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Abstract. Proxy signature scheme is an important cryptographic prim-
itive in which an entity can delegate its signing rights to another entity,
the purpose of proxy signature with message recovery is to shorten the
length of proxy signatures which can effectively reduce the communica-
tion overhead. Although message recovery proxy signature scheme based
on conventional number-theoretic problems has been proposed for a long
time, the message recovery technique draws no attention to proxy sig-
nature scheme from lattice. In this paper, we firstly propose a proxy
signature scheme with message recovery from lattice which is more effi-
cient than previous proxy signature schemes in signature size, time and
energy cost, and we prove that in the random oracle, our scheme is secure
model under the hardness assumption of SIS. Our proxy signature scheme
with message recovery would work well in the quantum age based on the
underlying lattice problems.
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1 Introduction

Proxy signatures, proposed by Mambo et al. [1], are significant cryptographic sys-
tems that are widely used in different situations, such as E-commerce, cloud com-
puting and Electronic election. In a proxy signature scheme, Original signer A del-
egates his signing power and responsibility to another one which is called proxy
signer. According to the hardness of traditional Number Theory problems, the
researchers have prosed many effective proxy signature schemes such as integer
factoring-based schemes, discrete logarithm schemes and elliptic curve schemes
[2,3]. However, in a long run, all these proxy signature schemes are not secure,
because both discrete logarithms and large prime factorization algorithms can be
solved in polynomial-time [4] when we take quantum computing into account. For
purpose of reducing the threat from the quantum age, many researchers pay their
attention to Post-Quantum Cryptography, some proxy signature schemes, like
hash-based schemes, MPKC schemes, lattice-based schemes, which are considered
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as Post-Quantum Cryptography, and many corresponding efficient Post-Quantum
proxy signature schemes have been proposed, such as [5–9].

Lattice-based signature occupies a position of particular interest, as it relies
on well-studied problems and comes with uniquely strong security guarantees
[10]. Organizations and research groups are looking forward for efficient lattice-
based cryptography schemes to replace RSA and ECC based schemes, and many
creative and constructive results show that properly optimized lattice schemes
may be competitive with, or even outperform, classical factoring and discrete
logarithm-based cryptography.

The first signature scheme with message recovery was proposed by Nyberg
and Rueppel [11]. In a signature scheme with message recovery, we only need to
transmit the signature without the signed message, because verifier can easily
recover the signed message from the signature. This construction quietly adapts
to situations where small signed message to be transmitted or strict bandwidth
requirements [12,13]. The existent proxy signature schemes with such property
can be categorized into two different types: discrete logarithm based and RSA
based [14–16] which efficiently improve the performance of previous signature
without message recovery. Although there are many very effective latticed-based
proxy signature schemes, based on the hardness assumption of lattice, have been
proposed [17–19], as far as we know, there are no efficient lattice-based proxy
signature schemes with message recovery have been proposed.

In this paper, benefit from the techniques [20,21], we propose an efficient
lattice-based proxy signature scheme with message recovery, and prove that it has
existentially security in the random oracle model, in addition, contribution to mes-
sage recovery technology and mainly multiplication of matrix and vector given in
our scheme, our scheme enjoy higher performance when compared with others’
proxy signature scheme, finally, when we take piratical situation into considera-
tion [22], we are surprised to find that this kind of scheme consume less energy
even when we add some operations for message recovery, which means our proxy
signature schemes are extremely suitable for system with low energy and low band-
width. As the hardness assumption of lattice problem SIS, our lattice-based mes-
sage recovery proxy signature scheme would work well in the quantum age.

The remainder of our paper is organized as follow. In Sect. 2, we provide
necessary preliminaries of our scheme. In Sect. 3, we describe two models of
our lattice-based proxy signature scheme with message recovery:syntax model
and security model. In Sect. 4, we propose our efficient message recovery proxy
scheme from lattice. In Sect. 5, we present the formal security analysis of our
scheme. In Sect. 6, we introduce some necessary criterions, and give detailed
comparisons between our scheme and some existing proxy schemes from lattice.

2 Preliminaries

2.1 Notations

In this paper, following notations would be used:

• x ‖ y denotes the connection of two string x and y, and they are effectively
recoverable.
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• Mn×(k1+k2) = Mn×k1
1 ‖ Mn×k1

2 denotes the concatenation of Matrices
M1,M2.

