
Chapter 18
A Gradient Corrected Two-Point
Weighted Density Approximation
for Exchange Energies

R. Cuevas-Saavedra, D. Chakraborty, M. Chan and P. W. Ayers

Abstract A successful symmetric, two-point, nonlocal weighted density approxi-
mation for the exchange energy of atoms and molecules can be constructed using
a power mean with constant power p when symmetrizing the exchange-correlation
hole [Phys. Rev. A 85, 042519 (2012)]. In this work, we consider how this param-
eter depends on the system’s charge. Exchange energies for all ions with charge
from −1 to +12 of the first eighteen atoms of the periodic table are computed and
optimized. Appropriate gradient corrections to the current model, based on rational
functions, are designed based on the optimal p values we observed for the ionic
systems. All of the advantageous features (non-locality, uniform electron gas limit
and no self-interaction error) of the original model are preserved.

18.1 Introduction

Density functional theory (DFT) has successfully become the method of choice
for computing the electronic structure of large molecules and complex materials
[1–5]. However, although density functional theory provides an exact mathemat-
ical framework for the electronic structure problem [6–12], its utility in practical
calculations is limited by the accuracy of approximate exchange-correlation func-
tionals. This motivates the ongoing research into accurate and feasible approximate
exchange-correlation functionals [4, 13–16]. Despite the success of functionals such
as the local-density approximation [17–19] (LDA) and generalized gradient approx-
imations [20–23] (GGA) due to their computational efficiency, they are subject to
a number of deficiencies. These deficiencies are usually analyzed by determining
which exact constraints are (and are not) satisfied by the approximate functionals,
though it is also true that no (semi)local functional can ever be exact [24–27].

This has stimulated recent work on nonlocal density functionals, where the
exchange-correlation energy is approximated as a six-dimensional integral [28–47],
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Exc[ρ] =
∫ ∫

f [ρ; r, r′]d3rd3r′. (18.1)

This type of functional is particularly advantageous when the exchange-correlation
hole is delocalized [24–26, 48–50] and is essential when for density-functionals that
are accurate not only for short-range electron correlations, but also for long-range
electron correlations like dispersion [30–37].

Equation (18.1) provides a natural form for the exchange-correlation functional
since the exact exchange-correlation energy functional can be written in the form

Exc[ρ] = 1

2

∫ ∫
ρ(r)ρ(r′)hxc(r, r′)

|r − r′| d3rd3r′, (18.2)

where

hxc(r, r′) =
∫

hλ
xc(r, r

′)dλ (18.3)

is the exchange-correlation hole

hλ
xc(r, r

′) = ρλ
2 (r, r

′) − ρ(r)ρ(r′)
ρ(r)ρ(r′)

(18.4)

averaged over the constant-density adiabatic connection path, in which the electron-
electron repulsion potential λ/|r − r′| is increased from the noninteracting limit
(λ = 0) to the physical limit of interest (λ = 1) [51, 52]. Here,

ρλ
2 (r, r

′) =
〈
Ψ λ

∣∣∣∣∣∣
∑
j �=i

δ(ri − r)δ(r j − r′)

∣∣∣∣∣∣Ψ
λ

〉
(18.5)

is the electron pair density.
There have been several recent attempts to construct nonlocal exchange-corre-

lation functionals using models for the exchange-correlation hole [38–47]. Some
of them are based on a variant of the classical Ornstein–Zernike equation [41, 42,
53–57] while some others are two-point weighted density approximations that rely
on analytical models of the exchange-correlation hole for the uniform electron gas
[58, 59]. The latter approach seems to be promising since they are suggested to be
competitive with the best generalized gradient approximation. Moreover, these two-
point weighted density approximations are fully nonlocal, have no self-interaction
error, approximately fulfill the Pauli principle, and preserve the uniform electron
gas limit [38, 39]. In these models the symmetry of the exchange-correlation hole is
achieved by means of a generalized mean (power mean).

Motivated by these preliminary results we explore ways to improve the two-
point weighted density approximation (2pt-WDA) exchange density functional.
Section18.2 provides a brief overview of the approach, and extends our previous
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tests to all ions with charges between −1 and +12 for the first 36 elements of the
periodic table (H–Kr). Based on the dependence of these results on the power used
in the generalized mean, we propose a gradient-corrected 2pt-WDA. This model is
studied in Sect. 18.3, and our conclusions are summarized in Sect. 18.4.

