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Preface

This volume is dedicated to the 90th birthday of Prof. Norman H. March. Already
in the title, Many-body Approaches at Different Scales, the book endeavours to
epitomize Prof. March’s very broad range of interests, which spans both chemistry
and physics, with an emphasis on condensed matter and many-body theory. The
majority of the contributions to this book come from Norman’s closest collabora-
tors and friends around the world.

Norman was born in 1927. He obtained the B.Sc. in Physics (1st Class) and the
Ph.D. from London University, UK (MA Oxford). He conducted research for the
Ph.D. degree directly under the supervision of Prof. Charles A. Coulson. He
became Professor of Physics at the University of Sheffield in 1961 and Professor of
Theoretical Solid-State Physics at Imperial College, London, in 1972. After the
untimely death of Prof. Coulson, in 1976 the Coulson Chair of Theoretical
Chemistry was established at the University of Oxford. Norman March was the first
holder of that chair, to which he was appointed in 1976 and in which he remained
until retirement in 1994. Since 1994, Norman March is Emeritus Professor of the
University of Oxford. He received the Honorary Doctorate in 1974 from Chalmers
University (Gothenburg, Sweden) and the Laurea Honoris Causa in Physics in 2003
from the University of Catania (Italy) (see Fig. 1). In 2000-2001, he enjoyed an
inter-university foreign Franqui Chair between the Free University of Brussels
(VUB) and Antwerp University (UA), Belgium. He also served as Chair of the
Solid-State Advisory Committee at the International Centre for Theoretical Physics
(ICTP) in Trieste, Italy, from 1980 to 1991.

Norman has continued to be scientifically active after his formal retirement,
maintaining affiliations in Belgium (U. Antwerp) and in Italy (Abdus Salam
International Center, Trieste). A true globetrotter (frequently using an InterRail
ticket across Europe, to the astonishment of his much younger fellow travellers), his
‘fixed points’ included Cardiff (UK), Catania (Italy), Debrecen (Hungary),
Donostia/San  Sebastian (the Basque Country, Spain), Galveston (Texas),
Heidelberg (Germany), Pisa (Italy), Szeged (Hungary) and Valladolid (Spain), in
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addition to Trieste and Antwerp (which he uses to dub as his ‘hub’). For decades, he
has been a regular attendant at the Sanibel Symposium on Quantum Chemistry,
Dynamics, Condensed Matter and Materials Physics and Biological Applications at
St. Simon’s Island (Florida, USA).

His activity covers more than six decades. Since the 1950s, Prof. Norman March
has been a leading scientist in atomic, molecular and condensed state physics. He
has written more than 1150 papers and has written or edited more than 30 mono-
graphs, alone or in collaboration with more than 300 coauthors, including a long list
of young people he mentored during his academic career. Since decades, he has
been Editor of ‘Physics and Chemistry of Liquids’, a truly international journal
covering most aspects of the chemistry and physics of liquids.

The early years of Norman’s career were focused on Thomas—Fermi theory
[1-3]. The Thomas—Fermi statistical method laid the foundations of the theory
of the density functional that only with the Hohenberg—Kohn theorems in 1964 was
put on a firm theoretical footing [4] (see Ref. [5] for a review). Norman has made a
pioneering contribution in the 1950s and early 1960s in this context. Two papers on
variational methods involving one particle density and density matrix for particles
moving in a linear harmonic oscillator are worthy of mentioning [6—8]. The idea of
taking into account first the mathematically treatable models to understand the
essential aspects of the physics has been one of the main features in the scientific
approach of Norman March. The Thomas—Fermi model was, in that period, an
innovative method in tackling many-body problems in quantum mechanics not only
for atoms but also for molecules and solids. In order to emphasize the tremendous
impact that March’s early papers on Thomas—Fermi theory [9, 10] had among his
contemporaries (see Ref. [11] for a review), let us mention the fact that the original
paper was translated into the Chinese language by a colleague, and circulated as a
manuscript.

Norman computed in the 1950s the momentum distribution and the electron
density in atoms and simple organic molecules. He introduced a model, again based
on a Thomas—Fermi (TF) approach, to determine the bond length in tetrahedral and
octahedral molecules [12]. The so-called March model has been applied more
recently in boron and carbon cages including fullerene [13, 14]. Norman applied for
the first time the TF model to a variety of systems in going from atoms to solid
metals.

The condensed state is another field of major interest for Norman March.
Starting from the statistical theory of the electron gas and reaching to metals and
semiconductors including the presence of impurities, he studied a wide class of
phenomena by interpreting experimental results in terms of concise and elegant
theories. After the discovery of high-T,. superconductivity, Prof. March has been
attracted by the challenging exotic properties of these materials, including their
unconventional pairing mechanism. In particular, he and his collaborators gave
contributions to describe their phase diagram in terms of universal properties, such
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as the superconducting coherence length and effective mass, which enabled to
embrace other superconducting material classes, including the heavy-Fermion
materials and the ruthenates. Professor March’s insight and earlier results within
linear response theory on the behaviour of an electron liquid around isolated
impurities in solids [15] stimulated more recent work of younger scientists in
similar problems, but in unconventional superconductors and in other
low-dimensional materials, such as graphene. Professor March also gave contri-
butions to the study of the properties of matter under extreme conditions, one
example being molecular iodine under high pressure [16]. His efforts in this
direction then kindled more research towards compressed hydrogen and the alkalis.

Another critical phenomenon that has been studied in many works by Norman is
Wigner crystallization. Wigner predicted in 1934 the crystallization of a uniform
electron gas when the density is lower than a critical value [17]. Ceperley and Alder
found this critical density by means of Quantum Monte Carlo simulations in 1980
[18]. Norman March made his first contribution in this area in 1958 through the
virial theorem by partitioning the total correlation energy per particle into kinetic
and potential energy contributions [19]. Electron crystallization of jellium, the
uniform electron gas, is then treated in a paper with Care in 1975 [20, 21]. In such a
low-density regime, electron correlation takes a dominant role even for a finite
number of electrons (see Ref. [22] for a review). In recent years, Norman consid-
ered also, more in general, an assembly of electrons in a quantum dot or confined by
an extremely weak external potential where Wigner molecules can be formed [23].

The present volume endeavours to lay a track through the diverse interests
covered by Prof. March’s long career in science, by presenting both novel results
and overall afterthoughts. As suggested by the title, one fil rouge through the
milestones set by Norman in his studies is provided by many-body correlations,
which determine the often unconventional properties of large assemblies of parti-
cles, as their number or scale increases. This goes through electrons in atoms
(Chaps. 16-18, 20), atoms in molecules and molecules in clusters (Chap. 19),
condensed matter in both the liquid (Chaps. 12, 13) and the solid states (Chap. 8),
with specific reference to the role of impurities and disorder (Chaps. 6, 9, 10, 24),
superconductivity (Chaps. 1, 5), nuclear and subnuclear matter (Chap. 23), and
even the whole Universe and the fabric of spacetime (Chap. 29).

While we are aware that we have possibly omitted several topics to which
Prof. March has given contributions, we hope this volume will stand as a testimony
and serve as a grateful and affectionate tribute to Norman’s ‘quiet’ way of doing
science.

Catania, Italy G. G. N. Angilella
Pisa, Italy C. Amovilli
July 2017
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Condensed Matter Theory



Chapter 1 ®)
Correlations in the Superconducting st
Properties of Several Material Classes

G. G. N. Angilella and R. Pucci

Abstract Complex phenomena, as those involving many particles, may still exhibit
simple patterns, usually expressed by simple relations among relevant quantities.
We briefly recount how Professor Norman March led our way through supercon-
ducting experiments for several material classes, including the high-7, cuprates and
the heavy-Fermion materials, in the unending quest for simple paths among intricated
data.

1.1 Introduction

Looking for correlations among different physical variables is certainly a powerful,
yet quite difficult and sometimes even deceiving, way to assess a theory, or even a
physical law, concerning a given physical system. This has to do with the difficulty
of distilling those (hopefully) few physical variables which almost certainly relate
to the effect under consideration, and which may belong to quite different scales.
In the case of many-body systems, one intrinsic source of difficulty in looking for
correlation among physical quantities comes however from the inherent complex-
ity of the system: the correlation one is after might not be a linear one, as is e.g.
the case for strain and applied stress in Hooke’s law of elasticity, but an intrinsi-
cally nonlinear (and often complicated) correlation. This is for instance the case of
the correlation between superconducting temperature 7, electron-phonon coupling
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constant A, and Debye frequency wp in conventional superconductors. Even at the
mean-field level, where many-body correlations are treated at the lowest (albeit self-
consistent) level, BCS theory shows that the three quantities above are correlated
via kg T, o< hwpe™/*N O where N (0) is the single-particle density of states (DOS)
at the Fermi level. Although the superconducting energy scale kg7, is linearly cor-
related with the phonon energy scale hwp, these two energies can differ by orders
of magnitude in several superconducting materials. Moreover, the functional corre-
lation between kg7, and the dimensionless coupling strength AN (0) is nonlinear,
and even non-analytic. It has been emphasized that this precludes the application
of perturbation theory to the problem of superconductivity, despite pairing instabil-
ity in the presence of a filled Fermi sea was predicted by Cooper to occur for any
weak coupling [1]. In fact, the best approximation available to date for a theory of
superconductivity, viz. BCS theory, firmly rests on a variational ansatz [2, 3].

1.2 Preformed Pairs Scenario in High-7, Superconductors

Looking for (and often finding) correlations among relevant physical quantities in
many-body phenomena is an art in which Professor Norman March has been a rather
skilful artist. One example concerning superconductivity in the high-7, (HTSC)
cuprates is the search for a crossover between the normal and superconducting state.
Using two-dimensional Fermi liquid theory, as discussed by Kohno and Yamada
[4], March, Pucci and Egorov [5] (see also [6—8]) were able to relate the product of
electrical resistivity R and nuclear spin-lattice relaxation time 7 to temperature 7
via the remarkably simple correlation law

RT) «T. (1.1)

This linear correlation is indeed obeyed by YBa,CuyOg for temperatures T 2 T,,,
where 7, = 150K is a crossover temperature below which such correlation is lost
[5, 9] (Fig. 1.1). March, Pucci and Egorov [5] then conclude that E;, ~ kgT,, sets the
energy scale at which the system departs from a Fermi liquid theory of monomers,
and rather enters a phase characterized by charged dimers (2e bosons). At that time,
it was tempting to identify these dimers either with Cooper pairs, or with localized,
strongly-bound composite bosons. A theoretical description of the crossover between
BCS pairing and Bose-Einstein condensation, with the coupling strength and density
as parameters driving such crossover, was emerging, following the seminal work of
Nozieres and Schmitt—Rink [10] (see also Refs. [11, 12]). The physical nature of such
bosons, and therefore the microscopic mechanism at the basis of their binding, was at
that time (and presently still is!) the subject of an open debate, one likely possibility
being that of bisolitons [13] or bipolarons [14, 15], or of resonating valence bonds
[16—-19] (see also Baskaran [20], in this volume), or tunneling pairs between adjacent
CuO; layers [21-26]. Compelling experimental evidence, first from calorimetric
measurements [27], then from angle-resolved photoemission spectroscopy (ARPES)
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[28], and from scanning tunneling microscopy [29], eventually pointed towards the
existence of a ‘pseudogap’ phase below a characteristic temperature 7* > T, in the
underdoped cuprates. Such a pseudogap phase is characterized by preformed pairs
indeed, which do not however yet participate in superconductivity, as they lack phase
coherence [30].

1.3 Towards a Fermionic Mechanism for Exotic
Superconductivity: The Case of the Heavy-Fermion
Materials

One source of evidence that HTSC may originate from a non-phononic mechanism
was provided by Uemura et al. [31, 32], who recognized that a universal correlation
(again) between T, and the ratio of superconducting density n; to fermionic effective
mass m* exists for different superconducting material classes, thereby supporting the
idea of a fermionic nature of the superconducting mechanism. This idea was gener-
alized by Angilella, March and Pucci [33] to embrace the so-called heavy-Fermion
materials, a class of exotic superconductors characterized by magnetic correlations
and relatively large value of the effective to bare electronic mass ratio, m*/m,,
although their relatively low superconducting temperature 7, does not qualify them
for ‘high-T,” superconductors. In Ref. [33] (see also Refs. [34, 35]), then, Angilella,
March and Pucci indeed reported an empiric correlation between the superconducting
condensation energy ~ kg T, and a fermionic ‘characteristic energy’ e, = h?>/m*&2,
where & is the superconducting coherence length. Such a correlation, however, proved
to be nonlinear, with kg7, saturating at large values of the characteristic energy &..
Angilella et al. [36] then developed a model, based on the Bethe—Goldstone equa-
tion for the Cooper problem in non-s-wave superconductors, explicitly providing an
expression for the universal correlation
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Fig. 1.2 Experimental 0.2 CeCqlng,
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already empirically demonstrated to hold for the heavy-Fermion materials (Fig. 1.2).
Such expression (see also Ref. [37] for a recent review) parametrically depends on £,
with £ = 0, 1, 2 for an s-, p- or d-wave symmetry order parameter, which therefore
enables one to embrace conventional, heavy-Fermion, and cuprate superconductors,
respectively.

One open question remains of course the physical nature of the pairing interac-
tion in the HTSC. Several experimental findings seem to disfavour a purely phononic
mechanism of superconductivity in the cuprates, although the lattice and its deforma-
tion is still expected to play an important role (see e.g. Ref. [38], where the correla-
tion between T, and elastic constants in various superconducting elements is inves-
tigated). Applied strain, either external of ‘chemical’, may indeed affect the kinetic
sector of the many-body Hamiltonian, through a modification of the band parameters
and/or doping, rather than the coupling sector thereof. This novel kind of correla-
tion was indeed recognized by Pavarini et al. [39], who established a non-monotonic
dependence of the optimal 7, on the next-nearest to nearest hopping parameter ratio,
r = t'/t, across several cuprate compounds. A model for this dependence was then
provided by Angilella et al. [40, 41], in terms of the proximity to a strain-induced
electronic topological transition (ETT) [42, 43].

In the cuprates, characterized by a relatively short superconducting coherence
length &, various kinds of short-range spectroscopies, including optical and neu-
tron ones, pointed strikingly towards the existence of antiferromagnetic fluctua-
tions, which of course originate in the antiferromagnetic texture of their parent (i.e.
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undoped) compounds [44]. Such fluctuations were therefore claimed to be respon-
sible of pairing in the superconducting phase: since the pairing interaction which
eventually enable electrons to get bound in Cooper pairs is not of phononic origin,
but rather has an electronic one, it has been said that ‘electrons pair themselves’ [45].
Evidence of antiferromagnetic fluctuations has also been gathered for several heavy-
Fermion materials [46, 47], where also ferromagnetism can coexist with spin-triplet
superconductivity [48-50], and for Sr,RuOy, [51, 52].

Angilella, March and Pucci [53] then exploited such evidence for superconducti-
vity mediated by antiferromagnetic fluctuations to infer a correlation between
the spin-fluctuation energy scale kg7 and the pairing characteristic energy &, =
h?/m*&? defined above, and entering Eq. (1.2) for the universal law of supercondut-
ing correlation.

1.4 Summary

We have briefly reviewed some research activity spanning several decades of close
acquaintance and collaboration with Professor Norman March. The results pre-
sented here are related to superconductivity in several material classes, including the
cuprates and the heavy-Fermion materials. The guiding light in Professor March’s
quest has always been the search for simple correlation among ‘factual data’: these
always come before any model or theory, but have certainly fostered new and stim-
ulating views at how relevant physical quantities actually correlated in complex
phenomena involving many particles.
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Chapter 2 ®)
All-Electrical Scheme for Hall Viscosity Guca i
Measurement

F. M. D. Pellegrino, I. Torre and M. Polini

Abstract In highly viscous electron systems such as, for example, high quality
graphene above liquid nitrogen temperature, a linear response to applied electric cur-
rent becomes essentially nonlocal, which can give rise to a number of new and coun-
terintuitive phenomena including negative nonlocal resistance and current whirlpools
[1]. Moreover, in a fluid subject to a magnetic field the viscous stress tensor has a
dissipationless antisymmetric component controlled by the so-called Hall viscosity.
We propose an all-electrical scheme that allows a determination of the Hall viscosity
of a two-dimensional electron liquid in a solid-state device.

2.1 Introduction

Hydrodynamics [2, 3] is a powerful non-perturbative theory forgraphene the descrip-
tion of transport in materials where the mean free path ¢, for electron-electron (e-¢)
collisions happens to be much smaller than the sample size W and the mean free path ¢
for momentum non-conserving collisions, i.e. £,, << £, W. Despite the abundance of
theoretical works [4-24], clear-cut experimental evidence of hydrodynamic transport
in the solid state has been lacking until recently, with the exception of early longitu-
dinal transport experiments in electrostatically defined wires in the two-dimensional
(2D) e lectron gas in (Al,Ga)As heterostructures [25, 26]. The latter work reported the
observation of negative differential resistance, which was interpreted as the Gurzhi
effect [12] arising due to an increase in electron temperature due to current heating.
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In graphene [27], hydrodynamic flow was originally predicted [10, 17, 18] to
occur at the charge neutrality point (CNP), where thermally-excited electrons and
holes undergo frequent collisions due to poorly-screened Coulomb interactions [28].
In this regime, the authors of Ref. [29] have recently reported experimental evidence
of the violation of the Wiedemann—Franz law, which is consistent with the occurrence
of highly-frictional electron-hole flow.

In the future, the strongly-interacting 2D electron-hole liquid in undoped graphene
may enable investigations of solid-state nearly-perfect fluids [18], i.e. fluids with very
low values of the shear viscosity (in unit of the entropy density) and therefore minimal
dissipation [30]. At the CNP, however, carrier density inhomogeneities due to long-
range disorder are unavoidable [31] and should be taken into account for a reliable
description of the physics [14].

Microscopic calculations [32-34] suggest that also doped graphene sheets can
display hydrodynamic behavior above liquid-nitrogen temperatures and for typi-
cal carrier concentrations. The reason is easy to understand. In the conventional
Fermi-liquid regime, i.e. for T <« Tg = Eg/h, where Ef is the Fermi energy, Pauli
blocking is responsible for a very small rate of quasiparticle collisions and very long
e-e mean free paths. In doped graphene [32-34], €., o —[T?In(T)]7 ! for T « Tp.
As temperature increases, however, the Fermi surface ‘softens’, Pauli blocking is
not as effective, and £,, quickly decays, reaching a sub-micron size with an approx-
imate power law £,, oc T~2. Furthermore, in 2D crystals where momentum-non-
conserving collisions are dominated by acoustic phonon scattering, £ decays like
T~!, thereby guaranteeing the existence of a temperature window where the hydro-
dynamic inequalities £,, < £, W can be satisfied, where W represents the typical
size of the sample.

Doped graphene systems display very weak inhomogeneities due to the screening
exerted on the long-range scattering sources by the electron liquid itself. Moreover,
doped systems are characterized by large viscosities [34, 35] and values of ¢, that
can be comparable to ¢, thereby offering an ideal platform to access a hydrodynamic
regime in which quantum corrections to the Navier—Stokes equation are necessary,
e.g. in finite magnetic fields.

A recent experimental study [35] of ultra-clean single- and bilayer graphene
encapsulated between boron nitride crystals has indeed demonstrated that the 2D
electron system in doped graphene displays hydrodynamic flow. For completeness,
let us also mention recent reports on hydrodynamic transport in narrow quasi-2D
channels of palladium cobaltate [36].

The setup that will be analyzed in this work is sketched in Fig.2.1. It is a half-
plane geometry with a single current injector, the simplest setup one can possibly
imagine for the identification of viscosity-related features in nonlocal transport. The
half-plane setup is conceptually very instructive.

The present chapter is based on Ref. [37] and is organized as follows. In Sect. 2.2
we review the theory of magneto-hydrodynamic transport in viscous 2D electron
systems. In Sect. 2.3 we present the solution of the magneto-hydrodynamic equations
in the case of a half-plane setup. Finally, in Sect.2.4 we summarize our principal
findings and draw our main conclusions.
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Fig. 2.1 A sketch of the
nonlocal transport setup
analyzed in this work. In this
geometry, current is injected
into a single electrode at the
origin

2.2 Hydrodynamic Theory

In the presence of time-reversal symmetry breaking (e.g. due to an external magnetic
field), a dissipationless term, controlled by the so-called Hall viscosity [38—49] ny,
appears in the viscous stress tensor [3] ai’j. In two spatial dimensions one has

o =) Mijkevies 2.1)
o

where i, j, k and £ denote Cartesian indices, kg = (kv + 0¢v)/2, and n;jxe is a
rank-4 tensor, usually called the ‘viscosity’ tensor [40],

Nijke = $68;j0ke + n(8ikSje + 8iedjx — 8ij0ke) + nu(Sjx€ie — Siver;). (2.2)

In Eq. (2.2), nu parametrizes the portion of »;; x, which is antisymmetric with respect
to the exchange ij <> k¢ and is non-zero only when time-reversal symmetry is
broken.

In the linear-response and steady-state regimes, electron transport in the hydro-
dynamic regime in the presence of a static magnetic field B = BZ is described by
the continuity equation

V-J@rx) =0, (2.3)

and the Navier—Stokes equation
_ e m
—VP(r)+V.-a'(r) +enVer) — -J) x B= ?J(r). 2.4)
c

Here, J(r) = nv(r) is the particle current density, v(r) is the fluid element velocity,
i1 is the ground-state uniform density, P (r) is the pressure, o/ (r) is the viscous stress
tensor whose Cartesian components have been explicitly reported in Eqgs. (2.1)—
(2.2), ¢(r) is the 2D electrostatic potential in the plane where electrons move, —e is
the electron charge, m is the electron effective mass, and t is a phenomenological
transport time describing momentum-non-conserving collisions [23] (e.g. scatter-
ing of electrons against acoustic phonons). The gradient of the pressure is propor-
tional to the gradient of the density via V P(r) = (%/i)Vn(r), where Z = i’ /N,
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is the bulk modulus of the homogeneous electron liquid, .4 being the density of
states at the Fermi energy. It is useful to define the electrochemical potential as
¢(r) = p(r) + Su(r)/(—e), where Su(r) = [n(r) — in]/ A is the chemical poten-
tial measured with respect to the equilibrium value, e.g. ji = fivg+/771 for the case
of single-layer graphene [28] and ji = h?mii/(2m) for bilayer graphene [28]. Since
experimental probes are usually sensitive to ¢ (r), from now on we will focus our
attention on the electrochemical potential rather than on ¢(r).

We now note that the viscous stress tensor in Egs. (2.1)—(2.2) can be written in
the following compact form

o' =M+ inuty)[Bxvy — vy T, + (Avy + V)T ]+ LV - v, (2.5)

where t; with i = x, y, z are standard 2 x 2 Pauli matrices acting on Cartesian
indices. As in Eq.(2.4) above, in the linear-response and steady-state regimes we
can write v(r) = J(r)/n. We then note that the bulk viscosity ¢ couples to V - ],
which vanishes because of the continuity equation (2.3). The bulk viscosity term in
the viscous stress tensor therefore drops out of the problem at hand. In summary,
Eq.(2.5) simplifies to:

o' =m© +ivaty) [0 Iy — 0y Jy) T + (0 Jy + 0y J)Tx], (2.6)

where v = n/(mn) is the kinetic shear viscosity and vy = ny/(mn) is the kinetic Hall
viscosity. Making use of Eq.(2.6) in Eq.(2.4) and introducing the electrochemical
potential ¢ (r), we can write the Navier—Stokes equation (2.4), as

"e—°v¢>(r) = (1 — D?V)J(r) + w.t (1 + DEV?) J(r) x 2, 2.7)

where 0y = ne’tr/m, D, = /vt has been introduced in Refs. [1, 23, 35], Dy =
~—vu/we, and w. = eB/(mc) is the usual cyclotron frequency. As we will see
below, vy and o, have opposite signs so that Dy is a well defined length scale.
Notice that the Hall viscosity parametrizes a correction to the ordinary Lorentz force
due to the spatial dependence of the velocity v(r).

Since the setup in Fig. 2.1 is translationally-invariant in the X direction, it is useful
to introduce the following Fourier Transforms [1, 23] (FTs) with respect to the spatial
coordinate x: ¢(k, y) = f_":;o dx e ™ ¢ (r) and J(k, y) = fj;o dx e ™™ J(r). The
three coupled partial-differential equations (2.3)—(2.4) can be combined into a4 x 4
system of first-order ordinary differential equations:

dyw(k, y) = A (kyw(k, y), (2.8)
where w(k, y) is a four-component vector, i.e.

wk, y) = [kJo(k, y), kJ, (k, ), 3, T (k, y), eiig(k, y)/(mv)] ", (2.9)
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and
0 0 1 0
—i 0 0 0
M) =k ) ) . .
1+1/(kD,) v, + w.t/(kD,) iv, —i
vy — w.1)/(kDy)? 1+ 2 + (1 + vo.1) /(D)) i(1 + ) —iv,
(2.10)

where v, = vy/v. The matrix .# (k) has four eigenvalues: Aj>(k) = %|k| and
A3/4(k) = g, where we have introduced the shorthand notation

qg=.,/k*+1/D2. (2.11)

The corresponding eigenvectors are:

k
. -
! q
+sgn(k) —iﬁ
wip (k) = +isgn(k) » Wau(k) = q* . (2.12)
1 Fisgn(k)w.t 1
ngz (r — 0,T)
Diq?

Note that the eigenvalues are independent of the cyclotron frequency and Hall vis-
cosity, while the eigenvectors explicitly depend on them. The general solution of
equation (2.8) can be therefore written as a linear combination of exponentials of
the form Zj’:l aj(k)w;(k)exp(x;y). The four coefficients a; (k) can be determined

from the enforcement of suitable boundary conditions (BCs).

2.3 Half-Plane Setup

We consider a single current injector in a half-plane setup with infinite length in the
x direction. A current injector is mathematically described by the usual point-like
BC for the component of the current density perpendicular to the y = 0 edge:

Jy(x,0) = —18(x)/e, (2.13)
where [ in the dc drive current [50]. The solution of the viscous problem requires

an additional BC on the tangential component of the velocity at the y = 0 edge. We
work with no-slip boundary conditions
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Je(x,0) =0. (2.14)
Finally, we also impose the following BCs at y = 4-o00: J,(x, y = 400) = 0 and

Jy(x,y = +o0) =0.
In FT with respect to x, the BCs become

Jy(k,0) = —1I/e, (2.152)
Jo(k, 0) =0, (2.15b)
Jy(k, +00) =0, (2.15¢)
Jy(k, +00) = 0. (2.15d)

The FT of the electrochemical potential along the edges reads as follows:
(k) = 1174 (k) — ipr/k + 2ipy kD2 + Fra(K)], (2.16)
where k = kD,, § = gD,, q = k> + 1/D2, py = m/(ie*t), pu = —maw,/(iie?),

and p,,, = mvy/(1e* D?). In particular, py = B/(—eric) is the usual Hall resistivity.
The terms 7 (k) and 7, 4 (k) are expressed as

1
P = po [W LD+ |k|>] , (2.17)
~ . VH, o
Feah) = ipg ™ Disgn(t) (g = k) (2.17b)

Equation (2.17) can be transformed back in real space analytically as

(x) L (1) 4 B2 Do g (1) (2.18a)
re(x)=—po| —In| — =1, 18a
* e D, 2 x|\ D,

vy D, |x| | x|
ria(x) = POTHZ |:—11 <D_) +L; (D—>i| , (2.18b)

where 1 (x) (K;(x)) is the modified Bessel function of first (second) kind and order
one, and L (x) is the modified Struve function of order one.

We now introduce the ‘transverse’ resistance, which is measured in the setup
sketched in Fig. 2.1 as

Rp(o) = 220 _I"’(_x’ O _ pusen() + 4pd (Di> +2ra(). (2.19)

We note that Ry (x) — pysgn(x) for |x| > D,, since, in the same limit, r, 4 (x) — O.
In order to have a clear signature of the Hall viscosity it is therefore convenient
to perform two measurements of the transverse resistance Ry, i.e. one at position
0 < x < D, and a second one at position X’ 3> D,,. The difference
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ART()E) = RT()E) — 711m RT()E,) :27‘4_,4()2), (220)
X'—00

is independent of py and non-zero only in the presence of a finite Hall viscosity. In
particular, for x very close to the injector one finds

ARy (E — 0F) — —;—OVH, 2.21)
v

which makes it clear that a measurement of A Ry yields immediately the value of
the Hall viscosity.

2.4 Conclusions

In summary, we have proposed an all-electrical scheme that allows a determination
of the Hall viscosity vy of a two-dimensional electron liquid in a solid-state device.

We have demonstrated that the transverse geometry in Fig.2.1 is particularly
suitable for extracting vy from experimental data. Indeed, we have shown that a
measurement of A Ry (x), as given by Eq. (2.20), yields immediately the value of the
Hall viscosity, provided t is measured from the ordinary longitudinal resistance [35]
pxx and v(B = 0) from one of the protocols discussed in Refs. [35, 51].
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Chapter 3 ®)
Computer Simulations of the Structure e
of Nanoporous Carbons and Higher

Density Phases of Carbon

Lydia Alonso, Julio A. Alonso and Maria J. Lopez

Abstract The most stable form of solid carbon is graphite, a stacking of graphene
layers in which the carbon atoms show sp? hybridization which leads to strong intra-
layer bonding. Diamond is a denser phase, obtained at high pressure. In diamond the
carbon atoms show sp? hybridization. Metastable solid carbon phases can be pre-
pared also with lower density than graphite (in fact, densities lower than water); for
instance the carbide-derived carbons. These are porous materials with a quite disor-
dered structure. Atomistic computer simulations of carbide-derived carbons indicate
that the pore walls can be viewed as curved and planar nanographene ribbons with
numerous defects and open edges. Consequently, the hybridization of the carbon
atoms in the porous carbons is sp?. Because of the high porosity and large specific
surface area, nanoporous carbons find applications in gas adsorption, batteries and
nanocatalysis, among others. We have performed computer simulations, employing
large simulation cells and long simulation times, to reveal the details of the structure
of the nanoporous carbons. In the dynamical simulations the interactions between
the atoms are represented by empirical many-body potentials. We have also investi-
gated the effect of the density on the structure of the disordered carbons and on the
hybridization of the carbon atoms. At low densities, typical of the porous carbide-
derived carbons formed experimentally, the hybridization is sp?. On the other hand,
as the density of the disordered material increases, a growing fraction of atoms with
sp> hybridization appears.
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3.1 Introduction

Nanoporous carbons exhibit a quite disordered structure with internal pores of nano-
metric size. These materials have low densities and high specific surface areas,
properties which make them attractive in applications to gas adsorption and hydro-
gen storage, among others. The carbide-derived carbons (CDC) form an interesting
family of nanoporous carbons. CDCs can be easily produced from metal carbides
[1, 2], ZrC for instance, by selectively extracting the metal atoms through a chemical
chlorination process performed at temperatures between 600 and 1200 °C. The struc-
tural characteristics and the properties of these materials can be tuned by selecting
the production conditions, in particular the reaction temperature, and the appropriate
post-treatments of the samples. The microstructure of the CDCs has been investi-
gated by Raman spectroscopy, X-ray diffraction and high-resolution transmission
electron microscopy [3]. The elucidation of the structure of nanoporous carbons is
greatly aided by computer simulations. Atomistic computer simulations of carbide-
derived carbons reveal a disordered structure of connected pores of different size
and shape [4, 5]. The pore walls can be viewed as curved and planar graphene frag-
ments with numerous defects and some open edges. Consequently, the hybridization
of the carbon atoms in this family of porous materials is that typical of graphene,
that is, sp2. The increase of the experimental reaction temperature, and the increase
of the temperature and annealing time in the computer simulations, both induce a
progressive repair of the long range disorder and a substantial increase of the degree
of graphitization in the system [6]. A main characteristic of the porous carbons is
their small densities (number of atoms per unit volume), and this is the reason for the
easy formation of a network of interconnected planar and curved two dimensional
graphene-like layers. In the other extreme, diamond is a solid phase of carbon denser
than graphite, produced under extreme high pressure and temperature conditions in
the earth mantle or by synthetic methods in the laboratory [7-9]. The atomic coordi-
nation around each carbon atom in diamond is four, and the electronic hybridization
is sp3. Although diamond is metastable (the most stable solid phase of carbon is
graphite), the rate of conversion of diamond to graphite is negligible at ambient
conditions.

Early in 1977, Norman March and coworkers pioneered the investigation of the
structure of amorphous carbon [10, 11]. Their conclusion was that the X-ray and
electron diffraction intensities cannot be explained by simply considering a model
structure and the appropriate atomic scattering factor, and that an explicit mod-
elling of the chemical (covalent) bonds, is required. Amorphous carbon obtained
by different experimental methods shows values of the interatomic distances and
coordination numbers in between those for graphite and diamond [12, 13]. An early
proposal for the structure of amorphous carbons was a disordered mixture of small
two-dimensional graphitic fragments (in which the carbon atoms have sp? hybridiza-
tion) linked by tetrahedrally bonded (sp3) atoms [14]. However, neutron diffraction
revealed little tetrahedral bonding [12]. This is easy to understand, because the den-
sities are not in the high density regime favorable to tetrahedral bonding. In fact,
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our simulations of porous carbons for samples with more than sixty thousand atoms
[4] revealed disordered structures formed by planar and curved graphitic fragments
connected in a way leaving abundant empty spaces (pores), and the analysis of the
structures indicated a very small amount of tetrahedrally coordinated carbon, cer-
tainly below one per cent. The resulting material can be viewed as low density (0.77
g/cm™3) disordered carbon. Despite the highly disordered structure this type of car-
bons are not clasified as amorphous carbons. According to the recommendations
of ITUPAC [15], the term amorphous carbon is restricted to carbon materials hav-
ing short-range order only (no long-range crystalline order) with deviations of the
interatomic distances and/or interbonding angles with respect to the graphite lattice
as well as to the diamond lattice. So, the term amorphous carbon is not applicable
to materials with two-dimensional structural elements such as polyaromatic layers
with a nearly ideal interatomic distance and an extension greater than one nanome-
ter. Using density-functional molecular dynamics and simulation cells containing
216 atoms, Deringer and Csanyi [16] have found that the structure of amorphous
carbon is a mixture of threefold (sp?) and fourfold (sp?) bonded atoms, the pro-
portion of these depending sensitively on the density. The densities investigated by
these authors are between 1.5 and 3.5 g/cm™ (notice that the densities of graphite
and diamond are 2.1-2.2 g/cm~3 and 3.5 g/cm ™3, respectively). Motivated by all the
above works we present here the results of an investigation of the structure of non
crystalline carbons (including amorphous carbon) over a wide range of densities,
between 0.77 and 2.87 g/cm 3. One of the main purposes is to investigate the tran-
sition between disordered porous carbons and amorphous carbons, and to detect the
critical density for which the amount of atoms with tetrahedral (s p?) coordination
begins to be noticeable. Because the proportion of atoms with tetrahedral coordina-
tion is expected to be small, except at high densities, it is necessary to work with
simulation cells having a large enough number of atoms.

3.2 Theoretical Models and Dynamical Simulations

Molecular dynamics simulations are performed to investigate the structural features
of a variety of disordered carbon materials spanning a broad range of densities (0.7—
2.8 g/cm?). CDCs are porous carbon materials placed on the low density corner
of pure carbon materials with densities smaller than that of water. Experimentally,
these materials are produced from precursor metal carbides or silicon carbide, by
selective chemical extraction (through chlorination) of the metal or silicon atoms.
Upon removal of the metal or silicon, the carbon sublattice becomes very unstable and
collapses internally. The transformation experienced by the material is a conformal
transformation, that is, a transformation without change of the macroscopic piece
shape or size, giving rise to the porous carbon structure. To mimic the formation
proccess of the CDCs, we start the simulations after the removal of the metal atoms
or silicon (the chlorination procedure is out of the scope of the present study) with the
C atoms in the same structure as in the corresponding carbides, and perform molecular
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dynamics simulations at constant number of particles N, constant volume V, and
constant temperature 7', at several temperatures. Thus we simulate the structural
transformation of the carbon skeleton of the carbide keeping constant the density of
the carbon material along the simulation, similarly to the experimental conformal
transformation. Two carbides have been considered: ZrC, which has a structure of
two fcc interpenetrated lattices, and «-SiC, which has a 6H-hexagonal structure.
The densities of the C atoms in the carbides are 0.77 and 0.96 g/cm?, respectively.
Large simulation cells are used within the periodic boundary conditions scheme
to represent appropriately the disordered CDC porous structures. A 12 x 12 x 12
cubic cell of 56.376 A of side, containing 6912 C atoms is used to simulate the
CDC:s derived from ZrC, and a 10 x 6 x 18 tetrahedral cell of dimensions 53.36 x
55.458 x 45.3 10\, containing 6480 C atoms is used for the CDCs derived from SiC.
Amorphous carbons, on the other hand, are disordered high density carbons, with
densities between the density of graphite 2.1-2.2 g/cm® and the density of diamond,
3.5 g/cm®. As the density of carbon increases from the densities typical of CDCs to
the densities typical of amorphous carbons, the structure of the material is expected to
experience a profound transformation. To assess the dependence of the final carbon
structures on the density and on the initial configuration of the carbon atoms we
have considered two types of materials, M1 and M2, having the initial structure of
the carbon squeleton in ZrC and SiC, respectively, but with scaled C—C distances to
produce the desired densities in the range of 0.77-2.87 g/cm?. Notice that the CDC
derived from ZrC is the M1 material with density 0.77 g/cm?® and the CDC derived
from SiC is the M2 material with density 0.96 g/cm?>.

The selected temperatures for the simulations,! 7 = 350, 2100 and 3010 K, are
higher than the temperatures of the chlorination process of about 600-1500 K. The
reason being that the former determine the speed of the structural changes in the
material whereas the latter correspond to the chemical procedure for extraction of
the metal or silicon [4]. Moreover the simulation time, of the order of a few hundred
picoseconds, is orders of magnitude smaller than the experimental times of several
minutes or hours. Thus, the higher temperatures of the simulations spead up the
structural changes and therefore compensate for the shorter simulation times. An
empirical correlation can be established between the temperatures of the simulations
and the experimental ones [4, 17]. To start the simulations, the initial velocities of
the carbon atoms are set to a Maxwellian distribution corresponding to the selected
simulation temperature. The Nosé-Hoover thermostat is used to keep constant the
temperature along the simulations. The equations of motion are integrated with a
time step of 0.5 fs. Simulation runs of 300 ps lead to well converged final structures,
as it has been checked by performing simulation runs of 600 ps for some selected
cases. The final structures obtained in the simulations are quenched down to 0K in
order to perform the structural analysis. The structures are then characterized on the
basis of (i) the local ordering as measured by the coordination of the C atoms, which

Notice that the Tersoff potential gives a melting temperature for carbon of about 6000 K whereas
the experimental value is about 4300 K. Therefore the temperatures given in this paper have been
scaled by a 0.7 factor.
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reflect the sp? or sp> hybridization of C, and the ring pattern of the C network, and
(ii) global quantities such as the specific surface area of the pore walls, the porosity
(ratio of empty to total volume) and the size distribution of pores. In the simulations,
the interatomic C-C interactions are mimicked through the Tersoff potential [18-20],
that appropriately represents the covalent bonds between carbon atoms in graphite
and diamond, plus a weak interaction potential [21] which is added to represent the
interaction between layers in graphite.

3.3 Results

We start investigating the formation of CDCs derived from ZrC and SiC through
NVT molecular dynamics simulations. The chemical (chlorination) procedure used
to extract the metal from the carbides is not simulated here. The simulation starts
just after the removal of the metal atoms from the carbide and before the carbon
atoms had time to move. Thus, the initial structure for the simulations consists in
a carbon skeleton in which the carbon atoms are placed at the same positions that
they occupied in the corresponding carbide lattice. The NVT molecular dynamics is
aimed to simulate the subsequent conformal trasformation experienced by the carbon
network. Thus, the density of the carbon material remains fixed in the simulations
and is equal to the density of the carbon atoms in the original carbide.

Clearly, after the removal of the metal atoms from the carbide the structure of
the carbon atoms is highly unstable, and the internal collapse of the structure occurs
very fast. C—C bonds begin to form in the material, and after 0.5 ps most atoms are
linked together forming a highly disordered carbon network. Figure 3.1 shows several
snapshots at different times of the simulation of the formation of a CDC derived from
SiC at a simulation temperature of 3010 K. After about 5 ps, the structure evolves
forming an incipient porous structure which fully develops at longer times. After
300 ps, the final porous structure is almost reached, the pore walls are graphitic layers
with defects, interconnected with each other. It is clearly apparent that the carbon
atoms are not uniformly distributed in the material. Longer simulation times of the
order of 600 ps only lead to minor modifications of the nanoporous structure of the
CDC. This can be explained by the high thermal stability of the graphitic nanostrips
[22]. Quite similar formation pathways and final structures have been obtained for
CDCs derived from the other precursor carbide, ZrC, at the same (T = 3010 K)
simulation temperature [4].

However, different structures are produced for carbon materials with higher den-
sities, of the order or higher than the density of graphite. As an example, Fig.3.2
shows snapshots along the dynamics, of the formation of the M1 material (initial fcc
configuration of the C atoms) with a density of 2.2 g/cm?. The internal collapse of
the carbon structure also occurs very fast, in about 0.5 ps, as in the previous case.
However, at this relatively high density, the subsequent evolution of the carbon net-
work is quite different. In contrast with the CDC’s, the high density M1 material
does not develop a porous structure and it is not possible to identify in the structure
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Fig. 3.1 Snapshots, for several times, of the formation of the CDC structure derived from SiC at a
simulation temperature of 3010 K. A slab of 25 A of depth is shown for clarity

Fig. 3.2 Snapshots, for several times, of the formation of the M1 material with a density of
2.2 g/em?, at a simulation temperature of 3010 K. A slab of 10 A of depth is shown for clarity

flakes of graphitic layers. The C atoms form, instead, a disordered three-dimensional
C network.

The local structure of the carbon network and the level of graphitization of the
pore walls can be analized by investigating the coordination of the carbon atoms.
The coordination number is defined as the number of nearest neighbors of an atom.
Three-fold coordinated carbon atoms with sp? hybridization are characteristic of
two-dimensional graphitic layers. The edges of finite size graphitic flakes give rise
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to the appearance of two-fold coordinated atoms. On the other hand, coordination
four (sp*® hybridization) leads to three dimensional structures and is characteristic
of diamond. Figure 3.3 shows the time evolution along the simulation of the coor-
dinations of the C atoms in the CDC structure obtained from the SiC precursor at a
temperature of 3010 K. Coordinations two an three rise up within a few picoseconds.
In about 5 ps, 70% of the C atoms become three-fold coordinated and about 30%
become two fold coordinated. Coordinations one and four, on the other hand, are
only marginaly present in the structure. As the time proceeds, the number of three-
fold coordinated atoms increases slowly at the expense of the two-fold coordinated
atoms. This indicates an increase of the size of the graphitic flakes accompanied by
the corresponding reduction of the edges. After about 600 ps the structure does not
change any further and the different coordinations become almost flat as a function
of time. The ratio of the number of C atoms with different coordinations is well
converged within 1%. A slightly relaxed convergence criterion of 2-3% is fulfilled
with simulation times of about 300 ps (see Fig.3.3). A similar convergence with
time has been found for the simulated M1 and M2 structures generated at differ-
ent temperatures and for different densities of carbon. Therefore, we will limit the
simulations to 300 ps in order to reduce the computational cost of this study. The
final structures obtained in the simulations are then quenched down 0K in order to
perform the structural analysis of the materials at equilibrium conditions.

