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Abstract. Location-Based Services (LBSs) are playing an increasingly
important role in our daily life with the development of GPS or WiFi enabled
space positioning technologies and the popularization of mobile devices. While
LBSs bring great conveniences to users, the exposure of users’ location privacy
becomes a growing concern. To address this issue, researchers propose several
kinds of location preservation techniques such as location cloaking, dummies
and etc. However, these methods are rather vulnerable when encounter a
location semantic attack. Taking this into consideration, a few semantic location
preservation methods are proposed. Based on the existing semantic location
preservation frameworks, we propose a novel personalized semantic location
privacy preservation method named Incremental Search (IS). In our method, an
optimal anonymous location set is generated according to a certain rule, during
which, two parameters are introduced to limit the number of locations in the
final anonymous location set and the number of the anonymous location sets
recorded temporarily so as to reduce the query processing cost. The evaluation
on NGMO simulation platform validates that our method has a better perfor-
mance than the two baseline algorithms.
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Query processing cost � Road network

1 Introduction

With the popularization of mobile and locator devices, Location-based services (LBSs)
have been used widely. However, people are suffering from the threats of leaking their
identities and location information when they are enjoying LBSs. Attackers can infer
user’s ongoing activities or analyze his habits according to user’s information such as
current location and time.

Therefore, many researchers aimed at studying the privacy preservation methods in
LBSs and proposed a lot of solutions mainly based on K-anonymity [1] and L-diversity
[2]. The main idea of K-anonymity is guaranteeing at least other K � 1 users in the
obfuscation region together with the user, then the user’s practical position will be
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replaced with the obfuscation region and then sent to the LBS server, so the probability
for the attacker to infer the user’s location correctly is 1

K. K-anonymity can protect
user’s identity and location information, but it does not consider the distribution of the
K users in the obfuscation region. L-diversity is a supplementary to K-anonymity
which requires anonymity area to contain at least L different locations so as to prevent
attackers from linking the user to a location.

However, L-diversity may not always be so effective for all semantic location
privacy preservation in some cases. On the one hand, L locations may be the same type,
thus user’s location information is revealed, on the other hand, the probability of user
being in each location may not be equal, thus the attacker can filter out the locations
with low probabilities. To the former problem, researchers extract L-diversity to
L different types of locations [3] rather than L-occurrence locations. To the latter
problem, numerical values are used to quantify the probability of user being in each
location, for example, popularity is used in [4, 5].

Generally speaking, a user may be sensitive to some locations while not to other
locations. If users stay at sensitive locations, they need privacy preservation, otherwise,
they do not need. Yigitoglu et al. [4, 5] use privacy profile to define user’s sensitive
locations, use popularity to define all kinds of locations and use the ratio of the
aggregated popularity of the sensitive locations to the aggregated popularity of all
locations to judge whether the anonymous area meets the privacy requirement. How-
ever, the algorithms [4, 5] just aim to find an anonymous area satisfying privacy
requirement without considering the number of locations, which may lead to high
query processing cost. Obviously, on the condition of meeting the privacy requirement,
fewer locations will lead to lower query processing cost.

Our paper proposes a novel personalized semantic location privacy preservation
algorithm named incremental search (IS), which aims to reduce query processing cost.

The main contributions of our paper are listed below:

(1) We propose to select anonymous locations based on global optimization and local
optimization to protect users’ location privacy under semantic environment.

(2) Two parameters are introduced to limit space cost and time cost.
(3) We compare our algorithm with two existing algorithms based on a real map, the

result shows that our algorithm can improve anonymous success rate and reduce
query processing cost.

The rest parts are organized as follows. In Sect. 2 we review the related work.
Section 3 introduces the system model. Section 4 describes the algorithm in detail. The
experimental results are shown in Sect. 5. And we conclude the paper in Sect. 6.

2 Related Work

Previous work in location privacy preservation mainly includes dummies [6], mix-zone
[7], K-anonymity [1, 8–11], obfuscation and coordinate transformation [12], cryptog-
raphy based method [13]. K-anonymity is widely used which means user cannot be
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recognized with at least other K � 1 users by using location or identity. Based on
K-anonymity, many other approaches have been proposed, such as Interval-cloak [8],
Casper [9], Clique-Cloak [10] and HC [11].

