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Introduction Section: Setting the Stage

of Investigation



Chapter 1
Leveraging Mathematics Creativity
by Using Technology: Questions, Issues,
Solutions, and Innovative Paths

Viktor Freiman and Janet Lynne Tassell

Abstract This introductory chapter aims to introduce the volume providing new
insights on creativity while focusing on innovative methodological approaches in
research and practice of integrating technological tools and environments in
mathematics teaching and learning. This work is being built on the discussions at
the mini-symposium on Creativity and Technology at the International Conference
on Mathematical Creativity and Giftedness (ICMCG) in Denver, USA (2014), and
other contributions to the topic. While presenting a diversity of views, a variety of
contexts, angles and cultures of thought, as well as mathematical and educational
practices, the authors of each chapter explore the potential of technology to foster
creative and divergent mathematical thinking, problem solving and problem posing,
creative use of dynamic, multimodal and interactive software by teachers and
learners, as well as other digital media and tools while widening and enriching
transdisciplinary and interdisciplinary connections in mathematics classroom.
Along with ground-breaking innovative approaches, the book aims to provide
researchers and practitioners with new paths for diversification of opportunities for
all students to become more creative and innovative mathematics learners.
A framework for dynamic learning conditions of leveraging mathematical creativity
with technology is an outcome of this collective work.

Keywords Mathematical creativity � Technology � Transdisciplinary and inter-
disciplinary connections � Innovative approaches to teaching and learning
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1.1 Interest in Looking into Creativity in Mathematics
Education Through Technology Lenses: Questions
and Issues

By laying out new directions in mathematics education for the 21st century, Kaput,
Hegedus and Lesh (2007) emphasized an infrastructural paradigm shift influenced
by new technological tools which would lead to new levels and types of ideas and
abilities and to new ways of thinking about traditional concepts and skills. The
infrastructural paradigm can, in fact, open doors to more creativity in teaching and
learning. For example, Yerushalmy (2009) citesMath4mobile mathematical tools as
those which enable creative mathematical thinking anywhere anytime for all.
Leikin, Levav-Waynberg and Guberman (2011), outline potential benefits in pro-
viding technology-based opportunities for inquiry-based learning and therefore, for
advancement of students’ mathematical creativity.

Inspired by seminal works by French mathematicians Poincaré (1854–1912) and
Hadamard (1865–1963) the field of mathematical creativity has been continually
expanding and growing throughout the second half of the 20th century and the
beginning of the 21st century (Sriraman, 2004;Mann, 2006; Leikin, Levav-Waynberg
& Guberman, 2011; Sriraman & Lee, 2011; and Leikin & Sriraman, 2017a).

This constant development and expansion in scholarship on mathematical cre-
ativity has led to refining its characteristics, its possible implications in the class-
room, and its connection to mathematical giftedness while looking at it from a
variety of international and interdisciplinary perspectives. An ongoing work of the
International Group for Mathematical Creativity and Giftedness (IGMCG), affili-
ated with the International Commission for Mathematical Instruction (ICMI) who,
in its turn, has established first a Discussion Group on mathematical creativity, then
a Topic Study Group (TSG), at its last Congress with a focus, among others, on
issues related to communication, information and computer technologies (TSG29,
ICME-13, 2016, http://www.icme13.org/files/tsg/TSG_29.pdf).

In fact, entering in the so-called digital era, or perhaps more cautiously, elec-
tronic digital era, raises many questions in respect to the teaching and learning
mathematics which is the main theme of the book Series Mathematics Education in
the Digital Era (http://www.springer.com/series/10170). The newest volume in the
Series seeks to extend and to deepen a collective understanding for how digital
technology shapes and is shaped by multiple views of creativity in mathematics.

In this respect, the following twenty chapters of the book provide reflective and
critical overview of research worldwide while focusing on innovative method-
ological approaches in design and implementation of technological tools and envi-
ronments in mathematics teaching and learning. It also examines research data on
their impact on mathematical creativity. A deeper insight can be gained in terms of
the potential of technology to foster creative and divergent mathematical thinking,
problem solving and problem posing, creative use of dynamic, multimodal and
interactive software by teachers and learners, as well as other digital media and tools
while widening and enriching transdisciplinary and interdisciplinary connections in
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the mathematics classroom. This work originated from discussions at the
mini-symposium on Creativity and Technology at the IGMCG-8 conference in
Denver, USA (Freiman & Tassell, 2014), which was pursued at the next ICMCG-9
conference in Sinaia, Romania (Singer, Toader, & Voica, 2015). In order to expand
the investigation of the topic, we issued an extended call for proposals inviting a
larger group of scholars to participate.

Going beyond the design and implementation issues, the authors of the chapters
were asked to investigate mathematical creativity in a variety of technology-en-
hanced contexts, such as online learning, social networking, use of mobile tech-
nologies, robotics-based learning, 3D-printing in makerspaces, as well as computer
programming. Along with ground-breaking innovative approaches, the book also
aims to provide researchers and practitioners with new paths for diversification of
opportunities for all students to become more creative and innovative mathematics
learners.

As a result, through this collective work we can better grasp opportunities and
challenges related to the richness of learning experiences with technology,
including online learning. These diverse opportunities can engage not only more
students in the mathematics classrooms that offer challenging and enriched pro-
grams, but also extend instruction to those students who live in remote areas, often
in rural and low-income communities, so they can gain access to a wider range of
advanced courses and learn at their own pace according to their interests and
abilities (Thompson, 2010; Singer, Sheffield, Freiman, & Brandl, 2016).

When reflecting on possible connections between Mathematics, Technology,
and Creativity, one discovers much more diversity and ambiguity related to specific
views, understanding and educational contexts and settings. The book takes an
opportunity to grapple with varying definitions and understandings, hoping to
reveal some poignant differences, and to find some common trends thus attracting a
larger international audience of mathematics educators, teacher educators at all
levels, and perhaps digital software developers wishing to increase impact of
technology on mathematics instruction and learning. But first and foremost, this
book is critical for education communities where current issues of mathematics
creativity are taken seriously.

1.2 Multiple Views and Approaches: Enlarging
and Deepening Our Knowledge

In introducing the book, we strive to spotlight a number of different ways where
technology can stimulate and foster creativity in mathematics teaching and learning.
As a result, we consider the diversity of contributions coming from educators with
different backgrounds, expertise, and experience as a significant advantage of this
book. Throughout the chapters, the authors express their particular perspective and
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understanding of creativity and technology taken from a variety of contexts, angles
and cultures of thought, as well as mathematical and educational practices.

Hence, looking at the issues of developing mathematical creativity using tech-
nology from the learner’s perspective, some of the chapters include details about
research and application of problem-solving and problem-posing activities, as well
as multiple-solution tasks that have potential to foster the original, flexible, and
fluent mathematical thinking while stimulating “invention, innovation, originality,
insight, illumination, and imagination” (Leikin & Sriraman, 2017b, p. 1). In such
context, digital tools and environments offer opportunities to incorporate, among
others, online virtual communities, social media, dynamic geometry software,
interactive applets, video-games, robotics programming, and 3D-printing. This
could increase opportunities in exploration, modeling, and discussion while even-
tually affording earlier access to more advanced mathematics thus pushing learning
beyond the boundaries of traditional curriculum. We could also find a fostering of
interdisciplinary and transdisciplinary connections further stimulating students’
interest, motivation, and curiosity, and even making failure ‘productive’ for deeper
learning in “new media technology-pervasive learning environments” (Arnone,
Small, Chauncey, & McKenna, 2011, p. 181).

Other chapters provide deeper insights about how technology might enrich
mathematics teaching by providing new tools to stimulate creativity in learning.
Chapters also include innovative ways of exploring creative potential of these tools
thus contributing to new culture of teaching which helps to appreciate a variety of
learning paths and build on students’ creativity. The TPACK (Technological
Pedagogical and Content Knowledge; Biton, Fellus, & Hershkovitz, 2016; Koehler
& Mishra, 2015) framework is used to examine the knowledge teachers need, not
only to have to teach successfully with technology, but also to emphasize the
complexity of transferring of the potential impact of technology and pedagogy of
creativity to the mathematics classroom.

Furthermore, Mishra (2012) sees a potential of dealing with this complexity in
combining a trans-disciplinary view of creativity with ‘(in-)disciplinary’ and
‘indisciplinary’ dimensions, the former framing creative work ‘in-context’ of a
particular discipline (in our case, mathematics), and the later allows for “cutting
across the boundaries of discipline to emphasize divergent thinking and creativity”
(p. 15). According to the authors, this combination re-joins TPACK framework into
an inclusive, practical and flexible structure for teaching creatively and effectively
with technology (Mishra, 2012, p. 15).

Yet, in many aspects this variety of contexts, theories, and innovative practices
does have, in our opinion, a common ground while connecting issues of developing
creativity in technology-rich environments to the activities of solving rich problems
and aiming at more advanced levels of mathematical thinking. This connection
converges to more universal and holistic view of the field in its present state while
at the same time offering new developments, along with promising paths for further
investigation.

Based on these ideas and the submitted texts, we divided the chapters of the
book into five parts, reflecting thematic variety of contributions while grouping
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them around the issues we find important for outlining the main focus of the book,
which is increasing our shared understanding of and deepening our insight into how
technology could foster creativity in mathematics.

In the next sub-section, we will examine each of the following parts:

• Teaching Practices and Instructional Strategies to Inspire Authentic Creativity.
• Creativity in Technology-Rich Mathematical Environments.
• New Learning Paths and Creative Teaching Approaches.
• Creativity and Advanced Mathematics.
• Learning from the Theories and Patterns of Students’ Creativity.

1.3 Teaching Practices and Instructional Strategies
to Inspire Authentic Creativity

The chapters in Part II of the book (Teaching Practices and Instructional
Strategies to Inspire Authentic Creativity) look at how and why teaching and
instruction is critical in providing opportunities for students to experience creativity
growth, and the complexity of the issues in transferring this awareness into the
classroom practice that could influence this growth (Panaoura & Panaoura, 2014).
In their contributions, the authors of the chapters consider innovative teaching
practices and instructional strategies that might inspire a so-called ‘authentic cre-
ativity’, while providing readers with examples that involve meaningful use of
digital tools in mathematics teaching, and showcasing new ways for developing
creativity in students.

In Chap. 2, “Screencasting as a Tool to Capture Moments of Authentic
Creativity,” Dana Cox, Suzanne Harper, and Michael Todd Edwards use
screencasting to capture moments of authentic creativity in an interactive geometry
environment. Their case study of two pre-service secondary mathematics teachers,
working on The Kaleidoscope Task, exposes four distinct episodes of creativity. At
the center of each episode is a moment of insight, categorized by the authors as
either representing problem posing or problem solving. This chapter exposes the
potential of screencasting to create an auditable trail of problem solving practice. It
can be difficult to articulate the activity and thinking that surround moments of
insight through verbalized thinking alone. Working in the digital environment
affords us new tools to capture and articulate those moments. Screencasting is one
technology that can be used to capture not only ambient conversation, but also
on-screen action and activity.

The focus of Chap. 3, “The Create Excellence Framework’s Impact on
Enhancing Creativity: Examining Elementary Teacher Candidate Mathematics
Lesson Planning,” written by Janet Lynne Tassell, Rebecca Stobaugh, and
Marge Maxwell examines how the Create Excellence Framework helps teacher
educators have an impact on the quality of pre-service teachers’ lesson plans to
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enhance creative learning opportunities for children. It builds on four components
essential to high-quality lesson plans: Cognitive Complexity, Real-World Learning,
Engagement, and Technology Integration. The authors analyze data from two
elementary education teacher candidate classes for five semesters. Over the course
of the study, for each component, the mean scores increased, and there was a
positive statistically significant difference between the scores from the baseline
semester to the fifth semester. Increasingly, students were exposed to and utilizing
new digital tools to enhance their learning. Using these digital tools along with
real-world applications of the content encouraged students to think creatively to
solve authentic problems.

In Chap. 4, entitled “Impacting Mathematical and Technological Creativity with
Dynamic Technology Scaffolding,” Sandra Madden reflects on studies conducted
during the past decade investigating teacher mathematical learning for teaching
with technology and its relationship to creativity. Though related to mathematical
knowledge for teaching (Ball, Thames, & Phelps, 2008) and technological peda-
gogical content knowledge (Mishra & Koehler, 2006; Niess, 2005), mathematical
learning for teaching with technology has a strong dispositional component coupled
with curiosity, creativity, and meaning making (Thompson, 2015). Using design-
based research methods, a framework for dynamic technological scaffolding
(DTS) has emerged in support of teacher learning. DTS has provided fertile ground
for the design and further study of learning trajectories in which learners are
exploring and eventually creating cognitively challenging mathematical task
sequences in the presence of new (to them) physical and technological tools. By
harnessing teachers’ motivation to inculcate curiosity, engagement, and learning for
their students, these design studies have created conditions where teachers have
become curious, creative, and technologically savvy to the point where many have
gone on to pursue similar kinds of experiences with their mathematics students.
This chapter explores and presents DTS as created and implemented with secondary
mathematics teachers, and as creative work pursued by them.

The section is concluded with Chap. 5, “Three-Act Tasks: Creative Means of
Engaging Authentic Mathematical Thinking through Multimedia Storytelling,” in
which Adrienne Redmond-Sanogo, Susan Stansberry, Penny Thompson, and
Sheri Vasinda describe the Three-Act Task approach and the theoretical founda-
tions supporting it. This includes a design process for developing a rubric to
evaluate and scaffold the creative multimedia mathematical stories. The rubric
draws on four areas of literature for its theoretical grounding: (1) research on
selecting and posing high cognitive demand tasks for mathematical problem
solving, (2) use of story arc for contextual relevance, (3) research on assessing and
measuring creativity, and (4) principles of effective multimedia message design.
The rubric developed for assessing the Three-Act Task is designed to serve as a
guideline for pre-service and in-service teachers as they select or create Three-Act
Tasks to use in their classrooms. The authors conclude their chapter by highlighting
several areas of where continuing research is needed, such as professional devel-
opment of teachers, investigating student outcomes when the tasks are used, and
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extending the concept beyond the mathematics classroom to fields as diverse as
science, English, and social studies.

1.4 Creativity in Technology-Rich Mathematical
Environments

The chapters in Part III of the book (Creativity in Technology-Rich
Mathematical Environments) spotlight the chapters surrounding the notion of
technology-rich innovative learning environments (Istance & Kools, 2013). While
the potential of technology-rich environments to enhance mathematical thinking has
been documented in a number of studies (Suh, Johnston, & Douds, 2008), their
particular role in fostering creativity in teachers and students remain underexplored.
This is why the chapters we grouped in the second part of the book aim to
provide innovative ideas for more interactive, explorative, interdisciplinary, and
collaborative mathematics lessons. In this respect, our authors, while presenting
their unique view of the topic, contribute, collectively to the search for and novel
ways of expanding creativity in mathematics education through new types learning
spaces enhanced by digital technology tools. It also helps to introduce a new way of
thinking about the transformative role of technology by inviting the readers to look
beyond the isolated examples for common patterns on how technology could
leverage creativity in students’ learning of mathematics.

Namely, Chap. 6, “Interactive Technology to Foster Creativity in Future
Mathematics Teachers,” discusses ways in which the use of interactive technology
fosters creativity among future secondary mathematics teachers in a problem-based
course that integrates mathematics, science, and technology in their first year in
college. In their study, Alfinio Flores, Jungeun Park, and Stephen Bernhardt
found that the use of interactive technology fosters creativity in students naturally
when mathematics is taught based on research-based principles to learn mathe-
matics for understanding. Creativity is fostered, promoted and developed when
learners use interactive technology to (a) grapple themselves with concepts and
make concepts explicit; (b) actively build new understanding on previous knowl-
edge; (c) engage with mathematics as a social process; (d) use multiple represen-
tations and connections to enhance their understanding; (e) pose and solve
problems; and (f) exercise multiple modes of learning—when they read, talk, write,
draw, analyze, apply, present, and reflect. Authors discuss the use of interactive
technology and issues related to future teachers’ creativity as they solve problems;
design experiments and collect, represent, and analyze data; develop mathematical
models for phenomena in the physical, biological, and social sciences; and build
and program their own robot.

In Chap. 7, “Creativity and the Design of Music-Mathematics Activities in a
Virtual Simulation Learning Environment,” Trina Davis, Glenn Phillips, and
Gerald Kulm analyzed opportunities for creative and transformative experiences
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for students of all ages. Mathematics classrooms, in particular, can be fertile places
for activities that integrate creativity. While technology and mathematics education
are not strangers, there is little work on conceptual frameworks that drive the
“math-tech” relationship. This chapter offers a fresh way of considering technology-
infused mathematics learning by introducing Koestler (1981) notion of “collision as
creation.” As two things that are seemingly disconnected collide, the precipitate is a
creative moment leading to comedy, discovery, or art. It is in these unique colli-
sions that new knowledge and new ways of knowing come to pass. One such
creative moment is explored through student perceptions of a virtual classroom
experience. Students engaged within the environment as they connected technology
(virtual reality), mathematics, and music. Implications of this work include an
expanded idea of what contributes to feelings of efficacy and student success in the
mathematics classroom, as well as how music may help students with learning
difficult mathematical concepts like fractions and patterns.

Issues regarding preparing teachers to explore possible benefits of interactive
tools to support creativity in students are being analyzed in Chap. 8, “Preparing
Teachers to Use Excelets: Developing Creative Modeling Experiences for
Secondary Mathematics Students,” thus offering readers an important insight into
how such technological experiences can provide learners with an environment that
promotes creative thought. Authors Ginger Watson and Mary Enderson studied
pre-service secondary mathematics teachers’ use of excelets (interactive forms of
excel) as a tool to promote understanding and creativity in modeling mathematical
concepts. By providing pre-service teachers experiences in integrating excelets,
how they approached the solving of problems presented a variety of responses and
techniques as well as different levels of creativity. It was found that high-tier
participants were more creative in their approaches and offered greater insight into
their thinking and questioning of mathematics problems. The authors believe that
providing pre-service teachers with experiences to use technological tools to
explore modeling scenarios is crucial to their development as creative problem
solvers and mathematics experts. They will develop creativity in their own math-
ematical thought as well as have the potential to think about supporting such
creativity in their future instruction. Teacher education programs have quite a bit of
work to accomplish in developing teachers who understand creativity as it relates to
mathematics instruction using technology.

In Chap. 9, “Creativity in Question and Answer Digital Spaces for Mathematics
Education: A Case Study of the Water Triangle for Proportional Reasoning,”
which concludes the second part of the book, Benjamin Dickman examines the
intersection of technology and creativity in mathematics education, using an
example of digital spaces that enable creative collaboration. Online Question and
Answer (Q&A) sites for the subject of mathematics date back to the late twentieth
century, but Q&A spaces organized specifically around mathematics education
have emerged as a more recent phenomenon. By bringing together diverse indi-
viduals with joint interest in mathematics, these Q&A sites are well-positioned to
support productive work; of course, whether the resulting collaboration can be
labeled ‘creative’ is a function of how one interprets this commendation.
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Although creativity is often framed with respect to a person, process, product, or
environmental press, this chapter advocates for a more inclusive conception in
which creativity is viewed through a participatory model. Under this interpretation,
creativity is distributed across, for example, various actors, objects, and interac-
tions, and concerns around attribution or eminence are no longer as salient. The
chapter on creativity in Q&A digital spaces illustrates some of these notions by
describing a routine reference request for the source of a tool for proportional
reasoning, posed as a question through the Mathematics Educators Stack Exchange
(MESE) platform, and answered by drawing from a confluence of sources that were
made possible by recent technologies. In discussing nascent Q&A digital spaces for
mathematics education, the chapter opens with three key ideas to be articulated, and
closes with three corresponding open avenues for future exploration of these sites,
along with modern conceptions of both creativity and technology, continue to
evolve.

1.5 New Learning Paths and Creative Teaching
Approaches

Recently, Hegedus and Tall (2016) have analyzed how later developments in
multimodal learning environments based on haptic and multi-touch technologies
can create enhanced learning possibilities for more learners to access core mathe-
matical ideas and think mathematically. The chapters in Part IV of the book (New
Learning Paths and Creative Teaching Approaches) provide important exam-
ples of how learning and teaching approaches connect with creative teaching
approaches while using new devices and tools, such as 2D- and 3D-manipulatives,
3D-printers, and video-games.

With this section, we turned a focus toward actual strategies that have a creative
angle. As we considered the diverse contributions of our authors, we found that
teaching, in and of itself, warrants a thoughtful design that may be intentionally
employing a creative strategy within the mathematics education classroom, whether
it be at the K–12 level or college level. We considered how some of the chapters
focus on teaching strategies for elementary through high school teachers, but also
include attention toward the preparation of pre-service teachers. The value of these
chapters is in emphasizing the importance of remembering that creative instruc-
tional practices could eventually lead to the emergence of creative learning
approaches to solving rich and authentic mathematics problems. Technology, in this
sense, provides affordances for exploration of what students need for better actu-
alization of their learning potential (Martinovic, Freiman, & Karadag, 2013).

For instance, Chap. 10, “Nurturing Creativity in Future Mathematics Teachers
through Embracing Technology and Failure,” by Marina Milner-Bolotin dis-
cusses how modern educational technologies can open promising opportunities for
educating mathematics teachers who are ready and willing to nurture creative and
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critical thinking in their own students. In particular, the focus is on exploring
pedagogies that utilize technologies, such as computer simulations and modeling
software, data collection and analysis tools, classrooms response systems, tools for
student collaboration on designing multiple-choice questions, and finally tools for
collaborative reflecting on video-recorded teacher-candidates’ micro-teaching. The
chapter discusses how modern technology can help mathematics teachers to turn
inevitable student failures in mathematics learning into exciting learning opportu-
nities. The challenges of the implementation of these technologies in mathematics
teacher education and the opportunities that they offer for embracing creative
mathematical thinking are also discussed.

In the context of early spatial learning, Chap. 11, “Harnessing Early Spatial
Learning Using Technological and Traditional Tools at Home,” by Joanne Lee,
Ariel Ho, and Eileen Wood reviews extant literature in an effort to identify and
describe key ideas and research findings relevant to the use of physical and digital/
virtual manipulatives for promoting early spatial development. This context serves
as the foundation for exploring the importance of supporting spatial-visual skill
development in early childhood years through the complementary use of 2D and 3D
spatial play activities. Particular attention is given to the use of 2D spatial-visual
iPad® applications to nurture creative thinking afforded by technology and the
importance of the design of applications to support positive learning outcomes.
They introduce a novel idea that playing with both 2D (i.e., iPad® apps) and 3D
manipulatives may maximize learning opportunities to foster creative and flexible
spatial thinking.

In summary, the author’s goal is to provide a foundation for understanding early
spatial development in the home and in the context of a technologically rich learning
environment. These two contexts provide opportunities for creative expression, dis-
covery and exploration. A key objective is to identify how these aspects of creativity
intersect in the current literature and may be important for future study—especially in
the critical early years, where home influences aremost likely to establish fundamental
skills and where touch—screen technologies are increasingly prevalent.

Also aiming at the development of spatial skills, Chap. 12, “Video Game Play,
Mathematics, and Spatial Skills—A Study of the Impact on Teacher Candidates,”
by Janet Lynne Tassell, Elena Novak, and Mengjiao Wu highlights the
importance of spatial abilities in mathematics education, especially among
pre-service elementary teachers, and suggests video games as a creative teaching
approach for enhancing spatial abilities and mathematics performance. They argue
that spatial abilities deserve more attention in mathematics education, as a major
predictor of achievements in science, technology, engineering, and mathematical
(STEM) fields. To support this notion, the authors introduce recent developments in
research on non-educational action video games that promote various cognitive and
attentional capabilities that have a potential of improving mathematics achievement.
They describe an experimental study that examined the effects of playing such
recreational video games on education majors’ math problem-solving, math anxi-
ety, working memory, and spatial skills. After 10 hours of playing, both video
game intervention groups significantly improved their spatial skills, working
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memory, and geometry performance from pre- to post-test. In addition, students
with low spatial abilities had significantly higher math anxiety. These findings
suggest potential impact of video gaming in education and open new horizons for
future research that explores how schools and homes working together with
strategic gaming plans can help students improve their spatial reasoning and
mathematics problem solving. The chapter concludes with future research sug-
gestions on spatial abilities and creativity in mathematics education.

A recent growth of makerspaces in schools created new opportunities for
teaching and learning mathematics shown in Chap. 13, “Prototype Problem Solving
Activities Increasing Creative Learning Opportunities Using Computer Modeling
and 3D Printing,” written by Antonia Szymanski. The purpose of this chapter was,
through reviewing literature and presenting a conceptual application, to investigate
the relationship of 3D printing with Prototype Problem-Solving Activities (PPSA)
to develop creativity in mathematics. Grounded in the makerspaces movement, the
potential of 3D printers in PPSA is highlighted in the chapter. PPSA seek to
replicate the makers’ motivation and curiosity through authentic problems that rely
on collaboration and multiple iterations to find optimal solutions. The process of
using PPSA allows the students to develop higher order thinking skills of analysis
and synthesis in their mathematical understanding.

1.6 Creativity and Advanced Mathematics

The chapters in Part V of the book (Creativity and Advanced Mathematics)
incorporate actual problems and focus on the learning of mathematics. This part,
while providing several examples of creative problems in the mathematics class-
room, initiates conversations about possibility of learning more advanced mathe-
matics. Technology enters in here in varying ways and levels, providing a context
to consider that situations are unique to schools, classrooms, and individual chil-
dren. A number of promising opportunities provided by technological tools also
require a critical examination of possible pitfalls teachers and students should be
aware of. We particularly found these chapters intriguing as they focus on the
problems and scenarios, with samples provided for how the conversations happened
in the authors’ classrooms, thus shedding light on advanced mathematics topics
from a creativity perspective.

Hence, in Chap. 14, “Can a Kite Be a Triangle? Aesthetics and Creative
Discourse in an Interactive Geometric Environment,” Hope Gerson and Paul
Woo Dong Yu claim that creativity is essentially aesthetic rather than cognitive. In
this chapter, the authors set out to study creativity within a dynamic geometry
environment using Sinclair (2006) aesthetic framework to identify creativity within
a class discussion. Careful analysis of the case stories shows various elements of
aesthetic sensibilities in the students’ responses: student interest, genuine curiosity,
brainstorming, and motivation. They see creativity in the three aesthetic roles,
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generative, motivational, and evaluative, as the students generate ideas, the teacher
makes instructional choices, and then students and teacher together resolve the
mathematical discussion. In this episode, the inquiry began with the generative
aesthetic with the motivational aesthetic at its peak during the climax and then
continuing through to the resolution with the evaluative aesthetic playing the major
role.

The authors also found the generative nature of the dynamic geometry envi-
ronment to be particularly rich in allowing students to activate the generative
aesthetic to change their focus, look for patterns, and reorganize their thinking in
different ways. The generative aesthetic was driving the creativity forward allowing
students to view the triangle-kite from many different perspectives. The students
generated ideas which activated motivational responses and lead to resolution. The
creative and aesthetic qualities of open inquiry, the Geometers’ Sketchpad, and
teacher moves, created a setting where students and the teacher made aesthetically
motivational, generative, and evaluative choices to build understanding of geo-
metric properties of kites and triangles as well as the limitations of sets of geometric
properties in classifying geometric shapes.

In a context of teacher education, Sergei Abramovich, in Chap. 15,
“Technology and the Development of Mathematical Creativity in Advanced School
Mathematics,” reflects on his work with pre-service teachers enrolled in a sec-
ondary mathematics education course which is enhanced by powerful computing
technology. In this context, the development of creativity is considered through the
lenses of the theory of affordances frequently used by mathematics education
researchers when talking about the affordances of digital tools. A concern has been
raised that because of the availability of mathematical software capable of solving
rather advanced problems almost at the push of a button, technology provides a
negative affordance by facilitating problem solving to an extent that mathematics
appears giving up its creative flavor. With this in mind, the chapter focuses on a
new type of problems which stem from the modification of traditional ones in a
sense that they are both technology immune (TI) and technology enabled (TE). In
other words, when a computer does not provide the final answer, its use in solving a
problem is critical.

In Chap. 16, “‘Integrating’ Creativity and Technology through Interpolation,”
the authors Bharath Sriraman and Daniel Lande attempt to show the paradox of
the digital age where mathematical information is readily available, as well as tools
to compute classical results through symbolic mathematical software, such as
Mathematica, devoid of the motivation or origins of these results. Simply accessing
information or invoking a function or a routine does not reveal the process via
which these results were obtained. Using examples which high school students
might encounter in a Calculus textbook, particularly when learning to integrate
basic circular functions, they uncover how original hand calculations using first
principles can result in deep insights that present students with the opportunities of
learning and understanding the origins and necessity of these functions. To further
understand what these results mean, they employ 21st century tools to visually
represent functions that were obtained via mathematical interpolation without the
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aid of modern technology. Original techniques are contrasted with modern graphing
techniques for the same functions.

In a particular context of Mathematics Village, which has existed in a natural
environment in Turkey for ten years, in Chap. 17, “Ancient School without Walls:
Collective Creativity in Mathematics Village,” Elçin Emre-Akdoğan and Gönül
Yazgan-Sağ have dealt with the role environment plays in the development of
mathematical creativity. The Mathematics Village, a unique institution in Turkey,
offers short but intense courses, and at which high school and college students are
taught by professors and engage in seminar discussions. The authors have examined
how the Mathematics Village could promote mathematical creativity, as well as the
transformation of the culture of mathematical creativity that emerged from the
Mathematics Village (non-virtual environment) into Social Media (virtual
environment).

The context of this study, as well as its findings, reveal that the Mathematics
Village promotes mathematical creativity of students and enables mathematicians to
activate their own creativity. From that perspective, having an educational setting
that provides freedom can positively affect students’ state of mind and creativity.
The results of this study contribute to the literature due to the fact that this study
examines how providing a context, in which people with different levels of edu-
cation and interest in mathematics could activate mathematical creativity, and how
the creative characteristics of the Village could be potentially enhanced by a virtual
environment using social media through: (1) Information-gathering, (2) Interaction
and sharing, and (3) Social networking.

1.7 Learning from the Theories and Patterns of Students’
Creativity

Despite important advances on understanding of learning and teaching potential of
the use of technology in mathematics, little is known about the particular ways
students’ creativity could emerge in such environments. In this respect, the chapters
in Part VI (Learning from the Theories and Patterns of Students’ Creativity),
the last part of the book, give an angle for us to consider as we focus on the student
authentic learning. It also shares empirical evidence and theoretical thoughts
regarding what mathematics educators could learn from these authentic learning
experiences. The authors within this section provide theoretical insight on
approaches that are grounded in multiple data sources collected over the years, but
also being stretched by the concept of the interaction of the three areas, namely
technology, creativity and mathematics.

In this respect, Chap. 18, “APOS Theory: Use of Computer Programs to Foster
Mental Constructions and Student’s Creativity” by Draga Vidakovic, Ed
Dubinsky, and Kirk Weller refers to Piaget (1981, p. 227) saying that “the body
of mathematics is a model of creativity, and it also rests on a process of reflective
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abstraction.” From Piaget’s perspective, mathematical thought, which he believed
to be inherently creative, is driven by an individual’s ability to contemplate ideas
and to make abstractions based on those ideas. This perspective is the main premise
behind APOS, a constructivist theory of mathematical learning. The letters that
make up the acronym APOS, represent the four basic mental structures—Action,
Process, Object, and Schema. The general theory serves as a framework to describe
individual cognition for specific mathematical concepts. On this basis, an instructor
can design activities that align with student learning of a concept. As students
construct new mental structures, they can achieve new insights, engage in higher
level reasoning, and apply techniques or approaches in new, or novel,
ways. Typically, this involves having students write, test, and discuss the effects of
running computer programs or, in some cases, of making adjustments to code
provided by the system. Getting the solution to a problem by pushing buttons and
having the computer cough up the solution does not really go beyond just listening
to an instructor present the solution, or reading about it in a text, neither of which
fosters creativity or learning. The authors argue that these types of activities con-
stitute the essence of creative thinking.

From Vygotskian and Piagetian perspective, in Chap. 19, “The Nature of
Knowledge and Creativity in a Technological Context in Music and Mathematics:
Implications in Combining Vygotsky and Piaget’s Models,” Yves de Champlain,
Lucie DeBlois, Xavier Robichaud, and Viktor Freiman take a cross-disciplinary
look at constructivist and cognitive approaches to creativity in order to understand
its implications in the learning process. Indeed, creativity necessarily implies at
some point to see the world in a way that is different than what we previously knew.
And the cognitive act of changing our view about what we know implies changing
our relationship with what we know and even with knowledge itself. So, hypoth-
esizing that technology has an influence with our relationship with knowledge in a
very deep way, the questions these authors asked are: How can technology con-
tribute to change the learner’s relationship with knowledge in a learning setting?
How can technology contribute to change our relationship with creativity itself?

To answer these questions, the authors went back to Piaget’s and Vygotsky’s
founding models of our relationship with knowledge. They considered that if we
understand the nature of the learning process, then we may also understand the
nature of creativity in the learner’s perspective and the impact of technology in this
relationship. These authors studied creativity form the learner’s perspective in two
apparently opposite curricula: mathematics and music. Apparently opposite because
mathematics is often associated with right and wrong answers while music is
usually associated with freedom and self-expression. But beyond appearances, the
cognitive processes of creativity share a large common ground in both fields.

Over the past decades, educational systems have continually worked on inte-
grating technology into mathematics education. Creativity, on the other hand, was
—more often than not—less attended to. In Chap. 20, titled, “Putting the horses
before the cart: Technology, creativity, and authorship harnessed three abreast,”
Osnat Fellus and Yaniv Biton frame technology, creativity, and authorship as
analogous to horses pulling the cart of mathematics education. Fellus and Biton
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build on Latour’s conception of technology, Vygotsky’s perception of creativity,
and Bakhtin’s notion of authorship to suggest a departure from traditional ways of
viewing creativity in mathematics education as arrogated to giftedness, and a shift
to a unification of the notions of technology, apprenticeship, and authorship to
allow for expressions of creativity for all learners. Using the teachings of the three
classic scholars, the authors, widen our perception and conception of technology,
creativity, and learning; show how the very intertwining of the notions allows for a
far wider understanding of the idea of creativity in mathematics education; and
frame the learning of mathematics as learning connections in a network of math-
ematical ideas. In this chapter, the authors first denote the terms technology, cre-
ativity, and authorship and discuss how the interconnectivity among the three is
paramount in the context of mathematics, they then showcase how this intercon-
nectivity is co-constructed in an episode drawn from the work of the second author
as a mathematics instructor in the virtual high school in Israel. The chapter con-
cludes with a discussion of some possibilities this meeting point among Latour’s
precepts of technology, Vygotsky’s concept of creativity, and Bakhtin’s construct
of authorship may hold for the teaching and learning of mathematics.

Rounding out the last section is Chap. 21 from Dominic Manuel. Here he
explores “Virtual Learning Communities of Problem Solvers: A Potential for
Developing Creativity in Mathematics?” Researchers in mathematics education
argue that mathematics is a school subject that can support the development of
creativity in students. Yet this opportunity is still under-used in mathematics
classrooms. In this chapter, the author explores the virtual community CAMI
(Communauté d’apprentissages multidisciplinaires interactifs) as a potentially rich
environment form of developing mathematical creativity in the context of problem
solving.

The author developed a conceptual framework to analyze the richness of
mathematical problems in CAMI including its open-ended-ness, complexity, con-
textuality, ill-defined-ness, and possibility for multiple interpretations. In addition,
using Leikin’s (2007) notion of collective solution space as well as criteria for
mathematical creativity such as fluency (number of correct possible answers to a
problem), flexibility (number or appropriate strategies to solve a problem), and
originality (correct answers and strategies less frequently used in solutions to a
problem) the author has assessed the mathematical creativity of the students’
solutions to these problems while looking whether a link exists between richness of
the problem and creativity of solutions. Results show that, in general, richer
problems seem to bring different correct answers and more original solutions in the
CAMI virtual community. They also imply potentially promising practice teachers
could develop by analyzing this diversity of solutions with their students thus
providing further support for the development of mathematical creativity.
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1.7.1 In What Way Technology Can Foster Creativity in
Mathematics: Searching a Common Ground

Based on our own reflection of each contribution to this book, we present in this
section a model which attempts to illustrate an interaction between different con-
texts, theories, and practices discussed by our authors, in a hope to make some
common sense of the field and draw preliminary conclusions about what has been
done thus far and what are some promising paths for future investigations. Since
early 1980s, the technology (or ICT) is considered as driver of change and inno-
vation in schools, in general, and in teaching and learning mathematics, in particular
(Bottino, Artigue, & Noss, 2009). According to the authors, it might potentially
contribute not only to improving existing curriculum goals and classroom practices
but also to changing a nature of knowledge itself, shifting our questioning from
‘How’ to ‘What’ in a variety of contexts (Papert, 2006; cited by Bottino et al.,
2009). The call for change is also coming from the world outside the school where
“novel kinds of mathematical knowledge, techno-mathematical literacies have
become of critical importance” (idem, p. 75).

Kaput and Thompson (1994) have identified three aspects of electronic tech-
nology for ‘enabling’ “deep change in the experience of doing and learning
mathematics” (p. 678), one of which is interactivity, when computer is providing
students with the reaction to her or his action allowing, in turn, further interpre-
tation, reflection and further action from the students. Here we find the sources for
‘engaging’ students in more active learning. A second source of power of change
mentioned by the authors is related to the design which provided aid for thinking or
problem solving, along with intelligent feedback or context-sensitive advice,
actively linking representation systems, control physical processes from the com-
puter, all this could influence students’ mathematical experiences more deeply than
ever before (Thompson, 1991; cited by Kaput & Thompson, 1994). We call this
‘empowering’ the students’ learning experiences.

Regarding the 3rd aspect, it is surprising that already in 1994, the visionaries
could identify connectivity as yet another source of change when linking “teachers
to teachers, students to students, students to teachers, and perhaps most important,
that link the world of education to the wider worlds of home and work” (idem,
p. 679) which has potential of ‘enriching’ mathematical experiences while pro-
moting discourse among students and among students and teacher and eventually
‘encouraging’ them to develop higher-order thinking (Niess et al., 2009).

These potentially transformative aspects of pedagogy based on digital technol-
ogy, according to Kaput (1998), bring a number of challenges to mathematics
education which he grouped in four categories, namely, (1) representations and
modeling, (2) curriculum structures and prerequisites, (3) content shifts due to the
computational medium, and (4) the move to ubiquitous, heterogeneous, connected
technologies. Projected by Kaput on the period of 5–10 years, these challenges
seem still be in center of educational debates nowadays, almost two decades later.
For instance, in a similarly titled paper, Wade, Rasmussen, and Fox-Turnbull
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(2013) emphasize technology integration as ‘cultural transformation’ from tradi-
tional teacher-directed to innovative student-centered learning where students are
engaged in learning through teamwork, critical thinking, and problem solving.

We could also document the potential of technology to provoke changes in
teaching and learning based on our own work on the design and the development
of the CAMI virtual learning community (Freiman & Lirette-Pitre, 2009),
then analyzing students’ work in solving problem, elaborating authentic solutions,
and inventing strategies within informal online learning environments (Freiman,
2009; LeBlanc & Freiman, 2011; Pelczer & Freiman, 2015) and in-class when
exploring robotics-based learning tasks (Savard & Freiman, 2016). We also noticed
the potential of these technology-rich environments and technology-enhanced
experiences to be used by caring teachers who seek to contribute to fostering
students’ mathematical creativity (Freiman & DeBlois, 2014). Yet, there are also
possibilities to use technology to support lecturing-type presentations and
exercise-type activities within learning management systems, portals, video and
intelligence in tutoring systems which reproduce rather traditional way of teaching
and learning (Kynigos & Daskolia, 2014). In order to become real enablers of
creative mathematical thinking, digital technologies have to be combined with other
processes, mechanisms and tools of school education, among which the design and
use of appropriate educational resources (Kynigos & Daskolia, 2014), as well as
changing approaches to teacher education, assessment and educational policy
(Henrikson, Mishra, & Fisser, 2016).

In a similar way to Flavin’s approach to analyze disruptive character of tech-
nology-enhanced learning, Martinovic et al. (2013), in the opening Volume of the
Series, used activity theory, along with affordances theory in order to grasp inno-
vative practices in visual mathematics and cyberlearning. In continuation of this
work, refereeing to the issue of fostering creativity in mathematics, we consider the
emergence of Dynamic Learning Conditions, as a result of paradigmatic shift within
a Technology-Rich Environment which is being created by novel (and sometimes
new) forms of teaching and learning activities, approaches, as well as assessment
practices and has potential to increase opportunities for creativity and self-directed
learning (Mishra, Fahnoe, & Henriksen, 2013).

We represent this complex phenomenon by the schema shown in (Fig. 1.1). By
“approach” we mean to include models of the following: Informal, Open, Virtual,
Visual, Dynamic, Collaborative, Constructive, Connected, Experiential. By “ac-
tivity” we include tasks the learners will investigate through Dynamic Explorations,
Simulations, Modeling, Problem Solving and Problem Posing, Inquiry, Discussion,
Collaboration, Questioning, Hands-on. By “assessment” we mean the emergence of
new ways of capturing and scaffolding moments of learning insights: Formative,
Alternative, Immediate Feedback, Feeding Forward, Qualitative Rubrics.

Moreover, the chapters provide multiple examples of how an interaction of these
three components could potentially transform teaching and disrupt learning be
means of enabling, empowering, encouraging, engaging, and enriching factors,
often mentioned in the literature on successful technology integration. In the
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following paragraphs, we will describe how these factors, across a variety of topics
brought by our authors, converge toward increased synergy between mathematics
and technology that could potentially contribute to increase opportunity for fos-
tering creativity in learners.

1.7.1.1 Enabling

We learn from the chapters how technology can enable deeper understanding,
authentic context, transformation in knowledge (discovering new knowledge),
communicating reasoning about math problems, reflection and critical thinking,
alternative ways to calculate properties, generate ideas thus directly contributing to

Fig. 1.1 Dynamic learning conditions of leveraging mathematical creativity with technology
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mathematical creativity in both, students and teachers. In fact, technology might
provide students with new paths in their journey to mathematical knowledge while
enabling them to use and experience powerful cognitive tools: authentic context;
authentic activity, access to expert thinking and performance, multiple roles and
perspectives, reflection, collaboration, articulation, coaching and scaffolding, inte-
grated authentic assessment (Herrington & Herrington, 2007). Through many
chapters, these aspects are illustrated in connection to the opportunity in gaining a
deeper understanding of geometry by using the Dynamic Geometry Software
(Bokosmaty, Mavylidi, & Paas, 2017) and the Interactive Geometry Software
(IGS) (Chap. 2). Exploring mathematics creativity through inquiry, in an envi-
ronment of interactive geometry, can also enable mathematical discussion by the
students (Chap. 14).

In a context or pre-service teachers’ education (Chap. 8), solving modeling tasks
using Excelets, an interactive form of an Excel spreadsheet allows for the manip-
ulation of data and the visualization of changes in numeric, graphic, and symbolic
for thus enabling performing mathematical experiments to the student and help him/
her discover new mathematical knowledge (Dijanic & Trupcevic, 2017). Many
digital spaces, and Question and Answer (Q&A) sites such as Mathematics
Educators Stack Exchange (MESE) (Chap. 9) provide a platform through which
those interested in the teaching and learning of mathematics can harness new
technologies to address novel queries thus enabling exchange of ideas. Play and
manipulatives (Chap. 11) can further foster creative educational experiences by
providing a learning environment that encourages engagement and enables
understanding (Cockett & Kilgour, 2015).

Videogames as a creative teaching approach could potentially enhance spatial
abilities and mathematics performance (Chap. 12) while providing multifaceted and
multimodal access to information (Lowrie, 2015). In a context of makerspaces, 3D
printing tools can enable specific connections to technological literacy that moves
students beyond being mere consumers of information to generating ideas and
reflecting on thinking which requires higher levels of thinking, innovation and
creativity (Huleihil, 2017).

A potential of technology to enable mathematical creativity for more advanced
mathematics is conditioned by the development of students’ ability to go beyond
simply entering correctly all data into a computer when solving problems thus
experiencing fundamental definitions of mathematical concepts (Chap. 15). The
value of hand calculations is therefore highlighted since this enables one not only to
derive mere results, but also grasping the process while contrasting the ‘original’
techniques with the ‘modern graphing’ techniques (Chap. 16). The learner’s own
mathematical creativity (Chap. 17) is impacted through access to rich mathemat-
ical problems allowing for communication of student reasoning (Chap. 21),
apprenticeship and authorship (Chap. 20), and reflection and collaboration
(Chap. 18).
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Overall, by different examples of problems and tools that enable their solution,
learners can “generate and multi-directionally link different representations in order
to explicitly and dynamically reveal the different facets of the complex ideas
embedded in the solutions of a mathematical problem” (Hirashima, Hoppe, &
Young, 2007, p. 409).

1.7.1.2 Enriching

An online resource for mathematical enrichment NRICH sets up the goals to
“promote an interest in mathematics, to raise the standards of achievement in school
mathematics, to assist the mathematical development of children who have the
potential to go on to study mathematical subjects at university, and to support the
special educational needs of exceptionally able children” (Jones & Simons, 1999,
p. 3). In a context of mathematical problem-solving, this type of technology may
provide students with an access to rich and challenging problems and eventually
spark mathematical creativity which can be considered as flexible, fluent, and
original approach to the solution (Chap. 21), or lead to the increased role of
imagination, and consequentially to the authenticity and complexity of students’
mathematical reasoning (Chap. 19). In such contexts, students’ creativity is inspired
either by the development of new solutions or strategies (Problem Solving Insights)
or spurred new questions (Problem Posing Insights) (Chap. 2), a phenomenon,
Freiman (2009) calls Enrichment.

In a more interdisciplinary perspective, the use of authentic problems and
interdisciplinary approaches to problem solving can simulate real-life connections
in the STEM fields (Chap. 13) eventually leading to more holistic and interdisci-
plinary view of mathematical creativity (Sriraman & Dahl, 2009). Through
enrichment, students can also go beyond the typical curriculum, as it is the case of
the three-act tasks (Chap. 5) where rich mathematical tasks can be presented by
means of different types of multimedia while engaging students in an authentic
process of finding solutions, and then comparing them with the ‘real’ story. In a
similar way, by modifying traditional problems from advanced mathematics,
designing a curriculum which is both technology-immune and technology-enabled
in the sense that whereas software can facilitate problem solving, its direct appli-
cation is not sufficient for finding an answer (Chap. 15). This can eventually
contribute to transformation that occurs in knowledge when using technologies as a
part of creative process for all learners (Chap. 19).

Richer learning could also happen in a more informal context, like activities
elicited during play by parents and early childhood educators both in the context of
traditional 3-dimensional play (e.g., blocks and puzzles) environments and virtual
2-dimensional digital formats (e.g., iPads® and computers) (Chap. 11). Lee and
Ferrucci (2012) argue that virtual manipulatives in a context of mathematics
teaching and learning could “enrich and transform learning environments of the
students’ and further enrich their learning experiences due to dynamic nature of
thinking, which may enhance students’ thinking and creativity” (p. 127). Chapter
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12 gives an example of creativity fostered when a partnership is formed between
school and home in a context of video gaming helping students enrich their spatial
reasoning and problem-solving abilities (Lowrie, 2015).

1.7.1.3 Encouraging

The role of encouraging is to provide a caring learning and teaching environment
for students in turn allowing for more creativity. Technology tools could be
incorporated through a safe and user-friendly setting (Kazakoff, Orkin, Bundschuh,
& Schechter, 2017). If students are provided with such kind of environment, they
become enabled to cut to the authentic learning and intuitive exploration of richer
and real-world connected mathematics (Baker & Galanti, 2017). The case of
Mathematics Village describes, in its turn (Chap. 17), an educational setting that
provides freedom that can positively affect students’ state of mind and creativity
which can be further expanded by means of social media. Collaboration is another
factor illustrating the role of technology in the encouragement of creative mathe-
matical work, as shows the example of APOS (Action, Process, Object, and
Schema) where collaborative activity is facilitated within a computer environment
(Chap. 18).

For example, a supportive environment where pre-service teachers could receive
feedback and coaching on their lesson, deliver the lesson to students, then debrief
the lesson design can create conditions where teachers have become “curious,
creative, and technologically savvy”, willing to pursue similar kinds of experiences
with their future students (Chap. 3, p. 89). On the other side, a classroom simulation
example involving teaching experiences in a virtual setting incorporating technol-
ogy and music can be incorporated into pre-service teacher education in a more
creative way (Chap. 7). Overall, a component of a technology-rich environment,
like Geometers’ Sketchpad, can engage students into an open inquiry where stu-
dents and the teacher make “aesthetically motivational, generative, and evaluative
choices” (Chap. 14, p. 347). Another example of 3-D printing in makerspaces
(Chap. 13) shows how the teacher can “encourage students who may not perceive
themselves as exceptional in mathematics by providing new ways in which to
demonstrate mathematical thinking” (p. 323). Technology can also help to scaffold
teacher-candidates and consequently mathematics learners in experiencing and
overcoming ‘productive failures’ and thus encourage deeper insight into mathe-
matics (Chap. 10).

1.7.1.4 Empowering

The outcome of the learning experience is the empowerment while being enabled
through the instruction that makes learners feel stronger as result of productive
struggle and perseverance (Sengupta-Irving & Agarwal, 2017). For example, using
Dynamic Technology Scaffolding (DTS) (Chap. 4, p. 89) increases teachers’
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capacity to explore and create “cognitively challenging mathematical task
sequences in the presence of new physical and technological tools.” In a similar
way, Three-Act Task rubric can empower pre-service and in-service teachers as
they select or create these types of tasks to use in their classrooms (Chap. 5).
Always referring to the context of teacher education, our authors show how future
teachers become confident in solving problems; designing experiments and col-
lecting, representing, and analyzing data; developing mathematical models for
phenomena in the physical, biological, and social sciences; and building and pro-
gramming their own robot (Chap. 6). At the same time empowerment is fraught
with inevitable challenges and productive failures, at other times it can be filled
with exhilarating discoveries and new insights (Chap. 10).

Self-efficacy growth is another outcome of mathematical creativity empowered
by technology connecting music with challenging mathematical concepts like
fractions and patterns while contributing to the emergence of feelings of efficacy
and success in students in the mathematics classroom (Chap. 7), an observation
which corroborates with findings from Chap. 12 where higher spatial abilities
impacted self-efficacy for individuals having significantly higher confidence in
learning mathematics. Also, the 3-D printing context seems to empower students’
ability to “self-assess and reflect on their understanding” and “develop higher order
thinking skills of analysis and synthesis in their mathematical understanding”
(Chap. 13, p. 323).

1.7.1.5 Engaging

Related to motivation and interest, engaging gets at how the instruction is designed
to elicit student involvement in the learning. Does the design of instruction provide
a way for students to approach learning with verve and excitement? For engage-
ment to occur, we look for captivating students, whether by real-world and
authentic learning (Lombardi, 2007), novel connections, or creative use of tools
(Bray & Tangney, 2017). Often, an engaging task in mathematics involved being
“hands-on, minds-on.” For example, through the instructional design, the
pre-service teachers focus on a key component of the Create Excellence design, as
they “learned to design instruction around authentic tasks, where cognitive levels
and engagement are also increased” (Chap. 3, p. 59).

Another example (Chap. 7) shows how “…environmental (technology) and
conceptual (music) frameworks can be juxtaposed to mathematics teaching to create
more engaged and productive learning” (p. 181). Use of technology can also engage
mathematics teacher-candidates in exploring how it can facilitate productive
mathematical thinking (Chap. 10). Collaboration again comes upfront, in connec-
tion to engagement in a context of “Question and Answer (Q&A) sites such as
Mathematics Educators Stack Exchange (MESE) where members can engage col-
laboratively with others who share their interests” (Chap. 9, p. 233).
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1.8 Conclusion

The goal of the book was to further explore connections between mathematics,
creativity, and technology in the digital era. It is not surprising that investigation of
novel fields of research and practice, like in our case, connections of technology to
creativity in mathematics brings a variety of contexts, issues, practical examples,
theoretical approaches, and research findings. Yet, with the above presented general
schema which reflects our reading of the whole book some common trends seem to
emerge. First, we observe increasing opportunities provided by technology-en-
hanced environments and tools to access to richer, sometimes more advanced, and
real-life connected mathematics for more students.

Along with an increasing variety of mathematical problems and tasks, as well as
multiplicity and authenticity of the approaches and methods of their solutions in
such new types of digital learning ecosystems might thus emerge, where mathe-
matical investigations, enabled by technology, become multimodal, interactive,
dynamic, and process-oriented which could, in its turn, lead to important mathe-
matical discovery while empowering deeper understanding through reflection and
critical thinking. Such environments become more attractive, motivating, and
overall engaging for students who are encouraged to explore, tinker, produce
conjectures, and looking for explanations while being able to share their discoveries
with their peers and teachers, and increase opportunities to collaborate.

All this brings additional challenges to the traditional forms of teaching and
learning while prompting paradigmatic shifts and transformations in pedagogical
approaches and assessment practices. This is why it is not surprising to find many
chapters devoted to teacher education and professional development. While it is not
yet very clear, in what sense, living multiple experiences of enriched mathematics
infused by technology thus developing more creative teaching approaches, teachers
would become better prepared to foster creativity in their students, several examples
provided in the book could lead to more focused discussions, as well as initiate new
projects and research paths.

Moreover, new digital spaces, being analyzed as parts of the digital learning
ecosystems seem to have potential to disrupt traditional learning routine engaging
students (and teachers!) into an open-ended process of posing and solving problems
where the search for solution is not well-structured but rather ill-defined which may
lead to so-called ‘productive failures’ but also make learning more authentic,
meaningful, goal-oriented, interdisciplinary and self-directed, and overall more
creative.

When considering the contributions from the holistic perspective, we can notice
continuously evolving conceptualization of creativity in mathematics empowered
by technology. By bridging creative teaching approaches and students’ inquiry and
problem-based learning, creativity itself is becoming more diverse, multifaceted,
collaborative, and even distributive, a phenomenon, not yet very well understood in
research and practice, which needs more investigation.
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In conclusion, the book demonstrates the need for continuation in examining the
relationships and possibilities for closer connections between mathematics, cre-
ativity, and technology their potential in teaching and learning in the digital era.
Along with the connectedness, it also shows that within the mathematics education
community, there exist varying views about what constitutes technology-enhanced
learning and authentic creativity experiences in the mathematics classroom and
beyond which need to be critically reflected in terms of extended research and
further impact on practice. In this respect, the variety of the perspectives provided
by our authors does contribute to a healthy debate and pushes the reader for deeper
investigation of the topic.
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Part II
Teaching Practices and Instructional

Strategies to Inspire Authentic Creativity



Chapter 2
Screencasting as a Tool to Capture
Moments of Authentic Creativity

Dana C. Cox, Suzanne R. Harper and Michael Todd Edwards

Abstract In the context of working with preservice secondary mathematics
teachers (PSMTs) in a course on mathematical problem solving with technology,
we tested the potential of technology to both inspire and capture moments of
authentic creativity in the mathematics classroom. In a case study of two PSMTs
working in partnership to solve a task using Interactive Geometry Software (IGS),
we documented a rich narrative based on four episodes of creativity. These four
episodes can be characterized as moments of creative insight because they represent
moments that inspired either the development of new solutions or strategies
(Problem Solving Insights) or spurred new questions (Problem Posing Insights). At
the heart of the case is a task that requires constant negotiation and discussion in a
digital workspace. Capturing an authentic narrative can be challenging with ver-
balized thinking alone, as the articulation of insight is not always possible.
Screencasts are a tool that captures verbalized thinking as well as on-screen
activity. This case study illustrates the power that this tool has in preserving the
authenticity of those moments, but also in creating a record of practice to which
both students and teachers might refer when making learning processes explicit.
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2.1 Introduction

The themes of creativity, insight, struggle, risk, and ambition emerge continuously
in a course we teach for preservice secondary mathematics teachers (PSMTs) on
mathematical problem solving with technology. Bolden, Harries and Newton
(2010) recommend explicit opportunities for preservice mathematics teachers to
develop a sense of what creativity in mathematics means and what it looks like in
the classroom as they may not have been given an opportunity to do so in their own
education. This, in part, is the goal of our course as students encounter mathematics
through the lens of technology such as GeoGebra, Geometer’s Sketchpad, Desmos,
Fathom 2L, and Gapminder in the process of solving novel mathematics problems
and engaging in mathematical modeling. Classroom activity is intended to neces-
sitate insight, provoke struggle, allow for creativity, and inspire PSMTs to pursue
personal mathematical inquiry as they work.

In the act of problem solving, we have found that student ambition and creativity
are often hampered by feelings of risk, as many are conditioned to value a produced
solution over the actual process of building one. This works against the essence of
mathematics (Dreyfus & Eisenberg, 1996; Ginsburg, 1996). In our experiences with
enacting problem solving tasks with preservice teachers, the fear that a solution will
not be found (and thus an assignment not completed) is so great at times, that it
seems to impair PSMTs’ willingness to ask and pursue ambitious mathematical
questions, to create ambitious models for data or natural phenomena, or to move
beyond the boundaries of what they already know into an area where creativity is
imperative and where insight may be profound. This is not far removed from other
research findings about the interactions between self-efficacy, anxiety, and problem
solving performance (Hoffman, 2010).

At the core of this dilemma is the need to target beliefs about the nature of
mathematics and what it means to do mathematics. In a previous study, we found
that PSMTs draw heavily from their personal experiences to illustrate beliefs about
the role technology plays in mathematics instruction (Cox & Harper, 2016). We
concluded that in order to change beliefs, it was not enough to provide PSMTs with
opportunities to experience mathematics from a new perspective, we must also help
them become aware of their achievement and explicit about the meaning of
classroom activity and learning; these experiences must be a part of a relatable
story. We can project, then, that in order for PSMTs to understand the meaning of
creativity in mathematics, we would have to create opportunities for them to
experience it, but also reflect upon that experience.

In this study, we set out to create an environment where our PSMTs would
experience moments of creative insight and test the capability of technology to both
support creative insight and capture it for study. Capturing insight would serve two
purposes. First, it would help us study those moments with the intent to better
understand the genesis of creativity in the mathematics classroom. Second, as an
artifact of the act of problem solving, such recordings could give PSMTs a personal
and explicit sense of the meaning behind creativity in mathematics.
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Capturing insight, we hypothesized, would require capturing mathematical
activity as well as the intention behind that activity. This became a two-fold
problem of study: (1) What does it look like when PSMTs engage creatively with a
mathematical task, and (2) What advantages does technology give us when docu-
menting PSMTs mathematical processes and intentions during the act of problem
solving? In this chapter, we will give an account of what happened when we asked
our PSMTs to create a model using Interactive Geometry Software, and then used
screencasting as a medium through which to capture their insights.

2.2 Designing for Creativity in the Mathematics
Classroom

To inspire creative action among PSMTs, teacher educators must build lessons
around tasks that inspires such behavior. In this section we will define creativity in
such a way that differentiates problem solving and problem posing as distinct,
creative acts. Then we will describe the framework on which we built our creative
task. We are using the term creative task to refer to tasks that foster creativity in
mathematics.

2.2.1 Defining Creativity

Liljedahl and Sriraman (2006) define creativity in mathematics as both the process by
which original or novel solutions are found for given problems and the generation of
new problems or perspectives on existing ones. In this sense, it is in the act of solving
problems and in posing new ones that students of mathematics find outlets for cre-
ativity (Silver, 1997). Wagner (1993), in writing about the purposes of educational
research, puts forward two metaphors that further distinguish these acts. The act of
problem solving is like filling in a blank spot, finding an answer to a problem that has
already been posed or a question already asked. Creative insight is responsible for the
miraculous turn from impossibility to solvability. On the other hand, we as scholars
have blind spotswhich are “areas inwhich existing theories,methods, and perceptions
actually keep us from seeing phenomena as clearly as we might” (Wagner, 1993,
p.16). The act of problem posing is the result of asking a question that, prior to creative
insight, we had not thought to ask. By posing the question, we become aware of our
blind spots. In a complementaryway, Torrance (1966) frames creativity as a process of
becoming more aware of something we do not know (exposing a blind spot) and then
searching for ways to fill that deficiency and communicating the results to others
(filling in a blank spot). Thus, creativity in the mathematics classroom is directly
observable through acts of problem solving and problem posing. In our study, we
wanted to create opportunities for and capture both types of creative action.
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2.2.2 Developing a Creative Task

Before we could capture moments of creative insight, we needed to develop a
creative task. In the search for ways to inspire creativity in the mathematics
classroom, Leikin and Pitta-Pantazi (2013) reviewed three different strategies from
the literature. First, creativity can be developed through open-ended problems and
by encouraging divergent thinking (Kwon, Park, & Park, 2006). Second,
model-eliciting activity has some potential for developing creativity (Chamberlin &
Moon, 2005). Third, there is potential in offering students non-routine, novel, or
ill-defined problems (Chiu, 2009).

While considering these recommended strategies, we developed a framework for
the design of creative tasks (Harper & Cox, 2017). A creative task should:

1. be framed as an open-ended problem that permits multiple strategies and
solutions;

2. be ill-defined so that students are given opportunities to make decisions about
where to put their focus, creating an environment that fosters diversity rather
than conformity of thinking; and

3. enable the act of problem posing. By reformulating the task as a specific
problem to be solved, solvers are able to imprint their own perceptions of a
real-life phenomenon into the task (Silver, 1997).

The Kaleidoscope Task, shown in Fig. 2.1 is a problem solving scenario
designed to encourage creativity in the mathematics classroom based on this
framework. First, it is open-ended. This means that the task is not focused on a
specific answer and has no expected strategy. Here, there is no idealized product or
exemplar for which all are aiming and there are multiple productive paths to take.
Second, the task is ill-defined since the direction to take depends on the facets of a
kaleidoscope students wish to represent. There is room for decision making and
there is potential for diverse thinking. Third, problem posing enters the process as
students pose questions of both mathematical and technological possibility. These
often sound like, “I wonder if we can get it to…” or “How might we use rotation
here instead of reflection?” These perceptions provoke problem statements which
motivate and require problem solving to answer.

This problem solving task was also developed around the context of a kalei-
doscope because it is rich in terms of the mathematics that is accessible to PSMTs
as they create their models. Within a Kaleidoscope, we encounter mathematical

The Kaleidoscope Task: With a partner, create one interactive  
geometry sketch that, for the two of you, embodies a 
"Kaleidoscope". You will have 20 minutes to create your sketch 
before demonstrating it to the group.

Fig. 2.1 The kaleidoscope task
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topics such as polygons, symmetry, rigid transformations, dilations, congruence,
random behavior, and even algebraic relationships (as found in the animation
techniques available to make models dynamic). We realize that modeling a kalei-
doscope is not a novel task, and in fact many mathematics educators have used a
similar task with their mathematics students in varying degrees. Some concentrate
on building a fully-functioning, physical kaleidoscope (e.g., Kaplan, Gross, &
McComas, 2015); while others create static models and focus on patterns that are
present in a single image created by a kaleidoscope (e.g., Graf & Hodgson, 1990).
Other models are a cookbook lesson (Harper & Edwards, 2011) describing how to
create a kaleidoscope using interactive geometry software with the mathematical
focus on simulating random behavior, rotating about a center, and/or coordinating
complex systems of animation (Wert, 2011). The task we have developed differs
from each of these as the desired end-product is not a physical or static model;
furthermore, the lesson does not include step-by-step technology directions for the
PSMTs to create their kaleidoscope.

Interactive Geometry Software (IGS) is a versatile tool for PSMTs to use when
modeling the behavior of a kaleidoscope. We perceive three specific roles that IGS
plays in this task. First, the creation of geometric objects as well as access to
geometric tools enables PSMTs to realize a mathematical model of a kaleidoscope
more quickly and reliably than other methods (Graf & HoIGSon, 1990). More so,
the ability to animate geometric objects enables a fuller range of models to be
created, including some that capture the dynamic and randomly shifting qualities of
kaleidoscopic images (Moreno-Aremella, Hegedus, & Kaput, 2008). Second, IGS
provides feedback to the PSMTs and encourages them to design models iteratively,
tweaking and adjusting features based on comparisons between their intended result
and the results given by their model (Laborde, Kynigos, Hollebrands, & Strässer,
2006). Third, IGS acts as a collaborative work tool. As PSMTs present projected
sketches to classmates, they share their work in an environment that enables
in-the-moment tweaks and edits. As classmates make suggestions or offer conjec-
tures about the way the sketch works, these can be considered and tested giving
everyone immediate access to the results (Beatty & Geiger, 2010).

Having shared the task to optimize the potential to create opportunities for
creative insight, we now turn our attention to delineating how we enacted the task in
our classroom and how we used screencasting to document their work.

2.3 Methodology

This study was designed to better understand the genesis of creativity in the
mathematics classroom by capturing moments of creative insight and our students’
reactions to them. We utilized technology in both the design of the task and in data
collection. This became a two-fold problem of study: (1) What does it look like
when PSMTs engage creatively with a mathematical task, and (2) What advantages
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does technology give us when documenting PSMTs mathematical processes and
intentions during the act of problem solving?

2.3.1 Setting and Participants

PSMTs pursuing licensure to teach secondary mathematics at our institution take a
course, typically in their sophomore year, that focuses on mathematical problem
solving with technology. PSMTs have taken Calculus I and Calculus II prior to
enrolling in this course. Some may have taken, or are taking, other mathematics
courses such as linear algebra or discrete mathematics, but these are not prereq-
uisites. As our PSMTs enroll in the majority of their education courses in the junior
year, those enrolled in our course have not taken any methods courses or completed
any field placements in a clinical or school setting, nor are they expected to take
such courses concurrently with our course.

We presented the Kaleidoscope Task to 15 PSMTs enrolled in the mathematical
problem solving with technology course described above. The PSMTs were in the
seventh week of exploration at the end of a unit on mathematical problem solving
with IGS. PSMTs have had prior experiences constructing geometric objects such
as points, lines and polygons; transforming geometric objects with reflections,
rotations, translations and dilations; and using sliders as algebraic parameters as
well as tools to animate mathematical objects. These are described as ‘prior
experiences’ to evoke a sense of exploration and activity rather than direct
instruction. Very rarely are either mathematical or technological demonstrations
conducted in this course. Demonstrations are generally limited to those conducted
by students presenting solutions to posed problems along with the techniques by
which they were obtained.

2.3.2 Data Collection

We asked the PSMTs to work in partners at one computer. The intent was for
students to have the environment to “engage in discussion mediated through a
mathematical object that reflects changes in theories, which then allows for a back
and forth of problem solving, theorizing, testing, and checking” (Beatty & Geiger,
2010, p. 272).

After reading the task and establishing partnerships, PSMTs were left largely on
their own to work with instructors available for consultation. Following a 15-min
construction period, each partnership introduced the class to their sketch. While
projecting their work on a screen at the front of the room, they were invited to
verbally address (a) how their sketch embodies a kaleidoscope, (b) mathematical or
technological problems that emerged as they worked, (c) mathematical or techno-
logical insights they reached while working, and (d) limitations or struggles that
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prevented them from realizing their vision. Each partnership then entertained
questions or comments from the class, with several facilitating whole-class problem
solving.

Three sources of data were collected during the 80-min class period. For each
partnership, we collected completed IGS sketches which were submitted elec-
tronically. Partnerships electronically submitted creation screencasts documenting
all creative and on-screen construction activity—including all verbal communica-
tion—in the IGS environment. In this study, we define screencast as is a digital
recording of computer screen output, also known as a video screen capture, often
containing audio narration (Udell, 2005). Specifically, students used
Screencast-O-Matic (http://screencast-o-matic.com/home), a freely available,
web-based platform, to create their screencasts. The platform works passively in the
background and does not interfere with IGS activity. Traditionally, the audio nar-
ration of a screencast is scripted. Such was not the case in this study as the audio
narration consisted solely of spontaneous conversation between partners as they
worked. As each partnership shared their sketches to the whole class, we video
recorded group discussions.

An additional source of data was collected after the class period. Individual
PSMTs created reflective screencasts (screen output with voiceover) where they
addressed, from an individual standpoint, questions similar to those posed in the
whole class discussion, but including additional prompts regarding the construction
process: (1) the process by which they created their model, (2) the facets of a
kaleidoscope they had hoped to model, (3) what they had hoped to accomplish but
could not and the limitations they perceived, and (4) insights they had along the
way and the impact of those insights on their model.

2.3.3 Data Analysis

For the purposes of this chapter, we focus our attention on developing a rich and
detailed case study of one partnership: Abby and Olivia. Relevant to this case, we
include the sketch submitted by the PSMTs, the creation screencast, a video of the
presentation and subsequent discussion of their model to the class, and two
reflection screencasts.

To develop the case study, we initially focused on the creation screencast. We
transcribed the creation screencast, however it was inadequate for full data analysis.
Abby and Olivia often moved into a shorthand method of speaking that relied on
spoken words, gesture (such as pointing with the mouse cursor), technological
activity (such as constructing a mathematical object), and technological events
(such as the moment Olivia animates the kaleidoscope for the first time). Thus, all
analysis was completed using the creation screencast that contained additional data
useful for interpreting the form of gesture and technological activity and events.

Data from the IGS sketch, the recorded class discussion, and the reflective
screencasts were used to interpret the creation video. The sketch was powerful
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because it enabled us to document different facets of a kaleidoscope that Abby and
Olivia attended to, as well as the relationship of these facets to mathematical
constructions within the created models. Because the sketch was data with which
we could interact, it also enabled us to form and test our own conjectures about how
the sketch worked and how closely it resembled the physical phenomenon of a
kaleidoscope.

The reflective data collected during whole class discussion and reflective
screencasts enabled us to listen to PSMTs describe first-hand the intentions and
emotion behind their creative work. Furthermore, the data were useful in our
analysis as we compared and contrasted the way problems were posed by the
partnerships during the creation screencast with the way individual PSMTs artic-
ulated those problems after-the-fact.

2.4 The Case of Abby and Olivia

We present here the case of Abby and Olivia. Abby and Olivia are second-year
PSMTs who worked together on this task by choice rather than assignment. They
had previous experience working together in this course. Their case was selected
over six others because it demonstrates the potential of technology to both facilitate
and document moments of creative insight, but also for the variety of such moments
that it provides for analysis. In this sense, their case is remarkable in its clarity.

We present the case chronologically in four parts, identifying and providing
evidence of four distinct moments of creative insight: The Symmetry Decision, The
Turning Dilemma, A Tool For Turning, and A Return to Symmetry. Data to support
each section comes from creation screencasts, submitted IGS sketches, reflection
screencasts, and a video of the presentation of the kaleidoscope to classmates.
Additionally, Olivia made herself available for a brief interview after the course had
concluded. In this interview she provided additional insights into the construction
of their model. Olivia was then given an opportunity to engage in member check
(Lincoln & Guba, 1985) to strengthen the validity of our interpretations.

2.4.1 The Symmetry Decision

The Kaleidoscope Task provides a quick entry for the PSMTs into the process of
modeling. Abby and Olivia agreed almost immediately that symmetry and circles
would play important roles in their model. After one minute of work, they nego-
tiated a rough sketch that included a circle divided into six congruent sectors.
A transcript of this work accompanies Fig. 2.2, a screenshot illustrating the con-
struction process.
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(00:02) A: So we know that…it has symmetry. So do we just wanna like…
(00:05) O: It’s usually circular, so do you want to make a circle?
(00:08) A: Yep. Ok.
(00:12) O: …and how do we want symmetry to work?
(00:19) A: Do we want to start with like, making it kind of like a pie?
(00:55) O: Ok.
(00:57) A: So now

Once the PSMTs had divided their circle into six congruent sectors by rotating a
radius using 60 degree intervals (see Fig. 2.2), Olivia questioned their initial
decision to rotate the segments (radii). Here, she recognized dissonance between the
act of rotating an object within the model and her expectations about its eventual
overall symmetry. In the middle of expressing her concern (01:06), she suspended
her argument and acknowledged that, at this point, the segments, constructed ini-
tially through rotation, do not limit the model to rotational symmetry and can be
repurposed in the future as lines of reflection. This moment of creative insight into
the duality of these segments created a situation wherein the PSMTs could continue
to design the model while suspending The Symmetry Decision.

(01:00) O: Should we have rotated or reflected so it’s the same in all of them?
(01:05) A: What do you mean?
(01:06) O: Should we have it reflected around… like… instead of rotated cause otherwise

we can make the reflection lines. We can make these reflection lines.
(01:16) A: Oh. I know what you mean. Ok.
(01:17) O: So, I guess we draw…
(01:19) A: Add a shape?
(01:22) O: That I guess stays on these lines?

Fig. 2.2 Rotating radius
segment 60 degrees about the
center of the circle
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(01:24) A: Yeah. That’s so cool. Yeah. Do that.
(01:30) O: Here.
(01:31) A: Ok.
(01:32) O: So we can make some different shapes I guess and see what happens in a second

Following this excerpt, the PSMTs work on designing one sector of the circle.
The image shown in Fig. 2.3 depicts their emerging kaleidoscopic model after some
time has passed (02:16). The image includes three shapes created by Olivia with the
polygon tool. In the presentation to the whole class, Abby describes on video, “And
then from there we started with one of those triangles and we put like a polygon in
there and, like, we made it however we wanted and then we did that a couple times
but, like, different colors. We had three, purple, pink, and green.” When she con-
cludes, the instructor questions, “What do you mean by “we made it however we
wanted?”, and Abby clarifies, “So like, instead of just making it like a regular
polygon, we like…manipulated it so that…went like ooooh…something like that”
(gestures on the whiteboard, makes four imaginary points in a figure eight).

Thus, we know from the sketch, as well as Abby’s summary of the process, that
the shapes were each created in a haphazard way using points on the radii and
circumference of the circle and that one shape is particularly indicative of a
back-and-forth selection process where dots were placed on radii in an alternating
pattern before the figure was closed. The triangle is formed using one point on each
radii and a third point on the circumference.

It is at this moment that Olivia is ready to return to The Symmetry Decision.
Instead of debating the mathematics in theory, she suggests a trial and error “let’s
see what happens” approach to save time. “Ok. So let’s see this reflection thing

Fig. 2.3 Creating the initial
sector of the kaleidoscope
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before we get farther. So if I …let’s just see what happens if I reflect this whole
thing. It might not work, but it’d be quicker” (02:17).

The inarticulate transcript of the 38-second-long discussion that ran parallel to
this design experiment does not do justice to the mathematical processes at work as
the PSMTs systematically reflected the three polygons over each of five constructed
radii. Even after the fact, Abby is inarticulate and imprecise when she describes the
process to the class. For instance, she notes that, “We like highlighted that whole
triangle and reflected it into the next… like the adjacent triangle.” Later, in her
reflection screencast, Olivia says, “And then what I did was I selected all the shapes
within that circle. Those three. And I reflected them over each of these radiuses
(sic). And that created so to have a mirror image” (Fig. 2.4).

Intermittent laughter, timed to specific events on screen, indicate that both
PSMTs were aware of and engaged in the process of moving from one designed
sector to a full model. The eventual solution, though quickly produced, did not take
a linear path and required the PSMTs to attend to the following: precision, as they
selected the points to be reflected; replication, as they identified and repeated a
reflection procedure, and problem solving, as they encountered unexpected results
and identified procedures that had not been adequately followed. The only full
sentence comes at the completion of the static image occurs when Abby interjects,
“Ta da, holy cow that’s so cool” (02:55).

Fig. 2.4 Initial sector
reflected over the radii of the
circle to create a static
kaleidoscope
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2.4.2 The Turning Dilemma

Once Abby and Olivia created a first complete draft of their kaleidoscope sketch,
they analyzed their model with a critical eye. With animation features of the sketch
engaged, both PSMTs were drawn to the motion of two sets of points: those placed
directly on the radii of the circle, which we will call radius points, and those placed
on the circumference, which we call circumference points. The questions Abby and
Olivia ask about those points and their motion are distinct and stem from the
connections they make between objects in the dynamic sketch and physical facets
of a kaleidoscope.

Abby questioned whether the radius points should be allowed to move. She based
this question on previous experiences with kaleidoscopes, associating the circum-
ference of the circle with the “tube” of a kaleidoscope. Since it is the tube that twists,
she wondered if the motion should be limited to circumference points. Olivia also
focused on circumference points, but instead questioned whether they should be
allowed to move beyond the original sector. As such, Olivia focused on an entirely
different facet of the construction: the mirrors. This conversation is captured in the
creation screencast transcript beginning as the PSMTs contemplate their model.

(03:39) A: Wait. Is that technically considered a kaleidoscope by doing that…?
(03:45) O: Possibly….
(03:50) O: I would say yes.
(03:51) A: Think of a kaleidoscope when you turn it…
(03:56) O: It has to stay within the back lines.
(03:58) A: So wait. Should? … should only? …
(04:02) O: They are crossing over.
(04:03) A: Should only the points on the outside circle be moving? Do you know what I

mean?
(04:10) O: Yeah. I’m also wondering if they are allowed to move between the segments. If

they are allowed to move beyond just…let’s stop where it looks like.
(04:22) [O stops the animation at a strategic, intentional point and gestures to a point as she

asks a question. A screenshot of this moment is shown in Fig. 2.5]
(04:23) O: I’m wondering if they are allowed to move beyond, go around the circle past the

sector. It’s really a mirror so they have to stay within it. Um. It looks cool.
(04:33) A: It does.
(04:34) O: Um.
(04:36) A: Here, maybe let’s move some of these points down so we can see better.
(04:51) O: This is, like, mind boggling. I wonder if, like…I wonder if I only want these

points to move on this triangle. Like, within the segment.

After Olivia and Abby asked their initial questions, both acknowledged that they
were pleased with the way the animated model looked. There was a tacit under-
standing that the questions they asked should not be taken as reasons to reject the
model, but rather a means for refine it. Abby’s move (04:36) to isolate the radius
points from those on the circumference indicated that she, like Olivia, was willing
to examine this subset of the model critically.

Here, the transcript becomes inadequate as a means for isolating a moment of
Abby’s creative insight.
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(05:04) A: I see what you mean. I don’t know… Can we move that point out?
(05:14) O: Which one? That worked! It did what you wanted it to.
(05:21) A: Wait, can you move that again? I just want to see if that’s what I’m talking

about. Yeah!! That’s what we want. We want it to rotate like that.
(05:31) O: Is that how a kaleidoscope works?
(05:35) A: Yeah, because when you look in a kaleidoscope, what you do is you turn it…
(05:44) A: (continues) I wonder if there’s a way to, like, watch a kaleidoscope in action

Abby expressed a new perspective on the model when she noted that, “When
you look in a kaleidoscope, what you do is turn it” (05:35). We use the screen
output to help interpret why this moment was important and why we consider it a
moment of creative insight. In our review of the screencast, Abby asks Olivia to
move a point. When Olivia responds, “which one?”, rather than try to explain which
of many points she wants moved, it seems as if Abby takes over the mouse herself
and targets a point on the original circle shown in Fig. 2.6. This point is (1) is the
unique point that was constructed to determine the original size of the circle and
(2) is the endpoint of a radius used as a line of reflection, the radius that Olivia
associates with a mirror (04:23). It is a very specific point and when it is dragged,
the circle changes size and the objects within the circle move, creating an illusion of
rotation about the center of the circle. This visual effect provokes Abby to think
about the model from a new perspective and prompts within her a desire to convey
to Olivia a new problem: How can we “turn” the model? We refer to this moment as
The Turning Dilemma.

Olivia was still unable to rectify images within the animated sketch with Abby’s
statement “what you do is turn it.” Hence, Abby suggested they do a Google search
to find a better way to convey this insight to Olivia. While search results were

Fig. 2.5 Olivia stops the
animation to focus on the
behavior of the circumference
points
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produced on screen, the results of the searches weren’t pursued. However, images
associated with those results led to a desirable outcome for Abby. As Olivia viewed
the images in Google, she noted, “I see what you mean, you rotate the entire thing,”
(06:48). At this instant, the PSMTs implicitly posed a problem to be solved:
namely, what technological processes are desired and available to “turn” a
kaleidoscopic model? Abby and Olivia each reflected on The Turning Dilemma in
their reflection screencasts:

Olivia: One of the things we were trying to accomplish is maybe to have the entire
kaleidoscope rotate in a circle not just have the points rotating around the kaleidoscope, but
we couldn’t figure out a way to do that without having the shape…with the shapes because
we couldn’t get them to stay fixed.

Abby: I think our goal was that we knew we had to have symmetry and another thing was
that we wanted to make sure that the points on…er…we wanted to make sure there was
rotation. Olivia and I both remember that when we were younger we would have little
kaleidoscopes made out of paper towel tubes. When you would rotate them you’d see new
shapes. We thought that was so cool. We wanted to make sure that was included.

2.4.3 A Tool for Turning

The third moment of creative insight we captured occurred while the PSMTs were
solving The Turning Dilemma. Olivia had a hidden moment of insight (06:58) that
we refer to as A Tool for Turning. The actual moment at which Olivia realized that a
key to solving The Turning Dilemma was the creation of an external tool apart from
their model is mysterious and undocumented. She did not fully express her insight
nor did she articulate her plan to Abby. Olivia conveyed her insight in an almost
entirely visual way. Whereas the The Turning Dilemma was initiated by Abby’s

Fig. 2.6 Abby selects a
specific point

46 D. C. Cox et al.



direct request for on-screen activity, A Tool for Turning is produced by Olivia’s
intentional and yet unarticulated on-screen actions.

The tool created by Olivia to model a turning motion was a larger circle con-
structed using a new point as the center and an existing point on the circumference
and radius of the original circle (see Fig. 2.7).

The original circle seemed to be on the interior of the larger circle. Olivia
articulated her intentions after-the-fact while reflecting on the model:

The circle was just a mechanism. I wanted the kaleidoscope to rotate around the inside of
the larger circle. I wanted the smaller circle to always remain tangent to the larger circle at
that point where they were connected, and it would always be on the interior and go around
and around. The point would just travel along the circumference of the larger circle.

Figure 2.7 and the transcript that follows depict events leading to the con-
struction. Abby expresses “Oooh” in such a way that invokes (to us, the observer)
delight, surprise, and happiness. It is at this “Oooh” moment that Abby had her own
creative insight and seemed to make the same realization as Olivia—that an external
tool might be helpful in resolving the Turning Dilemma.

(06:58) O: Could we put this circle…wait a second. So. If I …I hate finding that point…
(07:07) A: I wonder if you can animate just like one of the points on the …
(07:11) O: I want to make a tinier circle. How do I do that? [O shrinks the kaleidoscopic

model.] There. So what if I…What would happen…
(07:25) A: If you just animate … [O connects the larger circle to the indicated point in

Fig. 2.7.]
(07:27) A: Ooooh!

Animating the tangent point created erratic behavior for the circles. The ani-
mated point was an independent object on which the circles have been built. As it
was independent of the circles, it moved freely in the plane rather than along either

Fig. 2.7 Turning the kaleidoscope tube
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circumference and brings the circles along with it. That caused the circles to change
position as well as size, and also destroyed the illusion of tangency between the
circles (see Fig. 2.8).

(07:37) A: I’m confused.
(07:37) O: Oooooooh. It’s changing the length this thing in the circle, too.
(07:41) O: Do you see what I was trying to do though?
(07:42) A: I see what you mean, yeah

In her reflection screencast, Abby summarized, “And so, that was really frus-
trating…we were like awww! It’s not what we want. We were confused as to what
we needed to do to fix it.” Even though the tool did not work as intended, its
creation had the consequence of conveying insight and establishing a trajectory for
the partnership for subsequent problem solving. The remaining time was spent in
careful experimentation and investigation of alternative rotating mechanisms.

2.4.4 A Return to Symmetry

In the creation screencast around the 3:30 min mark, Abby and Olivia observe their
kaleidoscope model after they have animated the radius and circumference points
for the first time. While watching all of the points and shapes move in the interior of
the circle, Olivia poses a question about the model. Specifically, she asks,

(04:10) O: I’m also wondering if they are allowed to move between the segments. If they
are allowed to move beyond just…let’s stop where it looks like.
[O stops the animation at a strategic, intentional point and gestures to a point as
she asks a question. A screenshot of this moment is shown in Fig. 2.5]

(04:23) O: I’m wondering if they are allowed to move beyond, go around the circle past the
sector. It’s really a mirror so they have to stay within it.

Fig. 2.8 First attempt to “turn the kaleidoscope”

48 D. C. Cox et al.



Olivia’s question goes unanswered as the PSMTs begin to focus on The Turning
Dilemma.

After watching the creation screencast, as researchers, we had a moment of
creative insight and became curious about Olivia’s question. In fact, the creative
insight was captured in our researcher notes while transcribing the creation
screencast (see Fig. 2.9).

This creative insight produced two subsequent questions: (1) what was Olivia
“seeing” in the motion of the model for her to question whether or not the model
was valid? Specifically, what points or regions prompted her to ask if “they are
allowed to move between the segments;” and, (2) could we use their original IGS
sketch to determine how the points were moving and test the mathematical validity
of their kaleidoscope model?

Since we had access to Abby and Olivia’s original IGS file, we were able to
conduct a “thought experiment” to find out whether the circumference points were
really “moving beyond” the 60-degree arc. This helped us to better understand what
Olivia was seeing and describing in the creation screencast. We also wanted to
determine whether their kaleidoscope construction was mathematically valid and to
know how the motion was limited in ways by the IGS that matched (or failed to
match) our physical expectations of a kaleidoscope.

We gained insight by labeling points that were not originally labeled in the
students’ sketch and observing the movement of the animated points. We were able
to identify one complete set of corresponding points (namely C, C′, … C′′′′) on the
circle (see Fig. 2.10).

Furthermore, we noticed that points C, C′′ and C′′′′ traveled around the circle in a
counterclockwise manner; whereas points C′, C′′′, and C′′′′ traveled around the
circle in a clockwise manner. When the points are not labeled, this movement is
consistent with a kaleidoscope with a point along the circle contained along a
60-degree arc and image points reflected over the radii of the circle. However, when
the points are labeled, it is clear that the points along the circle have not been
reflected; as such, this is not a valid mathematical model for a kaleidoscope. The
final (unlabeled) animation seems to be visually correct, however, it does not use a
valid mathematical construction to model a “real” kaleidoscope.

In a brief interview after the course had concluded and during our data analysis
phase, Olivia provided additional insights into the construction of their model. She
proudly mentioned that she had recreated a new kaleidoscope, one where the
“shapes do not go outside the pie.” Considering this comment carefully, we are now

The part where Olivia questions “moving beyond” is really interesting. It seems as if the 
girls are watching the animated points and imagining that they move from one sector into 
another. In reality, it’s an optical illusion and the animated points, if labeled, would 
clearly just move within the sector ...Wait? Do the points on the outside of the circle limit 
themselves to one sector, or do they move out? Now I need to check it! … This is really 
worthy of some more conversation in Author 2’s office. (Author 1 Research Notes)

Fig. 2.9 Researcher’s notes while transcribing Abby and Olivia’s creation screencast
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confident that Olivia was concentrating on the polygons that spanned multiple
sectors of the circle when she asked “if they are allowed to move beyond, go around
the circle past the sector.” We went back to Abby and Olivia’s original creation
screencast and captured an image of the initial polygons spanning multiple sectors
(see Fig. 2.11). Since there were no constraints for the circumference points, these
points could move “beyond” the 60-degree arc of the circle, yielding polygonal
images in the dynamic model that are never seen in a real kaleidoscope.

Fig. 2.10 Corresponding
points labeled in Abby and
Olivia’s kaleidoscope

Fig. 2.11 Notice in the kaleidoscope that polygons span multiple sectors of the circle
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2.5 Discussion

In the previous section, we presented four different moments of creative insight.
First, The Symmetry Decision was presented as a moment in which PSMTs were
poised to make a decision between creating a design based on rotational or
reflectional symmetry. Second, The Turning Dilemma is a moment where a new
perspective provokes the PSMTs to reconsider their model and ask how they might
model the turning action required to operate a kaleidoscope. Third, A Tool for
Turning is a moment where Olivia first incorporates an external tool that exists
outside of the model and whose purpose is to take action upon the model rather than
to exist within. Fourth, A Return to Symmetry, is a moment wherein we, the
researchers, are inspired to engage in a post hoc examination of the model and
inquire after its mathematical validity, and after Olivia’s unacknowledged question
about the sanctity of sectors.

These four moments are examples of creative insight because they represent
moments that inspired either the elimination of blank spots through the develop-
ment of new solutions or strategies (The Symmetry Decision, A Tool for Turning) or
the exposure of blind spots which spurred new questions (The Turning Dilemma, A
Return to Symmetry).

In the following sections, we return to our original questions: (1) What does it
look like when PSMTs engage creatively with a mathematical task, and (2) What
advantages does technology give us when documenting PSMTs mathematical
processes and intentions during the act of problem solving? We found that the
Kaleidoscope Task did provoke moments of creative insight leading up to episodes
of problem solving and problem posing. The difference between these two types of
insights are important and the role(s) that technology played in those moments
varied with respect to this difference. Here, we parse our discussion to reflect this
important distinction.

2.5.1 Problem Solving Insights

We characterize those insights that lead to the elimination of blank spots as
Problem Solving Insights, new perspectives on existing problems that either enable
a solution or illuminate a new approach or strategy. In this paper, we have described
two such moments: The Symmetry Decision and A Tool for Turning.

In The Symmetry Decision, Olivia recognizes the flexibility of their model based
on a circle divided into an even number (6) of sectors. The insight is first conveyed
to Abby as a move to temporarily suspend the decision. Later, the insight is
transformed into an experimental strategy where the PSMTs decide to use reflec-
tional symmetry tools in the IGS and examine their results in the sketch. In A Tool
for Turning, Olivia creates an external tool to act upon their model. By using IGS to
create one possible tool, she is able to convey that insight to Abby without verbal
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articulation. While the tool Olivia initially creates is flawed, the strategy persists
and the partners go on to build and test additional animation tools and processes.

In both of these episodes, technology plays a key role in both the inception of
creativity and in its capture. First, suspending The Symmetry Decision and moving
forward as if the radii could operate under either rotational or reflectional symmetry
was a decision that could have been far more complex to make without the aid of
the IGS environment. The technology enabled the students to take a design
approach and make the decision to use reflectional symmetry without making a
formal commitment to the mathematics. What we mean by this is that they
understood that once they had conducted an experiment, if the result did not match
their perceptions/concept images (Tall & Vinner, 1981) of a kaleidoscope, they
could revise their work (Laborde, Kynigos, Hollebrands, & Strässer, 2006). Second,
in A Tool for Turning, a moment of creative insight is provoked by unarticulated
action taken within the IGS environment. The lack of articulation renders the
screencast essential in documenting the nature of this insight and its provocation.
Furthermore, it is only through watching the screencast that a full analysis of either
moment is possible, the transcript leaving far too much to be interpreted.

2.5.2 Problem Posing Insights

In contrast to Problem Solving Insights, we characterize Problem Posing Insights as
those that expose the existence and nature of blind spots and yield new questions
that had previously gone unasked. In this paper we have described two such
moments: The Turning Dilemma and A Return to Symmetry.

In The Turning Dilemma, a creative insight provoked the PSMTs to reconsider
their model from a new perspective as they attempted to incorporate an additional
facet of a physical kaleidoscope—the turning of the tube. The resulting question,
how to turn the model, is only articulated after the creative insight and the exposure
of a blind spot. In A Return to Symmetry, the insight occurs for us, the research
team, as we reconsider our assumptions about the model as well as our initial
interpretations of Olivia’s concerns. Once we became aware of our assumptions, we
were able to articulate new questions about the motion of the circumference points
and also about the geometric objects to which Olivia was attending.

Technology continues to play a central role in the inception and creation of these
Problem Posing Insights. In The Turning Dilemma, the initial moment of insight
occurred as a result of on-screen action, causing Abby to see additional potential in
the model. Olivia’s haphazard dragging of one key point elicited motion that Abby
felt would make their model behave in a more realistic way. Through a Google
search, Abby finds a way to convey her insight to Olivia. Although no links were
followed, Olivia is able to ascertain Abby’s meaning by glimpsing the provided
visual images that featured cardboard tubes and advertised DIY instructions for
school-aged children.
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In A Return to Symmetry, it is only because of the IGS artifact, the sketch, that a
post hoc analysis of the mathematical model was possible. Furthermore, the
moment of insight was provoked by the necessity of interpreting the screencast, a
digital recording of activity within the IGS environment that was, in turn, necessary
to interpret the recorded dialogue. It is a new perspective on that screencast and the
underlying construction that provokes this moment of insight, and a return to the
original digital environment to investigate the newly-posed questions.

2.6 Concluding Thoughts

In the following sections, we will conclude by discussing implications for teacher
preparation, limitations of the study, and directions for further research.

2.6.1 Implications for Teacher Preparation

In the United States, there are two standards documents that influence the oppor-
tunities students have to problem solve, specifically, Principles and Standards for
School Mathematics (National Council of Teachers of Mathematics, 2000) and the
Common Core State Standards for Mathematics (National Governors Association
Center for Best Practices, Council of Chief State School Officers, 2010). These
documents have framed a professional conversation around the role of problem
solving and problem posing in mathematics education, but more needs to be done to
define what experiences PSMTs need with respect to each. Given the increased
attention placed on modeling as a mathematical practice (National Governors
Association Center for Best Practices, Council of Chief State School Officers,
2010), it is valuable to make it explicit that these are creative pursuits. More can be
done to capture episodes of creativity in classroom observations to use as examples
for the field and cases for use in the preparation of future teachers.

Beyond examples and research studies, we think that screencasting and IGS
create an environment where PSMTs can not only engage in creative mathematics,
but can create artifacts and records of practice such as creation screencasts and IGS
files for use in presenting their work, but also for individual or group reflection
focused on identifying and describing moments of creative insight. Identifying
moments of creative insight is not intuitive or natural work and helping PSMTs
reconstruct their thinking process is fraught. In this case, both PSMTs utilized the
sketch created during class as evidence in their reflection, however neither Abby
nor Olivia identified any insights that they had when solving the Kaleidoscope Task
in their reflection casts. While Abby ignored the prompt entirely, Olivia went so far
as to deny that insight occurred, which stands in contradiction to the data presented
here from the creation screencast. What power we give to our PSMTs when we
enable them to go back in time and watch the insight unfold.
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By making students aware of their own creative insights, perhaps we could push
their expertise further into the realm Lewis (2006) describes as aesthetic.

Pre-service teacher education programs in technology education ordinarily do not include
coursework on creativity. Thus, most teachers do not have preparation that is sufficient
enough to allow them to inject creativity into their teaching. Teachers may introduce
design/problem solving activities into their teaching, but the competence they bring to the
classroom is more in the realm of the technical than the aesthetic. There is a clear need here
for professional development activities aimed at helping teachers see possibilities for
introducing creative elements into the curriculum, and into instruction (p. 47).

We would go even further, however, and say that making creativity explicit is
the only way to change deeply-held beliefs (Philipp, 2007) about the nature of
mathematics and instruction. Tharp, Fitzsimmons and Ayers (1997) found that that
philosophical beliefs about the nature of mathematics and what it means to learn
mathematics influenced teachers recognition of the value of technology for
instruction. We feel that it would be more powerful to utilizing technology to
examine creative insight, thus having the potential to impact not only views about
the role of technology in the classroom, but also the potential of technology to spur
and support creative insight for students.

2.6.2 Limitations

Although the research has documented creative insights as PSMTs engage in
authentic problem solving, there were some unavoidable limitations to this study.
First, due to the research design and questions, the results of the study are not
indicative of the work of all PSMTs. It is difficult, if not impossible, to draw
conclusions beyond Abby and Olivia’s case. Second, because of the specific
screencast software used, the PSMTs were only given 15 min to create their
kaleidoscope model, which may have impeded the PSMTs creative insights or
problem solving abilities. The existence of a time limit may have impacted some of
the PSMTs’ abilities to construct their kaleidoscope models. An argument can be
made in the opposite direction, however, that the shortened time period may have
also helped to alleviate some anxiety about the final product. If PSMTs interpret the
shortened time frame as preventing them from achieving a polished, “finished”
sketch, then they may work more freely, uninhibited by assumptions about
assessment. Finally, the data collected in the individual PSMTs screencasts were
limited. Not all students addressed each of the reflection questions; hence, some
interpretation remains centered around a single data source.

54 D. C. Cox et al.



2.6.3 Directions for Further Research

The creation screencast is as valuable in research as it is in the mathematics
classroom and in the preparation of PSMTs. The screencast, operating in a com-
pletely transparent and backgrounded way, is a tool used to capture authentic
moments of problem solving and problem posing. This is particularly true when
used in the environment described here and by Beatty and Geiger (2010). The
collaborative context worked in conjunction with a task that required constant
negotiation and discussion to create a rich narrative captured in verbalized thinking
as well as on-screen activity. Without access to the creation screencast, we would
have to rely on Abby and Olivia’s memory and interpretation of problem solving
events after-the-fact, and creative insights may have gone uncaptured simply
because they were so subtle as to fail even to register as important.

We see a great deal of possibility in pursuing research projects that utilize the
screencast to document episodes of collaborative problem solving and posing in a
IGS environment. In this chapter, we have presented one case study that illustrates
the power that this tool has in preserving the authenticity of those moments, but also
in creating a record of practice to which both students and teachers might refer
when making learning processes explicit.

We are currently analyzing the ways PSMTs articulate mathematics differently
in creation screencasts, presentation videos, and reflection screencasts. It is pos-
sible that these shifts in the precision and validity of mathematical language might
indicate the possibility of cognitive gains from the act of personal reflection about
mathematical problem solving. More data will be required to explore this
conjecture.

It is exciting to imagine the possibility of using yet another layer of screencasting
to capture the reflective process, particularly if it were to be shared between teachers
and students. What would happen if teachers and students sat down together to
verbally annotate a creation screencast? For us, this process is reminiscent of the
director’s cut videos that are often published alongside full length feature films on
DVD wherein movie directors watch the final version of the film and provide a
stream-of-consciousness discussion of the film and its creation. What sort of
metacognitive insights might we be able to capture in these annotations? The
impact of those metacognitive insights on content knowledge and pedagogical
beliefs may be powerful and welcome in the field of mathematics education.
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Chapter 3
The Create Excellence Framework’s
Impact on Enhancing Creativity:
Examining Elementary Teacher
Candidate Mathematics Lesson
Planning

Janet Lynne Tassell, Rebecca Stobaugh and Marge Maxwell

Abstract The focus of this research is to examine the impact of an instructional
instrument to improve the quality of pre-service teachers’ lesson plans to enhance
creative learning opportunities for children. The Create Excellence Framework
focuses on four components essential to high-quality lesson plans: Cognitive
Complexity, Real-World Learning, Engagement, and Technology Integration. The
research study examined data from two elementary education teacher candidate
classes for five semesters to measure the impact of the instrument on instructional
planning for mathematics or mathematics and science integration. Over the course
of the five semesters, for each component, the mean scores increased, and there was
a positive statistically significant difference between the scores from the baseline
semester to the fifth semester. In the fifth semester, the component of Technology
Integration had the largest increase and Real-World Learning has the highest mean
score. As students learned to design instruction around authentic tasks, cognitive
levels and engagement also increased. Students were exposed to and utilizing new
digital tools to enhance their learning. Using these digital tools along with
real-world applications of the content encouraged students to think creatively to
solve authentic problems.
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3.1 Introduction

Consider this scenario in a typical United States intermediate classroom:

Allison walks into her 5th grade classroom at the beginning of the year, excited to be
progressing to a grade level with more intensive mathematics. However, she finds that
mathematics is excessive worksheets and old textbooks. Allison has not ever had an
opportunity to do a creative project or use hands-on manipulative to solve real-world
problems other than solving word problems from the textbook. She sees no connection
between mathematics and technology which can lead to student inquiry and engagement.
Allison sees mathematics as memorization, and she thinks that technology is used only for
taking quizzes, locating information, and word processing papers. She sees the teacher use
the ActivBoard to show a PowerPoint presentation or to have students come to the board
one at a time to circle an answer. The teacher typically presents the lesson as a lecture
everyday while the students sit in rows taking notes. Allison always works alone, never
partnering with another student or working in a group on any type of assignments or
discussions. When Allison or another student asks a question, the teacher is always the one
to answer the question with no discussion. She had hoped to experience more real-world
problem solving and interactive classroom discussions and explorations like her cousin at
another school talks about.

Children are naturally curious and desire to learn through meaningful experi-
ences (Division of Elementary, Secondary, and Informal Education, 2000). When
given the opportunity to gather and use data from authentic scenarios, the students
more readily experience passion for and higher degrees of learning in mathematics.
However, mathematics classrooms are still experiencing a trend of sterile worksheet
curricula environments which do not allow for creativity nor use of technology,
both of which can allow for sense making as advocated by Wood, Merkel, and
Uerkwitz (1996). With this worksheet curriculum in mind, there may be a
long-awaited solution for teachers, consequently appealing to parents and students
alike. Through this solution, students will experience challenging questions cen-
tered around authentic projects. In this chapter, an instructional framework is
provided, supported with research, and discussed so that teachers can use it with
children to help facilitate potential for more meaningful learning and mathematical
understanding via a real-world, creative angle, while integrating technology
(Tassell, Maxwell, & Stobaugh, 2013).

Technology integration is now more of an expectation rather than an option. Many
United States teaching standards require effective technology integration (Tennessee
Department of Education, 2007; Texas Education Agency, 2014). Schools are spending
large portions of their budgets to purchase various technology capabilities, all in hopes
that students engage in deeper learning that connects with the real world. Unfortunately,
the primary use of technology is oftentimes for teacher presentations to garner student
attention rather than for “student use” of technology to advance student learning to
higher cognitive levels. For students to succeed in the formative up through pre-college
years, teachers need to be considering how to embrace the new challenges they are
facing in the mathematics classroom. Much of this can be tackled through a lens of a
creative instructional disposition. Students filling classrooms are part of a “‘creative,
multimedia’ generation” (Rosen, 2010, p. 218). The iGeneration is craving even more
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from education than ever before with technology and creativity (Oblinger, 2003; Prensky,
2010), yet many our mathematics teachers have not kept up with the awareness and
learning curve (Shriki, 2010, 2013).

Teachers need to accept and embrace that students love to create (Rosen, 2010).
Some students are wanting to channel this creativity in their coursework through
technology in forms of movies, podcasts, webpages, and other digital products, and
not the outdated technology formats of the past (Prensky, 2010). Students also want
choice in their assignments and projects. When students have the responsibility of
making choices, it increases engagement levels (Wood, 2010). Freedom to work at
their own pace with support and partnership of the teacher is appealing to the
students. Students enjoy space and time to creatively explore the content (Rosen,
2010).

To guide the integration of technology in the classroom, the International
Society for Technology Education established standards for teachers (ISTE, 2008)
and for students (ISTE, 2007). Both of these sets of standards promote students
using technology to be creative, communicate, collaborate, and think critically.
Another framework of skills, the Partnership for 21st Century Skills (2009), pro-
motes students working collaboratively to create media products while engaging in
critical thinking. For the teaching angle, the Partnership for 21st Century Skills
(2009) stated that a learning experience should be one that “Enables innovative
learning methods that integrate the use of supportive technologies, inquiry- and
problem-based approaches and higher-order thinking skills” (p. 8). Therefore, when
teachers are designing tasks, they need to consider these new expectations that
indicate higher student competence when using technology to collaborate with
students on cognitively demanding learning tasks about real-world topics. All of
this leads to a broader and more inclusive view of technology—where technology
integration is connected to higher-order thinking, real-world learning experiences,
and engaged learning. However, the reality is that there is a gap between curriculum
standards and instructional practices. The disconnect forms and urgency for the
foundation of the Create Excellence Framework.

3.2 Review of Research on How Teachers Teach
Creativity Through Real-World Lessons,
Collaboration, and Intellectual Risks

Creativity as defined by Pink (2005) is a necessity in thinking through complexities
of our interconnected world. Sternberg (2006) stated that educational researchers
and psychologists profess the benefits of creative thinking on emotional, cognitive,
and professional areas of life. However, even though there is an elevated focus on
creativity, teaching in a way that supports creativity is still an anomaly (Henrickson
& Mishra, 2013). With a focus on high-stakes stakes testing and published/scripted
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curricula, creativity is not the focus in most classrooms in the United States (Giroux
& Schmidt, 2004).

At Michigan State University, a study was conducted for how to integrate cre-
ativity into classroom and the role of teachers in enhancing children’s creativity
(Mishra, Koehler, & Henriksen, 2011; Mishra, Henricksen, & The Deep-Play
Research Group, 2012). Their focus is on embedding creativity into the context of
the content area, and not just in a general sense of creativity instruction (Mishra
et al., 2012). The goal is to help teachers learn how to teach their students to be the
kind of creative people that can look beyond the boundaries of their content area of
expertise and make connections back to that field to create new ideas (Henrickson
& Mishra, 2013).

In a study conducted from 2000 to 2010 of eight United States award-recognized
teachers by Henrickson (2011), research revealed that 90% of the teachers noted
creativity as their main teaching mantra and gave examples of how creativity was
taught through instruction in their classroom. Davidovitch and Milgram (2006) go
on to emphasize that for instruction to be “effective”, it must be “creative”.

From the study of the eight teachers, ten key creative teaching approaches
emerged (Henrickson & Mishra, 2013). One of these practices is: “link lessons to
real-world learning.” For this to happen, authentic experiences must be incorporated
so that creativity is woven in relevant learning. The teachers in the study all stated
that “real-world” learning is creative, offering novel opportunities for learning.
Another approach to teaching that emerged is “valuing collaboration.” The rationale
was that successful design teams do their best work through collaborative efforts.
These teachers also brought up concerns of working in isolation, emphasizing the
importance of discussing and sharing ideas with others as a creative catalyst in
learning. A third approach connected to our study is “taking intellectual risks.” The
teachers emphasized the idea of modeling new ideas and approaches in their
classroom, showing that they were open to failure.

In this chapter, we will share the impact of the instructional planning support,
Create Excellence Framework, on teacher candidates in designing their mathematics
and integrated mathematics/science lessons. We begin with giving an overview of
the Create Excellence Framework with details and research for the four components
supported by research: Cognitive Complexity, Real-World Learning, Engagement,
and Technology Integration. The next phase of the chapter shares the research offive
semesters of working with teacher candidates in their lesson planning with this
model. The overarching goal is to consider how these components connect to
enhancing student creative thinking opportunities through real-world lesson plans.

3.3 The Create Excellence Framework

TheCreate Excellence Framework includes four components: Cognitive Complexity,
Real-World Learning, Technology Integration, and Engagement. All the components
important for adding depth to learning and planning comprehensive lessons are
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addressed in this framework. This instrument draws ideas from Moersch (2002) who
originally developed the HEAT instrument (Maxwell, Constant, Stobaugh, &Tassell,
2011). The Create Excellence instrument measures five levels of integration of each
component (see Fig. 3.1 for Create Excellence Framework). Each component covers
the same five levels of increasing complexity to help the teacher target growth in his or
her instructional development of tasks and projects: (1) Knowing, (2) Practicing,
(3) Investigating, (4) Integrating, and (5) Specializing.

A target level of 3 or higher on the Create Excellence Framework was estab-
lished because students are using higher-level thinking (Analyze or higher),
engaging in learning where students experience choice and differentiation, simu-
lating real-world experiences, and creating technology products even if they are an
add-on to the lesson. At higher levels on the Create Excellence Framework students
are more responsible for their own learning, beginning to think like experts,
planning their own learning experiences while learning is embedded in the real
world, and technology is seamlessly integrated and a necessary part of the learning
experience. In the Technology Integration component student use of technology is
emphasized, instead of teacher use of technology. The Cognitive-Complexity
component also incorporates higher-level thinking skills (Maxwell, Stobaugh, &
Tassell, 2015).

Tasks are small classroom activities while projects are more complex and use
several instructional strategies, have open-ended solutions, involve more student
choice and decision making, and take longer to complete. The lower levels of the
framework are teacher directed (levels 1–3), whereas higher levels are more student
directed (levels 4–5) with the teacher partnering with students to design projects
and assignments (Tassell et al., 2013). The target levels for consistent student
learning are levels 3 and 4, which are shaded in tables depicting the framework
levels throughout the book. While level 3 is still teacher-directed, students are
engaging in higher cognitively complex tasks and projects. Students are beginning
to take more responsibility for their learning in level 4. Level 5 is attained after
consistent learning at levels 3 and 4 and could be accomplished a few times a year
(Maxwell et al., 2015).

3.3.1 Cognitive Complexity

The student’s level of thinking with the content is vital to comprising a quality task.
When objectives, activities, and assessments are properly aligned at higher levels of
cognitive thinking, not only does instruction improve but student learning has a
better chance of improving as well (Raths, 2002). The Cognitive Complexity
component within the Create Excellence Framework is based on the revised
Bloom’s Cognitive Taxonomy (Anderson & Krathwohl, 2001). The revised
Bloom’s taxonomy includes six levels (Remember, Understand, Apply, Analyze,
Evaluate, and Create along with nineteen cognitive processes classified within its
six levels) (Anderson & Krathwohl, 2001).
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Fig. 3.1 Create Excellence Framework
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Create is the highest level on Bloom’s revised taxonomy. It involves organizing
information in a new way to design a product or novel solution, hence creative
thinking. There are three Create-level cognitive processes within Bloom’s taxon-
omy, and they occur sequentially: (1) generating, (2) planning, and (3) producing.
When students engage in the generating cognitive process, they explore various
ideas or solutions to solve an ill-defined problem through hypothesizing and
exploring various relevant options. To begin this process, the topic must be
researched and thoroughly understood so the ideas generated logically connect to
the identified topic. The ideas should also be varied, unique, and detailed (Swartz &
Parks, 1994). Planning is the second step in the creation process. Students will take
the best idea they generated and decide on a plan to carry out the project. Often
there is more than one way to solve the problem. Also, during the planning process,
students often realize they must revise their idea or consider a new idea. The final
step is to follow through with the plan and produce the product.

At levels 1 and 2 of the Create Excellence Framework in the Cognitive
Complexity component, learners are engaged in teacher-directed learning experi-
ences and Bloom’s Taxonomy levels of Remember, Understand, and Apply level.
While level 3 of the Create Excellence Framework is teacher-directed, students are
engaging in the higher levels of Bloom’s Taxonomy—Analyze, Evaluate, and
Create. At the student-directed levels of the Create Framework (levels 4 and 5),
students employ the top three cognitive levels (Analyze, Evaluate, and Create). At
these two highest levels the students, instead of the teachers, are identifying the
questions, tasks, or projects. On level 4 and 5, students generate projects on the
Create level while thinking like an expert focused on an open-ended, global
learning emphasis.

In the mathematics field specifically, Bloom’s revised taxonomy helps teachers
with instruction by providing steps and ideas for math questions worth asking, to
know the difference between open and closed questions (Petti, 2017). As teachers
work on their “good questions” that are worth asking, these questions lend them-
selves to exploration and more questions that students can reflect on and grow as
inquirers. The outcome may then be the students are better mathematical thinkers
and engaged, lifelong learners.

Table 3.1 provides an example for Cognitive Complexity in the Create
Excellence Framework at the level 5. As students simulate and perform tasks and
projects like professionals in the field, they often naturally engage higher-order
thinking skills as they analyze, evaluate, and solve problems just like skilled
workers.

3.3.2 Real-World Learning

Real-World Learning is where the student learns from, interacts with, and has an
impact on the real world (Maxwell, Stobaugh, & Tassell, 2017). The goal of real
world learning is for the student to interact with the real world to solve real
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problems and experience authentic learning. For example, students may learn
letter-writing skills when they want to write a letter to their senator urging him/her
to support water conservation near their town. This experience teaches the students
that real-world solutions are complex—they may not always work, may not always
please everyone, and may have consequences that impact other areas (Maxwell
et al., 2017). Elements of real-world learning incorporate learning integrated across
subject areas, learning as close to the real world as possible, and collaborating with
experts in the field or discipline being studied.

3.3.2.1 Integrated Learning

Educators Barton and Smith (2000) state that interdisciplinary learning “provide[s]
authentic experiences in more than one content area, offer[s] a range of learning
experiences for students, and give[s] students choices in the projects they pursue
and the ways they demonstrate their learning” (p. 54). Interdisciplinary units enable
teachers to use classroom time more efficiently and address content in depth while
giving students the opportunity to see the relationship between content areas and
engage in authentic tasks and projects (Maxwell et al., 2017).

Students immersed in authentic-learning activities cultivate the kind of portable
skills that are applicable in new and different situations, settings, or connections.
These skills include judgment to distinguish reliable from unreliable information,
patience to follow longer arguments and assignments, ability to recognize relevant
patterns in unfamiliar contexts, and flexibility to work across disciplinary and
cultural boundaries to generate innovative solutions (Jenkins, 2009).

In problem-based learning, students work for an extended period of time to
investigate and respond to a complex questions, problem, or challenge.
Problem-based learning is the center of medical students’ training as they develop
work skills—collaborating, chairing a group, listening, recording, cooperating,
respecting colleagues’ views, critically evaluating literature, self-directing learning

Table 3.1 Example of Cognitive Complexity with mathematics in Create Excellence Framework

Create level 5 description for Cognitive
Complexity

Sample task/project

∙ Students generate questions or projects
with content at Bloom’s Create level
(Generating, Planning, Producing)

∙ Students engage in complex thinking like a
content expert or with content that has an
open-ended, global-learning emphasis

Have you ever wondered how polls are done?
How did they calculate that 70% of Americans
like a certain food or type of car? Do they ask
every single person in America? NO, they use
a polling percentage or a “sample” (or part of
the population). Groups of students in your
class will create their own poll, ask students
around your school about their opinion on a
specific school issue, and then predict the
percentage of student opinions about that issue
at your school (Maxwell et al., 2017)
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and use of resources, and presenting on and engaging in real medical tasks and
projects (Wood, 2003).

Students involved in authentic learning are motivated to persevere despite initial
frustration, as long as the project embodies what really counts to them—a social
structure they enjoy, topics and activities of personal interest, and a feeling that what
they are doing is important and valued (Herrington, Oliver, & Reeves, 2003;
Prensky, 2010). By confronting students with uncertainty, ambiguity, and conflict-
ing perspectives, instructors help them develop more mature mental models that
coincide with the problem-solving approaches experts use. Be aware that the balance
of challenge and uncertainty must be just right so that students are sufficiently
engaged but not overwhelmed. Authentic-learning exercises expose the messiness of
real-life decision making, where there may not be a right or a wrong answer per se,
although one solution may be better or worse than others depending on the particular
context or consequences. Such a nuanced understanding involves considerable
reflective judgment, a valuable lifelong skill that goes well beyond content memo-
rization (Keyek-Franssen, 2010).

3.3.2.2 Learning in the Real World

When a student learns from, interacts with, and has an impact on the real world,
higher retention of learning will occur. Real-world learning is organized around
complex activities built on multiple themes and academic disciplines and requires
multiple steps over an extended duration of time. Students have a real audience for
their work. They use real data and learn content through working on projects and
real problems that interest them (Schools We Need Project, n.d.). Take, for
example, the fourth-grade class featured in the opening vignette of this chapter that
decided to design landmarks for local heroes. This would be a level 4 real-world
learning project in which learning impacts the school and community. Learning is
integrated across subject areas—language arts, mathematics, science, economics,
and social studies (Maxwell et al., 2017).

As another example, students may investigate and create projects to solve
community issues such as developing a local walking trail, promoting girls’
inclusion in community athletics, or endorsing stricter policies on littering in the
community. This would also be a level 4 real-world learning project since it is
student directed and the students are having an impact on their community
(Maxwell et al., 2017).

Students prefer real, not just relevant, learning. Relevant means that students can
relate, connect, or apply the content you are teaching to something they know about
(for example, sports, music, social networking, movies, or games). The problem
with relevance is it does not go far enough to make learning meaningful and
engaging. As education innovator Prensky (2010) says, “Real means that there is a
continuous perceived connection by the students between what they are learning
and their ability to use that learning to do something useful or impact the real
world” (p. 72). For students to actively attend to and retain information, it must be
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relevant to their interests or foreseeable future needs (Sousa, 2006). In fact, tradi-
tional learning will usually fall under level 1 or 2, relevant learning under level 2 or
3, and real learning under level 4 or 5, depending on the level of impact. Table 3.2
provides a sample topic to illustrate the differences among traditional, relevant, and
real learning.

3.3.2.3 Collaborating with Field or Discipline Experts

Real-world problems comprise complex tasks that students investigate over a
sustained period of time. Students locate their own resources and are not given a
finite list of resources. Collaboration is integral to authentic learning, where
teamwork is critical to making decisions, solving problems, creating products, and
maneuvering the social aspects of learning with a team. Collaboration between the
teacher and students is essential to select the content, design the tasks or projects,
and construct the assessment. Finally, authentic learning usually culminates in the
creation of a whole product; however, the process is just as valuable to student
learning as the product. For example, in a conservation unit, each student may
document how much water his or her family uses each week, study personal water
use habits, and make recommendations to his or her family about water conser-
vation at home. The process of studying one conservation method at home could
lead to other conservation efforts at home. It shows students that they can learn
about topics that affect them and make informed decisions about many aspects of
their lives (Maxwell et al., 2017).

Table 3.2 Example of flow in mathematics classroom from traditional to real learning

Traditional learning Relevant learning Real learning

Teacher assigns:
Assigns problems
about geometry from
the textbook

Teacher scenario:
We have been studying about
how a city involves geometry in
architecture. How could you
help design blueprints for our
city? Assume the role of an
architect who is designing a new
neighborhood for the city. Create
a Voki to give your pitch to the
decision panel

Teacher scenario:
After studying how cities are
planned and the geometry
involved, students brainstorm
building and neighborhood
designs, and ways to be “green”.
One team decides to investigate
how the city can be more
efficient in using building
materials. They work with a
house planner to help
troubleshoot issues in the city.
They design posters with
Glogster.com or Kerpoof.com to
encourage citizens to conserve
materials and go green. The
mayor and “Go Green” director
judge the posters and select one
to duplicate and display around
the city
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True collaboration with experts in the field is invaluable in student acquisition of
the knowledge, skills, and dispositions necessary to develop discipline, work ethic,
and collaboration proficiencies. Collaboration with these experts could occur in
person at the school, through a field trip to the expert’s work location, or via video
conferencing with Skype. Teachers of a specific discipline may find themselves
collaborating with other teachers and experts from other disciplines (Maxwell et al.,
2017). Table 3.3 provides an example of collaboration with an expert.

3.3.3 Engagement

The Engagement component of the Create Excellence Framework is concerned
with the degree to which learners take responsibility for their own learning; partner
or collaborate with the teacher, other students, or outside experts; and use/manage
resources such as teachers, experts in the discipline, and tools/technology. Teachers
can help the student differentiate their interests and make choices in how they
approach the task. They can also support the student by helping them identify
resources and collaboration opportunities (Maxwell et al., 2017).

Student engagement has become an important quality in creating effective
schools and advancing student achievement. Educators know now that students
simply staring at the teacher or completing worksheets does not equal engaged
learning, and just because students are quiet and busy, that does not mean they are
engaged in their learning. Activities that focus on procedures and rudimentary tasks
as opposed to cognitively demanding learning opportunities have been found to
actually impede student engagement (Blumenfeld & Meece, 1988). Engaged
learning involves students solving problems or creating solutions to ill-structured,
multidisciplinary, real-world problems. There are several facets of engaged learning,
including inquiry-based learning, student-directed learning, collaboration within and
beyond the classroom–students collaborate or partner with other students, teachers,
or outside experts, and differentiated learning (Maxwell et al., 2017).