For the low density materials (M1 and M2 with densities below 1.7 g/cm3), the
number of three-fold coordinated atoms increases with the simulation temperature
indicating that the level of graphitization of the structure improves with tempera-
ture. However, even at the highest simulation temperature (7 = 3010 K), the two-
fold coordinated atoms do not disappear completely; this shows the imposibility of
removing all the edges of the graphitic flakes and therefore the impossibility of fully
graphitize the sample. As a representative example, the left panel of Fig. 3.4 shows
the coordinations as a function of temperature of the CDCs produced using SiC as
the precursor.

Figure 3.4 also shows, in the right panel, the coordinations of the C atoms in
the M1 and M2 materials as a function of the C density. The number of three-fold
coordinated atoms increases and the number of two-fold coordinated atoms decreases
with increasing density, up to approximately the density of graphite (2.2 g/cm?). This
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Fig. 3.4 Number (in percent) of carbon atoms with coordinations one, two, three and four. Left
panel gives the coordinations as a function of the simulation temperature for the CDCs derived from
SiC. Right panel gives the coordinations as a function of the density for the M1 (open symbols) and
M2 (solid symbols) materials produced at 7 = 2100 K

increase of 3-fold coordinated atoms, however, is not indicative of an improvement in
the level of graphitization of the material, as can be clearly seen from the snapshots
of Fig.3.2. The graphitic layers become smaller and more interconnected among
them giving rise to a highly disordered three-dimensional network of sp? C atoms.
For larger densities, above the density of graphite, the trend changes and the number
of three-fold coordinated atoms decreases in favor four-fold coordinated atoms, with
sp> hybridization, which are characteristic of diamond-like structures. Thus, the
materials with a density of 2.7 g/cm? are formed by a mixture of three- and four-fold
coordinated C atoms with a ratio of about three (75%) to one (25%), respectively.
This mixture of coordinations is also found in amorphous carbon materials [16]
although one should notice that a broad range of densities and ratio of coordinations
isincluded under the generic name of amorphous carbons. The structures obtained for
a given density and at a given simulation temperature for the two types of materials
investigated here, M1 and M2, are very similar, what leads us to conclude that the
initial configuration of the C atoms for the simulations (cubic or hexagonal) has little
effect in the final structure of the simulated materials. The more relevant parameter
being the density of carbon atoms.

The ring pattern of the carbon network is also used to characterize the structure
of the simulated materials. In a perfect graphitic layer the carbon atoms are three-
fold coordinated and form a honeycumb network of hexagonal rings. The presence
of pentagonal rings in graphitic layers gives rise to closed carbon structures as in
the fullerenes, whereas heptagonal and octagonal rings lead to open structures as in
schwarzites. On the other hand, non planar hexagonal rings are also found in diamond
like structures but, in this case, the C atoms form a non-layered three-dimensional
network of four-fold coordinated atoms. At the low carbon densities of the CDCs
derived from ZrC and from SiC, the walls of the porous structure of these materials are
mainly formed by hexagonal rings, defining graphitic layers. Pentagonal and smaller
rings are completely absent and, therefore, closed pores can not be formed. However,
there is a non negligible number of heptagons and octagons in the layers which lead
to the interconnection of the pore walls and to the open character of the pores in
these materials. The number of hexagonal rings increases with increasing simulation
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Fig. 3.5 Number (in percent with respect to the ideal number of hexagonal rings in a graphitic
layer) of five-, six-, seven-, and eight-fold rings. Left panel: number of rings as a function of the
simulation temperature for the CDCs derived from SiC. The solid and empty symbols correspond
to simulation times of 300 and 600 ps, respectively. Right panel: number of rings as a function of
the density for the M1 (open symbols) and M2 (solid symbols) materials produced at 7 = 2100 K

temperature, as it is shown in Fig. 3.5 (left panel) for the CDCs derived from SiC (a
similar behaviour is observed for the CDCs derived from ZrC). This confirms the
observed improvement with temperature of the level of graphitization of the pore
walls. However, the number of heptagons and octagons, although smaller than the
number of hexagons, remains almost constant with temperature; these rings do not
disappear even at the highest simulation temperature, what prevents the formation
of large graphitic layers.

The right panel of Fig.3.5 reveals that with increasing carbon density, up to
approximately the density of graphite, the number of hexagons decreases whereas
the number of heptagons and octagons increases. As a consequence, the graphitic
structure and the local order of the structure disappear and, as it is observed in
Fig.3.2, a three-dimensional disordered network of sp? C atoms develops. For den-
sities above the density of graphite, the number of hexagonal rings increases again
and the number of heptagons also increases. The hexagonal rings, however, now
contain four-fold coordinated carbon atoms and are the signature of the development
of diamond like structures. Thus, at high densities (below the density of diamond,
3.53 g/cm?®) the materials become amorphous with highly disordered structures and
formed by a mixture of three- and four-fold coordinated C atoms, as discussed above.

A relevant quantity to characterize nanoporous materials is the specific surface
area (SSA), which it is correlated, in general, with the capacity of the material
to adsorb gases. The geometrical evaluation of this quantity from the simulated
structures is quite difficult, because the walls of the pores are formed by small,
non planar layers interconnected among them. Thus, it has been proposed [4] to
approximate the SSA by the sum of the areas of the rings each considered as a perfect
planar ring. Although the pore walls are one layer thick, the two sides of the walls
are not fully available for gas adsorption, mainly due to the interconnection between
layers. From the simulated structures one can estimate that, in average, only about
one side and half of the other side of the layers are exposed for gas adsorption. Thus to
calculate the SSA, we multiply the surface of one side of the layers by the empirical
factor of 1.5. Figure 3.6 shows the SSA for the CDCs derived from ZrC and SiC as



30 L. Alonso et al.

Fig. 3.6 Specific surface 2000
area (SSA) as a function of 1800
the simulation temperature 5
for the CDCs derived from ‘€ 1600
From SC (s symbots) g 1o
rom SiC (solid symbols i
w 1200 *SiC
0ZrC
L 0000 1000 2000 3000

T(K)

a function of temperature. The SSA increases moderately with the temperature of
the simulation following a similar trend as the experimentally determined SSA [23]
for various CDCs as a function of chlorination temperature. The simulated values
match rather well the experimental values. Moreover we found no much difference
between the two low density CDC’s investigated, derived from ZrC and from SiC,
respectively. For the high density simulated materials, the geometrical determination
of the SSA is not physically meaningful since the number of rings does not correlate
with the surface available for gas adsorption, as it has been seen above.

Of great interest is the porosity of the materials, that is, the empty volume that can
be used to adsorb molecules or for catalysis. We have calculated the porosity from the
simulated geometrical structures, considering an effective exclusion volume (volume
that can not be used to adsorbe gases) of each C atom given by a sphere of radius
equal to the Van der Waals radius of carbon (1.7 A). The porosity increases weakly
with the simulation temperature, as it is shown in Fig. 3.7. The porosity of the CDCs
derived from ZrC is larger than that determined for SiC, due to the density difference
between the two materials (the CDCs derived from ZrC have a lower density). How-
ever, calculated values of the porosity for the CDCs derived from ZrC are slightly
smaller than the ones obtained in previous simulations [4]. This is due to the smaller
simulation cells used here. Since the porosity is a global quantity of the material,
large cells are required for an accurate determination of the porosity although the
trends with temperature and density can be already revealed with smaller simulation
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Fig. 3.7 Specific pore volume, SPV. Left panel: SPV as a function of the simulation temperature
for the CDCs derived from ZrC (empty symbols), and from SiC (solid symbols). Right panel: SPV
as a function of the density for the M1 (open symbols) and M2 (solid symbols) materials produced
at7 =2100K
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cells as the ones used here. Moreover, the experimentally determined values exhibit
a broader range of variation of the porosity with the chorination temperature, most
probably due to a better level of annealing of the structures. The porosity, however,
depends sensitively on the density of the material (see Fig.3.7). With the geometri-
cal definition given above, the porosity of graphite results in a negligible value, as is
confirmed from adsorption experiments. The simulations lead to small values ot the
porosity for both M1 and M2 materials for densities of the order of the density of
graphite, and zero porosities for larger densities. The simulated M1 and M2 mate-
rials exhibit the same porosities for the same densities, confirming once more the
weak dependence on the initial configuration of the C atoms and the more relevant
dependence on the density of the material.

The gas adsorption capacity of a material is related with its specific surface area
and its porosity. However, it has been shown both, from the experimental [24, 25]
and theoretical [26] sides, that the adsorption capacity does not perfectly correlate
with these two quantities but it depends on the size of the pores. For instance, it
has been determined that the optimum pore size for hydrogen adsorption at room
temperature is in the range of 7-11 A [27]. Thus, to fully characterize the porous
structure of a material and its adsorption characteristics it is convenient to determine
the pore size distribution function (PSD), that measures the total volume contained in
pores of a given size. From the simulation side, PSD is a very demanding quantity to
compute since large simulation cells are required to obtain meaningful distributions.
The simulation cells considered in this work (of about 50 A wide) are sufficiently
large to reproduce the distribution functions for pores smaller than about 20 A. Larger
pores are escarcely produced in these cells and, therefore, the distribution functions
are not accurate for pores larger than about 20 A. On the other hand, since the pores
have no regular shapes and are interconnected among them, one has to introduce a
model of pores to determine their size distribution. Based on our simulated structures
we found appropriate to use a geometrical model of nonoverlapping spheres [4] to
represent the pores. Figure 3.8 shows the pore size distribution function, PSD, of
the CDCs obtained using SiC as the precursor, for several simulation temperatures.
The CDCs produced at low temperatures (7 = 350 K) exhibit a relatively narrow
distribution of pore sizes around an average value of about 8 A. With increasing
simulation temperature, the distribution becomes wider and the average pore size
increases up to a value of about 11 A for T = 3010 K. Although the maximum size
of the pores (about 20 A) is limited by the size of the simulation cell, this does not
affect the general trends of the PSDs below that size. A similar behaviour has been
obtained for the CDCs derived from ZrC as a precursor. The trends in the simulated
PSD functions are in good agreement with the PSDs determined from experimental
adsorption isotherms for CDCs produced from several precursor carbides [3].

On the other hand, similarly to the porosity, the PSD depends strongly on the
density of the material. The PSD becomes narrower with increasing density and the
size of the pores decreases. At approximately the density of graphite, the network
of C atoms does not leave empty space and therefore the material does not contain
pores any more (see Fig.3.8 for M2 materials; a similar behaviour has been found
for M1 materials).
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Fig. 3.8 Pore size distribution function, PSD of the CDCs obtained using SiC as the precursor, for
several simulation temperatures (left panels). PSD of M2 materials of various densities produced
at a temperature of 7 = 3010 K (right panels). Average pore size is indicated in each graph

3.4 Conclusions

We have performed atomistic molecular dynamics simulations to investigate the for-
mation and structural characteristics of disordered carbon materials as a function of
the C density, the initial carbon structure and the simulation temperature. Carbon
materials ranging from CDCs porous carbons with densities of 0.77-0.96 g/cm?® to
amorphous carbons with densities of 2.8 g/cm® have been considered. The simula-
tions have been designed to closely mimic the experimental process of formation of
CDCs from metal carbides once the extraction of the metal has taken place, and gen-
eralized for materials with different densities. Thus, the initial configurations for the
NVT dynamical simulations were the structures of the C atoms in two carbides, ZrC
an SiC. Moreover, materials with different densities are generated using those two
initial configurations but scaling the C—C distances to produce the desired densities.
Upon removal of the metal from the carbide, the collapse of the structure takes place
very fast, in a few ps, giving rise to a C network of sp? C atoms. A porous structure
of open interconnected pores appears; the pore walls are one atom thick graphitic-
like layers interconnected among them. The level of graphitization of the pore walls
is assessed in terms of the coordinations of the C atoms and the ring structure of
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the C network. For the CDCs and the low density C materials with densities below
1.7 g/cm?, there is a prevalence of three-fold coordinated C atoms and hexagonal
rings, confirming the graphitic-like structure of the pore walls. However, there is a
non negligible number of two-fold coordinated C atoms, corresponding to the edges
of the graphitic flakes, and heptagonal and octagonal rings that lead to open pores.
With increasing temperature, the level of graphitizacion improves, although the edges
and the heptagonal/octogonal defects do not disappear completely. At higher den-
sities, of the order or higher than the density of graphite, there is still a prevalence
of the coordination three, but four-fold coordinated C atoms appear and its percent-
age increases with increasing density. The carbon network loses progressively its
graphitic character with the appearance of diamond-like tetrahedral structures that
mark the transition towards amorphous carbons. Thus, the high density materials
are formed by a combination of sp? and sp® C atoms and the three dimensional
C network does not enclose pores.

The specific surface area (SSA), the porosity, and the pore size distribution func-
tion (PSD) characterize the adsorption properties of a material. In agreement with
experimental determinations, we found that the SSA of the simulated CDCs increases
with increasing temperature, reaching values close to 2000 m?/g. The porosity of the
CDCs and the average size of the pores also increase with increasing temperature
and the PSD becomes wider in close analogy with the experimental trends. However,
with increasing carbon densities, the porosity drops dramatically and, as expected,
for densities of the order and higher than the density of graphite the porosity vanishes.

In summary, we have found that the structure of the simulated carbon materials
is not sensitive to the initial configuration of the C atoms. However, the structure is
strongly dependent on the density, observing a transition from porous to amorphous
structures at approximately the density of graphite. High temperatures favor higher
level of graphitization in lower density, CDCs carbons.
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Chapter 4 ®)
Graphene-Like Massless Dirac Fermions | ¢
in Harper Systems

F. Claro and P. Robles

Abstract It is shown that systems described by Harper’s equation exhibit a Dirac
point at the center of the spectrum whenever the field parameter is a fraction of even
denominator. The Dirac point is formed by the touching of two subbands at a single
point in momentum space, and the physics around such point is characterized by
the relative field only, as if the effective field were null at the reference value. Such
behavior is consistent with the nesting property conjectured by Hofstadter, and its
experimental verification would give support to such hypothesis.

The relative simplicity with which graphene—carbon single layer sheets—may be
made and handled in the laboratory has drawn much attention to the physics of mass-
less Dirac particles [1]. In this material, electrons moving in two dimensions (2D)
near the Fermi level are subject to an effective energy dispersion law proportional to
momentum rather than the usual momentum squared. The dynamics is similar to that
of photons and phonons, except that in graphene the particles are charged fermions.
They interact among themselves through the Coulomb force and with external electric
and magnetic fields, which makes them amenable to a varied palette of experimental
manipulation and possible applications.

In graphene, carbon atoms are arranged in a two dimensional hexagonal lattice,
obtained as the overlap of two identical triangular lattices displaced one respect to
the other. As a result of the lattice symmetry, the valence and conduction bands have
two inequivalent degenerate points about which the dispersion is linear, the so called
Dirac points [1-3]. No such points are found in the square lattice arrangement. As we
discuss below, however, for certain values of a perpendicular magnetic field the square
lattice also supports a single Dirac point where two subbands meet. Such special
values are defined by a magnetic flux through the unit cell that is a rational fraction of
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even denominator, in units of flux quanta. Furthermore, in the neighborhood of every
one of these values Landau levels emerge from the Dirac point as they do from zero
magnetic field in the hexagonal graphene lattice. At the reference field, the massless
Dirac particles behave as if there was no magnetic field and in its neighborhood,
they appear to respond only to the difference field much as composite fermions
do at major Landau level filling fractions of even denominator [4]. These results
are a property of Harper’s model and therefore generic to all systems governed by
such relation [5]. Besides electrons in a square lattice and a perpendicular magnetic
field, the equation has appeared in several contexts, including the quantum Hall effect
[6, 7], superconducting networks [8], nonperiodic solids [9], electrons in superlattices
[10], and ultracold atoms in optical lattices [11-13].

The dynamics of Bloch electrons in a square lattice of lattice constant a and a
perpendicular magnetic field B may be described by Harper’s equation [5],

o1+ fumt +2cos@rén +v) fr, = efn, 4.1)

where f, is the amplitude of a Wannier state localized at site na along the x-axis, n
any integer, ¢ is the magnetic flux traversing a plaquette in units of the flux quantum
hc/e,v = kya is the dimensionless wave number along the y-axis, and ¢ is the energy
in units of the hopping integral #. The usual Landau gauge A = B(0, x, 0) has been
used. When the flux parameter is a rational ¢ = p/q, p and g integers prime to each
other, then the diagonal term in Eq. (4.1) has period ¢ and the set may be closed by
selecting solutions with the property f,1, = exp(igu) f,, with 1 a real number.

The spectrum is known to have ¢ = 0 as solution at all field values [14]. When ¢ =
P/q, q odd, this root is at the center of a subband whereas if g is even it corresponds
to a subband edge. We are interested in this latter case, which we assume in what
follows. The condition for the existence of solutions of the resulting g equations for
the amplitudes fi, f2, ... f; is then that the determinant of the coefficients,

D(e, i, v) = P,() — 2(cos qv + cos gju) + 4(—1)%, 4.2)

vanishes [15]. Here, P, (¢) is a polynomial of degree ¢ in €, of even parity and having
the coefficient of highest power £7 equal 1, with all other coefficients dependent on
p and g but not on p and v. It has the additional property that P,(0) = 0. For each
value of © and v Eq. (4.2) has g roots which, as the phases cover their range, span
the ¢ subbands present in the spectrum at that value of the field. The solution ¢ = 0
is a band edge as can be easily verified from Eq. (4.2), where the sum of cosines
acquires an extremum value. In fact, if ¢ = 4s, s aninteger, ¢ = 0, v = u = 0 solves
Eq. (4.2). Likewise, e = 0,v = +m/q, u = £m/q are solutions when g = 2s, s odd.
These solutions correspond to the edges of two separate subbands that meet at a single
critical point in the Brillouin zone, its center if ¢ /2 is even and the four equivalent
corners if odd. The bands may only touch, never overlap [16].

That the dispersion near ¢ = 0 is linear in the phases w, v follows from the
property P,(—¢) = P,(¢) for all g even. Near zero energy, one has P,(¢) ~
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Fig. 4.1 Energy dispersion for (a) ¢ = 2, and (b) ¢ = 4. The energy (vertical axis) is in units of
the band parameter ¢, while the perpendicular plane represents the first Brillouin zone

—(—1)%A(p, g)e*, where A(1,2) =1, A(1,4) =8, A(1,6) =24, A(1,8) =96 —
3242, AQB3,8) =96 + 32+/2 and so on, are all positive constants [17]. To order &2,
the condition on the determinant, Eq. (4.2), becomes

A(p,q)82+2(—1)%(cosqv—i—cosqu) —4=0. 4.3)

Near the Brillouin zone center this gives for ¢ /2 even

e(u, v, ¢) = £C(p, g)v v+ u?, 4.4)
where C(p, q) = qA(p, g)~'/* is a field dependent velocity in units za/h. A similar
relation is obtained near each Brillouin zone corner for ¢ /2 odd, with the phases w,
v measured with respect to the appropriate zone corner.

Figure 4.1a shows a Dirac point placed at the zone corners correspondingto p = 1,
g = 2, in which case the form Eq. (4.3) is exact. This case has been discussed
previously [18]. Figure4.1b is for ¢ = 4 and exemplifies a Dirac point placed at
the center of the zone. Specular reflection with respect to the ¢ = 0 plane gives the
dispersion for negative energy, corresponding to holes. We note that in the case of a 2D
triangular lattice a single Dirac point occurs at the special field values ¢ = n + 1/6,
n an integer [19].

As shown by Hofstadter, the spectrum of Harper’s equation has a recursive sub-
band structure arranged in such a way that, displayed over the fundamental cell
0 < ¢ <1, resembles a butterfly with open wings [14]. He conjectured a nesting
property that makes each subband in the spectrum a replica at some recursive level
of the field-free band, about which a geometrically distorted version of the whole
graph develops. One consequence is that, for instance, at ¢’ = ¢ 4+ 8¢ a cyclotron
frequency w = g8¢/hg(¢, €) may be defined in the neighborhood of any subband
pertaining to the spectrum at flux ¢, where g(¢, ¢) is the density of states at energy ¢.
Note that this expression scales as the departure from the field at the subband under
consideration, just as the low field semiclassical cyclotron frequency departs from
zero magnetic field [20].
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To study the special situation when two subbands touch at energy ¢ = 0 we take
advantage of the effective Hamiltonian formalism [21]. In this theory, the original
problem of an electron moving in the presence of a square lattice potential and an
external magnetic field B’ in the neighborhood of a given subband belonging to the
spectrum at field B, is replaced by the Hamiltonian problem defined by

H o =e¢ (l[p + SAA@)]L, ¢> : (4.5)
h c

where ¢, (K, ¢) is the dispersion law in subband r, and AA(r) =46B(0,x,0) is a
vector potential for the departure magnetic field B = B’ — B. If the integer r =
1,2, ...q labels the subbands in order of increasing energy, then ¢, > and & />4 touch
at zero energy, near which the dispersion obeys Eq. (4.3). Recalling that v = kya
is the dimensionless crystal momentum in the y-direction and making the similar
association of p with the crystal momentum along the x-axis k,a [22], one can use
Egs. (4.4) and (4.5) to solve for the spectrum near zero energy using standard methods
of quantum mechanics [23, 24]. One then obtains the sequence of eigenenergies

E, = sgn(n)2qt Inde, (4.6)

T
A(p,q)

where 8¢ = ¢’ — ¢ = e8Ba’/ hc is the flux traversing a unit cell measured with
respect to the reference value ¢ = p/q, and n =0, 1, £2, ... is a Landau level
index for electrons and holes. Figure 4.2 shows this expression evaluated in the neigh-
borhood of flux 1/2 up to n = 4 (solid lines), together with the associated spectrum
given by roots of Eq. (4.2) at a few rational values of the flux in that neighborhood
(dots). In the latter, the Landau levels have a width and possibly internal structure,
only that so narrow that it is not resolved in the scale of the figure. The agreement
is excellent at low Landau levels, though it deteriorates slowly as the Landau index
increases and the relative flux grows. The figure shows the positive quadrant only
and it repeats for negative flux and negative energy, specularly reflected over the
proper axes. It is worth noting that Eq. (4.6) leads to Landau energies with the same
functional form as those obtained for Dirac fermions in graphite [3].

The number of states in each Landau level may be obtained from the gap labeling
theorem, according to which the statistical weight—number of states per unit cell
of the crystal—below any gap in the spectrum is given by a continuous function of
the field, of the form W = M¢ + N, with M, N integers [16, 25]. The value ¢ = 0
divides the spectrum in two specularly symmetric halves, so at that energy W = 1/2
a condition that requires M = mgq/2, N = (1 —mp)/2, m an odd integer. Using
these facts one readily finds that the number of states of any level in the Landau fan
emerging from the Dirac point at flux ¢ = p/q, g even, is simply D = ¢|5¢|. For
instance, for ¢ = 1/2, the number of states per cell below a gap reaching the apex
at ¢ = 0 has the form W,, = m¢ + (1 — m)/2. The number of states between two
neighboring gaps is then |W,, 1o — W,,| =2¢ — 1 = 2|é¢|, in accordance with the
general result just described. The number of states grows linearly with the relative flux
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as it does for free 2D electrons in a magnetic field, yet the total number is g times
larger. Since the index M may be identified with the dimensionless conductance
[6, 26], in the neighborhood of a Dirac point at flux p/q one expects the Hall
conductance to be quantized according to

62

oy =qm T 4.7)
Here, e is the electron charge and & Planck’s constant. Because ¢ is even, this quantity
will always involve integer multiples of the quantum of conductance ¢?/h even
when the spin degeneracy is fully resolved. In the simple case ¢ = 2 the sequence
of multiples for electrons in the latter case is of the form 2n + 1, n an integer, but if
the Zeeman energy is small the sequence is the same as that observed in graphene,
e.g. of the form 2(2n 4 1) [1, 27].

Harper’s model arises in the motion of 2D crystalline electrons in the presence of a
perpendicular magnetic field if couplings up to nearest neighbors in reciprocal space
are kept only. The spectrum it gives rise to, the so called Hofstadter butterfly, has
been gradually confirmed experimentally [28-31]. As more details of the spectrum
are unveiled, the presence of Dirac points may be tested. It is unlikely that they
be observed in this physical system, however, since in more realistic models the
degeneracy of neighboring bands at the center of the spectrum may be lifted [32].
Recent experiments with cold atoms and a fictitious magnetic field, described also
by Harper’s equation, may be more suitable to probe the presence of Dirac points in
the spectrum [11-13].
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Chapter 5 ®)
Silicene and Germanene as Prospective oo
Playgrounds for Room Temperature
Superconductivity

G. Baskaran

Abstract Combining theory and certain striking phenomenology, we suggest that
silicene and germanene are elemental Mott insulators and abode of doping induced
high-T, superconductivity. In our theory, a three-fold reduction in 7 -7* bandwidth
in silicene, in comparison to graphene, and short range Coulomb interactions enable
Mott localization. Recent experimental results are invoked to provide support for our
Mott insulator model: (i) a significant 7-band narrowing, in silicene on ZrB,; seen in
ARPES, (i) a superconducting gap appearing below 35 K with alarge 2A / kg T, ~ 20
insilicene on Ag, (iii) emergence of electron like pockets at M points, on electron dop-
ing by Na adsorbent, (iv) certain coherent quantum oscillation like features exhibited
by silicene transistor at room temperatures, and (v) absence of Landau level split-
ting up to 7 T, and (vi) superstructures, not common in graphene, but ubiquitous in
silicene. A synthesis of the above results using theory of Mott insulator, with and
without doping, is attempted. We surmise that if competing orders are taken care
of and optimal doping achieved, superconductivity in silicene and germanene could
reach room temperature scales; our estimates of model parameters, t and J ~ 1eV,
are encouragingly high, compared to cuprates.

5.1 Introduction

Nearly 12years ago, Professor Norman H. March and collaborators pointed out
[1, 2] (see also [3]) the possibility of Mott localization of electrons in hexasilabenzene
(SigHg, a Si analogue of benzene), resulting from an expanded equilibrium Si—Si
bond length. This article (see also [4]) presents some profound consequences of
such localization in silicene (Si analogue of graphene) and germanene. It gives me
great pleasure to contribute this article honouring Professor Norman March, on the
occasion of his 90th birthday. My first meeting with Professor March was in early
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1976 at the International Center for Theoretical Physics (ICTP), Trieste, Italy. He
helped Professor Abdus Salam, in developing condensed matter theory activities at
ICTP, for more than two decades, in the formative years. One of the focus of Professor
March at ICTP was to nurture and mentor young minds from third world countries;
I was one of the beneficiaries.

A wealth of activity in the field of graphene, following the seminal work of
Novosolev and Geim [5-7], has paved the way for silicene [8§—11], a silicon analogue
of graphene. This new entrant might have a potential to begin another fertile direction
in condensed matter science and technology. Replicating a rich graphene physics has
been a part of recent efforts. Stable silicene layer has been created on a few metallic
substrates, Ag, ZrB, and Ir. However, synthesis of free standing silicene remains a
challenge. Interesting angular resolved photoemission spectroscopy (ARPES) and
scanning tunneling microscopy (STM) results are available [12—19]. Silicene based
field effect transistor has been also fabricated [20, 21]. There have been successful
attempts to synthesize germanene and related systems [22—-27] on certain metallic
substrates.

Aim of the present article is to provide a low energy model, a rather unexpected
one, for electrical and magnetic properties of silicene. Finding a suitable low energy
model for strongly interacting quantum matter continues to be a challenge. The very
experimental results we wish to understand guide us to correct theoretical modeling.
Theory in turn guides experiments. The synergy continues. This is true from Stan-
dard Model building in elementary particle physics to Standard Model building for
cuprate. Silicene is no exception.

The currently prevalent view is that neutral silicene is a Dirac Metal, a semimetal
qualitatively similar to graphene [11]. Purpose of the present paper is to offer a dif-
ferent view point, that silicene is not a carbon copy of graphene—it is an elemental
Mott insulator. If proved correct, our provocative proposal will make silicene differ-
ent from semi metallic graphene in a fundamental fashion and open new avenues for
physics and technology, arising from strong electron correlation effects.

It is well appreciated now, thanks to the path breaking discovery of high-7, super-
conducting cuprates by Bednorz and Miiller [28] and subsequent resonating valence
bond theory by Anderson and collaborators [29-33], that Mott insulators and strong
electron correlations are seats of a variety of rich physics and phenomena. In addi-
tion to superconductivity it includes, quantum spin liquids, emergent fermions with
Fermi surfaces, gauge fields, quantum order, topological order and so on. Further,
inspired by certain recent theoretical development [34] there is a debate and search for
quantum spin liquids in honeycomb lattice Hubbard model [35-37]. We believe that
silicene and germanene will fit well into the discussion as real candidate materials,
albeit with added novel features.

Several ab initio calculations [8—10], many-body theory [38], quantum chemical
calculations and insights [1, 2, 39-42] are available for silicene. Interestingly there
is a differing view, which has not been well appreciated. Existing solid state many-
body calculations predict stable free standing semimetallic silicene that is a similar
to graphene. However, quantum chemical methods and insights doubt existence of a
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stable free standing silicene [39-41] because of radicalization/reactivity and reduced
aromaticity, arising from a weakened p-7 bond.

It is clear that theory of silicene is challenging and less understood compared to
graphene, because of a growing importance of electron electron interaction and a
soft c-axis displacement (puckering) degree of freedom, arising from an easy sp°
mixing. Our model and theory is aimed to initiate new discussion, theoretical and
experimental studies.

The present article is organized as follows. We interpret certain existing theoretical
results, Coulomb screening argument for Mott transition and quantum chemical
insights as providing support for our proposal of a narrow gap Mott insulating state for
neutral silicene. We also identify and discuss a set of about 6 anomalous experimental
results that point to a Mott insulating state.

A Heisenberg model, containing additional multispin interactions, is introduced
to describe spin dynamics in a small gap Mott insulator, and a ¢-J model for the
spin-charge dynamics of doped Mott insulator. Then we discuss the aforementioned
anomalous experimental results in the light of our model.

Prospects for high-7, superconductivity, within our model, is discussed next.
In view of larger and more favourable ¢-J parameters, in comparison to layered
cuprates, there is a distinct possibility of a T, approaching the room temperature
scale, provided competing interactions are taken care of. Using existing theoretical
works we come to the conclusion that superconductivity is likely to be a chiral spin
singlet d + id superconductivity.

Superstructures, not common in graphene but ubiquitous in silicene grown on
substrates, are interpreted as arising from a strong response of c-axis deformable
Mott localized p-m electrons, to substrate perturbations, through site dependent sp*
mixing. In a recent ab initio calculation with Vidya [43] we have found indirect
evidence for Mott localization, through presence of sizable Kekulé (valence bond)
order and a weak antiferromagnetism. Further we have interpreted experimentally
seen reconstructions as Kekulé or Valence Bond order.

The present paper assumes that #-J model in 2D describes Kosterlitz—Thouless
superconductivity for a range of doping. While there is no rigorous proof for this, it
is well certified by a body of analytical, numerical and experimental efforts available
for the square lattice cuprates, ever since Bednorz and Miiller’s discovery and the
beginning of resonating valence bonds (RVB) theory. Existing studies on honey-
comb lattice #-J model indicate that spin singlet superconductivity continues to be a
dominating phase over a range of doping, but with d + id order parameter symmetry.

Our present work is a natural extension of our earlier work on graphene [44—46].
It has been our view that graphite and graphene should show interesting electron
correlation effects, even though electron-electron interaction strengths are moderate
compared to the band width. According to us, reduced 2-dimensionality of graphene
causes an amplification of electron correlation effects. Our earlier prediction of spin-
1 collective mode in neutral graphene [45] and very high-7, superconductivity in
doped graphene [44, 46] are based on use of a moderate electron repulsion strength.
Our main message in the present article is that 2D silicene and germanene, having a
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third of graphene band width, but two thirds of on site coulomb interaction strength
of graphene should exhibit more pronounced electron correlation effects.

In a recent article we have suggested a five-fold way to new high-T, superconduc-
tors [47] one of the ways is the graphene route. Silicene and germanene are most
likely to lie in the graphene route and help us achieve room temperature supercon-
ductivity.

5.2 Is Free Standing Silicene Stable?

Beginning with hexasilabenzene, SigHg, a silicon analogue of benzene, chemists
have wondered about the existence of stable planar p-7 bonded Si based molecules
[1, 48]. Their concern is that an increased Si-bond length, a simple consequence
of a 60% increase in atomic radius, will weaken the p-m bond, leading to reduced
aromaticity and increased chemically reactivity. It is also an experimental fact that
free SigHg molecule has not been synthesized so far.

Silicene is an infinitely extended planar p-7 bonded network of Si atoms. Density
functional theory (DFT) calculations and beyond argue for a stable free standing
graphene. On the other hand, Sheka in 2009 [39, 40] and Hoffmann in 2013 [41],
have questioned stability and very existence of free standing silicene because of
reduced aromaticity and enhanced radicalization. This, according to them, will make
silicene react with any molecular dirt.

Radicalization in quantum chemistry is creation of unpaired lone electron in cer-
tain molecular orbitals in the ground state; the loners are generically weakly coupled
to other loners, if present. In the context of periodic systems such as a crystalline
solid we interpret it to mean an extreme Mott localization and formation of nearly
decoupled spins. In this Mott insulating state quantum fluctuations lead to residual
(superexchange) couplings among spins and quantum magnetism.

Free standing silicene has not synthesized experimentally so far. A key stabiliz-
ing factor, namely metallic substrates, Ag, Ir and ZrB, is needed. Further, a strong
hybridization between Ag bands and Si orbitals at the fermi level leads to significant
modification of electronic properties of free standing silicene.

In what follows, by stable Mott insulating single layer silicene we mean the
following. We assume that (metallic) substrate stabilizes a single layer silicene and
at the same time does not significantly modify the Mott or doped Mott insulator
character, that we are after.

5.3 Mott Insulating Silicene: Theoretical Support

In this section, using recent estimates of the Hubbard U, nearest neighbour repulsion
V, and Mott’s argument for metal insulator transition invoking screened long range
Coulomb interaction, we will argue a Mott insulating ground state for silicene.
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We begin with a summary of basic quantum chemistry and band theory results
for silicene. Silicon, located just below carbon in the periodic table has a larger
atomic radius ~1.17 A, in contrast to a smaller value ~0.77 A for carbon. This leads
to a significant 3 p-m bond stretching: the Si-Si distance is ~2.3 A, while the C-C
distance is only 1.4 A in graphene.

Unlike graphene, Si allows a small sp® admixture to sp? bonding, resulting in
puckered o -bonds. That is, Si atoms of the two triangular sublattices of the honey-
comb net undergo small and opposite displacements, leading to a net c-axis stretching
~0.4 a.u. A reduced 3s-3p level separation in the Si atom, compared to 2s-2p level
separation in the C atom encourages a small sp° hybridization.

Electronic structure calculations [8—10] predict a semimetal band structure qual-
itatively similar to graphene, containing two Dirac cones at the K and K’ points. A
major difference from graphene is a three-fold reduction in the -7 * bandwidth.

Following a pioneering work of Sorella and Tosatti [35] a recent estimate [34]
gives an accurate value of the critical value U/t ~ 3.8 for the metal to Mott transition
in the Hubbard model on a honeycomb lattice. In a very recent many-body theory,
Schiiler et al. [38] estimate a value U/t ~ 4.1 for silicene. This puts silicene on
the Mott insulator side, close to the phase transition point. However, Schiiler et al.
argue that inclusion of nearest neighbour repulsion V /¢ ~ 2.31, will reduce U to an
effective U ~ U — V and bring silicene back to a semimetallic state like graphene.
In what follows we argue, on the contrary, that the presence of a finite V will hasten
Mott localization and reinforce a Mott state through a first order phase transition.

We start with Mott’s argument for a first order Mott transition. Mott begins by
asking whether a screened Coulomb interaction present in the metallic state is suf-
ficient to form a quantum mechanical bound state of an electron and the hole it left
behind at its home site, at the Fermi level. Within a Hubbard model idealization this
happens when the bandwidth becomes comparable to the onsite U; it also means
that at very large U every site binds a lone daughter electron. In Mott’s argument the
transition is pre-empted by reduced screening of long range interaction (as we loose
free carriers by bound state formation), through a feed back resulting in a first order
phase transition. This aspect is not contained in the simple Hubbard model.

Let us assume that in addition to U we have a non-zero nearest neighbour coulomb
interaction V, which is a leading term in the long range part of screened coulomb
interaction. According to Mott’s arguments, V will add to the already existing on
site attraction U between an electron and the hole it left behind. This additional
attraction (widening of the potential well) decreases kinetic energy of bound state.
Resulting increase in binding energy hasten bound state formation. Roughly, the
onsite Hubbard U gets enhanced: U ~ U + 'V, where o ~ 1.

Thus we conclude, by what we believe to be a correct use of important estimates
of Schiiler et al. [38] that silicene is in the Mott insulating side of the metal insulator
transition point. We hope to address this point in some detail in a separate paper.
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5.4 Mott Insulating Silicene: Phenomenological Support

In this section we briefly review experimental results in silicene which are anomalous,
from the point of view of a Dirac metal. But, as we will discuss latter, they seem
normal from Mott insulator point of view.

Doped Hole and a Narrow Band

In a work that has received a wide attention, using ARPES, Vogt et al. [13] show
the presence of a Dirac cone dispersion over a wide energy range below Fermi level,
with a Fermi velocity vy comparable to that in graphene. There is an ongoing debate
[49-51] on whether this is primarily a silicene p-m band or primarily a Ag metallic
bands or a strong hybrid. Recent ARPES result shows [52] multiple (more than the
expected double) Dirac cones in the silicene on Ag system. This has been attributed
to a strong hybridization of silicene and silver states at the Fermi level.

On the other hand, ARPES study of silicene grown on ZrB, by Fleurence et al.
[15] shows a very different behaviour. ZrB; is a low carrier density metal with small
Fermi pockets. It is expected to have less electronic influence on silicene. Fleurence
et al. find a remarkably narrow band around around K and K’ points (marked X,
in Fig.5.1b), lying below a finite gap ~0.3eV. Its spectral weight vanishes in two-
third of the Brillouin zone. An extrapolation from the shape of the visible part of
the band gives us a total band width ~1eV. This is to be contrasted with the total
m-7* band width of 6eV as given by LDA calculations. Thus there is a band width
renormalization by a factor of 10. Further, three silicene bands denoted by X;, X,
and X} all lie in an energy interval of 0.5eV. This spectrum is reminiscent of hole
spectrum in Mott insulating La,CuOj.

A Superconducting Gap Anomaly

Chen et al. have observed [17] a superconductor like gap structure in their STS study
of silicene on Ag and a 7. ~35 to 40 K. They provide arguments in support of a gap

(a) (b) a " _ B Ksi

(n2) ABsaua Guipuig

og 06 04 02 00 02 04 06 08 10 12
ZrBa(0001)-(2x2) ky (A1) ky (A

silicene-{1x1)

Fig. 5.1 ARPES data of silicene on ZrB; (redrawn after [15]). A hole like narrow band of width
(marked X3), below a gap of 0.3eV at K point is seen in the left panel. This band is only 1eV
wide, compared to 6eV 7-7* band width given by the local density approximation (LDA). It has
appreciable spectral weight only in one third of the Brilluoin zone. We interpret this band as a
strongly renormalized hole band of a Mott insulator. Interestingly, all silicene bands X, X5 and X}
lie within an energy interval of 0.5eV. §’s refer to substrate bands
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arising from superconductivity. A large 2A / kg T, ~ 20 makes it anomalous. Further
experiments are needed to substantiate this important result.

Absence of Landau Level Formation

An STM work [18] in the presence of a magnetic field as large as 7T does not
find an expected Landau level splitting. In our view, a doped hole looses nearly
all its quasiparticle weight because of the strong electron-electron interaction. We
find that quasiparticle line broadening, as inferred from experiment is larger than
the expected Landau level splitting, making it invisible in STS measurements. In
graphene, because of quasi particle coherence, one sees Landau level structures for
similar magnetic fields in the STS measurements.

Silicene Lattice Reconstructions

Recent experiments on silicene grown on metal surfaces exhibit [53-55] lattice
reconstructions, V3 x «/§, V7 x «/7, V13 x «/ﬁ, 4 x 4 etc. They are temperature
dependent and some of them exhibit finite temperature phase transitions. Further,
reconstructions are accompanied by space dependent sp® mixing and consequent
bond length modulation. Even within band theory there is no Fermi surface. So a
standard route for density wave instabilities namely Fermi surface nesting is absent.
This explains why reconstructions or charge density wave (CDW) order is not seen
in graphene. Graphene is stiff, in view of a ~9eV wide filled 7-band and an asso-
ciated large aromaticity. We suggest that p-m electrons in silicene, because of Mott
localization, respond strongly to substrate perturbations by making use of the soft
sp> hybridization option and corresponding c-axis displacements.

Fermi-Arc-Like Electron Pockets

Electron doping in silicene deposited on ZnB, by alkali metal leads to appearance
of small Fermi-arc- or pockets-like features at the M points [19]. This is not easily
explained within LDA band structure result. A doped Mott insulator on the other
hand, does not obey Luttinger theorem in the usual fashion and can have unusual
emergent Fermi pockets and Fermi arcs—a striking example is the under doped
cuprates.

Silicene Transistor and Resistance Oscillations

Using an innovative technique a silicene transistor has been successfully fabricated
[20, 21]. It exhibits a desired on off resistance radio as gate voltage is varied. Further,
it exhibits an intriguing resistance oscillation at room temperatures, resembling a
Fabry—Perot type of quantum interference.

Thus we have some theoretical arguments and a few phenomenological facts in
support of a Mott insulator picture for neutral silicene. In the following we will build
a model, address the above experimental observations from the Mott insulator point
of view.
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5.5 Spin Liquid State in Silicene?

Let us first discuss nature of the hypothesized Mott insulating state of neutral silicene.
From ARPES experiment [15] we estimate a Mott Hubbard gap of ~0.6eV. In
transition metal oxide and organic Mott insulators, Mott gap is often comparable
to bandwidths. As the inferred Mott gap, 0.6eV is only a tenth of the total 7r-7* band
width ~6¢eV silicene is a Mott insulator with a small charge gap.

In a Mott insulator low energy degree of freedom are spins and spin-spin inter-
action arise from super (kinetic) exchange processes. One can estimate J, using
the standard expression, as J ~ 4t>/U?. The values ¢ ~ 1.14eV and an effective
U ~ 5eV, discussed earlier for silicene, gives us a J &~ leV. As J is comparable
to the Mott Hubbard gap of 0.6eV, a strong virtual charge density and charge cur-
rent fluctuations will renormalize J to lower values. Further, higher order cyclic
exchanges will be also present.

Ignoring spin-orbit coupling for the moment, our effective spin Hamiltonian in
the Mott insulating state is a spin-half Heisenberg Hamiltonian

1
H,=J Z (Si -S; — Z) + 4 and 6 spin terms. (5.1
(i)

If the nearest-neighbour J dominates, we will have long range antiferromagnetic
order in the ground state. As recent results show, within nearest neighbour repulsive
Hubbard model one is unlikely to stabilize a spin liquid phase [36]. In the present
case, because of softness of puckering, there may be valence bond order, rather
than a spin liquid, without doping. However, as in cuprates, this may not be an
important practical issue. This is because we expect that even a small density of
dopants through their dynamics will destroy long range antiferromagnetic (AFM)
order and valence bond order and stabilize some kind of spin liquid state (pseudogap
phase) containing incoherent dopant charges. It is this doping induced spin liquid
state that will determine nature of superconductivity over a range of doping. It is
likely that a variety of spin liquids are around the corner.

5.6 Doped Mott Insulator

For dopant dynamics in a Mott insulator, up to a certain range of doping, a projec-
tive constraint arising from upper and lower Hubbard band formation and surviving
superexchange are important. Thus the relevant model for doped Mott insulator is
the ¢-J model:

1
H, =—t Z(C‘j{rcjg +H.c)+J Z <Sl . Sj — Zn,-nj> y 5.2)

(ij) (ij)
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with the local constraint n;4 + n;4 # 2 or 0, for hole and electron doping, respec-
tively. The value of J, t ~ 1eV.

