
Chapter 21
Orbital-Free Density Functional Theory:
Pauli Potential and Density Scaling

Á. Nagy

Abstract In orbital-free density functional theory only a single equation, the so-
called Euler equation, has to be solved for any system instead of the Kohn–Sham
equations. The Euler equation is a Schrödinger-like equation for the square root of
the density. This equation contains an extra potential, the so-called Pauli potential,
in addition to the usual Kohn–Sham potential. Equations for the Pauli potential, the
relationship of the Pauli potential and Pauli energy are reviewed. A derivation of the
Euler equation via density scaling is presented.

21.1 Introduction

Nowadays, electron structure calculations are usually done with density functional
theory. The history of density functional theory started with the fundamental works
of Thomas [1], Fermi [2], Dirac [3] and Gombás [4]. The theory was rigorously
established by Hohenberg and Kohn [5]. They derived the Euler equation

δE

δn
= μ, (21.1)

where E[n] is the total energy functional and the Lagrange multiplier μ is the chem-
ical potential. The solution of the variational problem gives the electron density.
However, the energy functional E[n] is unknown and even accurate approximations
are unavailable. E[n] can be regarded as a sum of several terms. The most trouble-
some is the kinetic energy term. Both the kinetic energy functional and its functional
derivative appearing in the Euler equation are difficult to approximate. Kohn and
Sham (KS) [6] gave a genuine solution to this problem with the invention of the
non-interacting system. In this fictitious system the electrons move independently in
a common, local potential. The density
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n(r) =
N∑

i

|φi (r)|2 (21.2)

is the same as the true interacting electron density. The orbitals φi satisfy the Kohn–
Sham equations

[
−1

2
∇2 + vKS(r)

]
φi (r) = εiφi (r), (21.3)

where N , εi , φi , and vKS are the number of electrons, the one-electron energies,
orbitals and the Kohn–Sham potential, respectively.

Nowadays, in the great majority of density functional calculations, the Kohn–
Sham equations are solved. The original Hohenberg-Kohn theory would have the
great advantage that only one equation, the Euler equation, Eq. (21.1), should be
solved instead of several Kohn–Sham equations. It is very important in case the
system considered has a lot of electrons. Therefore, there is a growing interest in this
so-called orbital-free density functional theory.

The non-interacting kinetic energy

Ts = −1

2

N∑

i

∫
φ∗
i ∇2φi dr (21.4)

can be partitioned as Ts = Tw + Tp. Tw is the Weizsäcker kinetic energy [7]

Tw = −1

2

∫
n1/2∇2n1/2dr. (21.5)

The Pauli energy is defined as Tp = Ts − Tw [8–24]. The Euler equation, Eq. (21.1),
can be rewritten as

[
−1

2
∇2 + vP + vKS

]
n1/2 = μn1/2, (21.6)

where

vp = δTp

δn
(21.7)

is the Pauli potential, the functional derivative of the Pauli energy Tp. It was Nor-
man March who first wrote the Euler equation in the form of Eq. (21.6) [10]. The
Schrödinger like equation for the square root of the density n appeared a bit earlier
in the literature [8, 9], but the partition of the effective potential as sum of the Kohn–
Sham and Pauli potentials was first presented in [10]. Norman March used first the
notation Pauli potential, because this term emergies owing to the Pauli principle.
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As he wrote this term “... distinguishes the fermionic system, with its associated
Exclusion Principle, from the Boson problem...” [10].

The Pauli potential has a very important role in the orbital-free density functional
theory. Professor March addressed this issue in several important papers [9–11, 14,
15, 17–21, 23].

