
Chapter 17
Kinetic Energy Density Functionals
from Models for the One-Electron
Reduced Density Matrix

D. Chakraborty, R. Cuevas-Saavedra and P. W. Ayers

Abstract Orbital-free kinetic energy functionals can be constructed by writing the
one-electron reduced densitymatrix as an approximate functional of the ground-state
electron density. In order to utilize this strategy, one needs to impose appropriate N -
representability constraints upon the model 1-electron reduced density matrix. We
present several constraints of this sort here, the most powerful of which is based upon
the March-Santamaria identity for the local kinetic energy.

17.1 Introduction

Practical density-functional theory (DFT) calculations use either the orbital-free
method or the Kohn–Sham approach [1]. The orbital-free approach, in which the
kinetic energy is directly approximated as an explicit functional of the electron den-
sity came first historically, and was a very popular approach through the mid-1980s.
However, explicit kinetic energy functionals tend to have poor accuracy, and in par-
ticular are subject to variational collapse to chemically absurd solutionswith energies
that are far too low. This is often attributed to the difficulty of satisfying the Pauli
principle using an explicit density functional [2–6], and motivates the idea of using
an auxiliary function to evaluate the kinetic energy. Most commonly, one introduces
the Kohn–Sham orbitals, which are functionals of the electron density constructed
based on the requirement that the energy of the noninteracting Kohn–Sham reference
system has the same electron density as the total system. The energy of the nonin-
teracting system is then used a proxy for the energy of the true interacting system,
with the remaining correlation-kinetic energy lumped into the exchange-correlation
energy functional.

Despite its ubiquity, there is still interest in the orbital-free method, primarily
because it is less computationally costly [7–12]. The key obstacle, clearly, is approx-
imating the kinetic energy [7, 9, 10, 13–18] or, alternatively, its functional derivative
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[19–27]. It has been realized that effective calculations are usually nonlocal func-
tionals of the electron density, which motivates introducing new auxiliary quantities
like the 1-electron reduced density matrix, the exchange hole, or the linear response
function [10–12, 18, 28–42].

Recently, we have proposed a strategy based on writing the 1-electron reduced
density matrix as an explicit, nonlocal, functional of the electron density [43]. The
exact Levy constrained search functional for the noninteracting (Kohn–Sham) kinetic
energy of σ -spin electrons can be expressed in this way [44–46]

T σ
s [ρ] = min

{γ σ : ρσ (r)=γ σ (r,r), γ σ =(γ σ )2}

∫ ∫
δ(r − r′)

(
−1

2
∇2
r γ σ (r, r′)

)
d3rd3r′,

(17.1a)

γ σ
s [ρσ ; r, r′] = arg min

{γ σ : ρσ (r)=γ σ (r,r), γ σ =(γ σ )2}

∫ ∫
δ(r − r′)

(
−1

2
∇2
r γ σ (r, r′)

)
d3rd3r′.

(17.1b)

Among all idempotent 1-matrices with the correct electron density, the Levy con-
strained search selects the one with the lowest kinetic energy. This procedure is
clearly impractical—it is actually more difficult to construct the Kohn–Sham kinetic
energy associated with a specified density than it is to solve the Kohn–Sham equa-
tions [47–49]. We therefore proposed an explicit form for the 1-electron reduced
matrix,

γ̃ σ [ρσ ; r, r′] = √
ρσ (r)ρσ (r′)g̃

(
kσ
F [ρσ ] · |r − r′|) , (17.2)

where the function g̃(x) must satisfy

g̃(0) = 1, (17.3a)

g̃′(0) = 0, (17.3b)

g̃′′(0) < 1, (17.3c)

−1 < g̃(x) ≤ 1. (17.3d)

In general, g̃(x) < 0 for some values of x [50]. Note that Eq. (17.2) is not an approx-
imation: the exact functional is obtained by choosing Fermi wave vector as the
6-dimensional function,

kσ
F (r, r′) ≡ 1

|r − r′| g̃
−1

(
γ̃ σ [ρσ ; r, r′]√
ρσ (r)ρσ (r′)

)
. (17.4)

Equation (17.4) is also impractical, of course, so one needs to find practical approx-
imations for the function g̃(x).
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17.2 Model One-Electron Reduced Density Matrices

In our previous work, we chose g̃(x) based on its form in the uniform electron gas,

g̃σσ
LDA(x) = 3

(
sin x − x cos x

x3

)
, (17.5)

where x = kσ
F (r, r′)|r − r′|. This form, however, is not appropriate formolecules and

other insulators, where the 1-electron reduced density matrix decays exponentially
with increasing |r − r′|, with a rate of decay that tends to become faster as the band
gap increases [51–56]. This suggests that one should add an exponential damping
factor, which leads to a form like

g̃σσ
exp

(
kσ
F (r, r′), �σ

F (r, r′), b
) = g̃σσ

LDA

(
kσ
F (r, r′)|r − r′|)