• ‖v‖p denotes the lp norm of v.
• |x| denotes the quantity of bits of v.
• |x|l1 denotes the first left l1 bits of x.
• |x|l2 denotes the first right l2 bits of x.

2.2 Lattice

Definition 1. A lattice L is a discrete subgroup of some space R
n, it is gener-

ated by independent vector v1, v2, · · · , vk ∈ R
n through the following way:

Λ = L(v1, v2, · · · , vk) = {
k∑

i=1

aivi | ai ∈ Z}

The basis of L are vectors v1, v2, · · · , vn, lattice’s rank is the integer n where
k < n and ai is coefficient.

Definition 2. Given integers q,m, n and a matrix A ∈ Zn×m
q , for some S ∈ Zm.

Λq(A) = {x ∈ Zm : x = AT S = u(modq)}
Λ⊥

q (A) = {x ∈ Zm : x = AT S = 0(modq)}
From the above definition, these two types of lattices are dual to each other.

2.3 Gaussian on Lattice

In lattice-based signature scheme, Gaussian series are very effective techniques
which are widely used, and we have a briefly review of it here.

Definition 3 (Discrete Gaussian distribution). σ ∈ R
m is standard deviation,

vector c ∈ Zm is center, Continuous Gaussian distribution ρm
c,σ(x) and Discrete

Gaussian distribution Dm
c,σ(x) are defined as follow:

ρm
c,σ(x) = (

1√
2πδ2

)me
−‖x−c‖2

2σ2

Dm
c,σ(x) =

ρm
c,σ(x)

∑
z∈Zm ρm

c,σ(z)

(1)

When c = 0, we can simply write ρm
c,σ(x),Dm

c,σ(x) as ρm
σ ,Dm

σ , and from [21], an
important theorem of Discrete Gaussian distribution is described as follow

Theorem 1. ∀σ > 0 and m ∈ Z+

(1) P[x ∈ D1
σ : |x| > 12σ] < 2−100;

(2) P[x ∈ Dm
σ : ‖x‖ > 2σ

√
m] < 2−m.
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Algorithm 1. Rejection sampling technique
Input: H : {{0, 1}∗ → v : v ∈ −1, 0, 1k, ‖ v ‖< c}(Where k ∈ Z and � m), mes-

sage u, a matrix A randomly sampled from Zm×n
q , S(signature key) sampled from

{−d, · · · , 0, · · · , d}m×k1

Output: Vector v and c

1: Obtain y randomly from Dm
σ

2: C = H(Ay, u)
3: Z = SC + y

4: return (Z,C) with probability min(
Dm

σ (Z)

MDSC,σ(Z)
, 1)

2.4 RST: Rejection Sampling Technique

For a lattice-based signature scheme, the most important conception of the RST
is to eliminate the relationship between signing key and output signature’s dis-
tribution [10], the algorithm as follow (Algorithm 1).

2.5 Small Integer Solution (SIS) and its Hardness Assumption

Definition 4. For an integer modular homogeneous scheme As = 0modq, get
a proper solution s ∈ Zm where q, matrix coefficient, small solution s satisfy
q ∈ Zm, A ∈ Zn×m

q and ‖ s ‖≤ β where β is a real value.

In reference [10,23], they proved that for any polynomial-bound m,β and
any prime p, with small factors and the Gaussian measure, there is no differ-
ence between the hardness of some worst-case approximation and average-case
harness of SIS. Even the hardness of SIS problem has been proved, there still
exist overwhelming probability that anyone can solve some case if the trapdoor
of f = Ax(modq) is got.

3 Lattice-Based Proxy Signature Scheme with Message
Recovery

Syntax model and security model of our lattice-based proxy signature scheme
with message recovery are proposed in this section.

3.1 Syntax

Definition 5. In such lattice-based proxy signature scheme with message recov-
ery scheme, there are three participants: An original signer with IDo, a proxy
signer: IDp, and a verifier, and this scheme is consists of six PPT algorithm
(Setup, KeyGen, DelGen, DelVer, Psign, Pver), where:

1. Setup: Given a security parameters n, and select appropriate parameters and
functions. (par, n) ← Setup.
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2. KeyGen: Given a security parameters n, this algorithm output the secret and
public key of original signer and proxy signer: Original signer’s = (PKo, SKo),
Proxy signer’ = (PKp, SKp).(PKo, SKo, PKp, SKp) ← KeyGen(n,M).