18.2 The Weighted Density Approximation
for Atoms and Ions

The main ingredient of the weighted density approximation discussed here is the
exchange hole for the uniform electron gas (UEG)

f
(
k(x)
F,σ |r − r′|

)
= −9

⎛
⎜⎝
sin

(
k(x)
F,σ |r − r′|

)
−

(
k(x)
F,σ |r − r′|

)
cos

(
k(x)
F,σ |r − r′|

)
(
k(x)
F,σ |r − r′|

)3

⎞
⎟⎠

2

(18.6)
(cf. Eq. (17.5) in Chap.17 [60]) where we use the expression for kF from the uniform
electron gas,

k(0)
F,σ (r) =

√
6π2ρσ (r). (18.7)

The expression Eq. (18.6) for the exchange hole needs to be symmetric with respect
to interchange of r and r′ because the electron pair density is symmetric [61, 62].
We use the p-mean to symmetrize this formula [38, 39],

k(x)
F,σ (r, r′) =

[
1

2

((
k(x)
F,σ (r)

)p +
(
k(x)
F,σ (r′)

)p)]1/p

. (18.8)

Finally, the exchange energy is computed by means of

E (x)
x [ρ] ≈ 1

2

∑
σ=α,β

∫ ∫
ρσ (r)ρσ (r′)h(x)

x,σ (r, r′)
|r − r′| d3rd3r′, (18.9)

where the exchange hole is approximated as

h(x)
x,σ (r, r′) ≈ f

(
k(x)
F,σ (r, r′)|r − r′|

)
. (18.10)

This approach naturally leads to three different types of functional. The 0pt-WDA
functional is constructed by the direct use of Eq. (18.7)when computing the exchange
hole. This functional is neither symmetric nor normalized. In 1pt-WDA, an effective
k(1)
F,σ (r) is used to enforce the normalization of the hole
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−1 =
∫

ρσ (r)hx;σσ (r, r′)d3r

=
∫

ρσ (r) f
(
k(1)
F,σ (r′)|r − r′|

)
d3r. (18.11)

This functional is now normalized but not symmetric. Finally, the 2pts-WDA arises
when both symmetry and normalization are imposed.

Following the same computational approach described in our previous work [38,
39], we computed the exchange energy for all ions with charge from−1 to+12 of the
first 36 atoms in the periodic table (H–Kr). Minimizing the root-mean-square error
in the exchange energy over the entire dataset gave a value of p = 2 for Eq. (18.8).
The weighted density approximation is still competitive with the traditional GGA
functionals (B88 [21], PBE [22], and OPTX [23]), and significantly better than the
local density approximation [17], but both the average and root-mean-square errors
are worse than the results for neutral atoms and small molecules [39]. This finding
reinforces our previous observation: p should be density dependent. This is more
clearly observed in Tables18.1 and 18.2, where the average and root-mean-square
errors are shown for different charges; the errors increase with increasing charge,
indicating that p should be system-dependent.

Table 18.1 Average errors for the atoms and atomic ions with −1 to +12 charge, H–Kr, for con-
ventional density functionals (LDA, B88, PBE, OPTX) and the symmetrized weighted density
approximations (0pt-WDA, 1pt-WDA, 2pt-WDA) described in Sect. 18.2. The p = 2 mean is cho-
sen in Eq. (18.8). The average over all atoms and ions is provided in the bottom row. The rows above
that are the average error for species of a given charge; for example, the first row is the average
error in the atomic anions

Charge 0pt-WDA 1pt-WDA 2pt-WDA LDA B88 PBE OPT

−1 10.134 3.782 0.014 2.303 −0.049 −1.168 −0.198

0 10.505 3.915 0.007 2.398 −0.034 −1.172 −0.203

1 10.809 3.959 0.018 2.482 −0.010 −1.187 −0.187

2 11.081 3.967 0.013 2.549 −0.006 −1.204 −0.190

3 11.332 3.955 0.003 2.603 −0.011 −1.230 −0.201

4 11.415 3.893 0.085 2.647 0.015 −1.205 −0.175

5 11.794 3.960 0.092 2.757 0.045 −1.206 −0.152

6 12.120 3.994 0.175 2.862 0.078 −1.200 −0.117

7 11.842 3.734 0.226 2.836 0.108 −1.135 −0.067

8 12.067 3.717 0.261 2.905 0.123 −1.139 −0.046

9 12.109 3.605 0.317 2.926 0.123 −1.143 −0.027

10 11.963 3.405 0.376 2.927 0.150 −1.098 0.022

11 12.373 3.570 0.555 3.042 0.170 −1.118 0.048

12 12.520 3.527 0.633 3.096 0.183 −1.118 0.070

all 11.471 3.811 0.167 3.096 0.183 −1.118 0.070
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Table 18.2 Root-mean-square errors for the atoms and atomic ions with −1 to +12 charge, H–
Kr, for conventional density functionals (LDA, B88, PBE, OPTX) and the symmetrized weighted
density approximations (0pt-WDA, 1pt-WDA, 2pt-WDA) described in Sect. 18.2. The p = 2 mean
is chosen in Eq. (18.8). The root-mean-square error over all atoms and ions is provided in the bottom
row