Table 3.3 Example of Real World learning with mathematics in Create Excellence Framework

Create level 4 description for Real World
learning

Sample task/project

∙ Learning emphasizes and impacts the
classroom, school, or community AND

∙ Learning is integrated across subject
areas

Elementary students created an organic garden at
their school in collaboration with a local organic
farmer. Students implement their design
(including geometric patterns and measurements),
grow the vegetables, and sell their products at the
local farmers’ market. The organic farmer helped
the students by reviewing their designs and
giving feedback, advising about pricing and
keeping accurate records of sales, and how to use
the data to plan for next year’s garden (Maxwell
et al., 2017)
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3.3.3.1 Inquiry-Based Learning

Student engagement is connected to a movement in education toward inquiry-based
learning. With inquiry-based learning, students are engaging with real-world issues
while solving problems or creating solutions to develop deep understandings.
According to biology instructor Schamel and research associate Ayres (1992),
students learn in a more effective manner when they generate their own questions
based on their observations rather than developing a solution to a situation or
problem with a predetermined answer. The National Science Education Standards
(1996) state, “Inquiry is something that students do, not something that is done to
them” (p. 21). Since inquiry-based learning is student directed, it would be placed at
the Integrating level (4) of the Create Excellence Framework if students are col-
laborating with the teacher and other students. It would be considered level 5
(Specializing) if students are collaborating beyond the classroom (Maxwell et al.,
2017).

The basis of inquiry-based learning is that students are key planners and
designers in the learning process. Table 3.4 shows the comparisons between tra-
ditional and inquiry-based learning with students directing the learning, the teacher
facilitating the learning, and students having input in the assessment (Maxwell
et al., 2017).

3.3.3.2 Student-Directed Learning

Student-directed learning is another key component of student engagement.
Student-directed learning places the learning focus directly on the students and less
heavily on the teacher’s actions. As incorporated in all elements of inquiry-based
learning, students are active learners, take responsibility for their own learning, and
constantly formulate new ideas and refine them through their collaboration with
others (Hung, Tan, & Koh, 2006). In project-based learning, students have voice
and choice. Students help teachers set clear expectations so that they know what
success looks like. Students articulate the targets or goals and examine targets in
their own work (Antonetti & Garver, 2015).

Table 3.4 Comparison of traditional and inquiry-based learning

Traditional Inquiry based

Teacher directed Student directed

Teacher as giver of
knowledge

Teacher as facilitator of learning

Content mastery Content mastery and beyond

Vertical and linear learning
path

Learning is more web-like; concept development ranges from
linear to spiral

Teacher-created
assessment

Assessment requires student input
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Finding the spark—a real-world subject, idea, or project that makes a student
light up—is the key to customizing learning experiences and engaging individual
students. In order to tailor learning to meet students’ educational needs and aspi-
rations, teachers seek and develop knowledge of each student’s unique tendencies,
circumstances, and interests through both formal processes (such as surveys or
advisories) and informal processes (casual conversations and insight from partner or
cooperating organizations, community members, or other teachers) (Martinez,
2014). For example, on a level 4 project, students might partner with the teacher to
decide which tasks they need to complete or determine what type of products they
might produce.

Student-directed learning in comparison to teacher-directed approaches increases
students’ depth of understanding, increase critical-thinking skills, improve
long-term retention, and increase students’ positive feelings toward the subject
studied (Crie, 2005). At the highest levels of student-directed learning, students
establish the learning goals based on their interests or questions they pose. At this
level of self-directed learning, students may also co-construct knowledge, assume
varied roles and tasks, and participate in self-monitoring and assessment (Maxwell
et al., 2017).

The inquiry process identifies several levels based on the level of student input.
Open inquiry involves the top level of student engagement in the learning process
with no predetermined questions since students propose and pursue their own
questions. This level could correlate with Create framework levels 4 or 5 in the
student-engagement component, depending on the amount of student initiation of
inquiry and collaboration. In the second level, guided inquiry, the teacher decides
on the topic, but the students can decide how they will approach the topic and
investigate the problem. This level could connect with Create framework level 3 or
4, depending on the amount of teacher input or student collaboration. At the third
level, structured inquiry, the teacher determines the topic and method for investi-
gation and students explore various solutions. This level could correlate with Create
framework level 2 or 3, depending on task choices and differentiation. In the lowest
level, limited inquiry, students follow the directions and make sure their results
match those given in the text. This level would be Create framework level 2 since
students are engaged in a teacher-directed task (Maxwell et al., 2017).

3.3.3.3 Collaborating Within and Beyond the Classroom

Collaboration is the third key component to student engagement. In engaging tasks,
students should collaborate within the classroom with other students and teachers or
beyond the classroom with outside experts. Teachers and experts provide real-world
tools, techniques, and support that allow for open communicating and sharing
(Hung et al., 2006).

Extending learning beyond the traditional classroom provides students with
real-world learning experiences that allow them to communicate with experts, take
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ownership of their learning, and extend their support networks. Educators,
including principals, act as consummate networkers throughout the process—
searching for meaningful resources that meet school’s learning goals and student
interests in places like museums, colleges, and community organizations. For many
educators, tapping these resources has been done to arrange internships or men-
torships, but the Create Excellence Framework encourages teachers and principals
to use their networking skills for deeper learning (Martinez, 2014).

3.3.3.4 Differentiated Learning

Opportunities for choice combined with a broad variety of instructional strategies
result in the highest levels of engagement (Raphael, Pressley, & Mohan, 2008).
When students are given choices, they have a sense of ownership of their personal
learning. A diverse collection of instructional strategies should be paired with
students’ prior knowledge and readiness to learn in order to promote student
engagement. However, the level and complexity of the varied instructional strate-
gies and activities must also be challenging (Gregory & Chapman, 2007).

Differentiation begins at level 3 with the teacher differentiating content, process,
or product. At level 4, students partner with the teacher to define their own content,
process, or product. At level 5, students design and implement their own
inquiry-based projects from topic to full implementation to solution. Students ini-
tiate their own outside collaborations with field experts. (See Table 3.5 for an
example of Level 5.) With both of these top levels, instruction is differentiated as
students choose what content to examine, what processes they will use to find the
solution, and how they will demonstrate their learning (product) (Maxwell et al.,
2017).

3.3.4 Technology Integration

With advances in technology doubling every eighteen months (McGinnis, 2006),
there is a plethora of technologies available to schools. Internationally there is quite
a variance of integration of technology based on factors including access to tech-
nology, government prioritizing and investing in technologies, and varying comfort
levels and beliefs in the importance of utilizing digital tools for K-12 learning.
According to a report by the European Commission (2013) in the European Union
63% of nine-year-olds do not study at a “highly digitally equipped school.” Among
the European countries, there is a large variance in the average ratio of computers
available for educational purposes. The average for the European Union is 5:1, but
in Greece it’s 21:1.

Traditionally, technology in classrooms has been a gadget to obtain students’
attention or inserted as an add-on to instruction to meet curriculum or teaching
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standards, but it fails to meaningfully impact instruction when teachers use it in that
capacity. Technology used to deliver teacher-directed content (as a glorified
blackboard) and digital worksheets has not delivered the rate of return expected for
the millions of dollars spent on technology (Schwartzbeck & Wolf, 2012). Without
sound application of technology integration, money spent on technology is wasted.
Authors Greaves, Hayes, Wilson, Gielniak, and Peterson (2010) state, “Although
educational technology best practices have a significant positive impact, they are
not widely and consistently practiced” (p. 12). Technology is a tool to reach an
educational goal; technology is not the goal itself. Author, educator, and technology
administrator Richardson (2013) comments, “It’s not about the tools. It’s not about
layering expensive technology on top of the traditional curriculum. Instead, it’s
about addressing the new needs of modern learners in entirely new ways” (p. 12).

Our research shows high correlation of technology integration with the other
three components of the framework (Maxwell et al., 2011). Technology should be
used not simply as an add-on but to meaningfully support the work to more effi-
ciently and effectively accomplish the task, just as it is in the professional world.
Authors Jukes, McCain, and Crockett (2010) state that the revised Bloom’s tax-
onomy reflects the “new era of creativity that has been facilitated by the emergence

Table 3.5 Example of Engagement with mathematics in Create Excellence Framework

Create level 5 description for Engagement Sample task/project

Students initiate their own inquiry-based
learning projects with thorough immersion
and full implementation from topic to
solution, and students initiate appropriate
collaborations pertaining to their project

Students were disturbed after watching a
documentary about students in a Kenyan
school who did not have chairs for their
classroom. The documentary deeply moved
these fourth graders. The students wanted to
raise funds for chairs for the African students.
The teacher and students used Coggle
(https://coggle.it), an online mind-mapping
tool, to brainstorm ways to raise the funds.
One student’s idea was to sponsor a math day
at school where students paid fifty cents for
solving a math problem. Another student
contacted his uncle, a member of a civic club,
to help them. The students also participated in
an event at the county fair to raise funds. The
students kept careful records on a spread-
sheet, set up formulas to calculate the total
and amount still needed. The teacher con-
tacted an international humanitarian group for
the students to work with to purchase and
ship the chairs. The humanitarian group
delivered the chairs (with desktops) and made
a video of the excited African students to
share with the fourth graders
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of the online digital world” (p. 69). Technology paired with critical thinking, stu-
dent engagement, and real-world learning provides opportunities for students to
produce novel products to address authentic problems (Maxwell et al., 2017).

Schools must have a planned approach in order to maximize the impact of these
technologies to enhance student learning (Pence & McIntosh, 2010). Educators,
however, struggle to integrate technology in meaningful ways that involve
higher-order thinking, collaborative tasks, and authentic problem solving (The
United Nations Educational, Scientific and Cultural Organization [UNESCO],
2004). Optimally, technology integration is a seamless component of instruction to
engage students in authentic, creative-thinking tasks (Maxwell et al., 2017).

The Create Excellence Framework’s technology-integration component advo-
cates for this new approach, incorporating real-world tasks that are naturally infused
with critical thinking and student engagement. Effective technology integration
seamlessly embeds technology tools as part of the instructional design in order to
engage students with significant content at high levels of thinking, whereby stu-
dents use varied technologies to collaborate with others, explore solutions to
real-life problems, and share their results in an authentic manner. While some may
view technology as helpful in building basic foundations of knowledge through
online games that reinforce basic applications of content, students more effectively
use technology to design solutions and create new products, which are high-level
thinking activities. Technology tools have the potential to enhance student learning,
but they must be implemented in a research-based framework to ensure sound
implementation.

Jukes et al. (2010) developed a list of 21st century competencies that include
students thinking creatively to address real-world issues, critically assessing the
quality of digital content, and creating their own digital projects. The U.S. 21st
Century Workforce Commission’s (2000) National Alliance of Business maintains
that “the current and future health of America’s 21st century economy depends
directly on how broadly and deeply Americans reach a new level of literacy—21st
century literacy” (p. 5). Their alliance identifies 21st century literacy as including
digital literacy, inventive thinking, and results-based thinking.

At the highest level on the Create Excellence Framework, students design
projects where (a) technology is seamlessly integrated into content at the Create
level of Bloom’s taxonomy, (b) several technologies are used, and (c) students
collaborate with field experts and/or global organizations to find solutions to an
in-depth “real” problem. Teachers can partner with students to design open-ended
assignments that have no single right answer, require students to design solutions to
problems that require higher-level thinking, and naturally embed technology.
Table 3.6 provides a description of the Create Level 4 along with a sample task/
project.
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3.4 Research Study

3.4.1 Purpose of the Research

As teacher candidates utilize the Create Excellence Framework, they can design
higher quality lessons sparking student creativity. Use of the Framework can
enhance the teacher’s knowledge of intentional lesson plan design and can posi-
tively impact teacher candidate instructional planning performance, in turn pro-
viding opportunities for real-world learning opportunities that provide authentic
learning opportunities for creative thinking. The authentic learning experiences can
then inspire an environment for students to develop and tap into their creativity as
applied to real-world learning and meaningful cognitive challenge. Creativity
inspires discovery learning, an inquiry-based learning method where students dis-
cover facts and relationships for themselves (Bruner, 1961). For over ten years
Robinson and Aronica (2015) has been saying that we are preparing students for
careers that don’t yet exist. Learning how to be more creative (and thus adaptable)
—now that’s what prepares students for life beyond the classroom. Business
executives say that creativity is valued as the most important business skill in the
modern world (Robinson & Aronica, 2015).

The researchers analyzed lesson plans developed by pre-service teacher educa-
tion students at a southeastern university based on their level of the Create
Excellence implementation over five semesters. Through utilizing the Create
Excellence Framework in a pre-service Elementary Mathematics Methods course
and an Elementary Education Senior Project course, the intention is that the par-
ticipants should possess greater abilities to design higher-level thinking lessons
around authentic topics that integrate student design with technology while
employing creative thinking skills. The students, or pre-service teachers, were

Table 3.6 Example of Technology Integration with mathematics in Create Excellence
Framework

Create level 4 description for Technology
Integration

Sample task/project

∙ Student technology use…
– Is embedded in content and essential to
project completion

AND
– Promotes collaboration among students
and partnerships with teacher AND

– Helps them solve authentic problems at
the Analyze, Evaluate or Create levels

You will find and investigate five different apps
or websites that you think could help you, your
classmates, and other third-graders practice and
understand the concept of fractions. You will
then review the apps or websites you researched
and rank the top five programs. To share your
thoughts, you will publish a review of the five
best apps for learning fractions in our classroom
newsletter and on our class website. After the
newsletter is published, the class will choose the
top five apps/websites out of all of those collected
and critiqued to use for the next month to practice
fractions (Maxwell et al., 2017)
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different students each semester. Therefore, the research is not following the stu-
dents through the five semesters, but rather following the effect of instruction with
the use of the Create Excellence Framework for impact on pre-service teachers’
lesson plans.

3.4.2 Research Questions

The research questions for this study were as follows:

1. Is there a significant difference in pre-service teachers’ mathematics/science
lesson plan scores over the five semesters for the Cognitive Complexity com-
ponent to enhance opportunities for creative thinking?

2. Is there a significant difference in pre-service teachers’ mathematics/science
lesson plan scores over the five semesters for the Real-World Learning com-
ponent to enhance opportunities for creative learning in authentic situations?

3. Is there a significant difference in pre-service teachers’ mathematics/science
lesson plan scores over the five semesters for the Engagement component to
enhance creativity in working with others?

4. Is there a significant difference in pre-service teachers’ mathematics/science
lesson plan scores over the five semesters for the Technology Integration
component to enhance creative opportunities in learning?

3.4.3 Research Method

Over the course of five semesters in two different pre-service teacher preparation
courses (Elementary Mathematics Methods and Elementary Education Senior
Project), pre-service teachers were instructed on components of the Create
Excellence Framework. These two undergraduate elementary program area courses
required pre-service teacher education students to develop lesson plans as part of
the typical course requirements. The pre-service teachers in the Elementary
Education Senior Project course were required to design one mathematics or
mathematics and science integrated lesson plan that embedded the Create
Excellence Framework components at a level 3 or higher. In the Elementary
Mathematics Methods course, the pre-service teachers were required to design a
problem-solving lesson with the Create Excellence Framework components. The
researchers then began using the Create Excellence Framework for instruction with
the preservice teachers and continued four more semesters of data collection beyond
the baseline semester: Spring 2010, Fall 2010, Spring 2011, and Fall 2011. The Fall
2009 semester data established a baseline before any instruction occurred on the
Create Excellence Framework. In the study, a total of 253 pre-service teachers’
lesson plans were collected from five semesters from the two courses. Researchers

76 J. L. Tassell et al.



analyzed plans to identify the level for each component in the Create Excellence
Framework.

Preservice teacher names were removed from the lesson plans, numbered, and
randomly divided. Next, blind scoring was conducted by the researchers and
scorers. The 253 samples were scored after the Fall 2011 semester. In total, eleven
evaluators rated the lessons—three were the researchers, two were Assistant
Superintendents, and the others were P-12 teachers. The researchers trained the
other scorers on the use of the Create Excellence Framework for the scoring of the
lesson plans. A main focus of the training was on calibration of the scoring of the
evaluators. To establish the calibration, the researchers chose four anchor lessons
with agreed upon ratings, and trained and discussed these in detail for scoring
calibration of the application of the framework. The new members of the scoring
team each scored the “training” lesson plans, shared and discussed their ratings for
each of the four Create Excellence Framework components. At this point in the
study, the calibration goal was to score two consecutive lessons with Create
component ratings no more than one level apart on each component from the score
set by the researchers. After each training lesson, the discussion provided oppor-
tunities to refine the understanding of the Create Excellence Framework. After three
training lessons, the calibration goal was met.

After the calibration was established, three teams of scorers were paired together
with one researcher in each of the pairs. The lesson plans were randomly distributed
among the three scoring teams. A scoring team evaluated the same set of lessons—
giving every lesson in the study two sets of scores. The ratings were recorded on
spreadsheets. The scores were averaged when the scorers did not agree upon a
score. (see results in Table 3.7.)

Table 3.7 Mean of each Create Excellence Framework component across five semesters

Cognitive
Complexity
m

Real-world
learning
m

Technology
integration
m

Engagement
m

Fall 2009
N = 43

2.00 1.674 .791 1.465

Spring 2010
N = 44

2.068 1.977 1.273 1.727

Fall 2010
N = 47

2.191 2.042 1.702 1.894

Spring 2011
N = 46

2.283 2.174 1.957 1.891

Fall 2011
N = 73

2.425 2.726 2.247 2.110

Increase in m
from Fall 2009 to Fall
2011

.425 1.052 1.456 .645

m Mean—rounded to third decimal place
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The scores were analyzed in SAS for statistical difference with an Analysis of
Variance (ANOVA), followed by a Tukey Studentized Range (HSD) Test to
determine where differences occurred. The researchers were primarily investigating
if there was a difference between the first, or baseline, semester and the last
semester in the five-semester sequence.

3.5 Results

The forthcoming results share the analysis of the four research questions, one
question at a time. The data are analyzed in a progression of mean and standard
deviation, ANOVA, and Tukey’s Studentized Range (HSD). Following the Results
section, the Discussion and Conclusions sections share more details and thoughts
for interpretation.

3.5.1 Research Question One

Is there a significant difference in pre-service teachers’ mathematics/science lesson
plan scores over the five semesters for the Cognitive Complexity component to
enhance opportunities for creative thinking?

The means of the scores of pre-service teachers’ lesson plans of the Cognitive
Complexity component of the framework increased from 2.00 in the Fall 2009
semester to 2.425 in the fifth semester in Fall 2011 (see Table 3.8). Although this
component had the least growth over the five semesters, Table 3.9 reveals a sig-
nificant difference among the means of the semesters. The significant difference did
occur between the Fall 2009 and Fall 2011 semesters (see Table 3.10).

Table 3.8 Descriptive data for Cognitive Complexity component

Semester N Mean
m

Standard deviation
SD

Fall 2009 43 2.00000000 0.37796447

Spring 2010 44 2.06818182 0.66113811

Fall 2010 47 2.19148936 0.44907140

Spring 2011 46 2.28260870 0.58359208

Fall 2011 73 2.42465753 0.52487586

Table 3.9 ANOVA for the Cognitive Complexity component

Source df SS MS F p

Model 4 6.37098940 1.59274735 5.71 <0.0002

Error 248 69.23375369 0.27916836

Total 252 75.60474308
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3.5.2 Research Question Two

Is there a significant difference in pre-service teachers’ mathematics/science lesson
plan scores over the five semesters for the Real-World Learning component to
enhance opportunities for creative learning in authentic situations?

Compared to other components, Cognitive Complexity has the highest mean
score at the beginning of the study while the Real-World Learning means were the
highest at the end of the study. The Real-World Learning component also showed
steady increase with a baseline score of 1.674 (Fall 2009) and moving to 2.726 (Fall
2011) four semesters later (Table 3.11). This was an increase of 1.052 over the five
semesters. The ANOVA results (Table 3.12) indicated a significant difference. The
Tukey results confirmed a significant difference between the Fall 2009 and the Fall
2011 semester means (Table 3.13). Therefore, the pre-service teacher lesson plan
scores did significantly increase from the baseline to the fifth semester of the study.

Table 3.11 Descriptive data for Real-World Learning component

Semester N Mean Standard deviation

Fall 2009 43 1.67441860 0.56572458

Spring 2010 44 1.97727273 0.45691770

Fall 2010 47 2.04255319 0.41480466

Spring 2011 46 2.17391304 0.60752130

Fall 2011 73 2.72602740 0.55927220

Table 3.12 NOVA for the Real-World Learning component

Source Df SS MS F P

Model 4 35.43000102 8.8575026 31.62 <0.0001

Error 248 69.4632704 0.2800938

Total 252 104.8932806

Table 3.13 Tukey’s studentized range (HSD) for Real-World Learning component

Group comparison Difference between means Simultaneous 95%

Confidence Limits

Fall 2011–Fall 2009 1.05161 0.77204 1.33118

Only significant results reported for difference between Fall 2009 and Fall 2011

Table 3.10 Tukey’s studentized range (HSD) for Cognitive Complexity component

Group comparison Difference between means Simultaneous 95%

Confidence Limits

Fall 2011–Fall 2009 0.14555 0.42466 0.70377

Only significant results reported for difference between Fall 2009 and Fall 2011
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3.5.3 Research Question Three

Is there a significant difference in pre-service teachers’ mathematics/science lesson
plan scores over the five semesters for the Technology Integration component to
enhance creative opportunities in learning?

Technology Integration had the lowest baseline score with a .79 average in Fall
2009 and the highest mean increase (1.456) of all four components (Table 3.14).
Each semester the mean scores on the Technology Integration component pro-
gressively increased with the highest mean gain in the Spring 2010 semester when
the Create Framework was first introduced. A significant difference was revealed by
the ANOVA (Table 3.15) and confirmed by the Tukey test between the Fall 2009
and Fall 2011 semesters (Table 3.16).

3.5.4 Research Question Four

Is there a significant difference in pre-service teachers’ mathematics/science lesson
plan scores over the five semesters for the Engagement component to enhance
creativity in working with others?

Table 3.14 Descriptive data for Technology Integration component

Semester N Mean Standard deviation

Fall 2009 43 0.79069767 0.67464769

Spring 2010 44 1.27272727 0.81735923

Fall 2010 47 1.70212766 0.85757225

Spring 2011 46 1.95652174 0.75884479

Fall 2011 73 2.2467534 0.79548765

Table 3.15 ANOVA for the Technology Integration component

Source df SS MS F P

Model 4 68.2748986 17.0687246 27.64 <0.0001

Error 248 153.1480263 0.6175324

Total 252 221.4229249

Table 3.16 Tukey’s studentized range (HSD) for Technology Integration component

Group comparison Difference between means Simultaneous 95%

Confidence Limits

Fall 2011–Fall 2009 1.4559 1.0408 1.8710

Only significant results reported for difference between Fall 2009 and Fall 2011
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In Fall 2009, the Engagement component had a 1.465 average and increased to
2.110 in Fall 2011, a .645 increase (Table 3.17). Engagement scores continued to
increase each semester, excluding a minimal decrease in Spring 2011. The ANOVA
(Table 3.18) and Tukey (Table 3.19) again revealed a significant increase from the
Fall 2009 to the Fall 2011 semesters.

3.6 Discussion and Conclusions

The means of pre-service teachers’ lesson plans using the Create Excellence
Framework demonstrated significant increase on all four components from the first
to the last semester of the research period. This finding suggests that pre-service
teachers can learn to increase these components in their lesson planning.

The Cognitive Complexity dimension had the least increase of all dimensions
over the course of five semesters, but had steady increases each semester. To deepen
students’ understanding of Bloom’s taxonomy (Bloom, 1956; Bloom, Englehart,
Furst, Hill, & Krathwohl, 1956), the professors engaged teacher candidates in
determining the Bloom’s level of sample tasks. In addition, in other teacher can-
didate lessons for the classes, they were expected to demonstrate their ability to
design instruction above the Remember and Understand level of Bloom’s

Table 3.17 Descriptive data for Engagement component

Semester N Mean Standard deviation

Fall 2009 43 1.46511628 0.50468459

Spring 2010 44 1.72727273 0.54404328

Fall 2010 47 1.89361702 0.63362458

Spring 2011 46 1.89130435 0.60473174

Fall 2011 73 2.10958904 0.39305229

Table 3.18 ANOVA for the Engagement component

Source df SS MS F P

Model 4 12.11609114 3.02902279 10.81 <0.0001

Error 248 69.47284166 0.28013243

Total 252 81.58893281

Table 3.19 Tukey’s studentized range (HSD) for Engagement component

Group comparison Difference between means Simultaneous 95%

Confidence Limits

Fall 2011–Fall 2009 0.64447 0.36488 0.92406

Only significant results reported for difference between Fall 2009 and Fall 2011
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taxonomy; hence, they had multiple times to practice designing lesson with rig-
orous learning outcomes. It is not surprising that the teacher candidates had diffi-
culty designing lesson plans beyond a Create Framework level 2 on average.
A Create Framework level 3 lesson plan requires pre-service teachers to design
instruction that challenges students to think within the top three levels of the
Revised Bloom’s Taxonomy (Anderson & Krathwohl, 2001): Analyze, Evaluate,
and Create. Most of the pre-service teachers were able to design instruction on the
Understand and Apply level of Bloom’s taxonomy, but were not able to reach the
top three levels on Bloom’s taxonomy or develop student-generated tasks on the
higher levels. As mentioned earlier by Henrickson and Mishra (2013) in the study
of how teachers teach creativity, a related area to the Create Framework’s Cognitive
Complexity is a teacher’s willingness to “Take Intellectual Risks” and model new
ideas and approaches in their classroom, showing that they were open to failure.
Perhaps for the teacher candidate, the risk-taking is too much of a leap.

The Engagement component also showed significant increase over the course of
the five semesters, with just a slight dip one semester. The professors incorporated
differentiation and grouping techniques for the teacher candidates to use within the
lessons, along with encouraging different forms of collaboration. The teacher
candidates were also encouraged to work toward a student-directed lesson versus a
teacher-directed lesson. As mentioned earlier with the Henrickson and Mishra
(2013) study of teacher awardees, a related area to Engagement that emerged as an
indicator of excellent teaching of creativity was their area of “Collaboration.” The
master teachers emphasized that their students needed to learn about the benefits of
working together to hear the ideas of others and solve problems with integrated
strengths.

The Real-World Learning component had the highest mean scores in the final
year of the study. Professors challenged students to determine a real-world situation
as the context of their lesson and then design their plan. The Create Framework’s
Real-World Learning component is connected to the Henrickson and Mishra (2013)
study, “Link Lessons to Real-World Learning,” as it asserts that authentic experi-
ences must be incorporated so that creativity is woven in relevant learning with
creative and novel learning opportunities.

The Technology Integration component had the highest mean increase of the all
the components. As professors modeled new technologies in class and adopted
higher expectations for integration, teacher candidates quickly began utilizing
digital tools to enhance instruction. As teacher candidates moved to higher levels of
integration of each component, the instruction became more engaging via the use of
technology and provided more opportunity for students to express their creativity
and learning in a variety of ways.

With each subsequent semester the researchers gained expertise in various
technologies, critical-thinking strategies, and new ways to engage students in
authentic tasks, which were then incorporated into the class. Professors also started
to have students select unique technologies for in-class presentations to challenge
students to investigate the uses of various technologies. The researchers began
asking students to create a sample student product of the Create Excellence lesson

82 J. L. Tassell et al.



they designed, which then challenged the pre-service teachers to carefully analyze
their task directions.

To increase the quality, professors displayed and discussed more examples of
quality Create Excellence Framework lesson planning assignments. Students also
critiqued each other’s work suggesting ways to improve the assignments. This
formative feedback increased the quality of the final product.

3.7 Implications for Future Research

With new technologies providing more efficient and effective methods for learning,
students are able to utilize digital tools to creatively solve authentic problems.
However, oftentimes, P-12 instruction is teacher-directed with little freedom to
produce diverse solutions. In mathematics classrooms teachers are frequently
pressured to meet the content standards by covering content instead of uncovering
deep learning while also lacking instructional tools for developing students’ cre-
ativity (Shriki, 2010, 2013). However, when instruction is designed focused on high
levels of Cognitive Complexity, Real-Learning Learning, Engagement, and
Technology Integration, students are empowered to direct their own learning, while
solving real-world problem using relevant digital tools. These instructional expe-
riences can invigorate even reluctant learners as learning becomes more than
memorizing but bursting with opportunities for creative expressions (Mann, 2006).

Teacher candidates and practicing teachers in many states are now faced with
changing evaluation systems for teacher quality (Danielson, 2007). Through this
process, the hope is that the Create Excellence Framework will provide a tool to
help both pre-service teachers and current teachers be prepared to perform in the
upper echelon of these more rigorous teaching standards. This framework has been
designed to be a tool to support raising P-12 student achievement. However, a
lingering question is: By use of the framework, do teachers actually improve in their
instruction? A possible next step for future research is to study the impact of the
Create Excellence Framework implemented by teachers to thoughtfully and
intentionally plan for the four components of instruction to ensure a well-rounded
lesson and deeper student learning. As teachers and administrators look for another
tool to plan and improve instruction, the Create Excellence Framework may be the
answer!

3.8 Final Thoughts

So, let us check back in with Allison in her 5th grade classroom, as introduced in
the opening scenario of this chapter. After learning of the Create Excellence
Framework, her teacher was able to implement an authentic STEM project where
students were able to have opportunities to expand in creative learning and choices
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through the four components of Cognitive Complexity, Real-World Learning,
Engagement, and Technology Integration.

The teacher informs the class that the classroom student desks are going to be
replaced due to being old/ineffective. Groups are assigned to develop the optimal
student desk that would meet the needs of 5th grade students. Allison’s group
identifies what qualities a desk should have to meet the needs of students in their
classroom. Students brainstorm various conceptual designs. Students evaluate
which concept is most likely to meet their needs and is cost effective. Using their
engineering skills, students make calculations of size of the desk, cost of materials,
and build a prototype. Each group tests and evaluates their prototype; then they
restructure and improve the original design. While Allison’s group is formulating
their conceptual design, they use a free online program, Google Sketch-Up, to
develop their design. The class is told that the desk-constructing groups are in
competition for a “school choice” award. Their persuasive presentation for the
principal is created in Animoto (online presentation program). Allison’s team
collaborates with the teacher constantly to ensure the group is progressing on their
solution and Skype with a furniture designer to pose questions about their prototype
and get feedback from the designer.

In Allison’s classroom instruction make-over, the Real-World Learning com-
ponent is found in the real-world mathematics lesson of desk redesign scenario and
the competition for student choice award along with the persuasive presentation.
Cognitive Complexity is seen in the students generating their own questions and
design; students evaluating which concept will meet needs; students at the creating
level of thinking; students test and evaluate the prototype, then restructure and
improve their plan. For Engagement, the students work as a team and collaborate
with the teacher; they consult with a furniture designer. For Technology Integration,
students use Google sketch-up, Skype, Animoto for presentation, and build a
prototype of the desk.

The example of Allison’s classroom experience provides a picture of how
instruction can be enhanced in the mathematics classroom—infusing opportunities
for children to creatively engage in authentic learning experiences.
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Chapter 4
Impacting Mathematical
and Technological Creativity
with Dynamic Technology Scaffolding

Sandra R. Madden

Abstract This chapter reports on studies conducted during the past decade that
investigated mathematical learning for teaching with technology (MLTT) and its
relationship to creativity. Though related to mathematical knowledge for teaching
(MKT) (Ball et al. in J Teach Educ 59, 389–407, 2008) and technological peda-
gogical content knowledge (TPCK) (Mishra and Koehler in Teachers Coll Rec 180
(6):1017–1054, 2006; Niess in Teach Teach Educ 21(5):509–523, 2005), mathe-
matical learning for teaching with technology has a strong dispositional component
coupled with curiosity, creativity, and meaning making (Thompson in Third
handbook of international research in mathematics education. Taylor and Francis,
London, pp. 435–461, 2015). Using design-based research methods (Cobb et al. in
Educ Researcher 32(1):9–13, 2003) a framework for dynamic technological scaf-
folding (DTS) has emerged in support of teacher learning. DTS has provided fertile
ground for the design and further study of learning trajectories in which learners are
exploring and eventually creating cognitively challenging mathematical task
sequences in the presence of new (to them) physical and technological tools. By
harnessing teachers’ motivation to inculcate curiosity, engagement, and learning for
their students, these design studies have created conditions where teachers have
become curious, creative, and technologically savvy to the point where many have
gone on to pursue similar kinds of experiences with their mathematics students.
This chapter will explore and present DTS as created and implemented with sec-
ondary mathematics teachers and DTS as creative work pursued by teachers.
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4.1 Introduction and Literature Connecting Curiosity,
Creativity, Mathematical Learning for Teaching
with Technology, and Dynamic Technology
Scaffolding

The research in this chapter addresses this books’ focus on mathematical creativity
when using dynamic cognitive tools (DCTs), where the participants are secondary level
mathematics teachers. Cognitive tools are technologies, that enhance the cognitive
powers of human beings during thinking, problem solving, and learning and help
learners organize and represent what they know (National Governors Association
Center for Best Practices, Council ofChief State SchoolOfficers, 2010; Jonassen, 1994;
Jonassen & Reeves, 1996). Dynamic cognitive tools include digital (e.g., GeoGebra,
Core-Math Tools, Cabri Geometry, Geometers’ Sketchpad, TinkerPlots, Fathom,
Desmos, NLVM, etc.) and physical tools (e.g., compasses, hula-hoops, ribbon, pipe
cleaners). The class ofDCTs that are computer-based technological tools are considered
computational technologies (Santos-Trigo & Machin, 2013). The chapter explores
secondary teachers, DCTs, and creativity in two primary ways: (1) teachers as
mathematical learners in novel computational technology environments navigating
unfamiliar mathematical and technological terrain, and (2) teachers as designers of
lesson sequences for students in novel computational technology environments navi-
gating unfamiliarmathematical and technological terrain.Creativity as examined in this
chapter includes learners’ self-discoveries that give rise to new andmeaningful insights
(Beghetto & Kaufman, 2009).

DCTs allow mathematical and statistical objects to be represented, constructed,
linked, and manipulated in order to explore relationships and transcend the limi-
tations of the mind (Pea, 1985). Some technological DCTs are pre-built,
expert-constructed models for users to explore, such as Java applets, microworlds,
or simulations. These are considered exploratory modeling environments, with
what are sometimes called route-based tools (Bakker, 2002; Doerr & Pratt, 2008).
Other technological DCTs are environments for users to construct their own
models. These are considered expressive modeling environments, with what some
refer to as landscape tools (Bakker, 2002; Doerr & Pratt, 2008). It is the expressive
modeling environments where learners are free to construct representations and
relationships that illuminate their mathematical understanding and creative thinking
and reasoning. It is, however, a nontrivial matter to convince teachers to invest in
technologically intensive mathematical learning for the purpose of innovation in
their classrooms. This chapter addresses research aimed at supporting teachers as
learners toward this end.

Through retrospective analyses of implemented learning trajectories based upon
hypothetical learning trajectories (Simon & Tzur, 2004) that have been refined
carefully over the past decade, this chapter will illuminate particularly promising
practices with secondary mathematics teachers as they begin to explore mathe-
matical and statistical terrain with technological tools. In service to the focus of this
book on creativity, this work highlights creative mathematical and technological
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thinking, reasoning, and meaning as mathematical tasks in technologically rich
environments are designed and implemented.

Research participants were 64 pre- or in-service mathematics teachers from the
northeast U.S. who participated in design-based research studies conducted during a
graduate level course intended to prepare teachers for the demands of utilizing
mathematically oriented technology in their teaching for the support of their stu-
dents’ mathematical learning. Pre-course surveys indicated that very few learners
from this environment had prior experiences with DCT as learners (Madden, 2013).
Consequently, DCTs were not used with students in their own classrooms prior to
the course. The course introduced students to a variety of DCTs, tasks, and learning
environment conducive to supporting their facility with tools for reasoning math-
ematically in preparation for doing similar work with their students. Approximately
half of the semester addressed learning with dynamic geometry technologies and
the other half explored dynamic statistical technologies. All names are pseudonyms.
Throughout the chapter, “students,” “teachers,” and “learners” refer to participants
in the course, unless specifically noted. “Instructor” refers to the teacher of the
course, also the author.

In this learning environment, mathematical tasks and innovative curriculum
materials [e.g., Core-Plus Mathematics Project (CPMP) (Hirsch, Fey, Hart, Schoen,
& Watkins, 2015)] challenge teachers’ notions of what it means to know and do
mathematics and consequently, what it means to teach mathematics. Teachers are
introduced to mathematical habits of mind as they engage in mathematical activity
(Cuoco, Goldenberg, & Mark, 1996). Some important mathematical habits of mind
in this environment include: pattern sniffing, looking at algebraic objects geomet-
rically, looking at geometric objects algebraically, and modeling with mathematics
and statistics. Connections within and among big mathematical ideas are explored
(Steen, 1990). There is a recurring aspect of computational thinking (Wing, 2006)
that permeates the teacher learning environment explored in this chapter and pro-
motes reconsideration of the nature of what counts as mathematical thinking and
meaning making.

The following sections provide a brief review of literature on curiosity and
creativity, mathematical learning for teaching with technology, and dynamic
technology scaffolding in preparation for sections exploring the design of task
sequences to support teacher learning and creativity, evidence of teachers as cre-
ative learners of mathematics, and teachers as designers of technologically rich
learning environments.

4.1.1 Curiosity and Creativity

Due to the nature of creativity explored in this chapter, the connection between
curiosity and creativity is examined. Loewenstein (1994) introduced the notion of
“information gap” as antecedent to curiosity. He maintained that curiosity “arises
when one’s informational reference point in a particular domain becomes elevated
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above one’s current level of knowledge” (p. 87). He calls the information gaps
produced by the feeling of deprivation “curiosity” and suggests that curious indi-
viduals are motivated to eliminate the feeling of deprivation by obtaining more
information. “Curiosity involves an indissoluble mixture of cognition and moti-
vation” (pp. 94–95). The information gap perspective is particularly relevant in the
study of mathematics teacher learning and curriculum development because of
teachers’ professional desire to feel competent and “curiosity is particularly strong
when it comes to knowledge pertaining to one’s own competence” (p. 93).
Loewenstein discusses the importance of “priming the pump,” asserting the need
for experiences for learners to bump into ideas they know something about but
exposing gaps in their knowledge. This perspective is especially relevant with
respect to teacher learning and the use of dynamic cognitive tools to support
mathematical learning.

Kashdan and Fincham (2002) suggest that curiosity may be characterized “as a
self-regulatory mechanism that facilitates intrinsic goal effort, perseverance, per-
sonal growth, and, under the right conditions, creativity” (p. 373). It is those “right
conditions” that are under consideration in this chapter. Self-determination (Ryan &
Deci, 2000) as connected to autonomy, competence, and relatedness is within the
mix of interest, motivation, and curiosity as teachers navigate new learning. As
described by Madden (2013), tasks that teachers find contextually, mathematically,
or technologically provocative have proven useful in supporting learning because
they excite epistemic curiosity which may lead learners in the direction of
creativity.

Much of the mathematical creativity literature explores advanced mathematical
thinking or that of mathematically gifted learners. However, like Silver (1997),
“mathematics educators can view creativity not as a domain of only a few excep-
tional individuals but rather as an orientation or disposition toward mathematical
activity that can be fostered broadly in the general school population” (Silver, 1997,
p. 79). There are many models of which a few relevant works are described below.

Some have theorized that mathematicians’ creative processes follow a four-stage
Gestalt model of preparation-incubation-illumination-verification (Sriraman,
2009). Though not a definition of mathematical creativity, the four-stage model
highlights the importance of sustained thought and engagement as one contemplates
and works toward a creative insight. “… creativity is closely related to deep,
flexible knowledge in content domains; is often associated with long periods of
work and reflection rather than rapid, exceptional insight; and is susceptible to
instructional and experiential influences (Holyoak & Thagard, 1995; Sternberg,
1988)” (Silver, 1997, p. 75). Periods of incubation may be an essential aspect of
creativity requiring inquiry-oriented, creativity-enriched mathematics curriculum
and instruction (Silver, 1997).

Ervynck (1991) suggested that mathematical creativity develops across three
stages:

• Stage 0, the preliminary technical stage, where practical or technical application
of mathematical rules or procedures precedes genuine mathematical activity. For

92 S. R. Madden



example, in Ancient Mesopotamia and Egypt staking out a right angle was
accomplished using triangle side lengths of 3, 4, and 5 units prior to more formal
mathematical learning.

• Stage 1, algorithmic activity, where procedures and techniques are carried out
routinely. “As with the tool-object dialectic, it is essential that the tool become
familiar in action before it becomes the focus of reflective activity” (Ervynck,
1991, p. 43). Though the tools referred to by Ervynck tend to be mathematical
procedures, it is conceivable that other kinds of tools (e.g., DCTs) may serve a
similar orienting purpose.

• Stage 2, the creative (conceptual, constructive) activity stage, the stage where
mathematical creativity is conjectured to occur. This is the stage at which the
underlying conceptual structure of a problem is utilized and non-algorithmic
steps and decisions are made to advance a theory. This complex activity is a
hallmark of mathematical creativity.

Ervynck (1991) describes mathematical creativity as “the ability to create
mathematical objects, together with the discovery of their mutual relationships”
(p. 46). Whereas Ervynck’s focus is on advancing mathematics, his perspective
may be taken as relative to the learner, where the advanced mathematical per-
spective is in relation to the current mathematical perspective of the learner.
Researchers de Freitas and Sinclair (2014), suggest “A creative act:

1. introduces or catalyses the new – quite literally, it brings forth or makes visible
what was not present before;

2. is unusual, in the sense that is must not align with current habits and norms of
behavior;

3. is unexpected or unscripted – in other words, without prior determination or
direct cause;

4. is without given content, in that its meaning cannot be exhausted by existent
meanings” (p. 89).

The perspective of creative work as discussed by Csikszentmihalyi (2000) of
that which is both novel and valuable is a useful frame for this chapter (Sriraman,
2004). This definition is exploited through the design, implementation, and study of
learning environments with teachers. In the context of mathematical problem
solving, problems are places where information gaps become evident. When
learners experience such a gap, in the presence of tools to augment their investi-
gation, the potential exists for the expression of their creative ideas in novel forms
to solve problems. This is mathematically creative action using technology. For
teachers, creative action is also related to design as they design units comprised of
lessons and task sequences. The design process of solving a problem through the
creation of something for someone is inherently creative (Sullivan, 2017). In
agreement with Vygotsky (2004),

Any human act that gives rise to something new is referred to as a creative act, regardless of
whether what is created is a physical object or some mental or emotional construct that lives
within the person who created it and is known only to him (p. 7).
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The literature suggests that creative individuals tend to be attracted to com-
plexity, which most school math curricula has very little to offer.

Classroom practices and math curricula rarely use problems with an underlying mathe-
matical structure and all students a prolonged period of engagement and independence to
work on such problems … for mathematical creativity to manifest in schools, students
should be given the opportunity to tackle non-routine problems with complexity and
structure, which require not only motivation and persistence but also considerable reflection
(Sririman, 2004, p. 26).

For these kinds of classroom practices to become reality, it is imperative that
teachers have similar kinds of experiences in their learning (Sowder, 2007).

4.1.2 Mathematical Learning for Teaching with Technology
(MLTT)

It is well established that mathematics teacher preparation should attend to devel-
oping teachers’ mathematical knowledge for teaching (MKT) (Ball et al., 2008) and
technological pedagogical content knowledge (TPCK) (Mishra & Koehler, 2006;
Niess, 2005). Collectively, these frameworks identify types of knowledge required
of teachers and help practitioners and researchers understand that knowledge of
one’s discipline is a necessary but insufficient condition for teaching. Desirable
mathematics teacher knowledge includes knowing mathematics deeply and flexibly,
ability to anticipate and help shape students’ mathematical thinking and reasoning,
and the capacity to design tasks, select and use tools for mathematical investigating,
reasoning and problem solving.

In addition to knowing mathematics or having mathematical knowledge for
teaching, it is productive to consider how one knows mathematics. For example,
learners will say they know or understand what is meant by, “perpendicular
bisector.” Some can construct one, others find it relevant for making various
geometric arguments, yet many are unable to invoke the property that all points on
the perpendicular bisector of a segment are equidistant from its endpoints, during a
situation that may call for it (e.g., when constructing a parabola given a focus point
and directrix). That one may recall a definition or remember a property does not
suggest robust knowledge or understanding suggested by MKT. How does a kind
of deep, flexible and robust knowledge, especially related to the incorporation of
technological tools for teaching and learning, develop?

Thompson (2015) encourages a shift from thinking about what teachers know to
what teachers mean. “This shift is essentially from a philosophically mainstream
view of knowledge as justified, true belief and about things external to the knower
to a Piagetian perspective in which meaning and knowledge are largely synony-
mous, and both are grounded in the knower’s schemes” (p. 436). Furthermore,
“With meaning defined appropriately, a focus on meanings positions us to help
teachers focus on creating instruction that helps students develop productive
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meanings” (p. 438). Thompson draws heavily on Piaget’s notion of assimilation to
a scheme to understand mathematical meanings as see in Table 4.1. The movement
from understanding in the moment to stable meaning suggests time and experiences
are needed for one to develop stable meaning and also that meanings grow
iteratively.

It is useful to consider learning as an evolving process of coming to know,
continuing to grow meaning. As Thompson (2015) reminds us, “The mathematical
knowledge that matters most for teachers resides in the mathematical meanings they
hold. Teachers’ mathematical meanings constitute their images of the mathematics
they teach and intend that students have” (p. 437).

The rationale for introducing mathematical meanings into the discussion of
creativity and technology is that many of the mathematics teachers in the studies
described herein have initially demonstrated mathematical meanings through their
activity that appear relatively fragile, inflexible, and insufficient when considering
the demands as teachers. As learners, their mathematical meanings are functions of
the opportunities they have had to learn, so this finding is not surprising (Presmeg,
2007; Zbiek & Hollebrands, 2008). Their ways of thinking about mathematics tend
to be disassociated with the use of DCT to support understanding and meaning
(Madden, 2013). Based on pre-course survey data, computer software or even
web-based tools have been nearly non-existent in classrooms of teachers in this
study. Classrooms with SmartBoards are often used to show static PowerPoint
slides and the occasional YouTube video or teacher-directed demonstration
(Martinovic & Zhang, 2012). Even though professional organizations have rec-
ommended school access to technology to support the learning of mathematics for
decades (NCTM, 1989, 2000), many people desiring to be mathematics teachers as
well as practicing mathematics teachers do not yet provide access to these tools for
their students. There is a dominance of pencil and paper work, hence mathematical
meanings are often constrained to those resulting from a relatively static medium
(Ekmekci, Corkin, & Papakonstantinou, 2015; Goldin, 2003; Niess, 2006).

Table 4.1 Thompson and Harel’s definitions of understanding, meaning, and way of thinking

Construct Definition

Understanding (in the
moment)

Cognitive state resulting from an assimilation

Meaning (in the
moment)

The space of implications existing at the moment of understanding

Understanding
(stable)

Cognitive state resulting from an assimilation to a scheme

Meaning (stable) The space of implications that results from having assimilated to a
scheme. The scheme is the meaning. What Harel previously called
Way of Understanding

Way of thinking Habitual anticipation of specific meanings or ways of thinking in
reasoning

Thompson et al. (2014), Thompson (2015)
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There are a host of reasons why teachers do not incorporate technological tools
in their classrooms (Zbiek & Hollebrands, 2008). Research has indicated that many
teachers simply have not had the opportunity to explore mathematical or statistical
concepts and relationships with technology (Madden, 2013). Even those who have
used graphing calculators, the only tool research participants regularly report
familiarity with, either as students or with students, have demonstrated a very basic
sense for what a tool like this might be helpful (e.g., calculating, graphing, tables,
some statistical plots and computations). Hence, any mathematical meanings they
enjoy are limited to the non-DCT experiences that helped to generate them.

When learners are introduced to technological DCTs, there is a space, frequently
significant, between getting started and “becoming one with the tool.” This could be
considered a significant information gap (Loewenstein, 1994). Elsewhere (Madden,
2013), conditions found to support learners’ instrumental genesis (Guin & Trouche,
1998) in new technological environments, where “The core of instrumental genesis
in mathematics education is understanding the mathematics of the technology and
being able to use it for one’s own purposes” have been elaborated (Zbiek, Heid,
Blume, & Dick, 2007, p. 1179). In particular, the use of provocative tasks (Madden,
2011), dynamic technology scaffolding (Madden, 2008), and sustained intellectual
press (Madden, 2013) in a technologically resourced environment contribute to
co-creating curious and intellectually stimulating learning experiences for teachers.

Provocative tasks are those that may elicit surprise, curiosity, controversy, or
cognitive conflict for learners (Madden, 2011). Tasks may be mathematically or
statistically provocative, contextually provocative, technologically provocative, or
in the intersection of two or more categories simultaneously. When tasks are
provocative, they promote engagement, discussion, collaboration, and often cre-
ativity as solution strategies are considered and pursued. Sustained intellectual
press is a pedagogical commitment in which a classroom community is
co-constructed such that its members come to embrace (1) educative discomfort
(Frykholm, 2004), (2) cognitive conflict (Johnson & Johnson, 2009), (3) cognitive
overload (Sweller, 1988), (4) undefined endpoints, (5) shared authority for
knowledge (Wilson & Lloyd, 2000), (6) individual and group potential (Cohen,
1994), (7) multiple solution paths and ways of knowing (Boaler & Greeno, 2000),
(8) collective intelligence, and (9) sharing not comparing (Madden, 2013). Together
with dynamic technology scaffolding, which is described in detail in the next sec-
tion, these characteristics combine to contribute to a classroom ecology where
learners grapple with non-routine mathematics in unfamiliar ways. They share a
safe intellectual space where taking risks and false starts are celebrated (NCTM,
2014). With growing capacity to reason with DCT, learners harness their creativity
and express their understanding in new and novel ways in dynamic technological
environments. Mathematical and technological discoveries are generated as mem-
bers co-construct an environment that serendipitously serves as a model for
teachers’ classrooms—a very different model (Beghetto & Kaufman, 2009). They
are learning mathematics for teaching with technology. As the following section
will illustrate, dynamic technology scaffolding was (1) a framework for the creation
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of provocative tasks, (2) a sequence of tasks designed to engage novice techno-
logical learners in the creation of mathematical meaning, and (3) a tool for teachers
to express their creative mathematical and pedagogical insights.

4.1.3 Dynamic Technology Scaffolding: What Is It and How
Does It Impact Creativity?

Dynamic technology scaffolding (DTS) (Madden, 2008, 2010; Madden & Gonzales,
2017) is a design principle that supports learners’ expanding mathematical meanings
while expanding their facility with dynamic technological tools for learning and
teaching mathematics and statistics. DTS assumes a modeling stance toward math-
ematics by prioritizing physical and technological environments for representing and
manipulating mathematical relationships (Fig. 4.1). The left-to-right thickening of
arrows pointing to the Central Mathematical Big Idea indicate that with each new
layer, the mathematical big idea is further developed. DTS task sequences first
introduce learners to a big mathematical or statistical idea through exploration with a
physical model. The investigation then extends to the dynamic technological envi-
ronment with an already constructed exploratory model (e.g., expert built) that is
isomorphic or nearly isomorphic to the physical modeling experience. Finally,
learners in a dynamic expressive (e.g., user constructed) modeling environment
establish and demonstrate mathematical meanings and understanding through their

Fig. 4.1 Dynamic technology scaffolding model (Madden, 2008, 2013)
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constructions and linking ofmathematical or statistical objects as they create their own
functioning model in furtherance of their investigation.

DTS has been utilized to provide learners access to complex mathematical or
statistical ideas and to support technological facility of novice users of DCT as they
navigate new and challenging content and technological terrain (Madden, 2008,
2013). Mathematical creativity emerges during the expressive part of the sequence
as learners often struggle to expand their mathematical meanings en route to
engineering a working digital model.

DTS has been used both as a pedagogical design device for the construction of
mathematical learning trajectories for pre- and in-service teachers and also a
framework for those teachers to create DTS trajectories for their students (Madden,
2008, 2013). As a framework, it places the development of big mathematical or
statistical ideas centrally with ways of modeling aspects of the content and sup-
porting the development of using cognitive tools in the service of mathematical
meaning making as seen in Figs. 4.1 and 4.2. As learners’ facility with dynamic
cognitive tools (e.g., GeoGebra) grows, so does the potential to creatively pursue
mathematical solutions to complex problems (Madden 2013). As Sect. 4.3 will
demonstrate, DTS has contributed to significantly increasing learners’ technological
facility and thus their capacity to express technological mathematical creativity.

In additional to supporting mathematical and technological learning, designing
DTS task sequences is a mathematically creative endeavor. Especially because so
much of what is called “mathematics” in schools (and oftentimes college) is still
paper and pencil work with largely procedural goals, access to task sequences
involving physical, exploratory, and expressive modeling requires someone to
create them. A number of DTS task sequences have been described elsewhere
(Madden, 2010, 2011, 2013), thus a fresh example is presented here (additional
examples are provided in Sect. 4.2). Consider the problem based on one from Polya
(1945), as an example of a task explored by teachers:

Inscribe a square in a given triangle. Two vertices of the square should be on the base of
the triangle, the two other vertices of the square on the two other sides of the triangle, one
on each. Your solution should apply for any triangle.

Physical Model: Learners are asked to draw any triangle on a sheet of paper and to try to
approximate the location of a square inscribed within it as specified, using straight edges,

Fig. 4.2 DTS as the
intersection of thinking with
mathematical ideas and
thinking with dynamic
cognitive tools
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compasses, patty paper, and hand gestures. They compare sketches and typically conclude
that they have a good idea about the problem and feel they can work on it.

Exploratory Model: Learners are then provided an exploratory model of Polya’s triangle
that could be manipulated by dragging the vertices of the triangle to explore variants of a
representation differently from the paper versions and to provide evidence that such a
construction in a dynamic geometry software environment is possible (Fig. 4.3).

Expressive Model: Finally, learners are asked to use dynamic geometry software (e.g.,
Cabri II or GeoGebra) to construct a working model in order to further explore solutions.

In every implementation of this task-to-date with teachers, never has a teacher
communicated a strategy for a general solution prior to working on their own
dynamic construction. The problem is accessible to a large range of learners, but
deceptively challenging. Importantly, the choice of this problem for teachers is not
only for them to experience a problem to solve, but to simultaneously orient them to
a technological environment where their current facility with a tool is both sufficient
to engage, but will require mathematical insights to yield a solution (Ervynck, 1991;
Sriraman, 2009). The tool does not yield a solution; the tool in the hands of a
creative mathematical thinker yields a solution.

Teachers have been able to create a range of reasonable constructions as they
work toward solution, but a solution has never emerged until someone constructs
something similar to the objects in Fig. 4.4.

Here a moveable point P is placed on the base of a triangle and a line through P
perpendicular to the base of the triangle is constructed to determine the necessary
length of the side of a square with P as a vertex. The compass tool and perpen-
dicular line tool in the dynamic geometry software are used to create the additional
sides of the square with one side on the base and a vertex on one side of the triangle.
Then by moving P along the base, different squares emerge with one of them as the
solution. Oftentimes students move P back and forth along the base looking for
clues until someone eventually notices that the resultant square does not vary
randomly (Santos-Trigo & Machin, 2013). They notice the unattached vertex of the

Fig. 4.3 Three images from an exploratory model of Polya’s triangle problem

Fig. 4.4 Images representing a dynamically constructed square leading to a locus-related solution
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square moves smoothly along a line and often use the locus tool in the software to
confirm this. From there, the solution is still not obvious, but someone will
inevitably say something like, “Oh, okay, that means that to get THE square I want,
I can start with any square with a side on the base and a vertex on one side, draw a
line from the vertex of the triangle through the hanging vertex and locate THE point
that will define the solution.”

It is this Gestaltist moment of insight, where the creative solution emerges
(Sriraman, 2009). The four-stage Gestalt model of preparation-incubation-illumi-
nation-verification (Sriraman, 2009) can be seen as the physical and exploratory
models support preparation. Creative insights often require periods of work and
incubation (Silver, 1997). The use of the locus tool makes visible to the learner
what was not present before—the regularity of the behavior of the system—illu-
mination (de Freitas & Sinclair, 2014). It is also during the struggle of the con-
struction and search for structure where some discomfort can result, but it is
recognized that,

Problems should sometimes be easy and straightforward, so that students come to feel
powerful and confident. But sometimes problems should lead to impasse, evoking puz-
zlement, bewilderment, and frustration, yet offer the possibility of proceeding with renewed
determination and achieving the elation of sudden insight or the satisfaction of performing a
difficult feat (Goldin, 2003, p. 282).

Collectively unpacking the solution leads to exploration of more formal math-
ematical relationships related to scaling, slope, proportional reasoning, and dilations
in addition to general problem solving. Thus, mathematical verification helps to
complete the creative solution process.

As learners work on the Polya triangle task sequence, three stages of mathe-
matical creativity can also be witnessed (Ervynck, 1991). Stage 0, the preliminary
technical stage occurs as learners estimate empirical solutions with paper and tools
and make further observations with an exploratory model. Stage 1, algorithmic
activity occurs as they began to apply principles of construction in a DCT, even-
tually arriving at a working model. Stage 2, the creative activity stage can be seen as
a student manipulates his/her construction, looking for patterns, structure, or
invariance and makes a choice to find the locus of the unattached vertex as point P
moves along the base of the triangle. The technology has allowed the learner to see
structure below the surface—to transcend the limitations of the mind (Jonassen &
Reeves, 1996; Pea, 1985). Through the construction of hot-linked mathematical
objects according to the rules imposed by the builder, an external representational
system has been engineered to explore (Goldin, 2003). Some aspects of the system
are obvious while others are subtle, requiring an inquiring eye to seek pattern and
invariance (Santos-Trigo & Machin, 2013). In a DCT environment, the builder is in
control and has flexibility to add emergent details to a design to further investi-
gation. The disposition for pattern sniffing (Cuoco et al., 1996) is fostered and the
tool offers possibilities to extend an investigation.

Experience with tasks like Polya’s triangle task serve to nurture the idea of locus
as a set of points in a dynamic situation as a function of another object moving
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along a path—a particularly powerful mathematical representation and idea, one
which has not been well-developed in the learners in the studies discussed here.
However, once learners have the opportunity to experience the power of the locus
tool as they explore various problem contexts (e.g., locus definition of parabola or
ellipse, Grashof’s principle), they begin to gravitate to it when they suspect some
regularity within a system. Polya’s triangle problem as a DTS sequence contributed
to learners’ evolution of mathematical thought and prepared them with more tools
for future creative problem solving. The tool did not solve the problem, rather it
afforded the learner a plethora of opportunities to interrogate and amend their
mathematical representations and meanings en route to more stable ways of
thinking (Thompson, 2015).

The Polya triangle task supports recognition that a solution to the problem may
be an extension of stretching and shrinking through the lens of proportional rea-
soning. The application of a familiar mathematical idea (e.g., proportional rea-
soning) in a novel context (e.g., Polya triangle task) provokes learners to re-evaluate
and extend their own mathematical meanings related to proportional reasoning.
Polya’s triangle task is just one example of a DTS sequence. The following sections
examine DTS as a creative lever for expanding teachers’ ideas about learning
mathematics for teaching with technology and then teachers as designers of DTS
tasks as acts of mathematical and technological creativity.

4.2 Dynamic Technology Scaffolding as Creative Lever
for Expanding Teachers’ Ideas of Learning
Mathematics for Teaching with Technology

Table 4.2 contains a partial list of DTS sequences that have been enacted in
research studies (e.g., Madden, 2008, 2010, 2011, 2013). The set illustrates a wide
variety of mathematical ideas being explored and a range of physical and techno-
logical tools and is provided to stimulate thinking about the design of DTS tasks.
Each of the DTS sequences arose from a thought experiment during which the
author, as designer, considered the potential for learners’ mathematical develop-
ment, technological development, and pedagogical development. Seeds of inspi-
ration for DTS tasks may be found in many contexts (Madden & Gonzales, in
press). Many digital exploratory models are now freely available. Some particularly
useful websites include http://nlvm.usu.edu/en/nav/vlibrary.html, http://www.nctm.
org/coremathtools/, https://illuminations.nctm.org, http://www.cut-the-knot.org,
http://www.shodor.org/interactivate/, and https://phet.colorado.edu/en/simulations/
category/math.

As teachers begin to experience and then imagine mathematical tasks like those
from Table 4.2 in the presence of DCT, the world of mathematics meaning takes on
additional dimensions (Thompson, 2015). Optimization problems are not restricted
to techniques of calculus, p-values become meaningful through physical

4 Impacting Mathematical and Technological … 101

http://nlvm.usu.edu/en/nav/vlibrary.html
http://www.nctm.org/coremathtools/
http://www.nctm.org/coremathtools/
https://illuminations.nctm.org
http://www.cut-the-knot.org
http://www.shodor.org/interactivate/
https://phet.colorado.edu/en/simulations/category/math
https://phet.colorado.edu/en/simulations/category/math


Table 4.2 Sample dynamic technology scaffolding task sequences

Problem context Mathematical
ideas

Physical
model

Exploratory
model

Expressive
model

Soda can rack Geometric
constructions,
proof

Steely balls
and
cardboard
box

Illuminations
website

Cabri II
Plus
Geometry
(or
GeoGebra)

Parabola as a
locus of points

Locus definition Patty paper Cabri II Plus
demo or applet

Cabri Plus
Geometry
(or
GeoGebra)

Varignon’s
parallelogram

Properties of
quadrilaterals,
proof

Ribbon,
elastic, and
humans

Cabri II Plus
demonstration
(often not
needed)

Cabri Plus
Geometry
(or
GeoGebra)

Quadrilateral
linkages

Grahof’s theorem Geostrips CPMP-Tools
Design a linkage

Cabri Plus
Geometry
(or
GeoGebra)

Steroid testing Probability,
empirical
sampling
distributions

Dice, coins,
signs,
humans

Graphing
calculator
simulation or
Fathom 2
simulation

Fathom 2
TinkerPlots

Orbital express Randomized
controlled
experiments,
randomization
testing

Paper
towels,
measuring
device index
cards

CPMP-Tools
Randomization
test

Fathom 2

Moving ladder,
path of cat on
ladder

Rate of change Meter stick,
wall

Graphing
calculator, applet

GeoGebra

Slicing a cube 3D modeling,
composing,
decomposing
shapes

Plastic
shapes,
colored
water

Cabri 3D video GeoGebra
3D

Triangle
orthogonal
projection

Optimization Rulers GeoGebra
virtual
worksheet

GeoGebra

Polya’s triangle Problem solving,
proportional
reasoning

Paper,
triangular
cutouts

Cabri II demo GeoGebra

Ellipse Conic sections,
locus definition

Ribbon,
humans

Cabri II demo Cabri II or
GeoGebra

Oil well problem Minimization,
reflections

Miras Graphing
calculators

Cabri II or
GeoGebra
(continued)
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randomization approaches, transformational geometry contributes to elegant solu-
tions in place of (or in addition to) extensive algebraic manipulation. The word,
“imagine” is fitting because it is through imagination and thought experiments that
creative task sequences are born (Vygotsky, 2004). In Sect. 4.3, an extended
example illustrating teachers’ exploration of the semicircle problem will expand the
discussion of mathematical meanings, DCTs, and creative mathematical and tech-
nological approaches to non-routine mathematical tasks.

4.3 Technology, Creativity, and Mathematical Meaning
Collide

During the second half of the course, after developing some initial facility with the
dynamic statistical software, Fathom, students read, Can You Fathom This?
(Edwards & Phelps, 2008). Questions were posed at the end of the article and
students were asked to select at least one task to work on. Serendipitously, many
students gravitated to the following task:

Semicircle problem: Three points are chosen at random on the unit circle. Find the
probability that all three points lie on some semicircle (pp. 215–216).

Ponder your own response to this task. Figure 4.5 depicts a physical model used
to build some intuition to the problem. As students worked on this problem, no
exploratory model was utilized because the reading served as a scaffold. Students
were encouraged to use tools of their choice and prepare to share solution
approaches.

Figure 4.6 contains one student’s Fathom-facilitated creative solution to the
problem. This student used algebraic relationships to generate sets of three random
points to be tested against the semicircle criteria. As exemplified by the attribute
definitions below, the student created a way to generate and test sets of points. She
exhibited a need to verify her setup through a visual geometric representation in
addition to the numerical data. As illustrated in the figure, she created a way to

Table 4.2 (continued)

Problem context Mathematical
ideas

Physical
model

Exploratory
model

Expressive
model

Rotations as
product of
reflections over
intersecting lines

Transformations Miras National Library
of Virtual
Manipulatives

Cabri II or
GeoGebra

Three point
semicircle
problem (see
Sect. 4.3)

Probability Pipe cleaner,
cereal pieces

Cabri II or Cut-
the knot applet

Fathom,
Cabri II or
GeoGebra
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leverage the numerical capabilities within Fathom to geometrically represent three
unit circles in order to determine whether her simulation worked correctly, a move
highlighting representational competence and flexibility. Once convinced, she
constructed an empirical sampling distribution (generated samples, created mea-
sures, and collected measures) to correctly estimate the theoretical solution. Her
solution was highly creative, highly mathematical, highly visual, fascinating, cor-
rect, and impossible without technology.

Another student excitedly explained a different approach to the class as peers
asked questions about her method.

Ella So, I found two cases where there’s 100% probability, after choosing the first
two points, that there’s 100% probability that you’ll have a semicircle by
choosing that third point. So those two cases are if the two points are one on
top of each other, that no matter where I put that third point, that would be
true, so that’s a 100% probability. And then the other case was if we have a
semicircle they’re on exactly opposite sides, so perfectly opposite, then if the
point fell either on the top or the bottom, that would also be 100%
probability. And I also looked at the extreme case for when the probability
was as small as possible. So that’s if the two points are just slightly less than
exactly opposite each other. So that, like maybe that would be a semicircle
(referring to a drawing) so the point would have to lie on here (referring to a
drawing), which is slightly more than 50%, this is about 50% chance. And so
because I knew that these were uniformly chosen, we should have, it should
be uniform somewhere between 100, somewhere between 50 and 100%,
uniformly distributed, so I knew that the probability would have to be 75%.

Ella had logically arrived at an elegant solution to the problem and she expressed
confidence in her solution. However, as a novice Fathom user, she was challenged
to find a method of solution using the tool. Here technology was mediating her
mathematical reasoning in ways that were in the moment unfamiliar, but about to
become powerful.

Ella But I wanted to figure out how to run a Fathom program to do that.
So I had the Fathom program run, to choose a random number between 50
and 100% and I did that by having it be one minus random, which is a

Fig. 4.5 Physical models of
semicircle task made from
pipe cleaners and cereal
pieces. This model can be
modified to explore a line
segment approach to the
problem
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Fig. 4.6 Fathom simulation for estimating the probability for the semicircle task using brute force
along with geometric representation. Attribute definitions illustrate mathematically creative
meanings and goals in the technological environment
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randomly chosen number between 0 and 1, and divided that by two. So
random divided by two would give us anywhere between 0 and 50% and
the one minus would make it between 50 and 100%. And then I had it run a
second measure, so this was my measure 1 [referring to Fathom syntax,
[(1-random())/2], and then my second measure was choosing a random
number between 0 and 1, and then, so that was essentially where my third
point would fall. And so I said that if this number (random()) was equal to
or smaller than this number (referring to measure 1), then it’s falling on a
semicircle, so that’s an allowed case. And if it was larger than this number
(again referring to measure 1), then it was outside of the allowed range for
possible semicircles. So then I created a measure, semicircle or not. And
then I had it collect those measures. And that came out to be about 7, 7½
out of 10 times.

Nick So just to kind of go through measures. Your first measure kind of sets your
first two points.

Ella Yes.
Nick And then your second [measure] places your third [point] and it asks

whether or not it’s a semicircle, which your third measure kind of gives you
that answer.

Ella Yeah. Well so my first measure what basically was setting up what the
possible range for the points could fall on, so like [makes a sketch] if I had
a circle and these were my two points [referring to sketch]. Then this
[referring to one of the points] could either be the start of the circle [meant
semicircle] and go to the other side, here [referring to the end of a
semicircle]. Or this could be the start of a circle [again meant semicircle]
and it would end over here [referring to sketch], so my total range for
possible locations for that third point would be anywhere in that range
[between endpoints of the two semicircles on the diagram]. And the range
that would be outside of the possible, so my circle formation would be, if
the point fell anywhere in here [referring to the complement of the previous
set on the sketch]. Yeah [responding to peer question].

Kaley How did you display the data once you had all your yes and no’s?
Ella Well, so I collected these [measures 1, 2, and 3] in groups of 10 and then I

created a measure to count the number of yeses. And it’s out of 10, which
isn’t the best setup, I would like to do it in a different way, maybe later, but
then I just had it tally up the number of each number of counts of yes out of
10, and I got, so that ranged from 4 to 9, I think or 4 to 10 in my couple
hundred samples, I think it was a 100 sample.

Wes So you did like a 100 samples of (long pause).
Ella 10, yeah. Which wasn’t ideal, I would probably do it differently later

(Classroom applause).

Ella forcefully explained and defended her Fathom construction and illustrated
her growing understanding of the use of empirical sampling distributions to explore
probabilistic phenomena. Her explanation also included a drawing that was later
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turned into a dynamic geometric construction to illustrate her thinking. In Fig. 4.7,
dragging points B or C generates the range of locations that a third point could take
to complete a semicircle. This move represents a technological turn toward a
geometric representation and a creative construction using GeoGebra to augment a
previous numerical approach. Creating this working simulation required a way of
thinking about the problem that took into account the original pipe cleaner repre-
sentation as well as Ella’s thinking that led to her numerical solution. Through the
process of engineering a system that worked, the learner(s) continued to interrogate
and explore additional mathematical relationships (Santos-Trigo & Machin, 2013).

Finally, another student approached the problem by cutting the circle at the
location of the first random point, straightening it to a segment and imagining it
with length 1 unit. Then two other random points were generated and tested against
the semicircle condition by invoking measurement conditions. This student also
built an empirical sampling distribution to estimate the theoretical probability of a
semicircle (Fig. 4.8). This particular strategy leads nicely to a non-technological
mathematical argument.

For these students, Fathom and GeoGebra became very powerful tools for
expressing their creations and provided a landscape for their mathematical meanings
to emerge and thrive. These kinds of technological approaches to problems became
commonplace toward the end of the course. As students shared approaches, others
took them up or modified them to suit their thinking (Vygotsky, 2004). Students’
creative technological and mathematical solutions to problems became shared, thus
contributing to a growing repertoire of strategies and insights that simultaneously
enhanced learners’ mathematical understandings AND technological facility.

In addition to exploring new and challenging content and technological terrain as
learners, these teachers were also tasked with creating DTS trajectories for supporting
learning in their own classrooms, an instructional move that has both challenged and
inspired mathematics teachers. The cognitive demand (Stein, Smith, Henningsen, &
Silver, 2000) of creating these trajectories is exceptionally high. As discussed in
following section, teacher-constructed DTS task sequences have been analyzed and
characterized as mathematically creative, technologically creative, or mathematically
and technologically creative. When teachers design mathematical task sequences
incorporatingDCT andDTS, they open awindow to theirmathematicalmeanings and
simultaneously extend their mathematical learning for teaching with technology.

Fig. 4.7 Dynamic geometric
model for the semicircle
problem. The highlighted arc
indicates the space of
possibilities for a third point
to lie on a semicircle
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4.4 Teachers Designing Dynamic Technology Scaffolding
Sequences: Acts of Mathematical and Technological
Creativity

Teachers were assigned to develop two DTS sequences midway through the course.
Having experienced 8–10 DTS prototypes as learners (e.g. Table 4.2), teachers
were asked to assume a Doers to Designers (Kadijevich & Madden, 2015) per-
spective in order to design DTS task sequences. Though teachers’ mathematical
meanings and instrumental genesis with tools had increased since beginning the
course, the creative demands of designing DTS sequences did not go unnoticed by
teachers. For example,

Fig. 4.8 Fathom simulation for estimating the probability for the semicircle task using the
segment representation. The measure definitions illustrate the learners’ thinking about the
mathematical relationships in the context of the digital tool as well as creative and computationally
appropriate insight into a mathematical solution
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In selecting my developmental tasks for Project 1, I kept reflecting on the Dynamic
Scaffolding Model. I wanted to build a physical model, followed by an exploratory activity
and pull it together with an expressive activity. In all honesty, I was stressed. Not because I
didn’t understand the model, but because I felt constrained for the following reasons:
(1) I’m not creative and (2) I’m limited when it comes to technology; the tool still remains
an artifact. I have not yet obtained instrumental genesis. I am not one with the tool … The
final phase of the dynamic technology scaffolding model is designated as the landscape type
software construction phase. Although I feel I addressed the physical exploration and
software simulation phases of the model, I believe that my expressive portions of my tasks
seemed weak. (Shannon).

Teachers were asked to envision task sequences similar to those they had
experienced during the course, but to support the exploration of a different math-
ematical idea. They had complete autonomy over content and context selected,
tools selected, and the development of ideas, but design is highly creative work
(Dorst & Cross, 2001). Because teachers have to imagine the development of a
mathematical task sequence that purposely deepens the level of mathematical
concept development as the inquiry transitions from physical environment to
exploratory modeling environment to expressive modeling environment, they are
designing task sequences unlike those typical in their own prior mathematical
learning or teaching experiences. Shannon, like many others, poignantly expressed
her personal uncertainty with the project as she announced her aversion to cre-
ativity. Imagination is a highly complex process and to see a decline in creativity in
adulthood is common, so her response, similar to many others, may be anticipated
(Vygotsky, 2004).

Since 2010, 64 teachers in this environment have designed 128 DTS task
sequences. Creativity in this context was viewed as a novel or inventive use of
tools, materials, or trajectory to develop a mathematical or statistical idea
(Csikszentmihalyi, 2000; de Freitas & Sinclair, 2014; Silver, 1997). Each task was
analyzed and categorized according to the nature of creativity exhibited using the
following criteria:

• Routine exploration of mathematical or statistical ideas—direct application
of typical models to routine or widely familiar textbook tasks. Limited
creativity.

• Technologically creative—illustrates novel technological approach; physical
model may be creative; a combination of different exploratory and expressive
tools may be coordinated; may significantly extend facility with a tool.
Mathematical context is routine.

• Mathematically creative—involves non-routine context, is cognitively
demanding, has multiple solution paths. Technological components are bor-
rowed directly from other sources or approaches are trivial with the tool.

• Mathematically and technologically creative—involves non-routine context,
is cognitively demanding, has multiple solution paths AND—illustrates novel
technological approach; physical model may be creative; a combination of
different exploratory and expressive tools may be coordinated; may significantly
extend facility with a tool.
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Of 128 DTS sequences analyzed, 51 (40%) were categorized as routine explo-
ration, 30 (23%) as technologically creative, 15 (12%) as technologically creative,
and 32 (25%) as mathematically and technologically creative. A significant pro-
portion of the tasks created by teachers indicated a tentative approach, much like
Shannon’s, to the project. That the highest proportion of tasks were coded as
routine exploration tasks indicating teachers’ propensity to reach for very familiar
mathematical ideas (e.g., triangle midpoint theorem, sum of angles of triangles, etc.)
and construct task sequences that illustrate DTS, but in a way that does not appear
to push their mathematical understanding or creativity a great deal. Though less
creative than tasks in other categories, routine exploration tasks still require coor-
dination of physical and virtual tools for mathematical activity and for teachers this
is creative activity (Beghetto & Kaufman, 2009). For them, it is novel and useful
(Csikszentmihalyi, 2000) and contributes to solving a problem of practice related to
providing students’ physical and digital access to mathematical ideas.

Approximately 23% (30/128) of tasks were categorized as technologically cre-
ative. Figure 4.9 contains one teacher’s technologically creative DTS task
sequence. Here, the physical model is quite creative for the context of the explo-
ration, but the extension to the virtual environment is direct and not particularly
challenging, hence not mathematically creative. This categorization recognizes
creative approaches using virtual or physical technologies, but, as in this case, the
mathematical demand of the task is limited or routine.

Together, 45/128 (35%) of DTS sequences were either mathematically creative
or technologically creative, but not both. Task sequences in these categories tended
to address mathematical content that was highly familiar to teachers (e.g.,
Pythagorean Theorem). Task sequences in these categories explored the use of
combinations of less familiar physical materials, applets, and virtual construction
environments, or addressed less familiar mathematical content (e.g., from innova-
tive curriculum materials or more obscure mathematical problems) using techno-
logical approaches that are not seen as novel (e.g., physical materials are paper and
pencil, exploratory model is teacher constructed and students simply replicate in the
expressive phase). Frequently in these categories of creation, teachers have iden-
tified interesting content or relevant tools, but the scaffolding approach either
simply replicated the solution to a mathematical problem across the three different
modeling phases, thus not advancing the mathematical learning of the learner in any
significant manner or involved some confusion of the DTS principle. However,
teachers demonstrated a higher degree of creativity here than the routine exploration
group through their choice of problem contexts, physical and exploratory tools.

The remaining 25% (32/128) of DTS tasks represent highly creative work that
illuminates learners’ grasp of DTS as a design principle through the selection of
cognitively demanding mathematical ideas scaffolded with thoughtful physical
materials, appropriate exploratory models, all leading to learners constructing in an
expressive environment in ways that will extend their mathematical and techno-
logical facility. The example in Fig. 4.10 illustrates a creative use of physical
materials to explore conic sections and an appropriate exploratory model to further
the exploration. The expressive model provides a potentially useful site for
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exploration; however does not maintain fidelity to the model of the mathematics
under consideration, from a DTS perspective. Still it illustrates a teacher’s potential
goals for students in a technological environment and a creative approach to the
development of tasks for students using DCT. Even though DTS was not fully
realized in this application, the teacher demonstrated creative use of DCTs for the
exploration of conic sections.

The example in Fig. 4.11 represents an ambitious task for a beginning designer
and another mathematically and technologically creative task. Though the student

Activity

Fig. 4.9 Teacher’s DTS task illustrating a creative physical model with only basic construction
demands in the expressive modeling stage
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Fig. 4.10 Teacher’s DTS task illustrating development of mathematical ideas, multiple modeling
environments; limited development of technological development with the expressive model
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Fig. 4.10 (continued)
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had not yet successfully created a physical model, she made strides in that direction
and navigated a challenging construction in Cabri II that she included with her
written work, demonstrating her productive modeling evolution in Cabri II.

Across these three examples, despite the varying degrees of attending to the DTS
framework as intended, teachers demonstrated growth and development in their
creative use of physical tools for modeling, appropriate uses of exploratory models to
extend limitations to the physical world, and increasing capacity to imagine students
constructing and creatingmathematical models in expressive environments (Madden,
2013). Teachers’ reflections in the following section will further corroborate the
impact of DTS ‘doing and designing’ on teachers’ views, beliefs, and practice.

Task 1: Locomotive Walschaerts Valve Gear

Tool: 
Designed using Cabri; adaptable to Geometer’s Sketchpad, used by my classroom.

Objectives Addressed
G-CO 12. Make formal geometric constructions with a variety of tools and methods (compass and 
straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).
G-MG 1. Use geometric shapes, their measures, and their properties to describe objects

The primary goal of this task is to improve students’ use of Geometer’s SketchPad in an expressive way.  
Thus far, my students have primarily used dynamic geometry software in an exploratory way.  Students 
are generally given step-by-step directions.  In this activity, students are challenged to use DGS tools to 
express phenomena they observe or experience.  This will help them gain expertise in DGS that helps 
them achieve instrumental genesis.

Physical or concrete exploration:
Students will examine moving diagram here:
http://en.wikipedia.org/wiki/File:Walschaerts_motion.gif

I was unable to create a physical model so far.  I think that I 
would be able to with some bicycle wheels mounted in a line 
through their centers.  I would have a link made from piece of 
wood connected to a spoke of each wheel that would force the 
wheels to move together.  I would also have a driver piece that 
could move along the wheels’ mount (as shown in the screen-cap 
of the Cabri model) that is connected to the link.

Route-type software simulation: Cabri demonstration attached

Instructions for students
Observe the online animation, and explore the physical model.  
Pick out the essential elements of the model.  Your own model 
should include the wheels, the driver, and the link between the
three wheels.
You may look at and move my model, but may not show any 
hidden lines.
Students will be given instructions about the “Compass” which they are not yet familiar with.  
Use any tools you think are appropriate to create the model.  Ask me if you have any questions.

If you complete the basic construction shown here, add other components of the valve gear.

Fig. 4.11 Teacher’s DTS task illustrating development of mathematical ideas, multiple modeling
environments; ambitious context, potential to extend technological facility through modeling
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4.5 Mathematical Meaning, Creativity, Technology,
and Teaching

Excerpts from a small but representative sample of students’ final reflection papers
for the course are shared. These artifacts illustrate some of the ways students’
mathematical and technological creativity was evoked and experienced and how
their mathematical meanings expanded to impact their teaching, thus increasing
their TPCK. Creativity abounds in their words as they communicate profound
transformations in their beliefs and actions related to teaching mathematics with
various technologies. As designers of learning spaces, their introduction of new
technologies to their students represents a creative act (Jonassen, 1994). It is novel
and useful (Csikszentmihalyi, 2000) and is unusual compared to past practices (de
Freitas & Sinclair, 2014). Participants’ words provide evidence for many of the
claims made throughout this chapter regarding mathematics prior knowledge and
dispositions, experience with tools as learners and designers, characteristics of
mathematics learning environments, and connections to some of the DTS tasks
mentioned in Sect. 4.2. Signs of vulnerability, apprehension, excitement, curiosity,
reflectiveness, awareness, and growth permeate their writing. The excerpts are
direct quotes and all names are pseudonymns.

4.5.1 Shelly

At first I just saw the computer software as fun, but through this course have realized how
much meaning it can bring to the classroom. When I say that my views on teaching and
learning mathematics have changed, I am inclined to ask how could they not have. I was
never exposed to the dynamic technology of Cabri II, Fathom, or Tinkerplots in my
K-12 years, so I was sure (discontentedly so) that I would be teaching mathematics the
same way most of my teachers did lecture-style, straight from the book. I now believe I
have the resources (through the in-class activities, assignments, and our texts) to implement
technology other than calculators into my classroom and can see the copious amounts of
benefits they will have for the students in my lessons.

Shelly recognizes a shift in her thinking about the work of mathematics teaching
to include new technologies and indicates a newly found appreciation for dynamic
technologies for teaching mathematics. For her, DCTs and innovative resources
moved her to consider new and different ways of teaching, that is, they provided the
inspiration for her to create a new model of herself as a teacher using tools and
resources that she now believes will be useful in support of student learning
(Csikszentmihalyi, 2000).
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4.5.2 Caitlyn
My attitude toward the use of dynamic technology, since I began using Fathom in my
mathematics classes, has been courageously optimistic. I have observed firsthand the
potential of these technological tools to enhance student learning. In my experience, the use
of dynamic technology supports students’ reasoning and sense-making of the mathematical
concepts. My students are generally more engaged, more self-directed, and more interested
in the content. They are more motivated learners in this technological arena. My classroom
is more student-centered as the students are allowed to take ownership of their learning.
Zbiek and Hollebrands (2008) highlight the need for teachers to create learning environ-
ments in which students’ thinking is valued…This semester they [students] reasoned about
the quadratic models from the steroid study in lesson two of Mathematical Modeling Our
World that was introduced during the course. The students used Fathom to create simu-
lations and algebraic models that represent their findings.

Caitlyn, an eight-year veteran teacher, recognizes her teaching has been trans-
formed by the intentional use of Fathom to teach mathematics. She has inten-
tionally worked to create conditions through the use of new curriculum materials
and computational technology to encourage a more student-centered learning
environment allowing for student creation of digital mathematical representations
and solutions.

4.5.3 Jason
This course has been pretty eye opening for me. Coming in, I had no idea what any of the
programs we used were. By being introduced to them I not only have other sources for the
students to be able to connect with but something that opened my mind to other possi-
bilities, connecting physical manipulations to the computer programs, setting up problems
for students to explore, etc… One of the biggest moments I had with Cabri was when we
were given the three problems to work on using Cabri in class time. They were the oil
problem, investigating rotations, and the feed and water problem. For each problem I didn’t
think I was going to use Cabri. I really didn’t want to use Cabri, I was confident in my own
abilities to figure it out alone. For each problem, though, Cabri ended up being pivotal in
finding the answers and completely switched my beliefs around. It wasn’t all Cabri either,
just something that clued me in and helped me think about the problem in a way that I
couldn’t visualize.

Jason conveyed awareness of the way in which Cabri impacted his thinking en
route to solving several optimization problems. Inherent in his response is a
reluctance to use tools, perhaps because he may hold a somewhat purist view of
mathematics. Nonetheless, his use of Cabri sparked a realization that a dynamic
geometry tool could help him “see” a solution in a new and powerful manner
(Kashdan & Fincham, 2002). His creation of dynamic visual representations
extended his realm of reasoning and provoked him to reconsider his position about
the use of technology (Madden, 2013).
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4.5.4 Connor
This past semester has provided me with a great insight on building a true understanding of
a concept. Three-level scaffolding using dynamic technology provides such a clear con-
nection from ideas to physical models to a dynamic, virtual model. Talking about an idea
can give some insight to a topic with minimal understanding. Building physical models can
further force knowledge out of the brain, but it’s the dynamic, virtual model that takes it to
that incredible level… Graphing calculators, computer software, and website applications
are in the forefront of the dynamic technology available to mathematics learners. These
technologies take the concepts into a realm that is well beyond most imaginations –

allowing learners to observe examples well beyond the limitations of a classroom.

Connor recognizes the power of the technology to transcend the limitation of the
mind (Pea, 1985). He acknowledges the importance of imagination and the idea that
technologies extend one’s imagination to new and valuable territory.

4.5.5 Ellen
The only technology that I had ever used in the classroom was a TI-84 and My Math Lab
software. I didn’t realize the world of technology stretched far beyond these two “artifacts.
… The most effective application of technology that I learned from this course was the
dynamic technology scaffolding projects that we did in class. We did paper folding to learn
about parabolas. We used string to work with quadrilaterals and parallelograms. We did a
complete lesson on Steroid testing. All of these are examples of lessons that I would love to
use in my own classroom… This class showed me that my understanding of mathematics
doesn’t run as deeply as I had thought. For example, we discussed the definition of a
parabola as being a shape such that the distance of the focal point to any point on the
parabola is the same as the distance from that point on the parabola to a pre-determined
straight line used to create the parabola… Not only is this a definition that I had never heard
of, but this is a characteristic of a parabola that I didn’t even recognize. Once this definition
was established, it was an absolute battle to construct this shape in Cabri. Cabri showed me
the difference between drawing and constructing shapes. Of course, I could draw the
parabola, or even the soda can object, but constructing these was a completely different
story. I needed to understand relationships and properties of these objects in order for them
to behave properly.

Ellen elaborated on how her mathematical meaning of parabola evolved from an
understanding in a moment to that of a more stable, connected and robust per-
spective (Thompson, 2015) as well as the ways in which dynamic technology
scaffolding impacted her thinking and reasoning. She alludes to her creative insight
while constructing versus drawing after intense struggle with the soda can and
parabola investigations and acknowledges the need for deep, flexible knowledge
and time to make sense of her own understanding (Jonassen, 1994; Silver, 1997;
Sriraman, 2009).
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4.5.6 Karen
I knew I was capable of solving the task even though at times I doubted myself. This class
has taught me that this doubt is an important step in problem solving for students. So many
students doubt themselves and their work in a math classroom. I think this could help them
reach a deeper understanding. Technology may add the needed challenge for students to
make important connections. Working on this project in class helped me think about how
students would react to a problem like that. I could see exactly how each step helped
students make deeper connections and formed a greater understand than the previous
step. Having manipulatives is a very helpful beginning for most students. I have seen in my
own practice that these visuals help students make necessary connections to form deeper
understanding. For example in my own lesson I could see how algebra tiles really helped
students visualize quadratics and how to solve them. After engaging students with the
manipulatives moving to technology now seems like a natural next step. They have started
to form conjectures and are ready to put them to the test. I lived through these experiences
in class and realize how important it is for students to do the same.

Karen pointed to the importance of physical dynamic cognitive tools (manipu-
latives) for supporting student learning of mathematics. She acknowledged the
necessity of productive struggle in problem solving environments (NCTM, 2014)
and though she seems hesitant to move toward using technology with her students,
she is on the brink.

4.5.7 Christa
The activities in [the course] helped to further solidify the idea that dynamic software can
help students to build reasoning skills; mainly because these activities help me to see
mathematical concepts from different perspectives and to relearn reasoning skills. For
example, the “Paper Folding and Technology Investigation” Dynamic Technology
Scaffolding (DTS) task opened my eyes to a property of parabolas that I did not know. …
Working on the physical model by folding the paper and creating a parabola planted the
seed for me to see this property. Then, by analyzing an exploratory model I made further
progress towards understanding the concept. When it came to constructing the expressive
model, however, it became necessary to fully understand this reflective property because
otherwise the construction did not work. This is an aspect that I believe makes working in a
dynamic geometry software environment so useful for reasoning; for the student to con-
struct a properly working model of the object being proposed, he/she must establish the
necessary mathematical properties of that object. Additionally, the software allows for
students to explore multiple representations in a short period of time, which can facilitate
the discovery of the mathematical properties intended for the student to learn.

Christa describes the way DTS with the parabola task affected her. She recog-
nized the limitation of her prior mathematical meaning (Thompson, 2015) associ-
ated with parabola and appears to recognize both the novelty and usefulness of
having to express one’s meaning in an expressive technological environment in
order to expand such mathematical meaning. Her own creation seemed to convince
her (de Freitas & Sinclair, 2014).
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4.5.8 Summary of Teachers’ Final Reflections

Perhaps the most profound shift is expressed in the recognition of what mathe-
matics learning can be as opposed to what it has been. Teachers leaving this
learning environment were more than inspired; they were prepared. Surely there is
more to learn, but they have started the journey towards thinking differently and
more flexibly about mathematics through using technological and
non-technological tools strategically (National Governors Association Center for
Best Practices, Council of Chief State School Officers, 2010). They have experi-
enced and created learning sequences for their students and have demonstrated
capacity to approach the design of learning sequences creatively and with the desire
to expand the mathematical landscape for their students (Beghetto & Kaufman,
2009). They have been carefully thinking about creating conditions for students to
have access to important mathematical ideas and resources to enhance that access.
From the perspective of Csikszentmihalyi (2000), teachers have grappled with
mathematical problems and tools to generate solutions that are novel and useful,
that is, creative.

4.6 Discussion

In the spirit of Pasteur, from a lecture given at the University of Lille in 1854,
“Chance favors the prepared mind.” In the 21st century, it is imperative that
mathematics teachers are prepared to use and support their students’ use of com-
putational technologies for mathematical investigation (NCTM, 2014). If our stu-
dents are to become competent and creative solvers of problems in a data- and
computationally-intensive world, they must have opportunities to develop their
facility for doing so through engagement with tasks, tools, and collaborative
environments in which to thrive.

Formal introduction to mathematics tends to happen in schools and is shaped
heavily by teachers. The research presented here represents a series of mathemat-
ically focused design-based studies with pre- and in-service teachers for nearly
10 years during which hypothetical learning trajectories were created, imple-
mented, studied, refined, and continue to evolve. The mathematical and statistical
landscape in the research has included big ideas of pattern, shape, change, and
uncertainty (Steen, 1990) with connections among these big ideas. Dynamic
modeling with physical artifacts and technological tools of both exploratory and
expressive modeling types (Doerr & Pratt, 2008) have been integral to the research
and learning environment and the impacts on teachers’ facility with tools and
mathematical development have been positive and strong. The learning environ-
ment has positively impacted teachers’ learning mathematics for teaching with
technology and improved their TPCK, more generally.
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Through experiences such as those described in this chapter, teachers encoun-
tered mathematical ideas in new contexts and with multiple tool affordances that
allowed them to translate these experiences to create more robust mathematical
meanings (Thompson, 2015). They further prepared their minds—to notice, con-
nect, and create (Sriraman, 2009). Dynamic technology scaffolding was an
important ingredient in supporting mathematical learning for teaching with tech-
nology because investigating mathematics with dynamic cognitive tools has served
as a space for “information gap” (Loewenstein, 1994), which has been harnessed to
inculcate curiosity and creativity with teachers. Teachers’ words and actions sug-
gest their experiences in this environment have begun to profoundly impact their
own practices.

DTS allowed learners to wrestle with their own mathematical conceptions,
exposing a need to know more, and to persist when using multiple physical and
technological tools to formulate and justify a mathematical solution for which he or
she is confident. Moments of incubation were followed by illumination as the result
of exploration using multiple physical and virtual tools. The mathematical habits of
mind of looking at geometric objects algebraically and vice versa and modeling
geometrically, algebraically, and even statistically through the use of stochastic
devices for simulating random behavior were all evident in teachers’ explorations
(Cuoco et al., 1996). They have been engaged in mathematical creativity (Beghetto
& Kaufman, 2009) mediated by the use of tools. They close their own “information
gap” through mathematically creative action.

Through the design of DTS tasks for their classrooms, teachers’ demonstrated a
developing disposition toward actively engaging students in mathematical activity,
much like that experienced during their own mathematical investigation. DTS
became a design tool to utilize in lesson planning and teachers have demonstrated
mathematical learning for teaching with technology in a manner that highlights
their own mathematical curiosity, creativity, and tenacity. However, with approx-
imately a third of the DTS task sequences designed by teachers showcasing limited
creativity with respect to mathematics or technology, it is clear that teachers may
need additional support to pursue the design of high quality, technologically rich,
worthwhile mathematical tasks for their classrooms.

Nearly all teachers had undergraduate or graduate degrees in mathematics prior
to participating in these studies, but that training provided teachers little or no prior
opportunity to think or reason with dynamic cognitive tools. This finding is
alarming, especially because of the alternative pathways to licensure that have
become common for teachers. It underscores the importance for substantive
opportunities for teachers to be introduced to mathematical thinking with tools as
well as the challenges associated with teachers transitioning to become designers of
these types of learning environments for students.
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4.7 Conclusion

Dynamic technology scaffolding has been a productive framework for supporting
teachers’ creativity as learners and task designers. It has provided teachers with
opportunities to grow many new mathematical meanings. Because providing all
learners in one’s care with access to mathematical ideas is essential to facilitate
growth in mathematical meanings, supporting teachers’ capacity to design with
DTS in mind may be especially beneficial. Access to ideas and representations is
essential for creative thought, yet many students fail to engage in mathematics
classrooms for the simple reason that they do not have access to the ideas required
of them to engage (Cohen, 1994). With DTS task sequences, nearly everyone can
gain access to relevant mathematical ideas through physical explorations. Nearly
everyone can extend his or her thinking through use of an appropriate exploratory
model. With the use of physical and exploratory models, a wide range of students
may be invited into mathematical investigation and innovative thought. Students
may then fruitfully access mathematical relationships and representations to con-
sider, discuss, and extend to their own creative constructions using computational
technologies. Moving to expressive modeling often raises the cognitive demand of
the task by leaps and bounds; however, as it has been with learners in these studies,
oftentimes a cognitive lock gets opened through the physical and exploratory
modeling activity, building scaffolds for further investigation in an expressive
modeling space. Using DTS, learners are invited into the world of mathematical
meaning making with tools. Their creative ideas are elicited as they solve complex
and interesting problems. By asking teachers to become DTS task designers, their
mathematical and technological creativity are invoked and their mathematical
learning for teaching with technology simultaneously extended.
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Chapter 5
Three-Act Tasks: Creative Means
of Engaging Authentic Mathematical
Thinking Through Multimedia
Storytelling

Adrienne Redmond-Sanogo, Susan Stansberry, Penny Thompson
and Sheri Vasinda

Abstract Three-Act mathematics tasks provide opportunities for P–12 learners to
engage in creative problem posing, exploration, and problem solving through video
storytelling. Because they are innovative and relatively new, preservice and
inservice teachers may not be familiar with evaluating, creating, and implementing
Three-Act Tasks. In this chapter, we describe our design process for developing a
rubric to evaluate and scaffold these creative multimedia mathematical stories. The
rubric draws on four broad areas of literature for its theoretical grounding: (1) re-
search on selecting and posing high cognitive demand tasks for mathematical
problem solving, (2) use of story arc for contextual relevance, (3) research on
assessing and measuring creativity, and (4) principles of effective multimedia
message design and use of story arc. The rubric developed insures a Three-Act Task
attends to mathematical concepts, effective use of digital technologies, and creative
thinking. It is designed to serve as a guideline for preservice and inservice teachers
as they select or create Three-Act Tasks to use in their classrooms.
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5.1 Introduction

How does the multimedia story of a creature sneaking into a kitchen to eat cookies
(http://gfletchy.com/the-cookie-monster/) engage second graders in learning to
creatively pose, model, solve, and discuss challenging mathematical problems?
Schiro (2004) suggests that stories provide opportunities for children to imagine
themselves in the context of a narrative, where they solve problems alongside the
characters, reflect upon, and retell the problem-solving endeavors. In this way, they
make meaning of the vicariously-lived stories and bring meaning to their own lives.
Wells (1987) argues that storytelling is a primal act of mind that we engage in both
consciously and unconsciously; it is the way that the mind works. Smith (1992)
reinforces this primal nature of storytelling as meaning making, positing that
“thoughts flow in terms of stories” (p. 62) and that “the brain is a story-seeking and
story-creating instrument” (p. 63).

The Three-Act Math Task (Meyer, 2013a) is a recent pedagogical technique that
echoes Schiro’s (2004) belief that good storytelling and good math instruction are
related. Three-Act Tasks harness both the power of well-told stories and appropriate
technology integration. These tasks engage students of all ages in mathematical
creative question posing, authentic and engaging problem solving, and mathemat-
ical modeling through the use of teacher-created video and digital images that tell a
story in three acts. In Act One (Fig. 5.1), an intriguing short video clip introduces
the problem and characters in a math drama. The purpose is to set the stage for
students to wonder, pose questions, and estimate both probable and improbable
solutions.

Act Two (Fig. 5.2) adds a photo or video clip that provides an additional event,
or rising action, revealing enough information to solve a number of problems that
students have posed. Students use the new information to solve the problems they

• Students watch a video of the cookie 
monster eating cookies. 

• Problem posing: The teacher asks the 
students what they notice and wonder?  

• The teacher records students thoughts 
and chooses a question to explore. In this 
case, the teacher chooses the question 
“How many cookies did the Cookie 
Monster eat?”

• Estimation: Teacher asks students to 
write an estimate that is too high and one 
that is too low so that students can have a 
range or appropriate solutions.  

Fig. 5.1 Act one of the Cookie Monster, permission granted from Graham Fletcher
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have posed, compare the solution to their estimations, and discuss and compare
their approach to that of their peers.

Finally, Act Three (Fig. 5.3) provides a concluding video, photo, or graphic that
resolves the story and provides a solution to the mathematics problem. Students
compare their processes and solutions with the third act information with the option
of setting up an extension, or sequel.

Three-Act Tasks are growing in popularity because of their engaging and cre-
ative nature revealing mathematics in authentic contexts; therefore, we now support
preservice teachers in our program on how to create and use them. Because our
experience with preparing preservice teachers gave us insight into the guidance
needed on how to create an engaging and effective Three-Act Task, we developed a
rubric for evaluating quality in these types of lessons. Our goal was to develop a
rubric that could be used both by those who support teacher development and by
the preservice teachers themselves when they create their own Three-Act Tasks or
select from among the many available on the Internet. In this chapter, we explain
Three-Act Tasks from a theoretical perspective of storytelling as a teaching and
learning tool. We focus on how mathematics pedagogy (including high-cognitive
demand tasks), creativity, and multimedia design contribute to the creation of an
effective Three-Act Task. We then describe the development of our rubric, and
present the rubric in its final form. We conclude by discussing implications for
research and practice.

• Students decide what resources and 
information that they will need to solve the 
problem.  

• Students work with a partner to solve the 
problem.  

• The teacher monitors the students’ 
solutions and strategically decides the 
order in which to have students share their 
solutions and strategies. 

• The teacher has students share solutions 
and makes connections between students’ 
strategies. 

Fig. 5.2 Act two of the Cookie Monster, permission granted from Graham Fletcher

• Act three is the great reveal. The teacher 
shares the solution to the problem and 
sets up a sequel. 

• Students use this as an opportunity to 
verify their solutions. 

Fig. 5.3 Act three of the Cookie Monster, permission granted from Graham Fletcher
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5.2 History of the Integration of Mathematics
and Storytelling

Schiro (2004), tracing the use of stories in mathematics education in the 20th and
early 21st centuries, found that stories took second place to decontextualized
numeric exercises considered to be the essence of important mathematics teaching.
Sets of numeric exercises were often followed by unrelated story problems with
disjointed storylines and underdeveloped characters and plots. Students were either
exhausted by the numeric problem sets or uninterested in these mathematical
“stories” (Schiro, 2004).

At the end of the 1980s, The National Council of Teachers of Mathematics
(NCTM) issued a statement influenced by constructivist learning theory that
inspired changes in the teaching of mathematics. With the understanding that
learners construct meaning and that teachers create the environment for this,
teachers found that many children’s picture books included mathematical concepts
upon which they could capitalize. Unlike the “story problems” described above,
these stories captured children’s interest and provided a contextual springboard for
a mathematics unit of study. Unfortunately, in most classrooms, once the unit was
launched and some context was established, traditional practices were resumed and
there was no return to the stories in the children’s literature. “There is nothing
wrong with using children’s literature in this way—as a springboard into mathe-
matics—but doing so limits the power that mathematical stories can have in chil-
dren’s lives” (Schiro, 2004, p. 48). Schiro’s (2004) own work advocates for the use
of oral storytelling in teaching and learning mathematics, citing several advantages
to storytelling from Sarah Cone Bryant’s 1905 work. These advantages include:

• The storyteller is free; the reader is bound to the book.
• The storyteller can interact with the listeners in a responsive way.
• The storyteller can include the audience in the telling and make changes based

on their reactions/responses.
• The storyteller can craft the story to his/her own needs—especially if she cannot

find a book that meets her needs.

Using the responsiveness of oral story telling in terms of crafting stories that
highlight math concepts and relate to a particular group of students, Three-Act
Tasks provide a visually engaging provocation, where the visuals elicit curiosity
that can lead to inquiry. Provocations, a concept inspired by the preprimary schools
of Reggio Emilia, Italy, involve some sort of stimulus that sparks interest, wonder,
discussion, investigation, theory building, and critical thinking (Malaguzzi, 1998).
Using gaps between each act of the story arc, Three-Act Tasks provide opportu-
nities for problem-solver interaction that involves the audience in the telling. These
tasks also allow teachers to engage in their own creative thinking within the content
and context of their classroom. “The best teachers are the best storytellers” (Smith,
1992, p. 62). As Istenic, Starcic, Cotic, and Volk (2016) noted, “In solving
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mathematical problems, situational storytelling provides a semantic structure for the
principles that are to be practiced in solving the problem” (p. 32).

5.3 High Cognitive Demand Tasks and Student
Mathematical Learning

The Principles to Actions: Ensuring Mathematical Success for All (NCTM, 2014,
p. 3) describes many unproductive teaching and learning mathematics situations
that are pervasive in today’s classrooms. These situations include: “too much focus
on learning procedures without any connection to meaning, understanding or the
applications that require these procedures” (NCTM, 2014, p. 3); narrow curricula
and low expectations; lack of access to materials, tools and technology; too much
focus on high stakes testing with a lack of emphasis on problem solving and
reasoning; and limited professional development and coaching opportunities.
Principles to Actions also looked at beliefs teachers hold about the teaching and
learning of mathematics and categorized them as productive and unproductive,
positioning unproductive beliefs as an obstacle to effective teaching practices.
Ineffective practices, such as teaching through a review, demonstration, and practice
paradigm, can impede the mathematical learning of all students (Boaler & Staples,
2008; Stein, Smith, Henningsen, & Silver, 2009) and do not help students develop
the skills they need to be successful in the workforce of tomorrow. The P21
Partnership for 21st Century Learning (2015) published a summary of the skills that
are critical for every student to learn in order to be successful in future jobs. Those
21st Century skills include problem solving, creativity, analytical thinking, col-
laboration, and communication. Mathematics classrooms that focus on developing
these skills better prepare students to be effective and productive global citizens.
However, when teachers teach through unproductive practices, students often leave
their P-12 experiences believing that mathematics is a static, segmented discipline
for those who are naturally inclined to be successful at solving mathematical
problems and memorizing steps, formulas, and procedures (Allen, 2011; NCTM,
2014). Recent literature (Kisa & Stein, 2015; NCTM, 2014; Henningsen & Stein,
1997) highlights the importance of posing challenging tasks that encourage students
to think and reason mathematically, discuss their thinking, consider the thinking of
others, and seek out the connections between and within mathematics concepts.
Kapur (2014) found that students who engaged in problem-based learning prior to
receiving direct instruction demonstrated stronger conceptual understanding and
ability to transfer learning to new situations than their direct instruction only peers.
Padmavathy and Mareesh (2013) found similar results when examining the influ-
ence of problem-based learning on middle school students’ understanding of
mathematics. Problem-solving activities provide students with opportunities to
think critically, communicate their mathematical thinking, and think creatively
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(Krulik & Rudnik, 1999; Boaler, 2016); these are skills which may be lacking in a
classroom that focuses solely on direct instruction.

Fishman, Marx, Best, and Tal (2003) found that teachers tend to provide
surface-level experiences to students even when the teachers believe they are
developing student-centered activities. For example, teachers will initially engage
students in an exploration with manipulatives, but then tell students exactly how to
use them to solve the problem. Research (Boaler & Staples, 2008; Hiebert &
Wearne, 1993; Stein et al., 2009) suggests that tasks with a high cognitive demand
on student thinking are more effective at encouraging higher-level thinking and
reasoning. “Mathematical tasks are viewed as placing higher-level cognitive
demand on students when they allow students to engage in active inquiry and
exploration or encourage students to use procedures in ways that are meaningfully
connected with concepts or understanding” (NCTM, 2014, p. 19).

Using cognitive and constructivist theories of learning as a foundation, the
American Psychological Association Work Group (APAWG) (1997) developed
fourteen Learner-Centered Principles in an effort to bring research supporting this
pedagogical stance to classrooms. Six of these principles reflect research on the
importance and power of providing rich and engaging tasks to students (Polly &
Hannafin, 2010):

1. Nature of the Learning Process: When students are provided with rich learning
experiences, they are able to learn more effectively.

2. Construction of Knowledge: Students make connections between existing
knowledge and new learning when allowed to do so in meaningful ways.

3. Context of Learning: Learning is contextual. Culture, technology, and instruc-
tional practices influence what is learned.

4. Motivational and Emotional Influences on Learning: Students who are moti-
vated to learn will learn more effectively.

5. Intrinsic Motivation to Learn: Novel and challenging tasks with an element of
choice and capitalizing on student interest spark natural curiosity leading to
intrinsic motivation and student’s use of creativity and higher-order thinking.

6. Effects of motivation on effort: Engaged and motivated students are more likely
to persist in solving difficult tasks.

Three-Act Math Tasks provide students with contextually rich and connected
understanding of mathematics (England, 2015). The tasks prompt students to “pose
their own mathematical questions and reason about the world around them, wade
through the messiness of real life for needed information, model situations using the
mathematics they have learned, predict and estimate, and to be driven by curiosity”
(England, 2015). This scenario of posing questions, seeking information, and
finding solutions mirrors the problem solving process (Ortiz, 2016). Three-Act
Math Tasks provide students a problem solving opportunity. However, when cre-
ating a new Three-Act Task or selecting an existing one available on the internet,
teachers need to clearly identify the mathematical goals and determine if the
Three-Act Task chosen will lead to a rich problem-posing and solving experience
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for the learners (Hiebert, Morris, Berk, & Jansen, 2007). The teacher should
understand what mathematics students need to learn, why it is important, how it fits
into the structure of knowledge that students already have, and what learning will
take place next (NCTM, 2014). At the same time, they also need to focus on tasks
that will be motivating and challenging to their students so the students will be able
to persist when solving them. Mathematics educators recognize the power of stories
to engage students in mathematics problem solving (Schiro, 2004).

5.4 Integration of Mathematics and Technology: New
Opportunities and New Challenges

The word technology can have a variety of meanings depending on the context in
which it is used. The Merriam Webster online dictionary defines the term as (1) “the
practical application of knowledge especially in a particular area,” (2) “a manner of
accomplishing a task especially using technical processes, methods, or knowledge,”
and (3) “the specialized aspects of a particular field of endeavor,” with educational
technology listed as an example of the third definition. Spector (2012) defines
technology broadly as “the practical application of knowledge for a purpose” (p. 5).
Spector (2012) also emphasized change as “a basic aspect of technology, since
knowledge is generally progressing and the goals and intentions of people are
dynamic” (p. 5). This element of change might explain why the common, colloquial
understanding of technology often centers on the newest tools, or, in the
well-known quote by Alan Kay, “anything that wasn’t around when you were born”
(Greelish, 2013). Currently, the word technology in general, and educational
technology in particular, often brings to mind the application of digital tools such as
the internet, digital video, or image editing software for the purpose of improving
learning.

For the purpose of this chapter, we take the broad view of technology that
emphasizes the application of knowledge for a specific purpose, while recognizing
that the standards for technology integration in the schools (as described below)
focus more narrowly on the use of digital tools. The Three-Act Math Task
described here represents a technology in the broader sense, as it applies knowledge
of mathematics, learning theory, and literacy in a systematic way to facilitate deep
understanding of mathematical concepts and mathematical thinking. At the same
time, the purposeful, supportive use of digital technology, such as digital video, is
central to the implementation of the Three-Act Math Task.

Across the globe, more than 20 years of research devoted to the study of edu-
cational technology indicates that expected transformations for student learning
have yet to be realized (Clark-Wilson, Robutti, & Sinclair, 2014). International
studies (Mullis, Martin, & Foy, 2008; Ofsted, 2008) show that teachers are not
using technology in the teaching and learning of mathematics despite the fact that
their standards explicitly call for the integration of technology in the classroom.
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To change this trend, it is important to help preservice teachers become comfortable
teaching and learning in environments where students have access to digital tools,
like the camera and Internet access needed to produce and post a Three-Act lesson.
Students benefit when their teachers integrate technology into the classroom, as
they gain “a greater sense of ownership of the mathematics that they are learning,
since the applications promote a sense of shared enterprise in the learning of
mathematics” (NCTM, 2014, p. 79). Teachers also benefit from this integration of
technology since it allows them to share and locate resources on the web and
through social media. The National Centre for Excellence in the Teaching of
Mathematics (NCETM) (2011) keeps a posted list of technology resources to
support various aspects of mathematics teaching and learning. However, NCTM
(2014) cautions that using video lectures, simulations, and video presentations are
no more effective at teaching mathematics than having a teacher lecture if
sense-making and problem solving are not the focus. Thus, it is important that
teachers critically analyze the resources they have readily available.

The International Society for Technology in Education Standards for Teachers
(ISTE-T) also address the need to develop skills in appropriate technology
integration:

• ISTE-T Standard 2. Design and develop digital age learning experiences and
assessments.

– 2a. Design or adapt relevant learning experiences that incorporate digital
tools and resources to promote student learning and creativity.

• ISTE-T Standard 3. Model digital age work and learning.

– 3c. Communicate relevant information ideas effectively to students, parents,
and peers using a variety of digital age media and formats.

• ISTE-T Standard 4. Promote and model digital age citizenship and
responsibility.

– 4a. Advocate, model, and teach safe, legal, and ethical use of digital infor-
mation and technology, including respect for copyright, intellectual property,
and the appropriate documentation of sources (International Society for
Technology in Education, 2008).

ISTE-T defines the skills and knowledge all digital-age teachers must master to
be effective, and the teacher’s ability to create a quality Three-Act Task provides
evidence of meeting these standards. For example, a Three-Act Task is designed
using digital tools to convey a mathematical story that provokes students to wonder,
think critically, develop theories and create solutions to a problem addressing the
development of digital age learning experiences (part of ISTE-T 2a). Additionally, a
Three-Act Task provides an opportunity to convey relevant information and ideas
(ITSE-T 3c) through a contextual digital video. Teachers have the opportunity to
“advocate, model, and teach safe, legal, and ethical use of digital information and
technology” (ISTE-T Standard 4a) as they select resources for the video that meet
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Fair Use Guidelines and/or are appropriately cited. Digital media technologies have
become a primary mode of sharing stories (Jewitt, 2008), as evidenced by the
popularity of tools such as Snapchat, YouTube, Flickr, Pinterest, and Facebook
(Brabazon, 2016).

Three-Act Tasks have the potential to encourage a culture of curiosity in the
mathematics classroom (Meyer, 2013b). While the technical aspect of taking a
photo or shooting a video with any available camera is simple, the design and
development of these multimedia stories requires creativity and critical thinking
from the designers. Student creativity then emerges as they are working through the
Three-Act Task. Act One is where the problem posing occurs, but in Act Two
students need to participate in mathematical modeling and problem solving. “If
students aren’t grappling with the question, ‘What’s important here and how would
I get it?’ they may be doing lots of valuable mathematics but they aren’t modeling”
(Meyer, 2013c). Thus, the teacher developing the Three-Act Task must anticipate
students’ quests for information and have a way to help them get their hands on it
through images, videos, or searching the Web. Act One and Act Two are where
students do their work, but Act Three brings it all together for the learner and sets
up a sequel. The teacher needs to make sure to revisit students’ estimates and
questions posed in Act One. The mathematics and mathematical academic language
must be formalized and ideas need to be connected in Act Three. Finally, the
teacher must set up a sequel that will “entice and activate the imagination” (Meyer,
2013d) and has the potential for further inquiry. Creating a Three-Act Task is
therefore a deceptively complex endeavor, and preservice teachers need guidance
when learning to create them, or even to select and implement examples created by
others.

5.5 Creating a Three-Act Math Task

An effective Three-act Math Task includes the creative use of high-quality multi-
media, specifically video, to tell an engaging story that highlights and presents
opportunities to uncover mathematical concepts. In addition to strong mathematical
content knowledge, this requires an understanding of creativity and its importance
in teaching and learning, as well as an understanding of how to implement creative
ideas effectively through multimedia story telling. The rubric presented in this
chapter, therefore, features an explicit evaluation of the exposition of the story to
reveal mathematical problem-posing opportunities, overall quality of the video
narratives, the strength of the mathematical content knowledge, and creative ele-
ments used to create the task. This section provides a summary of the theoretical
concepts that informed the development of these items in the rubric.
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5.5.1 Measuring Creativity in a Three-Act Math Task

Designing and producing an effective, motivating Three-Act Task requires cre-
ativity on the part of the teacher/creator, but the task itself should elicit curiosity and
creative problem posing and solving on the part of the students. The Three-Act
Task is inherently a creative product due to its emphasis on finding and solving
problems and evoking curiosity. A focus on improving creativity can be seen across
business, industry, and education. Yet, defining (Plucker, Beghetto, & Dow, 2004;
Friedel & Rudd, 2005) and assessing (Makel, 2009; Turner, 2013; Rubenstein,
McCoauch, & Siegle, 2013; Koehler & Mishra, 2008) creativity, as well as building
teachers’ creative self-efficacy (Stansberry, Thompson, & Kymes, 2015), remain
barriers to effectively instilling creative habits in P–12 students. Creativity is
defined as “the interaction among aptitude, process and environment by which an
individual or group produces a perceptible product that is both novel and useful as
defined within a social context’’ (Plucker, Beghetto, & Dow, 2004, p. 90). Because
Three-Act Tasks begin by evoking curiosity in students and then leading them
through problem posing and problem solving, an assessment rubric designed to
evaluate Three-Act Tasks should include means for measuring the effectiveness of
these tasks. The teacher must embed the math problem within a particular context
that is relevant to students and captures their interest. The visual information pro-
vided in Acts One and Two must be provocative or novel enough to capture
students’ attention and spur curiosity toward potential problems and resolutions.
The visuals used in the Three-Act Tasks must be useful in initially providing just
enough information to spark curiosity and problem posing followed by additional
information to support students in solving the problem.

Henriksen, Mishra, and Mehta (2015) propose a framework for evaluating cre-
ativity in lesson plans based on the degree to which they are novel, effective, and
whole, or NEW. Their framework encapsulates the widely accepted belief that
creativity involves something that did not exist before (Amabile, 1988; Oldham &
Cummings, 1996; Zhou & George, 2001), is useful (Fox & Fox, 2010; Cropley,
2001), and is valued aesthetically in a specific context (Koehler and Mishra, 2008).
According to the NEW framework, a lesson plan high in novelty demonstrates
uniqueness, excitement, and interest. A lesson high in effectiveness “makes subject
matter clear and comprehensible to most learners and presents it in interesting ways
that make the subject come alive” (p. 477). A product high in wholeness has
“excellent or exceptional aesthetic qualities [and] flawless or near-perfect produc-
tion values” and “provide[s] aesthetically cohesive, or ‘whole’ learning that is
exciting, thoughtful and stimulating to [students]” (p. 478). This framework oper-
ationalizes elements of creativity that can be measured or evaluated, and was
therefore foundational to our thinking as we developed the rubric described in this
chapter.
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5.5.2 Multimedia Message Design

Appropriate integration of multimedia content is another fundamental feature of the
Three-Act Task (Meyer, 2013a). The videos and images need to elicit observation
of and curiosity about mathematical concepts. This requires the creator to develop
technology skills (e.g., digital video production) in the context of a coherent
multimedia mathematics lesson. The elements of multimedia message design
described below enhance the effectiveness of a Three-Act Task.

5.5.2.1 Video Quality and Film Grammar

Research has shown that multimedia can either support or detract from learning,
depending on how well it integrates with the purpose of a lesson (Mayer, 2002,
2005), so attention must be given to the quality of the video used. In the context of
the Three-Act Task, this means the video needs to be of adequate quality to avoid
posing a distraction, and should conform to the basic principles of film grammar
(Birth of Image, 2010; Chandler, 2015). For example, the camera distance and
height should be appropriate for showing the desired level of detail, the camera
direction should be consistent enough to give the scene coherence, and camera
movements should be smooth. These guidelines are considered necessary but not
sufficient characteristics of engaging video. They help avoid drawing viewers’
attention to extraneous aspects of video production, but the content of the video
must still be designed to direct viewers’ attention to the most important elements.

5.5.2.2 Directing Viewers’ Attention

The Limited Capacity Model of Motivated Mediated Message Processing (LC4MP)
(Lang, 2000, 2006) explains how a recipient’s response to a media message is
influenced by human information processing. Due to the limits of short-term
memory, viewers do not have the capacity to process all the information present in
the environment, so in order for a mediated message to be processed, it must be
selected, or given attention. Messages that contain “novelty, change, and intensity”
(Lang, 2000, p. 49), for example, are more likely to gain attention than messages
that do not have these features.

The LC4MP also posits there are two motivational systems—appetitive (positive
and appealing) and aversive—that affect the way the message is processed.
Appetitive motivation orients viewers to “information intake” and to processing “as
much information as possible about the stimulus… and the surrounding environ-
ment” (Lang, 2006, p. 562). Thus, the ideal video for a Three-Act Task would
contain a positive, appealing form of novelty or surprise that would both gain
viewers’ attention and promote careful observation of the information presented.
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5.5.2.3 Presenting a Coherent Narrative

Three-Act storytelling is inherent in the design of this task and multimedia pro-
duction provides an opportunity to enhance it visually with a focus on a narrative.
Narrative has been proposed as a way to transform learning into an aesthetic
experience (Hobbs & Davis, 2012; Parrish, 2009), so an engaging narrative is
important in a Three-Act Task, and video provides the medium for storytelling.
This does not mean the video must have an extensive elaborate plot, but it should
have a discernible beginning, middle, and end (Parrish, 2009). Cohn (2013) breaks
the structure of a visual narrative unit into the following five steps (p. 8):

• An establisher sets the scene for the action (e.g., a bag of cookies sits on the
table).