3. DelGen: Given the original signer’s public key PKo and secret key SKo hash
function Hi, proxy signer’s IDp, this algorithm output the Delegation Key
(PKD, SKD) for original signer, original signer sends this pair to proxy signer
in security channel. (PKD, SKD) ← DelGen(Hi, IDp, PKD, SKD).

4. DelVer: Given the original signer’s public key PKo and Delegation Key
(PKD,SKD), and check DelV er(PKo, PKD, SKD) = 1 or not. If it outputs 1,
it’s a valid delegation of original signer. {0, 1} ← DelV er(PKo, PKD, SKD).

5. Psign: Given the secret delegation key SKD, proxy signer’s secret key SKp

and the message u = u1 ‖ u2, output the proxy signatureθ, that is θ ←
Psign(u, SKD, SKp).

6. Pver: Given the public key PKo of original signer, public key PKo of
proxy signer, public delegation key PKD, proxy signer’s IDp, hash func-
tion Hi, partial message u2, and proxy signature θ, if the proxy sig-
nature is valid, output 1, otherwise, output 0, that is (m, {0, 1}) ←
Pver(PKo, PKo, PKD, IDp,Hi, θ, u2).

Remark 1. For consistency requirements, partial message u2, the proxy sig-
nature θ of secret Delegation Key SKD and proxy signer’s secret key SKP

must hold with overwhelming probability with following equation Verify
(Sign(SKD, SKP , u), u2, PKD, SKD) = 1.

3.2 Security Model

In a lattice-based proxy signature scheme with message recovery, the prop-
erties of Unforgeability, Verifiability, Strong identifiability, Strong undeniabil-
ity and Key dependence are satisfied naturally. Therefore, we consider in this
lattice-based proxy signature scheme under adaptive chosen message and iden-
tity attack. To have a formal security definition for this scheme, the security
model is an security game played between a adversary A and a challenger C:

1. Setup: In this game, the challenger C firstly run the algorithm Setup(n), get
the necessary parameters and send them to the adversary A.

2. Queries: In such query-game, following types of queries can be adaptively
issued by adversary A within polynomial bound number of questions.

• KeyGen-query: The adversary A can issue a query on the ID which he
want to get the secret key, and the challenger run the algorithm KeyGen,
and return A with SKID in response.

• DelGen-query: To get the delegation key SKD, the adversary A input
two secret key corresponding to the identity IDo and IDp, in response,
the challenger C run the algorithm DelGen, and return A with SKD.

• Psign-query: When adversary issues such on IDp with message u, the
challenger C run the algorithm Psign, and return A with signature.
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3. By the above queries, the adversary A generate a valid proxy signature θ
′

on message u∗ under the identity ID′, if the following holds, Adversary A
wins the game: (i) V fy(Sign(SKD, SKP ,m), PKD, SKD, par) = 1; (ii) u∗

has never been send to the Psign-query; (iii) all identities which is related to
ID′ have never been sent to KeyGen-query.

An lattice-based proxy signature scheme with message recovery is considered
as existential unforgeable if the advantage of Adversary A wins the above query
game in polynomial time is negligible.

4 Our Lattice-Based Proxy Signature Scheme
with Message Recovery

We gave a detailed account of our efficient message recovery proxy signature
scheme from lattice in this section. Like the traditional signature systems, our
scheme have three participants: an original signer with IDo, a proxy signer with
identity IDp, and a verifier, and this scheme is consists of six probabilistic poly-
nomial time (PPT) algorithm (Setup, KeyGen, DelGen, DelVer, Psign, Pver),
where:

1. Setup: Given the security parameter n of this system, we select l1, l2, k1, k2,m,
q ∈ N , where q is a prime, select five hash function: H1 = Zn

q → {0, 1}l1+l2 ,
H2 = {0, 1}∗ → {0, 1}k1+k2 , H3 = ID → {−1, 0, 1}k1×k2 , F1 = {0, 1}l2 →
{0, 1}l1 , F2 = {0, 1}l1 → {0, 1}l2 . H1,H2are seen as a random oracle.