It is known from the study of single hole dynamics in Mott insulating cuprates that
a free and coherent propagation of a doped hole or electron (carrying its charge and
spin) is frustrated by the strongly quantum entangled spin background. This leads
to a significant band narrowing and loss of spectral weight over a large part of the
Brillouin zone, as seen in ARPES experiments [56] and ¢-J model calculations [57].
For cuprates band theory gives a width of 8¢ ~ 3—4 eV, while ARPES results in the
Mott insulating cuprates give a band width of 2J ~ 0.3eV (essentially spin wave
bandwidth) for holes. This is a substantial, ten fold reduction of hole band width.

As we saw earlier ARPES study on silicene grown on ZrB, gives a parabolic
hole band at K point, about 0.3eV below the Fermi level (band X, in Fig.5.1b)
with a bandwidth ~1eV. Comparing results with cuprates mentioned above, we get
a J ~ 0.5eV. This is in the right ball park, as our estimate of J ~ 1eV.

5.7 Doped Mott Insulator and Superconductivity

We start with the #-J model for our doped Mott insulator in a honeycomb lattice and
discuss superconductivity. Interestingly, the above model, Eq. (5.2), was studied in a
mean field approach first in [58] for graphite. Later the present author independently
studied the same model ignoring onsite constraints [44] as a semimicroscopic way
of incorporating Pauling’s spin singlet (resonating valence bond) correlations in
planar graphitic systems, within a band theory approach. It leads to a prediction of
very high-T, superconductivity around an optimal doping. Our mean-field theory
result of high-T, superconductivity for graphite was reanalyzed and confirmed by
Black-Schaffer and Doniach [59]. They further found a remarkable spin singlet chiral
superconducting state, namely a state with d + id symmetry as the most stable mean
field solution for the same range of doping. A more conservative repulsive Hubbard
model has been studied from superconductivity point of view using variational Monte
Carlo method in reference [46], by us and collaborators for graphene. There are other
important works addressing the same issue [60-65] by different methods. They all
support the possibility of d + id chiral spin singlet superconductivity.

A very recent work [66] studies the 7-J model on a honeycomb lattice using a
new and powerful variational approach using Grassman Tensor Network states. It
confirms d + id superconductivity for the #-J model on a honeycomb lattice for a
range of doping.

Using available theory and insights we suggest a phase diagram (Fig.5.2), qual-
itatively similar to the cuprates, including the pseudogap phase. A new aspect for
the honeycomb lattice is presence of a van Hove singularity and an associated nest-
ing (Fig.5.2) at a doping of x = 0.25. It has been suggested that this nesting might
stabilize a complex magnetic order [67] or charge density wave order. If our vari-
ational calculation [46] performed for graphene, a doped semimetal described by
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Fig. 5.2 A schematic phase
diagram for doped silicene T T~
and graphene N
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intermediate repulsive U Hubbard model, is any guidance, maximum superconduct-
ing T, occurs already around 15%, somewhat similar to cuprates.

The issue of scale of superconducting 7, is very exciting and it shows some
promise. As mentioned earlier we have an unusually large J ~ 1eV and ¢ ~ 1eV
for our honeycomb lattice. This is to be contrasted with a value of J ~ 0.15eV
and r ~ 0.25¢eV for the square lattice cuprates, known for their record 7, ~ 90 K,
for single layer cuprates. We have an average four-fold increase in ¢t and J for
silicene. Does silicene offer a four-fold increase in 7,.? Taking care of lattice structure
difference between cuprate and silicene crudely, a scaling gives at least a three-fold
increase of T,. Thus room temperature scales for 7, seems within reach, provided
competing orders are taken care of.

As in cuprates, we expect competing orders, charge and spin stripes to challenge
the high-T7, superconducting states. Further, as we will see, electron lattice interaction
can cause patterns of vertical displacements of Si atoms, arising from sp® mixing.
It is conceivable that there will be stripes and 2D patterns, corresponding to various
valence bond orders. These valence bond localization tendencies will compete and
reduce 7, significantly.

The only available, but remarkable indicator for superconductivity in silicene is
an STS study [17]. They find a T, in the range 30—40 K and a large gap of 35 meV;
that is, an anomalous value 2A / kg T, ~ 20. If we take the maximal gap value from
this experiment and extract a mean field T;, using weak coupling BCS result, we
get a number close to 200 K! We interpret this anomaly in 2A /kgT,, as due to a
superconducting state with a large local pairing gap but with 7, reduced by a strong
phase fluctuations arising from a static or low frequency local competing orders. This
needs to be investigated theoretically and experimentally further.
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We have interpreted [68] a quantum oscillation in resistance seen in silicene
transistor at room temperatures, as a Fabry—Perot type of interference of preformed
bosonic charge 2e Cooper pairs, and physics similar to the pseudogap phase of
cuprates. Briefly, the gate induced carriers (holons or doublons) enable delocalization
and interference of preformed charge 2e singlets, even before full phase coherence
and superconductivity develops.

There are recent suggestions of superconductivity in silicene based on different
mechanisms [69, 70]. We wish to point out that Liu et al. [69] have theoretically
studied possibility of spin fluctuation induced chiral d + id superconductivity in
neutral bilayer silicene. In their mechanism, intralayer hopping between the two
Dirac metallic layers produce small electron and hole pockets around K and K’
points. In our theory such a bilayer will remain insulating with an additional feature
of a spin gap induced by a strong interlayer exchange coupling (spin singlet bond
formation between Si atoms along the c-axis). External doping or gate doping by
very strong electric fields applied perpendicular to the layers will be needed to create
superconductivity in the Mott insulating bilayers.

5.8 Germanene and Stanene

Group IV elements in periodic table C, Si, Ge, Sn and Pb have increasing atomic radii
0.77,1.17, 1.22, 1.45 and 1.8 A respectively. The p-7 bonds in silicene, germanene
and stanene get weaker because of increasing atomic radii, in spite of increasing
size of the p orbitals. Ab initio calculations for germanene leads to a few percent
enhancement of Ge—Ge bond length, but a substantial increase of puckering and
c-axis stretching from ~0.4 A in silicene to ~0.6 A in germanene. There is a small
reduction in 7w and 7 * bandwidths from 3 to 2.5eV.

All things being quantitatively nearly equal at the level of model, germanene
should be a narrow band Mott insulator. Consequences we have discussed so for,
including possibility of quantum spin liquid and high-T7 superconductivity on doping
should be anticipated. There are interesting experimental developments with respect
to germanene and stanene recently [22-27].

5.9 Summary and Discussion

To summarize, we have hypothesized that silicene and germanene are narrow gap
Mott Insulators. This challenges the widely held belief that they are a Dirac metal,
like graphene. In making our proposal we have relied heavily on a synthesis of
theory and phenomenology. We have used ARPES, STM and recent conductivity
results. Mott’s arguments, quantum chemical insights and extensive theoretical study
of graphene and silicene has helped us in our proposal. Using known results we
discussed various solutions for our model, including spectral function of a hole
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in a Mott insulator, absence of Landau level splitting, superconductivity and so
on. Unconventional superconducting order namely d + id and high-7,’s was also
discussed.

An important support for Mott localization comes from our translation of the
quantum chemical results of Sheka [39, 40] to solid state terminology. Sheka studies
nanosilicene clusters and finds an extensive radicalization. Radicalization is extracted
using a procedure that uses spin polarized (antiferromagnetic) ab initio solutions. This
interesting quantum chemical approximation is less known in solid state context. As
indicated earlier we equate radicalization in finite systems to Mott localization in
extended solid state context. Thus Sheka’s finding of extensive radicalization and
alleged unstable silicene is a conservative evidence for narrow gap Mott insulator
formation and strongly exchange coupled spins.

We have ignored spin-orbit coupling in the present paper, simply to focus on the
key physics of strong correlations. Spin orbit coupling will play its own, important
unique role, some what different from standard band insulator or semi metal. Within
the context of semi metallic graphene interesting effects of spin orbit coupling are
being studied [71-73].

Direct and indirect methods should be used to unravel an underlying Mott insu-
lator. Optical conductivity, o (w) measurement is an urgent one. It should focus on
finding signatures on Hubbard band features. It will be interesting to confirm the
existing claim of superconducting gap in STS measurements [17]. Reconstructions
should be studied carefully to distinguish valence bond density wave and plaque-
tte resonance density waves. Pseudogap physics needs to be explored using NMR
and NQR measurement. Our tantalizing prediction of very high-7, superconduc-
tivity reaching room temperature scales needs to be explored. This needs ways of
understanding and overcoming unavoidable competing instabilities such as spin and
charge stripes.

Next major experimental and theoretical challenge is to see whether a free standing
silicene exists and if it can be synthesized and studied.

I am not aware of any real material for which the 7-J model parameters are as
large as we have suggested for silicene and germanene, 7, J ~ 1eV. So we con-
sider silicene and germanene as forefront materials in the race for room temperature
superconductivity.
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Chapter 6
Molecular Ordering in Covalent Solids: ez
A Simple Lattice Model

F. Siringo

Abstract Some aspects of molecular orientation in covalently-bonded molecular
solids are discussed by reviewing a simple model for the molecular ordering of
frustrated lattices. The model describes a peculiar phase transition from an isotropic
high temperature phase to a low-dimensional anisotropic low-temperature state. The
model was studied in the past by several methods ranging from mean-field up to
more sophisticated variational Migdal-Kadanoff real space renormalization group
and numerical Monte Carlo simulations.

6.1 Introduction

In 1988, Professor Norman March drew my attention to the fascinating problem
of metal-insulator transition in molecular solids under pressure (see Ref. [1] for a
review). As we discussed in a series of papers [2—4] the electron structure of many
covalently bonded molecular solids, like halogens, changes under pressure because
of the ordering that takes place in the planes and might give rise to low dimensional
chains of molecules. For instance, zig-zag chains are observed in solid iodine [5, 6],
hydrogen halides [7, 8], oxygen [9], nitrogen [10] and other molecular solids. The
orientational order of the molecules may change according to the thermodynamic
conditions giving rise to quite rich phase diagrams: solid-solid transitions may occur
where the orientational ordering of molecules plays a special role.

The most studied models of molecular ordering are O(3) symmetric vectorial
models, describing weak molecular interactions which arise from dipole fluctuations
and give rise to the observed three-dimensional ordering of most molecular Van der
Waals solids. In many covalently bonded solids, the simple diatomic molecule has
not many directions allowed for its covalent bond and a large degree of frustration
is expected, since the coordination number of the covalent bond is quite low. The
lower is the allowed coordination number, the higher the frustration which gives rise
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to the low-dimensional structures observed in iodine [1] and hydrogen halides [7,
8]. The usual rotational invariant O (3) models cannot describe the existence of such
low-dimensional structures and a specific model must be introduced.

A well studied model for polymers and low dimensional ordering is the self-
avoiding random walk on a lattice. A more specific and less known model is the
so called molecular model that was first proposed in Ref. [11] as a very simple d-
dimensional lattice model which incorporates some degree of frustration and thus
describes some aspects of molecular orientation in covalently bonded molecular
solids.

At variance with the more studied self-avoiding walk, the molecular model
can only give rise to linear self-avoiding chains of molecules. It consists of a d-
dimensional hypercubic lattice with a randomly oriented linear molecule at each site
[11-13]. In its simplest version each molecule is only allowed to be oriented towards
one of its nearest neighbours. There is an energy gain for any pair of neighbours
which are oriented along their common bond (a covalent bond). The existence of
preferred orientational axes breaks the rotational invariance of the single molecule
as it is likely to occur for any real molecular system under pressure.

Similar lattice models were used for describing the diffusion of particles and
molecules inside a polymer, and the growth of one-dimensional islands (polymeric
chains; see e.g. Ref. [14], and references therein). The molecular model has also
stimulated some work on molecular orientation in nitrogen [15, 16] which goes back
to the phenomenology laid down by Pople and Karasz [17]. It was argued [18] that
the weak intermolecular bonds between two N, molecules could be favourable for
the formation of an orientationally disordered plastic crystal solid phase, leading to
freezing into an orientationally ordered phase. Some experimental data on nitrogen
[10] confirm the existence of an orientational disordering temperature in the solid
below the melting temperature.

However, as far as we know, the molecular systems which are more closely
described by the molecular model are the hydrogen halides HX (X = F, Cl, Br, I).
Their low-temperature structures are known to consist of planar chains of molecules
in the condensed state while a totally disordered structure is observed with increasing
temperature at ambient pressure [7]. Moreover the opposite transition, from orienta-
tional disorder to an ordered chain structure, was reported by increasing pressure [8].

Besides its physical motivation, the molecular model is by itself interesting
because it provides a simple example of dimensional transmutation. The model
undergoes a transition from an high-temperature (or weakly interacting) fully
isotropic disordered system, to a low-temperature (or strongly interacting) anisotropic
low dimensional broken-symmetry phase. As a consequence of frustration the break-
ing of symmetry is accompanied by a sort of decomposition of the system in low-
dimensional almost independent parts, as observed in solid iodine and hydrogen
halides. Such remarkable behaviour requires a space dimension d > 2, while for
d = 2 the model is shown to be equivalent to the exactly solvable two-dimensional
Ising model (for a review on the Ising model and related standard techniques, see
e.g. Ref. [19]).
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Fig. 6.1 A random
configuration of the
molecular model for d =2

As shown by Monte Carlo simulations [13], in the broken-symmetry phase the
system displays the presence of correlated chains of molecules (polymers) which
point towards a common direction inside each two-dimensional sub-set of the lat-
tice (plane). Such planes are weakly correlated in the low-temperature phase, and
the system has a two-dimensional behaviour even for d > 3. For d = 3 the molec-
ular model belongs to a new universality class, since its critical exponent v turns
out to be v = 0.44 £ 0.02 by finite size scaling [13]. The universality class of the
model describes a broad group of isotropic physical systems characterized by a low-
dimensional ordering in their low-temperature phase.

In this contribution, some important features of the molecular model are reviewed
and its relevance as a non-trivial extension of the Ising model is discussed.

6.2 The Molecular Model

Exactly solvable models are important for our understanding of more complex sys-
tems, and provide a test for approximate techniques. The d-dimensional molecular
model shares with the Ising model the d = 2 realization, since their equivalence
for d =2 can be proven to be exact [11]. While the focus here is on the three-
dimensional model, we will take advantage of the existence of an exactly solvable
realization for d = 2. For d > 2, as the frustration increases, the model shows a very
different behaviour compared to the Ising or Potts [20] models. These last show a fully
d-dimensional broken-symmetry phase while the molecular model is characterized
by a low-dimensional ordering inside the planes with negligible correlation among
different planes. In fact, for d = 3, the model belongs to a different universality class.

Let us consider a d-dimensional hypercubic lattice, with a randomly oriented
linear molecule at each site. The molecules are supposed to be symmetric with respect
to their centre of mass which is fixed at the lattice site. Only a discrete number of
space orientations are allowed for each molecule: we assume that each of them must
point towards one of its 2d first neighbour sites. This choice can be justified by
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(a) (b)

Fig. 6.2 Ground state configurations for the two-dimensional a attractive and b repulsive models

the existence of covalent interactions along preferred axes. Then each molecule has
d different states corresponding to molecular orientation along the hypercube axes
(molecules are symmetric). Finally, each couple of first neighbour molecules, when
pointing the one towards the other, are assumed to gain a bonding energy for their
directional covalent bond (they touch each other). As shown in Fig.6.1 for d = 2,
bonding in a direction excludes any possible bond along the other (d — 1) directions.
The coordination number is 2 for any value of d, and the frustration increases with
increasing d.

We introduce a versor variable w, for each of the N sites r of the lattice, with
wy € {X1, X2, ... X4} pointing towards one of the d hypercube axes x,,. The versors
X« are assumed to be orthonormal: X, - X, = 84, . The partition function follows

z=3 =Y exp [4/3 D e - £a) (e, x>} : ©6.1)
)

) ra

where {i} indicates a sum over all configurations, & runs from 1 to d, and the lattice
spacing is set to unity. The inverse temperature 8 (in units of binding energy) can be
negative for a repulsive model, but is assumed positive in the molecular context.

The model may be generalized by introducing an external d-dimensional vectorial
field h(«) at each link. The dependence on « means that the field differs according to
the space direction « of the lattice link which joins the sites. The modified partition
function reads

Zy = ZeSh = Zexp 4B Z [(ﬁ;r - Xa) (WH_% .)Qa) +h(a) - Wy + h(@) - WH%]
{w} () r.a

(6.2)
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It is evident that if the field satisfies the condition

Zh(a) =0, (6.3)

then S;, does not depend on h and S;, = S. In such a case the extra degree of freedom
provided by h can be regarded as a sort of internal symmetry of the model. This
global symmetry can be made local by allowing the field h to depend on the site
position r. We will only take advantage of the global symmetry in this paper. We
notice that such symmetry cannot be seen as a gauge invariance, since in lattice gauge
models any gauge change leaves the energy gain unchanged at any link. Here, the
field h changes the energy gain of all the links while the whole action is invariant.
Adopting a more compact notation, the partition function reads

Zy = Z eSh = Zle-“‘g(r’O’), (6.4)
) Ov}

where the Lagrangian density .Z follows as
L(r, @) = WMy (B, h)eys, . (6.5)

Here, the canonical d-dimensional column vector representation of R is employed,
withx; = (1,0,0...), % = (0,1,0...), etc. The d x d matrix M,, does not depend
on the configurations of the system, and entirely characterizes the model.

The global symmetry of the action provides a simple way to show the equivalence
between molecular and Ising models for d = 2. For the two-dimensional lattice
the condition (6.3) is satisfied by the field h(1) = h(x; — X2), h(2) = —h(1). The
matrices M, follow

_ |41 +20) O _[-88n 0
Ml—[ 0 —Sﬁh]’ Mz—[o 4ﬁ(1+2h)]. (6.6)

Then for h = —1/4, M| = M,, and .Z reads

L(r,@) = B + ] [ i ‘ﬁﬁ] W, 6.7)

Identifying the two-dimensional column versors w with spin variables, apart from
an inessential factor, Z reduces to the partition function of a two-dimensional Ising
model

Z =N leing (6.8)

and is exactly solvable. For § — +o00 a ground state is approached with all the
molecules oriented along the same direction, and with formation of one-dimensional
polymeric chains (Fig.6.2a); for § — —oo the repulsive model approaches a
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zero-energy (no bonds) ground state analogous to the antiferromagnetic configu-
ration of the Ising model (Fig. 6.2b).

Ford > 3 the analogy with the Ising model breaks down, and this is evident from a
simple analysis of the ground state configuration. Due to frustration the model has an
infinitely degenerate ground state in the thermodynamic limit N — oo. For instance,
in the case d = 3, the minimum energy is obtained by orienting all the molecules
along a common direction, as for d = 2. However the ground state configuration is
not unique: the number of molecular bonds does not change if we rotate together all
the molecules belonging to an entire layer which is parallel to the original direction
of orientation. As a consequence of frustration the total degeneration is 3(2V ",
and the system could even behave like a glass for the large energy barriers which
separate each minimum from the other. The phase diagram is expected to be quite
rich, with at least a transition point between the high temperature disordered phase
and an ordered broken-symmetry low temperature phase.

6.3 Mean Field

For the generic d-dimensional model, some analytical results can be obtained in
Mean-Field (MF) approximation: neglecting second order fluctuation terms

(Wr - Rg) Wrss, - Ra) X Ag Wy - Xg) + Ag Wiz, - Xo) — AZ, (6.9)

where A, = (W - X) is an average over the configurations,and ) *, A, = 1 (withthe
obvious bounds 0 < A, < 1). Here, the order parameter A, gives the probability of
finding a molecule oriented along the direction of X,. The partition function factorizes

as
N
Zue = (Z eSﬁAu) exp <—4Nﬁ > Ai) (6.10)

and the free energy follows

1 1
FMF = —N—IBIOg ZMF = 4ZA§ — Elog (Z ESﬂAa> . (611)

The derivative with respect to A, yields, for the stationary points,

8B4

e

which satisfies the condition ) ", A, = 1.

In the high temperature limit 8 — 0, Eq. (6.12) has the unique solution A, = 1/d,
which reflects the complete random orientation of molecules. In the opposite limit
B — oo, apart from such solution, Eq.(6.12) is satisfied by the broken-symmetry

A (6.12)
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field A, =1, A, =0 for o # u, which obviously corresponds to a minimum for
Fyvr. Then at a critical point 8 = B, the high temperature solution must become
unstable towards a multivalued minimum configuration. The Hessian matrix is easily
evaluated at the stationary points by using Egs. (6.12) and (6.11):

_ L 0%Fwr =8, (1 —8B4,) +884,4 (6.13)
nv SBAHBAV v n nv- .

In the high temperature phase (8 < f.), inserting A, = 1/d, the eigenvalue problem

det |H,, — A8, =0 (6.14)
yields
] d—1
(1—7/3—)»> -(1-=1)=0. (6.15)

Thus the Hessian matrix is positive defined if and only if A = (1 — 88/d) > 0.
Beyond the critical point 8 = . = (d/8) the solution A, = 1/d is not a minimum,
and a multivalued minimum configuration shows up. Such result obviously agrees
with the MF prediction for the Ising model, Brsing = 1/(2d), only for the special
dimension d = 2. For d > 2 we observe an increase of 8, with d, to be compared to
the opposite trend shown by the Ising model. Such behaviour may be interpreted in
terms of the low dimensionality of the ordered phase. Due to frustration the ordering
may only occur on a low dimensional scale: for instance in three dimensions each
layer has an independent internal ordering. Thus we expect a larger B, for d > 2
since the increasing of d only introduces larger fluctuations, with each molecule
having (d — 2) allowed out-of-plane orientations. For d = 3 the low temperature
phase can be regarded as a quenched disordered superposition of layers which are
internally ordered along different in-plane directions. As a consequence of frustration
the system shows a two-dimensional character below the critical point while behaving
as truly three-dimensional in the high temperature domain. In MF the neglecting of
some fluctuations usually leads to a critical temperature which overestimate the exact
value (i.e. the critical inverse temperature S, is underestimated). For d = 2, the MF
prediction is B, = 0.25 to be compared with the exact value 8, = 0.4407. Ford = 3
the MF prediction 8. = d/8 = 0.375 should provide a lower bound to the unknown
exact value.

6.4 Migdal-Kadanoff Decimation

A very powerful tool for the study of lattice models is the the Migdal-Kadanoff [19,
21-23] method of link displacement and decimation. A link displacement may be
introduced by considering that the configurational average of the Lagrangian density
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% in Eq. (6.5) must be translationally invariant
(ZL(r,a)) = (Z{,a)). (6.16)

Then, defining
Fa(r7 r/) = z(ra (Y) _g(r/ra)’ (617)

we can state that (I, (r, r')) = 0 and the same holds for any sum I" over an arbitrary
set of such terms

r=>y r,rr). (6.18)

Replacing the action S, by the sum S;, 4+ I, and assuming that the condition Eq. (6.3)
is verified (so that we can drop the / in S, and Z; which are invariant), the modified
partition function Z can be approximated by cumulant expansion as

Zp = ZeS-H‘ — 7. (Y ~z [e<l‘> ,e%(<1“2>—<1“>2)] (6.19)
o)

then, since (I") = 0,
1
Zr~Z-ertl™, (6.20)

For instance, the sumin Eq. (6.18) couldrun over all & # 1, and for appropriate values
of the vectors r, ', in order to yield a displacement of links which are orthogonal to
x1. To second order in I', the error introduced by link displacement is controlled by
the exponential factor in Eq. (6.20).

Link displacement breaks the internal symmetry of the model, so that Z is no
longer invariant for any field change subject to the condition Eq.(6.3). Then we
may improve the approximation by using the extra freedom on the choice of h for
minimizing the difference between the approximate partition function Z and the
exact Z.

If h satisfies the condition Eq. (6.3), then ah satisfies such condition as well for any
choice of the scalar parameter a. Then a special class of invariance transformations
can be described by a change of the strength parameter %, assuming the field h as
proportional to 4. The following discussion could be easily generalized to other
classes of transformations described by more than one parameter. Since I is linear
in the field h, then in general

'’ =[A+ hB)?, (6.21)
where A and B depend on the configuration of the system. For the average we have

(I'?y = (A%) + 2h(AB) + h*(B?). (6.22)
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This last equation, inserted in Eq. (6.20) leads to the following considerations: (i) the
coefficient (B?) is positive defined, then the average (I"%) always has a minimum for
an appropriate value of & = hy; (ii) in general (AB) # 0 then hy # 0, and a direct
use of the Migdal-Kadanoff method on the original model (with no field considered)
would yield a larger error; (iii) to the order of approximation under consideration,
Z is stationary at h = h, and is symmetric around that point, then all the physical
properties described by such partition function must result symmetric with respect
to hy. Moreover, at the same order of approximation, any physical observable f will
acquire an unphysical dependence on £, and the symmetry around h requires that
Z—{, = 0 for & = hy. Then we expect that all such observables should be stationary at
h = hy, and their best estimate should coincide with the extreme value.

As a consequence of the above statements, the Migdal-Kadanoff method can be
improved by taking advantage of the global symmetry of the model. By use of the
approximate partition function Z the critical temperature acquires a non-physical
field dependence, but the best estimate of j, is its stationary value corresponding to
h = hy. The method can be seen as a variational method with the best approximation
achieved by the minimum in the inverse temperature.

Such stationary condition resembles the principle of minimal sensitivity intro-
duced by Stevenson [24] for determining the best renormalization parameters when-
ever the physical amplitudes depend on them (and they should not). In our context,
since the critical temperature should not depend on the choice of the field strength
h, the best value for such field is the one which makes the critical temperature less
sensitive i.e. the stationary point. However, according to Egs. (6.20) and (6.22), here
we have got a formal proof of the stationary condition up to second order of the
cumulant expansion.

The method may be used by performing a displacement of links that are orthogonal
to X1, and then a one-dimensional decimation along the @ = 1 axis. According to
such program let us define the alternative d x d matrix #, (8, h)

e? T = Bl (B, h)Wrss, - (6.23)

The partition function follows

z, = Z]‘[ Wita (B, M)z, ] (6.24)

W

After link displacement and decimation along the « = 1 axis, the modified partition

function reads
Zr = Z]‘[ Vo (B M), ] (6.25)

where the sum and the product run over the configurations and the sites of the new
decimated lattice, and

f1(B, h) = (B, T (6.26)
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fa(B. h) = 1,(AB, h), fora # 1, (6.27)

with A being the scale factor between the new and the old lattice. A renormalized
inverse temperature 3, may be defined according to

f1(B, h) =t (B, h) (6.28)
By =B, fora # 1. (6.29)

Eventually, the same scaling operation should be performed consecutively for all
the directions in order to obtain an hyper-cubic lattice again. For any finite scaling
parameter A > 1 the renormalized inverse temperature is anisotropic, but an isotropic
fixed-point can be recovered in the limit A — 1. Equations (6.28) and (6.29) define the
flow of the renormalized inverse temperature, which changes for any different value of
the field strength /. Equation (6.28) has a more explicit aspect in the representation
of the common eigenvectors of the matrices #; and #; = [;]*. The rank of such
matrices is 2 for any space dimension d, as can be expected from the definition
of the model. Then both the matrices can be represented in terms of the two non-
vanishing eigenvalues 7, 1, which are functions of 8 and 4. Assuming that 1, # 0,
and defining

F(B.h) = % (6.30)

apart from a regular multiplicative factor for the partition function, the scaling
equation (6.28) reads ~
[f(B. W] = f(Bi. h). (6.31)

For any h, the fixed points follow through the standard Migdal-Kadanoff equations

[ B D] = FOBas ). (6.32)

When A is analytically continued up to 1 such equations give the same isotropic fixed
point B.. In fact, the expansion of Eq. (6.32) around A = 1 implies (up to first order
inA—1)

ldf]
Inf(Besh) = —(d— D | === | , 6.33
n f(Be, h) ( )B [fdﬁ , (6.33)

which is an implicit equation for .. Such equations yield their best estimate of 8,
when the strength of the field £ is set to the stationary value hy.

It is instructive to evaluate the stationary point /g for the case d = 2 which is
equivalent to the two-dimensional Ising model for the choice h = hy = —1/4, as
shown in Sect.6.2. The 4 invariance of the exact partition function guarantees the
equivalence of the two models for any choice of & # h;. However, the mere applica-
tion of the Migdal-Kadanoff equation (6.32) to the simple 72 = 0 molecular model
fails to predict even the existence of the fixed point. On the other hand, for 1 = hy,
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the very same recurrence Eq. (6.32) are known to predict the exact fixed point in the
limit A — 1. That can also be checked by inserting in Eq. (6.33) the exact expression
for the fixed point of the two-dimensional Ising model. Such contradictory results are
not surprising since, as already discussed, link displacement breaks the / invariance
of the model, and the approximate solution is thus dependent on the choice of 4. We
would like to test the variational method on this exactly solvable model: we look for
the stationary point of the function f (8, k). The matrices t, follow from Eq. (6.6)

x?b 1 x72 1
tl = [ 1 X2:| 9 t2 = [ 1 .Xb} ’ (634)

where b = exp(48), and x = exp(4Bh). Then for the eigenvalues we obtain

¢ — Jox — 1) + 4x*
fBy =" = ®x" +1) (bx* — 1)2 + 4x |
N2 (bx* 4+ 1) 4+ /(bx* — 1)2 + 4x*

(6.35)

It can be easily shown that if the derivative of f is zero at a given % independent of
B, then the solution 8. of Eq.(6.33) is stationary at that value of 4. Differentiating
with respect to x, we find that the derivative of f vanishes for xt = 1/b, which
yields h = —1/4 = h; for any B. As expected, this is the required value in order to
recover the Ising model. Thus the Migdal-Kadanoff approximation gives an improv-
ing estimate of the critical point as we move from the molecular towards the Ising
representation (where the approximation yields the exact fixed point). We stress that
all such representations are equivalent due to the /4 invariance of the action.

For d > 2 no equivalence to standard studied models has been found, and the
behaviour seems to be dictated by the strong frustration which does not allow a
coordination number higher than two, even for higher dimensions. We will focus on
the three-dimensional model in order to compare with the phenomenology.

First of all the fields h(«) must be defined. An isotropic choice gives a very
poor prediction for the transition point, even worse than MF approximation [13]. We
cannot use a fully isotropic version of the variational Migdal-Kadanoff method for a
system which is not isotropic in its ordered phase. At the transition point the system
choices a direction, so that in the ordered phase the correlation length cannot be
isotropic: order occurs inside all layers which are orthogonal to the chosen direction,
while there is a negligible correlation along such direction. It is more reasonable
to describe the ordering inside a single layer, neglecting any correlation among
different layers. Inside each layer the correlation length is isotropic, and the two-
dimensional variational Migdal-Kadanoff method should give a better description
of the transition. The same argument should hold for the generic d-dimensional
molecular model. Moreover, the Migdal-Kadanoff method is known to work better
for lower dimensions.

Let us take, for the three-dimensional model, the same field we used for d = 2,
namely h(1) = A(X; — x3), h(2) = —h(1) and h(3) = 0. The matrix #; follows
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Fig. 6.3 Numerical 0.9 . . . .
solutions of the
two-dimensional _. 085} A
Migdal-Kadanoff equations 2
for a single layer of the o 08¢ 1
three-dimensional molecular é
model. The critical g 0.75 1 .
temperature f is reported as Q
a function of the field % 071 7
strength /. The stationary © /
point is at g 0.65 \—J 7
h = hg = —0.2349 where Z
B = . = 0.6122. For = 06r y
h > —0.226 there is no ) ) ) )
. . 0.55
physical solution 025 024 -023 022 021  -02
h
eHPH8Bh 1 4h bx*> 1 x
t = 1 e Phe=#Bn | = 1 1/x>1/x]. (6.36)
e*bh =3B x 1/x 1

Notice that this is a 3 x 3 matrix since we are using the two-dimensional method but
we are still dealing with the three-dimensional molecular model. The two matrices
t; and t, share the same eigenvalues. Their ratio is

x4 1/x?) — /(bx? — 1 — 1/x2)> + 4(1 + x?)
x4+ 14 1/x2) + b= 1 — 1/x2)2 +4(1 + x2)

f(B,h) (6.37)

Inserting this result in the scaling Eq.(6.33) evaluated at d = 2 yields an implicit
equation for B, versus /. The numerical solutions are reported in Fig. 6.3. They share
most of the features of the two-dimensional molecular model: (i) There are several
solutions but there is no repulsive fixed point for 2 = 0; (ii) the physical solution starts
at a negative & which in this case is & &~ —0.226; (iii) the physical solution has just
one stationary point 2y where . reaches its minimum value. However, in this case the
stationary point is at hp = —0.2349 where . = 0.6122. This estimate of the critical
point is not too far from the finite size scaling prediction of numerical simulations
B. = 0.53 [13]. The result corroborates our understanding of the physics described
by the molecular model. Strictly speaking, this two-dimensional variational method
describes the transition occurring in a single layer of molecules. However, at variance
with the two-dimensional molecular model, each molecule is now allowed to be
oriented along three different axes (two in-plane and one out-of-plane orientations).
Thus this reasonable prediction for 8. could be regarded as an indirect proof that the
correlation between two different layers is negligible, and that in the ordered phase
the system behaves as a truly two-dimensional one.
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6.5 Concluding Remarks

According to mean-field and finite-size scaling, the three-dimensional molecular
model has a second order continuous transition from an isotropic disordered high-
temperature phase to an anisotropic two-dimensional ordered low-temperature phase.
The three-dimensional realization of the model is the one which more closely
describes real molecular systems. For this reason the three-dimensional model has
been studied by the variational Migdal-Kadanoff method in some detail.

On the other hand, the two-dimensional model is special by itself for its equiva-
lence to the two-dimensional Ising model, and for the existence of exact analytical
results. Thus, for d = 3 the model can be seen as a non-trivial extension to higher
dimensions of the two-dimensional Ising model. Here ‘non-trivial’ means that the
three-dimensional molecular model does not belong to the universality classes of
the standard three-dimensional extensions of the Ising model (three-dimensional
Ising and Potts models). The difference is evident from a comparison of the ground
state configurations at 7 = 0: highly degenerate and anisotropic in the molecular
model (with a two-dimensional character even for higher dimensions); with a small
degeneration and fully isotropic in the Potts models (including the Ising one as a
special case). By considering the two-dimensional character of the low-temperature
phase, the molecular model could be thought to belong to the universality class of
the simple two-dimensional Ising or three-states Potts models. However, in the high
temperature unbroken-symmetry phase the molecular model is fully isotropic and
has a three-dimensional character.

A formal proof of such statements comes from a comparison of the critical expo-
nents. For the three-dimensional molecular model the finite size scaling calculation
yields v = 0.44 [13], to be compared to the two-dimensional two-state (Ising) and
three-state Potts models whose exponents are v = 1 and v = 0.83, respectively [19],
to the three-dimensional Ising model whose exponent is v = 0.64 [19], and to the
three-state three-dimensional Potts model which is known to undergo a first-order
transition [25, 26].

The molecular model belongs to a different universality class which is charac-
terized by a sort of dimensional transmutation. In fact order takes place in chains
which are arranged in layers, and the disorder-order transition requires a decrease of
the effective dimensionality of the system. In the ordered phase the molecules are
correlated inside layers, but there is no correlation between molecules which belong
to different layers. This understanding of the ordered phase is in agreement with
our discussion of the Migdal-Kadanoff variational method. The two-dimensional
decimation on a single layer yields a better prediction than the isotropic three-
dimensional decimation applied to the whole lattice. On the other hand, the same two-
dimensional layer-decimation provides an analytical tool for describing the generic
d-dimensional molecular model by a straightforward generalization.

Finally, the universality class of the order-disorder transition which is described
by the model deserves some experimental test. Transitions of this kind have been
observed in several systems, as discussed in the introduction. Since the critical
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properties should not depend on the microscopic details of the system we expect
that the simple molecular model could predict the correct critical exponent of
real orientational transitions occurring in real molecular systems, especially under
pressure.
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Chapter 7 ®)
An Ab Initio Evaluation of Mott Guca i
Properties?

A. Cabo Montes de Oca

Abstract A GW scheme for band calculations is proposed. It rests on the static
approximation for the effective potential. A closed system of equations for the deter-
mination of the basis of filled and empty states is obtained. The full translational
symmetry in the original lattice is allowed to be broken and the wavefunction basis
admits non-collinear spin dependences. The results of its planned application to the
La,CuQy crystal are expected to reproduce the strong correlation properties which
emerged from a previously studied closely related model. A positive result of this
study could show an example of the derivation of the Mott properties of a model with-
out the need of introducing auxiliary phenomenological conditions. Thus, a path for
derive the properties of strongly correlated electron systems (SCES) from ab initio
calculations is suggested.

7.1 Introduction

The development of procedures for band structure calculations is a theme to which an
intense research activity has been devoted in modern condensed matter physics. This
area of research has a long history due to the existence of important unsolved relevant
questions concerning the structure of solids [1-30]. One of those central open prob-
lems is the connection between the so called ab initio band evaluation schemes with
the Mott phenomenological band calculation approaches. This procedure furnishes
a successful description for a wide class of band structures of solids, which are not
naturally explained by the assumed fundamental, first principles methods [1, 2, 5, 7,
12]. A class of materials which had been in the central point of attention within the
existing debate between the two conceptions for band structure calculations are the
transition metal oxides (TMO) [7, 10, 12, 16, 17, 20, 21, 25]. A particular compound
which is closely related with the TMO is the first high-7, superconductor material,
La;CuQy. For this material, the first band structure calculations predicted metal and
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paramagnetic characters, which are largely at variance with its known insulator and
antiferromagnetic nature [29]. These two properties are believed to be strong corre-
lation ones, which are not derivable from an ab initio calculational evaluation [16,
25, 31].

In a series of works [32-37], a model was constructed for the CuO planes in
La,CuQy4, which was able not only to describe the Mott strong correlated electron
system (SCES) properties of the compound, but also predict the elusive pseudogap
states and the quantum phase transition occurring beneath the superconducting dome
[38, 39]. That model consisted of a Coulomb interacting electron gas which moves
in a square 2D lattice potential with the periodicity of the Cu atoms pertaining to the
CuO planes. The main phenomenological parameter was a dielectric constant fixed
to screen the interacting Coulomb potential between the electrons. Its value was
chosen to equalize the bandwidth of the single tight-binding-like band received after
solving the problem in the mean field approximation, with the known bandwidth of
the unique band crossing the Fermi level in the original band evaluations of Mattheiss
etal. for La,CuQy [29]. This procedure allowed to fix the dielectric constant to a value
close to 10. The resulting mean field band was derived by assuming that the orbitals
were Bloch functions under translations in the full lattice of the Cu planes, and that
the spin projection of the orbitals were well defined values &1 along a fixed spatial
axis. Further, we sought for iterative solutions of the Hartree—Fock (HF) problem,
but starting from an initial set of non collinear single electron wavefunctions, which
were also Bloch waves, but only in the sublattice of the Cu atoms in which the known
antiferromagnetic (AF) structure of the material shows translational symmetry. That
means, on one hand, that we allowed for the solution to break the translation symmetry
in the same way as it is done by the AF order, and also to allow for the single particle
orbitals to show a non-collinear spin structure. After this, surprisingly, a fully non
collinear solution emerged from the iterative process, which not only showed an
AF order similar to the one in La,CuQy,, but which also showed an insulator gap
between 1 and 2 eV. Therefore, the main SCES properties of the La,CuQ,, and the
explanations of the pseudogap and the quantum phase transition beneath the dome,
were all predicted by the mentioned model.

Therefore, the present work intends to explore the indications following from the
previous remarks about the existence of a possible path allowing the derivation of the
SCES properties for the cuprate materials and the transition metals oxides within a
first principles scheme of calculation. Those remarks strongly support the idea about
that if the same non-collinear structure of the natural orbitals are assumed and only
a reduced translation invariance consistent with the AF order is imposed, under a
GW scheme kind of calculation (which is known that generalizes the HF method
by including also screening) the possibility exists for evaluating for the La,CuO4
crystal, the Mott SCES properties as they emerged for the model. A central element
in this possibility, is the fact the G W procedure embodies screening, and precisely in
a way, that generalizes the HF method by substituting the simple Coulomb potential
by the screened potential. This fact strongly indicates that the effects of the basic
phenomenological dielectric constant employed in the model, most be expected to
be ‘explained’ within a more fundamental discussion based in the GW evaluation
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scheme. We consider that a result like the one suspected will have a relevant meaning:
it will show an example of the derivation of the Mott properties of this SCES material
from a first principles scheme. Thus, in this first work we start by constructing the
basic elements of a band calculation method based in the static approximation of
the GW procedure, just generalizing the model discussions in references [32-37].
The construction opens the possibility to apply the procedure to real crystals like
La;CuQy, a study that is expected to be considered elsewhere.

The presentation proceeds as follows: In Sect. 7.2 the general GW equations are
presented. A convenient notation is also defined there. Then, Sect.7.3 describes
the static approximation of the general GW equations, which is employed in order
to simplify the application of the scheme. The equations are reduced to a kind of
generalized HF equations in which the simple Coulomb potential is substituted by the
screened potential. This quantity is expressed as a functional of the self-consistent
normal orbitals. Therefore, the screening effects which were central in the model
discussed in Refs. [32-37], can be derived in the scheme as a result of the screening
effects of the bare Coulomb potential. The following Sect. 7.4 defines a convenient
Bloch basis for expanding the natural orbitals of the G W method showing the reduced
lattice symmetry of the AF order of the material. In Sect. 7.5, this reduced crystal
symmetry is employed to simplify the resulting set of equations. Section7.6 also
uses this crystal symmetry to reduce the set of equations to one matrix equation
for the set of Bloch functions associated to each value of the quasi-momentum. This
completes the presentation of the basic elements of the proposed scheme. The results
are resumed in the Summary.

7.2 The GW System of Equations

In the discussion below we will closely follow the presentation of the GW method
given in Ref. [40]. The GW approximation can be defined by the following set of
coupled equations linking the electron self-energy X' and the electronic polarization
P with the electron propagator G and frequency dependent effective potential W
through the formulas

2(1,2) =iG(1,2HwW(,2), (7.1a)
P(1,2) = —iG(1,2)G(2, 1), (7.1b)
W(1,2) =v(1,2) +v(1,3)P(3,4)G(4,2), (7.1¢c)
G(1,2) = Go(1,2) + Go(1,3) 23, 4G4, 2). (7.1d)

Here, v is the interaction potential between the electrons and Gy is the electron
Green function in the absence of the interaction v. The derivation of the equations
from the exact many-body description of the system rests in a unique approximation:
to consider the exact vertex function with two fermion legs and one boson one, as
approximated by its lower order approximation. In these equations the following
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compact notation for the spatial coordinates and the time had been used, in which a
natural number n as an argument of a fermion kernel or wavefunction indicates the set
of space time coordinates and spin projection (X, f,, s,), and the coordinates are 3D,
thatis: x, = (x!, x2, x>). On another hand, in a bosonic kernel (like the polarization
or effective potential) the argument n will only indicate the space time coordinates
(X, t,,). Similarly, in the following discussion, the symbol n, in the argument of a
Fermi kernel or wavefunction, will denote the set of spatial coordinates plus the spin
projection of an electron, n = (x,,, s,). The Einstein convention will also reduce the
size of the equations. The coincidence of two arguments given by natural numbers
will imply the integration over the space-time variables and the summation over spin
projection if they are both arguments of Fermi kernels or electron wavefunctions. If
they are both arguments of boson kernels, or one pertains to a boson kernel and the
other to a Fermi one, the coincidence will mean only the space-time integrations and
the spin projection will correspond to fixed spin argument. Exactly the same definition
will have the coincidence of two indices corresponding to vector like natural number
indices as n. The free Hamiltonian of the system is defined by the relations

(1
Hy(1,2) = 8% (zp% +vi(x1) + v (i, h) + (xi, n)) 8PV (x; —xp), (7.2a)

Vi, n) =ve(X1) + o (x1, 1), (7.2b)
a
pr =i (7.20)
8x1
vi(x) =) v(xi —R),R = p(mi+nj), ni,m ez, (7.2d)
Rel
1
v(x)) = —, (7.2¢)
x|
v (X1, 1) = /dxzv(Xl,Xz)P(Xz,h), (7.2f)
px1. 1) =—i Y GXp,81.X1, 51,11 — )yt - (7.2g)

S1

in which an auxiliary space and time dependent potential field ¢ (x, ;) has been
added to the Hartree potential vy (x;) which is generated by the dynamically defined
electron density p(x;, #;). The function §®(x) is the Dirac’s delta-function in three
dimensions, 6§ (x). Note that all the quantization procedure depends on the total
field V given by the sum of the Hartree field plus the auxiliary one. Note also that
the interaction potential v has been defined as equal to the Coulomb one. We will
employ the simplifying units
h=m=e=1.