21.2 Differential Virial and Force-Balance Equations

The differential virial theorem goes back to March and Young [25] in one dimension
and is generalized first to spherically symmetric systems by Nagy and March [26],
then to three dimensions by Holas and March [27]. In the non-interacting system it
reads

− ∂vKS
∂r

= − 1

4n(r)

∂

∂r
∇2n(r) + r̂ · z(s)(r)

n(r)
. (21.8)

Here, r̂ denotes the radial unit vector, while the vector field z(s)(r) is defined via the
non-interacting kinetic energy density tensor t (s)αβ (r) [27]

t (s)αβ (r) = 1

4

[
∂2

∂r ′
α∂r ′′

β

γ (s)(r′, r′′) + ∂2

∂r ′
β∂r ′′

α

γ (s)(r′, r′′)

]

r′′=r′=r

(21.9)

as

z(s)
α (r) = 2

∑

β

∂t (s)αβ (r)

∂rβ
. (21.10)

Here, z(s)
α is the α component of the vector z(r). The non-interacting kinetic energy

density tensor t (s)αβ (r) is defined in terms of the non-interacting one-particle density
matrix γ (s)(r′, r′′) in Eq. (21.9). Using the differential virial theorem, Eq. (21.8), the
force 〈F〉 can be calculated

〈F〉 = −
∫

n(r)
∂vKS(r)

∂r
dr = −1

4

∫
∂

∂r
∇2n(r)dr +

∫
r̂ · z(s)(r)dr.(21.11)

One canfinduseful equations for the external and exchange-correlation forces in [28].
Consider now spherically symmetric systems. Using the Laplacial form tL(r) of

the kinetic energy density for the appropriate general level occupancy, we multiply
Eq. (21.3) by φ∗

i and sum over occupied levels to find

tL(r) + nvKS(r) =
∑

occupied i

εi |φi |2 ≡ g(r). (21.12)
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Forming the gradient of Eq. (21.12) we find

∇tL(r) + n(r)∇vKS(r) + vKS(r)∇n(r) = ∇g(r). (21.13)

Equation (21.8) can be rewritten as

zs(r) = 1

4

∂

∂r
∇2n(r) + ∂tL

∂r
+ vKS(r)

∂n(r)

∂r
− ∂g(r)

∂r
. (21.14)

Replacing tL(r) by the positive definite gradient form tG(r) of kinetic energy density,
we obtain

zs(r) = ∂tG(r)

∂r
+ vKS(r)

∂n(r)

∂r
− ∂g(r)

∂r
. (21.15)

Equation (21.15) can also be written as

zs(r) = 2
∂tW
∂r

+ 4
tW
r

+ ∂tP
∂r

+ μn′ − ∂g(r)

∂r
− vP(r)n′. (21.16)

The Pauli potential can also be expressed as

vP(r) = tP(r)

n(r)
+ μ − g(r)

n(r)
, (21.17)

therefore Eq. (21.16) takes the form

zs(r) = 4
tW
r

+ 2t ′W (r) + n(r)v′
P(r). (21.18)

Thefinal expression,Eq. (21.18), connects zs to theWeizsäcker kinetic energydensity
and the Pauli potential. Equation (21.17) establishes a relation between the Pauli
potential and the Pauli energy density.

21.3 Pauli Potential via Density Scaling

It has recently been shown that Pauli potential can be constructed via density scal-
ing [29]. In density scaling we immagine another non-interacting system having a
scaled density nζ (r) = n(r)/ζ . Here, ζ = N/Nζ is a positive number. We recover
the original non-interacting (Kohn–Sham) system if ζ = 1. Suppose that the original
real system has N electrons. Then the Kohn–Sham system with the scaled density
nζ has Nζ electrons:

∫
nζ (r)dr = Nζ . (21.19)
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While N is always an integer, Nζ is generally non-integer. Therefore the grand
canonical ensemble [30–34] is constructed. A zero temperature grand canonical
density matrix Γ in the Fock space takes the form

Γ =
∑

N

∑

i

fNi |ΨNi 〉〈ΨNi |, (21.20)

where ΨNi is the i th N -particle eigenfunction of the Hamiltonian. The occupation
numbers fNi should satisfy the conditions 0 ≤ fNi ≤ 1 and