2. KeyGen: On input security parameter n, randomly choose A ∈ Zn×m
q together

with two secret matrix basis S1, S2 ∈ {−d, · · · , 0, · · · , d}m×k1 . Original signer
computes T1 = AS1modq, and keep PKo = (A, T1) as his own public key,
SKo = S1 as secret key. Proxy signer computes T2 = AS2modq, and keep
PKp = (A, T2) as his own public key, SKp = S2 as secret key.

3. DelGen: Original signer computes t = H3(IDp), S3 = S1t ∈ Zm×k2 , T3 =
T1t ∈ Zn×k2 , and send (S3, T3) to Proxy signer via an safe authenticated
channel, Proxy signer keep the delegation key PKD = S3, proxy signer can
use it to generate valid proxy signatures stand for original signer, and the
corresponding public key is PKD = T3.

4. DelVer: The Proxy signer receives (S3, T3) from original signer, and checks if
AS3 = T1t holds, where t = H3(IDp).

5. Psign: The Proxy signer with identity IDp do the following:
• Divide the message u into two parts u = u1 ‖ u2 where | u1 |= l2,

if| u |< l2, let u2 =⊥.
• Select a random y ∈ Dm

σ , and compute α = H1(Ay).
• Let u

′
1 = F1(u1) ‖ (F2(F1(u1))

⊕
u1), r = α

⊕
u

′
1.

• Compute C = H2(r, u2).
• Compute Z = (S2‖S3)C + y ∈ Zm

q .
• The proxy signature on the message u is (r, Z, u2) with probability

min( Dm
σ (Z)

MD(S2‖S3)C,σ
(Z) , 1).
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6. Pver: Given (r, Z, u2), a verifier does as explained in the succeeding text:
• Compute α = H1(AZ − (T2 ‖ T3)H2(r, u2)).
• Compute u

′
1 = r

⊕
σ, u1 = |u′

1|l2
⊕

F2(|u′
1|l1), and then recover message

u = u1 ‖ u2.
• Check if ‖Z‖ < 2σ

√
m and F1(u1) = |u′

1|l1 hold at same time, if so, accept
signature from the proxy signer, otherwise, reject it.

Theorem 2. Our lattice-based proxy signature scheme with message recovery is
correctness.

Proof. From the above detailed construction, we can easily have following equa-
tions where u message

AZ − (T2 ‖ T3)H2(r, u2)
= A((S2‖S3)C + y) − (T2 ‖ T3)H2(r, u2)
= Ay

the distribution of (S2‖S3)C + y is statically closed to the distribution Dm
σ ,

and from the Theorem1, ‖ (S2‖S3)C + y ‖≤ 2σ
√

m with probability at least
1 − 2−m. On the other hand, u

′
1 = F1(u1) ‖ (F2(F1(u1))

⊕
u1), we can recover

u1 = |u′
1|l2

⊕
F2(|u′

1|l1) with F1(u1) = |u′
1|l1 hold.

5 Security Analysis

As a signature scheme, security is the most important factor, we prove that our
lattice-based proxy signature scheme with message recovery is secure enough
(unforceability) under the hardness assumption of SIS in this section.

When we proving the unforceability of proxy signature scheme with message
recovery, we should take two types adversary into consideration:

Type(i) Adversary A can not only have the public key PKo of original signer
and public key PKp of proxy signer, but also have the original signer’s secret
key SKo.

Type(ii) Adversary A has neither the original signer’s secret key SKO nor the
proxy signer’s secret key SKP .

It’s obvious that adversary in Type(i) knows more information than the
adversary in Type(ii), so we only need to take Type(i) adversary into con-
sideration. We suppose there is a polynomial time, adversary A forge a valid
proxy signature by at most qH1times H1 query, qH2times H2 query, qF1times
F1 query, qF2times F2 query, and qs times signature query with non-negligible
probability, it means there exist an algorithm C (Challenger C) which can solve
a SISq,n,m,C problem “with the help of” Adversary A in polynomial time. Algo-
rithm C (Challenger C) has a game with A, the following is the simulation.
Queries. The adversary A issues the following types of queries adaptively, A
has random oracle H1 − query before any other queries.
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• H3 − query. Challenger C maintains a list L0 = (IDpi
, PKpi

, SKpi
), and the

initial value is null, when adversary A issues a query on IDpi
, Challenger C

search it in list first, if there exist corresponding tuple (IDpi
, PKpi

, SKpi
),

return PKpi
; otherwise, Challenger C randomly chooses matrix S ∈ Zm×k2

q ,
then Challenger C computes PK = AS, Update the list L0 as L0 =
(L0, (ID, PK, SK)), return PK.

