9: Invoke Algorithm 2 � client benchmarks run here

10: Wait until client benchmarks finish
11: end for
12: end for

After the cache cluster was started and run in a stable mode, the four hosts
ran the client benchmarks. Each benchmark started generating requests for a
period of 180 s (the first 30 s are for warm-up). The benchmark recorded the
throughput (operations/sec) for the 150 s period. Each benchmark resulted in a
CSV file containing the throughput over 150 s for a specific number of concurrent
clients and a specific data size.

The generated results were then taken and further analyzed to produce an
overall throughput for each number of concurrent clients. To record throughput
with a varying number of clients and data sizes, managing the runs of bench-
marks is achieved through Algorithm 2, as shown below.

Algorithm 2. RunningBenchmarksOnClients
1: Let clientsNumbers =[1, 2, 4, 8, 16, 32, 64, 128]
2: Let queries =[get, SQL-like0, SQL-like1, SQL-like2, SQL-like3]
3: for each clientsNumber ∈ clientsNumbers do
4: for each query ∈ queries do
5: if clientsNumber = 1or2 then
6: Monitor the CPU/memory usage on host 1
7: Run benchmarks of clientsNumber concurrently on host 1
8: else
9: Let n = clientsNumber/4 � Number of client benchmarks on each host

10: Monitor the CPU/memory usage on host 1
11: Run benchmarks of n concurrently on host 1 asynchronously
12: Monitor the CPU/memory usage on host 2
13: Run benchmarks of n concurrently on host 2 asynchronously
14: Monitor the CPU/memory usage on host 3
15: Run benchmarks of n concurrently on host 3 asynchronously
16: Monitor the CPU/memory usage on host 4
17: Run benchmarks of n concurrently on host 4 asynchronously
18: end if
19: Wait until all benchmarks finish
20: end for
21: Aggregate data and covert results into throughput per number of clients
22: end for
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All required benchmarks were implemented in Java using Yardstick frame-
work. Algorithms 1 and 2, described above, were implemented using both Java
and Shell programming languages. The project including the benchmarks as well
as shell scripts used in this study can be found on a public Github repository.
Here is the link5.

This design was developed and enhanced over many iterations of dry-runs and
trials. During the wet-run of the study, CPU/memory usage was also monitored
to ensure high fidelity of the study and make sure that systems’ performance is
not affected by machine limitations.

4 Study Results

The obtained study results are shown formatted below so that the relevant per-
formance results of both systems are brought together to compare between the
two systems. Each chart below contains more than one curve, each representing
the behavior of performance for a specific system and a specific data size, where
the Y-axis is the throughput (ops/sec), and the X-axis represents the number
of concurrent clients. Since readings were taken for only a subset of concurrent
clients (i.e., 1, 2, 4, 8, 16, 32, 64, 128), a linear approximation between points
was used.

4.1 Performance of get Query

As shown in Fig. 2, the throughput increases for both systems starting with 1
client increasing to 64 concurrent clients, for which Infinispan obviously does
better in this range. However, the throughput of Hazelcast drops down when
moving from 64 client to 128 clients, while Infinispan throughput keeps increas-
ing. It is worth noting that Infinispan did not reach a maximum throughput in
this case.

When increasing the data size from 100 to 1000000, the behaviour remains
the same over all concurrent client variations. Throughput, on the other hand,
drops down by around 19% on average for Hazelcast, whereas Infinispan drops
down by around 0.2%, as shown in Fig. 2. The average, minimum, and maximum
throughput for each data size for Hazelcast and Infinispan are shown in Tables 7
and 8, respectively. Each color in the leftmost column indicates a curve in Fig. 2.

4.2 Performance of SQL-like Queries

For SQL-like queries, which are more complex than the primitive get query, the
throughput of both systems is significantly small compared to what the case is
in the get query, as shown next. Moreover, it is clear that there is a significant
drop in throughput for both systems for a shift from 100 to 100000 data size.
The results also show that the effect of the number of concurrent clients becomes
less significant on larger data sizes.
5 https://github.com/ferasodh/Distributed-Caches-Benchmarking-Experiment.

https://github.com/ferasodh/Distributed-Caches-Benchmarking-Experiment
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Fig. 2. Behavior of get performance in terms of throughput (ops/sec) as a function of
number of clients. Each color in the leftmost column of Tables 7 and 8 indicates a curve
in this figure. (Color figure online)

Table 7. Per data size average, minimum, and maximum throughput (in thousands
ops/sec) for Hazelcast.

- Data Size Avg Min Max

100 63.33 3.33 159.76

1000 59.48 3.37 147.36

10000 64.21 3.33 166.52

100,000 64.13 3.37 165.68

1,000,000 51.33 3.39 124.33

Performance of SQL-like0 Query: For SQL-like0 query, the number of rows
returned is directly proportional to data size. Hazelcast outperforms Infinispan
for 100 data size by 39.8%, as shown in Fig. 3. The throughput increases for both
systems for the range 1 to 64 clients. However, Infinispan outperforms Hazelcast
for all bigger data sizes. Moreover, it clearly shows Infinispan has more average
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Table 8. Per data size average, minimum, and maximum throughput (in thousands
ops/sec) for Infinispan.

- Data Size Avg Min Max

100 126.51 4.80 397.97

1000 127.04 4.82 399.33

10000 125.39 4.79 390.36

100,000 124.62 4.74 389.51

1,000,000 126.25 4.73 395.70

throughput than Hazelcast by 34.6%, 64.7%, and 43% in 1000, 10000, and 100000
data sizes, respectively.

Performance of SQL-like1 Query: For SQL-like1 query, the throughput
increases for both systems as number of clients increases for 100 data size, while
for bigger data sizes the maximum throughput is reached at 16 clients. For this,
Hazelcast outperforms Infinispan for 100 data size by 57.9%, as shown in Fig. 4.
However, Infinispan outperforms Hazelcast for all bigger data sizes. Moreover, it
shows that Infinispan has a better average throughput than Hazelcast by 51%,
66.3%, and 66.9% at 1000, 10000, and 100000 data sizes, respectively.