• An initial begins producing the tension of the narrative arc (e.g., creature hand
pulls the cookie bag down).

• One or more prolongations extend the narrative tension (e.g., cookie-eating
noises are heard).

• A peak forms the height of narrative tension (e.g., the munching sounds reach
maximum volume).

• A release dissipates the tension (e.g., the empty bag is tossed up on the table and
a happy sigh is heard).

A video featuring a narrative arc as described above, however simple it may be,
is more likely to engage viewers than a video with no discernible narrative struc-
ture. Thus, teachers who wish to create Three-Act Tasks for their students must
understand the basics of video production and the creation of novel and appealing
visual narratives that integrate seamlessly with the mathematics content.

5.6 Developing and Testing a Rubric for Evaluating
and Creating Three-Act Tasks

The principles of effective storytelling, mathematics instruction, creativity, and
multimedia design may not seem naturally interrelated. Based on the arguments set
forth above, however, these four items are already integrated into a Three-Act Task,
and therefore it is necessary to include all four constructs when evaluating this type
of lesson. We developed a rubric that includes principles of effective mathematics
instruction, creativity, and multimedia design within the framework of a three-act
story to scaffold preservice teachers as they learn to evaluate or develop effective
Three-Act Tasks.

Our rubric was developed through an iterative process, where we created a
preliminary rubric, worked individually to apply it to sample Three-Act Tasks,
compared our evaluations as a group, revised the rubric as needed, and tested again.
We began by searching the Math Forum and selecting a rubric that appeared to
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address some of our goals (http://mathforum.org/emc/three_act_task_rubric.pdf).
The Math Forum rubric examined the three acts individually and included both
“overall presentation” and “judge’s discretion” categories. We used this rubric to
analyze a Three-Act Task developed by a preservice teacher and quickly found we
needed to revise it to explicitly address the essential feature of engaging video
production and creativity to support mathematics learning to develop our first-draft
rubric. We used this first-draft rubric to separately score selected Three-Act Tasks
(Table 5.1) publicly available on two databases: Dan Meyer’s Three-Act Math
Tasks database (http://tinyurl.com/jx3fjvu) and Graham Fletcher’s Questioning My
Metacognition website (http://tinyurl.com/zq7mdal). Next, we came together to
compare our scoring. We found that while we had general agreement on how to
evaluate each example using the first-draft rubric, we had each written extensive
notes about other important considerations that this draft did not capture. We dis-
cussed these additional observations at length, revised the rubric accordingly, and
rated the examples independently again. We repeated this process until we each felt
that the rubric was comprehensive.

As a result of the iterative process described above, we made the following
changes to the original rubric:

• replaced the judge’s discretion category with a theoretically grounded creativity
assessment based on the NEW framework from Henriksen et al. (2015);

• added a mathematical understanding section which focused on developing
pedagogical content knowledge;

• added wording throughout to highlight the story arc with a focus on the setting,
protagonist, and problem;

• added technical quality assessment items such as hosting multimedia on the web
instead of requiring a download;

• added comment boxes after each act in order to provide more guidance and
feedback; and

• added wording to address relatability of protagonist and context (e.g. using
children instead of adults as the protagonist if the intended audience is children).

The final rubric we created, the Three-Act Math Rubric for Creativity and
Multimedia Storytelling, is presented in Fig. 5.4.

Table 5.1 Three-Act math lessons analyzed

Name URL Standards

Bucky the
Badger

http://mrmeyer.com/
threeacts/buckythebadger/

http://www.corestandards.org/Math/Content/3/
OA/D/9/

The water
boy

http://gfletchy.com/the-
water-boy/

http://www.corestandards.org/Math/Content/3/
NBT/#CCSS.Math.Content.3.NBT.A.2

The
Juggler

http://gfletchy.com/the-
juggler/

http://www.corestandards.org/Math/Content/1/
NBT/A/1/
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5.7 Conclusions and Next Steps

As stated earlier, stories can transform learning into aesthetic, and thus engaging,
experiences (Hobbs & Davis, 2012; Parrish, 2009), and the creative aspects of
multimedia storytelling have the potential to amplify this effect (Muhtaris &
Ziemke, 2015). Mishra and Koehler (2006) remind us that, “quality teaching
requires developing a nuanced understanding of the complex relationships between
technology, content, and pedagogy and using this understanding to develop
appropriate, context-specific strategies and representations” (p. 1029). As teacher
educators, we have a responsibility to model these relationships in our
teacher-preparation classrooms by overtly demonstrating the effective integration of
content knowledge and technology use within appropriate instructional strategies
for a particular context. Additionally, Three-Act Tasks can incorporate all of the ten
design qualities identified by Schlechty (2002) that support engagement: substantial
content, well-organized information, affiliation (the ability to work with a group to
solve problems), novelty and variety, and authenticity. The development of the
Three-Act Task rubric addresses even more of these qualities: product focus, clear
and compelling standards, choice (the story), and affirmation of a performance (the
video). Because there can be more than one way to interpret the math story and
multiple ways to solve the problems, Schlechty’s freedom from fear of initial failure
is also part of the design. These design qualities support creativity and the nuanced,
integrated teacher knowledge identified by Mishra and Koehler (2006).

Three-Act Tasks, which can be created with tools as basic as those included in a
smartphone, provide an engaging and satisfying mathematics encounter. This type
of experience embodies the kind of mathematics Boaler (2008) contrasts to the
often decontextualized, “boring” mathematics of school with the “interesting set of
ideas that is the math of the world, and is curiously different and surprisingly
engaging” (p. 5). Additionally, in order for students to be able to think and reason
mathematically, teachers need to provide them with tasks that are worthwhile,
challenging, and engaging (Henningsen & Stein, 1997).

In an era of rigorous content standards and high-stakes accountability, mathe-
matics instruction is often reduced to step-by-step procedures that often do little to
build conceptual knowledge and is stripped of its inherent potential for creativity in
problem posing and problem solving (NCTM, 2014). Even though renowned
mathematical thinkers are recognized as creative, mathematics in school is not
typically thought of as a creative process (Pehkonen, 1997). Bonotto (2013) showed
that problem posing could support flexible thinking skills, improve problem-solving
skills, and equip learners to handle authentic situations in their out-of-school lives.
The emphasis on STEM education continues to highlight the need for both cre-
ativity and strong conceptual knowledge (Lego Education, 2013). Additionally,
international standards for teachers identify the need to design learning environ-
ments that incorporate digital tools and resources to promote student learning and
creativity, communicate through a variety of digital-age media, and model
digital-age citizenship and responsibility (ISTE, 2008). The Three-Act Task itself is
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a learning environment developed with digital tools, communicated through
digital-age media, and designed to promote student mathematics learning and
creativity in the context of a three-act story. The rubric presented in this chapter
serves as a guide for teachers, ensuring the appropriate use of digital tools, the
incorporation of story, and the application of the elements of creativity (novelty,
effectiveness, and wholeness) to achieve the mathematics goal.

In this chapter we provided an introduction to Three-Act Tasks and the means
for supporting teachers in creating and implementing these tasks, which have the
potential to engage and challenge students in more authentic mathematical situa-
tions. Three-Act Tasks provide opportunities for both problem posing and problem
solving in a creative digital format that leverages the strengths of the digital tools
with the power of relevant, contextual stories to highlight the kind of mathematics
situations students could find themselves in outside of school. These tasks provide
options for teachers to create the kind of contextual lessons tailored to local con-
texts that make mathematics relative, authentic, and engaging in ways that text-
books cannot. Additionally, a quick Internet search reveals a myriad of Three-Act
Tasks widely available for K-12 teachers to adopt that may fit their context or be
easily adapted. The challenge exists in evaluating the quality of readily available
Three-Act Tasks and identifying the design fundamentals of developing more
locally relevant tasks. Using our respective strengths in mathematics and mathe-
matics education, creativity, educational technology, and literacy, we approached
the evaluation of the Three-Act Tasks as a multidisciplinary team. The resulting
comprehensive rubric provides teachers with the support they need when creating,
or when evaluating and selecting, appropriate Three-Act Tasks that meet their
instructional goals. As with any other resource, it is critical for teachers to be
supported in evaluating the quality of Three-Act Tasks prior to implementing it in
their own instruction.

While Three-Act Tasks are becoming popular in the field of mathematics edu-
cation (England, 2015; Meyer, 2015; Fletcher, 2016; Yenca, 2016), there is little
existing research exploring how to develop teachers’ ability to produce creative,
engaging, and effective Three-Act Tasks. Also, there is no research to assess the
effectiveness of the tasks in building and supporting conceptual knowledge of
mathematics. The rubric presented here provides a starting place for a program of
research centered on Three-Act Tasks. Our next steps include putting this rubric in
the hands of teachers who will use it to critically analyze preexisting Three-Act
Math Tasks. Additionally, we will use it as a tool to scaffold preservice teachers’
creation of their own Three-Act Tasks. Other plans involve comparing student
achievement between groups learning a concept through a Three-Act Task and
groups learning the same concept through a more traditional lesson. In addition, we
are interested in exploring the potential of the Three-Act Task to support learning in
fields outside of mathematics. Science educators are beginning to adopt it, and we
would also like to work with English and social studies educators. Our work
developing this comprehensive rubric will support both the teaching of and the
continued research on this innovative practice.
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Part III
Creativity in Technology-Rich
Mathematical Environments



Chapter 6
Interactive Technology to Foster
Creativity in Future Mathematics
Teachers

Alfinio Flores, Jungeun Park and Stephen A. Bernhardt

Abstract This chapter discusses ways in which the use of interactive technology in
a problem-based course that integrates mathematics, science, and technology fosters
creativity among future secondary mathematics teachers in their first year in col-
lege. The course was built on research-based principles to learn mathematics for
understanding. We found that creativity is fostered naturally by teaching mathe-
matics based on those principles. Creativity is fostered, promoted and developed
when (a) learners themselves grapple with concepts and make concepts explicit;
(b) learners actively build new understanding on previous knowledge; (c) learners
engage with mathematics as a social process; (d) learners use multiple represen-
tations and connections to enhance their understanding; (e) learners pose and solve
problems; and (f) learners exercise multiple modes of learning—when they read,
talk, write, draw, analyze, apply, present, and reflect. We discuss the use of tech-
nology and issues related to future teachers’ creativity as they solve problems;
design experiments and collect, represent, and analyze data; develop mathematical
models for phenomena in the physical, biological, and social sciences; and build
and program their own robot.

Keywords Preservice mathematics teachers � Integrated mathematics, science,
and technology � Teamwork � Communication � GeoGebra � Python
Mathematical modeling

A. Flores (&) � J. Park � S. A. Bernhardt
University of Delaware, Newark, DE, USA
e-mail: alfinio@udel.edu

J. Park
e-mail: jungeun@udel.edu

S. A. Bernhardt
e-mail: sab@udel.edu

© Springer International Publishing AG, part of Springer Nature 2018
V. Freiman and J. L. Tassell (eds.), Creativity and Technology in Mathematics
Education, Mathematics Education in the Digital Era 10,
https://doi.org/10.1007/978-3-319-72381-5_6

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72381-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72381-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72381-5_6&amp;domain=pdf


6.1 Introduction

This chapter addresses the problem of providing future mathematics teachers the
experience of learning mathematics integrated with science and technology,
through a class in which students also had the opportunity to express their creativity
by choosing their own strategies and methods to solve problems, conduct experi-
ments, and model phenomena. Interactive technology played an active and essential
role in providing students multiple opportunities to use and improve their creativity
in their mathematical activities. The research reported here was conducted in a new
problem-based course for future secondary mathematics teachers that integrates
technology, mathematics, and science taught at the University of Delaware in the
United States (Flores, 2014). This course was offered in fall 2013, spring 2015, and
fall 2015. It serves as an alternative course to satisfy a technology requirement in
the secondary mathematics teacher’s preparation program. Students can meet this
requirement also by taking an introductory computer science course. While not a
methods course per se, the course was designed to offer students a rich learning
experience that might suggest to them innovative paths in teaching.

The design and implementation of the course were guided by research-based
principles to learn mathematics for conceptual understanding (Hiebert & Grouws,
2007): (a) learners themselves need to grapple with concepts and make concepts
explicit; (b) learners actively build new understanding on previous knowledge;
(c) learners benefit from engaging with mathematics as a social process; (d) learn-
ers’ access to knowledge and understanding are enhanced when they use multiple
representations and connections; (e) learners acquire significant mathematical
content and know-how through problem solving and problem posing; and (f) stu-
dents learn better when they exercise multiple modes of learning (Cakir & Stahl,
2013). That is, when students not only listen and take notes, but when they read,
talk, write, draw, analyze, apply, present, and reflect. These research-based prin-
ciples and this framework have been discussed in more detail elsewhere (Flores,
Park, & Bernhardt, 2016). We also used the Technological Pedagogical Content
Knowledge (TPACK) framework (Mishra & Koehler, 2006; Niess et al., 2009) to
guide the design of the course. The course also was informed by professional
recommendations about the dispositions and attributes that teachers need to have.
For instance, the Interstate Teacher Assessment and Support Consortium (InTASC)
developed a set of model core teaching standards in which they point out that
“today’s learners need … attributes and dispositions such as problem solving,
curiosity, creativity, innovation, communication, interpersonal skills, the ability to
synthesize across disciplines, …, and technological expertise” (InTASC, 2011,
p. 4). Teachers themselves need to have these attributes and dispositions in order to
help develop them in their students. With the purpose of putting students in control,
we emphasized interactive technology, so students can would learn to solve specific
modeling problems using computers tools and programs, such as GeoGebra and the
programming language Python. We explored whether and how future teachers’
creativity would be fostered as they used their own strategies and methods to solve
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problems; used invention to design experiments and decide how to collect, repre-
sent, and analyze data; developed their own mathematical models for phenomena in
the physical, biological, and social sciences; and built and programmed their own
robot to perform a task invented by them.

6.1.1 Overview of the Course

Originally we did not include fostering creativity in mathematics as an explicit goal
for the course. However, the course was designed to incorporate ways of learning
mathematics that the literature on creativity (Mason & Watson, 2008; Presmeg,
2003, Silver, 1997; Sheffield, 2009; Sriraman, 2004; Voica & Singer, 2013) had
shown to be closely related to creativity in mathematics. In the current realization of
the course, students work in cooperative groups to solve problems. They use
interactive cognitive technologies in their inquiries. For example, they use
GeoGebra (International GeoGebra Institute, 2017) to explore properties of linear,
quadratic, and other functions. They use functions such as power, exponential, and
periodic to model phenomena in the physical, biological, and social sciences. They
use motion detectors to gather data and graphing calculators to transform and
represent data. Students write their own programs in the freely available pro-
gramming language Python (Enthought Scientific Computing Solutions, 2016) to
simulate random phenomena. Students construct and program their own robot.
They use interactive epsilon bands, where students can control the error bound
epsilon and the threshold value N, in their re-invention of the definition of the limit
of a sequence (Flores & Park, 2016).

Communication also plays a big role in the course. Students are asked to use
written and verbal language to plan and modify their experiments and discuss
problematic issues. For example, in the experiment with the pull-back car (see
Sect. 6.1), they discuss in their small groups and write a full plan about what they
are going to measure and how. After they collect their data they prepare a written
report that includes computer generated tables and graphs, post it electronically, and
share it verbally with other teams. They produce verbal and written mathematical
signs by speaking, writing, or sketching to share their strategies, methods, and
results with their peers in their small group or with the whole class.

As we will illustrate with specific examples later, such activities offer students
opportunities to be creative in mathematics. In the next section we will draw from
the literature on creativity in mathematics, first at a general level and then on the
relation between creativity and specific aspects in the learning of mathematics that
were emphasized in the course.
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6.2 Literature Review

Creativity is a complex concept that can be viewed from multiple perspectives
(Sriraman, 2004). Its multiple aspects have been defined variously by different
researchers. For example, the National Teaching Fellows, a group of higher edu-
cation instructors in the UK who have received recognition, include imagining,
seeing unusual connections, combining ideas, and discovering original ideas (Fryer,
2006). Boden (2004) specifies combinatorial, exploratory, and transformational as
different types of creativity. However, different characterizations of creativity also
share some common features: novelty, value, and effectiveness (Aralas, 2008;
Boden, 2004).

Although developing creativity is not often mentioned explicitly as one of the
goals for mathematics courses, creativity is frequently mentioned when describing
mathematical ability (Aiken, 1973; Krutetskii, 1976; Kattou et al., 2013) or gifted
and talented students in mathematics (Sheffield, 1994; Sriraman, 2005). Creativity
is an intrinsic component of doing mathematics (Halmos, 1968; Polya, 1962), of
conducting accomplished work in mathematics, and of doing research in mathe-
matics (Poincaré, 1920; Hadamard, 1945).

Creativity is also considered an important part of the process of creating
mathematical statements such as proofs and definitions (Polya, 1957; Hanna &
Winchester, 1990). For example, Winchester (1990) points out that creativity of
thought is necessary for the production and enjoyment of mathematical proofs. The
relationship between creativity and proofs is twofold. On one hand, finding a proof
often requires creativity. On the other hand, proof is part of the social process
through which the mathematical community validates the creative work of a
mathematician (Hanna, 1991).

Of course, efforts to foster creativity in mathematics are not new (Gibb, 1970;
Haylock, 1987; Leikin & Pitta-Pantazi, 2013). Researchers have identified ways to
foster creativity by specifying features of the environment where students play an
independent role and develop ownership of discussion (Jackson & Sinclair, 2006),
where they are engaged in imaginative thinking and heuristic strategies, and where
they develop risk-taking approaches and self-regulation (Fryer, 2006; Sternberg &
Williams, 1996) without the threat of evaluation but with openness to unexpected
responses (Torrance, 1979). Rather than trying to give a more comprehensive
overview of the literature on fostering creativity in mathematics, we will focus next
on the principles of fostering creativity from the research literature that are related to
the design and implementation of a problem-based course for learning mathematics
through technology.
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6.2.1 Creativity in Independent Conceptual Understanding
of Concepts and Relations

As mentioned earlier, students’ independence in developing critical thinking is an
important aspect of creativity (Jackson & Sinclair, 2006). In the context of learning
mathematics, students’ independence is required in their own meaning-making and
knowledge construction, as they process mathematical concepts and the relation-
ships between concepts (Von Glasersfeld, 1995). This process involves integrating
the meanings and uses of previously learned (or partially learned) mathematical
concepts into a new context or more complex system through which students
“exercise their creative abilities and devise insightful ways to deal with mathe-
matical topics and problems” (Hashimoto & Becker, 1999, p. 102). According to
Freudenthal (1971), mathematics should be taught in “the order in which it could be
invented by the student” (p. 416). This process engages several aspects closely
related to creativity, such as inventiveness, guided re-invention, constructing
knowledge, organizing matter, and mathematizing (Presmeg, 2003).

6.2.2 Creativity in Building New Knowledge on Previous
Knowledge

Creativity is also involved when students build new knowledge from their existing
knowledge (Jackson, 2006). Without existing knowledge, students would not be
able to “generate,” “hypothesize,” “theorize,” or “reflect,” which are all creative
activities that are crucial in building new knowledge (Biggs & Tang, 2007). Intense
interest or involvement in a particular field accompanies creativity. At the end, new
knowledge is produced as “a ‘creative work’ … comprising something new, a
synthesis that did not exist quite like that before” (Biggs & Tang, 2007, p. 145).
When such syntheses result in new concepts or systems in the field, these outcomes
are also referred to as invention (Biggs & Tang, 2007, p. 145). Of course, novice
students can frequently be inventive themselves, even if concepts or relationships
are already known among experts. In fact, Mason and Watson (2008) take the view
that mathematics:

Can be presented and experienced as a constructive activity in which creativity and making
choices are valued … in order to stimulate learners to use their own powers to make sense
of phenomena mathematically (p. 192).
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6.2.3 Creativity in Engaging with Mathematics as a Social
Process

Although creativity has usually been studied at the individual level, the relation of
students working in small groups to the development of their creativity has been the
focus of research for quite some time (Banghart & Spraker, 1963). Because there is
always a need to solve complex problems in our changing society, there has been
recently increased interest in studying creativity at the group level (Van
Oortmerssen, Van Woerkum, & Aarts, 2015).

Working in small groups may foster the creativity of students, but just putting
students together to work in small groups does not mean that creativity will
automatically flourish. As with other aspects of productive teamwork, this process
requires learning. According to Meissner (2005), to further creative thinking in
mathematics education, we need to further both individual and social abilities.
Students need to learn how to avoid the negative factors that affect creativity:
cognitive interference, which includes production blocking, task-irrelevant behav-
ior, and cognitive overload; and social inhibition, which includes social anxiety,
free riding, and illusion of productivity (Paulus, 2000). They also need to learn to
recognize factors that can strengthen the potential of groups to generate ideas; for
example, social stimulation, which includes both increased individual account-
ability and the development of shared standards for team performance; and cog-
nitive stimulation, which includes stimulation of associations, attention to others’
contributions, and opportunities to incubate ideas (Paulus, 2000).

6.2.4 Creativity in Different Ways of Thinking, Learning,
and Representing Ideas

Creativity influences mathematical thinking and the representation of mathematical
ideas (Sheffield, 1994). Components of mathematical creativity include various
types of thinking, such as reversing the train of thought, solving problems in unique
and unusual ways, reasoning clearly, and abstracting and generalizing mathematical
content (Krutetskii, 1976; Sheffield, 2003). Mathematically, creative thinking also
includes the ability to work with different representations and especially to adopt
appropriate representations for the given problem or context. A crucial creative
ability is to be able to switch among representations with flexibility, for example,
“from computation to visual to symbolic to graphic representations” (Sheffield,
2003, p. 4).
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6.2.5 Creativity in Applying Knowledge and Reasoning
in Problem Posing and Problem Solving

It is widely recognized that creativity is involved while students apply their
knowledge and reasoning in problem posing and problem solving, which are often
considered two central goals of teaching and learning mathematics (Henderson &
Pingry, 1953; Polya, 1962; Silver, 1997). The application and transfer of knowl-
edge in posing and solving non-routine problems is considered a different and much
more crucial mathematical ability than possession of information (Henderson &
Pingry, 1953; Polya, 1962). The generative processes of problem posing and
problem solving are central in creative activity (Silver, 1997). Polya (1954) points
out that self-directed posing of problems to be solved is an important characteristic
of engaging in the intellectual work of mathematics. Three of the factors mentioned
by Mann (2006) to develop creativity in mathematics are problem solving, problem
formulation, and open-ended problems. Problem solving often requires “some
degree of independence, originality, creativity” (Polya, 1962, p. viii). The rela-
tionship between creativity and abilities in problem posing and problem solving
became more explicit in Silver’s work (1997), which showed “how mathematical
problem posing and problem solving are connected to key aspects of the classic and
contemporary conceptions of creativity and also to the assessment of creativity”
(p. 75). Sheffield (2008) states that for students to become creative mathematicians,
we need to cultivate and nurture their “abilities to recognize and define problems,
generate multiple solutions or paths toward solution” (p. 370). Recent research
(Voica & Singer, 2013) has shown the effectiveness of using problem posing as a
tool to develop creativity among school children. Contreras (2013) fostered the
creativity of students by using problem posing. Manuel (2009) summarizes findings
in the literature by claiming that mathematical creativity happens when students
have the opportunity to find different and original strategies and solutions to given
problems, as they take risks and try to find new relationships between facts or ideas.

6.2.6 Interactive Electronic Technology and Creativity

In recent years there have been remarkable changes in access to interactive and
communication technology and in what technology can do that has the potential to
change the way mathematics is represented, learned and communicated (Hoyles &
Lagrange, 2010; Bu & Schoen, 2011; Rivera, 2011; Abramovich, 2014).
Consequently, technology should change the ways we prepare mathematics
teachers (Clark-Wilson, Robutti, & Sinclair, 2014). Students who grew up having
all sorts of information and communication technology available are portrayed by
research as strong visual learners (Martinovic, Freiman, & Karadag, 2013).
Mathematical activities suitable for these learners are informal, experimental,
intuitive, and experiential, taking the form of multiple paths that coincide with the
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preferred learning activities for such students. Such students favor informal learning
in exploring a concept or a process; they follow multiple paths when solving a
problem, and they learn better when they are able to explore experientially and
intuitively (Martinovic, Freiman, & Karadag, 2013, p. 211).

One of the ways to promote creativity in self-directed learning is through
interactive educational technology. Groff (2013) mentions creativity, collaborative
problem solving, and self-directed learning as three of the skills and capabilities for
21st century citizenship. According to Groff, on the one hand, advances in the
learning sciences encourage educators to reconsider approaches to learning,
instruction, and classroom environments; on the other hand, advances in educa-
tional technology inspire new ways for learners to engage with all kinds of content
and activities in their own self-directed experiences. She mentions that technology
is more than just part of the classroom resources. Technology can play a key, and at
times a leading, role in all elements of the teaching and learning environment.
Technology is integral to the organization component as it offers a critical medi-
ating medium for the relationships of pedagogy and assessment. Sacristán et al.
(2010) analyze how the affordances of digital technologies can shape learning
trajectories. Abramovich (2014) illustrates how students in a technology-enabled
mathematics pedagogy setting can use problem solving as a springboard into the
domain of problem posing.

In some cases, creativity is an explicit goal of integrating technology into
mathematics teaching. For instance, the approach Mathematics Integrating
Computers and Applications (Buteau & Muller, 2006) has as one of its guiding
principles to encourage student creativity and intellectual independence. Of course,
this is not done at the expense of conceptual understanding. The other guiding
principle of this approach is to develop mathematical concepts hand in hand with
computers and applications. The main goal of the first Mathematics Integrating
Computers and Applications course is to allow students to experience becoming the
mediator through the design of original Learning Objects, which are instructional
components that focus on one or two mathematical concepts and that are designed
for another person. “These objects are interactive, engaging, easy to use, and are
designed to mediate the user from information to understanding.” (Buteau &
Muller, 2006, p. 78). The role of the instructor in this course is radically different
from traditional lecture based courses. The instructor acts as a mentor and
encourages students’ mathematical creativity as students design, program, and use
their own interactive Exploratory Objects (Buteau & Muller, 2014).

Interactive, user-friendly technology can be used to adapt projects that foster
creativity to make them more accessible to students. For example, a middle school
teacher the authors have interacted with encouraged a strong sense of agency
among her students and used technology to engage them in open-ended tasks.
Students in her sixth grade honors math class, taught entirely in a computer lab,
used a dynamical geometry program to design a miniature golf park. Students did
this as a collaborative activity with each student in the group designing two to three
holes. “The students really had fun with this and they were so creative” (A.
Breitmeyer, personal communication, July 9, 2015). The teacher was inspired by an
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activity originally designed for high school students using traditional tools of
geometry such as rulers, protractors, and compasses (Powell, Anderson, &
Winterroth, 1994). By using interactive technology, the sixth grade students were
able to explore and use mathematical concepts that are traditionally taught in high
school.

Martinovic, Freiman and Karadag (2013) analyze the potential of technology to
foster new ways of learning “to create an outcome that is collaborative,
self-directed, democratic, co-constructed, coordinated, multimodal, sensuous, and
empowering” (Martinovic, Freiman & Karadag, 2013, p. 216) from different per-
spectives, including (a) the visual aspects of different mathematics representations
in software, (b) establishing connectivity, (c) dynamism and interactivity, and
(d) processing power.

The use of technology also allows us to look at mathematical understanding not
only from an individual perspective, but also as part of the group practices. Cakir
and Stahl (2013) argue that “deep mathematical understanding can be located in the
practices of multimodal reasoning displayed by groups of students through the
sequential and spatial organization of their actions” (p. 91). By using technology,
they were able to capture, document, and analyze the creative process of collabo-
rative problem solving in mathematics.

As should be clear from this literature review, creativity is multifaceted and often
plays a role in many innovative approaches in mathematics instruction. Creativity is
invoked whenever students grapple with concepts, activate prior learning, make
new connections, work collaboratively, and engage with technologies.

6.3 Research Questions

An innovative course for future mathematics teachers that integrates technology,
science and mathematics can be studied from different points of view, some of
which have been published elsewhere (Flores, 2014; Flores & Park, 2016; Flores,
Park & Bernhardt, 2016). Consistent with the focus of this book, we will highlight
in this chapter the relationship of students’ use of interactive technology in the
course with manifestations of their creativity. Two research questions help structure
this chapter:

• In what ways does a problem-based course that integrates technology, mathe-
matics, and science foster creativity in mathematics or related aspects of learning
mathematics identified in the literature review (agency, problem solving,
problem posing, imagination, inventiveness, guided re-invention, constructing
knowledge, organizing matter, mathematizing)?

• What is the role of interactive electronic technology in fostering the creativity of
future mathematics teachers in such a setting?
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In the methods section (Sect. 6.4), we will make explicit how the principles that
foster mathematics learning can shape the design and implementation of a course
that fosters creativity. We will then discuss in the results section (Sect. 6.5) how
students were provided with opportunities to display behaviors and approaches
related to creativity in the activities of the course.

6.4 Theoretical Framework: Use of Guiding Principles
in the Design and Implementation of the Course

This section will describe how, by using the research-based principles for learning
mathematics with understanding that guided the design of the course, we incor-
porated into students’ learning experiences elements identified in the literature that
foster creativity in a natural way. We discuss the guiding principles and give
examples of their implementation in the course. Although the implementation could
be considered part of the methods, we think that coupling the principles with the
corresponding examples would give readers a better picture.

Although the course was not originally designed with development of creativity
as an explicit goal, we found that of the 25 strategies described by Sternberg and
Williams (1996) to develop student creativity, we incorporated the first 15 basic
strategies in a natural way. For instance, we allowed our students to define and
redefine problems and projects. We allowed our students to choose their own
random phenomenon for their programming project and choose their own ways of
solving problems (Strategy 4, Sternberg & Williams, 1996). One of the main goals
of the course was to help students to think across subjects and disciplines (Strategy
6, Sternberg & Williams, 1996).

With respect to the technology used in the course, emphasis was on interactive
technology and on students telling the computer what to do rather than the other
way around. Such adaptation of technology is closely related to creativity. The two
main technologies used in the course, GeoGebra and Python, are technologies that
were designed specifically with the purpose that users could adapt them for their
own goals.

The design and implementation of the course were guided by research-based
principles to learn mathematics for conceptual understanding: (a) learners them-
selves need to grapple with concepts and make concepts explicit; (b) learners
actively build new understanding on previous knowledge; (c) learners benefit from
engaging mathematics as a social process; (d) learners’ access and understanding
are enhanced when they use multiple representations and connections; (e) students
learn significant mathematics as they engage in problem solving and problem
posing, and (f) students learn better when they exercise multiple modes of learning
—when they read, talk, write, draw, analyze, apply, present, and reflect. The
research literature behind these principles was reviewed and the principles were
discussed in more detail elsewhere (Flores, Park, & Bernhardt, 2016). Here we will
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make explicit how creativity is related to each of them and how each of the guiding
principles was operationalized in the course.

6.4.1 Grappling with Mathematical Concepts and Making
the Concepts Explicit

Creativity is fostered when learners themselves grapple with concepts and make
concepts explicit. Rather than having the teacher organize the concepts for them and
present them with finished and well-organized mathematical ideas, students need to
grapple with the concepts themselves by experimenting, conjecturing, generalizing,
testing, connecting concepts, and organizing their own thinking. All these activities
offer opportunities for the students to be creative.

Equally important is that the mathematics concepts involved in the activity need
to be made explicit during the learning process rather than remain implicit or tacit.
Here are some examples. A student may describe the relation of two variables in
qualitative terms, such as “the total distance increases as the pull-back distance
increases.” The student is guided to use this statement as a basis to re-state the
relationship more precisely in terms of a constant ratio of the increments of the two
variables and how this ratio is reflected by the slope of the line of best fit. Students
are also guided to point to and make explicit what they mean when they use generic
terms or references, such as “it” or “that,” with the goal of full expression in
well-formulated sentences. Students display creativity when they use language to
frame problems and solutions in their own, original words so that they capture their
understanding verbally. As Ernest (2005) points out, sign production or utterance
involves primarily self-directed actions aimed at personal development or
personally-chosen goals and is often a creative act.

Following the experimental and modeling activities, students are asked to read
sections in the textbook (Gordon & Gordon, 2010) that provide technical and
precise mathematics vocabulary about the shapes of the graphs of functions, such as
increasing, increasing at an increasing rate, concave, and so on. Importantly, the
class activities prime students to be receptive to the textbook content. Students are
subsequently encouraged to use conceptual and precise mathematical terms
explicitly when they discuss the shape of the graphs they were exploring, both in
their small groups and whole class presentations. This integrated practice of talking,
graphing, reading, and writing has been shown to help students develop conceptual
understanding, while at the same time allowing the instructor to see where students
are in their understanding and gauge the need for additional instruction or rein-
forcement (Sealey, Deshler, & Hazen, 2014).
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6.4.2 Learners Actively Build New Understanding
on Previous Knowledge

Creativity is supported by a smooth transition in knowledge building as learners
actively build new understanding on previous knowledge. In general, in the course
we work with mathematical concepts that students have already covered in prior
coursework, and we draw widely from algebra, trigonometry, geometry, and cal-
culus. Opportunities for creativity are provided as students need to cross borders
between mathematics topics they learned separately, to think outside the boxes of
separated mathematical topics to solve problems, and to rearrange and synthesize
their knowledge. Because students build on their previous knowledge, instruction
needs to address preconceptions, both true and false. In the course, we deliberately
perturb existing schemas and allow time for reconstruction, moving forward when
everyone on every team appears to have a solid understanding, often expressed in
writing and presented orally.

6.4.3 Mathematics Learning as a Social Activity

Creativity is promoted when learners engage with mathematics as a social process.
Rather than working on problems individually, students communicate with their
teammates, explain their strategies and results, and work together to construct
meaning. In a socially active classroom, the course fosters verbal and written
communication. Communication in our course is not only between the instructor
and the students but also, and even primarily, among the students. The activities are
designed so that students work in small cooperative groups to stimulate the com-
munication of mathematical ideas among students of all levels (Davidson, 1990).
Of course, simply putting students in groups of four does not mean they are going to
cooperate productively. Students need to develop multiple abilities to work in
cooperative groups in mathematics (Artzt & Newman, 1990). We coach teams on
process, provide peer facilitation, and use rubrics to observe and record the func-
tioning of teams in the classroom. The four levels of student behavior, from more
desirable to less desirable, of the innovation configuration map correspond to
Table 6.1 and are provided to students. The students are asked to discuss advan-
tages and disadvantages for each level.
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6.4.4 Making Connections and Using Multiple
Representations

Creativity is also promoted when learners use multiple representations and con-
nections to enhance their understanding. The course offers many opportunities for
students to make connections across mathematics and to other disciplines, using
multiple representations to access concepts. Students connect concepts within
mathematics (algebra, geometry, trigonometry, calculus) to each other as well as to
physical, biological, and social phenomena. The assessments in the course are
geared to provide evidence that students are able to represent mathematics as an
interconnected network of concepts and procedures and that they are able to
establish connections between mathematics with other fields and everyday life. We
design tasks that allow students to draw on the interplay of mathematics with the
real world (Marrongelle, 2008). Students who deal with realistic problems can
re-invent or develop mathematical concepts in a meaningful way (Gravemeijer,
Cobb, Bowers, & Whitenack, 2000). Tasks are also designed to encourage students
to connect algebra with geometry, geometry with modeling, and probability with
statistics to encourage reasoning and sense making. We try to foster students’
abilities to see connections and underlying themes in the mathematics they have
learned.

One way we try to facilitate in the course connections in mathematics and
enhance understanding is through the use of multiple representations of mathe-
matical ideas. Creativity is promoted through different ways of representing ideas.
We try to help students to develop efficient internal systems of representation that
correspond coherently to, and interact with, the external systems of representation
of mathematics that are used by mathematicians and schools. We want students to
connect their internal representations of mathematical concepts to real phenomena
so that they are more likely to retain the learning and be able to reconstruct their

Table 6.1 Rubric for working in cooperative groups

Working in cooperative groups

(a) Students work
productively with
team members to
solve problems.
They consistently
explain their ideas to
the other members
of the group. They
listen carefully to
each other’s ideas,
and they make sure
everyone is heard
and contributes to
the joint effort

(b) Students attempt
to work with team
members, though
not always
productively.
At times, they share
solutions and
processes with other
members of the
group once they
have a solution

(c) Students work
individually much
of the time. One or
more students try to
dominate the
process; other
students follow

(d) Each student
solves the problem
or completes the
task individually,
and there is no
sharing of results or
processes
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knowledge. Multiple external representations used in the course provide both
opportunities to establish connections and additional points of entry to mathemat-
ical concepts. Tasks require students to use multiple representations of data
(graphical/geometric/trigonometric, formulaic/algebraic, geometric/algebraic,
graphical/analytic, symbolic/verbal) so they have more opportunities to use their
creativity to help them develop deep understanding.

6.4.5 Learning Mathematics Through Problem Solving
and Problem Posing

In addition to learning mathematical content and know-how, students develop
creativity as they solve problems, modify them, and pose their own problems. We
have adapted a model of problem-based learning (PBL), which relies on teams
working collaboratively to solve real or realistic problems (Allen, Donham, &
Bernhardt, 2011). Students thus have opportunities to try their creative approaches
to solve the problems. Our classes typically involve a sequence of two or three short
problems centered on modeling, graphing, or programming functions. Teams
immediately dive into new problems with each class session. The instructor does
not lecture or demonstrate at the board but sets tasks, monitors groups, maintains
the pace, and offers questions to help teams stay on track. One or more peer
facilitators perform a similar role. Students also pose their own problems when they
identify situations that involve randomness and design their own programs to
simulate the phenomenon with a probabilistic model, or when they set their own
task for their robot to perform.

6.4.6 Multimodal Learning of Mathematics

With new technologies we can create multi-modal learning environments for stu-
dents, where they can interact with mathematical objects and with each other in a
variety of ways. “A multi-modal environment supports user interactions in more
than one modality or communication channel (e.g., speech, gesture, writing)
through perceptual, attentive or interactive interfaces” (Güçler, Hegedus, Robidoux,
& Jackiw, 2013, p. 98).

Students develop creativity when they exercise multiple modes of learning.
Students naturally adopt many different strategies as they attempt to solve prob-
lems. Crossing domains and strategies (speaking and writing, modeling, drawing,
testing, measuring) supports the various learning and problem-solving strategies
students naturally employ (Committee on Developments in the Science of Learning,
2000). Students also learn better using a multi-modal approach to learning. In a
study of over 6500 students, Hake (1998) found that interactive engagement

162 A. Flores et al.



methods (broadly defined as heads-on, hands-on activities with immediate feed-
back) were strongly superior to lecture-centered instruction in improving perfor-
mance on valid and reliable mechanics tests used to assess students’ understanding
of physics.

In our active classroom, students might read about and discuss a mathematical
problem with their team members or decide what kind of data to collect from an
experiment, discuss how to organize those data, draw a graph by hand that scales
and represents the data, and then import and model those data more precisely using
GeoGebra. At various stages, we ask a member of one team or another to explain
their thinking to the class or use the document camera to project a solution. When
student teams arrive at different solutions or different methods of describing a
function, we ask them to compare their approaches. Students consolidate their
understanding with either an individual or collaborative written description of the
problem or modeling activity. Writing helps consolidate conceptual understanding
on the part of students and teams, while allowing instructors insight in miscon-
ceptions or partial understanding (Habre, 2012). Incorporation of short, in-class
writing assignments improves students’ learning (Butler, Phillmann, & Smart,
2001; Davidson & Pearce, 1990; Drabick, Weisberg, Paul, & Bubier, 2007;
Stewart, Myers, & Culley, 2010). When conceptual understanding is not evenly
distributed across all individuals or teams, we return to a problem in a subsequent
class to clear up misconceptions, or we direct the team to return to the problem and
sort out their shared understanding. When we can, we compare earlier, faulty
representations of data with later, better models, showing students that under-
standing is an approximate, iterative process.

6.5 Methods

A total of 45 students took the integrated math, science, technology course in fall
2013 (10 students), spring 2015 (19 students), and fall 2015 (17 students) at the
University of Delaware. Of them 44 were secondary education majors, the majority
of whom were either freshmen (23) or sophomores (16). Twenty-two were male and
23 female.

In the course students use four types of interactive electronic technology. First,
they use GeoGebra to explore properties of functions of different types, including
linear, quadratic, exponential, power, logarithmic, and logistic, and use these
functions to model physical, biological and social phenomena in the physical.
Second, they use motion detectors to collect data of experiments involving complex
motion, such as a bouncing ball, or a parachute jump, and they use electronic
devices to represent the data graphically. Third, they learn to code in Python with
simple mathematical situations and later produce their own computer programs
using Python to simulate random phenomena. Fourth, they build and program their
own robot using an icon-based programming language.
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We briefly outline some characteristics that would make the course valuable to
the mathematics teacher education community as a whole. First, the course is
hands-on, active, social, communicative, multimodal, and deeply collaborative and
constructive. Second, it purposefully integrates representation and understanding
across algebra, geometry, trigonometry, calculus, and science. Third, it uses a range
of readily available technologies to gather data, model relationships and systems,
and program actions, thus increasing computational reasoning. Fourth, it leads to
students who can apply what they know, solve problems, work in teams, and apply
technology. And fifth, the course is both fun and engaging for students and
instructors.

6.6 Results

In this section, we address the implementation and outcomes of the course. We
discuss how students’ activities and responses in the course provide evidence that
the course was effective in fostering creativity or related aspects of learning
mathematics, and we highlight the central role of interactive technology in the
process, illustrated by specific activities in the course. We try to make explicit how
each activity discussed is connected to the principles of creativity identified in the
literature review (Sect. 6.2) and to the creativity aspect connected with the
research-based principles used to design the course.

6.6.1 Pull-Back Car

Students dealt with problem-based situations from the very first day because we
wanted to immerse them in new models of teaching and learning designed to foster
creative, team-based problem solving. In the first session of our class, students
studied the motion of a small pull-back car (Bryan, 2014) and discussed in their
groups how to represent the motion as a function (distance travelled vs. distance
pulled back). They had to decide what experiments to perform, including what to
measure and how to measure it. Students discussed in their cooperative groups how
to organize and represent the data. They used technology to represent the data as a
scatterplot, deciding what scales were appropriate, and they experimented to fit a
function to the data visually. The problem had multiple solutions (Leikin, 2014).
Most teams chose to fit a linear function, but one team decided to fit a quadratic
function to their data. Students presented their data and analysis to the larger
group. The higher level of agency for the students (Scardamalia & Bereiter, 2014)
was noticed and appreciated by students, as one of them remarked in her “exit
ticket,” a short written reflection students turn in before leaving, for the session
(Student exit ticket, February 10, 2015):
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I enjoyed being able to create our own experiment. Last semester I took physics and every
lab was already very laid out for us. I enjoyed the freedom to run an experiment the way I
thought it would work out.

This activity clearly highlighted the multimodal learning of mathematics sup-
ported by technology because students mathematized the movement of a physical
object. These students’ work reflected their creativity in the application of their
mathematical knowledge to model physical movements and also in their different
choices for their mathematical model. The first session set the tone for the semester.
Students knew they would not watch the instructor solve problems at the board or
listen to well-polished lectures, but instead they would need to become creative
agents of their own learning.

6.6.2 Distance and Velocity for a Bouncing Ball

Collecting data from a bouncing ball with a motion detector attached to a graphing
calculator (Cory, 2010) allowed students to call upon their understandings of key
concepts that bridge physics and mathematics (see Fig. 6.1). They first designed an
experimental approach to gather data and then analyzed the distance above the
ground vs. time graph generated by the graphing calculator (Fig. 6.2), focusing on
local maxima and minima; intervals during which velocity was decreasing,
increasing, or increasing at a decreasing rate; concavity; and so on. Students were
then asked to sketch individually a velocity vs. time graph that corresponded to
their distance vs. time graph. Students needed to think carefully how the slope of
the distance function changed dynamically. This activity highlighted (a) indepen-
dent understanding of concepts and relations, (b) problem solving, (c) and use of
technology in fostering creativity.

This activity fosters students’ creativity by asking them to re-conceptualize the
familiar mathematical concepts of functions, derivatives, and their relationships to
explain a non-routine movement of a physical object. In this activity, the

Fig. 6.1 Distance versus
time for a bouncing ball
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mathematical objects of the object’s movement cannot be explained by typical
continuous version of the concepts listed above. Specifically, the data generated
would not lead to a traditional symbolic representation for the derivative function.
The movement of the physical object was described and graphed with technology.
Specifically, in order to graph the velocity vs. time graph correctly, they also
needed to make connections with their previous knowledge about physics (for
example, that acceleration due to gravity is constant for a falling object), and about
calculus (the derivative is positive if the function is increasing, the derivative is zero
at local maxima and minima, and so on). Students had to decide what scale to use
for their graph, whether the velocity graph would be continuous, and so on. Then
they shared their graphs with each other in their cooperative groups.

Students grappled with concepts (is the velocity graph piecewise linear?) and
helped each other in making sense of their sketches of velocity vs. time. Students
demonstrated difficulties while representing the velocity of the ball for the very
short interval when the ball hit the ground. Specifically, the individual sketches of
the students were quite different from each other and often revealed misconceptions
about the situation (for instance, velocity changing from negative to positive sud-
denly without being zero at some intermediate point). Even after talking with their
peers, some groups reached a consensus that was not quite correct. In other cases,
after discussing with their teammates, their sketches revealed a more precise
understanding of the velocity of the ball at different parts of the experiment.
However, students were still not quite confident and wanted the instructor to reveal
a correct graph.

Fig. 6.2 One student’s
velocity versus time graph
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In order to foster students’ independence in thinking, the instructor did not
provide a sketch with the correct graph. Students had an additional opportunity to
make sense of the velocity by using a GeoGebra sketch where they could manip-
ulate the velocity values for some special points, connect the points they thought
needed to be connected, and then work in small groups to represent the velocity vs.
time graph (Fig. 6.2). Student groups were then asked to write an explanation of
their graphs using their own words.

By comparing their initial sketches with their revised graphs, we can say that all
groups showed a more solid understanding of the situation. The discussions in their
small groups and in their reports used technical terms that reveal their under-
standing. They described the velocity when the ball was in the air using both their
knowledge of derivatives (e.g., if the original function is decreasing, the derivative
function is negative) and physics (e.g., constant negative acceleration due to
gravity). They also showed better understanding for the brief interval when the ball
was in contact with the ground, compressing and decompressing. They indicated,
for instance, that the slope of the segment BC (Fig. 6.2) was a very large positive
number but not infinite. They also were able to explain, both orally and in writing,
why some of their initial individual or group graphs were not correct. Students felt
confident with their answers even though the instructor never provided the correct
graph. In this activity, being creative consisted of a set of productive behaviors:
devising their own data-gathering methods using the appropriate electronic tech-
nology, modeling the data in various ways with interactive computer graphs,
generating their own explanatory hypotheses, testing one explanation against
competing explanations, expressing explanations both orally and in writing using
their own language, arguing for one or another competing explanation, and coming
to consensus on a best solution.

6.6.3 Fitting Curves to Sets of Points

In a mathematics classroom that fosters students’ creativity, students are exposed to
new ways of modeling data, including innovative approaches based on visualization
of mathematical functions. In our class, students learned ways in which GeoGebra
and the use of sliders within the software provided an alternative point of entry to
the topic of fitting linear and quadratic curves to scatterplots of data (Fig. 6.3).
Sliders allowed students to drag a point on a segment that represented values of the
parameters of the function and thus had a visual and kinesthetic approach for the
change of the parameters. Students also used sliders for fitting other types of
functions (exponential and power functions) to sets of data. By adjusting the
parameters on the slider, students developed a better understanding of the role and
impact of the different parameters in the formula for a function. The feedback
provided by the dynamic graph was immediate, and students could see coordinated
changes across representations because the equation that described the function
changed at the same time as the graph of the function. Students embraced and used
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to their advantage the capability of GeoGebra to use numeric, graphic and symbolic
representations of a function, which changed simultaneously on the computer
screen. Students quickly learned how to use sliders for the parameters of a variety of
modeling functions with very little direct teaching. Team members took turns
generating the graphs and adjusting them with the sliders with other members
offering suggestions to increase or decrease the value of specific parameters.

Whenever possible, we attempted to present students with situations that called
upon their understanding of mathematical functions as applied to phenomena in the
physical world. Fitting functions to sets of points that represent real data encour-
aged students to connect mathematical functions and models to real-world phe-
nomena. In the case represented in Fig. 6.3, students plotted data representing the
growth of redwood trees in their first year as a function of rainfall. Students started
to think about how tree growth might be measured, how much a tree might grow in
a year, and why too little or too much rain (trees also need sunshine) might result in
a concave curve. Using real growth data also caused students to think logically
about why the graph for a given data set would or would not intersect one or both
axes.

However, we observed that students did not automatically know how to “play”
with the technology to model phenomena (Uribe-Zarain, 2015). Students needed
time and guidance to develop their ability to explore mathematics using the tech-
nology. A few groups used the software in a more inquisitive manner by changing
on their own the parameters of the functions to see how the graph changed. When
students played with the software more, they gained better insights about the
relation of the function and the situation they were modeling as revealed in their

Fig. 6.3 Using sliders to fit a curve for a graph of tree growth vs. rainfall
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small group discussions and written reports. For example, one of our students
pointed out how she benefitted from using GeoGebra in terms of finding best fit
without limiting their possibility to the simple functions (Uribe-Zarain, 2015, p. 9):

I think the visual part with the graph is really important. Because most people get okay
linear, quadratic, but then it gets confusing beyond those. And I think playing with
GeoGebra and showing how equations fit, like lines of best fit curves, stuff like that works
well!

For instance, when studying sinusoidal functions of the form y = A sin
(xx − b) + h in the beginning students did not have a clear understanding of the
effect of changing each of the parameters on the graph of the function. After they
had the opportunity to change the values of the parameters with the sliders and
observe the corresponding change in the graph, students were able to see that the
parameter h shifts the graph vertically, while the parameter A controls the ampli-
tude, that changing the parameter x affects the frequency, and so on.

6.6.4 Rowing Competition and Perspective

In the rowing competition activity (Flores, Bernhardt, & Shipman, 2015), students
had a different opportunity to express their creativity in various ways. The context
as presented was the challenge of gauging the progress of two rowing sculls at some
distance when the viewer had only a single perspective. Human perception of
moving objects on a level plane is often deceptive. To grapple with this problem,
students first merged the use of two different types of technology, video and
GeoGebra. By using screenshots of the video at different points in time and
embedding them into GeoGebra files, students were able to compare the motion of
sculls in more precise ways. Second, they made connections between the concept of
the vanishing point, which is usually studied in static situations such as paintings,
with the motion of sculls rowing in parallel. By doing this they extended their
understanding of the vanishing point in perspective from a static to a dynamic
situation. Third, the problem lent itself to multiple solutions. Some teams used the
central vanishing point as the main mathematical tool to compare the motion of the
sculls and used the lines connecting from the fronts of the sculls to the vanishing
point in several snapshots to determine which scull was ahead and whether another
scull was catching up. Other teams used the vanishing point corresponding to the
fronts and ends of two sculls (Fig. 6.4) and determined, by observing the motion of
the vanishing point across snapshots, whether one boat was moving faster than
another. The students also had an opportunity to express their creativity in writing
using a combination of genres. They were asked to write a persuasive letter to a
fictitious TV producer to convince her that they had a way to use technology to
allow viewers to determine more easily who was winning in the race and to
compare speeds of sculls. The letter had to make explicit the mathematical prin-
ciples used in their solution.
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6.6.5 Student Construction of the Definition of Limit
of a Sequence

In these activities, students participated in a cyclical process to re-invent their own
definitions of the limit of a sequence for a particular value L = 5. The activity was
preceded by having the whole class generate a set of qualitatively distinct examples
and non-examples of sequence convergence. The instructor provided access to
additional examples of sequences (Oehrtman, 2015). After this, students wrote their
individual definitions of the limit of a sequence and then worked in their small
groups for a first tentative definition. All of their first definitions included a dynamic
language equivalent to “approaching” or “getting close to.” Students shared with
the whole group what problems they were having with their definitions. To develop
students’ understanding of the underlying structure of the convergence of
sequences, the framework of approximations, errors, and error bounds was then
introduced, and students wrote a second small group definition, tested it, and

(b) Vanishing point at t = 38 

Vanishing point at t = 34 (a) 

Fig. 6.4 Using GeoGebra with video snapshots to track the moving vanishing point
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received feedback. The refining cycle started again. In total, students went through
four refining cycles, and wrote four definitions as results of their refinement before
they were asked to post a formal definition. This process of re-invention and the
conceptual development students went through is described in detail in Flores and
Park (2016). Here we focus on a couple of aspects related to creativity. One is that
students experienced through this activity that creativity “is often associated with
long periods of work and reflection rather than rapid, exceptional insight” (Silver,
1997, p. 75). For example, one student mentioned their refinement process as a
valuable experience while starting from their informal conceptions of the limit
which mainly included the qualitative behavior of the dots (“approaching” or
“getting close to”) and moving towards a definition equivalent to the formal defi-
nition in mathematics by identifying problems, fixing the problems, and revising
their definitions in an end of course interview (Uribe-Zarain, 2015, p. 7):

We had to learn the limits, we had to keep doing it over and towards the end I was like
okay, I kind of just want the definition. But it was cool how we edit, and edit, and edit and
we finally got it.

In the activity described in this quote students had to write tentative definitions
for the limit of a sequence, contrast their definition with well-chosen examples and
nonexamples, receive and give feedback to other teams, and after reflecting on the
feedback, revise their definitions accordingly. As Biggs and Tang (2007) point out
this kind of intense involvement in a particular field accompanies creativity. Some
of the students appreciated that enough time was given to work in depth on the
re-invention (Uribe-Zarain, 2015):

I liked that it wasn’t just a one class where we were focusing on just a definition, but it was
like alright you write your definition, come back on Thursday and as a group we’ll write
them and alright on Tuesday now we’re going to look at every other groups’ definition.
I liked that because it gave me more of an understanding whenever we would do that.

A second creative aspect relates to teamwork (Paulus, 2000). Students perceived
that by working in small groups, they were able to re-invent something that would
have been harder working individually. As one student expressed (Uribe-Zarain,
2015):

It was a lot harder to work through it than I thought it would be. So, working with a group
was helpful in that sense and then coming up with the definition on my own was always
more complicated than when I was working with a group.

There is an important lesson here. Creativity is often iterative (Silver, 1997), as
one design is tested, revised slightly, tested again, refined a bit more, at some point
reaching a satisfactory design. Additionally, creativity in design often is enhanced
by having more than one perspective.
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6.6.6 Programmable Robots and Feedback Loops

The last activity of the course we will discuss is an open-ended project. Students
built a robot working in small groups using Legos and a programmable brick. They
controlled the robot using the programming language Mindstorms, which is based
on icons. Students were asked to write their own programs that included a feedback
loop, that is, that the robot would change its behavior in response to an outside
input in a cyclical way. Students knew that we were “looking for them to
demonstrate their knowledge, analytical and writing skills, and creativity”
(Sternberg & Williams, 1996, p. 23). Although in most cases the teams chose to
build a robot using the instructions for various examples available with the set or
online, they showed their creativity in the way they programmed the robot. Often
teams embarked on writing complex programs but ended up simplifying them
because the sensors or the motors did not quite operate in the way they thought.

Students made formal presentations in which they were required to explain any
feedback loops in their program, including how the robot changed behaviors
depending on the signals received by the sensors, (Fig. 6.5), and also making
explicit some of the concepts of mathematics and physics that could be illustrated in
the functioning of the robot. The following are the mathematical concepts identified
by students: ratio of gears, angle, rotation, rate of rotation, relation between the ratio
of gears and ratio of rotation rate, multiplication of ratios, translation, reflection,
symmetry, and inverse operation. Among the concepts related to physics, students
identified speed, velocity, angular speed, centripetal acceleration, normal force,
torque, momentum, angular momentum, mechanical advantage, and friction.

Fig. 6.5 A feedback loop
programmed and explained
by a team of students (Whiley
& Tellup, 2015, used with
permission)
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The creativity of students was manifested through the specific examples they
chose to illustrate the concepts and the connections they made between the behavior
of the robot and feedback loops in nature depending on time, touch, light, or other
inputs, as well as feedback loops in man-made devices, such as the automatic door
at the supermarket, and the feedback loop when entering a password or PIN
number. Students also showed creativity in the use of conveyance technologies for
the formal presentation in the form of graphics or special effects. Frequently, stu-
dents used a fictitious story to set the behavior of their robot in context. Although
this type of creativity was not directly related to mathematics, it will be very handy
in their future role as teachers.

6.7 Discussion

In this paper, we presented various ways that uses of interactive technology can
foster creativity in the mathematics classroom. As we discussed in the literature
review section, there have been multiple discussions on the role of creativity in
learning of mathematics and the ways to promote them (e.g., Aiken, 1973;
Hadamard, 1945; Krutetskii, 1976; Kattou, Kontoyianni, Pitta-Pantazi, & Christou,
2013; Poincaré, 1920; Sheffield, 1994; Sriraman, 2005). Considering the crucial
role that creativity plays in creating mathematics (Polya, 1957; Hanna &
Winchester, 1990), creativity should be considered in developing students’ math-
ematical ability and deepening their mathematical understanding. Our results
showed that students’ creativity and related aspects of learning mathematics was
enhanced through various activities involving the interactive electronic technology,
which we designed using research-based principles for learning mathematics with
understanding. Our detailed analysis in Sect. 6.6 showed that the use of interactive
technology provided the environments where students express and promote their
creativity in mathematical context by providing (a) tools to test, revise, and justify
their conjectures and predictions multiple times (e.g., Sects. 6.6.1 and 6.6.3),
(b) non-routine situations where they have to re-conceptualize their previous
mathematical knowledge to explain the mathematical aspects of new situations
(e.g., Sect. 6.6.2), (c) a new angle to look at physical objects with non-typical given
data for students to think about a creative way to find out the mathematical
information of the objects (e.g., Sect. 6.6.4), (d) the refinement cycle where students
start with their initial idea and move towards mathematical formalization in which
they had to condense and objectify their qualitative ideas to quantitative descrip-
tions (e.g., Sect. 6.6.5), and (e) tools to build a physical robot that reflects and
realizes what students plan to build from their own creativity (e.g. Sect. 6.6.6).
While engaging these activities, other aspects of learning mathematics related to
creativity were also promoted. For example, throughout each activity, students
experienced learning mathematics in a social context by building shared under-
standing within their small group and the whole class (e.g., Sect. 6.6.5), how to
express their mathematical idea in multiple ways but with connection among them
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(e.g., Sects. 6.6.2 and 6.6.4), and how multiple aspects of mathematics are affecting
each other in various representations (e.g., Sect. 6.6.3).

Participating in creative experiences in mathematics is important for future
teachers for several reasons. First, participation in such experiences can be very
rewarding and fulfilling by itself. Second, it is unlikely that teachers who them-
selves have not experienced creativity in mathematics will be able to foster cre-
ativity in their own students. Teachers who have a rich repertoire of open-ended,
problem-based tasks in which technology is used effectively can offer more
opportunities to engage students in such activities. In turn, students who are
expected to have more agency in their own learning will also be more creative.
Furthermore, the importance of creativity goes beyond the realm of learning
mathematics; creativity is important in learning to become a teacher. Teachers need
to be creative to continue developing as teachers and grow professionally (Griffiths,
2014).

Students know from day one that our class is not a “traditional” mathematics
class. They are surprised to immediately start working in teams, be presented with
problems, and be expected to learn to apply new technologies without a lot of
instruction. They are not used to an active class, where they spend very little time
watching the instructor work at the board and where each class period engages them
in new activities. They are not accustomed to mathematics classes where they are
expected to draw upon prior understanding of algebra, trigonometry, geometry,
statistics, and calculus, with the experience of moving across domains of knowl-
edge on a daily basis, often applying what they understand to real-world phe-
nomena. Nor do they expect to talk as much as they do, to argue as much, to stand
in front and present as much, or especially to write as much as they do.

From the perspective of the instructor, teaching a course that fosters creativity of
the students is also a very rewarding experience. So far, for each of the projects and
most of the activities, students came up with approaches that enriched the experi-
ence of the instructor. For instance, the collection of student-generated examples of
real world use of linear functions posted on the electronic forum constitutes a
wealth of connections between mathematics and everyday life.

Of course, teaching such a course is quite labor intensive. It requires very careful
preparation of the problems and activities, implementing them in class and
observing their results, and keeping what works well and modifying what did not
work so well.

Also, it is important to remember that students need guidance in terms of how to
work productively in cooperative groups and how to deal with difficult and complex
problems, but also that they need the opportunity to try their own strategies and
solutions.

End of semester interviews with outside evaluators confirmed that students find
the experiences of the course challenging and very valuable (Uribe-Zarain, 2015).
Furthermore, two years after taking the course, one student reflected on how her
participation in the integrated course helped her in her career at the university, and
how the use of technology had an impact on her own creativity. She states that in
the integrated course

174 A. Flores et al.



While utilizing technology, for example, using GeoGebra and the coding program, I
learned myself connections within mathematics that would be of great benefit for my
students conceptual learning. […] Ultimately this class, not only introduced me to new
connections within mathematics but ways I can incorporate new and exciting topics to teach
my students. These technology ideas will not only engage my students but build upon their
conceptual learning. Before this class, I was unaware of the effects technology could have,
but I have developed a much more creative mindset from not only doing the activities
myself but also having many more resources. (Personal email communication with a
student, 13/1/2017).

A student who took the course the year before highlights affective issues asso-
ciated with the inherent creativity in experimenting with mathematical concepts and
solving problems on their own.

It was my first time using that much technology every day as a learning too and I think that
it really benefited me. […] Most of the time in math classes, you are stuck taking notes from
the board, or doing worksheets with a lot of problems, but this course was more fun because
it was more hands on. It definitely was something that got me more excited to come to class
each day. (Personal email communication with a student, 2/4/2017).

Three years after they had taken the course, two other former students also
reflected on the impact of using interactive technology in their creativity. One of
them is already a teacher.

I think that the class opened me up to new ways to integrate programming into a mathe-
matics course. Moreover, I think that the types of activities done in class work well in
classes for problem based learning and project based leaning. The uses of technology in the
course showed many possibilities and examples of how we could engage our own students
in the future. (Personal email communication with a student, Jan 30, 2107).

In all cases former students remembered vividly the interactive technological
tools used in the course and even specific activities. Their sense of excitement about
using interactive technology in creative ways to foster mathematical understanding
remains fresh in their minds.
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Chapter 7
Creativity and the Design
of Music-Mathematics Activities
in a Virtual Simulation Learning
Environment

Trina J. Davis, Glenn Phillips and Gerald Kulm

Abstract Defined by digital age learning, the current education landscape offers
unparalleled opportunities for creative and transformative experiences for students
of all ages. Navigating the complexity of this new landscape means that students
must be equipped with skills that foster creativity, and are poised to develop unique
and innovative solutions. This requires educators to rethink what instructional
design should look like and how students should be engaged. Mathematics class-
rooms, in particular, are fertile places for activities that integrate creativity. This
chapter explores the role of creativity in mathematics learning and examines the
intersection of mathematics, music, and virtual spaces. Built on Koestler (The
concept of creativity in science and art. Springer, The Netherlands, pp. 1–17, 1981)
work on creation and creativity, the chapter suggests how environmental (tech-
nology) and conceptual (music) frameworks can be juxtaposed to mathematics
teaching to create more engaged and productive learning. It is in these unique
collisions that new knowledge and new ways of knowing come to pass.
A classroom simulation example involving practice teaching experiences in a vir-
tual setting exhibits how technology and music can be incorporated into preservice
teacher education. Implications of this work include an expanded idea of what
contributes to feelings of efficacy and student success in the mathematics classroom
as well as how music may help with challenging mathematical concepts like
fractions and patterns.
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7.1 Introduction

We are now in a century that has been defined by digital age learning that offers
unparalleled possibilities for creative and transformative learning experiences for
students of all ages. Navigating the complexity of this new landscape means that
students must be equipped with skills that foster creativity and problem solving and
are poised to develop unique and innovative solutions (Mishra, Fahnoe, Henriksen,
& The Deep Play Research Group, 2013; International Society for Technology in
Education, 2007, 2016). Research suggests that these skill sets must be deeply
ingrained and digital age learners must have strong disciplinary content knowledge,
but also be able to see seamless connections across disciplines (Mishra et al., 2013).
This project, part of a larger National Science Foundation-funded grant created to
examine the intersection of technology, equity, and math content knowledge for
preservice mathematics teachers, examines how technology can be used to link
creativity and mathematics learning. As student avatars were placed into a virtual
environment containing “musical play,” researchers sought to understand what
meaning these preservice teachers made of connections between technology,
mathematics, and creativity. In short, this project seeks to understand what the
experiences of preservice mathematics teachers in musical play environments tells
us about creativity as pedagogy, and creativity as product. This piece uses Koestler
(1981) notion of creativity as a theoretical frame to understand the context of the
project and make meaning of the participants’ responses. The perspectives that we
share here are not exhaustive, but we hope help to illustrate the importance of
creativity in mathematics learning. We will also highlight approaches that are sit-
uated in, as well as, leverage the affordances of using a simulated classroom and
learning spaces in the virtual world of Second Life® (Davis, 2013). Dickey (2005)
describes virtual worlds as networked desktop virtual reality where users or avatars
(i.e., on screen customizable virtual personas), move around and engage in various
three-dimensional (3-D) spaces. Users can communicate using text-based chat
tools, or via audio (voice). Basic gesture functionality is also integrated into virtual
worlds. Virtual world spaces will be elaborated on later in the chapter.

7.2 Creativity and Learning: Introducing a Creative
Framework

The moment of creativity, as explained by Koestler (1981) occurs when two
“mutually exclusive associative contexts… merge” (p. 5). The effect, leading to
moments of comedy, discovery, or art is hinged upon the unexpected collision of
two sets of rules or paradigms. Explained further,

From Pythagoras, who combined arithmetic and geometry, to Einstein, who unified energy
and matter in a single sinister equation, the pattern is always the same. The Latin word
cogito comes from cogitare, “to shake together.” The creative act does not create something
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out of nothing, like the God of the Old Testament; it combines, reshuffles, and relates
already existing but hitherto separate ideas, facts, frames of perception, associative contexts
(Koestler, 1981, p. 2).

Mishra et al. (2014) build on Koestler’s argument insisting that “creativity is not
a ‘magical’ process, rather it emerges from combining preexisting ideas and con-
cepts in unique and novel ways” (p. 20). In short, it is at the nexus of two seemingly
incongruent fields that we find creativity in business, in healthcare, in art, and in
education. Therefore, the search for creativity is not as important as the search for
an association that could create it.

The call for creativity in education is not new. The United States’ National
Advisory Committee on Creative and Cultural Education (NACCCE), in a 1999
report, claimed, “Education faces challenges that are without precedent. Meeting
these challenges calls for new priorities in education, including a much stronger
emphasis on creative and cultural education and a new balance in teaching and in
the curriculum” (p. 5). Several books are devoted to both the creative pedagogy
(Gregerson, Snyder, & Kaufman, 2012; Springer, Alexander, & Persiani, 2006;
Woods & Jeffrey, 1996) and the practice of teaching creativity (Cropley, 2001;
Craft, 2010). The implementation of creative pedagogy even contains parameters
suggested by Cropley (2001). Three aspects that should guide how creativity is used
in the classroom include novelty, effectiveness, and ethicality (Cropley, 2001, p. 6).
Cropley (2001) suggests that creative education “departs from the familiar,…works,
in the sense that it achieves some end,” and is not “selfish or destructive behavior”
(p. 6).

Moreover, creativity in education is not always an active process of infusion; it
can also be an uncovering or unearthing of latent creativity. At the K–12 level,
Runco (2008) argues that the job of educators is not to “start from scratch” as
children often come with creative talents and ideas (p. 7). Instead, he continues,
“[kids] already have the capacity for original interpretations and creative ideas. It is
really more a matter of preventing loss of talent than it is the provision of new
talents” (Runco, 2008, p. 7). And finally, creativity (even in education) is often
difficult to define. Mitchell, Inouye, and Blumenthal (2003) provocatively suggest
that “[c]reativity is a bit like pornography; it is hard to define, but we think we
know it when we see it” (p. 7). Thirty years ago, Nicholson and Moran (1986)
explored the ways that preschool teachers observe and measure creativity. They
found that more often than not, teachers substituted or confused measures of
intelligence for measures of creativity. While this flexibility should not discourage
creativity work in education (PK–12), it should help us recognize the various ways
that creativity can be both planted and dug up in the classroom context.
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7.3 Creativity and Mathematics Learning:
Contextualizing the Project

While the general push for creativity in education stems from broader concepts of
creativity’s value, it is important to recognize the importance of subject matter as a
place of creativity. The ways that creativity can be used in a poetry lesson may vary
greatly from how creativity would be infused into a lesson on the mitochondria, for
example. Baer (2016) insists that “[t]here are simply no domain-general, decon-
textualized thinking skills, only domain- and content-specific thinking skills”
(p. 16). If we follow Baer’s argument (which we do), a logical step is to consider
the particular relationship that creativity shares with mathematics education. What
domain-specific thinking skills, practices, and projects can support creative learning
within a mathematics classroom?

In his 1979 Presidential Address to the Mathematical Association of America,
Tammadge builds a rationale for the inclusion of creativity in the mathematics
classroom. He argues that “[w]hat makes the wise mathematician, now as [in the
days of Archimedes], is experience and confidence, willingness to experiment,
originality of approach” (Tammadge, 1979, p. 147). Critiquing the common models
of classroom instruction, he writes:

The “rational machine” model will do up to a point, but it is not enough. We create for
pleasure as well as to meet needs or solve problems. Knowledge and understanding cer-
tainly develop in quanta, in jumps, not by continuous accretion (Tammadge, 1979, p. 147).

Tammadge’s (1979) call was certainly heard. Today there are conferences
devoted to creativity and mathematics, multiple websites that suggest creative
mathematical pedagogy and projects, and numerous publications that both instruct
on and consider the role of, creativity in mathematics education.

Researchers have explored the conceptions and executions of creativity in
mathematics classrooms (Lev-Zamir & Leikin, 2013; Leikin, Subotnik,
Pitta-Pantazi, Singer, & Pelczer, 2013; Henrickson & Mishra, 2015; Vale &
Barbosa, 2015), evaluations of creative mathematicians (Mehta, Mishra,
Henrickson, & The Deep-Play Research Group, 2016), and calls for future research
on mathematics and creativity (Leikin & Pitta-Pantazi, 2013). In short, creativity in
mathematics expands applications of concepts, engages students, and (in a
Koestlerian way) “shakes” up the rote curriculum of record. Notably, creativity was
introduced as a defensive tool against students with negative or disabling opinions
on their own efficacy in mathematics (Boaler, 2015).

Kleinman (2008) suggests that while “there may be no single, ‘hold-all’ defi-
nition of creativity, there seems to be a general coalescing of agreement amongst
creativity researchers that creativity involves notions of novelty and originality
combined with notions of utility and value” (p. 209). It stands to reason then that
creativity is often paired with those things to which we already assign “utility and
value.” This value can be understood in the recent evolution of STEM (Science,
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Technology, Engineering, and Mathematics) to STEAM (Science, Technology,
Engineering, Art + Design, and Mathematics). The incorporation of
“Art + Design” both makes the popular acronymic field more inclusive, and it
makes room for the creative interactions of art and design in traditional STEM
fields. The movement (championed by the Rhode Island School of Design) has
three main objectives:

• transform research policy to place Art + Design at the center of STEM.
• encourage integration of Art + Design in K–20 education.
• influence employers to hire artists and designers to drive innovation (“STEM to

STEAM,” 2016).

The lexical play both recognizes Art + Design as united with and central to
STEM subjects.

It is at the intersection of art and mathematics that creativity, what Koestler
(1981) referred to as the AHA (discovery), HAHA (humor), and AH…(emotive)
moments, that the effects of creative “bisociation” are seen (p. 2). Methods for
infusing creativity and mathematics include photography (Munakata & Vaidya,
2012; Furner & Marinas, 2014), painting and drawing, 3-dimensional art, computer
technology, and performing arts, including music.

This final bisociation (mathematics and music) is most appropriate to our current
project. Since Pythagoras (and perhaps before) the relationship of mathematics and
music has been noted (Wright, 2009; Nisbet, 1991; Vaughn, 2000). At its base
level, musical education is mathematics. Scales, meter, and rhythm are no more
than sets, fractions, and integers. Even more complex ideas like chords are housed
within a mathematical understanding of music. It is therefore unsurprising that
music would make sense in a mathematics classroom. Vaughn (2000) explains it
thusly:

According to conventional wisdom, music and mathematics are related, and musical
individuals are also mathematically inclined. After all, musical rhythm is based upon
mathematical relations, and it is certainly reasonable to assume that an understanding of
music requires some understanding of ratios (e.g., 3/4 time vs. 4/4 time) and repeating
patterns. In addition, if music experiences [enhance] spatial-temporal reasoning, then music
may also enhance understanding of those aspects of math that involve spatial-temporal
reasoning, such as geometry and proportional reasoning (p. 149).

Introducing the arts into the mathematics classroom has multiple effects. Fiske
(1999) suggests that engagement in the arts can (1) “reach students who are not
otherwise being reached,” (2) “reach students in ways that they are not otherwise
being reached,” (3) “connect students to themselves and others,” (4) “transform the
environment for learning,” (5) “provide learning opportunities for the adults in the
lives of young people,” (6) “provide new challenges for those students already
considered successful,” and (7) “connect learning experiences to the world of real
work.” (pp. 12–13). Johnson and Edelson (2003) used music in the elementary
classroom to increase spatial-temporal reasoning. Beal (2000) suggests that music
can be used to help with functions and reasoning. Fernandez (1999) suggests
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creating math-based instruments upon which students can play songs. These cre-
ative practices lead to the confidence, connectedness, and challenge that Fiske
(1999) reports.

In addition to the K–12 classroom, music can also be used in the university
classroom to prepare future teachers. Though incorporation of music into traditional
curriculum (as was done in this project) may positively challenge students and
faculty, some teachers may feel that the time and energy requirements necessary to
create these kinds of creative lessons are not feasible (Colwell, 2008). On the other
hand, after incorporating music into a university classroom, An, Ma, and Capraro
(2011) found that “preservice teachers’ engagement, beliefs, motivation, and con-
fidence toward mathematics teaching and learning were statistically significantly
improved” (p. 240), indicating that the time and effort can be worthwhile.

7.4 Creativity and Technology: Exploring Intersections

Music and mathematics are separate paradigms whose intersection in the field of
education creates space for new ideas, new ways of knowing, and creative footholds
for both student and teacher growth. This pairing, however, must often be con-
nected by a technology that can create a neutral space for interaction. Technology
(from pianos and 3D graphics to virtual worlds) can act as this space. At its root, the
question of creativity and education is not how to pair creativity with education, but
instead, with what to pair education in an effort to produce creativity. Mishra and
The Deep-Play Research Group (2012) suggest that “new tools, devices, and
applications” have given birth to a “new world” of creative possibilities (p. 13).
“Given this relationship between creativity and technology it is not surprising that
educators (particularly those who are technically inclined) have argued that
teaching and learning in this emerging world needs to emphasize these twin issues
—technology and creativity” (Mishra & The Deep-Play Research Group, 2012,
p. 13). However, Mishra and his research group are quick to clarify that technology
is not limited to that digital or electronic “fad” that is currently en vogue (Mishra &
The Deep-Play Research Group, 2012, p. 14). “Whether it’s a stone-age tool, a
Guttenburg Printing press, the simple crayon, or a high-tech digital simulation, any
form of technology is a tool for living, working, teaching and learning” (Mishra &
The Deep-Play Research Group, 2012, p. 14).

Technology can act as both a paradigm that interacts with education to promote
creativity and an avenue or tool that makes the interaction of two unique paradigms
possible. Technology offers what Mishra and The Deep-Play Research Group
(2012) refer to as “(in)disciplined research” (p. 15). (In)disciplined research rec-
ognizes the importance of work within one discipline but suggests that equally
important work is occurring across multiple disciplines (Mishra & The Deep-Play
Research Group). Technology can serve as both a conduit and a catalyst for cre-
ativity. In Koestlerian terms, technology can be used to “shake” two paradigms
together.

186 T. J. Davis et al.



As one unpacks ways that technology can fuel or support creativity, a survey of
21st century knowledge frameworks can be instructive. Earlier works suggest that
while being actively engaged in experiential and situated learning in virtual envi-
ronments, learners can be afforded ubiquitous opportunities to authentically develop
an array of skills: new literacies (Jenkins, Clinton, Purushotma, Robinson, &
Weigel, 2006), problem-solving or mathematics skills (National Council of
Teachers of Mathematics, 2000), scientific literacy skills, and computational
thinking and information and communication technology (ICT) skills (Barr,
Harrison, & Conery, 2011; ISTE, 2007). New literacies or skills outlined by various
scholars and groups can include but are not limited to: creativity, collaboration,
problem solving, simulation, critical thinking, and negotiation. More recently,
Kereluick, Mishra, Fahnoe, and Terry (2013) in their critical review, identify
common themes that converge to reveal three types of knowledge domains:
foundational knowledge, meta-knowledge, and humanistic knowledge. The authors
argue that little has changed in now, this 21st century related to the goals of
education, rather they emphasize the need to critically express how technologies, in
fact, change these knowledge types. The authors theorize that foundational
knowledge gets at the core question “what do students need to know?” (Kereluick
et al., 2013, p. 130). The frameworks that Kereluick et al. (2013) reviewed, sum-
marized foundational knowledge by three key subcategories: core content knowl-
edge, digital literacy, and cross-disciplinary knowledge. Meta knowledge, on the
other hand, is delineated by the three subcategories: problem solving and critical
thinking, communication and collaboration, and creativity and innovation.
Kereluick et al. (2013) report that creativity was the most cited across multiple
frameworks as an essential skill for success in the 21st century. They describe
creativity and innovation thusly:

Creativity and innovation involve applying a wide range of knowledge and skills to the
generation of novel and worthwhile products (tangible or intangible) as well as the ability to
evaluate, elaborate, and refine ideas and products.

Lastly, the authors describe humanistic knowledge as “a vision of the learner’s
self and its location in a broader social and global context” (Kereluick et al., 2013,
p. 131). Three subcategories are delineated: life/job skills/leadership, cultural
competence, and ethical/emotional awareness. It bares repeating, Kereluick et al.
(2013) argue that little has changed related to our educational goals, however we
note, one can assume that the technology skills that frame what students need to
know and be able to do, are fluid over time.

The International Society for Technology in Education (ISTE) (2016) Standards
for Students provide an illustrative example of this. The ISTE technology standards
were recently updated and offer a framework for what creativity and student
learning might look like in a technology-rich learning context. For example, the
standards statement for the “Creative Communicator” focus area states: “[s]tudents
communicate clearly and express themselves creatively for a variety of purposes
using the platforms, tools, styles, formats and digital media appropriate to their
goals. An example of an indicator for this standard is: “[s]tudents create original
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works or responsibly repurpose or remix digital resources into new creations.”
Similarly, in the ISTE (2008) Standards for Teachers, the “Facilitate and Inspire
Student Learning and Creativity” standard states:” [t]eachers use their knowledge of
subject matter, teaching and learning, and technology to facilitate experiences that
advance student learning, creativity and innovation in both face-to-face and virtual
environments. An illustrative indicator for this standard is: “[p]romote, support, and
model creative and innovative thinking and inventiveness.”

7.5 Technology Use and Affordances: Classroom Research

The results related to instructional effectiveness within Second Life® have been
mixed across various studies (e.g., De Lucia, Francese, Passero, & Tortora, 2009;
Wrzesien & Raya, 2010; Ho, Rappa, & Chee, 2009). Authors posit that a distinct
advantage Second Life® offers is its presence, or almost-like-being-there feel.
Across various contexts, SL participants express they have experienced a sense of
being present in the space (e.g., De Lucia et al., 2009; Mikropoulos & Natsis, 2011;
Witmer & Singer, 1998). The psychological construct of presence has been cited
across numerous studies (Mikropoulos & Natsis, 2011) as a key to improving
involvement [or engagement] and, by implication, outcomes.

In a computer mediated learning environment context, instructional time can be
operationalized by the frequency or amount of time it takes to engage in virtual
instruction, or complete exercises, or tasks. One can consider the amount of time
participants spend in the environment or use the technology. Holt and Brockett
(2012) suggest that a combination of pedagogies that foster time spent with tech-
nology and self-directed learning [or facilitated learning], help to improve tech-
nology use. In addition, several researchers have investigated self-efficacy and
outcome expectancy as it relates to teaching (e.g., Enochs & Riggs, 1990; Enochs,
Smith, & Huinker, 2000; Gibson & Dembo, 1984; Guskey, 1988). Design of virtual
world learning activities that focus on modeling and working out mathematics
problems are more challenging due to symbolic system use. With recent develop-
ments in SL such as extended use of displays that project an array of formats and
now the availability of interactive pen displays (i.e., Smart Podium solutions) paired
with streaming applications, mathematics concepts and problems can be presented/
solved with greater ease (Davis, Chien, Brown, & Kulm, 2012).

Technology acceptance and use has also been linked to the comfort or ease of
use, of the particular new technology. Usability can be defined by two subcom-
ponents, perceived meaningfulness and perceived ease of use (Merchant et al.,
2012). Davis (1989) conceptualized the well-known Technology Acceptance
Model (TAM). Prominent factors that influence the decision of accepting a new
technology are perceived meaningfulness and perceived ease of use (Davis, 1989).
More recently, Holden and Rada (2011) found that technology self-efficacy
(TSE) was more beneficial to the TAM than computer self-efficacy. Additionally,
Wong (2015) in his study of preservice primary mathematics teachers found an
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overall positive attitude towards the use of technology, while perceived usefulness
was more influential than perceived ease of use. Perceived ease of use was found to
rely heavily on facilitating conditions rather than computer self-efficacy. Taken
together, there are several factors that can impact a user’s experiences with tech-
nology, we have highlighted just a few of these.

The remainder of the chapter provides an illustrative example of the Knowledge
for Algebra Teaching for Equity (KATE) Project that utilizes a virtual environment
to support creativity in the form of music-mathematics exercises. The research
treatment of this classroom experience uses Koestler’s (1981) notion of “creative
cogitare” or a reshuffling of known contexts to produce new knowledge or cre-
ativity as framework to understand the effect of technology and music in student
perceptions of creativity and mathematics learning.

7.6 An Environment Supporting Creativity and Music-
Mathematics Learning

For a number of years, teacher educators have sought alternative methods for
practical and clinical experiences for preservice teachers (Berliner, 1985; Metcalf,
Hammer, & Kahlich, 1996). In recent years, emerging approaches in teacher ed-
ucation have evolved to include the use of virtual technologies to design and
simulate authentic classroom teaching environments, or informal learning settings.
For example, preservice teachers (PSTs) are able to set up avatars and engage in
learning and teaching activities in novel computer-simulated environments.
The KATE Project provides an illustrative example of exactly this. Funded by the
National Science Foundation (Award #1020132), the KATE Project’s research and
design teams’ efforts include the redesign of a required mathematics problem
solving course at Texas A&M University. The course was designed by the KATE
research team to include activities and assignments that address issues of diversity
and culture in teaching algebra. The design of the course includes four primary,
interrelated components: (1) math problem solving and problem posing, (2) math
problem equity challenges, (3) readings and discussions on equity and diversity,
and (4) Second Life® tutoring, teaching, and informal learning activities.

KATE team members designed a three-dimensional virtual classroom in Second
Life® and creative learning spaces to provide a canvas for preservice teachers to
engage in various instructional activities. We believe that there are specific
approaches and areas of awareness about teaching for equity that preservice
teachers must develop and practice early in their preparation (Darling-Hammond,
2000). We assert that providing early learning and teaching opportunities in a
simulated learning environment offer a promising approach for experiential learn-
ing. We also posit that the provision of experiential learning activities for preservice
teachers that include the use of creative spaces, may lead to both vision and utility
for them to engage their future students in creative spaces or simulations.
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Specifically, in the exploratory study described here, we sought answers to the
following questions (1) To what extent did preservice mathematics teachers who
participated in the music-mathematics activities find them (a) engaging, and
(b) effective? (2) To what extent did preservice teachers’ comfort level with using
technology, efficacy about using Second Life® during course activities, and sense of
presence, relate to them (a) finding the music-mathematics activities engaging, and
(b) finding the music-mathematics activities effective? Through this exploratory
investigation, we aim to better understand how students experience creativity at the
nexus of technology, music, and mathematics. This work can give insight into both
mathematics education and preservice teacher pedagogy.

7.7 Methods

7.7.1 Participants

The participants in the study included 24 preservice teachers enrolled during one
semester of a required Mathematics Problem Solving (MASC 351) course at Texas
A&M University. The course was part of the KATE NSF-funded project that
focused on mathematical content knowledge and equity consciousness of middle
grade preservice mathematics teachers. It was not required that any student had
previous experience in Second Life® or virtual reality though some did. All virtual
experiences referred to occurred in a 3-D virtual space (Glasscock Island), created
and managed by the first author. The research project is one of many virtual
world-based projects that occur on Glasscock Island.

7.7.2 Procedure

During the Spring semester, members of the research team designed an environ-
ment for music-mathematics activities (Davis, An, Cole, & Jett, 2012). The first
author spearheaded the design of a playful creative space within Second Life®,
Music-Math Park. This provided a multisensory setting for preservice teachers
enrolled in the course, to engage in a series of music-mathematics activities (An,
2012) within this newly constructed virtual park. A KATE Project instructor led
preservice teachers through various activities. All of the avatars (preservice teachers
and instructor) walked around the virtual Music-Math Park and engaged in a
number of simulation activities that included:

• Playing songs on a large virtual keyboard in the park, and solving related early
algebra or mathematics problems based on grid representations or patterns of the
notes in the songs (e.g., fractions, ratios, patterns),
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• Composing their own songs and then listening to immediate playback of the
songs using interactive music composition boards at stations in the park,

• Solving more advanced early algebra problems as they completed various
problem solving activities in the park, and

• Fun extras included, listening to sample music selections across various genres
(classical, jazz, blues, popular).

For example, Activity II began with the following introductory narrative (An,
2012):

Unlike writing an essay that we write one sentence by one sentence, in [popular] music
composing, it is more like building a house. We construct the frame first and then build and
decorate every floor. The sequence of the chords is the frame of the music. We first put the
chords in an order and then finish the music sentences under the chords. The most popular
sequence of chords used by pop music composers is: I, V, VI, III, IV, I, II, V, I.

Preservice teachers then advanced to the next area in the learning station and
completed compositions of their songs by entering notes using interactive music
composition boards. Display screens at the various learning stations outlined
detailed instructions (see Fig. 7.1).

The following Figs. 7.2, 7.3, 7.4, 7.5 and 7.6 highlight snapshots that were
captured of the learning stations and of PSTs completing activities in Music-Math
Park in Second Life®.

Fig. 7.1 Example of instructions for activity II displayed at a station in Music-Math Park
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7.7.3 Data Sources and Analyses

The Preservice Teacher Second Life® Engagement (PTSLE) self-report measure,
designed by the authors, was used to collect data for the study. Participants com-
pleted the PTSLE instrument following their participation in Second Life® activities
in the problem solving course. The PTSLE instrument contained 32 items, 16 were
Likert-type items with a 10-point scale spanning from strongly disagree to strongly
agree. The current study focuses on the music-mathematics exercise related items

Fig. 7.2 Snapshot from an aerial view of Music-Math Park

Fig. 7.3 Preservice teacher avatars completing an introductory music-math activity after they
played a children’s song on the colorful piano keyboard
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(i.e., engagement, effectiveness) and other key foci (i.e., technology comfort/use,
SL efficacy, presence). Additionally, all responses to an open-ended question are
provided. While our sample size makes a traditional qualitative analysis of the
open-ended responses inappropriate, the student responses offer more than just
anecdotal commentary. Table 7.1 shows examples of these items.

Fig. 7.4 Instructor and preservice teacher avatars completing activity II in Music-Math Park

Fig. 7.5 Preservice teacher avatars composing their songs using the interactive composition
boards
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7.8 Results

The median and interquartile range (IQR) were calculated for technology comfort/
use, Second Life® efficacy, presence, engagement, and effectiveness. The results of
the analyses of the measures are provided in Table 7.2.

In general, preservice teachers’ comfort level with using technology was high
(Mdn = 8.0). They also indicated that the music-mathematics activities in Second
Life® were engaging (Mdn = 7.0) and effective (Mdn = 7.0).

Nonparametric Spearman correlations (and Kendall Tau-B correlations) were
calculated to examine the relationships between key variables, engagement, effec-
tiveness, technology comfort/use, SL efficacy, and presence. Results show

Fig. 7.6 Instructor and preservice teacher avatars finishing compositions and going over solutions
to a music-math problem

Table 7.1 Sample items from the PTSLE

Component Sample items

Technology
comfort/use

The following best describes my comfort level with using technology in
general

SL efficacy At the beginning of the course, I felt that if I tried hard I would be
successful using Second Life®

Presence I had the sense of being present or being there in the virtual learning
spaces

Engagement I found the music-math SL exercises engaging

Effectiveness I found the music-math SL exercises effective

Open Ended
Question

Was there something you thought was good about the math and music SL
exercise and homework challenge? Please explain and give one example
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statistically significant relationships between several perceptual variables (at
a = 0.05): technology comfort/use and efficacy (p = 0.04), efficacy and presence
(p = 0.00), effectiveness and engagement (p = 0.00), and effectiveness and pres-
ence (p = 0.04).

Responses from the Open Ended Question:
Was there something you thought was good about the Math and Music SL

exercise and homework challenge? Please explain and give one example.
While there were not enough responses to warrant a rigorous or thorough

qualitative analysis of the data, the responses gathered from the 24 participants hint
towards student perceptions and the effect of including creativity in the virtual
mathematics classroom. Three interacting themes can be drawn from data provided:
enjoyment, engagement, and difference. These themes emerged through an in vivo
coding process where student words were used as categories (Saldaña, 2015). These
categories were then connected through axial coding which precipitated the three
themes suggested. Future iterations of similar data would help determine if these
themes were only representative of the unique group of participants we had or
representative of a larger population of students engaged in a similar exercise.

What follows are brief discussions of each theme and some example quotes that
contributed to that particular theme. It is important to remember that while limited,
the ubiquity of these themes in the student responses suggest that they are good
starting points for continued research.

7.8.1 Enjoyment

Many preservice teachers explained that the experience in the musical virtual
environment was fun or enjoyable. The ubiquity of this response helps us to
understand that the fun students had with the environment was often the gateway
that led students to additional insights. “Fun” was often paired with explications of
engagement, mathematical content, and discovery. One participant explained that
while the experience of colliding mathematics and music was “fun,” the additional
manipulatives in the space were “icing on the cake.” Koestler (1981) notion of
wonder, exhibited by the “HA” moment. shows the integration of seemingly dis-
tinct things with which students have familiarity (in this case technology or virtual

Table 7.2 Medians and
IQRs

Component Median (IQR)

Technology comfort/use 8.0 (7.0–9.0)

SL efficacy 7.0 (6.0–9.0)

Presence 6.5 (4.5–8.75)

Engagement 7.0 (6.0–8.0)

Effectiveness 7.0 (5.25–8.0)
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reality and music) can produce a creative cogitare that naturally leads to additional
emotions like wonder, engagement, and interest. Illustrative quotes follow:

• I really enjoyed this activity.
• I had a lot of fun trying to figure out the missing notes and thought the activity

was very beneficial.
• It connected math and music together which I think can engage more students.
• It is a good way to get students to engage in the lesson.
• I really enjoyed the Math and Music SL exercise. It was a lot of fun to see math

and music come together in that way, and I thought that the music boards in SL
that we could build these musical pieces we manipulated mathematically [and]
were the icing on the cake.

7.8.2 Engagement

Preservice teachers reported that the project was “engaging for the class as a
whole.” Many preservice teachers who did not use the word “engaging,” used
language of engagement like “helpful,” “interesting,” and “spark.” Preservice
teachers saw engagement on a personal level, explaining that they “liked the
hands-on engagement that [they] got” and that “it made [them] pay more attention
knowing that [they] could actually play the notes and interact in the space”.
However, preservice teachers also saw the benefit of the project on a future pro-
fessional level, exploring “how it is possible to integrate a core subject such as math
with their future students’ interest, in this case being music.” Preservice teachers
considered how future students would enjoy something like this activity in a future
classroom. Engagement helped preservice teachers take the immediate reaction
(fun) to an applicable future (pedagogy). Illustrative quotes follow:

• I thought this exercise was fun, I really liked the hands on engagement that we
got. It made me pay more attention knowing that I could actually play the notes.

• I really thought it was engaging for the class as a whole.
• I thought it was really fun, I feel like this activity would be engaging for

students and they would enjoy the lesson a lot.
• This homework challenge was very interesting. It was fun to get to use the

Second Life® piano to help us solve the problem. It was a hands on assignment
and it would definitely interest students.

7.8.3 Difference

Finally, preservice teachers found the activity to be novel. One of the hallmarks of
creativity and Koestler’s notion of creation, creative activities must be a new or
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unexpected collision. Preservice teachers shared that they not only appreciated the
“difference” but the unusual or new nature of the activity was what caused them to
appreciate the activity. “I liked it because it was different,” one student admitted
(emphasis added). Another student explained, “[The activity] offered a very unusual
way to look at working with math so that made it more interesting because I hadn’t
ever thought of it that way.” Another suggested, “It gave a new perspective on the
content in a mathematical problem that I had never seen before.” Difference became
a conduit for experience, forcing students to react emotionally (enjoyment) and
thoughtfully (engagement). Illustrative quotes follow:

• It is very interesting and puts new thoughts into math. I had never thought about
incorporating music into math before this exercise.

• It gave a new perspective on the content in a mathematical problem that I had
never seen before. The use of color and music helped to spark interests and
catch students’ attention.

• The SL exercise was different and was nice because it was more hands-on with
the piano.

• I liked it because it was different.
• The exercise gave students a different way to look at math and its use in the real

world and I feel that was very helpful.
• It offered a very unusual way to look at working with math so that made it more

interesting because I hadn’t ever thought of it that way.
• It allowed us to get more used to the Second Life® technology and showed us

other ways to use it other than just sitting there and talking. The homework
challenge was interesting, it was a different type of problem to solve.

7.9 Discussion

The exploratory work highlighted here was just a preliminary first step in tinkering
around the edges of whether this kind of virtual space can be effective in engaging
participants in creative mathematics activities. Our results show that preservice
teachers found the music-mathematics exercises both engaging and effective.
Responses to the open-ended question support this finding as well. Further, two
important points emerge from the responses worth noting. First, more than a third of
the twenty-four responses comment on approaches used in the music-mathematics
activities as being “new, different, or novel.” Second, preservice teachers reported
little knowledge and experience integrating mathematics and music prior to the
course. As one returns to the theoretical underpinnings described in the first part of
this chapter, various scholars help to make the case for the importance of creativity in
mathematics (Lev-Zamir & Leikin, 2013; Leikin, Subotnik, Pitta-Pantazi, Singer, &
Pelczer, 2013; Henrickson &Mishra, 2015; Vale & Barbosa, 2015). Taken together,
the theoretical framing and work reported here point to the need for introducing or
[re]introducing creativity in mathematics and problem solving contexts, in an effort
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to expand applications of concepts, and engage learners at higher levels. If we are to
be successful, creativity in mathematics must be introduced at both the preservice, as
well as inservice stages. It is encouraging that the open-ended responses also reveal
that preservice teachers are able to transfer their perceptions of this form of expe-
riential learning, to perhaps see the value in designing similar activities for their
future students. Simply put, the results suggest that at minimum, preservice teachers
that were enrolled in the course are open to exploring these kinds of technology-
enabled creative spaces from a mathematics learning and teaching lens. Notably,
Wong (2015) in his study of preservice primary mathematics teachers found an
overall positive attitude towards the use of technology, and perceived usefulness was
more influential than perceived ease of use.

Additionally, preservice teachers’ perceptions of Second Life® efficacy (tech-
nology efficacy) were moderately high. Our results also showed that the perceptual
variables technology comfort/use and efficacy were related, and efficacy and
presence were related. Holden and Rada (2011) found that technology self-efficacy
was more beneficial to overall technology acceptance than computer self-efficacy.
Moreover, the KATE music-math activities addressed the direct connections
between music composition and fractions and patterns (Vaughn, 2000), an area of
mathematics understanding that is traditionally difficult not only for middle grade
students, but preservice teachers. The activities offered a creative and comfortable
space for the participants to explore fractions and patterns in a new environment.
One of the purposes of the music-math activities was to offer ideas to preservice
teachers for approaches that might be meaningful for diverse middle grade students.
The activities appeared to be successful in addressing this purpose. They provided
experiences in some of Fiske (1999) criteria: perhaps reaching some students who
are not reached by traditional instruction, connecting them with fellow students
through transforming the learning environment. While these are all preliminary and
observational conclusions, they offer options for further exploration.

In terms of future work, next steps for the project team might include exploring
the utilization of Music-Math Park and similar spaces for virtual camps for sec-
ondary students or graduate students enrolled in STEM instructional design courses.
These venues can provide both groups opportunities to design and explore various
creative outlets or instructional development projects. Finally, one of the overar-
ching objectives of the broader KATE project work was to provide preservice
middle school mathematics teachers early experiences in teaching algebra for
equity. The research and design teams went to great lengths to design engaging and
immersive virtual learning spaces that could be used to structure mathematics
teaching and learning experiences for preservice teachers. These preliminary results
showed that presence was related to both SL efficacy and effectiveness. This sug-
gests that the design team was reasonably successful in designing a virtual space
that PSTs felt present in, and that presence was related to perceptions of the overall
effectiveness of the music-mathematics exercises.

Exploring new ways to prepare teachers to engage all students in rich and
effective learning experiences is critical. Investigations of the relationships of vir-
tual learning and teaching experiences, the effects of creativity, engagement, learner
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characteristics and the affordances of using innovative technological resources like
3D virtual environments, all offer promise for redesigning select mathematics
teacher preparation courses.

7.10 Conclusion and Future Research

This work has important implications for both preservice teacher pedagogy and
math education in general. While technology and music are not new to mathematics
curricula, purposefully fostering creativity as a product instead of a process is. If
more educators engage in creating collisions or cogitares within mathematics
classrooms, it could lead to patterns of student engagement and inquiry.

Future research can build on this and similar work by seeking to understand how
preservice teachers experience creativity in classrooms and how they translate this
experience into their own teaching and classroom planning. To change the peda-
gogy of future educators is to change the face of education. This project wedded
technology and music to initiate new educational experiences. New research must
proffer other creative juxtapositions and consider how they might shape mathe-
matics education.
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Chapter 8
Preparing Teachers to Use Excelets:
Developing Creative Modeling
Experiences for Secondary Mathematics
Students

Ginger S. Watson and Mary C. Enderson

Abstract There are many challenges in preparing mathematics teachers for today’s
classrooms including content, pedagogy, technology, and creativity. This qualita-
tive study was designed to examine how pre-service mathematics teachers solve
modeling tasks using Excelets, an interactive form of an Excel spreadsheet that
allows for the manipulation of data and the visualization of changes in numeric,
graphic, and symbolic form (Sinex in Developer’s guide to Excelets: dynamic and
interactive visualization with “Javaless” applets or interactive Excel spreadsheets,
2005). Specific emphasis was given to how such experiences translate into pro-
viding creative learning environments in future teaching. The study focused on four
specific participants and analyzed their Technological Pedagogical Content
Knowledge (TPACK) scores (AMTE, 2009), “think-alouds”, and written work to
assess their understanding of modeling tasks that integrated technology as a tool for
learning. Top-tier participants demonstrated abilities to recognize, accept, adapt,
and explore mathematics creatively when using and integrating mathematical
modeling tools while bottom-tier participants failed to exhibit these skills. Top-tier
participants demonstrated high levels of creativity and TPACK yet rated themselves
low in these skills while bottom-tier participants provided little creativity and
TPACK yet rated themselves extremely high. These results indicate that there is
more work to be done in preparing teachers to provide students with stimulating
mathematics problems and explorations while scaffolding their integration of
technological tools such as Excel.
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8.1 Introduction

With adoption of the Common Core State Standards (National Governors
Association Center for Best Practices, Council of Chief State School Officers, 2010)
across the United States (U.S.), teachers are expected to engage students in “doing”
mathematics, which involves exploring, making sense of, modeling, and using
appropriate tools to solve problems. Such practices are to be embraced and pro-
moted for all students, but how teachers develop such practices as learners and then
progress towards implementation as teachers is often unclear. The Conference
Board of Mathematical Sciences’ (CBMS) Mathematical Education of Teachers
(2001) professed that for many pre-service teachers, learning mathematics was
equivalent to learning procedures and algorithms to solve problems. Many future
teachers are quite successful in this style of learning although it provides a some-
what narrow view of what learning mathematics involves. With advancements in
standards for teacher preparation and the Common Core movement taking hold in
more U.S. classrooms, teachers are now confronted with novel practices and
unfamiliar terrain in which to teach mathematics for all.

The more current publication, Mathematical Education of Teachers II (CBMS,
2012) addresses several critical experiences future mathematics teachers should
encounter in their coursework in order to consider integrating mathematical pro-
cesses and practices into teaching. Providing future mathematics teachers’ oppor-
tunities to struggle with hard problems, discover their own solutions, reason and
model mathematically, and develop mathematical habits of mind are essential in
their preparation. It has been well established that early experiences, acquired
through years as a student, influence the way new teachers think about learning and
ultimately how they end up teaching (Borko & Putnam, 1996; Lortie, 1975). Thus,
it is critical for such educational experiences to include experiential and
inquiry-based learning rather than lecture and procedural learning. We believe that
modeling scenarios can provide a rich environment for pre-service teachers to
explore mathematics, be creative in their thinking and approach to problems, and
witness that technological tools can benefit learning mathematics concepts in ways
that are different from traditional paper/pencil learning. We also take the position
that pre-service teachers must experience such learning activities themselves before
they can transfer the creative ideas into future instruction. Such activities should
“promote the development of both creative abilities of future teachers, and their
skills to develop creative abilities of the pupils during school teaching in their future
career” (Safuanov, 2008, p. 451). Encounters that support and promote creative
development of ideas that allow one to explore and make sense of mathematics
should be a component of every teacher preparation program.

This chapter briefly addresses mathematics teacher preparation as it relates to
content, pedagogy, technology, and creativity. Further details are provided
regarding the challenges associated with teachers’ implementation of technology in
mathematics classroom instruction and the role of creativity. In this particular study,
we used an interactive spreadsheet tool programmed in Microsoft Excel called an
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Excelet to study ways pre-service secondary mathematics teachers solve modeling
problems. This digital modeling tool was selected because of the wide availability
and use of Excel in the workplace and in classrooms across the U.S. While there has
been research in the use of spreadsheets in mathematics, there is limited research
using the specific tool of this study, Excelets. We situate this study within the
context of spreadsheets, noting areas where they generalize to Excelets and ways
that Excelets may offer some advantage. It has also been proposed that new or novel
approaches to using technology in modeling real-world phenomena can help in the
development of mathematical creativity (Arganbright, 2005). Thus, this study also
examined how pre-service teachers transposed modeling experiences into future
instruction for high school mathematics students, with an emphasis on connections
to creativity.

8.2 Background

8.2.1 Mathematics Teacher Preparation

Preparing secondary (grades 6–12) mathematics teachers for today’s classrooms
involves developing well-rounded professionals with a strong knowledge base
concentrated on content, pedagogy, and pedagogical content knowledge (PCK).
The introduction of PCK launched teacher preparation programs to search for ways
to find the “right” balance in order to teach content from a pedagogical content
perspective (Shulman, 1986). As professed in Mathematics Teaching Today
(Martin, 2007), teachers must be proficient in facilitating and guiding student
learning, which includes:

• Designing and implementing mathematical experiences that stimulate student
interests and intellect;

• Orchestrating classroom discourse in ways that promote the exploration and
growth of mathematical ideas;

• Using, and helping students use, technology and other tools to pursue mathe-
matical investigations; and

• Engaging in opportunities to deepen their own understanding of the mathe-
matics being studied and its applications (pp. 5–6).

In addition,Mathematics Teaching Today (Martin, 2007) denotes the importance
of teachers making improvements in the ways mathematics is taught and learned in
schools. For many teachers, this equates to changing the ways they learned
mathematics to include more student-centered learning rather than teacher
demonstration of techniques. Such changes include active learners who are engaged
in problem solving, reasoning, and making connections while having access to
technology to study and solve real-life problems (Martin, 2007). These learning
experiences promote multiple ways of solving problems, which in turn promote and

8 Preparing Teachers to Use Excelets: Developing Creative … 205



nurture student creativity (Applebaum & Saul, 2009). While such practices appear
reasonable, how pre-service teachers successfully develop these skills is often
unclear or foreign and in many instances unnatural to the experiences they bring
with them to university coursework. Exposing pre-service mathematics teachers to
a different or creative view of mathematics and the tools one can use to investigate
real problems is often the challenge to be met. Mathematics and pedagogy
coursework should present cases where pre-service teachers can develop knowledge
as learners of mathematics and then progress into thinking about creative ways to
apply this knowledge as teachers of mathematics. Technology is one avenue to help
in this process.

It has been well established that teaching mathematics requires more than
knowledge and understanding of the content (Ball, Hill, & Bass, 2005; Hill, Ball, &
Schilling, 2008; Hill, Rowan, & Ball, 2005). Development of mathematics
knowledge should be evident and integrated seamlessly throughout one’s under-
graduate program in mathematics. The CBMS (2012) identifies two specific areas:
(a) experience with reasoning and proof and (b) experience with technology as
critical for future secondary teachers. The reasoning and proof assists pre-service
teachers in making sense of the mathematics, which in turn, better prepares them to
teach. Of more interest to this particular study, is the experience with technology.
CBMS (2012) states:

Teachers should become familiar with various software programs and technology plat-
forms, learning how to use them to analyze data, to reduce computational overhead, to build
computational models of mathematics objects, and to perform mathematical experiments.
The experiences should include dynamic geometry environments, computer algebra sys-
tems, and statistical software used both to apply what students know and as tools to help
them understand new mathematical ideas—in college and in high school. Not only can the
proper use of technology make complex ideas tractable, it can also help one understand
subtle mathematics concepts. At the same time, technology used in a superficial way,
without connection to mathematical reasoning, can take up precious course time without
advancing learning (p. 57).

Such technology experiences are not typical of what pre-service teachers have
experienced in their own mathematics coursework at secondary and post-secondary
levels. This presents challenges for mathematics teachers as they make attempts to
integrate technology into their classroom instruction to solve real problems centered
on modeling in a creative manner. We believe that lack of experience in technology
integration for mathematical modeling scenarios or tasks hinders growth and
development of using such tools in a valuable manner to promote creativity for
learners. Arganbright (2005) also proposes that the use of spreadsheets to model
real-life problems can aid in the development of mathematical creativity for those
who interact with such tools.
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8.2.2 Integrating Technology in the Teaching and Learning
of Mathematics

Technology changes the way one investigates and makes sense of mathematics.
Technology provides the learner with tools to study real problems with real num-
bers that are often “messy” and require a level of precision. Although this is a
valuable position for teachers, preparing them to keep up with the technology
revolution in planning and implementing instruction poses challenges. Future
mathematics teachers should be equipped to implement technological tools in
learning experiences for students and universities have a responsibility in preparing
them (Association of Mathematics Teacher Educators (AMTE), 2006). Pre-service
teachers should have opportunities to:

• Explore and learn mathematics using technology in ways that build confidence
and understanding of the technology and mathematics.

• Model appropriate uses of a variety of established and new applications of
technology as tools to develop a deep understanding of mathematics in varied
contexts.

• Make informed decisions about appropriate and effective uses of technology in
the teaching and learning of mathematics.

• Develop and practice teaching lessons that take advantage of the ability of
technology to enrich and enhance the learning of mathematics (AMTE, 2009,
p. 2).

In addition to AMTE’s technology position, the mathematics education com-
munity is provided with a framework focused on TPACK (Technological
Pedagogical Content Knowledge—AMTE, 2009) developed from the work of
Mishra and Koehler (2006) and the ISTE (International Society for Technology in
Education) standards (2008). This framework presents guidelines focused on four
main areas: (1) designing and developing technology-enhanced learning experi-
ences, (2) facilitating technology-integrated instruction, (3) evaluating technology-
intensive environments, and (4) continuing to develop professional capacity in
mathematics TPACK (AMTE, 2006).

Niess (2005), in her study of pre-service science and mathematics teachers found
that there were numerous challenges in pre-service teachers’ integration of tech-
nology into content instruction. One of the challenges brought forward was the fact
that many pre-service teachers learn about technology outside the development of
their content and pedagogical content knowledge bases. It often is addressed in a
more generic form that is disconnected to the discipline and taught by a generalist.
This does not bode well for exposing future teachers to technological tools that can
be used in the study of mathematics as well as supporting a creative, more inter-
pretive learning environment.

Niess, Sadri, and Lee (2007) and Niess et al. (2009) extensive work with
teachers allowed them to develop a five-stage process they use when learning to
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integrate technology in the teaching and learning of mathematics. The focus of the
technology was on use of interactive spreadsheets and included:

1. Recognizing (knowledge), where teachers are able to use the technology and
recognize the alignment of the technology with mathematics content yet do not
integrate the technology in teaching and learning of mathematics.

2. Accepting (persuasion), where teachers form a favorable or unfavorable attitude
toward teaching and learning mathematics with an appropriate technology.

3. Adapting (decision), where teachers engage in activities that lead to a choice to
adopt or reject teaching and learning mathematics with an appropriate
technology.

4. Exploring (implementation), where teachers actively integrate teaching and
learning of mathematics with an appropriate technology.

5. Advancing (confirmation), where teachers evaluate the results of the decision to
integrate teaching and learningmathematicswith an appropriate technology (Niess
et al., 2009).

The five levels rely on integration of technology, pedagogy, and content
(TPACK) and are not linear in progression but a more iterative process.

The study presented in this chapter was designed to observe where pre-service
secondary mathematics teachers fell along this spectrum and how their own
understanding of content with technology translated into future instruction. In
addition to using Niess et al. (2009) five-stage process as a framework for the
technology component of this study, identifying how creativity fit into the various
levels—if at all—was of interest to us.

8.2.3 Developing Creative Learners and Teachers

Education is a complex process with various perspectives and techniques focused
on crucial aspects of the teaching and learning processes. When one includes the
element of creativity to these processes, it complicates the field even more. The
early notion of creativity as a static trait one inherits has been replaced with the
view that creativity is dynamic and should be developed (Silver, 1997; Milgram &
Hong, 2009; Subotnik, Pillmeier, & Jarvin, 2009). The problem often lies in the fact
that teachers are ill-trained to help students develop the practices that support
creative thinking and learning. Evidence illustrates that many teachers have a
limited understanding of creativity and what it means to think in a creative manner
(Shriki, 2009; Bolden, Harries, & Newton, 2010). Thus, the need to develop student
creativity requires teachers to have a better understanding of this field.

One way teachers can gain a better understanding of creativity and help students
develop as creative thinkers is to become familiar with the types of problems and
processes that are involved in this developmental progression. Davis and Rimm
(2004) promote the concept that teachers should become familiar with processes
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and modes of creative behavior in order to develop learning tasks that make use of
these skills. Such familiarity should be developed in teacher education programs in
both content and pedagogy coursework. Pre-service teachers should be placed in
learning situations that require them to think deeply about content, make sense of it,
and communicate findings among peers. Without such experiences, teachers will
lack the insight into how to provide stimulating and creative learning situations for
their own students.

Defining creativity and how a teacher preparation program embraces it should be
clearly articulated. There have been numerous interpretations of creativity in the
field of education, which complicates the research and professional discourse in this
field (Mann, 2006). For the purposes of this study, we embraced the perspective of
“relative” creativity (Leikin, 2009), which is built upon one’s own educational
history and often compared to other students. Leikin (2009) proposed a focus on
students’ aptitude to produce solutions or details to new tasks or to present original
work that supports previously learned concepts. This research examined pre-service
teachers as creative learners and pre-service teachers as teachers promoting creative
pedagogy both in a relative manner.

In preparing mathematics teachers for today’s classrooms, it is essential to focus
on both content and pedagogy as presented in Sect. 8.3.1. In order for teachers to
embrace techniques of teaching that promote creative thinking, they must design
unique methods to allow for various interpretations from students. Lin’s work
(2011) on creative thinking offers researchers a conceptual framework of creative
pedagogy. He presents three main areas that have been recognized by previous
researchers to foster creativity in the classroom: teaching, environment, and teacher
ethos (Lin, 2011). Teaching is the act of providing students with creative and
innovative practices, which in turn, promotes opportunities to explore and learn.
The environment is critical in that it should stimulate and support learners’
engagement in the activity—develop interest, excitement, and motivation to learn.
Lastly, teacher ethos refers to teachers having an open position toward students who
think and operate differently on given tasks. The teacher should support indepen-
dent thinking and place value in different student approaches towards solving
problems (Lin, 2011). We believe such creative thinking and learning can be
nurtured and developed by exploring mathematical models that include the use of
technological tools, from graphing utilities to various software packages, in the
classroom. Such models have the potential to promote practices designed around
problem solving and problem posing, which support student development of cre-
ative approaches to studying mathematics (Silver, 1997). In addition, incorporation
of technology provides students with access to problems and applications to
investigate, which allows them to engage in a level of creative discovery (Pead &
Ralph, 2007).

Technology has the potential to provide learners with an environment that
promotes creative mathematical thinking by exploring inquiry-based type problems.
In order to develop creative thinking, access to technology is often the obstacle
when in reality, there are many inexpensive and readily available tools that can be
used in classrooms (Yerushalmy, 2009). Although Yerushalmy promotes use of

8 Preparing Teachers to Use Excelets: Developing Creative … 209



inexpensive handheld technology in planning and developing unique scenarios for
teaching and learning, we focus on computers that are pre-loaded with software
packages that include spreadsheets. Pead and Ralph (2007) report that the “entry
fee”—time and effort invested in learning the technological tools—can become
obstacles to using the technology in valuable ways. Thus, generic applications like
spreadsheets have a low entry fee and are often used by teachers for graphing and
analyzing data (Pead & Ralph, 2007). It has also been reported that increases in the
use of common spreadsheets (from 31.9% to 62.6%) over a period of time have real
value in studying problems centered on statistics and real data (Thomas & Palmer,
2014). We propose that the low investment of spreadsheets, as well as the inter-
active environment where one can explore mathematics concepts in various ways, is
an excellent tool to expose pre-service teachers to a creative element in the learning
process. Brown and Gould (1987) state that spreadsheets are known for providing
users with the ability to compare results in “what-if” scenarios by sorting out what
remains fixed and what varies. This promotes a critical requirement for creativity in
that it allows one to test or try out many different cases, which encourages
exploration (Fischer & Nakakoji, 1994). This is exactly the type of environment we
believed would benefit and support future teachers.

Preparing teachers to experience mathematics in a creative manner for them-
selves as learners and then transpose that learning as teachers is critical to devel-
oping an understanding of creative pedagogy. Lev-Zamir (2008) states, “To be able
to encourage creativity in their students, teachers should experience themselves
such kind of learning while being trained” (p. 444). This perspective is congruent
with the focus of this research study on pre-service mathematics teachers’ use of
technology in approaching a modeling task as (1) learners and (2) teachers. In our
search to understand these two roles, we were interested to identify how such
environments nurtured the development of creative thinking and learning.

8.2.4 Technology Meets Creativity Through Mathematical
Modeling Scenarios

With the standards movements in the U.S. centered on teaching and learning
mathematics, we were interested in how mathematics teachers come to know,
understand, and implement modeling into classroom instruction. In order for
teachers to promote mathematics modeling in classroom instruction, they must have
some experience in exploring what is involved in the process. Spreadsheets are
tools that allow one to more fully explore problems and approaches as well as test
questions that arise throughout the process (Pead & Ralph, 2007). Doerr (2007)
raises the issue as to the knowledge that teachers need to possess in order to be
effective in integrating applications and modeling into classroom instruction. She
promotes the notion that pre-service teachers need to have experiences in modeling
that consist of a range of contexts, tools, and analyses of the modeling task (2007).
By gaining such experiences, it is anticipated that future teachers will come to
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recognize differences in exploring problems and become more open to unexpected
approaches, connections, and strategies. It is these differences that open the door for
creative thinking and learning processes.

The use of spreadsheets to explore and develop a deeper understanding of
mathematics concepts has been one way of integrating technology into mathematics
(Drier, 2001; Abramovich, 1995). Drier (2001) posits that one unique approach of
using spreadsheets is the ability to interactively model and simulate mathematics
concepts. She points out that spreadsheets can be used to create dynamic envi-
ronments for discovering and making sense of mathematical ideas and relationships
to build understanding. This description is very much in-line with the philosophy
behind Excelets, interactive spreadsheets built in Excel, used in this study.

Excelets are interactive spreadsheets created in Microsoft Excel that allow for
simulation, visualization, and exploration of mathematical models (Sinex, 2005).
Recent research indicates that an increasing number of schools have access to
spreadsheets such as Excel (Thomas & Palmer, 2014), making them a more feasible
software tool for mathematical modeling. Unlike simple spreadsheets that require
manual data entry or manipulation in individual cells with standard graphing
capabilities, Excelets provide an interactive, graphical interface that facilitate a
variety of input options and data displays. As proposed by Drier (2001), spread-
sheet tools such as Excelets allow a learner to interact with the underlying math-
ematical model by entering data, manipulating variables, and viewing resulting
displays of the model in numeric, graphical, and symbolic form. Excelets specifi-
cally do so without the need for extensive knowledge in spreadsheet use. Their
interface provides for increased flexibility over traditional spreadsheets yet uses the
same general functions reducing the “entry fee” time required for users who are not
already familiar with spreadsheets (Pead & Ralph, 2007). Because Excelets provide
a variety of input options including information boxes, input blocks, check boxes,
and slider bars, they are often simpler to use than spreadsheets making it easier to
manipulate the model to promote conceptual understanding. They also provide for a
range of static visual overlays and dynamic graphic displays of the phenomena
being modeled in order to visualize how changes in one variable affect other
variables in the model. While Excelets have many benefits, they also have limi-
tations. Their interface can easily become cluttered and difficult to read. Their
display capabilities are limited to simple graphics and colors available in Excel.
Finally, they are best used for modeling phenomena whose mathematics are easily
calculated in spreadsheets. A more thorough description of the specific Excelets
used in this study along with figures is provided in Sect. 8.4.2 Study Tasks.

The three elements of Lin’s creativity framework (2011) were used in this study
to present modeling scenarios and to interpret the creativity implemented by
pre-service teachers when working through the models and developing ideas about
implementation of such models in their future classroom instruction. The focus of
this work was on how creativity relates to technological, pedagogical, and content
knowledge in designing instruction (Niess, 2008; Thompson & Mishra, 2007) and
in interpreting the creativity demonstrated by pre-service teachers in the current
study.
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8.3 Study

This study examined how pre-service mathematics teachers solve modeling tasks
using Excelets and how such experiences translate into the ability to provide cre-
ative learning environments in their teaching. In this way, the study analyzed how
pre-service teachers complete modeling tasks as students and as teachers
(Lev-Zamir, 2008). The study sought to address the following research questions:

• How do pre-service mathematics teachers creatively solve problems when using
Excelets as a mathematical modeling tool?

• How do pre-service mathematics teachers implement creativity in development
of a task associated with a lesson that utilizes Excelets as a mathematical
modeling tool?

• What is the self-reported TPACK of pre-service mathematics teachers who
participated in this study and how does TPACK change after interaction with
Excelet-based modeling tasks in a secondary mathematics teaching methods
course?