The GW equations can also be represented as a system of equations for the determi-
nation of a basis set of functions in a similar form as it is done for the Hartree Fock
system of equations. For this purpose, the equations for the electron Green function
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can be substituted by a set of equations for the basis functions. For this purpose, first
take into account that the system becomes time-translation invariant after making the
auxiliary space and time dependent scalar field ¢ to vanish. Therefore, the temporal
Fourier transform of exact electron Green function can be written as

G(1,2,w) = /d(tl —1)GA, 2,1 — ) expiw(t; — 1)). (7.3)

Then, following the discussion in [40] G(1, 2, w) can be written in the form

lpl(lv W)W,(Z, W)
w— E;(w) +iosgn(E;(w) — )’

G(1,2,w) = Z

i

(7.4)
where the entering wavefunctions satisfy the following eigenvalue equations for each
value of the frequency

(Ho(1,2) + X (1,2, w) ¥; (2, w) = E;(W)¥; (1, w), (7.52)

1
Hy(1,2) = 85152 (Ep% +v(xp) + vH(xo) 8P (x) —xp),

(7.5b)
pl = —i->, (75¢)
)q|
v (X)) = /dX2V(X1,X2)p(X2), (7.5d)

p(x1) =—i Y G(x|,s1,X1,51,11 — Dlyprs (71:5€)

51

in which the wavefunctions have the quantum numbers i in a compact notation.
Due to the crystal sublattice invariance that will be assumed here, among the set of
indices defined by i, there will be a momentum pertaining to the Brillouin cell of the
reciprocal lattice associated to the sublattices to be defined afterwards. Therefore,
when a more explicit representation will be needed the index i will be substituted as
i — (Kk;, i) where the new symbol i now will represent all the quantum numbers of
the wavefunction in addition to k;. This is a system of eigenvalue equations that can
be solved once the kernel of the selfenergy X is known. Then, the GW system of
equations can be also written in the form

Eiw)¥: (1, w) = (Ho(1,2) + (1,2, w)) ¥ (2, w), (7.62)
Hy(1,2) = 8% (%pf + v (X)) + vy (x1)> P (x; — xy), (7.6b)
>(1,2) =iG1,2Hw(,?2), (7.6¢)
P(1,2) = —iG(1,2)G(2, 17), (7.6d)
W(,2) = (1,3)v(3,2), (7.6¢)

1—vP
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where for two kernels K (1, 2) and K, (1, 2) the symbol K K, indicates the product
of kernels K (1, 3) K»(3,2) and ﬁ indicates the usual geometric expansion but
in terms of the product kernel v P.

7.3 Static Approximation in Terms of the Effective
Potential

One serious obstacle in solving the set of equations (7.6) is the fact that the selfen-
ergy depends on the frequency, a fact that complicates finding of the quasiparticle
energies E; (w) which also will depend of the frequency in this case. Let us then start
considering an approximation in which this difficulty disappears: the static limit. In
this case the frequency-dependent effective potential for all values of the frequency
is assumed to be a constant given by its value at zero frequency. Consider the Fourier
transform of the selfenergy by also substituting the temporal Fourier expansion of
the electron Green functions and the effective potential, which leads to

X21,2,w) = ifd(l‘l —n)exp(iw(ti — )G, 2,61 — )WL, 2,11 — 1)

d /
= l f 2_WG(1’ 2, W’)W(lv 2’ w — W/) exp(lw/(s) (77)
T

éssuming now that W is frequency independent, thatis W (1, 2, w) = W(1, 2, 0)
= W(,2), it directly follows that the selfenergy also turns to be frequency inde-
pendent since

dw' ~
z(1,2,w) = i/ 2W G(1,2,w)W(1,2)exp(iw's)
T
=iWL2)GL 2.1 — ),
=51,2). (7.8)

Evaluating G(1, 2, t; — tg)|,ﬁrl+ leads to

dw i) — S w7 [ !
/ 20(1,2, w) exp(iwd) = Z w,(m/,(z)/ 37w E T losanE =
M=>E;
=i) BT (7.9)

where the sum runs over the filled states with energies lower than the chemical
potential . Thus, the selfenergy in the static approximation takes the following
form
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H=E;

1,2 =-W1,2) ) %MF2),

81

(7.10)

after which W, the static effective potential, becomes a functional of the basis wave-
functions ¥;. This approximation permits to write the equations for the wavefunctions
in a form in which nor the energy or the wavefunctions depend on the frequency

E;Wi(1) = Hy(1,2)¥(2) + £(1,2)¥ (2),

1
Hy(1,2) = 5% <§P% +vi(xy) + VH(XI)) 8P (x; — x,).

The equations determining £ (1,2) = X(1,2, w)|,—o and W(1,2)
2, w)|=0 can be transformed by means of the relations

W, 2, W= = (7', 3, wv@, 3, w)) |,
= '(1,3,w)],_,v3.2, W),

e M2l = T 2wl
1
=———1.2)
1 - (VP)|w:0
V3,2, W), =v3,2),

(vP)lw=0(1,2) =v(1,3)P(3, 2, w)|w=o,
which allow to define the static magnitudes

51,2) = 21,2, w)|yo,
W,2) = W@,2,wlwo,
Tl =71a,2, W),
P(1,2) = P(1,2, w)|y—o,

=i [dt - 620~ )G Lt = 1= Do
and write for the static effective potential

W1,2) =%'1,3)v@3,2),

— 1
3 (1,2)_—1_(”3)(1,2).

(7.11a)

(7.11b)

= wq,

(7.122)

(7.12b)

(7.12¢)
(7.12d)

(7.13a)
(7.13b)
(7.13¢)

(7.13d)

(7.14a)

(7.14b)
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In order to find an expression for the static polarization P , let us consider its
definition

P(1,2) = P(1,2,W)|u=o,
= —i/d(tl —0)G(1,2,t —)G2,1, 1, —t] — 8)|s—o0+
=—i ) Y W% 2)¥ (1) x
/00 ﬁ J exp(iws)
o0 27T (W — E; 4+ isgn(E; — u)(w — E; + isgn(Ej — )’

(7.15)

But the frequency integral can be explicitly evaluated by using the relation

/00 d_w exp(iwd)
0o 2 (W — E; +isgn(E; — w)(w — E; +isgn(E; — p))
_ (O — WO — Ej) — 0 — ENO(E; — )
—(E; — Ej) ’
(7.16)
to write
P1.2)=->">"wM¥;Q¥,;2)¥;1)
i
OB — 0 — E)) = 6(n = EDO(E; — )
E —E;
W<E; n>E; l[/ (1),1, (2)4/ (2)[1/ (1) nzEi h<Ej W(l)w (2)!1/ (Z)W (1)
- Z Z ; Z Z E; — Ej ,
(7.17)

which expresses the static polarization as functional of the orbitals ¥;. Then, the
static effective potential is also a functional of the ¥;.

The previous expressions allow to write the GW equations in the static approxi-
mation as the following set of equations for the determination of the basis functions
Y¥; and its energy spectrum {E;}

EW:(1) = Hy(1,2)%(2) + £ (1, 2)W¥(2), (7.18a)
Hy(1,2) = §" (%p% +wi(x) + vH(xl)) 8P (x1 — x2), (7.18b)
u>E;

2(1.2)=-W1.2) Y %OF;Q2), (7.18¢)
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>E;
- ()Y 2)%;(2)¥ (1)
P,2) =
( ) i X]: (El - E])
u>E; n<E; N7 N7
(DY Q¥; )Y ;1)
, 7.18d
+> ) & —E) (7.18d)
W1,2) =7'(1,3)v@3,2), (7.18¢)
- 1
3 (1,2)_—1_@?)(1,2), (7.18f)
1 M=E; .
vH<x)=/dxl r—— DD Wi, s)i(x, 8). (7.189)
i Slzﬂ:l

7.4 The Bloch Basis for the Natural Orbitals

Therefore, following the ideas exposed in the Introduction, in this section we will
implement the same allowances for symmetry breaking effects and spin non collinear-
ity as in Ref. [32, 33]. For this purpose, let us decompose the lattice of the unit cell
positions R of the crystal lattice of La,CuOy (to be called the original lattice in what
follows) in two sublattices indexed by » = 1, 2. The two values of the indices r will
be defined as follows. Consider the lattice of atoms of the crystal and a particular
CuO plane in it, which exhibit AF order in the planar lattice formed by the Cu atoms.
This order breaks the original symmetry for translations connecting two neighboring
Cu atoms in the CuO plane. Then, we can decompose the whole lattice formed by
the Cu atoms within the considered CuO plane in two planar sublattices, the one
associated to a given orientation of the spin in the experimentally observed AF order,
will be indexed with the value » = 1. The other sublattice associated to the opposite
experimental orientation of the spin will be indexed by r = 2. Now, we can define
the origin of coordinates in the lattice in a particular Cu atom corresponding to the
index r = 1 and also define the x; and x, axis to be directed from this reference atom
to the two nearest neighboring Cu atom to it. Upon this, the x3 will point from the
reference Cu atom in the perpendicular direction to the considered CuO plane, and
forming with the other two directions a direct reference frame. Now, it is possible
to define the planar lattice vectors that gives the coordinates of all Cu atoms within
each of the two sublattices as follows

(crzo—“/—nlp(h-i-\/_nzp(l2+q ni,ny €Z,

=1
q<’>=:0’ N CAL),
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Base r=1 Base r=2
N
¢
P
z
@ Points of RV Cu atoms

!/ Points of R

Fig. 7.1 The figure shows the Cu atoms in a CuO plane, whose positions are given by the two
kinds of vectors of the sublattices R™Y and R®. Their union defines the whole La;CuQ4 crystal.
This decomposition of the original lattice is done in order to allow the determination of the AF
properties of the material through a crystal translational symmetry breakdown. The original basis
of the crystal and a copy of it, after translated in the vector q® are also illustrated. The crystal can
be constructed after shifting the original basis in all the sublattice vectors R by also shifting the
copy of the basis to all the points of the sublattice R

where q, q are the unit vectors

q = %(exl - exz)v (7.20)

1
Q@ = ﬁ(exl +ey,), (7.21)

and e, , e,, are the unit vectors joining the reference Cu atoms with its two nearest
neighbors. Next, we can consider that pe,,, p e, and c e,, are the unit cell vectors of
the La,CuQy lattice, where c is the length of the unit cell along the axis orthogonal
to the CuO plane and é,, is the unit vector along the x3 axis. Thus the whole lattice
defining the La,CuOy crystal can be also decomposed in two sublattices defined by
the following set of vectors

R(r) = R(Crgo + nsqs, r=1,2,
=2n1pqi + V2 npq + 47 + n3qs, (7.22a)
q3 = cey,. (7.22b)

Figure7.1 shows the defined plane of Cu atoms within a CuO plane and illustrates
the points of the two defined sublattices R®,» = 1, 2 in which the whole crystal is
decomposed.

Having already defined the lattice of the band calculation problem on which we
will be impose periodic boundary conditions, let us search for basis functions for
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the self-consistent natural orbitals, as being eigenfunctions of the translations, but
only in the reduced group associated to displacements leaving one of the sublattices
R®, R invariant (note that the groups of translational invariance of each of the
two sublattices are equivalent). In other words, these functions will be assumed to
satisfy

Trodis = exp(ik - RV) gy, (7.23)

in which we have set the label of the orbitals in the form n = (k, /), where the index
[, from now on, will indicate an element of the set of atomic orbitals associated to
an arbitrary point of the crystal, for a fixed value of the quasimomentum k. Note
that translations in the set of vectors R()) define the symmetries, either of the same
sublattice R™" or the one of the other sublattice R®. Let us consider now that
the system satisfies periodic boundary conditions in order to reduce, as usual, the
dimension of the following numerical problem. Therefore, we will impose boundary
conditions in order to restrict the problem to the basis of states ¢ ; characterized
by momenta k guaranteeing the periodicity of these states in the boundaries of the
region defined by the bounds

L L
_pT le < pz s (7243)

L L
_PT <x < p?, (7.24b)
clLs - clLs (7.240)
- < —, .24C

)

where L is an even integer number defining the size of the periodicity region. These
boundary conditions determine the following set of allowed quasimomenta, defining
the Brillouin cell B, for the functions satisfying them:

21 21
k = E(”lexl + nse,,) + L_3cn3ex3’

ny,ny,n3 €2 —£<(n:|:n)<£ —ﬁ<n <E (7.25)
1,12, 13 Ty = 2 > y =<5 .

For the infinite system (L — 00), B is continuous as illustrated in the left hand
side picture of Fig.7.2. Note that the number of elements in the reduced translation
group of each of both sublattices is a half of the number of elements N. = L?>L3 of
the translation group, leaving invariant the point lattice of the material after boundary
conditions are imposed. The value N, is the number of cells of the starting La,CuO4
lattice, after periodicity has been implemented. Therefore, let us define a starting basis
of suitable functions to expand the searched self-consistent G W natural orbitals, in
the following form:
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Fig. 7.2 The figure at the left shows the Brillouin cell B corresponding to both of the infinite
sublattices R™W and R@ . All the continuum of quasimomenta laying inside the box are allowed.
The analogous figure on the right shows the point set of inequivalent momenta allowed by imposing
the periodic boundary conditions in a box of sizes 2L = 12 p, and 2L3 = 12 c. The darker points
indicate the 6> inequivalent allowed momenta defined by the boundary conditions

VA,T,0; 2 0. 7 r r
QM) (x ) = ® > exp(ik - R™)gy,, (x — Ry —R?),
¢ R®

o,u’ =ou’, A=1,2,3,..na, va=1,2,3,..,my, (7.26)

where N, was defined before and &, is the spin projection operator in the z (x3) axis.
It will be selected as the perpendicular direction to the CuO plane (in the ¢ axis of
La,CuQ,), with eigenvalues o, = —1, 1. The indices r take the values » = 1, 2. The
states @4 ,, (X — R,) are to be chosen as electron wavefunctions (indexed by v, ) for
the atom of kind A in the La,CuQy crystal. The position of this atom in the basis
of the original crystal is defined by R4 with respect to the reference frame defined
previously, with its origin sitting on a Cu atom of a CuO plane, and axes forming a
direct triad, in which the x3 direction points in the ¢ axis of the crystal. Then, it can be
noted that the index r indicates if the atomic Wannier functions ¢, ,, (x — R4 —R®)
generating the Bloch one, are centered in the points of one or another of the two
possible sublattices constructed by shifting the central point of the atomic Wannier
orbital. The construction can be interpreted as a one, in which two sets of functions
are defined for each atomic orbital: one using this orbital as a Wannier state shifted
to the point of the sublattice » = 1 and another employing the same state but shifted
to the points of the r = 2 sublattice.

Note that the basis functions had well defined spin projection on the x3 axis. It
can be noted, that the orthogonality character for states associated to a fixed atom
A and state vy, is lost only for pairs of wavefunctions in this set, corresponding to
different values of the index r. That is, for different sublattices having the same spin
projection. However, in general, the basis of states will be not orthonormal. This fact
will lead the appearance of an overlapping matrix to enter in the discussion to follow.
In order to simplify the notation, let us now define the composite index »n in which
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we will englobe the indices indicating the atom A, the atomic state v, sublattice
label r and the spin projection quantum number as the ordered list @y, ,,

n={A,,va, 1y 0y} (7.27)

With this notation the basis wavefunctions which have been just defined can be
written as follows

{AnsVAﬂqrn»Uz,r]}

Dy, (X, 5) = @ (x,s)
2 . ) )
=/ 346 D explik - R™)gy , (x—Ry, =R,
R
[2
= ﬁu%(s) Z exp(ik - R")g, (x — R") (7.28a)
R
D (x) = ‘pA,],vA,] (X_RA,,)- (7.28b)

Therefore, the orbital function @y , will be considered as a Bloch wavefunction
associated to the atom A,, which is indexed by the symbol 7, given by the above
defined list n = {A;, va,, ry, 07} in which A, indicates any of the n4, atoms
defining the basis of unit cell, and v A, indicates any of the m,, orbitals describing
the same atom A,. Figure7.3 illustrates the basis of the La;CuOy crystal and the
decomposition of the whole crystal as generated by two similar copies of it after
displaced each of them in the two defined sublattices.

Fig. 7.3 The picture shows
the structure of the basis of
the LayCuOy crystal. Also
illustrated, is the identical
basis obtained by shifting the
original one in the vector
q@. These two basis allow
to reproduce the whole
crystal by shifting the
original one to all the vectors
in the sublattice R and
additionally displacing the
auxiliary basis to all the
points of the sublattice R®

. La atoms
. Cu atoms

:'\'_ ) O atoms

Jase =1

S
[_./,l La atoms
{Q' Cu atoms

P
{\ ;‘u () atoms

Base r=2
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In ending this section, let us consider the following important properties of any
one particle operator O which commutes with all the translations Tge

/ dxgk/’n/ (X, S/) 6(S/’S)¢k’,7(x, S) = / dxak/’n/ (X, S/)T,R(r) /0\(S/,S) TR(r) @k’n(x, S),
=exp(i(k — k') - R") / dxPy (x50 Py (x, 5)

2 _ P
=5 > explitk —K) Ry / dxPyr (%, 5) 0 DDy (x, 5)
R®)

= (Sk,k’ / dx5k/’n/(x, S/) 6@/’5)@](,,7()(, s), (729)

where, thanks to the periodic boundary conditions, the sum over quasimomenta
satisfying them obeys

2 / r
S = RZ): exp(i(k — k') - R™), (7.30)

in which & i is the Kronecker delta function, which is a periodic quantity under
shifts in the reciprocal lattice vectors for the sublattice R(V. In what follows, the
complex conjugation of any wave function @ will be designed alternatively as @*
oras @.

7.4.1 Natural Orbitals

The general objective of this section is to define the functional space in which the
G W natural orbitals will be sought for, in order to allow for solutions exhibiting
spontaneous breaking of the original crystal translation invariance of the material,
and in addition allowing the natural orbitals to having a spin-space non collinear
entangled structure. Thus, let us consider the natural orbitals lllli (x,t) as indexed
by their quasimomentum k and a set of complementary quantum numbers i. Being
Bloch orbitals in the symmetry sublattice of the AF order, they can be expressed as
a series expansion in the previously defined basis of orthonormalized functions as

Ui (X, 5.0 = Y B (OPy,(X, 9). (7.31)

n

As it can be noted, this structure allows for the solutions of the GW system of
equations to show both a translational symmetry breaking in accordance with the one
in the AF order, and also a non-collinear spin structure. These were the main elements
allowed in the model discussed in Refs. [32-37] to describe the Mott properties of
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La;CuQ4 and more surprisingly, the nature of the pseudogap states and the quantum
phase transition beneath the dome.

7.5 Using the Translation Invariance of the Sublattices

This section will make use of the invariance of the system under the translations in
the sublattices vectors of R, Let us write for definiteness the convention for the
spatial Fourier transforms and their inverses associated to a space dependent function
f(x) as follows

d
fx) = / #f(q) exp(iq - X), (7.32a)
flq = /dxf(x) exp(—iq - X). (7.32b)

But, the assumed arbitrary value of the momentum q may always be decomposed as
a ‘reduced’ momentum value q, pertaining to the first Brillouin cell of the reciprocal
lattice (the one which is associated to the sublattice R™"), plus a definite vector of
the reciprocal lattice Q, in the form

q=q +Q. (7.33)

After this definition, the Fourier expansion can be rewritten as

dq, .
£ = QZQ / o @ Qeplie + Q). (134
fq-,Q = f dx f (x) exp(—i(q, + Q).x), (7.34b)
f@a-,Q) = f(q- + Q). (7.34c)

Let us now consider a spatial kernel K (x;, X;) and its double Fourier expansion
over its two spatial variables

d r d /r / /
Kexx) = Y [ S k0,04, Q)
Q.Q

x exp(i(q,x+q, X +Qx+ Q' X)). (7.35)

Now we will assume that the considered kernel represents a correlation function
of the system which is assumed to be translationally invariant under spatial shifts in
arbitrary vectors pertaining to the sublattice R, Considering that the vectors Q and
Q' pertain to the reciprocal lattice allows to write
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1
K(x,x) = ~ Z K(x+R®P x +RD)
¢ RO

_ dq;, dq’r L / . ) A ) .
_XQ:/ (2n)3(zn)gK(qr,Q,me)exp(t(q,. X+q, X+Q X+Q x'))

1
x < > expli(@ +d,) - RV).

Cc

RO
(7.36)
But, employing the identities

1 : ,

Sota 0 = 3 2 exp(a +4') - RY), (7.37)
¢ RO
dq, 1

oy, (7.37b)

@n)° T NVe &

in which 5((1{2, is the Kronecker Delta in the indices q, q’, and V., N, is the volume
of the unit cell of the sublattice R and the number of these unit cells which are
included in the periodicity region. Then, the kernel can be written in the form

K(x,x) =

dqy dq/, .
S [ e oK@ Qs 4 @) eitar - (x—X) + Qox+ QX))
Q.Q

dqy 1 . ’
Z/(zq)3WK(qr,Q; —qr, Q) exp(i(q, - (x—x) +Q-x+Q"-x))
QQ, cvVce

—Z/(z K@ Q Q) expli(a, - x—x)+Q-x+Q X)),  (7.38)
Q.Q

where the following quantity was defined

K@, Q. Q) = Q —q,, Q). (7.39)

N .V,

Let us now consider the convolution of two kernels

Ki3(x,x) = /del(x, 2)K,(z,x)

d
-y ?T’K1<q,,Ql,Ql>exp(z<q, X+Q1x)
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Z/(z )3K2(q r’QZ*QZ)eXp(l( qr x' +Q2 x'))
Q2,Q,

x fdz exp(i(—q', + ¢, + Q; + Q2) - z)

=2 / @y Ki(q',. Q1. Q) exp(i(q', - x+ Q1 - X))

Q1,Q;
x Z /dq KZ(q r Q2s QZ) exp(l( q r X +Q2 X))
QZ Qz
x 88’(er B8, —q')
Z / Sk ZKl(qlr7Qla_QZ)KZ(ql;”QZ»Q/Z)
Qi, Qz Q

x exp(i(q', - (x —x) + Q1 - x + Q) - X)).
(7.40)

Thus, the quantities K;(q,, Q1,Q2) and K>(q,, Q1, Qz) being associated to the
spatio temporal kernels K (x, x’) and K;(x, x) define the quantity K3(q,, Q1, Q2)
related to the product kernel K3(x, xX') = f dz K (X, z) K,(z, x") through the special
matrix product formula

K3(q,. Q1. Q2) = Y Ki(q,. Q1. —Q)K2(q,. Q. Qu). (7.41)
Q

Note that above, in order to simplify, we had to consider that when the kernel
under study is a Fermi one, the coordinates in the above formulas, such as x; for
example, in fact design both the real space coordinates and the spin projection:
(x1, 51). Accordingly, the integration f dx; in fact will mean the usual integration
in addition to the sum over spin projections as Zs,: 41 J dx;. On the other hand,
when the kernel is associated to a boson field, the coordinates x; and integrations
will mean the usual ones.

7.6 Reducing the Equations to a Matrix Problem for Each
Quasi-momentum Value

Finally, in this section the G W equations will be reduced to a set of matrix equations,
one for the quasimomentum value q. For this purpose, let us now project the set of
Eq. (7.18) on the basis functions defined in Eq. (7.28a) as

Dy, ,(DHy(1, 2)¥, ;(2) — D, ,(DZ (1, 2) W, ;(2) = Ek,._,»ak,-,n(l)wk,»,i(z)-
(7.42)
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But, the natural orbitals ¥, ; can be expressed as superpositions of the basis functions
defined in (7.28a) accordingly with

W, (1) =Y By, (1), (7.43a)
n

@y (1) = Ziki,naw;i’”, (7.43b)

where for a matrix A%/ its hermitian conjugate is defined as A™%! = —a" Substltutmg
these expressions in Eq. (7.42) leads to the following set of matrix equations

(H”"(k)—E””(k)) B = E, 1B, (7.44)

In,n’

in which the H;) " and the overlapping ”" matrices entering are defined as

HJ" (ki) = ®u,.y (D Ho(1, 2) Py (2), (7.452)
L =By, () Py (1), (7.45b)

Since @y, , are only approximately orthonormalized, the normalization conditions
for the functions ¥ takes the form

DB B =6 (7.46)
n.n'
The expression for the matrix associated to the selfenergy can be written as follows
M (ki) = @iy (D E (1, 2) Py, (2)

H=E;

//dxldxzd’k n(Xl)W(Xl,Xz) Z (X)W, (X2) Py, 5 (x2).  (7.47)

But, using the representation Eq. (7.38) for the static effective potential ker-
nel W(xy, X,), the expression for the matrix associated to the selfenergy X' can
rewritten as

n>E;

= (k) = Z[(2 QI,Q2>ZB” Bl

X /dxl exp(ix; - (q, + Q1)) Py, (X1) P,y (X1)

x / dx, exp(i%a - (—qr + Q) Br (%) Pigy(K2).  (7.48)
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Now, the Bloch character of the entering wavefunctions and translational invari-
ance,

@&, (1 +RWD) = exp(iRY - k) Py, , (1), (7.49a)
W1,2)=Wa+RD, 2+RD), (7.49b)
51,2) =1 +RD, 2+ RD), (7.49¢)

can be used after replacing the integration variables as x; — x; + R® (or x, —
x; + RM) and summing over the R (by also dividing by the number of cells in the
periodicity region) to show that X7 (k;) is proportional to the following factor

1 ,
& 2 expGRY - (@ + Ky — k) =8 o (7.50)
¢ Rm
The use of this relation allows to write for the selfenergy matrix

1 n>E;

v 2 2 Wi —k;. Qi QB B
QR

X /dxl exp(ix; - (k; — k; + Q1) Py, (X)) P, (X1)

2 (k) =~

x / dxs exp(ixa - (K; — ki + Qo)) B, 0 (x2) Py, (%), (7.51)

A difficult calculational aspect in the above relation is the fact that the effective
potential W also depends on the expansion coefficients Bl{/’_" to be determined. In

order to evaluate W it is necessary to calculate the matrix W(k) with matrix indices
Q1, Q; defined by _ - ~
W) = WLk = Wk, Qi Q), (7.52)

by using the formula
1

Wk) = ———~—,
1 —v(k)P((K)

(7.53)

where the matrices v and P enterin g the matrix variant of the geometric series formula
are defined by
P = PO k) = Pk, Q1. Q).

F(k) =702 Kk) = vk + Q)8

-Q2,Q1°
_ ¢(K)
1= 87Q2,Q,'

where v(Kk) is simply the Fourier transform of the Coulomb potential.
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Then, after evaluating the double Fourier transfoLm of P (X1, X2), Eq. (7.63) in the
Appendix provides an expression for the quantity P(k, Q, Q) as

PO (q,)
_ Z Z O(Ew,,iy — 0 — Eq,—q,.j) — 01 — Eq,i))0(Ei—q,,j) — 1)
Ex.iy = Edi—q.))

(ki i) (kj,j)
2 . . .
x N / Xm/ dx; exp(—iq, - (X1 —X2) —iQp - X1 —iQy - X7)
Co Co

X Dk, XD Pk, —q, .0, (X1) P, (X2) P, —q, ., (X2)
x By B BB (7.54)
where Eq. (7.31) for the normal states has been used, and in which Cy indicates a
unit cell of the sublattice of points RV, say the one having the origin of coordinates
as its central point. In reducing the integrals to the small region Cy it was required
to make use of the translational symmetry of the problem.

Therefore, the derived formulas for the selfenergy and polarization as functionals
of the coefficients B,"" allow to determine all quantities required to solve the matrix
equations for such matrix of coefficients By ' for each fixed momentum value k. Since
these coefficients determine the natural orbitals, with this, all the elements required
for implementing an iterative evaluation of the band problem are determined. The
developing of a numerical implementation of the proposed band calculation method
is expected to be considered in coming extensions of the work.

7.7 Summary

We presented the building blocks of a G W kind of band calculation scheme allowing
the breaking of translation invariance and the non collinearity of the self-consistent
natural orbitals. The starting crystal structure assumed was the one corresponding
to La,CuQy, in order to prepare the way for its application to this Mott insulator,
which was predicted to be a metal in the original Mattheiss band calculations [29].
A reduced crystal symmetry equal to the one exhibited by the known AF order of
the material is assumed. This element implements the mentioned possibility for a
spatial symmetry breaking. The non collinearity of the resulting natural orbitals is
also incorporated by allowing the natural orbitals to have spin projection =1 both non
vanishing. This freedom made it possible to derive the Mott state and a pseudogap
in the model investigated in Refs. [32-37]. The fact that the here proposed static
G W expansion directly reduces to the model in question after assuming that the GW
effective dielectric response is approximated by the phenomenological constant value
of the dielectric constant assumed in the model, strongly suggests that the results of
an ab initio band evaluation employing the described GW method, can predict the
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Mott properties of La,CuQy. The results could furnish a first principles evaluation of
the Mott properties for this SCES material. The study of this question will be further
considered elsewhere.
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line of work that I followed up to nowadays. In particular, this work is closely connected with that
initial recommendation.

Appendix

The spatial representation of the static polarization kernel is given by Eq. (7.18d)

P(1.2) ==Y w¥:Q¥;2)¥,(1)
i
OB — B — Ej) — 6 — ENO(E; — )
E; —E; '

(7.55)
The expression of its double Fourier transform is
P(q.q) = / / dxdx exp(—i(q-x+q -x)P(x,x). (7.56)

Equation (7.55) thus shows that it is necessary to evaluate the integral
I = f dxexp(—iq - X)¥ (X)¥;(x) / dx' exp(—iq - x)W¥;(xW;(x). (7.57)

The Bloch property of the functions in the sublattice R reads

¥ (x + RY) = exp(ik; - RM)¥; (x), (7.58a)
¥ (x + RD) = exp(—ik; - RD)¥;(x). (7.58b)

Further, the double integral can be decomposed as a double sum of integrals each
taken over a unit cell Cy of the sublattice as
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//dxdx’F(x,x’) = ZZ/ / dxdx F(x + RV, x + R'D),  (7.59)
C(] C()

RO RO

Now, using the Bloch property and expressing the two arbitrary momenta q and ¢’ as
decomposed in each part contained in the first Brillouin cell plus a reciprocal lattice
vector, allows to write I as follows

1= Zf dxexp(—iq- (x + RD)w; (x + RO (x + RD)
RO R €0

x / dx'exp(—iq' - x' + R'W)¥; ' + RDyw; (x' + R'D)
Co

=y / dxexp(—igr - X — iQ - ¥ ()P (x) exp(i(—q + k; —k;) - RD)
RO R €0

x / dx'exp(~iq) - X —iQ - xW;(x)W; (') exp(—i(q) + k; — k;) - R'D)
Co

K K , . ——
= V23 s 0% 0 [ AP X QBT

x/ dx'exp(—iq. - X' —iQ -x"¥; (x/)lI/j(x/). (7.60)
Co

That is, the integral I vanishes if ¢, and —q/. are not equal among them and equal
to k; — k;. That is g, should be equal to the difference between the quasi-momenta
associated to the wavefunctions of the basis. After explicitly writing the momentum
quantum numbers by substituting i — (k;, i) and j — (k;, j) in the formula for
the double Fourier transform of the static polarization kernel, we can write

P(g.q)= P Q. q.Q)
S O(Eqii) — WO — Eki—q,.j) — (1 — Ek;ii)0 (Eki—g,.j) — 1)
PR Eqiy = Eki—q,.))

x N28q+q,,0 /C dxexp(—iq, - X —iQ - X)W, i (X)¥ (k;—q,. /) (X)
0

X / ax'exp(iqy - X' —iQ - X)W, i) X)¥ki—q,, /) X)
Co

Q(E(k.i> — ;,L)G(,u, - E(k-fq- j)) — Q(M - Ek,;)Q(E(k,-,q i~ }L)
N?(S , i i —9qr, i rs
c qr+qr»OZZZ Ex;i) — Ek;—q,.))

ki i i i —qr,

X/ dxexp(—iq, - x —iQ - X)W, 1 OV (1, —q,, ) (X)
Co

X fc dx exp(iq, - X' —iQ - XYW, iy X)Wk —q,, ) X). (7.61)
0
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Now, it is possible to invert the Fourier formula for expressing the static kernel as

d r ;’ . ’ / / / D / /
P(x, x)—ZZ[/ : exp(i(ar -x+¢q X +Q-x+Q - x)P(gr, Q. g/, Q)

3 3
Q ¢ 2m)° 2m)-
d
_ZZ//<2E;3 (2:;3 exp(i(@r -x+q; X +Q-x+Q -x)
Q Q

O(Ek; i) — WO — Exj—q,.j) — 01 — Exii)0(Exi—q,,j — 1)
Ncaq;+q,0222 e —
;i) ki —qr,j)

X/C dxexp(—iqr -X—iQ-x)lI/(kin-)(x)w(ki,qr’j)(x)
0

X/ dx exp(iq, -x' —iQ' - X,)lp(k,«,i)(X/)W(ki—q,,j)(xl))
Co

d r / =Y
=ZZ/ (27‘:)3 exp(i(qr - x—x)+Q-x+Q -x)P(qr,Q.Q). (7.62)
Q ¢

The last line defines the associated function P (q,, Q, Q) and the matrix poQ (q,)
for the polarization as follows

O(Eq.iy — )0 — Eqg—q,.j)) =0 — Eq 1))0(Ei—q,.j) — 1)

P(mQQ)———ZZZ - 3

x Nf/ dxexp(—iq, - x —iQ - X)W,y OV (k,—q,, /) X)
Co

;i) Ewk;i—q,.j)

X / dx' exp(iq, - X —iQ - X W, iy X)Wk, —q,.j) (X))
Co

=P,
(7.63)
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Chapter 8 ®)
Wavefunctions for Large Electronic Gzt
Systems

P. Fulde

Dedicated to N. H. March on the occasion of his 90th birthday.

Abstract Wavefunctions for large electron numbers suffer from an exponential
growth of the Hilbert space which is required for their description. In fact, as pointed
out by W. Kohn, for electron numbers N > Ny where Ny ~ 10° they become mean-
ingless (exponential wall problem). Nevertheless, despite of the enormous successes
of density functional theory, one would also like to develop electronic structure cal-
culations for solids based on wavefunctions. This is possible if one defines the latter
in Liouville space with a cumulant metric instead in Hilbert space. The cluster ex-
pansion of the free energy of a classical monatomic gas makes it transparent why
cumulants are very well suited also for electronic structure calculations.

8.1 Introduction

Electronic structure calculations, in particular for large systems, are one of the most
active and challenging fields in condensed matter physics and quantum chemistry.
This remains true despite the fact that the field has almost exploded during the last
thirty years. Naively one would think that in an electronic structure calculation one is
aiming to determine the many-body wavefunction of the interacting electron system
and to derive from it physical properties of interest. This was the path taken when
shortly after the rules for dealing with quantum mechanical systems were formulated
by Heisenberg [1] and Schrodinger [2] these were applied by Hund, Mullikan, Heitler,
London, and others in order to study chemical binding, thereby beginning with the
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H, molecule. Since then, the sizes of the quantum chemical systems for which the
electronic structures were studied grew continuously. At present, even electrons in
molecules with hundreds of atoms have been successfully treated (see, e.g., [3, 4]),
as well as in solids with periodic lattices (see, e.g., [5]).

However, with increasing electron number N the dimension of the Hilbert space
spanned by the different electronic configurations increases exponentially with N.
This led Walter Kohn to the statement [6] that the many-electron wavefunction for a
system of more than N A 10 electrons is not a legitimate scientific concept anymore.
He referred hereby to wavefunctions expressed in Hilbert space and required that for a
legitimate scientific concept two conditions have to be fulfilled: it should be possible
to calculate the wavefunction with sufficient accuracy and it should be possible
to represent it numerically sufficiently well. Because of the exponential growth of
the Hilbert space none of the two conditions can be satisfied when N > 10°. Any
approximation ¥, to the exact ground-state wavefunction v, will have an overlap
with the latter of order |(Vo|Weuc)|? = (1 — &)V, which is zero for all purposes, if
N — oo. Here, ¢ is the minimum error one has to deal with when approximations
for the description of an electron are being made. A similar argument applies to the
second condition. When it needs m > 2 bits to describe a single interacting electron,
the total number of bits is m”" in order to describe the full electron system and
therefore too large in order to be documented.

The exponential growth of Hilbert space is referred to as the exponential wall (EW)
problem. The simplest way to get around it is by making use of density-functional the-
ory (DFT), developed by Hohenberg, Kohn and Sham [7, 8] (for extensions see e.g.,
[9]). Here all degrees of freedom of the electronic system are integrated out, except
for the density. No statements are required about the many-electron wavefunctions.
The strength of DFT is based on this feature.

Another way of avoiding the EW problem is by reducing the electron Hamiltonian
H to its self-consistent field (SCF) part Hscp. This simplifies the problem to a
single-electron one with a potential which has to be determined self-consistently.
The ground-state wavefunction is given in this case by a single Slater determinant
or configuration. Correlation effects are hereby completely neglected and therefore
results for various physical quantities are usually of low quality.

Although DFT has revolutionized the field of electronic structure calculations, and
can claim fantastic successes, it contains also weaknesses. A general one is that its
results depend on the chosen exchange-correlation potential and any approximation
to it is essentially uncontrolled. This leads to problems when electronic correlations
are strong or when one is dealing with dispersive electron interactions.

For the above reasons it seems worthwhile to develop in parallel to DFT also elec-
tronic structure calculations based on wavefunctions. This approach is stimulated by
the accuracy of quantum chemical techniques in cases when they have been applied.
The question therefore is: does Kohn’s correct argument about the inadequacy of
wavefunctions for large systems prevent us for doing such calculations on a firm the-
oretical basis? In short, the answer is no! However, one has to give up characterizing
the many-electron wavefunction in Hilbert space. Instead it has to be characterized
in Liouville or operator space. The reason is not difficult to see. Consider A very



8 Wavefunctions for Large Electronic Systems 101

weakly interacting atoms with N4 > 2 electrons each. The dimension of Hilbert

space for the ground state of the electrons on a single atom is of order 4 with
d > 2. Yet the dimension required for a description of the whole system is d4"V
despite the fact that in the limit of weak coupling between electrons on different
atoms the wavefunction does not contain any additional information compared with
the one obtained from a single atom. Thus disconnected correlations are responsible
for the EW problem. This suggests to eliminate all disconnected contributions to the
wavefunction in order to free oneself from the EW problem. This is easily done with
the help of cumulants.

8.2 Use of Cumulants

Cumulants of matrix elements eliminate factorizable contributions to it. In the sim-
plest case the cumulant, denoted by ¢, of a product of two operators A A, sandwiched
between two vectors ¢ and ¢, in Hilbert space with (¢, | ¢») # O is

(1141 Aalda)C = (¢11A142|¢0) <¢1|A1|¢2><¢1|;42|¢2>_ 8.1)

(P11¢2) ({@11¢2))

Note that a replacement of |¢,) by «|¢,) with o« # 0 leaves the cumulant unchanged.
General rules for cuamulants are found in the literature, see e.g., [10, 11]. They were
first applied in statistical physics [12] when dealing with the classical imperfect gas
and later pioneered by Kubo [13] in quantum statistical mechanics. In practice a
cumulant implies taking only connected contractions of operators into account when
a matrix element or expectation value is evaluated. With this in mind we divide the
electronic Hamiltonian H into H = H, + H, so that the ground state of Hy, i.e., |Dy)
can be easily calculated. Often Hy will be Hscp, yet it can also be, e.g., the Kohn-
Sham Hamiltonian Hgs. The remaining part H; contains the residual interactions.
We define |®,) as the vacuum state so that H; generates fluctuations, i.e., vacuum
fluctuations on it. Next we consider a matrix element of an arbitrary operator A
with respect to |Dg), i.e., (Pg|A|Dy) = (Py|A|Dy)°. By a sequence of infinitesimal
transformations in Hilbert space, we transform the state |®) on the right, into the
exact ground state |yy) of H. Then the above expression transforms into

(Dol Alro) = (PolAL|40)* (8.2)

with 2 = 1 + S and S denoting the sum of the infinitesimal increments in the trans-
formation. For a more accurate derivation of Eq. (8.2), see [10]. Note that €2 is not
unique since many different paths in Hilbert space may lead from |®y) to [1/g). Yet,
the cumulant remains unchanged by these differences.

In quantum mechanics the operator which transforms the ground state of an un-
perturbed system (here | @)) into the one of the perturbed system (here |1/)) is called
Mgller or wave operator, i.e., |{g) = Q|Py). Therefore we call 2 in Eq. (8.2) acumu-
lant wave operator and S'in 2 = 1 4+ S acumulant scattering operator. Equation (8.2)
suggests to introduce the following metric in Liouville space
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(A|B) = (®g| AT B| D). (3.3)

The metric is not a scalar product since it may vanish or even become negative.

8.3 Cumulant Scattering Matrix

The exponential wall problem does not exist if we define the many-electron wave-
function not by a vector in Hilbert space but by the vector |€2) in Liouville space.
An exponentially small overlap of (Yy|1cqa) is harmless since the cumulant, e.g., in
Eq. (8.1) remains unchanged when ¢, is replaced by a¢; with o # 0. When [1/cq1)
instead of |¥r) is considered the only effect is a change of |S) to |S + §5). Also a
numerical representation of |$2) or |S) poses no problems. To see this, we decompose
|S) into increments

1)=>"Si+> 8S+ Y 8Sik+... (84)
I (1J) (

1JK)

where I, J, K etc. are site indices. Here, §S;; = S;; — S; — S, etc. When §; is
calculated all electrons in |®g) are kept frozen except those in orbitals centered at
site 1. The procedure is similar when Sj;, Sy etc. are calculated. In each case only
a small number of electrons is involved and therefore the different increments of |S)
can be documented without problem. Thus the EW problem has been eliminated.
Let us consider |®y) as the vacuum state of the system. The operators Sy, S;; etc.
can be thought of generating vacuum fluctuations. They modify the energy Ey of the
system according to
Ey = (9| H2 Do) = (H|RQ). 8.5)

When Hy = Hgcp, the correlation energy is simply

Ecorr = (H1|Q)
= (Hi]S). (8.6)

Because of the cumulant metric, only connected vacuum fluctuations contribute to
Eorr. This is depicted in Fig. 8.1. Note that I and J need not be nearest neighbors.
For a given site I the correlation contributions add up to

(H|S+1Z(SS +...) = Econ(l) (8.7)
1191 2J;H 1J e« ) = Lcorr .

and Ecor = Y Ecore(I). This is indicated in Fig. 8.2. The 8S;,, 8,k etc. decrease

T
rapidly with increasing number of subscripts. They also decrease rapidly with increas-
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Fig. 8.1 Examples of
different vacuum fluctuations
S1, Skr, SunT contributing
to |S).