Charge 0pt-WDA 1pt-WDA 2pt-WDA LDA B88 PBE OPT

−1 12.313 5.010 0.323 2.734 0.131 1.426 0.357

0 12.759 5.188 0.351 2.844 0.123 1.433 0.373

1 12.971 5.210 0.352 2.904 0.118 1.447 0.368

2 13.145 5.186 0.368 2.944 0.134 1.460 0.383

3 13.298 5.139 0.493 2.975 0.271 1.505 0.473

4 13.345 5.088 0.378 3.006 0.208 1.464 0.425

5 13.669 5.145 0.405 3.107 0.158 1.444 0.376

6 13.862 5.125 0.394 3.189 0.171 1.417 0.347

7 13.560 4.891 0.417 3.159 0.183 1.346 0.318

8 13.719 4.865 0.444 3.216 0.205 1.343 0.307

9 13.626 4.690 0.475 3.203 0.199 1.345 0.293

10 13.399 4.490 0.518 3.199 0.252 1.287 0.249

11 13.711 4.523 0.683 3.294 0.270 1.304 0.254

12 13.797 4.462 0.751 3.336 0.292 1.302 0.256

all 13.323 4.977 0.751 3.336 0.292 1.302 0.256

18.3 A Preliminary Generalized Gradient Corrected
Weighted Density Approximation

From the insight gained in the previous findings, we propose in this section the power
p as a rational function of the reduced gradient, s(r) = |∇ρ(r)|/ρ4/3(r),

p(s; r) = a0 + a1s(r)
b0 + s(r)

. (18.12)

We opted to use the reduced gradient since p should be a dimensionless quantity.
We will not engaged in a detailed optimization of this form here, but defer that to
future work. Our goal is merely to explore the possible utility of this form on the
performance of the weighted density approximation.

Because the exchange hole must remain symmetric, the power in Eq. (18.8) must
be symmetrized. We choose to do this with the form,

p(r, r′) =
[
1

2

(
pq(s, r) + pq(s, r′)

)]1/q

. (18.13)
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The exponent q can be chosen as a free parameter also; however we considered
only three possibilities: the arithmetic (q = 1), harmonic (q = −1) and geometric
(q = 0) means.

From our previous studies, we have learned that the coefficient a1 in Eq. (18.12)
has to be small to reach convergence, especially in the asymptotic regions of the
density (regions where s diverges). For this reason we only allowed a1 to have the
values 0.1 and 0.01. The remaining parameters a0 and b0 were assigned values 0.1,
0.5, 1.0, 1.5 and 2.0. This gave a total of 50 functionals (each defined by a specified
value of (a0, b0, a1) to test). To speed up the testing, we considered only the neutral
atoms and +1, +2, +3, +4, and +5 atomic ions, and only for the first 18 elements
of the periodic table (H–Ar). We observed that the results were quite insensitive to
the choice of q in Eq. (18.13), typically differing in only the 3rd or 4th decimal. For
simplicity we henceforth consider only the results for the simple arithmetic mean
(q = 1).

Tables18.3 and 18.4 show the average and rms errors, respectively, for each of
the triads considered. For fixed values of a0, b0 the errors seem to decrease when

Table 18.3 Average errors for the neutral atoms and atomic ions with +1, +2, +3, +4, and +5
charge, H–Ar, for symmetrized weighted density approximations (0pt-WDA, 1pt-WDA, 2pt-WDA)
described in Sect. 18.3. The arithmetic mean (q = 1) is chosen
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Table 18.4 Root-mean-square for the neutral atoms and atomic ions with+1,+2,+3,+4, and+5
charge, H–Ar, for symmetrized weighted density approximations (0pt-WDA, 1pt-WDA, 2pt-WDA)
described in Sect. 18.3. The arithmetic mean (q = 1) is chosen

increasing a1; for fixed values of b0, a1 the errors seem to decreasing when increasing
a0. For fixed values of a0, a1 the errors seem to decrease when decreasing b0.

These observations can be understood since s diverges in asymptotic regions.
Therefore a small value of a1 is needed, but if a1 > 1 it becomes practically impos-
sible to satisfy the normalization condition [38, 39]. Near the nucleus a much larger
value of p is needed, p ≈ 20. Therefore it is desirable that the ratio a0/b0 should
be on the order of 10. Thus, while this is in no sense an optimization of the form in
Eq. (18.12), we nonetheless were able to learn something about the underlying prin-
ciples that must be followed to design a GGA-based weighted density approximation
for exchange.

18.4 Summary

We have used a two-points weighted density approximation (2pt-WDA) to compute
the exchange energies for all ions with charges from−1 to+12 for the first thirty-six
atoms in the periodic table. While the 2pt-WDA is still competitive with popular
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generalized gradient approximations, its performance worsens for highly charged
atomic cations, probably because it is better to use a larger value of the power
p in Eq. (18.8) for those systems. This motivated us to build a density functional
expression for p by writing p as a rational function of the reduced gradient, s(r).
Preliminary tests reveal the order of magnitude for the parameters in the mean, and
allow us to suggest the form:

p(r, r′) = 1

2

(
p(s; r) + p(s; r′)

)
, (18.14a)

p(s; r) = 20 + s(r)
1 + 10s(r)

. (18.14b)

The numerical parameters in Eq. (18.14b) are not optimized, and are merely indica-
tive of important features for the functional form.
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