However, with large data size at 10000, there is a drop in Infinispan per-
formance for the range of 16 to 64 clients, while Hazelcast achieves minimum
throughput at 100000 data size and 128 clients.

Performance of SQL-like2 Query: None of the systems reach the maximum
throughput in SQL-like2 query for 100 data size, while for bigger data sizes the
maximum throughput is reached with 32, 16, and 8 clients. In this case, Hazelcast
outperforms Infinispan for 100 data size by 55.9%, as shown in Fig. 5. However,
Infinispan outperforms Hazelcast for all bigger data sizes.

Fig. 3. Behavior of SQL-like0 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.
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Fig. 4. Behavior of SQL-like1 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.

Fig. 5. Behavior of SQL-like2 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.

Moreover, the results also show Infinispan has a better average throughput
than Hazelcast by 20.5%, 37.6%, and 40.9% at 1000, 10000, and 100000 data
sizes, respectively. For 10000 data size, there is a drop in Infinispan performance
for 16 to 64 clients, and Hazelcast achieves minimum throughput at 100000 data
size and 128 clients.

Performance of SQL-like3 Query: For SQL-like3 query, none of the systems
reaches the maximum throughput for 100 data size. For 1000 data size Hazelcast
does not reach a maximum throughput while Infinispan reaches a maximum
throughput at 32 clients. For bigger data sizes, the maximum throughput is
reached with 16 and 8 clients. Hazelcast outperforms Infinispan for 100 and
1000 data size by 261.65% and 285.7%, respectively, as shown in Fig. 6. However,
Infinispan outperforms Hazelcast for 10000 and 100000 data sizes.

It also shows that Infinispan has a better average throughput than Hazelcast
by 37.62% and 40.86% in 10000 and 100000 data sizes, respectively. However for
10000 data size, there is a drop in Infinispan performance for 16 to 64 clients.
Hazelcast achieves minimum throughput on 100000 data size and 128 clients.
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Fig. 6. Behavior of SQL-like3 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.

Table 9. Per data size average, max, and min throughput (ops/sec) for each query for
Hazelcast.

Data size Avg Min Max Avg Min Max

SQL-like0 SQL-like1

100 3,485.25 650.43 5,224.75 4,157.87 741.37 6,531.27

1,000 401.24 114.05 538.07 406.09 112.15 541.37

10,000 40.18 11.08 53.30 40.36 10.89 53.77

100,000 4.06 1.12 5.47 3.60 1.13 5.46

SQL-like2 SQL-like3

100 4,101.74 731.26 6,428.29 12,154.58 2,177.01 2,177.01

1,000 651.77 175.98 874.01 5,099.81 1,260.55 8,203.85

10,000 68.24 19.40 89.20 68.24 19.40 89.20

100,000 5.80 1.81 8.81 5.80 1.81 8.81

Tables 9 and 10 summarize results for the SQL-like queries showing the aver-
age, minimum, and maximum throughput for each query and for each data size
for Hazelcast and Infinispan, respectively.

5 Discussion

As shown above, Infinispan outperforms Hazelcast in all benchmarks except in
SQL-like queries at small data sizes. There are several factors that affect the
performance of Infinispan and Hazelcast and could be reasons for performance
bottlenecks; some of these factors are discussed below:

– Data serialization: In order to transfer cache objects across a network
between clients and a cache cluster or between cache cluster peers, objects
need to be serialized into bytes. When read by the application, those bytes
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Table 10. Per data size average, max, and min throughput(ops/sec) for each query
for Infinispan.

Data size Avg Min Max Avg Min Max

SQL-like0 SQL-like1

100 2,493.22 449.31 3,875.48 2,633.41 480.84 4,103.19

1,000 612.90 140.89 827.48 613.40 149.24 829.77

10,000 66.20 22.35 88.85 66.44 23.09 88.61

100,000 5.81 2.07 7.27 6.01 2.11 7.59

SQL-like2 SQL-like3

100 2,631.53 479.09 4,077.35 3,360.91 667.01 5,242.86

1,000 785.25 182.37 1,085.06 1,322.45 282.71 1,899.73

10,000 93.91 31.86 122.82 93.91 31.86 122.82

100,000 8.17 2.92 10.10 8.17 2.92 10.10

need to be converted back to objects or deserialized. Whenever a request comes
to a cache system, about 20% of the processing time is spent in serialization
and deserialization in most configurations [5]. Obviously, data serialization is
one of the key factors that affects cache performance. However, the default
Java implementation, which is the used implementation for Hazelcast, is slow
in terms of CPU cycles and produces unnecessarily large bytes [3,5]. On the
other hand, Infinispan uses Jboss marshalling framework6 as its default seri-
alization scheme.
Jboss marshalling framework do not write full class definitions to the stream,
instead each known type is represented by a single byte by using magic num-
bers [5]. Moreover, Infinispan forces developers of applications to register an
“externalizer” for their application types to make use of Jboss marshalling
[5,6]. Based on this, serialization has a significant impact on both systems’
throughput and explains why Infinispan has a better performance in most
cases.

– In-memory objects format: When objects are stored in Hazelcast or Infin-
ispan they are serialized to byte arrays and deserialized when they are read.
In Hazelcast, the default format is the binary format. However, this format
is not efficient if the application is doing a lot of SQL-like queries where
serialization/deserialization happens on the server side. Moreover, Hazelcast
provides other formats like object and native format. One drawback of Object
format is that it adds an extra serialization/deserialization step for get and
put operations, while native format is only available for Hazelcast Enterprise
HD version [17]. This study used the default Hazelcast binary format which
explains the low performance of Hazelcast on SQL-like queries, especially with
large data sizes.
Even though the cost of serialization/deserialization maybe small for smaller

6 http://jbossmarshalling.jboss.org/.

http://jbossmarshalling.jboss.org/
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data sizes, it will become large for larger data sizes especially in the SQL-like
queries where the returned result set is large.