Fig. 8.2 Vacuum
fluctuations contributing to
Ecor: (I). Different colours
refer to connected vacuum
fluctuations involving
electrons on different
numbers of sites

ing distances of the sites /, J etc. The slowest decrease when |R; — R;| increases is
taking place for 65;;. Here R; denotes the position of site /. Except in the vicinity
of an electronic phase transition the decrease of (H;|5S;;) with |[R; — R;| — oo
is exponential and defines a characteristic correlation length, e.g., in a solid. The
behavior of (H;|6S;) in this limit tells us whether or not an area law [14] is holding.

We want to point out that the theory presented here has been applied to a number
of solids, mainly to semiconductors and insulators. Metallic systems [15, 16] require
additional comments since occupied Wannier orbitals are not well localized [17]. Yet,
this does not pose a principle problem. A review of the different results obtained is
foundin[5, 11, 18] although the way is not always obvious in which the computations
described there relate to the computational scheme outlined here.

8.4 Classical Imperfect Gas

Itis instructive to compare the definition of a wavefunction in Liouville space and the
computation of the correlation energy with the one of the temperature 7 dependent
free energy F(T) of a classical imperfect (real) monatomic gas. The limit F (7 = 0)
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yields the classical analogue of the electronic ground-state energy. Let U = ) ¢;;

i>]
denote the potential energy of the system where ¢;; denotes the pair interactions of
the gas particles. With f;; = exp(—f¢;;) — 1 and B = (kg T)~! we can write

etV =Tle? =T]0+4£). (8.8)

i>j i>j

The partition function Z is the product Z = Ziq - Zy of the one for the ideal gas Zig
and

1
Zy = TV / dridr, .. .drye PUTry) (8.9)

The integration is over the coordinates of the N particles and extends over the full
volume V of the system. Thus the free energy F (7)) = Fig + Fy can be written in
the form

Fy = —kBT1n<l_[ (1- f,-,)>, (8.10)

where Fiq is the free energy of the ideal gas.
An often used definition of cumulants is of the form

In(e*) = (M — 1)¢ 8.11)

and demonstrates how cumulants avoid dealing with the logarithm of averages. When
applied to Fyy we can rewrite the latter as

FU:—kBT<Zﬁj+ZZﬁ_;sz+...>. (8.12)
i<j i<j ”;;’k ,

Thus to the free energy of areal gas [12] only linked pair interactions do contribute.
This is sometimes referred to as Mayer’s cluster expansion.

This well known classical results suggest strongly that also in quantum mechanics
cumulants are a proper tool for calculating energies for large systems of interacting
particles. It makes the choice of the metric in Liouville space rather obvious.

The question remains, how the present approach based on a description of wave-
functions in Liouville space with cumulant metric compares with other approaches
avoiding the EW problem. A comparison with the Density Matrix Embedding Theo-
ry (DMET) [19] was recently worked out [20]. A corresponding one for the Density
Matrix Renormalization Group (DMRG) [21] as well as with tensor networks [22]
in particular with Matrix Product States [23] is left for the future.
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Chapter 9 )
Electron Tunneling Excitation e
of a Coupled Two Impurity System

F. Flores and E. C. Goldberg

Abstract Kondo effects in individual atoms, molecular magnets or quantum dots
have received a lot of attention. Systems with two units, like double quantum dots
or two atoms, have also attracted some attention due to the interplay between the
possible coupling between the spins of the two components and the Kondo effect
of each unit. Moreover, the tunneling spectroscopy across one or several magnetic
atoms deposited on a metal surface has also been analyzed and shown to present
properties associated with spin-flip processes and Kondo resonances. In this paper
we analyze the electron tunneling excitations created in a dimer case, assuming that
each unit (atom or quantum well) has spin % In our approach, the basic Hamiltonian
includes the spin-metal hybridization as well as the spin-spin interaction; then, its
basic properties are analyzed by means of a Green’s function formalism combined
with an Equation of Motion method. We present results showing the tunneling dif-
ferential conductance as a function of the different parameters of the problem and
the limits for which spin-flip processes and/or Kondo resonances appear.

9.1 Introduction

Scanning tunneling microscopy (STM) inelastic spin spectroscopy has been used
to explore the intrinsic excitations of individual, as well as aggregates of magnetic
atoms like Fe or Co on a CuN, metal surface [1-6].
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The differential conductance spectra, d1/dV, for a single magnetic atom shows
different regimes depending on the atom located below the tip. In the case of Co on
Cu;N, d1/dV shows a few degrees Kondo resonance accompanied by some steps
in the spectrum associated with internal excitations of the magnetic atom [5]; for
Fe, the tunneling differential conductance only shows equivalent steps but no Kondo
resonance [1].

Dimers on Cu,N, like Co-Co, Fe-Fe or Co-Fe [7-9], have also attracted some
attention due to the interplay between the ferro- or antiferromagnetic coupling of
the atomic spins and the possible Kondo resonance of each dimer component. The
experimental evidence has also shown that in these dimers the ferro- or antiferro- spin-
spin interaction depends crucially on the distance between the atoms. The interest
in analyzing those dimers is also related to the different properties each independent
atom has.

These various experiments have been analyzed by different groups, combining
an atomic crystal-field effect with an effective interaction between the tunneling
electrons and the atomic spin, described by means of an exchange coupling [10, 11],
a spin-assisted Hamiltonian [12—16] or using strong coupling theory [17]. All these
approaches are reminiscent of the scattering theory approach used by Kondo [18]
to explain experimental results about the resistivity of dilute magnetic impurities in
metals.

In previous works [19-21] we have analyzed the STM-differential conductance
for individual atoms [19], and for different dimers Fe-Co [20], and Co-Co or Fe-
Fe [21], using a new ionic Hamiltonian [22] for describing the charge exchange
processes between the metal and the magnetic atoms. In this approach, the tunnel-
ing conductance is the result of a co-tunneling process, whereby each atomic spin
fluctuates due to the successive jumping between the atom and the contacts.

In this paper we present a theoretical analysis of the simplest model that can
be introduced for describing the differential conductance of a dimer, namely, a %—%
system. In this model each atom is assumed to have one electron with spin %, and
fluctuate between one and zero electrons exchanging one electron with the metal.

The interest of analyzing this system is related to the convenience of understand-
ing, as a kind of benchmark, the simplest ideal case; this is a way of thinking that has
been followed by Professor Norman March along his scientific life, as shown in his
study of atoms and molecules [23] and in many other problems [24, 25]. The 1-1
system is also interesting in itself for its connection with the Co-Co dimer; this dimer
presents due to its interaction with the metal a doublet ground state (responsible of
the Kondo resonance in the single atom case) and, apparently, this suggests that the
Co-Co dimer might be simulated by the %—% case. We will discuss however in this
paper the similarities and differences between these two cases.

The paper is organized as follows: in Sect.9.2 we present our basic Hamiltoni-
ans and discuss the differences between the %-% and the Co-Co cases. In Sect.9.3
we present the Equation of Motion (EOM) method that we have used for solving
those Hamiltonians and the way of calculating the tunneling currents. In Sect.9.4
we present our results for the %—% and the Co-Co dimers, and finally in Sect.9.5 we
present our conclusions.
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9.2 Model Hamiltonian For Two Impurities
9.2.1 The }-3 Case

Figure9.1 defines the model we are going to analyze: two atoms with spin % are
deposited on a metal surface and interact with each other via a Heisenberg term,
JS 1- Sz. We assume that each atom donates (or accepts) one electron to (or from)
the metal, in such a way that each atomic spin fluctuates between % and zero. The
atoms and the metal are described by the conventional Hamiltonian:

Huom tmetat = Y _ & + 10, 0)4(0, 014 + £510,0)5(0, 0| 5
ko
+ef Y ohad.olatel D 1hodsthols. O

In Eq. (9.1), we have used the projection operators based on the following definition
of the configurations of atoms A and B: |0, 0) for § = 0, and |%, o) for § = % The
k-index denotes the metal states with energy ¢;. The interaction between the atoms
and the metal can be described by the following Hamiltonian:

A=Y [Vk((f)*cz(,m, 0)all ola+ H.c.] n [V,ff>*c;£g|o, 0)s(L, ol + H.c.] .
ko
9.2)

We also include the Heisenberg term:

H;=JS;-S,. (9.3)

Fig. 9.1 Schematic view of
the two atoms (A and B),
interacting with the surface

and the tip tip
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As we are interested in calculating the tunneling current between a scanning tunneling
microscope (STM)-tip and the dimer-% (or Co-Co), we have to introduce the tip-dimer
interaction by means of a tunneling Hamiltonian, which has the same expression
as Hamiltonian (9.2), but where we include now the tip levels, k’; we assume that
Vi < Vi, so that in a first step we will neglect V- for calculating the dimer electronic
properties. In a further step, we will introduce Vj to calculate the tunneling currents.

9.2.2 The Co-Co Case

We will discuss in this section how the Co-Co dimer, for a geometry similar to the
one drawn in Fig. 9.1, can be analyzed for a small tunneling bias with a Hamiltonian
similar to the one presented for the %-% case, but with some critical differences.

We start this discussion by considering the case of a single Co-atom adsorbed
on a metal. We shall assume that, for this case, the Co-atom has spin % and that
it fluctuates to an atomic state with spin 1, when it exchanges one electron with
the metal [19, 22]. Then, by using the notation |S, M) for the atom configurations
with total spin S and projection M, the atom and the metal can de described by the
following Hamiltonian [22]:

~ ~ 3
Haomime = Y &xike + E2D Y 13, M) (3, M|+ E' Y |1, m)(1, m],
ko M m

9.4)
and the metal/atom interaction by:

A = 3" [Vito€lo |1, M = 0)(3, M| + He] 9.5)
kM ,o

In Eq.(9.5), VS, = / X5 Vi, with p equal to 0 if o = 1, and equal to 1 if
o =—3[19].
For the Co-atom it is also important to include the anisotropy interaction described
by [1]: . . .
Hanisotropy = DSZZ + E(S)% - S%) 9.6)

This phenomenological form of the anisotropy term comes from a second order
perturbation calculation of the spin-orbit coupling AL-S. D and E are parameters
we will take from an independent source [1, 3, 5]. Notice that ﬁanismropy can be written
as DS‘ZZ + %E(S‘i + 82), in such a way that for the § = % case, it only changes the
atomic levels by a constant. However for the Co case, with § = % or S =1, the
Hamiltonian equation (9.6), introduces some splitting in the atomic levels that we
have to take into account appropriately. In particular, for S = % we find that the 4

atomic states associated with different values of M are split into 2 doublets: |%, :I:%)

with E2*3 =9D/4, and |3, £1) with E>*2 = D/4 (taking E = 0 in Eq.(9.6);
see Ref. [7]).



9 Electron Tunneling Excitation of a Coupled Two Impurity System 111

As E>%3 — E>#1 = 2D = 10.8 meV [5], we can neglect the states for energy
biases smaller than 2 — 3 meV. This approximation leaves the Co-atom with the
atomic states |3, :t%) and, apparently, the problem is similar to the S = % case where
we only have the doublet |%, :I:%). However, if we consider a dimer and the J S - Sz
interaction, we find an important difference between the %-% and the Co-Co cases. For

the %-% case, the JS; - S, interaction breaks the initial quadruplet levels into a triplet
(with total spin S = 1 and M = 1, 0 and —1) and a singlet (with total spin § = 0).
For the Co-Co case we find, however, that in the reduced space I%, :I:%) A® |%, :l:%) B
the initial quadruplet levels are split into a doublet and two singlets. The doublet is
defined by the states:

12, DA ® 13, )5, (9.7a)
62) =13, —3)a @ |3. —3)5. (9.7b)

1630 = —= (13204 ® 13, =2)a +13. =204 ® 3. 2)8) . 9.7¢)

1
|¢>4>=E(@,%>A®|§,—%>B—|§,—%>A®|§,%>3), (9.7d)
with energies E3 = 7J/4 and E4 = —9J /4, respectively. Notice that, in the %-%

case, the corresponding states |¢), |¢,), and |¢p3) form a triplet with an energy
Ep = J/4, while |¢4) defines the singlet with Eg = —3J/4. Regarding the Co-
atom with spin S = 1, consider the states |1, 1), |1, 0), and |1, —1) together with
Hamiltonian equation (9.6). For this case we find a singlet, the |1, 0)-state, and a
doublet, |1, 1) and |1, —1), located 2.8 meV above the singlet. In our approximation,
consistently with our previous case, we neglect the doublet and keep only the |1, 0)
state. This means that in the Co-Co case, for the S = % xS =1lortheS=1%S = %
states, we are going to work with the functions:

3
S=5#S=1=1h)= 12,14 ®11,0)5 and [y) =3, —1)a ® [1,0).
(9.8a)

3
S=1%x85= 37 x1) =11,004®13.3)p and |x1) =[1,0)4 ® |3, —3)s.
(9.8b)

Finally, for the Co-Co case with spins S = 1% S = 1, we only include the wave
function ¢1) = [1,0)4 ® |1, 0) 5.

It is interesting to realize that this approximation for the Co-Co dimer yields
a formal problem similar to the one found in the %—% case. In other words, if we
introduce the atomic, the Heisenberg and the anisotropy Hamiltonians and make the
approximations discussed above, we find for both problems the same Hilbert space
but with a critical difference: while for the S = % *§ = % problem we find a triplet,
E7,andasinglet, Eg = E7 + J,forthe Co-Co case we find that the triplet is split into
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a doublet of energy E|, and one singlet with energy E3, such that E5 — E; = 3J/2;
the other singlet has an energy Ey4, with E; — E4 = 5J/2.

We conclude this section mentioning that the Co-Co case is equivalent to the
375 L problem if we introduce a fictitious change in the energies of the triplet and
s1ng1et states associated with the Helsenberg interaction. Accordingly, we are going
to analyze in the next section the 1 ——— case keeping in mind that the energy of the
triplet state associated with the J Sl Sz interaction has to be split into a doublet and
a singlet for the Co-Co case.

9.3 Equation of Motion Solution. Tunneling Currents

9.3.1 A Completely Symmetric Case

For the sake of simplicity, we are going to start our discussion of the EOM (Equations
of Motion) method by considering a fully symmetric case for the atoms. This means
that we assume to have the same atom/metal interaction for both cases, V(A) Vk(B).
It is convenient for this particular case to work with the following molecular states:

Two electrons:

IT 1) =13 >A®|% %>BE|M>, (9.9a)
TV =15 -Da®l3 —9s=111). (9.9b)
L o1 1 11 11 1
70 = —= (13 Da® 13~ D +13-ha@lh Hs) = A1 D+ 1410,
(9.9¢)
1
|50>=ﬁ(%,%)m%,—%m—|%,—%>A®|%,%>B)57 (14 =14
(9.9d)
One electron:
1 1
|aa>=7(— o)A ®10,0)5+ 0,004 ® |3, 0)5 )EE(IG,OHIO,GD,
(9.9¢)
1
|bo) = 7 (15.0)4®10,0)5 — 0,004 ® |3.0)5) = 7 (lo.0) = 10,0)):
(9.91)

Zero electron:

10) =10,0)4 ®10,0)5 =10, 0). (9-92)
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Using these states, we find that for this symmetric case we have the following molec-
ular interactions: | 1, 1) is coupled to |b4) by —V2Vi; (] N+ ) /ﬁ to
|by) by —Vi, and to |b) by —V;; and finally | |, |) to |b}) by —/2Vy, where
Vi = Vk(A) = Vk(B). In other words, in this symmetric case the triplet states are only
connected with the |b, )-states. At the same time, |SO) = (| 1, ) — | |, 1)) /v/2 is
only connected with the |a, )-states by the interaction &V}, while the |a, )-states are
also connected to the |0)-state by the V2V, interaction. This indicates that in this
problem, we have two groups of wavefunctions connected by the atom-metal inter-
action. The first group is defined by (i) the triplet states, |T 1), |70) and T | ), and
the b, )-states, and the second one by the states: (ii) |SO) and |a,) and |0). Now, for
an antiferromagnetic interaction (J > 0) the singlet state, |S0), defines the ground
state and we can expect the group of states |SO) and |a, ) to define the contribution
to the tunneling current; on the contrary, for J < 0, the group of states |T 1), |T0),
T |) and b, ) control that tunneling current.

We use the EOM-approach to analyze this problem. Assume first that / < 0; then,
in a first step we introduce the following creation operators:

IT )byl |TO)Dyl, |TO)(byl, and |T |)(byl, (9.10)

associated with the creation of one electron in the |b,, )-states, and define the different
Green'’s functions:

Gy (10T 1) =iO@ =) ({IT 1) byles IbaXT 1 1)), (O.11a)
G0y, (1A )(TO1) = i@ — 1) ({ITO) (b4 r: [b1)(TO }), (9.11b)
Giroyw, (16y) T0|) =iO — ) ({ITO)(by|s: [b,)(TOI}), (9.11¢)

Giryyw, (Ib(T L 1) =i@@ =) ({IT 1)(byles 1b)(T L 1i}). (9.11d)

Then, we calculate their EOM up to second order in the metal/dimer interaction V.
[19, 20]. In this calculation, off-diagonal components like G 7o), (Ib+)(T 1 |) are
found to be zero. Fourier-transforming the resulting time-dependent Green functions,
we obtain the following equations (with @ = w — i0™, consistently with the advanced
character of the Green’s functions):

[@— (g0 + E7) —2a — B’ Giry oy (14T 1 1) = C, (9.12a)
[@ — (¢0 + E70) — 2a + B — 2B"] G oy, (16,)(TO]) = D, (9.12b)
where
2
a=) Vil” (9.13a)

w — &
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ni | Vie|?

9.13b
p= ; P 9.13b)

2
=> | Vel , (9.13¢)

— @ —é& — Er + Ero

" nk|Vk|
= 9.13d
/3 ; w — & +ET — ETO ( )
=(IT DT 1 |+ [by) (b1}, (9.13¢)
= (ITO)(TO| + |by) (b ). (9.13f)

For the sake of simplicity, we have neglected on the r.h.s. of Eq. (9.12) contributions
of order |Vi|? as compared with C or D; however, in our numerical calculations
shown below these second order terms have been taken into account (see Ref. [20]).
Similar equations are obtained for other Green’s functions changing the spin sign. In
Eq.(9.12) we have taken Er and Er¢ as the energies of the triplet states with M =
+1 and M = 0, respectively. For the . —-5 case, Ey = Erg and 8 = B’ = B8”; then
Eq.(9.12a) is equivalent to Eq. (9.12b), both equations showing a Kondo resonance
corresponding to § = 1 [22]; our calculations for the tunneling current (see below)
confirm this result.

For J > 0 we have to consider the |S0), |a,) and |0)-states; then, we build up the
following creation operators:

1S0){arl, |SO)ayl, lay)(O], and la,)(0], (9.14)
and their corresponding Green’s functions like:

Gisoytar| (1a4)(SO1) s Giapyor (10){ar]) s Giapyor (lay)(SO1) . and Gisoya,) (10){arl) -
(9.15)
An EOM calculation up to second order in V; yields the following equations:
[w — (¢0 + Es) — 2 + B1 Gs0)(a, (lay)(SOI)
+V2BG s0)(0,1 (10)(ay 1) = (1SO)(SO] + lay ) ay I}, (9.16a)

[@ — &0 — 2a — 28] Gs0)(a,) (10) (a1
+v/2BGs0a, (1a,) (50| (9.16b)

[w — (¢0 + Es) — 2 + B] Gayyo; (lay ) (SO
+V2BG 0,0/ (10) (4] (9.16¢)

[w — &0 — 200 — 281 G a0 (10) a4 |

)
)
) =
)
)=
)
+v2BG a0 (1ay)(SO]) =

(lap) (@] +10)(01).  (9.16d)
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These equations provide all the different Green’s functions components introduced
above. Notice in these equations the mixing of the Green’s functions associated with
the operators |a4)(S0| and |0) (a4 |; both operators represent the annihilation of one
spin up-electron. A similar mixing appears between the Green’s functions with the
operators |a;){S0| and |0)(a, |, associated with the annihilation of one spin down-
electron.

The Green’s functions, Eqgs. (9.12) and (9.16), provide the necessary information
for obtaining the different quantities we are interested in. In particular, for calculat-
ing the tunneling currents we introduce the tip-dimer interaction v = Vk(/B) as a
perturbation, and use the following equation for the differential conductance G [19],
up to a second order in V. :

G/Gy=4 Z Ly iiImGpy g (1) (1) - 9.17)

Pq-i.j

In Eq.(9.17), Gy is the quantum conductance 2¢*/ k, and G py(q) (I7) () represents
the different Green’s functions defined in Egs. (9.11) and (9.15), and associated with
the set of creation operators: {|T 1)(b4|, |T0){b,|, |SO)(a,l, |a4){0|} and {|T 1

Yaql, 1T0){a,|, 1S0)(b,|, |b+)(0l}. The quantities Iy, ;; are defined by the tip/dimer
hoppings, Vk(,?q/ ® and V,f,%B) :

17} in VeiglhliYql or Vi, é01p){il:

connecting the wavefunctions |i) and |g), or | p) and

Fpgij =7 VieigViig8(e — ep). (9.18)
-

In particular, for J < 0, we find the following contribution from the |7 1), |70) and
|T |), and |b, )-states, for spin up electrons:

GP/Gy= 41“,;TImG|TW,TI (1b4(T 1 1) + 4F,,{°ImG|T0><m| (164)(T0l), (9.19)

where beT =73 IW2ViPS(@ — &) and IO =73, [ViePs(w — ex) are
effective broadenings associated with the atom/tip interaction. In Eq.(9.19), Gy is
the quantum conductance 2¢2/ /.

For J > 0 the |SO0), |a,) and |0)-states contribute to G, and we find the following
differential conductance:

GV Go =4I, "ImGis0a, (1a,)(SOI) + 415 ImGiay 0f (10} a4])
S0,a ay,S0
+4T, 5 ' TG,y (lay)(SO1) + 415 ImGisoya,) (10){ar]) (9.20)

ay,0

where

' =m) V2V s — e, (9.21a)
k/
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L =n) Vel — &), (9.21b)
k/

Fasf,)(’)dT = Foa,;lso =7 Z |Vie |*8(w — &1). (9.21¢)
k/

Equations (9.12)—(9.20) allow us to calculate the differential conductance in this fully
symmetric case. Notice that for a ferromagnetic case with E7 = Epgand S = 1, we
have to use Eq.(9.12) taking C = ([T t)(T 1 | + |by)(by]) = (IT M(T 1 |) ~ 1,
and D = (|TO)(TO| + |b,){b,|) = (IT0)(T0]) ~ 1. For an antiferromagnetic case,
we have to use Eq.(9.16) and take (lSO)(SO| + |a¢)(a¢|) ~ (]S0)(S0]) ~ 1, as well
as (lay){(ay] +10)(0]) = 0.

9.3.2 Dimer with Quasi-independent Atoms

We consider in this section that the atom/metal interactions, Vk(A) and Vk(B), are
such that Vk(A) = Vk(B)* = Viexp(ik - R/2), R being the vector joining atoms A
and B (provisionally, we also assume V;» = 0). In general, this atom/metal interac-
tion introduces a mixing of the different groups of states, {|7° 1), |70), |T {), |bs)},
and {|S0), |a,), |0)} appearing in the previous discussion. Before considering the
EOMs that we find for this case, it is convenient to mention that in those equa-
tions, calculated up to second order in Vj, we find terms proportional to Vk(A) V,((A)*
VOB yDyB* and v VN* Notice that the last two terms are propor-
tional to ), exp(£ik - R), in such a way that the angular integration in k yields
the factor sin(kR)/(k R) (assuming a spherically symmetric metal energy band). For
Cu, krp =1.36 A‘l, so that for the typical atom/atom distances [7], R > 2 A, we
find | sin(kgR)/(krpR)| < 0.2; this suggests to neglect contributions in the EOMs
proportional to Vk(A) V,fB)* or Vk(B) Vk(A)*, as is done in the following discussion [21].
Apparently, this approximation corresponds to having two independent atoms; notice
however that we still have the Heisenberg interaction operating between the two
atoms, making this case a quasi-independent two atoms problem.

In our EOM approach for this case, we find that the group of creation opera-
tors (spin up): {|T 1)(b4|, ITO)(b |, |SO){(ayl, |a;){0]} get mixed by the atom/metal
interaction, in such a way that the previous Eqs. (9.12) and (9.16) found for the very
symmetric case should be reformulated to include the corresponding off-diagonal
Green’s function terms (including also the fact that Vk(ka(B)* = V,fB) V,((A)* =0).
Moreover, with the metal/dimer interactions defined above, V) = V,((B) *, we also
find that the following group of creation operators (spin up): {|T° 1){ax|, |T0)(ay|,
|S0) (b, 1, |b+){0]} yield new Green’s functions that we also analyze below.

The EOMs, up to second order in Vj, for the Green’s functions associated with
the {|T 1){b4], 1T0){b ], 1S0){ayl, |as){0|}-operators, yield:

)
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[0 = o+ Er) =20+ 8= 38"+ 1] Giraypy (5T 11) = C + BGir )5y (10)a1]),
(9.222)

[@—e0 —a =3B1G 714 (10)(arl) = (B = )G |T1)(by| (IbAXT 1)
+ 5B = )Gy 1 (1))(TO) = 5B = )Gir 1)y (121)(S0]).

(9.22b)
[0 = o+ Ero) =20+ 38— 8" = 30| Gir1) oy (10)(T01) = J5BG 7464 (10)(ay ).
(9.22¢)
[w — (0 + Eg0) =20 — 38—/ — %yé] Gir 1)y 1 (la){801) = =BG 74 by (10)at])
(9.22d)
where
|Viel?
= , 9.23
Y Xk:w_gk_ET+ESO ( a)
|Viel?
/ = , 9.23b
v ;a)—&‘k-l-ET—ESO ( )
|Vie|?
= : 9.23
" ;w_gk_ETO“r‘ESO (0-23¢)
’ |Vk|2
= . 9.23d
Y Xk:w—Sk-I—ETo—Eso ( )

The energy contributions associated with the Heisenberg interaction, J Sl S>, have
been included in the terms with E, Erg, and Egg (E7 = Epq for the 1 E'Z case).
Likewise, we also find the following equations associated with the operators {|7 1

Yayl, ITO) (a1, 1SO) (b, |, |b4)(O]}:

[0 = o+ Er) =20+ 8= 58 + )| Gty (99T 1 1) = F = G310y (10041
(9.24a)

[ — g0 —a = 3B1GT1)(ay| (10/(b1]) = =(B = )G T1)(ay| (lap)(T 1 1)
f(/f G |T1)(ay] (lay)(T01) + % B = )G T4y (ay] (16y)(s01),

(9.24b)

[w — (e + Ero) =20+ 3p— B - %Vo] Girt)ay ) (la)(T01) = =5 BG40y (10)(b11) .
(9.24¢)

[0 = 0+ Eso) =20 = 38— v = 11| Gy (a1 (141)(S0) = 58 71)(ay1 (10)(a41)
(9.24d)

where F = (lay){(as| + |T 1)(T 1 |). Notice that Eqs. (9.22) and (9.24) are similar,
differing only in the sign of their r.h.s.; this is related to the fact that changing from the
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basis set from {|a,) = %(|o 0) +10,0)), |bs) = %Ga, 0) —10,0))} to {|o, 0) =
[(|a¢,) +1bs)),10,0) = [(|a(,) |bs))} yields equivalent equations for sites A
and B, corresponding to the set of operators {|T 1)(?1, 0], |T0)({, 0], |SO){{, O],
10, $){01} and {7 )0, 1 |, [T0)(0, | | 150)(0, | || 1, 0)(0]}, respectively.

Other Green’s functions with different arguments, such as G o, | (Ib+)(T 1 [)
or Goy(a,| (10){a4|), can be obtained from a similar set of equations changing only
the independent terms; for example, for the above mentioned Green’s functions
one should include the independent term ( [0)(0] + |aT)(aT|> in the corresponding
equation (9.22b).

From these Green’s functions one can also calculate the tunneling currents assum-
ing to have some tip/dimer interaction like Vk(/A) or Vk(,B). For simplicity, we will
assume V(B) = 0 and take |Vk(,A) | = Vi Then the tunneling current through atom A
is given by

Ga/Go=4)_ T}, i ImG i (1)) (9.25)

Equation (9.25) includes all the Green’s functions associated with the sets {|7° 1
)(by1. ITO) (b, |, 1S0)(ay]. lay) (O]} and {IT 1){ay]. |TO)a, . 1S0)(b,]. |b,){0]). The
quantities 1"/ ij are defined by the hoppings connecting the elements (¢|i) and (/| p)
in the way explamed above in Eq. (9.18), but for the sake of brevity we will not present
more details here.

9.4 Results and Discussion

We start presenting results for the fully symmetric 5-5 case. In our calculations we

use a ﬂat band approximation for the metal with a half band-width of 10 eV; we also
take &' = ef =e9p=—1¢eV (the Fermi level is the energy zero), and the follow-
ing level widths I'* = T'8 ="' =7 Y, |Vi|?8(w — &) = 50 meV. The exchange
interaction, J, is taken to be —0.05, —0.1, —0.2 and —0.6 meV for a ferromagnetic
interaction, and 0.05, 0.1, 0.2 and 0.6 meV for an antiferromagnetic one; in our cal-
culations we assume, in all the cases, the thermal energy, kg 7', to be much smaller
than the magnetic interaction between spins (7 = 0.3 K).

For the 1 —-5 case we consider here for the ferromagnetic case (J < 0), Er = Ep¢
and B = B’ = B” in Eq.(9.12); moreover, in these equations

C=(T IUT 1 |+ 1by)(by]) ~ % and D = (|TO)(TO| + |b4)(by ) ~ %

so that, as mentioned above, Egs. (9.12a) and (9.12b) coincide, both equations yield-
ing a Kondo resonance corresponding to § = 1 [22]. The results for the differential
conductance, see Fig.9.2, as a function of the applied bias, V, show that resonance
around V = 0. Notice that our results are practically independent from the value of
J; this is easily understood by realizing that in those equations the effect of J is only
to shift to g — J /4 the effective level .
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Fig. 9.2 It shows the differential conductance as a function of the applied voltage for the %-%

dimer in the fully symmetric case, Egs. (9.12-9.20). The upper curves correspond to a ferromagnetic
interaction, the curves below to an antiferromagnetic one (|/| = 0.05, 0.1, 0.2, 0.6 meV). The atom
energy level is —1eV and the level width 0.05eV

For the antiferromagnetic case, the singlet |SO) defines the ground state with
Eso = g9 — 3J, so that (|S0)(SO|) ~ 1 and (Ja;)(as]) ~ (la;){a, ) ~ (|0)(0]) ~ 0.
Then, Egs. (9.16) and (9.20) yield the differential conductance shown in Fig.9.2 for
different values of J (J > 0). These curves also show a very small dependence on
J; as in the previous case, this is due to the small change in the energy, from &
to &g — %J . On the other hand, it might be unexpected to see the Kondo resonance
that also appears in this case, since there is a singlet in the ground state. A careful
analysis of Egs. (9.16a) and (9.16b) shows that that Kondo resonance is a reflection
in the differential conductance of the Kondo state associated with the fluctuations
between the states |a4), |a,) and |0), as shown by the off-diagonal Green’s function
Gs0)(a, | (|0) (“T|) in Egs. (9.16a) and (9.16b).

Figure 9.3 shows the differential conductance for the antiferromagnetic quasi-
independent atoms case, using the same parameters as in the fully symmetric case:
gl =ef =ep=—1eVandT'* =T'8 =T =7 ), |Vi[*§(w — &) = 50meV; we
also assume to have a similar Heisenberg interaction between atoms: J = 0.05,
0.10, 0.20 and 0.60 meV. First point to notice is that for / — 0, a Kondo resonance
around V = O starts to develop; this is well understood by considering that in this
limit the atoms are completely independent from each other, in such a way that
each atom develops a Kondo resonance associated with the {| 1, 0), | |, 0), |0, 0)}
or the {|0, 1), 10, {), 10, 0)} fluctuations. The effect of introducing the Heisenberg
interaction is to break that Kondo resonance, by creating a dip around the Fermi
energy between the energies =(Er — Eg) = £J, energies that are associated with
the excitation from the singlet to the triplet created by the tunneling electrons.
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Fig. 9.3 Shows the 0,010 T T T
differential conductance, G,
as a function of the applied

. 11
voltage for the dimer 5-5 in

the quasi-independent atoms ‘g
case, Egs. (9.22)—(9.24), for =]
an antiferromagnetic g
interaction J = 0.05, 0.1, %
0.2, 0.6 meV. The atom T
energy level is 1 eV and the 5
level width is 0.05eV
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Fig. 9.4 The same as in 0,010 T T T
Fig.9.2 for a ferromagnetic
interaction J = —0.05,
—0.1, —0.2, —0.6 meV .

-‘g J=-0.meV
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Figure 9.4 shows similar results for a ferromagnetic interaction. Things are similar
to the previous case, with some slight difference. As in the previous case, for / — 0
we recover the Kondo resonance of the isolated atom; the effect of J is also to create
a dip around V = 0O (the Fermi energy) between £J. Two differences appear with
respect to the previous case: for the ferromagnetic interaction the dip is roughly three
times smaller than the one found for the antiferromagnetic case (probably associated
with the degeneracy of the triplet state in the ferro case). On the other hand, for very
large values of J, we start to see in the differential conductance another resonance
around V = 0; this is probably associated with the Kondo resonance associated with
a triplet state (for J very large, the system should behave like a triplet interacting
with the metal density of states).

Finally, Fig.9.5 shows our results for three different cases (within the quasi-

11

independent atoms model): (a) the 5-5 dimer; (b) the simplified Co-Co dimer as

discussed in this paper; and (c) the Co-Co dimer as analyzed in reference [21],
3

including the lowest energy states for each atom (four considering the % * 5 con-
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V(mV)

Fig. 9.5 Differential conductance as a function of applied voltage. Black solid line is the simplified
Co-Co dimer, gray solid line is the %-% dimer, the dotted line is the Co-Co dimer by considering

only the lowest energy states: four in the case of % * % configurations, two in the case of % * 1, two

in the case of 1 % % and one in the 1 % 1 case (see Ref. [21]). The energy (1 eV) and width (0.2 eV)
of the Co level are the same used in Ref. [21]

figurations; two in the 1 * % case; two in the % * 1 and one in the case 1 1). In

these calculations we have taken the following parameters: e} = ¢f = g9 = —1 ¢V,
r‘*=r®=r=xY,|Vil*6(w — &) =200 meV, and J = 0.22 meV. For the 1-
% dimer we find results similar to the ones presented in Figs. 9.3 and 9.4: a dip around
the Fermi level between energies £J . For the simplified Co-Co dimer, we find that the
dip is surrounded by two steps associated with the excitation energies +=|E7 — Eg|
and +|Ero — Eg|, namely 5J /2 and 4J . For the sake of completeness, we also show
similar results calculated for a Co-Co dimer as analyzed in detail including the min-
imum basis necessary to calculate the differential conductance of the dimer [21]. In
Fig. 9.5, we also show the results calculated for this case; this is an indication of the
good approximation that our simplified Co-Co dimer represents for a realistic dimer
for V smaller than -3 meV.

9.5 Summary and Concluding Remarks

In conclusion, we have presented a discussion of the electronic and transport proper-
tiesof a %-% dimer and have shown how to extend that analysis to a Co-Co dimer. Our

results also show that these properties depend crucially on the metal-dimer interac-
tion. In particular, for a %-% fully symmetric case our results indicate that the system

develops, for both a ferro- and an antiferromagnetic interaction between the atoms,

a Kondo resonance. However, for more realistic interactions we find, for both, %-%
and Co-Co cases, that the differential conductance has a typical dip around the Fermi
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energy that is surrounded by some steps whose energies depend on the triplet and
singlet levels. The differences and similarities between the %-% and the Co-Co cases
are analyzed and discussed in detail.
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Chapter 10 ®)
Quantifying the Effect of Point oo
and Line Defect Densities on the melting
Temperature in the Transition Metals

C. C. Matthai

Abstract Molecular dynamics simulations of the melting process of bulk copper
and gold were performed using Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS). The aim of the study was to understand the effects of high
pressures and defects on the melting temperature. The simulations were visualised
using Visual Molecular Dynamics (VMD). The melting temperature of the perfect
crystals were found to be higher than the experimentally observed values. The melt-
ing temperature as a function of pressure was determined and found to be in good
agreement with experimental results. Vacancies and line defects in the form of dis-
locations were then introduced into the simulation cell and the melting temperatures
recalculated. In both scenarios, we find that the melting temperature decreases as the
defect density is increased bringing it closer to the experimentally observed value.
Based on the pressure dependence of the melting curve, we conclude that vacancies
are not the driving force for the melting transition.

10.1 Introduction

The melting transition has been studied extensively over many decades and over the
years many theories of this transition have been expounded. It had been suggested
that as the crystal is heated, melting occurs when the atom vibrations become large
enough at the melting temperature such that the long range order is lost. Lindemann
postulated [1] that the melting temperature 7,, could be approximately defined as the
point at which the mean interatomic spacing exceeds its equilibrium spacing by 10%.
This is the so-called Lindemann criterion for melting. It is now generally agreed that
defects, and in particular line defects, play an important role in the melting transition.
In dislocation theories of melting, the number of dislocations increases according to
some power law at the transition temperature.

More recently, it has been suggested [2] that a wide variety of phase transitions
may be formulated in terms of the formation of quasi-particles at the transition. In this
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phenomenological theory it was proposed that the transition temperature 7; could
be written in the form kg7; = E p,-e”7 where E ., is some characteristic energy
associated with the transition and kg is the usual Boltzmann constant. The quantity
y is related to the energy required to create the quasi-particle appropriate to the
transition. It was further proposed that for melting the characteristic energy is related
to the bulk modulus, B, through the relation E.;, = 2B where £2 is the atomic
volume. The quasi-particles in this formulation are the phonons associated with the
shear modulus. The presence of point and line defects allow for the annihilation
of these quasi-particles. In this study we have investigated the dependence of the
melting temperature on the defect (point and line) density in bulk copper. In addition,
we have also investigated the role of pressure, p, in melting as this could be used to
test model theories. In particular, the slope of the calculated 7, (p) curve is compared
with experimental results.

10.2 Theory and Simulations

10.2.1 Melting Temperature as a Function of Pressure

Simon and Glatzel (SG) [3] proposed an empirical relation between the melting
temperature and the pressure, viz.,

1/c

7mm=TmK§+Q (10.1)

where a and c are constants. This relationship only holds for situations where the
melting temperature increases with pressure. The slope of the melting curve at zero
pressure has also been studied by many researchers. For example, Gilvarry con-
structed a theory in which the slope of the fusion curve at zero pressure could be
expressed through the relation [4]

! [8&] = (6 —Z)L (10.2)
L) Lop 1o 0 3¢By '

where y¢ is the Griineissen constant and By is the bulk modulus at zero pressure.
The quantity ¢ depends on the bulk modulus, the linear expansion coefficient, the
melting temperature, the latent heat of melting and the volume change at melting.

In considering theories which relate the melting temperature to point and line
defects, Matthai and March [5] used the results of a dislocation-mediated theory of
the melting transition [6] to derive a relationship between the slope of the melting
curve and the shear modulus, G,
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1 [T, 1dG
Zim =7 (10.3)
Tn(p)LOp 1,00 Gdp

They also used the empirical relation between the vacancy formation energy, E I and
the melting temperature to give the gradient of the melting temperature curve at zero
pressure in terms of the pressure dependence of the vacancy formation energy,

1 [a7T, 1 |oE!
= [_} =— [ i } (10.4)
T | Op p=0 Ej ap p=0

In summary, as the slope of the melting curve at zero pressure can be related slope
of the shear modulus or vacancy formation energy at zero pressure, this quantity can
be used to differentiate between theories of melting.

10.2.2 Simulation Details

A 10 x 10 x 10 periodically repeating face centred cubic crystal with lattice spacing
3.615 A comprising 4000 atoms was constructed and the LAMMPS package [7] used
to carry ou the molecular dynamics simulations. Embedded Atom (EAM) interatomic
potentials as formulated by Mei et al. [8] which reproduced the equilibrium properties
of Cu were used to characterize the interactions. The time step in the simulations
were taken to be 1 fs and the simulations were carried out at constant pressure using
a NPT Nose-Hoover ensemble. In the pressure simulations, a hydrostatic pressure
was applied to the simulation cell.

10.2.3 Determination of the Melting Temperature

In the molten state the long range order, present in the crystal, disappears and so the
liquid state can be identified by examining the pair correlation function (Fig. 10.1),
which is in turn related to the structure factor. However, it is not feasible to determine
T,, from the structure factor data. In our simulations, the melting temperature was
determined using three different approaches. In the first, the Lindemann criterion was
applied by analyzing the RMS displacement of the atoms from their initial sites. The
other two approaches involved plotting the volume per atom, §2, and the self-diffusion
coefficient, Dy, as a function of temperature. The volume 2 shows a discontinuity
at the melting temperature whereas D shows a change in the slope at T,,. It may
be noted that Dy is zero until 7, as we have considered a perfect crystal with no
vacancies and consequently, there is no self-diffusion. From all three approaches, the
melting temperature of copper was found to be between 1608 and 1621 K, which is
much higher than the experimental value of 1354 K [9].
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Fig. 10.1 The radial
distribution function above,
below, and near the melting
temperature for copper

Fig. 10.2 The melting
temperature as a function of
pressure as found by the
Lindemann criterion (filled
squares) and the volume
change (filled circles)
methods. Also shown is the
SG fit (full line) from

Eq. (10.1), witha = 11.5
andc =24

10.3 Results
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10.3.1 Melting Temperature as a Function of Pressure

The melting temperature as a function of pressure was determined by all the three
approaches outlined above. In the case of applying the Lindemann criterion, the
pressure was limited to a maximum of 30 GPa. For the other two approaches the
maximum pressure was extended to 300 GPa. The results for 7,, (p), which are shown
in Fig. 10.2, were found to be well described by the SG equation. Additionally, the
results for the slope of the melting curve at zero pressure (Table 10.1) are in good
agreement with the estimated value of 26.2 K-GPa~! from the work of Japel et al.

[10].
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Table 10.1 The slope of the melting curve at zero pressure

Melting criteria T (K) dT,,/dp (K/GPa)
Lindemann 1614 £ 12 46.9
Diffusion 1621 + 35 28.3
Volume 1608 £+ 30 28.0
Experimental [10] 1354 &+ 5 26.2
Fig. 10.3 The red circles are 1800
the computed melting jads
temperatures for different
vacancy densities (o, ). Also o 1700 ¢
shown is the line of best fit, 5 16504
T (poy) = 2
(300 ¢=057 4 1360)K £ 1600
E‘ 1550 |
o
2 1500
é 1450 |
1400 |
1350

Vacancy density (nm )

10.3.2 Effect of Point Defects on the Melting Temperature

As mentioned above, the melting temperature for the perfect crystal was found to
be much higher than the experimental value. This is simply a consequence of the
simulations not allowing for the creation and evolution of defects in the crystal as
the temperature is increased. In order to determine the effect of vacancy density on
the melting temperature, vacancies were introduced into the crystal and the constant
pressure simulations repeated to determine the melting temperature. These simula-
tions were carried out for densities of up to 5 vacancies per nm® and the results are
shown in Fig. 10.3. As may be noted, the variation is reasonably well fitted with an
exponentially decaying curve.