However, these approaches do not consider spatial context. Therefore, Bamba et al.
propose PrivacyGrid [14], a system which can support both K-anonymity and
L-diversity. In their approach, an anonymous region contains at least K users and
L locations. However, the region in [14] is not L-type diverse. For example, L locations
may all be the same type (e.g. hospital), which is vulnerable to location similarity
attack [5]. Therefore, Xue et al. [3] define L-diversity to be L different types. These
approaches do not consider that different types of locations have different probabilities
of being visited; Probe [15–17] takes this situation into consideration by introducing
the concept of popularity to measure the visiting probabilities of each type of locations,
what’s more, it classifies locations into sensitive locations and non-sensitive locations,
then uses obfuscation method to complete privacy preservation. Byoungyoung [18]
proposes a method that uses EMD (earth mover’s distance) to mine location semantic
information to avoid privacy being revealed, but this is only suitable for Euclidean
space. Yigitoglu et al. [4] and Li [5] extend these approaches into road networks. In [4],
they generate the city network from a map on which each location is a node, then use
breadth first search algorithm to find a location set which makes the proportion of the
popularity of the sensitive locations less than a certain threshold. In [5], they select all
non-sensitive semantic locations from the neighbor locations of the anonymous area
and add them into the anonymous area in turn, until it satisfies the privacy requirement
or the terminal conditions. However, all of those approaches do not consider the
number of locations in the anonymous set, which may lead to high query processing
cost.

This paper proposes an algorithm to protect user’s location privacy under the
semantic environment, which is suitable for the road-network environment with higher
success rate and lower query processing cost.

3 System Model

3.1 Semantic Location City Network

Definition 1 (Semantic location city network). A semantic location city network is
modeled as a connected and undirected weighted graph G, G = (V, E, pt, pop), where:

(1) V is the set of vertices, V = Vp [ Vi, Vp is the set of semantic locations and Vi is
the set of road intersections.

(2) E is the non-empty set of edges, E � V � V, E = {e | e = (u, v), where u, v 2 V}.
(3) pop is the popularity of v (v 2 V), the popularity of v is the probability that a user

visit the location v. pt is the type of v, each location’s type is represented by
function pt: V –> PT (PT is the set of location types).
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For simplicity, we assume that locations with the same type have the same pop-
ularity, represented by function pop: PT –> [0, 1), the popularity of road intersection is
0 (In this paper, we assume a road intersection belongs to a location which is not
semantic). The popularity of semantic location v is denoted as p(v), the popularity of
semantic location set s is denoted as p(s).

3.2 System Structure

Figure 1 depicts the Central Server Structure designed to provide location privacy
preservation. We add a Location Privacy Server (LPS) between mobile users and the
LBS server. LPS stores users’ privacy profiles (pp). The process for user to complete
a query is as follows: 1. User sends the query request. 2. LPS receives the query and
judges whether the user’s location is sensitive; if it is non-sensitive, LPS sends the
real location to LBS server; if it is sensitive, LPS runs location privacy preservation
algorithm and generates a location set based on the user’s location, then sends the
location set to LBS server. 3. LBS server calculates the candidate sets based on the
real location or the location set and sends the candidate sets to LPS. 4. LPS filters
the candidate sets and sends the appropriate results to the user. Our work focuses on
step 2, namely providing privacy preservation for user’s requests from sensitive
locations.

3.3 Privacy Requirement

Let PT = PTs [ PTns, where PTs represents the sensitive type set, PTns represents
the non-sensitive type set. Let Vp = Vsp [ Vnsp, vsp represents a sensitive semantic
location, vsp 2 Vsp, vnsp represents a non-sensitive semantic location, vnsp 2 Vnsp.

Definition 2 (Anonymous location set, ALS). ALS is a location set used to achieve
anonymity. The element in ALS can be a sensitive semantic location, a non-sensitive
semantic location or a road intersection.

Definition 3 (h-secure ALS). If an ALS satisfies Eq. (1)

P
VSP2VS\VSP2ALS PðVSPÞP
VP2VS\VP2ALS PðVPÞ

� h ð1Þ

Fig. 1. Central server structure
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We denote this ALS as a h-secure ALS. In other words, h-secure ALS satisfies the
following condition: the ratio of the aggregated popularity of all sensitive semantic
locations (APSSL) to the aggregated popularity of all semantic locations (APSL) in an
ALS should be less than or equal to h.

Definition 4 (Lmax). It represents the maximal number of locations in an ALS.
Although more locations in an ALS will provide better privacy preservation for users, it
will also result in more query processing cost to the LBS server. To balance privacy
preservation and query processing cost, we propose parameter Lmax which is decided
by users.