– Indexing: One of the most significant factors in query performance is index-
ing. Although indexes were added to both systems, Hazelcast and Infinispan,
it may be possible that the engine for Infinispan, which is based on hibernate
search and Apache Lucene, is more optimized than Hazelcast default indexing
mechanism.

6 Conclusion and Future Work

Changing the number of concurrent clients and varying processed data sizes
affect the performance of data retrieval operations of distributed cache systems.
In this study, all known variables that can affect the performance of the two
systems except the factors of interest (i.e., number of concurrent clients and
data size) were as much as possible considered and neutralized.

Results show that studying performance analysis of systems with dynami-
cally varying number of concurrent clients and data sizes is critical in determin-
ing a more accurate performance readings. Measuring performance with static
independent variable or factors may provide misleading results, particularly in
systems where cache is a critical part of a system function or design. These
require building benchmarking tools that consider such dynamically changing
variables to reflect and replicate real-life usage of systems. The other significant
factors that may well affect cache systems’ performance are data serialization,
in-memory object formats and indexing, which their exact chosen implementa-
tion may improve a system’s performance over another. However, these need
further study and investigation in how best to address the implication of these
varying variables or factors.

In addition, results show that Infinispan (version 8.1.2.Final) outperforms
Hazelcast (version 3.6.1) in all tested cases except in SQL-like queries with small
data sizes. Moreover, the study shows that the concurrent clients, where each
client opens its own connection, has a considerable impact on the performance
of get and SQL-like queries. The data size, on the other hand, has very small
impact on the performance of get query but large impact on the performance of
SQL-like queries.

Further, based on the mechanism followed in this study, a more integrated
benchmarking framework, as proposed above, need to be developed that takes
into account the varying number of concurrent clients and data sizes for distrib-
uted caches. There are several other interesting issues to consider, first, it would
be interesting to study the effect of different data storage formats such as com-
pressed and uncompressed. Second, understanding the effect of larger data sizes
and cache access patterns would shed light on performance variations. Future
work may also include developing new techniques that improve the performance
with respect to data representations and communication protocols.
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Abstract. The rise of Machine Learning (ML) in the last decade has
created an unprecedented surge in demand for new and more power-
ful hardware. Various hardware approaches exist to take on these large
demands motivating the need for hardware performance benchmarks to
compare these diverse hardware systems. In this paper, we present a com-
prehensive analysis and comparison of available benchmark suites in the
field of ML and related fields. The analysis of these benchmarks is used
to discuss the potential of ARM processors within the context of ML
deployments. Our paper concludes with a brief hardware performance
comparison of modern, server-grade ARM and x86 processors using a
benchmark suite selected from our survey.

Keywords: Machine learning · Distributed · Benchmark · ARM
x86

1 Introduction

As distributed workloads become more common with the advent of Machine
Learning (ML) and Big Data, energy and cost concerns become more of a bur-
den on datacentres. Currently, server operation costs account for roughly 57%
of all monthly datacentre operational costs [23]. Moreover, the energy consumed
by servers is not proportional to workload intensity [22]. Although power con-
sumption and workload intensity are related, a large amount of power efficiency
is lost with the exception being intense workloads that stress servers to their
limits [22]. As it stands, the largest sources of energy consumption for servers
are CPUs (up to 45% of a server’s energy consumption) and cooling systems [4].
To address these new demands, our solution proposes use of power efficient ARM
processors. In order to come up with a definitive answer as to which processor
is most suitable for the problem, we survey available benchmarks for evaluat-
ing hardware performance and benchmark an ARM processor against the lower
power x86 Xeon processor commonly used in datacentres.

In this paper, we will refer to a benchmark as a standard methodology for test-
ing the performance of hardware platforms, primarily in the field of ML. Bench-
marks of interest provide implementations of commonly used algorithms/models
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 164–184, 2018.
https://doi.org/10.1007/978-3-319-72401-0_12
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with varying degrees of parallelism and instruction mixes. Our definition of a
benchmark is not to be confused with the more popular definition used in the field
of ML: a standard methodology of evaluating and/or comparing a model’s prob-
lem specific performance. An example of such a benchmark is MNIST, a database
of images of handwritten digits that are centred, size-normalized and commonly
used for the evaluation of pattern recognition methods.

Although our initial focus is a survey of hardware evaluation benchmarks
in the field of ML, many benchmark suites are geared towards high perfor-
mance GPUs. This is a consequence of the fact that the hardware market for
improving processing delays of training neural networks is largely dominated
by high-performance GPUs, as operations like matrix multiplications are highly
parallelizable, hence, they are suitable for GPUs with specialized libraries. The
focus of this paper, however, will be to emphasize the role of server-grade proces-
sors in the field of ML.

The market for server-grade processors is largely dominated by Intel x86-64
architecture processors, which will be referred to as x86 processors. With the pop-
ularity of ARM processors in low-power applications, such as mobile devices, the
question arises as to whether ARM can meet the computational demands of dat-
acentres, in exchange for superior power efficiency. Since the development of the
ARM Server Base System Architecture (SBSA) standard three years ago, semi-
conductor manufacturers have entered the server market with ARM processors.
At a minimum, this standard provides support for 64-bit architectures, virtual
memory, popular Linux distributions and software development environments.

There are many fundamental aspects of ARM that make it a power effi-
cient processor with the potential to become the new standard for server-grade
processing. ARM itself is a Reduced Instruction Set Computer (RISC) architec-
ture, as opposed to the more common Complex Instruction Set Computer (CISC)
x86 architectures. For an average program on a CISC architecture, 25% of avail-
able instructions make up 95% of execution time [13]. As such, it is possible to
reduce instructions available (a RISC architecture) at the expense of infrequently
incurring extra cycles for a single CISC instruction, trading power efficiency for
performance. Although instruction set alone does not decide energy efficiency,
ARM processors incorporate many power saving implementation design points
over x86 [6]. For instance, ARM processors have more fine-grain control of fre-
quency (including sleep states) to help minimize power consumption [3].