10.3.3 Effect of Dislocations on the Melting Temperature

It is generally agreed that while there is a relation between the vacancy formation
energy and the melting temperature, it is more likely that line defects in the form of
dislocations or disclinations are the drivers for the melting transition. We have there-
fore also carried out simulations aimed at investigating how the dislocation density
influences the onset of melting. Since our simulations do not allow for the spon-
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Fig. 10.4 Variation of T, i
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taneous creation of dislocations, dislocation loops of various lengths and different
Burgers vectors were introduced into the crystal and the melting simulations carried
out as before. The sites of the dislocation cores were chosen at random. For the sake
of consistency, the crystal block was taken to be the same size as for the vacancy
simulations. This is not ideal because in order to obtain measurable results, it was
necessary to introduce an artificially high dislocation density. However, it should
be noted that in dislocation theories of melting, it is expected that as the transi-
tion temperature is approached, the dislocation density should diverge. The melting
temperature as a function of the number of dislocations is shown in Fig. 10.4. As
expected, the melting temperature does decrease with increasing dislocation density
but unlike in the case of point defects, the decrease shows a linear dependence.

10.4 Conclusions and Discussion

Computer simulations have been carried out to investigate the influence of point
and line defects on the melting temperature. The melting temperature for the perfect
crystal is found to follow the SG curve for pressures up to 100 GPa. However, the
melting temperatures so found were much higher than that measured experimentally.
When defects in the form of vacancies or dislocations are introduced, the computed
melting temperature is lowered.

If the relationship between the vacancy formation enerfgy and T}, is as described by
Eq. (10.4) holds for high pressures, we would expect E; to have the same variation
with pressure as T, (p). We have therefore also determined the pressure dependence
of the mono-vacancy formation energy. This is shown in Fig. 10.5. The data is best
fitted by a power law increase over the pressure range investigated. This difference in
the pressure dependence of the vacancy formation energy and the melting temperature
suggests that it is unlikely that the formation of vacancies is the driver for melting.
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Fig. 10.5 The change in the 15
vacancy formation energy as
a function of pressure (ﬁlled %‘ 145} &
squares). The solid line is a Z
quadratic fit of the data 5
@ 14t
=
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c
(=]
T 135}
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The simulations carried out in this study was based on rather small crystal sizes.
In order to demonstrate the validity of the results, we are currently carrying out
simulations on much large crystal blocks. In addition, calculations to determine the
dislocation formation energy as a function of pressure are also under consideration.

Acknowledgements Some of the MD simulations were carried out on the ARCCA computing
facilities at Cardiff University. CCM wishes to thank Professor Norman March for the many fruitful
discussions on the topic of melting.
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Application of the Plane-Wave-Based i
Perturbation Theory to the Density

Modulation Induced by a Point Charge

in an Electron Gas

I. Nagy and M. L. Glasser

Dedicated to Professor N. H. March on the occasion of his 90th
birthday.

Abstract The induced electron density at the position of a single point charge Z
embedded in a three-dimensional degenerate electron gas is studied at high densities.
The perturbative, plane-wave-based treatment developed within the framework of
density matrices by March and Murray (Phys Rev 120: 830, 1960, [1]) is applied
here up to second order in Z. Comparison with the result obtained by considering the
exact scattering enhancement in a bare Coulomb field is made. The small numerical
difference found in the second-order term of the induced density at contact is analyzed
following Wigner’s (Phys Rev 94: 77, 1954, [2]) similar perturbative treatment of
the proton field in the hydrogen atom. The impact of the many-body screening is
discussed as well.
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11.1 Introduction

The effect of charged impurities on the properties of a metal is of considerable
physical interest, both because of the possibility of deliberately introducing them
so as to study the physics of electron-atom interaction in metals, and because most
real materials contain impurities which affect their physical properties. By using
modern experimental techniques, such as scanning tunneling microscopy (STM)
and scanning tunneling spectroscopy (STS), one is able to consider in detail the
modulations in the local density of states at the Fermi level. One can probe the induced
density in the many-electron system of metals via positron annihilation or Knight-
shift measurements with muons. Furthermore, one might consider in calculating the
life-time of an added electron in a cold electron gas, the screening of the electron-
electron interaction, needed to avoid the divergence in the electron, or intruder charge,
self-energy close to the Fermi energy.

There are several instances in which simple approximation methods yield correct
results even though the conditions for the applicability of those methods are not
fulfilled. The best known example is the calculation of the Rutherford cross section
in three dimensions by first-order Born approximation, i.e., by using plane-wave
states. Apart from this case, however, one should check the adequacy of this famil-
iar approximation in potential scattering. Such a check is, surprisingly, particularly
important in the case of short-range forces [3].

In the present work as a first step the electron gas is assumed to be noninteracting,
but perturbed by the potential of an embedded point charge. Thus, the problem is one
of quantum mechanical scattering of a single electron by the potential of an external
charge. The thermodynamics then follows by filling up the new set of energy levels
according to Fermi-Dirac statistics corresponding to an ideal momentum distribution
function, i.e., with unit occupation numbers for one-electron states up to the invariant
Fermi level. The continuous spectra of the electron gas Hamiltonian and the perturbed
Hamiltonian coincide.

The method applied rests on the well-known paper by March and Murray [1] where
the idempotent density matrices, Dirac and canonical, were discussed in reference to
imperfections (central fields) in metals. Concretely, we apply March and Murray’s
second-order prescription, Eq.(6.5) of their paper, to calculate the total electron
charge at the position of the embedded point charge in a high-density electron gas.
Notice that the corresponding low-density limit was treated earlier [4] by us using
their Eq. (4.12), i.e., a third-order differential equation, with a Hulthén-type potential.
Since in the present paper we use plane-wave states and find a close similarity with the
second-order term based on the exact Coulomb enhancement of scattered waves, we
are tempted to refer for analogy to Wigner’s second-order perturbational calculation
of the energy of the hydrogen atom. Remarkably, in order to provide a physical
interpretation, Wigner pointed out that the finite result for the binding energy in his
second-order treatment is due to the form (') of the Coulomb potential [2].
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11.2 Theory and Results

According to Eq. (6.5) of March and Murray [1], the second-order perturbation ex-
pression for the total density n(r = 0) = ng + n1(r = 0) + ny(r = 0) at the posi-
tion of a charge Z embedded in a paramagnetic electron gas at zero temperature is

Lo kg
= — dk k> = —£ 11.1
=, 372’ (H-12)
2 kr 00
n(r=0) = —2/ dk k / ds V(s) sin(2ks), (11.1b)
T Jo 0

kg o) [ee)
n(r=0) = %/0 dk fo ds V(s) sin(ZkS)/ dt V(t) sin(2kt), (11.1c)

where the ideal momentum distribution function f(0 < k < kr) = 1 for occupied
one-electron momentum eigenstates in a homogeneous degenerate system has been
applied. V (r) is the spherical central potential due to the point charge. In writing
these equations the expression x2 jio (x)iio(x) = (1/2) sin(2x) is used for the product
of the spherical Bessel (j;) and Neumann (7;) functions..

Now, as in Wigner’s perturbation theory for binding with an 1/r potential, we
consider first the unscreened case in our problem, i.e., we take V (r) = Z/r. From

Eq.(11.1b) we get
2

k
n(r=0)=2z=-L. (11.2)
2
In dealing with the second-order term in Eq. (11.1c), we change the order of inte-
gration and introduce the new variable t = xs. Thus, we have

4 [k © ] % gin(2ks) sin(2k
ny(r = 0) = 22—2/ dk/ dx—/ g SMCRS)SINGhs) -y g
T 0 1 X Jo S

The integral with respect to s becomes I (x) = (1/2) In[(x 4+ 1)/(x — 1)] indepen-
dently of k.

To perform the x-integration in Eq.(11.1c), we employ a convergent (x > 1)
expansion

nd 1
I(x) = Zm (11.4)

m=0

by which the remaining integrations are elementary and finally we get

n(r—O)—Zz4k§: ! _ ke (11.5)
T Tt e Lam T T 2 '

since the sum becomes A(2) = %{(2) = 772 /8 in terms of Riemann’s zeta-function.
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Next, we turn to the exact treatment of scattering states. With Coulomb potential
Z /r, the important enhancement factor E¢(n) is

2ty _ — 7
EC(TI)—m=1+T”7+221mz—+nz (11.6)

in terms of the Sommerfeld parameter n = Z/k. From this we get

1 kF 2 2 Z (mkF)]
0) = — dkk“ Ec(k) = +Z +Z kp — — arctan | ——
n(0) n2/0 c(k) = ng n2Zm[F - S

73 7275

Z 27 VA
:no—i—gk% kp§(2)——§(3)+ T +O0k;d). (11.7)

In the high-density limit, where kr >> 1, this expression tends to

k> k
n(0) = ng + Z-£ + 72 L _

Z3
T 3 ?§(3), (11.8)

where we used ¢ (2) = %/6. Apart from its sign, the last term corresponds [5, 6] to
the total density of the entire spectrum of bound states of a hydrogen-like atom. This
kp-independent term is negligible when kr > 1.

By comparing the exact Eq.(11.8) with the perturbative Eq.(11.5), one can see
a moderate numerical deviation in the Z?-order term. This approximate agreement
is one of the main results of this work. We can say, following Wigner’s early obser-
vation, that the second-order perturbation theory developed by March and Murray
for charged imperfections in a noninteracting, degenerate electron gas appears to be
meaningful.

In the rest of this note, we turn to important subquestions on the role of
screening and non-idempotency of the host system. We focus on changes in the
first-order term n;(0). By substituting into Eq.(11.1b) a Yukawa-type potential
Vy(r) = (Z/r) exp(—Ar) we get

M — ) = 2 r F
ny'(r=0)= 5 [(kF + 7 )arctan —2 ] (11.9)

which reproduces Eq.(11.2) when A = 0. However, this transparent closed expres-
sion allows a deeper analysis of the k-dependence of the parameter A (kr). One can
see that with conventional, Thomas-Fermi scaling of A> = 4k /7 the high density
limiting value, Zk% /2m will not change. In other words, at that limit the screened
potential is penetrable for a very fast electron. One could reduce the numerical
factor (1/2m) of the limiting form only with an A o kg-scaling. In this manner the
high-density pair-correlation function at contact, g(0) = 1 — |rn;(0)/no| becomes
tunable. Indeed, there are theoretical arguments [7, 8] that such scaling is the only
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one if the goal is to reproduce the exactly known asymptotic form for this function
g(0) =1 — (1.4/kp).

We finally come to the challenging problem of the non-idempotency encoded
in the reduced one-particle density matrix in momentum space. The diagonal of
this matrix is the one-particle momentum distribution function. Until now, we have
used the ideal momentum distribution function fy(0 < k < kp) = 1. Due to the
correlated electron motion, the momentum distribution function f (k) describing the
population of plane-wave states of real particles (and not Landau’s quasiparticles)
in the translationally invariant system differs from the ideal momentum distribution
function [9]. This is a crucial point since, for instance, in a mean-field Kohn-Sham-
like treatments of Density Functional Theory with auxiliary orbitals the population of
particles is still the ideal one. Therefore by that method one can not calculate the exact
kinetic energy. In fact, all relative-coordinate-dependent many-body complications
are hidden in an effective external field.

In order to appreciate the important role of non-idempotency (N) in our problem,
we take a simple [10] parametrized (x = k/kp) expression from the literature

a(D[1 —a@2)x?], 0<x<l1

T
a@e Wb 4 — x> 1
X

fx) = (11.10)

Here, a(4) =4, a(3) = (32/13)8, 6 = (1/3) —a(D)[(1/3) — (1/5)a(2)] = T/5,
a(2) =0.048/kr,a(l) =1 —0.019/kp,and T = [2/(3rkr)]*g(0) in terms of the
pair-correlation at contact. By performing the integration in Eq. (11.1b) witha Z/r
potential, in leading order we get

nMe =0y 2 1 20 o).

Zk? 0.042
L1 (11.11)
2 kp

As expected, niN) (0) < n1(0) due to the nonideality of the momentum distribution
function. Relativistic effects [11, 12] which appear at extreme kp, are beyond the
scope of this note.

11.3 Summary

The induced electron density at the position of a single point charge Z embed-
ded in a three-dimensional degenerate electron gas is studied at high densities. The
perturbative, plane-wave-based treatment developed within the framework of idem-
potent density matrices by March and Murray [1] is applied here up to second order in
Z. Comparison with the result obtained by considering the exact scattering enhance-
ment in a bare Coulomb field is made. The small numerical difference found in the
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second-order term of the induced density at contact is analyzed following Wigner’s
[2] similar perturbative treatment of the proton potential in the hydrogen atom.

The impact of many-body screening and non-idempotence in the host system on
the perturbative results found are considered as well. Specifically, the impact of a
non-ideal momentum distribution function could influence the two-term asymptotic
results for the induced density at contact in cases with V(r) = =(1/r), i.e., with
protons and antiprotons. However, Thomas-Fermi screening modifies the results
obtained with bare interactions in a stronger manner. Clearly, further research on the
combined effects of these ingredients needed for a physically self-consistent model
are still desirable to proceed along the path marked out by the pioneering paper of
March on charged imperfections.
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Chapter 12 ®)
Kovacs Effect and the Relation Between oo
Glasses and Supercooled Liquids

F. Aliotta, R. C. Ponterio, F. Saija and P. V. Giaquinta

Abstract In this note we revisit the Kovacs effect, concerning the way in which
the volume of a glass-forming liquid, which has been driven out of equilibrium,
changes with time while the system evolves towards a metastable state. The theoreti-
cal explanation of this phenomenon has attracted much interest even in recent years,
because of its relation with some subtle aspects of the still elusive nature of the glass
transition. In fact, even if there is a rather general consensus on the fact that what is
experimentally observed on cooling is the dramatic effect produced by the dynamical
arrest of slower degrees of freedom over the experimental time scale, it is not yet
clear whether this phenomenology can be justified upon assuming the existence of
an underlying (possibly, high order) phase transition at lower temperatures.

12.1 Introduction

Understanding the kinetic and thermodynamic routes followed by a supercooled lig-
uid while becoming, through viscous slowdown, a glass well below the freezing point
still represents a major challenge in the chemical physics of condensed matter [1, 2].
In fact, in spite of countless efforts on both the theoretical and experimental sides,
many significant questions on the very nature of the glassy state still remain unan-
swered. Even if there is a widespread consensus on the thesis that the experimentally
observed glass transition is the macroscopic outcome of relaxation processes which,
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at low enough temperatures, become much slower than the experimental observation
time, it is not clear yet whether such a slowdown of the dynamics of the system
can be interpreted, following Kauzmann’s original discussion on this point [3], as
an indication of an underlying, possibly continuous, phase transition, which would
occur below the vitrification point 7. In addition, it is not clear whether what appears
— on the experimental time scale—as a kinetically arrested system may eventually
transform into a truly metastable state after a sufficiently long time. However, dis-
tinguishing between broken ergodicity and metastability is not an easy task on the
operational side and both laboratory and numerical experiments give ambiguous
indications on this point [4—10].

Moreover, other relevant questions remain open, one of which concerns the sur-
mised existence of a liquid-liquid phase transition which would be undergone by
deeply supercooled metastable water [11-16] and the very possibility of prolonging
the associated coexistence line well below the homogeneous nucleation tempera-
ture, so as to verify whether it eventually merges with the coexistence line between
the experimentally observed low-density and high-density amorphous phases of
water [17, 18].

The focus of this note is on a phenomenon, intimately associated with the glass
transition, that was originally observed and described by Kovacs [19]. This phe-
nomenon gives useful information on the volumetric time evolution of a glass-
forming liquid, which has been originally driven out of equilibrium. The experimental
protocol implemented by Kovacs entails three stages: (i) a thermodynamically stable
liquid, formerly equilibrated at a temperature T;, is quenched, at a fixed pressure,
to a temperature Ty, not too far below Ty, in such a way that some internal degrees
of freedom fall out of equilibrium with the thermal bath; (ii) the system is then left
to age for some time, which, however, is not long enough for it to reach a condi-
tion of full thermal equilibrium; (iii) the temperature is finally raised to a value T¢,
intermediate between T; and 7. One can then observe the irreversible evolution of
the system as it relaxes from the preset out-of-equilibrium condition at T = T to an
asymptotic one of metastable equilibrium at 7 = T;. In particular, the way in which
the volume of the sample changes with time exhibits a “memory” effect in that it
is found to depend in a non trivial way on the thermal history of the material. In
fact, if the final temperature is not too high, the system starts expanding irreversibly
to a volume which, after overshooting the equilibrium value at 7%, further increases
up to a maximum value that is lower (and reached later) the higher the quenching
temperature 7. Thereafter, the system progressively contracts until it regains its
equilibrium volume at 7 = 77 [20]. The nonmonotic behaviour of the volume and
the resulting maximum imply that the values of pressure, temperature, and volume
are not sufficient to identify a unique (nonequilibrium) state of the material: in fact,
under the conditions outlined above, for assigned values of such three variables, the
system can be actually observed in two different “states”, corresponding to different
stages of the dynamical evolution of the material towards metastable equilibrium.

The Kovacs effect, originally observed in a polymeric substance (polyvinyl
acetate), has been observed in a variety of glassy materials. As such, it has been
the topic of many experimental and theoretical investigations. In more recent times
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Angell and coworkers [21] discussed the phenomenon in the framework of the volu-
metric behaviour of glass formers in nonergodic regimes, with specific reference to
nonlinear relaxation and associated memory effects. Mossa and Sciortino [20] per-
formed molecular dynamics simulations of a model of ortho-terphenyl (OTP) which
revealed some fine details of the dynamics of the phenomenon that are not accessi-
ble to laboratory experiments; they also performed an analysis of the properties of
the potential energy landscapes explored by the system during the relaxation pro-
cess. A theoretical interpretation of these results was later attempted by Bouchbinder
and Langer [22], who resorted to a description of the system based on (separable)
configurational and kinetic-vibrational subsystems.

The aim of this note is to illustrate a simple macroscopic model which can be
used to describe the dynamic evolution and, correspondingly, the thermodynamic
behaviour of a system along the lines traced by Kovacs with its experimental protocol.
We shall also discuss the implications of the proposed model as to some aspects of
the thermodynamic relation between glasses and metastable liquids.

12.2 Kovacs Effect in Ortho-Terphenyl

As is well known, the glass transition does not occur at a well defined temperature
but, rather, over a range of temperatures across which, depending on the time scale
of the experiment, a number of internal degrees of freedom of the system become de
facto arrested. An indirect measure of the effective number of energetically active
degrees of freedom over the experimental time scale is given by the isobaric specific
heat which, contextually, exhibits a rather sharp drop across T,. Correspondingly,
cusp discontinuities show up in the thermal behaviour of the extensive parameters.
However, no latent heat is released which implies that the entropy is continuous
across the glass transition.

In the following we shall use OTP as a reference material for our discussion of
the Kovacs effect. Liquid OTP can be easily supercooled below its freezing/melting
temperature (T, = 329.35 K), down to the glass transition point that is located at
a relatively high temperature (7, ~ 247 K). In addition, the glass can be slowly
reheated and restored to the metastable liquid phase; this is possible because the
homogeneous nucleation temperature (73) of this material is lower than 7,. Chang
and Bestul used adiabatic calorimetry to measure the heat capacities of liquid, glassy
and crystalline OTP at ambient pressure [23]. These data are plotted in Fig. 12.1.
The heat capacities of both liquid and crystalline OTP are found to be nearly linear
functions of the temperature. Moreover, the heat capacity of glassy OTP (T' < T)
is only slightly higher (1.5-2%) than that of the crystal, a difference that is not
resolved on the scale of the plot displayed in Fig. 12.1. As noted above, the glass
transition is signalled by the abrupt drop of the specific heat; correspondingly, a cusp
discontinuity shows up in the molar volume of OTP [24], that is plotted in the upper
panel of Fig. 12.2.



142 F. Aliotta et al.

400
350

300 A

250 A

C_(J'mol™K")

200 -

T 10° T T
g 200 220 240
T(K)

200 220 240 260 280 300 320
T (K)

150

Fig. 12.1 Isobaric molar specific heat of ortho-terphenyl plotted plotted as a function of the tem-
perature below the freezing/melting point at typical modulation angular frequencies (~10~! Hz).
Continuous red line: supercooled-liquid branch (linear fit of the experimental data [23]); dash-dotted
red line: linear extrapolation of the supercooled-liquid data below the glass transition point; con-
tinuous blue line: solid branch (linear fit of the experimental data [23]); dashed red line: crossover
between the liquid and glassy branches modelled through Eq. 12.1 and using the relaxation time for
slow processes displayed in the inset (see text); dotted red line: typical crossover between the glassy
and liquid branches on fast heating the partially aged glass; dash-dotted black line: specific heat of
the glass obtained after quenching the metastable fluid at 7 = Tg; continuous black line: effective
specific heat of the quenched and partially aged glass with an associated fictive temperature Tg < Ty
(see text). The vertical black line marks the glass transition point (7, = 247 K)

When a system, which was formerly at thermodynamic equilibrium, is cooled,
it will start relaxing towards a new equilibrium condition, a process which implies
a redistribution of the internal energy among all the degrees of freedom as well
as a variety of local and global structural rearrangements over distances and times
which can be very long. If the time window of the experimental observation is fixed,
only the motions which take place over shorter times will be able to relax. Instead,
slower motions will appear somewhat frozen in a state corresponding to that of the
system at equilibrium at the initial temperature. Of course, the location of a temporal
“boundary” between frozen and active motions depends on the experimental time
window. This is the reason why the experimental glass transition temperature cannot
be defined in an unambiguous way.

In order to take explicitly into account this crucial aspect, we assumed that the
relaxation of the temperature-dependent molar specific heat of our model system, as
observed in a typical differential scanning calorimetry experiment, can be represented
by the expression [25, 26]:

cry -

1+ jot(T) ’ (12.1y

Cp(T; w) =Re | C(T) +
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Fig. 12.2 Upper panel: molar volume of ortho-terphenyl plotted as a function of the temperature
below the freezing point at ambient pressure. Red continuous line: supercooled liquid; red dash-
dotted line: linear extrapolation of the supercooled-liquid data below the glass transition point; black
continuous line: glass; blue dashed line: molar volume of the stable phase nucleated by metastable
liquid OTP upon spontaneous freezing at adiabatic-isobaric (i.e., isoenthalpic) conditions. The cusp
singularity at Tyolig & 280 K marks the boundary between two different outcomes of the irreversible
transition eventually undergone by supercooled liquid OTP: for T > Tiqjia the nucleated phase is
a solid-liquid mixture at the freezing/melting temperature 7y, whereas for lower temperatures the
equilibrium phase is a pure crystalline solid whose temperature decreases with (while still keeping
higher than) that of the parent liquid, and whose volume is correspondingly larger than that of
the solid (blue continuous line) at 7y, (for more details see [27]). Lower panel: temperature of
the asymptotic metastable phase to which the liquid, originally undercooled to a temperature 7,
would relax at isoenthalpic conditions (black continuous line); for graphical convenience, we also
plot the temperature of the metastable supercooled liquid as a red line—the dashed part being the
linear extrapolation below T}, of the higher-temperature experimental data—which, by construction,
coincides with the first quadrant bisector; the green continuous line (also expanded in the inset)
represents the temperature Teq of the metastable state that would be reached asymptotically by the
glass as calculated through Eq. (12.4) in the text. The two black vertical lines mark the temperatures
T and Tiolig, respectively
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where Cg)(T) and Cfrf)(T) are the isobaric specific heats of the liquid and of the
crystal, respectively, t(7') is the (temperature dependent) relaxation time of the one
single slow process which characterizes the kinetics of the model, » = 277 1is the
reverse of the experimental sampling time f,,, and j is the imaginary unit. The inverse
Fourier transformation of Eq. (12.1) leads to the following time dependence of the
isobaric specific heat at a given temperature 7' [25]:

Cr(Ti1) = COT) + [CS)(T) - cﬁ?m] [1 — e—ﬁ] . (12.2)

The liquid and crystal specific heats show up in the above equations as the long-time
(zero-frequency) and short-time (infinite-frequency) values of Cp(T'), respectively.

To be more realistic one should actually consider a distribution of relaxation times,
whose widths would also depend on the temperature, as well as a more plausible
model for the complex susceptibility of the system. However, here we are not as
much interested in reproducing the experimental data for OTP in a detailed and
quantitative way; in fact, we just want to show that the effect originally observed
by Kovacs is the natural outcome of a relaxation process occurring in the system,
even in the oversimplified case in which this process is being parametrized with one
single relaxation time only. As for its dependence on the temperature, we adopted
an Arrhenius-like expression: t(7) = 19 exp(AE/kpT), and adjusted the values
of the two free parameters so as to obtain a rough match with the experimental
values reported for OTP in [10]. We also assumed that the relaxation times of the
fast processes are much shorter than the observation time in the experiment under
consideration. The resulting behaviour of the specific heat across the glass transition
region is displayed for a typical angular frequency in Fig. 12.1, whose inset shows
the relaxation time that we plugged into Eq. (12.1).

As already noted, when a system, which has previously attained thermodynamic
equilibrium at a temperature very close to Ty, is rapidly cooled to a lower temperature,
fast motions rapidly equilibrate in the new thermal state, whereas slow motions
remain substantially “frozen” in the configurational state that the system was in at
T = T,. Hence, we can estimate the “effective” specific heat of the quenched fluid as:

Csmr) ~ M) + [Py — ). (123)

where the term in square brackets on the r.h.s. of Eq. (12.3) is the jump observed
in the specific heat of the system at the glass transition point, which approximately
quantifies the “hidden” contribution to C ff“)(T) that is not resolved by calorimet-
ric measurements on the time scale of the experiment. The statement embodied in
Eq. (12.3) conveys an information analogous to that which emerges from the thermal
behaviour of the molar volume of the vitrified system; in fact, the experimental data
for v (T') (see Fig. 12.2) can be reproduced rather accurately by the expression:

ve(T) ~ ve(T) + [i(Ty) — ve(Tp)] (12.4)
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where vy, v, and v, are the molar volumes of supercooled liquid, glass, and crystal,
respectively. Hence, as already noted before [28], a system which has undergone a
dynamical arrest at 7, and which has been then quenched to a lower temperature
T, can be characterized by two temperatures: the actual quenching temperature and
an auxiliary temperature (7,) at which the slow motions have de facto arrested over
the experimental time scale. Yet, as time goes on even such slow configurational
degrees of freedom start to relax, gradually driving the system towards a condition
of metastable equilibrium. As far as specific heat and volume are concerned, such
an asymptotic state will correspond to a point on the lines traced upon extrapolating
(with constant slope, at least for moderate amounts of supercooling) the laboratory
data of the liquid branch (see Figs. 12.1 and 12.2). Under adiabatic conditions, this
process towards equilibrium will necessarily imply a transfer of energy from the fast
motions to the slower ones and, correspondingly, a change of volume. According to
this description, the final temperature (7.q) will fall between the glass transition tem-
perature and the quenching temperature. In other words, the out-of-equilibrium glass,
obtained through the rapid quenching of the system, will irreversibly relax towards
a condition of metastable equilibrium characterized by a higher temperature, and—
at least, in the case of OTP—a higher density. We can calculate such intermediate
temperature by noting that, under the postulated adiabatic conditions, the enthalpies
of the initial and final “states” should be equal, i.e., H (Eff)(Tq) =H (D(Teq); hence, it
follows that:

T T
/ c™(TydT = / cO(T)dr, (12.5)
T

q Teq

where the melting/freezing temperature T;,, has been assumed as a common reference
temperature for evaluating the enthalpy changes of the system along two paths starting
from the unrelaxed and relaxed state, respectively. Obviously, the resulting final
equilibrium temperature T¢q is a function of the temperature 7, at which the system
had been previously quenched. As seen in the lower panel of Fig. 12.2, the system
undergoes a moderate heating upon irreversibly relaxing to a metastable condition.

We shall now explore what happens if the system is allowed to exchange energy
with an external thermostatic reservoir, which brings us into the conditions of the
experiment performed by Kovacs. We consider it useful to carry out our conceptual
experiment using two different protocols, the second of which complies more closely
with Kovacs’ indications.

We first assume that liquid OTP has been equilibrated down to the ordinary vit-
rification threshold. We then imagine to cool rapidly the system from 7, = 247 K
to a lower temperature, say T, = 198.5K. As a result, the system contracts and
its molar volume decreases to the value véA), corresponding to point A on the line
vo(T) displayed in Fig.12.3. Let the system now exchange energy with the ther-
mal reservoir at the quenching temperature for a time (Zyging) long enough for its
configurational state to change, but nevertheless shorter for the system to reach
equilibrium. In order to keep temperatures within a range compatible with the avail-
able experimental data for OTP, we chose #,ging = 107 s. While relaxing at constant
pressure, the system contracts further. Correspondingly, the isobaric specific heat
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changes according to Eq. (12.2). After the prescribed time has elapsed, the iso-
baric specific heat, calculated through Eq. (12.2), has attained the (larger) value
Cp(Ty; taging) = 295.8] mol 'K, Following the same line of thought illustrated
before on discussing Eq. (12.3), we can infer the “fictive” temperature (Tg) at which
the system would have effectively deviated from the metastable-liquid branch, had
it been cooled at a slower rate than that leading to vitrification at 247 K. Coherently
with the assumption underlying Eq. (12.3), we write:

Cr(Ty; tung) ~ CF' (T + [ CP (T - €' (T (12.6)

Equation (12.6) allows us to determine the fictive temperature (T"g ~ 230 K) at which
the liquid-to-solid jump of the isobaric specific heat is such that the value derived
from Eq. (12.6) is equal to that provided by Eq. (12.2) for T = T and t = f,gjne.
Note that, for temperatures lower than Ty, the specific heat of the metastable liquid
used in Eq. (12.6) was estimated through a linear extrapolation of the experimental
data. The state of this partially relaxed glass—whose volume, after quenching and
aging, has so far dropped to the value véB) (corresponding to point B in Fig. 12.3)—is
equivalent to that which would be produced upon rapidly cooling a liquid whose
slow dynamics has arrested at 230 K (instead than at 247 K). This latter statement
is crucial for explaining the outcome of Kovacs’ experiment, whose third and final
stage consists in heating the system to a temperature 7t, intermediate between T and
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Fig. 12.3 Modified Kovacs’ protocol (see text): the sample is equilibrated at 7, and then rapidly
cooled down to 198.5 K: the continuous red line is the supercooled liquid line (linearly extrapolated
below Ty); the dashed black line represents the molar volume under the above condition and the
solid black circle labelled A marks the molar volume attained by the system after quenching; the
solid black circle labelled B represents the molar volume achieved by the partially aged system.
The continuous black line represents the glass branch that would be followed by the system with a
fictive temperature corresponding to the intersection point with the liquid branch. Experiment #1:
the sample at B is rapidly heated to 240 K; the blue circles and the blue arrow indicate the time
evolution of the molar volume. The blue continuous line represents the glass branch with fictive
temperature 7 = 240 K. Experiment #2: the sample at B is rapidly heated to 220 K; the green
circles and the green arrow indicate the time evolution of the molar volume. The green continuous
line represents the glass branch with fictive temperature 7 = 220 K
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T,. In fact, we imagine that, as soon as the time ¢ = f,4,; has elapsed, the system is
immediately coupled with another thermostat whose temperature is 7¢ and then left
free to relax until (metastable) equilibrium has been eventually reached.

We shall now investigate the dynamical behaviour of the system, with specific
regard to the way in which the volume changes with time, when partially aged
glassy OTP is heated to different temperatures from similarly prepared samples
(i.e., samples quenched to the same temperature and aged for the same time). In
this way, the outcome of the heating procedure will not be influenced by differing
initial conditions of the material. In fact, the states of, say, equally aged samples are
generally different at different quenching temperatures because the relaxation times
of the system depend on the temperature.

We start inspecting the volumetric behaviour of the system when the final tem-
perature is higher than the fictive temperature ]~‘g, while being lower than T, (see
Fig. 12.3). Let us choose Tt = 240 K. In the short-time regime, only the fast degrees
of freedom of the system react to the modified thermal condition; hence, the volume
starts increasing from the value v(gB), closely following, as the system warms up,

the glass line vy (T'; Tg) that intercepts the supercooled-liquid branch at T = Tg. As
soon as the system approaches and eventually surpasses the vitrification threshold,
the slower configurational degrees of freedom start relaxing as well. As a result, the
volume keeps growing monotonically, while departing from the glass line, until the
system has eventually equilibrated at the prescribed temperature.

Let us now set the final temperature, at which the system——previously prepared
in the same initial state B as in the thought experiment discussed above—is to be
heated, to a value lower than T"g, say Ty = 220 K: in such conditions (see Fig. 12.3),
the molar volume of the partially-aged glass at 7t turns out to be larger than the molar
volume of the metastable liquid (extrapolated) at T = 220 K. Hence, even in this
case we would again observe an expansion of the system at short times: the volume
would initially increase following the glass line which departs from the metastable
branch at the fictive temperature calculated above. However, as soon as the slow
configurational degrees of freedom become active, the molar volume would start
shrinking, after the initial rise, so as to approach the lower value which corresponds
to the asymptotic equilibrium state at the prescribed final temperature.

Hence, in this second thought experiment the molar volume will exhibit a non-
monotonic time behaviour. The resulting maximum is the distinguishing feature
that was originally observed by Kovacs [19]. In the present scheme, as is manifest
from Fig. 12.3, on approaching the equilibrium value the volume passes through a
maximum only if the final temperature at which the system is heated is lower than
the fictive temperature 7,. Moreover, the difference between the maximum value
attained by the molar volume and the asymptotic equilibrium value turns out to be
larger the larger the difference (Tg —Tp).

The experimental protocol discussed above partially differs from that originally
designed by Kovacs. In fact, this author reported on the time behaviour of the vol-
ume of a system which was heated to one single temperature Tt < T, from several
lower temperatures at which the system had been previously cooled from the same
equilibrium state at a temperature 7; > T,. Before heating the system, the quenched



148 F. Aliotta et al.

liquid was left to age for a variable timespan: the lower the quenching temperature
was, the longer the aging time would be.

In order to “simulate” Kovacs’ protocol, we proceed as before, assuming that the
system has been cooled from 7 to a temperature 7 in the range 190-210 K. The just
formed glass is then allowed to relax but for not so long that it may reach equilibrium,
say for a time of the order of 107 s. Correspondingly, the volume of the aged glass
decreases from the value attained soon after quenching, whereas the specific heat
increases. Using Eq. (12.2), we calculate the value of the specific heat pertaining to
this new state, i.e., Cp(Ty; taging), Which, through Eq. (12.6), allows us to infer the
fictive temperature Tg. Once we know this datum, we can calculate the value of the
molar volume of the partially aged glass which, in our picture, will be equal to the
molar volume at T = T of a glass whose dynamics has arrested at 7=T,.

We now imagine to put the system in contact with a thermostat at the (higher)
temperature 7y = 230 K; such a re-heating cycle is repeated a number of times, with
the same target temperature but starting from different quenching temperatures in
the cited range. In a rather short time (let us say, largely overestimating it, 10 s), fast
motions will have fully relaxed whereas the slow degrees of freedom are still frozen.
As soon as fast relaxations have occurred, both the specific heat and the molar volume
of the glass have contextually increased to the values which correspond to the higher
temperature 7 = T on the glass line, departing from the metastable liquid branch at
T = T We now use Eq. (12.6), where C(C) has been substituted with Cp (Ty; faging)»
to estimate the value attained by the spemﬁc heat once the system has been left free to
relax for other 10 s. Following the same procedure outlined above, we then calculate
the new fictive temperature corresponding to the updated value of the specific heat at
t = 20 s, and the resulting value of the molar volume. Upon iterating this procedure,
we can trace, with steps of 10 s each, the time evolution of the molar volume of
glassy OTP when it has been heated to Tt from different quenching temperatures.

The results predicted by our simplified model are shown in Fig. 12.4 and show
that, coherently with what has been observed in both real and numerical experiments
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[19, 20], the molar volume of quenched OTP reaches its asymptotic equilibrium
value vi(Tf) either rising monotonically from the value of the partially aged glass or
passing through a maximum at intermediate times, after having initially overshooted
vi(Ty). In the present scheme the occurrence of one or the other alternative behaviour
critically depends on whether the final temperature 7} is higher or lower than the
temperature Tx at which the extrapolated supercooled-liquid line and the effective
glass line, onto which the representative state of the glass has “shifted” after the
initial aging, cross each other. In both scenarios, the molar volume of the heated glass
will initially jump to a value larger than its initial value after quenching and aging.
However, if Tt > Tx the specific heat of the rapidly heated glass initially overshoots
the value corresponding to the metastable liquid at the same temperature; from there
on, the specific heat will decrease with time and this implies a gradual increase of
the fictive glass temperature that is calculated at each step and, contextually, of the
molar volume of the system. On the other side, if 7t < Tx the specific heat attains
a value that is smaller than that corresponding to the metastable liquid at the same
final temperature; hence, it will keep on growing with time, which implies that the
fictive glass temperature decreases as also does the molar volume.

Following the above discussion we can also interpret other aspects of the glass phe-
nomenology. Imagine, for instance, that we perform a differential scanning calorime-
try measurement on a glass which has been previously aged at low temperatures, in
such a way that the rate at which the temperature is being changed corresponds to
the time scale over which slow motions relax at 7 = T;. Because of the aging, slow
motions are initially equilibrated at a fictive temperature lower than 7. Hence, when
the temperature approaches Ty, an excess of heat from the bath (with respect to the
enthalpy reduction originally undergone by the material upon quenching) is required
to fully equilibrate the system, thus producing the “endothermic overshoot” that is
typically observed in the temperature evolution of the isobaric specific heat.

12.3 Concluding Remarks

In this note we have revisited the Kovacs effect in a simplified picture of the relaxation
dynamics underpinning the glass transition. In particular, we have assumed that the
time dependence of the isobaric specific heat can be mimicked using just one relax-
ation time and that fast motions have fully and systematically relaxed over the time
step of our calculations. Notwithstanding such rough approximations, the resulting
model is found to reproduce correctly, on a qualitative basis, the main features of
Kovacs’ experiment and to convey some useful insight on the phenomenology of the
glass transition.

Our analysis is based on the premise that the glass obtained through the rapid
cooling of a supercooled liquid is an out-of-equilibrium system which, however,
may asymptotically evolve towards a metastable phase provided it is given enough
time to relax. We assume that such a metastable phase cannot be distinguished from
that of the “parent” supercooled liquid at a given temperature. The relaxation process
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undergone by the glass, named “aging”, is associated with a gradual change of the
molar volume and, correspondingly, of the structural configuration of the material.
In this perspective, distinguishing a long-aged glass from a metastable liquid may
reduce to a merely semantic question, with obvious consequences on the hypothesis
of an underlying (thermodynamic) glass transition. In fact, the apparent differences
between the two structural conditions of the material emerge at the crossover temper-
ature at which the experimental time scale becomes shorter than the configurational
relaxation time of the system.

However, the postulated equivalence between the asymptotically “equilibrated”
glass and the corresponding metastable liquid may be disproved by the existence of a
threshold below which the nucleation of the stable crystalline phase can no longer be
avoided. In this respect, a candidate threshold would be the Kauzmann temperature
[3] at which the entropies of the metastable liquid and of the thermodynamically
stable crystalline solid become equal. However, it has been argued that the hypothet-
ical coexistence of a liquid and a solid phase would not be possible at a temperature
lower than the equilibrium coexistence temperature [27, 29]. In fact, whenever a
supercooled liquid escapes from metastability and freezes, it does so irreversibly
and adiabatically with an increase of both entropy and temperature as a consequence
of the release of heat. As a result, the transition towards stable equilibrium takes place
exothermically and the system warms up while solidifying. Hence, it does not make
much sense to compare the entropies of the two phases at the same temperature.

The spontaneous freezing of a a metastable liquid is also associated with a change
of volume. The spontaneous formation of a finite solid embryo produces a relatively
large density fluctuation which propagates at low frequency, while dissipating, across
the whole sample [30]. This also explains why metastable equilibrium is a robust
structural condition against fluctuations: even when a thermodynamic fluctuation
brings, locally, the system close to the boundary between the metastable and stable
equilibrium basins in phase space, dissipative processes are able to back reflect the
system trajectory towards the metastable basin.

On cooling, a crossover temperature can be eventually reached at which the vol-
ume of the metastable system is equal to the volume of the stable phase that is formed
under adiabatic conditions [27]. This is what happens to OTP, as indicated in the upper
panel of Fig. 12.2. At such a temperature, the structural re-arrangement which drives
the system towards the stable configuration is just a local process which does not
need to propagate in order to be completed. In such conditions, local fluctuations
are not dissipated away and the local transition, which results in a local increase of
the temperature, immediately produces a further fluctuation in the adjacent volumes
which can propagate rapidly (over a time scale comparable with the time required for
the local rearrangement of a few molecules) across the whole sample. This argument
is a different way for saying that, at that temperature, the energetic barrier between
metastable and stable equilibrium conditions likely disappears. In this perspective,
the observation that in water the volume crossover takes place at a temperature that,
at normal pressure, is very close to the widely accepted value of the homogeneous
nucleation temperature may not be a mere coincidence [27]. In water, this tempera-
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ture is definitely higher than the experimental glass-transition temperature and this
can explain why metastable liquid water cannot exist at temperatures close to 7.

Following our argumentation, one would be led to deduce that the existence in
water of a crossover temperature at which the transition between the metastable
liquid phase and the stable crystalline phase becomes both adiabatic and isochoric
strongly supports the idea that any observed amorphous phase observed at very low
temperature, which may well appear stable over the observation time scale, has
no thermodynamic counterpart and can only be described in kinetic terms. On the
contrary, in the case of OTP the volume crossover occurs at a temperature lower
than the experimental T,. Such a difference in the behaviour of glass-forming liquids
as far as the relation between 7, and the homogeneous nucleation temperature is
concerned, has been already noted several years ago [31].

Summing up, the nature of the glass obtained when a liquid is rapidly cooled to
low temperatures, over times shorter than those required for a complete structural
rearrangement of the system, depends on the relation existing between the state
which has been produced and the metastability basin of the system. For moderate
supercoolings, the achieved state is not disconnected from the basin of the metastable
liquid phase: hence, the glass, while being out of equilibrium, might still evolve, in
principle, towards metastability. However, when quenched at very low temperatures,
the system may be driven to a state which is no longer accessible from a metastable
disordered phase. In such conditions, should it be able to rearrange itself, its unique,
ultimate fate would be that of transforming into a stable solid.
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Chapter 13 ®)
Structural Properties of Ionic Aqueous oo
Solutions

P. Gallo, M. Martin Conde, D. Corradini, P. Pugliese and M. Rovere

Abstract On the occasion of the 90th birthday of Norman March, we present here a
short review of results on the structural properties of ionic aqueous solutions that we
obtained in recent years by computer simulation. In particular we compare structural
properties of alkali halides NaCl(aq), KCl(aq), Kl(aq) to account for the role of
cations and anions of different size. The modifications of the hydration shells and
the changes in the water structure induced by the presence of the ions are investigated.
It is found that the oxygen—oxygen structure can be strongly distorted at high ionic
concentration. The hydrogen bonding however is preserved at all concentrations and
temperatures. The relation between the perturbation induced by the ions and the
different high density and low density liquid local order of water is also discussed.

13.1 Introduction

The molecular dynamics experiments of Rahman and Stillinger, carried out on an assembly
of 216 molecules over a temperature range, start from the observation that there is a ten-
dency when water molecules interact towards formation of linear hydrogen bonds between
neighbours disposed in space in a tetrahedral coordination pattern.