Definition 5 (Cmax). It represents the maximal number of ALS to be recorded.
Although recording more ALS will make the final ALS easier to contain fewer locations,
it will result in larger space and time cost to LPS server. To balance the number of
locations in the final ALS and the cost of LPS, we propose parameter Cmax which is
also decided by users.

Definition 6 (Deficient popularity, DP). It represents the least popularity that an ALS
needs to be a h-secure ALS. For example, an ALS’s APSSL is 0.3 and its APSL is 0.5. If
h = 0.3, we can calculate the DP of the ALS is 0:3

0:3 � 0:5; we got 0:5 DP is used to
achieve local optimization.

4 Algorithm

We describe IS algorithm in this section. Before executing IS algorithm, the user
should provide pp and the values of Cmax and Lmax. pp contains: (1) Sensitive
location type set PTs = {pts1, pts2,…, ptsn}. (2) The value of h.

The pseudo-code of this algorithm is given in Algorithm 1. The algorithm is
accomplished by looping. During each loop we search new ALS by adding an adjacent
location to the recorded ALS; we keep two sets curSet and nextSet, curSet records the
ALS achieved in last loop, nextSet records new ALS searched through ALS in curSet.
Two hash tables sp and tp are defined to record the APSSL and APSL for every ALS in
curSet and nextSet. Both sp and tp will be updated when a new ALS is found, curSet
will be updated in the end of the loop. The algorithm terminates when a h-secure ALS is
found or the number of locations of an ALS in curSet reaches Lmax.

As mentioned before, parameter Cmax is defined to limit the number of ALS being
recorded (In Algorithm 1, the ALS are recorded in curSet and nextSet). Therefore, if the
number of ALS in nextSet is larger than Cmax, we will select the top Cmax local
optimal ALS
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Figure 2 depicts a semantic location city network. Each vertex has two attributes,
the first one represents identity and the second one represents type. Assuming that the
privacy profile pp = {{H,O}, 0.5}, the popularities of each location type are as follows,
{School (S): 0.2, Hospital (H): 0.15, Office (O): 0.25, Entertainment (E): 0.15, Mall
(M): 0.15, Park (P): 0.1, Intersection (I): 0}. User locates at v1, Lmax = 3, Cmax = 1.
In the beginning, curSet = {{v1}}, sp = {{v1} -> 0.15}, tp = {{v1} -> 0.15}, nextSe
t = {}, there is only one ALS ({v1}) in curSet.

In the first round, the number of locations for each ALS is 1, which is smaller than
Lmax, so continue searching. The adjacent locations of ALS are v2, v5. select v2 first,
then we obtain ALS = {v1, v2}, sp({v1, v2}) = 0.15, tp({v1, v2}) = 0.15. Since
0:15
0:15 [ 0:5, it does not meet the privacy requirement, add {v1, v2} to nextSet. Then
select v5, and we obtain ALS = {v1, v5}, sp({v1, v5}) = 0.4, tp({v1, v5}) = 0.4. Since
0:4
0:4 [ 0:5, it does not meet the privacy requirement, add {v1, v5} to nextSet. We obtain
nextSet = {{v1, v2}, {v1, v5}}, sp = {{v1, v2} -> 0.15, {v1, v5} -> 0.4}, tp = {{v1,
v2} -> 0.15, {v1, v5} -> 0.4}. The number of sets in nextSet is 2, which is larger than
Cmax, so we need to select the top Cmax local optimal ALS. The DP of ALS{v1, v2} is
0:15
0:5 � 0:15 ¼ 0:15 and the DP of ALS{v1, v5} is 0:4

0:5 � 0:4 ¼ 0:4 Because 0.15 < 0.4,
so we select set {v1, v2}. Thus curSet = {{v1, v2}}, sp = {{v1, v2} -> 0.15}, tp =
{{v1, v2} -> 0.15}, nextSet = {}.

In the second round, the number of locations for each ALS in curSet is 2, which is
smaller than Lmax, so continue searching. The adjacent locations of {v1, v2} are v5, v3,
v6. Select v5 first, then we obtain ALS = {v1, v2, v5}, sp({v1, v2, v5}) = 0.4, tp({v1,
v2, v5}) = 0.4. Since 0:4

0:4 [ 0:5, it does not satisfy the privacy requirement, add {v1, v2,
v5} to nextSet. Then select v3, and we obtain ALS = {v1, v2, v3}, sp({v1, v2,
v3}) = 0.15, tp({v1, v2, v3}) = 0.35. Since 0:15

0:35\0:5, it satisfies the privacy require-
ment, so {v1, v2, v3} is sent as the final ALS to LBS server. The algorithm terminates.