Surveys, think-aloud protocols, and written work were collected and analyzed to
answer these questions within the context of a qualitative study design. The study
was limited to a single secondary (grades 6–12) mathematics methods course and
bounded to a set of modeling tasks implemented over a two-week period. We
independently analyzed and triangulated a variety of data sources both within and
across modeling tasks, conferring to verify observations and themes.

8.3.1 Participants

Four participants, members of a larger group of fourteen pre-service mathematics
teachers, are the focus of this chapter. All students were enrolled in a secondary
mathematics methods course where they were encouraged to think about teaching
and learning mathematics in a variety of ways—many of which were different than
what they had experienced as learners. Two participants, classified in the top tier of
the group along with two in the bottom tier, proved to be of great interest to this
study and we believe provide evidence of creativity—or lack of creativity—in
making sense of mathematical modeling using technology. Participants were
identified independently by us based on their written work demonstrating their
understanding of modeling tasks that integrated technology as a tool for learning
and independent observations and scoring of their “think-alouds” when using the
Excelets during modeling tasks. We present a brief overview of the participants.

Ian, in the graduate master’s program, was seeking licensure to teach middle
school mathematics. He classified himself as an above average mathematics student
and carried a 4.0 grade point average (GPA), which included mathematics
coursework. He was quite methodical and organized in his approach toward
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attacking and/or completing problems and elaborated on processes involved in such
approaches. Ian had completed the instructional technology course for all education
majors, which is designed to expose teachers to technological tools that support
them in their classroom. He had already passed the Praxis content test required for
mathematics licensure so was in good standing for the forthcoming student teaching
experience.

Valerie, an undergraduate mathematics education major, began her education at
the community college prior to transferring to this 4-year university. She was a
strong mathematics student and had completed up through Calculus 2 at the
community college level. Although her GPA was a 3.35, she exemplified strength
in understanding mathematics from a conceptual orientation. One of the points that
she shared with us was over-committing to too many things and trying to balance it
all—work, academics/studying, and personal. She was often overly critical of her
responses and work to support problems or tasks, which was very detailed and quite
insightful. Valerie was active in class discussions and often looked at concepts
differently while remaining open to sharing these insights. She had also completed
the general technology course and had passed the Praxis content test required for
student teaching.

Anna, also a graduate student pursuing licensure to teach mathematics at the
middle grades, had a 3.74 GPA and was confident in her mathematics abilities but
not always articulate in her communication of mathematics concepts. When it came
to presenting mathematics concepts, she often was vague and did not provide many
details to really get at making meanings in mathematics. She was procedural in her
presentation and explanation of mathematics concepts, which did not allow for
much creative thought or elaboration. Anna had taken the instructional technology
course for education majors as well as passing the Praxis content test.

Natalie, the final participant, was an undergraduate mathematics education major
who had a 3.21 GPA. As she progressed in her program of study, her GPA dropped
due to average and below average grades in many mathematics courses. She did not
pass the required Praxis content test and will have to re-take the test before she can
student teach. She was not an active participant in the course and often did not
engage in valuable discourse related to mathematics concepts covered in the course.
Her responses were often low-level, not very thought-provoking, and more pro-
cedural. Similar to the other participants, she had completed the technology course
for education.

8.3.2 Study Tasks

All tasks for this study occurred within the context of a secondary (grades 6–12)
mathematics methods course during a single semester. Participants completed all
explorations and surveys as part of the class but were given the option to opt out of
having their data analyzed for study purposes. Study tasks occurred midway
through the course.
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At the beginning of the study, participants completed a demographic survey
reporting their year in school, academic major, prior coursework, and grades. At
that same time, participants completed a 22-item survey assessing their
self-reported secondary mathematics pre-service teachers’ TPACK (Zelkowski,
Gleason, Cox, & Bismarck, 2013). For each item, participants rated their knowl-
edge and skills on a five-point Likert scale ranging from strongly agree (5) to
strongly disagree (1). The TPACK instrument provided four subscale scores, one
each for technological, pedagogical, content, and integrated TPACK knowledge.
Scores were derived by calculating the mean response for all items in each scale
resulting in scores that ranged from high (5) to low (1) for each subscale. The first
administration of this survey served as a baseline of participants’ self-reported
TPACK knowledge and skill. This survey was completed again after the final
modeling task to measure any changes to TPACK that may have occurred at the end
of this experience.

Participants completed two modeling tasks using Excelets. The specific Excelets
used in this study were chosen based on their interactive coverage of content,
scaffolding of the content from simple to complex, simplicity of their user interface,
and effective visualization of concepts. Participants were given access to a handout
and online tutorial for Excel and another for Excelets at the beginning of the task, to
facilitate review if needed.

In the first modeling task, participants solved problems using the “cookie stack”
Excelet (Sinex, 2011a). This Excelet had four worksheets with an overview and
objectives on the left-most worksheet (see Fig. 8.1) and progressively more com-
plex, interactive worksheets to the right where participants could explore the linear
relationship between the number of cookies and the height of the stack of cookies
(see Fig. 8.2), variations in the height of cookies (see Fig. 8.3), and error in the
ruler used to measure the cookies (see Fig. 8.4). The primary graphical display was
a linear plot of the number of cookies and stack height. Each interactive worksheet
contained an interactive graph and questions to guide exploration. Participants were
provided with links to the Excelet, a worksheet to accompany the Excelet
(“Investigating the height of a stack of cookies” Sinex, 2011b), instructions for
recording the exploration, and a self-reflection survey for completion following the
task. Participants were asked to video record their interaction with the Excelet while
“thinking aloud” expressing their thought process, understanding, challenges, and
strategies used during problem solving. The recordings included synchronized
voice and captures of the screen.

After finishing the modeling task, participants completed a reflection where they
rated their experience on a ten-item survey measuring their understanding, moti-
vation, and perceived effectiveness on a five-point Likert scale ranging from low
(1) to high (5). A mean reflection score was calculated for each participant based on
their responses to the ten items. The resulting mean score ranged from low
(1) indicating little motivation and perceived effectiveness to high (5) indicating
extremely high perceptions on of their understanding, motivation, and skills.
Participants also responded to five open-ended questions soliciting details of their
understanding, comfort, interests, and barriers in completion of the modeling task.
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A second modeling task focused on developing a lesson that utilized Excelets as
a mathematical modeling tool. For this task, participants were asked to explore one
of three different Excelets on topics including exploring the nature of cyclic data in
nature (Sinex, 2006), kinetics of cancer cell growth (Sinex, 2011c), or probability in
mathematical models (Sinex, 2012). Figures 8.5, 8.6 and 8.7 provide an example of
a primary modeling task within each of these Excelets. They were similar in design
to the Excelet used in the first modeling task of this study. All three were comprised
of multiple worksheets with an overview and objectives on the left-most worksheet
and progressively more complex, interactive worksheets to the right where par-
ticipants could enter data, view resulting line graphs, and ponder increasing com-
plex principles such as error, exponential growth, curvilinear relationship, and
fitting of data. For this task, participants were asked to locate a Common Core or
state standard that their Excelet would address and to create a handout to guide the
exploration for students in a secondary mathematics class. Following this task,
participants responded to open-ended questions framing their reflections on the
modeling task. The handout generated by participants for students and the
descriptive reflection were the primary outcome measures for this task.

Fig. 8.1 Introduction for the investigating the height of a stack of cookies Excelet (Sinex, 2011b)
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8.3.3 Analysis

A framework combining TPACK (Niess et al., 2009) and creative pedagogy (Lin,
2011) was developed to analyze and interpret levels of TPACK integration and
creativity demonstrated by participants in our study. The resulting framework was
used to assess the level and extent to which participants displayed each of the
following attributes during modeling tasks:

• Recognized and demonstrated knowledgeable and appropriate use of Excelets to
promote learning of mathematics.

• Displayed positive, consistent attitudes toward the teaching and learning of
mathematics with Excelets.

• Adapted appropriate learning strategies using Excelets as a modeling tool.
• Creatively explored while taking advantage of the many technological affor-

dances of Excelets as an interactive modeling tool.
• Demonstrated a higher-order and creative “ethos” that embraced innovative and

sound approaches to mathematical modeling and problem solving.

The think-aloud recordings were independently reviewed, transcribed, and
analyzed by both researchers. Works and self-reflections from the second modeling

Fig. 8.2 Entering cookie stack data within the investigating the height of a stack of cookies
Excelet (Sinex, 2011b)
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tasks were also independently reviewed. The framework above was used to
describe and interpret TPACK and creativity with the tasks. Attention was given to
their use of the tools, demonstrated understanding and connections of mathematical
concepts, and overall creativity on both tasks.

After all descriptive analysis was complete, we individually ranked participants
from highest to lowest. Rankings were compared and top-tier and bottom-tier
participants were selected for in-depth, descriptive analysis.

TPACK and reflection scores were analyzed for the select participants in order to
understand how top-tier and bottom-tier participants perceived their knowledge of
effective technology use in the teaching and learning of mathematics. These scores
were aligned with each of Lin’s (2011) three aspects of pedagogy: teaching,
environment, and teacher ethos, and used as a framework for the study. In analysis
of data, it was determined that there was interplay between the designated areas
where creative teaching was connected with the environment in that a teacher must
know what it means to teach in a way that promotes a learning system for students
to be excited about their own mathematics learning. We believe that participant
“think alouds” along with the development of a handout to guide through a selected
Excelet activity, allowed us to see the overlap in Lin’s three areas. In addition,
pre-service teachers’ reflections in using the Excelets to promote mathematical

Fig. 8.3 Assessing variations in thickness within the investigating the height of a stack of cookies
Excelet (Sinex, 2011b)
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creativity emerged by focusing on pedagogy related to teaching real-life mathe-
matics concepts.

8.4 Findings

The goals of this study were to assess how pre-service mathematics teachers solved
problems using Excelets and how they developed tasks associated with a modeling
lesson for students in their future classroom. The study also explored the rela-
tionship between the self-reported TPACK of participants, their creativity, and
reflections of their effectiveness when completing these tasks. Results are presented
through the lens of the two top-tier and two bottom-tier participants identified
during analysis of modeling tasks.

Fig. 8.4 Determining error in the ruler within the investigating the height of a stack of cookies
Excelet (Sinex, 2011b)
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Fig. 8.5 Exploring cyclic data in nature Excelet (Sinex, 2006)

Fig. 8.6 Kinetics of cancer cell growth Excelet (Sinex, 2011c)
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8.4.1 Creativity in Solving Problems

In order to assess how pre-service mathematics teachers solve problems when using
Excelets as a mathematical modeling tool, we analyzed video recordings of par-
ticipants completing the first modeling task where they acted as students using the
Excelet for learning. This task required participants to measure a stack of cookies,
enter the data for the height of the stack of cookies, and note how the height of the
stack linearly increased with each cookie. A number of probing questions and
conceptual variations were available on each Excelet worksheet. A separate and
unique paper worksheet was also provided to guide learners through use of the
Excelet and interpretation of content.

Ian, a high-tier performer took almost 19 minutes to complete this task. In doing
so, he very methodologically read each page of the Excelet, verbally answering the
question prompts and generating his own questions during the process. His answers
were accurate and detailed. He made important connections between the prompts,
general mathematics concepts, and changes in the graphical displays. He rigidly
followed the Excelet flow and was a proficient user of the interface, locating and
using various input areas, highlighting changes in other variables and associated
displays, and easily maneuvering between worksheet pages. He demonstrated
appropriate use of the technology, positive attitudes toward the tool and learning

Fig. 8.7 What are the odds? Using probability in mathematical models Excelet (Sinex, 2012)
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strategies, while exploring. His use of the Excelet for higher-order thinking was
clear and apparent. Ian was methodical yet creative in his connections.

Valerie, another high-tier performer, completed the task in approximately seven
minutes. She demonstrated fluency with both the Excelet interface and the math-
ematics tasks. She was also very methodical but quick, as she read through the
statements and question prompts in the Excelet covering more material than Ian but
at a more rapid pace. She slowed on a few occasions to process more complex
reasoning and to resolve an input error. Like Ian, she covered all Excelet pages but
with a rapid pace. She explored more extreme variations in mathematical inputs and
made fluid connections of the concepts from prior pages. Her proficiency with
technology was very apparent both in the use of the Excelet and in her recording
which consisted of an annotated Microsoft PowerPoint presentation. She was the
most fluid and innovative user of both the mathematical content and modeling tool.
Her exploration was extensive, innovative, and creative.

Anna was a lower-tier performer who completed the task in 3.5 min. At the
beginning, she noticed that there were various pages in the Excelet, articulating that
it would be best to go through these pages in order from left to right. She proceeded
to access pages in this order but failed to develop a systematic process for exploring
the content and answering the questions prompts presented on each page. She spent
little time reading and failed to interact with the more advanced concepts, visual-
ization, and variables. She glanced at the separate worksheet and noted that the
questions would be “good to go through” but she neither read nor answered them.
While she noted that the Excelet could help visualize and make connections
between mathematical concepts, she failed to explore the content and affordances of
the tool. She did make a few low-level connections but did not demonstrate
complete, systematic, or innovative connections during the task. Anna demon-
strated limited use of the technology and only surface-level exploration of mathe-
matical concepts presented. She demonstrated no creativity or higher-order
integration.

Natalie, another low-tier performer, demonstrated the lowest creativity and use
of the technology. She completed the task in less than three minutes. Like Anna,
she was neither thorough nor systematic, ignoring the prompts and guidance pre-
sented on each page of the Excelet. She struggled with the Excelet and encountered
several errors. One error occurred when she incorrectly entered information in cells
intended for output. While she noted the error, she incorrectly stated that the error
was due to her measurement of the cookies, failing to connect the problem to data
entry in the interface. When encountering subsequent error with the interface, she
scarcely acknowledged the problem and did not attempt to resolve or isolate the
source. She also made at least two mistakes in connections between mathematical
concepts, graphical representations, and the Excelet interface. Instead of processing,
she stated that she was “not really sure what this means” and moved quickly on.
Her attitude toward the Excelet was dismissive and negative. This was expressed in
her concluding comment: “I really don’t like Excel. It doesn’t really help with
anything besides like being an accountant or like a gradebook.” Natalie was not a
proficient user of the technology, demonstrating few, if any, connections to
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mathematics. She made several errors that led to her progressively restricted
exploration. Her inability to resolve the errors in tool use and conceptual under-
standing limited her efficient, effective, and creative use of Excelets for learning.

The ways that participants solved problems when using Excelets was very dif-
ferent. High-tier performers were systematic and detailed. They completed all tasks,
utilizing the probing questions on each worksheet of the Excelet. They made
connections between the variables, the graphic and numeric displays, and more
difficult tasks of prediction and error. High-tier performers were proficient and
creative users of the technology, the mathematics content covered, and the
instructional strategies presented as questions and prompts in the interface. They
displayed positive and innovative attitudes while using Excelets to complete the
modeling task. Low-tier performers lacked a detailed or systematic approach. They
presented surface-level understanding and skills, never reaching the point of
effective or creative TPACK integration. In the case of the lowest performer,
unresolved error and ineffective tool use led to a progressive decline in attitude and
little learning.

8.4.2 Creativity in Developing Tasks

To assess how pre-service mathematics teachers develop a task associated with a
modeling lesson, participants were asked to select one of three Excelets and to
create a handout to guide the exploration of the Excelet for students in their future
class. They were asked to connect this exploration to a Common Core or state
standard. The handout and reflection they created were analyzed to assess creativity
and ability of the task to promote learning. Particular attention was given to
appropriate use of the technology and the pedagogy to promote exploration and
integration of content knowledge within the context of creativity. High levels of
creativity were those that promoted opportunities for students to explore and learn,
while encouraging independent problem solving (Lin, 2011) within the mathe-
matics context presented in the Excelet. Low levels of creativity were those that
sought routine responses, promoted little exploration or independent problem
solving for the learner.

Ian, a high-tier performer, created a two-page handout that asked broad and
high-level questions associated with fundamental concepts of material presented in
the Excelet. The handout presented a new dataset for entry, followed by questions
regarding associated changes to the graph. Ian’s handout provided a scaffold for his
students taking them from simple interpretation to explanation, and ending with a
more complex scenario and associated interpretations. In his reflection, he provided
a thorough analysis of his thought process and a clear rationale for his handout. His
handout was deemed effective and his reflection, accurate. Ian demonstrated cre-
ative TPACK with appropriate levels of guidance for his students.

Valerie, another high-tier performer, provided the most intricate handout. It was
nicely formatted with a title and the associated state standard at the top. The
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handout included a well-structured goal for the activity and prompted the student to
carefully read the introduction provided in the Excelet, drawing attention to the
importance of this information. Then, the handout asked the student to define the
variables used in the calculation, followed by a rich example with data for the
student to enter and interpret. The handout included an appropriate balance of
information and probing questions. The second page of the handout articulated a
broader exploration with less but sufficient scaffolding to prompt and support
students to extend their understanding while manipulating various pages of the
Excelet. Valerie’s handout was excellent and her reflection of the process accurate.
She demonstrated creative guidance and integration of TPACK to promote learning.

Anna, a low-tier performer, produced a simple and logical handout for her
students. It included a title and abbreviated version of the associated standard for
learning. The handout also included a table for recording data but was unclear
exactly how and where this activity linked to the Excelet. The handout included
three probing questions and two extending questions but did not directly link these
to the Excelet interface or associated content, making it potentially difficult for the
learner to follow. In her reflection, Anna simply expressed her process and artic-
ulated the difficulty she had creating “good” questions that promoted critical
thinking. The exploration task that she generated in the handout was logical but
would have benefited significantly from additional and more exploratory prompts.
Her use of TPACK was acceptable and slightly creative. To her credit, she
expressed concerns that the task she created was not straightforward for students,
but she did not resolve this in her final handout.

Natalie, a low-tier performer, provided related standards and explained the
context for how high school students might use this Excelet, but she did not
generate a handout with activities to guide the process. In her explanation, she
recommended asking students to measure tumors and record them in Excel, then
she recommended having students measure, chart, and calculate “without the help
of Excel.” The rationale provided for this approach was that it would “assess if the
students actually understand the equations and different processes they will be
using.” Ironically, Natalie did not recommend any exploration using the Excelet or
probing questions to facilitate conceptual understanding with the tool. Regrettably,
she demonstrated no creative TPACK for her students.

The handouts that participants prepared for their students varied significantly in
quality and approach. High-tier performers provided clear instructions, context, and
well-formulated activities for learning. Their reflections were detailed and accurate,
indicating that they were aware of their decisions and difficulties they encountered.
High-tier performers promoted proficient and creative activities for their students.
They found solutions to the difficulties that they encountered during development.
Low-tier performers lacked a detailed or systematic approach. One of the low-tier
performers produced a better quality product than the other. She demonstrated a
simple solution. The other failed to produce an effective or creative handout. She
demonstrated a comprehensive lack of TPACK integration for the content of
Excelet.
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8.4.3 Creativity and TPACK

This analysis assessed the relationship between participants’ self-reported TPACK,
reflection scores, and their performance in using and creating modeling tasks.
Additionally, self-reported TPACK scores of pre-service mathematics teachers
collected before and after modeling tasks were compared to assess the impact of
Excelet-based modeling on TPACK awareness. These scores provide insight into
how participants assessed their technological, pedagogical, and content knowledge
and reflected on their creative teaching of real-life mathematics concepts both as
students and as teachers (Lin, 2011; Lev-Zamir, 2008).

Ian, a high-tier performer, rated himself as a moderately proficient user of
TPACK with scores hovering around 3.5. He appraised himself as slightly higher
on pedagogical knowledge and lowest on content knowledge. There were no major
changes in his self-reported TPACK when comparing scores collected before and
after the modeling tasks, although he dropped his content knowledge score by
approximately half a point. He expressed generally positive ratings of his abilities to
generate tasks as evidenced by his mean reflection score of 3.9. Figure 8.8 provides
an overall display of his results. Ian was a very proficient performer on both
modeling tasks and as such, he accurately or slightly underestimated his abilities.

Valerie, a high-tier performer, rated herself as a moderately proficient user of
TPACK. She rated her abilities in the technological, pedagogical, and content areas
higher than those of integrated TPACK. Of particular interest was her shift in scores
after completing the modeling tasks. Her technological mean increased by over one
point and her mean integrated TPACK score decreased by one point. The change in
her technological score seemed appropriate given her proficient use of the Excelet
in the first modeling task, signifying that this task reinforced her self-awareness of
technological skill. The decrease in her integrated TPACK score was evidenced in
her struggle to determine the appropriate level of support when designing explo-
ration activities in the second modeling task. A further indicator of this struggle was
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Fig. 8.8 TPACK and mean reflection for Ian, a high-tier performer
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her slightly negative mean reflection score of 2.8. Figure 8.9 provides a graph of
her results. Valerie was a proficient user of modeling but was aware of the diffi-
culties in creating effective exploration for students, even though her explorations
were very elaborate and deemed highly effective. She slightly underestimated her
abilities to create modeling tasks and was very thoughtful in her reflection of the
difficulty of this task.

Anna, a low-tier performer, rated herself as a moderately proficient user of
TPACK as seen in her scores before completing the modeling tasks. She rated
herself slightly lower in technological skills and slightly higher in pedagogical
skills. Anna made several meaningful changes to her TPACK scores following the
modeling tasks, dropping her technological score by 0.83, her pedagogical score by
0.8, and her content score by 0.6. Her integrated TPACK score remained the same.
She expressed a generally positive rating of her abilities to generate tasks as evi-
denced by her mean reflection score of 3.7. Figure 8.10 provides a numerical
overview of Anna’s results. Her qualitative reflection articulated the difficulty she
had creating “good” questions that promoted critical thinking. The exploration task
that she generated for students was logical but would have benefited significantly
from additional and more exploratory prompts. Anna was a relatively
low-performer on both modeling tasks and, while the changes to TPACK were in
the right direction, it is believed that she still overestimated her abilities after both
modeling tasks.

Natalie was a low-tier performer who rated herself as a highly proficient user of
TPACK with most scores reported as perfect fives. Specifically, she rated herself as
a five on technological, content, and integrated TPACK skills. Interesting, she
reported lower scores in the area of pedagogical knowledge yet still rated herself
with a top score on integrated TPACK. Natalie appeared to have a flawed under-
standing of the importance of technological, pedagogical, and content knowledge to
be an effective integrator of TPACK. Such disconnects permeate Natalie’s
self-rating. The only change to her self-reported TPACK when comparing scores
collected before and after the modeling tasks, was an increase in of 0.8 in peda-
gogical score. Given that she was ranked lowest on both modeling tasks, her mean
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reflection score of 2.7 was rather accurate indicating that she was aware of defi-
ciencies in completing the actual modeling tasks. Figure 8.11 provides a graph of
Natalie’s results. While she accurately reflected on her poor performance on these
tasks, she failed to connect the relationship of these tasks to her TPACK abilities, as
evidenced by her increase in post-TPACK scores. Natalie was a low performer who
reflected accurately on her performance yet overestimated her abilities, failing to
make connections between the two.

In order to understand the magnitude of these misperceptions, TPACK scores of
all pre-service mathematics teachers enrolled in the course were ranked and the
rankings of the four participants in this study were compared. When two individuals
had the same scores, the average ranking between those individuals was used (e.g.,
two individuals ranked 12th and 13th who report the same mean score have an
adjusted rank of 12.5). The TPACK rankings for individuals in this study are
provided in Table 8.1. Top-tier participants demonstrated high levels of creativity
and TPACK yet rated themselves low in these skills while bottom-tier participants
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provided little creativity and TPACK yet rated themselves extremely high. This
highlights the issues associated with low-tier performers who do not accurately
assess their knowledge and skills.

8.5 Summary

Findings from this study indicate that high-tier and low-tier performers use and
produce modeling activities of very different quality and substance. While all
participants were challenged by the activities, the high-tier performers were able to
think creatively, articulate issues, solve problems, and develop meaningful explo-
rations for students. They displayed a consistent and positive attitude toward the
technology, and demonstrated a respect for the role of these tools in learning.
Low-tier performers struggled with the technology, content, and pedagogy yet they
rated themselves higher in skill than their high-tier peers. The low-tier performers
need more awareness of their true skills and opportunities to resolve conflicts. This
comes through prolonged, strategic development of TPACK.

Teacher preparation programs have much work to do. A mathematics methods
course is often the first time that a pre-service teacher may be challenged to explore
mathematics content creatively. The technology is a tool that opens up many
opportunities for learners to explore yet it is also a challenge since many pre-service
teachers lack experience with this creative thinking. There are still many challenges
in educating pre-service and in-service teachers to become proficient users of
technology for the classroom. Future instruction should consider ways to scaffold
instruction, particularly for those pre-service teachers who struggle with the inte-
gration of TPACK.

8.6 Implications

Based on the evidence presented, many points arise that are in need of future
research and study. First, as was presented in research (Beck & Wynn, 1998; Niess,
2005; Polly, Mims, Shepherd, & Inan, 2010), many pre-service teacher education

Table 8.1 Self-reported
TPACK rank relative to
classroom peers

Participant Pre-TPACK
(n = 13)

Post-TPACK
(n = 12.5)

Ian 11 12.5

Val 12 11

Anna 5 12.5

Natalie 3 2

1 = Highest TPACK. 13 or 12.5 = Lowest TPACK
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programs have a general technology course that really does not serve the specific
disciplines well. This was evident in this study by the fact that all participants
identified they had taken such a course and were familiar with Excel, but not all
were able to use it to the full capacity. It was apparent that the high-tier participants
were able to use the technology as a tool to help them understand the mathematics,
but the low-tier participants only used it to get answers. There was a wide gap in
how the high-level users explored with Excelets compared to the low-level users.
This has strong ties to Thomas and Palmer’s work identifying obstacles and
opportunities for teaching with technology (2014). They brought out that teachers
who are most successful in integrating technology into class instruction were those
who let the mathematics rather than the technology be the focus. We believe this
phenomenon appears to be the case with the high-level users in this study.

This study also brings to light that pre-service teachers need more modeling
experiences in mathematics and thinking about concepts in a more open manner.
This openness allows for more creative thinking and understanding, which is what
learning is all about. If teachers do not experience such practices for themselves as
learners, they will not be able to act on them as teachers. Teachers must provide the
“right kind of environment” for learners to be creative in thinking about how to
solve real problems. This just does not happen—it happens when one experiences it
and has the vision to promote individuality and creativity in learning tasks for
students. We believe that use of spreadsheets allows one to take risks and to make
use of visual cues to make sense of mathematics. Thomas and Palmer (2014) bring
out the point that a major challenge of teachers is the time and effort required of
both students and teachers to become familiar with technology and make sense of
concepts.

We also found that reflective students often develop the skills to be creative in
what they see, say, and do. It was determined that Ian and Valerie were great at
“thinking aloud” and freely shared what they were thinking which in turn related to
creativity. They often were unique in how they said things as well as what they used
to describe their thinking and processes. On the other hand, the lower-level per-
formers, Anna and Natalie, did not demonstrate much thought in their comments
and actions and as a result were not creative in how they approached or discussed
mathematics concepts. This leads us to consider how lower-level learners develop
traits of creative responses and insight into tasks. More specifically, how can cre-
ativity be developed in pre-service teachers who are weak in their mathematics
foundation? This would require greater discussion and investigation into what
occurs in mathematics coursework pre-service teachers complete.

Preparing future teachers is an important task for colleges and universities. With
expectations to prepare teachers around content, pedagogy, and technology, how to
include a creative lens for such work is critical to advance learning. Teachers must
know what to look for and how to provide a nurturing environment for such
learning to occur. This takes time and effort on the part of the teacher (Thomas &
Palmer, 2014). Pre-service teachers gain insight by experiencing technology-rich
scenarios steeped in creative interpretation as learners prior to acting on them as
teachers. As Applebaum and Saul (2009) state, “Teachers can practice the skill of
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analyzing creative responses. They can provide students with situations which leave
room for the creative response, and they can provide classroom environments where
the unusual is welcomed” (p. 282). Teacher preparation programs need to educate
creative teachers so they in turn produce unusual but creative students!
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Chapter 9
Creativity in Question and Answer
Digital Spaces for Mathematics Education:
A Case Study of the Water Triangle
for Proportional Reasoning

Benjamin Dickman

Abstract As digital spaces evolve, mathematics educators must develop an
awareness of the ways in which these environments can facilitate discussion and
foster creativity. Question and Answer (Q&A) sites such as Mathematics Educators
Stack Exchange (MESE) provide a platform through which those interested in the
teaching and learning of mathematics can harness new technologies to address
novel queries, and engage collaboratively with others who share their interests. This
chapter aims to trace one example of a question-answer combination on MESE as
situated in the broader context of technology and creativity in mathematics edu-
cation, and to utilize the example as a lens through which we can critically examine
the current state of digital environments and reflect on their potential use by
mathematics educators.

Keywords Collaborative emergence � Mathematical creativity � Online spaces
Participatory model of creativity � Q&A sites

9.1 Introduction

The ideas outlined in this chapter coincide with an evolution of the digital spaces
that can foster mathematical creativity. Geographical barriers no longer pose the
same sort of hindrance to collaboration among education researchers and practi-
tioners. Today, mathematics educators come together through social media such as
the MathTwitterBlogosphere (MTBoS), deftly navigate vast repositories of math-
ematical information such as the arXiv, and communicate directly through various
web forums.
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Question and Answer (Q&A) sites for mathematics are not new to the decade, or
even the millennium. The online Geometry Forum, which is now NCTM’s Math
Forum,1 traces the history of its Q&A component Ask Dr. Math back to 1994.2 Two
years later, in 1996, the similarly titled Math Doctor began at Nicholls State
University, but changed its name shortly thereafter toMath Nerds, which had “about
one hundred volunteers and answer[ed] about 1500 questions per month” as mea-
sured about a decade after its creation (De Angelis et al., 2008, p. 28). Writing out of
the Technical Education Research Centers (TERC), Rubin’s (1999) Technology
Meets Math Education: Envisioning a Practical Future Forum on the Future of
Technology in Education “insists that, rather than looking at math education from the
perspective of the computer, we must look at computers from the perspective of
mathematics education” (p. 1). In doing so, Rubin identifies five powerful uses of
technology in mathematics education, among which Resource-Rich Mathematical
Communities includes theMath Forum as “the best known” resource site at the time
(Rubin, 1999, p. 8). This subsection on resource sites concludes by remarking that the
forum “has served as an important portal for mathematics educators and as a kind of
social center for the mathematics education community” (p. 9).

The social centers for mathematics education communities have continued to
exist on the Internet, but have evidently changed over the past two decades. One
feature is the inclusion of sites that allow anyone, not just those who are confirmed
as experts, to answer questions about mathematics and, in some cases, mathematics
education. For example, the reddit community dedicated to socializing around
mathematics3 has subscribers in the hundreds of thousands, and allows anyone to
sign up and post or comment about mathematical links and questions.

In this chapter, we look at a particular Q&A digital space, Mathematics
Educators Stack Exchange (MESE), which fits within the broader Stack Exchange
network. Unlike many of its predecessors, MESE is organized around mathematics
education rather than mathematics proper. To gain insight into how MESE fits into
the landscape of technology and creativity in mathematics education, we proceed as
follows: First, we articulate the three key ideas that will be covered throughout the
chapter, after which we look to the literature as concerns the breadth of definitions
that have arisen over the years in investigations of ‘technology’ and ‘creativity’.
Next, we provide brief remarks around the connections between our specific subject
of study and the broader topics of this text: mathematics and mathematics educa-
tion, technology, and creativity. The third section summarizes our specific subject
—a question posted to MESE about a tool used in proportional reasoning—and
then investigates the ways in which responding to a reference request is an act of
creative collaboration. The fourth and final section provides avenues for further
research by proposing three open questions related to the initial key ideas, before
closing with our conclusion.

1(http://mathforum.org/).
2(http://mathforum.org/dr.math/abt.drmath.html).
3(https://www.reddit.com/r/math).
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9.1.1 Key Ideas: Q&A Sites, Definitions, and Creative
Collaboration

We non-exhaustively list here three key ideas for the chapter, which relate,
respectively, to Q&A sites for mathematics education, the importance of defining
terms and scope when discussing technology and creativity, and the situating of
everyday ideas as examples of creative collaboration within a participatory model
of creativity.

Key Idea 1 Question and Answer (Q&A) sites specific to mathematics education
are a recent phenomenon, and have emerged along with a collaborative paradigm in
which users frequently serve as both askers and answerers of questions. Earlier
precursors include Q&A sites specific to mathematics, which have existed for over
two decades, yet for which the askers and answerers have sometimes constituted
disjoint, or nearly disjoint, groups.

Key Idea 2 The many definitions for ‘technology’ and ‘creativity’ require a certain
amount of specificity in any discussion for which they play prominent roles. We
advocate for an interpretation of ‘technology’ that admits both digital technologies
(such as online Q&A forums) and domain-specific tools (such as the water triangle
for proportional reasoning). Moreover, we advocate for an interpretation of ‘cre-
ativity’ that coincides with Hanson’s (2015a, b) description of a participatory
model: Rather than focusing on single ideas or identifying individual creators, we
look at how creative collaboration (e.g., through a Q&A forum) is distributed
among actors and objects.

Key Idea 3 Our particular example of a tool (the water rectangle) paired with a
necessarily incomplete account of its history does not constitute a watershed,
domain-shifting moment in mathematics education; rather, the collaborative cre-
ativity exemplified by the reference request described in this chapter contributes to
an ongoing conversation about proportional reasoning, in particular, and mathe-
matics education, in general. It is a conversation that began before the modern
language of proportional reasoning existed, has continued with the predecessors for
this tool and the tool itself, was furthered by the satisfied reference request, and
which will continue far beyond the everyday ideas put forth in this chapter.

9.1.2 Definitions for ‘Technology’ and ‘Creativity’ Over
Time

Definitions for ‘technology’ and ‘creativity’ abound. As contemporary conceptions
of technology undergo rapid change, we begin by looking back to Hansen and
Froelich’s (1994) early attempt at articulating the variety of definitions for ‘tech-
nology’ in their aptly-titled Defining Technology and Technological Education, in
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which they remark that “philosophers, anthropologists, sociologists, historians, and
teacher educators continue to study the subject [of technology], yet a widely
accepted definition remains obscure” (p. 179). The authors continue in exploring
definitions of ‘technology’ by looking to dictionaries and considering its etymol-
ogy; by looking to individual scholars from a variety of domains; by considering,
among other conceptions, ‘technology’ with regard to products and processes; and
by examining technology as relates to feminism and the evolution of women’s roles
in society (Franklin, 1992). Analogously, there are elsewhere discussions about the
emergence of ‘creativity’ in English dictionaries (e.g., Mason, 2003); debates about
whether creativity is domain-specific (e.g., Baer, 1998; Plucker, 1998); conceptions
that include creativity with respect to products and processes (Rhodes, 1961); and
discussions around creativity as relates to the evolution of women’s roles in society
(Bateson, 2001, 2004). Beyond these parallels, in Treffinger et al. (2002) the
authors remark that “Treffinger (1996) reviewed and presented more than 100
different definitions [of creativity] from the literature” (p. 5), and Sawyer (2011)
goes so far as to contend that “defining creativity may be one of the most difficult
tasks facing the social sciences” (p. 11). Defining either term is certainly no easy
task.

There is a school of thought within creativity research, originating with work by
Amabile and Hennessey (e.g., Amabile, 1983, 1996; Hennessey, 1994; Hennessey
& Amabile, 1999), in which one operationalizes subjective agreement on that which
constitutes ‘creativity’ with respect to particular products, rather than providing a
formal catch-all definition for the term. There are also schools of thought, more
process-oriented, that essentially identify creativity with problem solving; for
example, Weisberg (2006) writes that “it seems reasonable to adopt as a working
assumption the premise that creative thinking is an example of problem solving”
(p. 581). In a similar vein, others associate creativity with problem posing; for
example, Getzels (1975) quotes Einstein as stating that, “The formulation of a
problem is often more essential than its solution, which may be merely a matter of
mathematical or experimental skill. To raise new questions, new possibilities, to
regard old questions from a new angle, requires creative imagination and marks real
advances in science” (p. 12). Such an approach (see also: Getzels &
Csikszentmihalyi, 1976; Runco, 1994) continues the line of thought associated with
Guilford’s (1950) trait of “sensitivity to problems” as relates to creativity (p. 454).
This work of Guilford appeared in his APA presidential address, and also touched
upon the ability to reorganize, or redefine, in the sense of Gestalt psychology;
relatedly, one finds Wertheimer (1959) remarking that “often in great discoveries
the most important thing is that a certain question is found. Envisaging, putting the
productive question is often more important, often a greater achievement than
solution of a set question” (p. 141).
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9.1.3 Perspectives Adopted for Investigating the Creative
Use of Technology

In this chapter, we will adopt a combination of perspectives on creativity: We will
use the Question and Answer (Q&A) format of web-based platforms to frame the
creative use of technology. The notion that both questions and answers are
important is established within the discipline of mathematics education. We may
associate ‘answers’ with the process of finding solutions, and look to the vast
literature on mathematical problem solving (e.g., Polya, 1945; Schoenfeld, 1985,
2010) and, similarly, associate ‘questions’ with the process of problem formulation,
and look to the vast literature on problem posing (e.g., Brown & Walter, 2005;
Duncker & Lees, 1945; NCTM, 1989, 1991; Kilpatrick, 1987; Silver, 1994).
Furthermore, we assume of the reader a familiarity with the domain of mathematics
education, and, therefore, the capability to apply the subjective commendation of
‘creative’ to products (cf. Baer & McKool, 2009). The sheer breadth among con-
ceptions of technology and creativity will make our own study intractable without
first limiting our scope; we use here a case study of one, which is an approach
foreign neither to creativity research (e.g., Gruber & Davis, 1988; Gruber &
Wallace, 1999) nor mathematics education (e.g., Brizuela, 1997; Erlwanger, 1973).
Specifically, we will trace a single example of a question-answer combination
posted on the Mathematics Educators Stack Exchange (MESE) website, and unpack
from a seemingly straightforward reference request the ways in which technology
and creativity collide in a present-day digital space designed for those interested in
the teaching and learning of mathematics.

9.2 Brief Connections to Mathematics, Technology
and Creativity

In this section, we situate our subject of investigation by connecting it to the three
broad topics of mathematics and mathematics education, technology, and creativity.

9.2.1 Brief Connections to Mathematics and Mathematics
Education

The Stack Exchange network includes over 150 Q&A communities; among these
are MathOverflow (MO), which is designed for those engaged in research level
mathematics, as well as Mathematics Educator Stack Exchange (MESE), which is
designed for those interested in the teaching and learning of mathematics. Earlier
work by Tausczik et al. (2014) explored the collaborative problem solving that
takes place on MO, and the five “collaborative acts” of providing information,
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clarifying the question, critiquing an answer, revising an answer, and extending an
answer identified through a process of open coding (p. 359). Though not explicitly
connected there, the authors’ research fits well with the notion of collaborative
emergence in the creativity literature (Sawyer, 2011; Sawyer & DeZutter, 2009). At
present, there appear not to have been any investigations of MESE, which was
proposed as a site in 2014, and currently holds over 8000 combined questions and
answers in the domain of mathematics education.

MESE is specific to mathematics education, and the example traced here is no
exception: “The ‘water triangle’ proportional reasoning task”4 is a reference request
about the origin of a tool previously depicted on Wikipedia’s proportional rea-
soning page.5 Proportional reasoning is a fundamental component of early math-
ematics education, and relates to work with such topics as ratios, fractions, rational
numbers, and rates (Tourniaire & Pulos, 1985; Lobato et al., 2010). The asker
suggests the tool may have been created by mathematics educator Robert Karplus in
the 1970s, but is otherwise unaware of its history. This tool inspired the con-
struction of a water rectangle in the asker’s dissertation on mathematics education,
as well as subsequent investigations presented at the ICMI-East Asia Regional
Conference on Mathematics Education (Noche, 2013; Noche & Vistro-Yu, 2015).

9.2.2 Brief Connections to Technology and Online Forums

The movement to incorporate technology into learning trajectories can be seen by the
growing presence of online classes, MOOCs, sites such as Coursera and MIT
OpenCourseWare, and web-based platforms such as Moodle and Blackboard to
supplement classroom-based courses. There are also digital spaces associated with
post-secondary programs inmathematics education, such as TheMath Forum (Drexel
University, mathforum.org) and The Mathematics Teaching Community (University
of Georgia, mathematicsteachingcommunity.math.uga.edu).Mathematics Educators
Stack Exchange (MESE, matheducators.stackexchange.com) is not associated with
an academic institution, and instead fits within the Stack Exchange (SE) network; the
network includes an additional site specifically for mathematics questions at the
research level (MathOverflow.net) and another for general mathematical queries
(math.stackexchange.com). Although SE contains over 150 different Q&A com-
munities, MESE is, at present, the only one concerned specifically with education.

In addition to the technology involved in interacting through a digital environ-
ment, both the question and answer connect to technology, as well. The question
explored is about a particular form of technology: although it is not digital tech-
nology, the water triangle is itself a tool for investigating proportional reasoning
(Kurtz, 1976). With regard to digital technology, the answer emerged from a

4http://matheducators.stackexchange.com/q/29.
5https://en.wikipedia.org/wiki/Proportional_reasoning.
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confluence of sources: MESE, Wikipedia, ProQuest, e-mail and more. To unpack
the power of a modern technological tool such as a Q&A digital space, we will
explore both the ‘Q’ and ‘A’ part of the given example; more precisely, we must
remain cognizant of the types of technology that exist outside of the
computer-based forms commonly associated with contemporary conceptions of
‘tech’—a deep understanding of connections to technology emerges most promi-
nently when the digital requirement is dropped, and a broader toolbox conception is
adopted.

9.2.3 Loose Ends: A Couple of Additional Connections
to Creativity

In addition to the already mentioned problem solving, problem posing, and col-
laborative emergence, we consider two more important connections to the literature
on creativity. First, Stokes (2005, 2010) discusses the development of creativity
through constraints. The digital space under discussion is designed specifically for
questions about mathematics education; this precluding constraint ensures that
questions that are deemed off-topic by other site users are either refined, migrated to
another site, or closed entirely. Moreover, there exists an additional promoting
constraint with regard to novelty; namely, that new questions be distinct from
earlier ones: If the question already exists on the network, then site users may
choose either to close the new version or encourage its modification so as to prevent
repetition. Second, Rhodes’ (1961) classical framework around situating creativity
concerns the person, process, product, and environmental press. These are only a
few of the many conceptions of creativity, and, although this chapter contains a
portion narrativized as a personal recollection, our ultimate goal is to consider
creativity from a variety of perspectives; as is the case with connections to tech-
nology, a deeper understanding of creativity emerges when we adopt a broader
toolbox conception.

9.3 Collaborative Creativity Through a Reference
Request

In this first sub-section, we detail the history of a single example of a routine
reference request, which will provide us with a lens through which, in the subse-
quent sub-section, we may examine the current state of question and answer digital
environments as we reflect on their potential use by mathematics educators.
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9.3.1 Reference Request: ‘Water Triangle’ for Proportional
Reasoning

“The ‘water triangle’ proportional reasoning task” was initially posted on the
Mathematics Teaching Community in 20126 where it remained unresolved. The
question was modified by its creator and re-posted to MESE in 2014. The question
essentially asked about the source of the ‘water triangle’ depicted on Wikipedia’s
proportional reasoning page; the illustration under discussion can be seen in
Fig. 9.1.

The author of this chapter ultimately located the original source of the water
triangle, and provided an accepted answer to the query; in recounting how this
answer came about, we change voice here to the first-person for the sake of clarity:

I began by investigating the Wikipage for proportional reasoning, and also
looked through its history to see if there was relevant information to be found in
earlier versions of the page. Earlier incarnations of the Wikipage included an
additional photograph of a physical water triangle being used by students (Fig. 9.2)
and the image had the same credited uploader as the illustrated version already
shown in Fig. 9.1.

The original question on MESE included a mention of mathematics educator
Robert Karplus; however, both of the images were credited to Barry L. Kurtz,
whose e-mail address was included, as well. I wrote to Professor Kurtz to ask
whether he was aware of the water triangle’s origins; his response message was as
follows:

I completed my Ph.D. under Bob Karplus at UC Berkeley. I was his last Ph.D. student. My
dissertation dealt with teaching for proportional reasoning. I invented the idea of a “water
triangle” to teach inverse proportions. There were all made by the workshop at the
Lawrence Hall of Science; they were not a commercial item. I doubt any exist today; I
certainly don’t have any. Thanks for your interest. You did a good job tracking me down!

I followed up on this lead by using ProQuest7 to find Kurtz’s doctoral disser-
tation, where the water triangle can be found on page 34; an image of the disser-
tation (Kurtz, 1976) is displayed in Fig. 9.3.

In a follow-up message, Kurtz pointed to an article based on his dissertation
(Kurtz & Karplus, 1979) and noted that it was later reprinted in Fuller’s (2002)
A Love of Discovery: Science Education—The Second Career of Robert Karplus.

6https://mathematicsteachingcommunity.math.uga.edu/index.php/685/the-water-triangle-proportional-
reasoning-task.
7http://www.proquest.com/.
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Fig. 9.1 The water triangle for proportional reasoning (released by its author into public domain
for any purpose, and without any terms or conditions; cf. https://commons.wikimedia.org/wiki/
File:Water-triangle.JPG)

Fig. 9.2 Students using a physical version of the water triangle (released by its author into public
domain for any purpose, and without any terms or conditions; cf. https://commons.wikimedia.org/
wiki/File:Constant-product.png)
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9.3.2 Collaborative Creativity: What Do We Mean
by ‘Creative’?

The previous sub-section briefly detailed how a question on Math Educators Stack
Exchange, which asked about the origin of a water triangle for proportional rea-
soning, was investigated and resolved. This section aims to answer the natural
follow-up question with respect to inclusion in a textbook on creativity and tech-
nology in mathematics education; succinctly: Okay, so what?

We begin by observing the manifold ways in which technology allowed for such
a question-answer combination. Specifically, we have an educator in The
Philippines posing a question about mathematics education, for which a mathe-
matics educator in the East Coast of the United States was able to respond by
tracking down graduate research completed in the West Coast of the United States
some four decades earlier. Without a confluence of technological means—
Wikipedia, which allows users to participate by uploading original content; e-mail,
which allows individuals to communicate without the geographical barriers that
would have hindered such an interaction in the recent past; and ProQuest, which
includes doctoral dissertations uploaded to a searchable database—such a query
would have been essentially intractable. Moreover, there needed to exist a digital
space that could facilitate such interactions between individuals with the relevant
curiosity and expertise: for the asker, this meant the curiosity and expertise to
formulate the question after utilizing a domain-specific tool based on the water
triangle in their own work on mathematics education; for the answerer, this meant
the curiosity and expertise to understand and investigate the question, and to use a
combination of digital technologies in order to resolve it.

Creating spaces in which members of a field can come together to interact
meaningfully is a nontrivial endeavor. As mentioned earlier, the reference request at
the heart of this chapter was already posted to another digital space for mathematics

Fig. 9.3 An excerpt from the doctoral dissertation of Barry L. Kurtz
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education two years prior to its re-post on MESE. Internet-based Q&A digital
spaces provide both a platform and a technological tool that can be used to foster
creativity within the domain of mathematics education; such an observation points
to the requirement not only for tools and technologies, but also to users who can
intentionally and capably operate them. For the question itself, we needed an
environment that not only could house such a query, but could also do so in an
accessible manner: for example, using again the language of Stokes (2005, 2010),
we needed the search space to be both broad enough to allow for a variety of
questions (e.g., by instituting promoting constraints around novelty such as insti-
tuting a reputation-based system to award credit to those who formulate
well-received questions and answers) and narrow enough to appeal to members of a
particular field (e.g., by instituting precluding constraints such as closing duplicated
questions, or, more generally, having a site specific not to mathematics or to
education but rather to mathematics education).

Similar observations hold outside of the digital-interpretation of ‘technology’:
The original water triangle, depicted as an illustrated diagram in Fig. 9.1, is itself an
example of a tool and technology; however, its educational relevance is perhaps
more clearly depicted in Fig. 9.2, where we observe individuals interacting with a
physical model. Even still, the images themselves require additional interpretation
and exploration; to this end, we require members of a field to push concepts further
by creating web-based content such as a Wikipage or a response on MESE, by
developing the language of proportional reasoning and explaining its
domain-relevance in the earlier dissertative work and publications, by continuing
with new ideas around proportional reasoning in more recent dissertative work and
presentations, and, self-referentially, by summarizing and connecting these various
contributions in our present account of matters as they stand today. None of this is
accomplished by individuals working in a vacuum, just as none of the ideas has
emerged ex nihilo; rather, we have the collaborative emergence (Sawyer, 2011;
Sawyer & DeZutter, 2009) that is enabled by the collision of technologies: physical
and digital, old and new.

At this point in our discussion, it is hopefully clear that Q&A digital spaces
exemplify an environment that has the potential to facilitate discussion among those
with domain-relevant expertise and interest. But our argument here is that these
spaces can foster creativity, and it is to this claim that we must now attend. What do
we really mean by ‘creativity’? In Hanson’s (2015b)Worldmaking: Psychology and
the Ideology of Creativity there are a variety of conceptions around creativity put
forth and described. Specifically, Hanson (2015a) writes that:

…the concept of creativity provides a site to explore important issues within a framework
of often unquestioned assumptions. Beyond claims of the specific theories, the amalgam of
theories have contributed to an underlying ideology. This ideology is important because it
concerns one of the most salient characteristics of our times: change. It is also a fascinating
ideology because, in keeping with the values it represents, the ideology changes over time.

The belief espoused in our own account is not that satisfying a reference request
constitutes a sort eminent or ‘big-C’ Creative (e.g., Kaufman & Sternberg, 2009)
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achievement that shifts an entire domain (Csikszentmihalyi, 1999). Instead, we
wish not to leave the underlying assumptions around creativity unquestioned, and
adopt a view of creativity as a participatory model. Quoting Hanson (2015a) again:

Instead of focusing almost entirely on how to get people to think of new ideas, the par-
ticipatory models situate ideation within individual development, group dynamics and
historical settings. The support roles and the field (gatekeeper) roles that people take up as
they integrate novelty become more central. Choosing, supporting, interpreting and refining
ideas are as important as ‘having’ an idea. Indeed, on close examination, distinctions
between field roles and the ‘creator’ role begin to disappear… Creator as curator [of ideas]
emphasizes the tasks of selecting, emphasizing, and powerfully presenting ideas that – as
always – derive from historical domains, broader culture (‘commonsense’), the artifacts of
culture and other people’s ideas.

The creativity in our discussion is distributed among the many actors and objects
involved, ranging from the research of Karplus and students on proportional rea-
soning, to the question-answer combination on MESE, to the understanding
reached (extended, challenged, etc.) by the reader of the work at hand. In most any
direction we look, there is more to be unpacked and asked about (e.g., How did
Wikipedia, and the wiki-paradigm more generally, support these interactions? How
did the availability of resources at the UC-Berkeley Lawrence Hall of Science
contribute to Kurtz’s work?). Technologies such as Q&A digital spaces allow
educators to expand and develop their own network of enterprises (Gruber &
Wallace, 1999) as they participate in projects that allow for new ways of organizing
the self—what needs to be done, what can I do, and what must I do (cf. Gruber &
Barrett, 1974)—in relation to one’s own ongoing work and the creative endeavors
of others.

Our attention to the role of Q&A digital spaces in fostering creativity is not
restricted to Rhodes’ (1961) framework around the person, process, product, or
press; nor is it with respect to some sort of self-actualization (e.g., Maslow, 1943)
in becoming “Creative Educators,” or by conflating creativity writ large with the
separate construct of divergent thinking within out-of-the-box models (Runco,
2010), Gestaltist views on creative insight (Wertheimer, 1959), or eminence-based
theories of creativity (Csikszentmihalyi, 1999). Rather, we focus on continuous
participation in the evolving ideology of creativity (Hanson, 2015b). As mathe-
matics education develops as a domain, the corresponding field of mathematics
educators is confronted by challenges that require the use of tools and technologies
both new and old. Even, or especially, as central concepts in mathematics educa-
tion, such as proportional reasoning, have changed over the past several decades,
we must be prepared to exchange and modify ideas and understandings within
spaces that allow us to engage in the sort of dynamic interactions that best support
our work as individuals and as groups. Neither a routine reference request nor the
novel pathway carved out in resolving it constitute paradigm-shifts in creativity
within mathematics education. Instead, these questions and answers, the digital
spaces that provide platforms for their formulation, and the many people whose
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work is inextricable from the technologies and tools that are built and used to
resolve them are all parts of a conversation around the teaching and learning of
mathematics, and all contribute to the creativity necessary to face the continuous
change found in the ever-evolving world of education.

9.4 Looking Ahead and Wrapping Up

We conclude our chapter by posing three follow-up questions that correspond to
possible ways in which our initial three key ideas can be further explored.

9.4.1 Looking Ahead: Three Open Questions

We conclude with three open questions for future investigation, consideration, and
research. Each of the three questions is intended to extend, or challenge, compo-
nents of the respective key ideas from the beginning of the chapter. None of these
questions is intended to be answered succinctly, or even directly; instead, they are
posed as questions to guide, or influence, those who wish to think further around
the subject matter contained in, or related to, this chapter.

Open Question 1 As the distinction between asker and answerer is blurred within
Q&A sites, and forums become more inclusive of participants at various positions
along a novice-to-expert continuum, how can we better ensure that creative col-
laboration will ultimately be productive both within the confined digital space, and
within broader conversations throughout the domain of mathematics education?

Open Question 2 For those who adhere to, or advocate for, interpretations of
‘technology’ and ‘creativity’ different from ours, what conclusions can be drawn
about the impact of evolving Q&A sites for mathematics education? For example,
for those whose definitions of technology are restricted to the digital, and for whom
the participatory model of creativity is rejected in favor of an out-of-the-box
divergent thinking model, are digital spaces such as Math Educators Stack
Exchange well-positioned to support and foster creativity?

Open Question 3 Given a conception of creativity in which it is viewed as a
feature of an ongoing conversation, and the creative collaboration is distributed
across many individual actors to the extent that supporter roles and creator roles
fade away, what impact does the adoption of such a perspective have on students,
teachers, and other stakeholders in mathematics education?
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9.4.2 Conclusion

We have advocated in this chapter for a view of creativity that is participatory:
rather than looking to identify eminent individuals or singular insights, we chose to
examine everyday creativity as exemplified by a reference request. Our view of
technology was similarly inclusive, as it admitted not only the digital sort, but also
tools in a more general sense, up to and including a physical water triangle for
proportional reasoning. As we did not concern ourselves with finding the one
person, or one moment, or one idea, to which the commendation of ‘creativity’ can
be applied, we focused instead on the distribution across multiple actors, and the
ways in which they fulfilled their roles as facilitated by a particular Q&A site. In
doing so, we actively push back against the myth (cf. Weisberg, 1986) that cre-
ativity is strictly the work of geniuses. And in promulgating a participatory model
of creativity in which a hierarchy of creator and supporter roles ceases to exist, we
hope to shift the focus away from precisely who or what can be considered creative,
and instead to think more inclusively about the ways in which a diverse array of
individuals can productively work together, whether this collaboration occurs in the
Q&A digital spaces of today, or in yet-to-be-created spaces of the future.
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Chapter 10
Nurturing Creativity in Future
Mathematics Teachers Through
Embracing Technology and Failure

Marina Milner-Bolotin

Abstract This chapter discusses how modern educational technologies open new
opportunities for educating creative and engaging mathematics teachers. In par-
ticular, the focus is on using technology to engage mathematics teacher-candidates
in exploring how technology can facilitate productive mathematical thinking. The
chapter emphasizes the need for viewing mathematics learning as a creative, col-
laborative and constructive process that sometimes is fraught with inevitable
challenges and productive failures, and at other times filled with exhilarating dis-
coveries and new insights. The chapter suggests various ways of implementing
digital technologies, such as data collection and analysis tools, electronic response
systems, PeerWise, computer simulations, dynamic mathematical software, and
Collaborative Learning Annotation System in mathematics teacher education
courses in order to inspire teacher-candidates to embrace technology-enhanced
creative mathematical thinking. In addition, the importance of technology in scaf-
folding teacher-candidates and consequently mathematics learners in experiencing
and overcoming productive mathematics learning failures is emphasized. The
challenge of the implementation of these technologies in mathematics teacher
education and the opportunities they offer for embracing creative mathematical
thinking are also discussed.
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10.1 Introduction

Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill

For too many people in North America mathematics is synonymous with Failure
with an upper-case F. Paraphrasing Winston Churchill’s famous quote, this failure
to do mathematics is often fatal—it projects on our identity (“math is not for me”);
it defines who we are (“I am just not good at math”); it demoralizes us (“It doesn’t
matter how much I try, I will never be good at math”); and most importantly, it
takes away our courage to continue (“I should avoid math-heavy disciplines at all
costs”). Considering the high value western societies place on innovations and
technological development, the Failure to do mathematics has significant social and
economic implications on students’ lives and on our society as a whole (Let’s Talk
Science, 2013). In the 21st century, mathematics has become a roadblock to success
for millions of North American students, which has also been reflected in their low
performance in the international assessments of mathematics and science learning
(National Center for Education Statistics, 2011; OECD, 2014) and in their lack of
interest in science, technology, engineering and mathematics (STEM) careers
(Chachashvili-Bolotin, Milner-Bolotin, & Lissitsa, 2016; Garforth & Stockelova,
2012; UMass Donahue Institute Research and Evaluation Group, 2011).

In the last fifty years in North America, students’ Failure to understand, engage
with, and appreciate mathematics has become a widely accepted phenomenon by
educators, students and parents alike (Adams, 2001; Tobias, 1993). We, as a
society, have become complacent with our children’s Failure to master basic
mathematical problem solving skills, get comfortable with fractions, percentages, or
exponents, and be able to apply mathematics they learn at school to their lives. This
also explains why declaring their dislike and anxiety about doing mathematics is
rather common both among the North American general public and K-12
(non-mathematics or science) teachers (Adams, 2001; Bursal & Paznokas, 2006;
Ma, 1999). A quick Google search for “failure and mathematics” produced
95,600,000 results in 0.44 s! Considering that a failure in the North American K-12
education system is often perceived as fatal and not as an opportunity to “summon
the courage and continue” learning, associating Failure with mathematics has sig-
nificant educational and societal implications.

The failure to engage with mathematics in a meaningful way is exacerbated by
the widely acceptable and profoundly erroneous beliefs about secondary school
mathematics: (a) After all, unlike language arts or fine arts disciplines, it is a “hard
subject” that not everybody can master; (b) Students who are “innately good at
math” need little practice and can solve problems fast without making any mistakes;
(c) being “good at math” means being able to solve problems almost instanta-
neously without making mistakes along the way, and (d) K-12 mathematics is not a
subject that requires or nurtures creativity, as the rigor of mathematics means that
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there is always only one right answer and one right way to get to it (Boaler, 2010;
Chinn, 2012; National Numeracy, 2016). One can contest these false and very
harmful “truisms” on multiple grounds, not the least of which is that there are no
“easy fields” if one strives to achieve mastery (Dweck, 2016). Most famous
mathematicians, scientists, musicians, and artists have overcome significant diffi-
culties before producing the work they have become famous for. Achieving mastery
in secondary school mathematics requires time, dedication and effort on behalf of
the students, as much as becoming a member of the city youth orchestra or a varsity
team. Excelling in any area, be it mathematics, music, medicine, sport, or business
requires a significant investment of time and effort (Gladwell, 2008). Moreover, it
requires perseverance in the face of failure, multiple opportunities to reflect on this
failure, while continuing to practice and perfect the desired skills (Lewis, 2014).
“Lower-case failure”, which we define as an opportunity to approach the task
differently, is an inherent part of learning any new subject, skill or craft, and
achieving mastery in it. Not only that failure is not fatal, but it is extremely
important for productive learning. Therefore, it is crucial to create learning envi-
ronments where students are supported in overcoming failures by having multiple
opportunities to master knowledge and skills while receiving formative feedback
during the learning process. A low-case failure is also an inherent part of devel-
oping one’s creativity and confidence. Being creative means being able to think of
new ideas, conceive new approaches, travel off the beaten path and eventually take
risks and overcome obstacles. This can only be achieved if one feels safe to fail and
is given ample opportunities to try again and again. For example, in the Finland
K-12 education system, students are not expected to succeed instantaneously and
failure is considered to be an important and inherent part of learning. This
encourages students to take academic risks and continue learning in the face of
temporary and inevitable setbacks (Ripley, 2013).

In the early decades of the 21st century mathematics educators have many
innovative opportunities to turn students’ fatal Failure to learn mathematics into an
opportunity to help them build problem-solving skills, confidence and interest in
STEM subjects in general and in mathematics in particular (Ge, Ifenthaler, &
Spector, 2015). We can use modern technologies to provide students with ample
formative assessment and guide them on the way to achieving mastery of mathe-
matical concepts, acquiring positive attitudes about mathematics, and developing
creative mathematical thinking. However, to seize this opportunity, we have to
change how we educate mathematics teachers. In particular, we call on educators to
reconsider how they incorporate STEM teacher education (Milner-Bolotin, 2015).
The goal of this chapter is to unpack some of the possibilities of using technology in
mathematics teacher education, so that future mathematics teachers will be willing
and capable of fostering creativity and risk taking in their classrooms. In order to do
that we first have to take a deeper look at the theoretical underpinnings of tech-
nology-rich mathematics learning environments and the knowledge mathematics
teachers need to possess in order to be able to implement them into practice.
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10.2 Technological Pedagogical and Content Knowledge
in the 21st Century

It is not surprising that with the rapidly growing proliferation of digital technolo-
gies, access to information, as well as with the increased availability of new
visualization tools that can help learners make sense of factual and conceptual
knowledge, the goals of K-12 and post-secondary education have changed dra-
matically (Milner-Bolotin & Nashon, 2012; USA National Research Council,
2013). This can be seen from the U.S. and Canadian national policy documents,
newly developed curricular materials, and increased emphasis on core
cross-curricular competencies, such as creative and critical thinking, problem
solving, dealing with open-ended problems and ambiguous information, interpret-
ing and analyzing rich data, communicating specialized technical information, and
connecting the mathematics and science learned at school to everyday life (British
Columbia Ministry of Education, 2013, 2015; OECD, 2014; Schmidt et al., 2011;
USA National Research Council, 2013). Many of these competencies have a direct
relationship to mathematics education. However, while new technological tools,
such as computers, tablets, iPads®, smartphones and other personal mobile devices
have a lot of potential to change how students learn both inside and outside of the
classroom, teachers need a lot of support in learning how to use these technologies
to enhance student productive engagement with mathematics (British Columbia
Ministry of Education, 2015; Guerrero, 2010; O’Grady, Deussing, Scerbina, Fung,
& Muhe, 2016; OECD, 2016a).

We have to pay more attention to how teachers use these tools to promote
meaningful learning and how teachers acquire the necessary knowledge needed to
take a full advantage of these new tools in a mathematics classroom.

In the 21st century, many countries are working on developing a new vision
about what we want mathematics teachers to know, how we want them to educate
our children, and what mathematics we would like our children to engage with
(National Governors Association Center for Best Practices, & Council of Chief
State School Officers, 2010). This new vision coupled with the increased emphasis
on improving student mathematics performance on international assessments such
as PISA influence parental and student expectations from modern schools, making
the teaching of mathematics more difficult (O’Grady et al., 2016; OECD, 2016a, b).
Some scholars even referred to the challenging situation faced by contemporary
teachers and the lack of resources to support them, as a crisis in the teaching
profession (Troen & Boles, 2003). The expectations of teachers to adapt their
pedagogical approaches to the new reality are also reflected in the governmental
documents, but it is unclear how teachers are supposed to achieve that. For
example, British Columbia’s newly developed K-12 curriculum document states on
its opening page:
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The world is changing – and we have to change too. Technology and innovation are
reshaping society – and the future. That’s why it’s critical we refine our education system,
designed in the last century, so students can succeed in the 21st century (British Columbia
Ministry of Education, 2015, p. 1).

The refinement of the education system should begin with the refinement of how
we educate teachers, as it is hardly possible to find a factor that has a larger impact
on student learning than teachers (Schmidt et al., 2011; Troen & Boles, 2003).

If teacher education matters so much, then what is the theoretical framework that
we can utilize to analyze, evaluate, and improve teachers’ knowledge for teaching?
In this chapter we will use the Technological Pedagogical and Content Knowledge
(TPCK or TPACK) framework proposed by Koehler and Mishra as an extension of
the original Pedagogical Content Knowledge (PCK) framework suggested by
Shulman two decades earlier (Koehler & Mishra, 2009, 2015; Shulman, 1986).
While introducing the TPACK framework, Koehler and Mishra write:

TPACK is an emergent form of knowledge that goes beyond all three “core” components
(content, pedagogy, and technology). Technological pedagogical and content knowledge is
an understanding that emerges from interaction among content, pedagogy, and technology
knowledge. Underlying truly meaningful and deeply skilled teaching with technology,
TPACK is different from knowledge of all three concepts individually. Instead, TPACK is
the basis of effective teaching with technology, requiring an understanding of the repre-
sentation of concepts using technologies; pedagogical techniques that use technologies in
constructive ways to teach content; knowledge of what makes concepts difficult or easy to
learn and how technology can help redress some of the problems that students face;
knowledge of students’ prior knowledge and theories of epistemology; and knowledge of
how technologies can be used to build on existing knowledge to develop new episte-
mologies or strengthen old ones (Koehler & Mishra, 2009, p. 66).

Teachers who acquire necessary TPACK and who hold the positive attitudes
about nurturing student engagement and independent thinking will be more likely
to implement learning environments where mathematical creativity blossoms and
failure is viewed as a stepping stone on the road to conceptual understanding
(Koehler & Mishra, 2005; Milner-Bolotin, 2016b). However, TPACK is a very
sophisticated and complex form of knowledge, unfamiliar to many practicing and
especially new teachers. Acquiring it will require mathematics teacher-candidates to
take significant personal and pedagogical risks and inevitably experience failures.
At the same time, this process is an opportunity to experience pedagogical success
and an exhilarating feeling of figuring things out (Feynman, 1999). And what a
better place to learn about new pedagogical approaches, and experience them both
as learners and as future teachers, than a mathematics methods course in a teacher
education program (Milner-Bolotin, 2015; Milner-Bolotin, Fisher, & MacDonald,
2013). Contemporary mathematics teacher-candidates should be offered ample
opportunities to develop their own mathematical pedagogical creativity through
deliberate engagement with subject-specific technologies in their teacher education
programs (Milner-Bolotin, 2016a). In this context, by mathematical pedagogical
creativity we mean teacher’s ability to expand their pedagogical repertoire through
identifying student learning difficulties and devising (novel) pedagogical
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approaches that support students in addressing these challenges. Some of these
pedagogies might employ new digital tools but technology should be used delib-
erately to enhance pedagogy and not for the sake of using it. In order to assure that
mathematics teacher-candidates learn how to use technology deliberately in order to
support mathematics creativity and meaningful learning, we suggest that mathe-
matics methods courses in teacher education programs provide them with the fol-
lowing opportunities:

(a) To experience mathematics education that promotes future teachers’ conceptual
understanding, authentic learning, and mathematical creativity. This can be
achieved by proposing and evaluating various problem-solving approaches to
the same problem, evaluating pros and cons of using multiple representations in
problem solving, or designing new problems that illustrate specific mathe-
matical concepts.

(b) To utilize new technologies as invitations for new ways of mathematical
thinking as opposed to using new educational technologies to support old
pedagogies.

(c) To feel supported and safe in taking pedagogical risks in designing their les-
sons, in experimenting with new technologies, in reflecting on their own
learning and teaching, as well as on the teaching of their peers, and trying again
and again.

(d) To learn from failures, to accept feedback as an opportunity for improvement,
and to learn that creative educational solutions rarely come from big techno-
logical breakthroughs, but from a new vision about what mathematics educa-
tion is all about. In order for mathematics teachers to design and implement
novel and creative pedagogical approaches to mathematics learning, the
teachers have to believe that there are many ways to learn and experience
mathematics. The teachers have to possess a deep understanding of the math-
ematical concepts, students’ potential difficulties in understanding them, and
available tools to scaffold student learning.

Fortunately, we have a number of modern technologies that can help teacher
educators to create learning environments that open these opportunities for math-
ematics teacher-candidates. While there are a vast number of educational tech-
nologies that could be relevant to mathematics education, in this chapter we decided
to limit ourselves to four big clusters of these technologies: data acquisition and
analysis systems; Classroom Response Systems and collaborative online systems
for creating multiple-choice questions; computer simulations and mathematical
modeling software; and online systems for collaborative analysis of videos
(Table 10.1). These tools were chosen for five interrelated reasons: (a) They have
been widely used in post-secondary classrooms, thus we have a lot of knowledge
about how to implement them; (b) There is ample research evidence about their
pedagogical effectiveness in promoting student engagement and conceptual
understanding; (c) With the proliferation of technology, the access to these tools has
increased significantly in K-12 classrooms; (d) These tools open unprecedented
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opportunities for supporting student-driven investigations; and lastly (e) They
“reduce the cost of failure”, thus opening doors to creative experimentation:
allowing students to experiment, make mistakes, reflect on these lower-case fail-
ures, make changes and do it again. Yet, it is always important to remember that
technologies are only tools and should be used to support pedagogies that promote
meaningful engagement with mathematics. Paraphrasing a famous quote by one of
the pioneers in the use of educational technologies, Alan Kay, we can say that a
technological tail should not be wagging a pedagogical dog (Kay, 1987). We will
discuss four examples of deliberate use of educational technologies in order to
increase learners’ engagement with mathematics in the following section.

10.3 Fostering Technology-Enhanced Creativity
in Mathematics Education

This section explores how four different technology-enhanced pedagogies
(Table 10.1) can be implemented in mathematics methods courses (or in-service
professional development courses for mathematics educators) in order to support
teacher-candidates (or practicing mathematics teachers) in acquiring meaningful
TPACK, taking pedagogical risks, learning from failures and eventually developing
creative pedagogical mathematical thinking (Campbell et al., 2014). While this
section focuses on specific examples of technologies, it is important to emphasize
that what matters is not the tools themselves (which are likely to change in the
future), but their affordances and the way they are used in the context of teacher
education, teaching and learning.

Table 10.1 Examples of four clusters of educational technologies used for engaging mathematics
teacher-candidates in creative mathematical thinking

Technology cluster Selected technology examples

1 Data acquisition and analysis systems Logger Pro, Pasco, smartphone
apps

2 Classroom response systems and online systems for
collaborative creation of multiple-choice questions

Clickers (hand-held or virtual),
PeerWise collaborative system

3 Computer simulations and mathematical modeling
software

PhET computer simulations,
GeoGebra, Cabri geometry, etc

4 Online systems for collaborative analysis of videos The collaborative learning
annotation system (CLAS)
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10.3.1 Pushing Mathematical Boundaries Through
Authentic Data Acquisition and Analysis

In order to inspire future teachers to promote creative technology-enhanced
mathematics education in their own classrooms, they have to experience the power
of authentic technology-enhanced learning environments as students (Lewis, 2014;
Schoenfeld, 2014). Thus one of the goals of the methods courses is to create these
opportunities while encouraging teacher-candidates to reflect on their experiences
as learners and as future teachers (Harris & Hofer, 2011; Milner-Bolotin, 2016a, b;
Milner-Bolotin et al., 2013). Technology, such as the Logger Pro data acquisition
system, can be a great asset for supporting creativity, reducing the cost of
risk-taking and allowing learners to experiment with abstract mathematical ideas
through connecting them to everyday life (Eijck & Roth, 2009; Milner-Bolotin,
2012; Vernier-Technology, 2016).

For example, it is widely known that students experience significant difficulties
in creating and interpreting graphs representing mathematical relationships, as well
as building bridges between algebraic, graphical and physical representations
(Eshach, 2014; Lingefjärd & Ghosh, 2016). Learners also find it challenging dis-
tinguishing temporal [i.e., x(t)] versus spatial [i.e., y(x)] representations of motion
and connecting abstract graphs to physical scenarios (McDemott, Rosenquist, &
Zee, 1987). This prompted researchers to suggest the use of graphing calculators
(Kastberg & Leatham, 2005; Ruthven, Deaney, & Hennessy, 2009). However, for
many students graphing calculators still remain “black boxes” that connect two
abstract representations (graphical and algebraic) without necessarily relating these
concepts to their lives.

An alternative solution to helping students connect real-life phenomena with
their mathematical representations is using data collection and analysis tools
(sensors). For instance, a Logger Pro motion detector (a sonic ranger) can generate
a real-time position-time, x(t), and velocity-time, v(t), graphs of a 1-D motion, such
as a student moving along a straight line in front of the detector
(Vernier-Technology, 2016) (Fig. 10.1). This experience can prompt an all-class
discussion of the physical meaning of abstract concepts, such as a slope of a graph,
a y-intercept, an area under the graph. Moreover, as collecting data with a motion
detector is fast and easy, students can repeat and adjust the experiment multiple
times. If they “fail” to produce the desired graph they can do it again till they
succeed. The lower-case failure in this case becomes a stepping stone to a mean-
ingful conceptual understanding. The data represented by the graph provides a
continuous formative assessment, such as the students can adjust their own thinking
(Schuster, Undreiu, Adams, Brookes, & Milner-Bolotin, 2009). This process opens
doors to new questions thus inviting creative thinking. For example: What is the
relationship between x(t) and v(t) graphs? What is the physical meaning of different
features of these graphs (i.e., slopes, areas under the graphs)? How will relevant
graphs of an accelerating object look like? What is the meaning of the term ac-
celeration? How will the graphs transform if we reverse the direction of the x-axis?
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Answering these questions without having a motion detector would be much more
difficult. Moreover, having this technology allows teachers to differentiate
instruction, thus challenging students of different levels of abilities during the same
in-class activity.

Using data collection tools in methods courses invites teacher-candidates to think
creatively about student engagement. It also encourages them to design creative
mathematical tasks for the school practicum.We have observed that more than half of
the teacher-candidates who were exposed to these tools in their methods courses
designed lessons during their practicum that implemented similar tools. These
authentic technology-supported activities are relatively easy to implement, yet they
can be much more cognitively engaging than traditional paper-based activities,
because technology provides unique opportunities for student experimentation—
trying different ideas, getting continuous feedback, modifying their solutions and
trying again and again. These technologies also encourage student mathematical
collaboration and communication, thus building their confidence in being able to do
mathematics and to communicate their mathematical understanding to others.

Fig. 10.1 An author helps a novice mathematics teacher to experience data collection technology
in action. The Logger Pro motion detector is located on the instructor’s desk and the display shows
x(t) and v(t) graphs of teacher’s motion. She first moves in front of the motion detector and
observes the generated graphs, then she moves back and forth and observes how motion is
reflected in the graphs. She tries to generate graphs of a given shape. During her motion, the rest of
the group observes her and comments on her motion and corresponding x(t) and v(t) graphs
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An example of such an activity can be a graph-matching exercise where students
produce motion that matches a given x(t) graph (the top graph in Fig. 10.2). In this
activity a student is asked to walk in front of the motion detector in order to
reproduce a pre-existing top graph with a bottom graph produced by her. After the
students figure it out, they can be asked to match v(t) graphs or to produce graphs to
be matched by their peers.

Data collection technology also allows data analysis that can be conducted either
in or out of class. After the real-life data has been collected, the students can
generate and analyze relevant graphs using the software tools, such as graph fitting,
slopes, areas under the graph, average values, etc. Thus, the activity can also focus
on an algebraic description of motion, connecting physical, graphical and algebraic
representations, or constructing the conceptual understanding of calculus, such as
the meaning of derivatives or integrals.

Lastly, we would like to point out that in addition to Logger Pro and similar
dedicated data collection tools, many modern smartphone or tablet apps allow
rather sophisticated live data collection and analysis (Maciel, 2015). Creative
teachers can use these 21st century tools to enable students to ask and answer their
own authentic mathematical questions using the devices located literally at their
fingertips. However, this will not happen unless teachers have acquired TPACK
necessary for facilitating meaningful student engagement and until they feel com-
fortable with the affordances of these technologies (Carr, 2012). Without it, these
expensive tools will remain underused gadgets and missed opportunities, while the
goal of fostering student engagement and mathematical creativity will remain an

Fig. 10.2 A novice mathematics teacher looks at the x(t) graph she produced (the bottom graph)
in order to match a given graph (the top graph). This was her third attempt as she was not satisfied
with her previous attempts that according to her were unsuccessful. So she, the rest of the group,
and the author were very happy about the final result
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unattainable dream (Cuban, 2001). Unfortunately, in many cases, educational
administrators see technology and not the teachers (and their TPACK) as the
driving force behind innovation. Thus, teacher professional development and
support in using technology deliberately to promote meaningful learning are still
often lacking (Burridge & Carpenter, 2013; Luft & Hewson, 2014; OECD, 2016c).
Therefore, it is not surprising that Cuban’s almost two-decade old lament that in
many schools computers and new technologies “are oversold and underused” is still
relevant (2001).

10.3.2 Developing Mathematics Argumentation Through
Technology-Supported Questioning

Question-driven pedagogy has been used by educators for centuries. Yet, not all
questioning strategies are equally effective (Shahrill, 2013). One of the most
common and pedagogically proven question-driven pedagogies in postsecondary
STEM classrooms is Peer Instruction (PI) developed by Eric Mazur at Harvard
University in the 1980s (Lasry, Mazur, & Watkins, 2008; Mazur, 1997b; Vickrey,
Rosploch, Rahmanian, Pilarz, & Stains, 2015). It utilizes Classroom Response
Systems (clickers, mobile devices, or even flashcards) to engage students in dis-
cussions through responding to conceptual multiple-choice questions that target
common student difficulties, often referred to as misconceptions (Milner-Bolotin,
2015; Milner-Bolotin et al., 2013). The key element of Peer Instruction is student
small group discussions of alternative answers to multiple-choice questions. Since
effective Peer Instruction questions deliberately use common student misconcep-
tions as distractors (Fig. 10.3), the students are asked to articulate not only the
reasons behind the presumably correct answer they voted for, but also the reasons
for why the alternatives given in the question are wrong.

Fig. 10.3 An example of a conceptual multiple-choice question called the Monty Hall problem
and the distribution of mathematics teacher-candidates’ responses. The correct answer B was
chosen by 4 (20%) out of 20 teacher-candidates
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Initially implemented in large undergraduate STEM college courses, Peer
Instruction has been found to be effective in actively engaging students when either
implemented with clickers (Hake, 1998; Milner-Bolotin, Antimirova, & Petrov,
2010) or with flashcards (Lasry, 2008). With the advent of new cost-effective
models for its implementations (such as smartphones, tablets or iPads®), it is
becoming more popular in secondary schools. There is extensive research evidence
that the success of Peer Instruction or any other clicker-enhanced pedagogy is not in
the technology itself, but in the pedagogical skills of the teachers and in the quality
of the multiple-choice questions (Milner-Bolotin et al., 2013; Vickrey et al., 2015).
These findings highlight the importance of developing teacher-candidates’ TPACK,
so they will be ready to utilize this technology in their own classrooms
(Milner-Bolotin, 2014).

Peer Instruction is especially valuable for helping teacher-candidates develop
conceptual understanding crucial for creative mathematical thinking
(Milner-Bolotin, 2016b). There are at least five reasons for that. First, mathematics
teacher-candidates, despite earning relevant degrees, often possess insufficient
content knowledge relevant for teaching secondary mathematics. This might come
as a surprise to them, as they have successfully passed upper level courses to
complete their B.Sc. degrees. For example, probability and statistics are included in
most secondary mathematics curricula. A famous counterintuitive reasoning
problem that requires understanding of conditional probability included in most
secondary mathematics curricula, called the Monty Hall Problem, does not involve
advanced mathematical knowledge, but requires critical thinking and logical rea-
soning. It is modeled after a famous game show that involves three doors behind
which two goats and a car are hidden. A game participant picks a door (hoping to
win a car). Then the show host (Monty Hall, who knows behind which door the car
is hidden) opens one of the other two doors that has a goat behind it. The challenge
for the game participant (who wants to win a car) is to decide if she should stick
with the original choice or to switch to the third unopened door. The rules of the
game are very simple, yet it challenges our intuition, as surprisingly switching will
help the participant to win 2/3 of the time, versus sticking with the original choice
that will bring success only 1/3 of the time.

The reason for this apparent paradox is that as the host opens the door that has a
goat behind it, he introduces new information, thus breaking the symmetry between
the two doors that are left. There are many creative ways to think about this
problem and how you can convince a peer in the validity of your solution. For
example, one might think of having 100 doors instead of three. Then if a participant
were to choose a door randomly, the chance to win a car would have been 1/100.
However, if the host were to open the other 98 doors that have goats behind them,
the chance that the car is hidden behind the other door, would have been 99/100.
Thus switching would have been the right strategy in 99 cases out of a 100.
Understanding why switching is a winning strategy and being able to convince
others that they should switch requires a conceptual understanding of conditional
probability, which many mathematics teacher-candidates are lacking (Rosenhouse,
2009).

262 M. Milner-Bolotin



Second, Peer Instruction opens opportunities for teacher-candidates to make an
individual choice safely without being embarrassed for making a mistake (voting
with clickers is anonymous, so nobody else knows what choices others have made).
In other words, Peer Instruction turns capital-case Failure into a lower-case failure.
This is very important for teacher-candidates who might be afraid to expose the lack
of basic mathematical knowledge in front of their peers and the instructor. As
novice teachers, they do not yet realize that it doesn’t matter how much formal
post-secondary education one has acquired, there is always much left to learn at the
secondary mathematics level and making mistakes is expected in this learning
process. Moreover, after teacher-candidates make their own choice and then can see
the aggregate of choices made by their peers, they realize that their peers encounter
similar difficulties.

Third, having an opportunity to discuss the problem with their peers helps
teacher-candidates to learn how to listen and how to communicate their ideas to
others. It also opens doors to creativity through discussing multiple solutions to
mathematical problems. Listening, being open to multiple ways of thinking about
the problem, and being able to communicate your ideas in multiple ways are crucial
qualities for mathematics teachers. Therefore, Peer Instruction can become a pro-
cess of turning a Failure with an upper-case F into a lower-case failure that is
integral to the process of learning.

Fourth, using Peer Instruction helps instill the importance of high quality con-
ceptual questions in mathematics learning as opposed to factual (memory-recall)
questions. Unlike the latter, conceptual questions address higher levels of Bloom’s
taxonomy (Bloom, 1956). For example, conceptual multiple-choice questions that
use students’ common misconceptions as distractors, such as the Monty Hall
problem mentioned earlier. This is what makes these questions pedagogically
valuable and mathematically challenging.

Fifth, using Peer Instruction in methods courses opens doors for the develop-
ment of mathematics knowledge for teaching or TPACK. The choice of questions,
the choice of distractors and the pedagogies teachers employ to address students’
difficulties are very important for helping to foster teachers’ creativity. For example,
in the case of Monty Hall problem, the use of Peer Instructor can reveal the issue—
student disagreements about the best strategy for winning the game. After this
disagreement is pointed out, a teacher can use a computer simulation, such as the
one found here (http://www.grand-illusions.com/simulator/montysim.htm) or some
other strategy to help students figure it out (Franco-Watkins, Derks, & Dougherty,
2010). Another option is asking students to repeat the experiment themselves,
collect data, and then analyze it using a tool such as a spreadsheet. After all, Peer
Instruction can help students to focus on asking interesting questions and the tea-
cher can guide students in using available technologies to figure out the answers
(Hake, 2012; Paul & Elder, 2007). The key for success here is using instructional
design principles that support the development of student creativity and critical
thinking, such as questions that ask students to organize concepts, compare, cate-
gorize, contrast, and apply concepts outside of the original context they were ini-
tially introduced (Chin, 2007; Dickinson, 2011; Kuo & Wieman, 2016).
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Another technology that can supplement the use of Peer Instruction in teacher
education and help teacher-candidates develop questioning skills is called PeerWise
(Denny, 2016). It is a free online collaborative tool that allows students
(teacher-candidates in our case) to design and share their own multiple-choice
questions, comment and respond to the questions of their peers, and eventually
create a shared database of conceptual questions, explanations, comments and
solutions (Milner-Bolotin, 2014). PeerWise has been used extensively in under-
graduate STEM education in order to support students in asking novel and
meaningful questions and providing feedback on questions asked by their peers
(Bates & Galloway, 2013; Denny, Luxton-Reilly, & Simon, 2009; McQueen,
Shields, Finnegan, Higham, & Simmen, 2014). Thus, PeerWise can be especially
beneficial for teacher education, since it equips future teachers with the skills
needed to come up with their own questions rather than always relying on the
questions asked by others.

10.3.3 Developing Creative Mathematical Thinking
Through Computer-Supported Modeling

Data collection and analysis are powerful tools for unleashing student creativity and
helping them to connect abstract mathematical ideas to their lives (Erickson &
Cooley, 2006). However, not every mathematical concept can be easily demon-
strated through a hands-on activity that students can engage in. In addition, many
mathematical concepts are rather complex and include multiple abstract features
that might manifest themselves very differently in a variety of cases. As a result,
novice learners often fail to see the “prototypical” examples, the underlying rela-
tionships behind the plethora of abstract mathematical objects. For example, while
to an expert, all quadratic functions can be represented by a common generalized
expression: y xð Þ ¼ ax2 þ bxþ c provided a 6¼ 0ð Þ; a novice might fail to internalize
the roles played by different coefficients, or the graphical representation of this
relationship (the parabola) depending on the values of these coefficients. These
features might be very obvious to an expert, but might remain unnoticed by novice
learners unless they have multiple opportunities to manipulate these features, ask
and answer their own “what-if questions” and figure out for themselves what each
one of these features represents (Bransford, Brown, & Cocking, 2002).

Therefore, it is not surprising that a concept of a mathematical function in
general proves to be an obstacle to many students (Clement, 2001; Mesa, 2008;
Watson & Harel, 2013). Educational research suggests that in order to help students
build a more accurate and “functional” understanding of the function concept (pun
intended), teachers should offer students different “prototypes” as well as multiple
opportunities to manipulate functions and represent them graphically, algebraically
and even verbally (Gagatsis & Shiakalli, 2004; Mesa, 2008). Highlighting examples
of functions that do not fit the types of functions most often seen in textbooks and
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helping students notice the features of the functions that might be critical or
atypical, is another pedagogically effective strategy.

Modern technologies, such as computer simulations, offer learners and oppor-
tunity to meaningfully engage with mathematics. For example, a suite of freely
available online computer simulations designed by the Physics Education
Technology (PhET) research group at the University of Colorado (https://phet.
colorado.edu/) (Wieman, Adams, Loeblein, & Perkins, 2010), offers a wide range
of activities built on solid educational research evidence. These simulations help
students not only to understand mathematical concepts, such as functions, the
quadratic equation coefficients, and the roots of a quadratic equation shown in Fig.
10.4, but also conduct independent investigations in these virtual environments.
Without having graphing technology such as the PhET Equation Grapher simula-
tion, conducting such an investigation would have been if not impossible then very
time consuming. Thus, this tool offers mathematics educators an unprecedented
creativity carte blanche to invite students to ask “what if” questions. However, as in
the previous examples, mathematics teachers should possess the necessary TPACK
in order to take full advantage of this powerful tool.

In addition, computer simulations offer students an opportunity to develop
mathematical intuition that is still uncommon in traditional mathematics learning.
Yet, this intuition, based on experience of “mindful playing with mathematical
objects”, is crucial for achieving creative thinking. Simulations like PhET put a
very low “price” on failure, emphasizing the important of the process of figuring
things out. Therefore, the learners are provided with ample learning opportunities
(such as activities of graduated difficulty levels), instantaneous feedback (the results
of manipulating various parameters become known instantaneously), as well as
deliberately chosen number of variables the students can manipulate in the

Fig. 10.4 PhET Computer simulation “Equation Grapher” allows students to plot various
quadratic functions and observe how changing coefficients a, b, and c can affect the graphical
representation of the function (https://phet.colorado.edu/en/simulation/equation-grapher). They
can also save their work, thus allowing long-term investigations and progress tracking
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simulation (Perkins et al., 2006; Wieman et al., 2010). Interacting with such a
simulation shows students that mathematical knowledge can be acquired and not
knowing the correct answer right away and making wrong turns (lower-case fail-
ures) is natural in the learning process.

Mathematics teachers should develop this intuition first and have confidence in
their own ability to think creatively. At the beginning of the chapter, we mentioned
that one of the common misconceptions about mathematics is that it is all about
finding “the right answer right away”. Yet, in reality, mathematics is about posing
big problems and finding ways of thinking about them which often take a very long
time (Sfard, 2012). For example, many mathematics problems deal with multiple
dimensions, transformations, and the concept of scaling (Milner-Bolotin, 2009).
The concept of scaling has very important applications for many STEM fields, yet it
is rarely acquired by students. From our experience of working with mathematics
teacher-candidates, few of them feel comfortable with this concept as well.
However, a computer simulation can offer students an opportunity to experiment
with scaling through a game, where students are provided with instantaneous
feedback and where making a mistake, such as predicting a wrong outcome, is just
a step in the game (Fig. 10.5). In this PhET computer simulation, the students as
asked to estimate how many small 1-D, 2-D or 3-D objects can fit into a large
object. For example, in Fig. 10.5, a player has to estimate how many small cubes
can fit into a large one. In order to do that, they have to understand the concept of
scaling: the volume of an object changes as the cube of the scaling factor (Barnes,

Fig. 10.5 PhET Computer simulation “Estimation” invites students to estimate how many little
cubes can fit in the big one. Though playing the game, the students get instantaneous feedback
while building an intuitive understanding of scaling of 3-D shapes. The game progresses from 1-D
to 3-D shapes and allows a player to repeat it as many times as they wish. If a mistake is made, a
student is provided with relevant feedback and multiple opportunities to try again
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1989; Milner-Bolotin, 2009). This virtual activity opens doors to asking many
creative real-life questions, including the relationships between surface areas and
volumes of biological systems, such as plants and animals. These are very
important questions as in most cases surface area of a living organism is responsible
for its heat exchange with the environment, while its volume is in charge of the
energy generation. In order to ask and answer these questions, students have to
acquire mathematical knowledge and to apply it to real life.

Since PhET simulations are free and are designed to operate on multiple plat-
forms, they can be used by students both in school and at home. Moreover, PhET
simulations are also a hub for a STEM teaching community of K-12 and
post-secondary teachers and educational researchers who share ideas about how
these resources can be implemented into practice and how students learn with
simulations. This makes PhET simulations especially valuable for developing
creative mathematical thinking by the new teachers.

For example, the concept of scaling mentioned above penetrates all areas of
science, engineering and mathematics (Goth, 2009; Milner-Bolotin, 2009). The idea
that when all dimensions of an object increase by the same factor its surface area
and volume change as a square and as a cube of this scaling factor respectively has
long-ranging implications for many biological systems and creative human
endeavors, such as architecture and design (Salvadori, 1980). However, students
often have few opportunities to experience this phenomenon first hand and
appreciate its breathtaking power. PhET computer simulation “Estimation” pro-
vides students with this opportunity by asking them to estimate what happens to the
volume of the object when its dimensions increase in the same proportion
(Fig. 10.5).

While PhET simulations open many opportunities for developing creative and
critical mathematical and scientific thinking, simulations are purposefully rather
structured and closed tools (Wieman et al., 2010). Their designers have decided in
advance what parameters the user will be able to manipulate. In other words, the
decision about the model embedded in the simulation has been made by the
designers and the learner has no input into it. Computer simulations, where those
decisions have been made based on education research (such as PhET) might be
powerful for beginners (Finkelstein et al., 2005). However, when the learners have
acquired more advanced subject knowledge and they are ready to ask more
sophisticated questions and test their own models, the simulations might prove to be
somewhat limited.

A higher level of mathematical creativity is reached when the students are not
only invited to engage with the simulations designed by others, but when they have
an opportunity to create and test their own mathematical models (Hohenwarter,
Hohenwarter, & Lavicza, 2008; Martinovic, Karadag, & McDougall, 2014;
Martinovic & Manizade, 2014). An example of modeling technology that has the
potential to support an even higher level of students’ mathematical creativity and
empower them to experience mathematics in a very personal way is dynamic
modeling software, such as GeoGebra (Hohenwarter, 2014). Unlike traditional
paper and pencil geometrical or algebraic constructions, where a construction or a
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graphical representation cannot be changed or manipulated easily, or unlike com-
puter simulations where mathematical models have been chosen by the designers,
GeoGebra allows students to develop a mathematical language, mathematical
models, dynamically test their understanding, visualize abstract mathematical
relationships and eventually foster their mathematical intuition (Martinovic et al.,
2014). In addition, GeoGebra’s dynamic features invite students to manipulate
geometrical and algebraic objects, visualize abstract mathematical concepts and
search for mathematical patterns and relationships behind artistic artifacts, everyday
life or natural phenomena. In summary, GeoGebra allows students to experience
mathematical construction that was not possible before. For example, students can
use GeoGebra to explore regular and semi-regular tessellations, mosaics and geo-
metrical patterns, and their use in art and architecture (many of these activities can
be found on GeoGebraTube—www.geogebratube.org) (Fig. 10.6).

In the hands of knowledgeable mathematics educators, GeoGebra offers ample
opportunities for mathematical creativity, but to unleash it, this dynamic mathe-
matics software should be explored in mathematics teacher education. GeoGebra is
freely available to teachers and students, and its educational community offers
extensive pedagogical resources (Fenyvesi, Budinski, & Lavicza, 2014;
Hohenwarter et al., 2008). However, to support teacher-candidates in appreciating
the affordance of GeoGebra for mathematics learning, it is advisable that they

Fig. 10.6 An example of a construction of a tessellation created in GeoGebra software (http://
www.geogebra.org/material/simple/id/2101729)
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explore GeoGebra under the guidance of more experienced educators, who can
model creative ways of using this software. For instance, when creating tessella-
tions with GeoGebra, such as a Pythagorean tiling (Fig. 10.6), a knowledgeable
teacher can help students to experience and visualize the Pythagorean original
theorem describing the arrangement of quadrilateral polygons, as well as appreciate
its implications to design and architecture (Burger & Starbird, 2000). Then the
students can create their own mathematically inspired tessellations using GeoGebra.

As mentioned earlier, technology provides new opportunities to explicitly con-
nect mathematics and the arts. For example, University of Alberta mathematics
professor, Gerda de Vries, creates mathematically inspired quilts (Black, 2017). She
“sews mathematics” into her quilts using the concepts such as tessellations, sym-
metry and transformations thus uncovering the mathematics behind the arts.
GeoGebra or other modeling software can become a useful tool in this process.

In the previous sections, we discussed various educational technologies that have
potential to nurture creativity in mathematics teaching and learning. Throughout the
chapter, we kept emphasizing that the key to creative technology-enhanced math-
ematics education is in the hands of mathematics teachers who have acquired
necessary TPACK in order to take full advantage of these technologies to promote
meaningful mathematics learning. Raising a generation of mathematics teachers
open to creative use of technology is a long and laborious process that requires
teachers to continuously reflect on their teaching practices. Once again technology
can play an important role here. In the following section, we discuss a special kind
of technology that can be used to support mathematics teacher-candidates in
acquiring TPACK and developing their own pedagogical creativity and confidence.
This technology is called the Collaborative Learning Annotation System or CLAS
(Dang, 2016) and it will be described in details below.

10.3.4 Becoming Creative Mathematics Teachers Through
Collaborative Reflection on Mini-lessons

We began this chapter by discussing the importance of turning an upper-case
Failure in mathematics learning into a learning opportunity, or a lower-case failure.
The same applies to the process of becoming a mathematics teacher. It is impossible
to become a mathematics teacher without experiencing temporary setbacks—un-
successful lessons, failed activities, disengaged students, or negative feedback from
parents. Those setbacks, however, should not deter teachers from reflecting on their
practice and trying again. Mathematics methods courses are promising opportuni-
ties for novice mathematics teachers to practice their teaching, to try new activities,
to experiment with new technology-enhanced pedagogies, and most importantly, to
learn how to learn from mistakes and temporary failures. In this section, we will
discuss a technology that we have found to be extremely useful in this process.
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The Collaborative Learning Annotation System (CLAS, https://clas.sites.olt.ubc.
ca/) has been created at the University of British Columbia and is freely available to
students and teachers (Fig. 10.7). It is a media player used to record, share, and
comment on videos uploaded onto it by the students or by the teachers (Dang,
2016). The videos are stored on a secure server at the University of British
Columbia and are only visible to students enrolled in the course. Every member of
the course, including the instructor, can post timely annotations on the videos that
can be visible only to the person who uploaded the video or to the entire class.

We have used CLAS widely with STEM teacher-candidates during their
methods courses. In the past, during these courses teacher-candidates were required
to do microteaching (teach 12–15 minute lessons) to their peers. This was a tra-
ditional practice, where they had to teach a mini-lesson and then reflect on it. Very
often these mini-lessons were recorded such as teacher-candidates could reflect on
them at home. Yet educational research indicates that teachers learn not only from
their own lessons, but also from observing and reflecting on the lessons taught by
their peers (Cole & Knowles, 2000; Kemmis, 2011; Ma, 1999; Stigler & Hiebert,
1999).

Giving feedback on peers’ lessons is one of the most powerful ways of
improving one’s own teaching (Stigler & Hiebert, 1999). This was the main reason
why we introduced the peer feedback assignment using CLAS into the methods
courses: we wanted teacher-candidates not only to experience teaching
mini-lessons, but also to engage in the peer feedback. This process teaches
teacher-candidates to observe carefully, to provide constructive feedback and to

Fig. 10.7 A screenshot of CLAS with the description of its functionality. The playlist includes all
the videos available to the students in the course. Timeline annotations below the video show
annotations made by different students and by the instructor. By clicking on the annotation one can
see its content, respond to it in writing or post a video response. All the communication can be
made public or private. For more information see: http://ets.educ.ubc.ca/clas/
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accept peer feedback in a positive way. It also helps them notice what they want to
improve and what they want to work on. For example, as a result of this reflection,
teacher-candidates might decide to re-teach a lesson. This was a very common
experience in our methods courses. After watching their own mini-lessons and
seeing the feedback from the instructor and from their peers, several
teacher-candidates decided to re-teach their lessons. Since both mini-lessons were
recorded and uploaded on CLAS, teacher-candidates could see the difference
between their original and improved lessons. It was an empowering learning
experience that gave the teacher-candidates the much-needed confidence that they
can figure things out and if a lesson doesn’t go as well as they wanted the first time
around, they have a second chance.

Learning to remove yourself from your own lesson and to reflect on it in order to
teach it better in the future is extremely important. As mathematics educators, we
will always be looking for new teaching ideas, educational technologies, and ways
to engage students. Not all of these ideas will work for us and it will take time to
tweak them to fit our learning environments. Thus, accepting our own teaching
practice as a work in progress is a very important attribute of a creative teacher.
Using CLAS to reflect on their own lessons will allow novice teachers to view their
own teaching failures as opportunities for learning. Lastly, having an opportunity to
observe recorded lessons allows us to slow down and to see where potential student
difficulties might come from. While we recorded mini-lessons where the students
were also teacher-candidates, nobody (as long as we satisfy ethical requirements)
precludes us from recording and analyzing real lessons. For example,
teacher-candidates might want to record their own lessons during the practicum and
then analyze them at home. Coming back to an earlier discussion of creativity as the
freedom to explore, challenge other people’s ideas, be challenged by others, learn,
fail, re-learn, and move on (Lewis, 2014), we believe that CLAS can be used to
support the development of the creative mathematics teaching. While we only used
CLAS in a pilot study, we believe that it can become a very useful tool for helping
mathematics teacher-candidates develop creative pedagogies in a safe and sup-
portive learning environment.

The examples discussed above illustrate how new digital tools, such as sensors
and software for data collection and analysis (e.g., Logger Pro), collaborative
technology for designing and responding to multiple-choice questions (e.g.,
PeerWise and clickers), computer simulations and modeling software (e.g., PhET,
GeoGebra), as well as collaborative tools for reflection (e.g., CLAS) can inspire
deliberate pedagogical thinking with technology by future mathematics teachers.
However, exposing teacher-candidates to the opportunities these tools offer is a
necessary but insufficient condition for changing how mathematics will be taught in
our classrooms. Implementing novel pedagogies is a venture inevitably fraught with
perils. Teachers need to be supported and have to have tolerance for lower-case
failure, such as it doesn’t turn into Failure of using new technologies to promote
creativity in mathematics education. Finding ways to support teachers on the road
to designing these learning environments is one of the key challenges in modern
mathematics teacher education.
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10.4 Conclusions

There are many approaches to define the notion of mathematical creativity and
ample studies exploring its different facets and definitions (Aralas, 2008). As dis-
cussed by Aralas, while there might be several disagreements about the most
encompassing definition of mathematical creativity, there is an agreement about its
core elements, such as novelty, originality and relevance of ideas and approaches
for solving mathematical problems, effectiveness and usefulness of thinking,
independence and originality while appropriate use of available knowledge and
resources. What is often neglected in defining mathematical creativity is learner’s
ability to take necessary risks and steer off the beaten path, while building on the
prior knowledge. Akin to Newton, who in his famous letter to his rival, Robert
Hook, wrote that he could see further than his contemporaries because he was
standing on the shoulders of giants, mathematics students cannot be expected to
produce significant creative insights if they do not have multiple opportunities to
acquire and challenge the knowledge produced by others. Creativity is built on prior
knowledge and on the freedom to explore, challenge other people’s ideas, be
challenged by others, learn, fail, re-learn, and move on (Lewis, 2014). In this
chapter, we emphasized the aspects of mathematical creativity that we believe can
benefit directly from the use of educational technologies in mathematics learning,
such as the ability to connect multiple representations of abstract concepts, the
ability to ask novel questions, the ability to communicate and critique mathematical
ideas, the ability to connect abstract mathematical concepts to everyday life and
apply these concepts to novel contexts.

The goal of this chapter was to discuss how technology can support mathematics
teacher-candidates and practicing teachers who want to create opportunities for their
students to engage with mathematics in a creative way. This takes courage and
willingness to take risks as new ways of teaching need time for the teachers to
master and for the students to get used to and to accept. Eric Mazur, a pioneer of
Peer Instruction, compared this process to moving mountains and emphasized that
the key to success in this process is teachers’ and students’ attitude about STEM
learning (Mazur, 1997a). In order to succeed in mathematics learning, students
should see mathematics not as a collection of facts and procedures, but as a process
of figuring things out, thinking creatively and making sense of the world around
them with the newly acquired mathematical concepts. If we want our students and
our society to change their views about mathematics, we have to educate mathe-
matics teachers who see mathematics as a highly creative pursuit (Lockhart, 2009).
For these teachers, modern technologies will unleash the opportunities for authentic
and meaningful learning. These teachers will have mastery of TPACK that they
began acquiring during their teacher education program and will continue building
during their entire careers. These teachers will have experienced successes and
failures and they will know firsthand that failure in mathematics learning or
teaching is a temporary setback that can and should be overcome. These teachers
will remember how they came to understand new ideas and will have intuitive
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knowledge of why some mathematical concepts are difficult to master (Goodstein,
2000; Milner-Bolotin et al., 2013).

The discussions and arguments brought in this chapter also open new venues for
educational research in the area of technology use to promote creativity in math-
ematics teacher-education and in mathematics teaching and learning. While there
are many questions one can ask on the topic, we list a few we find especially
interesting. How do we support the development of deliberate pedagogical thinking
with technology in future mathematics teachers? How do we use technology to
promote mathematical creativity in teacher education and in mathematics class-
rooms? How do we make sure that new technologies open new pedagogical
opportunities for engaging students in meaningful and creative mathematics
learning? What are new creative ways of using technology in mathematics edu-
cation? How do we support practicing mathematics teachers and help them to
uncover the potential of new technologies to promote mathematical creativity in
their classrooms? How do we evaluate the effectiveness of technology use in a
mathematics classroom in the context of developing mathematical creativity? How
do we use technology to promote student mathematical collaboration on
non-standard open-ended problems? How do we use technology to promote student
creative thinking in and out of class that help them bridge mathematics to their
lives?

The main argument of this chapter is that in order to prepare creative mathe-
matics teachers for a successful teaching career in the 21st century,
teacher-candidates have to experience mathematical creativity in their own teacher
education program (Milner-Bolotin, 2015). It is not enough to acquire TPACK,
mathematics teachers should be open and willing to implement these novel peda-
gogical strategies in their classrooms (Milner-Bolotin, 2016b). Therefore, mathe-
matics methods courses should challenge their creative thinking, help them
remember what it means not to know a “simple” mathematical concept and what it
means to come to understand it (Goodstein, 2000). Teacher-candidates should
experience the transient nature of understanding—there is no limit to understanding
—one can always dig deeper, find new connections, and challenge previous
understandings. Most importantly, in addition to experiencing technology-enhanced
pedagogies as students and as teachers, teacher-candidates should acquire peda-
gogical values congruent with creative mathematical thinking (Aralas, 2008). This
means they should be open to being vulnerable (not knowing something) and being
proven wrong. They should realize that lower-case failure is instructive and
inevitable when one learns something new, including mathematics. But upper-case
(fatal) Failure has no room in the 21st century mathematics classroom. This is
where mathematics teachers should summon all their courage, TPACK and creative
abilities in order to continue with what matters—engaging their students in
meaningful and creative mathematics learning.
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Chapter 11
Harnessing Early Spatial Learning
Using Technological and Traditional
Tools at Home

Joanne Lee, Ariel Ho and Eileen Wood

Abstract Parents and early childhood educators share a unique role in scaffolding
the acquisition of foundational mathematical concepts in young children. Targeting
early skill development is critical as differences in children’s early mathematical
competence emerge as young as four years old, and these differences persist into
formal schooling (e.g., Duncan et al. in Dev Psychol, 43(6):1428–1446, 2007).
Skills in geometry and spatial sense represent one of the mathematical strands
recommended by the National Council of Teachers of Mathematics (NCTM) in the
United States that can be acquired by young children prior to formal schooling. This
chapter introduces important differences in spatial talk and activities elicited during
play by parents and early childhood educators both in the context of traditional
3-dimensional play (e.g., blocks and puzzles) environments and virtual
2-dimensional digital formats (e.g., iPads® and computers). Substantial literature
reveals the important array of creative and educational experiences afforded through
play and particularly manipulatives. This chapter reviews previous research and
extends findings to digital contexts involving our youngest learners and discusses
ways to capitalize on the affordances offered by both digital applications and tra-
ditional manipulatives to harness children’s spatial learning. We also examine the
benefits and concerns about educational software programs (e.g., what makes
educational software programs more or less effective) in general and in the context
of mathematics education.
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11.1 Identifying the “Big Picture”: Why Should We
Design and Support Early Play Contexts that Target
Spatial Skill Development?

Early acquisition of foundational spatial concepts can occur in formal or informal
learning contexts. Formal contexts include early childhood education programs and
explicit instruction provided by parents and other knowledgeable individuals in
young children’s lives. However, informal learning contexts, especially play, pro-
vide some of the richest early spatial learning experiences (e.g., Ginsburg, 2006;
Jirout & Newcombe, 2015; Pollman, 2010; Verdine, Golinkoff, Hirsh-Pasek, &
Newcombe, 2014a). Play encourages exploration, manipulation, construction and
deconstruction (e.g., Reifel, 1984; Stiles-Davies, 1988; Stiles & Stern, 2009;
Vygotsky, 1978). Through creatively constructing, juxtapositioning, and decon-
structing objects, children can derive critical information that will aid them in
understanding spatial properties and spatial relations (e.g., Casey & Bobb, 2003;
Casey et al., 2008; Levine, Ratliff, Huttenlocher, & Cannon, 2012;
Moyer-Packenham & Bolyard, 2016). In this review, we will demonstrate how
children’s spatial knowledge is facilitated when creative play is augmented by
appropriate spatial language. For example, although many parents might provide
the label for a triangle or a square and might further define these objects by
identifying the number of “sides” each has, children’s full understanding of the
concepts such as straight lines, angles, orientation in space, and relative size can be
realized when children explore the outline of the objects, extend “sides”, align
objects with other like or different objects, create patterns and build structures—
some that will stand and some that will fall. These important creative play
opportunities allow children to experience spatial properties first hand, elaborate on
the prior knowledge and information provided by parents, and become more fluent
in their understanding. This creative discovery can occur in many contexts and
through two dimensional and three dimensional representations (e.g., Clements &
Sarama, 2007; Martin, Lukong, & Reaves, 2007; Moyer-Packenham &
Westenskow, 2013; Verdine, Golinkoff, Hirsh-Pasek, & Newcombe, 2014b). The
current review explores spatial development in young children. We ask whether
different types of representations promote “better” or “different” learning than
others. In addition, we explore the impact of spatial language for the acquisition of
spatial concepts. The review begins by summarizing important outcomes associated
with spatial play, language and representation and then continues with a consid-
eration of the particular contributions afforded by each.

During the early childhood years, hearing spatial language (e.g., Ferrara,
Hirsh-Pasek, Newcombe, Golinkoff, & Lam, 2011; Foster & Hund, 2012; Pruden,
Levine, & Huttenlocher, 2011) and engaging in spatial activities with
three-dimensional (3D) blocks or puzzles (e.g., Casey, Ceder, Erkut, & Mercer
Young, 2008; Jirout & Newcombe, 2014; Levine et al., 2012) facilitates spatial
learning. Interestingly, the amount of spatial talk a child is exposed to is related to
the types of play in which a child-adult dyad are engaged. For example, parents use
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more spatial language when they play with their young children using blocks and
puzzles compared to other non-spatial activities (Hermer-Vazquez, Moffet, &
Munkholm, 2001; Ferarra et al., 2011; Levine et al., 2012; Pruden et al., 2011).
However, the amount of spatial language provided by parents is also influenced by
the amount of information available through the toys themselves. For example,
parents use less spatial language when they and their child play with “talking”
electronic shape sorters that provide labels for shapes as well as other sounds than
when they play with traditional 3D shape sorters that do not “talk” (Zosh et al.,
2015). Both the amount of spatial talk and the diversity of spatial talk impacts
learning. Spatial words—describing the features of an object (e.g., corner, edge),
the location of an object (e.g., next to, left of), or the spatial relations between
objects to build a castle (e.g., top, under, between, in the middle)—are important as
they help to direct children’s attention to and encoding of spatial concepts
(Dessalegn & Landau, 2008; Gentner, 2003; Loewenstein & Gentner, 2005;
Plumert & Nichols-Whitehead, 1996).

Existing research on early spatial learning has mainly focused on spatial play with
3D objects such as tangible blocks and jigsaw puzzles, that permit children to engage
in tactile-kinesthetic experiences, including touching, holding, rotating, and
manipulating in their hands (e.g., Levine et al., 2012; Needham, 2009). Today,
traditional modes of play have expanded to include technology based platforms.
Despite the growing use of interactive technological devices (e.g., iPad® & smart-
phones) by very young children (e.g., Kabali et al., 2015; Common Sense Media,
2013), little is known about the quality of mathematical instruction available through
these technologies, the impact of these technologies on early skill development, or
the contributions care providers can offer in these contexts (e.g., Kurcirkora, 2014).
Yet, early introduction of mobile digital technologies is increasingly evident in
younger age groups and for longer periods of play time (Rideout, 2014). In addition,
software development has seen an increase in programs explicitly geared towards
educational content in early learning (e.g., Eagle, 2012; Mueller et al., 2011). For
example, over 80,000 apps on iTune store are classified as educational (Apple, 2015).
Although this chapter reviews considerations applicable to software design and use in
general, it specifically targets the impact of a popular, interactive and contingent
responsive electronic device—the iPad® and its apps featuring games using blocks
and puzzles—that 58% of parents in the United States have downloaded for their
young children (Common Sense Media, 2013).

A significant body of research supports both learning gains and positive social
outcomes when young children use well-designed instructional software (e.g.,
McKenny & Voogt, 2010; Savage et al., 2013; Thorell, Lindquist, Bergman,
Bohlin, & Klingberg, 2009; Willoughby et al., 2009). In addition, a growing lit-
erature describes and supports the importance of the interaction of parent-child
dyads in technology-based settings (Berkowitz et al., 2015; Flynn & Richert, 2015;
Wood et al., 2016). However, the quality of software programs and their associated
learning outcomes have largely been examined in the context of literacy (e.g., Grant
et al., 2012; Neumann, 2016). Recently, research has shifted focus to early math-
ematical learning contexts, in particular, number sense (Berkowitz et al., 2015).
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One growing area of interest is the development of spatial skills (e.g., Larkin,
2016; Verdine et al., 2014b). Specifically, affordances available in software design
can manipulate representations of objects to provide two dimensional (2D) and/or
three dimensional (3D) perspectives (e.g., Pan, Cheok, Yang, Zhu, & Shi, 2006;
Rosen & Hoffman, 2009). Rotation of objects in the available screen space can also
provide information about relative size and dimensionality. These representations
differ from information children may gain from 3D objects manipulated in real
world contexts. For example, a child manipulating a building block on screen may
have access to a 2D representation only, or the software could provide the
opportunity to rotate the block to allow investigation of front, back, top and bottom
(e.g., Clements & Sarama, 2007; Moyer-Packenham & Bolyard, 2016). However,
in all these contexts the block is understood within the context of the available
screen space. In real-world block play contexts, the child can physically manipulate,
rotate and examine the block in conjunction with other real-world information
including the relationship of the object to the child’s personal size, the size and
contours of other familiar objects in the room, as well as relative to the movement
of other objects and people in the environment. Affordances of 2D screen-based and
3D real-world based manipulatives may contribute to differences in the nature of
spatial input provided by adults during interactions with preschoolers (e.g.,
Clements & Sarama, 2016; Ho et al., 2017). Such differences could, in turn, provide
opportunities for children to construct multiple representations (i.e., 2D vs. 3D) of
information in specific contexts and to apply these in new ways and new contexts,
thus nurturing the key dimensions of creativity including flexibility, elaboration and
fluency (Guilford, 1967).

Additional affordances such as immediate and interactive feedback, and swipe
and touch interfaces offered by these responsive and easy-to-use devices can
complement or even leverage affordances traditionally associated with tangible 3D
toys (Cooper, 2005; Geist, 2014; Guernsey & Levine, 2015; National Association
for the Education of Young Children (NAEYC) & Fred Rogers Centre for Early
Learning and Children’s Media, 2012). It is important, therefore, to explore
potential differences between tangible 3D toy play and play involving digital
devices such as iPads®.

This chapter reviews extant literature in an effort to identify and describe key
ideas and research findings relevant to the use of physical and digital/virtual
manipulatives for promoting early spatial development. This context serves as the
foundation for exploring the importance of supporting spatial-visual skill devel-
opment in early childhood years through the complementary use of 2D and 3D
spatial play activities. Particular attention is given to the use of 2D spatial-visual
iPad® applications to nurture creative thinking afforded by technology and the
importance of the design of applications to support positive learning outcomes. We
introduce a novel idea that playing with both 2D (i.e., iPad® apps) and 3D
manipulatives may maximize learning opportunities to foster creative and flexible
spatial thinking. In summary, our goal is to provide a foundation for understanding
early spatial development in the home and in the context of a technologically rich
learning environment. These two contexts provide opportunities for creative
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expression, discovery and exploration. A key objective is to identify how these
aspects of creativity intersect in the current literature and may be important for
future study—especially in the critical early years where home influences are most
likely to establish fundamental skills and where touchscreen technologies are
increasingly prevalent.

11.2 Laying Good Foundations: Providing Early Spatial
Activities Fosters Development of Spatial Skills

Strong spatial knowledge—such as geometric knowledge, spatial visualization,
spatial perception, spatial orientation, and mental rotation—in young children
facilitates growth in mathematics (e.g., Casey, Nuttall, Pezaris, & Benbow, 1995;
Gunderson, Ramirez, Beilock, & Levine, 2012; Kamii, Miyakawa, & Kato, 2004;
Verdine, Golinkoff, Hirsh-Pasek, & Newcombe, 2014), science such as chemistry
in post-secondary school (Stieff, 2007), geometry in high school (Delgado & Prieto,
2004) and creativity (Kell, Lubinski, Benbow, & Steiger, 2013). In addition,
geometry and spatial skills are highly correlated to engagement and success in
science, technology, engineering, and mathematics (STEM) occupations in later
adulthood, even after accounting for verbal and mathematical abilities (Shea et al.,
2001; Wai, Lubinski, & Benbow, 2009). A strong correlation between spatial and
numeracy competencies has also been noted. For example, 12- to 14-year-olds who
were gifted in mathematics also had stronger spatial abilities compared to their
peers functioning at their own grade level (Hermelin & O’Connor, 1986). Thus, the
National Research Council Committee on Early Childhood Mathematics in the
United States (Cross, Woods, & Schweingruber, 2009) strongly recommends that
children between three and six years of age learn both geometry and numeracy, to
provide the foundations needed to engage in developmentally appropriate early
childhood mathematical activities.

Spatial activities such as 3D block and puzzle play have been linked to spatial
development. For example, block play promotes preschoolers’ spatial visualisation
and visual-motor coordination skills (Caldera et al., 1999) and spatial skills and
geometric knowledge in 5- to 7-year-olds (Casey et al., 2008). Nine-year-olds who
could build a Lego model performed better in visual spatial tasks such as mental
rotation than their peers who could not (Brosnan, 1998). In addition, engaging in
more complex block play by preschoolers (e.g., building a tower versus stacking
blocks vertically) is predictive of other mathematical concepts and skills such as
symmetry, counting, and patterning in middle and high school (e.g., MacDonald,
2001; Park, Chae, & Boyd, 2008; Wolfgang, Stannard, & Jones, 2001). Peterson
and Levine (2014) also demonstrated an advantage for children who engaged in
block play as part of their daily home routines. These researchers observed children
for 90 min every four months when the children were between 26 and 46 months
old. Children who engaged in more block play with their parents performed better
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on mathematical (Math Equivalence problems) and geometry (KeyMath Geometry)
tasks at grade three compared to their peers. Furthermore, Verdine, Irwin,
Golinkoff, and Hirsh-Pasek (2014) found that block constructing ability at three
years of age three-year-olds’ was predictive of math problem solving task perfor-
mance at age four even after accounting for number knowledge and executive
function. In a different task, 26 to 46 month old children who played with jigsaw
puzzles more frequently with their parents performed better at a spatial task
involving mental transformation of 2-dimensional shapes than children who did not
(Levine et al., 2012). Even in older children between six and eight years of age,
activities such as identifying the shape after the pieces have been mentally rotated
were found to improve their math calculation, mental rotation and spatial relation
skills (Cheng & Mix, 2014).

Overall, much of the extant research focuses on spatial activities involving
traditional 3D toys (i.e., physical blocks and puzzles) and subsequent mathematical
development. However, over the past few years attention has begun to include
activities involving digital media (e.g., Hirsh-Pasek et al., 2015; Moyer-Packenham
& Bolyard, 2016). It is argued that playing with virtual 2D manipulatives extends
opportunities for young learners in two key ways. First, exposure to two repre-
sentations—3D representations which are typically sensory and concrete and 2D
representations which are typically pictorial and abstract/symbolic—allows children
to understand that key concepts can be represented in more than one way. Second,
access to more than one form of representation permits learners to make observa-
tions and connections about differences in representations that can help facilitate
sophisticated mathematical understanding (e.g., Martin, 2009; Moyer-Packenham
& Westenskow, 2013; Sarama & Clements, 2016). For example, touch-screen
tablets permit creative exploration where young children are able to easily exper-
iment with attributes such as the aspect ratio (i.e., the ratio of height to base) of
perpendicularity of shapes to understand what makes a rhombus a rhombus and not
a square. Such flexible manipulation and capability to merely isolate a specific
attribute would not be feasible with traditional 3D toys (see example, Fig. 11.1).
The ease with which touch screen software can allow learners to isolate, add,
subtract and augment attributes may also lead to more efficient acquisition of
mathematical concepts. For example, composition and decomposition of shapes
could be readily executed in a 2D touch screen context compared to a 3D context.
Research supports both the acquisition and efficiency of mathematical knowledge
through 2D technology-driven learning experiences. For example, among fifth
graders, spatial abilities—in terms of spatial perception, mental rotation, and spatial
visualization—improved significantly after children played a computer game
involving tangram puzzles and pentominoes for even just one hour (Yang & Chen,
2010)! Together the research with tangible 3D activities and research examining 2D
digital representations indicate that early exposure to mathematical concepts
through play can have immediate and long-lasting impact on development.
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11.3 Fostering Creative Spatial Learning Opportunities:
Contributions from Technology

Acquiring early mathematical skills inherently relies on creative discovery as well
as explicit instruction (e.g., Alfieri, Brooks, Aldrich, & Tenenbaum, 2011;
Hirsh-Pasek, Berk, Singer, & Golinkoff, 2008). Considerable literature in early
mathematics education supports the need for children to explore and mathematize
key concepts through application to diverse novel contexts (e.g., Newcombe, 2010;
Uttal, 2000). This would require mastery of spatial concepts embodied physically as
in the real world and represented abstractly as in visual images and representations
such as maps and models.