• KeyGen − query. When adversary A issues a query on IDp, Challenger C
look it up in L0, find a match tuple (ID, PK, SK), and output SK as response.

• DelGen − query. On receiving the secret key SKP , Challenger C outputs
SKD as response.

• H1−query. Challenger C maintains a list L1 = (Ay, αi), and the initial value
is null. When the adversary A issue a query for Aymodq, Challenger C search
it in list first, if there exist corresponding tuple (Ay, α), return α; otherwise,
randomly chooses α ∈ {0, 1}k1+k2 . Update the list L1 as L1 = (L1, (Ay, α)),
then return α.

• F1 − query. Challenger C maintains a list L2 = (u1, F1(u1)), and the ini-
tial value is null. When the adversary A issue a query for u1, Challenger C
search it in list first, if there exist corresponding tuple (u1, F1(u1)), return
F1(u1), otherwise, randomly chooses F1(u1) ∈ {0, 1}l1 , Update the list
L2 = (L2, (u1, F1(u1))).

• F2 − query. Challenger C maintains a list L3 = (F1(u1), F2(F1(u1)), and the
initial value is null. When the adversary A issue a query for F1(u1), Challenger
C search it in list first, if there exist corresponding tuple (F1(u1), F2(F1(u1)),
return F2(F1(u1), otherwise, randomly chooses F2(F1(u1) ∈ {0, 1}l2 , Update
the list L3 = (L3, (F1(u1), F2(F1(u1)).

• H2 − query. Challenger C maintains a list L4 = (ri, ui, zi, ci). When the
adversary A issues a query for (r, u = u1 ‖ u2), the Challenger C search it
in list first, if there exist corresponding tuple (r, u, c, z), return C; otherwise,
randomly chooses vector Z ∈ Dm

σ , C ∈ {v : v ∈ {−1, 0, 1}m}, H1 − query
AZ − (T2 ‖ T3)modq for α, let u

′
1 = α

⊕
r, and according to u

′
1 = F1(u1) ‖

(F2(F1(u1))
⊕

u1), and Update L3 = (L3, (F1(u1), F2(F1(u1))
⊕

u1), L2 =
(L2, (u1, F1(u1))). Update L1 = (r, u, c, z) where r, u satisfied H2(r, u2) = C,
then return C.

• Psign − query. To obtain a proxy signature on message u, adversary search
it in L4, if Challenger C find a match tuple(r, u, c, z), then output(r,z) as a
response; otherwise, randomly choose vector C ∈ {−1, 0, 1}k1+k2 , Z ∈ Dm

σ ,
adversary A H1 − query AZ − T2 ‖ T3C for α, F1-query and F2-query for
(u1, F1(u1)) and (F1(u1), (F2(F1(u1))

⊕
u1)), let r = α

⊕
u

′
1. Update L1 =

(L1, (r, u, c, z)) where H(r, u2) = C. then return (r, u2) and u2.

Forgery. The adversary finally outputs a valid forgery (r, z, u∗
2) on message

u∗ = u∗
1 ‖ u∗

2.
The specific example SIS problem: In order to solve SIS problem, adversary A

should find a small vector x ∈ Λ⊥
q (A), Challenger responses to adversary A with

different results when adversary A repeats his queries. According to General
Forking Lemma [24], adversary A finally gets a valid forgery (r#, Z#, u∗

2) on
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same message u∗ = u∗
1 ‖ u∗

2 with non-negligible probability, and the following
equation satisfied, where C# = H2(r#, u∗

2),H2(r∗, u∗
2) = C∗.