The recent rise of ARM can also be attributed to ARM’s business model.
Any semiconductor company can become a licensee of ARM and produce a Sys-
tem on a Chip (SoC). SoCs integrate application specific hardware accelerators
with the ARM CPU on a single die, improving performance and saving power by
avoiding bridges [3]. ARM server-grade processors have already begun introduc-
ing hardware accelerators for common datacentre use cases, such as Web Serving
and Big Data storage [7].

The remainder of this paper attempts to answer the question of whether up
and coming ARM processors can provide similar levels of performance as exist-
ing x86 Xeon processors, specifically for distributed machine learning workloads.
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Section 2 provides a survey of available hardware evaluation benchmarks that we
considered in our efforts to compare ARM and x86 processors. From this survey,
we select a benchmark suite and describe workload characteristics in Sect. 3,
along with experimental details. In Sect. 4, we provide an experimental compar-
ison between a state-of-the-art ARM processor against an x86 Xeon processor
in a similar performance range. We discuss related ARM versus x86 benchmarks
in Sect. 5 and conclude in Sect. 6.

2 Benchmark Survey

Our primary motive is to obtain a benchmark suite with features that are
desirable for benchmarking ARM processors against x86 processors for dis-
tributed machine learning workloads. In this section, we provide a survey of
open-source benchmarks for evaluating hardware performance, specifically for
Machine Learning applications. Our goal is to distill the large pool of available
benchmarks into a set of unique benchmarks, rather than provide a full list of
benchmarks with overlapping features.

2.1 Benchmark Survey Overview

PARSEC, released in 2008, is a benchmark suite developed to help guide
researchers in designing multi-core processors [5]. Part of this effort is embodied
in the diversity of the parallelism benchmark programs created. The benchmark
programs have applications ranging from enterprise storage to media processing.

CortexSuite, released in 2008, is a benchmark suite developed to help guide
research in designing system architectures and compilers for computer vision ori-
ented applications [24]. In particular, the programs within the Cortex benchmark
were selected by determining the most commonly used algorithms (kernels) in
image processing and image understanding [24].

Tonic Suite, released in 2015, is a benchmark suite developed to guide
research into future warehouse scale computing (WSC) and server platforms
specialized for Deep Neural Networks (DNN). The Tonic suite provides image
processing, speech recognition and natural language processing benchmarks,
which all rely on DijiNN. The purpose of DijiNN is to provide DNN as a ser-
vice. Tonic suite clients make requests to DijiNN servers. These servers then load
trained DNNs into memory and then perform inference to return the expected
result [14].

Fathom, released in 2016, is a collection of state-of-the-art DNN models
and input datasets intended to help guide research in hardware acceleration of
DNNs [1].

Rllab, released in 2016, is a benchmark suite developed to address the lack
of comprehensive benchmarks in reinforcement learning algorithms, particularly
in the continuous control domain [10]. Rllab provides basic, locomotive, partially
observable and hierarchical tasks implemented in physics simulators. Rllab also
provides benchmarks for state-of-the-art policy optimization algorithms.
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KITTI Vision Benchmark Suite, released in 2012, is a project intended
to bring more challenging benchmarks to the computer vision community, via
data gathered from “Annieway”, an autonomous driving platform with a high
resolution video camera [12]. KITTI also provides a leader board for submission
of experimental results on algorithms utilized on these standard datasets.

Rodinia Benchmark Suite, released in 2009, is a benchmark suite devel-
oped to address the lack of benchmarks for heterogeneous systems (i.e., systems
with CPUs and accelerators, such as GPUs and FPGAs) [8]. PARSEC, dis-
cussed earlier, is a well-known general purpose, multicore processor benchmark
suite. Use of Principal Component Analysis (PCA) determined that PARSEC
and Rodinia benchmarks cover similar spaces in terms of their instruction mix,
input working sets and memory sharing behaviours [8], despite their different
target hardware platforms.

Scalable HeterOgeneous Computing (SHOC), released in 2009, pro-
vides benchmarks for general purpose heterogeneous systems that can be run on
a cluster using the Message Passing Interface (MPI) library [9].

Model Zoo, released in 2013, is a large collection of pre-trained, state-of-
the-art, deep learning models gathered by the open source community, intended
to help reproduce research.

HiBench, released in 2012, is a benchmark suite intended to benchmark new
Hadoop-based Big Data deployments. At the time of development of HiBench,
Hadoop was entering the Big Data storage and processing scene (roughly in April
2010) [15]. HiBench provides programs for common use cases of MapReduce
(e.g., Web Search, ML) and has since added new workloads and adapted to new
software stacks.

SparkBench, released in 2015, is a benchmark suite intended to address the
lack of comprehensive Spark benchmarks for user applications [20]. SparkBench
provides benchmarks for ML, graph computing, SQL querying and streaming
applications.

BigDataBench, released in 2013, is a benchmark suite developed to address
the lack of Big Data benchmarks with a diverse set of real-world datasets and
workloads [25]. The suite covers applications from streaming social network
workloads to offline analysis of multimedia (all using real-world datasets).

DeepBench, released in 2016, is a benchmark suite developed to allow opti-
mization of hardware and software for deep learning applications. DeepBench
uses hardware dependent neural network libraries utilized by deep learning
frameworks such as Caffe, to benchmark fundamental operations such as matrix
multiplication.

OpenDwarfs, released in 2010, is a benchmark suite intended to help guide
development of hardware requirements on heterogeneous platforms for parallel
scientific computation [11]. OpenDwarfs is a collection of kernels (frequently
used algorithms and operations) that operate on OpenCL compatible hard-
ware platforms. This collection ranges from dense linear algebra operations to
graphical model operations, relevant to higher-level ML and artificial intelligence
applications.
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2.2 Benchmark Comparison

A set of criteria has been selected to provide insights on the difficulties of extend-
ing these benchmark suites, as well as, their suitability for the various hardware
platforms that exist. An overview of the benchmark comparison can be found in
Tables 1 and 2.