Physical manipulatives are static but concrete, thus multiple manipulatives might
be necessary for a child to discover or realize key spatial concepts In addition,
providing both prototypical and non-prototypical examples (Satlow & Newcombe,
1998) or creating model representations (Siegal & Schadler, 1977) may further
understanding. For example, understanding the concept of a cylinder can involve
exposure to multiple examples evident in children’s everyday lives (e.g., tinned
goods, cookie jars) and also by having children manipulate various cylindrical
shapes in block building, puzzle solving or other contexts. Virtual 2D manipula-
tives, however, afford learners an opportunity to dynamically manipulate objects on
screen using screen tools such as swiping and touching. For example, given that the
visual prototype of a triangle for young children between four and six years old is
an isosceles triangle, identifying triangles (other than an isosceles triangle) is dif-
ficult for most young children (Aslan & Aktas-Arnas, 2007; Clarke, 2004;
Clements, Swaminathan, Hannibal, & Sarama, 1999; Yin, 2003). However,

Fig. 11.1 Using technology,
a child can easily manipulate
a rhombus to become a square
by changing the aspect ratio
using the zooming and
shrinking features on a
touchscreen device
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software could make salient features of different triangles quickly apparent to young
children by systematically resizing defining attributes such as aspect ratios of width
and height as well as skewness (or lack of symmetry) as a child expands or shrinks
the image of a triangle or series of triangles on screen. As such, an extensive and
“manipulateable” representation of various types of triangles—isosceles, equilat-
eral, right angled—could be made available through the use of technology. Such
dynamic and non-static representations of multiple variations of triangles are not
easily accomplished in single integrated presentations using physical manipulatives.
Dynamic representations of spatial features and relationships in a virtual medium
may, therefore, enhance children’s acquisition of abstract spatial concepts.

Abstract representation of spatial concepts underlies learners’ spatial thinking
and reasoning. To make sense and to respond appropriately in our environment, we
organize and process spatial information using two frames of reference—egocentric
and exocentric (Klatzky, 1998; Shelton & Mcnamara, 2001). Spatial information in
the environment in an egocentric or self-based frame of reference is processed and
organized from an individual’s perspective, bearing or orientation such as the
distance of an object from oneself. This frame of reference allows us, for example,
to extend our arm to an appropriate length to pick up a mug on the table by judging
the distance between oneself and the table. However, representation of spatial
relations among objects in the environment varies accordingly to the individual’s
bearing. In our mug example, the distance between oneself and the table would
differ if one were to stand at the corner of the table versus the side of the table. On
the other hand, spatial information in the environment in an exocentric or
external-based frame of reference is organized based on salient features or land-
marks in that environment. Hence, representation of spatial relations among objects
(object-to-object relations) in the environment is invariant to an individual’s
bearing/perspective, which is foundational in forming a cognitive map for one to
think, reason and visualize spatial information.

Both frames of reference are fostered using physical manipulatives; for example,
the egocentric or self-based frame of reference could be used to judge the distance
of the blocks between a tower children are building and themselves to ensure each
block is stacked on top of each other without toppling them, while at the same time,
the exocentric/external-based frame of reference could be used to decide the dis-
tance among the different towers to build a fort. However, technology may be
introduced to foster the use of exocentric/external-based frame of reference, and
ultimately the abstract representation of spatial concepts, by young children more
effectively. If an egocentric/self-based frame of reference were adopted while
children are stacking blocks to build a fort on an iPad®, they would realize very
quickly that the spatial information they have is between themselves and the iPad®.
Furthermore, the lack of sensory-concrete-tactile information in virtual 2D pre-
sentation makes it more difficult for learners to adopt an egocentric/self-based frame
of reference to organize spatial information in the virtual environment. Similar to
maps and models, the virtual 2D platform offers opportunities for children to
explore and mathematize key concepts by developing abstract/symbolic spatial
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representations of actual representations in the environment (e.g.,
Moyer-Packenham & Westernskow, 2013; Uribe-Florez & Wilkins, 2010), and
ultimately acquiring the ability to switch intermodally between concrete and
abstract spatial representations (e.g., Clements, 1999; Sarama & Clements, 2016).
Such mastery in switching between the two types of spatial representations helps to
foster young children’s creative and flexible thinking. Thus, play contexts that
involve both virtual 2D and physical 3D representations may provide the mix of
play opportunities that will encourage greater creative exploration and subsequently
greater learning (e.g., Moyer-Packenham et al., 2015; Musawi, 2011; Yelland,
2002). Interestingly, we currently know very little about how virtual 2D media are
used in the home or even in the classroom to support creative thinking or play in
early spatial development. Emerging research in literacy suggests that the dual
learning opportunities may indeed foster different yet meaningful creative play and
learning (e.g., Beschorner & Hutchison, 2013; Patchan & Puranik, 2016; Price,
Jewitt, & Crescenzi, 2015).

The use of technology can be effectively introduced into play contexts to elicit
enriched and spatially diverse parental input at home. In our recent study, 34
parents and their preschoolers engaged in 30-min of 3D play using blocks and
puzzles and virtual 2D play using an iPad® in two separate home visits (Ho et al.,
2017). Our findings reveal that parents did not differ in the amount of spatial talk
and the number of spatial categories in both the 3D and 2D play contexts.
Specifically, parents provided the same amount of talk regarding: spatial dimen-
sions (e.g., large, small), spatial features and properties (e.g., straight, angles),
shapes (e.g., circle, triangle), location and directions (e.g., top, bottom), orientation
and transformation (e.g., turn, rotate), continuous amount (e.g., half, part), and
deitics (e.g., here, there). In addition, all spatial categories were used by parents in
both play contexts. However, significant differences did arise in the specific types of
spatial categories that were used in the traditional 3D versus 2D virtual play con-
texts. Specifically, in the 3D play contexts (for example, see Fig. 11.2), parents
produced more words related to spatial dimensions, location and directions, and
continuous amount than in the 2D play contexts. In contrast, in the 2D play contexts
(for example, see Fig. 11.3), they produced more words associated with orienta-
tions and transformations as well as deictics than in the 3D play contexts. The use
of these two types of spatial categories in the 2D play contexts could be due to the
function of the game design, which requires parent-child dyads to complete targeted
learning objectives in order to progress by rotating a right-angled triangle clock-
wise to fit into the existing square space.

This study provides evidence that, using both 2D and 3D manipulatives may
maximize learning opportunities to foster creative and flexible thinking. Our find-
ings suggest that differential parental input in specific types of spatial categories
was elicited during the two play contexts. Spatial language serves as a represen-
tational tool to help children encode and represent spatial concepts (Gentner, 2003;
Gentner & Lowenstein, 2002; Kuhn, 2000). Without such a symbolic, linguistic
system that embodies our thoughts and concepts, one would not have the foun-
dational skill to assimilate and accommodate (in Piaget’s terms) existing spatial
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concepts to generate new knowledge (e.g., Casasola & Bhagwat, 2007; Casasola,
Bhagwat, & Burke, 2009; Piaget & Inhelder, 1969). Additionally, each of these
play contexts enhances exposure to different representations—abstract versus
sensory-concrete—which in turn may promote differential development of various
types of spatial thinking such as spatial navigation, orientation, and transformation.
For example, building a castle on a 2D tablet versus using actual 3D blocks would
require cognitive flexibility in mental representations of spatial concepts such as
relations, dimensions, scaling (Zbiek, Heid, Blume, & Dick, 2007). Thus, the
ability to manipulate and switch between sensory-concrete and abstract/symbolic
spatial representations from both frames of reference helps young children in
becoming creative and flexible learners to mathematize spatial concepts. The rel-
ative advantages of providing children with both sensory-concrete and abstract/
symbolic representations require access to appropriate manipulatives and software.
Although manipulatives may be readily accessible, facilitating children’s ability to
make the desired connections from technology-based contexts requires high-quality
instructional software.

Fig. 11.2 A child building a castle with 3D blocks would require an understanding of an
egocentric frame of reference (i.e., spatial relations are between oneself and the objects in his
environment). The spatial representation using 3D manipulatives is a sensory-concrete one
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11.4 Importance of Instructional Software Design
in Early Spatial Learning

Potential learning and social gains associated with the use of well-designed
instructional software has been documented consistently for learners across ages
and for learning that occurs in the classroom and, informally, at home (Archer et al.,
2014; Flynn & Richert, 2015; Mayer, 2005; McKenny & Voogt, 2010; Savage
et al., 2013; Thorell et al., 2009; Willoughby et al., 2009). Although high quality,
pedagogically appropriate software is a critical feature in determining learning
outcomes, learner interest and persistence are also key considerations when
understanding the impact of technology-based instruction (e.g., Grant et al., 2012;
Wood, Hui, & Willoughby, 2008). Many children are highly motivated to engage
with computer-based learning contexts and to persist longer even when working on
challenging tasks when engaged with interactive technologies (e.g., Karemaker,
Pitchford, & O’Malley, 2010; Swing & Anderson, 2008). A key contributor to
extended engagement and attraction for digitally-based delivery systems is the
“game-like format” (e.g., Gee, 2008; Vogel et al., 2006). Most children’s learning

Fig. 11.3 A child building a castle out of blocks on an iPad® would require an understanding of
an exocentric frame of reference [i.e., spatial relations are among objects (i.e., object-to-object
relations) in the virtual iPad® environment]. The spatial representation using virtual 2D
manipulatives is an abstract/symbolic
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software also employs an element of competition where children can compete
against themselves or others to reach goals, obtain rewards or tokens or advance to
more advanced levels of play (Lucas & Sherry 2004). Software programs also
provide opportunities for children to navigate, explore and manipulate novel
environments (e.g., Abdul Jabbar & Felicia, 2015). Exploration can take different
perspectives including first person and third person. Children are often accompa-
nied on their ‘learning adventures’ by supportive animated characters which advise,
reinforce, and interact with the learner. Interactivity between the learner and the
software environment further promotes engagement and learning (e.g., Abdul
Jabbar & Felicia, 2015).

Software design is a key element in maximizing learning. Within the literature,
discussions have examined how software design—especially instructive ones that
afford only static visuo-spatial information (e.g., naming shapes) versus manipu-
lable or constructive ones that afford dynamic visuo-spatial information (e.g.,
composing, decomposing shapes)—may promote, inhibit or even constrain learning
(e.g., Goldwin & Highfield, 2013; Hirsh-Pasek et al., 2015; McQuiggan, Kosturko,
McQuiggan, & Sabourin, 2015; Travers & More, 2013). Given that there are dif-
ferent types of spatial skills that can be present as early as the first year of life
(Lauer & Lourenco, 2016; Uttal et al., 2013), the pressing concern is how to design
high quality software applications (apps). Such software must use sound peda-
gogical and learning principles to present developmentally appropriate content,
including appropriate graphic and user-interface design, and formats that capitalize
on the unique affordances (e.g., manipulatability and scalability) offered by tech-
nology. This constellation of requirements in design maximizes the potential to
support creative, constructive and flexible learning.

In addition to appropriate content pedagogy that would be expected in any
instructional delivery system, multimedia formats offer affordances known to
support learning (e.g., Clark & Mayer, 2008; Mayer, 2005; Takacs, Swart, & Bus,
2015). For example, multimedia formats, by definition, present information through
more than one modality. This means learners can experience information visually,
verbally and through touch, often simultaneously. Redundancy of information
through differing modalities (e.g., visual and verbal) can enhance learning (Takacs,
Swart & Bus, 2015). Instructional supports such as levelled activities comprised of
hierarchically arranged sub-goals, organize and structure the learning experience.
Similarly, scaffolds such as hints and following responses with immediate, elabo-
rated and accurate feedback allow opportunities to acquire skills and correct errors
(e.g., Van der Kleij, Feskens, & Eggen, 2015). These instructional features support
individual learning needs and may be especially relevant for very young or inex-
perienced learners.

Clearly, digitally delivered instruction has the promise to attract and engage
learners. Hence, well-conceived and designed programs offer the potential to
facilitate learning by minimizing the cognitive resources needed to navigate the
software. However, striking the right balance between providing all the relevant and
desirable affordances and providing too little or too much is challenging. For
example, software that depicts excessive perceptual richness or that requires high
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interactivity between users and the program have been found to hinder learning
(e.g., Levinson, Weaver, Garside, McGinn, & Norman, 2007; Song et al., 2014;
Stull & Mayer, 2007). Although perceptual richness or interactivity is generally
considered a positive feature of software design, it is clear that design considera-
tions need to be aligned with developmental, educational and cognitive capabilities
of the target audience to maximize learning opportunities.

The above requirements have yet to be fully translated to apps to benefit early
childhood learning, especially with respect to the visual-spatial strand for parents to
engage with their children. Despite a dramatic increase in the use of mobile
touch-screen devices (e.g., iPad® and smartphones) from 52% in 2011 to 75% in
2013 among children under eight years old at home (Common Sense Media, 2013),
there are fewer educational apps on spatial skills compared to language- and
literacy-focused apps geared to preschool aged children on the iTunes store. For
example, our survey of educational apps on iTunes store in January 2016 revealed
that there were only 47 free and paid apps featuring blocks and puzzles for children
between three and five years of age. Moreover, there is concern that learning goals
of available educational apps are often not grounded in evidence-based early
childhood mathematics curriculum (Falloon, 2013; Hirsh-Pasek et al., 2015).
A similar conclusion has been drawn from language- and literacy-focused apps
(Guernsey & Levine, 2015). Appropriate diversity in skills taught and high quality
instruction are fundamental software design features for promoting early develop-
ment (Grant et al., 2012; Wood, Grant, Gottardo, Savage, & Evans, 2017).

The importance of pedagogically appropriate content on optimal children’s
learning outcomes is underscored by emerging research demonstrating learning
gains when relevant iPad® apps were used at home and in school settings
(Berkowitz et al., 2015; Pitchford, 2015). For example, Berkowitz et al. (2015)
reported significant numeracy gains in first-grade children at the end of their aca-
demic year after their primary caregivers read short numerical story problems to
them using an iPad® app several times a week for a year. Similarly, students from
first to third grades were reported to achieve significant numeracy skills after eight
weeks having their math lessons delivered 30 min per day using four iPad® apps
(Pitchford, 2015). In this study, significant learning gains were observed only in
students in the tablet group with the math apps, but not in students who used the
tablet without the math-focused apps or in a group of students receiving math
lessons only from their teachers.

Software design that targets key learning goals is especially important. For
example, Falloon (2013) found that apps that are free of distractions such as
additional graphics/images helped 5-year-olds’ achieve the learning objectives of
the apps. Similarly, the numeracy-focused story app used in Berkowitz et al. ( 2015)
consisted of minimal sounds, graphics and animation to permit greater attention to
target information. Inclusion of non-target or additional superfluous features used in
story e-books distracts young children and decreases learning (Parish-Morris,
Mahajan, Hirsh-Pasek, Golinkoff, & Collins, 2013). Thus, effective program design
must attract attention to key elements and information while permitting creative
exploration and discovery. For example, software with programming features such
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as “turtle” geometry or Logo (Clements & Meredith, 1993; Yelland, 1994) and
Lego WeDo and Bee-bots (Bers, 2010) have been found to promote active,
hands-on learning and exploration of mathematical concepts in young children
between 3 and 7 years old. Clearly, well-designed software offers significant
potential as a learning tool. In fact, Highfield (2015) argues that incorporating
technology in early childhood mathematics education could support both academic
STEM goals such as measuring and visualizing as well as intellectual STEM goals
such as problem-solving and reflecting (Katz, 2010). Fostering cognitive growth
when using technology requires examination of specific learning contexts in sup-
porting creative mathematical constructs.

11.5 Considering Both the Benefits and Pitfalls
of Technology as a Tool to Support Creativity
in Spatial Development

Acquiring competence in mathematics begins early in life. Children’s play envi-
ronments provide a natural and important context for children to discover, create
and explore important precursor mathematical knowledge that will persist
throughout their school and, potentially, occupational lives. Providing a rich
learning environment that engages children, reinforces important concepts, and
encourages creative mathematical play requires knowledge of tools that can best
facilitate learning. In this chapter, we have outlined how technology can be
introduced as a complementary learning tool to traditional physical manipulatives in
early spatial learning at home. The use of mobile touchscreen devices such as the
iPad® has the potential to foster early spatial learning at home. The addition of
technology can foster learning gains through two avenues—increased parental
involvement and direct learning experiences for the child. The use of iPad® has
been shown to help parents, especially those with high anxiety in mathematics, to
increase their engagement in mathematical talk through bedtime math stories
(Berkowitz et al., 2015). Their increased math engagement—in terms of amount of
time and input—helped their children improve significantly in their numeracy
competence. In addition, parents and early childhood educators may not know how
best to engage in mathematics activities with young children (Cannon & Ginsburg,
2008; Lee, Kotsopoulos, & Zambrzycka, 2012). Thus, well-designed apps could
offer appropriate content pedagogy to help parents and early childhood educators to
scaffold children’s spatial learning through diverse, relevant and engaging creative
learning opportunities.

However, to harness the full potential of the creative use of technology in
fostering early spatial development, a few concerns should be addressed. First,
readily available resources offering reliable formal review of educational apps is
necessary for appropriate selection of resources for parents and educators. At
present, such comprehensive reviews are not available. There is no government
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body that screens the educational quality or rates the educational value of apps for
children to ensure the veracity of the claims in the packaging (Guernsey & Levine,
2015; Willoughby & Wood, 2008). Such claims of apps traditionally were left to
parents, teachers, and a handful of web-based consumer concern groups (e.g.,
Common Sense Media, Moms with Apps, BestAppsforKids) to evaluate (Guernsey
& Levine, 2015), often with parents and teachers using the websites as their source
for information and evaluation. Although these websites serve as a useful resource
guide, not all of them screen or rate the educational quality of apps. For example,
review websites such as Moms with Apps and BestAppsforKids provide the
description of what the app does while others such as Common Sense Media
provide both the description and rating of the educational quality of apps.

Fortunately, comprehensive evaluations of apps involving mathematical con-
structs have emerged recently. Unfortunately, the findings suggest shortcomings in
many apps currently available. For example, Larkin (2016) evaluated the quality of
53 Geometry apps targeted for children between 5 and 12 years old based on three
criteria: content, pedagogy (e.g., ease of use without instruction), and facilitation of
learner’s thought process. Only 7 of the 53 apps received a rating of 6 or higher on
their 10 point scale. Similarly, evaluation of 19 apps targeting foundational geo-
metric and visual-spatial skills designed for preschoolers aged 3 to 5 years old,
yielded only 4 apps that featured at least 4 out of the 5 spatial concepts in a
taxonomy designed to reflect developmental progression of key concepts (Lee,
Douglas, Wood, & Andrade, 2017). In addition, when assessed for instructional
quality (i.e., levelling of difficulty and feedback), all but one app received a rating
of 2 or lower out of 5. These findings underscore the need for well-conceived and
well-designed apps if technology is to effectively foster creative and flexible spatial
thinking. Building on these findings suggests that developing and standardizing a
taxonomy that depicts the developmental progression of foundational mathematical
skills is an important priority. In addition, program design, ideally, should include
instructional materials that would provide support for parents and teachers on how
use the app effectively (e.g., Lysenko et al., 2016). These supports should reinforce
elements within the program and extend beyond the elements in the software to
examples in everyday life.

Second, parents and caregivers should be cognizant of the fact that technology
use should not replace or reduce their level of engagement or the opportunities for
them to provide scaffolding to support children’s learning. Thus, the importance of
adult engagement in joint media attention with children in technology-based con-
texts needs to be enhanced. For example, parents have been observed to reduce
their language input during computer-based game context with older preschoolers
(Flynn & Richert, 2015) and their spatial language input during an iPad® play
context (Ho et al., 2017). Some parents may believe that software programs are
intact, comprehensive and complete, thus requiring little if any parental contribu-
tions. As such, software developers and accompanying advertisements for mathe-
matics-based software should incorporate parents as active agents in media learning
contexts to promote enriched spatial adult input. The inclusion of parents as key
contributors in the learning context will avoid what has been called the “pass-back”
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effect where parents hand their mobile touchscreen devices to their young children
to play by themselves (Chiong & Shuler, 2010).

Third, spatial learning may not be optimized in a 2D context alone. For example,
some emerging evidence with third graders suggests that although the use of either
a physical 3D or virtual abacus helped students to learn basic identification of
numbers on the abacus, only students using the physical 3D abacus were suc-
cessfully able to apply their knowledge to new and advanced questions (Flanagan,
2013). Ongoing research is required to examine the cognitive processes involved in
spatial learning in abstract and sensory-tactile modes.

Fourth, our spatial perception about the world processed by the visual system
relies on multiple perceptual cues and measurement scales (e.g., absolute and rel-
ative size, depth) (e.g., Gogel & Tietz, 1980). However, little is known regarding
whether images presented on a 2D iPad® are perceived in the same manner spatially
as those of 3D objects in the real world—also known as perceptual fidelity. This is a
concern especially for young learners who are less familiar with the technology as
well as spatial concepts. Before launching programs that rely heavily on 2D rep-
resentations, we need to know more about how children understand the information
that is being presented to them.

Finally, both 2D and 3D forms of play offer the opportunity for creative play.
Although the opportunities for tangible physical manipulation and exploration are
immediately apparent, it is also important to note that the touchable feature of the
iPad® affords physical manipulation and exploration (Plowman & Stephen, 2003).
However, these opportunities can be easily constrained by less flexible learning
contexts. It is important to ensure that opportunities to encourage mathematical
development in either 2D or 3D environments include sufficient flexibility to allow
children to create knowledge and to use mathematical concepts and structures in
creative ways (e.g., NCTM, 2007; Newcombe & Frick, 2010).

11.6 Conclusions

In summary, emerging research suggests that technology could be introduced into
play contexts at home to complement the types of spatial input and engagement
elicited in the traditional 3D play contexts (Ho et al., 2017). However, effective
introduction of technology into play would require a multi-facet approach among
researchers and application developers to create evidence-based educational apps to
foster early spatial learning (Chiong & Shuler, 2010; Falloon, 2013; Hirsh-Pasek
et al., 2015). Specifically, careful evaluation of the impact technology has on play,
for both the parent and the child, must be conducted to ensure that play is aug-
mented, fostered and open to creative exploration. For example, understanding that
the “talking” features in an electronic shape sorter actually reduced parental spatial
input (Zosh et al., 2015) informs us that the intention underlying some design
features may not yield desired outcomes. In addition, it is important to identify and
embrace different experiences in 2D versus 3D learning environments.
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For example, in the Ho et al., study (2017), play with traditional 3D spatial toys
elicited more words related to spatial dimensions and locations whereas play with
iPad® apps elicited more words related to spatial orientations and transformations
by parents with their preschoolers. Given the important influence adults can have in
early play contexts, parents and educators should be supported with best practices
and resources to help them in terms of ways to engage in technology with their
preschoolers (e.g., asking questions related to or elaborating the content of the
games) and with the selection of developmentally appropriate software.
Encouraging children and those who care for them to jointly engage in creative
mathematical play that is aligned with early childhood mathematics curriculum may
provide a richer context for discovery and development.
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Chapter 12
Video Game Play, Mathematics, Spatial
Skills, and Creativity—A Study
of the Impact on Teacher Candidates

Janet Lynne Tassell, Elena Novak and Mengjiao Wu

Abstract This chapter explores the relationships among video gaming, spatial skills
and creativity in mathematics education. Specifically, it highlights the importance of
spatial abilities for pre-service elementary teachers, and suggests video games as a
teaching approach for potentially enhancing creativity, spatial abilities, and mathe-
matics performance. We argue that spatial abilities deserve more attention in math-
ematics education, as a major predictor of achievements in science, technology,
engineering, and mathematical fields. To support this notion, we describe an
experimental study that examined the effects of playing the Angry Birds and Action
Video recreational video games on education majors’ math problem-solving and
perceptions, math anxiety, working memory, and spatial skills. Individuals with high
spatial abilities had significantly higher confidence in learning mathematics, ACT
mathematics, science, composite scores, as well as geometry, word, and non-word
math problem solving than individuals with low spatial abilities. In addition, students
with low spatial abilities had significantly higher math anxiety. After ten hours of
playing, both video game intervention groups significantly improved their spatial
skills, working memory, and geometry performance from pre- to post-test. These
findings suggest potential impact of video gaming in mathematics education and
open new horizons for future research that explores how schools and homes working
together with strategic gaming plans can help students improve their spatial rea-
soning and problem solving. The chapter concludes with future research suggestions
on spatial abilities and creativity in mathematics education.
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12.1 Introduction

How can mathematics learning be impacted by video game play? This is a question
that many people in our society, both past and present, might find as ridiculous or
inappropriate to even consider. Often, video game play is perceived as a waste of
time by parents. Teachers tend not to look toward creative uses for video game play
in light of today’s focused climate of the standards-based world in education.
However, research studies are finding that playing certain recreational video games
can improve various cognitive and perceptual abilities, such as attention, working
memory, and reaction times (Boot, Kramer, Simons, Fabiani, & Gratton, 2008;
Green & Bavalier, 2012). A considerable number of studies also documented
improved performance on tasks, such as to rehabilitate the elderly, hone surgical
skills, and sharpen flight performance (Green & Bavalier, 2006).

In light of the growing literature body on the impact of video games on learning
and cognition, we were interested in exploring whether casual video games are
making an impact with video-game player’s spatial and mathematics abilities as
well and recommend future research directions that can connect these findings to
creativity. This question drove us to examine the effects of playing Unreal
Tournament, an intense first-person shooter video game, and Angry Birds, a popular
low-stress video game, on spatial abilities and mathematics proficiency and atti-
tudes toward mathematics. The results have led us to another question: How might
video-gaming be used as a creative instructional approach to increase student’s
skills in mathematics problem solving and spatial reasoning?

We assert that teaching approaches aiming at improving cognitive abilities that
are essential for successful mathematics learning have a potential of better preparing
students for learning mathematics and increasing student interest toward mathe-
matics. When considering what population to study, we decided to focus on
pre-service teachers due to the pressures that they have to perform on the mathe-
matics portion of the Praxis II teacher-licensing exam. We also wanted to be able to
improve the mathematics abilities and confidence of future teachers as well as
broaden their perceptions about possible instructional interventions for improving
mathematics learning. Research shows that elementary education teacher majors
report the highest average scores on mathematics anxiety tests amongst all college
majors (Hembree, 1990). Often, students within the elementary education major
have neither sufficient number of mathematics experiences through coursework nor
do they get appropriate interventions to help change their attitudes and perceptions,
which further complicates and perpetuates the issue (Ma, 1999).

The goal of this book chapter is two-fold. First, we report a research study that
examined the effects of recreational video gaming on various cognitive abilities that
are crucial for mathematics learning, focusing primarily on spatial abilities, which
are central to successful geometry and general mathematics problem-solving
learning. This chapter reviews the importance of spatial abilities in Science,
Technology, Engineering, and Mathematics (STEM) education, especially among
pre-service elementary teachers. It suggests that spatial abilities deserve more
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attention as a major predictor of achievements in science, technology, engineering,
and mathematical fields. Second, we present a challenge for future research
focusing on the relationships among spatial skills and creativity in teacher candi-
dates, and in turn how to develop the creativity. The chapter also discusses the idea
of creative approaches to teaching with video gaming.

12.2 Spatial Skills

12.2.1 Spatial Skills and Mathematics

Spatial skills, or visuospatial ability, refers to skills in representing, transforming,
generating, and recalling symbolic, nonlinguistic information (Halpern & LaMay,
2000; Linn & Petersen, 1985). Mathematics skills, coupled with spatial skills, are
critical to success in the areas of STEM including professions, such as architecture,
medicine, chemistry, and engineering (Ceci & Williams, 2007). Cohen and Hegarty
(2007) attributed such disadvantages to the difficulties of understanding and using
the intensely-spatial information. More emphasis was put on the effect of spatial
abilities on achievement in mathematics, and specifically geometry (Holzinger &
Swineford, 1946). Spatial abilities have been successfully used to predict STEM
achievement with mathematics and verbal skills controlled: lower spatial abilities
are likely to result in lower STEM performances (Lubinski & Benbow, 2006; Shea,
Lubinski, & Benbow, 2001). Visual perception and spatial ability are connected to
mathematical thinking, and important for mathematical problem solving (Hegarty &
Waller, 2005). For students to be successful in 3D geometry thinking, strong
predictors are spatial visualization, spatial orientation, and spatial relations factors
(Pittalis & Christou, 2010).

The interest in research on spatial abilities is attributed to its impact on math-
ematics performance. In a meta-analysis of 75 studies, Friedman (1995) found a
substantial relationship between mathematical and spatial abilities, ranging from 0.3
to 0.45. A more recent meta-analysis by Mix and Cheng (2011) further confirmed
the positive correlation between these two constructs across ages and tasks. The
results indicated that the students with higher spatial skills tend to achieve better in
mathematics. Empirical evidence has shown that geometry education can improve
students’ spatial abilities. For instance, high school students that received
Descriptive Geometry instruction outperformed their peers from a control group on
spatial ability tasks (Gittler & Gluck, 1998). Further demonstrating a connection
between geometry reasoning and spatial abilities, Pittalis and Cristou (2010)
revealed the relationships a student performance predictor in the four types of
reasoning in 3D geometry. Their study leads to an assumption that students can
improve on 3D geometry tasks with spatial reasoning practice.

12 Video Game Play, Mathematics, Spatial Skills … 305



12.2.2 Spatial Skills and Gender Differences

Numerous researches have consistently shown that males have better spatial abil-
ities than females. The sex differences in spatial ability were apparently observed in
infants even at 5 months old (Moore & Johnson, 2008). In a study with over one
thousand high school students, Fennema and Sherman (1976b) found firm empirical
evidence on sex-related differences in spatial abilities, and spatial visualization.
Both of the spatial entities had a stronger sex-related difference than mathematical
ability itself. In terms of spatial orientation, males were found to significantly
outperform females on spatial perception and prediction in elementary school
(Maxwell, Croake, & Biddle, 1975). In addition, gender differences were revealed
in a study on spatial skills with 274 undergraduate participants (Casey, Nuttall,
Pezaris, & Benbow, 1995): male students scored higher than female students for
mental rotation and math aptitude, especially in the high-ability samples. The same
pattern was reported in an earlier study conducted by Burnett, Lane, and Dratt
(1979). In both studies, after controlling for the effects of spatial ability, the gender
difference in math ability became insignificant, thus providing a clear indication
about the role of spatial ability in the gender difference in mathematical perfor-
mance. Linn and Petersen (1985) concluded in the meta-analysis on sex differences
in spatial ability that sex differences favoring males existed in spatial perception and
mental rotation but not in spatial visualization. Another meta-analysis by Tracy
(1987) reached similar conclusions among children but suggested future research to
use children’s sex role orientations instead of biological sex for more reasonable
assessment when analyzing sex-related differences.

What contributed to the gender differences in spatial abilities? Tracy (1987)
attributed the differences to children’s toy preference. Her meta-analysis revealed
overwhelming evidence in support of sex-related toy preference and playing
behavior in children: boys tend to play with toys that are spatial in nature (i.e.,
vehicles), while girls’ toys usually do not encourage manipulation and movement
through space. Thus, boys’ spatial abilities are promoted by their choice of spatial
since childhood.

Prior experiences in sports can also contribute to enhanced spatial ability.
Researchers have found that athletes perform better than non-athletes on mental
rotation tests (Ozel, Larue, & Molinaro, 2004). In many cultures, as part of growing
up, males experience greater amounts of physical activities that require spatial
reasoning skills involving hand-eye coordination (i.e., playing football, climbing
trees, etc.). Those activities are believed to promote men’s development of spatial
cognition, which finally leads to gender difference in spatial abilities (Bjorklund &
Brown, 1998).

Socio-cultural factors are also regarded as an important cause of gender differ-
ences in spatial abilities (Fennema & Sherman, 1976b). Sex stereotyping of
mathematics and spatial abilities resulted in less confidence and less involvement of
girls than boys in math and spatial activities, which increased the gender difference
in math and spatial performance. However, if females were given proper instruction
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and practice, the gender differences could be diminished and even removed
(Maxwell et al., 1975).

In the elementary education major, few of the students have been athletes, and
more have been females. With this current state of composition, some of the natural
benefits that life experiences bring to spatial reasoning escape many prospective
and current teachers. With the gender gap in visuospatial reasoning and even the
intentional methods to lower the gap (Newcombe, 2007; Terlecki, Newcombe, &
Little, 2008), the impact remains unclear as to whether the intervention practices are
effective. The concern is that there is a gap itself and elementary teachers are
predominantly female, teaching generation upon generation of students, when they
themselves may very well fall prey to the downside of the gap. Thus, the impor-
tance of developing spatial skills increased among elementary education majors.

12.2.3 Spatial Abilities and Math Anxiety

It has been an accepted belief that students with higher math anxiety tend to perform
more poorly in mathematics than their low-math-anxious peers. High math anxiety
also leads to less participation in STEM disciplines, and lower possibility of
selecting STEM-related careers (Casey et al., 1995). The impact of pre-service
elementary teachers’ (PSET) math anxiety might go beyond their own achievement
and interests. According to Gresham (2008), pre-service teachers with high math
anxiety have been shown to develop lower math teaching self-efficacy and negative
teaching attitudes, which might negatively affect their students’ achievement. Recent
empirical evidence has showed that female teachers’ math anxiety inhibited female
students’ math development (Beilock, Gunderson, Ramirez, & Levine, 2010).

Mathematics anxiety is also negatively correlated with spatial abilities (Casey
et al., 1995). In one of our previous studies (Novak & Tassell, 2017) we explored
whether spatial ability was a mediator of the relationships between math problem
solving in geometry, word problem, and non-word problem content areas and math
anxiety. Spatial ability negatively correlated with student mathematics anxiety and
was found to be a significant positive predictor of performance in geometry and
word problem-solving after controlling for the effects of math anxiety. The results
were consistent with earlier literature, supporting positive correlations between
spatial abilities and geometry, and complex word problem solving (Brown &
Wheatley, 1997; van Garderen, 2006).

Spatial abilities were also successfully used to partly explain why females
experienced higher math anxiety than males (Maloney et al., 2012). The data
indicated that spatial processing ability mediated the relationship between sex and
math anxiety among college students. One possible explanation for the mediating
role of spatial abilities is that math anxiety is preceded by poor spatial processing
abilities. Maloney et al. argued that both spatial skills and gender differences in
mental rotation emerge early in development (Moore & Johnson, 2008), and tend to
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remain stable after early childhood (Mortensen et al., 2003). Therefore, poor spatial
ability indirectly results in high math anxiety through low math achievement
(Maloney et al., 2012). Therefore, it is plausible to assume that the enhancement of
spatial abilities might reduce math anxiety and improve math competence.

12.2.4 Spatial Training to Improve Spatial Skills

Given the predicting power of spatial abilities in STEM achievement, and the
relationship between spatial ability and math anxiety, spatial training seems to be an
extremely valuable tool in fighting against math underperformance and math
anxiety. Although the literature on the effects of spatial training on performance in
STEM disciplines is extremely scarce (Uttal, Meadow, Tipton, Hand, Alden, &
Warren, 2013), several studies have demonstrated that training spatial skills can be
transferred to generalized improvement in mathematics tasks that were not directly
trained (Cheng & Mix, 2014; Mix & Cheng, 2011).

Spatial training has recently received high interest by researchers. There has
been promising evidence showing positive effects of spatial training on improving
spatial skills [see Uttal’s et al., (2013) detailed meta-analysis on the effects of spatial
training]. Uttal and colleagues classified training programs into three categories:
video games, instructional course, and psychology laboratory training. Each
training program was found to be effective in increasing spatial skills and spatial
training effects were stable, persisting, and transferrable (to novel tasks).
Specifically, spatial training of playing action video games has been found to
successfully reduce gender difference in spatial abilities in very short time of
training (Feng, Spence, & Pratt, 2007).

12.3 Rationale for Instruction that Is Creative
and “Outside” of the School Day

In most schools and situations, spatial skills are taught through the typical math-
ematics curricula. However, a more focused approach through video game training
for strengthening spatial skills can be inserted into a student’s life to enhance and
potentially improve spatial skills. Whether the mission is to teach and improve
spatial skills in children or to enhance skills in pre-service teachers, employing fun
and engaging activities that can be implemented both out of and in school. Such
video game play can be a method considered for a creative angle of instruction. If a
teacher is considering how to improve spatial reasoning skills, creative instruction
is an option that has been researched. Pittalis and Cristou (2010) note that students
might gain better improvement in their visuospatial skills if they were encouraged
to explore 3D geometry activities outside of school.
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According to Gunter et al. (2008), we are seeing a big rush to incorporate
educational content in video games and the hope is that the players are motivated to
play and in turn learn the content that is embedded in the game. The US National
Council of Teachers of Mathematics (NCTM, 2000) association published a doc-
ument, Principles and Standards for School Mathematics, where technology was
held up as essential for teaching and learning due to its efficient and effective way to
help students explore mathematics concepts in a deeper and different way.
However, concerns creep into the discussion regarding technology use for
instruction as teachers may not have the pedagogical understanding for how to
implement the tool effectively in the classroom (Hoyles et al., 2004). The effective
way to intertwine technology requires meaningful connection to the instructional
objectives (Lawrenz et al., 2006). Therefore, teachers need to plan for this com-
plexity and ensure a tight alignment with the instructional objectives to achieve the
optimal engagement and student achievement (Clark-Wilson et al., 2014; Dewey
et al., 2009). The connection to the instructional objectives is essential to avoiding
conflicting opinions about game-based instruction (Bragg, 2007). The biggest
challenge for teachers is finding the right mix of technology and instruction to have
the optimal engagement, motivation, and interest for the students (de Freitas, 2006).

The use of video games for instruction, especially playing at home, could be a
cultural and creative pedagogical shift. If teachers and parents would consider
allowing carefully selected video game play in their instructional practices, it may
help students increase their spatial reasoning and working memory skills. The cycle
of out-dated instructional practices can be impacted by breathing a new life of
technology by using video game play strategically. Instructional practices with
freedom for students to work at their own pace with choice can provide students with
opportunities to think critically and can allow for explorative learning (Lin, 2011).

The classroom environment should be cultivated to facilitate learning. When
teachers incorporate creative instructional techniques like encouragement, or using
video games, could they be fulfilling Freudenthal’s (1971) suggestion that students
be able to experience mathematics? Freudenthal emphasized that it was important
that mathematics be taught in a manner that students invent themselves—in other
words, designing their own learning pathway. Video gaming, in the classroom or at
home, on their own terms, can be this “personal pathway” to improving spatial
skills—a “creative” approach to allowing students to control their own learning.

12.4 Video Game Impact on Spatial Reasoning

In terms of the impact of video game play on spatial reasoning, different games and
amount of video game training time have been considered as influential in research
over the years (Cherney, 2008). In one school setting, “The Factory” or “Stellar 7”
were used with fifth, seventh, and ninth graders to study mental rotation skills with
two 45-min training sessions over six weeks (McClurg & Chaillé, 1987).
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The findings showed that both genders in computer games treatment group outper-
formed the control group. In a similar study, fifth graders played “Marble Madness”
(involving spatial skills) and “Conjecture” (no spatial skills), for three 45-min ses-
sions (Subrahmanyam & Greenfield, 1994). Students who had the lowest pretest
spatial skills made the greatest gains, pre- to post-test. Another study involved
“Tetris” with college students, targeting mental rotation speed and spatial visual-
ization (Okagaki & Frensch, 1994). The researchers found that after six hours of
training, both genders improved in both areas. More recently, research has shown that
playing action video games for only 10 h can eliminate gender differences in spatial
abilities with females benefitting more than males (Feng et al., 2007). Cherney (2008)
conducted a study to determine the amount of time and delivery methods that might
impact mental rotation skills. The research findings suggest that only four hours in
computer game training was needed to improve mental rotation skills. Both genders
improved, but females improved with a significantly larger margin.

Playing specific video games, such as puzzles and action video games, has been
proven through research studies to help both females and males in their spatial
reasoning skills (Dorval & Pepin, 1986; McClurg & Chaillé, 1987; Subrahmanyam
& Greenfield, 1994). However, such games are “naturally” played most often by
males, thus females who usually have lower spatial abilities than males further
develop a gender gap by not playing video games that have a potential of improving
their spatial ability (Cherney & London, 2006; Terleckie & Newcombe, 2005). To
illustrate the impact of playing recreational video games on cognitive abilities that
are important for mathematics learning, we describe below a study that we con-
ducted with pre-service teachers.

12.5 Two Experimental Studies on Video Gaming
and Mathematics Problem-Solving: Methodology
and Theoretical Framework

In examining the impact video gaming could have on students, we chose to look at
the mathematics proficiency angle. Gaming is a part of our culture. What if a
focused treatment of gaming could serve as an intervention for pre-service teachers
to improve in their approach to and confidence with mathematics? What can be
gained from an unexpected outcome? In this study, we were interested in learning
specifically about pre-service teacher knowledge and impact of the gaming on their
mathematics achievement and spatial skills. We examined the cognitive abilities
and math perceptions that affect their math proficiency, focusing primarily on the
role of spatial reasoning in students’ mathematics performance and academic
achievement. The pre-service teachers in this study experienced a video game
intervention, working with the popular game, Angry Birds, and first-person shooter
action video game (AVG), Unreal Tournament.
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Action video games and first personal shooter games (FPS), in particular, have
an advantage in improving low-level functions such as selective spatial attention
(Feng et al., 2007), spatial perceptual resolution (Green & Bavalier, 2007), and
contrast sensitivity (Li et al., 2009). FPS games produce improvements in the key
cognitive functions: sensory, perceptual, and spatial (Spence & Feng, 2010). The
brain can be altered after play, more frequently in a positive way (Ferguson, 2007).
The attentional field size is increased with improvements from FPS play enduring
for a prolonged amount of time (Feng et al., 2007; Green & Bavelier, 2006c;
Spence et al., 2009). These games also have impact on the complex mental rotation
skills (Feng et al., 2007). Sensory, perceptual, and cognitive skills have the spatial
reasoning skills as a foundation (Spence & Feng, 2010). They are the building
blocks. Therefore, the exploration of video game play impact on spatial reasoning is
a field necessary of further study. The implications for this gaming research provide
an argument for a “fresh” approach to new instructional strategies that help students
increase their visuospatial skills (Spence & Feng, 2010). New ways to train the
brain are surfacing.

12.5.1 Experiment 1

To collect baseline information about education-majors’ mathematics proficiency,
spatial abilities, and attitudes toward mathematics, education-majors without prior
AVG experience (n = 30) completed a series of tests that assessed their working
memory performance (Inquisit 4 Web OSPAN software (Turner & Engle, 1989),
mental rotation test (MRT) (Vandenberg & Kuse, 1978), mathematics performance,
and mathematics anxiety and confidence in learning mathematics (Fennema &
Sherman, 1976a). Our mathematics performance test mirrored the complexity and
format of the Praxis II exam, a licensure exam in mathematics for pre-service
elementary teachers. The mathematics performance test covered topics taught in
elementary school in three distinct areas: geometry, word, and non-word problems.

To examine individual differences between students with high and low spatial
abilities, we divided participants into high and low spatial abilities groups using the
median of the MRT variable (Median = 8.00). We found significant differences
(p < .05) between individuals with low and high spatial abilities on the following
measures, favoring students with high MRT scores: Confidence in learning math-
ematics, ACT scores in mathematics, ACT scores in science, ACT composite
scores, as well as geometry, word, and non-word math problems performance (see
Figs. 12.1 and 12.2). In addition, students with lower spatial abilities had signifi-
cantly (p < .05) higher math anxiety. Not surprisingly, when looking at the ACT
scores of the low MRT and high MRT skills individuals, those with the high skills
did better, especially on mathematics, science, and the composite score. This
connects to the research regarding spatial skills enhancing performance in stan-
dardized assessments.

12 Video Game Play, Mathematics, Spatial Skills … 311



12.5.2 Experiment 2

In a follow-up study, we randomly assigned the students who participated in the
previous experiment to two intervention groups (Novak & Tassell, 2015). One
group (AVG; n = 14) was assigned to play an action video first-person shooter
game, Unreal Tournament 2004. This game was successfully utilized in previous
research to increase student attentional capabilities (Green & Bavalier, 2007).
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Fig. 12.1 Means of ACT scores for students with low and high MRT skills. Note *q < .05,
**q < .01, ***q < .001. ACT math, F(3,24) = 11.71, p = .002; ACT science, F(3,24) = 6.30,
p = .019; ACT composite, F(3,24) = 5.23, p = .027
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Fig. 12.2 Means of mathematics proficiency for students with low and high MRT skills. Note
*q < .05. **q < .01. ***q < .001. Geometry, F(3, 26) = 5.66, p = .025; word, F(3, 26) = 11.91,
p = .002; non-word math problems performance, F(3, 26) = 10.93, p = .003
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The other group (non-AVG; n = 16) played the low-stress game, Angry Birds. In
order to select a non-AVG game, we consulted with a video game specialist to
ensure that our non-AVG game does not include AVG qualities that are believed to
foster attentional capabilities (Cohen, Green, & Bavelier, 2007).

Each participant played the assigned game for 10 h in a computer lab supervised
by the project co-investigators. All participants completed their 10-h video-game
practice within the three weeks window. Both groups started playing the assigned
games on the lowest possible level and were encouraged to constantly make pro-
gress attempting playing a game every time on a higher level. We recorded par-
ticipant’s game scores after each time they played a game in the lab. On average
after 10 h of video gaming, the AVG group increased their video gaming skills by
318% and the non-AVG group improved their video game score by 546%. After
completing the 10-h video-game practice, all students took the same assessment
battery as in the first experiment.

After 10 hours of video game play, both AVG and non-AVG groups signifi-
cantly improved (p < .05) on the following scales from pre- to post-test: working
memory performance, mental rotation skills, and geometry scores. However,
individuals with higher MRT abilities scored significantly higher than individuals
with lower MRT abilities in each intervention group on the following post-test
measures: working memory performance, confidence, geometry, and non-word
problem solving. In addition, students with higher MRT skills reported significantly
lower math anxiety post-test levels than students with lower MRT skills (see
Table 12.1). Moreover, there was a significant interaction effect (p < .05) between
the video game played and MRT abilities of a person on a geometry test, indicating
that students with high and low MRT abilities were affected differently by the video
game they played. Specifically, low and high MRT individuals from the AVG
group demonstrated on average similar geometry post-test performance; but high
MRT individuals performed significantly better on the geometry test than their low
MRT peers from the non-AVG group (see Fig. 12.3).

Table 12.1 Analysis of
variance for video gamers’
performance (N = 30)

Source df F p

Between subjects (post-test: high MRT vs. low MRT)

Working memory 3 10.01 .004

Confidence in learning
mathematics

1 9.61 .004

Geometry problem-solving 3 4.31 .048

Non-word problem-solving 3 6.52 .017

Math anxiety 1 14.22 .001

Within subjects (pre/post-test gains)

Working memory 1 4.94 <.05

Spatial skills 1 38.38 <.0001

Geometry problem-solving 1 4.89 <.05
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The results provide preliminary evidence that both AVG and non-AVG partici-
pants improved their working memory performance, mental rotation skills, and
geometry performance similarly from pre- to post-test. However, neither AVG nor
non-AVG interventions did eliminate initial pretest spatial ability differences
observed before the video gaming interventions. Both AVG and non-AVG inter-
ventions were effective for improving working memory performance and spatial
skills in low and high MRT participants. In terms of performance outcomes, the only
difference revealed between the AVG and non-AVG interventions was their effec-
tiveness in improving participants’ geometry problem solving. While the AVG game
was equally effective in improving geometry performance in low and high MRT
individuals, the non-AVG game was more effective for individuals with high
MRT skills than for those with lowMRT skills. These findings suggest that lowMRT
individuals can benefit more from playing the AVG game than from the non-AVG
game. Nevertheless, it is important to note that a sample size in this experiment was
relatively small and therefore the findings should be treated with caution.

Dedicated players of the video game would also assert that there are connections
to the real world in the physics of how to angle the birds in Angry Birds to catapult
for their correct destination. Gamers would also argue that the video game is “just
plain fun” and would see a similar connection to how other strategies can enliven a
classroom lesson. A typical comment made by a participant in this gaming study
after playing the video game was the following statement: “This was such a mental
break from my class today. This was really fun!”

In summary, video game play has the potential to open up the mathematical
minds for students. Unfortunately, video game play has been seen by parents and
the school community, oftentimes, as a “waste of time” or causing distractions
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Fig. 12.3 Differences in means between students with high and low MRT skills by intervention
group on geometry post-test problem solving. Note *q < .05. **q < .01. ***q < .001
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when trying to get children to focus on what is really important with school—
learning the core content area skills. However, we assert from the literature review
and our research in video game play, as related to mathematics, that the potential for
expanding mathematical spatial skills with video games is possible.

Moreover, the Angry Birds recreational video game has been used in other
studies to teach mathematics content directly and connect children’s recreational
video gaming experiences to illustrate specific mathematical concepts. Russo et al.
(2013) investigated how the Angry Birds game could be used in mathematics
education. Findings suggested that the game should be utilized along with inten-
tional planning and systemic implementation connected to mathematics concepts
within the context of the game to gain the best impact. Russo’s research team
analyzed 54 YouTube instructional videos of “Angry Birds” as the data set. The
team watched the videos and was asked to (1) figure out if there were noticeable
difference in how participants in formal versus informal settings communicated
their understanding of the mathematics concepts; (2) compare the video resources
looking for common, effective and appropriate incorporation of the technology for
instruction; and (3) evaluate the videos for whether they would use the video for
their own personal classroom instruction.

In the Russo et al. (2013) study, the videos were analyzed for mathematical
content with ‘parabola’ and ‘angle’ topping the frequency. The results suggest that
teachers realize the potential for Angry Birds as an instructional tool to explore
quadratic functions. Russo et al. (2013) assert that an argument could be made for
the game as a natural set up for such concepts. The effective videos were catego-
rized into two themes: (1) ‘relevant connections’ and (2) ‘multiple representations.’
In regard to ‘relative connections,’ Watson and Fang (2012) point out that
game-based instruction gives teachers an opportunity to engage students in con-
textualized learning in an authentic way through solving the challenges of the game.
Russo’s study found that the most effective videos where making explicit con-
nections to the mathematical ideas and the game context. For ‘multiple represen-
tations,’ Russo et al. (2013) found that the most exemplary uses of Angry Birds
involved clear incorporation and connections to the mathematical concepts of the
game into instruction.

12.6 Future Implications

12.6.1 Potential Impact of Video Gaming
as an Instructional Intervention for Spatial Skill
Development and Relationship to Creativity

Could video-gaming be used as a creative instructional approach to increase student
skills in mathematics problem-solving? We assert this question needs to be weighed
heavily as a creative instructional strategy, for school and home. The future research
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in this area could be expanded by looking at relationships between schools and
homes working together with strategic gaming plans to examine the impact on
spatial reasoning and problem solving. With this research, the potential benefits are
promising: improved relations between school/home, excitement-infused curricu-
lum planning, extended model of the classroom to maximize time by utilizing
evening and weekend hours, personalized and preferential learning for students.

Teacher education programs could transform. Both pre-service and teachers can
benefit from coursework and professional development programs if steps are made
to incorporate gaming training into the instructional practices as a stop-gap measure
in creating better prepared teachers for working with children in our schools. These
instructional enhancements could be applied in a myriad of ways, especially
through the elementary math content courses, and/or through the mathematics
methods courses in the preparation program.

The video game industry has been under scrutiny over the past years with issues
connected to school violence, disengaged learners, and cited as a waste of time.
With the findings from this spatial reasoning study, positive outcomes for AVG
play can be shared. With this connection to the spatial reasoning, then to problem
solving and standardized testing, video gaming can experience a “face lift” and
intentionally design a path to position themselves in the education arena. This
study, and others, are showing that video game play does not take extensive
amounts of time for the resulting impact. With ten hours devoted to fun for many, a
new culture of stronger spatial reasoning may emerge. Parents can use this as a
guideline for the amount of time that is productive and yet not consuming. This
could sway parents towards videogame use, particularly for improving mathematics
performance. The global and cultural impact on society is a factor. Spence and Feng
(2010) state that the role of video games could revolutionize how spatial skills are
taught and help reduce gender differences in children’s’ learning of spatial skills.
The impact of this change would be societal and global. New instructional methods
based on video games could also help people maintain and even improve the spatial
skills through the aging process. Spence and Feng’s research (2010) has implica-
tions that video games are not just for children, but can have an impact far-reaching
into an older age group.

According to Wai, Lubinski, and Benbow’s (2009) research, spatial ability is a
predictor of achievement in STEM, with mathematics and verbal skills variables
held steady. Uttal et al. (2013) confirmed this finding after meta-analyzing 217
related studies. This important finding supports the urgency of effective education
in STEM disciplines. Studies that provided indirect learning via games were found
equally effective as those that directly involved spatial tasks practice, producing
positive durable improvements in spatial skills across all training methods,
according to a recent meta-analysis of training studies aiming at improving spatial
skills (Uttal et al., 2013). In addition, given the flexibility of spatial skills and the
fact that both genders respond equally well to training, implementing
spatial-focused interventions can help even adult students. These types of programs
can be particularly critical for increasing students’ preservation rate in STEM
majors that writhe from high dropout rates (Price, 2010).
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In Russo et al. (2013) study, we gain ideas for next steps for how to incorporate
action video games effectively into instruction. Although the games in our study
were played outside of the classroom instruction, could there be an intentional
connection made between home and the classroom? Perhaps this could be a version
of the flipped classroom where students are actually assigned to play a certain
segment of a video game, and come in the next day to class ready for the teacher to
make the connections in mathematics instruction. The use of “relevant connections”
and “multiple representations” (Russo et al., 2013) could be the foundation for
instructional goals for teachers for incorporating action-video games.

Although the study conducted for this chapter did not focus on an angle of
creativity, the outcomes and related literature of recent studies add superb ideas for
future contributing research to enhance the work begun with this research. As was
stated with the 2011 study from Michigan State University, the link between
video-game play and creativity was in a positive correlation (Moore, 2011). We
would like now to look at the video games through the lens of creative impact. We
would also like to continue with surveying elementary-age parent families, gather
test data, including creativity test data, and find out the different forms of tech-
nology used at home, including game play.

12.6.2 Future Research Directions: Creativity, Spatial
Skills, and Video Gaming

Researchers have been examining the link between spatial skills and creativity. In a
2013 study by Harrison Kell, David Lubinski, Camilla Benbow, and James Steiger
published in Psychological Science, they have made an even stronger connection
between early spatial talent and creativity in adult life. The study, showed that
spatial skill had an increment of prediction for creativity over and above math and
verbal skills (assessed at age 13) when looking at scholarly publications and patents
—even those in STEM (Kell et al., 2013).

In a research update from Vanderbilt, Wetzel (2013) shares work by Lubinski
and colleagues about how exceptional spatial ability at age 13 predicts creative and
scholarly achievements more than 30 years later, according to results from a
Vanderbilt University longitudinal study. Despite longstanding speculation that
spatial ability may play an important role in supporting creative thinking and
innovation, there are very few systems in place to track skill in spatial reasoning
(Wetzel, 2013).

A positive link between video-game play and creativity has been surfacing in
recent years. In a study of five hundred 12-year-old children, the findings point to a
relationship between amount of video game play and creativity in writing stories
and drawing pictures (Moore, 2011). Interestingly, other technologies, like cell
phones, Internet, and computer use other than video games, did not have a rela-
tionship to increasing creativity. The aforementioned study, which is out of
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Michigan State University (MSU) (Moore, 2011), is coined as the first study to
demonstrate the relationship between creativity and video or computer game play.
These findings are particularly relevant in light of the data published by
Entertainment Software Association: 72% of United States households incorporate
video/computer game play as part of their everyday life (Jackson, Witt, Games,
Fitzgerald, von Eye, & Zhao, 2011).

With the findings of (MSU, 2011) linking creativity to video/computer game
play, game designers may be motivated to identify aspects of the crafted games that
enhance creative capacity in the players. The MSU researcher, Jackson, believes
that once the creativity aspect identification occurs, games can maximize the effects
of creativity while retaining the entertainment value, blurring the line between
education and entertainment (MSU, 2011).

In another study out of MSU’s Children and Technology Project, a group of
researchers surveyed 491 middle-school students to find out how often they used
different forms of technology compared then to their scores on the Torrance Test of
Creativity-Figural. The study found that boys favored violent and sports games and
played more often while girls favored interaction with others games and played less
often. However, regardless of type of game played, or gender/race of the student,
there was a positive relationship between video game play and increased creativity
(Jackson et al., 2011).

12.7 Conclusion

We often notice the creative actors, dancers, artists, musicians, and writers in our
world. However, we do not tend to notice a creative engineer or mathematician. Why
is STEMnot in the spotlight when it comes to being considered as a “creative” career?
Research now shows a positive correlation between early spatial skills and later
creativity, yet in our world we still lack an appreciation and respect for the highly
creative aspects of science, technology, engineering, and mathematics (Wai, 2013).

Research evidence has revealed the critical role of spatial skills and reasoning in
performance on standardized assessments and achievement in STEM areas. Several
creative approaches that have been found effective in enhancing spatial reasoning
skill are expected to enhance generalized performance in STEM disciplines. Some
of these mentioned previously are video games such as Tetris, and more recently,
Unreal Tournament and Angry Birds. With the knowledge that spatial skills are less
developed in females than males, the research agenda for exploring how to help
female pre-service elementary education teachers improve their spatial skills is
imperative. The reality is that elementary teachers are predominantly females.
Coupling the finding that pre-service teachers with lower spatial abilities have
significantly higher math anxiety, it is time to try means to break the cycle for
students to begin learning and reaching their potential in spatial reasoning. Teachers
with teaching confidence and understanding of the importance of spatial reasoning
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instruction and interventions are more likely to benefit students. With a direct and
personal experience with an appropriate video game, the changes could gradually
begin.
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Chapter 13
Prototype Problem Solving Activities
Increasing Creative Learning
Opportunities Using Computer
Modeling and 3D Printing

Antonia Szymanski

Abstract This chapter explores the use of Prototype Problem-Solving Activities
and 3D printing (PPSA) as a curricular tool to develop mathematical understanding,
creativity, and technological literacy. Prototype Problem Solving Activities (PPSA)
are teaching and learning activities that have been designed for students to create
artifacts that demonstrate their understanding and to find unique solutions to
authentic problems. They represent an outgrowth of the maker movement and
attempt to involve students in authentic problem-solving exploration. The thesis of
this chapter is that by using PPSA as a teaching strategy teachers can (1) provide
students with opportunities to develop mathematical and creative thinking, (2) en-
courage students who may not perceive themselves as talented in mathematics by
providing new ways in which to demonstrate mathematical thinking, and (3) use
authentic problems and interdisciplinary approaches to problem solving that sim-
ulates real-life behavior by practitioners in the STEM fields. PPSA emphasizes
communication and problem solving which are two principles that are stressed in
education and by business leaders as being critical for life-long success.
A description is provided of the creative processes that are nurtured through the use
of PPSA, as well as the instructional design principles, and specific connections to
technological literacy that moves students beyond being mere consumers of
information to generating ideas and reflecting on thinking. The use of authentic
problems requiring a generation of prototype products allows learners to self-assess
and reflect on their understanding. The process of using PPSA allows the students
to develop higher order thinking skills of analysis and synthesis in their mathe-
matical understanding.
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13.1 Introduction

As 3D printers become more affordable, hobbyists and educators are now able to
acquire them for use. These devices, which allow users to create products by using
modeling software and plastic printing material, offer an opportunity to increase
mathematical understanding by allowing students to physically create previously
abstract components. The ability to engage in the engineering process of concep-
tualization, design, production, evaluation, and re-design fosters creativity in stu-
dents and provides an opportunity to develop a deeper understanding of
mathematical concepts than can be afforded with 2D representations.

The purpose of this chapter is to investigate the relationship of 3D printing with
Prototype Problem-Solving Activities (PPSA) to develop creativity in mathematics.
Accordingly, the following research topics will be examined: How is creativity in
mathematics defined and developed? How can 3D printers be used to improve
mathematical understanding and creativity? What is the role of Prototype Problem
Solving Activities in mathematical understanding and creativity? These three
questions will be explored through examining current literature on the topics. Using
Prototype Problem-Solving Activities as a teaching tool allows a holistic combi-
nation of creativity in all domains while allowing students to work together to
develop solutions to real problems thus developing true 21st Century skills of
communication, collaboration, and higher order thinking along with technical lit-
eracy and is the focus of this chapter.

The chapter begins with a conceptualization of creativity and its role in math-
ematics, it is followed by a discussion of the role of 3D printing in mathematics
education. After a brief description of makerspaces as the foundation for PPSA, the
more practical aspect of the chapter focuses on Prototype Problem-solving
Activities as a teaching tool and the design principles required to create appropriate
educational models. The final aspect of the chapter discusses the use of 3D printers
in the classroom, how they can be used to create models, and results of current
research.

13.2 How Is Creativity in Mathematics Defined
and Developed?

13.2.1 Conceptual Definition of Creativity

Numerous definitions of creativity, specifically mathematical creativity, make
explicating instructional outcomes difficult. Thus, even after decades of researching
creativity, thinking, and learning, very little has changed in educational strategies
for enhancing creativity. It is important to understand the creative process because
having frameworks for analyzing the ways in which learners create knowledge can
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provide important information for teachers regarding the ways in which students
can work together while constructing new knowledge.

Sawyer (2012) noted that there are two main lenses by which to define creativity;
individualist and sociocultural. “Individualist definition: Creativity is a new mental
combination expressed in the world” (Sawyer, 2012, p. 7). The individualist cre-
ativity focuses on one single person who is experiencing creativity in thought or
action. Snow’s theory of individual aptitude fits well with this idea because aptitude
is comprised of a person’s ability, motivation, and affect (1992). Aptitude can
explain why some people may seem to engage in creative activities more than
others. Every time an individual has a new thought or does something in a new
way, it does not necessarily result in an observable product therefore many people
refer to this as “little c” creativity (Sawyer, 2012). “Little c” creativity occurs
throughout daily life when people solve routine problems. Although many people
may encounter similar problems, if the individual uses a new approach then he/she
is displaying “little c” creativity. The second definition is the sociocultural. This
type of creativity, also call “big C” creativity, focuses on an external product or
performance that is evaluated by others. Society determines if the product is novel,
useful, or valuable and thus awards the designation of being creative (Sawyer,
2012). It is important for teachers to provide opportunities for students to engage in
both types of creativity. Students need to be taught to recognize and use “little c”
creativity to adapt to new challenges and also to collaborate and develop “big C”
creativity to solve complex societal problems. These modes of thinking are critical
in a society that places increasing demands on the creativity of its citizens. Thus,
when the goal is to develop mathematical creativity educators must be deliberate
regarding the type of creativity they are targeting.

13.2.2 Operational Definition of Creativity

After reviewing the literature on creativity, Plucker, Beghetto, and Dow (2004)
derived a working definition. “Creativity is the interaction among aptitude, process,
and environment by which an individual or group produces a perceptible product
that is both novel and useful as defined within a social context” (p. 90). Figure 13.1
depicts the conceptual model of creativity that was created by combining compo-
nents of several robust theories of creativity and development for this chapter.
Expanding on the definition by Plucker et al. (2004) it is important to understand
the relationship between the components of aptitude and the components of cre-
ativity. The components of aptitude are ability, affective characteristics such as
openness and curiosity, and motivation (Snow, 1992). The environment and process
may influence both motivation and expression of ability. Restrictive processes that
provide little room for individual expression or divergent thinking may reduce
student motivation due to the lack of autonomy that is offered. Such an environment
may also decrease external manifestations of ability due to student disinterest or
preference for performing the task in another way. Similarly, environments that do
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not value individual contributions and imaginative problem-solving may lead to
reduced motivation and achievement as a means of students to express their frus-
trations. It is also important to keep in mind that the situated nature of the social
context by definition implies that something that is considered creative in one social
context may not be creative in another. Much like Bronfenbrenner’s Ecological
Model of Development, the development of creativity can be viewed as a system of
interaction (Bronfenbrenner, 1986). Figure 13.1 depicts the dynamic relationship
between each of these components. The outer areas of social context, environment,
and process reflect what Sawyer describes as the “sociocultural” aspect of cre-
ativity. The inner oval represents aptitude and is comprised of ability, motivation,
and affect and reflects “individual” aspects of creativity.

The interaction between aptitude and environment has important considerations
for education. Classrooms can be designed to support and develop creativity thus
enhancing the creative ability inherent in every student. Too often traditional,
teacher-centered classrooms leave little room for creativity (Mann, 2006). Focusing
on basic skill attainment has pushed teachers to emphasize memorizing algorithms
rather than building on mathematical understanding and developing creativity by
engaging in open-ended problem solving (Mann, 2006). A negative by-product of
this type of educational experience is the level of discomfort shown by individuals
when they are confronted with problems that do not have “right” answers.

13.2.3 The Development of Mathematical Creativity

Most elementary mathematics teaching focuses on low-level thinking skills, such as
memorizing formulas (Lesh & Doerr, 2003). Using textbook based problems and
worksheets rarely offer the opportunity to move beyond basic applications of for-
mulas It is necessary for students to have the basic concepts of mathematics content,

Fig. 13.1 The Szymanski
conceputal model of creativity
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however memorizing formulas is not sufficient to prepare students to creatively
solve problems in the ever-changing, real world (Chamberlin & Moon, 2005;
Mann, 2006). Mann (2006) clearly states “Procedural skills without the necessary
higher order mathematical thinking skills, however, are of limited use in our
society” (p. 244). The demands of a world that increasingly relies on technology
require global citizens who are capable of engaging in mathematical thinking not
just solving equations that require basic skills.

Mann (2006) noted that encouraging mathematical creativity in all students is
essential to the understanding of content and enhancing the enjoyment of the
learning process. By allowing creative thinkers to flourish while learning the basic
foundations inside of the classroom, future leaders will have practice in solving the
problems that do not yet exist. The creation of authentic situations that require new
and engaging ways to support higher level thinking allows students to expand their
mathematical knowledge with more complex activities.

13.2.4 Mathematical Giftedness and Creativity

Recognizing creativity in mathematics often requires exceptional discernment on
the part of teachers. Students who are able to calculate quickly or solve straight-
forward problems may be designated as gifted and provided additional mathe-
matical challenges. However, these students may lack mathematical creativity and
may require additional opportunities and instruction to develop this skill.
Oftentimes students who perform well on standardized mathematics tests may be
exceptional at computation and following algorithms; however, they may lack the
understanding of creatively applying mathematical concepts to real world problems
(Sriraman, 2005).

It may be by focusing on high test scores to determine eligibility for specialized
programming we are targeting high achievers but ignoring the creative people who
may be the true innovators. This is a problem that happens when we create artificial
separations of domains. Sriraman (2005) supported this finding by noting “The
dearth of specific definitions of mathematical creativity in the mathematics and
mathematics education literature necessitates that we move away from the specific
domain of mathematics to the general literature on creativity in order to construct an
appropriate definition” (2005, p. 23). In order to enhance the development of
creativity, learning opportunities must be designed with that goal in mind.
Technology provides new tools for teachers to use to stimulate creative thinking.
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13.3 How Can 3D Printers Be Used to Improve
Mathematical Understanding and Creativity?

Numerous opportunities are developing for using technology to enhance creativity
and learning as it becomes more accessible for consumers. Computer aided design
tools are used in every industry from manufacturing, entertainment, and agriculture.
Technology increases creativity by allowing users to create and modify designs
quickly and easily without physically creating a product. Thus ideas can be trialed
in a low-risk environment. 3D printing offers an extension to computer aided design
by allowing users to create low cost prototypes. It also enhances creativity by
allowing users to share designs easily. Designing and creating prototypes provides
teachers new teaching tools to bring mathematics to life. The technology and the
ability to be creative may increase student engagement in mathematics.

13.3.1 3D Designing as a Tool for Teaching

The advent of computer aided design technology has ushered in a new age in
visualizing objects. Computer-Aided Design (CAD) allows objects to be created
that are not limited to physical realities such as gravity and a single light source.
CAD objects also allow users to view from multiple angles simultaneously. This
allows the creator to determine how the object will function in the real world much
easier than by having to imagine a 2D image such as that drawn on paper in 3D
space (Kűcukozer, 2013).

The ability to view objects in 3D with multiple perspectives reduces the cog-
nitive load on users who are able to visualize an onscreen image rather than having
to use their imagination to rotate the shape and think about the ways in which it will
interact with other objects. While this aspect is especially helpful when thinking
about geometric problems and shapes, virtually any object can be represented using
CAD. The three dimensions can be modeled as three related variables to determine
how changes in one aspect may impact the other two. Allowing students to
physically see the objects rather than trying to imagine abstract concepts has been
found to improve understanding and retention (Kűcukozer, 2013; Matthews &
Geist, 2002).

The use of 3D CAD models as a teaching tool has been well documented
(Kűcukozer, 2013). CAD modeling has typically been used in education to teach
math, science, and engineering concepts. Researchers have found that integrating
3D models aids students’ understanding and has been shown to foster lasting
cognitive change (Kűcukozer, 2013). Participants reported that the images they saw
immediately disclosed any misconceptions and the pictures “stayed with them”
over time. Thus, providing another means to communicate the concept rather than
textual or even 2D images seems to cement the idea and fosters changes in
understanding that last several years.
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13.3.2 3D Designing in the Classroom

CAD modeling can also be used as learning tool directly by students. There are
several free, or low-cost software programs that students can use to create 3D
models. “These 3D modeling applications such as Form Z by autodessys,
Roboworks by Newtonium, Infini-D by MetaCreations Corporation, ModelMagic
3D by ImageWare development, Merlin VR by digital immersion, and many other
packages allow children to build 3 dimensional shapes on the computer and
manipulate them in a simulated 3 dimensional space” (Matthews & Geist, 2002,
p. 332). Most of these programs are relatively easy for students to learn how to
manipulate and allow them the freedom to create their own models. Some great
beginning programs for creative artistic students are Autodesk Mesh mixer and
Blender. Other free, easy to use beginning software for engineering students are
Free CAD and Autodesk mesh editing and Animation suite.

Creating their own objects and watching them interact on the screen provides
students with a sense of ownership of the work and aids understanding. Students
must think abstractly and mentally deconstruct physical objects in order to construct
them in the virtual world. This process causes learners to think deeply about the
relationships of size, shape, and material. CAD modeling is also a powerful
teaching tool because the cost of mistakes is non-existent. Objects created in the
virtual world can be modified, destroyed, and re-created with a few keystrokes thus
providing freedom for creativity and testing ideas in a safe environment. The
models give the students immediate feedback regarding their ideas and allow them
to self-assess their thinking and make modifications. This metacognitive activity
provides feelings of competence and independence as students no longer rely on the
teacher for the solutions to the problem. Figure 13.2 depicts the mental processes of
creating using 3D modeling (Matthews & Geist).

The act of creating computer objects and sharing their designs with one another
has been found to empower students who previously may not have been engaged

Fig. 13.2 Model of digital
and physical integration.
From technological
applications to support
children’s development of
spatial awareness.
Information Technology in
Childhood Education Annual.
2002. Reprinted with
permission
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with mathematics. In addition to gaining a greater conceptual understanding of the
mathematical concepts, the students also develop logical thinking capabilities as
they program the software to create the objects. Computer aided design modeling
uses the recursive system of imagine, design, test, and modify to create models to
solve problems (Matthews & Geist, 2002). This process exactly mimics the pro-
cesses used by mathematicians, scientists, and engineers in their daily work, thus,
providing students with a much more authentic learning environment than that
typically found in classrooms where students attempt to imitate the methods used
by the teacher to solve problems that have only one correct solution

13.3.3 3D Printing as a Means of Enhanced Creating

Rapid Prototyping or 3D printing is an additive process where a machine adds
material layer by layer to create a form. 3D printing is referred to as additive
manufacturing because the product is created by adding several layers together.
Traditional product manufacturing is a subtractive process where products are
created from materials by sanding, cutting, or melting away unwanted materials.
The process of building a product by adding materials together eliminates the waste
that is created from subtractive manufacturing because there is no unwanted pieces
of the product. The advent of a process that allows users to create products as
needed onsite also reduces waste due to transportation expenses. Instead of waiting
for parts to ship users can simply create the parts that they need at a much lower
cost. Just as the advent of computers allowed the sharing of information around the
world, 3D printing will allow the sharing of products. This technology is at the
inception of home and school use as machines are becoming less expensive.

Creating a product using 3D printing requires the use of computer design
software that is able to take 2D renderings and create the internal structures nec-
essary to build the final 3D product. When the product has been designed using the
software it becomes a universally readable file similar to a pdf text file. This
information is sent to a 3D printer and the machine begins to lay down thin layers of
filament typically comprised of ABS plastic and gradually builds up the product.
This process can take several hours depending on the size of the product and the
type of filament being used. Although the process can take several hours or even
overnight, the 3D printer does not require any monitoring or user interaction once it
begins the printing process. One way to reduce the time necessary to print the
product is to determine ways to deconstruct the model into component parts that
could be adhered to one another after printing instead of printing out a solid object.
An example could be a tetrahedron where the shapes are printed out and then glued
together rather than printing out the solid object. Another example could be a bridge
where the supports and road are created to interlock rather than printing out the
solid bridge. The variety of designs and the ability for students to reflect their
individual creativity is an advantage of 3D printing as a teaching tool that engages
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students in the learning process. Engagement with creating items is becoming very
popular in the United States and Europe as seen by the development of
Makerspaces.

13.4 Makerspaces, Creativity, and Learning

13.4.1 Definition of Makerspaces

Makerspaces, a series of informal places where people of varying ages gather to
create using digital and physical resources, have been surfacing throughout the
United States and are beginning to emerge in Europe. These sites exist as a place for
individuals to create, tinker, and experiment. They use 3D printing and other high
tech equipment along with traditional items such as wood and electronics to
encourage people to explore their creativity. Makerspaces can be terrific entry
points into STEM learning by sparking curiosity and supporting creativity. As
Martinez and Stager note, “Using technology to make, repair, or customize things
we need brings engineering, design, and computer science to the masses.”
(Martinez & Stager, 2013a, p. 11). Makerspaces offer a way to democratize access
to technology and increase experimentation, tinkering, and imagining “what if”.

The growth in popularity of makerspaces has spread through social media,
publicly posted videos, magazines dedicated to making, and Maker Faires where
people exhibit their creations. These spaces are found in universities, museums,
libraries, schools, community centers, church basements, and areas leased for the
specific purpose of creating a makerspace (Sheridan et al., 2014). The physical
location, and even the technology present, do not define the makerspace. That is
dependent on the participants and their interaction with the resources and one
another. Makerspaces combine technology, resources, mentors, beginners, partici-
pants of all ages, and materials (Sheridan et al., 2014). The people involved are all
working to create a physical or virtual answer to a question; what would happen if,
how could I, is it possible? Participants demonstrate the physical embodiment of
constructionism (Parpet & Harel, 1991). This theory posits that the creation of a
physical object, the process of creating itself, enhances understanding of the con-
cept. Indeed, the interaction between those in the process of creating offers
numerous opportunities to expand conceptual understanding.

Makerspaces may be compared to studio art labs where students use materials to
create art yet it is in the creation process where students are able to apply techniques
to demonstrate their understanding of concepts (Sheridan et al., 2014). The act of
creating, the process, is much more important than the product. It is the is com-
mitment to voluntarily explore ideas and create that unify makerspaces despite
differences in participants, materials and resources used, technology, and physical
location (Peppler & Bender, 2013). As participants test out their ideas and improve
designs, they increase their understanding of techniques and what might be possible
with the resources.

13 Prototype Problem Solving Activities Increasing … 331



13.4.2 Learning in a Makerspace

Learning can be seen in multiple ways in makerspaces. Both formal and informal
learning happens. Formal learning can take place in the form of workshops,
courses, and mentoring. Informal learning occurs when participants observe others’
work, chat to offer suggestions for improvement, or interact with materials. In
makerspaces learning happens as individuals become more involved in the com-
munity; however, the focus is on creating and designing the space to maximize
participant interaction with one another and the resources (Sheridan et al., 2014).
Learning is a by-product of satisfying individual curiosity and knowledge is
expected to be shared throughout the community.

The purpose of learning in makerspaces is quite different from that in traditional
classrooms. In makerspaces learning happens across disciplines. In traditional
education teaching occurs in isolated disciplines such as math, art, and science with
little discussion on how these areas may overlap in real-world problem solving.
Another difference is “just in time learning” (Novak, Patterson, Garvin, &
Christian, 1999, p. 11). Just in time learning occurs when students learn concepts
and skills as they are needed to complete a task rather than learning in abstract
without concrete application. Traditional classrooms may teach the concepts and
skills without students’ understanding their relevance or relationships. Makers learn
skills and concepts to satisfy an immediate need.

The participants in makerspaces show strong evidence for the Self-Determination
Theory of necessary components of intrinsic motivation, namely: perceived com-
petence, autonomy, and relatedness (Deci & Ryan, 2000). The varying levels of
expertise existing within the makerspace communities offer beginner participants the
tools to explore and mentoring needed to make the project thus fulfilling the com-
ponent of perceived competence. Autonomy is evidenced in that each participant is
free to decide whether or not to work or continue to work on a project, when to work,
and the amount of involvement in the group. Relatedness, feeling part of the com-
munity of practice, is a strong driving force in makerspaces. Observing others
working, engaging in informal critique and problem-solving, and physically sharing
space and expertise forms strong bonds among group members. These relationships
encourage the development and sharing of new skills and products within the
group. They also increase intrinsic motivation to persist when difficulties arise.

The purpose of products in makerspaces differ greatly from the purpose of
products in traditional classrooms. In formal education, products serve as evidence
to display the level of mastery or skill obtained. They are typically evaluated and
graded. Participants engage in creating products in a makerspace due to curiosity
and intrinsic motivation. When the curiosity is fulfilled or another topic is more
compelling, the project may be abandoned. Similarly, the final product may actually
fail yet that failure may be the launching pad for a new idea. Makerspaces do not
make demands on participants to complete projects or provide evidence of learning.
It is assumed that learning happens during the creation activities. As projects are
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deeply personal and are engaged in voluntarily, there are no requirements for
assessment documentation. However, some participants do work on a single project
for years and keep detailed notes on their attempts, failures, and progress (Sheridan
et al., 2014).

13.4.3 Makerspaces and Education

Noting the interest in makerspaces and seeing their connection to STEAM edu-
cation has many people wondering how to incorporate making into the educational
process. Peppler and Bender observe, “The maker movement is an innovative way
to reimagine education.” (2013, p. 23). Martinez and Stager stated, “The maker
movement may represent our best hope for reigniting progressive education.”
(2013, p. 11). Intrinsic motivation to learn and make has been found at every age
level presented with the opportunity to participate in a makerspace. Thus lifelong
learning is demonstrated in the maker community. Makers “identify their own
challenges and solve new problems. Making provides ample opportunities to deeply
understand difficult concepts (Makermedia, 2013, p. 3). This willingness to persist
and learn with no external grade or reward demonstrates engagement that is
enviable in education. Martinez and Stager point to Leonardo de Vinci as the
ultimate maker and role model for the maker community (2013).

A necessary shift in the conceptualization of teaching and learning is necessary
to bring making into the classroom. Numerous researchers have noted that focusing
on superficial subject matter information such as vocabulary or reading about
abstract theories actually diminishes student engagement and misses opportunities
for building knowledge and skills (Clapp & Jimenez, 2016; Martinez & Stager,
2013a, b). Rather than viewing the elementary and middle school grades as building
blocks to prepare students for high school and college level material, students in
these grades should be viewed as beginning scientists, mathematicians and engi-
neers early on (Martinez & Stager, 2013a, b). Instead of a teacher-centered class-
room with the teacher lecturing on abstract concepts, and students responding to
low level comprehension worksheets, classrooms need to be transformed into
student-centered places of exploration. By giving students opportunities to exper-
iment and play, teachers send the message that students have good ideas and there is
more than one way to solve a problem (Martinez & Stager, 2013a, b). Increasing
students’ perceptions of competence and autonomy will also increase their intrinsic
motivation toward learning the subject matter.

As noted by Martinez and Stager, “School, especially in science and math
classes, typically only honors one type of learning and problem-solving approach,
the traditional analytical step-by-step model. Often more non-linear, more collab-
orative, or more artistic problem-solving skills are often dismissed…” (2013, p. 37).
This approach may severely restrict engagement of visual-spatial learners who may
not think in linear patterns (Silverman, 2002). It also diminishes those who may be
interested in math and science but approach it from a curious, non-linear way.
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When schools focus on only one correct approach and one right answer it limits
thinking and development. Children invent naturally. Given blocks or boxes they
imagine, build, experiment, and revise. Nurturing these natural creative inclinations
in an engineering context would help develop concrete understanding of math and
science concepts (Martinz & Stager, 2013a, b). Using 3D printing, and other
technology along with the ideas behind makerspaces as places to explore and solve
problems, teachers can transform education from the bottom up starting within their
classrooms and with their teaching practice. As teachers learn to create ill-structured
problems with multiple entry points and solutions, the activities will support stu-
dents’ critical thinking and development of deep understanding of mathematical
concepts.

13.5 What Is the Role of Prototype Problem-Solving
Activities in Mathematical Understanding
and Creativity?

Ill-structured, messy problems reflect real-world experiences of mathematicians and
engineers. However, students are unfamiliar with these types of problems in the
study of mathematics. Teachers need to create scaffolded activities to introduce
learners to this new environment where the problems could have many possible
solutions and perspectives. Such activities encourage creativity and critical thinking
because there are no single correct answers. Creating activities that require students
to produce a prototype further enhances student creativity in design decisions.
Prototype Problem Solving Activities also allow students to self-assess and receive
feedback from how well the physical prototype solves the problem.

13.5.1 Prototype Problem Solving Activities
as a Tool for Learning

The idea of using concrete objects to represent mathematical ideas dates back to the
early 1900s. Glas’s historical account of the mathematician Felix Klein noted that
Klein was one of the first people to blur the line between applied and theoretical
mathematics (Glas, 2002). Klein’s ideas regarding transforming abstract mathe-
matical ideas into concrete representations are still relevant today as we endeavor to
develop creativity in mathematical students. Klein supported the use of physical
representations in mathematics because they represented different perspectives of
the content. “Conceptual development depends on imagination, the ability to rec-
ognize patterns to discern relevant connections, and to model things from new
points of view” (Glas, 2002, p. 100). Physical representations allow insights from
other domains to be used with mathematics thus serving as a means of creating new
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understanding. Developing creativity that enables people to see math in their
everyday lives and to make intuitive guesses that are able to be tested rather than
learn mathematics as some distinct separate group of facts that exist on their own is
critical to education and society. Creating concrete objects represents the highest
levels of thinking in Bloom’s taxonomy as people synthesize information from
multiple areas of knowledge of the discipline.

13.5.2 Pedagogy for Effective Prototype Problem
Solving Activities

Prototype Problem Solving Activities (PPSA) demand new ways of behaving for
both students and teachers. Lesh and Doerr (2003) explain how teachers must adopt
constructivist pedagogy to teach effectively through the use of physically creating
objects to represent abstract ideas. PPSA build on this idea by asking teachers to
support students as they identify the problem and create physical products. Students
collaborate and typically work in groups of three or four and must document their
thinking process as they create various prototypes to test their solutions. Teachers
are seen as guides or coaches who ask key questions rather than providing answers
for students. At the beginning of a PPSA the teacher does not provide instruction in
the mathematics concepts. Instead the students are encouraged to invent their own
methods and create physical prototypes to test the solution to see if they solved the
problem. Students are required to discuss and document their ideas and the revi-
sions to their prototypes as they undergo multiple iterations as a result of testing.
Unlike most factual-based mathematics assignments, there is no singular correct
answer in PPSA the correct prototype is the one that solves the problem and best
meets the “client’s” needs. “They are different from other problem-solving tasks
because the process is the product and creativity is a major emphasis” (Chamberlin
& Moon, 2005, p. 43 emphasis added) in solving PPSA. This aspect of using PPSA
in the classroom is often the one requiring the most adjustment on the part of
students. Especially those who are used to an assignment being graded upon
completion.

Chamberlin and Moon (2005) detail six design principles that are required to
create meaningful learning opportunities for students using hands-on problem
solving. These design principles are construction, the reality principle, the construct
documentation principle, the construct share-ability, the construct reusability
principle, and the effective prototype principle (Chamberlin & Moon, 2005). The
construction principle implies that the solution must be represented by a physical
object which is a system of distinct elements and the relationships and interactions
among the elements. For example, asking students to create a bridge that is a 1/
100th scale that can hold the weight equivalent to 1/100th of 100 cars passing
simultaneously and span 1/100th of a space measuring 4000 feet. The distinct
elements would be the size and type of bridge, the weight of the cars, and the span.
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The relationships and interactions could be the physical design (truss, suspension,
or some other form of bridge), the width of the bridge to handle the weight of the
cars, the relationship of width to span, and the consideration of whether the cars
were moving or in a traffic jam. The students would design and physically print out
the bridges with a 3D printer then test to see if they fulfilled the specifications and
were aesthetically appealing. Figure 13.3 illustrates this process. The low cost of
3D printing and rapid results possible by printing allows students to create multiple
iterations thus mistakes become part of the learning experience. The reality prin-
ciple suggests that the problem could realistically happen in the life of the student. It
is important to make the problem realistic because it encourages students to imagine
the problem and engage meaningfully in finding a solution. When students can
realistically imagine a problem, they are more familiar with various aspects of the
solution and can bring unique insight. For example, the bridge could be described
as a means to relieve traffic congestion. Students can virtually visit different types of
bridges in multiple locations to gain a better understanding of the relationships
between the structure, its purpose, and its place in the environment. The construct
documentation principle may be the most important aspect in the PPSA. This
principle provides many ways for students to show their thought processes as they
work on the problem. The documentation principle allows students to self-assess
and document the modifications of their prototype which provides evidence of
higher-order thinking skills and develops metacognition. This aspect also helps

1. Iden fy the Problem
(Ex. Traffic Conges on)

2. Research Possible Solu ons 
(Ex. Build a Bridge, widen the roads, build 

addi onal roads)

3. Determine what you know and 
what you need to know

(Ex. Costs of building each, amount of traffic that 
can be diverted, what goes in to building a 

bridge)

4. Iden fy the skills and resources 
necessary 

(Ex. research building materials, create CAD 
drawing, determine traffic effects)

5. Test Out Best Solu ons
(Ex. Print the Bridge and calcualte the 

impact)

6. Present Model and Revise as 
Needed 

(EX. Present to Urban Planner)

Fig. 13.3 The prototype problem solving activities model
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teachers to focus on the thinking process rather than the end product. Indeed, the
evidence produced by the construct documentation principle provides better
examples of student understanding than could be obtained through simple work-
sheets and chapter tests. The final three principles, construct share ability, construct
reusability, and the effective prototype principles are related. These principles apply
to the final solution and indicate that the prototype should be able to be used in
other similar situations and that the model should be able to be used and understood
by others. In the bridge example students could present their bridges to a planning
community, urban planner, or architect. Figure 13.3 illustrates the cycle that is
involved in Prototype Problem Solving Activities for students.

PPSAs that are designed using the six principles produce curricular character-
istics that increase creativity in the solution. Some of the characteristics include
interdisciplinary thinking and communication. As students collaborate to under-
stand the problem presented they bring in knowledge from other content areas and
exchange ideas regarding the important aspects of the problem and some possible
solutions. One of the hallmarks of creativity is the ability to develop a good
question or identify a quality problem (Sawyer, 2012). PPSAs train students in this
ability through metacognitive coaching. As the teacher asks guiding questions in
response to students’ inquiries, the students learn to question one another to clarify
thinking and find their own answers. Kim and Kim (2010) note that one of the
benefits of these activities is the ability for students to experience self-directed
learning as they identify the problems and the necessary information to solve them.
The curricular characteristic of documenting the thinking process is also developed
through the construct documentation principle. It is important for students to
document their thinking and to be able to look back and see how their thought
process developed over time. The ability to see students’ thinking also allows
teachers an opportunity to refine the curriculum or make adjustments in their own
teaching as a result of this information.

PPSAs are specifically applicable for teaching mathematics, technology, engi-
neering, and increasing creativity because they rely on the iterative process of
designing, testing, and documenting success or failure of the prototype which
increases mathematical understanding and creativity as students continue to work to
overcome deficiencies in their product. Hobson, Trundel, and Sackes (2010)
demonstrated that by using computer simulation models children were able to learn
much more sophisticated scientific content because the visualization provided
support. Physically creating and viewing the objects allowed the students to create
cognitive structures that supported their understanding. Coxbill, Chamberlin, and
Weatherford (2013) documented improvement in third graders mathematical
understanding and creativity by implementing such activities. It took students
several interactions with the new pedagogical process to become comfortable in
new ways of learning but once they became accustomed they were eager to
demonstrate their understanding. Jaakkola and Nurmi (2008) conducted pairwise
comparisons between students who used hands-on learning activities to those who
attended traditional learning. They found that the students who used simulations
and engaged in hands-on learning significantly higher learning outcomes.
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Thus, engaging students in simulations and prototype creation learning may provide
increased academic achievement and understanding.

13.5.3 Creating PPSA

Combining PPSA activities with computer modeling and 3D printing (PPSAC3D)
offers unprecedented opportunity for students to learn in authentic environments and
apply creativity to understand complex concepts. Currently most children interact
with technology as consumers of animations and pre-created programs (Eisenberg,
2013). The use of 3D printing allows children to become fabricators or “makers” and
become more self-directed in their interaction. This process requires students to
become thoughtful in their choices. PPSAC3D allows educators to participate a
process that “demands concentration, encourages creativity, and rewards expertise”
(Eisenberg, 2013, p. 131). Thus, raising the level of thinking and increasing student
engagement by allowing students to take ownership over their learning and apply
their knowledge in an authentic environment (Kwan, Park, & Park, 2014).

A large advantage of using 3D printers in the classroom is that students are able to
print out physical models quickly and at low cost. The ability to rapidly print out a
prototype part and test it in the solution provides immediate real-world feedback to
students. It also opens the door to creativity as challenges arise and innovative ways
of thinking about the problem emerge from being able to physically see and
manipulate parts of the model. Being able to imagine, design, and create physical
products frees students from the limitations of only using parts that are easily
available in their environment. Students who do not live close to home-improvement
stores or art supply retailers can print out parts to help construct inventions and
problem-solving models. Testing out smaller versions of physical products can also
avoid the costs of producing full-sized models that may not work as intended.
Reducing the monetary cost of failure by producing inexpensive plastic pieces frees
students from the anxiety of wasting their budgets. For example, Kroll and Artzi
(2011) estimated that using the 3D printed parts to create airplanes to be tested in a
wind-tunnel for their engineering students cost between five and ten times less than
creating the samemodel out of metal. This allowed the designers to create manymore
variants of the model than they would have if they typically had to endure the cost in
time and money of creating metal models. Thus each variant improved the model
design and these changes may not have existed if the students were limited to only
one or two versions due to monetary constraints. Students also benefitted by being
able to produce physical models to answer some of the questions related to aircraft
engineering rather than having to rely on theoretical calculations.

Some schools are choosing to house and fund 3D printers through their library as a
way of increasing the access and sharing resources. Similar to computer labs in
schools, sharing a 3D printer allows multiple users to participate with a technology
that would not be affordable for each individual classroom. It also creates opportu-
nities for inter-disciplinary collaboration when users meet up at the printer. In a report
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on the use of a 3D printer at the University of Nevada, Reno, the top printer users
were mechanical engineering, art, biochemistry, biomedical, electrical engineering,
and anthropology (Cosgrove, 2014). As soon as the 3D printer was available for use it
has been running at full capacity and often has a two week waitlist of projects to be
printed thus reflecting the previously unmet need on campus.

The use of a 3D printer follows the cycle stated by Doorley, Witthoft, and Kelly
(2012) “imagination begets fabrication, fabrication begets imagination” (p. 80).
Holding a tangible object, viewing it frommultiple angles, and imagining its interaction
with other objects provides fuel for the imagination. It allows students to visualize how
the object might be modified to fulfill other functions. Cosgrove (2014) states:

Just as a document printer lets users create a tangible product of their creative writing,
enabling further refinement and collaborative input as it is physically marked up and shared
with others, ready access to 3D printer technology could enable learners and researchers to
quickly produce real-world versions of otherwise intangible digital object.

Although it is in the beginning stages, 3D printing is projected to follow a similar
developmental path as the personal computer. Thus it is not fanciful to imagine a time
in the near future when students will have 3D printers in their home for personal use.
Taking advantage of the recent cost reductions in 3D printing allows institutions to
invest in technologies that will be relevant for many years to come.

13.5.4 Research on 3D Printing in the Classroom

As 3D printing is a new technology just beginning to become affordable for use in
schools, research on its use is scarce. A comprehensive search of educational
research databases yielded only nine empirical studies. Due to the limited
employment of 3D printers in classroom learning, all of the studies were qualitative
with using observational data. Nonetheless, the findings offer promising opportu-
nities to increase student engagement and enthusiasm for STEM related content.

Student enthusiasm and engagement was demonstrated by observing student
behaviors as they were working on their 3D projects. Researchers noted that stu-
dents were willing to give up personal time to work on projects (Chu, Quek,
Bhangaonkar, Ging, & Sridharamurthy, 2015; Kostakis, Niaros, & Giotitsas, 2015;
Schelly, Anazlone, & Chia, 2015). Schelly et al., (2015) even noted the unintended
consequence of a student attempting to break into school after hours to gain more
access to the 3D printers. This willingness to spend time outside of class to work on
homework is rarely reported. The teachers in the Kostakis et al., (2015) study
reported greater engagement during class time and fewer discipline or disruption
issues. Those teachers also noted an increase in parental involvement as students
were able to bring their physical projects home and explain the challenges they
were facing in the design process. Chu et al., (2015) noted that students in their
study exhibited fun and excitement during the workshop but also expressed some
tension and frustration when confronting new ways of learning and processing
information.
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Fonseca, Valls, Redondo, and Villagrassa reported on the effects of using virtual
modeling on architecture students (2016). Students in this study used augmented
reality and 3D software to design and present ideas for urban development.
Students and the public expressed positive feedback regarding the use of technol-
ogy. Because the software was easy to use, students reported improved participation
and motivation which translated into better academic performance. The results of
this study indicated that the student participants were able to demonstrate “signif-
icant improvements in spatial, research, and interaction skills” (Fonseca et al., 2016,
p. 516) as a result of working with technology to create physical and virtual
representations of their ideas.

Two studies focused specifically on the importance of 3D in mathematics
(Kaufman & Schmalsteig, 2003; Kwan et al., 2014). Kaufman and Schmalsteig
focused on 3D modeling to teach geometry and used technology to create and
project 3D models of various shapes which were previously confined to line
drawings. The students responded enthusiastically and moved about the classroom
to explore the shapes from various viewpoints. “It was clear they were all proud of
what they had built” (Kaufman & Schmalsteig, 2003, p. 343). The students offered
multiple applications for creating 3D representations such as interactive conic
sections, vector analyses, and building 3D worlds from 2D views (Kaufman &
Schmalsteig, 2003). Thus, using 3D modeling not only increase their understanding
but served as a launch pad for further exploration. The findings from Kwan et al.,
(2014) support the idea of authentic learning as a result of using 3D printers in
mathematical tasks. For example, asking students to produce 3D objects that are the
results of mathematical formulas allows them to physically interact with mathe-
matics and deepen their understanding. This study found that students showed
improvement in their cognitive, social, and behavior development as a result of
using 3D printers to create tangible objects to represent theoretical concepts.
Students engaged in authentic learning were able to connect new understandings
that excited their learning (Kwan et al., 2014).

Flores and Springer (2013) provided a summary of their detailed evaluation of
middle-school students participating in makerspaces. They noted that the process of
iteration and self-directed learning had a positive impact on student achievement
and their ability to learn new material. “Students learn that every failure teaches you
something new and should be embraced as an opportunity for learning, growth, and
improvement” (Flores & Springer, 2013, p. 2). This approach is a stark contrast to
most educational experiences where failure is considered final.

Two final studies documented an effort to expose teachers to the potential of 3D
printers in K-12 education (Kűcukozer, 2013; Schelly et al., 2015). These teacher
workshops were created to provide teachers with pedagogical experiences as well
as an opportunity to engage in the creative process as students. Teachers reported
feeling proud of their accomplishments and that the process facilitated learning
content. The teachers in the Schelly et al. (2015) study expressed the belief that
working with 3D printers would empower their students. They identified the
opportunity to engage in cross-curriculum collaboration. The teachers also noted
how students could improve their understanding of conceptual or abstract problems
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by creating tangible, physical products. They also saw 3D printing as an oppor-
tunity to engage typically non-involved student and to provide challenge for gifted
and creative students. One teacher wrote, “The printer has almost unlimited
potential to make our departmental teaching units become more hands-on and
student oriented” (Schelly et al., 2015, p. 234). This budding awareness represents
the potential to revolutionize the educational environments to encourage more
critical thinking and creativity in learning.

13.6 Conclusion

Understanding creativity to be both “little c” regarding solutions to everyday
problems and “big C” resulting in products that are valued by society, teachers and
researchers can begin to focus on providing opportunities to practice and develop
both aspects. Allowing students the time and space to engage in creative learning
may permit students to be identified who might otherwise be overlooked as gifted
or in need of additional challenge. As teachers learn to discern the difference
between those students who are able to apply algorithms quickly and accurately and
those students who are able to identify and solve problems creatively they are better
able to support the development of creativity in students.

Designing and implementing PPSAs in classrooms provide an opportunity for
teachers to support the development of creativity and problem solving skills in
mathematics. Jaakkola and Nurmi (2008) showed that students who engaged in
simulations and hands-on learning activities had higher learning outcome measures
than those who received traditional education. Hobson et al. (2010) showed how
creating models allowed students to build cognitive supports that facilitated
understanding complex scientific content that was thought to be beyond them.
Creating Prototype Problem-Solving Activities according to established principles
moves students into higher levels of thinking. Instead of focusing on remembering
facts or understanding how to apply algorithms, students must apply what they have
learned, evaluate their solutions and create alternative solutions. This process is
closer to how professional mathematicians and scientists work and has been found
to increase student engagement.

Digital fabrication using 3D printing allows students to take the idea of PPSAs into
the 21st century. PPSAC3D provides students with tangible evidence of their ideas
and allows them to physically engage with abstract ideas. This additional aspect of
being able to create objects that can be manipulated, tested, and shared with others
adds an element of “big C” creativity to learning. As physical objects are viewed,
tested, and commented on by others, the creator gains a better understanding of the
content. 3D printing is inexpensive and provides rapid results therefore students are
able to test and fail multiple times learning something new with each iteration.
Reducing the impact of failing increases students’ self-confidence in their creativity
and problem solving abilities. The process of understanding the problem, creating a
solution, physically producing the product, and receiving feedback is much similar to
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how professional engineers, mathematicians, and scientists work than the traditional
ways of learning these subjects. Allowing students the time and space to explore the
real-world experience of those in the STEM fields may spark an interest that would
carry over into advanced studies.

Professional mathematicians move beyond simply understanding content and
employ the skills of decision-making, being able to generalize and infer principles
and engage in recursive thinking. Therefore, if the goal is to support the devel-
opment of mathematics creativity, it is important that these skills are taught and
students are offered opportunities to practice them. Sriraman (2005) found that
mathematics creativity generally develops along a stage model of “preparation,
incubation, illumination, and verification” (p. 24). Creative mathematicians indi-
cated that time available to work on the problem, freedom of movement, and the
interest in contributing solutions to real problems supported their achievements. If
the aim is to develop skills in students that enhance their ability to be creative in
mathematics and STEM fields, it is important that they be nurtured in environments
that support the process. PPSA is such an environment.

As a new technology, published research that exists regarding the use of 3D
models in educational settings is scarce. The purpose of this chapter is to provide a
catalyst for readers to imagine the possibilities that could be created as learning
opportunities both inside and outside of the classroom as students are invited to
become problem-solvers.
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Creativity and Advanced Mathematics



Chapter 14
Can a Kite Be a Triangle? Aesthetics
and Creative Discourse in an Interactive
Geometric Environment

Hope Gerson and Paul Woo Dong Yu

Abstract In this chapter we will use the lens of aesthetics (Sinclair in Mathematics
and beauty: aesthetic approaches to teaching children. Teachers College Press, New
York, NY, 2006) to explore mathematical creativity in an interactive geometric
environment from three different perspectives: inquiry, teaching, and mathematical
resolution. We will be illustrating the mathematical creativity with an episode
where academically talented middle school students are working with Shape
Makers (Battista in Shapemakers. Key Curriculum Press, Emeryville, CA, 2003) in
Geometer’s Sketchpad. At one point in the lesson, a student makes a triangle
looking shape with the Kite Maker Tool and asks, “Can a triangle be a kite?” We
see creativity reflected in three ways: in the generation of ideas, in the teacher’s
instructional choices, and in the resolution of the mathematical discussion by the
students. The creative and aesthetic qualities of open inquiry, the Geometers’
Sketchpad, and teacher moves created a setting where students and the teacher
made aesthetically motivational, generative, and evaluative choices to build
understanding of geometric properties of kites and triangles as well as the limita-
tions of sets of geometric properties in classifying geometric shapes.

Keywords Interactive geometry � Aesthetics � Student discourse

14.1 Introduction and Background

When someone says, “that was creative,” they are often referring to artistic qual-
ities, imagination, or innovative ideas. We easily recognize disciplines like art,
music, and design as creative but the term, like many others, is not well-defined in
our everyday usage. When we access our image of creativity, we find components
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such as artistry, the act of creating, the element of surprise, and the clarity that
comes from changing perspectives. Mathematicians often describe their work as
creative. They use aesthetic terms such as “elegant” and “beautiful” when
describing their work. They engage in the creative work of problem posing,
invention, pattern noticing, and problem solving. However, unless you are a
mathematician or a teacher, it might take a while to think of an example of
mathematical creativity. Yet there are examples from mathematics that are almost
universally accepted as creative. Also, if you read research on student thinking, you
see similar examples of creativity as students make sense of relationships among
numbers, shapes, and ideas.

How do we recognize creativity in a school mathematics setting? In some
instances, mathematical creativity is clear, as in the story of Gauss who as a child
found a way to add the numbers from 1 to 100. While his classmates added the
numbers one at a time, Gauss split the group in half, 1–50 and 51–100. Then he
paired the numbers into groups of 101 (Fig. 14.1). Fifty groups of 101 were much
easier to count. And, some say, in less than a minute Gauss had the answer—an
innovative, efficient, and some would say, beautiful solution (Tent, 2006). In other
cases, it is harder to recognize. For instance, in the proof of the Four-Color
Theorem, the assertion that any map can be colored using four colors without any
adjacent regions sharing the same color, Appel and Hacken (1977) created a
cumbersome proof by cases, assisted by a computer. A mathematician might have
trouble finding beauty or elegance in such a proof. Others criticized the use of a
computer as if it offended their sense of form or fairness. Yet, a new proof was
created where none existed before.

Gauss’ mathematical creativity is interesting because on the surface, it looks like
number crunching (a decidedly uncreative activity). The creativity is not in the
calculation, but in the organization of the numbers. It is not necessarily beautiful to
look at (Fig. 14.1), but his solution was elegant and unexpected.

The proof of the Four Color Theorem is also interesting. The application of the
Four Color Theorem itself certainly has aesthetic elements (Fig. 14.2). The proof
was created by two mathematicians and a computer (Wilson, 2002). Some would
call that innovative. But many would have trouble applying the word creative to the
resulting proof.

The question of what mathematical creativity might look like, especially in a
school setting, needs further development. Researchers have identified some of the
key ways to identify creativity in school mathematics. Sriraman, Yaftian, and Lee
(2011) suggest that in school mathematics, one can recognize creativity as the

Fig. 14.1 Gauss’s solution to the sum of numbers 1–100
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process that results in surprising solutions or a new way of looking at a problem. In
addition, they recognize that creativity is an act of making choices that lead to new
outcomes (for the students). Leikin and Lev (2007) suggest that student creativity is
found in the originality, fluency, and flexibility expressed in problem solving.
Liljedahl (2013) also suggests that one can identify student creativity through ‘aha’
moments that are often vocalized. Sinclair, Freitas, and Ferrera (2013) offer further
help in identifying creativity as an active process that results in inventive moments
that one can identify through students’ gestures, written work, and work with
technology.

Common to all of these definitions of creativity are surprise, perspective, nov-
elty, originality, fluency, flexibility, moments of clarity, and invention, and the
nature and role of aesthetics. There is more to creativity than the aesthetic that one
normally associates with beautiful art. Here we conceptualize the aesthetic to be
defined more broadly also to include the art of mathematical problem solving and
sense making. Aesthetic sensibilities such as simplicity, visual appeal, connected-
ness, surprise, symmetry, and order may be invoked whenever one makes a
mathematical choice (Sinclair, 2006). We suggest that viewing the choices students
make through an aesthetic rather than a cognitive lens may allow us to more fully
recognize and understand students’ mathematical choices because our social con-
structs of creativity are based in the aesthetic world. We see aesthetics like an
emotive gestalt—instead of an ‘aha!’ it’s a “wow!” In other words, we are paying
attention to an aesthetic that may lead to shifts in one’s cognition.

Additionally, these characterizations of creativity all focus on an active process
of creating mathematical ideas. In particular, creativity is enabled by choices stu-
dents make in the process of sense-making and problem-solving. We suggest,
therefore, that in order to recognize creativity in action, we need to view students’
and the teacher’s choices. We are focusing on creativity as expressed through
aesthetic choices the students and the teacher make during problem-solving and
sense-making activities.

Fig. 14.2 Geometric design
illustrating the Four Color
Theorem
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14.1.1 Aesthetics as a Theoretical Framework

The characterizations of creativity, mentioned in the previous section, also suggest
that viewing the choices students make through an aesthetic lens rather than a
cognitive one may allow us to more fully recognize and understand students’
mathematical creativity because our constructs of creativity are based in the aes-
thetic world. Sinclair (2006, 2008) provides us with such a framework through
which we can study students’ creativity. Sinclair suggests three different roles that
the aesthetic plays in sense-making and problem-solving in school mathematics:
motivational, generative, and evaluative. Each of the roles engages a set of aesthetic
sensibilities, such as beauty, pleasure, or simplicity. Furthermore, each may be
characterized by the types of actions, expressions, and choices that students make.

Sinclair notes that aesthetics play a motivational role when a student or teacher
makes a choice that leads them to select a problem, pose a problem, or understand a
mathematical idea. In the motivational case, these choices are made in an effort to
lead to simplicity, visual appeal, mystery, relations between different modes of
thinking, or a desire to connect different ideas. The most recognizable example,
perhaps, is associated to when students have a cognitive ‘aha!’ moment. The
pleasure and excitement of that moment of clarity has a motivational outcome
making students want to explore more. One can recognize the motivational role
when students are highly engaged, animated, make large gestures, or vocalize
excitement.

Aesthetics play a generative role when the student or teacher pursues a path of
mathematical inquiry because they expect it to reveal some insight or fact. For
instance, students may see a pattern after they classify different shapes. This might
lead them to pursue a general solution. A choice that invokes a generative aesthetic
involves organizing or noticing pleasing properties such as symmetry, order, sim-
plicity, liberating form, exactness, or fit. The choice generates a new, pleasing
perspective on the mathematics that leads to a path of inquiry.

Finally, the aesthetic plays an evaluative role when students or the teacher are
evaluating which of a set of options is best for choosing when to end the inquiry.
Students using an evaluative aesthetic might see one solution strategy as more
beautiful, simple, or efficient than another. For example, a student may prefer a
geometric proof of the Pythagorean Theorem over an algebraic one because it is
more visually appealing. The evaluation might be based upon beauty, elegance,
simplicity, perfection, or simply because it is easier to understand or matches their
thinking. Additionally, a student might feel a sense of closure as a question is
answered or a path of inquiry is exhausted. Table 14.1 summarizes Sinclair’s
aesthetic framework.

There are other theoretical and professional considerations in the exploration of
open-response environments that induce creative and aesthetic qualities to mathe-
matics instruction, in particular, the consideration of affective elements of mathe-
matics learning. In 2001, the U.S. National Research Council (NRC, 2001)
identified five strands of mathematical proficiency: procedural fluency, conceptual

350 H. Gerson and P. W. D. Yu



understanding, adaptive reasoning, strategic competence, and productive dispo-
sition. Sinclair’s framework helps to identify those elements, within the 5 strands,
that are emotive, and exist in the affective domain. For example, consider constructs
like ‘out of the box’ thinking in strategic competence, or students’ self-efficacy in
understanding and appreciating mathematical inquiry as described in having a
productive disposition. Also, conceptualizing the U.S. Common Core Standards for
Mathematical Practice (2010) along the aesthetics and creative domain may provide
insight into the affective and emotive elements of the Mathematical Practices

Table 14.1 The three forms of aesthetics in mathematics education

Role When do we see it? Aesthetic sensibilities Possible
indicators

Motivational: the
student/teacher pursues
a mathematical inquiry
because it is interesting

In problem
selection, problem
posing, and
throughout the
inquiry process

Apparent simplicity,
visual appeal,
connectedness,
mystery, relations
between different
modes of thinking,
desire to connect
different ideas

Pursue a
question
different from
the teacher or
peers,
Have an ‘aha!’
moment,
Raise voice,
big gestures,
show their
work to
someone else,
Become highly
engaged with
an exploration

Generative: the student/
teacher pursues a path
of mathematical inquiry
because they expect it
to reveal some insight
or fact

When representing
the ideas, searching
for patterns, and
choosing the path of
inquiry

Symmetry, order,
simplicity, liberating
form, exactness, fit,
pleasure

Express
pleasure
especially tied
to the
sensibilities,
Simplify a
representation,
Organize the
information in
a new way,
Finds a new
pattern

Evaluative: the student/
teacher evaluates the
worth of strategies,
representations and
solutions

When evaluating
best strategies,
representations,
solutions, etc.

Beauty, elegance,
simplicity,
illuminating,
perfection, easy to
understand, matches
with their thinking,
closure

Express
aesthetic
reason why
something is
better than
another.
Evaluates the
line of inquiry
as being
finished
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beyond just the cognitive elements. While the analysis of the data will not use
specific elements of the Five Strands of Mathematical Proficiency and Standards for
Mathematical Practice (2010), they are mentioned here as professional context in
which aesthetics connect to mathematical instruction, and will be discussed further
at the end of this chapter. Finally, we view creativity as an aesthetic construct that is
predicated on student and teacher choices. Therefore, our analysis and discussion
will focus predominantly on the aesthetic sensibilities and the roles they are playing
as the students and teachers make mathematical choices.

14.1.2 Aesthetics and Instructional Technology

One application of instructional technology is as a platform for building procedural
fluency (NRC, 2001) or skill-based transmission (Murphy et al., 2014; Baron, 2010;
Niederhauser & Stoddart, 2001). Students may work on self-grading
computer-based assignments, or use game-based contexts to solve mathematics
problems to advance or to earn time to play a videogame that pops up after they
have answered a set of questions. As a metaphor, we consider these forms of
instructional technology like a painting by number activity. While there may be
aesthetic elements, the design of the activity is directional and prescriptive. In these
settings students are not encouraged to explore and make mathematical choices that
are necessary for creativity (Kwon, Park, & Park, 2006).

In contrast, dynamic mathematical environments such as Geometer’s Sketchpad,
GeoGebra, Wofram Alpha and Desmos elicit mathematical construction, creation,
and exploration. As students interact with geometric figures and graphs, they nat-
urally make and test conjectures, choose what to build, what to pursue, what to
notice and pay attention to, based on their own imaginations, aesthetic sensibilities,
whims, and mathematical thinking (Johnson-Gentile, Clements, & Battista, 1994;
Lavy & Shriki, 2010; Ng & Sinclair, 2015; Patsiomitou, 2008).

Students interacting with dynamic mathematical environments connect a virtual
mathematical world with embodied action that allow them to engender abstract
mathematics (Burbules, 2006; Sinclair et al., 2012). The aesthetic sensibilities are
activated not only by the representations on the screen, which may have visual
appeal, but in the actions of the students as they interact with those representations.
Students act upon the representations to create symmetry, form, structure,
collinearity, visual appeal, orientation, balance and order and they embody those
actions. Thus, dynamic mathematical environments have the potential to both elicit
aesthetic sensibilities through interaction with visual representations and affording
students an environment where they are free to make choices. The interactions
among choice and aesthetic sensibilities make dynamic mathematical environments
rich for the study of mathematical creativity. Students’ interactions with dynamic
mathematical environments also affect the way they talk about mathematical ideas.
Sinclair and Moss (2012) found that student discourse first focuses on visual cues

352 H. Gerson and P. W. D. Yu



without regard to properties and then cycles between visual and more formal
mathematical discourse.

In particular, we chose the microworld Shape-Makers (Battista, 2001, 2003). In
this world, students manipulate quadrilaterals and make and test conjectures about
their properties. Students are able to click and drag on quadrilaterals and generate a
large example space that allows them to actively build an image of each family of
quadrilaterals (Jackiw & Sinclair, 2009). The instructional goal was to help students
build geometric sophistication by moving from idiosyncratic spatial structuring to
property-based mathematical definitions (Battista, 2001). The environment is highly
structured, but the students are free to interact with the Shape-Makers on their own
terms. Students choose the cases they will explore and how they will move the
shape-makers about. They are free to notice properties, make and test conjectures,
and explore as they see fit. The visual-mathematical structure of Shape-Makers also
allows students to manipulate and attune to aesthetic properties. Students build a
shared experience of working with the Shape-Makers, but the open nature of their
exploration allows them to build diverse perspectives as they make different choices
and then communicate about their experiences. In this chapter, we investigate the
question: What roles does the creative aesthetic play and what aesthetic sensitivities
are enacted by the students and teacher as they determine whether a triangle can be
a kite? Additionally, we examined the question: What patterns emerge in the roles
played by the aesthetic over the course of the class discussion?

14.1.3 Setting and Methodology

The data for this qualitative case study was taken from a twelve-minute videotaped
excerpt of a class discussion during a Shape Makers (Battista, 2003) curriculum
activity called “How are they the same?” Shape Makers is an inquiry-based unit
consisting of interactive quadrilateral shapes, called Shape Makers, made with
Geometer’s Sketchpad (Jackiw, 1991). The class in which the video was taken was
a special section of an accelerated high school geometry class (N = 15) taught to a
select group of academically talented middle school students ranging mostly from
grades 6 through 8.

In this particular activity, the students working individually had to list as many
invariant properties of any shapes made with a particular Shape Maker as they
clicked and dragged the vertices around creating many different examples of each
shape. For example, commonly listed properties of any shapes made with the Kite
Maker were: two pairs of congruent sides, at least one pair of congruent angles, and
at least one line of symmetry. After a time of individual exploration, the students
shared their observations to create a class list of properties for each shape. Each
shape and its associated properties were written on large paper, and put at the front
of the classroom for all the students to see. The questions and lesson procedures
were designed by the teachers in order to lead to a set of student-generated and
teacher-guided results and conclusions. In the case of this lesson, the goal was to
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develop a comprehensive list of properties for each of the seven quadrilaterals. We
selected this particular class period because the students and teacher creatively
chose to explore an unplanned topic.

In the analysis of data, two perspectives were considered. The first perspective
was that of a traditional researcher, and the second was the researcher-as-teacher
(Ball, 2000). The first perspective provided an objective view of the classroom
activities and discourse. This provided an analytical point-of-view that had no
assumptions about the classroom episode. The second perspective, the
researcher-as-teacher, provided an ‘insider’s’ view of both the classroom dynamics
and motivations of the instructional decisions that are not evident in the videotaped
data. The data was independently coded by both researchers using Sinclair (2006)
aesthetic framework. After independent coding, the researchers discussed and
refined the aesthetic codes. On a second qualitative pass of the data, the data was
recoded based upon the refined coding scheme. Finally, axial coding was used to
detect patterns in the data. A final element to the methodological framework was
writing as a method of inquiry (Richardson & St. Pierre, 2005). This is reflected in
both the tool of writing during the analytical process, as well as the use of narrative
prose in storytelling form with embedded comments and analysis in the following
sections. The intent is to provide word-pictures that describe to and invite the reader
to consider elements of aesthetic sensibilities as enacted in the lesson.

14.2 Aesthetics and Inquiry: Students’ Observations
and Teacher Moves

In this section, the 12-min video is broken down into six narrative case-stories. The
stories are chronological and connected. However, the choice of chunking
the narrative into the six sections was to provide specific analysis and reflection of
the aesthetic elements of the lesson based on the students’ ideas and associated
teacher’s moves. The aesthetic framework is particularly useful as this discursive
deviation from the original lesson was not guided by a predetermined lesson plan.
Rather the teacher’s response to the students’ comments were based on the aesthetic
elements perceived by the teacher and students. In all six narrative case-stories,
pseudonyms are used for the students’ names.

14.2.1 Generation of Ideas

Prior to the discussion, the students engaged with the Shape Makers in the computer
lab. A number of students observed the Kite Maker in a degenerate form making a
figure that looked like a triangle (Fig. 14.3), prompting one student, Hank, to ask,
“It is possible that the kite can be a triangle?… Is a triangle a valid kite?… Because
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you can do more stuff with the computer that maybe you can’t do with [pencil and
paper].”

Initially, the teacher did not understand the issue, and tried to table the questions
raised by the students. This degenerate case of a Kite Maker, in the shape of a
triangle (Fig. 14.3), was not in the original lesson plan. However, the number of
students that seemed interested in the issue prompted the teacher to pursue a dis-
cussion. It appears that the students were drawn to the aesthetic sensibilities from
the visual appeal of the familiar looking triangle that was made with the less
familiar Kite Maker. This triangle-kite figure became important to the students as
they explored what is and is not a kite. What follows is a rich consideration of the
definitions of angle, vertex, side, triangle and kite. The Kite Maker Tool activated
student’s creativity as they generated shapes, made and tested conjectures, and
considered properties. The generative nature of the software led to both generative
and motivational aesthetic choices that propelled the class discussion and led to
students examining mathematical properties such as vertex and side, in a more
rigorous way than they had prior to the discussion (Table 14.2).

Hank’s question “Is a triangle a valid kite?” is aesthetically generative in that it
seeks to organize the students’ notion of triangle and kite in a new way. The
question is also aesthetically motivational as Hank pursued a different question than
the teacher proposed. Additionally, Hank’s suggestion that “you can do more stuff
with the computer,” suggests both that the computer was a generative tool and also
that it may create objects that would not be possible with pencil and paper. While
paper and pencil representations also enact aesthetic sensibilities, as noted by Hank,
the use of the interactive geometric kite-maker provides a unique, and widely
recognized phenomenon by the students, thrusting the students and teacher into the
following discussion.