Assuming that the number of adjacent locations for each location is a constant
value A, the number of recorded ALS is C and the number of locations in an ALS is
L. For simplicity, the case that two ALS become equal after each of them adding one
location respectively is ignored.

v7,S

v6,M

v9,I

v8,I
v5,O

v3,S

v2,Iv1,H

v4,E

v10,I

Fig. 2. An example of IS algorithm
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When C < Cmax and L < Lmax: if the number of locations in ALS changes from
m to m + 1, the number of ALS that are needed to be recorded increases A*m times, so
the space complexity and the time complexity are both O(AL*L!).

When C = Cmax and L < Lmax: the number of ALS that are needed to be recorded
is a constant, thus the space complexity is O(L) and the time complexity is O(L2logL).

In IS algorithm, both Lmax and Cmax may affect the running time. Larger Lmax or
Cmax may result in longer running time and larger storage space, so it is important to
choose the appropriate values of Lmax and Cmax. Generally speaking, Lmax and Cmax
can be larger if the machine’s performance is good enough. More discussions about
these two parameters will be shown in next section.

5 Experimental Analysis

In this section, we evaluate the performance of the proposed algorithm. Two different
PTs are used where PTs1 = {Entertainment} and PTs2 = {Hospital, Office}. Over-
lapping algorithm in [4] and SA algorithm in [5] are implemented for comparison.

5.1 Experiment Setting

The algorithms are realized using Java and the coding environment is Eclipse. The
experimental platform consists of a desktop PC equipped with an Intel(R) Pentium
(R) 4 2.66 GHz CPU and 2 GB of RAM. The famous Network-based Generator of
Moving Objects (i.e., NGMO) simulation platform is used to accomplish the experi-
ments. We use the map of Oldenburg city in Germany, which contains 6105 nodes and
7035 edges. Raw data is processed according to Definition 1 to generate semantic
location city network. We traverse every location and send query request. In this
experiment, we just discuss six types of semantic location whose popularity are the
same as we assumed in Sect. 4. Experiment parameters are shown in Table 1.

5.2 Experimental Result

Success rate is the ratio of the number of successful anonymous sensitive semantic
locations to the number of total sensitive semantic locations. It is an important metric

Table 1. Parameter settings

Parameter Default value Range

h 0.4 [0.2, 0.8]
Number of semantic locations 600 [300, 1200]
Location types
(counts)

School (S:64), Office (O:174), Hospital (H:72),
Market (M:100), Entertainment (E:58),
Park (P:132)

/

Lmax 30 [20, 40]
Cmax 1000 [100, 1000]
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that reflects the effectiveness of a privacy preservation algorithm. If the success rate is
higher, the privacy preservation algorithm is more effective. Figure 3 depicts the ten-
dencies of success rate with varying number of semantic locations and h when sensitive
location set is PTs1 and PTs2 respectively.

From Fig. 3, we can see when the number of semantic locations or h increases,
success rates of three algorithms all increase. This is because when the number of
semantic locations increases, both the number of sensitive and the number of
non-sensitive semantic locations increase, which makes it easier to find a h-secure ALS;
when h increases, privacy requirement is easier to be satisfied. IS has the highest
success rate among three algorithms, since it records many (no more than Cmax) ALSs
and is more possible to find a h-secure ALS. For SA, it records only one ALS, thus it is
harder to get a h-secure ALS compared with IS. For overlapping, it fails when the new
searched location is not a non-sensitive location, which makes its success rate lower.

Average size of ALS is the average number of locations in an ALS during a suc-
cessful query, it can be used to measure query processing cost at LBS server. Figure 4
depicts the tendencies of average size of ALS with varying number of semantic loca-
tions and h when sensitive location set is PTs1 and PTs2 respectively.

(a) θ takes default value ,using PTs1 (b)   Number of semantic locations takes de-
fault value, using PTs1

(c) θ takes default value,using PTs2 (d)   Number of semantic locations takes de-
fault value, using PTs2

Fig. 3. Relation between success rate and the number of semantic locations or h
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From Fig. 4, we can see when the number of semantic locations or h increases, the
average sizes of ALS of three algorithms all decrease. This is because when the number
of semantic locations increases, it is easier to find an adjacent location which is
non-sensitive, thus fewer locations are needed to get a h-secure ALS; when h increases,
privacy requirement is easier to be satisfied, which leads to a smaller average size of
ALS. IS algorithm has the smallest average size of ALS, since it combines global
optimization and local optimization which will return an ALS with smaller average size
compared with SA and overlapping.