Table 1. A comparison of benchmarks surveyed - Part 1 of 2

Benchmark
suite

License Maturity Target
hardware

Programming
languages

PARSEC – PARSEC frame-
work license
– Package specific
licenses

Mature and
well-adopted

Multicore
processors

C, C++

CortexSuite Benchmark specific
licenses (BSD
style)

Mature and
moderately
well-adopted

Computer
vision
architectures

C, Matlab

Tonic Suite BSD 3-clause Immature and
poorly adopted

DNN Server
platforms

Caffe (C++,
Python)

Fathom MIT License DNN hardware
accelerators

Multicore
processors

Python 2.6+

Rllab MIT License Immature and
poorly adopted

N/A Python 3.5+

KITTI Creative Commons
Attribution-
NonCommercial-
ShareAlike 3.0
License

Mature and
well-adopted

N/A Python, Matlab

Rodinia Rodinia License Mature and
moderately
well-adopted

Heterogeneous
systems

C, C++

SHOC BSD License Mature and
poorly adopted

Clusters of
heterogeneous
systems

C, C++

Model Zoo BAIR License Mature and
well-adopted

N/A Caffe, Tensorflow
(Python, C++)

HiBench Apache License,
Version 2.0

Moderately
mature and
well-adopted

Hadoop-based
clusters

Java (Hadoop) Java,
Python, Scala, R
(Spark)

SparkBench Apache License,
Version 2.0

Immature and
poorly adopted

Spark-based
clusters

Java, Python, Scala,
R (Spark)

BigDataBench Apache License,
Version 2.0

Moderately
immature and
well-adopted

Big Data
related
hardware

Java (Hadoop) Java,
Python, Scala,
R (Spark) And more

DeepBench Apache License,
Version 2.0

Immature and
poorly adopted

Nvidia GPUs
Intel CPUs

C++

OpenDwarfs GNU Lesser
General Public
License v2.1

Mature and
poorly adopted

Heterogeneous
systems

OpenCL (C, C++)
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Table 2. A comparison of benchmarks surveyed - Part 2 of 2

Benchmark
suite

Threading
models

Parallelization
models

Distributed Other features and details

PARSEC Pthreads
OpenMP TBB

Data parallel
pipelining

X Instruction mix and
synchronization primitive
use analysis available [5]

Cortex Suite Multi-threaded Instruction level
data level thread
level

X Benchmark programs have
a heavy focus on
arithmetic operations (eg.
matrix multiplication)

Tonic Suite NVIDIA’s
multi-process
service

CUDA (Caffe) � Optimizations for DNN as
a service available [14]

Fathom Multi-threaded
(Tensorflow)

Multi-layer
pipeline data
parallelism

� Workload characteristics
analysis available (eg.
instruction mix) [1]

Rllab Multi-threaded
(Tensorflow)

N/A X Compatible with OpenAI
Gym

KITTI N/A N/A X Datasets and development
kits are provided. There
are no benchmark
programs implemented

Rodinia Multi-threaded CUDA OpenMP
OpenCL

X PARSEC and Rodinia
cover similar workloads
despite different hardware
targets [8]

SHOC Multi-threaded CUDA OpenCL � Provides benchmarks from
simple throughput testing
to complex scientific
computation kernels

Model Zoo Multi-threaded CUDA (Caffe) X N/A

HiBench N/A Hadoop spark � – EnhancedDFSIO: Pro-
vides low-level system met-
rics and high-level Hadoop
job metrics
– Many software stacks
available

Spark Bench N/A Spark � Workload characteristics
analysis available [20]

BigDataBench N/A Hadoop spark
and many more

� – Allows scaling of real-
world datasets
– Many software stacks,
workload types and
application domains
available

Deep Bench Multi-threaded
(MKL)

OpenMP (MKL)
cuDNN

X N/A

Open Dwarfs Multi-threaded OpenCL X N/A
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Licenses, maturity and adoption help develop an understanding of the
potential difficulties of extending these benchmark suites. Licenses determine
whether these benchmark suites can be modified, among other legal details
such as commercial use, liability and copyright details. Mature and well-adopted
benchmark suites are more likely to be stable. Target hardware and program-
ming languages are intended to provide quick understanding of what class of
hardware is targeted by these benchmarks. These criteria may also affect the
difficulty of extending these benchmarks.

Threading models and parallelization models are highly specific to a
given benchmark suite. These criteria help indicate the application scope of
benchmark suites, given their target hardware. The distributed and other
features criteria, found in Table 2, are auxiliary criteria that demonstrate key
features of the benchmark suites, as well as readiness for distributed workloads.

3 Benchmark Selection and Experiment Setup

3.1 A Benchmark Suite Selection: BigDataBench

For the purposes of benchmarking the performance of ARM processors against
x86 processors, we chose the BigDataBench (BDB) benchmark suite over
HiBench. Both BDB and HiBench provide implementations for a variety of soft-
ware stacks and a diverse set of relevant Machine Learning applications. They
both also provide distributed workloads without delving into low-level operations
seen in benchmarks that utilize OpenCL and GPU libraries. It is worth noting
that HiBench is more mature and well-adopted than BDB, but we choose BDB
as it provides a larger assortment of workload types and benchmarks overall.

BDB is a benchmark suite that addresses the lack of Big Data benchmarks
by employing a diverse set of real-world datasets. The BDB benchmark suite
provides the following workload types: Offline Analytics, Graph, Data Ware-
house, Streaming, Online Services and Cloud workloads. These workloads cover
the following application domains: Search Engines, Social Media, E-commerce,
Multimedia, and Bioinformation.