Kaden begins a mathematical argument, “We’re talking about quadrilaterals
here, all these shapes [gestures towards the board] are quadrilaterals, but a trian-
gle…is not one of these.”

Kristie, speaking to the teacher, began, “On the first day you said—told us the
Shape Maker Rule was ‘that any shape made by a shape maker is that shape…and
so any shape made with a Kite Maker is a kite shape…so wouldn’t that make, that
because you made the triangle with the kite [maker], that means that the triangle is a
type of kite?”

Nick added, “There are only 3 sides [and 4 line segments].”

Fig. 14.3 The triangle-kite
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Violet then said, “When we were messing around [with the seven quadrilateral
makers] on the first day, all the shapes… ah, the only one that ever said that this is
not whatever shape maker it is, was one time, the Quadrilateral Maker (Fig. 14.4),
and that was when you made the hourglass shape.”

Nick added, “This also proves Sheldon’s point, correctly because there are three
sides that are 60° and one of them is 180°. Three equal angles.”

Nick continued to engage the issue through an examination of the triangle-kite’s
properties. Aesthetics played a motivational and generative role in Nick’s thinking
as he continued to pose ideas in an almost reactive manner characterized by ele-
ments of brainstorming, connection making, and thinking aloud. Kristi and Violet
apply the evaluative aesthetic in an appeal to the authority of the teacher and the
software, but Nick’s generative redirection to angle properties propels the class into
further exploration of the figure (Table 14.3).

The students used the drawing of the figure on the board as a visual point of
focus, and began to pay attention to the four angles. This re-organization of their
thinking played a generative role in their discussion as the students continued to
pursue this mathematical inquiry, expecting it to reveal some insight or fact. This
was a turning point in the class discussion as it turned their focus away from the
software tool and towards the examination of the properties of the static figure
drawn on the board.

14.2.2 Teacher’s Instructional Choices

In this section, we will look at the teacher’s instructional choices in response to the
students’ aesthetic sensibilities. Previously, when Hank asked, “It is possible that

Table 14.2 Analysis of the opening question

Statement or event Aesthetic
roles

Aesthetic sensibilities

“Is a triangle a valid kite?” Motivational Visual appeal, mystery

Generative Order—organization

“Because you can do more stuff with the
computer that maybe you can’t do with [pencil
and paper]”

Generative Simplicity and order
through example
generation

Fig. 14.4 The quadrilateral maker in a degenerate form
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the kite can be a triangle?” initially, the teacher did not understand the issue. The
teacher tried to table the questions raised by the students. This degenerate case of a
Kite Maker, in the shape of a triangle (Fig. 14.3), was not in the original lesson
plan. However, the number of students that seemed interested in the issue, as
indicated by Kaden, Kristie, Nick, and Violet’s dialogue in the previous section,
prompted the teacher to pursue a discussion of the issue. Seeking clarification, the
teacher asked, “You shift [the Kite Maker] into a triangle, you’re asking is that
thing really a kite?” When the teacher changed his mind and decided to pursue
Hank’s question, we see the generative aesthetic and motivational aesthetic
extended. The teacher pursued the question even though it was outside the scope of
the lesson because he recognized the motivational role the question was playing for
the students. While unsure of the trajectory of the lesson, the teacher hoped the
discussion would reveal insight into the exploration of the quadrilateral properties
for the students. He reorganized the lesson to accommodate his own and his stu-
dents’ aesthetic sensibilities.

The teacher then referred to a sketch of the triangular shape made by the Kite
Maker, “So the issue is, looking at this, I’ve got figure ABCD, where C is on the
same [segment from B to D].” see Fig. 14.3. The students used the drawing of the
figure on the board as a visual point of focus, and began to pay attention to the four
angles. This re-organization of their thinking played a generative role in their
discussion as the students continued to pursue this mathematical inquiry, expecting
it to reveal some insight or fact. This was a turning point in the class discussion as it
turned their focus away from the software tool and towards the examination of the
properties of the static figure drawn on the board.

Table 14.3 Analysis of engagement in the question

Statement or event Aesthetic
roles

Aesthetic sensibilities

“All of these shapes are quadrilaterals, but a
triangle…is not one of these”

Motivational Connection making
Relations between
different modes of
thinking

Generative Generating examples

“On the first day you… told us the Shape Maker
Rule was that any shape made by a shape maker
is that shape”

Evaluative Appeal to authority of the
teacher

“the only one that ever said that this is not
whatever shape maker it is, was one time, the
Quadrilateral Maker (Fig. 14.4), and that was
when you made the hourglass shape”

Evaluative Appeal to authority of the
software

Nick’s attention to angle properties Generative Reorganization of
thinking around angle
properties
Continue to pursue the
question
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Matt, pointing to the shape ABCD drawn on the board, added, “But triangles’
angles have to add up to 180, but if we have three 60s and a 180, that goes over the
limit …so we can’t have that it’s a triangle” (Table 14.4).

Nick continued, “I see what [Matt’s] going at…technically 4 angles isn’t totally
correct because it is possible, so it could be a vertice and not an angle.”

Amber asked, while pointing to the teacher’s drawing of ABCD on the board,
“Does a triangle have only three vertices? Because that shape has 4 vertices, doesn’t
it?” Gesturing toward the bottom half of ABCD (Fig. 14.4), along line B to C to D,
Amber clarified her idea, “Because the line where B and C, and C and D…
converge at C, so C is where two lines come together.” Amber’s question is
aesthetically generative as she tried to make a distinction between categorizing
ABCD as triangle, as having three vertices, and a quadrilateral that has four
vertices.

The teacher said, “So the issue is this. If I cover up this point C”. Then covering
point C with his hand, “How many vertices [in the figure] do we have?”

“Three,” answered the class in unison.
“Three, but when I do that,” continued the teacher as he removed his hand

revealing point C, “How many vertices do we have?”
“Four,” said the class in unison.
In this section, Nick’s creative redefinition of vertex helped propel the discussion

forward. It is an example of the generative aesthetic that helped him and other
students imagine relations between points and vertices. Nick’s statement was also
motivational in that it prompted him and other students to pursue further the
interconnectedness of the properties and their definitions. It invited students to
creatively separate properties from each other and consider other new ideas such as
whether a vertex can degenerate into a point on a polygon.

The teacher responded to an important question posed by Amber that is aes-
thetically generative as she tried to make a distinction between categorizing ABCD
as triangle, as having three vertices, and a quadrilateral that has four vertices. The
teacher’s decision to draw the class into considering Amber’s question was his
response to what appeared to be a ‘really good idea’ to help the group see ABCD as

Table 14.4 Analysis of teacher moves

Statement or event Aesthetic
roles

Aesthetic sensibilities

“I see what [Matt’s] going at…technically 4
angles isn’t totally correct because it is possible,
so it could be a vertice and not an angle”

Generative Relations between
different modes of
thinking

Motivational Interconnectedness

“Does a triangle have only three vertices?
Because that shape has 4 vertices, doesn’t it?”

Generative Reorganizing thinking
around a different
property

Motivational Gesture

“Four” Motivational Choral response
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a quadrilateral. Furthermore, Amber’s gesture and the class’ choral answer, “four”
both convey a motivational aesthetic that keeps the mathematical discourse moving
forward. The students were smiling throughout this portion of the video, clearly
enjoying the discussion, highly engaged, raising their voices and making gestures,
reflective of multiple motivational aesthetic responses (Table 14.5).

Speaking to the entire class, the teacher returned to a previously stated idea,
“Here’s an interesting thing though….” Then turning to Amber, he continued,
“Amber, could you go, I think you are going down a trail of thought. You said,
okay, a triangle has to have three vertices. And you are saying, well, doesn’t this
have four. So, what is the point of your statement?”

“If it has more vertices, then it can’t be a triangle,” Amber replied.
The teacher asked, “So, it would have to be a what?”
“A kite, er, a quadrilateral,” concluded Amber.

The teacher continued the discussion of figure ABCD. Using Amber’s conclu-
sion he said, “Let’s go with Amber’s point. She says look, how many vertices does
it have? Four. Right? How many line segments is it made of? Four. But here is the
question, is that thing [ABCD] a kite?” The question momentarily hung.

In the redirection to Amber’s previously stated idea, that ABCD has four ver-
tices, the teacher displayed a shift from a generative aesthetic to an evaluative
aesthetic. Implicit in the teacher’s tone and focus on Amber’s statement is a value
judgement about the worth, or potential worth of the student’s idea in classroom
discourse. In the previous section, the teacher pursued Amber’s question as a ‘good
idea’ in a generative manner, hoping or expecting her question to reveal some
insight to the class. However, in this moment, the teacher explicitly validated
Amber’s line of thinking as he wanted the students to understand that ABCD must
be a quadrilateral. Also, the teacher’s choice to ask the question is “ABCD a kite?”
after advocating for the position that C was a vertex was perhaps surprising to the
students. They were highly engaged and expecting finality, and then the teacher
asked a generative question again, inviting the students to reconsider (Table 14.6).

Table 14.5 Analysis of Amber’s question and ensuing teacher choice

Statement or event Aesthetic
roles

Aesthetic sensibilities

“Does a triangle have only three vertices?
Because that shape has 4 vertices, doesn’t
it?” Gesturing towards point C

Generative Searching or attempting to
confirm a conjecture to
substantiate an idea

“So the issue is this. If I cover up this
point C.” Then covering point C with his
hand, “How many vertices [in the figure]
do we have?”

Generative Choosing a path of inquiry

Teacher’s interactions leading to class
choral response, “Three…Four….”

Motivational High engagement with the
exploration
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The teacher continued, “But let’s pretend… and go with Amber’s point. She
says ‘Look, how many vertices does this thing have?’ Four, right? How many line
segments is it made of? Four. How many sides…clearly we see four line segments,
right? But here’s the question. Is that thing a kite?” Referring back to the list of
properties of a kite the class generated through their explorations with the Kite
Maker, the teacher continued by applying each of the listed properties to figure
ABCD. Pointing to the figure the teacher asked the class, “Now, here is what we
have. Does this, this shape ABCD, does it ascribe to everything that we’ve talked
about so far? Does it have two pairs of equal sides?”

In unison the class responded, “Yes.” The teacher then had students specify
which sides were shape ABCD were congruent.

He then continued, “Does [ABCD] have at least one line of symmetry?”
A few students, pointing out the obvious, said, “Yes!”
“Does it [shape ABCD] have at least one pair of equal angles?”
“Yes,” a few students answered.
“Ah… Is it made up of 4 line segments?” asked the teacher.
“Yes,” said the class.
“…And 4 angles?” the teacher continued.
“Yes,” said the class.
At this point the teacher slowed down the pace of the class discussion, “Is it

made up of 4 angles?” he asked in a questioning tone.
The entire class responded emphatically, “Yes!”
Clarifying, Matt added, “C is one angle.”
Picking up the cadence, “What type of angle is C?” asked the teacher.
“Straight,” was the simultaneous response by a number of students throughout

the class.
“[Angle C is] a straight angle, isn’t it?” The teacher wanted to make sure that the

class understood that while collinear with B and D, point C formed the vertex of a
straight angle.

In this section, we see the teacher engage the students’ generative aesthetic
sensibilities of fit and pleasure as he led them to examine whether the triangle-kite

Table 14.6 Analysis of teacher’s response to Amber’s path of inquiry

Statement or event Aesthetic
roles

Aesthetic
sensibilities

“Amber…I think you are going down a [correct] trail of
thought. You said, a triangle has to have three vertices.
And you are saying, well, doesn’t this have four. So, what
is the point of your statement?”

Evaluative Resolving the
line of inquiry

“If it has more vertices, then it can’t be a triangle,” Amber
replied.

Evaluative Resolving the
question

Speaking to the entire class, the teacher returned to a
previously stated idea, “Here’s an interesting thing
though,” and “Let’s go with Amber’s point…”

Generative Choosing a path
of inquiry
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had the properties of a kite that they generated earlier in the lesson. The teacher’s
generative question invited students to reconsider the properties of a kite and apply
them to the ambiguous triangle-kite figure (Table 14.7).

14.2.3 Resolution of the Mathematical Discussion

Nick, still unsure, but fishing for answers posed another idea to the group, “Can I
make an argument here? I think I may be bending the rules here a little too much,
but if we did put sides instead of line segments… I mean technically, C could just
be a point there that would still have four sides…”

The teacher asks, “Well, how you do YOU define side?”
Nick pondered aloud, “I’m thinking about my definition… probably a line on an

object…but it is still possible that C could only just a point there, and so most of
what we already said would still be correct.… I’m just thinking for a second… is it
possible that it doesn’t…that a kite doesn’t have to have four line segments, and
have three and it would still be a kite, like in this case for example?”

Even though Nick had begun to disengage with the question earlier, he has been
pulled back in. Nick and the teacher both asked generative questions leading to a
discussion about what is a side. Nick was viewing point C as just a point on the
segment BD rather than a vertex. Now he appears to be considering a new set of
definitions as evidenced by his statement, “I think I may be bending the rules here a
little too much” and his consideration that a kite could have three line segments. He
is considering that both conceptions (the triangle with a degenerate vertex and the
kite with vertex C) might be valid. The aesthetic is playing motivational, generative
and evaluative roles as he is pursuing and imagining new ideas, reorganizing his
thinking, and choosing one conception over another (Table 14.8).

The Teacher redirects the students back to their page of definitions and asks
students about the definition of quadrilateral. The class discusses lines of symmetry
and then Nick reasserts himself.

Table 14.7 Analysis of teacher examining each property

Statement or event Aesthetic
roles

Aesthetic
sensibilities

“But let’s pretend… and go with Amber’s point. She
says ‘Look, how many vertices does this thing have?’
Four, right? How many line segments is it made of?
Four. How many sides…clearly we see four line
segments, right? But here’s the question. Is that thing a
kite?”

Generative Reopening the
resolved question

“Now, here is what we have. Does this, this shape
ABCD, does it ascribe to everything that we’ve talked
about so far? Does it have two pairs of equal sides?”

Generative Fit and pleasure
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“Can I make one more thing here?” Nick tried to bring clarity to the issue, “I
think an easy way to settle this argument now and still be correct, a kite [maker] can
make a shape that looks like a triangle, but by definition is not a triangle….”

Nick’s assertion had a motivational role in redirecting the conversation.
Additionally it showed that he returned to a more absolute perspective. He no
longer viewed the vertex C as both a point on the side BD and a potential vertex as
evidenced by his assertion that it “looks like a triangle, but by definition is not a
triangle.” The aesthetic is playing an evaluative role as Nick invoked both clarity
and finality in his assertion (Table 14.9).

However, the rest of the class had not yet reached finality, and continued the
discussion.

Matt had a different way to look at it, “We know it’s not a triangle, because we
proved it has too many angles.”

From the back of the room Travis asserted, “I can prove that a kite is not a
legitimate triangle.”

The teacher stepped into moderate the class conversation. In particular, the
teacher chose to highlight Nick’s assertion. “OK, we are going to go to you in a
minute, Travis, when we make sense of what [Nick] said…” Turning towards Nick
the teacher said, “Say that again.”

Table 14.8 Analysis of Nick’s new argument

Statement or event Aesthetic
roles

Aesthetic sensibilities

“Can I make an argument here?” Motivational Pursue a new idea

“I think I may be bending the rules
here a little too much, but if we did
put sides instead of line segments… I
mean technically, C could just be a
point there that would still have four
sides…”

Motivational Bending the rules

Generative Imagining a new definitions of side,
vertex and kite

“is it possible that it doesn’t…that a
kite doesn’t have to have four line
segments, and have three and it would
still be a kite, like in this case for
example?”

Motivational Following a new pattern of thinking

Generational Imagining possibilities
Reorganizing thinking

Evaluative Choosing between two conceptions,
the point C as a vertex, and as a
point on the object

Table 14.9 Analysis of Nick’s attempt to settle the argument

Statement or event Aesthetic
roles

Aesthetic
sensibilities

“Can I make one more thing here?” Nick tried to bring
clarity to the issue, “I think an easy way to settle this
argument now and still be correct, a kite [maker] can make
a shape that looks like a triangle, but by definition is not a
triangle….”

Motivational Redirect the
conversation

Evaluative Clarify
End the
argument
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Nick repeated, “A kite [maker] can make a shape that looks like a triangle,
although but by definition is not a triangle…”

The teacher repeated his statement to make sure the class understood the point,
“Ok, a kite [maker] can make a shape that looks like a triangle, but by definition is
not a triangle…”

Violet asked, “What is the definition of a triangle then?”
The class had still not come to a consensus about whether or not the triangle-kite

was a kite. Nick’s assertion was important to the discussion because he articulated
the benefit of paying attention to properties. Aesthetically, the teacher made an
evaluative choice to pursue Nick’s response rather than Travis’ proof. This lead to
Violet’s generative question “What’s the definition of a triangle then?” The students
were still highly engaged in answering the original question pointing to the moti-
vational role of the aesthetic (Table 14.10).

The teacher clarified, “Three vertices and three sides…even though we haven’t
formally discussed this in class, all of us can agree that a triangle has three vertices
and three sides.”

Travis then stated his point he was trying to make earlier, “A kite cannot be a
legitimate triangle because properties of a triangle and properties of a quadrilateral
conflict…because the insides of the angles of a quadrilateral, when added equal
360, but it will only equal 180 with a triangle.”

“Let me ask you this Travis, this shape right here ABCD,” asked the teacher
pointing to the figure on the board, “do you think that shape right here is a kite?”

“Yes, because C is 180°,” answered Travis.
“OK, so ABCD is a kite? What do you guys think? Chris?”
The class responded in unison, “Yes.”
Playing devil’s advocate, the teacher added, “OK, so is ABCD a triangle?”
This time the class responded, “No.”
Violet added, “Not by definition.”
The teacher continued, “Not by definition, but it…”
“…looks like one [a triangle],” said the class finishing his statement.
As the discussion neared its conclusion, the students were raising their voices,

emphatically speaking in unison and sharing multiple perspectives on the question

Table 14.10 Analysis of Nick’s assertion

Statement or event Aesthetic
roles

Aesthetic sensibilities

“Ok, a kite [maker] can make a shape that looks
like a triangle, but by definition is not a
triangle…”

Motivational Redirect the
conversation

Evaluative Chose Nick’s assertion
over his classmates

“What’s the definition of a triangle then?” Motivational Students highly
engaged, smiling, etc.

Generative States a new question,
redirects inquiry
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indicating motivational aesthetic, and the desire to use the properties to answer
Hank’s question. The teacher then summarized the whole discussion by pointing
out that given the current list of properties for a kite, shape ABCD was a kite, in the
form of a triangle. This conclusion may be inconsistent with one’s visual intuition,
and definitions of polygons that do not allow for three adjacent collinear vertices.
However, many textbook definitions of quadrilaterals and polygons omit qualifying
statements like, no three adjacent collinear vertices. In the absence of such quali-
fying statements, and given the mathematical context, the class’s conclusion was
indeed mathematically valid. Realizing this, and to conclude the class’s discussion,
the teacher stated, “This was an interesting discussion because it helps us think
through these [listed] properties in what I would consider a very unique case of a
kite that is really cool for discussion within the context of a mathematics discussion.
But, within the context of the real world, is moot or irrelevant, because it looks like
a triangle, so let’s just call it a triangle” (Table 14.11).

14.3 Discussion

The nature and role of aesthetics in mathematics classroom discourse is
multi-faceted, as illustrated in this relatively short collection of stories. As such,
there are many different analytical directions one could take in summarizing the
elements of the preceding case stories. In this chapter two are considered. First is a
discussion of the overarching role of aesthetics in mediating the classroom

Table 14.11 Analysis of Travis’ assertion

Statement or event Aesthetic
roles

Aesthetic sensibilities

“A kite cannot be a legitimate triangle because
properties of a triangle and properties of a
quadrilateral conflict…because the insides of the
angles of a quadrilateral, when added equal 360,
but it will only equal 180 with a triangle”

Evaluative Chose a final answer to
the question

“Let me ask you this Travis, this shape right here
ABCD. Do you think that shape right here is a
kite?”

Generative Invites Travis to make an
evaluative judgement

“Yes, because C is 180°,” Evaluative Brings argument to an
end

“OK, so is ABCD a triangle?” Generative Invites the class to make
an evaluative judgement

“No” Motivational Students highly engaged,
speaking in unison

Evaluative The class is united in
their evaluation
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discourse. Second is a discussion of the role of aesthetics in the sense-making of
one particular student, Nick, during the classroom episode.

14.3.1 Patterns and a Hypothetical Trajectory of Aesthetics
in Classroom Discourse

Returning to the aesthetic framework, as we analyzed the data we categorized the
episode looking for the three roles of the aesthetic: motivational, generative, and
evaluative and the aesthetic sensibility that was invoked. So, for instance, Hank’s
original question: “Is a triangle a valid kite?” was coded as a motivational (new
question), evaluative (kite or triangle), and generative (can be viewed as a
quadrilateral or a triangle). After the first pass of coding was complete, we looked
for patterns in distribution of the codes.

The generative code appeared most frequently. This was surprising to us because
we had originally suspected that the motivational aesthetic would occur with the
highest frequency as the students engaged in the discussion. There are both cog-
nitive and emotive reasons why the generative aesthetic was so common. First, the
dynamic aspect of the Shape Makers activity is essentially generative because the
students generate hundreds of examples from which they can examine a multitude
of examples and counter-examples (Johnson-Gentile et al., 1994; Jackiw & Sinclair,
2009; Lavy & Shriki, 2010; Patsiomitou, 2008). The generative aesthetic was
invoked in the discussion whenever students changed perspectives or organized
their thinking in a new way. The flexible nature of the computer environment
allowed students to change perspectives at will dragging different points, segments
and figures paying attention to different properties such as side length, angle
measure, orientation, and symmetry (Battista, 2001; Ng & Sinclair, 2015). That
flexibility in perspective engendered in the tool carried over into the discussion that
took place without the tool. The discussion started with the generative question, “Is
a triangle a valid kite?” and continued with generative questions and statements
especially in the first section of discussion.

The coding also revealed a pattern of motivational questions set apart from each
other by a series of generative ideas. For instance, the episode began with Hank’s
motivational question whether a kite could be a triangle. Hank’s question was
followed by a series of generative actions and ideas: the teacher decided to pursue
it, a student reorganized it as a figure with three sides, but four line segments, other
students changed the focus to angle measure, number of angles, and the definition
of triangle. So the initial question, set off a series of generative ideas—new per-
spectives from which to examine the triangle-kite ending with another motivational
question when Amber asked, “Does a triangle have only three vertices? Because
that shape has 4 vertices doesn’t it?” Amber’s motivational question set off another
series of generative ideas which led to a moment of high engagement (motivational
aesthetic) when all the students were talking at once and gesturing to one another.
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This pattern continues several more times each time with a motivational question
followed by a series of generative ideas. The motivation was necessary for students
to engage, but the mathematics that they were building required new ideas and new
ways of thinking about the task. The students posed new questions and new ideas in
order to make sense of the interconnection of the various properties (Battista, 2001).

Another interesting pattern we saw in the data was that the generative organi-
zation aesthetic often occurred with or shortly after a generative question indicating
that questions and reorganizing the information in a new way went hand-in-hand.
For example, Amber asked a generative question that indicated that she was
organizing her sense-making around the concept of vertices. “Does a triangle have
only three vertices? Because that shape has 4 vertices, doesn’t it?” Shortly after,
Matt suggested that the angles of a triangle “have to add up to 180” which reor-
ganized the thinking around interior angle sums. And shortly later, Nick proposed
his first relativistic organization of the two figures, stating that C could be a vertex
but not an angle. This is a moment were Matt takes a creative leap based on
generative reorganization.

While one might expect the motivational aesthetic to be important at the
beginning of the inquiry, we did not find that to be case. Instead the motivational
aesthetic was much more active towards the middle and end of the episode seeming
to build up over time. “We first see the motivational aesthetic when Nick initially
proposes that C could be a vertex but not an angle and the students start responding
emphatically, in chorus to the teacher’s questions.” In this episode the motivational
aesthetic followed the pattern of a good story with the motivation at its peak during
the climax and then continuing through to the resolution.

The discourse that was encouraged both by students’ exploration of the Shape
Makers and the teacher’s questions during the ensuing discussion led the students to
examine the properties deeply. Generative roles of the aesthetic played off one
another with questions prompting a reorganization of the thinking that in turn
generated more questions. Generative questions resulted in a deep consideration of
properties that invoked the aesthetic sensibilities of fit, order, and clarity. In turn the
pleasure tied to those sensibilities in addition to the visual appeal the ongoing
development of connectedness between ideas and properties and the desire to solve
the problem played a motivational role of increasing engagement.

14.3.2 The Five Strands

Paying attention to the roles, sensibilities, and indicators of the aesthetic allowed us
to understand the students’ mathematical sense-making and the teacher’s choices. It
was a productive way to identify creativity within the students’ and teacher’s
choices. It gave us a new appreciation for the roles aesthetic sensibilities play in
mathematical discourse and sense-making in a dynamic mathematical environment.
Returning to our earlier discussion of the five strands, we found examples of
conceptual understanding, adaptive reasoning, and productive disposition in our
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analysis of the aesthetics in this episode. For example, in this episode, students
worked to develop conceptual understanding of the properties of vertex, side, and
angle. Nick showed adaptive reasoning by moving between absolute and relativistic
definitions of kite. And the student’s persistence and engagement with the explo-
ration indicates productive disposition. We suggest that each of these strands has
both cognitive and aesthetic properties.

Additionally, we see aesthetic examples in this episode of persistence, reasoning,
argument, precision and structure. For example, we see Nick’s persistence as he
engages in the exploration, loses interest and then re-engages. Multiple students
reason about the definitions of the properties. They take a position and argue then
choose whether to accept each other’s arguments. They move from a position of
low precision to high precision because they recognize the value of communicating
precisely. And finally, they reason explicitly about the structure of both triangles
and kites to answer Hank’s initial generative question.

We believe that it would be illuminating to view the Five Strands of
Mathematical Proficiency (National Research Council, 2001) and Common Core
State Standards for Mathematical Practices (National Governors Association Center
for Best Practices, & Council of Chief State School Officers, (2010) through an
aesthetic lens to develop a broader understanding of the students’ interactions with
these constructs.

14.4 Implications and Further Directions

In this chapter, we set out to study creativity within a dynamic geometry envi-
ronment of Battista’s Shape Makers microworld. As creativity is often described in
aesthetic terms, we used Sinclair (2006, 2008) aesthetic framework rather than a
cognitive framework to identify creativity within the class discussion. Several
attributes of the technology made the microworld a creativity-rich environment. As
has been studied before the open, exploratory environment necessitates students to
pose questions, explore ideas, and attune to different properties (Johnson-Gentile
et al., 1994; Lavy & Shriki, 2010; Ng & Sinclair, 2015; Patsiomitou, 2008).
Additionally, we found the generative nature of the environment to be particularly
rich in allowing students to activate the generative aesthetic to change their focus,
look for patterns, and reorganize their thinking in different ways. The generative
aesthetic was driving the creativity forward allowing students to view the
triangle-kite from many different perspectives. We believe that other dynamic
mathematics environments such as GeoGebra, Desmos, and Wolfram Alpha would
be similarly rife for student creativity and would provide further opportunities to
explore the aesthetic motivations and sensibilities of mathematical creativity.

Furthermore, our analysis covered a class discussion that took place after students
had explored mathematics in a dynamic mathematical environment. We are curious
about how the aesthetic roles might differ if a similar study were done while students
were interacting with the technology. Since the actions that students take on the
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mathematical representations, as they interact with the representations on the screen
have an active, embodied component (Burbules, 2006; Sinclair & Moss, 2012),
would the motivational role of the aesthetic be more pronounced through students use
of gesture and discussion of movement?Would the generative aesthetic play a similar
role during the investigation that it played afterwards in the class discussion?

Finally, the lesson excerpt presented in this chapter is a non-traditional discus-
sion on the properties of a kite. Careful analysis of the case stories shows various
elements of the aesthetic nature in the students’ responses: student interest, genuine
curiosity, brainstorming, and motivation. A broader element to be considered is an
observer’s response to the lesson. On one hand one can respond that the lesson was
irrelevant to the original lesson plan and a waste of time. On the other is a response
that considers the lesson to be artful in the engaged and fluid conversation between
all the various students that participate in the discussion. In agreeing with either
opinion, or somewhere in between, that in itself represents certain aesthetic sen-
sibilities based on the values of the observer that reside in the affective domain.
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Chapter 15
Technology and the Development
of Mathematical Creativity in Advanced
School Mathematics

Sergei Abramovich

Abstract The availability of sophisticated computer programs capable of complex
symbolic computations has created challenges for mathematics educators working
with mathematically motivated students. Whereas technology may be praised for
enabling educators to bridge the gap between the past—when only some students
were able to do mathematics, and the present—when an average student is able to
enjoy finding an answer to a difficult problem using a computer, it can also put a
barrier in the way of developing students’ creative mathematical skills. This
dichotomy between positive and negative affordances of technology in the teaching
of mathematics calls for the development of new curriculum enabling the outcome
of problem solving not to be dependent on students’ ability to simply enter correctly
all data into a computer. Towards this end, the chapter proposes a way of modifying
traditional problems from advanced mathematics curriculum to be both
technology-immune and technology-enabled in the sense that whereas software can
facilitate problem solving, its direct application is not sufficient for finding an
answer.

Keywords Affordances of technology � Teacher education � TITE problems
Problem reformulation � Einstellung effect

15.1 Introduction

What is creativity? Educators, in general, see creativity as “one of the essential 21st
century skills … vital to individual and organizational success” (Beghetto,
Kaufman, & Baer, 2015, p. 1). Whereas creativity has always been considered an
important factor (not necessarily just a skill) for any kind of success, the reference
to the 21st century has major didactic implications for its development in the
context of mathematics education. The modern day availability of sophisticated
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computer programs capable of intricate symbolic computations has made many
traditional problems from the advanced school mathematics curriculum kind of
outdated as they can be solved by software almost at the push of a button. Whereas
technological advances of the digital era have opened new research opportunities
for professional mathematicians (Arnold, 2015; Borwein & Bailey, 2004; Epstein,
Levy, & de la Llave, 1992), the advent of powerful computational tools into the
modern mathematics classroom has created additional challenges for mathematics
educators (Abramovich, 2014a). It has been almost three decades since Schoenfeld
(1988) noted that the task of integrating technology at the college level of teaching
mathematics is much more difficult in comparison to the elementary and secondary
levels: “It’s one thing to build a drill-and-practice program or a computer-based
tutor for work on the quadratic equation. It’s quite another to do the same for
max-min problems!” (p. 1). This comment may be taken to mean that software tools
available at that time were not sophisticated enough to enable their use in the
teaching of advanced topics in mathematics without significant recourse to com-
puter programming … unless the very programming (alternatively, coding) has
been one of the foci of instruction, like in the case of LOGO (Feurzeig & Lukas,
1972), robotics (Bers, Ponte, Juelich, Vieram, & Schenker, 2002) or, more recently,
digital fabrication (Dittert & Krannich, 2013) and digital making (Hughes,
Gadanidis, & Yiu, 2016). In the early 1980s, outside the context of using LOGO at
the elementary level, the pedagogic expectations and the didactic emphasis of
technology integration were mostly on drill and practice in arithmetic and basic
shape construction in geometry. Maddux (1984) called such procedural perspective
on teaching with computers Type I application of technology, advocating, instead,
for Type II applications, “which constitute new and better ways of teaching” (p. 38,
italics in the original). The concept of Type I versus Type II technology application
has become a powerful theoretical shield against often persistent skepticism
regarding the worth and purpose of using computers in the schools (Maddux &
Johnson, 2005). It underscored the difference between instructivist and construc-
tivist learning environments which measure learning, respectively, by tests and by
one’s ability to analyse, guess, and invent as a way of wrestling with big ideas
(Brooks & Brooks, 1999). Just as the boring and impractical uses of mathematics
can motivate the development of its more effective concepts (e.g., repeated addition
motivates multiplication, which, in turn, motivates the use of logarithms), one’s
mundane experience with Type I application of technology can motivate the
development of creative ideas for educational computing, thus bringing about
technology applications of Type II.

Nowadays, the use of technology at the elementary level varies significantly.
Whereas in a regular mathematics classroom, by the author’s observations of local
schools, technology use is often limited to taking advantage of frolic effects of
multiple computer programs designed for “creative” (or, rather, entertaining)
activities of young children (like KidPix Studio Deluxe) and enhanced by inter-
active white boards, digital experiences of young children may also include the use
of coding as a tool of digital making (Hughes et al., 2016) or the use of electronic
spreadsheets integrated with the images of familiar modern technologies in solving
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and posing grade appropriate real life problems (Abramovich, Easton, & Hayes,
2014). At a higher level, such tools as computer algebra systems, dynamic
geometry software, and spreadsheets are commonly available for the teaching and
learning of mathematics, requiring almost no need for computer programming. In
particular, these tools “favor development of such important qualities … as ini-
tiative, invention and creativity” (Freiman, Kadijevich, Kuntz, Pozdnyakov, &
Stedøy, 2009, p. 107). Much, however, depends on what we understand by inte-
grating technology in the teaching of mathematics, assuming that it reaches the
Type II level enabling conceptual understanding of and engagement with the
subject matter.

The goal of this chapter is to argue that the availability of mathematically
sophisticated computer programs may not only help to bridge the gap between
creative abilities of average and above average students (teacher candidates
included), but put a barrier in the way of fostering mathematical creativity. Indeed,
nowadays, the outcome of problem solving may simply become a function of one’s
procedural mastery to enter correctly all data into a computer or even to push the
right button on the keyboard. With this in mind, the chapter, by reflecting on the
author’s work with teacher candidates (referred to below as teachers) of the United
States and Canada1, underscores the importance of developing their skills in using
technology in the context of academic work. Just as their future students, despite
being ‘digital natives’ (Prensky, 2001), the teachers do need thorough assistance
and proper training to make their own learning experience, reminiscent (to a certain
extent) of mathematics research, the most effective agency of teaching, something
that would affect the students’ learning to be creative. Conference Board of the
Mathematical Sciences (2012), an umbrella organization consisting of 16 profes-
sional societies in the United States concerned (in particular) with the mathematical
preparation of schoolteachers, found that those teachers “who have engaged in a
research-like experience for a sustained period of time frequently report that it
greatly affects what they teach, how they teach, what they deem important, and
even their ability to make sense of standard mathematics courses” (p. 65).

In this context, the chapter discusses positive and negative affordances (Gibson,
1977) of the modern technology tools associated with mathematics teacher edu-
cation and by virtue of technology-enabled problem posing proposes a way of
modifying traditional problems used to foster mathematical creativity so that to
make them immune from applying purely technological know-hows typical for
‘digital natives’. The selection of traditional problems is from the books by authors
as diverse as Pólya (1954)—a notable mathematician and mathematics educator
(Sect. 15.7), Tchekoff (1970)—one of the greatest short story writers of all time

1The university where the author works is located in the United States in close proximity to
Canada, and many of the author’s students are Canadians pursuing their master’s degrees in
education.
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(Sect. 15.8), and Sivashinsky (1968)—an influential educator of in-service teachers
and expert in afterschool activities for mathematically motivated students
(Sect. 15.9).

15.2 Analysing the Use of Technology by ‘Digital Natives’
in Academic Contexts

Does effective Type II application enable problem solving or just make it “easy” to
solve problems by outsourcing mathematical thinking to a computer? It appears that
new challenges for teaching mathematics with technology at the advanced level of
problem solving are due to the availability of sophisticated computer programs
capable of complex symbolic computations. Some programs of that type were
designed to enable solving problems in mathematics research that are not solvable
otherwise even at the highest level of professionalism in mathematics (e.g., Leonov
& Kuznetzov, 2013). Also, there exist computer programs specifically designed to
solve school mathematics problems of different levels of complexity providing
users with detailed solutions both in written and oral forms (e.g., Universal Math
Solver (UMS), http://www.universalmathsolver.com). Furthermore, when powerful
computer programs become available free on-line (e.g., Wolfram Alpha—a com-
putational knowledge engine capable of accepting a natural language input without
requiring any computer programming), it is difficult to pretend that they don’t exist
when dealing with students “who are digital natives comfortable with the use of
technologies” (Ministry of Education Singapore, 2012, p. 2) and whose “sources of
knowledge are significantly influenced by current technology” (Advisory
Committee on Mathematics Education, 2011, p. 13) because they “spent their entire
lives surrounded by and using computers, video games, digital music players, video
cams, cell phones, and all the other toys and tools of the digital age” (Prensky,
2001, p. 1).

Classroom observations and educational research suggest that being a member of
the generation of digital natives does not necessarily imply that one is capable of
appropriately using technology for mathematical learning. Consequently, knowing
how to appropriately teach (and learn) mathematics with technology is crucial for
all academic contexts. In general, this has been confirmed by a number of studies.
For one, Prensky (2001), who coined the term ‘digital natives’, noted (without
going into details) that in the context of mathematics “the debate must no longer be
about whether to use calculators and computers—they are a part of the Digital
Natives’ world—but rather how to use them” (p. 5, italics in the original). Bers et al.
(2002), advocating for the appropriate use of computers by elementary teachers
argued that “one of the most dangerous traps of using technology in the classroom
is to turn the computer into a TV set for children to sit an watch CD-ROMS or use
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video games that do not invite creativity” (p. 134), that is, to promote the Type I
application of technology. On the contrary, “by creating learning contexts for young
children that incorporate powerful machines, such as robotics… [teachers skilled in
Type II applications help students to become] active learners who are producers of
new knowledge rather than consumers of what already exists” (Bers, 2010,
pp. 243–244). Needless to say, new knowledge (occurring by serendipity or not)
results from creative thinking.

By the same token, in the context of the Type II technology application to
support the secondary level mathematical investigations, ‘digital natives’ may not
necessarily be prepared to take into account a possibility of “the incoherent rep-
resentations of mathematical objects … [leading] to incorrect conclusions or
solutions” (Freiman et al., 2009, p. 128). At the tertiary level, the study by
Kennedy, Judd, Churchward, Gray, and Krause (2008) of the first year students’ use
of technology at the University of Melbourne, questioning “the cultural and envi-
ronmental assumptions underpinning the construct of the Digital Natives” (p. 108),
dismissed the notion “that being a member of the ‘Net Generation’ is synonymous
with knowing how to employ technology-based tools strategically to optimise
learning experiences” (p. 118) and concluded that “it is difficult to expect students
to have the expertise to judge how to best use emerging technologies for educa-
tional purposes” (p. 119). Research by Kirkwood and Price (2005) at the Open
University in England produced a similar conclusion suggesting “that the medium
itself is not the most important factor in any educational programme—what really
matters is how it is creatively exploited and constructively aligned” (p. 272, italics
added).

Likewise, in the United States it was found that “freshman students … report
lower skill levels in course-related technologies … and can make technology work
but cannot place these technologies in the service of (academic) work” (Kvavik &
Caruso, 2005, p. 7). Similarly, more recent studies in the United States indicated
that whereas “[college] students are generally tech inclined, they do not necessarily
use technology to the full extent in supporting their academic endeavors”
(Dahlstrom & Bichsel, 2014, p. 35). The above findings suggest that just being
comfortable and savvy with different technologies is not enough for their appro-
priate use in support of mathematical creativity. Furthermore, it is worth noting that
the United States government recommended that educationalal technology research
addresses “a growing need for new instructional materials … that are aligned with
higher standards and provide much richer learning experience and more vibrant
sources of information” (President’s Council of Advisors on Science and
Technology, 2010, pp. 80–81). In particular, one of the implications of this rec-
ommendation in the context of advanced school mathematics is the need for new
teaching ideas and curriculum materials conducive to the development of creative
thinking despite or perhaps because of the easy to use mathematically sophisticated
computational tools.
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15.3 Duality in the Affordances of Technology

From the first glance, digital tools may be praised for enabling educators to bridge
the gap between the past—when only some students were able to do mathematics,
and the present—when an average student, without significant preparation in either
mathematics or technology, is able to enjoy finding an answer to a difficult
(non-standard) problem using a computer. In doing so, educators take advantage of
“the possibility of developing creativity in people who don’t display much of it”
(Luchins, 1960, p. 138). For example, in the absence of technology one may not be
able to construct a graph of the system of inequalities y0.5 > 2x2, y < 3, but once it
is constructed by a tool capable of graphing relations from two-variable equations
and inequalities, e.g., by the Graphing Calculator (Avitzur, 2011), one can (or be
prompted to) realize that the graph could be used to digitally fabricate (Dittert &
Krannich, 2013) a vase and to (creatively) control its shape by changing the
coefficient in x2. At the same time, one can argue that technology, when not used
appropriately, can also put a barrier in the way of developing creative skills in the
students of mathematics, teachers included.

In terms of the theory of affordances (Gibson, 1977) frequently used by educators
when talking about technology (Angeli & Valanides, 2009; Kieran & Drijvers, 2006;
Lingefjard, 2012), it appears that the more (commonly recognized) positive affor-
dances a tool offers, the smaller is the number of (mostly hidden) negative affor-
dances that users of the tool are aware of. Unlike “[t]he affordances of danger …
[which] are usually perceivable directly, without an excessive amount of learning”
(Gibson, 1977, p. 82), negative affordances of a computational tool are not always
visible. In mathematics education, positive affordances of technology include the
possibility of teaching traditional topics earlier than usual (Kaput, 1992), the increase
of the number of students comprehending abstractness of mathematics (Noss &
Hoyles, 1996), the emergence of new pieces of learnable mathematics (Kaput, Noss,
& Hoyles, 2008), and even the discovery (not to be confused with re-discovery) of
new mathematical knowledge (Abramovich & Leonov, 2011). Negative affordances
that are visible include the reduction of computational skills, frequent emphasis on
drill and practice, and the ease of constructing graphs of functions without under-
standing their behavior. It comes at no surprise that, following the ideas of Common
Core State Standards (National Governors Association Center for Best Practices,
Council of Chief State School Officers, 2010), the major educational document in the
United States at the time of writing this chapter, the use of technology encourages one
“to visualize the results of varying assumptions, explore consequences, and compare
predictions with data” (Beghetto et al., 2015, p. 90).

One hidden negative affordance aspect of using technology that calls for creative
thinking deals with notational discrepancy of human-computer interaction when
semantic codes of the user and the software (or different software tools) do not
coincide (Abramovich & Cho, 2013; Kadijevich, 2002; Peschek & Schnieder,
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2001). Simpy put, mathematical notation may vary from tool to tool and because of
this nuisance a user might become a hostage of a particular coding protocol. For
example, the notation INT is understood by Excel as the greatest integer function, is
ignored by the Graphing Calculator (Avitzur, 2011), and is treated by Wolfram
Alpha as integral (antiderivative). So, typing “INT(2x − 1) = 2” into the input box
of Wolfram Alpha instructs the program to integrate 2x − 1. This yields the
equation x2 − x = 2 with the roots x = 2 and x = −1 which, obviously don’t satisfy
the original equation as INT(2 � 2 − 1) = 3 and INT(2 � (−1)−1) = −3. At the
same time, typing “floor(2x − 1) = 2” yields the equation 2xb c ¼ 3, thereby, still
leaving it to the user to find x. Likewise, the input “floor(2x − 1) = 2” with a space
separating the word “floor” from the expression “(2x − 1)” yields the equa-
tion 2x − 1 = 2 with the single solution x = 3/2, something that completely ignores
the presence of the command “floor” in the input. However, if the user is able to
appreciate the meaning of the lack of expected response produced by the software
and enter an augmented request “solve the equation floor(2x − 1) = 2”, thus
making “a switch from one system of semiotic text awareness to another at some
internal structure level” (Lotman, 1988, p. 43), Wolfram Alpha yields the correct
solution in the form of the inequality 3/2 � x < 2. In that way, in the context of
Wolfram Alpha, the values x = 2 and x = −1 when selected as solutions to the
equation INT(2x − 1) = 2 are irrelevant, leaving the answer in the form 2xb c ¼ 3
does not demonstrate understanding, and the solution x = 3/2 is incomplete.

This dichotomy of human-computer interaction requires an acute awareness of
conceptual meaning of the procedures involved and their expected outcomes. In
turn, this requires a combination of conceptual understanding and procedural
knowledge as pillars of mathematical problem solving without which creative
thinking in the context of notation used is kind of fluky. One of the signs of
creativity, in the milieu of a problem-solving uncertainty, is the ability to “check the
result” (Pólya, 1957, p. 59). In the author’s own pre-college learning experience,
verification of the correctness of a solution/answer to a problem was a mandatory
conclusion for any mathematical task. This verification can be done either through
the plug in strategy (for a numeric answer) or by recourse to a special case
(whatever the nature of uncertainty). In the case of the greatest integer function
which returns the largest integer not exceeding a given number, one can enter into
the input box of Wolfram Alpha the command “INT(1/2)” and expect the program
to return zero. Otherwise, the basic conceptual understanding of the notation used
would suggest it has a different meaning for the program which, thereby, delivered
an incorrect result. Likewise, even the direct verification of an answer through the
plug in strategy, while being purely procedural, may bring about a counter-example
to one’s conceptual assumptions, something that does entail creativity.
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15.4 The Interplay Between Positive and Negative
Affordances

Through a brief glance at the last section’s references related to affordances, one
may note that studies focusing on positive affordances of technology preceded those
revealing its negative affordances. Such timing difference between the discussion of
the positive and the negative is not surprising for a new tool is almost always
introduced first from a positive perspective, and the longer it is in use, the more
ill-advised applications emerge calling for improvement. For example, the first
appearance of dice, made of clay, dates back to the 3rd millennium BC (David,
1970) and people who played the games of chance were originally not aware of the
negative affordances of their tool of entertainment. But in the several millenniums
span they not only learned about negative affordances of unfair dice but better still,
learned how to make a fair die. A similar interplay between positive and negative
affordances can be observed in the case of mathematical ideas. Quite often a
statement that something is true (a positive affordance) is made (e.g., inductively,
without proof), yet later the statement is found to be false and thereby its negative
affordance is revealed.

For example, in 1919, Pólya conjectured that for any natural number n the
number of positive integers smaller than or equal to n with an odd number of prime
factors is at least the same as those with an even number of factors (counting
repeated factors, so that 12 ¼ 2 � 2 � 3 is considered having an odd number of prime
factors). One can use Wolfram Alpha to illustrate the case n = 15 (Fig. 15.1):
among 14 integers only six have an even number of prime factors. In 1962 a
counterexample to Pólya’s conjecture was found experimentally: n = 906,180,359
(Stark, 1987, p. 7). More specifically, if all natural numbers smaller than or equal to
906,180,359 are put in two sets, one with an odd number of prime factors and
another with an even number of prime factors, then the cardinality of the latter set is
greater than that of the former set by one. That is, as the negative affordance of
Pólya’s conjecture was revealed through a counter-example, a positive affordance
of the counter-example had enriched the area of number theory for which the

Fig. 15.1 Illustrating Pólya’s conjecture for n = 15 using Wolfram Alpha
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conjecture was important. Pea (1993) describes affordance as “the perceived and
actual properties of a thing [e.g., Pólya’s conjecture], primarily those functional
properties that determine how the thing could possibly be used” (p. 51). The fallacy
of the conjecture provides both negative and positive affordances for number the-
orists. In a mathematics classroom, a creative teacher can blur the distinction
between positive and negative affordances of an incorrect answer offered by a
student, when using their mistake as a thinking device and a generator of new
meaning for the whole class (Mehan, 1979); in other words, the teacher “does not
simply declare students’ answers to be “right” or “wrong” but encourages students
to evaluate the validity of their solutions for themselves or to try multiple solution
paths” (Baumert et al., 2010, p. 145).

Another number-theoretical example of a plausible, but eventually refuted,
conjecture is due to Euler who in 1788 suggested that for n � 3 it is not possible to
represent a perfect n-th power through the sum of fewer than n like powers. The
importance of this conjecture is that, if true, it would have implied the correctness
of the statement (known as Fermat’s Last Theorem) that for n � 3 it is not possible
to represent the n-th power of a natural number as a sum of two like powers. In the
case of Euler’s conjecture, it took almost two centuries to find a counter-example
(in 1966, via computer search): 1445 ¼ 275 þ 845 þ 1105 þ 1335 (Stark, 1987,
p. 146).

As for refuting both Pólya’s and Euler’s conjectures the use of computers was
critical, one can see the important role of the digital tools in enabling mathematical
creativity—an artistry, which is essential for the advancement of mathematical
ideas by negating those ideas that seemed to cast a positive affordance. The above
two examples support the notion (discussed in Sect. 15.2) that being ‘digital
natives’ may be necessary but not sufficient for teachers’ academic success in a
technology-enhanced mathematics classroom. Even using Wolfram Alpha for
illustrating Pólya’s conjecture (Fig. 15.1) requires skills that teachers do not nec-
essarily possess. And to find a counter-example to inductively developed conjecture
is far beyond the skills used for its illustration. By being introduced to such
examples, teachers can appreciate the value of mathematical creativity necessary for
defying such conjectures in the age of computers. In turn, teachers would need to
foster mathematical creativity and computer skills of their students in the context of
learning mathematics in the digital world.

Furthermore, the noticed interplay between the positive and the negative can also
be interpreted in terms of Einstellung effect (Luchins, 1942)—a tendency to use
previously learned workable strategy in situations that either can be resolved more
efficiently or to which the strategy is not applicable at all. For example, whereas
dividing both sides of the inequality 5x > 10 by 5 yields an equivalent inequality
x > 2, dividing both sides of the inequality sin x[ 2 sin x cos x by sin x yields
simultaneous reduction and extension of its solution set, quite a complex outcome
of this ill-advised transformation. That is, a strategy proved to be successful in
arithmetic (a positive affordance of cancelling out a common factor), becomes
fallacious in algebra (a negative affordance of canceling out a common factor).
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Einstellung effect in problem solving is sometimes referred to as the rigidity of
thinking—a hindrance to creativity, which, on the contrary, requires cognitive
flexibility.

As was mentioned above, negative affordances of a computational tool are often
hidden and, therefore, may simply be overlooked by mathematics educators in the
context of technology integration into the subject matter. In addition to the issue of
notational inconsistency across different computer programs, ready-made
spreadsheet-based computational environments may require significant program-
ming revision as any new version of MS Office is released. Likewise, Wolfram
Alpha is a powerful program with a fluid knowledge base, which can be modified/
updated at any time. Also, the availability of mathematical problem-solving soft-
ware (e.g., UMS mentioned above) reduces opportunities for a meaningful home-
work assessment by a teacher as it could be completed with the help of software.
The old argument banning calculators from the mathematics classroom can now be
given a new emphasis at a higher level including algebra, trigonometry, calculus,
and discrete mathematics.

15.5 Conceptualizing the Appropriate Use of Computers
in Mathematics Education

It appears that the appropriate use of computers in mathematics education can be
conceptualized as a process that maximizes positive and minimizes negative (both
explicit and implicit) affordances of technology. This process calls for a change in
the curriculum. In particular, many problems traditionally used in the preparation of
students for mathematical Olympiads or used for the development of mathematical
creativity in a regular classroom may become somewhat outdated. For example, the
task of finding the last digit of the number 777777 found in several mathematical
Olympiad problem-solving books of the 20th century can be outsourced toWolfram
Alpha or Maple: each program displays the above number as an integer with the last
digit seven. (If required, knowing the answer can prompt explaining it formally,
which, after all, is not a bad thing. But still, an opportunity for creative thought is
kind of diminished by computing). Thus, the use of technology in support of the
emergence of conceptual knowledge in mathematics education is not a simple
matter for it depends on a number of factors such as problem type, tool used,
population of problem solvers involved, pedagogical goal, and instructional
expectation.

Understanding negative affordances of technology makes it possible to minimize
their effect by modifying technology-enabled instruction and, in doing so, to bring
about new positive affordances that appropriate use of technology provides. One
way to foster mathematical creativity in the digital era is to furnish students with
problems that, on the one hand, are immune from the straightforward
computer-based symbolic computations as a problem-solving method and, on the
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other hand, motivate and enable conceptual development and insightful inference
through the use of technology. In the sections that follow, such problems will be
referred to as TITE (technology-immune/technology-enabled) problems
(Abramovich, 2014b). In particular, one goal of a TITE problem-solving mathe-
matics curriculum is to develop the appreciation of the mutual importance of
conceptual knowledge and algorithmic skills—two major components of mathe-
matical creativity and insight.

15.6 Symbolic Computations and TITE Problems

The growth in computational capabilities of mathematics software tools, allowing
for an automatic answer to a multistep problem, blurs the distinction between the
Type I and Type II technology applications as introduced originally by Maddux
(1984). Mathematical activities that until recently belonged to the latter type may
become less and less cognitively complex. Such reduction in complexity of
mathematical problem solving enables the corresponding epistemic game—“the set
of rules and strategies that guide inquiry” (Collins & Ferguson, 1993, p. 25) within
a particular representational structure—to be reduced essentially to a simple push of
a button. Consequently, the type of technology application may depend on what
kind of technology is used to support the game. In order to continue securing
educational benefits from the distinction between the two types, Type II application
of technology can be advanced to a higher level where one deals with TITE
problems. Such problems cannot be automatically solved by software, yet the role
of technology in dealing with them is critical. The appropriate use of technology in
the context of TITE curriculum can make symbolic computations more cognitively
demanding despite or perhaps because of automatic problem-solving capability of
the modern day software tools. An example of such computations will be given in
Sect. 15.9 when the result of solving Eq. (15.3) by Wolfram Alpha is used to find a
range for one of the parameters of the equation using paper and pencil alone. Such
use of symbolic computations in the context of TITE problems provides a
springboard into a follow-up mathematical work requiring conceptual under-
standing of the symbols involved.

While this perspective on the revision of mathematics curriculum is not limited
to a specific educational context, using TITE problems may be a way of developing
creative thinking of mathematically motivated students in the digital era. With this
population of students in mind, two directions of using technology in the context of
school mathematics can be suggested: the use of technology by prospective teachers
of mathematically motivated students and the use of technology by the students
themselves. In the former case, the teachers can learn posing new problems by
modifying/expanding already existing difficult (non-traditional) problems through
the use of technology. They need to be able to recognize whether a problem is
technology immune and if not, to know which tool to use in order to turn the
problem into a TITE one. By the same token, the students can learn exploring TITE
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problems created either by their teachers or by themselves. Such explorations are
consistent with the contemporary approach to mathematical research when (both
old and new) problems become solvable only due to the capability of computers to
carry out symbolic computations not possible otherwise (e.g., Leonov &
Kuznetsov, 2013).

15.7 Using Well-Known Mathematical Tasks
to Pose TITE Problems

Whereas mathematicians have been using problem posing for educational purposes
quite a long time [e.g., see Mathematical Questions with Their Solutions published
in (Hodgson, 1870)], educators, in general, consider problem posing as an educa-
tional philosophy. It started with “the liberty of the pupil” (Montessori, 1965, p. 28,
italics in the original) being declared as the fundamental pedagogical principle that
“must tend to help the children to advance upon this road of independence” (ibid, p,
94). This tendency towards independence in Montessori classrooms has been an
encouraging factor in students’ posing their own problems [e.g., Lillard (1996,
p. 147)], thereby developing their creative thinking. From the standpoint of psy-
chology, “creativity often is manifested in the ability to formulate or create prob-
lems or in the ability properly to reformulate problems” (Luchins, 1960, p. 132).

With this in mind, consider the task of guessing “the rule according to which the
successive terms of the following sequence are chosen: 11, 31, 41, 61, 71, 101, 131,
…” (Pólya, 1954, p. 8). This task can be outsourced to Wolfram Alpha, which, in
turn, refers to the On-line Encyclopedia of Integer Sequences (OEIS®, http://oeis.
org) where one can find out that the sequence represents prime numbers of the form
10n + 1. The OEIS® also offers several other interpretations of the sequence. In
terms of positive affordances, this may encourage mathematically motivated stu-
dents to find yet another rule not included into the OEIS®. In terms of negative
affordances, less energetic students may just either pick up the first interpretation or,
even worse, select an interpretation they don’t understand or which is totally
irrelevant. This raises an issue of how one can use properly what is available when
technology affords an easy access to large quantity of information (Conole & Dyke,
2004). From the TITE perspective, the Pólya’s task, which in the digital age can be
outsourced to technology, may be didactically enriched by asking a technology-
immune question: What is the smallest number of divisions one needs to decide
whether 131 is a prime or not? In other words, while recourse to the OEIS® can
inform a problem solver that 131 is a prime number with the 10 � 13 + 1 repre-
sentation, the didactical enrichment of the (otherwise technology-enabled) task is in
requesting explanation of why 131 is a prime number that is based on the most
efficient (in terms of the number of divisions) algorithm. One can use technology in
making those divisions; yet technology, in the absence of mathematical reasoning,
does not give an answer about the smallest number of divisions. The students can
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also be introduced to the on-line sieve of Eratosthenes (Meyer, 2016) and even do
all divisions using this tool. In doing so, one has to realize that after 131 survived
divisibility by 11 (as well as by 2, 3, 5, and 7), no division is necessary and 131 is a
prime number. One can also be asked to use spreadsheet conditional formatting to
eliminate (or highlight) all primes of the form 10n + 1 for n not greater than a
certain integer (Sugden, Baker, & Abramovich, 2015).

A more difficult task from the same book (Pólya, 1954, p. 31) is to find the value
of the infinite product

Q1
i¼2 ð1� 1

i2Þ. Entering “find the product ð1� 1
i2Þ from i = 2

to infinity” into the input box of Wolfram Alpha yields 1/2 and the value of the
partial product

Qn
i¼2 ð1� 1

i2Þ in the fractional form nþ 1
2n (Fig. 15.2). The latter

assumes the values 3
4 ;

4
6 ;

5
8 ;

6
10 ; � � � and so on. One can be asked: Why is every

second fraction in this sequence reducible to the simplest form? In the case or
reducibility, is the number 2 always the greatest common factor? Technology
cannot answer such (conceptual) questions. That is, seeking the values of the
infinite and partial products is a request for information, something that can be
outsourced to Wolfram Alpha. But the questions seeking explanation of numeric
properties of an algebraic expression that represents the sequence of the partial
products turns Pólya’s rather complex task into a relatively simple TITE problem.
Through solving this problem, one can recognize the duality of the fraction nþ 1

2n (or
any other algebraic expression for that matter)—first using it as a process and then
seeing it as a concept (Tall et al., 2001).

Another TITE problem might be to develop identities between the infinite
product and other infinite sums or products converging to 1/2. For example, one can
be asked to carry out the following explorations:

Fig. 15.2 Using Wolfram
Alpha in solving a problem
from a classic book
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using Wolfram Alpha find
Q1

i¼2 ð1� 1
i2Þ;

prove the identity
Q1

i¼2 ð1� 1
i2Þ ¼

P1
i¼2

1
2i;

prove that xn ¼
Qn

i¼2 ð1� 1
i2Þ and yn ¼

Pn
i¼2

1
2i are, respectively, monotonically

decreasing and increasing sequences; and
using a spreadsheet find N such that for all n > N the inequality jxn � ynj\e holds
true for e ¼ 0:01 and e ¼ 0:001.

Note that through the suggested use of a spreadsheet one can conclude that yn
converges to 1/2 faster than xn (Fig. 15.3). Why is it so? Even if one uses Wolfram
Alpha to establish the relation

Pn
i¼2

1
2i ¼ 1

2 � 1
2n, one still has some explaining to do

regarding the difference between the infinitesimal sequences 1
n and

1
2n. In that way, a

TITE problem consists, following the idea of Isaacs (1930), of two types of
questions: an informational type question that can be outsourced to technology and
an explanatory type question that requires one to connect procedural and conceptual
knowledge.

A similar task from Pólya’s (1954, p. 31) book is to find the value of the infinite
product

Q1
i¼3 ð1� 4

i2Þ. Slightly modifying the last expression by substituting i + 1
for i and entering “find the product ð1� 4

ðiþ 1Þ2Þ from i = 2 to infinity” into the input

Fig. 15.3 Modeling partial products and sums within a spreadsheet
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box of Wolfram Alpha yields 1/6 (preceded by its approximation) and the value of a

partial product in the fractional form ðnþ 2Þðnþ 3Þ
6nðnþ 1Þ (Fig. 15.4). Note that the suggested

modification of the form of the product is an example of how mathematical cre-
ativity can be used to correct some negative affordances of technology when
information it generates is not well suited for the goal of instruction—to formulate a
coherent TITE problem. Entering the product without modification would yield a
fraction not defined for n = 1 thus complicating some issues which can be avoided
by using technology in a creative way. That is, mathematical creativity is a factor in
turning a negative affordance of technology into a positive affordance enabling a
smooth transition to the technology-immune phase of problem solving.

One can be asked to investigate the fraction ðnþ 2Þðnþ 3Þ
nðnþ 1Þ , an expression defined for

n = 1, 2, 3, …. Through this investigation, it can be connected to triangular

numbers tn ¼ nðnþ 1Þ
2 and thus can be replaced by tnþ 2

tn
. The first question to be

formulated here is: What is the greatest common divisor (GCD) of two triangular
numbers separated by another triangular number? A simple spreadsheet

Fig. 15.4 Another problem about infinite product
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investigation (Fig. 15.5) gives an answer to this question requesting information:
the sequence GCDðtn; tnþ 2Þ forms the cycle (1, 1, 3) where the number 3 appears
each time when n is a multiple of three. Now, one can be asked to explain this
phenomenon conceptually. To this end, one can show that the difference tnþ 2 � tn
is equal to 2nþ 3, so that when n is a multiple of three, the difference is not only
divisible by three but GCDðtn; tnþ 2Þ ¼ 3; otherwise, GCDðtn; tnþ 2Þ ¼ 1. That is,
the inquiry into the behavior of the sequence of greatest common divisors is a TITE
problem: the property of the sequence forming the cycle (1, 1, 3) is technology
motivated and its explanation requires formal demonstration which, if necessary,
may be enhanced by technology.

Similarly, using a spreadsheet, one can try to explore the behavior of the
sequence GCDðtn; tnþ 1Þ only to discover the absence of an interesting pattern.
Likewise, no simple pattern stems from the greatest common divisors of other pairs
of triangular numbers. Was the connection of the infinite product to triangular
numbers accidental? To answer this question, one can be asked to explore another
problem from Pólya’s (1954, p. 32) book and to find the infinite productQ1

i¼0 ð1� 16
ð2iþ 1Þ2Þ using Wolfram Alpha. In response, the program generates the

value of a partial product in the form ð2nþ 3Þð2nþ 5Þ
4n2�1 . This time, using a spreadsheet,

one can see that the sequence GCDð4n2 � 1; ð2nþ 3Þð2nþ 5ÞÞ for n = 3, 4, 5, …
forms the cycle (1, 1, 3) already observed in the previous example. This suggests at
least three things. First, the cyclic behavior of the sequence of the greatest common
divisors of the elements of the partial products is perhaps due to the products
themselves and the observed connection to triangular numbers was indeed acci-
dental. Second, formulating a coherent TITE problem requires creativity in a sense
that such a problem should allow for a reasonable extension. Third, creativity can
be a motivating factor for the formal study of a mathematical content that was used
to develop TITE problems. In particular, one can become motivated to study infinite

Fig. 15.5 The sequence
GCDðtn; tnþ 2Þ forms a cycle
of period three
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products in a way it was designed in the classic book by Pólya (1954) written in the
pre-digital era.

15.8 Developing Creativity Through Posing Arithmetical
Word Problems

In the presence of technology, mathematical creativity can be developed through
posing arithmetical word problems that bear a TITE flavor. Although arithmetic is
commonly described as a window to algebra, arithmetical problem solving and
posing become part of advanced school mathematics when conceptual under-
standing is expected to supplant algebraic routines provided by the use of variables.
Freire (2003) critical education theory emphasized that “problem-posing education
… corresponds to the historical nature of humankind … for whom looking at the
past must only be a means of understanding more clearly what and who they are so
that they can more wisely build the future” (p. 84). By looking at the past, one can
recall elementary school mathematics curriculum when students were expected not
only to “check the result” (Polya, 1957, p. 59), as described at the conclusion of
Sect. 15.3, but to solve word problems without using algebra. Instead, their solution
process was rooted in asking conceptual questions to be answered in a purely
numeric form.

One such problem can be found in the mathematics curriculum of the 19th
century as described by Tchekoff (1970, p. 70) in a story Tutor: “If a merchant buys
138 yards of cloth, some of which is black and some blue, for 540 roubles [sic],
how many yards of each did he buy if the blue cloth cost 5 roubles [sic] a yard and
the black cloth 3?” To solve this problem without using algebra (something that the
tutor could not do), one can begin with “guessing” any additive partition of 138 in
two positive integers, e.g., 138 = 100 + 38, and then proceed to calculating the
payment that would have been made under this guess. In doing so, the linear
combination of the prices and the meters, 3 � 100þ 5 � 38 ¼ 490, has to be sub-
tracted from the actual payment, 540, to get 50. The next consideration is that the
difference between the actual and guessed payments has to be a multiple of the
difference in prices for a yard of each type of cloth, 5 − 3 = 2. Therefore, 50� 2 ¼
25 is an error made in the guessed partition of 138. This makes it possible to offset
the original guess through subtraction and addition: 100 − 25 = 75, 38 + 25 = 63.
That is, the merchant bought 75 yards of the black cloth and 63 yards of the blue
cloth.

How can one pose problems of that type? How can one create similar didactic
materials in order to support the notion that “often a child left to himself will go
back to the same puzzle he solved yesterday, simply for the pleasure of getting it
right” (Mayer, 1965, p. xxxii)? Creativity and pleasure of doing something go
hand-in-hand and similar problems can be used to enhance both qualities in the
context of mathematical development. Even if a strategy of solving a problem is
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known, a cursory change of data does not lead to a solvable problem. For example,
replacing 138 by 139, partitioning 139 = 100 + 39, and subtracting 540� ð3 �
100þ 5 � 39Þ yields 45, a number not divisible by the difference in prices, 5 − 3.
Likewise, replacing 540 by 541 without changing the rest of the data yields 51,
another number not divisible by two. The Tutor problem data can be presented
through a conceptual bond (Fig. 15.6) in which the apex holds the whole pyramidal
structure in a sense that the money spent on 138 yards of cloth with the given costs
for a meter may vary from the smallest sum, 416 ¼ 3 � 137þ 5 � 1, to the largest
sum, 688 ¼ 3 � 1þ 5 � 137. In connection with the reference to the smallest and the
largest sums, one can recall Euler’s explanation of the general significance of this
issue: “since the fabric of the world is the most perfect and was established by the
wisest Creator, nothing happens in this world in which some reason of maximum or
minimum would not come to light” (Pólya, 1954, p. 121). Indeed, problems seeking
maxima and minima have been “of interest not only in mathematics but also in
everyday life where people often deal with questions of the best or worst and the
least or most of a certain quality or quantity of behavior and of features of the social
and physical world” (Luchins & Luchins, 1970, p. 301).

One can note that because the difference between the costs for a meter of each
type of cloth is two, the sum of money spent should be a multiple of two. In
addition, 138 is an even number and therefore, its additive partitions in two parts are
either both even or odd. Furthermore, both prices for a meter are odd numbers and
therefore, a linear combination of the moneys spent on each type of cloth is always
an even number. So, one has to find the maximum and minimum values of the
linear combination 3x + 5y for xþ y ¼ 138. The search can be reduced to exploring
the function of one variable, say, f ðxÞ ¼ 5 � 138� 2x when 1 � x � 137. Thus,
fmax ¼ f ð1Þ ¼ 688 and fmin ¼ f ð137Þ ¼ 416. That is why, any even sum of money
in the range [416, 688] works for the apex 138 provided the two bottom vertices
don’t change. In fact, the bottom vertices may be changed to another pair of odd (or
even) numbers, but this will affect the range for the vertex at the top. Likewise, any
even number of yards of cloth varying in the range [110, 178] can be bought for the
given prices and total sum (Fig. 15.7). Indeed, it follows from the equa-
tion 5x + 3y = 540 that y ¼ 5

3 ð108� xÞ and therefore, in order to make the dif-
ference 108 − x divisible by three, the largest x = 105 yields the smallest y = 5
whence x + y = 110 and the smallest x = 3 yields the largest y = 175 whence
x + y = 178. This result can be confirmed by using a spreadsheet, which can be also
used to generate a variety of problems similar to the one described in the above
story (Tchekoff, 1970). That is, formal reasoning can be enhanced by the use of
technology that provides a TITE problem-posing environment informed by
understanding the role of conceptual bonds, like those shown in Figs. 15.6 and
15.7, in guiding mathematical creativity.
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15.9 Equations with Parameters as TITE Problems

The advent of computing technology in the mathematics classroom has made it
possible to use computational experiment as the modern day signature pedagogy
(Gurung, Chick, & Haynie, 2009; Shulman, 2005) of mathematics, something that
draws on the power of computers to carry out sophisticated numeric/symbolic
computations and geometric/graphic constructions. The availability of these tools
and new teaching methods they bring about, “create an opportunity for reexamining
the fundamental signatures we have so long taken for granted” (Shulman, 2005,
p. 59). One such signature to be reexamined in the digital era is the use of
non-standard, extra-curriculum problems as means of fostering creative thinking in
secondary school mathematics. As an illustration, consider the equation
(Sivashinsky, 1968)

ðx� 2:5Þ4 þðx� 1:5Þ4 ¼ 1 ð15:1Þ

the real roots of which are to be found—a problem used in the pre-digital era in
afterschool activities of secondary students with special interest in mathematics.
Suppose a modern student uses Wolfram Alpha to solve Eq. (15.1). The program

Fig. 15.6 The apex (yards bought) holds the problem structure

Fig. 15.7 The apex (money paid) holds the problem structure
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responds to the quest by showing two real roots, 2.5 and 1.5. Several questions
about Eq. (15.1) can be asked by a teacher at that point, such as:

What property of Eq. (15.1) makes it having two real roots?
Does a change in the numeric value of the positive right-hand side of Eq. (15.1)
affect the number of real roots?
How can one decide when Eq. (15.1) ceases having real roots; that is, what
property of its left-hand side is responsible for having two real roots?
How can one, proceeding from Eq. (15.1), develop a family of similar equations
with two real roots that depend on a parameter?

In connection with the last question, a teacher may come up with an equation

ðx� aÞ4 þðx� aþ 1Þ4 ¼ 1 ð15:2Þ

with parameter a and, using Wolfram Alpha, determine that it has two real roots,
x = a and x = a – 1, for all real values of a. Note that a pedagogy of introducing a
parameter into an equation, which, like Eq. (15.1), is solvable due to its friendly
form, followed by exploring conditions in terms of the parameter under which the
so generalized equation is solvable analytically, was described by Mason (2000) as
turning a doing into an undoing. Undoing is essentially a reflection on what was
done, something that seeks to understand why the strategy worked and whether it
can be applied to similar problems. Such problems may comprise a family of
problems depending on a parameter. A typical question to be asked about a problem
with parameter is: For which values of the parameter does the problem have a
solution? Problems depending on parameter may not be immediately solvable by
software. Alternatively, when software offers some kind of response to a query
involving parameter rather than a complete solution, the response has to be inter-
preted, which leads to a TITE problem.

Once again, the notion of a TITE problem can be interpreted in terms of two
types of questions: those seeking information or explanation as such and questions
requesting specific types of explanation (Isaacs, 1930). Here, one can distinguish
between questions that don’t presuppose reflection and questions that motivate
reflective inquiry into a quantitative result. The latter type of questions, often
stemming from the thorough analysis of computer-generated data, may be con-
sidered more intelligent. Often, this intelligence requires just a slight modification
of questions that request explanation of the information obtained. Problems asking
for explanation are reflections on problems requesting information. In the context of
mathematics, problems that are seeking explanation of a certain phenomenon may
indeed be more challenging than those through which a certain phenomenon for-
mulated in quantitative terms can be revealed.

For example, solving the equation |x| = 1 seeks information about the roots of
the equation. The roots found through a routine algorithm do not explain why the
equation is solvable unless the algorithm is conceptualized. Knowing that not any
equation has real roots, one can seek the explanation of this specific phenomenon
by asking the question: for what values of parameter a does the equation
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|x| = a have real roots? In order to answer this question conceptually, one has to
articulate the definition of the absolute value of a real number. Indeed, a purely
procedural perspective on solving the equation |x| = 1 may result in replacing it by
x = ± 1 prompting the same “algorithm” in the case |x| = − 1 leading to
x = ± (−1), that is, presenting x = ± 1 as the solution to both equations. Put
another way, in the absence of conceptual understanding, procedural skills may
result in Einstellung effect (Luchins, 1942). However, knowing that the absolute
value of a real number may not be negative, immediately rejects the second case
and, consequently, suggests that in the general case a � 0.

Returning to Eq. (15.2), note that it can be used by a teacher in order to offer to
students its multiple versions for different values of parameter a assuming that
Wolfram Alpha would not be available for finding a solution. In other words,
technology here is used for problem posing and not for problem solving. Students
can be asked to compare their answers with the goal to conjecture that Eq. (15.2)
has always two real solutions (mentioned above), which can then be found in the
general form. The next step could be to introduce students to Wolfram Alpha asking
them to explore the equations such as ðx� aÞ4 þðx� aþ 2Þ4 ¼ 1 and
ðx� aÞ4 þðx� aþ 1:1Þ4 ¼ 1. In doing so, one can see that whereas the former
equation does not have real roots, the latter equation does have such roots. This
computational discovery motivates finding the range for parameter b in the equation

ðx� aÞ4 þðx� aþ bÞ4 ¼ 1 ð15:3Þ

that provides two real roots.
Using Wolfram Alpha (Fig. 15.8), two candidates for real roots of Eq. (15.3),

x ¼ 0:5 ð2a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ 1

p � 3b2
p

� bÞ, can be selected. In turn, the inequality
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ 1

p � 3b2 � 0 has to be solved yielding jbj � ffiffiffi
4

p
8 � 1:6818. Note that

the described scenario regarding Eq. (15.3) is an example of a TITE problem.
Indeed, whereas the very values of x have to be selected by a student from the list of
solutions generated by Wolfram Alpha and the program does not automatically
provide the b-range, its contribution to finding those values is critical.

Fig. 15.8 Solving Eq. (15.3)
for real x using Wolfram
Alpha
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15.10 From Computer Graphing to Data Analysis

As an alternative to Wolfram Alpha used in the previous section starting from
Eq. (15.1) and ending up with Eq. (15.3) by gradually adding parameters, by set-
ting a = y, Eq. (15.3) can be graphed in the plane (x, y) of the Graphing Calculator
(Avitzur, 2011) for different values of parameter b. In doing so, one can observe
(Fig. 15.9) that when jbj \1:6818 the locus of Eq. (15.3) consists of two parallel
lines that merge into a single one when jbj ¼ 1:6818 and disappear when
jbj [ 1:6818. Computational experiments of that kind using new digital tool
provide an alternative verification of the b-range in Eq. (15.3) obtained through a
combination of analytical and technological approaches. Furthermore, by changing
the exponent in the left-hand side of Eq. (15.2), one can construct graphs of
multiple equations using the new tool and, by analyzing computer-generated data,
discover that all equations of the form ðx� aÞn þðx� aþ 1Þn ¼ 1; n 2 N have
either one or two real roots in common. This raises new questions requesting
explanation. How can one explain this property of the last equation in mathematical
terms? Is this property, nowadays easily revealed through the use of technology, at
the very core of including Eq. (15.1) into afterschool mathematics curriculum of the
past for reasons known to professional mathematicians only? Could one’s creative
thinking be put to work to comprehend these reasons? Such conceptual inquiry into
a result generated by technology is another source from where TITE problems can
be developed.

In that way, teaching practices commonly known in the United States as “model
with mathematics, use appropriate tools strategically … [including] a spreadsheet, a
computer algebra system, … look and make use of structure … that mathematics
educators at all levels should seek to develop in their students” Common Core State
Standards (National Governors Association Center for Best Practices, Council of
Chief State School Officers, 2010, pp. 6–8) are appropriate for fostering creative
thinking in students, including those with a special interest in mathematics. By
learning to use these technology-enabled mathematical practices, teachers can
develop research-like experience in advanced school mathematics and its 21st century
signature pedagogy. In particular, this experience includes the development of skills in
posing problems, especially TITE ones, and the appreciation of using multiple soft-
ware tools in experimentingwithmathematical ideas in a creativeway.Aswas already

Fig. 15.9 Graphical
exploration of Eq. (15.3)
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mentioned in the introduction, the findings of the Conference Board of the
Mathematical Sciences (2012) support the author’s assumption that teachers’ creative
experiences in posing TITE problems, appropriately using commonly available tools,
provide strong foundation for imparting such experiences to their future students.

15.11 Concluding Remarks

In the pre-digital era, the development of mathematical skills needed for creativity,
invention, and productive thinking had been studied by both mathematicians and
educational psychologists (e.g., Hadamar, 1996; Krutetskii, 1976; Lakatos, 1976;
Luchins, 1960; Pólya, 1965; Stern & Stern, 1971; Wertheimer, 1959). For one,
Luchins (1960) noted that because sometimes “value-laden conceptions of cre-
ativity depend on social norms and may differ for different cultures and for different
people in the same culture … [it is important to] indicate certain invariants common
to some or all of the conceptions of creativity … in the form of relationships that
assume different concrete forms in different specific contexts” (p. 131). Nowadays,
technology, the use of which may vary across the spectrum of educational contexts,
can be considered as such an invariant due to its ubiquitous status within the
manifold of contexts, especially in the context of mathematics education. From this
perspective, one can say that computer technology is an agency for fostering
mathematical creativity in a classroom setting and beyond, including recreation,
individual investigations, preparation for mathematical Olympiads, and online
mathematical communities of practice (Freiman et al., 2009).

A strong focus on the use of technology in mathematics education has brought to
light the need for new pedagogical approaches to work with mathematically
motivated students in the presence of computers equipped with programs capable of
sophisticated symbolic computations and graphic constructions. Likewise, in a
regular classroom, computers should not be considered as tools making problem
solving just “easy”; rather, they have to be used for supporting the development of
creativity and insight. This chapter proposed an approach of revisiting the tradi-
tional advanced mathematics curriculum to include a new type of problems, TITE
ones, the solution of which is both dependent on the power of technology and
requires the use of creative thinking. The idea of using TITE problems in mathe-
matics teacher education can be seen as an interaction between their TI and TE
components in much the same way as the concept of TPCK (technological peda-
gogical content knowledge) provides teachers with “understanding of the interac-
tion of the knowledge of technology and the knowledge of their subject area”
(Niess, 2005, p. 520). In terms of the theory of affordances (Gibson, 1977), a TITE
problem affords using technology in a way that minimizes its possible negative
impact on the development of creativity.

As was shown in this chapter using books geared towards very different readers,
posing TITE problems can be accomplished through the reformulation of traditional
problems with the focus on questions that seek explanation of computer-generated
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data and require human intellect to deal with. The process of reformulation of a
mathematical problem in the digital era can be seen not only as a reflection on a
solved problem but also as an attempt to replace its procedural orientation, often
being trivial in the presence of technology, by conceptual orientation derived from
information provided by computing. As shown elsewhere (Abramovich, 2015), this
kind of problem reformulation enables new ways of linking procedural and con-
ceptual knowledge towards the development of TITE problems to be used in work
with mathematically motivated students.

Therefore, the role of technology in the appropriate reformulation of a problem
continues being critical for it is through computing that one can understand the
underlying relationships structuring numeric data used to formulate the problem.
Such inquiry into the problem’s structure supports the development of productive
thinking and creative ideas in agreement with highly mathematically oriented
Gestalt theory (Ellis, 1938). One of the major tenets of Gestalt asserts that indi-
vidual parts of a given whole are determined by the inner structure of that whole.
This epistemological position that guides creative problem solving in mathematics
was demonstrated in the chapter through the notion of conceptual bond (the inner
structure of a problem) when a cursory change of the data (the parts of problem)
may not necessarily lead to a solvable problem, as “a whole [e.g., a problem] is
meaningful when concrete mutual dependency obtains among its parts”
(Werthiemer, 1938, p. 16). Mathematical creativity can be developed through
analyzing the relationships among the elements of a problem’s conceptual bond and
how technology can be used to facilitate this analysis. Through learning to pose
TITE problems prospective mathematics teachers develop research-like experiences
that, in turn, by the teachers’ own admission (Conference Board of the
Mathematical Sciences, 2012, p. 65), are helpful in intellectually demanding work
with the 21st century school students. By the same token, through the proposed
approach the students can significantly advance their ability to do mathematics and
genuinely enrich their interest in the subject matter.

To conclude, several other directions in the area of developing creativity in the
digital era can be suggested. Given this chapter’s focus on revisiting known
problems from number theory (prime numbers, sequences, series), arithmetic (word
problems), and algebra (higher order polynomial equations) in the context of duality
of computational affordances and expanding/modifying the problems under the
TITE umbrella, another conceptually rich area of advanced secondary school
mathematics curriculum is worth mentioning. It deals with transcendental functions,
including circular, exponential, and logarithmic functions. In Sect. 15.4 of this
chapter, a trigonometric inequality was briefly mentioned in connection with the
notion of Einstellung effect in problem solving when the cancellation of a variable
factor common to both sides of the inequality resulted in a complex transformation
of its solution set. Such problems cannot be easily formulated unless positive
affordances of technology have been realized. Seeing the use of technology in
posing problems of a given type as an important aspect of fostering creative

394 S. Abramovich



thinking, one could develop a mechanism conducive to formulating a variety of
solvable trigonometric, exponential, and logarithmic equations and inequalities
having a pre-determined conceptual structure responsible for a certain outcome of
Einstellung effect. This can lead to new explorations dealing with error analysis
which is critical in search for explanation of why a specific problem-solving
strategy is incorrect. Teachers’ ability to provide that kind of explanation is an
indicative trait of their creativity. By the same token, as the request for explanation
and fostering creativity in the context of technology-supported problem solving go
hand-in-hand, creative teachers are major custodians of the unfolding creative
potential of their students.
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Chapter 16
“Integrating” Creativity and Technology
Through Interpolation

Bharath Sriraman and Daniel Lande

Abstract The digital age of the 21st century is ubiquitous with easy access to
information. Students of mathematics find at their fingertips (literally) immense
resources such as Wolfram Math and other digital repositories where anything can
be looked up in a few clicks. The purpose of this chapter is to convey to the reader
that Mathematics as a discipline offers examples of how hand calculations using
first principles can result in deep insights that present students with the opportu-
nities of learning and understanding. By first principles we are referring to fun-
damental definitions of mathematical concepts that enable one to derive results
(e.g., definition of a derivative; definition of a Taylor series etc.). We also highlight
the value of integrating (pun intended) technology to understand functions that were
obtained via mathematical interpolation by the likes of John Wallis (1616–1703),
Lord Brouncker (1620–1684), Johann Lambert (1728–1777) and Edward Wright
(1558–1615). The interpolation techniques used by these eminent mathematicians
reveals their creativity in deriving representations for functions without the aid of
modern technology. Their techniques are contrasted with modern graphing tech-
niques for the same functions.
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16.1 Introduction

The title of this chapter in a book that addresses the relationship between tech-
nology and creativity in mathematics education is a pun. By integrating we mean
the mathematical technique of finding anti-derivatives, and by interpolation we
literally mean mathematical interpolation to find missing information. Finding a
piece of knowledge or a mathematical fact is very different from actually being able
to remember it or deriving it from first principles. Yet “knowing” among students is
increasingly becoming associated with or even synonymous with “looking it up” as
opposed to understanding first principles to be able to derive a result or under-
standing ways in which results are arrived at. To this end the examples presented in
this chapter are deliberately chosen from the history of series and continued frac-
tions to illustrate the value of interpolation techniques as a forgotten art of hand
computation. The history of infinite series played a significant role in how functions
were dealt with before modern day integration techniques were established. For
instance, manipulating the series representation of circular functions led to insights
about their anti-derivatives; similarly, the series for the logarithm function allowed
better facility for calculation purposes. This is further explored in an ensuing sec-
tion of the chapter. Ironically any modern Calculus textbook in the U.S typically
presents series after techniques of integration when the former actually led to the
latter. While deduction is emphasized in textbooks for the sake of presenting the
subject matter in a logical manner, the advent of the digital age with readily
accessible results from Wolfram Math or other mathematical repositories presents
the danger of a student conceiving of mathematics as a platonic and deductive
subject. The examples presented will hopefully convey the inductive aspect of the
mathematician’s craft.

Interpolation which literally means, “inserting between other things” can be
viewed as the original “cut and paste” but in mathematical parlance one that
required intuitive and systematic thought as opposed to present day pastiche. Can
we present hand computations requiring interpolation and per modum inductionis
(Wallis, 2004) as a contrast to the “digital habit” of invoking a function on
Mathematica or looking up the end result in Wolfram Math? The expression
“digital habit” is used colloquially here to refer to observations from the authors in
their classrooms where students rely on hand-held devices to access information.
For instance when students are asked for the series representation of a well-known
function, they rely on retrieving the representation from Wolfram Math. As a
contrast to the way things are today the examples presented in this chapter reveal
both a forgotten art of mathematical creativity and extol the virtues of hand com-
putation as a necessary complement to the “looking it up” and “cutting and pasting”
habits of many present day students. The definition of creativity adapted here are
those from Paul Torrance and Alex Osborn. To paraphrase these two individuals
who furthered the study of creativity, Torrance (1974) referred to creativity as being
able to sense difficulties or gaps or missing elements or something askew when
confronted with information. Osborn (1953) on the other hand suggested creativity
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was the process of finding a solution by first finding a mess and then finding data to
explain the mess which in turn leads to defining the real problem and coming up
with the ideas for a solution. The examples we present are mathematically messy
and involved numerical data, but as will be evident the solutions found by the
mathematicians in the past are nothing short of ingenious.

16.2 Three Examples

16.2.1 p

Many learners of mathematics at the undergraduate level may simply think of p as a
button on a calculator (or calculator app). The number p is often used in formulas
for the area and circumference of circles without any real thought to where this
number comes from or what it means, unless initiated by the teacher. Some early
high school lessons attempt to enlighten students on its origin by having them
measure the circumference and diameter of many different sized circles in order to
derive p by using the equation: C

d ¼ p. This exercise often passes them by without
any increase in understanding the intricacies and ingenuity involved in deriving this
extraordinary constant. A study of past methods of derivation often results to a
greater understanding and appreciation for the creativity involved in these calcu-
lations given the tools available to the mathematicians of their time.

16.2.1.1 Derivation of p from Tables

John Wallis’s Arithmetica Infinitorum contained tables, which required creative
interpolation to derive formulas we take for granted today. Many of these tables
have served as fodder for mathematicians of today who attempt to explain the
ingenuity involved in their construction. Stedall (2000) describes how problems in
number theory began to capture the attention of early 17th century mathematicians
in England, preceding the age of Newton. In particular focus is brought on the work
of John Wallis and Lord William Brouncker and their collaboration on the problem
of calculating quadratures (areas) of circles. It should be noted that at this time
period the Calculus of Newton was yet to be invented, and most of the work
requiring integrals was accomplished by using infinite series or continued fractions.
The infinite product formula for p that is attributed to John Wallis is often featured
in undergraduate mathematics textbooks, more often in an honors section of the
course. Honors courses in U.S universities typically offer higher-level or more
academically challenging assignments. The formula in question is presented as
2
p ¼ 1�3

2�2
� �

3�5
4�4
� �

5�7
6�6
� � � � �

To derive the formula for 2
p as the quotient of infinite products, students are told

to work with the integral In ¼
R p

2
0 sin

n xð Þdx without any explanation as to how it

16 “Integrating” Creativity and Technology … 401



pertains to the formula in the first place. The problem at hand concerned the
quadrature of the circle, which Stedall (2000) poetically described as “Squaring the
circle”. To tackle the problem, Wallis began with tables that gave values of

1R 1

0
1�x

1
Q

� �P

dx

for convenient values of P and Q that resulted in integers as the answer

(see Table 16.1). The goal was to interpolate the value of
R 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx by gen-

erating tables for
R 1
0 1� x2ð Þ0dx and

R 1
0 1� x2ð Þdx, but taking the reciprocals

facilitated ease of computation.
Stedall (2000) provides details of the process that Wallis went through as well as

his correspondence with Lord Brouncker during his investigation of this table. In
modern terms, using integration by parts and a change of variable, the integral can
be transformed easily to 1

Q
R 1

0
1�xð ÞPxQ�1dx

which can be then be evaluated to generate

the table for values of P and Q. However, not knowing the binomial theorem called
for a creative leap that resulted in the astonishing formula from the tables, namely
2
p ¼ 1�3

2�2
� �

3�5
4�4
� �

5�7
6�6
� �

. . .

The actual value calculated by Wallis was 4
p ¼ 3

2

� �
3�5
4�4
� �

5�7
6�6
� �

. . . which meant the
quadrature was the reciprocal, namely p

4. The mathematical constraints of the time
period called for ingenuity in methods. Haught and Stokes (2017) argue that
domains are defined by constraints, which in turn lead to specific goal setting. For
them creativity is mastering the basic constraints and the competency to achieve the
goals despite the constraints. In the same vein, having access to the table produced
by Wallis led Lord Brouncker to an entirely different interpretation to solve the
quadrature problem. Lord Brouncker’s work on the same tables led to a continued
fraction for p, namely 4

p ¼ 1þ 12
2 þ

32
2 þ

52
2 þ ...

Again, for lack of a better descriptor, this is another astonishing formula for p,
which is often found in books without any reference to the context of the problem.
In modern terms, this interpolation can be understood by looking at the integral

In ¼
R 1
0

xn
1þ x2 dx and setting up a recursive formula for In to arrive at 4p. Graphing the

Table 16.1 From arithmetica infinitorum proposition 169 (Stedall, 2000, p. 299)

P Q

0 1
2

1 3
2

2 5
2

3 7
2

4

0 1 1 1 1 1
1
2

?

1 1 2 3 4 5
3
2

2 1 3 6 10 15
5
2

3 1 4 10 20 35
7
2

4 1 5 15 35 70
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integral for various values of n is the advantage that technology offers today’s
student (see Fig. 16.1). The graphs can be used to generate a discussion on how the
value of 4

p relates to the integral.
Similarly, as mentioned earlier, Wallis’s infinite product is evaluated by starting

with the integral In ¼
R p

2
0 sin

n xð Þdx, which involves a circular function, and evalu-
ating lim

n!1
I2n

I2nþ 1
after arriving at the fact that I2n�1

I2nþ 1
¼ 2nþ 1

2n � I2n
I2n þ 1 � 1. Again, there is

a recursive formula involved and the necessity to integrate by parts; tools, which
were not available to John Wallis! However, technology again helps us understand
the nature of the integrals and the value that is obtained by the infinite product.
Graphing the integral (see Fig. 16.2) is an advantage that was not available to the
17th century mathematician, but available to us today.

In both these examples, integrals involving circular functions need to be invoked
by a 21st century student. However, the fact remains that interpolating tables played
a significant part in arriving at the astonishing closed forms seen earlier. Dutka
(1990) in his exposition of the history of the factorial function presents a different
route available to us today since closed forms for the integral that Wallis had to
tackle are now available to us. He suggested that Wallis’s computations are
understood better by integrating x� x2ð Þndx between the limits of 0 and 1. By
knowing the closed form for this integral, namely

Fig. 16.1 Graphs of In ¼
R1
0

xn
1þ x2 dx for I0; I1; I2; and I3
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Z1

0

x� x2
� �n

dx ¼ 1
2nþ 1

n!n!
2nð Þ! for n ¼ 0; 1; 2; 3; . . .

we can calculate the following values for n = 0,1,2,3,…
For n ¼ 0

Z1

0

x� x2
� �0

dx ¼ 1

For n ¼ 1

Z1

0

x� x2
� �1

dx ¼ x2

2
� x3

3

����
1

0
¼ 1

2
� 1
3
¼ 1

6
¼ 1

2 1ð Þþ 1
1!1!
2!

¼ 1
3
� 1
2
¼ 1

6

For n ¼ 2

Fig. 16.2 Graphs of
R p

2
0 sin

n xð Þdx for I0; I1; I2; and I3

404 B. Sriraman and D. Lande



Z1

0

x� x2
� �2 ¼

Z1

0

x2 � 2x3 þ x4
� �

dx

¼
Z1

0
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4 � 3 � 2 � 1 ¼ 1

30

We arrive at the sequence of values 1; 16 ;
1
30 ; etc. but we want the value at n ¼ 1

2.
Using trigonometric substitution we can show:

R 1
0 x� x2ð Þ12dx ¼ sin�1 2x�1ð Þþ 4x�2ð Þ x�x2ð Þ12

8 ¼ p
8; when evaluated between the limits

of 0 and 1. So, we now have the sequence of values 1; p8 ;
1
6 ;

1
30 ; etc:

Knowing
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x� x2
� �1

2dx ¼ p
8
¼

1
2

� �
! 1

2

� �
!

2 � 12
� �

!
� 1
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We arrive at the astonishing fact that

p
8
¼

1
2

� �
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� �
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2

or

p
4
¼ 1

2

� 	
!

1
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� 	
!

which means:

1
2

� 	
! ¼

ffiffiffi
p

p
2

While Wallis interpolated this value between 1 and 1
6 by “unknowingly” con-

structing values for P and Q, which gave binomial coefficients, we have today at
our disposal both the binomial theorem, methods of integration, and the ability to

16 “Integrating” Creativity and Technology … 405



graph the said integral to arrive at value. However, hand computation leads to the

surprising discovery that 1
2

� �
! ¼

ffiffi
p

p
2 which is the value of the gamma function at 1

2.
The pedagogical point is that even today a student would be hard pressed to find a
calculator that gives the value of 1

2

� �
!, and in the event a numerical answer is

obtained from a calculator, it conceals the fact that it is connected to p.

16.2.2 The Irrationality of p

Our second example involving old-fashioned calculations that can be illuminating
to students is establishing irrationality of transcendental numbers like p.
Establishing irrationality of p. is relegated to being a difficult problem even in
undergraduate mathematics courses because it is assumed that students do not have
the mathematical tools necessary to construct a proof. Ivan Niven (1947) started

with
R p

0
xn p�xð Þa

n! sinx dx to give a simple proof by contradiction that p. is irrational.
However, irrationality was established much earlier by the polymath Johann

Lambert in 1761 by starting with the tangent function, namely ¼ x�x3
3! þ x5

5!�þ ���
1�x2

2! þ x4
4!�þ ���, and

using long division along with the Euclidean Algorithm to calculate a sequence of
remainders that could produce a continued fraction for the tangent function.

In other words, if we write out the remainders at each stage of the long division,
we get:

R1 ¼ sinx� xcosx ¼ x3

3
� x5

2 � 3 � 5 þ � � �

R2 ¼ 3� x2
� �

sinx� 3xcosx ¼ x5

3 � 5�
x7

2 � 3 � 5 � 7 þ � � �

R3 ¼ 15� 6x2
� �

sinx� 15� x3
� �

cosx ¼ x7

3 � 5 � 7�
x9

2 � 3 � 5 � 7 � 9 þ � � �

Each of these remainders “measures” the tangent function in terms of truncations
of an infinite contained function. The representation constructed by Lambert (1768)
was tanx ¼ x

1� x2

3� x2

5�x2
...

and now using the result that an infinite continued fraction is

irrational, we quickly arrive at a contradiction when we assume p is rational and
substitute the value of p

4 for x in the expression. This method of establishing irra-
tionality of p is quite different from Niven’s proof which also relies on contra-
diction. The pedagogical point here is that Lambert’s method requires one to
perform long division of infinite series, which is rarely done in mathematics
courses. Also, hand computation results in some astonishing results that interpolate
intermediate values of functions by truncating the series representation of a
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function. Lambert also played an important role in the field of map projections and
write extensively on the topics of conformal projections. Our third and final
example shows a fascinating integral that relates to interpolation and conformal
map making.

16.2.3 Integrating the Secant Function

An interesting application of interpolation involves integrating the secant function
using the series representation of log 1þ xð Þ. A practical application for this cal-
culation resulted in the need to construct navigational charts. Deriving the integral
of the secant function is often a difficult task for calculus students. It involves
making a trigonometric substitution that seems contrived and logically convenient.
However, understanding how this integral was approximated before there was even
an understanding of calculus can be illuminating to students and give them a full
appreciation for the creativity that can arise through hand calculations and
approximations. Again, the notion of domain constraints leads to unexpected results
when required to solve a pressing problem, which in this case was conformal maps
needed for navigation in the 16th century.

16.2.3.1 Mercator Projection Map

In 1569, the Flemish cartographer Gerhardus Mercator created a map now known
as the Mercator Projection Map. This map allowed navigation using lines of con-
stant course also known as rhumb lines. These maps allow a navigator to draw a
line between two points on a map, find a bearing, and then follow a compass
reading to their destination. This is allowed through the scaling of the space
between latitudes on Mercator projection maps. This scaling caused distortion in
sizes of landmasses on the map but provided a great advance in navigational
abilities. Mercator did not document his method of construction, but it is thought
that it was constructed using a compass and straight edge (Carslaw, 1924).

The English mathematician Edward Wright mathematically derived Mercator’s
projection in 1599 by creating a table that provided the scale factor as a function of
the latitude. This table allowed for the accurate construction of Mercator projection
maps by converting latitudes into distances from the equator. Wright’s table was
constructed using approximate sums, what would now be known as Riemann sums.
He constructed his table with an interval of one minute of arc, or 1�

60 for all latitudes
to 75�. His table was later found to be an accurate table of the integral of secants.
The creation of his table is even more astounding given the lack of understanding of
logarithms or calculus that existed in his time.

16 “Integrating” Creativity and Technology … 407



16.2.4 Derivation of Wright’s Table

Wright realized that in order to preserve angles on the Mercator projection, i.e., to
keep conformality, the vertical and horizontal direction on the map needs to be
stretched by the same factor. This allowed the meridians to be parallel and intersect
the equator at a right angle. By simultaneously scaling in the vertical direction, the
Mercator map can be constructed to allow the constant course navigation that so
greatly aided sailors of the time, see Fig. 16.3.

Wright recognized that by choosing a common interval he could determine the
position of a line of latitude on the Mercator projection by summing the distance of
all of the lines separated by the previous intervals. The smaller the interval that is
used, the more accurate is the approximation. In order to build his table, Wright
used a trigonometric table of secants available during his time. For example, if we
want to find the distance from the equator to the 30th line of latitude with an
interval of 5�, we would use the following table of secants, see Table 16.2.

Taking the total of these secants multiplied by the interval results in
15:6163 � 5� ¼ 78:0815�. The 60th line of latitude should be placed on the
Mercator projection map at 78:0815�.

16.2.4.1 Modern Derivation

Wright determined an approximation of the integral of the secant function using
numerical summation with an interval of one minute (10Þ or 1�

16 for all lines of
latitudes up to 75�. This results in 16 � 75 ¼ 1200 entries. These calculations would
be very tedious without the use of calculus (or modern technology). Wright’s
method is not exact, but provides a very reasonable approximation. The method

Fig. 16.3 f hð Þ ¼ sec hð Þ
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could be improved by looking at even smaller interval widths, though again this
would require a very tedious number of calculations. The real improvement comes
with the development of the logarithmic function and calculus. The following
modern proof demonstrates the closed form of the integral of the secant.

Z
sechdh ¼

Z
1

cos h
dh

¼
Z

cos h
cos2 h

dh

¼
Z

cos h

1� sin2 h
dh

¼
Z

cos h
ð1� sin hÞð1þ sin hÞ dh

¼
Z

1
2

cos h
1� sin h

þ cos h
1þ sin h

� 	
dh

¼ 1
2

Z
cos h

1� sin h
þ cos h

1þ sin h
dh

¼ 1
2
� ln 1� sin hj j þ ln j1þ sin hj½ � þ c

¼ 1
2
ln

sin hþ 1
sin h� 1

����
����þ c

¼ 1
2
ln

1þ sin hð Þ2
cos hð Þ2

�����
�����þ c

¼ 1
2
ln

1þ sin h
cos h

����
����þ c

¼ ln sec hþ tan hj j:

Table 16.2 Table of secants
approximated at an interval
of 5�

Table of secants

Secants 5° 1.0038

Secants 10° 1.0154

Secants 15° 1.0353

Secants 20° 1.0642

Secants 25° 1.1034

Secants 30° 1.1547

Secants 35° 1.2208

Secants 40° 1.3054

Secants 45° 1.4142

Secants 50° 1.5557

Secants 55° 1.7434

Secants 60° 2.0000

Total 15.6163
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This closed form of the integral of the secant function is assumes a radian
measure. If h is measured in degrees the result would be the following equation:

Zh

0

sec hdh ¼ 180
p

ln sec hþ tan hj j

Performing this calculation for 60� results in a value of
180
p ln sec 60þ tan 60j j ¼ 75:4651�. Using Wright’s method of approximation with a
large interval of 5� results in a value that is only off by 2:6164�. Using an Excel
spreadsheet to calculate Wright’s approximation at an interval of 10 would result in
a value equal to 75:4874�, a difference of only 0:0223�. An approximation of this
accuracy likely approaches the limits of the measurement and mapmaking tools of
Wright’s time. A tool such Wolfram-Alpha can readily provide the value of the
secant function, but insight into the meaning and origin of this calculation is lost.
There is a beauty and elegance in Wright’s approximation that students have to
experience to appreciate. Another point to note is that many Calculus textbooks
evaluate the integral by using the trick of multiplying and dividing the given
function by sec hð Þþ tan hð Þ to convert the integral

R
sechdh ¼ R

1
u du where

u = sec hð Þþ tan hð Þ:
Such a trick though resulting in the correct answer is devoid of any mathematical

insight whatsoever and as far removed from Wright’s interpolation as the secant of
a right angle!

16.3 Concluding Remarks

The three examples provided in this chapter illustrate the complementary nature of
hand calculations to the affordances provided by the digital age. As argued by the
editors of this book, the connection between technology and creativity in mathe-
matics education is still unexplored territory. If the past serves as a reminder, it is
important to remember that graphing calculators and computer algebra systems did
not really change the nature of college Calculus much other than the fact that
instructors needed to actually think about the type of questions that could be asked
of students if the hand held utility more or less did everything that was taught in a
traditional course. Unlike the resistance to technology in the 1990’s, present day
learner’s experience in any classroom is ubiquitous with the use of ICT. The advent
of big data as the next frontier for computing to reveal patterns and trends relating
to human behavior requires “interpolation” to fill in incomplete data sets no dif-
ferent from the gaps in information encountered by mathematicians in the past.

Learning environments that utilize the wealth of information provided by
mathematical repositories in addition to computing tools like Mathematica and
Wolfram Alpha provide a much richer experience than the classrooms of yore.
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However, simply using multimodal software to show multiple representations does
not necessarily mean that it results in any deeper understanding or insight unless the
complementary and “beautiful” nature of hand calculations are also incorporated
into the environment. Paper and pencil mathematics has long been the shibboleth of
mainstream mathematics1 and is unlikely to change even with the advent of the
digital age. One may think of such orthodoxy as simply the motivation for teachers
to show the ingenuity and beauty of hand calculations with historical examples such
as those described in this chapter. These examples also illustrate the creative nature
of mathematical interpolation to complement other modes of representation and
serve as useful lessons to those that think “big data” is a recent product of the
information age!
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Chapter 17
Ancient School Without Walls:
Collective Creativity
in the Mathematics Village

Elçin Emre-Akdoğan and Gönül Yazgan-Sağ

Abstract This study is designed as a qualitative research in order to examine
(i) how the Mathematics Village promotes mathematical creativity and (ii) the
transformation of Mathematics Village from a non-virtual environment to Social
Media, which is a virtual environment. Our data collection tools include individual
interviews with two mathematicians, who teach at the Mathematics Village as well
as focus group interviews with seven high school, undergraduate, and graduate
students and classroom observations. We have analyzed the collected data via
content analysis. The findings of this study reveal that the Mathematics Village
promotes mathematical creativity of students and enables mathematicians to acti-
vate their own creativity. From that perspective, having an educational setting that
provides freedom can positively affect students’ state of mind and creativity.
Therefore, it is of importance to transfer basic characteristics of a non-virtual
environment (Mathematics Village) into a virtual environment (Social Media),
which brings people together with the aim of doing mathematics.

Keywords Mathematical creativity � Promoting creativity � High school students
Undergraduate and graduate students � Mathematicians � Social media

17.1 Introduction

Social interaction is a characteristic of mathematical creativity (Sriraman, 2004). In
addition to social interaction, the learning environment has the potential to activate
creativity (Amabile, 1996; Csikszentmihalyi, 2000). Social media, which could
serve as such a virtual environment, is defined as various networked tools or
technologies to communicate, collaborate, and creatively express such as Twitter,
Facebook, Blogs, YouTube, etc. (Dabbagh & Reo, 2011). Social media also makes
it possible to have informal conversations and share ideas (Ito et al., 2009;
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McLoughlin & Lee, 2011); also enables learning to start in an informal setting and
allows for independent thinking. Social media has an impact on individuals’
learning both at a personal and a social level. Studies have presented that students’
social media usage for learning mathematics enables them to gain significant per-
spectives (Baya’a & Daher, 2013). In the literature, there is a classification for
social media usage consisting of three levels: Level (1) Personal information
management, Level (2) Basic interaction or sharing, and Level (3) Social net-
working (Dabbagh & Reo, 2011). The personal information management level
focuses on collecting information through social media and organizing them in
order to increase productivity. Basic interaction or sharing level comprises of
communication, social interaction, and collaboration via social media. For example,
students could make a comment on a blog or create a collaborative workspace using
a wiki (Dabbagh & Kitsantas, 2012). Social networking denotes social interaction at
the highest level that contains aggregating and synthesizing information from level
(1) and level (2) (Dabbagh & Reo, 2011).

In contrast to traditional learning contexts, learning environments with social
media goes beyond the walls and does not need to occur real time. Thereby, in
contrast to the structured technology-rich learning environments, the social media
learning environments, which enable students to be creative, give students the
freedom of thinking (Lu, Hao, & Jing, 2016). The existence of social media caused
recent literature to reconceptualize creativity from a social perspective; researchers
now address creativity from a collaborative stance, rather than from a solely indi-
vidual perspective (Peppler, 2013). Furthermore, the virtual environment of social
media represents a means of interaction and can play a significant role in proposing
and spreading new ideas among people (Peppler & Solomou, 2011). Social media
provides participants with equal opportunity to share ideas even when they are not
in the same physical environments. Thus, the virtual environment of social media
offers a democratic and moderate environment, which is a key aspect for creativity
in both teachers and students (Levenson, 2011).

According to Cropley (2001), environments that facilitate the creation of novelty
and play significant roles in the development of creativity share a set of properties,
including “openness, positive attitude to novelty, acceptance of personal differ-
entness, and willingness to reward divergence (p. 67).” In-group experts, col-
leagues, and/or friends can promote creativity in a social environment characterized
by the creation of novelty (Cropley, 2001). Csikszentmihalyi (1988) and Amabile
(1983, 1996) provides substantial insight to investigate creativity from a social
perspective (Plucker, Beghetto, & Dow, 2004; Meusburger, 2009). Amabile (1988)
defines creativity as “the production of novel and useful ideas by an individual or
small group of individuals working together” (p. 126). Zaman, Ananda rajan, and
Dai (2010) summarizes Amabile’s (1996) definition of creativity as “interaction
between individuals, environment, and socio-cultural context”. Csikszentmihalyi
(1996) states that creativity does not occur in “individuals’ head”, it is rather an
interaction between the individual and the context. So, it can be concluded that
environment plays a significant role in creativity, from this stance, Csikszentmihalyi
(1988) proposes the very fundamental question regarding creativity: “where is
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creativity” and not “what is creativity” (Fleith, 2000). Csikszentmihalyi (1988)
figures out the creativity as a system, which can be explained as follows:

What we call creative is never the result of individual action alone; it is the product of three
main shaping forces: a set of social institutions, or field, that selects from the variations
produces by individuals those that are worth preserving; a stable cultural domain that will
preserve and transmit the selected new ideas or forms to the following generations; and
finally the individual, who brings about some change in the domain, a change the field, will
consider to be creative…. Creativity is a phenomen that results from interaction between
these three systems (Csikszentmihalyi, 1988, pp. 325–326).

Thus, we can not study creativity by solely focusing on individuals, since their
work should not be separated from their environment (Csikszentmihalyi, 1988).

Evaluating creativity and social media together could give us important per-
spectives (Peppler, 2013), because as an environment social media has the potential
to reveal creativity (Peppler & Solomou, 2011). Previous studies support the fact
that the environment has an impact on students’ ability to foster their own math-
ematical creativity (Levenson, 2011). The Vittra Schools which is an example of
non-virtual environment in Sweden claim to promote students’ creativity and cu-
riosity through the school environments they create, based on their principle of
“school without classroom” (“Personalize learning”, 2017). In Vittra schools, stu-
dents are expected to discover the approach that is most suitable for them, to
develop an understanding of how they learn, to learn by experience, to develop
confidence in themselves and their abilities, to improve their communication and
interaction skills, and to obtain what they require in order to work or study on an
international platform (“Personalize learning”, 2017).

Within this context, we have dealt with the role of environment plays in
mathematical creativity through focusing on the Mathematics Village, which has
existed in a natural environment in Turkey for ten years. The Village aims to bring
together both novices (students at high school, undergraduate, and graduate level)
as well as experts (mathematicians and mathematics teachers) to do mathematics, to
discuss on mathematics topics, to have lectures, and to talk about mathematics
without having any obligations. The Village does not directly aim at constructing a
creative context for doing mathematics. The nature of the Village possesses a
moderate and democratic environment. More specifically, we have been planning to
analyze the context of the Mathematics Village, where democratic environment and
free thought is promised. Similarly, social media also enables students the freedom
of thinking in a collaborative way (Lu et al., 2016; Peppler, 2013; Zaman et al.,
2010). Teenagers and the twenty-something age group as students continually
connected to the social media for gathering information, interaction or sharing, and
networking (Dabbagh & Reo, 2011). As researchers, it is crucial to provide students
with social media platforms as a learning environment which is an indispensable
part of current generations’ milieu and the reality of our current world. Thus, it is
worth to transfer basic characteristics of non-virtual environment (Mathematics
Village) that brings people together with the aim of doing mathematics on the
virtual environment (Social Media). In this regard, our aim is to examine (i) how the
Mathematics Village promotes mathematical creativity and (ii) the transfer of
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Mathematics Village that is a non-virtual environment to Social Media, which is a
virtual environment.

17.2 Methodology

17.2.1 Context of the Study

The Mathematics Village is a unique institution in Turkey that offers short but
intense courses, and at which high school and college students are taught by pro-
fessors and engage in seminar discussions (Alladi & Rino Nesin, 2015). It is located
in Şirince, a small village of İzmir in the western part of Turkey that is surrounded
by olive trees and is isolated from the downtown. In the Village, you can hear the
sound of crickets day and night (Fig. 17.1).

In their study, in which they introduce the Mathematics Village, Alladi and Rino
Nesin (2015) explained the duties of students at the Village, as follows: The Village
mostly operates as a commune, since there are few paid personnel. High school and
university students who arrive at the Village are divided into small groups of
approximately the same size. For the next two weeks in the Village, the students in
these groups do chores, which must be completed in order for the Village to
function, such as peeling potatoes for the cook, taking out trash, and replenishing
water coolers. Surprisingly, the majority of students genuinely believe they are
contributing to Village life, and do not complain about their assigned chores.
Moreover, these responsibilities provide them with a sense of ownership and
community that endures for years.

Teaching is voluntary and the Village provides meals and accommodations. To
ensure that the academic schedule matches the length of stay of the students, the
courses are all only two weeks long.

The Village resembles an ancient historical school where, no TV or broadcast
music is available but movies are sometimes displayed on the library’s projection

Fig. 17.1 View from Nesin
Mathematics Village (from
http://nesinkoyleri.org/eng/)
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screen (Fig. 17.2). Students often play their musical instruments at night, such as
guitars or the traditional Turkish musical instruments—the saz and kemençe—
which provide a musical ambience. In order not to disturb those who are working,
these mini concerts are usually given on Wednesday evenings, since everyone is
given the day off on Thursdays, when students engage in extracurricular activities
(Alladi & Rino Nesin, 2015).

17.2.2 Teaching and Learning in the Mathematics Village

At the Village, lessons are conducted in outdoor lecture theaters under the olive
trees (Fig. 17.3). Ali Nesin, the founder of the Village, said: “One of the aims of the
Mathematics Village is making the students feel the presence of an incredibly
beautiful world besides mathematics by showing them the mathematics they had
probably never seen before” (“Nesin Mathematics Village”, 2017). It is assumed
that the context of the village, which enables students to have freedom and to

Fig. 17.2 View of the library
(from http://nesinkoyleri.org/
eng/)

Fig. 17.3 Lecture in an open
amphitheater (from http://
nesinkoyleri.org/eng/)
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participate as they wish, will increase their curiosity about mathematics and pro-
mote their creativity.

Another key principle in the Village is the importance of ensuring the freedom of
the students’ ideas. Within that context, another Village norm is “mathematicians
without borders” (Alladi & Rino Nesin, 2015), which is also viewed as one of the
contextual features by which creativity is activated. For example, a mathematician
who visited and stayed at the Mathematics Village for a while explained his
experience as follows: “[…] my supervisor and I sat down to work on a problem
that had been eluding us for a long time at 9 a.m. after a nice breakfast. Three hours
later, we had the basis of a paper […]” (Alladi & Rino Nesin, 2015, p. 657). In
addition to that, there are other articles, certain parts of which were completed in the
Mathematics Village (i.e., Ayık, Ayık, Bugay, & Kelekci, 2013; Göral & Sertbaş,
2017). The researchers thanked the Mathematics Village for the support and warm
hospitality they had experienced during their stay. These cases could set an example
as to how the Village’s environment encourages researchers to be more productive.

Voluntary lecturers, who are employed at national and international universities,
teach the high school, undergraduate, and graduate level courses. The Village offers
students the opportunity to meet mathematicians from universities around the
world. Students are informed of the various programs through updates shared on the
Village’s social media pages and website. Programs last for two weeks and their
schedule is organized according to lecturers’ availability in the Village. Courses are
generally in Turkish but some courses could be instructed in English based on the
audience. For example, there are 14 courses organized for the students in 2016
undergraduate and graduate summer school from July 18th to September 25th
(“Nesin Mathematics Village”, 2017). The courses such as Inequalities, Calculus,
and Basics of Analysis are open for high school students. Other courses such as
Introduction to Group Theory, Introduction to Graph Theory,—Introduction to
Social Choice Theory, Affine and Projective Geometry are instructed for beginners
(i.e. 1st, 2nd and 3rd year undergraduate students), advanced undergraduate (i.e. 3rd
and 4th year undergraduate students), and graduate students (i.e. master and Ph.D.
students, researchers).

We have summarized a course named “Basics of Analysis” as a result of our
observations that lasted for four hours at the Village. The content of the course
contains axioms for the real numbers, Archimedean property, real numbers, natural
numbers, whole numbers, rational numbers, induction, ordered filed, Cauchy
sequences, non-standard numbers. The lecturer informed the audience that infinity
would be discussed in the course which took approximately 2 h. At the beginning
of the course, the lecturer stated “Hilbert Hotel” problem and associated it with the
concepts of limit and infinity. After introducing the problem to the students by
saying: “There is a hotel named Hilbert Hotel. The hotel has an infinite number of
rooms, each room has a number such as 1, 2, 3, 4, … Then a bus with an infinite
number of passenger stops by the hotel, the passengers can be numbered as 1, 2, 3,
4, … The hotel gives the first room to the first customer, the second room to the
second customer and so on. What do we do if the next day another customer wants
to stay at the hotel?” Then the lecturer changed the given numbers of hotel rooms
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and customers as: (i) the number of the rooms as (0,1) interval and the number of
customers as (0,1) interval, (ii) the number of the rooms as (0,1) interval and the
number of customers as [0,1] interval, (iii) the number of the rooms as (0,1) and the
number of customers as (3,∞) interval, (iv) the number of the rooms as (0,1) and
the number of customers as (0,1) � (0,1) open squares, (v) the number of the rooms
as (0,1) and the number of customers as R real numbers. At the end of the course,
he considered the number of the rooms as N and the number of customers as R real
numbers, then he explained why it would not work in this situation and added that
N and R has two different kinds of infinity. He also talked about George Cantor,
who was the first person to introduce this approach. We observed that the lecturer
took every idea of the students as a new way to solve the problem. He waited until a
student proposed an idea to the solution, which took approximately 7 min for every
situation. He also thought on and discussed every idea with other students and spent
approximately 12 min to further develop each idea. Then he demonstrated how
some of them could and/or could not be useful for solution. He did not push to get
an answer or idea out of the students during the lesson. Instead, he patiently waited
until the class came up with an idea. This observation has provided us with insight
into the context of the courses instructed in the Mathematics Village. Alladi and
Rino Nesin (2015) also characterize the instructional approaches used at the
Mathematics Village by comparing them to the approaches applied in conventional
Turkish schools, as follows:

Ordinary high school education in Turkey is geared toward the university entrance
examinations. As a result, the emphasis is on memorization, mindless competition, and end
result rather than thought processes. The Mathematics Village aims to counteract this by
giving high school students a glimpse of what university-level mathematics is. They learn
to think for themselves, argue coherently, and spot logical fallacies. Most importantly, they
see the process of solving a problem whose solution is not known beforehand. The
university-level teaching is organized around themes if the lecturers’ time permits, allowing
not only for concentration of research interests but also preparing the ground for cooper-
ation between colleagues in the same or related fields (p. 655).

As stated above, the instructional scope of the Mathematics Village coincides
with its creative activities, required tasks, and the implications for the classroom,
including thinking in new ways and making coherent arguments. For instance, one
of the high school students we interviewed in the Village says that “the lecturer
teaches the course by playing cards as if it is a game. Then we understood what we
had to do.” Below is one of the examples that is related to the probability concept
mentioned by a student (Nesin, 2008).

This is how the game goes: You are one of the players. There are three playing cards. One
of these cards has blue sides, let’s name this card as BB card. The other has two red sides,
let’s name this card as RR card. The last one has both blue and red sides, let’s name this
card as BR card. One of the players shuffles the cards without skunking, then randomly
picks up one of the cards and puts it on the table. You only see the color of the upside, not
the color of the downside of the card. You have to guess the color of the card’s down side.
If you guess the right color, that means you win. Suppose that the up side of the card is
blue, it means that the card could not be the RR card. It is either the BB card or the BR card.
Therefore the other side of the card would be either red or blue. The probability is 50
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percent for both colors. The chance of winning is 50 percent. On the other side the card on
the table will be BB or RR with a probability of 2/3. So, if you confuse the downside color
with the upside color, your chances of winning is 2/3. Thus, if a card’s upside is blue and
you assume that its downside is also blue, your chances of winning is 2/3, not 1/2 (50%).
Which of the calculations above is correct? Why is the other wrong?” (p. 141–142).

Another example mentioned by the students during the interviews is related to
“sum of the angles in a triangle”. In the interviews, a high school student explained
one of their lectures’ statements as: “The sum of the angles in a triangle does not
always equal to 180°.” The lecturer gave the students time to think and discuss on
this statement in the course. Then, the students have found out that the statement
was correct when the triangle is on spherical surface. The students consider this
such courses as surprising and inspirational journeys for themselves.

17.2.3 Participants and Data Collection

This study has been designed as a qualitative research to examine mathematical
creativity in the context of the Mathematics Village and the transformation of the
environment of Mathematics Village from a non-virtual environment to the Social
Media, which is a virtual environment. In addition, we explored whether the
Mathematics Village, which can be considered to be an alternative learning envi-
ronment, promotes the mathematical creativity of high school, undergraduate, and
graduate students, as well as professional mathematicians. We attended one of the
Mathematics Village summer schools as participant observers. The data collection
tools included individual interviews with two mathematicians, Deniz and Derya
(pseudonyms), who teach at the Mathematics Village. We conducted focus group
interviews with four high school students—Alp, Cem, Aylin, and Nazlı (pseudo-
nyms)—and three undergraduate and graduate students—Özge, Metin, and Emre
(pseudonyms). We have also conducted classroom observations that lasted for 4 h

Fig. 17.4 Setting for
interviews with students
(from http://nesinkoyleri.org/
eng/)
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in the “Basics of Analysis” course. The focus group interviews with students were
conducted in a natural setting at the Mathematics Village, as shown in Fig. 17.4.