Average anonymous time is a metric to evaluate the effectiveness of an anonymity
algorithm. It refers to the average time of a successful query’s anonymization process.
An anonymity algorithm is thought to be more effective if its average anonymous time
is lower. Figure 5 depicts the tendencies of average anonymous time with varying
number of semantic locations and h when sensitive location set is PTs1 and PTs2
respectively.

From Fig. 5, we can see, IS does not perform so well as overlapping and SA,
because it records more than one ALS and needs more time to find a h-secure ALS.
However, with the number of semantic locations or h increasing, the average anony-
mous time is getting closer to SA and overlapping.

(a)  θ takes default value, using PTs1 (b) Number of semantic locations takes 
default value, using PTs1

(c)   θ takes default value,using PTs2 (d) Number of semantic locations takes de-
fault value,using PTs2

Fig. 4. Relation between average size of ALS and the number of semantic locations or h
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5.3 Parameters Discussion

In our algorithm, both the values of Cmax and Lmax are very important. In this section
we discuss them in detail. For simplicity, we only discuss the case that the sensitive
location set is PTs1.

Figure 6 depicts the tendencies of success rate, average size of ALS, average
anonymous time with varying Cmax when the number of semantic locations or h takes
default value. From Fig. 6(a) and (b), we can see success rate increases and the growth
rate gradually decreases when Cmax increases. From Fig. 6(c) and (d), we can see the
average size of ALS decreases gradually and tends to be a stable value. This is because
when Cmax increases, the number of recorded ALS enlarges which makes it easier to
get a h-secure ALS. From Fig. 6(e) and (f), we can see average anonymous time is high
when h is 0.2 or the number of semantic locations is between 300 and 600, but it is low
in other conditions. This is because when h is 0.2 or the number of semantic locations
is between 300 and 600, the success rate is low. The failed anonymous process cost
much time since IS terminates until the size of ALS exceeds Lmax. While in other
conditions, success rate is high, so the value of average anonymous time is low. When

(a) θ takes default value, using PTs1 (b) Number of semantic locations takes 
default value, using PTs1

(c)   θ takes default value, using PTs2 (d) Number of semantic locations takes de-
fault value, using PTs2

Fig. 5. Relation between average anonymous time and the number of semantic locations or h
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Cmax is smaller than 400, success rate is low and average size of ALS is large; when
Cmax is bigger than 700, the average anonymous time becomes very large, so Cmax is
suggested to be between 400 and 700.

(a) θ takes default value (b) Number of semantic locations takes 
default value

(c) θ takes default value (d) Number of semantic locations takes 
default value

(e) θ takes default value (f) Number of semantic locations takes de-
fault value

Fig. 6. Cmax value analysis
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Figure 7 depicts the tendencies of success rate, average size of ALS, average
anonymous time with varying Lmax when the number of semantic locations or h takes
default value. From Fig. 7, we can see when the number of semantic locations is 300 or
h is 0.2, success rate is increasing with the raise of Lmax. The growth rate is high when
Lmax is smaller than 30 and low when Lmax is bigger than 35. Both the average size of
ALS and the average anonymous time increase with Lmax increasing. Success rate

(a) θ takes default value (b) Number of semantic locations takes 
default value

(c) θ takes default value (d) Number of semantic locations takes 
default value

(e) θ takes default value (f) Number of semantic locations takes 
default value

Fig. 7. Lmax value analysis
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increases because a bigger Lmax makes it easier to satisfy the h-secure ALS require-
ment. Some semantic locations which fail to find the h-secure ALS with small Lmax
eventually find a h-secure ALS after Lmax enlarges, thus the average size of ALS
increases. At the same time, average anonymous time becomes longer because these
semantic locations cost much time to find a h-secure ALS. When Lmax is larger than 30,
the average size of ALS is large and average anonymous time is long, so it is better to
choose 30 as the value of Lmax. When the number of semantic locations or h takes
other values, success rate is very close to 1, and the average size of ALS and average
anonymous time almost keep the same, which means that Lmax has few impacts on IS
when h or the number of semantic locations is large.