3.2 Hardware Selection

After surveying benchmark suites and selecting BDB, the next crucial step in
comparing ARM and x86 processors is to select hardware that would allow
for a fair comparison, while representing the strengths of current ARM and
x86 processors. A criticism of the ARM vs. x86 benchmark paper by Indian
Institute of Science (IISc) [18] is their choice of processors. The ARM AMD
Opteron A1170 and the x86 AMD Opteron 3380 are both fairly weak processors
and it is unlikely that their results will carry over to the state-of-the-art, non-
HPC (high-performance computing) ARM and x86 processors that exist. Hence,
an effort was made to survey state-of-the-art and upcoming ARM processors,
notably: Cavium’s ThunderX CN8890, Adapteva’s Epiphany-V, AMD’s K12,
and AppliedMicro’s X-Gene 3.
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The dual socket Cavium ThunderX CN8890 is the most powerful ARM
processor currently available for sampling. Given the price point of this new
processor and its lack of availability, we used Packet’s bare metal service, at the
expense of not being able to measure its power consumption. We then chose to
use a local x86 server with similar hardware specifications in order to provide a
fair benchmark comparison, as shown in Table 3.

Table 3. Selected ARM and x86 hardware platforms

Criteria ARM (Packet - Option 2A) x86 (local)

OS
Kernel

CentOS Linux release 7.3.1611
4.5.0-22.el7.aarch64

CentOS release 6.6 (final)
2.6.32-504.el6.x86 64

Memory 128 GB (8 ×16 GB) DD4 ECC
2400 MHz

128 GB (8 × 16 GB) DD4 ECC
2400 MHz

Disk 340 GB Intel� SSD (DC S3500
Series)
480 MB/s, 355 MB/s
(Sequential Read, Write)
67000 IOPS, 14500 IOPS
(Random Read, Write)

512 GB SAMSUNG SSD
(PM871)
540 MB/s, 520 MB/s
(Sequential Read, Write)
97000 IOPS, 90000 IOPS
(Random Read, Write)

CPU 2 x Cavium ThunderX: CN8890:
48 Cores (96 total)
48 Threads (96 total)
Max Frequency: 2000MHz
Base Speed: 2000 MHz

2 x Intel� Xeon� Processor
E5-2620 v4:
8 Cores (16 total)
16 Threads (32 total)
Max Frequency: 3100 MHz
Base Speed: 2100MHz

Caches:
32KB L1 Data Cache
78KB L1 Instruction Cache
16MB Shared L2 Cache
No L3 Cache

Caches:
256 KB L1 Data Cache
256 KB L1 Instruction Cache
256 KB L2 Cache Per Core
20 MB Shared L3 Cache

Cavium Processor Interconnect:
240 Gb/s (raw bit rate) [21]
TDP: 80 W (160W total) [16]
SPEC INT: 700 (Dual Socket) [16]

Intel QuickPath Interconnect:
384 Gb/s (raw bit rate) [21]
TDP: 85 W (170 W total) [2]
SPEC INT: 684 (Dual Socket) [2]

Swap Disabled Disabled

3.3 Experimental Setup

Despite the large variety of workloads provided by BDB, our initial experimental
focus is strictly the Spark and Hive workloads provided. These workloads best
represent the types of processing performed in the fields of ML and Big Data.
Below, in Table 4, we provide Spark and Hadoop configurations and software
versions used in our experiments. Although pre-built software is readily available
for x86 processors, it is necessary to build software from source for ARM.
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Table 4. Spark and Hadoop configurations

Spark configuration property ARM server x86 server

SPARK EXECUTOR INSTANCES 7 7

SPARK EXECUTOR CORES 13 4

SPARK EXECUTOR MEMORY 16 GB 16GB

SPARK DRIVER MEMORY 8 GB 8GB

SPARK WORKER CORES 95 31

SPARK WORKER MEMORY 120 GB 120GB

SPARK WORKER INSTANCES 1 1

mapred.tasktracker.map.tasks.maximum 92 31

mapred.tasktracker.reduce.tasks.maximum 92 31

By default, the spark.dynamicAllocation.enabled Spark configuration prop-
erty is set to false, enforcing a static number of workers and executors, as well
as resources allocated per worker, executor and driver.

3.3.1 ARM LSE Atomic Instructions
As part of the recent Large System Extension (LSE) update to the ARMv8.1
architecture, ARM architectures now provide support for new atomic instruc-
tions. Since Linux kernel v4.3, support has been added for these new atomic
instructions. Accordingly, software such as JDK 8 also make use of these new
atomic instructions by default. These new atomic instructions can cause unsta-
ble system behaviour under heavy loads. This results in repeated crashes when
processing Spark or Hadoop jobs, due to the heavy use of these instructions
by JVMs. One solution is to use a kernel that does not advertise support for
LSE instructions, or to avoid software that makes use of these instructions by
default. We disable the use of LSE atomic instructions in all JVMs spawned by
Hadoop and Spark in our experimentation and determined that this does not
significantly alter performance results.

3.3.2 BigDataBench Spark Workloads
The Spark benchmarks utilize the Big Data Generator Suite (BDGS) to generate
data scaled from real-world datasets. A benchmark program starts a job in the
Spark cluster that processes the generated data stored on Hadoop’s Distributed
File System (HDFS). We vary the inputs up to 130 GB to demonstrate the
effect of data scaling, as well as the characteristics of Spark with moderate disk
usage. Below, we detail Spark workloads that follow this benchmark process. In
terms of instruction mix, all workloads are representative of common Big Data
applications (high amount of loads and stores compared to other instructions)
[25], (Table 5).



A Comparison of ARM Against x86 173

Table 5. Experimental software stack

Software package/framework Version - source

Hive v0.9.0

Hadoop v1.2.0

Spark v1.3.0

Java (for ARM) jdk8-server-release-1603

Java (for x86) JDK/JRE 8u131

BigDataBench v3.2.5 for Spark

The Word Count workload is an Offline Analytics workload that consists of
an input dataset of Wikipedia Entries. Word Count is a simple microbenchmark
that sorts and outputs the frequency of unique words in these Wikipedia Entries.

The Naive Bayes workload is an Offline Analytics workload that consists of
an input dataset of Amazon Movie Reviews. The Naive Bayes benchmark trains
a Naive Bayes classifier model in one job, then classifies the remaining data in
a second job. The integer/floating point operation intensity of this workload
is relatively high [25], thus, it is representative of machine learning workloads.
Moreover, learning a generative graphical model and performing classification
are fundamental machine learning tasks.