We asked the students five open-ended questions, and asked the mathematicians
four open-ended questions, as listed in Table 17.1. We aimed to explore reflections
of the Mathematics Village’s environment through the perspective of students and
mathematicians. The interview questions led us to examine social interaction as a
characteristic of mathematical creativity in the Village (Amabile, 1996;
Csikszentmihalyi, 2000; Sriraman, 2004). We also asked the participants whether
they used any digital technology (i.e. social media) in the Village. Focus group
interviews with students lasted for approximately 45 min, and individual interviews
with mathematicians lasted for approximately 40 min. Prompts were employed as
necessary during the interviews to encourage the interviewees to share more about
their ideas. All the focus and individual interviews were videotaped.

The data retrieved from the interviews were coded and categorized with respect
to the experiences of the students and mathematicians (Patton, 2002). We analyzed
the data by focusing on the environmental aspects of creativity from a social
perspective (Amabile, 1996; Csikszentmihalyi, 2000) and by concentrating on the
Village’s properties of “openness, positive attitude to novelty, acceptance of per-
sonal differentness, and willingness to reward divergence” (Cropley, 2001, p. 67).
Afterwards, we have discussed the transformation of the creativity culture, which
emerged from the Mathematics Village, into the social media platform as a learning
environment (Dabbagh & Reo, 2011).

Table 17.1 Interview questions

Interview questions for students Interview questions for mathematicians

Questions on Mathematics Village
1. Could you compare the lectures you attend

in the Mathematics Village with those you
attend at your school/university? What are
their differences and similarities?

2. What are your opinions about the
Mathematics Village? Could you tell us
about your experiences at the Mathematics
Village?

3. Have there been any changes in your point
of view regarding mathematics after
attending lectures at the Mathematics
Village? If so, could you explain them in
detail?

Questions on Mathematics Village
1. Could you compare the lectures you give at
the Mathematics Village with those you
give at your school/university? What are
their differences and similarities?

2. What are your opinions about the
Mathematics Village? Could you tell us
about your experiences in the Mathematics
Village?

Questions on Digital Technology (Social
Media)
1. How did you find out about the

Mathematics Village?
2. Do you follow the Mathematics Village’s

social media accounts?

Questions on Digital Technology (Social
Media)
1. How did you find out about the

Mathematics Village?
2. Do you follow the Mathematics Village’s

social media accounts?
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17.3 Findings

In this study, we have examined the experiences of the students and mathematicians
within the context of the Mathematics Village, in order to explore how the
Mathematics Village promotes mathematical creativity. For that purpose, we cre-
ated two main categories: the experiences of the students and the experiences of the
mathematicians. The sections below discuss these categories and their
sub-categories, and Table 17.2 lists the various responses given by students and
mathematicians.

17.3.1 Experiences of Students in Mathematics Village

17.3.1.1 Different Approaches on Instruction

One of the sub-categories that emerged from the student experiences category for
the Mathematics Village is the different approaches to instruction. Since mathe-
matical instruction in Turkish schools is often rule-based, the students defined the
approaches they experienced at the Mathematics Village as different. For example,
Bora stated: “education in here [mathematics village] is different from that of the
school” and he further explained: “For example, they teach us about a mathematical
rule in the school and explain it as this is it! However, here they clarify the reason
behind the mathematical rule. That is really good and increases my curiosity on
mathematics.” Similarly, Cem explained how the instruction differs from his school
experience as follows:

We start an abstract object here and add on this abstract object for a while. And then, we
realize that we have spent two hours proving this rule, however, the teacher just tell us to
‘memorize this mathematical rule’ in our school. It is incredible to learn where mathe-
matical rules emerge from.

Cem also provided an example for his above statement: “For example; they did
not introduce us to the summation symbol “n(n + 1)/2” in the beginning of the
course, we saw it at the end of the course after conducting long algebraic

Table 17.2 Experiences of Students and Mathematicians at the Mathematics Village

Experiences of Students Experiences of Mathematicians

Different approaches on instruction
Activating Curiosity
Having more time to think
Being in a natural environment
Realizing the nature of mathematics
Living in the same habitat with mathematicians

Increasing productivity
Activating Collective creativity
Having no pressure
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operations, and then lecturer applauds!” Moreover, Aylin shared that at school
“they have difficulty with understanding mathematics” and she explains: “I do not
know the reason behind the mathematical arguments.” Aylin further explained her
thoughts within the context of polynomials:

In high school we learned polynoms but here [at Mathematics Village] it is really different,
first lecturer starts to teach and you ask yourself ‘what is it?’ You try to understand and at
the end of the course you realize they are polynoms. In high school we learned the concept
of polynoms in a 40-minute course, but here we learned it an in two-hour course. It
surprises us a lot because we are used to just having the formula and solving problems
according to it.

Students state that in their school they learn formulas and mathematical state-
ments at the beginning of their courses and then must solve problems based on
these formulas. However, when they attend the Mathematics Village, students
realize that they have difficulty understanding the meaning behind the formulas,
since they were never given the chance to question the reason why mathematical
formulas and statements were developed. In contrast to their school, they are not
introduced to formulas or mathematical statements at the beginning of the course at
the Mathematics Village. Learning the formulas and mathematical statements
happens at the end of the course and being taught the rationale behind them is
considered to provide students with a unique instructional approach, which can also
excite them.

17.3.1.2 Activating Curiosity

A second sub-category in the category of experiences of Mathematics Village
students is activation of curiosity. Students mentioned that being in the
Mathematics Village and learning different perspectives helped to foster their
interest in mathematics. For example, Aylin explained why the mathematics courses
that she took at the Mathematics Village promoted her curiosity, as follows:

Since elementary school we have been used to memorizing mathematical rules, they gave
us rules and then we solved the problems by using those rules and applying them to the
numbers given in the question. However, when I came here, my perspective has widened
and I have started to think about why this rule is like that and why it has been discovered.
This gives you curiosity. Following this curiosity you start to make an effort for mathe-
matics even if you could not previously succeed at it.

Similarly, Bora mentioned that the different instructional approaches increased
his “interest in mathematics a lot, which is really good.” To summarize, students
argued that the Mathematics Village’s instructional approaches that differ so much
from those they experience in their schools have helped them to be aware of the
rationales behind mathematical formulas and rules, which has activated their
curiosity.
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17.3.1.3 Having More Time to Think

A third sub-category in the category of experiences of Mathematics Village students
is having more time to think. Students indicated that having a different routine from
the ones they have at school provides them with more time to think. For example,
Cem explained how the environment of the Mathematics Village affected his
thinking as follows:

When you are here, you are in the world of this village, far away from the external world.
Here, in this little world, you have more potential to think for example when something just
falls down, you can discuss about it, like if you feel the wind […] you can get in the detail
about the issue.

Cem perceived the Mathematics Village as an isolated environment, which
helped him focus on specific topics that may or may not be related to mathematics.
Nazlı shared her ideas by comparing school life to life at the Mathematics Village,
as follows:

We have more time to think here. In school, you have 40-minute lessons and 10-minute
breaks, during which you try to relax; then go home and do your homework. However, our
purpose of being here is to think, so we have more time to think.

According to Nazlı, thinking is the fundamental objective of being at the Village.
She identified the routines of her life as a cycle of things that must be done and
which do not involve deep thinking. Aylin explained how she spends her time at the
Mathematics Village and how the environment affects her thinking, as follows:

Here you can think more because of the environment; you can just sit and think. For
example, I write essays when I am alone here. You can get into your inner world here. The
city where I live is very crowded and it is not possible to have time for yourself. After
school we get back home and do our homework, I do not like school because it makes me
exhausted, which does not allow me to have time for myself. But here, it is not like that, I
always have time to think about mathematics or life or different issues.

Comparing their routine here to their days in school, the students mentioned that
at the Mathematics Village they have time to think, study, or focus on subjects that
have attracted their interest. In addition, the students emphasized the positive
impact of having time to think.

17.3.1.4 Being in a Natural Environment

A fourth sub-category in the category of experiences of Mathematics Village stu-
dents is being in a natural environment. Students stated that living in an environ-
ment that differs from their home and school environments had a positive influence.
For example, Nazlı explained how her school environment differs from that of the
Mathematics Village: “We have neatly aligned traditional school desks in a con-
crete building and 40-min courses. Here [in the village] during the course a dog/cat
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can come and sit near us. After school when you come here you feel different.”
Aylin shared her ideas and feelings of when she was in Mathematics Village by
saying:

We grew up in the concrete jungle, the issues that we think here [Mathematics Village] is
different from there [their daily routine]. Because the environment has a big influence on
the amount of time we have to think. When you are in a different environment, you feel
different; you force yourself to be creative here. When you are in a concrete jungle, you see
the same things every day and it does not promote you to think of different issues.

Aylin defines in a striking way the environment she lives in as a “concrete
jungle.” This definition has led her to compare these two environments
[Mathematics Village and her town] to determine whether they nurture her cre-
ativity or not. Cem explained “I am saying this literally, not joking at all, here while
you are walking you can find a new formula that is what kind of an environment
this place has.” Özge expressed her ideas about living in the Mathematics Village,
as follows: “Here you realize that you need to work harder and this motive you a
lot. Even during lunch or dinner you talk about mathematics. You can ask each
other question while having dinner. Here is the environment of concentration.”

As described above, students discussed how their school environment differs
from that of the Mathematics Village with respect to the physical features. Along
with the physical features of the Mathematics Village, seeing other people studying
mathematics also positively affected their creativity, productivity, and motivation.

17.3.1.5 Realizing the Nature of Mathematics

A fifth sub-category in the category of experiences of Mathematics Village students
is realizing the nature of mathematics. Students stated that realizing how and why
mathematics has developed has positively influenced them and promoted their
curiosity. For example, Aylin mentioned that most people ask questions such as
“What is the purpose of learning mathematics? Why do we learn it?” She asserts
that, thanks to the Mathematics Village, she now has the answers to these questions,
which are as follows:

For example, when we have asked the lecturers [in the Village] why we learn mathematics,
they have answered our question by explaining it in detail; moreover their instruction is also
based on the roots of mathematics. Because of that mathematics now seems more useful to
me.

When Aylin realized why she was being taught mathematics, her perspective on
mathematics also changed: “Before visiting here, mathematics was just a course
that I needed to pass for me, but now I view it differently. If there are so many
people working in that field, there should be something interesting about mathe-
matics.” Furthermore, Bora made the following statement: “For example, we learn a
formula or a new subject here, we realize that this subject has emerged from a need
or a curiosity.”
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Being in the Mathematics Village has promoted students to think at the
meta-level about what mathematics is and how it has emerged. Thinking in such a
manner has also raised the awareness of students regarding the nature of mathe-
matics. Moreover, it is significant that students have engaged in reflective thinking
on the need for and the benefits of mathematics.

17.3.1.6 Living in the Same Habitat with Mathematicians

A sixth sub-category in the category of experiences of Mathematics Village stu-
dents is living in the same habitat with mathematicians. Due to the structural design
of the Mathematics Village, the mathematicians and students live in the same
habitat, and students recognize the benefits of doing so. For example, Nazlı
explained the advantage of being in the same environment with the lecturer in this
way: “Here we have chance to ask questions whenever we want to. Lecturers also
gave us the opportunity to ask them questions during the day.” Bora discussed the
positive effects of seeing the people who work in the field of mathematics, as
follows:

Everywhere you go here, there are people working on mathematics, you can ask any
question you want. Everywhere there are mathematicians and mathematics teachers. There
are lots of books about mathematics, these all have a positive effect in terms of learning and
improving yourself in mathematics.

With respect to the opportunities presented to him by the Mathematics Village,
Bora valued the freedom to ask questions anytime, being able to discuss mathe-
matics with anyone who was around, and having access to all sorts of resources for
mathematics. Cem explained his experience of living in the same environment with
mathematicians, as follows:

When I was in the mathematics village, an English professor was proving a theorem and it
got everyone excited in the village. The Professor was explaining in English, even though I
could not understand anything, it was still very exciting. In the library there was no noise
except for the sound of chalk and the professor, it was really very fascinating.

Cem stated that witnessing a mathematician prove a theory was an exciting and
fascinating process. Besides, Cem also mentioned that even though he was unable
to understand the proof process, he was impressed by the environment he was in.
Metin, one of the graduate students, argued the benefits of meeting scholars, who
have different perspectives and who come from different countries, by saying:

The main advantage of being here is having the opportunity to network with students and
mathematicians coming from not only different parts of the country but also from different
countries throughout the world. Secondly, you have the advantage of receiving seminar and
courses from mathematicians, who are from other universities; this enables you to see
different domains and perspectives.

The students mentioned that one of the advantages of being in the same habitat
with mathematicians is they can easily ask questions and discuss mathematical
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issues whenever they wish. Also, getting to know students and mathematicians
from different universities and schools was another advantage for them, especially
in terms of the networking opportunities afforded by this community. Finally,
students specified that watching a mathematician while he/she proved a theorem in
the classroom was fascinating and very impressive.

17.3.2 Mathematicians’ Experiences About Mathematics
Village

17.3.2.1 Increasing Productivity

One sub-category in the category of experiences of the mathematicians at the
Mathematics Village is increased productivity. For instance, Dr. Deniz explained
how the Mathematics Village increases the productivity of mathematicians, as
follows:

Mathematicians who came here were able to write their articles thanks to the mathematics
village. One of the remarks made by one of the researchers visiting the village states: “For a
long time we were working on a problem with my advisor and while we were in mathe-
matics village, we completed the draft of the article in just three hours”. There are math-
ematicians who just came here for research and there have been 10 articles produced in the
mathematics village.

When we asked Dr. Deniz why so many articles have been produced at the
Village, she answered: “there are not responsibilities such as cooking, you just have
your dinner and go back to work. There is a magnificent library, when you go inside
you are impressed and you tell yourself here is the place for studying.”

Dr. Deniz stressed the fact that scholars could easily focus on their research due
to not having everyday life responsibilities while at the Mathematics Village. She
explained how such an environment makes mathematicians more productive,
mentioning that some mathematicians, while resident at the Village, have produced
up to ten scientific papers.

17.3.2.2 Activating Collective Creativity

Another sub-category in the category of experiences of mathematicians at the
Mathematics Village is activating collective creativity. Mathematicians value the
connections between the virtual and non-virtual environments, and emphasized the
importance of the collective creativity associated with an online platform (virtual).
For instance, Dr. Deniz explained her views about online platforms, which activate
collective creativity, as follows:

There is a blog, through which many researchers can get together and prove an important
theorem. Hence, the concept of creativity has been changed and network has gained more
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significance. A researcher writes a blog, where people can get together and prove signifi-
cant things. Therefore, the conception of creativity in mathematics has changed. The
importance of network has been lately revealed in the theorem of twin prime connections.
A researcher has started a blog, discussed proving a theorem, and written explanatory
articles about it. Thanks to this method, the articles accumulate under one place, which
results in collective creativity. In other words, it is not done by only one person, multiple
people write small pieces and it is shaped in time. Thus its results are stronger than those of
proven by only one person. This is a new type of creativity, and such environments can
trigger it.

Mathematicians have indicated that creativity occurs collectively through the
internet and, as such, researchers do not need to physically be in the same place,
which accelerates the productivity process. Considering networking within the
context of the Mathematics Village, Dr. Deniz stated:

We have evening seminars here. For instance, whenever I lecture a seminar, new questions
about my own research raise in my head. That’s because the researchers discuss their own
subjects or the questions in their head in such a comfortable environment, which takes
about an hour. Afterwards, we have the part where questions are asked and answered,
which is also quite beneficial. People learn about the research subjects of scholars.
Mathematicians get the chance to listen to other mathematicians’ lectures since they want to
learn from them and to develop a new perspective on their own researches. Thus, it is a
fruitful place for creativity.

Within the context of the Mathematics Village, mathematicians highlighted the
importance of collectively producing new ideas and describe how collective cre-
ativity is realized in online platforms. The productivity obtained from an online
platform can also be attained in the seminars organized at the Mathematics Village.

17.3.2.3 Having No Pressure

A third sub-category in the category of the experiences of mathematicians at the
Mathematics Village is having no pressure. Mathematicians stated that the absence
of any pressure in their environment allows them to do their research more easily
and promotes their creativity. For example, Dr. Deniz elaborated:

We are not under pressure here unlike the environment in the university. You have to
produce something in university; there is a pressure coming from the administration. But
you do mathematics only for yourself here, not because you have to do. When the pressure
disappears, the environment becomes more relaxing/comforting.

Dr. Deniz stated that they have more responsibilities at the university, whereas
they have no obligations while at the Mathematics Village. Being in such an
environment provided her with more freedom to think. Dr. Derya also explained
how researchers function when they are under no pressure, by providing a historical
example:

Philosophy, mathematics, and art are luxury. Why were mathematics and philosophy dis-
covered in ancient Greece, and not in South Africa or Zambia? Because people in Greece
lived in a relaxing environment, weather is nice, economy is good and they were teasing,
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this is teasing. And now, mathematics village provides people with an environment to tease.
They do not think about what to eat for dinner, washing clothes or doing the dishes. They
just come here and do their research.

Dr. Derya explained the kinds of places where people have been more pro-
ductive throughout the history and compared the features of these places with those
of other places. He explained that the Village provides a kind of environment
similar to those historical places such as ancient Greece, where mathematics was
deeply discussed and studied.

17.3.3 Transfer of the Context of Mathematics Village
(Non-virtual Environment) to Social Media (Virtual
Environment)

In this section, we primarily discuss the role digital technologies plays in the
Mathematics Village. Digital technology usage in Mathematics Village is not
explicitly connected to creativity or mathematics. It is rather associated with
socializing with other peers and gathering information via the websites of
Mathematics Village and social media accounts. Then, we propose a social media
platform that could be utilized as a learning environment with the creative char-
acteristics, which we have investigated in the Mathematics Village. The creativity
emerging within the Village is not related to the digital technology. Hence, it is
worth to transfer the creative environment of the Village into a non-virtual envi-
ronment in order to ensure the sustainability of creativity in such a unique
environment.

17.3.3.1 The Role Digital Technologies Play in the Mathematics
Village

Students use the Village’s website and social media accounts to gather information
about the Village and the courses available before coming to the Village. They also
used the Village’s website in order to register for the courses given at the Village.
Furthermore, after leaving the Village, they used social media accounts to keep in
touch and to get together with the other students they met at the Village. While at
the Mathematics Village, students do not use the television, computers, or the
Internet. Only undergraduate and graduate students use computers and the Internet
for the purposes of research. Aylin, who is a high school student, made the fol-
lowing statement about technology usage at the Mathematics Village:

We do not use computers. Undergraduate students can use computers; and if we have a
research to do we can use their computers. We do not have television here, which makes me
feel more relaxed. Before I came here, I was watching television quite often. After I came
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here I realized that I do not need television. I started to allocate my own time and socialize
more.

The students stated that they have mostly used technology to obtain information
about the Village from its website and social media accounts. Bora explained this in
the following way: “Before coming to the village I was so excited and I was
constantly checking Village’s website and reading all of the information about it, I
have almost memorized everything. I was also checking their social media
accounts.” Nazlı stated: “I know that instruction of mathematics is different from
those in other schools. When I check the website online, I realize that opportunities
given in the village are extensive and different from those provided in other
schools.” Aylin said: “After taking a look at the Village’s website, I got motivated
and excited about going to the village.”

The students also asserted that they visited the Village’s website in order to
register for courses given at the Mathematics Village. Nazlı claimed that the
application process is very competitive, stating “When it is open for registration,
you can see the courses immediately get full.” Aylin constantly followed the
application period online, and added “if registration is open, I should sign up
immediately.”

Emre stated that international students who have been at the Village “have
information about the village through their lecturers or friends on social media.” In
addition, one of the international students was informed about the Mathematics
Village through an online forum. Metin explained: “A student from Netherlands has
asked a question in an online forum and another student has answered his question.
Afterwards, they have kept in touch and the other student has provided the students
from Netherlands with information about village.” In addition to information about
the students’ use of technology, the founder of the Village stated that he uses social
media for “making announcements regarding the mathematics village.”

Özge reported that students who have attended the Village have social gather-
ings after they return home: “When we have met each other here [Mathematics
Village], we have also become friends via our social media accounts. If we are ever
in the same city, we meet in order to see each other again.”

We conclude that the role the digital technology plays in the Mathematics
Village is neither a part of teaching and learning mathematics nor for promoting
creativity. Besides, the structure of digital technology usage in the Village does not
bare creative features.

17.3.3.2 Transformation of the Creative Characteristics of
the Mathematics Village (Non-virtual Environment) into
Social Media (Virtual Environment)

In this section, we summarize the creative characteristics of the Mathematics
Village. Then, we discuss how these features of Mathematics Village could be
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transformed into a Social Media platform that can be utilized as a learning
environment.

We have explored experiences of the students and mathematicians within the
context of the Mathematics Village, in order to find out how the Mathematics
Village promotes mathematical creativity. According to the experiences of students
and mathematicians, we identified that Mathematics Village provide participants
with an environment that has the following characteristics: different approaches on
instruction, activating curiosity, having more time to think, realizing the nature of
mathematics, living in the same habitat with mathematicians, increasing produc-
tivity, activating collective creativity, having no pressure. Thus, we could argue that
the Mathematics Village provides students and mathematicians with a free and
democratic environment without having any obligations, which is a key aspect for
creativity (Levenson, 2011). In a similar manner, social media enables students to
think freely by collaborating with their other peers (Peppler, 2013). Hence, trans-
forming a non-virtual environment, which bares creative aspects in its structure,
into a virtual environment ensures continuity of the real environment in a digital
way. Thus, transforming the environment of Mathematics Village into a social
media platform is can be named as beneficial. Besides, we believe that utilizing a
social media platform as a learning environment, which emerges from real envi-
ronment, makes the social media platform, which is created due to inspirations from
a real environment, more practical and realistic.

We propose a social media platform that can be used as a learning environment
by structuring the classification of Dabbagh and Reo (2011) for social media usage.
Due to its nature which promises free thought and a democratic environment, social
media involves creative characteristics such as activating curiosity, having more
time to think and applying no pressure without any obligations (Levenson, 2011).
Thus, the basic structure of our social media platform consists of these creative
characteristics. In Fig. 17.5, we propose a social media platform, which includes
creative features for learning mathematics, with three classifications:
(1) Information-gathering, (2) Interaction and sharing, (3) Social networking.
Information-gathering level consists of realizing the nature of mathematics and
different approaches on instruction, because these characteristics enable participants
to collect and organize information through social media for their own performance.
Interacting and sharing level comprises of increasing productivity through social
interaction and collaboration as well as sharing, interacting, and collaborating with
mathematicians. Social networking level involves activating collective creativity,
since this level denotes social interaction at the highest level that contains aggre-
gating and synthesizing information from level (1) to level (2).

A social media platform could contain instructional activities including creative
characteristics such as different approaches on instruction and realizing the nature
of mathematics. The course titled “Ancient Greek Mathematics” given by David
Pierce in the Mathematics Village could be an example of an instructional activity
as given below in the platform.
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We shall investigate mathematics as it was done in the Mediterranean region (Alexandria,
Syracuse, Anatolia) in ancient times. This way of doing mathematics has been largely
forgotten since the development of symbolic algebra. Our point of view is not that math-
ematics has been improved by algebra, but simply that it has changed. We cannot under-
stand this change unless we look at ancient mathematics in its own terms, as best we can.
Possible topics of study include the following: (i) The theory of ratio and proportion
expounded in Books V, VI, and VII of Euclid’s Elements. (ii) Archimedes’s quadrature of
the parabola. (iii) Archimedes’s proofs of the theorems about spheres now remembered in
the formulas V = 4pr3/3 and A = 4pr2. (iv) The reason why Apollonius of Perga gave to
conic sections the names parabola, hyperbola, and ellipse (“Nesin Mathematics Village”,
2017).

The course aims at providing insight into how mathematics were done in ancient
times. The course enables students to think mathematically without using any
symbolic algebra. The students could appreciate what algebra brings for doing
mathematics. This course could be viewed as an out-of-the-box one, which enables
students to maintain their curiosity in order to promote their creativity. It also
provides insight into the nature of mathematics.

Such a social media platform could also include instructional activities with
different approaches on instruction, which involve enabling participants to think
and question the nature of mathematical concepts through associating them
everyday life examples. Here is an excerpt from the lecture notes named “How
natural are natural numbers?” provided by Ali Nesin in the Mathematics Village.

Level 1: Information gathering
-Different approaches on instruction
-Realizing the nature of mathematics

Level 3: Social networking
-Activating collective creativity 

Level 2: Interaction and sharing
-Increasing productivity through 
social interaction and collaboration
-Sharing, interacting and collaborating 
with mathematicians

Fig. 17.5 The social media platform as a mathematically creative learning environment
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I want to understand 5. First, I have to know what is 5? I mean, I have to define 5: let’s
define 5 by using the fingers of one hand. Let’s try to understand 5 through this definition.
Which 5, that I have to understand […] How will I define bigger numbers by using such a
definition? In a more general sense, how will I define the concept of a “number”? There is a
difference between defining the numbers individually and defining the concept of a number.
What will we do? We will differentiate the ‘real world 5’ and ‘the mathematical world 5’.
Mathematical 5 is not related or is only related a very small extent to the fingers of your
hand. We will define a 5 that is brand new. […] The important issue here is to provide the
properties of defined numbers and operations, not how we define numbers and operations.
This is one of the most important characteristics of what makes mathematics mathematics.
In a more accurate statement, this is what makes modern mathematics what it is (“Nesin
Mathematics Village”, 2017).

This discussion demonstrates the beauty and the nature of mathematics. The
excerpt given above also is an example, which helps one to realize the mechanism
of mathematics as a discipline. This indicates how a mathematician discusses the
nature of a mathematical concept and how it is different from its everyday life
usage.

Social media platform could enable participants to interact and share with their
other peers and mathematicians. Besides, interactions and collaborations have the
potential to activate curiosity of participants through discussions and sharing within
the context of the instructional activities given in the platform. For example, par-
ticipants could interact, share and collaborate with other participants by discussing
about the division within the structure of the following instructional activity, which
is a part of Alexandre Borovik’s lecture notes used in the Mathematics Village:

Dividing apples between people. I take the liberty to tell a story from my own life; I believe
it is relevant for the principal theme of the paper. When, as a child, I was told by my teacher
that I had to be careful with “named” numbers and not to add apples and people, I
remember asking her why in that case we can divide apples by people: (1) 10 apples: 5
people = 2 apples. Even worse: when we distribute 10 apples giving 2 apples to a person,
we have (2) 10 apples: 2 apples = 5 people Where do “people” on the right hand side of the
equation come from? Why do “people” appear and not, say, “kids”? There were no
“people” on the left hand side of the operation! How do numbers on the left hand side know
the name of the number on the right hand side? (“Nesin Mathematics Village”, 2017).

Thinking about the relation between apples and people could make students
realize the meaning of the division. Social interaction and sharing this kind of
problem could promote students to think creatively on not only the conceptual
understanding of concepts, but also procedural understanding of them.

Such as social media platform could provide participants with an environment
that has the potential to activate collective creativity. For instance, one of the
mathematicians in the Village has highlights the potential of social media platforms
to activate collective creativity, as follows:

A researcher has started a blog, discussed proving a theorem, and written explanatory
articles about it. Thanks to this method, the articles accumulate under one place, which
results in collective creativity. In other words, it is not done by only one person, multiple
people write small pieces and it is shaped in time. Thus its results are stronger than those of
proven by only one person. This is a new type of creativity, and such environments can
trigger it.
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In this social media platform, participants could start a discussion about solving
a problem or proving a theorem. Other participants could write their solutions under
this discussion board, thereby all of the proposed solutions could be found under
one section. The problems could be solved or theorems could be proved by not just
one participant, but by all of the participants attending the discussions in a col-
lective manner.

17.4 Discussion and Conclusion

In this study, we have examined how the Mathematics Village could promote
mathematical creativity, as well as the transformation of the culture of mathematical
creativity that emerged from the Mathematics Village (non-virtual environment)
into Social Media (virtual environment). The results of this study contribute to the
literature due to the fact that this study examines how providing a context, in which
people with different levels of education and interest in mathematics could activate
mathematical creativity, and how the creative characteristics of the Village could be
transformed into a virtual environment.

We have found out that the environment of the Mathematics Village, which do
not have any digital technology, promotes the creativity of the students and
mathematicians. We have discussed the creative characteristics of Mathematics
Village from a social perspective rather than a solely individual perspective
(Amabile, 1996; Csikszentmihalyi, 2000). We found that what really matters in
promoting mathematical creativity depends on the mathematical content itself, the
teacher and his/her practices, and the teaching environment. To promote the cre-
ativity of its students, the Mathematics Village—a building complex situated in a
natural environment—applies unique instructional approaches rather than those that
are rule-based. The Mathematics Village activates the curiosity of its students about
mathematics, which helps to increase their awareness of what there is to learn about
mathematics and how best to learn it. We found that students feel much more
confident and have more freedom in their thinking about mathematics, compared to
the standard education provided in their schools. Pehkonen (1997) stated that the
freedom to work on mathematics provides students with the possibility to identify
and use their own methods of problem solving and to engage with mathematics.

While teachers in the disciplines of language arts, science, and social sciences
often encourage their students to explore, question, interpret, and be creative in their
studies, mathematics teachers have often relied on rule-based activities rather than
working to activate student creativity (Mann, 2006). In contrast to rule-based
instruction, which high school students receive in their schools, at the Mathematics
Village, students are given instruction that activates their creativity and curiosity.
With respect to mathematicians, in addition to the natural setting of the
Mathematics Village, the absence of pressure from the university administration
and being removed from the obligations and responsibilities of daily life made them
more productive. At the same time, by living close by other colleagues,
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mathematicians can discuss and critique their research, learn from each other, and
activate collective creativity.

The findings of this study align with those of the Vittra schools (“Personalize
learning”, 2017), in that the Village environment promotes mathematical creativity
of students. In addition, the Mathematics Village enables mathematicians to activate
their own creativity. From that perspective, having an educational setting that
provides freedom can positively affect the states of mind and creativity levels of its
students. Therefore, it is important to make available schools with educational
settings in which the creativity of students is activated.

Digital technology usage (e.g. social media) could possess the potential to
trigger creativity and enhance mathematics learning (Baya’a & Daher, 2013;
Peppler, 2013). We strongly believe that additional adjustments to the effective and
purposeful use of digital technology could enrich the contribution of the
Mathematics Village to the people interested in mathematics. The architecture of
the Mathematics Village resembles ancient school only uses online tools for
introducing itself to the society (Mathematics Village’s website and social media
accounts: http://nesinkoyleri.org/eng/; https://www.facebook.com/matematik.koy;
https://twitter.com/mat_koyu?lang=en). Not only can Turkish people attend the
Mathematics Village, but so can those from around the world. Together, by wel-
coming national and international scholars and students to join the school, the
Village provides opportunities to establish global networks. In order to ensure the
sustainability of this global network, we have transformed the culture of mathe-
matical creativity, which emerges from the Village, into a social media platform.
We have proposed a social media platform that can be utilized as a learning
environment, promises free thought and a democratic environment and has the
features of activating curiosity, having more time to think and applying no pressure
without any obligations. The social media platform has the following classifica-
tions: (1) Information-gathering, (2) Interaction and sharing, (3) Social networking
which includes creative features for learning mathematics. Students have the
opportunity to access to this social media platform, which consists of mathemati-
cally creative activities and enables interaction among students and mathematicians.
The social media platform plays a key role in enabling participants to interact and
share their ideas with one another even when they are not physically in the same
place (Peppler & Solomou, 2011). Interacting and sharing information via social
media could also increase the productivity of participants (Dabbagh & Reo, 2011).
Besides, social media platform have the potential to bring mathematicians and
students from all levels together to discuss specific topics about mathematics, to
solve problems or to prove theorems, which pave the way for promoting collective
creativity. Through collective creativity, participants of the social media platform
produce new ideas or propose solutions on specific mathematical topics, which
increase their productivity by providing interaction among participants throughout
the world.

In this study, we only provide examples from the courses given in the
Mathematics Village, which could serve as mathematically creative activities could
be placed in the social media platform. Further studies could be focused on
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designing and determining the creative mathematical content of the social media
platform for students from different levels. Besides, mathematically creative
problems could be placed in the social media platform, so as to enable mathe-
maticians and students to interact and share knowledge with one another.
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Part VI
Learning from the Theories and Patterns

of Students’ Creativity



Chapter 18
APOS Theory: Use of Computer
Programs to Foster Mental Constructions
and Student’s Creativity

Draga Vidakovic, Ed Dubinsky and Kirk Weller

The body of mathematics is a model of creativity, and it also
rests on a process of reflective abstraction.

(Piaget, 1981b, p. 227).

Abstract According to Piaget, the root of all intellectual activity is reflective
abstraction. In this context, mathematical creativity arises through students’ abilities
to make reflective abstractions. Considering that reflective abstraction is the main
premise of APOS Theory, the theory provides a theoretical tool to guide the
development of instruction that supports mathematical creativity. The letters that
make up the acronym—A, P, O, S—represent the four basic mental structures—
Action, Process, Object, Schema—that an individual constructs as he or she reflects
on and reorganizes content in coming to understand a mathematical concept. Much
of the instruction that involves the application of APOS Theory has been delivered
using the ACE Teaching Cycle, a lab-oriented pedagogical approach that facilitates
collaborative activity within a computer environment (programming and/or
dynamic). The letters that make up the acronym—A, C, E—represent the three
components of a pedagogical cycle—Activities, Classroom Discussion, Exercises
—that facilitate reflection and collaboration. Numerous studies have demonstrated
the efficacy of this approach when applied to the teaching and learning of a variety
of mathematical topics at the elementary, secondary, and collegiate levels. We
illustrate this with a description of instruction for the topics of cosets, infinite
repeating decimals, and slope. To introduce these examples, we provide a brief
overview of APOS theory with all its components in the context of learning the
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concept of function. Opportunities for development of mathematical creativity are
emphasized throughout the entire chapter.

Keywords Creativity � Technology � APOS theory � ACE teaching cycle
Writing and running computer programs

18.1 Introduction

Over the past two decades many researchers have focused attention on mathe-
matical creativity in undergraduate mathematics teaching and learning (e.g., Silver,
1997; Savic et al., 2016; Tang et al., 2015; Zazkis & Holton, 2009; among others).
The recent guidelines of the MAA’s Committee on the Undergraduate Program in
Mathematics state that successful mathematics teaching should help students
develop critical and analytical skills along with ‘creativity and excitement about
mathematics’ (Schumacher & Siegel, 2015, p. 9). However, there is sparse evidence
in the literature about pedagogical strategies that support development of mathe-
matical creativity in the classroom (Savic et al., 2017).

In this chapter, we illustrate how APOS, a well-established learning theory
predominantly used in research in collegiate mathematics education, and the ACE
teaching cycle, its complementary pedagogical method, foster development of
mathematical creativity in a collaborative and technology enhanced classroom.

In Sect. 18.2, we offer a perspective on mathematical creativity and provide a
general introduction to APOS Theory and its application in the design of instruc-
tion. In the remaining sections, we illustrate how these general ideas have been used
in the development of instruction for specific concepts. In Sect. 18.3, we show how
the theory and pedagogical approach are applied to the teaching and learning of
three examples. In Sect. 18.3.1, we describe instruction on cosets (Dubinsky &
Leron, 1994) where students write short computer programs. In Sect. 18.3.2, we
show how the theory guided development of a computer application package which
students used to deepen their understanding of infinite repeating decimals (Weller
et al., 2009, 2011). In Sect. 18.3.3, we outline the details of a unit on slope using
Geometer’s Sketchpad (Jackiw, 2001). Throughout these sections, we explain how
our approach supports students’ mathematical creativity. We have designed the
diagram in Fig. 18.1 to illustrate this organizational structure.

For each example—cosets (Sect. 18.3.1), infinite repeating decimals
(Sect. 18.3.2), slope (Sect. 18.3.3)—we show how the general theory is applied to
devise a genetic decomposition for the concept being taught. A genetic decompo-
sition is a theoretical description that explains how a student may come to under-
stand a concept. This includes a description of the mental structures that a student
may construct along with the mental mechanisms that make those constructions
possible. After we describe the genetic decomposition for each concept, we show
how the theoretical description leads to the development of instruction. In each
case, the instruction involves an application of technology. For cosets, students
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were asked to write simple computer programs. This use of technology helped the
students to think of cosets as mathematical objects that could be collected into sets
to which a group structure could be applied. This supports students’ creativity
through the expansion of thinking, as students applied their knowledge of group
theory in the construction of quotient groups. For infinite repeating decimals, the
genetic decomposition guided the design of a pre-loaded computer package that
was used to strengthen students’ understanding of the relation between rational
numbers and their decimal representations. This supported students’ creativity
through connection, as students developed a stronger grasp of rational number
representations. In consideration of the concept of slope, we show how the prin-
ciples of the theory were used to design an instructional unit involving Geometer’s
Sketchpad (GSP). The work with GSP supported development of students’ cre-
ativity by helping them to conceive of the slope of a line as an invariant construct.
Exploring the concept of slope with GSP allows groups of students to prove in
different ways that the slopes of two parallel lines are the same no matter the
positions of the lines. Sharing multiple perspectives and approaches and ways of
exploration further students’ conceptual knowledge that strengthens their creative
thinking.

In what follows, we describe APOS Theory, a theoretical perspective based on
Jean Piaget’s theory of reflective abstraction. We explain how the theory guides the
development of instruction to support students’ mathematical creativity and their
learning of mathematics (Mann, 2006).

Theory 

Theoretical description of concept   

Development of instruction  
Incorporate 
technology 

Delivery using 
pedagogical approach 
that supports use of 

technology 

Guides 

Supports 

Mathematical 
Creativity  

Supports Supports 

Fig. 18.1 Organizational structure involving the theory, application, and relation to creativity
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18.2 The Theoretical Perspective: APOS Theory and
Mathematical Creativity

This section is divided into five subsections in which we describe the general
development of the theory and its application. In Sect. 18.2.1 we offer a perspective
on mathematical creativity inspired by our review of related literature. In
Sect. 18.2.2, we describe the elements of APOS Theory, a theory of learning that
has proven to be effective in helping students learn mathematics in creative ways
(Weller et al., 2003). In the next three subsections we show how the theory is
applied to instruction. We present the idea of a genetic decomposition
(Sect. 18.2.3), a description of the mental constructions students may make to learn
a particular concept. In Sect. 18.2.3 we show how a genetic decomposition guides
the development of instruction that typically involves use of technology. We
conclude this general discussion in Sect. 18.2.3.4 with a description of the ACE
Teaching Cycle, a pedagogical approach that accompanies instruction based on
APOS Theory. Throughout this section, we use the concept of function as an
example to illustrate these general ideas and to explain how instruction based on
APOS Theory supports students’ development of mathematical creativity. In
Sect. 18.3, we consider specific examples of how the theory applies and how
creativity is nurtured in the teaching and learning of cosets, repeating decimals, and
slope.

18.2.1 A Perspective on Mathematical Creativity

Our literature review revealed numerous definitions and descriptions of mathe-
matical creativity (Nadjafikhah, Yaftian, & Bakhshalizadeh, 2012). Considering the
purpose of this chapter and our particular theory of learning, we settled on the
following working definition:

An individual’s creativity in mathematics consists of the ability to observe patterns, to
combine or to reorganize ideas, or to apply techniques or approaches in possibly new
(novel) and useful ways when dealing with an unfamiliar situation. This type of activity
often involves the creation of new objects, new insights into the relation among one or more
existing objects, or reorganization of the structure among objects being studied (Haylock,
1987; Liljedahl & Sriraman, 2006; Nadjafikhah, Yaftian, & Bakhshalizadeh, 2012).

In the realm of the professional mathematician, this type of activity leads to
original work that “extends the body of mathematical knowledge” (Liljedahl &
Sriraman, 2006, p. 19). In K–16 school and university mathematics, this type of
activity can lead to “unusual (novel) and/or insightful solution(s)” and the “for-
mulation of new questions and/or possibilities that allow an old problem to be
regarded from a new angle” (Liljedahl & Sriraman, 2006, p. 19).

In his description of the development of intelligence, Piaget (1952, 1981b)
discussed creativity (in forms of innovation and invention of “new means”, 1981b,
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p. 331) and considered two of its aspects: the origin of creativity and the mechanism
of creativity. Application of the mechanism of creativity, the focus of this chapter,
is rooted in Piaget’s notion of reflective abstraction. According to Piaget (1973),
reflective abstraction consists of reflection and reorganization. The former involves
awareness and contemplative thought, in the sense of reflecting content and oper-
ations from a lower level of cognitive thought to a higher level or stage. The latter,
reorganization, refers to reconstruction of content and operations on a higher stage
or level that leads to the operations themselves becoming content to which new
operations can be applied. This general perspective on reflective abstraction forms
the basis of APOS, a constructivist theory of mathematical learning that is based on
the following premise about the nature of mathematical knowledge and how it is
developed (Asiala et al., 1996):

An individual’s mathematical knowledge is her or his tendency to respond to perceived
mathematical problem situations and their solutions by reflecting on them in a social
context and constructing or reconstructing mathematical actions, processes and objects and
organizing these into schemas to use in dealing with the situations (Asiala et al., 1996, p. 7).

Reflective abstraction connects the premise of APOS theory with mathematical
creativity. Piaget himself stated that “… all actions, all acts of intellectual creativity,
are processes of reflective abstraction” (Piaget, 1981b, p. 225). In using their
reflective capacity to respond to problem solving situations, students construct or
reconstruct certain mental structures—actions, processes, objects, and schemas.
These mental structures, as we describe and exemplify in the paragraphs that fol-
low, represent the cognitive building blocks that support mathematical creativity.
A student’s ability to construct these structures depends in part on motivation and
curiosity—the student’s tendency to explore and respond to a perceived mathe-
matical problem situation—and instruction—the teacher’s formulation of activities
and experiences that lead students to reflect on problem situations in a social
context.

18.2.2 A General Discussion of APOS Theory

APOS is an acronym that refers to the basic structures that individuals construct as
they come to learn mathematical concepts. The letters that make up the acronym—
A, P, O, S—represent the four basic mental structures—Action, Process, Object,
Schema—that an individual constructs as he or she reflects on and reorganizes
content in coming to understand a mathematical concept. These mental structures
are developed by the mental mechanisms of Interiorization, Reversal, Coordination,
Encapsulation, De-Encapsulation, and Thematization. The theory indicates how
these mental mechanisms are linked and how they are applied in construction of the
mental structures described by the theory (Arnon et al., 2014).

APOS Theory is rooted in the notion of mathematics as the study of mental objects
(Dubinsky & McDonald, 2001). Similar to the natural sciences, this involves
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knowing and studying the properties of these objects. Like the physical world, the
properties of mental objects are ascertained by acting on them. The difference
between mathematics and the physical world lies in the nature of the actions that are
applied to the objects as well as to the objects themselves. In the physical world, the
objects are concrete and tangible; they are part of our sensory experience. The actions
applied to them, such as measuring, weighing, and moving, are also part of that
realm. By way of contrast, the objects in mathematics are abstract and, in terms of
sensory experience, intangible; they are purely mental, as are the actions applied to
them (Dubinsky, 1991). APOS Theory serves as a model to describe how mental
mechanisms are activated in an individual’s mind and how the activation of these
mechanisms leads to the construction of mental structures that help students make
sense of mathematical concepts (Dubinsky & McDonald, 2001).

According to APOS Theory, a concept is first conceived as an action, that is, an
externally directed transformation applied to an existing mental object, or objects.
In the case of functions, students first think of a mathematical function as a pro-
cedure for taking an element of one set as input and calculating another element of
the same or different set as output according to explicit instructions. The sets and
their elements are existing objects to which the action is applied (Asiala et al.,
1996). At elementary levels, the objects are numbers and the assignment is exter-
nally directed, which, in the mind of many students, must be done by an algebraic
formula. With such an understanding, an individual is able to determine the com-
position FoG of two functions F and G, provided each is represented by a single
expression in a variable, say x, by replacing the x in the expression for F by the
expression for G and calculating, if necessary, to simplify. Thus, if the expressions
for F and G are represented by

F xð Þ ¼ x2 þ 5

G xð Þ ¼ x3;

the action is external, carried out principally through direct substitution and sim-
plification, as illustrated below:

x!G x3 !F x3
� �2 þ 5:

However, if the situation is more complicated, for example, if one or more of the
functions is defined in parts, as in,

T xð Þ ¼
�2x2; if x\0
5xþ 1; if x� 0 and x\3
3x2 þ 1; if x� 3 and x\10

8
<

:

S xð Þ ¼ x; if x\0
�x; if x� 0

;

�
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the learner needs to think how each part from T is linked with each part from S.
This goes beyond substitution. In order to put the expressions together correctly, the
individual needs to grasp the essence of how a function works. The individual must
think of evaluating T for the given x, determining which branch of S the value T xð Þ
belongs to and calculating S T xð Þð Þ. This occurs as a learner reflects on the action
and interiorizes that which is explicit into a more general process.

Mentally speaking, the newly developed process serves the same purpose as the
action that underlies it. The difference is that the action is no longer externally
directed but has been internalized (Asiala et al., 1996). For example, in the case of a
function given by an algebraic formula, the learner, when thinking about a function
as a process, grasps the general idea and can state as such: that a function defined by
a formula involves applying that formula to each input value (an element of the
domain) to obtain a unique output value (an element of the range). In this case, the
learner does not need, nor does he or she refer to, a particular formula, nor is it
necessary to explicitly calculate output values for specific input values (op. cit.).

The new mental structure of process enables the learner to engage in more
creative mathematical thinking. When thinking about a function as a process, as
opposed to an action, the learner no longer needs to think of, or to refer to, a
particular formula. This type of ability becomes essential when thinking about
situations where certain components of a function are not inherently obvious. For
example, to calculate the derivative of a function F represented by an expression
like

F xð Þ ¼ sin
ffiffiffi
x

p
;

which requires application of the chain rule, a student needs to realize that F is the
composition of two functions, square root and sine (Clark et al., 1997). To see this,
a learner needs to think of a function as a process.

For an instructor, the theory provides a descriptive framework that guides
instruction. By knowing how a learner may come to understand a concept, an
instructor has the potential to develop activities and experiences that lead to
meaningful learning. For instruction based on APOS Theory, this has often
involved use of a mathematical programming language. Having students write
computer programs has been shown to facilitate interiorization (Breidenbach et al.,
1992). In the case of the concept of function, a process conception enables a student
to work with a wider class of functions than those represented by a single algebraic
or trigonometric expression (op. cit.). This supports mathematical creativity by
broadening the realm in which students can think about and work with functions.
Additionally, the interactive nature of computer programming activities enables
students to think more deeply about the concept of function. For example, when a
group of students writes incorrect programming code, they need to think more
deeply about the function concept in order to correct their errors. Discussions that
occur in such situations involve considerations of multiple perspectives that
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students test on the computer. As a result of their efforts to write and to correct
code, they re-evaluate their work and make revisions until they obtain correct
answers and representations.

The use of a mathematical programming language has also proven to be useful in
helping learners to think of a mental process as a mental object. This occurs when a
learner tries to apply an action to a process. In order to apply an action successfully,
the learner needs to make an encapsulation, that is, to reconceive the dynamism of
the interiorized action as a static entity, or mental “thing,” that can be acted on. For
example, a learner who sees a function as a mental object can move beyond specific
procedural steps to think in terms of unified entities that can be combined arith-
metically or organized as elements of sets. In the case of the composition of two
functions, say F and G, a learner with an object level of understanding of function
may think of G as an object to which a function F is applied when determining the
composition FoG (op. cit.).

Since mental objects arise by applying actions, the instructor plays an important
role in designing activities to help students to construct and to apply actions that
trigger encapsulation. When using a mathematical programming language, students
write programs in which they treat functions as objects—for example, a function
can be used as the input to another function. An object conception moves students
to a higher plane of mathematical activity; this supports the learner’s mathematical
creativity. Indeed, an individual’s ability to conceive of functions as objects is
essential to understanding differential equations, whose solutions are also functions.

When a process is encapsulated, the underlying process is not lost. Rather, the
individual, when necessary, can de-encapsulate the object back to its underlying
process when the situation calls for it. This is exemplified by the chain rule. Taking
the derivative of a composition of one or more functions is an action applied to the
functions. To conceive of this action, the functions that make up the composition
need to be encapsulated. In order for the individual functions to be recombined as a
single function, the individual functions need to be de-encapsulated into two
processes which are then coordinated into a single composition process. Once
encapsulated, the composition can be differentiated (Arnon et al., 2014).
Application of these mental mechanisms and the structures that result from them are
illustrated in Fig. 18.2, which summarizes this discussion for two arbitrary func-
tions f and g.

In this particular case, mathematical creativity is supported by having students
work with multiple representations in a variety of contexts. For example, rather than
having students think about the chain rule in a purely algebraic context, a more
creative approach involves having students apply the chain rule to non-algebraic
representations of functions. This type of activity can be facilitated by use of a
mathematical programming language (Clark et al., 1997).

The A ! P ! O progression of the development of a concept such as the
concept of function creates a system called a schema. According to APOS Theory, a
schema is the collection of mental structures and mechanisms that make up a
concept. Like a process, a schema can be thematized into a static structure that can
itself be acted on. In order for thematization to take place, the schema needs to be
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coherent. Coherence refers to the mechanism by which an individual ascertains
whether the schema can be used to deal with a mathematical problem solving
situation. For a mathematical function, an individual with a thematized function
schema can determine whether a relation between two sets defines a function. In a
more advanced context, an individual with a thematized set schema can create sets
of functions to which actions can be applied. The schema structure, and the role of
mathematical creativity in development of that structure, is illustrated in Fig. 18.3.

In addition to the mental structures and the mechanisms that link them, Fig. 18.3
illustrates the connection of the schema structure to mathematical creativity.
Actions applied to an existing object, or objects, depend principally on the design of
instruction, that is, on an instructor’s ability to create activities and/or experiences
that help a learner to re-organize, to expand, or to extend her or his thinking. The
same idea applies to activities that foster encapsulation or that support thematization
since both are triggered by actions and reflections on them. On the other hand,
interiorization, encapsulation, and thematization depend more on internal activity,
specifically, the students’ ability to carry out internally that which is directed
externally, to re-think something which is dynamic in terms of something that is
static, and to begin to think about a concept as a coherent whole. These activities,
on the part of both the instructor and student, support mathematical creative activity
since they lead to the formation of new mental structures; this leads to new insights
and new connections. We illustrate this further in Sect. 18.3 for the specific
examples of cosets (Asiala et al., 1997b), infinite repeating decimals (Weller et al.,
2009, 2011; Dubinsky et al., 2013), and slope (Reynolds & Fenton, 2011). For
these examples, we show how the theory guides the development of the instruction,

Function Process gFunction Process f

Encapsulation

Action: Composition
Function Object gFunction Object f

De-Encapsulation and Coordination

Composition Process 

Encapsulation

Action: Differentiation
Composition Object Derivative of 

Fig. 18.2 Diagrammatic representation of chain rule applied to composition of functions
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which includes the use of technology, and explain how our theory-based approach
to the instruction may support mathematical creativity.

18.2.3 Genetic Decompositions

In this subsection, we define the term genetic decomposition. We describe how the
general theory is used to develop a genetic decomposition for a given concept, and
explain how the decomposition and its implementation support the development of
mathematical creativity.

18.2.3.1 Definition of a Genetic Decomposition

The basic idea of APOS Theory is to elucidate Piaget’s notion of reflective
abstraction in the context of learning mathematics by describing the development of
thinking about mathematics in terms of a progression of the constructions of three
modes of thinking about a mathematical concept called action, process, and object
(Dubinsky, 1991). The progression is often complex and can involve subproges-
sions, relations to other concepts whose understandings have been previously
constructed by an individual, and the application to specific problems. A description
of a possible progression for a particular concept is called a genetic decomposition.

Actions

Objects

Process

Interiorization

Encapsulation

Coordination
Reversal

Thematization
(Depends on Coherence)

Schema
as

Object

Applied to

Creativity supported principally 
through instructional design

Creativity supported principally 
through learner reflective activity

Creativity supported by instructional design together with learner reflective activity

Creativity supported through instructional design together with learner reflective activity

Fig. 18.3 Diagram of mental structures
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A genetic decomposition is a description of the construction of mental structures
and relationships among them that an individual might need to make in order to
construct an understanding for a concept (Arnon et al., 2014).

A genetic decomposition for the function concept consists of a (not necessarily
linear) progression from action to process to object. We give a diagrammatic rep-
resentation of the genetic decomposition for the function concept in Fig. 18.4.

18.2.3.2 Genetic Decomposition as a Tool in the Design of Instruction

APOS Theory can be used as a tool to design instruction. The implementation of
instruction provides an opportunity to gather data to determine whether students
make the mental constructions called for by a genetic decomposition. Analysis of
the data may lead to refinement of the genetic decomposition, which in turn may
lead to revision of the instruction. This creates a cycle of continuous improvement;
the goal is development of instruction that aligns with how students might construct
their understanding of the concept in question. We give a diagrammatic represen-
tation of the cycle in Fig. 18.5.

While a genetic decomposition for a concept may be quite complex, every
decomposition is rooted in the theory, which describes the mental structures
learners may need to construct to understand that concept. As students work with
the concept, certain mental mechanisms are activated. Each of these mechanisms
represents an instance of reflective abstraction. Thus, a genetic decomposition
provides a mental roadmap that guides instruction. On the basis of Piaget’s per-
spective, that “… all acts of intellectual creativity are processes of reflective
abstraction” (Piaget, 1981b, p. 225), it follows that instruction based on a genetic
decomposition has the potential to support a learner’s mathematical creativity. One
of the instructional tools that is often used as part of APOS-inspired instruction is a
mathematical programming language. The use of such a tool is discussed in the next
subsection.

18.2.3.3 The Use of a Mathematical Programming Language

A mathematical programming language is a computer language that supports major
mathematical structures using a syntax that is identical or close to standard math-
ematical notation. Among the mathematical programming languages available, our
preference has been ISETL (Interactive SET Language), a language based on the
language SETL (SET Language), which was developed by J. Schwartz (Dubinsky,
1995) to write the first successful ADA compiler.

In our use of a mathematical programming language, students analyze and write
simple computer programs. By simple, we mean short (usually not more than about
10 lines), with a minimum of complex programming structures. The general way in
which a mathematical programming language works in relation to APOS Theory is
illustrated in Fig. 18.6.
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Typically, the construction of a new concept, which starts as an action applied to
an existing mental object, involves having students carry out computational tasks
with code that may be given to them. After writing and running their programs, they
are often asked to explain what the program does and how. They may be asked to
use the code to repeat procedures, to predict the results, or to make modifications.
All of this is intended to foster reflective abstraction.

Reflection on an action leads to interiorization of the action into a mental process
(Dubinsky, 1991). This is supported by having students replace code that carries out
a specific calculation with a simple computer program that carries out the calcu-
lation for unspecified values, that is, the learner transforms a specific calculation
into a general procedure. Our research strongly suggests that when students perform
these activities they tend to move the externally driven operations or actions to
internally driven mental operations or processes (Arnon et al., 2014). Or, to recall a

Action: The learner 
conceives of a function in 
terms of externally directed 
steps that take an input value 
and apply a rule of 
assignment to obtain a unique 
object as output value. 

Process: The learner 
reconstructs the actions that 
make up a function to create an 
internalized process that takes 
an input and assigns a unique 
output for every value of the 
domain. 

Object: The learner 
conceives of a function in 
static terms, as a mental 
thing to which actions can 
be applied. 

Interiorization Encapsulation

Fig. 18.4 Genetic decomposition for the concept of function

Mathematical Concept APOS Theory

Genetic Decomposition

Instruction

Gather and Analyze DataMathematical Creativity

Supports

Concept analyzed cognitively 
in terms of the theory

Analysis conducted in the 
context of the theory

Revision based on 
analysis of data

Guides 
development of

Provides 
opportunity to

Preliminary analysis of the cognitive development of 
the concept in the context of the theory leads to

Fig. 18.5 Relation of theory, genetic decomposition, instruction, data analysis, opportunity for
creativity
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phrase, not totally facetiously spoken in the early days of computer programming
60 years ago, “writing computer programs affects your mind.”

As an action is applied to a process, the reflective abstraction of encapsulation
may be performed to conceptualize the process as a cognitive object (op. cit.).
Again, our research strongly suggests that encapsulation tends to occur as a student
begins to treat the process as the input or output of a computer program, to use the
process as a subroutine in a more elaborate program, and/or to operate on the
process within a program. In each case, he or she thinks of and treats the process as
a static entity rather than focusing exclusively on its dynamism.

As these mechanisms of reflective abstraction are applied (usually subcon-
sciously), and lead to the formation of the new mental structures, opportunities for
mathematical creativity arise as students obtain the mental tools to create higher
level objects to which new actions can be constructed and applied (op. cit.). We
illustrate these ideas in the case of functions.

For the concept of function, which begins as an action of assigning elements of
one set to elements of another set, students might first be asked to predict the output
returned by a func (subroutine) when given specific input values. A func is an
ISETL command for a mathematical function. It accepts variables, returns output,
and can include lines of code to assign a unique output for every input. The way in
which a func is used is illustrated in the following lines of ISETL code represented
by a func f in which students are asked to predict the outcome for specified input
values, in this case −3, 2, 5, 8, and 11, and then to verify their predictions by
running the code.

Process

Use of generalized procedure 
(program) in an expression and/or 

as input or subroutine within 
another program

Newly Constructed 
Object

Existing Object

Action

Carry out computational tasks

Write programs that transform 
specific computations into 

generalized procedures

Encapsulation

Interiorization

Supports 

Supports 

Supports

Interpret lines of code, perform 
specific computations, make 
predictions and check work

Opportunity for 
creativity

Fig. 18.6 Relationship between A ! P ! O sequence of mental structures and instructional
activity as opportunities for creativity (Arnon et al., 2014)
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> f:=func(x);

� if x<0 then return 2*x**2;

� elseif x>=0 and x<3 then return 3-x**3;

� elseif x>=3 and x<10 then return 3*x+1;

� else return ”function not defined”;

� end;

� end;

>

>

> f(-3); f(2); f(5); f(8); f(11);

18;

-5;

16;

25;

“function not defined”;

Unlike an algebraic formula in which students substitute values and apply
operations to obtain a result, the programming feature encourages students to think
about how elements of the domain are transformed to yield elements of the range.
This type of activity is indicative of mathematical creativity: the analysis of simple
computer programs helps students to grasp the essential idea of the concept of
function in a broader context. To trigger interiorization, students may be asked to
explain in general what the computer is doing when the func f is executed.

In devising a func that carries out the instructions specified in the exercise,
students need to go beyond superficial features of its representation to think more
critically about what a function is and how it behaves. According to our working
definition (Sect. 18.2.1), this type of activity exemplifies mathematical creativity—
the learner applies a technique (constructing a function) in a possibly new and
useful way (using programming) when dealing with an unfamiliar situation (the
concept of function).

In addition to interpretative activity, students might be asked to construct their
own funcs using the mathematical programming language. For instance, for a
problem situation, like the following:

You have a rectangular piece of cardboard given by the dimensions 20 inches by 30 inches.
You plan to cut squares out of each corner and then fold up the sides to create a box. How
would you determine the volume of the box for different cuts that are made?

Students use the mathematical programming language to construct a func,
which might take the following form:

> V:=func(x);

� if 0 < x and x < 20 then

� return (20-x)*(30-x)*x;
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� end;

� end;

After constructing this func, students are asked to test their code for different
input values.

In writing a func, students begin to generalize the assignment action of a
function. In order to write code for a func, students move away from carrying out
specific actions, such as determination of an output for a specified input, and think
more in terms of a generalized procedure, or process. Our experience as teachers
suggests that it is doubtful that this more general conception of a mathematical
function would be as apparent, or even possible, without the use of a computer
program such as ISETL. In this sense, programming supports the development of
creativity as students are able to think of functions in a more general context.

As we have said, applying an action or process to an existing process triggers
encapsulation. When working with functions, this can occur when a student is
asked to write a function that accepts one or more funcs as input.

Write a computer function D that accepts a function f and returns a computer function that
gives, for any value of x in the domain of the function, the value of the difference quotient
for a value of h.

In the code that follows, the func D enables ISETL to compute the difference
quotient for any specified function f at any domain point x using a difference h (h
here is a global variable although it does not have to be and can be included as a
second parameter).

> D:=func(f);

� return func(x,h);

� return (f(x+h)-f(x))/h;

� end;

� end;

For instance, if the function k is defined by k xð Þ ¼ x2, which would appear in
ISETL as

> k:=func(x);

� return x**2;

� end;

the call D(k)(1,0.01); returns the value of the difference quotient for k at
x ¼ 1 when the difference h ¼ 0:01.
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> D(k)(1,0.01);

2.010;

In writing a func that accepts a function as input and returns a function as
output, the learner moves from thinking of a function exclusively in dynamic terms
to seeing a function as a “thing” that can itself be transformed.

Asking students to carry out these activities, and using programming to do so,
involves creative instruction on the part of the teacher and creative thinking on the
part of the learner. The creative aspect for the instructor is the use of programming.
The creative aspect for the student is the possibility for new connections and new
insights (Weller et al., 2003). The act of writing computer programs that involve the
application of functions, operations on functions, and use of functions as subrou-
tines within other functions helps a student to grasp the essence of what a function
is and what it does. Development of this ability is essential for advanced thinking
involving function concepts. For example, to form a function space and to equip it
with a topology, one must first think of functions as mental objects. In order to see a
relationship between two sets as defining a function, particularly in situations where
it is not obvious, one must construct a coherent function schema. The ability to
think of a concept structurally and then to apply it, without having to rely on
external cues, is, according to our working definition (Sect. 18.2.1), at the heart of
the ability to think creatively.

18.2.3.4 The ACE Teaching Cycle

One instructional sequence that often accompanies APOS Theory is the ACE
Teaching Cycle (Arnon et al., 2014). The ACE Teaching Cycle consists of three
components: (A) Activities; (C) Classroom Discussion; and (E) Exercises. For the
Activities phase, students work cooperatively in a laboratory setting in which they
use a mathematical programming language or dynamic software to complete tasks
designed to help them to make the mental constructions suggested by the genetic
decomposition. The focus of these tasks is more to promote reflective abstraction
rather than to obtain correct answers. That is, the activities are designed to help
students to make abstractions, not from the object itself but from their own actions
on the objects (Piaget, 1981a). For the Classroom Discussion phase, students work
on tasks that build on the lab activities completed in the Activities phase. As the
instructor guides the discussion, he or she may provide definitions, offer explana-
tions, and/or present an overview to tie together what the students have been
thinking about and working on. For the Exercises phase, the instructor typically
assigns fairly standard problems to reinforce the reflective activity that has taken
place during the first two phases. In addition to supporting continued development
of the mental constructions suggested by the genetic decomposition, the exercises
may call for students to apply what they have learned and to consider the concept
they are studying in relation to other mathematical ideas (Asiala et al., 1996). Every
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step in the instructional sequence provides an opportunity for the development of
creative thinking. The computer activities help students to make the mental con-
structions called for by a genetic decomposition; this type of activity may help the
learner to think of or to identify certain actions (from which properties of the object
of study are derived), to compare them with similar actions (or analogies), or to
modify and apply them to a new situation. In these activities students are often
asked to observe and state in complete sentences their conjectures and to explain
their thinking behind those conjectures. In this context, creativity is supported as
students construct mental structures that lead to higher levels of thinking. Since the
activities are usually done in small groups, this usually triggers discussions,
negotiations, and clarification of the statements that are part of a group’s response.
The classroom discussion offers an opportunity for students to refine and to reflect
on their thinking. Creativity is supported as students learn to revise their thinking in
a social context. The exercises help students to solidify their fluency in working
with the concepts they are learning. Creativity is supported as students are prepared
to study new concepts.

While instruction based on APOS Theory lends itself to instruction involving the
use of a mathematical programming language, its use is not required. It is simply
the case that activities based on a mathematical programming language have been
effective in helping students to learn mathematical concepts (see Weller et al., 2003;
Arnon et al., 2014).

18.3 Use of APOS Theory and Technology in the Learning
of a Mathematical Concept

18.3.1 Teaching and Learning of Cosets

Cosets play an important role in the study of abstract algebra. They form the basis
for theoretical results in finite group theory, such as LaGrange’s Theorem, and,
when certain criteria are met, enable the creation of new group structures such as
quotient groups.

Given a group G and subgroup H, the cosets of H in G partition G according to a
particular equivalence relation. Specifically, if a; b 2 G, then a � b means that
ab�1 2 H. If the subgroup H is normal,1 one can define an operation on the set of
cosets of H in G to yield a new group structure called a quotient group. From
teaching experience and an APOS point of view, the main difficulty students have
in working with cosets is to encapsulate the coset process into an object. One of the
reasons for this difficulty is that the definition strongly suggests process to the
exclusion of object. Therefore, they do not understand how cosets can be elements
of a set or that a binary operation on a set of cosets is possible (Asiala et al., 1997b).

1A subgroup H of a group G is normal if aH ¼ Ha for every a 2 G.
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These difficulties, if not dealt with productively through instruction, can limit
students’ creativity and their potential to understand important concepts in math-
ematics beyond calculus.

One approach to address students’ difficulties with cosets has been to design
activities using a mathematical programming language. The activities and theory
behind their development is the subject of this subsection (Dubinsky & Leron,
1994).

18.3.1.1 Genetic Decomposition of Cosets

As discussed in Sect. 18.2.3.1, a genetic decomposition is a description of the
mental constructions that a student might need to make in order to come to
understand a concept. A coset is formed as an action applied to an individual’s
group schema (Dubinsky et al., 1994). An action conception involves forming
cosets in familiar situations that tend to be formulaic and explicit. An example2 is
the set of integers Z under addition with a subgroup bZ (b 2 Z) where a student can
construct (left) cosets3 aþ bZ by carrying out specific computations, listing ele-
ments, and describing patterns. An action conception is insufficient in more com-
plicated situations where cosets cannot be represented by formulas or simple recipes
(Asiala et al., 1997b). An example would be the symmetric group Sn beyond
familiar cases of small size such as S3 or S4.

A student who has developed a process conception can think of forming a left
coset without the need to work with a specific group, subgroup, or group element.
When thinking in terms of a process, the formation action becomes a generalized
procedure: given a group G; oð Þ, a subgroup H, and an element g 2 G, a (left) coset
is a set of the form g o h : h 2 Hf g. Thus, a process is indicated by a student’s
ability to internalize and generalize the action of coset formation (op. cit.).

In order to form sets of cosets, for example, to count them, or to define an
operation that defines a new group structure (under the assumption of normality),
the student needs to make a cognitive transition from the process of formation to an
ability to think of a coset as an entity that can be acted on. For this transition to
occur, the process of forming a coset needs to be encapsulated into a mental object.
Through encapsulation, the dynamic process of forming is transformed mentally
into an entity that one can imagine as already having been constructed. Figure 18.7
expresses this progression in diagrammatic form.

This cognitive progression guides the development of instruction which is
described in the next subsection.

2For b 2 Z, the subgroup bZ is of the form bx : x 2 Zf g.
3For a; b 2 Z, the left coset aþ bZ is a set of the form faþ bx : x 2 Zg.

458 D. Vidakovic et al.



18.3.1.2 Instruction on Cosets with the Use of a Mathematical
Programing Language

The genetic decomposition guided the development of instruction on cosets.
According to Asiala et al. (1997b), the instruction consists of three parts, each of
which corresponds to the progression of the development of the mental structures of
action, process, and object. The treatment of cosets is part of an abstract algebra
course (Dubinsky & Leron, 1994) that involves use of a mathematical programming
language (ISETL) imbedded in collaborative lab activities that are delivered
through the ACE Teaching Cycle (Dubinsky & McDonald, 2001).

Although not considered explicitly, the idea of cosets appears early in the course
as students become familiar with the computer language (ISETL) in the context of
learning about modular arithmetic. In one activity, students are asked to predict the
result of code for different funcs. A func is an ISETL command for a mathe-
matical function. It accepts variables, returns output, and can include lines of code
to assign a unique output for every input. For the sets
Z12 = {0,1,2,3,4,5,6,7,8,9,10,11} and H = {0,3,6,9} and the
func coset defined as

> coset := func(x);

� return {(x+h) mod 12 : h in H};

� end;

students predict the result of applying the func, for example, to determine
coset(2). They also consider whether alternative formulations, such as

> modH := |x -> {(x+h) mod 12 : h in H}|;

yield the same results.
In another part of the activity, they determine the union of a set of sets such as

Action: A learner can form 
cosets in familiar situations 
that tend to be formulaic and 
explicit.  Forming cosets 
depends on the activation of 
external cues.  

Process: A learner can think of 
forming a coset without the 
need to work with a specific 
group, subgroup, or group 
element.  The action of coset 
formation becomes a process 
or generalized procedure. 

Object: A learner can think 
of a coset as an entity to 
which actions can be 
applied.  The dynamic 
process of formation is 
transformed mentally into 
a static element or object. 

Interiorization Encapsulation 

Fig. 18.7 Genetic decomposition of cosets
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> %union{coset(g) : g in Z12};

After they make predictions, students run the code to check their work. This type
of activity supports development of an action conception. Although the term coset
is not defined at this particular point in the course, students carry out the action that
underlies its formation. The usual practice in a lecture course is for the instructor to
present the definition first and then have students work with examples to make
sense of it. In the APOS course, it is the reverse; students experience the definition
before it is formally presented to them. This likely supports a better intuitive notion
that has the potential to support more creative thinking (Asiala et al., 1997b).

As students learn about groups and subgroups, the concept of coset appears in
several related lab activities. One such activity focuses on the concept of normality;
students consider the conjugate gHg�1 of H by g 2 G for a group G and subgroup
H by analyzing groups and subgroups encountered in previous activities. Students
determine at least one example in which gHg�1 is a subgroup of G and at least one
example in which it is not. They then repeat this activity for right cosets. On one
hand, this activity introduces the notion of normality, a necessary condition for a
quotient group. On the other hand, the activity supports development of a process
conception. In order to determine whether a right coset is a subgroup, one must
carry out the action involved in the formation of a coset. For some of the examples a
student might consider, this will be difficult to do without the mental construction of
the concept as a mental process.

At the end of students’ introductory study of groups and subgroups, they make a
major construction that provides additional support for the development of a pro-
cess conception and sets the stage for encapsulation. In this activity, they write a
generalized product PR that accepts a group and an operation as input and returns a
func that represents the generalized product. A version of that program follows.

> PR := func(G,o);

� return func(x,y);

� if x in G and y in G then

� return x .o y;

� elseif x in G and y subset G then

� return {x .o b : b in y};

� elseif x subset G and y in G then

� return {a .o y : a in x};

� elseif x subset G and y subset G then

� return {a .o b : a in x, b in y};

� end;

� end;

�end;

>

> oo : = PR(G,o);
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The func oo is the func that a student can use after applying PR to a specific
group, binary operation pair. This func oo accepts two inputs among the fol-
lowing possibilities: each input is an element of G; one input is a subset of G and
the other is an element of G; both inputs are subsets of G. If each input is an
element, the func oo returns the result of applying the binary operation of the
group to those elements. If one input is a subset and the other is a fixed element, the
func oo returns either the left coset or the right coset, depending on the order of
the inputs. If the input pair is two subsets, the func oo returns the result of
applying the binary operation to every pair of elements, one from the first subset
and the other from the second. This latter application of the oo is called the coset
product of two cosets (Asiala et al., 1997b).

Once they have constructed PR and applied oo to a particular set/operation pair,
students are asked to use oo to test whether a subgroup of a given group is normal.
They are also asked to think about various counting questions that lead to con-
sideration of LaGrange’s Theorem (op. cit.). One example of such an activity is the
following:

In this activity, you are going to use PR again for a group G with input pairs consisting of
an element and a fixed subgroup H, and the task is to run through all elements x of G. Thus,
your result will be a set of subsets of G. These are the sets H :oo x, x 2 G. The questions we
ask are: How many elements in each of the subsets? How many subsets are there? Which
elements of G are in two or more of these subsets? Which elements are not in any of them?
Calculate the set of subsets and answer the questions in each of the following situations.

(a) G ¼ Z24, H ¼ 0; 6; 12; 18f g, the subgroup generated by 6.
(b) G ¼ S4 and H ¼ 1ð Þ; 12ð Þ; 34ð Þ; 12ð Þ 34ð Þf g, where each element of H is a permuta-

tion cycle or product of cycles.
(c) G ¼ S4 and H ¼ 1ð Þ; 12ð Þ 34ð Þ; 13ð Þ 24ð Þ; 14ð Þ 23ð Þf g (op. cit.).

Students also use oo to build funcs that return cosets. An example of the code a
student might write is given below (op. cit.).

> left_coset := func(x,H);

� return x .oo H;

� end;

If G = {0,1,2,3,4,5,6,7,8,9,10,11}, H = {0,3,6}, and o is addi-
tion mod 12, then the func left_coset(4,{0,3,6}) returns the left coset
4 + {0,3,6}when applied to the pair (4,{0,3,6}), where 4 is an element of G
and {0,3,6} is one of its subgroups.

> Z12:={0..11};

>

> o := func(x,y);

� return (x+y) mod 12;

� end;

>
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> oo := PR(Z12,o);

>

> left_coset(4,{0,3,6});

{10, 7, 4};

>

In order to write funcs such as PR, oo, left_coset, right_coset, as
well as answering questions related to the application of these funcs, students need
to think about the action of coset formation in terms of a generalized procedure, that
is, the student must think of how to carry out the formation of a coset when
presented with an arbitrary group. In short, to construct these funcs, the student
has to move beyond specific formulas and recipes.

To construct an object conception of coset, encapsulation needs to occur. This is
supported in part by having students use ISETL to construct the set GmodH of left
cosets of H with elements in G, and then investigate the properties of those sets
once they have constructed them. If the subset H is a normal subgroup, students use
the func oo to define a binary operation on the set of left cosets, and then run
is_group, a func they construct in their study of groups, to test whether the set/
operation pair (GmodH, oo) forms a group in its own right. To work through
these types of activities productively, students need to begin to see cosets as mental
objects, that is, to conceive of cosets as elements of a set to which actions can be
applied (op. cit.). In this context, encapsulation is likely to occur.

18.3.1.3 Fostering Creativity in Learning About Cosets

Mathematical creativity is impacted by how much mathematics a learner knows and
what the learner can do with what he or she has learned. From an APOS per-
spective, this depends in part on a learner’s ability to make the mental constructions
called for by the genetic decomposition. In that context, the question, as it relates to
the concept of cosets, is whether students who completed the instruction described
in the previous sections (Sects. 18.3.1.1 and 18.3.1.2) actually made the mental
constructions called for by the genetic decomposition illustrated in Fig. 18.7.

One way to answer this question is to determine how well students performed on
problems involving cosets. In a study of students’ thinking about cosets (Asiala
et al., 1997b; Weller et al., 2003), the authors collected interview and written data
from students who completed a course based on APOS Theory and the ACE
Teaching Cycle. The study involved 31 students. All of the students completed
written instruments (individual and group tests), and 24 of the 31 participated in
individual interviews. For coset-related items that appeared on the individual
written test, the students’ performance indicated that they made substantial progress
in making the mental constructions called for by the genetic decomposition:
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• About half of the students (16/31) provided a correct proof that the kernel of a
group homomorphism is a normal subgroup of the domain.

• About three-quarters of the students (24/31) computed the cosets S3=A3, where
S3 is the symmetric group on 3 letters, and A3 is the alternating subgroup.

• Nearly all of the students (28/31) worked correctly with the two binary opera-
tions in the set of cosets 2Z=6Z, where Z is the ring of integers under the usual
binary operations, 2Z is the subring of even integers, and 6Z is the subring of
multiples of 6.

• Nearly all of the students (28/31) were able to prove that the coset ring 2Z=6Z is
isomorphic to the ring 3Z of multiples of 3.

Another aspect of mathematical creativity is a learner’s ability “…to combine or
reorganize ideas…” (Sect. 18.2.1). In the study of cosets, this was indicated by a
learner’s ability to go back and forth between a coset as an object and a coset as a
set of elements. In the following excerpt, taken from Asiala et al. (1997b), Jocelyn
shows evidence of this:

I: OK. That is good enough. Can you explain how you did the last one that
you did?

Jocelyn: K 12ð Þ.4
I: K 12ð Þ is right. You did K 13ð Þ too, times K 12ð Þ, how did you get that

answer?
Jocelyn: I picked representatives out of each coset. So out of K 13ð Þ I picked the

cycle 13ð Þ and out of K 12ð Þ I picked the cycle 12ð Þ and multiplied them.
I: OK. Is that how a coset product is defined?
Jocelyn: It’s uh, for subgroups one you can pick representatives and just multiply

them and then your answer will be the coset that contains the product.
I: Right, but that is not the original definition of this.
Jocelyn: Why not?
I: Do you remember what the original definition is?
Jocelyn: Uh, I think we had to go through and multiply every single element in the

first coset by every single element in the second coset.

In addition to being able to go back and forth between process and object
conceptions, the researchers reported that most of the students were able to see
cosets as mental objects (Asiala et al., 1997b). This has implications for mathe-
matical creativity: the ability to see a coset as an object enables a learner to apply
actions to her or his group schema to construct a higher level group structure that is
necessary for work with quotient groups.

4K refers to the Klein 4-group.
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Thus, the instructional unit supports creativity in three ways. The students
appeared to learn more; this enabled the possibility for new insights. As they made
the mental constructions called for by the genetic decomposition, students
demonstrated an ability to move from one conception (process) to another (object);
this offered the potential for increased flexibility of thought. In the construction of
the mental structure of object, the students expanded their ability to work with
group structures; this enhanced their capability for higher order thinking about the
coset concept. According to our working definition (Sect. 18.2.1), “an individual’s
creativity in mathematics consists of the ability to observe patterns, to combine or to
reorganize ideas, or to apply techniques or approaches in possibly new (novel) and
useful ways when dealing with an unfamiliar situation.” The unit on cosets shows
evidence of a technology-based instructional approach that helped students to make
substantial progress in this regard with respect to the learning of this concept.

18.3.2 Teaching and Learning of Repeating Decimals

18.3.2.1 Theory and Instruction Related to Infinite Repeating
Decimals

Rational numbers are studied extensively at the elementary and middle school
levels. An infinite number of rational numbers have infinite repeating decimal
representations. For many students, and even for their teachers, infinite repeating
decimals are a mystery. They often see them as nothing more than infinite strings of
numbers that arise from performing long division on integers (Dubinsky et al.,
2005a, b).

Repeating decimals are one of several mathematical conceptions that involve the
paradoxical duality between potential and actual infinity. On one hand a repeating
decimal can be thought of as an instance of potential infinity—a process of con-
tinually forming digits to express a rational number through long division. On the
other hand, a repeating decimal is an instance of actual infinity—the representation
of a number with fixed value (Dubinsky et al., 2005a, b).

Dubinsky et al. (2005a, b) studied the apparent tension between these seemingly
contradictory notions in an APOS-based analysis of the historical development of
the concept of mathematical infinity. The authors used these ideas to explain
individuals’ difficulties with the repeating decimal 0:�9 and 1. Their analysis formed
the basis of a preliminary genetic decomposition for infinite repeating decimals
(Weller et al., 2009). The genetic decomposition was used to design an instructional
unit on repeating decimals for pre-service elementary and middle school teachers.
We illustrate the genetic decomposition in Fig. 18.8.

According to the analysis, a student begins by constructing certain actions on
whole numbers. This involves reciting, either verbally or in writing, an initial
sequence of digits, which may be seen as the beginning of a repeating decimal
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expansion. These actions are interiorized into a process of forming sequences of
digits of indeterminate length to form an infinite string. As the student reflects on
the process and begins to see an infinite string as an entity to which mental actions
or processes can be applied, the process of forming an infinite string may be
encapsulated into a mental object. The actions that may be applied to an infinite
string include various arithmetic and comparison operations, determination of
whether an infinite string satisfies certain relations or arithmetic equations, and the
ability to see a repeating decimal as a number that equals a fraction or integer
(op. cit.).

This genetic decomposition for repeating decimals served as a framework for
development of the instructional unit, which consisted of three iterations of the
ACE cycle. Each iteration of the cycle spanned two class days, one for computer
activities and one for classroom discussions. Homework exercises were assigned at
the end of each session and collected at the beginning of the next session (see
Dubinsky et al., 2013; Weller et al., 2009, 2011).

For the instructional sequence, students performed calculations in ISETL using a
pre-loaded decimal expansion package developed by the researchers (Dubinsky
et al., 2013; Weller et al., 2009, 2011). Instead of writing programs, the students
used the pre-defined package to carry out calculations to support the mental
mechanisms of interiorization and encapsulation. Students used preloaded funcs to
look at a single place or finite range of places of a repeating decimal. This type of
activity supported interiorization by helping students to reflect on the action of
writing out the terms of a decimal expansion. The students used the predefined
funcs to perform arithmetic operations and comparisons on repeating decimals, as
well as fraction to decimal and decimal to fraction conversions. These types of
activities supported encapsulation by having students perform actions on repeating
decimals. In addition to preloaded funcs, the decimal expansion package stored
several examples of repeating decimals for use in different activities. For many of
the activities, students performed calculations by hand, and then checked their
results with the computer.

The purpose of the first iteration of the ACE Cycle was two-fold: to help
students (1) to interiorize the action of listing digits to a mental process (in order to
conceive of an infinite string of digits comprising a repeating decimal), and (2) to
begin to see a repeating decimal as a mental object by agreeing on a notational
scheme for its representation. Typically, when studying repeating decimals,

Fig. 18.8 Preliminary genetic decomposition of infinite repeating decimals
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students learn that certain fractions, when divided using long division, yield infinite
expansions. They also learn that a particular type of notation (e.g., a bar over a
series of digits) indicates a repeating decimal. To move beyond the vague notion of
indefinite continuation suggested by these conventions, the instructors had students
use a preloaded func called View to uncover the identity of eight unknown
predefined expansions. The activities served as a guide to help the students to
determine the identity of each expansion, to predict the value of the digit in any
given position, and to generalize the determination of digits for arbitrary locations.
This activity supported interiorization of the action of listing the first few digits of a
decimal string into a mental process by which a meaningful description of an
infinite decimal representation could arise. The instructors’ approach constituted a
mathematically creative way to guide students to expand their conceptions.
Through reflective activity, students enhanced their grasp of infinite decimal
expansions and increased their potential for broader, more creative thinking about
the number system. Thus, the activities in this iteration of the instruction promoted
students’ creativity by helping them to abstract the mathematical idea of a repeating
decimal into a more useful construct.

The second iteration of the cycle focused on encapsulation—to help students to
transform infinite digit strings conceived as processes into mental objects to which
actions could be applied. The third iteration emphasized development of the relation
between an infinite digit string and its corresponding fraction or integer. The
researchers considered development of this relation to be an important aspect of
development of an individual’s rational number schema. The construction and
subsequent encapsulation of different rational number representations enable an
individual to expand her or his schema, offer the potential to develop the coherence
of the schema, and increase the likelihood for an individual to see that a rational
number has the same standing, mentally speaking, as a whole number.

In the activities based on this idea, students worked with two preloaded funcs
called Frac2Dec and Dec2Frac. The former returned the decimal expansion of
a fractional representation (using the bar notation mentioned above), and the latter
returned the fraction corresponding to a given decimal. Although the students could
have made either conversion using standard arithmetic approaches, the funcs
enabled the students to carry out arithmetic computations on repeating decimals, in
support of encapsulation and encouraged the students to begin to connect different
number representations, in support of schema development. The activities promoted
mathematically creative behavior by helping the students to see that a number has
multiple, equivalent, representations (Dubinsky et al., 2013; Weller et al., 2009,
2011).

18.3.2.2 Fostering Creativity in Learning About Repeating Decimals

Implementation of the unit offered the opportunity to gather data. The two studies
(Weller et al., 2009, 2011) reported on results of a comparative analysis of the
APOS-based instructional sequence with traditional instruction on repeating
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decimals. A third study (Dubinsky et al., 2013) analyzed students’ thinking from
the perspective of the genetic decomposition.

In the first study, Weller et al. (2009) surveyed students’ views on repeating
decimals prior to instruction. On the question of whether 0:�9 ¼ 1, more than 70%
of the students expressed their view that 0:�9 6¼ 1. Nearly equal percentages in both
the control and experimental groups treated repeating decimals as approximations
and/or infinite processes of long division.

An important aspect of creativity is the development of new objects and new
insights. Among students who received the APOS-based instruction, there were
substantial gains in this regard. When compared with students in the control group,
more than twice the percentage of students who received the APOS instruction
expressed belief that 0:�9 ¼ 1, and three times as many of the students in the APOS
group expressed unequivocal belief that every repeating decimal has a fraction to
which it corresponds.

The second comparative study (Weller et al., 2011), conducted several months
after the instructional sequence, with a focus on the strength and stability of the
students’ beliefs, confirmed the gains in learning reported in the first study. The
analysis revealed that students who received the APOS-based instruction developed
stronger and more stable (over time) beliefs that a repeating decimal is a number; a
repeating decimal has a fraction or integer to which it corresponds; a repeating
decimal equals its corresponding fraction or integer; and 0:�9 ¼ 1.

The third study (Dubinsky et al., 2013), based on interviews with the students,
uncovered evidence of deep thinking, particularly among those who had received
the APOS instruction. The following excerpt from Heidi exemplifies this:

Heidi: Then that means that a repeating decimal—then it can have a—a fraction and a
decimal that are exact, the exact same because of the, like you said, the theoretical stopping
point, it makes that number useable and that way you can start comparing it to numbers
with other stopping points.

Because consideration of repeating decimals is typically limited to carrying out
the long division process, students often see repeating decimals exclusively from a
dynamic point of view. The instruction helped Heidi to expand her view. This
enhanced her mathematical creativity in the sense that she could view repeating
decimals as “useable” numbers that could be compared and operated on.

These comparative studies, which showed conceptual gains for the students who
experienced the APOS-based experimental instruction, relate to the development of
mathematical creativity. The pre-loaded computational package helped students to
deepen their connection among different representations of rational numbers. For
decimals with infinite repeating representations, students began to see all rational
numbers as having fixed value. As a result of this realization, students could carry
out operations with infinite repeating decimals, something they could not do before
the instruction, and to grasp the notion of an infinite repeating decimal as a number,
a conception that previously eluded them. This supported creativity in three ways: a
new insight—repeating decimals are not exclusively dynamic; a more robust
conception—rational numbers have multiple, equivalent representations; and
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enhanced computational fluency—in terms of arithmetical operations, rational
numbers behave like integers.

18.3.3 Teaching and Learning of the Concept of Slope

18.3.3.1 Theory and Instruction Related to the Concept of Slope

Basic geometric concepts are introduced in middle school. Based on the Common
Core State Standards Initiative (National Governors Association Center for Best
Practices, Council of Chief State School Officers, 2010), high school geometry
provides students with opportunities to formalize their experience in geometry
using more precise definitions and by developing more formal proofs. High school
geometry experiences prepare students for more formal development of Euclidean
and non-Euclidean geometries.

In our experience, most universities require future high school teachers to take at
least one geometry course, most often a course focusing on Euclidean geometry. At
Georgia State University (GSU), future high school teachers take a similar course
‘College Geometry’.

The textbook used in teaching the GSU course is based on APOS Theory and
use of GSP. The GSP has several features that support instruction. The most
important feature is that it makes it easy for students to draw or construct geometric
objects (points, lines, segments, rays, circles, etc.), drag them with respect to one
another, and observe relationships among those objects. In the GSP there are two
ways to create geometric objects: drawing with use of “free-hand’ tools and con-
struction using the construct menu. Constructions through use of the construct
menu are based on Euclid’s constructions and involve the use of properties of the
particular objects being constructed. Such constructions allow for manipulation
(dragging) of the objects while preserving their main properties. For example, if a
right angle triangle ABC has been constructed with right angle at C, dragging
vertices A or B preserves the right angle triangle. This would not be the case if the
triangle were drawn with free-hand tools. Therefore, the GSP allows students to
explore various mathematical ideas by creating dynamic constructions and
manipulating them. The above mentioned textbook was based on the premise of
using the GSP to help students develop various geometric concepts as suggested by
APOS Theory and guided by the ACE instructional sequence.

We illustrate these ideas below with an example involving the construction of a
line in analytic geometry. A preliminary genetic decomposition, illustrated in
Fig. 18.9, was used to develop the unit in which students were asked to study the
concept of slope.

During the Activity phase of the instructional cycle, students are asked to work
in groups on activities designed to inspire thinking of the slope of a line as ‘rise’
over ‘run’ i.e., the ratio of change in y coordinates to change in x coordinates
between any two points. Using the GSP, students are asked to plot two distinct
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points A and B, construct a line through those points, and then ‘explore’ the slope as
a particular property of the line. At the action level the students carry out specific
steps such as to read the coordinates (xA; yAÞ and (xB; yBÞ of the given points A and
B and to calculate the ratio yB�yA

xB�xA
(Fig. 18.10).

To trigger interiorization of the action of calculating the ratio for different pairs
of points, students drag (or animate) one point, for example point A, along the line
and observe the value of the ratio as point A is moved. Similarly, students carry out
the same types of manipulations with point B. Then, the students explain what they
see happening. Subsequently, they are instructed to move the line and explain why
their observations remain valid. Finally, they are asked to formulate their obser-
vations as a statement or conjecture. Typically, when writing a conjecture, students
first write them individually, discuss their individual statements with their group
partners, and then ‘negotiate’ on a single ‘group conjecture’. Students exhibit their
creativity, not just in performing the constructions, but also in verbalizing their
observations, i.e., by stating their conjectures clearly and concisely.

As stated earlier, applying an action to an existing process, for example, the action
of comparing the ratios, fosters encapsulation of that process into an object. As
illustrated in Fig. 18.11, students are asked to plot a point C outside the given line AB
and then to construct (using the GSP menu) a line through C that is parallel to AB.
Students are then asked to construct a point D on the new line, compute the slope of
the line they have constructed, and compare it to the slope of line AB. To further foster
encapsulation, the students are asked to transform (rotate, translate, drag) one of the
lines and observe how the slope of the transformed line changes. In order to compare
the slopes of lines AB andCD, students need to think of the concept of slope as a static
entity instead of looking at it as a dynamic process. As they reflect on the actions they
apply to the lines AB and CD, and notice that the relationship between the slopes
remains invariant, they are able to generalize the relationship between the slopes of
any two parallel lines. This is an act of abstraction that constitutes creative activity as
students generate a general idea on the basis of their exploratory work with the GSP.

During the Classroom discussion, students work on tasks that build on these
GSP activities. The instructor guides discussion about the ideas of slope that stu-
dents explored in the activity phase. He or she provides a definition of the slope as
the ratio of vertical to horizontal change between two points A and B. The instructor

then introduces the notation for slope, vertical change
horizontal change ¼

Dy
Dx. Next, the instructor

Action Conception:
Construction of an arbitrary 
line; calculating slope; 
observing what happens 
when points are animated.

Process Conception:
Manipulating objects (points 
and line) and conjecturing 
about properties of lines.

Object Conception:
Comparison of slopes of 
two distinct lines. 

Interiorization Encapsulation

Fig. 18.9 Preliminary genetic decomposition of a line in analytic geometry
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discusses with the students their conjectures and guides them to the statement of a
general theorem about slope:

For a non-vertical line, the slope is well defined. In other words, no matter which two points
A xA; yAð Þ and B xB; yBð Þ, are used to calculate the slope, the value yB�yA

xB�xA
¼ Dy

Dx.

(Reynolds & Fenton 2011, p. 119).

The instructor may then ask students to outline a proof of this theorem in the
context of the following task (Fig. 18.12).

The basic idea in this proof is for students to show that the ratio of the legs Dyi to
Dxi, respectively, remains the same, regardless of the position of the points on the
line. One way to go about the proof is to prove that the triangles A1B1C1 and
A2B2C2 are similar. Once similarity is established, it follows that the ratios of the
corresponding sides of these two triangles are equal. With algebraic transformation
of these two ratios, one can see that the ratios representing the slopes from A1 to B1

and from A2 to B2 are equal (i.e. that B1C1
A1C1

= B2C2
A2C2

).
This activity offers vast opportunities for creative thinking that may lead to a

correct proof. For example, when exploring the similarity of the two right angle
triangles constructed over the segments A1B1 and A2B2, some students may use the
angle-angle (AA) theorem of similarity of two right triangles while others may use

Fig. 18.10 Investigating the
slope of a line
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Fig. 18.11 Investigating the slopes of parallel lines

Fig. 18.12 Investigating slope as a well-defined property of a line
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the side-side (SS) theorem. By the AA theorem, two right angle triangles are similar
if their two corresponding angles are congruent. By the SS theorem, two right angle
triangles are similar if their corresponding legs are proportional. Both theorems are
familiar to students from their study of Euclidean geometry. The GSP allows for
easy calculations and ‘exploration’ of either of these two similarity theorems that
offer opportunities for creative thinking to lead to a correct proof. For example, in
answering the given question, students may start by examining the hint and out-
lining a way of showing that the two triangles A1B1C1 and A2B2C2 are similar.
Students using the AA theorem of similarity of triangles may use the GSP to
‘measure’ the angles at A1 and A2 to observe their congruence. This observation,
together with the congruence of corresponding right angles C1 and C2, leads to the
conclusion that the triangles are similar. On the other hand, students using the SS
theorem may use the GSP to ‘measure’ the lengths of segments A1C1 and A2C2 as
well as the lengths of segments B1C1 and B2C2. They then calculate the ratios of the
corresponding sides A1C1

A2C2
and B1C1

B2C2
, observe the equality of the ratios, and use this

information to arrive at the same conclusion. However, these are not the only two
ways students may outline this first step in the proof. Another way to prove the
similarity is to identify the bases of each triangle as segments that are part of two
parallel lines cut by a transversal, where the line in question acts as the transversal.
Students can then observe the congruence of the resulting alternate angles to
conclude similarity.

These approaches represent just a few choices the students may select to outline
the proof that the slopes from A1 to B1 and from A2 to B2 are the same. The fact that
students can consider a proof from different perspectives exemplifies how creative
mathematical activity is supported through use of the GSP tool. The GSP allows
students to explore the properties of triangles by measuring their parts (sides and
angles), comparing them and determining if, for example, the sides of these tri-
angles are proportional. Typically, different groups of students identify and use
different properties and use a different approach in their proof, including the three
proofs mentioned above. It is then the instructor’s role to bring all of the different
proofs to the students’ attention and discussion. Multiple interactions that take place
in such a classroom setting (among students during exploration with GSP, among
students and instructor, and among all students in class) ultimately help students
move to a higher level of conceptual understanding. This enables the students to
express their thinking in new and creative ways (Mann, 2006; Savic et al., 2017).

In the Exercise phase of the instructional cycle, the instructor assigns homework
problems that reinforce the reflective activities that have taken place during the first
two phases. For example, an exercise may call for a student to write a detailed
step-by-step proof of this theorem. This task requires the students to reflect on all
special cases they considered in the GSP environment (every manipulation of an
object such as a point or a line represents a set of special cases), to extend their
reflections to a general case by means of relating their algebraic and geometric
schemas, and to use those relationships to produce a formal proof. In doing so,
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students’ creativity is manifested through the process of generalization and their
efforts to write a complete, ‘elegant’ proof of the theorem.

18.3.3.2 Fostering Creativity When Learning the Concept of Slope

One aspect of creativity is a learner’s ability to apply techniques or approaches in
new or novel ways. The GSP tool supports this type of activity. By being able to
manipulate the graphical representations of different linear functions, students are
able to deepen their understanding of slope as an invariant property of a linear
function. As a result of their explorations, the students are introduced to the
meaning of being well-defined. In that context, they can engage in significant
mathematical activity—stating a conjecture—followed by offering a proof in which
they can apply the notion of similarity. The genetic decomposition provides a
theoretical framework that guides this type of inquiry; it supports the students’
creativity by enabling them to explore and to reflect on the concept of slope in a
collaborative setting.

18.4 Conclusion

The goal of the research and curriculum development in which we have been
engaged over the past 30 years has been to develop student creativity by enhancing
their abilities to overcome difficulties reported in the literature. We have been
guided in our work by a particular theory of learning, APOS Theory, based on
Piaget’s theory of reflective abstraction. APOS Theory points to specific reflective
abstractions students are required to make. We use technology to help students to
analyze and to make the mental constructions called for by theoretical analyses
using the theory. This includes having students write simple programs using a
mathematical programming language, working with pre-loaded computation
packages, and using dynamic software. Creativity is supported in several different
ways. When asked to write computer programs, students reformulate mathematical
ideas by expressing them using code. When using a pre-loaded computational
package, students apply their developing understandings to carry out various
mathematical operations. When working with dynamic software, students connect
analytical and graphical representations and articulate different insights through
active experimentation. In general, we have implemented instruction based on these
ideas within an instructional approach called the ACE Teaching Cycle, a framework
that encourages exploration, collaboration, and discussion.

In this chapter, we have shown how the application of APOS Theory supports
mathematically creative activity. At the school level, by which we mean K–16
mathematics education, creativity consists of students’ ability to observe patterns, to
combine or to reorganize ideas, or to apply techniques or approaches in possibly
novel and useful ways when dealing with unfamiliar situations. This type of activity
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often involves the creation of new objects, new insights into the relation among one
or more existing objects, or reorganization of the structure among the objects being
studied. Mathematics instruction plays a central role in creating a learning envi-
ronment that fosters this type of activity. The approach we have discussed in this
chapter provides instructional support in two contexts, one cognitive and the other
pedagogical.

APOS Theory supports the former by providing a theoretical framework to
describe the types of mental mechanisms that lead to the formation of mental
structures. The theory provides an opportunity for researchers and instructors to
develop genetic decompositions for mathematical concepts. A genetic decompo-
sition guides instruction by offering insight into how students learn. This enables an
instructor to design activities that facilitate reflective abstraction. Reflective
abstraction leads to the formation of new mental structures. As a result of the
construction of these structures, students make deeper insights and engage in higher
level reasoning, the essence of creative thinking. Mathematical programming lan-
guages, pre-loaded computer packages, and dynamic software have proven to be
useful tools to support this type of theoretically-based instructional activity.

The ACE Teaching Cycle supports the latter; it provides a pedagogical envi-
ronment that inspires collaborative, productive struggle in which students can use
technology to explore their thinking and to nurture individual creativity and
imagination to trigger construction of the mental mechanisms called for by the
theory. As the examples in this chapter illustrate, the pedagogical approach offered
by the ACE Cycle works in tandem with APOS theory to lead to reflective activity
inherent in establishing opportunities for creative thinking.

For example, during the A-phase, students usually work in small-groups on
computer activities to explore new ideas (mathematical concepts) by performing
certain actions (for example, writing computer programs or constructing geometric
figures), making observations, reflecting, discussing, and negotiating in their groups
on what to write as their group’s response for a given computer ‘exploration’. This
supports creativity, as students are encouraged to reflect on their thinking and
construct new mental structures. During the C-phase, students engage in
small-group and class discussions that focus on the mathematical formalization of
ideas/concepts from the A-phase. Negotiated mathematical definitions, statements
of theorems, proofs, and solutions to challenging problems exemplify the results of
students’ activities and engagement in this phase. The instructor’s role in guiding
students’ negotiations and concept formalization is essential during class discus-
sions (Arnon et al., 2014; Mann, 2006). This type of activity supports creative
thinking, as these social interactions, both with other students and with the
instructor, may lead to new individual insights. During the E-Phase, students are
engaged in problem solving activities that may serve to reinforce ideas learned
during the previous two phases and/or to extend or apply mathematical concepts to
real-world problem situations. Opportunities for creative thinking may arise as
students see how the content applies in different settings. Thus, the ACE Teaching
Cycle provides opportunities for students to develop and improve their creative
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abilities and to build mathematical competence and confidence (Katz & Stupel,
2015; Weller et al., 2003).

Research reports published in the last three decades (see Weller et al., 2003 for a
summary of the first two decades and Arnon et al., 2014 for more recent references)
show the promise of our approach, which often involves the use of technology, and
its support for creativity, which arises as students work with that technology. As
students engage in mathematical thinking as a result of instruction based on APOS
Theory, they create new objects, develop new insights among one or more existing
objects, and reorganize structures among objects. According to the perspective
articulated in Sect. 18.2.1, inspired by Haylock (1987), Liljedahl and Sriraman
(2006), and Nadjafikhah, Yaftian, and Bakhshalizadeh (2012), this type of activity
embodies the essence of creative thinking. As this work continues, we have no
reason to believe it will not prove to be applicable to most, if not all topics in
mathematics education. We also believe our approach can continue to support
mathematical creativity by providing a means for the development of
empirically-based instruction that aligns with how students learn.
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Chapter 19
The Nature of Knowledge and Creativity
in a Technological Context in Music
and Mathematics: Implications
in Combining Vygotsky and Piaget’s
Models

Yves de Champlain, Lucie DeBlois, Xavier Robichaud
and Viktor Freiman

Abstract Piaget and Vygotsky’s prolific work continues to inspire many
researchers in several areas of education. While these two authors are often referred
to concurrently, sometimes as antagonists and sometimes as complementary theo-
ries from a developmental perspective, the debates regarding their epistemological
stand and the interpretation of their research remain open. We propose a trans-
disciplinary approach to combining these two views of learning. Based on the
results of two studies bringing technology and creativity together in music and
mathematical education, we more specifically examine the transformation that
occurs in knowledge when using technologies as a creative process for learners.
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Réussir, c’est comprendre en acte

Comprendre, c’est réussir en pensée1

—Jean Piaget

19.1 Introduction

Piaget and Vygotsky’s prolific work continues to inspire many researchers in
several areas of education. These two innovators are often referred to side by side,
sometimes as antagonists and sometimes as complementary theories from a
developmental perspective. Piaget is part of a constructivist movement (Von
Glaserfeld, 1982, 2013) and Vygotsky is part of a cultural-historical movement
(Leontiev, 1981; Yasnitsky, 2011; Kozulin et al., 2003). The debates regarding their
epistemological stands and the interpretation of their research are ongoing
(Vergnaud, 2000; Rochex, 1997).

In this article, we propose a transdisciplinary approach to combine these two
views of learning. Piaget introduces the transdisciplinary concept, which is a step
further than interdisciplinary “that does not stop at attaining interactions or
reciprocity between specialized studies, but that identifies these connections within
a global system without stable boundaries between the disciplines” (Piaget, 1972;
loose translation). Morin (1990, 1999) has worked a long time developing this idea
of the importance of combining different theories of knowledge. Morin’s work on
complexity has in turn been used as the basis for developing a transdisciplinary
epistemology (Nicolescu, 1996).

Today, we note that developing critical thinking, problem solving, communi-
cation, collaboration, and creativity requires developing transdisciplinary skills
(Partnership for 21st Century Skills, 2011). The United States National Research
Council highlights the pressing need to carry out studies that will better define these
skills, also called “21st Century Skills,” and support teachers and their pupils in the
process of building efficient practices (ENRC, 2012). Recently, creativity has been
attracting particular attention in various areas of education, including those con-
sidered as naturally creative such as the visual arts and music, as well as others
generally viewed as less open to creativity such as science and mathematics
(Kauffman & Bauer, 2004).

Our research team was created as part of the project entitled “Building the
framework of creativity in digital learning spaces: A transdisciplinary perspective”
(loose translation2). Our goal was to examine creativity in two disciplines: math-
ematics and music. This done, we identified inter and transdisciplinary elements,

1To succeed is to understand in action. To understand is to succeed at the level of thought (loose
translation).
2Original title: Construire les cadres de créativité dans les espaces numériques d’apprentissage:
une perspective transdisciplinaire.
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notably four types of issues linked to the creative process in mathematics and
music, that is, issues relative to precision and meaning in addition to heuristic and
normative issues. In this chapter, we seek to understand the tensions inherent to a
context that is both technological and school-related in order to define how these
tensions contribute to the transformation of one’s relationship with knowledge and
how they foster creativity in pupils.

To shed light on the nature of these tensions and on their possible impact on the
teaching-learning process and on research, we begin by explaining the roots of Piaget
and Vygotsky’s theories. This will enable us to discuss the nature of knowledge in
general (savoir) and the development of specific knowledge (connaissance),3 as well
as their possible transformation in a technological context to describe an action
mediated by tools and its effect on cognition. From a transdisciplinary perspective,
we then question innovative approaches that integrate creativity in music and
mathematics. This is a current research problem in education that has been seldom
studied until now (Csikszentmihalyi &Wolfe, 2000; Robinson, 2005; Amadio et al.,
2006). Finally, we wish to develop a crosscut model drawing from two studies in
which we have identified, from our analyses: tensions “between appreciation of
students’ genuine creative process that may lead to a variety of solutions (not nec-
essarily the correct ones) and assessment criteria that may value only culturally
plausible products. These tensions and their implications to teaching call for deeper
investigations” (Robichaud and Freiman 2016). Indeed, technology contains modes
of interaction that encourage self-directed learning above all. And yet, these modes
are generally structured to generate plausible cultural answers while also containing
the resources to move beyond these beaten paths. The purpose of this chapter is to
share the results that come from overlapping these models.

19.2 Piaget and Vygotsky on the Development of Specific
Knowledge

The role of previous experience in the construction of general knowledge has not
always had the same importance. Experience has often been relegated to a role after
the fact of validating this general knowledge, in view of controlling subjectivity,
which is characteristic of any human experience. However, both Piaget and
Vygotsky have long ago recognized that action constitutes a knowledge by itself
and that this knowledge can only be brought to the level of conscious thought
through a specific process.

3Translator’s note: Since there is, as of yet, no exact equivalent for the French distinction between
“connaissance(s)” and “savoir(s)” in English (knowledge), we will refer here to connaissance(s) as
the informal, personally devised, discrete elements of knowledge (specific knowledge), and to
savoir(s) as the shared or institutional form of knowledge (general knowledge). See Warfield
(2006) “Invitation to Didactique” for more on this linguistic gap (https://www.math.washington.
edu/*warfield/Inv to Did667-22-06.pdf).
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19.2.1 Piaget’s Model of Conscious Realization

Piaget (1974a) notes two important elements in his model of conscious realization:
“action constitutes a specific knowledge (know-how) that is autonomous. The
conceptualization of said knowledge can only be reached through previous con-
scious realizations, which follow a rule of succession leading from the outskirts to
the centre; in other words, from the zones of object accommodation to the internal
coordination of actions” (Piaget, 1974b, p. 231–232; loose translation). To opera-
tionalize the passage from “exterior to interior,” Piaget begins by using concepts of
assimilation, accommodation, and “majoring equilibrium” to then develop the
concept of “biological equilibrium,” and finally the concept of “reflecting
abstraction” (Piaget, 1974a, b, 1977a, b).

The first action, projection (réfléchissement), was identified by Piaget (1977a)
and used again by Vermersch (2003) who emphasized the importance of sensorial
experience from which representation can be created. Indeed, “the way that it
[projection] exists at the level of representation is determined by the sensorial
coding in which the subject represents his or her experiences” (Vermersch, 2003,
p. 82; loose translation). We find here a point in common with Damasio (1999) and
Varela, Thompson and Rosch (1993) concerning how awareness takes root in the
senses. This convergence offers a new perspective on the sensorimotor stage
described by Piaget, in that one’s sensorial relationship with the world is not a
developmental stage, but rather a lasting foundation of awareness. Thus, at the
projection level, representation does not only exist in visual coding; it is also
connected to all of the sensorial perceptions and to what is felt. The conceptual-
ization process continues in the transposition of this into words—which starts with
the product of projection. Reflected abstraction, which is to say reflection on the
content of this representation, helps turn experience into an object of specific
knowledge. Vermersch (2003) notes that the value of reflected abstraction “depends
on the quality of the map initially drawn from the field (experience)” (p. 84; loose
translation). We can therefore think that the quality of our presence in this expe-
rience (Legault, 2005, 2006) may play an important role in the mapping process.

Finally, for Piaget (1974a) the passage from the outskirts to the centre almost
always comes with the neglect of negative aspects of the problem at hand in favour
of the positive aspects, in a logical perspective, which leads to giving action a
prominent place. Thus, on the one hand, an action of procedural nature is guided by
perception, which is itself regulated according to sensations. On the other hand, a
system of meaningful implications (ibid.) determines the reasons leading to
meaning. The development of comprehension, viewed as a process of conceptu-
alization, constitutes in this way an authentic process of creation or more specifi-
cally “a process of projecting the reality of a plan over another plan” (Piaget,
1977b; Vermersch, 2003, p. 81; loose translation).
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19.2.2 Teleonomy as a Link from Conscious Realization
to Creativity

Through ongoing interactions for each level of awareness, between more or less
conscious purposefulness and equilibrium relationships open to the future (Piaget,
1974b), causal teleonomy (ibid.) is preferred over teleology that has predetermined
purposefulness. In teleonomy, the meaning (telos) is based on an internal coher-
ence, whereas in teleology, the meaning (logos) is expressed through logic.
Teleonomy supposes therefore that our understanding of the world is influenced by
how we see the future we hope to attain. This future is expressed through a rep-
resentation based on balancing novel specific knowledge that is continually
renewed until an end-purpose is achieved, a creation process taking part in reality
overflows (débordement du réel) as mentioned by Piaget and that matches with the
phenomenology of a creative act:

Thus, the creative soaring, while pushing back the limits of the exterior world, is pushed by
an inward drive towards not only the limits fixed by the world as a framework for our
experience, but first of all the molds that we forged ourselves through our ways of feeling,
of seeing, of evaluating what we passively perpetuate as the forms of our participation in
the world, with others and with our own interiority […] By looking to reach beyond the
world, the creative act aims for the world but, doing so, rebounds back to the self, to this
interiority that was its starting point (Tymieniecka, 1972, p. 6, loose translation).

Although Piaget never emphasized the creative process, he nevertheless
explained the phenomenon with the reflective process rooted in the experience that
allows reality overflow as perception and conception in a teleonomic perspective of
creating meaning.

19.2.3 Vygotsky’s Cultural Model of Knowledge

For his part, inspired by the social context in which he lives, Vygotsky develops a
conception of specific knowledge strongly rooted in culture. A number of con-
structs drawn from Vygotsky’s work can also shed light on the nature of specific
knowledge in relation to culture. The “active” learner’s activity and development is
accompanied by an equally “active” educator. During his relatively short career as a
researcher, Vygotsky focuses on child development from a psychoeducational
perspective, the nature of human cognition, and learning as a social and cultural
rather than an individual phenomenon. He explores, among other things, the rela-
tionship between thought and language, teaching and development, and the for-
mation of scientific and everyday life concepts. These themes bring him to identify
teaching as “proactive” development that is not limited to the pupils’ actual specific
knowledge, but provokes situations leading pupils to reach beyond their specific
knowledge, thanks to mediation by a parent, peer, or teacher enabling them to
appropriate cultural tools (signs, symbols, structures, mental operations, etc.). It is
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then possible to identify the gap between every specific piece of knowledge as a
zone of proximal development. This is why learning is viewed as the driving force
behind pupils’ development. The role of mediation in this process is therefore
fundamental.

Vygotsky attributes an important place to the role of imagination and fantasy in
the development of children, adolescents, and adults. Vygotsky highlights the need
to provide pupils with multiple opportunities to have rich and relevant experiences
that stimulate their imagination and creativity. He describes two types of imagi-
nation: a reproductive imagination that uses instruments from the dominant culture
acquired through experience that grows with age, through interaction with others
and the environment; and a productive imagination that makes it possible to
establish more complex associations between the imagination’s final product and a
real complex phenomenon. For example, people who have never visited the desert
in Africa may build their own idea, not as a result of lived experience, but as a
combination of several “learned” elements, based on a number of concepts such as
lack of water, presence of sand, vast spaces, or particular animals. Vygotsky
considers this type of imagination as a result of a creative act (Vygotsky, 2004).

In essence, Piaget’s work has culture at its core, particularly when he talks about
the importance of sensorial experience in projection without exploiting it. However,
Archambault and Venet (2007) remind us that Piaget explains the development of
thought by taking someone distancing from guided subjectivity by developing
logical reasoning. He has little interest in creativity. According to Piaget, children
live in an imaginary world, but they will gradually leave it for the “real” world.
Vygotsky gives a fundamental role to imagination in the development of thought.
For him, imagination develops in parallel to rational thought and becomes a
reflected activity. Moran (2010) adds that cultural resources make the repertoire of
possibilities much more varied. Indeed, according to the meaning given through
experience and subjectivity of the latter (that Vygotsky called perezhivanie), we
perpetuate our culture by sharing our specific knowledge through teaching or the
creation of cultural artifacts such as symbols in music and mathematics. This
experience—an “externalization”—makes it possible to have a cultural agreement
on its meaning, a change that reveals the creativity for each new externalization.

19.2.4 Reason and Inference as a Specific Knowledge

All of these cognitive turn-arounds mentioned up to now, whether the experience
that comes before specific knowledge or the teleonomy that comes before teleology,
bring us back to the fact that we are all acculturated to the precedence of formal
reason, which functions through deductive inferences according to a tautology,
based on a general rule that leads to what is particular. In fact, we are so used to this
that we easily confuse formal reason with reason itself. But these changes highlight
the need to refer to other types of inferences. In his study on the “art of doing,”
Denoyel (1999) develops the notion of experiential reason. This notion is linked to
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the Greek word mètis (cunning intelligence) that encompasses kairos (right or
opportune moment), but Denoyel notes that we also find this notion in the Chinese
Art of Circumlocution and in the Arabic Book of Trickery. The Ojibway tradition
also refers to mnopi, the real time that corresponds to the right moment (Contré
Migwans, 2013). In this way, experiential reason is a type of reason “without any
reference point, which never justifies its process, but centres on the situation’s
potential. […] through a dialogic that is indissociable of […] sensitive reason
(Maffesoli, 1996) and formal reason” (Denoyel, 1999, p. 116; loose translation).

Denoyel also notes that this practical and cunning intelligence operates through
an inference similar to abduction, as Peirce theorized, in that it “discovers the
relevant hypothesis by removing the multitude of possible hypotheses” (Op. cit.,
p. 118; loose translation). Experiential reason, which “seems to run across the
different learning contexts” (Op. cit., p. 116; loose translation), therefore emanates
from a dialogical logic with both inductive and abductive inferences. Experiential
reason begins with the singular and works its way up to an existing rule (induction)
or invents a new rule (abduction). Archimedes’ eureka is doubtless the best-known
example, but Denoyel notes the day-to-day aspect of abduction at the know-how
level. For its part, sensitive reason leads to transduction, in that it operates from
singular to singular and close to close, according to an analogical logic that is
insensitive to contradictions because it is never in contact with a general rule.
Experiential reason would thus be what is at work at a specific moment when one
needs to say or do something right, which is in this sense similar to practical reason
(Gadamer, 1995).

Each one of these types of reason and inferences not only constitutes a specific
relationship with knowledge, they are also an open window to the creative process,
where Piaget’s ability to create and Vygotsky’s potential of the environment meet,
and yet are insufficient, so the question of seizing an opportunity must also be
considered.

19.3 How Can the Nature of Knowledge Be Transformed?

The study of Piaget and Vygotsky’s great theories leads to believe that the nature of
knowledge can be transformed through actions viewed as regulations. In fact, on the
basis of sensorial experiences, which is where Piaget and Vygotsky’s work con-
verge, procedures are developed according to the opportunities available to children
and according to their sensitivity to some environmental4 characteristics rather than
others. Opportunities and sensitivity modify projection and the nature of the
resulting procedures.

4“[the environment is] a model of a part of the world that refers to specific knowledge at stake and
the interactions that it determines.” The latter can be considered as “physical, social, cultural, or
other” (Brousseau, 1988, p. 312; loose translation).
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Sensitivity begs the question of how learners will be sensitive to their envi-
ronment (René de Cotret, 1999). Where teachers often see pupils’ whims, the
biocognitive approach (Varela, Thompson and Rosch, 1993) invites teachers to see
a continuous self-(re)organization. According to this approach, perception consists
of actions, which are themselves guided by perception and based on biocognitive
structures which contribute to build. In this sense, we can talk about an “enactive”
approach to cognition (ibid.). This sensitivity will therefore be the starting point for
learners to understand their environment and grasp the various opportunities that it
potentially offers them. This objective and subjective mediation between the subject
and the object in fact corresponds to the concept of affordances.

To begin with, these actions—which seek to transform the nature of knowledge
—enhance projection. In light of trials and errors, like as many expressions of
regulations, these actions lead to a conscious realization that the desired
end-purpose has been reached. A new specific knowledge can then be structured or
not according to children’s sensitivity to the characteristics that should be
remembered when becoming consciously aware of something. This sensitivity is
part of the structures children build as well as the opportunities offered to them, and
consequently of the culture in which they are growing. Thus new projections rely
on culturally plausible or not specific knowledge in a given system (Bélanger et al.,
2014a). The cultural artifacts become levers for creating new projections, particu-
larly during the passage from sensorial to symbolic experiences. In addition, con-
scious realizations are transformed as they are adjusted through mediations between
the adult and the child. In this way, the reasons of Piaget’s system of meaningful
implications not only reach beyond reality, but reach also beyond the individual in
his sociohistorical constitution.

Brousseau (2010) distinguishes milieu from environment, by defining milieu as
being “composed of objects (physical, cultural, social, and human) with which the
subject interacts in a situation” (p. 2; loose translation). The milieu is therefore part
of a situation or task and transforms according to the pupils’ changing sensitivity
taking into consideration the experimentation of their procedures and of the project
in question. This is how the notion of milieu makes it possible to locate the pupils’
mistakes as well as the teachers’ decisions. “The milieu is an agent’s (actant)
antagonistic system” (Brousseau, 2010, p. 3; loose translation). From a transdis-
ciplinary point of view (Nicolescu, 1996), the milieu is the element(s) of an envi-
ronment that resist pupils, whose sensitivity in turn transforms the milieu by
guiding a child toward zones with less resistance. We could therefore define cre-
ativity as what emerges from interactions between opportunities (the environment)
and the pupils’ sensitivity. This creativity is expressed in the procedures adopted by
the pupils. But where does this sensitivity come from? They are the product of
interactions on another scale, that is, those between culture and experimentation
with the characteristics of the situation at stake. Sensitivity can therefore be viewed
as part of a milieu’s local context or of a culture’s global context.

And yet, the specificity of technology is to carry itself a culture and thus to let
some conceptions related to itself emerge providing the milieu with a more or less
restricted and controlled framework. It is in this sense that we ask how, in a
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technological context, the nature of knowledge (savoirs) is transformed? In other
words, how does a milieu transform the procedures that result from the pupils’
initial representations (projections or réfléchissements) and expectations? How does
the cultural nature of information technology tools influence the pupils’ affective
and cognitive processes of learning music and a cognitive processes of learning
mathematics?

19.4 Affordances and Creativity in Digital Music
and Mathematics Problem-Solving Environments

“Affordance” is an object’s ability to suggest how it should be used. Thus software
offers pupils possibilities, but pupils transform how it is used. Software promotes
the creation of a culturally plausible product, while also allowing one’s own world
to be created. Affordance therefore refers to the relationship between the environ-
ment and the observer (Gibson, 1977). By placing this ability in their theoretical
model, researchers note that an instrument does not exist in isolation; it exists only
when a person has been able to appropriate it. Affordance is not either an objective
or a subjective property, it is both. Thus, an environment’s or an object’s potential
to act can be objective, but it must always be placed in relation to the actor who will
use it. “The term affordance refers to the perceived and actual properties of the
thing, primarily those fundamental properties that determine just how the thing
could possibly be used” (Norman, 1988, p. 9).