× exp

[
b(r, r′)∣∣�σ
F (r, r′)

∣∣
(
1 −

√
1 + (

�σ
F (r, r′)|r − r′|)2

)]
. (17.6)

This form still has an infinite number of nodes, which is not realistic for molec-
ular systems. Choosing an exponential model with a single node is perhaps more
appropriate for molecular systems,

g̃σσ
IP

(
kσ
F (r, r′), a, b

) = (
1 − akσ

F (r, r′)|r − r′|2)

× exp

[
b(r, r′)∣∣�σ
F (r, r′)

∣∣
(
1 −

√
1 + (

�σ
F (r, r′)|r − r′|)2

)]
.

(17.7)

It is reasonable to assume that the functional b(r, r′) is related to the effective ion-
ization potential (IP) at the location of interest, and so a reasonable form is [57–61]

b(r, r′) ∝ 1

2

(
1

8

|∇ρ(r)|2
ρ2(r)

+ 1

8

|∇ρ(r′)|2
ρ2(r′)

)
. (17.8)

There is enormous flexibility in how one should select the nonlocal component
of these functionals, but we choose a form inspired by the weighted density approx-
imation,

kσ
F (r, r′) =

[
1

2

((
kσ
F (r)

)p + (
kσ
F (r′)

)p)]1/p

, (17.9)

where p is a user-specified parameter. This form seems to work relatively well for the
exchange and kinetic energies [10, 29, 30, 34–36, 41, 62, 63]. The form in Eq. (17.9)
is motivated by the realization that in order to obtain the numerical benefits of orbital-
free DFT, the quantities one is considering (here, kσ

F (r, r′)) must be approximated in
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terms of three-dimensional functions. Otherwise one could use the six-dimensional
Kohn–Sham density matrix, γ σ (r, r′), directly.

17.3 Constraints on Model One-Electron Reduced Density
Matrices

The free parameters inmodel one-electron reduced densitymatrices should be chosen
to satisfy exact constraints and, in particular, the Pauli principle. For example, the
Kohn–Sham density matrix must be idempotent (cf. Eq. (17.1a)), which leads to the
constraint

γ̃ σ (r, r′′) =
∫

γ̃ σ (r, r′)γ̃ σ (r′, r′′)d3r′. (17.10)

As mentioned before, however, it is impractical to consider six-dimensional func-
tions. The simplest way to express Eq. (17.10) as a three-dimensional constraint is
to set r = r′′. Then, using the form of the model density matrix (cf. Eq. (17.2)), we
have

ρσ (r) =
∫

γ̃ σ (r, r′)γ̃ σ (r′, r)d3r′ =
∫ (√

ρσ (r)g̃σ (r, r′)
√

ρσ (r′)
)2

d3r′,

(17.11)
which simplifies to the same constraint one uses in the weighted density approxima-
tion to the exchange hole [64–68],

1 =
∫

ρσ (r′)
(
g̃σ (r, r′)

)2
d3r′. (17.12)

Using Eq. (17.12) gives reasonable results, but it is still far from the accuracy we
need. This motivates the development of additional constraints.

For example, it is true that for any square-integrable function φ(r), it must be that

∫
γ̃ σ (r, r′′)φ(r′′)d3r′′ =

∫ ∫
γ̃ σ (r, r′)γ̃ σ (r′, r′′)φ(r′′)d3r′d3r′′. (17.13)

We clearly cannot force this constraint for all choices of φ(r′′) (this would be as
difficult as enforcing the original idempotency constrain, Eq. (17.10)) but we can use
specific functions that might be useful. For example, choosing φ(r′′) as an atomic
1s orbital will prevent the occupation number of that orbital from being too large.
An especially simple form, however, is obtained when one uses φ(r′′) = √

ρσ (r′′).
Then one has:

∫
g̃σ (r, r′′)ρσ (r′′)d3r′′ =

∫ ∫
g̃σ (r, r′)g̃σ (r′, r′′)ρσ (r′)ρσ (r′′)d3r′d3r′′.