The Page Rank workload is an Offline Analytics workload that consists
of an input dataset of Google Web Graphs. Page Rank is a benchmark that
performs iterations of the Page Rank algorithm, it ultimately ranks the relative
importance of web pages, represented by nodes. Our disk sizes currently limit
the scaling of our benchmarks, due to the size of intermediate files created.

3.3.3 BigDataBench Hive Workloads
The Hive benchmarks also utilize the Big Data Generator Suite (BDGS) to
generate data scaled from real-world E-commerce transaction data. The BDGS
generates a set of structured text files and subsequently creates tables using Hive
that we name order, item, and item temp. A benchmark program starts a job in
the Hadoop cluster via the Hive interface, this job processes the generated data
stored on the HDFS. We are limited to scaling the input up to 80 GB, due to
the size of intermediate files generated.

As previously mentioned, all BDB benchmarks, including the Hive bench-
marks are representative of Big Data applications (due to the instruction mix).
More specifically, the Hive benchmarks are also highly relevant to ML applica-
tions, as large amounts of data are typically pre-processed and/or stored in a
cluster in the form of relations (tables). In fact, Spark is currently migrating
towards a DataFrame based API, as this idea is commonly employed. Below, we
detail Hive workloads that follow the aforementioned benchmark process.

In order to describe the benchmarks, we first describe the tables created.
The external order table consists of: buyer id, order id, and date. The external



174 S. Kmiec et al.

item table consists of: item id, order id, goods id, goods number, goods price,
and goods amount (product of goods number and goods price). The internal
item temp table is the order ids found in item.

Aggregate averaged (or AV) refers to the average of four benchmarks, that
individually acquire the average/sum/maximum/minimum of goods number
from item. Union selects rows from item with two separate sets of criteria and
creates a table as the union of these results. Aggregate creates a sorted table
of goods id from item and calculates the sum of goods number. Select creates
a table of goods price and goods amount for rows in item that match a criteria.
Order By creates a table of all rows in item sorted by item id. Cross Project
creates a table with order id from item joined to matching rows in order. Pro-
jection creates a table of order id from order. Filter creates a table of rows
in item that meet a criteria. Join creates a table of buyer id and the sum of
goods amount from item, and joins this with the order for up to 10 matching
order ids (a limit), all while sorting by buyer id. Difference creates a table of
order id from order and performs a left outer join on item temp on the order ids.

3.3.4 Metrics
The Spark and Hive benchmarks provided by BDB do not report any metrics
other than execution time. For further analysis, we use perf and sysstat. The
perf tool is capable of reporting hardware counters for the overall execution of
a program. For the ARM hardware platform, we record the number of instruc-
tions, data and instruction TLB load and store misses, as well as L1 data and
instruction cache, store, load, and prefetch misses. Sysstat provides tools such as
sar that provide the capabilities to record key system performance parameters
relating to CPU, memory, disk and network traffic.

4 Spark Experimental Results

In this section, x86 and ARM processors are compared with respect to system
metrics recorded for BDB Spark workloads. We begin our discussion of experi-
mental results with the execution times of the benchmark workloads in Fig. 1.

Our results differ from previous benchmarks of ARM and x86 for Big Data
workloads [18]. In our results, the performance of the ARM processor did not
improve relative to the x86 processor with larger datasets. Moreover, we find
that the performance of ARM is not superior to x86 for all input sizes of Naive
Bayes and Page Rank benchmarks. With the exception of Page Rank, ARM
consistently has slightly worse performance than x86. An interesting observation
can be made, however, with the extremely poor performance of ARM for the
Page Rank benchmark, relative to x86. This is likely because a single x86 core
provides superior floating point performance to that of a single ARM core, as
Spark only recruits a small number of cores for small Page Rank workloads.

A closer look at the CPU usage of ARM and x86 processors under a heavy
load, in Fig. 2, demonstrates idling when the number of cores waiting for I/O
increases. This is further demonstrated in the disk statistics of Fig. 3.
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Fig. 1. Execution times for Word Count and Naive Bayes (left), and Page Rank (right).
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Fig. 2. CPU usage for a 130 GB Naive Bayes benchmark (left: ARM, right: x86)

In Fig. 3, we present a side by side comparison of disk statistics of the ARM
and x86 servers. The x86 server is able to make more disk I/O requests per
second, while maintaining lower response times. Although it is not shown, this
also translates into roughly 60% higher sector reads and writes per second for
the x86 server. Moreover, the timings of high I/O requests coincide with CPU
idling in Fig. 2, for both ARM and x86. An explanation for this is that the x86
server’s random read and write disk speeds are significantly faster than the ARM
server in Table 3. Another possibility is that the ARM processor is ineffective
in scheduling requests to the disk, causing large I/O request response times. It
is plausible that the ARM processor is unable to simultaneously keep the hard
disk heavily utilized while performing demanding Naive Bayes floating point
operations (as indicated by the erratic spikes in I/O requests in Fig. 3).

Figure 4 shows hardware counters recorded for every Spark benchmark per-
formed on the ARM processor. Misses are recorded in units of PKI (per thou-
sand instructions executed) and are displayed on a logarithmic scale. There is a
very large amount of data L1 cache store misses, regardless of the benchmark or
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Fig. 3. Disk traffic for a 130 GB Naive Bayes workload (left: ARM, right: x86).
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Fig. 4. ARM - Hardware counters recorded per benchmark

input size. By looking at all plots, it is apparent that Page Rank has the largest
number of L1 cache misses, followed by Naive Bayes and Word Count, which
matches previous results made on x86 processors [25]. Although these patterns
match previous findings, the magnitude of L1 cache misses for the ARM processor
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is far greater than the x86 processor. The significance of this is that the L1 cache is
paramount for Big Data related workloads [25], this may partially explain ARM’s
lagging performance for Spark workloads. The TLB behaviour of the ARM and
x86 processors is similar.
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Fig. 5. Memory management for a 130 GB Naive Bayes workload (left: ARM, right:
x86). Note the difference in y-axis scales in the bottom graphs.