N. H. March and M. P. Tosi, Atomic Dynamics in Liquids, (Dover, New York, 1976) [1].

In their book of 1976, Norman March and Mario Tosi describe the first pioneering
simulation work on liquid water performed by Rahman and Stillinger [2, 3]. They
underline in a short phrase that the main idea of the simulation was to reproduce
with a simple potential the hydrogen bond (HB) network of water. The HB network
characterizes not only the ice structure but also the short range order in liquid water.
A good model for water must reproduce the tetrahedrally coordinated network in
order to predict its properties.
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Water is involved in almost all the natural phenomena in biology and geology
and in a large amount of technological applications. Since the 70s a lot of progress
has been done in the study of this system in all its phases. Experimental neutron
scattering and various spectroscopic techniques made available a large amount of
data on water in a wide range of temperature and pressure. The phase diagram of
water is now well known, but there are still a number of open problems related
to its anomalous behaviour [4]. The anomalies are more evidenced under extreme
conditions of temperature and pressure where however it is more difficult to perform
experiments to reach a deep understanding of the phenomena.

Since the Rahman and Stillinger model, the ST2 potential, a number of different
potentials for water have been developed and computer simulation has shown to be
an essential tool both for the interpretation of experiments and the developing of
theoretical approaches.

In many natural phenomena and applications in chemistry, biology and environ-
mental science, it is crucial to understand the role of water as a solvent. In this respect
the basic and more common systems are the solutes with dissolved ions. As said at
the beginning the phenomena in water are supposed to be dominated by the presence
of the HB network so the main issue is to understand how the presence of the ions
could perturb the water network and aqueous solutions of salts have been matter of
investigation by experiments [5—8] and computer simulations [9-26].

The concept of Hofmeister series has been widely used in the interpretation of
the properties of ionic solutions [27, 28], like alkali halides. In this classification
scheme anions and cations are ordered according to their properties of enhancing
(structure makers) or weakening (structure breakers) the HB network of water. The
idea is that structure makers will be strongly hydrated since they break the HB in the
surrounding water molecules and the rest of the water molecules can rearrange in an
ordered hydration structure. On the contrary, structure breaker ions interact weakly
with the water and induce a disordering in the network of water [29].

In recent years, however, this classification scheme in terms of structure makers
and structure breakers has been challenged with the idea that this simplified clas-
sification scheme of the ions does not take into account other effects like the ion
concentration and the different thermodynamic conditions. Recent evidences from
experiments and computer simulations indicate that ions perturb the water structure
beyond the first hydration shell with an effect similar to the application of pressure
on pure water [8, 25, 30].

The research about the anomalies of water has recently increased the interest in
the salt solutions in the supercooled region [7, 25, 31]. The anomalous behaviour
of water has recently been interpreted by considering water as a mixture of two
distinct group of molecules characterized by different arrangement of the HB network
[4]. The low density liquid (LDL) component would be characterized locally by a
stronger tetrahedral order, while the high density liquid (HDL) component would
have a broken, more disordered, HB structure. It is under discussion the effects of
the structure making/breaking ions on the HDL/LDL ordering in water.
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On the occasion of the 90th birthday of Norman March, we review here the results
that we obtained by studying the structural properties of ionic aqueous solutions by
means of computer simulation.

We recall in the next section the methodology. In the third section we present
the site radial distribution functions of water in the solutions compared with pure
water. In the fourth section we discuss the problem of the ionic hydration and the
modification that are induced in the structural properties of water. Last section is
devoted to the conclusions.

13.2 Model Potentials

As said above, there are a large number of potentials developed for water. In the
case of ionic solutions the ion-ion and water-ions interactions must be added. It is
obvious that the starting point must be a good model for water. Generally for computer
simulation purposes the potential must give enough good results for a number of
different properties and it must be simple enough to avoid large computational costs.

The results we present here were obtained using Molecular Dynamics (MD)
method. Water is described by the TIP4P site potential [32]. The molecule is repre-
sented by a four site rigid model with two hydrogen (H) sites with positive charge
of 0.52e¢. They are connected to the neutral oxygen (O) site, whose negative charge
is attributed to a slightly shifted (0.015nm) fourth site. The OH bond length is
0.09572 nm, the angle between the two bonds is § = 104.5°. The oxygen sites inter-
act with a Lennard—Jones potential, the other sites with the Coulomb forces. The
TIP4P water potential has been extensively used for studying water at ambient con-
ditions and upon cooling below the freezing point.

The ion-ion and the water sites-ions interactions were also modeled with the
combination of the Coulombic and the Lennard—Jones (LJ) potential

12 6
Ugp(r) = 2a9p + degg (Giﬂ) — (@> ) (13.1)
raﬂ ra/g ro,ﬁ

The Jensen and Jorgensen interaction parameters [33] were assumed for the LJ inter-

action of the ions. The ion-ion and the ion-water LJ parameters were calculated by
1/2

using the geometrical mixing rules £u5 = (£aa&pp) 2 and 0up = (0uaOup)

Details about the values of the parameters can be found in our previous work [25].
These parameters were found to reproduce very well the structural characteristics
and free energies of hydration of the ions.

In the case of KI(aq) we present recent preliminary calculations performed with the
use of the force field of Joung and Cheatham (JC) [19] combined with the TIP4P/2005
model for water. The TIP4P/2005 is a modification of the TIP4P potential introduced
by Abascal and Vega [34], it works very well in describing the properties of water
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at ambient temperature and upon cooling. The combination of the JC force field and
TIP4P/2005 has been recently successfully tested [26].

The simulations were performed at constant ambient pressure and different tem-
perature with the use of appropriate thermostats. Periodic boundary conditions were
applied. The interaction potentials were truncated at 0.9 = 1.0nm. The long range
electrostatic interactions were taken into account with the Ewald particle mesh
method. The equilibration time was of 20ns and the averages were calculated on
production runs of 30ns. The parallelized version of the GROMACS package has
been used [35].

13.3 Modifications of the Water Structure

We show in Fig. 13.1 the radial distribution functions (RDF) of the water oxygens in
solution of NaCl(aq) and KCl(aq) at increasing concentrations at 7 = 300K com-
pared with the O-O RDF of pure water (TTP4P model).

In the low concentration regime, the presence of ions does not perturb the short
range order of liquid water. At intermediate concentration (¢ = 1.36 mol/kg) the first
two shells are well defined. At the highest concentration instead there is evidence
of a considerable change. In KCl(aq) the second OO shell is not well defined and
in particular the first minimum almost disappears. In NaCl(aq) the second shell
collapses on the first and all the OO structure appears quite different with respect to
pure water, defined also as bulk water.

At variance with the O-O structure the goy (r) RDF of the solutions, shown in
Fig. 13.2, do not present significant changes with respect to bulk water. These results
indicate that at high concentration the HB network is still present but it is distorted
by the interaction with the ions.
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The changes in the second shell of the gop () with unbroken hydrogen bonds are
similar to the effects of an high pressure on the liquid water [25].

In the supercooled regime at 220 K, Fig. 13.3, the peaks of the gpo (r) are more well
defined for effect of the temperature and they are not changed by the ion interaction
at low concentration. At ¢ = 3.96 mol/kg the second shell is strongly distorted in
particular in the case of NaCl(aq). The gog(r) (not shown) are not modified by the
presence of the ions with respect to the bulk.

The combination of the changes in the second peak of the gpo(r) and the per-
sistence of the HB order is the signature of an incipient HDL phase of water. From
this point of view by assuming that the cations are dominating at high concentration,
in spite of the different classification of K* as structure breaker and Na™ as struc-
ture maker, both of them modify the O-O structure behind the first shell. This is in
agreement with recent experiments [7]. We will discuss more this point below.
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13.4 Hydration of Ions and Short Range Order

It is expected that the hydration of cations and anions have a strong effect on the
solutions. In Fig. 13.4 we present the cation-oxygen and the anion-oxygen RDF in
the case of NaCl(aq), KCl(aq) and Kl(aq) at the concentration of 0.67 mol/kg at
T =300K and 7 = 220K. It is evident the formation of well defined shells of
oxygens around the ions. The oxygen shells are closer to the cations as expected.

In KClI(aq) the potassium ions show a low hydration. The first K—O peak appears
lower and the first minimum broader with respect to the first peak and the first
minimum in KI(aq). The two shells of cations and anions in KCI(aq) are penetrating.
The possibility of exchanging molecules between the first and the second shell are
found in experiments [8] and also ab initio calculations on KCl(aq) [36].

The differences in the hydration shells of cations in KCl(aq) and KI(aq) indicate
the interplay between charge and steric effects in the solutions. The role of cations
and anions cannot simply been separated. The hydration of K™ is enhanced in Kl(aq)
by the presence of ™. Cations form more defined shells in KI(aq), where the [~ gives
a steric contribution in keeping the charge ordering. In KI(aq), as in NaCl(aq) the
anion-oxygen first peaks are exactly at the minimum of the cation-oxygen shells
indicating a good charge ordering.

Upon cooling similarities and differences between the solution properties are
preserved. It is evident that the first shell of cation-oxygen RDF become even more
rigid at T = 220K both in NaCl(aq) and KI(aq) in comparison with the KCl(aq).

It is relevant to explore now more in details the effect on water.

‘We show the three examples for NaCl(aq), KCl(aq) and KI(aq), that are represen-
tative of how the ions could be arranged in the water network.

By considering Figs. 13.5 and 13.6, the first Na—O shell appears on the left of the
0O-0 well separated from the Na—H shell. The CI-O and CI-H shells appear rigidly
shifted with respect to the O—O shells. These results seem indicate that the Na™ have
the tendency to stay out from the HB network, while the Cl~ ions instead could
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Fig. 13.5 Oxygen-oxygen,
anion-oxygen and
cation-oxygen RDF at
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Fig. 13.6 Oxygen-
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Fig. 13.7 Oxygen-oxygen,
anion-oxygen and
cation-oxygen RDF at
concentration of at

¢ = 3.96mol/kg and
temperature 7 = 300K for
NaCl(aq) (left panel),
KCl(aq) (central panel) and
Kl(aq) (right panel). Data on
NaCl(aq) and KCl(aq) from
Ref. [25]
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be inserted in the network of water eventually substituting the oxygens. This is in
agreement with recent computer simulation results on Nat and C1~ inclusion in ice
[37].

The gcio (r) and the g¢;y (r) are very similar in the three solutions, but in NaCl(aq)
and Kl(aq) the first peak is more rigid and well separated from the cation-oxygen
first peak. In any case the gpo(r) is unchanged as already seen in Fig. 13.1.

At the highest concentration instead we observe modifications of the gpo(r), as
can be seen in Fig. 13.7, while the gog (r), not shown, are very similar to the case
¢ = 0.67mol/kg.

The O-O second shell in the three solutions though the effect is less pronounced
in KCl(aq).

In NaCl(aq) the Na™ ions present at least three well defined shells and it seems
that they give the dominating effect. In KI(aq) the ions perturb the network of water
and the deformation of the O—O second shell is stronger than in KCI(aq) at the same
concentration. It seems that water at this concentration already at 7 = 300K shows
a prevalence of the HDL structure.

13.5 Conclusions

We presented a short review of the results of computer simulations on the structure of
ionic aqueous solutions. In particular we considered solutions of potassium halides
KCl, KI characterized by anions of different sizes and as consequence different
charge densities and compared also with the result for NaCl(aq) to test the effect of
changing the cation.

We focused in particular on the hydration of the ions and the effect on the structure
of water. In NaCl(aq) and Kl(aq) the hydration shells of the ions are well defined.
In KI(q) and NaCl(aq) a charge ordering at short range is also present. In KCl(aq)
the hydration shells are less well defined. It appears that in KI(aq) the there is an
interplay between steric effects due mainly to I~ and charge effects mainly due to
K.

With increasing concentration the second shell of the oxygen-oxygen RDF is
distorted. The short range order of the O-H however is almost unaffected from the
presence of ions. So the hydrogen bond network is perturbed in similar way as found
in water under pressure.

The changes in the region of the second shell of the oxygen-oxygen RDF are
interesting upon cooling or upon increasing concentration since they are related to
the presence of a liquid-liquid critical point as a terminal point of a coexistence
between LDL and HDL phases of water. Corradini et al. [23], and Corradini and
Gallo [31] found evidence of the liquid-liquid critical point in NaCl(aq).

Our study confirms that the traditional classification of ions as structure mak-
ing/breaking is not able to give a complete prediction of the way in which water
structure changes under the effect of ions. On the other hand, taking into account
that the ions could perturb water beyond the first shell in the study of ionic solutions
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is of relevant interest to understand the role of the different ions on the LDL/HDL
coexistence in water and the possible effect on the liquid-liquid transition.
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Chapter 14 ®)
Atomic Spectra Calculations for Fusion Gzt
Plasma Engineering Using a Solvable

Model Potential

M. E. Charro and L. M. Nieto

Dedicated to Professor N. H. March on the occasion of his 90th
birthday.

Abstract The analysis of the atomic spectra emitted by highly ionized atoms is a
field of extraordinary richness and a part of atomic physics with applications in astro-
physics, engineering, fusion plasma and materials research. Certain elements have
attracted considerable attention because they are useful for spectroscopic diagnostics
in fusion plasmas, where a prediction of the experimental spectra is required. Taking
into account this fact, the Relativistic Quantum Defect Orbital (RQDO) method has
been applied to calculate relevant atomic data, as transition rates for emission lines,
in a high number of atoms and ions. This formalism, unlike sophisticated and costly
self-consistent-field procedures, is a simple but reliable analytical method based on
exactly solvable model potentials, a type of problems that always attracted Profes-
sor March’s attention. The method has the great advantage of a low computational
cost, which is not increased as the atomic system becomes heavier. In this work, a
highlight of this method is presented, together with an overview of the main atomic
data obtained using it, which are useful in engineering for fusion plasma diagnostic.
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14.1 Introduction

Present-day magnetic fusion devices, especially tokamaks, can generate plasmas
with electron temperatures near 10keV, and future machines may even reach tem-
peratures of 25keV or more. This means that they can produce ions with very high
charge even from heavy elements. From the beginning, highly charged ions have
been an important component of magnetically confined plasmas, and their presence
has been highly advantageous for both plasma diagnostics and basic atomic physics
studies, and harmful for the operation of a given device, if present in large quantities.
The good and bad properties of highly charged ions derive from the fact that they
radiate when embedded in a sea of electrons. Partially ionized heavy elements radiate
profusely, mostly in the extreme ultraviolet wavelength range, while ions stripped
to a few electrons within a closed shell, radiate predominantly in the X-ray range.
This radiation can be used to diagnose the plasma conditions, such as the electron
temperature, electron density, ion temperature, ion transport and diffusion, and bulk
plasma motion. On the other hand, the radiation from highly charged ions contributes
to the overall power loss of the plasma: if the plasma contains too many heavy ions,
the associated radiative power loss can be severe and prevent ignition and burn. The
studies of plasma physics are also among the wide range of research interests of
Professor N. H. March, as can be seen in Refs. [1-9].

Highly charged ions play a crucial role in magnetic fusion plasmas given that
they are used for many diagnostic purposes in magnetic fusion research [10]. These
plasmas are excellent sources for producing highly charged ions and plenty of radia-
tion for learning their atomic properties. These studies include calibration of density
diagnostics, X-ray production by charge exchange, line identifications and accurate
wavelength measurements, and benchmark data for ionization balance calculations.
Studies of magnetic fusion plasmas also consume a large amount of atomic data,
especially in order to develop new spectral diagnostics. In this way, line identifi-
cation has been a diagnostic necessity in fusion research in order to identify the
impurities that are inadvertently released into the plasma as different heating sce-
narios are explored. Early work focused on the transition metals, such as titanium,
chromium, iron, and nickel, as well as on noble gases that could be admixed to the
plasma. Once the possibility was created to inject any type of material into the plasma
via laser injection, spectra of other metals were also investigated [11].

However, it is now clear that under conditions which prevail in low-density labo-
ratory tokamak plasmas (where collisional deexcitation of metastable states is rather
slow, leading to buildup of population of metastable levels), forbidden transitions,
i.e., electric quadrupole and magnetic dipole transitions, gain in intensity and can be
used to infer information about plasma temperature and dynamics. Forbidden lines
due to magnetic dipole and electric quadrupole transitions between fine-structure
levels of the ground and lower lying excited configurations of highly ionized atoms
have been used for diagnostic of laboratory plasmas related to fusion devices. For
those lines, fusion specialists need accurate atomic data, such as radiative transition
probabilities. To respond to this need, atomic physicists have put a great deal of effort
into computing (and sometimes measuring) the required data.
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To carry out those calculations, a number of ab initio codes are available, some of
them have proved to yield rather accurate transition probability data. However, most
of them are highly time-consuming and often infested with convergence problems.
As an alternative, semiempirical methods are widely recognized that, for this type of
studies, they are of a clear convenience given that combine reliability and simplicity.
In most of the semiempirical methods currently employed, which are quite often
derived from a modification of a hydrogen-like wave equation, the various interac-
tions are given a different weighting. Deviations from the Coulomb potential, often
classified as ‘penetration’ and ‘polarization’ (depending on the degree of overlap
between the active and passive electrons, in the context of electronic transitions)
may, at least to a reasonable extent, be accounted for by a model Hamiltonian that
contains a parameter related to the quantum defect. More specifically, the two above
effects seem to be adequately described in the relativistic quantum defect orbital
(RQDO) method [12, 13], which has been reformulated for the calculation of atomic
data for forbidden transitions [14].

The chapter is organized as follows. In the next section we will give a brief
overview of the main aspects of the RQDO method, followed by the extension of
this formalism to E2 transitions in Sect. 14.3. In Sect. 14.4, we illustrate how the use
of the systematic trend of the atomic data along an isoelectronic sequence allows
to predict data for new ions and to analyze the influence of the relativistic effect
for highly ionized atoms. Section 14.5 is dedicated to show the calculated spectra of
some of the ions with most interest for plasma diagnostic in fusion devices. Some
concluding remarks put the end to the chapter.

14.2 The Relativistic Quantum Defect Orbital Method

The relativistic formulation of the quantum defect orbital formalism, as proposed by
Karwowski and Martin [12, 13], was based on the decoupling of the Dirac second-
order equation, and the interpretation of the resulting solutions, that, unlike previous
models based on the quantum defect, provides exact eigenfunctions of a model Hamil-
tonian. The resulting orbitals are also valid in the core region retaining approximate
core-valence orthogonality.

For a Coulomb potential V(r) = —Z/r, after the elimination of the spin and
angular variables, the relevant radial part of the Dirac equation reads as follows in
atomic units (used throughout the whole chapter)

[ d? s(s:l:l)_22(1+a2E)

) 2 . }ﬁki =EQ+a’E)p™, (14.1)

where ¢, " and ¢~ are related to the small and large components of the Dirac wave
functions, E is the difference between the total and the rest energy of the electron, k
is the relativistic angular momentum quantum number

k=4 +1/2), where j=2¢+1/2, (14.2)
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with £ the orbital quantum number, « is the fine structure constant, and

a’Z?

Two interpretations may be given to the solutions of equation (14.1): first, they
give us the two components of the relativistic wave function which is solution of the
corresponding Dirac equation; second, they give us two solutions (corresponding to k
and —k) of a single scalar equation for a scalar (quasirelativistic) wave function ¥;. A
quasirelativistic theory is not only considerably simpler than the relativistic one, but,
most important, it closely resembles the Schrodinger formulation. As a consequence,
one may rather easily implement the quasirelativistic formalism in the majority of the
methods being developed for the nonrelativistic theory. Equation (14.1) is formally
very similar to the radial hydrogenic equation and passes into it in a trivial manner
in the nonrelativistic limit of « — 0.

The quantum defect orbitals (QDO) are solutions of the Schrodinger equation

d2 X(X + 1) 2Zmz
[_275*‘ 2 rr]d%QD==2EQD¢%QD, (14.4)

where Z,,, is the nuclear charge on the active electron at large r and

x=0—38+c, (14.5)

being § the so-called quantum defect, and ¢ an integer chosen to ensure the correct
number of nodes and the normalization of the radial wave function. The eigenvalue
E°P in Eq.(14.4) depends only on the noninteger part of x, being independent on
c. The quantum defect § is empirically obtained from the following expression:

ZZ

0D __ px __ net
E?° — F =305 (14.6)

where E* is the experimental energy and n is the principal quantum number of
the nonrelativistic theory. A straightforward observation of Egs.(14.1) and (14.4)
clearly prove that the formal mathematical structures of the QDO theory and the
scalar relativistic theory are the same. This formal similarity [12, 13] allowed us
to reinterpret the QDO theory so that it would account for the major part of the
relativistic effects.

Analogously to the nonrelativistic case shown in Eq. (14.4), the relativistic quan-
tum defect orbital (RQDO) equation is written as follows

> A+ 2Z
|: 4 ( + ) _ neti| kaD — 2€RD1//kRD, (147)

dr? r? r
where Z; , depends on quantities already defined

Z' = Zpe(1 + &> EY), (14.8)

net
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and the parameter A is such that

—-1-4 hen j = ¢+ 1/2,
A lS +c wen]. +1/ (14.9)
—s—&8+c¢ whenj=1¢-—1/2.

We have just introduced the so-called relativistic quantum defect §', a key element
of the present method, which will be determined empirically from the experimental
energy E* using the expression [13]

z? 1 +a?E*/2
_ e _ e ¥ B2 (14.10)
27— 8 (I +a2E¥)?
In the last equation the parameter 7 is defined as
n=n—lkl+Is|, (14.11)

in terms of quantities already introduced.

It should be stressed that this formulation is ‘exact’ in the sense that it is equivalent
to a four-component formulation based on the standard first-order form of the Dirac
equation. All matrix elements, in particular the transition moments, may be expressed
in a simple way, using the solutions of the second-order equation. A set of recurrent
formulas which are fulfilled by the radial integrals [15] makes the formalism to be
very simple and compact. Karwowski and Martin [12] have remarked that the rela-
tivistic density distribution approximates very well the exact one at large values of
r. At small distances, the quality of the density deteriorates, as happens when the
nonrelativistic QDO densities are compared with the exact nonrelativistic ones. For-
tunately, the consequences of this drawback are very seldom reflected in the quality
of the QDO and RQDO transition probabilities, because the strongest contribution
to radial matrix elements comes, in most cases, from large radial distances.

The most important difference between RQDO and QDO equations is the explicit
dependence of the former on the total angular momentum quantum number k. As
a consequence, values of the relativistic quantum defect are determined from fine
structure energies rather than from their centers of gravity. The corresponding rela-
tivistic quantum defect orbitals are different for each component of a multiplet and,
if ¢ = 0, they retain the nodal structure of the large components of the hydrogenic
Dirac wave function.

14.3 Extension of RQDO Method to E2 Transitions

Let us consider now electric multipole radiation. The operator responsible for this
radiation is the electric 25 -pole moment, introduced by the general expression
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® e 4m \"
0 :lek<2$+l> Yl (14.12)

Using the Racah tensor C,(,f ), we have

0© =e) ric. (14.13)

In the particular case & = 2, the transitions take place via electric quadrupole
mechanism, E£2. In this context, the electric quadrupole line strength for a transition
between two states within the L SJ-coupling (which is the coupling scheme followed
throughout this work), in the notation of the classical book by Condon and Shortley
[16], is given by the equation

2)
Snlj,n’l’j/

2
=3l 0% || oI, (14.14)

where the matrix-elements have the form

(@] | 09 [l 'J') =27 + D@J' + DW(SIL'2; LI)aL || QP || &' L)Sss.

(14.15)

The Kronecker delta 855 appears because the electric n-pole operators do not

depend on spin, and W (SJ L”rime2; L'J’) are the Racah W-coefficients, which can
be described in terms of Wigner’s 6-j symbols as

(ST L
N T 7y — (1\SHIHL
W(SJL'2; LJ) = (—1) {2L/ J,}. (14.16)
Now, we define a line factor Rj;,. by
Riine(SLJ, S'L'J)y = 2J + D'V2QJ + D'2wW(SJL2; LT, (14.17)

and the line strength then becomes

2
Sty = ;@7 + DI + 1) (WESIL'2 L)) [ | 0 Il o' L[ 855
2 1y 2 2
= 3 (Rine(SLJ, S'L'IN)" [(eL || @ || o«'L')[" s (14.18)

It is important to stress that spin does not change during the transition because, as
it was already mentioned, the relevant operator is spin-independent. The following
selection rules apply to E2 transitions between LS-coupling states: AS = 0 and also
AL =42, +1,0, —1, —2. But they do not apply neither from L = 0 to L = 0, nor
fromL =1to L =0.

Therefore, the reduced matrix element («L || Q® | «’L’) provides the relative
strength of different multiplets. We can write this reduced matrix element as the prod-
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uct of a single-electron reduced matrix element (nL | Q® || n'L’), which depends
only on the quantum numbers of the jumping electron, and a factor R, that we
shall call the multiplet factor, as follows:

(@L || QP || 'L’y = Ryu(aL,o'L)(nL | Q¥ || n'L), (14.19)
where

(nL | Q@ | n'L"y = (L || C? || L") (Ru;| Q| Ry jr). (14.20)
In the last equation (R,;;|Q®|R, ) is the transition integral and (L || C® || L')

is the pertinent reduced matrix element, which can be evaluated using 3-;j symbols.
The multiplet factor R,,,;; may be expressed as follows:

Ryuii(@L, 'Ly = QL + D'?QL + DV?*W(L.LI'2;1L", (14.21)

the last symbol in Eq. (14.21) being the Racah W-coefficient

(14.22)

| L. L1
n. N — (1 \Le+L+ c
W(L.LI'2;IL") = (—1) { 27 L’}

Finally, the line strength Eq. (14.18) takes the form (for § = §):

Sh = % Riine(SLI, S'L'T'Y e @L, &/ EYLICONLY (R 1 02 Ry [

(14.23)
The total line strength for a transition between multiplets is equal to the sum of the
line strengths of all the multiplet lines:

S(yL.y'L)=>_ SyJ.y'J). (14.24)
Thus, the line strength for a multiplet transition is
ry/ rr/ 2
S(L.y'L) = @S+ 1D [(aL | 9 | o'L))]
= @S+ D[Ry (@L. /L)L | Q@ | /LY. (1425)
The relationships between the line strength S@ (in atomic units, e*a?), the oscil-
lator strength @ (dimensionless), and the transition probability A® (in s~') for

E?2 transitions are given by [17]

g AP = Bn’ha/miPgfP = (6.6703 - 102 /2% gf?, (14.26a)
g A? = 32r’acal/15)7) 8P = (1.11995 - 10" /2%)§P), (14.26b)

where A is the transition wavelength (in A), g and g’ are the degeneracies of the lower
and upper states, respectively, and « is the fine-structure constant.
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14.4 The Z-Expansion Theory for E2 Transitions

Regularities in individual oscillator strengths along an isoelectronic sequence as
functions of the nuclear charge have been predicted from conventional perturbation
theory [18, 19], but these results can be extended to E?2 transitions. Let us denote
the transition integral

Rt 1P 1 Rt )| = I (14.27)

Then, for a given operator, the variation of a matrix element as a function of Z
may be studied by the Rayleigh—Schrodinger perturbation theory: if we introduce
p = Zr and € = EZ~? (in atomic units), the expansions of ¥ and E in powers of
the perturbation parameter Z~' are the following:

Yajry =Vo+V1Z 7 +y0Z 7+ (14.282)
E=2Z%eo+eZ ' +6272+--). (14.28b)

In particular, the dipole transition integral (§ = 1) is given by the Z-expansion
il oW ) = L)y = 15" 27+ 10272 4 (14.29)

where [ is the corresponding integral for hydrogen and the superscript (1) refers in
all the cases to E'1 or electric dipole transitions.
The dipole line strength, or squared radial integral equation (14.29), may be written
as:
Sswry =802+ 5Pz 4 V2 4 (14.30)

nljn'l'j’ —

and the expression for the E'1 oscillator strength will be
Iy =R+ 027+ 27+ (14.31)

For the line and oscillator strengths, as well as for the transition probability A,
it is possible to perform a paralell nuclear charge expansion representation in the
quadrupole case, to study systematic trends of E2 S or f-values along anisoelectronic
sequence. Here, the transition operator (p?) leads to [20]

S(2)

nlj,n

vy =SOZ 820+ SP 770+ (14.32)

with
(14.33)

2
So” = [(W 1% [Wowr )
For the transition probability A, the corresponding expansion is the following,

4@

i =AGZO+ AP+ AP 2+ AP+ AP Z 4+ (1434)



14 Atomic Spectra Calculations for Fusion Plasma Engineering ... 171

and the quadrupole oscillator strength may be written as

2 2 2 2 2) - 2) -
FOumy =2+ P2+ [P+ P27+ (P27 (1439)

2 2@ £ : :
where f,”, 1™, f,”, ... are proportional to some power of Ae, the hydrogenic

transition energy corresponding to the transition under study. It is also very inter-
esting to analyze the behaviour of f® Z~2 along the isoelectronic sequence. From
Eq. (14.35) it follows that

2 - 2 2) - 2) ,—
0w 22 = 0+ P27+ P27 (14.36)
When no change of the principal quantum number occurs during the transition, that
is An = 0, and if we ignore relativistic effects, Aey = 0, we have

O =Rz (P2 (14.37)
In other words, the curve of f® versus Z~! would tend to an asymptotic zero
value in the high-Z side of the sequence. Equation (14.37) is expected to be a good
approximation to the behaviour of the oscillator strength with Z~! for E2 transitions,
at least for the first few ions of the sequence of a light element, e.g., Na I, where
relativistic effects still are not very important. However, as soon as these effects set
in, deviations from Eq.(14.37), as well as from all the expressions in this section,
are expected to occur.

In this way, the dependence of the relativistic effects with the nuclear charge Z in
E?2 transitions can be analysed by the calculation of the contribution of the relativistic
effects (RE) in intra-configuration transitions, which can be done by comparing
the results from the calculations performed with the non-relativistic (QDO) and
the relativistic (RQDO) formulations of the Quantum Defect Orbital method. The
weighting of the relativistic effects on the oscillator strengths can be measured in the
following manner:

RE = [M} - 100. (14.38)
fopo

Relativistic effects lead to a decrease in the magnitude of the oscillator strengths
of the ions under study, that is, frgpo is generally found to be smaller than fopo
for a given E2 transition. We have analysed this effect for the electric quadrupole
transitions in the Na sequence as a function of the nuclear charge Z, and fitted the RE-
value individually for each of the fine-structure transitions to a polynomic function
of Z. The fitting formulae obtained for the nlj — nlj’ E2-lines has the following
general expression

REjmj =a+bZ +cZ*. (14.39)
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Fig.14.1 Contribution of the relativistic effects in intraconfigurational fine-structure E?2 transitions
of Na-like ions

These equations can be found in the paper of Charro et al. for Na-like ions [21], and
are plotted in Fig. 14.1. It is apparent that the influence of the relativistic effects in
the oscillator strengths, for all the fine-structure transitions, decreases as n increases.
It is also found that the relativistic effects appear to be generally less important as
£ increases for a given n. These two features were to be expected in the presently
analysed range of ions, where the largest atomic number is Z = 36. Hence, the
dominant relativistic effects are those of direct character, which are appropriately
included in the RQDO procedure.

14.5 Atomic Data and UV and X-ray Atomic Spectra
for Ions in Fusion Plasma

Given that the regular behaviour of atomic data as oscillator strengths along isoelec-
tronic sequences has proven to be a useful tool for analysing a large body of f-values,
the analysis of the systematic trend of the A-values for E£2 transitions along isoelec-
tronic sequences was carried out in several previous works using the RQDO method,
both for allowed and forbidden transitions. This study may also be exploited to obtain
additional oscillator strengths by simple interpolation techniques. From the analysis
of systematic trends for E£2 transitions, several calculations have been performed, in
particular the following isoelectronic sequences have been studied:
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B-sequence: Z = 37 — 82 (see Ref. [22]).
K-sequence Z = 25 to Z = 80 (see Ref.[23]).
Al-sequence (see Ref.[24]).

Ga-sequence (see Ref. [25]).

Na-sequence: E?2 transitions (see Refs.[21, 26]).

As an example, the behaviour of E2 transition probabilities along the boron iso-
electronic sequence is graphically analysed in Fig. 14.2. The value of log A has been
plotted against the atomic number Z. The available comparative data have also been
included [27, 28]. This figure is useful for two purposes: the first one is to show
the agreement or deviations among the different sets of data, the second one is to
reflect the systematic trends obeyed by the individual RQDO A-values along the
isoelectronic sequence, which have long been considered as a qualitative proof of
correctness, and can be used for the interpolation or extrapolation of non-calculated
data. Inspection of Fig. 14.2 reveals a rather good general agreement between our
results and the comparative data.

The interest in line emission from highly-ionized atoms in tokamak devices is, in
the first instance, due to the effect of impurities on the overall performance of the
tokamak as a fusion device. The most common impurity elements are Ti, Cr, Fe, Ni,
the lighter C, N, O, and the rare gases Ne and Ar [29]. Allowed transitions in ions
of metals as Zr have been reported using RQDO method [30], but also interesting
in tokamaks are the forbidden lines, which are valuable diagnostic monitors of the
ion motion, and of the metal impurity concentrations. For E2 transitions several
calculations using this semiempirical method have been performed in order to predict
the UV and X-ray spectra for several metals, in particular highly-charged ions as is
the case of Ti XII and Fe X VI (Figs. 14.3 and 14.4). We have performed a simulation
of the E2 spectrum of these two ions, which include only the intensities of the RQDO
E?2 transitions [31].

Fig. 14.2 Transition |
probabilities for E2 " _!a.-_;__.‘.‘_"ﬁ:'-‘:' G
forbidden lines in boron Saai
isoelectronic sequence
obtained by Charro et al.
[22] in (a), being the
comparative data reported by
Froese Fischer [27] for (b)
and (c), and by Cheng et al.
[28] for (d)

log A

RQDO {a)
MCHF (b}

MCHF (c)

MCDF (d)
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A.108/87
350 = a
<
a: 3p-51
= Ti XIl b: 3p-5p
L : 3p-4f
300 & 3p-4p
o: 4p-T71
1: 4p-8f
250 @: 4p-5t
200+
150+
100+
a
50
]
d t I
M b - ¥
0 -ihl 1 1. P - 1 ; { ; - -!I -
40 60 80 100 120 140 160 180 200 220

Fig. 14.3 The simulated spectra for Ti XII according to RQDO calculations for forbidden (E2)
transitions
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Fig. 14.4 The simulated spectra for Fe XVI according to RQDO calculations

14.6 Concluding Remarks

The RQDO formalism, as opposed to sophisticated and costly self-consistent-field
procedures, is a simple but reliable analytical method based on a model Hamiltonian.
Ithas the great advantage of the computational effort not being increased as the atomic
system dealt with becomes heavier, and it is also capable of achieving a good balance
between computational effort and accuracy of results. The method is a useful tool for
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calculating UV and X-ray atomic spectra for ions and transitions which are difficult
to evaluate, and may play an important role in the future, when fusion becomes a
reality.
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Chapter 15 ®)
Exceeding the Shockley—Queisser Limit ez
Within the Detailed Balance Framework

M. Bercx, R. Saniz, B. Partoens and D. Lamoen

Abstract The Shockley—Queisser limit is one of the most fundamental results in
the field of photovoltaics. Based on the principle of detailed balance, it defines an
upper limit for a single junction solar cell that uses an absorber material with a
specific band gap. Although methods exist that allow a solar cell to exceed the
Shockley—Queisser limit, here we show that it is possible to exceed the Shockley—
Queisser limit without considering any of these additions. Merely by introducing an
absorptivity that does not assume that every photon with an energy above the band
gap is absorbed, efficiencies above the Shockley—Queisser limit are obtained. This
is related to the fact that assuming optimal absorption properties also maximizes
the recombination current within the detailed balance approach. We conclude that
considering a finite thickness for the absorber layer allows the efficiency to exceed
the Shockley—Queisser limit, and that this is more likely to occur for materials with
small band gaps.

15.1 Introduction

Materials play a central role in the effort to produce cheaper and more efficient solar
cells. The discovery of improved absorber materials has the potential to significantly
increase the cost-effectiveness of photovoltaic devices, but experimental trial and
error methods are often slow and expensive. Here, computational material modeling
can provide a valuable assist to the material design process, by screening groups of
materials for those that have the best properties.
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The Shockley—Queisser limit [1] is one of the most well-known metrics to deter-
mine the maximum efficiency an absorber material can produce in a single-junction
solar cell. It was proposed in 1961 and provides a direct relation between the band
gap of a material and its maximum possible efficiency. More recently, Yu and Zunger
expanded on the work of Shockley and Queisser by introducing the Spectroscopic
Limited Maximum Efficiency [2] (SLME), which takes the absorption coefficient
and thickness into consideration for the calculation of the maximum efficiency. The
SLME has since been used to investigate the potential of photovoltaic absorber mate-
rials such as perovskites [3], direct band gap silicon crystals [4], chalcogenides, and
other materials. In our recent work on CuAu-like [5] and Stannite [6] structures, we
also used the SLME to study the efficiency of these materials in the context of thin
film solar cells. Interestingly, we found several materials with an SLME above the
Shockley—Queisser limit, and identified that this is due to the lower recombination
current obtained for the material at lower thicknesses.

Since its conception, numerous methods have been proposed to exceed the
Shockley—Queisser limiting efficiency [7]. Examples include multi-junction [8, 9]
and hot carrier solar cells [10], as well as concepts that use multiple exciton gen-
eration [11]. None of these concepts, however, are implemented in the SLME. In
this paper, we use a model approach to demonstrate that it is possible to exceed the
Shockley—Queisser limit within the detailed balance framework. Simply by drop-
ping the assumption of an infinite absorber layer, i.e. by replacing the Heaviside step
function for the absorptivity by a sigmoid function, we obtain efficiencies above the
Shockley—Queisser limit. Finally, we analyze for which band gap range a material’s
efficiency is more likely to exceed the Shockley—Queisser limit.

15.2 Shockley-Queisser Limit

The maximum efficiency 7 is defined as the maximum output power density P,
divided by the total incoming power density from the solar spectrum P;,:

Py,
Pin ’

n= (15.1)

To calculate P,,, the power density P = JV is maximized versus the voltage V,
where the current density! J is derived from the ideal J — V characteristic of an
illuminated solar cell:

J=Jse = Jo (VT — 1), (15.2)

INote that these current densities are not defined in the conventional way. Rather, they are considered
as currents per surface area of the solar cell. This allows us to ignore the surface area of the solar
cell in our discussion.
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where kg is Boltzmann’s constant, e is the elementary charge, and T is the tem-
perature of the solar cell. The short-circuit current density Jy., also known as the
photogenerated current or the illuminated current, is calculated from the number of
photons of the solar spectrum that are absorbed by the solar cell:

Jie = e/ooa(E)CDS(E)dE, (15.3)
0

where a(E) is the absorptivity and &, (E) is the photon flux density of the solar
spectrum. In their original paper, Shockley and Queisser used a blackbody spectrum
of T, = 6000 K, but the current convention is to use the AM1.5G solar spectrum
[12].

The reverse saturation current density Jj is calculated by considering the principle
of detailed balance, i.e. in equilibrium conditions the rate of photon emission from
radiative recombination must be equal to the photon absorption from the surrounding
medium. Because the cell is assumed to be attached to an ideal heat sink, the ambient
temperature is assumed to be the same as that of the solar cell. Hence, the spectrum
of the surrounding medium is that of a black body at cell temperature 7':

Jo:er[/ a(E)Py(E)dE
0

= h E—2E2—dE 154
=en ; a( )h3c2eE/’<BT—1’ (15.4)

where % is Planck’s constant and c is the speed of light. Because of its connection
with the recombination of electron-hole pairs at equilibrium, Jj is also referred to as
the recombination current density [13]. This is the convention we will use here.

To obtain the Shockley—Queisser or detailed balance limit, Shockley and Queisser
made the assumption that the probability of a photon with an energy above the band
gap being absorbed by the cell is equal to unity. This corresponds mathematically
to setting a(E) to the Heaviside step function, or, from a physical perspective, to
considering an infinitely thick absorber layer. Note that in the original expressions,
Shockley and Queisser also included a geometrical factor. However, because we
assume the solar cell to have a perfect antireflective coating, as well as a reflective
back surface, the geometrical factor is equal to unity [14].

15.3 Spectroscopic Limited Maximum Efficiency

Shockley and Queisser’s detailed balance limit is considered to be one of the most
important results in photovoltaic research. However, as a metric for thin film solar
cells, it is somewhat limited in its effectiveness, because it only depends on the
band gap of the absorber material in the solar cell. In an attempt to find a more
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Fig. 15.1 Collection of calculated SLME values from Yu and Zunger [2], as well as our previous
work on CuAu-like [5] and Stannite [6] structures. We have added the space group of the material
structure as a superscript. The efficiency values were calculated for a thickness of 0.5 um. The
orange curve represents the maximum efficiencies obtained using the logistic model explained in
Sect. 15.4

practical screening metric, Yu and Zunger introduced the Spectroscopic Limited
Maximum Efficiency [2] (SLME) in 2012. The SLME differs from the detailed
balance limit in two ways. First, the absorptivity a(E), taken as a Heaviside step
function in the calculation of Shockley and Queisser, is replaced by the absorptivity
a(E) =1 — e 2*BL where L is the thickness and « (E) is the absorption coefficient,
calculated from first principles. This allows us to use the SLME to study the thickness
dependence of the efficiency, an important tool in the study of thin film solar cells.

Second, the SLME also considers the non-radiative recombination in the solar
cell by modeling the fraction? of radiative recombination as a Boltzmann factor,
ie. f, = e 20T with A = E;f“ — E,, where E, and Eg“ are the fundamental and
direct allowed band gap, respectively. The total recombination current density is
then calculated by dividing the radiative recombination current density (Eq. 15.4)
by the fraction of radiative recombination. In this work, we only study direct band
gap materials (i.e. £, = E ;’”), and hence only radiative recombination is considered
(fr = 1), just as in the standard calculation of the detailed balance limit.

The SLME has been used to investigate the potential of several classes of pho-
tovoltaic absorber materials. In Fig. 15.1, we show a selection of calculated effi-
ciencies of direct band gap materials from previous work [2, 5, 6], compared with
the Shockley—Queisser limit. We can see that materials typically used in thin-film
photovoltaic cells, e.g. chalcopyrite phase Culn(S,Se),, have a high calculated effi-
ciency. We also note other materials that are less studied with high efficiencies,

2 Actually, Shockley and Queisser also considered the fraction of radiative recombination in their
approach. They did not, however, provide a model to calculate it, simply observing that the maximum
efficiency is significantly reduced for small fractions f;.
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such as CuAu-like phase CulnS, and chalcopyrite phase CulnTe,. Most importantly,
however, we can see that a significant amount of the presented materials have a cal-
culated efficiency above the Shockley—Queisser limit. Since the calculation of the
SLME does not introduce any of the concepts that would typically allow its value to
exceed the Shockley—Queisser limit, these results show that for thin-film materials
the Shockley—Queisser limit does not necessarily represent an upper limit for the
efficiency.

In fact, Shockley and Queisser considered their metric as the detailed balance
limit because of the assumption that since the step function represents the highest
possible absorption spectrum for a material with a specific direct band gap, the
resulting efficiency must represent an upper limit. However, as we demonstrated in
our previous work [5], this also means the recombination current density Jy (Eq. 15.4)
will be maximal. Since electron-hole recombination results in a loss of electrons
contributing to the external current, this has a negative effect on the photovoltaic
conversion efficiency. Hence, it is possible that there is an absorptivity function that
would result in a higher efficiency than the Shockley—Queisser limit. As we can see in
Fig. 15.1, this is exactly what happens for the presented smaller band gap materials.