(17.14)
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This constraint is more difficult to apply than Eq. (17.12) because it requires a six-
dimensional numerical integration at each point r. However, the same auxiliary basis-
set methods that are used in efficient implementations of Eq. (17.12) could be used
in Eq. (17.14) also [69]. If one considers φ(r) to be the gradient operator, then one
obtains a constraint with the form of theMarch-Santamaria expression for the kinetic
energy, namely [70–72]

1

2

∫ ∣∣∇rγ̃
σ (r, r′)

∣∣2 d3r′ = 1

2

[∇r · ∇r′ γ̃ σ (r, r′)
]
r=r′ . (17.15)

This constraint can be implemented with the same computational cost as Eq. (17.12),
and helps ensure that the r ≈ r′ portion of the model density matrix is accurate. The
right-hand-side of Eq. (17.15) is just the (positive-definite) local kinetic energy [73,
74]. In fact, it is not difficult to see that Eq. (17.15) holds if the idempotency constraint
holds near the diagonal,

γ̃ σ (r, r + εû) =
∫

γ̃ σ (r, r′)γ̃ σ (r′, r + εû)d3r′, (17.16)

where û is a unit vector. Equation (17.16) can be rewritten as

g̃σ (r, r + εû) =
∫

ρ(r′)g̃σ (r′, r + εû)d3r′. (17.17)

Expanding both sides in a Taylor series,

g̃σ (r, r) + ε
[∇r′′ g̃σ (r, r′′)

]
r′′=r · û + ε2û	 [∇r′′∇	

r′′ g̃σ (r, r′′)
]
r′′=r û + . . .

=
∫

ρ(r′)g̃(r, r′)
{
g̃σ (r′, r) + ε

[∇r′′ g̃σ (r′, r′′)
]
r′′=r · û

+ ε2û	 [∇r′′∇	
r′′ g̃σ (r′, r′′)

]
r′′=r û + . . .

}
d3r′, (17.18)

the right-hand-side of this equation simplifies due to Eq. (17.3),

g̃σ (r, r) + ε
[∇r′′ g̃σ (r, r′′)

]
r′′=r · û + ε2û	 [∇r′′∇	

r′′ g̃σ (r, r′′)
]
r′′=r û + . . .

= 1 + ε2û	 [∇r′′∇	
r′′ g̃σ (r, r′′)

]
r′′=r û + . . . . (17.19)

Then, equating terms in the expansions order-by-order, one has an infinite set of
constraints, of which the lowest-order ones are most important and easiest to apply,

1 =
∫

ρ(r′)
(
g̃σ (r, r′)

)2
d3r′, (17.20a)

0 =
∫

ρ(r′)g̃σ (r, r′)∇r g̃
σ (r′, r)d3r′
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=
∫

ρ(r′)∇r
(
g̃σ (r, r′)

)2
d3r′, (17.20b)

[∇r′′∇	
r′′ g̃σ (r, r′′)

]
r′′=r =

∫
ρ(r′)g̃σ (r, r′)∇r∇	

r g̃
σ (r′, r)d3r′, (17.20c)

...

The first of these equations is just the original diagonal condition, Eq. (17.12), which
is equivalent to the weighted density approximation equation for the normalization
of the exchange hole,

− 1 =
∫

ρ(r′)hx (r, r′)d3r′. (17.21)

The second equation also can be seen as a constraint on the model density matrix
but also on the exchange hole for weighted density approximations,

0 =
∫

ρ(r′)∇rhx (r, r′)d3r′. (17.22)

It is just the gradient of both sides of Eq. (17.21), so it should hold automatically
when Eq. (17.21) is true. The third constraint in Eq. (17.20) is nontrivial, and cannot
be easily written as a constraint on the exchange hole. Overall, Eq. (17.20) are a
hierarchy of constraints and, if the full hierarchy is imposed, then the model one-
electron reduced density matrix, and the kinetic energy density functional it implies,
is guaranteed to be N -representable. Philosophically, then, Eq. (17.20) are similar to
other methods for developing density functionals based on hierarchies of constraints
[72, 75–83].

17.4 Summary

Approximating the kinetic energy as an explicit functional of the electron density
has proven to be a very difficult task, we propose to explore a strategy based on
modelling the one-electron density matrix using a weighted density approximation.
We propose that the parameters in the weighted density approximation should be
determined by constraints associated with its idempotency, and propose Eqs. (17.14)
and (17.15) as additions to the usual weighted density approximation condition,
Eq. (17.12). In particular, the March-Santamaria identity inspires the hierarchy of
derivative constraints in Eq. (17.20); these seem especially promising since they are
directly linked to the requirement that the accuracy of the kinetic energy from the
model density matrix and, specifically, require that different ways of calculating
the kinetic energy from the model density matrix give the same results. In order to
simultaneously satisfy constraints Eq. (17.20), one needs a more flexible form for
the model density matrix than is provided when one uses the uniform electron gas.
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The damped local density approximation model given in Eq. (17.7) is merely one
possibility.

The weighted density approximation for the one-electron reduced density matrix,
Eq. (17.2), is a veryflexible form, and there are an infinite number of potentially useful
constraints that can be imposed upon it. We expect that further investigations along
these lines will provide more accurate kinetic energy functionals, though innovations
are also required so that constraints like Eq. (17.20) can be efficiently imposed. We
will address these numerical problems in a follow-up paper [84].
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