According to the above construction, we can see that for any message u:

• H2(r#, u∗
2) 
= H2(r∗, u∗

2)
• AZ#−(T2 ‖ T3)H2(r#, u∗

2)−(AZ∗−(T2 ‖ T3)H2(r∗, u∗
2))=A(Z#−Z∗−(S2 ‖

S3)C# + (S2 ‖ S3)C∗)
• ‖ Z# ‖≤ 2σ

√
m, ‖ Z∗ ‖≤ 2σ

√
m,‖ (S2 ‖ S3)C# ‖≤ dk1+k2

√
m, and ‖ (S2 ‖

S+3)C∗ ‖ dk1+k2

√
m

• ‖ Z# − Z∗ − (S2 ‖ S+3)C# + (S2 ‖ S+3)C∗ ‖≤ (4δ + 2dk1+k2)
√

m

According to [21], Z# − Z∗ + (S2 ‖ S3C
# − S2 ‖ S3)C∗ 
= 0 with prob-

ability at least 1/2, so Z# − Z∗ + ((S2 ‖ S3)C# − (S2 ‖ S3)C∗) 
= 0 with
non-negligible ability. Our lattice-based proxy signature scheme with message
recovery is Unforgeability.

6 Efficiency Analysis

When we have a efficiency analysis of our scheme, We take signature size, com-
putation time and energy cost into consideration. In this section, we analyse
our scheme’s efficiency by comparing it with some existing proxy signature
schemes from the length of secret delegation key, proxy signature message and
total time cost. In order to simplify the presentation, We define R = Rejection
sampling algorithm computation cost, T = TrapGen algorithm computation
cost, S = SamplePre algorithm computation cost, B = BasisDel algorithm com-
putation cost, E = ExtBasis algorithm computation cost, M = Multiplication
of matrix, M = Multiplication of vector, M= m = O(n log n), q = O(n2),
M = ω(

√
log m), S1, S2 ∈ {−1, · · · , 0, · · · , 1}m×k1 , σ = 12k2

√
m. Table 1 are

given the detailed sizes and time of the comparison.

Table 1. Comparison of related proxy signature schemes

Proxy signature scheme Delegation key length Signature proxy Time

[17] 4m2 log(LM
√
2m) |u| + 2m log(LM22m) 2T + 2S + E

[18] m2 log(LM
√
2m) |u| + m log(LM5m2) T + 3S + 3B

[19] ml
′
log q |u| + k + l + 2m log(12δ) R + M + V

Our’s ml
′′
log q |u2| + l1 + l2 + m log(12δ) ≈ R + (M + V )/2

From Table 1, it is obvious that the total length (signed message and signa-
ture) of our message recovery scheme is less than other proposed schemes which
is the foremost advantage of a lattice-based proxy signature scheme with mes-
sage recovery, besides, we can find that in proxy signature [17,18], they mainly
use TrapGen algorithm, SamplePre algorithm, BasisDel algorithm and ExtBasis
algorithm which are very time consuming, while in our scheme and [14], based on
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Lyubashevsky’s rejection sampling algorithm, we mainly use the multiplication
of matrix and vector, and due to different technique used in verification, we are
almost twice as fast as [14].

When we let k + l = l1 + l2 and take security parameters mentioned in [21]
into consideration (n = 512, q = 257, d = 1), we can have a direct comparison
with [19] as following

�LengthofProxySignatureandMessage ≈ l2 + mlog(12δ) = (l2 + 163000)bits (2)

Refer to the comparison proposed in [22], 1 bit transmission cost more energy
than 32 bits simple operation, in that case, even we increase simple computation
(like hash and XOR) in message recovery technology, our scheme still cost much
less energy than [19]’s in pracRef1tical situation. According to the above analysis,
our message recovery proxy signature scheme is more efficient than these existing
schemes in signature size, time and energy cost.

7 Conclusion

With the development of quantum computers, constructing an efficient quantum-
secure proxy signature scheme enjoys priority. Lattice-based signature occupies
a position of particular interest, as it relies on well-studied problems and comes
with uniquely strong security guarantees, such as worst-case to average case
reductions. In this work, we proposed an efficient lattice-based proxy signature
with message recovery which is possible to be the first proxy signature scheme
with message recovery that can resist known quantum attack, and we give a
formal proof of it’s security in the random oracle model. In addition, compared
with some existing proxy signature schemes, our scheme is more efficient than
others in signature length, signature time and energy cost. Contribution to rich
theoretical foundation of Lattice Cryptography, we will design more efficient
lattice-based signature schemes with message recovery in the future.
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