In Fig. 5, a side-by-side comparison is made between the ARM and x86 server
memory management statistics. The ARM server is unable to effectively manage
memory, as it has far more page faults per second (this may also explain the
large I/O wait of the ARM server). This behaviour is likely due to the ARM
server scanning, stealing and freeing far fewer memory pages per second. The
superior x86 server memory management is also embodied in the amount of time
spent by the kernel in Fig. 2.

We found that patterns relating to network traffic such as packets per second,
number of context switches per second, and memory usage patterns (memory
used and cached) between the servers are highly similar.

4.1 Hive Experimental Results

In this section, x86 and ARM processors are compared with respect to system
metrics recorded for BDB Hive workloads. We begin our discussion of experi-
mental results with the execution times of the benchmark workloads in Fig. 7.
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It is first worth noting ARM’s extremely poor performance in the Difference
benchmark, as demonstrated in the bottom right of Fig. 7. This poor performance
is identical to the Page Rank benchmark seen previously. By comparing the
CPU usage of the x86 and ARM server in Fig. 6, it is clear that as the map
phase nears completion, the CPU idles with the few map tasks remaining before
the reduce phase begins. This represents a fundamental trade-off between ARM
and x86 for largely idle workloads. ARM cores can operate at significantly lower
frequencies, however, a single x86 core is far more powerful than a single ARM
core. Accordingly, as the majority of cores idle, ARM provides superior power
efficiency at the expense of larger processing delays.
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Fig. 6. CPU Usage for a 50GB difference workload (left: ARM, right: x86)

Further inspection of the benchmark execution times indicates that ARM sig-
nificantly outperforms x86 in Select, Aggregate and Projection, as demonstrated
in Fig. 7. What these benchmarks have in common is that the entire input dataset
and intermediate files created are able to fit in memory, hence, deferring the need
to spill to the disk (refer to Fig. 10). This alone does not explain ARM’s success,
as ARM only performs on par with x86 for Filter, Union, and AV workloads,
which all have moderate memory usage.

Using sysstat, we record instantaneous pages/second measurements over the
course of the benchmarks. In order to determine the total number of pages from
the disk and to the disk, we use a crude trapezoidal approximation, evaluated as
the product of the sum of instantaneous measurements with the interval of the
measurements (as seen in Fig. 8). This alone is misleading, as some benchmarks
vary in execution time by an order of magnitude, and will have more disk pages
to/from the disk over the whole period of the benchmark. Accordingly, we scale
the total number of pages by the execution time per benchmark and normal-
ize across benchmarks to determine which workloads are particularly heavy on
page writes and reads. In Fig. 9, we see that Select, Aggregate and Projection
have significantly more page writes than Union, Filter and AV. This leads us
to conclude that ARM has superior performance over x86 for write heavy Hive
workloads, particularly the creation of tables and intermediate files necessary to
compute the final resultant table.
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Another point worth discussing is the scaling of ARM versus x86 for Aggre-
gate, Cross Project, and Join, and how this ties into ARM’s lagging performance
in Union, Filter, Order By, and AV benchmarks. From previous experimentation,
namely Web Serving, the expectation is that ARM would excel for the simplest
of workloads. However, by looking at the execution times of Union, Filter and
AV it seems as if the ARM server incurs a constant delay associated with the
time spent preparing before progress is made in the map phase. Otherwise, the
performance of the two servers is roughly on par.

Furthermore, the superior scaling of ARM in the aforementioned workloads
suggests that the large number of cores on the ARM processor excels for work-
loads with components that can be computed in parallel. For instance, the Aggre-
gate benchmark consists of a select, an order by and a sum, which can progress
concurrently, as opposed to only a single select query in the Filter benchmark,
or a single sum query in the AV benchmarks.

5 Related Work

Previous experimentation of ARM processors against x86 processors already
exists [3,6,17–19,23]. The common theme in these works is that x86 proces-
sors generally outperform ARM processors in terms of execution times. The
key strength of ARM, however, lies in its performance per watt. For instance,
in a Web Server application, ARM processors serve more web requests per watt
when compared to x86 processors [3]. Another nuance of ARM processors is that
they are strictly application dependent. For CPU-bound applications, specifically
those that are heavy in integer or floating point operations, ARM processors not
only result in longer execution times, but may also have worse performance per
watt [3,17].

Moreover, a recent benchmark of ARM processors against x86 processors,
by the IISc [18], used the HiBench benchmark suite. This suite was originally
intended for benchmarking new Hadoop-based Big Data deployments, but has
since been adapted for other software stacks, such as Spark and Apache Storm.
The group strictly employed Hadoop workloads with the intention to demon-
strate the potential for Big Data workloads on ARM processors. The authors
found that not only was performance per watt improved (typically measured
by Energy Delay Product), but it also became possible for ARM processors to
match or improve performance over x86 processors under certain workloads.

6 Conclusions

In this paper, we presented a survey of existing hardware performance bench-
mark suites that range from evaluation of heterogeneous systems to distributed
ML workloads for clusters of servers. From the survey, we selected BigDataBench
in order to compare the performance of server-grade ARM and x86 proces-
sors for a diverse set of workloads and applications, using real-world datasets
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that are scalable. We benchmarked a state-of-the-art dual socket Cavium Thun-
derX CN8890 ARM processor against a dual socket Intel�Xeon�processor E5-
2620 v4 x86-64 processor. Initial results demonstrated that ARM generally had
slightly worse performance compared to x86 processors for Spark Offline Ana-
lytics workloads, and on par or superior performance for Hive workloads. We
determined that the ARM server excels over x86 for write heavy workloads. It is
worth noting the apparent disk I/O bottleneck of the ARM server when compar-
ing performance results to the x86 server. There are many other BigDataBench
workloads that have yet to be tested on ARM, many of which may lead to
promising results when provided with larger amounts of disk and network I/O.
Moreover, recording the CPU temperatures and power consumptions of these
servers may yield even more fruitful results, further promoting the use of ARM
in server-grade processing for ML and Big Data applications.
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