∑
N

∑
i fNi = 1. Apply

now the constrained search for the kinetic energy over the density matrices Γ as

Tζ [n] = ζ min
Γ →nζ

Tr [Γ̂ T̂ ], (21.21)

where the scaled density is given by

nζ = Tr [Γ̂ n̂]. (21.22)

Tζ [n] is a convex functional and the functional derivative exists [30, 35, 36].
Consider the case Nζ = 2 and denote this value of ζ as ζd = N/2. It corresponds

to a non-interacting system with two electrons. The constrained search [37, 38]
minimizes the scaled kinetic energy

− 2
1

2

∫
φ∗(r)∇2φ(r)dr (21.23)

with a fixed scaled density

nζd =2|φ|2 :
min

(
−

∫
φ∗(r)∇2φ(r)dr +

∫
nζd (r)vζd (r)dr + μ

∫
nζd (r)dr

)
. (21.24)

The minimization is done with fixing the density nζd and its norm, Eq. (21.19), using
the Lagrange multipliers vζd (r) and μ, respectively. The minimization leads to the
equation

− 1

2
∇2φ + vζdφ = μφ (21.25)

that can also be written as
(

−1

2
∇2 + vζd

)
n1/2ζd

= μn1/2ζd
(21.26)
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or
(

−1

2
∇2 + vζd

)
n1/2 = μn1/2. (21.27)

Comparing Eq. (21.27) with the Euler equation, Eq. (21.6), we obtain the Pauli
potential as

vP = vζd − vKS. (21.28)

According to this remarkable expression the Pauli potential is the difference of the
scaled and the original Kohn–Shampotential. To derive another important expression
for the Pauli potential consider now the relation between the original non-interacting
kinetic (Ts) and exchange-correlation (Exc) and the scaled non-interacting kinetic
(Tζ ) and exchange-correlation (Eζ xc) energies [30–32]:

Ts + Exc = Tζ + Eζ xc. (21.29)

The functional derivation provides an expression between the original and scaled
exchange-correlation potentials:

δTs
δn

+ vxc = δTζ

δn
+ vζ xc. (21.30)

In our case ζ = ζd , and using the partition Ts = Tw + Tp we obtain

Tw + Tp + Exc = Tw + Eζd xc, (21.31)

that is, the Pauli energy is the difference of the scaled and the original exchange-
correlation energies:

Tp = Eζd xc − Exc. (21.32)

The functional derivative of Eq. (21.32) gives the Pauli potential

vp = vζd xc − vxc (21.33)

as the difference of the scaled and original exchange-correlation potentials.

21.4 Discussion

Nowadays, there is a growing interest in orbital-free density functional theory. Avoid-
ing the solution of the Kohn–Sham equations – solving the Euler equation instead –
would result an enormous simplification and would make it possible to treat systems
with large number of electrons.
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Pauli potential is a key quantity in orbital-free density functional theory. As it
is responsible for the fulfillment of the Pauli principle, its presence in the Euler
equation is essential. Unfortunately, its exact form is unknown, therefore, we have to
approximate it in calculations. Exact relations might be very useful in constructing
adequate approximate potentials. The exchange-correlation part of the Kohn–Sham
potential is also unknown. There are, however, several important exact relations for
the exchange, correlation and exchange-correlation potentials and energies. Some
of them turned to be extremely useful in constructing and improving approximate
functionals. It is expected that exact relations for the Pauli potential and energymight
be similarly valuable in designing approximate forms. Equations (21.18) and (21.17)
seem to be beneficial in modeling the Pauli potential and the Pauli energy density or
checking approximations.

Density scaling provides a constructive way of obtaining approximations for
the Pauli potential. The Pauli potential (energy) of the density functional theory
is expressed as the difference of the scaled and original exchange-correlation poten-
tials (energies). Further, Eqs. (21.32) and (21.33) make it possible to seek alternative
approximations for the Pauli energy and potential.

Finding adequate approximation for the Pauli potential is a very hard problem.
Density scaling induces a hope of constructing good approximate Pauli potentials.
It should be the subject of further research.
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