Information and communication technologies (ICT) refer to instruments that
transmit and process information, mainly by using computers. Considering the
technological shift that began in the 20th century and continues during our time,
ICT are increasingly used in our society and more particularly in music (Burnard,
2007) and mathematics. The problem is that for most of us, the technical dimension
of a digital book is only that, technical. In other words, technology appears intu-
itively neutral and completely subjected to our will. However, this is not the case.
As sociologist and historian Melvin Kranzberg (1986) notes, “Technology is nei-
ther good nor bad; nor is it neutral” (p. 545). The technical dimension always holds
keys to social, political, and economic transformations; the know-how that is
conveyed always refers back to the social dynamics that shaped it in the first place.
Digital books will result in particular transformations, just like the combustion
engine led to its own unique environment (roads, highways, motels, gas stations,
tourism, the power of oil companies, pollution, wars over oil, etc.). For the purpose
of our research, the case studies were based in two distinct technological
environments.

With respect to music, the researchers used the affordances specific to the field of
music, but also those provided by technology that reinforces the perceived capacity
to act (Faraj & Azad, 2012). In mathematics, pupils used a website for math
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problem solving called CAMI. We will discuss these two environments in the
following paragraphs.

The CAMI website was created in 2000 as an interactive learning space for
mathematics (Freiman & Lirette-Pitre, 2009) to support math problem solving among
Francophone pupils in New Brunswick, Canada. Centered on the development of
mathematical thinking and communication, this resource transformed through the
years into an authentic virtual learning community that made it possible to keep a
digital track of the creativity of the pupils who submitted their resolution process by
means of an electronic interface. These tracks became a source of (1) formative
feedback produced by students in pre-service teacher training, (2) discussions among
pupils in the forum, and (3) analysis material regarding pupils’ genuine mathematical
thinking that becomes the object of a scientific study (Freiman & DeBlois, 2014;
Freiman & Manuel, 2015; Freiman & Lirette-Pitre, 2009).

For the music case study, six 3rd grade pupils (age 8) from a primary school in
Moncton, New Brunswick, gathered in the same classroom, individually created
their own musical compositions with the Garage Band app on iPad. This digital
audio workstation (DAW) includes sounds, visual signals (colours), writing, and
pre-recorded musical samples. While using this sound bank, those composing can
rely on their memory to link and organize the sounds. Watson (2011) highlights the
creative benefits of using a DAW. This author claims that technology removes the
obstacles caused by the absence of specific musical knowledge or practices that
block creativity. Thus, people who neither know how to read nor write musical
notation, as well as those who do not know how to play an instrument, can actually
compose.

19.5 How the Nature of Knowledge—From the Point
of View of Music and Math Learners—Is
Transformed

19.5.1 Examples in Music

[…] music is a coherent system invented by people, but that was built on the basis of their
sensitive experience. This is why I don’t teach the system as it is, but rather the discovery of
a system based on one’s sensations. A system is built on what one feels […]

I always say that before being able to play music, music must first and foremost exist. But
the act of creating transcends music, which can also mean creating a working environment,
creating living conditions that seem ideal to us, and giving oneself the right to be different
and have dreams.

—de Champlain (2010, p. 99; loose translation)
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Gall and Breeze (2005, 2008) use the theory of affordances to shed light on the
composition process in music. The simultaneous coexistence of the spoken word,
writing, body movements, and the perception of sights and sounds is a phenomenon
that connects musical creativity to the multimodality theory (Gall & Breeze, 2005,
2008): the more we can communicate in various ways, the better we become at
composition. Since ICT are so flexible that each pupil can subjectively interpret the
cultural elements that are present and that calls out to their imagination. A new
“externalization” may take place that generates creativity. Indeed, to compose with
a traditional instrument, one must know how to play or at least know music.
However, anybody who can hear can compose with ICT. This statement reinforces
what Rogers (1961) and Maslow (1954) wrote that all human beings possess a
creative potential that is merely waiting for the opportunity to express itself. For
these authors, the multimodal aspects of music software contribute, along with
affordances, to making composition affordable.

For his part, Savage (2005) considers DAW an infinitely flexible
“meta-instrument”, a universal instrument with which one can shape and produce
any kind of sound imaginable. It therefore promotes creativity as understood by
Webster and Hickey (2001), Kratus (1990), and Giglio (2006). A DAW would have
the property of being easily manipulated and making it possible to quickly create
soundscapes. Savage (Ibid.) considers that composing with a DAW allows people
to stick to the sounds rather than to the symbols that represent them (note that
Savage calls this the “micro-phenomenon” of sound). In this sense, a DAW satisfies
the requirements of multimodality.

Finally, it is important to mention that recording the work of pupils who are
composing allows them to listen to their work with some with some detachment
from the process of playing music, enabling them to enter a creative process. This
corresponds to the distance needed with subjectivity discussed by Piaget. After
conducting a study in a school, Gall and Breeze (2005) cite the example of a pupil
who declared that the recording allowed him to recall what he had done and to
present a more elaborate piece than the pupils who had composed with a traditional
instrument. Giglio’s (2006) findings corroborate these observations: listening to
one’s own work with some distance that gives room to objectivity makes it possible
to improve creative musical production.

The DAW enabled pupils to talk about what they had done, making information
available regarding their creative activity, and also kept observable traces of the
work accomplished (Robichaud and Freiman 2016). At the beginning of the
composition process, the pupils were not told how to use the software, but they
nevertheless knew how to proceed. We concluded that this affordance was neces-
sary in order to use correctly an instrument, whatever it may be, which is intended
to promote creativity and imagination. We also observed that during the musical
creative process, when pupils stuck to the limitations of the software’s affordance,
their creativity was “culturally plausible.” This expression corresponds to what is
accepted as probable in a given culture. On the contrary, when children stray from
the limitations, their creations tend to become culturally implausible.

19 The Nature of Knowledge and Creativity in a Technological … 489



Indeed, by composing music, pupils may communicate their specific knowledge,
imagination, culture, and the authenticity of their thinking process by using affor-
dances. These results are consistent with the sociocultural model for an affordance
theory of creativity of Glăveanu (2014) that considers that there are affordances of
different natures issued from three factors. These factors overlap one another around
the space of everyday actions, taking into account the physical, personal, and
sociocultural limitations: intentionality (what a person would like to do), affor-
dances (what a person could do), and normativity (what a person should do). These
factors make it possible to see how creativity can be expressed according to
affordances that are “not perceived” (because they are strangers to habits), “unex-
ploited” (due to cultural conformity) or “not invented.” This model of Glaveanu has
contributed to the development of Fig. 19.1.

In this model, creations mostly result either from the pupils’ system of specific
knowledge, or from the ICT affordances. The system of specific knowledge may be
linked to music as well as other fields, such as mathematical thinking or dance. ICT
affordances correspond to the software’s options as well as its multimodality. The
pupils’ system of specific knowledge may result in unperceived, unexploited, or
un-invented software affordances. In this case, pupils will limit themselves to a
particular schema without being able to either extricate themselves from it or
enhance it.

The pupils’ concern rests with specific musical knowledge (for example, playing
with the notions of low and high pitch), corrections made when they do not like
what they produced, the feeling of richness sought after, and the evaluation of what
was previously created and the global satisfaction attained.

Our findings show that creativity can actually be developed by using ICT.
Morgan and Cook (1998) built a software named Metamuse that makes it possible
to teach the creative thinking process relying on composers’ know-how and to help
solve problems encountered by the learners.

In the conception of knowledge that can be taught, instruments like the guitar,
drums, or keyboard require practice that involves a sustained effort in order to
obtain an adequate technique to create and bring forth a culturally plausible cre-
ativity. The ICT representation of these instruments, through their easily perceived
affordances and the possibility of working with sound without possessing a tech-
nical background, accelerates the pupils’ possibility of acquiring new knowledge
through creativity. In the next section, while presenting mathematics
problem-solving environment, a very different one from that we used in music, we
can find quite similar patterns of students’ creativity related to affordances of the
CAMI website, namely having the text of the problem presented on the computer
screen along with an electronic form for communicating the solution which stan-
dard editing virtual tools (fonts, colours, tables, inserting image, etc.). When
introducing their solutions in such environment, several of these affordances allow
students to bring their personal touch to the solution (they need to choose, for
example, to introduce a table or make a list of all possibilities). However, it is much
more difficult to say which knowledge will emerge since there are no explicit
instructions and since this situation generates a productive imagination that can
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move beyond culturally plausible mathematic knowledge, as we saw it in relation to
the musical culture of reference.

19.5.2 Examples in Mathematics

19.5.2.1 DeBlois’s Model for the Interpretation of Pupils’ Cognitive
Activities

Based on Piaget’s (1977a) theory of reflecting abstraction, studies on the devel-
opment of understanding number system and word problems with an additive
structure for pupils with learning difficulties (DeBlois, 1996, 1997a, b) have led us
to observe pupils’ cognitive dynamic and the creativity they expressed. First, we
describe a few cognitive activities encountered and then we specify the nature of
mathematical knowledge expressed by pupils met while they were using the CAMI
website.

In a study on the development of understanding how to count, the pupils’
thinking alternated between the tokens in an opaque envelope and many envelopes
as grouping method before becoming aware of equivalence relations, particularly
between a dozen and 10 units, and 10 dozens and 1 hundred (DeBlois, 1995). These
equivalence relations between the various representations of a single quantity have
in turn contributed to using counting groups by 100, 10, or 1. Another study
(DeBlois, 1997a) presenting a problem that deals with a complement of the set

Fig. 19.1 Model of the creative process
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where the students develop an understanding of numbers as representing some
quantity to then compare some dynamic of the story (before-after) (You have a box
of 118 fruits. You know you have 37 apples in it. The remaining fruits are kiwis.
How many kiwis do you have?). After that, they compare each of sub-sets to
become aware of the missing quantity which corresponds to the addition with
missing numbers.

The reflection that Piaget (1977a) uses to describe abstraction activities were
called to mind by the pupils’ representations of the situation. These are cultural
artifacts (words, numbers, mathematical symbols, drawings, and graphics) to which
pupils are sensitive when creating a set of relationships giving meaning to the
problem’s context. Mobilized for the situation, these initial representations will
generate an action potential (things that they can or cannot do), that is, regulations
of a pseudo-empirical abstraction (Piaget, 1977b). This action potential, revealed
through procedures like illustrating and/or counting, transformed initial represen-
tations would enable generating new action potential (as result of back and forth
mental work).

This coordination between procedures and initial representations reflects the
creativity that stems from the pupils’ culture. The actions carried out in relation to a
system of personal knowledge, rather than in accordance with the rules of mathe-
matical culture, are done with the material suggested by the pupils. This coordi-
nation enhance both the representations of the situation and the procedures that will
eventually help pupils become consciously aware of something, what Piaget
(1977a, b) called projection (réflexion5). For example, confronted with a problem of
set comparison6 (DeBlois, 1997b), a qualitative evaluation (few vs. many) first led
pupils to establish a one-to-one correspondence procedure between the elements in
both sets to become conscious of the “difference” among these sets. This conscious
realization makes it possible to count what is left, or what is missing, to then build a
relation by implication (if… then). This relationship leads to recognize that if they
have 5 coloured pencils less than their teacher, then their teacher has 5 pencils more
than them. This work has led to defining a model of interpretation of pupils’
cognitive activities that focuses on the pupils’ mental representations, procedures,
conscious realizations, and expectations linked to one another by coordination that
reflect the pupils’ creativity. This model makes it possible for us to begin ques-
tioning based on the pupils’ production rather than from the proposed situation
(Fig. 19.2).

Placed in a situation in which a task is presented electronically, will the pupils’
procedures be different from those traditionally produced within a paper-and-pencil
format? We analyzed the productions of pupils having used the CAMI math
problem solving website.

5In French.
6You have 8 colored pencils. You have 5 less than your teacher. How many pencils does your
teacher have?
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19.5.2.2 Analysis of Creativity in Students’ Solutions

As mentioned in Sect. 19.3 of this chapter, the CAMI website offered mathematical
problems to the pupils in New Brunswick, in close connection to that day’s school
curriculum. Since our approach is based on the didactics of mathematics school of
thought, which seeks a genuine production resulting from the pupils’
problem-solving process, we drew from the Problem of the Week model (Renninger
& Shumar, 2002). Without targeting a specific grade, each problem attempted to offer
pupils a sizeable challenge so they would call on various mathematical concepts and
procedures relative to one or several fields of the curriculum: numbers and opera-
tions, relations and patterns, geometry and measurement, as well as statistics and
probabilities. A dynamic structure of digital space presenting the problem enabled
pupils to create their virtual profile, using it to access the problem’s text (with a
password and username), write a solution in an online form, save it, return to it at
need, and submit it to the CAMI team or any other person (classmate or teacher) to
whom pupils give access. Thus, contrary to “traditional” practices of problem solving
with “paper and pencil,” this virtual educational tool generated new didactical
opportunities that can improve how we target and assess, among others, the pupils’
creativity. As Freiman andManuel (2015) note, an environment in which participants

Fig. 19.2 Model for the interpretation of pupils’ cognitive activities (DeBlois, 2003, 2014)
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interact in order to collaboratively generate services and resources, build a foundation
for new specific knowledge in mathematics, pedagogy, technology, and others, and
establish a culture that emphasizes the skills necessary for asking and solving
problems. These complex interactions generated by the virtual environment can lead
to high-level cognitive learning that go beyond the “question-answer-feedback”
triad. The researchers studying the NRICH (http://nrich.maths.org/frontpage) web-
site claimed to firmly believe that problem solving is a creative process that is at the
root of mathematics as a human activity (Piggott, 2007).

Contribution from ICT to support problem solving has been studied, among
others, by Hersant (2003), who analyzed the use of a software program linked to a
bank of structured problems related to proportionality. While in such an environ-
ment, problems are the space in which users apply their specific knowledge,
messages, and explanations make it possible to enhance users’ specific knowledge
by giving them the opportunity to try to adapt themselves according to their errors,
which are identified through an a priori analysis (Hersant, 2003). Kuntz (2007)
notes that in such an environment, several aspects of pupils’ work must be
examined: for example, how to enhance and open exercises that are relatively
closed; the complementarity of the virtual space relative to more traditional learning
environments; the knowledge that pupils can acquire in such a space; and the means
to evaluate what the pupils learn in these conditions.

In this way, by combining an open-ended problem that pupils try to solve and a
virtual space that offers them tools for writing solutions on the CAMI website, we
could anticipate a wider diversity in pupils’ creative endeavors. The solutions ana-
lyzed in Manuel’s (2018) study and the teachers’ comments regarding pupils’ work
(Freiman & Manuel, 2015) seem to confirm that the problems posed on the website
not only offered a range of strategies and types of mathematical reasoning, but also
opened the way to developing other skills, such as critical thinking and even creative
thinking, which has well-documented advantages (e.g., Leikin et al., 2006).

Our analyses led us to hypothesize that IT support creates a broader variety of
registers (verbal, digital, symbolic, and geometric) in the pupils’ production
(Bélanger et al., 2014a). For example, with respect to the problem of cent distri-
bution,7 some pupils worked at the geometric register while others worked at the
arithmetic register. Some pupils also worked with several microstructures (Kintsch
& van Dijk, 1978) by using either trivial cases or different coins, while others
respected the problem’s macrostructure without necessarily taking into account the
problem’s limitations. Thus, Jeremy worked with four types of coins: pennies (1
cent), nickels (5 cents), dimes (10 cents), and quarters (25 cents). He counted the
possibilities without following any particular order. Jeremy worked at a geometric

7Sasha has 75 cents in her piggy bank. She has pennies, nickels, dimes, and quarters. How many
coins of each are in her piggy bank?
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register (Douady, 1986) because the figures used were laid out without any refer-
ence to arithmetic operations.

Jeremy’s solution (without corrections)
There can be: 25 25 5 5 10 1 1 1 1 1 , 5 5 5 5 5 5 5 10 1 1 1 1 1 25 , 5 5 5 1 1 1 1 1 10 10 10 25 ,
25 5 5 5 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, 5 5 5 5 5 10 10 25 1 1 1 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 10 10 5 25 , 1 1 1 1 1 5 10 10 10 10 25 , 25 25 1 1 1 1 1 1 1 1 1 1 10 5 , 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 10 5 5 25 , 1 1 1 1 1 1 1 1 1 1 10 10 5 5 5 5 25 there are 10
possibilities

Jeremy may have interpreted the problem as a set that had to have each type of
coin. This initial representation appears to have led him to adopt different proce-
dures. He separated his answers with a comma instead of changing lines. Rather
than going from the coins of higher value to the coins of lesser value, or the
opposite, Jeremy built sets randomly. The absence of structure led to omitting
possibilities.

Madelaine counted the possibilities at a basic level: N (75 cents| only pennies), N
(75 cents | only nickels), and N (75 cents | only quarters). The pupil stayed at the
arithmetic register (Douady, 1986) by using additions and multiplications. The
purely arithmetic notation shows some kind of creativity.

Madelaine’s solution (without corrections)
The possibilities are:

• 25+25+25=75 
• 1x75=75 
• 5x15=75 
• 10x7+5=75 
• 10x6+5x3=75 
• 25x2+10x2+5=75 
• 25+10x5=75 
• 5x10+25=75 
• 1x50+25=75 
• 1x25+25 

Madelaine --

Although Madelaine used a structure, she did not use it optimally. First, she
generated three trivial cases (using only quarters, only pennies, and only nickels)
disregarding the increasing or decreasing value of the coins. Then, she moved from
10 � 7 + 5 = 75 to 10 � 6 + 5 � 3 = 75 revealing the following structure: 10x
(i) + 5x(j) à 10x(i−1) + 5x(j + 2). This structure made it possible to read
10 � 5 + 5 � 5 = 75, but it was actually written 25 � 2 + 10 � 2 + 5 = 75.
Madelaine was able to free herself from first impressions (Smolucha, 1992) while
keeping (self-)control over her action (Saboya, 2012) through the equality symbol
(“=”) except for the last answer.

19 The Nature of Knowledge and Creativity in a Technological … 495



Finally, Shawn worked with a macrostructure (Kintsch & van Dijk, 1978) by
exploiting all of the possibilities. In so doing, he kept at least a coin of each type.
When he changed one coin, he started with coins of the highest value. Creativity
was expressed at a geometric register (Douady, 1986) because he did not write any
arithmetic. Shawn treated coins like objects in a set. He moved the coins making
sure, at each step, that the coin exchange between sets will keep equivalent value.

Shawn’s solution (without corrections)

5 pennies 2 nickels 1 dime 2 quarters
5 pennies 3 nickels 4 dimes 1 quarter
5 pennies 5 nickels 2 dimes 1 quarter
5 pennies 7 nickels 1 dime 1 quarter
10 pennies 2 nickels 3 dimes 1 quarter
10 pennies 4 nickels 2 dimes 1 quarter
10 pennies 6 nickels 1 dime 1 quarter
15 pennies 1 nickel 3 dimes 1 quarter
15 pennies 3 nickels 2 dimes 1 quarter
15 pennies 5 nickels 1 dime 1 quarter
20 pennies 2 nickels 2 dimes 1 quarter
20 pennies 4 nickels 1 dime 1 quarter
25 pennies 1 nickel 2 dimes 1 quarter
25 pennies 3 nickels 1 dime 1 quarter
30 pennies 2 nickels 1 dime 1 quarter
35 pennies 1 nickel 1 dime 1 quarter

There are 16 possibilities

Shawn took a quarter and divided it from the first line to the second line. When
he divided the quarter, the subjective fantasy took precedence over the objective
fantasy because he wrote: “5 pennies 3 nickels 4 dimes 1 quarter.” Then he wrote
the following on the third and fourth lines: “5 pennies 5 nickels 2 dimes 1 quarter”
and “5 pennies 7 nickels 1 dime 1 quarter.” In short, when the quarter was divided,
it was only a transfer between the dimes and the nickels. There was only an
exchange into pennies when the transfer between these two sets was accomplished.

Examining these three solutions, we note differences in the way they were
communicated by using the word processing tools suggested in the electronic form.
While Jeremy seemed to use “plain text” without formatting, Madelaine and
Shawn’s solutions seemed to be more structured. Madelaine used bullet points to
separate her solutions, which were complete mathematical sentences (including
operation and equality signs). Shawn listed his solutions, one per line, each fol-
lowing the same structure. In this way, the number of coins of each type was
followed by a space and the type of coin (e.g., nickel). We also noted that his list
was built systematically (from the smallest to the most number of pennies).
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The pupils’ productions show different initial representations of the same
problem. Moreover, the productions of the pupils who mainly used their subjective
fantasy disregarded some data from the problem. Those who displayed a balance
between their subjective and objective fantasies began solving the problem, but
their balance was broken, which led them to stop taking account of certain
hypotheses in their actions, as observed with Jeremy and Madelaine’s productions.
Pupils like Shawn maintained their balance between subjective and objective fan-
tasy. This is why their procedures considered as many problems’ constraints as
possible and validated all of the hypotheses.

Pupils generated a large quantity of relations even if they did not have the rigor
needed to carry out their ideas completely. Some pupils’ sensitivity to certain
artefacts created projections that were used as a springboard for procedures that
contributed to regulations, which are part of a technological system and make new
coordination that express creativity according to the regulation’s characteristics.
A greater sensitivity to daily experiences rather than to the problem’s limitations
would give rise to a precision issue whereas the opposite would give rise to a
significance issue (Robichaud, 2016).

19.5.2.3 Complexity of Knowledge Construction in Digital
Environments

While Piaget’s work contributes to developing concepts pointing at the complexity
of the phenomenon of specific knowledge construction, particularly scientific
knowledge, it also focuses on the structure in question without delving deeper into
the affective (emotional), cultural, and social factors involved. However, the sen-
sitivity expressed by pupils toward cultural artifacts shows the importance of the
concept of milieu. This is when what is conceivable lets the pupils’ expectations
intervene regarding a situation in a context like the classroom.

Technological tools also have a role in this learning process. According to
Trouche (2005), an instrumental approach was developed based on Vygotsky
(1934) and Rabardel’s (1995) work. Vygotsky places all learning in the realm of
culture in which instruments (material and psychological) play a crucial role.

Trouche (2005) recognizes that the artifact may or may not be developed by the
subject, that this development is accomplished through a process (instrumental
genesis) in which the nature of the user’s activity and the context has a determining
role. In addition, any instrument would include a “material” component (the part of
the artifact that is called on during the activity) and a “psychological” component
(incorporating the mobilization of schemas as described by Piaget and Vergnaud).
By applying these ideas to our context of mathematical problem solving, we still
noted—like Rabardel’s work cited in Trouche (2005)—the dual nature of the
instrumental genesis of the pupils’ activity when confronted with a mathematical
problem on the CAMI website. This dual nature included an instrumentalization
process with respect to the subject’s personalization of the artifact. In our case, the
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process is the choice of how to communicate a solution with the word processing
tools in CAMI. Next, the instrumentation is relative to the emergence of schemas in
the subjects. In this way, the artifact contributes to pre-structuring subjects’ actions,
in our case, the way subjects perceive the mathematical problem, in order to build
their own problem-solving process. These two processes overlap each other and are
simultaneous. With CAMI, we ignore in which context pupils are when problem
solving. Pupils may be working in a classroom or at home, alone or with help, and
the problem may have been discussed with the teacher, peers, or parents before
pupils use a computer. According to Trouche, this context can contribute to a wide
diversity of (“instrumentalized”) processes among pupils. This diversity is also
noted by Manuel (2018) and Bélanger et al. (2014b). Stemming from instrumen-
tation and instrumentalization, this diversity can contribute to transforming the
nature of knowledge.

19.6 Discussion

Could ICT go against the normativity and social status of a discipline centered on
referential knowledge? By not taking into consideration the pupils’ productive
imagination, could this normativity produce a resistance to learning through the
pupils’ relationship with the knowledge thus generated?

As Piaget modeled it, conscious realization (prise de conscience) starts with the
projection (réfléchissement) of lived experience. The product of this projection is
then thematized in order to access the reflection (réflexion), and then at the moment
of realization itself. And yet, projection is itself driven by the subject’s particular
sensitivity to his or her environment. ICT do indeed offer ways to diversify, or even
enrich, one’s relationship with experience according to the user’s sensitivity. We
have seen examples of this function with the CAMI site (in which math work is part
of a knowledge development project) as well as with GarageBand (that enables
pupils to record themselves). The process thematization will be greatly influenced
by the procedures available to the subject since these procedures come with the
words and meanings that make them usable in the both context, musical and
mathematical.

In the case of CAMI, the environment suggests the importance of noting these
procedures, and encourages to some extent a more elaborate transposition into
words and mathematical symbols. GarageBand provides its own integrated proce-
dures that the subjects use to find links between what they think and feel about what
they are creating. This is followed by the application of regulations and
self-regulations through which the concepts that emerged from the thematization
process are tested in the real world until subjects are satisfied. This is a very
important aspect of GarageBand: it provides immediate feedback and thus fosters
self-regulation. However, this does not keep the feeling of satisfaction from
remaining more linked to the conceptual level; for example, subjects who build
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their composition in a way to use all of the musical notes and tones available within
a certain context. When conscious realization is attained, a structuring or restruc-
turing of knowledge is transferred in the way a new projection will be processed. At
that point, subjects turn again to GarageBand to reconsider their choices on one or
several levels, either by changing an instrument, the tempo, or by starting a new
composition. But what is important is the reversibility of each choice made with the
software, which makes it easier for subjects to become consciously aware. In the
case of mathematical problem-solving, the affordance of the CAMI environment
allows students to save their solutions which become a part of their personal
cyber-portfolio. Not only they can eventually return to their solutions and modify
them, but when the problem is still active, their work remains in the archive and can
be viewed, reflected and re-used in future work. For example, the teacher can
eventually see the solutions of all his or her students and decide to bring some for
the whole-class discussion, in a traditional form, or using an online discussion
forum. Bélanger et al. (2014a) report benefits of such activities making students’
creativity ‘talk’. From this perspective, ICT can indeed influence the conscious
realization process because they provide subjects with creative empowerment and
when the system of specific knowledge of the subjects is the result of a creative
activity with ICT we assist of the emergence of perceived, exploited, and invented
affordances that will generate a new product.

Drawing from Vygotsky’s work creatively transformed by successive generations
of researchers (as understood by Kozulin, 2003), Martinovic et al. (2013) have
combined the theories of affordance and activity in order to understand “visualized
mathematics” and “elearning” phenomena. Thus, connections are established (and
managed) between subjects (pupils) and objects (knowledge) through activity (with
emphasis on context and environment) that mobilizes one’s capacity to act and
through affordances (wealth of interaction between subjects and their environments).
The tools (in our case, technology) disrupt (and eventually transform) this learning
process, which has the potential to become more collaborative, self-directed,
democratic, communicative, and multimodal (Martinovic et al., 2013).

In this way, we were able to observe how the use of a technological tool
transformed pupils’ environment. The milieu to which pupils are sensitive may
therefore reveal an accelerated process given the feedback provided by the tech-
nological tool. This accelerated process complicates teaching challenges in two
ways. On the one hand, teachers cannot predict the knowledge that will emerge
from the pupils’ experimentations unless they have participated in them. On the
other hand, pupils’ conscious realizations require interpretations that place specific
knowledge within a learning process rather than a teaching process. So, how can we
prepare teachers for these new challenges?

We have already noted how experimenting with a co-built interpretation and
intervention model (DeBlois, 2009) led some teachers to increase the complexity of
their concerns regarding their conceptions of the object being evaluated, the
intervention categories, and the possible flexibility. In order to enhance these
concerns, it seems fundamental to make a distinction between a teaching process
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and a learning process. This may help awaken curiosity to know more about the
meaning of the procedures chosen by their pupils (DeBlois, 2009) or about the fact
that pupils’ procedures were not a lack of conformity, but the product of an
environment (DeBlois, 2006); a triggering element of their interpretation. In these
circumstances, meaning may be linked to one’s relationship with knowledge and
learning (DeBlois, 2014), taking into account not only the characteristics of what is
taught, but also its epistemic, social, and identity-related nature. In this context, the
value and meaning of institutional knowledge provide a framework in which
teachers practices can be situated. It is then possible to depart from the beaten tracks
to discuss how adding constraints, rather than reducing them when faced with a
mistake, may lead to the emancipation of pupils’ epistemological position.

Finally, some educational concepts such as didactic time (Chopin, 2011),
didactic memory (Centeno & Brousseau, 1991), and didactic contract (contrat
didactique; Brousseau, 1986) may, among other things, contribute to establishing
markers for interpreting the milieu in which pupils work. If pupils’ expectations are
an expression of their commitment and if their experimentations are expressions of
their creativity, then it is crucial to train teachers to develop resources to help with
interpretation, which can guide their resources for action.

19.7 Conclusion

In many ways, education consists of a complex juggling act: balancing pupils’
general and specific knowledge, balancing approaches to provoke a transformation
in the pupils’ knowledge, balancing training and evaluation, etc. This equilibrium is
increasingly fragile as the stakes become more complex, hence the need to develop
cross-curricular approaches in education, that is, to create bridges and meeting
places where elements appear to multiply. Our study suggested a new way of
understanding creativity through two disciplines, based on the works of two leading
thinkers, Piaget and Vygotsky. Our project can also be viewed as an attempt to
reach a didactic-pedagogical balance between the internal and external processes
involved when combining ICT and creativity in an educational setting.

On the one hand, we have shown that learners’ relationship with knowledge can
change because creativity involves rebuilding one’s link of appropriation with what
is being learned. This reconstruction, supported by using ICT, seems to be
enhanced by the pupils’ emancipation from the social status of knowledge.
However, there is a new balance to be reached between the teacher’s educational
project or pedagogical device and the pupils’ learning project. While Piaget’s work
requires teachers to be conscious of the various ICT frameworks in order to
interpret their pupils’ creativity, Vygotsky’s work involves paying attention to the
socio-historical construction of these relationships. Thus, rather than accounting for
learning according to the learner-object relationship, we need to integrate a
learner-object-colearner-tool relationship since each of these elements is a gateway
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to learners’ creativity. The next step in our study will be to test our learning
situation models in mathematics and music, as well as in any other discipline, but
mainly in a cross-disciplinary setting.
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Chapter 20
Putting the Horses Before the Cart:
Technology, Creativity, and Authorship
Harnessed Three Abreast

Osnat Fellus and Yaniv Biton

Abstract Over the past few decades, educational systems have continually worked
on integrating technology into mathematics education. Creativity, on the other
hand, was—more often than not—less attended to. Building on Latour’s (A soci-
ology of monsters: Essays on power, technology, and domination. Routledge,
London, pp. 103–131, 1991) perspective on technology, Vygotsky’s (J Russ East
Eur Psychol 42(1):7–97, 2004) treatment of creativity, and Bakhtin’s (The dialogic
imagination: four essays. University of Texas Press, Austin, Texas, 1981) per-
ception of authorship, we contemplate a departure from traditional ways of viewing
creativity in mathematics education—as arrogated to giftedness—and a shift of
attention to a unified manifestation of apprenticeship and authorship to allow for
expressions of creativity for all learners. The works of these three classic scholars,
brought together, widen our conceptualization of technology, creativity, and
learning; show how the very intertwining of these notions allows for a far wider
perspective of creativity in mathematics education; and foster the learning and
understanding of mathematics as a network of ideas. In this chapter, we first denote
the terms technology, creativity, and authorship and then we showcase how these
are manifested in an episode drawn from the work of the second author as a
mathematics instructor in the virtual high school in Israel. The chapter concludes
with a discussion of some of the implications this meeting point between Latour’s,
Vygotsky’s, and Bakhtin’s perceptions may have on the learning of mathematics.
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20.1 Background

Research on the integration of digital technologies into schooling in general and
mathematics education in particular has long been a subject of interest in the
literature of mathematics education. In fact, it has been continually generating new
—and renewed—explorations followed by instructive insights about the relation-
ship between learning mathematics and using readily available technologies. To
reflect the development and expansion of research on the use of technology in
mathematics education, we start with Etlinger (1974), who pointed to the distinction
between functional and pedagogical purposes for using digital technology.
Functional purposes, he argued, emphasize the use of technology for computational
processes while pedagogical purposes highlight its use for teaching and learning
mathematical ideas. This rather simplistic, unidirectional view of the use of tech-
nology was expanded to represent a more complex relationship between technology
and the teaching and learning of mathematics such as how thinking shapes—and is
shaped by—our use of technology. Kieran and Drijvers (2006), for example,
highlight the co-emergent dialectical relationship between thinking and technology.
Similarly, Borba, Askar, Engelbrecht, Gadanidis, Llinares, and Aguilar (2016)
point to additional, co-constitutive aspects such as affective-related notions as well
as considerations of who teaches what, when, how, and why in technologically
embedded contexts. Overall, despite continuous efforts to more systemically inte-
grate digital technologies into teaching and learning, the practices, challenges, and
frameworks associated with these efforts continue to be a concern for teacher
educators (Hughes, 2013; Jimoyiannis, 2010; Lagrange, Artigue, Laborde, &
Trouche, 2003; Polly, Mims, Shepherd, & Inan, 2010; Tassell, Stobaugh, &
McDonald, 2013; Tondeur et al., 2012). This effort to integrate technology into
mathematics classes is not surprising as there is growing research that associates the
use of digital technology with learners’ better understanding of mathematical
concepts and their relationship (Hohenwarter, Hohenwarter, & Lavicza, 2008;
Kieran & Damboise, 2007; Tan & Tan, 2014; Verzosa, Guzon, & Penãs, 2014;
Yilmaza, 2015).

Research on creativity in mathematics education, on the other hand, has been
scarce (Van Harpen, & Sriraman, 2013; Leikin & Pitta-Pantazi, 2013; Sriraman,
Yaftian, & Lee, 2011) focusing mostly on the association between creativity and
giftedness (Freiman & Sriraman, 2008; Leikin, Berman, & Koichu, 2009; Mann,
2006; Mhlolo, 2017; Sriraman, 2005). Having said that, a growing number of
scholars argue that creativity in mathematics education is not necessarily coupled
only with giftedness (Sriraman, 2005; Van Harpen & Sriraman, 2013), and that it is
more about performance and passion than about an innate ability to mathematize
(Sheffield, 2017) thus leaving open the exclusive association between creativity and
giftedness in mathematics and generating new questions pertaining to how to
habituate and nurture creativity in mathematics among all students (Prabhu, &
Czarnocha, 2014; Sheffield, 2017).
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This somewhat untraditional, democratic stance in regard to who can be math-
ematically creative opens promising new trajectories for research. For now, though,
we can draw on the scant work done on the combination between mathematics and
creativity. One example of such work can be seen in the mathematically creative
work of students at Brock University, Canada, where the undergraduate core
mathematics program follows a philosophy of learning mathematics in
computer-based environments through a series of Mathematics Integrated with
Computers and Applications (MICA) courses instituted there in 2001. The over-
arching two-tiered purpose of the MICA courses is to “encourage mathematical
creativity” and to “develop mathematics concepts” (Marshall & Buteau, 2014,
p. 50). Marshall and Buteau’s report highlights the opportunities students get in the
MICA courses to explore mathematical concepts, conjectures, and applications and
to garner first-hand experience of the creative aspect of working in and
through mathematics. This notion of creativity in mathematics through the use of
available technologies seems to be the realization of the prediction articulated by
Salomon, Perkins, and Globerson (1991), which envisioned that if technology
becomes central in education, schooling will shift from “knowledge imparting to
self-guided exploration and knowledge recreation” (p. 7), thus highlighting the
benefits that digital technologies carry to support and enhance intellectual perfor-
mance through free choice (Papert, 1992).

Against this backdrop, we frame our discussion within two metaphorical
frameworks—one of a cart pulled by horses, harnessed three abreast; the other
metaphor is that of a network that allows us to see the interconnectivity and
intertwining relationship technology, creativity, and authorship in the context of
mathematics education. We use these metaphors to suggest a broader framework for
these constructs within mathematics education that allows us, on the one hand, to
perceive technology, creativity, and authorship as paramount to the advancement of
mathematics learning, and on the other hand, to see the relationships between the
constructs as a networked, interconnected, and dynamic system where the whole is
greater than the sum of its parts.

The Venn diagram (see Fig. 20.1) visually illustrates diverse areas of research
that focus on different combinations of mathematics (M), technology (T), and
creativity (C). While categorizing scholarly work into any of the intersection areas
in the diagram below may yield a clearer picture as to which areas received ade-
quate exploration and which still need to be further explored, we do not at all imply
that such categorization is mutually exclusive. Work that largely focuses on the
learning of mathematical ideas through the use of technology (see for e.g., Lawrenz,
Gravely, & Ooms, 2006; Nguyen & Trinh, 2015; Novak & Tassell, 2015;
Yerushalmy & Botzer, 2011) may be framed within the intersection area of
T \ M. There are copious publications that look into learning mathematics
through technology. A review of cutting edge work on learning mathematics
through a great variety of digital technologies including mobile devices, digital
libraries, and personal spaces can be found in Borba et al. (2016). Other studies that
focus more on creativity and mathematics such as Kwon, Levenson (2011),
Haylock (1997), Livne and Milgram (2006), Bolden, Harries, and Newton (2010),
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and Van Harpen and Sriraman (2013) reflect work in the intersection area of
C \ M. However, very little research focuses on the combination of creativity,
technology, and mathematics, C \ T \ M. In this chapter, we aim to shift
attention to the underrepresented and not-yet-adequately explored C \ T \ M
intersection area thus contributing to its emerging conversations and scholarly
reflections.

In the following sections, we first define the concepts of technology, creativity
and authorship. In order to exemplify a combination of the three, we then discuss an
episode from the work of the second author in the virtual high school that is run by
the Israeli Center for Educational Technology (CET). We conclude the chapter with
possible implications of the unification of the three constructs.

20.2 Pulling the Cart of Mathematics Education with TCA
(Technology, Creativity, and Authorship)

20.2.1 Harnessing Technology

In order to better understand the use of technology in mathematics education, we
first define what we mean by the term technology. We use technology as the use of
available tools to carry out actions. It is clear to us, though, that this is never a
simple, unidirectional, or flat phenomenon. While the use of a tool is guided by the
user’s knowledge and experience, the tool itself carries affordances and constraints
as to how it can be used. The former is dubbed instrumentalization, which denotes
agentive action; the latter, instrumentation, which references predesigned features

Fig. 20.1 A venn diagram
showing the area of
C \ T \ M as distinct from
other areas
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to be used (Artigue, 2002; Healy & Kynigos, 2010; Kieran & Drijvers, 2006).
Working with this dyad of instrumentalization and instrumentation helps us per-
ceive the co-emergent and co-constitutive nature of human-tool relationship. This
relationship may explicate the rapid development and use of tools not only as an
integral part of our sentient being but also as human-specific. In this respect,
technology is perceived as a manifestation of the genealogical progression of the
interaction between humans and tools.

If in the far past, understanding the role of tools in human life was left tacit and
faded into the background, the works of Ellul (1964), Latour (1986, 1991), as well
as those of Vygotsky (e.g., 1978, 1986) and Luria (e.g., 1960, 1994)—whose
manuscripts were originally published in Russian as far back as the late 1920s—
have made it possible for us to see the mutually constitutive nature of the rela-
tionship between humans and tools. What these scholars advocated for was a
framework of reference that helps us perceive such tools as readily available
extensions of being in the world. For example, Latour (1991) argues that while
tools and humans are distinct, they are inseparable in everyday life. In a similar
token, Ellul (1964) shows how simple tools, such as a pen, for example, function as
human extensions to carry out tasks. Vygotsky’s (1978) contribution to under-
standing the nature of human-tool relationship is equally relevant as he rigorously
demonstrates how language, speech, and other semiotic artifacts are, in fact, used as
tools and that they too are inseparable from human action.

The conceptualization of the mutually constitutive and co-emergent nature of
human-tool relationship provides us a broader sense of what we mean by tech-
nology and functions as an important entry point in our work. We will thus,
henceforth, use the term technology in this broader sense to reference any tool
(digital, such as a computer, or non-digital, such as pencil-and-paper) that is used to
carry out a task. Whereas we recognize the common denominator of such tools as
essentially utilitarian, we argue that the way they are used may not be limited to
their pre-determined purpose. Rather, instrumentalization and instrumentation are in
constant process of co-emergent animation. As such, our attention to how tech-
nology becomes interwoven with our daily practices shifts from perceiving it as an
end in and of itself to perceiving it as an ever changing human-tool interaction,
which is exactly where creativity (defined later) comes into the picture. But before
we discuss creativity, it will be helpful to understand what human-tool relationship
means. We thus turn to research that sheds light on this relationship.

The co-constitutive nature of human-tool interaction is corroborated by research
in the field of the anthropology of technology. Anthropologists of technology,
Suchman, Blomberg, Orr, and Trigg (1999) and Suchman (2007), explored the
relationship between everyday uses of technology and its design and development.
By observing people’s encounters with new technologies, they found that the
successful integration of such technologies was less a matter of the users’ “tech-
nological sophistication” and more a matter of a “familiarity with the particular
features the technology offers” (Suchman, Blomberg, Orr, & Trigg, 1999, p. 394).
Furthermore, they found that technology-infused practices involve complex mani-
festations of learning how to use these technologies—from more knowledgeable
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others (p. 399)—to address emerging needs in ways that were unpredicted and not
previously designed thus expanding and improving the functionality of the tool
itself. This finding of co-constitution is an important notion as it centralizes the
human-tool relationship as interactive and puts into question the mere unidirectional
reliance on tools and technology.

For the purpose of this chapter, we argue that technology, in its wider sense, is
not only inseparable from our being in the world but also poses its own platform of
interaction with humans, or in Latour’s (1991) words, “When we consider social
relations we need to weave them into a fabric that includes non-human actants,
actants that offer the possibility of holding society together as a durable whole”
(p. 103). It is this notion of technology as omnipresent and integral to human life
that we wish to put forth here. We denote technology, then, as an all-encompassing
view of human-tool interaction. As such, in our thinking about the use of tech-
nology in mathematics education, we propose the use of the verb interweave over
integrate as the former carries a stronger reference to the notion of connections and
relationship than the latter. Tools—digital and non-digital—are an extension of our
being in the world or at least a partner in our task-oriented behaviour (Salomon,
Perkins, & Globerson, 1991). Indeed in the context of mathematics education, the
use of technology was found to carry more diverse anthropomorphic characteristics
that translate into seeing technology as a master, a servant, or a partner (Geiger,
2009). Whichever the relationship perceived by the user, technology is something
that cannot be ignored as it frames our actions, reactions, and interactions with it.

Such inter-relationship between humans and tools and its co-emergent and
co-constitutive nature was highlighted by Borba et al. (2016) who have pointed out,
“as humans develop and construct new media, these media seem to transform and
‘construct’ a new human” (p. 591). In a similar vein, Kieran and Drijvers (2006)
note that what the tool allows the user to do affects the user’s thinking, and in turn,
the user’s thinking shapes the way the tool is used. Within this context, our view of
the use of technology in mathematics education shifts from perceiving it as a mere
token of progress to seeing it as a venue to creatively interact with mathematical
ideas. We suggest that technology can be used to germinate creativity, which we
turn to in the next section.

20.2.2 Harnessing Creativity

Given Vygotsky’s perspective of the work of education as an enterprise that is more
oriented toward the future than the past, and toward what the student will be able to
do tomorrow than what he or she already mastered yesterday (Davydov, 1986/2008,
p. 40; Fellus & Biton, 2017), we draw on Vygotsky’s (2004) work to understand
the concept of creativity in terms of whether learners’ activity is oriented toward
producing new ways of representation of knowledge or reproducing replicas of
previously formulated ways of knowing (Vygotsky, 2004). These terms of pro-
duction and reproduction are important to our discussion because they frame acts of

512 O. Fellus and Y. Biton



creativity as qualitatively distinct from and more collectively meaningful than acts
of reproduction of representations that were already previously attained by others.
The former is associated with creativity and progress, the latter with stagnation and
regression, because, to quote Vygotsky, the latter “is very closely linked to mem-
ory; essentially it consists of a person’s reproducing or repeating previously
developed and mastered behavioral patterns or resurrecting traces of earlier
impressions…[it refers to instances] where actions are based on more or less
accurate repetition of something that already exists” (Vygotsky, 2004, p. 7).

Using Vygotsky’s framework of creativity as actions that are more oriented
toward the future (Fellus & Biton, 2017), we ask ourselves, how, then, do acts of
creativity look like? Vygotsky’s answer spans over the just-shy-of-a-hundred pages
of his Imagination and creativity in childhood, where he brings in empirical support
from different studies conducted with children to buttress his perception of creativity.
Whereas Vygotsky mostly refers to creativity in writing, we believe that the prin-
ciples and suggestions he pushes forth are equally relevant to mathematics education.
In order to set up adequate conditions for creativity to happen, Vygotsky suggests
that we “offer the greatest and widest choice of topics, without selecting those you
think are particularly suited to children” (Vygotsky, 2004, p. 49). Such condition
allows for free choice through combinatorial activity (Vygotsky, 2004, p. 9), which
takes place “whenever a person imagines, combines, alters, and creates something
new” (Vygotsky, 2004, p. 10). This can happen when students have opportunities “to
combine elements to produce a structure, to combine the old in new ways”
(Vygotsky, 2004, p. 10). According to Vygotsky, the ability for combinatorial
thinking is human-specific and is an extension of one’s memory and experience.

Vygotsky’s framework to understanding creativity lends itself to using the term
bricoleur (Levi-Strauss, 1962) to reference the role students play in promoting
combinatorial activity by re-using attained material to create something new.
According to Vygotsky (2004), the mechanism through which this combinatorial
work can be carried out takes the form of acts of dissociation—i.e., breaking up a
whole into discrete parts—and acts of association—i.e., knitting together discrete
items to create new representations of networked systems of knowledge drawing on
past experience, imagination, and emotions. Combinatorial thinking, according to
Vygotsky (2004) can only be carried out through free choice because: “internal
expression [is] associated with the choice of thoughts, images, and impressions”
(Vygotsky, 2004, p. 18).

Framing creativity as combinatorial thinking, we ask ourselves: Who can
practice it? What may happen if we do not allow it? And what are the conditions
that are conducive to it? The question of whether creativity is an activity saved only
for the abled few was negated by Vygotsky thus positioning him together with a
growing number of scholars who call for the democratization of creativity and the
appreciation of its manifestations among all learners. Vygotsky explains,

There is a very widespread opinion that creativity is the province of the select few and that
only those who are gifted with some special talent should develop it in themselves and have
the right to consider themselves to have a vocation for creation. This is not true, as we have
attempted to explain above. If we understand creativity in its true psychological sense as the
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creation of something new, then this implies that creation is the province of everyone to one
degree or another; that it is a normal and constant companion in childhood (Vygotsky,
2004, p. 37-38).

As to the second question, the indelible effects of not scaffolding opportunities
for creativity for all learners may be irreversible as Vygotsky explains,

The entire future of humanity will be attained through the creative imagination. [O]rien-
tation to the future, behavior based on the future and derived from this future, is the most
important function of the imagination. To the extent that the main educational objective of
teaching is guidance of school children’s behavior so as to prepare them for the future,
development and exercise of the imagination should be one of the main forces enlisted for
the attainment of this goal (Vygotsky, 2004, pp. 87-88).

As to the third question, among potential conditions, the act of choice is
underscored as necessary for combinatorial thinking. Choice can be possible if there
are options to choose from, thus suggesting experience and available knowledge as
pre-conditions for creativity. This idea of choice as a necessary condition for cre-
ativity was also recognized by MacKinnon (1966) who explains that for creativity
to happen, one needs “a greater range of information and a greater fluency of
combination” (p. 153). In a similar vein, Perkins (1988) suggests the term “crossing
boundaries” as a condition for creative thinking thus buttressing the act of com-
binatorial thinking through choice as a manifestation of creativity.

Recent studies in neuroscience provide empirical evidence that corroborates
Vygotsky’s perception of creativity as acts of combinatorial thinking (see for
example, Jung, et al., 2010; Thagard & Stewart, 2011; Vartanian, Bristol, &
Kaufman, 2013; Wu, et al., 2015; Zhu et al., 2016). Bendetowicz, Urbanski,
Aichelburg, Levy, and Volle, (2017), for example, used the Remote Associates Test
(RAT) with 57 participants to record their ability to generate a word associated to
three unassociated cue words. For example, participants were expected to generate
the word “cheese” as an associative word for “rat, cottage, blue.” The
researchers concluded that the very act of creativity blazes “long-range pathways”
(p. 225), which is made possible through the brain’s structural network thus con-
tributing to the construct validity of combination in measuring creativity. In light of
this research, even though Vygotsky’s work references children, we can safely
argue that his perception of creativity as a manifestation of combinatorial practices
applies to topics across disciplines, is not object- or discipline-constrained, is
human-specific, and, above all, learnable (Zhu et al., 2016).

Fast forward almost a century since Vygotsky wrote his seminal work on cre-
ativity in Russian before it was translated into English, however, creativity in
mathematics cannot yet crown itself with a clear definition—not to mention oper-
ationalization (Czarnocha & Baker, 2015; Sriraman, 2008; Nadjafikhah & Yaftian,
2013). Nevertheless, mathematical activities that foster and nurture creativity have
been continually explored. These include students posing mathematical problems
(Shaffer, & Clinton, 2006; Silver, 1997; Van Harpen & Sriraman, 2013), students
solving open-ended questions (Hashimoto, 1997; Kwon, Park, & Park, 2006; Li &
Li, 2009; Stacey, 1995), students working on multiple-solution tasks (Leikin, 2009;
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Levav-Waynberg & Leikin, 2012), and students writing mathematical riddles
(Prusak, 2015). Of particular relevance is Csikszentmihalyi’s (1988) distinction
between problem finding—rather than problem solving—and creativity and his call
to focus on a learner’s “acute curiosity” (p. 166) as the very element that ignites and
continuously fuels his or her motivation and perseverance in finding a problem and
formulating a solution. Scrutinizing these studies, one cannot ignore the focus on
the product-oriented perspective of creativity. The questions we pose are how might
the process of creativity in a mathematics classroom look like? What particular
actions do students who engage with creative mathematical thinking carry out? And
how can creativity be nurtured in class?

Using these questions to guide our focus and building on the above-mentioned
scholarship, we follow Johnson-Laird (1988) quip, “Freedom of choice occurs par
excellence in acts of creation” to suggest that creativity is strongly associated with
the act of choice and that, in fact, choice is a dominant and determining factor in the
act of creativity (Koichu, 2015; Sriraman, 2008). We also argue that choice is
dependent on knowledge of options and experience as more input facilitates better
connections. This is supported by a recent comparative study working with three
high school mathematics classes (two classes in China, one in the USA), where Van
Harpen and Sriraman (2013) showed how those who had more content knowledge
did better in creating more complex mathematics problems.

In light of this scholarship on combinatorial creativity, choice, and mathematics
creativity, we ask what specific pedagogical practices can foster acts of choice in
mathematics education? We argue that Bakhtin’s act of authorship (Holquist, 1983)
is an important condition for this process to which we turn next.

20.2.3 Harnessing Authorship

Authorship, according to Bakhtin (1981), refers to the appropriation of utterances
that are heard spoken (or written) by others. When people apply their own inten-
tions and meanings to utterances, they take ownership over them and appropriate
them. Bakhtin (1981) writes:

The word in language is half someone else’s. It becomes ‘one’s own’ only when the
speaker populates it with his own intention, his own accent when he appropriates the word,
adapting it to his own semantic and expressive intention. Prior to this moment of appro-
priation, the word does not exist in a neutral and impersonal language (it is not, after all, out
of a dictionary that the speaker gets his words!), but rather it exists in other people’s
mouths, in other people’s contexts, serving other people’s intentions: it is from there that
one must take the word, and make it one’s own (pp. 293–294).

According to Bakhtin, “A speaker is to his utterance what an author is to his text”
(Holquist, 1983, p. 315). Drawing on Bakhtin’s notion of authorship, Wertsch (1998)
distinguishes between mastery of content and the act of authorship explaining that
one’s authorship takes place only by the user’s putting new meanings into the
mastered content. In our context, such use goes beyond mastery of mathematical
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content by allowing students to develop ownership over the mathematical ideas
through the active use of mastered content to address their own needs.

Within Bakhtin’s notion of authorship, it would be hard to overstate Vygotsky’s
contribution to the understanding of creativity in educational contexts because it
qualifies creativity as an innate characteristic shared by all and carried out by acts of
authoring through combinatorial actions or bricolaging as we call it. For some,
authorship and mathematics education might be read as an oxymoron. But what we
suggest here is that mathematical authorship allows learners to take charge over
how they mathematize, how they make sense of mathematical principles, and how
they make connections between seemingly disconnected mathematical ideas. We
thus use the term authorship to reference learners’ ongoing engagement through
acts of meaning making and bricolaging in mathematics. Pedagogically speaking,
such acts of meaning making of mathematical ideas may take the form of engaging
with multiple representations of mathematical concepts, for example. The concept
of multiple representations is paramount in mathematical thinking (Ainsworth,
2006; Barmby, Harries, Higgins, & Suggate, 2009; Davydov, 1991; Dreher &
Kuntze, 2015; Dreher, Kuntze, & Lerman 2012; Gagatsis & Shiakalli, 2004; Goldin
& Shteingold, 2001) and one would expect to have multiple opportunities for
authorship in this form of mathematical engagement.

However, simply being able to transform one mathematical representation to
another does not necessarily generate mathematical understanding and
authorship. Seufert (2003) emphasizes: “Learners must interconnect the external
representations and actively construct a coherent mental representation in order to
benefit from the complementing and constraining functions of multiple represen-
tations” (p. 228). In the context of teaching multiplication, for example, learners
should fluidly author representations to show use of the commutative property, the
distributive property, or the associative property (Barmby, Harries, Higgins &
Suggate, 2009; Chi, De Leeuw, Chiu, & LaVancher, 1994; Davydov, 1991). Given
that multiple representations are “linked through reasoning” (Barmby, Harries,
Higgins, & Suggate, 2009, p. 4) and that reasoning is the building block of
authoring mathematical ideas (Moseley, 2005; NCTM, 2000), we position both in
the core of mathematical thinking:

Being able to reason is essential to understanding mathematics. By developing ideas,
exploring phenomena, justifying results, and using mathematical conjectures in all content
areas and—with different expectations of sophistication—at all grade levels, students
should see and expect that mathematics makes sense (NCTM, 2000, p. 56).

Pedagogical opportunities that allow learners of school mathematics to develop
ideas, explore phenomena, and justify results, among other things, allow for
opportunities to author mathematical ideas. In a recent research conducted in Ontario,
Canada, Hillman (2014) describes how a student comes up with a not-pre-designed
way to use TI-Nspire, a graphing calculator. Hillman reports how the student’s
suggestion changed the way the teacher approached the mathematics problem in
other classes. He simply presented the student’s suggestion in all the classes he taught
thereafter thus solidifying the student’s mathematical authorship. Hillman’s (2014)
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study is relevant here as his work sheds light on an important intersection of math-
ematics, technology, creativity, and authorship. Hillman (2014) shows that students
as well as teachers have a role in shaping the use of technology in the mathematics
classroom and that this role needs to be acknowledged (Radford, 2003, 2012; Säljö,
2010, 2012). Even though Hillman himself did focus on the use of technology, he
did not explicitly use the terms creativity and authorship in the sense we use them
here. Nevertheless, his work exemplifies one such interaction in the context of
mathematics education. Instead of merely reading values from a graph, the student in
Hillman’s research had an opportunity to rewrite the institutionally assigned roles.
When the mathematics teacher asked the students to predict an unknown value in a
line of best fit, the student already creatively formulated his own way of working with
the graphing calculator, which was then adopted by the teacher and used in all his
other classes thus reifying the unification of technology, creativity, and authoring in
the context of school mathematics.

Compounded with the notion of authorship is its association with the phe-
nomenon of making mistakes. MacKinnon (1966) declares, “The creative person,
given to expression rather than suppression or repression thus has fuller access to
his [sic] own experience both conscious and unconscious” (MacKinnon, 1966,
p. 154). This line of thought is also used by Sheffield (2015, 2017), who explains
that students who are allowed to make mistakes and “construct viable arguments
and critique the reasoning of others…have greater enjoyment and a much deeper
and long-lasting understanding of mathematical concepts as well as a willingness to
attack difficult problems and persevere in their solutions” (Sheffield, 2015, p. 116).
Indeed, making mistakes is part and parcel of learning. In fact, examining the
biographies of great innovators, Weisberg (1988) provides a detailed account of
what brought great innovators to generate their world-changing inventions. He
shows how, contrary to the commonly shared narratives, it was actually a long
process of trial and error, of perseverance, and commitment in the face of failure
that drove those innovators rather than a fixed, pre-existing ability of creativity.

Perceiving the making of mistakes as an integral part of the process of author-
ship, we looked for a framework that can provide helpful concepts to understanding
what it is exactly that students do when engaging in acts of authorship and cre-
ativity. That is, how does learning happen and how does authorship get a chance to
surface? We thus bring in Rogoff’s (1990) notion of apprenticeship that considers
learners as active agents in socially generated processes of authorship of
not-yet-mastered skills by means of observation as well as by guided or joint
participation (Rogoff, Mistry, Göncü, & Mosier, 1993).

Etymologically speaking, the very meaning of the word apprenticeship refer-
ences actions of learning and teaching, seizing, taking hold of, grasping, and
apprehending (Klein, 1966, p. 95). Indeed, Rogoff (1990), who draws on
Vygotsky’s notion of social activity as the mechanism through which individuals
develop, shows how humans teach and learn by collaboration, observation,
involvement, development of realistic self-reliance, routine arrangements and
interactions, transferring responsibility for roles and activities, and providing
bridges from what is already known to what is not yet known. She provides
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numerous instructive examples that illustrate how the notion of apprenticeship cuts
across cultures and geographical regions even though they carry distinctive his-
torically, socially, and culturally shaped ways of performing tasks. It is through the
act of apprenticeship that conditions for authorship can be cultivated and fostered as
it makes knowledge more attuned, more accurate, more refined, thus allowing for
creativity (read authorship) to take shape and direction.

20.3 TCA Harnessed Three Abreast—A Case Study

Within his work as a mathematics teacher educator, and as a teacher of mathematics
in the Virtual High School that is operated through the Center for Educational
Technology (CET) in Israel (see Biton, Fellus, Raviv, 2017a, b; Biton, Fellus,
Raviv, Fellus, forthcoming; Fellus, Biton, Raviv, 2017), the second author has
often noticed instances of learners’ appropriation of mathematical ideas as it was
manifested through the use of technology, the application of creativity, and the
action of authorship. These instances have buttressed our perception of the three,
equally prioritized, as conducive to the learning of mathematics. One such example
is drawn from an after-the-lesson consultation between a tutor in the virtual high
school and the second author.

Following a synchronous meeting between the class instructor (second author)
and the class tutors, one of the tutors asked to continue the conversation at the end
of the session to discuss an experience she had with her four Grade 10 tutees. She
recounted that as she was reviewing and summarizing the unit on the Midsegment
Theorem, her students provided the following proposition as a true Converse of the
Midsegment Theorem: “A segment that connects the midpoint of one side with a
point on another side and equals half of the third side, is a midsegment of that
triangle.” The tutor said that she knew this proposition was not true and that she
simply told the students that it was not correct. Her students, however, wanted to
know why the proposition was not a true Converse of the Midsegment Theorem.

Not waiting for her to prove them wrong, the students began to vehemently
argue that this specific proposition was actually a true Converse of the Midsegment
Theorem and embarked on constructing proofs on the shared computer screen to
support their argument. The tutor told the course instructor (second author) that
there were four students in the group and that three of those students formulated
three different proofs to demonstrate that the proposition at hand was a true con-
verse for the Midsegment Theorem. She then shared the three proofs with the
course instructor (see below) noting that she was no longer sure whether these were
incorrect. (See Table 20.1.)

Collectively, the students engaged with bricolaging through combinatorial
thinking and brought in their knowledge of similar triangles, Thales’ Theorem, and
proof by contradiction to construct their mathematical proofs. The course instructor
(second author) logged on GeoGebra (see Fig. 20.2) to show the tutor that the
given proposition did not have the adequate conditions to support the Midsegment
Theorem in a triangle.
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Table 20.1 The students’ proofs of the validity of a converse of Midsegment Theorem

Proof #1 Proof #2 Proof #3

BD
BA ¼ DF

AC ¼ 1
2

∡B = ∡B
ΔDBF
ΔABC
by SSA
BF
BC ¼ 1

2
Q.E.D.

BD
BA ¼ DF

AC ¼ 1
2

DF || AC
by a Converse of the
Thales Theorem
BF
BC ¼ 1

2
by the Thales Theorem
Q.E.D.

Let’s assume that point F is not the midpoint
This means that there is a point K, different than F,
which is the midpoint of AC
Let’s connect points D and K. DK is a midsegment
in the triangle and so:
DK ¼ 1

2 AC
But DF ¼ 1

2 AC
And so:
DK = DF
This is true only if points K and F converge.
This is a contradiction!
This means the assumption is not true and so point
F is the midpoint of BC
Q.E.D.

Fig. 20.2 The use of the
dynamic tool GeoGebra to
show that there are two
segments that can have the
given property
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The representation generated by GeoGebra demonstrated that there are two line
segments that fulfill the condition given in the proposition. Following this, the
course instructor (second author) and the tutor continued the synchronous session to
analyze each of the students’ proofs and identify the mistake in each. They then
decided to use the students’ proofs as a trigger for synchronous discussions with the
whole class as well as with the other five tutors. It is interesting to note that at first
sight, the rest of the class, as well as the other tutors accepted the students’ proofs as
correct and thus the given proposition as true. The instructor then explained why the
proposition was not true using the interactive mathematical application GeoGebra
with these groups as well.

To attain experts’ input on the proofs, the second author, who also teaches
undergraduate and graduate courses in a mathematics education program, used the
students’ proofs in an assessment course of 49 mathematics teacher candidates, all
of whom were asked to decide whether they accept the three high school students’
proofs as clear and correct using a three-level Likert-type survey (Agree,
Somewhat-agree, Disagree). They were also asked to provide the reason for their
choice. Figures 20.3 and 20.4 show that while about 70% of the teacher candidates
accepted proof #1 as clear, their acceptance of the proof as correct was almost
equally divided across the three levels of acceptance. For proof #2, 40% of the
teacher candidates rated it as clear, while 55% of them labeled it as incorrect. In
regard to proof #3, 53% of the teacher candidates thought it was clear, and only
26% of them labeled it as incorrect.

Examining the reasons provided by the mathematics teacher candidates for their
ratings, themes pertaining to creativity and originality were captured. The following
are four quotations that demonstrate the acceptance of the proofs as original:

69.4%

40.8% 

53.1%

26.5%

51.0%
44.9%

4.1% 8.2% 2.0%

Proof 1 Proof 2 Proof 3

The Proof is Clear

Strongly agree Somewhat agree Disagree

Fig. 20.3 Degree of clarity of the students’ proofs assigned by the mathematics teacher
candidates
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Hadar: “It’s a beautiful example to show students that you can get to the same result by
using different tools. It is also a great opportunity to discuss Thales’ Theorem.”

Gil-Ad: “The student solved the problem in a creative and sophisticated way. The thinking
is generally correct and demonstrates advanced mathematical logic. However, the student
was supposed to prove the given proposition. The proof that is provided still requires
further explanations.”

Hadas: “One needs to give positive feedback for this elegant and original proof by con-
tradiction. Having said that, this is an opportunity to explain to the students that proof by
contradiction is always less intuitive to the human mind and more complex logically and
thus more prone to logical mistakes.”

Hannah: “The proof is original and is constructed as a proof by contradiction, which is not
used often. I would use this proof as a way to develop creative and spatial thinking. I would
work with the students on identifying the mistake and on sketching cases where this proof
would work and cases where this proof would not work.”

Other threads that were identified in the teacher candidates’ comments included
the use of technology, expression of creativity, making mistakes as an integral part
of learning, as well as the practice of apprenticeship in demonstrating the right way
of using theorems of similar triangles, Thales’ Theorem, and proof by contradiction.
Descriptors such as “proof that is considered prestigious,” “elegant,” “not trivial,”
and “beautiful” demonstrate the teacher candidates’ appreciation of the students’
proofs as unique and novel. The teacher candidates highlighted the use of tech-
nology as a tool to effectively demonstrate these mathematical ideas. For example,
one teacher candidate wrote: “I would use digital technology such as GeoGebra or
artifacts such as magnets on the board to demonstrate that when segment AC is
smaller than segment AB, we can find two points that show whether the proposition
is true.”

The context of the virtual high school (VHS), its technological design, peda-
gogical framework, and ongoing support to students (see Biton, Fellus, & Raviv,

30.6%
22.4%

53.1%

36.7%

22.4% 20.4%

32.7%

55.1%

26.5%

Proof 1 Proof 2 Proof 3

The Proof is Correct 

Strongly agree Somewhat agree Disagree

Fig. 20.4 Acceptance rate of the correctness of the three proofs by the mathematics teacher
candidates
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2017a, b; Biton, Fellus, Raviv, Fellus, forthcoming; Fellus, Biton, & Raviv, 2017)
create a unique environment where technology is used to carry out the task of
learning and where opportunities for creativity, meaning making, bricolaging, and
mathematical authorship are welcomed expressions of knowledge. By closely
engaging with small groups of students (up to four), a tutor (a STEM-major uni-
versity student) works with the students for two hours a week in the after-school
hours. This is in addition to four-to-six hours of synchronous mathematics classes
with up to 25 other students during school hours with a teacher of mathematics. The
environment of the Israeli VHS provides learning opportunities not only to its
students but also to its tutors and instructors thus constantly shifting the direc-
tionality of the apprenticeship model. In this episode, technology and its affor-
dances made it possible for the expression of creativity and authorship to take place.
When the students began to combine different mathematical ideas to construct their
proofs using available technologies, they were driven by what Csikszentmihalyi
(1988) calls “acute curiosity” (p. 166). By acts of bricolaging, of choice, and
reasoning, they authored mathematical representations that were recognized as clear
and correct by some mathematics teacher candidates—thus gaining what Stein
(1953) and Sriraman (2008) perceive as the experts’ approval of novelty.

The highly technological environment of the VHS where teachers, tutors, as well
as students can equally use tools and applications, engage in acts of creativity, and
learn through authorship creates an inseparable bundle of distinct elements the
combination of which allows for ample opportunities to celebrate students’ math-
ematical arguments and sense making.

20.4 Conclusion

The aim in this chapter was to offer a unification of technology, creativity, and
authorship (TCA) within mathematics education. We draw on the works of Latour
(1991), Vygotsky (2004), and Bakhtin (1981) to suggest a framework that has the
potential to democratize creativity in mathematics education. Vygotsky’s (2004)
notion of creativity is essential to how we see creativity in mathematics education
because it provides an operational framework of combinatorial work—corroborated
by work in neuroscience; it underscores the role of the teacher or knowledgeable
other to function as a mentor within the theory of apprenticeship in education; and
it positions authoring as one of the building blocks of learning and development.
We know how creativity looks like—it is a product that is perceived by others as
unique, novel, and useful (Stein, 1953)—but we do not yet know, or have adequate
practice of how to set up the conditions to allow for it to take place. The use of TCA
as a framework, with the plethora of technologies, becomes more feasible and
equitably accessible. In the episode that we described, we saw how students are
providing their proofs during the synchronous meeting with their tutor. Their col-
lective work demonstrates combinatorial thinking as they make connections
between diverse mathematical concepts (similar triangles, Thales’ Theorem, and
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proof by contradiction) to prove a proposition as a true converse of Midsegment
Theorem. Whereas each of the students made a mistake in their respective proofs,
their ability to draw on diverse mathematical ideas speaks to their collective ability
to combine mathematical ideas in the process of making sense of the problem at
hand.

Our purpose here is not to prescribe a solution. Rather, it is to invite the reader to
reflect upon the concepts we brought forth so that we can consider the advantages
and challenges of using these concepts as guidelines in the context of mathematics
education. In writing this chapter, we asked ourselves the ‘so what’ question. We
wanted to formulate a clear understanding of the reasoning behind putting the
intersection area of C \ T \ M in the limelight of research. We believe that
allowing for creativity to have a voice, to take form and shape, and to make its mark
may spark human agency in the doing of mathematics. In his discussion on
mathematics from the perspective of positioning theory, David Wagner (2011)
identifies five myths that need to be dispelled: that mathematics has no human
subject—obscuring the fact that it is human beings who put together the theorems,
the proofs, the graphs, the models, and the statistics; that mathematics is culture-free
and values-free—obscuring the fact that there are other kinds of mathematics that
are not privileged in schools; that mathematics is hard to do—obscuring the fact
that doing math is not about doing it fast and right but about putting the time in
exploring and understanding mathematical phenomena; that only a few can do math
—obscuring the fact that notions of identity play an important part in building
mathematical capabilities; and that mathematics is powerful—obscuring the fact
that it can sometimes, intentionally or unintentionally, provide misleading infor-
mation. We feel that using a unified framework of TCA in the sense that was
presented in this chapter, may be effective in gradually dispelling these myths.

Within this TCA framework, we perceive mathematics education as being more
about capacity building that is oriented toward the future rather than about ability—
which is oriented toward the past (see Fellus & Biton, 2017). To summarize our
message of the nature of TCA in mathematics education, we allude to two ideas.
One is Seymour Papert (1992) use of the metaphor in the title of this book chapter;
the second is Einstein’s quip in a 1922 speech he gave in Kyoto. We will begin with
Papert, whose work tying technology with creativity in education is instructive. He
underscores the “volcanic explosion of creativity” (p. 33) with the use of tech-
nology and explains that focusing debates on whether the use of technology within
educational contexts is justified is “more like attaching a jet engine to an old
fashioned wagon to see whether it will help the horses. Most probably, it will
frighten the animals and shake the wagon to pieces, ‘proving’ that jet technology is
actually harmful to the enhancement of transportation” (p. 29). It is with this
metaphor in mind that we chose the idiom of putting the horses before the cart, as it
is our underlying assumption that the simultaneous harnessing of technology,
creativity, and authorship as defined in this chapter will allow the horses to pull the
cart of learning school mathematics. Without it, mathematics education may find it
almost impossible to move toward what students will mathematically be able to do
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tomorrow. For us, then, to allude to Einstein’s quip, describing the role of tech-
nology in mathematics education without reference to creativity and authorship “is
similar to describing our thoughts without words” (Einstein, 1982, p. 47).
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Chapter 21
Virtual Learning Communities of
Problem Solvers: A Potential for
Developing Creativity in Mathematics?

Dominic Manuel

Abstract Mathematics is viewed as a school subject that can develop creativity in
students (Liljedahl and Sriraman in Learn Math 26:17–19, 2006; Sheffield in
Creativity in mathematics and the education of gifted students. Sense Publishers,
Rotterdam, The Netherlands, pp. 87–100, 2009; Sriraman in ZDM: Int J Math Educ
41:13–27, 2009). However, many authors have mentioned that mathematics
learning is still based on applying routine procedures and already prescribed
algorithms (Chan Chun Ming in The use of mathematical modeling tasks to develop
creativity, 2008). Yet, studies have shown that open-ended problems can create
opportunities for students to face more cognitive challenges and to develop different
and original problem solving strategies, thus leading to more creative solutions
(Leikin in Habits of mind associated with advanced mathematical thinking and
solution spaces of mathematical tasks, pp. 2330–2339, 2007). Some researchers
have also mentioned that virtual learning communities may support the develop-
ment of creativity, but this does not seem to have been proved (Piggot in Math
Teach 202:3–6, 2007). This study thus focuses on the richness of mathematical
problems posted and the creativity of solutions submitted by members of the CAMI
website, a virtual community of problem solving designed for Francophone stu-
dents from New Brunswick, Canada, and elsewhere. I have developed a conceptual
framework to: analyze the richness of the problems posted on the website; assess
the mathematical creativity of the solutions submitted; and determine whether a link
exists between these two variables. I created two grids to analyze the richness of the
problems and the creativity of the solutions for 50 randomly selected problems.
Then, using the Likelihood ratio, I determined whether there was a link between the
two variables. Results show that, in general, richer problems seem to bring different
correct answers and more original solutions.
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21.1 Context of the Study

21.1.1 Creativity in Mathematics Education

For a long time, creativity was often cited along with artistic creations, musical
compositions and scientific discovery. Thus, mathematics was not known as a topic
associated with creativity (Chan Chun Ming, 2008). However, although it appears
to be under-researched in mathematics and in mathematics education according to
Sriraman (2009), mathematics educators view mathematics as a school subject that
has the potential to develop creativity in students, and stress the importance of
developing it inside classrooms (Leikin, 2011; Petrowski, 2000; Sheffield, 2009;
Sriraman, 2009). In fact, they see creativity as an orientation or disposition toward
mathematical activities that can be fostered broadly in the general school population
(Sriraman, 2005). Creativity in school mathematics differs from that of professional
mathematicians, but students can offer new insights or solutions to mathematical
problems based on their previous experiences and to the performance of other
students’ contributions, the mathematics students previously learned, and the
problems they solved (Leikin, 2009; Sriraman, 2005).

Mathematical creativity in school mathematics is usually connected with prob-
lem solving and problem posing (I will only address problem solving in this
chapter) (Sheffield, 2009). Sheffield argued that, although learning basic mathe-
matical facts remains important in classrooms, it is even more important to put
emphasis on the development of higher cognitive abilities that enable students to be
more creative, such as: recognizing and defining problems that emerge from the
society; generate multiple solutions and strategies to different problems; and rea-
soning mathematically, creating and justifying conclusions, and communicating
results. Students are not born with these abilities, and they don’t develop auto-
matically. It is therefore important to cultivate and nurture them in students (Mann,
2006; Sheffield, 2009).

The relationship between mathematical creativity and problem solving at the
school level can be viewed as students engaging in a process that results in original
solutions to a given problem or approaching the problems in new perspectives
(Leikin, 2009). For Kwon, Park, and Park (2006), it involves open-ended tasks that
focuses on: the creation of new knowledge, and flexible problem solving abilities.
As opposed to problems only having one solution, open-ended tasks can bring
students opportunities to solve these problems in their own ways and according to
their specific abilities (Klavir & Hershkovitz, 2008). In addition, these authors
added that these types of problems make a high cognitive demand for many rea-
sons. First, they can have different interpretations. Second, they can have multiple
strategies and correct answers. Third, they give students the chance to construct
new knowledge in a variety of contexts. Fourth, students can confront the same
problem in different perspectives, and represent the mathematical concepts and
relations involved in it in their own and different ways until they discover an
effective strategy that will permit them to rigorously solve it. Students could be
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more creative by bringing their own inventions and making their own discoveries
(Mann, 2006). With open-ended problems, students can also take risks while
finding different ways to solve a problem, test different possible answers, and
possibly develop original strategies—all activities which characterize mathematical
creativity (Mann, 2006). Chiu (2009) added that ill-structure problems can also
support the development of mathematical creativity in students.

Educators have attempted to promote mathematical creativity in classrooms.
Singer, Sheffield, Freiman, and Brandl (2016) cited joint publications of the
National Council of Teachers of Mathematics, the National Association for Gifted
Children, and the National Council of Supervisors of Mathematics, which sug-
gested the inclusion of an additional standard to the Common Core Mathematics
Curriculum focusing on mathematical creativity and innovation. This standard
would encourage and support all students in “taking risks, embracing challenge,
solving problems in a variety of ways, posing new mathematical questions of
interest to investigate, and being passionate about mathematical investigations”
(Johnsen and Sheffield, 2012, pp. 15–16). Despite the efforts, the change is still to
come in classrooms (Chiu, 2009; Singer et al., 2016; Sriraman, 2009). The peda-
gogical approaches used in classrooms do not seem to foster the development of
mathematical creativity (Chiu, 2009). In addition, open-ended problems, which are
suggested for the development of mathematical creativity, do not seem to be pro-
posed in classrooms (Freiman, 2006; Freiman & Sriraman, 2007). Yet, creative
problem solving would be a step deeper than developing problem solving strategies
(Liljedahl, Santos-Trigo, Malaspina, & Bruder, 2016). However, the word creativity
does not seem to be part of the terminology in mathematics classrooms (Leikin,
2011).

Several aspects could explain this lack of opportunities in developing mathe-
matical creativity in students. Chiu (2009) wondered whether the pedagogical
approaches used in classrooms consider the specific needs of all students to express
themselves, and to develop their talents and learning styles at their own pace.
Hashimoto (1997) questioned students and teacher’s beliefs on learning mathe-
matics because some still think that each problem only has one correct answer and
can only be solved one way, and consequently propose them to students as the
“right and only way” to solve a particular problem. Mann (2006) added that
teachers tend to focus mostly on questions and exercises that require quick and
accurate answers. Yet, he argues that the development of creativity is a long process
that demands considerable time and reflection. Some wondered if teachers tend to
explicitly teach students specific strategies to solve particular types of problems
(Chan Chun Ming, 2008; Chiu, 2009). By doing so, they prevent students from
using divergent thinking, which means finding different solutions and strategies to
solve problems. Teachers explicitly proposing problem-solving strategies to stu-
dents limit the opportunities for them to create their own representations and
strategies, and to possibly come up with different correct answers (Lithner, 2008).
Meissner (2006) argued that explicitly teaching problem-solving strategies risk
harming students’ natural curiosity and enthusiasm toward mathematics as they
move forward in their school years.
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In conclusion, it appears that the pedagogies used in mathematics classrooms
seem to put an emphasis on what students reproduce and transmitting
pre-established knowledge instead of giving students opportunities to develop their
own strategies and to find original solutions to problems. When students are placed
in an environment that puts an emphasis on memorization of mathematical concepts
and the application of strategies and algorithms presented by the teachers in order to
find the one and only answer in exercises that demands practically no reflection on
the part of students does not permit the development of mathematical creativity in
students (Mann, 2006). If students had more opportunities to reflect on problems
proposed, to question the problem, to develop different interpretations and strategies
to the problem as well as original solutions to the problem, and to even task risks,
what would the teaching and learning mathematics look like in classrooms? In such
a case, mathematics would be, according to Mann (2006), a school subject that
would not limit itself by a set of concepts and algorithms to be recognized and
memorized. My research is aligned with this idea.

In this chapter, I explore the potential of problem solving in a different context:
virtual communities (discussed in the following section), as an alternative option for
developing mathematical creativity in students. The potential of information and
communication technologies such as virtual communities in fostering mathematical
creativity does not seem to have been explored empirically. Technologies consists
of a different context since students interact with the resource and not the teacher
like in classroom settings. Could this student technology relationship foster more
creative thinking in students?

21.1.2 Virtual Communities: A Possible Alternative
for Mathematical Creativity?

Problem solving has been studied for many decades (Liljedahl et al., 2016). Such
studies include heuristic strategies in solving problems (Polya, 1945), how students
solve mathematical problems (Schoenfeld, 1985, 1992), and how problem solving
is taught in mathematics classrooms around the world (Tömer, Schoenfeld, & Reiss,
2007). However, these studies tend to focus more on paper and pencil tasks.

Information and communication technologies (ICT) have also been documented
as a means to support the learning experiences of students in and beyond class-
rooms. In fact, according to Freiman, Kadijevich, Kuntz, Pozdnyakov, and Stedoy
(2009),

Technologies can: give access to resources that cannot be otherwise accessed; provide a
free choice of resources based upon the level and particular needs, provide dynamic tools of
mathematical investigation giving a chance to modify parameters of an activity in an
interactive way, serve as a valuable tool of communication about mathematics with other
people, and empower the people with the instruments by facilitating routine operations and
more sophisticated mind tools (p. 129).
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An example of this can be dynamic software like GeoGebra. According to
(Liljedahl et al., 2016), these environments permit students to conceptualize and
represent mathematical objects and tasks dynamically, and investigating the various
parameters can identify properties and discover mathematical relations. Thus with
dynamic tools, students can be engaged in mathematical activities in which they can
formulate conjectures, and find arguments to support them.

Some researchers argue that ICTs like virtual learning communities could pos-
sibly develop mathematical creativity in students. Renninger and Shumar (2004)
discussed the creative potential of the Math Forum website (www.mathforum.org),
which is oriented toward solving authentic and contextualized problems, and
requires students to communicate and reason in their own way. Researchers
studying the NRICH website (http://nrich.maths.org/frontpage) envision the cre-
ative process as a human activity in problem solving (Piggott, 2007). However, the
cited works do not define creativity nor how it can be measured in problem solving
tasks. In addition, empirical studies on mathematical creativity in virtual commu-
nities appear to be absent.

This issue motivated me to study the potential of the CAMI (Communauté
d’apprentissages multidisciplinaires interactifs, www.umoncton.ca/cami) website in
developing mathematical creativity in students. A team of researchers from the
University of Moncton created this virtual problem-solving community that is
designed for Francophone schools in New Brunswick, Canada, and other counties.
According to its creators, the CAMI website accentuates rich problem solving
experiences in mathematics and other school subjects (Freiman & Lirette-Pitre,
2009; Freiman, Lirette-Pitre, & Manuel, 2008; Freiman, Manuel, & Lirette-Pitre,
2007). The main activity on this website is problem solving. Every two weeks, four
mathematical problems are posted on the website, each of them having a different
level of difficulty. The members of the website can choose the problems they want
to solve and submit a solution using an electronic form. Once the two-week period
is over, members of the CAMI team analyze each solution received and provide
feedback to the author of the solution, commenting on the process used and the
communication of the solution. This feedback is also written using an electronic
form and the author of the solution can view his feedback. In addition, the members
of the CAMI team also post a general feedback for each problem along with
examples of exemplary solutions and the names of the members who solved it
correctly. Other activities on the website include a discussion forum, and a space to
create and submit problems to the CAMI team (Freiman & Lirette-Pitre, 2009). To
become a member of the community, participants must register. This gives him
access to his own e-portfolio in which all traces of his work (problems solved and
feedback received, problems created, etc.) are placed (Freiman & Lirette-Pitre,
2009). Figure 21.1 presents the CAMI website homepage.

A few studies conducted on the CAMI website revealed signs of a potential in
developing mathematical creativity. Freiman and Manuel (2007) conducted
semi-structured interviews with a small sample of teachers and grade 7 and 8
students who used the CAMI website periodically. Results revealed that the stu-
dents’ attempt to solve certain problems resulted in using multiple strategies. In
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fact, teachers admitted being amazed and impressed by the fact that their students
solved problems in ways that they did not think of. This result hinted at possible
creative solutions. These results were perceptions from participants.

In another pilot study, I explored the mathematical creativity of the solutions for
one problem and noted traces of creativity in the solutions (Manuel, 2009). The
problem contained five different answers, and could be solved using different
strategies. As results, 37.5% of the solutions submitted by the members of the
community contained more than one correct answer. Moreover, multiple strategies
were used, but these were mostly using trial and error and arithmetic properties to
solve the problem compared to algebra. Although this study showed traces of
creativity in the solutions to the problem, questions emerged from this study. Was
the problem chosen rich enough? What makes a problem rich? The problem was
open-ended since it contained multiple answers and strategies, which is what the
literature seems to propose (Freiman, 2006; Klavir & Hershkovitz, 2008; Petrowski,

Fig. 21.1 Homepage of the CAMI website
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2000). Are those characteristics enough or do mathematical problems need to have
more characteristics to bring creative solutions? Is there a link between the richness
of mathematical problems and the creativity of the solutions submitted to those
problems on the CAMI website? Although the creators of the website say that rich
problems are posted on the CAMI virtual community (Freiman & Lirette-Pitre,
2009; Freiman et al., 2008; Freiman, Manuel, & Lirette-Pitre, 2007), this vision has
never been studied empirically. The mathematical creativity of the solutions to the
problems have not been studied as well. These questions and issues prompted me to
study the mathematical creativity in the solutions to more problems posted on the
CAMI virtual community. A more thorough empirical study would give more
insight on the potential of the website in developing mathematical creativity in
students. Some questions that guided my inquiry were: do students submit creative
solutions to problems posted on the CAMI website, or do they submit similar ones?;
are the problems posted on the CAMI website rich (as the creators of the website
promote) enough to bring creative solutions?; and do more rich (open-ended,
ill-structured, etc.) problems bring more creative solutions? In this chapter, I will
present results of these questions.

21.1.3 Goals of the Study

In this book chapter, I present an exploratory study of the richness of problems
posted and the mathematical creativity of the solutions submitted by members on
the CAMI virtual community. I thus study mathematical creativity in a problem
solving context within a virtual environment. As I mentioned, researchers argue that
problems that are open-ended (Freiman, 2006; Klavir & Hershkovitz, 2008; Leikin,
2009; Mann, 2006; Petrowski, 2000) and ill-structured (Chiu, 2009) seem to sup-
port the development of mathematical creativity. Since no studies have been con-
ducted on the problems of the CAMI website, I must address this issue. I argue that
other characteristics that make problems a “good” one may also bring creative
solutions. I conducted a review of the literature and found characteristics (or fea-
tures) that make mathematical problems “good”. I use the term richness of math-
ematical problems to describe those types of problems. I present the model of the
richness of problems I created in the following section.

By having an indication as to how rich the problems posted on the CAMI
website are, I can thus look at the mathematical creativity of the solutions to
problems with different richness. This could permit me to determine whether there
is a possible link between the richness of problems and the mathematical creativity
of the solutions. Analyzing systematically the content of the mathematical problems
posted in the CAMI virtual community and the creativity of the solutions submitted
by its members would give initial insights into the CAMI’s potential to promote
mathematical creativity. The research goals are thus the following: (1) analyze the
richness of the mathematical problems posted on the CAMI website; (2) assess the
creativity of the solutions submitted to the problems on the website; and
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(3) determine if there is a link between the richness of the problems and the
mathematical creativity of the solutions submitted on the website. Results of this
study cannot generalize whether ICTs support the development of mathematical
creativity, but could give insights and possible future research to bring more
answers to this aspect. Although mathematical creativity is often related to the
education of gifted students (Leikin, 2011), I argue that creativity can be a personal
characteristic that all students can develop. I will thus investigate the solutions from
all students.

21.2 Conceptual Framework

21.2.1 Rich Mathematical Problems

Scholars view the concept of rich problems differently. For instance, researchers
from the NRICH website (http://nrich.maths.org/frontpage) defined rich problems
as “problems which have multiple entry points, force students to think outside the
box, which may have more than one solution, and open the way to new territories
for further exploration”. Piggot (2007) saw a rich problem as one that possess many
characteristics that altogether offer different opportunities to meet the needs of
learners at different moments in an environment in which the problem is posed and
is influenced by the questions asked by teachers and the expectations from students.

In order to investigate this variety of characteristics, I conducted a thorough
study of the literature in order to identify features or characteristics in the text of
problems that could consider them as rich (Manuel, 2010). I argue that a problem is
rich when it respects as many of the following features: is open-ended (Diezmann &
Watters, 2004; Takahashi, 2000); is complex (Diezmann & Watters, 2004); is
ill-defined (Murphy, 2004); contextualized (Greenes, 1997); and has multiple
possible interpretations (Hancock, 1995).

According to my definition, a problem is open-ended if it has multiple correct
answers or can be solved using various strategies (Takahashi, 2000). Although
some might argue that open-ended problems automatically bring both multiple
answers and strategies, I saw those two criteria as rather disjoint ones suggesting
that some problems could lead to multiple answers, but could be solved using the
same strategy. For instance, if we consider the following problem:

Find all possible sums of 12 using whole numbers.

This problem has multiple answers. But it is possible that a student will use the
same strategy, for example, a systematic approach: finding possible answers with
two numbers, then three, and so on.

A complex problem is one which respects most of the following criteria: it
requires more than one step to solve it (Diezmann & Watters, 2004); it implicitly or
explicitly asks solvers to find patterns, generalize results or make mathematical
proofs; it explicitly asks to make different choices and justify them; and it explicitly
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asks to create other problems or questions in order to explore further (Diezmann &
Watters, 2004; Freiman, 2006).

A problem is ill-defined if it is missing certain data (information) which are
necessary to be able to solve it. That data can either be found by searching other
sources or can be explicitly defined by the problem solver (Murphy, 2004). It is also
ill-defined if it contains unnecessary data or doesn’t present enough information for
solution. Although, it is plausible to suggest that an ill-defined problem can also
have characteristics making it open-ended, I prefer to put this type of problems in a
different category since some ill-defined problems can still have only one correct
answer. For example, consider the following problem:

When Bob got in the plain in Paris, the clock indicated 10 AM. When Bob got off the plain
in Montreal, the clock indicated 11 AM. How long was Bob’s flight?

This problem would be considered as ill-defined since the time difference
between the two cities isn’t indicated. The student must search this information and
add the value to the difference between the times in the problem. However, it is not
considered an open-ended problem since there is only one correct answer.

A problem with multiple possible interpretations is one that encourages different
ways of thinking (can be seen in different ways) about the problem, leading to
different possible answers (Hancock, 1995). These could automatically qualify
them as open-ended. I argue that some problems can have multiple interpretations,
but each interpretation ends up to one correct answer. For instance, consider the
following problem about the game Snakes and Ladders. Students are given a
Snakes and Ladders game board and asked the following questions:

1. Using one die, what is the minimum number of turns you would need to win the
game if you always rolled the number you wanted on the die on your turn?

2. How many turns would you need to win the game?

Each question can have two different interpretations: if you begin on cell #1 on
the board; or if you begin outside of the board. However, the first question would
only have 1 correct answer for both interpretations. Thus, it would not be con-
sidered as open-ended.

A contextualized problem is one where the mathematics is presented in real life
or fictive situations (Greenes, 1997). Exercises, such as ones asking to solve for x
the equation 3x + 5 = 14, or problems wrapping them in a kind of “artificial sit-
uations” like referring to a person that needs help to solve an equation from a
mathematics textbook are not considered as contextualized problems.

Figure 21.2 presents a visual representation of my features of the rich mathe-
matical problem. The rounded rectangles represent the five main features selected in
the definition while the ovals represent the criteria used to assess different elements
for every feature that can be found in the text of the problem. These criteria were
used to assess the richness of each problem on the CAMI website.
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21.2.2 Mathematical Creativity

According to Sriraman (2009), the first known time in history that the term
mathematical creativity appeared and was studied was in 1902 in a francophone
periodical named L’enseignement des mathématiques (Teaching Mathematics) by a
mathematician named Henri Poincaré. Researches on this concept were not popular
from that time up to the first half of the century. In more recent times, researchers
are getting more interested in the topic.

For a long time, creativity was often cited along with artistic creations, musical
compositions and scientific discoveries. Thus, mathematics was not known to be a
topic associated with the concept (Chan Chun Ming, 2008). In fact, this term was
mostly used in relation to the education of gifted students. Some researchers like

Fig. 21.2 Model of the richness of a mathematical problem (Manuel, 2010)
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Sternberg (1999a) viewed creativity as a type of giftedness while others like
Renzulli (1986) viewed it as an essential component of giftedness. In fact, Renzulli
(1986)’s three-ring model of giftedness (Fig. 21.3) considered giftedness as the
intersection between above average abilities, task commitment and creativity where
creativity is composed of fluency (finding different possible answers), flexibility
(finding different possible strategies to a problem), insight and originality of ideas
and strategies in problem solving and also the ability to create new problems.

However, other researchers like Sheffield (2009) argued that mathematical cre-
ativity can be developed by all students. This vision of creativity focuses on a
production process which requires long periods of reflection and experimentations
that any student can develop with considerable time and effort while solving
non-familiar problems, a process that can be long, flexible, and deep (Holyoak &
Thagard, 1997). This vision gives creativity different dimensions than being just a
subset of giftedness according to Renzulli’s model (Meissner, 2006). I lean towards
this line of though in this study.

What are characteristics of mathematical creativity? How can creativity be
detected and/or developed in mathematics? The next paragraphs will discuss
existing theoretical views on these questions.

There are numerous ways to define mathematical creativity. Over 100 definitions
can be found in the literature (Mann, 2006). The concept appears to be impossible
to define (Liljedahl & Sriraman, 2006; Mann, 2006; Sriraman, 2009). For example,

Fig. 21.3 Three-ring model of giftedness (Renzulli, 1986)
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Runco (1993) described creativity as a multifaceted construct that involves con-
vergent and divergent thinking, problem posing and problem solving,
self-expression, intrinsic motivation, a questioning attitude and self-confidence.
Haylock (1987) talked about the ability to find new relationships between tech-
niques and areas of application and to make associations between possibly unre-
lated ideas. Krutetskii (1976) used the contexts of problem formation, invention,
independence and originality to characterize mathematical creativity. Others have
applied the concept of fluency, flexibility and originality to the concept of mathe-
matical creativity (Haylock, 1997; Mann, 2006). Singh (1988) defined mathemat-
ical creativity as the process of formulating hypotheses concerning cause and effect
in a mathematical situation, verifying them multiple times to make modifications
and conclusions, and then communicating the results. Also, some authors focused
on two main aspects: the originality and the utility of ideas (Anabile, 1989;
Sternberg & Lubart, 1999).

An important part of studies on creativity have been conducted in the psy-
chology and educational psychology communities. In a extensive review of the
literature on creativity in those communities, Sternberg (1999b) claimed that cre-
ativity can be included under six categories: mystical, pragmatic, psychodynamic,
psychometric, cognitive, and social-personality. Social and cultural dimensions of
creativity can also be found in so-called “confluence” approaches, such as: systems
approach (Csikszentmihalyi, 1999), which studies the interaction between the
individual, the domain, and the field; the case study as evolving systems approach
(Gruber & Wallace, 1999), which deals with a detailed analytical analysis of
individual approaches to creativity; and the investment theory approach (Sternberg
& Lubart, 1996), which in general described the investments of people attempting
to convince others of ideas that might not be popular. Gruber and Wallace (1999)
also argued in their theory that creative work is always the result of purposeful
behavior. However, Sriraman (2009) argued that the discovery of penicillin as a
counterexample to that statement. Can we consider accidently made illuminations
as creative work? The resulting product might be classified as creative or innova-
tive, but can we characterize the behavioral process as creativity? How can we also
relate creativity to problem posing and solving which remain commonly accepted
forms of productive (and potentially creative) mathematical activity? I present my
working definitions of creativity in the following subsection.

21.2.3 Collective Solution Spaces: Linking Problem Solving
with Mathematical Creativity

Arguing that solving problems in multiple ways can enhance the development of
student’s advanced mathematical thinking and creativity, Leikin (2007) defined a
collection of solutions to a problem as a solution space. Those spaces are influenced
by individual’s experiences and memory, as well as the expectations of the
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problem. Leikin defined three types of solutions spaces: expert solutions spaces,
individual solution spaces, and collective solutions spaces. Expert solution spaces
are various solutions experts consider correct. Expert solution spaces can be divided
into two categories: conventional solution spaces, which represents solutions pro-
posed in the mathematics curricula; and non-conventional, which are solutions
which are correct but may not be proposed as effective in the curricula. Individual
solution spaces represent solutions proposed by an individual. Those solutions
spaces can be either personal solution spaces, which are solutions an individual can
submit without the help of experts, or potential solution spaces, which are solutions
that solvers produce with the help of others. Collective solution spaces are solutions
produced by a group of participants in a community of practice. Collective solution
spaces are subsets of expert solution spaces, and are usually broader than individual
solution spaces. Leikin argued that collective solution spaces are the main sources
for the development of individual solution spaces within a community. Using
collective solution spaces can permit the development of mathematical creativity
because when students can bring various solutions to the personal solution spaces,
they can connect between representations of mathematical concepts and
tools (Leikin, 2007).

I argue that this notion of solution spaces can be extended in the context of
virtual communities. Problems posted in a virtual community can create what I
define as virtual solution spaces. Similar to Leikin (2007), these spaces can be
expert virtual solutions spaces, which would represent the solutions accepted by
mathematicians to a problem. However, with virtual communities, the expert virtual
solution spaces are not local anymore. They become global, since members from all
over the planet can contribute. In virtual communities, each member can have his or
her individual virtual solution space. All member’s contributions in the virtual
community are conserved. For instance, in the CAMI virtual community, each
member, once registered, has a personal e-portfolio in which all the problems
solved, created, and the feedback received for the problems solved are saved
(Freiman & Lirette-Pitre, 2009). Moreover, for each problem solved, a collective
virtual solution space is created. A collective virtual solution space is a set of
solutions found and submitted electronically by members of a virtual community.
As I mentioned while describing the CAMI virtual community, each member can
solve the problems he or she desires by using an electronic form (Freiman &
Lirette-Pitre, 2009). Each member’s individual virtual solution space is part of the
collective virtual solution space. Similar to Leikin (2007), I argue that collective
virtual solution spaces are the main sources for the development of individual
virtual solution spaces within a virtual community. Using collective virtual solution
spaces can permit the development of mathematical creativity because when
members can bring various solutions to the virtual personal solution spaces, they
can connect between representations of mathematical concepts and tools.

By linking creativity in a collective virtual solution space, I define it as the
fluency, flexibility and the originality of solutions suggested to a mathematical
problem (Haylock, 1997). As conceptual definitions, the fluency represents the
number of correct answers or problems created in a collective virtual solution space,
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while the flexibility refers to the number of different appropriate strategies used to
solve a problem in the same virtual collective solutions space. The difference
between fluency and flexibility reflects on the fact that the same strategy can be
used to get multiple different answers or that multiple distinct strategies can be used
to get the same answer. The originality represents correct answers and strategies
that are less frequent in the collective virtual sample space.

21.3 Method

This study is a quantitative exploratory one that follows Van der Maren (1996)’s
typologies. It focuses on an analysis of the content (texts) of the problems posted in
the CAMI website and the solutions submitted electronically by the members of this
virtual community. In 2009 (when I began the study), 28,341 members were reg-
istered to the CAMI, and 88% of them were students. The members came from 40
different countries. More than half of the members were Canadians, and 83% of
them are from New Brunswick. According to the rubric “Statistics” located in the
administrator’s interface of the website, members from New Brunswick are the
most frequent visitors. These statistics were obtained from the administrative
interface of the website.

The procedure of the study was divided into three phase, each of them focusing
on one of its goals. First, I assessed the richness of the 180 problems posted in the
CAMI website using a grid created and validated based on my working definition.
The grid was constructed according to my working definition of the richness of a
mathematical problem. For each feature in my working definition, I defined a series
of criteria that could be assessed by analyzing the text of the problem. These criteria
were based from my working definition for the feature (the ovals in the model in
Fig. 21.2 or can be seen in Table 21.2). Each criterion was defined so that it could
be answered by either yes or no. One point was given if it was respected in the
problem. The richness of the problem was thus the total number of criteria the
problem respected. At the beginning, the grid defined in an operational way the
twelve criteria for each of the five features of a rich problem retained in the working
definition. The original grid was validated using inter-rater’s reliability as a measure
before empirically assessing the problems. I, along with four members of the CAMI
team, assessed the richness of ten problems selected randomly with the grid. After
looking at the interpretive agreement percentages between myself and the other
coders, two criteria were eliminated because the interpretive agreements were less
than 80%. Those criteria were: problems having multiple interpretations, and
ill-defined problems containing unnecessary data. In addition, during a debriefing
session following the validation process, the assistants suggested that the two cri-
teria in the category of ill-defined problems that addressed missing data be com-
bined into one to avoid confusion. Also, one criterion was added in the grid in the
category of open-ended problems: problems that explicitly ask for many solutions.
Since problems with multiple answers or strategies were already criteria in the grid,

544 D. Manuel



this new one was just a question of interest: to compare between problems that did
not explicitly ask to find multiple answers with those that did. This last one was not
counted in the score for the richness of a mathematics problem. Table 21.1 presents
the grid used to analyze the richness of a mathematical problem. The gray cells are
criteria eliminated after validation. The grid was created using the Statistical
Package for the Social Sciences (SPSS) software. I entered the result for each
criterion for each problem in the software. The software calculated the total score
(the richness of the problem).Rubric used to assess the richness of a mathematical
problem

In the second phase, I examined the mathematical creativity of the collective
virtual solution spaces of 50 problems selected randomly using SPSS. All the
solutions to the problems selected were analyzed. The problems selected contained
between 75 and 402 solutions with a mean of 187 solutions per problem. This
second phase was conducted using a second grid that was created and validated.
This grid presented the guidelines in order to give scores for the three variables of
the mathematical creativity used in the working definition: fluency, flexibility, and
originality. For the fluency, I gave one point for each different correct answer found

Table 21.1 Rubric used to assess the richness of a mathematical problem

detcepseRnoiretirCerutaeF
(X)

**Problem explicitly asks to find multiple
solutions

Problem has multiple appropriate strategies

Open-ended problem Problem has multiple correct answers

Complex problem Problem requires using multiple steps to
get answers

Problem asks to make and justify choices

Problem asks to create and explore other
questions

Problem asks to find patterns, generalize or
prove results

Ill-defined problem *Problem is missing necessary data

Problem contains unnecessary data

Problem contains insufficient or unrelated
information

Contextualized problem Problem is centered around a real orfictive
situation

Problem with multiple
interpretations

Problem can be interpreted in more than
one way

Richness of the problem (# of criteria the problem respected)

*There were 2 criteria referring to the missing data in the model. After validation of the rubric, we
combined them into one since it was too difficult to distinguish between the cases
**Criterion not counted in the score for richness
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in the collective virtual solution space for the problem. For the flexibility, I gave 1
point for each strategy used to solve the problem in the collective virtual solution
space. To determine the score of the originality of the collective virtual solution
space, I used the following equation:

O ¼ VO� 2þMO
SOL

O represented the score for originality, VO represented the number of correct
answers and strategies that were very originals (used in 5% or less solutions), MO,
the number of medially original answers and strategies (used in between 5 and 20%
(included) in the solutions), and SOL, the total number of solutions in the collective
virtual solution space. Table 21.2 presents the grid used for the analysis of the
mathematical creativity for each variable.

Table 21.2 Analysis grid for the mathematical creativity of a collective virtual solution space to a
problem posted in the CAMI virtual community

Variable Descriptions

Fluency Score attribution:
1 point for each correct answer or new correct problem posed in the collective
virtual solution space.

Exceptions:
• Using neutral elements (0 for addition and 1 for multiplication) does not
increase the number of solutions.

• Equivalent fractions (ex: 1/2 and 3/6) are considered as 1 correct answer.
• If the mathematical rule explicitly results to more than one answer (example,
solving quadratic equations or absolute values), the answers are considered as
1 answer.

Flexibility Score attribution:
1 point for each appropriate strategy used to solve a problem in the collective
virtual solution space.

Note:
We inspired ourselves from the list from the following website; http://www.
recreomath.qc.ca/lex_strategie.htm.

Originality Score attribution:
Use the following formula: O ¼ VO�2þMO

SOL , where O represents the score for
originality, VO represents the number of solutions that are very original, MO, the
number of medially original solutions, and SOL means the total number of
solutions in the collective virtual solution space.

Definitions:
• VO = very original: the number or solutions that have an answer and/or a
strategy used by 5% or less of members in the collective virtual solution space
(highest level).

• MO = medially original: the number or solutions that have an answer and/or a
strategy used by 5.01–20% of members in the collective virtual solution space
(second highest level).

• If a solution has one element in each level (ex: correct answer VO and
appropriate strategy MO), it is counted at the highest level.
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Before using the grid, a member of the CAMI team and I applied the grid and
assessed 100 solutions to one problem selected at random. Given the high inter-
pretive agreement percentages, this grid was not modified. Each variable of cre-
ativity had its own score.

In the third phase, I determined if there existed a link between the richness of the
problems posted in the CAMI website and the mathematical creativity of the
solutions submitted. I used the Likelihood ratio test to do so (Field 2005). This test
was selected after conducting preliminary tests on the data (Tabachnich & Fidell,
2005) that revealed that the distributions of the scores for the fluency and originality
were not normal. The Z scores for the kurtosis and the skewness for those two
variables were greater than the absolute value of 3.29. These results lead to
transforming the scores by creating categories. The categories are presented in
Table 21.3. For the richness of a mathematical problem, three categories were
created: problems that are not rich, meaning those with a score of 3 or less;
problems medially rich, meaning those with a score of 4; and problems that are rich,
meaning those with a score of 5 and more. The categories were made according to
the relative frequencies of the scores; the ones less frequent were combined into one
category. For the mathematical creativity, the fluency and originality were both
divided into two categories: one correct answer and more than one correct answer
for the fluency; and original and non-original solutions for the originality. The
flexibility was grouped into four categories according to the number of strategies
used in the collective virtual solution space. It was the relative frequencies of the
problems and solutions grouped in those categories that were submitted for the
statistical analysis.

Table 21.3 Categories formed for the variables after preliminary tests

Richness of a mathematical problem

Variable Scores Category name

Richness of a mathematical problem
(N = 180)

1–3 Problems that are not rich

4 Problems medially rich

5–8 Problems that are rich

Mathematical creativity

Variable Scores Category name

Fluency (N = 50) 1 One correct answer

2 or
more

Multiple correct answers

Fluency (N = 50) 1 1 appropriate strategy

2 2 appropriate strategies

3 3 appropriate strategies

4 or
more

More than 3 appropriate
strategies

Originality (N = 50) 0 Non-original solution

Other Original solution
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21.4 Results

I present the results in the following subsections that are based on my research
goals, which I remind you were: to analyze the richness of the mathematical
problems posted on the CAMI virtual community; to assess the mathematical
creativity of the collective virtual solutions spaces; and determine if there is a link
between the richness of the mathematical problems posted and the mathematical
creativity of the solutions submitted.

21.4.1 Richness of the Mathematical Problems Posted
on the CAMI Website

Normality tests revealed that the scores for the richness of the 180 problems posted
on the CAMI website were almost perfectly distributed (Z score of 0.546 for
skewness and 0.489 for the kurtosis). The mean of the scores was 4 out of a
possibility of 8 with a standard deviation of 1.27. Those numbers indicated that the
richness of the problems posted on the CAMI website was modest, meaning that the
vast majority of the problems were medially rich.

Looking at the relative frequencies obtained for each of the criterion from the
grid (see Table 21.4), it appeared that four criteria were respected in most of the
problems. Those criteria were: problems with multiple correct answers, 61.1%;
problems with multiple appropriate strategies, 94.4%; problems requiring multiple
steps to get answers, 87.8%; and problems presented in real life or fictive contexts
(contextualized problems), 90.6%. However, the four other criteria were neglected.
Those criteria were: problems asking to make choices and justify them, 11.7%;
problems asking to create and explore other questions, 2.8%; problems asking to

Table 21.4 Relative frequencies of each criterion of the richness of a mathematical problem,
N = 180

Characteristics Criteria %

Open-ended
problems

Problem has multiple correct answers 61.1

Problem has multiple appropriate strategies 94.4

Complex problems Problem requires multiple steps to get answers 87.8

Problem asks to make and justify choices 11.7

Problem asks to find and explore other questions 2.8

Problem asks to find patterns and generalize results 28.9

Ill-defined
problems

Some or all necessary data or information are missing in the
text of the problem

22.8

Contextualized
problems

Problem presented in a real or fictive context 90.8

548 D. Manuel



find patterns and generalize results, 28.9%; and problems that are missing some
data or information (ill-defined), 22.8%. The differences in the frequencies indi-
cated that the vision of the CAMI team to create rich problems is restricted.

In summary, the problems posted on the CAMI virtual community were rela-
tively modest in terms of their mathematical richness, and this richness was mostly
based on four main criteria. The problems were mostly contextualized, open-ended
(with multiple correct answers and/or multiple appropriate strategies), and required
multiple steps to find one or more correct answers.

21.4.2 Mathematical Creativity of the Collective Virtual
Solutions Space of Problems

The analysis of the collective virtual solution spaces of the 50 problems using the
three variables in our definition of mathematical creativity revealed that most the
members submitting solutions to problems limited themselves to one answer and
one strategy, and those solutions were often not original. However, some traces of
mathematical creativity were found in the collective virtual solution spaces. The
relative frequencies for each of the three variables revealed these traces.

For the fluency, 48% of the problems contained two or more correct answers in
their collective virtual solution space, while 52% of them only had one correct
answer. Table 21.5 shows that 12% of problems had two correct answers, and 36%
of them had more than two correct answers in their collective virtual solution
spaces. In 30% of the ones containing more than two correct answers, the problem
didn’t explicitly ask to find multiple answers, while 6% of them explicitly asked to
find multiple answers. Those data indicated that almost half of the problems posted
on the CAMI website had more than one correct answer in the collective virtual
solution spaces, and those answers were usually found without being asked in the
text of the problem.

For the flexibility (see Table 21.5), there was a relatively important variation in
the number of strategies used in the collective virtual solution spaces. In 24% of the
problems, only one strategy was used to solve them. However, more than one
strategy was used in 76% of the problems. Two, three and more different strategies
were found in the collective virtual solution spaces in 36, 26, and 14% of the
problems respectively. It was also noted that some strategies like trial and error
were often used.

For the originality (see Table 21.5), 44% of the problems posted contained
original solutions in the collective virtual solution spaces, while 56% of them had
the same correct answers and were solve using similar strategies. However, many
solutions were similar content wise. This made me hypothesize that some members
might have solved the problem together, and they all submitted the same solutions.
Therefore, those similar solutions probably influenced the results for this variable
since they increased the frequency of the answers and the strategies.
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In terms of mathematical creativity, the results revealed some traces of it in the
collective virtual solution spaces for less than half the problems posted on the
CAMI virtual community. Between the three variables, the flexibility seemed to be
the most important variable because more than one appropriate strategy were used
in approximately three quarters of the problems posted, while the fluency and the
originality were found in less than half of the problems.

21.4.3 Link Between the Richness of the Problems and
the Creativity of Solutions

In responding to the goal concerning the existence of a link between the richness of
the mathematical problems posted on the CAMI virtual community and the
mathematical creativity in the collective virtual solution spaces of the problems,
results of the Likelihood Ratio test (Chi square) (see Table 21.6) revealed a sig-
nificant dependent link (L2 [2] = 9.706, p = 0.008) between the fluency and the
richness of problems. There was also a dependent link (L2 [2] = 10.07, p = 0.007)

Table 21.5 Relative frequencies of problems respecting the categories for each of the variables of
mathematical creativity in the collective virtual solution spaces, N = 50

Variable Categories %

Fluency
(N = 50)

1 correct answer 52

Multiple correct
answers

2 correct answers 12

More than 2 correct answers without explicitly
asking in the problem

30

More than 2 correct answer and explicitly asking in
the problem

6

Total 48

Flexibility
(N = 50)

1 appropriate strategy 24

2 appropriate strategies 36

3 appropriate strategies 26

4 or more appropriate strategies 14

Originality
(N = 50)

Problems with original solutions 44

Problems without any original solutions 56

Table 21.6 Results of the Likelihood ratio tests between the richness of problems and the three
variables of mathematical creativity, N = 50

Link between the richness of problems
and

Likelihood ratio
L2

dl Sign. Cramer’s V

Fluency 9.706 2 0.008 0.422

Flexibility 7.718 6 0.260 0.268

Originality 10.07 2 0.007 0.441
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between the originality and the richness of the problems. The effect size between
those variables, determined by Cramer’s V, was medium in both cases: being
respectively 0.422 and 0.441. However, there was no dependent link (L2

[6] = 7.718, p = 0.260) between the flexibility and the richness of the problems.
This last result could be explained by the fact that the criterion of problems that can
be solved using multiple strategies was the one among the criteria of the richness of
the problem that was the most frequent. This criterion was respected in approxi-
mately 95% of the problems.

21.5 Discussion

The results of this study showed that four among the eight criteria used to evaluate
the mathematical richness of the problems posted on the CAMI virtual community
are often used. They are: problems that has multiple correct answers; problems that
can be solved using multiple appropriate strategies; problems that require more than
one step to find answers; and problems that are contextualized. These results seem
to confirm the initial intention for building the website, which was to create a
problem-solving environment in which students could: solve complex, significant,
and contextualized problems, permitting them to develop strategies; and to reason
and communicate mathematically (Freiman & Lirette-Pitre, 2009). They are also
aligned with the didactic principles promoted in the New Brunswick mathematics
curricula. Those didactic principles explicitly suggest proposing complex, signifi-
cant and contextualized situational problems to students so they can manage them
by constructing a valid and justified (mathematical reasoning) mathematical
approach and then communicate it clearly by using the proper vocabulary and
various representations (New Brunswick Department of Education and Early
Childhood Development, 2011). This process must also support students in
developing the ability to make links between mathematics and real-life situations,
between different mathematical concepts, and between mathematics and other
disciplines. Moreover, these principles are promoted in order to create a mathe-
matical culture in all students, and are similar to the ones defined by PISA
(Aschleicher, 1999). They are also inscribed in socio-constructivist perspectives
and are aligned with the principles and standards of the National Council of
Teachers of Mathematics (National Council of Teachers of Mathematics, 2000).

However, the results also showed a weak percentage in problems that respect the
other four criteria. Those criteria are: problems that demand to make and justify
choices; problems that ask to find other questions to explore; problems that seek to
find patterns and generalize results; and problems missing necessary data or
information (ill-defined). These results showed a need to review the conceptual
framework of the problems posted on the CAMI virtual community (Freiman &
Lirette-Pitre, 2009; Freiman, Lirette-Pitre, & Manuel, 2007) by integrating criteria
under-used, and to study some (or all) in more depth to determine their potential in
developing student’s mathematical creativity. Pallascio (2005) concluded that
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complex tasks that integrates those criteria support students in going beyond the
simple application of rules and algorithms and engage them in a more creative
process that involves discovering patterns, questioning phenomena, generalizing
results, and making mathematical proofs. The criteria mentioned by those authors
correspond to those under used on the virtual community.

Regarding the mathematical creativity, the results showed a presence of all the
variables in approximately half of the problems posted on the CAMI website. This
modest level of creativity brings up many questions. Do teachers train students by
showing them the “right strategy” and the “correct way” to get to the only possible
answer? Does the CAMI team need to enrich the problems posted by making them
more open-ended and asking more questions that would lead to an investigation or
different possibilities? Is it possible to create an environment in which students can
create high-level questions that would stimulate their curiosity and critical thinking
skills, and bring solutions to real life problems or lead to other advanced questions?
This study does not give out clear ideas about ways to promote more creativity in
solutions to problems posted on the CAMI website. However, authors like Sheffield
(2009) mentioned that working on a more profound understanding of concepts and
mathematical properties is necessary and this must be done by means of discussions
between students. This form of collaboration is not only possible in classrooms but
also in virtual communities like CAMI. Virtual communication forms like dis-
cussion forums can be examined in order to support creative problem solving by a
group of students in a collaborative way (Stahl, 2009). One limit to the CAMI
virtual is that the collective virtual solution space is not accessible to members of
the community. Member submit their solutions. Those solutions are part of the
member’s individual collective solution space, but members do not get to see the
other member’s contribution. When the time frame of the problem posted is over,
members have access to an analysis of the problem (Freiman & Lirette-Pitre, 2009).
This analysis contains general comments about the collective virtual solution space,
a few “exemplary solutions” from members, and the list of the members who solved
the problem correctly. However, this analysis contains limited information about
the entire collective virtual solution space. In addition, are the exemplary solutions
posted as examples creative solutions? Or are they just solutions that would be
considered as expert virtual solution spaces and well communicated solutions? As
Leikin (2007) argued, collective solution spaces are the main sources for the
development of individual solution spaces within a community, as they can permit
the development of mathematical creativity because when students can bring var-
ious solutions to the personal solution spaces, they can connect between repre-
sentations of mathematical concepts and tools. To support the development of
mathematical creativity in a virtual community like CAMI, the collective virtual
solution spaces to problems should be accessible to all members so they could
enrich their individual collective solution spaces.

One possible way of making the collective virtual solution space accessible
could be discussion forums The CAMI website also has a discussion forum, but
unfortunately, it is hardly ever used (Freiman & Lirette-Pitre, 2009). Students only
use this tool when a learning activity demands online exchanges. By posing
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problems that demand collaborative solving, the CAMI team could exploit more
their discussion forum, which could give access to a rich environment of infor-
mation as much for the teacher as for students. In a discussion forum, the written
interactions that do not necessarily correspond to the anticipated results are still kept
intact. Therefore, the discussion forum seems to be an interesting tool for con-
ceptualizing since it presents information that not only permits teachers to better
understand their students’ reasoning, but also permits students to better understand
their own reasoning. Studies on that subject have been conducted by the Math
Forum website team (Stahl, 2009). In those studies, students grouped in virtual
mathematics teams solve problems online and can make sense of the mathematical
concepts included in them. More studies on this practice should be initiated.

Although the mathematical creativity found in the collective virtual solution
spaces to the problems posted on the CAMI website is relatively restricted, the
results did confirm a link between the richness of the problems posted and the
fluency as well as the originality of solutions. These results seem to confirm the
ideas of researchers in mathematics education who mention that rich problems have
the potential of bringing more creative solutions (Chiu, 2009; Freiman, 2006;
Freiman & Sriraman, 2007; Klavir & Hershkovitz, 2008; Leikin, 2009; Liljedahl &
Sriraman, 2006; Mann, 2006; Sheffield, 2009). This result does invite the CAMI
team to try to improve the richness of the problems posted on the CAMI website.
I hypothesize that a growth in the richness of the problems posted on the CAMI
virtual community could bring positive impacts on learning and on the development
of mathematical creativity in students living in these settings.

It is also necessary to discuss and question the limits of this study, especially
when it comes to the definitions and the criteria used. It is important to remember
that the definitions and the criteria used to create the grids for the richness of a
mathematical problem and for the mathematical creativity constitute choices in
agreement with an epistemological quantitative stance that recalls having observ-
able and measurable criteria already mentioned in the field’s literature. Those two
concepts constitute polysemous constructs and their study can be conducted in
different angles and points of view. Other definitions and criteria are definitely
possible. For instance, Piggot (2007) mentions the potential of enriching student’s
mathematical abilities and the discovery of new concepts as criteria of creativity.
Such criteria could tend to be both a potential enrichment of a quantitative
assessment grid or a qualitative investigation problematic. This study was also
exploratory so no definitive conclusions could be made about the richness of the
problems posted on the CAMI website nor on the mathematical creativity of the
collective virtual solution spaces created by the members. However, this study
looks at an emergent investigation field. The interest is less in provisionary answers.
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21.6 Conclusion

The goal of the study was to determine a preliminary insight of the potential of the
CAMI virtual community in supporting the development of mathematical creativity
in students who solve the problems that are posted. I conduced this study by
analyzing the richness of the problems posted on the website as well as the
mathematical creativity of the solutions in order to determine whether there was a
link between the two variables. This study provided evidence that the mathematical
problems posted on the CAMI website are modest in general in terms of their
richness (according to the criteria considered), and that there are traces of mathe-
matical creativity in the collective virtual solution spaces. This study also revealed a
link between the richness of the mathematical problems posted on the CAMI
website and the mathematical creativity found in the collective virtual solution
spaces in terms of fluency and originality. The results of this study point at the
importance of improving the richness of the mathematics problems posted on the
CAMI website. In addition, the results point at the importance of finding strategies
so that the collective virtual solution space be accessible to all members. In a local
community such as a classroom, creating multiple individual solution spaces can be
done via interactions based on the flexibility of the teacher and students discussing
the collective solutions spaces (Leikin, 2007; Stein, Engle, Smith, & Hughes,
2008). Strategies to create virtual discourses must be implemented.

Despite the limits, this present study shows an interest to conduct other studies
on the adequacy of available resources and the missions of teaching and learning
with regards to mathematical creativity. Two types of research can be considered.
Firstly, more rigorous studies could be conducted on the criteria to consider when
implementing rich problems in mathematics in link to the development of creativity
in that subject. Secondly, the factors that help increase the efficacy of technological
resources like virtual communities of problem solvers should be further explored
and compared with the traditional ones like textbooks, with respect to the devel-
opment of mathematical creativity. These types of studies could reinforce the
theoretical frameworks and plan strategies to implement in mathematics.
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