6 Conclusion

This paper proposed IS algorithm to achieve personalized semantic location privacy
preservation. According to combining global optimization with local optimization, IS
can improve anonymous success rate and reduce query processing cost. Two param-
eters Cmax and Lmax are introduced to limit space and time cost. By comparing IS
with overlapping and SA in three aspects, the experimental results show that IS has
good performance.

Acknowledgements. This work was partially supported by the Natural Science Foundation of
China (No. 61272403), by the Fundamental Research Funds for the Central Universities
(No. 10561201474).

References

1. Sweeney, L.: K-anonymity: A model for protecting privacy. Int. J. Uncert. Fuzz. Knowl.
Syst. 10(5), 557–570 (2002)

2. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy
beyond k-anonymity. Proc. ACM Trans. Knowledge Discov. Data (TKDD), 152 (2007)

3. Xue, M., Kalnis, P., Pung, H.K.: Location diversity: enhanced privacy protection in location
based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009.
LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01721-6_5

4. Yigitoglu, E., Damiani, M.L.: Privacy-preserving sharing of sensitive semantic locations
under road-network constraints. In: Proceedings of International Conference on Mobile Data
Management, pp. 186–195 (2012)

5. Li, M., Qin, Z., Wang, C.: Sensitive semantics-aware personality cloaking on road-network
environment. Int. J. Secur. Appl. 8(1), 133–146 (2014)

6. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using
dummies for location-based services. In: Proceedings of IEEE International Conference on
Pervasive Services, ICPS (2005)

7. Beresford, A.R., Stajano, F.: Mix zones: user privacy in location-aware services. In:
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops (PerCom 2004 Workshops), pp. 127–131 (2004)

Personalized Semantic Location Privacy Preservation Algorithm 167

http://dx.doi.org/10.1007/978-3-642-01721-6_5
http://dx.doi.org/10.1007/978-3-642-01721-6_5


8. Gruteser, M., Grunwald, D.: Anonymous usage of location based services through spatial
and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services (MobiSys 2003), San Francisco, California, pp. 31–42
(2003)

9. Mohamed, F.M., Chow, C.Y., Walid, G.A.: The new casper: query processing for location
services without compromising privacy. In: Proceedings of 32nd International Conference
on Very Large Data Bases, pp. 763–774. ACM Press (2006)

10. Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: architecture
and algorithms. IEEE Trans. Mob. Comput. 7(1), 1–18 (2008)

11. Kalnis, P., Ghinita, G., Mouratidis, K.: Preventing location-based identity inference in
anonymous spatial queries. Proc. IEEE Trans. Knowl. Data Eng. 19(12), 1719–1733 (2007)

12. Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Samarati, P.:
Location privacy protection through obfuscation-based techniques. In: Barker, S., Ahn,
G.-J. (eds.) DBSec 2007. LNCS, vol. 4602, pp. 47–60. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73538-0_4

13. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries in location
based services: anonymizers are not necessary. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2008), Vancouver, Canada,
pp 121–132 (2008)

14. Bamba, B., Liu, L., Pesti, P.: Supporting anonymous location queries in mobile
environments with Privacy Grid. In: Proceedings of the 17th International Conference on
World Wide Web, New York, pp. 237–246 (2008)

15. Damiani, M.L., Bertino, E., Silvestri, C.: The PROBE framework for the personalized
cloaking of private locations. ACM Trans. Data Priv. 3(2), 123–148 (2010)

16. Damiani, M.L., Bertino, E., Silvestri, C.: Protecting location privacy against spatial
inferences: the PROBE approach. In: ACM SPRINGL 2009 (2009)

17. Damiani, M.L., Silvestri, C., Bertino, E.: Fine-grained cloaking of sensitive positions in
location-sharing applications. IEEE Pervasive Comput. 10(4), 64–72 (2011)

18. Byoungyoung, L., Jinoh, O., Hwanjo, Y.: Protecting location privacy using location
semantics. In: Proceedings of the 17th ACM SIGKDD, pp. 1289–1297 (2011)

168 M. Xu et al.

http://dx.doi.org/10.1007/978-3-540-73538-0_4
http://dx.doi.org/10.1007/978-3-540-73538-0_4

	Personalized Semantic Location Privacy Preservation Algorithm Based on Query Processing Cost Optimization
	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Semantic Location City Network
	3.2 System Structure
	3.3 Privacy Requirement

	4 Algorithm
	5 Experimental Analysis
	5.1 Experiment Setting
	5.2 Experimental Result
	5.3 Parameters Discussion

	6 Conclusion
	Acknowledgements
	References