15.4 Logistic Function Model

The next questions are how far we can exceed the Shockley—Queisser limit, and at
which band gaps a material is more likely to do so. Clearly, this will depend on the
shape of the absorptivity function. In Fig. 15.2, we show the calculated absorptivity
of Cu,ZnGeS, for various thicknesses, derived from the absorption coefficient cal-
culated from first principles (for computational details, we refer the reader to [6]).
We can see that the absorptivity has a shape reminiscent of a sigmoid function. In

“~L=5-10°nm

0.8 “=L=5-10"nm

= o 1.=5-]0$nm
= 06

‘é.. 3 “L=5-10°m

2 04 —— Step Function
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: -=-3=10,§=300
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1.74 1.76 178 1.8 1.82 184 1.8 188 19
Energy (eV)

Fig. 15.2 Comparison of the model function with calculated absorptivity spectra for CuyZnGeSy
at different thicknesses L. We can see that the model function shape matches that of the calculated
absorptivity quite well as L, § — oo
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Fig. 15.3 Calculated efficiencies for a range of § values and a selection of band gaps, compared
with the corresponding Shockley—Queisser limit

order to analyze the maximum efficiency for materials with a direct band gap in the
range 0.3—3 eV, we model a(E) using a generalized logistic function:

a(E) = f(E) = (15.5)

(1 + e E-E)p’

where E, is the band gap of the material, and 8, § are parameters that determine the
shape of the function. In this model for the absorptivity, the parameter § is related
to the thickness of the material, as for § — oo, f(E) approaches the Heaviside step
function (Fig.15.2). The second parameter (8) is important to make sure that the
model function “starts” at the band gap, i.e. that its value for E < E, is suitably
small, so that it can be approximated to zero. Since f(E;) = zl,; and f(E) < f(E,)
for E < E,,increasing B to a suitably large value gives us this desired function trait.
Here, we choose B = 10 and set f(E) = 0 for E < E,. As is clear from Fig.15.2,
this model function describes the shape of the calculated absorptivity spectra quite
well.

To study the influence of the band gap on the likelihood of the efficiency exceeding
the Shockley—Queisser limit, we calculate the efficiency for § € [1, 10*] and over
the band gap range E, € [0.3, 3] eV. We show the §-dependency of the efficiency
for a selection of band gap values in Fig. 15.3. We can see that for low band gaps,
the calculated efficiency crosses the detailed balance limit of the corresponding band
gap, in order to return to the limit value for § — oo. Since § can be related to the
thickness of the material, this implies that for lower band gap materials, there is a
thickness that is optimal for the efficiency. Moreover, a clear trend is visible, with the
efficiency exceeding the Shockley—Queisser limit more as the band gap is decreased.
This is also what we observe when we look at the plot for the maximum efficiency
values in Fig. 15.1.

It is interesting to note that the SLME values of the materials that exceed the
Shockley—Queisser limit are still below the maximum efficiency for the model
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absorptivity functions of the corresponding band gap in Fig. 15.1. However, this
does not imply that the logistic function maxima curve represents a new upper limit.
It is entirely possible that there is another function profile that would allow for higher
efficiencies. Using the logistic function approach, we are simply able to observe for
which band gap range the Shockley—Queisser limit does not provide a theoretical
upper limit.

15.5 Conclusions

In their 1961 paper, Shockley and Queisser characterized their calculated efficiency
as an upper limit, because of the assumption that if every photon with an energy above
the band gap is absorbed, the obtained efficiency must be maximal. Although this
assumption may seem entirely sensible at first glance, it does not consider the fact that
it also maximizes the recombination current, which is calculated using the detailed
balance principle. Because an increased recombination results in a lower efficiency,
this means that lowering the absorptivity can produce higher efficiencies than the
Shockley—Queisser limit under the right conditions. By using a model absorptivity
function, which closely resembles absorptivity spectra calculated from first princi-
ples, we have shown that this can occur for low band gaps. This means that one must
take care when dismissing low band gap materials based on their Shockley—Queisser
limit, for their actual efficiency at certain thicknesses might still make them suitable
for thin film photovoltaic applications.
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Chapter 16 ®)
Shannon Entropy and Correlation oo
Energy for Electrons in Atoms

C. Amoyvilli and F. M. Floris

Abstract In this work, we compute Shannon entropy, defined in terms of electron
density, for three series of atomic ions including the region of nuclear charges close
to the limit at which the ionization potential goes to zero. We use both Hartree—Fock
(HF) and quantum Monte Carlo (QMC) densities and we observe a sharp positive
deviation of QMC entropy with respect to the HF corresponding value in approaching
the limit. We discuss this behaviour taking into account Coulomb correlation, which
plays an important role in the weak binding regime.

16.1 Introduction and General Theory

Quantum entropy was formulated by von Neumann [1] by extending to density
matrices the classical definition of entropy in terms of probability distributions. A
density matrix is the matrix representation of the density operator. For a pure quantum
state, the density operator has the dyadic form

V) (]
(wiw)’

b= (16.1)

and a physical observable associated to an operator B has the corresponding expec-
tation value )
(B) = Tr(6B). (16.2)

For the postulates of the quantum theory, if the system is interacting with a reser-
voir, it cannot be described by a state vector [2]. In this case, the density operator is
defined as a weighted sum of single wave function density operators, each weight
being the probability of finding the system in a given state. The density operator is
thus
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p= wilW)(¥l, (16.3)
K

where ), wx =1 and (¥ |¥k) = 1. For a quantum mechanical system, the
von Neumann entropy is then given by the expression

S = —Tr(plog p), (16.4)

which reads, by taking the diagonal form, Eq. (16.3), as

§=—> wglogwg. (16.5)
K

Such a quantity is zero for an isolated system in a pure state while is positive for
a system ‘entangled’ with the reservoir as a result of the irreversible process of
interaction between the two subsystems. The Von Neumann entropy can also be
defined in terms of reduced density matrices. In this case we have the so called
entropy of entanglement which refers to a subsystem obtained by a bipartition of the
original one. For example, for an isolated system in a pure state partitioned in two
subsystems A and B we have (see, e.g., Ref. [3])

Sy = —Tr(palog pa), (16.6)

where
pa = Trp(p). (16.7)

For a system of electrons, the entanglement entropy written in terms of the one-
particle density matrix of a pure state has an important physical meaning being related
to the interparticle interaction, more precisely to the entanglement of one electron
with the others. The electronic one-particle density matrix written in terms of the
natural spin orbitals v is given by

pr(x, &) =) ()Y (x) (16.8)
k
and leads to |
S = log —, 16.9
1=y wlog ” (16.9)

k

in which v, are occupation numbers ranging from O to 1. For an independent particle
system, the occupation numbers are integer and S is zero. This reflects also in the
idempotency of p;. Instead, for a real many electron system, where we have two-body
interactions, occupation numbers are fractional, the one-particle density matrix is not
anymore idempotent and S; becomes a positive quantity clearly related to electron
correlation.
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Collins [4] proposed a relationship between entropy and correlation energy. He
conjectured that the entropy given in Eq. (16.9) is proportional to correlation energy.
Esquivel et al. [5] supported numerically this conjecture on a series of light atomic
ions. Ziesche [6] studied more in detail the relations between entropy and correlation
strength. Many other works followed by addressing this point, mainly focussing on
the link between the nonidempotency of the one-particle density matrix and com-
plexity measures (see, e.g., Nagy and Romera [7], and references therein). Worth of
mentioning is also a recent paper by Grimme and Hansen [8], in which a semiempir-
ical finite temperature free energy functional involving the entanglement entropy is
introduced to recover information about static correlation within a density functional
theory (DFT) framework.

Since the exact one-particle density matrix for a real system is, in general,
unknown and difficult to compute, in this work we focus on a different definition
of entropy written in terms of a classical property, namely the electron density. We
exploit the fact that the Shannon entropy [9, 10] can be defined also in terms of a
continuous probability distribution. Here, we use the following definition

S = —fd3rp(r) log p(r), (16.10)

where p (r) is the one particle electron density. In this work, we perform calculations
for atomic ions and we compute the density with Hartree-Fock (HF) and quantum
Monte Carlo methods (QMC). This definition of entropy according to Shannon is
here used to measure the entanglement of electrons due to the Coulomb correlation.
In particular we compare different calculations performed with highly correlated
methods with the HF independent particle model. All systems are considered in the
ground state so we use the basic result of density functional theory that the electron
density brings all information about the N-particle wavefunction. In this regards,
the knowledge of Shannon entropy density, namely —p log p, is sufficient to know
any physical observable for a Coulomb system as shown recently by Nagy [11].
Theoretical concepts relating Shannon entropy and many-electron correlation have
been discussed by many authors, see for example the work of Delle Site [12]. A further
interesting relation between Shannon entropy and correlation energy goes back to the
homogeneous electron gas in the high density limit [13]. In this limit, the correlation
energy per particle tends to A + B log r; where ry, namely the Wigner—Seitz radius, is
explicitly (37p) ="/ and, within a local density approximation, the relation between
the correlation energy and the Shannon entropy is readily obtained. More generally,
Shannon entropy is used in the analysis of many physical and chemical phenomena.
We mention, for example, the search of relations with other descriptors of Coulomb
systems like reactivity indices, in particular hardness and the Fukui function [14].
Moreover, Amovilli and March [15] showed a relation between Shannon and Jaynes
entropy [16] (essentially the entanglement entropy of Eq. (16.9)) on a two-particle
Moshinsky model atom. Here, we extend their approach to real (Coulomb) atomic
systems.
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16.2 Calculations

In this work, we limit our test examples to a set of atoms in a spherically symmetric
ground state. In order to consider both spin compensated ('S,) and spin polarized
cases (*S,,), we show results for He-, N- and Ne-like series of atomic ions. We define
the correlation Shannon entropy of this work as

AScorr = SQMC - SHFv (1611)

and we analyze the behaviour of this quantity up to the limit of extremely weak
binding where the ionization potential goes to zero. Shannon entropy contributions
are calculated according to the definition given in Eq. (16.10). Thus, we illustrate
results also for fractional nuclear charges. Because we use QMC (for a review of
these methods see, e.g., [17, 18]), we concentrate our study only on valence electrons
and then we make use of pseudopotentials for N, the number of electrons, greater
than 2. The He-like series is treated at the highest level and by employing basis sets of
Slater orbitals. For all other systems, we use the Burkatzki, Filippi, and Dolg (BFD)
pseudopotentials [19]. In order to perform calculations for nuclei with fractional
charges, the corresponding pseudopotentials are derived by interpolation of BFD
core potential data of the atoms with the closest nuclear charge. All pseudopotential

have the more general form e ~nonloc
Vpp = Vpp + Vpp s (16.12)

with the ‘local’ part given by the sum

1 : 2
Vi = ) Zajr]e_“f’ , (16.13)
J

and the ‘non local’ part, which accounts for projection over core angular momentum
eigenfunctions, namely

Lmax
PR =Y " uy(r)|€) (L] (16.14)
=0
by the radial functions
1 0 —pOr
ue(r) = r_Zij rieFir, (16.15)
J

BFD pseudopotentials are very simple, are not singular and do not have a cusp at
the origin, being designed for QMC calculations. These conditions are satisfied by
the constraints

ag =0, (16.16a)
a1 = Z — Neore, (16.16b)
ay = aqay. (16.16¢)
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These constraints must be preserved in the generation of core potential for fractional
nuclear charges. The interpolation used in this study does not give well calibrated
effective core potential but we consider this route as a reliable procedure to pro-
vide data not available from the literature. At the QMC level, we use a standard
Slater—Jastrow (SJ) wavefunction with a Jastrow factor containing electron-nuclear,
electron-electron, and electron-electron-nuclear terms [20]. At the variational Monte
Carlo level (VMC), all parameters in our SJ wave functions are optimized by using
the iterative linear method developed by Umrigar et al. [21]. At the diffusion Monte
Carlo (DMC) level, performed in the fixed node approximation, the pseudopotentials
are treated beyond the locality approximation using the 7-move approach [22]. We
used a time step of 0.05 a.u. in all the DMC calculations.

Finally, HF computations have been performed using the GAMESS-US package
[23] while for QMC we used the CHAMP suite of programs [24].

16.2.1 He-Like Isoelectronic Series of Atomic Ions

As trial wavefunction for DMC, we have considered a SJ form made of few deter-
minants that includes a Chandrasekar like contribution [25] and double excitations
to a shell of p orbitals. For the atomic basis set we used Slater type orbitals.

For a system of electrons confined by a Coulomb potential, the ionization potential
goes to zero as the nuclear charge Z approaches a critical value, say Z.,, due to
the lack of infinite barriers. Such critical value, for 2 electrons in a singlet state,
is known to be 0.911028 [26]. In close proximity of this limit, the electron cloud
becomes very diffuse. Amovilli and March [27] studied in detail the behaviour of
the ground-state electron density in He-like ions as a function of the nuclear charge.
Following their study, by way of example, we plot in Fig. 16.1 the radial density for
few ions, calculated at the DMC level, in order to show how the density changes
in reducing the confining potential. It is remarkable to know that the atomic sphere
containing 99% of the total electronic charge has a radius of about 20 bohr in close
proximity of the critical value [27].

InFig. 16.2, we plot instead the DMC Shannon entropy as a function of the nuclear
charge Z compared with that of the hydrogenic ions, namely

23
SH-like(Z) =3 — log - (16.17)

In the range of Z considered in this plot, the maximum difference occurs in proximity
of the critical value. This is the consequence of strong delocalization of electrons
near the ionization limit. We remark that in the present study we maintain the nor-
malization

N = /d3r,o(r), (16.18)
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instead of computing the entropy in terms of the density amplitude o = p/N. The
relation between the two entropies is simply

Slo] = % +log N. (16.19)

For He, the resulting S[o] is 2.700(5) a.u., which is in agreement within statistical
error with the very accurate value of 2.7051028 a.u. recently calculated by Ou and
Ho [28].

Turning to the electron correlation and according to Eq. (16.11), we compute the
correlation Shannon entropy as the difference

AScorr = / d’r [ pur log pur — pomc 1og pomc] - (16.20)
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We note that this quantity contains the Kullback—Leibler (KL) divergence [29] of
ppMc With respect to pyg, this being, by definition,

0
Dxr1.(opmel|pur) = /d3r,0DMC log ;MC- (16.21)
HF

However, following Amovilli and March’s work [15], which relates directly Scor
to Jaynes entropy for the Moshinski atom, we prefer to use the entropy difference,
Eq. (16.20), instead of the KL divergence. Correlation Shannon entropy is plotted
against Z in Fig. 16.3. This plot shows a sharp increase of the entropy difference in
approaching the critical nuclear charge. In such a weak confinement regime, Coulomb
correlation tends to be dominant and a measure of this effect seems to be given
by A Scorr-

16.2.2 N-Like Isoelectronic Series of Atomic Ions

For these atomic systems, we have removed the core electrons from the calculations
and we have simulated the relevant effect through modified BFD pseudopotentials in
order to consider fractional nuclear charges. We used in this case a single determinant
SJ wavefunction and a universal basis set made of 12 s and p elementary Gaussian
type orbitals.

The ground state is spin polarized with spherical symmetry (*S,). The critical
binding occurs at a nuclear charge of about 5.85 [30].

In Fig. 16.4 we report the DMC Shannon entropy, and in Fig. 16.5 the difference
with the corresponding HF value. As in the previous case, we note also here a
significant increase of correlation entropy in approaching the critical Z. Finally, in
Fig.16.6 we show the Z dependence of the deviation from HF of DMC total and
kinetic energies given as a percentage of the corresponding DMC values, namely
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Epyc — E
Ao = 100 Epve = Eur) (16.22)
Epmc
and @ fir)
AT o = 10022 “HE, (16.23)
Tomc

As expected, the role of correlation becomes more and more important in going to the
weak binding regime. From our calculations, generally the effect on kinetic energy
seems to be twice that on total energy. We remark that in a weak binding regime,
the kinetic energy is lowered due to a greater delocalization of the electron cloud.
Results plotted in Figs. 16.5 and 16.6 are consistent with Collins conjecture [4].

16.2.3 Ne-Like Isoelectronic Series of Atomic lons

Our last test example is that of Ne isoelectronic atomic systems. In this case, we
consider eight valence electrons and appropriate BFD modified core potentials. The
ground state is a singlet (! S,). As for N-like isoelectronic series, we use also here a
single determinant SJ wave function and the same universal Gaussian basis set. The
critical nuclear charge is about 8.74 [30].

In Fig. 16.7 we plot the DMC Shannon entropy in the range of Z between Z,,
and 10.4, in Fig. 16.8 the correlation entropy and, finally, in Fig. 16.9 the fraction of
correlation kinetic and total energy. The Shannon entropy takes the maximum value
at Z., as well as all other quantities plotted in the above figures. We can conclude
that also for Ne isoelectronic atomic system the behaviour is the same of the previous
two cases that differ for the number of electrons and the spin state.

By comparing Figs.16.3, 16.5, and 16.8, we can see also that the correlation
Shannon entropy, as defined in this work, at the critical nuclear charge is very similar,
about 1 a.u. We are not able to give an explanation but perhaps this is related to the
fact that, in all the three cases, one electron is formally lost in the ionization process.
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16.3 Conclusions

In this work, we have studied an alternative and more practical way to relate an
entropy measure to the correlation energy of atomic systems. We have focussed
attention to the case of fractional nuclear charges close to the critical value at which
the ionization potential goes to zero. In this regime, the electronic Coulomb correla-
tion plays an important role. Because of the difficulty of computing the one particle
density matrix, we avoid the calculation of quantum entanglement entropy and we
compute Shannon entropy by means of electron density, a more accessible function
for the systems under study. We use densities from DMC and HF calculations. The
difference between the two sets of entropy shows a significant positive deviation in
approaching the critical nuclear charge. This result suggests that Shannon entropy
and the entanglement entropy could be related each other. We have considered He, N
and Ne isoelectronic atomic ions and we have found in all cases the same behaviour.
For N and Ne series, we have also calculated the fraction of correlation kinetic and
total energy. These fractions resulted increased in the region of nuclear charges close
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to the critical values. This observation seems to be in agreement with Collins con-
jecture [4]. It is important to remark that, due to the lowering of kinetic energy in
weak binding conditions, the fraction of correlation kinetic energy is significant in
approaching the limit of zero ionization potential. This point is relevant with DFT
in the Kohn—Sham approach where the unknown exchange-correlation functional
contains the difference between the exact and the single-particle kinetic energy. If
this difference is expected to be high, the method may encounter numerical problems
with accuracy. In this regards, it could be interesting to analyze in details the Shannon
entropy computed with electron densities obtained by means of the most commonly
used functionals.

As for future direction, we intend to extend the present study to polyatomic
molecules. In order to pursue this project we need to improve the density estimator
from QMC calculations, especially at DMC level of the theory.

A further very interesting aspect is the possible use of Shannon entropy for the
fine tuning of existing exchange-correlation functionals in KS-DFT.
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Chapter 17 ®)
Kinetic Energy Density Functionals e
from Models for the One-Electron

Reduced Density Matrix

D. Chakraborty, R. Cuevas-Saavedra and P. W. Ayers

Abstract Orbital-free kinetic energy functionals can be constructed by writing the
one-electron reduced density matrix as an approximate functional of the ground-state
electron density. In order to utilize this strategy, one needs to impose appropriate N -
representability constraints upon the model 1-electron reduced density matrix. We
present several constraints of this sort here, the most powerful of which is based upon
the March-Santamaria identity for the local kinetic energy.

17.1 Introduction

Practical density-functional theory (DFT) calculations use either the orbital-free
method or the Kohn—Sham approach [1]. The orbital-free approach, in which the
kinetic energy is directly approximated as an explicit functional of the electron den-
sity came first historically, and was a very popular approach through the mid-1980s.
However, explicit kinetic energy functionals tend to have poor accuracy, and in par-
ticular are subject to variational collapse to chemically absurd solutions with energies
that are far too low. This is often attributed to the difficulty of satisfying the Pauli
principle using an explicit density functional [2-6], and motivates the idea of using
an auxiliary function to evaluate the kinetic energy. Most commonly, one introduces
the Kohn—Sham orbitals, which are functionals of the electron density constructed
based on the requirement that the energy of the noninteracting Kohn—Sham reference
system has the same electron density as the total system. The energy of the nonin-
teracting system is then used a proxy for the energy of the true interacting system,
with the remaining correlation-kinetic energy lumped into the exchange-correlation
energy functional.

Despite its ubiquity, there is still interest in the orbital-free method, primarily
because it is less computationally costly [7—12]. The key obstacle, clearly, is approx-
imating the kinetic energy [7, 9, 10, 13—18] or, alternatively, its functional derivative
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[19-27]. It has been realized that effective calculations are usually nonlocal func-
tionals of the electron density, which motivates introducing new auxiliary quantities
like the 1-electron reduced density matrix, the exchange hole, or the linear response
function [10-12, 18, 28-42].

Recently, we have proposed a strategy based on writing the 1-electron reduced
density matrix as an explicit, nonlocal, functional of the electron density [43]. The
exact Levy constrained search functional for the noninteracting (Kohn—Sham) kinetic
energy of o-spin electrons can be expressed in this way [44-46]

T [p] = // (rfr)<77V2yU(r r)>d3rd3’
{r7: p° (®X)=y° <r ), y7=(r")?}
(17.1a)

yZIp7;r,r'] _arg //S(rfr) <77V2y“(r, r’)) drd’r.
Y7 po ()= y"(r ), Y7 =(y?)?)
(17.1b)

Among all idempotent 1-matrices with the correct electron density, the Levy con-
strained search selects the one with the lowest kinetic energy. This procedure is
clearly impractical—it is actually more difficult to construct the Kohn—Sham kinetic
energy associated with a specified density than it is to solve the Kohn—Sham equa-
tions [47-49]. We therefore proposed an explicit form for the 1-electron reduced
matrix,

7oL, 1l =/ po (0)p° (2)g (ki [p7] - I —x'l), (17.2)

where the function g(x) must satisfy

30 =1, (17.3a)
g'0) =0, (17.3b)
g'0) <1, (17.3¢c)

—-1<gkx) <1 (17.3d)

In general, g(x) < O for some values of x [50]. Note that Eq.(17.2) is not an approx-
imation: the exact functional is obtained by choosing Fermi wave vector as the
6-dimensional function,

)= — g ( velptir rl ) (17.4)
[r —r'| A % (r)p? (x’)

Equation (17.4) is also impractical, of course, so one needs to find practical approx-
imations for the function g(x).
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17.2 Model One-Electron Reduced Density Matrices

In our previous work, we chose g(x) based on its form in the uniform electron gas,
. sinx — x cosx
giPax) =3 (—x3 ) , (17.5)

where x = kf (r, ') |[r — r’|. This form, however, is not appropriate for molecules and
other insulators, where the 1-electron reduced density matrix decays exponentially
with increasing |r — r’|, with a rate of decay that tends to become faster as the band
gap increases [51-56]. This suggests that one should add an exponential damping
factor, which leads to a form like

gwgg) (k‘F’ (r, 1), &7 (r, ¥, b) = &7 Pa (kg (r,r)|r — r’|)

X exp |:b(r—,r’) (1 —\/1 + (Z%(r, r)jr—r

[tz o)

)2)} . (17.6)

This form still has an infinite number of nodes, which is not realistic for molec-
ular systems. Choosing an exponential model with a single node is perhaps more
appropriate for molecular systems,

g (kg (r,x),a,b) = (1 — ak(r,r)|r — r']%)

b(r,r' o / _ )2
XeXp|:|€“(r oy ( \/1 (g, r)r —r'|) ):|

(17.7)

It is reasonable to assume that the functional b(r, r’) is related to the effective ion-
ization potential (IP) at the location of interest, and so a reasonable form is [57-61]

b(r,r') o« - (17.8)

<1|Vp(lr)|2 lIVp(r/)|2>
8 p*(r) 8 o) )

There is enormous flexibility in how one should select the nonlocal component
of these functionals, but we choose a form inspired by the weighted density approx-
imation,

1 , 1/p
kg (r,x') = [E (kg @)" + (k7 (r’))”)} , (17.9)

where p is a user-specified parameter. This form seems to work relatively well for the
exchange and kinetic energies [10, 29, 30, 34-36, 41, 62, 63]. The form in Eq. (17.9)
is motivated by the realization that in order to obtain the numerical benefits of orbital-
free DFT, the quantities one is considering (here, k{ (r, ') must be approximated in
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terms of three-dimensional functions. Otherwise one could use the six-dimensional
Kohn—Sham density matrix, y? (r, r’), directly.

17.3 Constraints on Model One-Electron Reduced Density
Matrices

The free parameters in model one-electron reduced density matrices should be chosen
to satisfy exact constraints and, in particular, the Pauli principle. For example, the
Kohn—-Sham density matrix must be idempotent (cf. Eq. (17.1a)), which leads to the
constraint

7o(r, ") = / 7o, )y (', ¥ d’r. (17.10)

As mentioned before, however, it is impractical to consider six-dimensional func-
tions. The simplest way to express Eq.(17.10) as a three-dimensional constraint is
to set r = r”. Then, using the form of the model density matrix (cf. Eq.(17.2)), we
have

2
o= [ e ey = [ (Vo oF e ) d.
(17.11)

which simplifies to the same constraint one uses in the weighted density approxima-
tion to the exchange hole [64-68],

| = /p”(r/) (3% (e, t)) &Y. (17.12)

Using Eq.(17.12) gives reasonable results, but it is still far from the accuracy we
need. This motivates the development of additional constraints.
For example, it is true that for any square-integrable function ¢ (r), it must be that

f);a(r’ r//)¢(r//)d3 "_ /v/)';a(r’ l'/))‘;g(l'/, r”)qj(r”)d3r’d3r”. (1713)

We clearly cannot force this constraint for all choices of ¢ (r”) (this would be as
difficult as enforcing the original idempotency constrain, Eq. (17.10)) but we can use
specific functions that might be useful. For example, choosing ¢ (r”) as an atomic
1s orbital will prevent the occupation number of that orbital from being too large.
An especially simple form, however, is obtained when one uses ¢ (r”) = +/p° (r").
Then one has:

/ gcf (I', r//)pa (r//)d3 " [ /ga (l', r/)ga (I'/, r//)pa (r/)pa (r”)d3r’d3r”_
(17.14)
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This constraint is more difficult to apply than Eq.(17.12) because it requires a six-
dimensional numerical integration at each point r. However, the same auxiliary basis-
set methods that are used in efficient implementations of Eq.(17.12) could be used
in Eq.(17.14) also [69]. If one considers ¢ (r) to be the gradient operator, then one
obtains a constraint with the form of the March-Santamaria expression for the kinetic
energy, namely [70-72]

1 ~ / / 1 ~0 /
5/|Vr7/°(r,r)|2d3 = E[Vr.vr,y )] _. . (17.15)

This constraint can be implemented with the same computational cost as Eq. (17.12),
and helps ensure that the r & r’ portion of the model density matrix is accurate. The
right-hand-side of Eq. (17.15) is just the (positive-definite) local kinetic energy [73,
74]. Infact, itis not difficult to see that Eq. (17.15) holds if the idempotency constraint
holds near the diagonal,

7o (r,r+ et) = / 7o (r, ¥)p° (¢, r + et)d’r, (17.16)
where 1 is a unit vector. Equation (17.16) can be rewritten as
go(r,r+en) = / p(X)g° (', r + et)d’r'. (17.17)

Expanding both sides in a Taylor series,

g ) +e[Veg @ x)],_ o+ [VeV g @ )], _a+...

r’=r

— /p(r/)g(r, ) {27 r) + e[V, v)],_ -0

+ 0 [V Vgt )], b+ Y, (17.18)
the right-hand-side of this equation simplifies due to Eq. (17.3),

g, +e[Veg (e, _ 40 [VeV g @ )], _ a+...

=1+ [VeV, g’ )], _a+.... (17.19)

r’=r

Then, equating terms in the expansions order-by-order, one has an infinite set of
constraints, of which the lowest-order ones are most important and easiest to apply,

1= /p(r’) (3° @, v)) &Y, (17.20a)

0= f p (g% (r,r )V, (t', r)d’r'
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= / p(x')Vy (g7 (r, r’))2 a’r, (17.20b)

[Ver V.5 (r, )]

r’=r

= f p(X)g" (r, ¥V, V] g (', d’r,  (17.20c)

The first of these equations is just the original diagonal condition, Eq. (17.12), which
is equivalent to the weighted density approximation equation for the normalization
of the exchange hole,

-1 =/p(r’)hx(r, r)d’r. (17.21)

The second equation also can be seen as a constraint on the model density matrix
but also on the exchange hole for weighted density approximations,

0= / o(X) Vil (r, ¥)dr. (17.22)

It is just the gradient of both sides of Eq.(17.21), so it should hold automatically
when Eq. (17.21) is true. The third constraint in Eq. (17.20) is nontrivial, and cannot
be easily written as a constraint on the exchange hole. Overall, Eq.(17.20) are a
hierarchy of constraints and, if the full hierarchy is imposed, then the model one-
electron reduced density matrix, and the kinetic energy density functional it implies,
is guaranteed to be N-representable. Philosophically, then, Eq. (17.20) are similar to
other methods for developing density functionals based on hierarchies of constraints
[72, 75-83].

17.4 Summary

Approximating the kinetic energy as an explicit functional of the electron density
has proven to be a very difficult task, we propose to explore a strategy based on
modelling the one-electron density matrix using a weighted density approximation.
We propose that the parameters in the weighted density approximation should be
determined by constraints associated with its idempotency, and propose Eqs. (17.14)
and (17.15) as additions to the usual weighted density approximation condition,
Eq.(17.12). In particular, the March-Santamaria identity inspires the hierarchy of
derivative constraints in Eq. (17.20); these seem especially promising since they are
directly linked to the requirement that the accuracy of the kinetic energy from the
model density matrix and, specifically, require that different ways of calculating
the kinetic energy from the model density matrix give the same results. In order to
simultaneously satisfy constraints Eq.(17.20), one needs a more flexible form for
the model density matrix than is provided when one uses the uniform electron gas.
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The damped local density approximation model given in Eq.(17.7) is merely one
possibility.

The weighted density approximation for the one-electron reduced density matrix,
Eq.(17.2),is a very flexible form, and there are an infinite number of potentially useful
constraints that can be imposed upon it. We expect that further investigations along
these lines will provide more accurate kinetic energy functionals, though innovations
are also required so that constraints like Eq. (17.20) can be efficiently imposed. We
will address these numerical problems in a follow-up paper [84].
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Chapter 18 ®)
A Gradient Corrected Two-Point e
Weighted Density Approximation

for Exchange Energies

R. Cuevas-Saavedra, D. Chakraborty, M. Chan and P. W. Ayers

Abstract A successful symmetric, two-point, nonlocal weighted density approxi-
mation for the exchange energy of atoms and molecules can be constructed using
a power mean with constant power p when symmetrizing the exchange-correlation
hole [Phys. Rev. A 85, 042519 (2012)]. In this work, we consider how this param-
eter depends on the system’s charge. Exchange energies for all ions with charge
from —1 to 412 of the first eighteen atoms of the periodic table are computed and
optimized. Appropriate gradient corrections to the current model, based on rational
functions, are designed based on the optimal p values we observed for the ionic
systems. All of the advantageous features (non-locality, uniform electron gas limit
and no self-interaction error) of the original model are preserved.

18.1 Introduction

Density functional theory (DFT) has successfully become the method of choice
for computing the electronic structure of large molecules and complex materials
[1-5]. However, although density functional theory provides an exact mathemat-
ical framework for the electronic structure problem [6—12], its utility in practical
calculations is limited by the accuracy of approximate exchange-correlation func-
tionals. This motivates the ongoing research into accurate and feasible approximate
exchange-correlation functionals [4, 13—16]. Despite the success of functionals such
as the local-density approximation [17-19] (LDA) and generalized gradient approx-
imations [20-23] (GGA) due to their computational efficiency, they are subject to
a number of deficiencies. These deficiencies are usually analyzed by determining
which exact constraints are (and are not) satisfied by the approximate functionals,
though it is also true that no (semi)local functional can ever be exact [24-27].

This has stimulated recent work on nonlocal density functionals, where the
exchange-correlation energy is approximated as a six-dimensional integral [28—47],
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Evlp] = //f[p,r ldrd’r. (18.1)

This type of functional is particularly advantageous when the exchange-correlation
hole is delocalized [24-26, 48-50] and is essential when for density-functionals that
are accurate not only for short-range electron correlations, but also for long-range
electron correlations like dispersion [30-37].

Equation (18.1) provides a natural form for the exchange-correlation functional
since the exact exchange-correlation energy functional can be written in the form

xc ,0] // p(l‘)p(l‘/)hx/c(l‘ r)d’ird’jr/, (182)
l‘ — l‘
where
e, T) = f B (5, ©')dA (183)

is the exchange-correlation hole

p5(x, ) — p(r)p(r')

hk , /Y —
) PI)P(r)

(18.4)

averaged over the constant-density adiabatic connection path, in which the electron-
electron repulsion potential A/|r — r’| is increased from the noninteracting limit
(A = 0) to the physical limit of interest (A = 1) [51, 52]. Here,

oy (r, 1) = <lI/’\ Zé(ri —r)d(r;—r) llfk> (18.5)
A

is the electron pair density.

There have been several recent attempts to construct nonlocal exchange-corre-
lation functionals using models for the exchange-correlation hole [38—47]. Some
of them are based on a variant of the classical Ornstein—Zernike equation [41, 42,
53-57] while some others are two-point weighted density approximations that rely
on analytical models of the exchange-correlation hole for the uniform electron gas
[58, 59]. The latter approach seems to be promising since they are suggested to be
competitive with the best generalized gradient approximation. Moreover, these two-
point weighted density approximations are fully nonlocal, have no self-interaction
error, approximately fulfill the Pauli principle, and preserve the uniform electron
gas limit [38, 39]. In these models the symmetry of the exchange-correlation hole is
achieved by means of a generalized mean (power mean).

Motivated by these preliminary results we explore ways to improve the two-
point weighted density approximation (2pt-WDA) exchange density functional.
Section 18.2 provides a brief overview of the approach, and extends our previous
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tests to all ions with charges between —1 and +12 for the first 36 elements of the
periodic table (H-Kr). Based on the dependence of these results on the power used
in the generalized mean, we propose a gradient-corrected 2pt-WDA. This model is
studied in Sect. 18.3, and our conclusions are summarized in Sect. 18.4.

18.2 The Weighted Density Approximation
for Atoms and Ions

The main ingredient of the weighted density approximation discussed here is the
exchange hole for the uniform electron gas (UEG)

2
. sin (kg;u - r’|> - (kg’j3,|r - r’|) cos (k{;f;u - r’|)
f (k;_‘au — r’|) -9 /
(ke = 1)
(18.6)

(cf. Eq.(17.5) in Chap. 17 [60]) where we use the expression for kr from the uniform

electron gas,
ki (r) = /6120, (r). (18.7)

The expression Eq. (18.6) for the exchange hole needs to be symmetric with respect
to interchange of r and r’ because the electron pair density is symmetric [61, 62].
We use the p-mean to symmetrize this formula [38, 39],

1 P IR
K (v, 1) = [5 ((k}(;f; (r)) n (k;fj,(r’)) )} : (18.8)
Finally, the exchange energy is computed by means of

1 - (1) ps (@XAX) (1, 1’

EW[p] ~ = Z // Po (0o ()N ( )d3rd3r/, (18.9)
2 r —r/|
o=a,B
where the exchange hole is approximated as

hi’f;(r, r)~ f (kéf()r(r, r)|r — r’|> . (18.10)

This approach naturally leads to three different types of functional. The Opt-WDA
functional is constructed by the direct use of Eq. (18.7) when computing the exchange
hole. This functional is neither symmetric nor normalized. In 1pt-WDA, an effective
kélf, (r) is used to enforce the normalization of the hole
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—1= / P (V)0 (v, ¥ )
- / 0 (1) f (k;ff,(r/)|r - r’|> &r. (18.11)

This functional is now normalized but not symmetric. Finally, the 2pts-WDA arises
when both symmetry and normalization are imposed.

Following the same computational approach described in our previous work [38,
39], we computed the exchange energy for all ions with charge from —1 to 412 of the
first 36 atoms in the periodic table (H-Kr). Minimizing the root-mean-square error
in the exchange energy over the entire dataset gave a value of p = 2 for Eq. (18.8).
The weighted density approximation is still competitive with the traditional GGA
functionals (B88 [21], PBE [22], and OPTX [23]), and significantly better than the
local density approximation [17], but both the average and root-mean-square errors
are worse than the results for neutral atoms and small molecules [39]. This finding
reinforces our previous observation: p should be density dependent. This is more
clearly observed in Tables 18.1 and 18.2, where the average and root-mean-square
errors are shown for different charges; the errors increase with increasing charge,
indicating that p should be system-dependent.

Table 18.1 Average errors for the atoms and atomic ions with —1 to +12 charge, H-KTr, for con-
ventional density functionals (LDA, B88, PBE, OPTX) and the symmetrized weighted density
approximations (Opt-WDA, 1pt-WDA, 2pt-WDA) described in Sect. 18.2. The p = 2 mean is cho-
sen in Eq. (18.8). The average over all atoms and ions is provided in the bottom row. The rows above
that are the average error for species of a given charge; for example, the first row is the average
error in the atomic anions

Charge Opt-WDA | 1pt-WDA | 2pt-WDA | LDA B88 PBE OPT

-1 10.134 3.782 0.014 2.303 —0.049 —1.168 —0.198
0 10.505 3.915 0.007 2.398 —0.034 —1.172 —0.203
1 10.809 3.959 0.018 2.482 —0.010 —1.187 —0.187
2 11.081 3.967 0.013 2.549 —0.006 —1.204 —0.190
3 11.332 3.955 0.003 2.603 -0.011 —1.230 —-0.201
4 11.415 3.893 0.085 2.647 0.015 —1.205 —0.175
5 11.794 3.960 0.092 2.757 0.045 —1.206 —0.152
6 12.120 3.994 0.175 2.862 0.078 —1.200 —0.117
7 11.842 3.734 0.226 2.836 0.108 —1.135 —0.067
8 12.067 3.717 0.261 2.905 0.123 —1.139 —0.046
9 12.109 3.605 0.317 2.926 0.123 —1.143 —0.027
10 11.963 3.405 0.376 2.927 0.150 —1.098 0.022
11 12.373 3.570 0.555 3.042 0.170 —1.118 0.048
12 12.520 3.527 0.633 3.096 0.183 —1.118 0.070
all 11.471 3.811 0.167 3.096 0.183 —1.118 0.070




18 A Gradient Corrected Two-Point Weighted ... 213

Table 18.2 Root-mean-square errors for the atoms and atomic ions with —1 to +12 charge, H-
K, for conventional density functionals (LDA, B88, PBE, OPTX) and the symmetrized weighted
density approximations (Opt-WDA, 1pt-WDA, 2pt-WDA) described in Sect. 18.2. The p = 2 mean
is chosen in Eq. (18.8). The root-mean-square error over all atoms and ions is provided in the bottom
row

Charge Opt-WDA | 1pt-WDA | 2pt-WDA | LDA B88 PBE OPT

-1 12.313 5.010 0.323 2.734 0.131 1.426 0.357
0 12.759 5.188 0.351 2.844 0.123 1.433 0.373
1 12.971 5.210 0.352 2.904 0.118 1.447 0.368
2 13.145 5.186 0.368 2.944 0.134 1.460 0.383
3 13.298 5.139 0.493 2.975 0.271 1.505 0.473
4 13.345 5.088 0.378 3.006 0.208 1.464 0.425
5 13.669 5.145 0.405 3.107 0.158 1.444 0.376
6 13.862 5.125 0.394 3.189 0.171 1.417 0.347
7 13.560 4.891 0.417 3.159 0.183 1.346 0.318
8 13.719 4.865 0.444 3.216 0.205 1.343 0.307
9 13.626 4.690 0.475 3.203 0.199 1.345 0.293
10 13.399 4.490 0.518 3.199 0.252 1.287 0.249
11 13.711 4.523 0.683 3.294 0.270 1.304 0.254
12 13.797 4.462 0.751 3.336 0.292 1.302 0.256
all 13.323 4.977 0.751 3.336 0.292 1.302 0.256

18.3 A Preliminary Generalized Gradient Corrected
Weighted Density Approximation

From the insight gained in the previous findings, we propose in this section the power
p as a rational function of the reduced gradient, s(r) = |V o(r)|/p*?(r),

ag + as(r)

. 18.12
by + s(r) (18.12)

pls;r) =

We opted to use the reduced gradient since p should be a dimensionless quantity.
We will not engaged in a detailed optimization of this form here, but defer that to
future work. Our goal is merely to explore the possible utility of this form on the
performance of the weighted density approximation.

Because the exchange hole must remain symmetric, the power in Eq. (18.8) must
be symmetrized. We choose to do this with the form,

1 1/q
p(r,r) = |:§ (pq(s, r) + pi(s, r’))i| ) (18.13)
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The exponent g can be chosen as a free parameter also; however we considered
only three possibilities: the arithmetic (¢ = 1), harmonic (g = —1) and geometric
(g = 0) means.

From our previous studies, we have learned that the coefficient a; in Eq. (18.12)
has to be small to reach convergence, especially in the asymptotic regions of the
density (regions where s diverges). For this reason we only allowed a; to have the
values 0.1 and 0.01. The remaining parameters ap and by were assigned values 0.1,
0.5, 1.0, 1.5 and 2.0. This gave a total of 50 functionals (each defined by a specified
value of (ay, by, a;) to test). To speed up the testing, we considered only the neutral
atoms and +1, 42, 43, +4, and +5 atomic ions, and only for the first 18 elements
of the periodic table (H-Ar). We observed that the results were quite insensitive to
the choice of ¢ in Eq. (18.13), typically differing in only the 3rd or 4th decimal. For
simplicity we henceforth consider only the results for the simple arithmetic mean
(g=1.

Tables 18.3 and 18.4 show the average and rms errors, respectively, for each of
the triads considered. For fixed values of ag, by the errors seem to decrease when

Table 18.3 Average errors for the neutral atoms and atomic ions with +1, +2, +3, +4, and +5
charge, H-Ar, for symmetrized weighted density approximations (Opt-WDA, 1pt-WDA, 2pt-WDA)
described in Sect. 18.3. The arithmetic mean (¢ = 1) is chosen

ay bp a Opt 1pt 2pt

ay by a Opt 1pt 2pt

2.00 0.10 0.10 9.612 3.048 0.441
2.00 0.50 0.10 9.485 2.965 0.478
2.00 0.10 0.01 9.503 2.993 0.499
1.50 0.10 0.10 9.388 2.909 0.511
2.00 1.00 0.10 9.364 2.889 0.517
2.00 0.50 0.01 9.386 2.918 0.535
1.50 0.50 0.10 9.282 2.843 0.546
2.00 1.50 0.10 9.269 2.831 0.549
2.00 1.00 0.01 9.274 2.848 0.573
2.00 2.00 0.10 9.193 2.785 0.575
1.50 0.10 0.01 9.270 2.852 0.576
1.50 1.00 0.10 9.181 2.781 0.580
1.00 0.10 0.10 9.147 2.765 0.594
2.00 1.50 0.01 9.188 2.795 0.602
1.50 1.50 0.10 9.104 2.734 0.608
1.50 0.50 0.01 9.175 2.793 0.608
1.00 0.50 0.10 9.066 2.716 0.622
2.00 2.00 0.01 9.119 2.754 0.627
1.50 2.00 0.10 9.041 2.698 0.630
1.50 1.00 0.01 9.086 2.738 0.640
1.00 1.00 0.10 8.989 2.670 0.651
1.50 1.50 0.01 9.018 2.698 0.665
1.00 0.10 0.01 9.020 2.705 0.666
1.00 1.50 0.10 8.930 2.636 0.673
1.50 2.00 0.01 8.963 2.666 0.685

0.50 0.10 0.10 8.889 2.615 0.689
1.00 2.00 0.10 8.883 2.609 0.691
1.00 0.50 0.01 8.952 2.663 0.691
0.50 0.50 0.10 8.836 2.584 0.710
1.00 1.00 0.01 8.888 2.626 0.715
0.50 1.00 0.10 8.786 2.556 0.730
1.00 1.50 0.01 8.839 2.598 0.734
0.50 1.50 0.10 8.748 2.535 0.745
1.00 2.00 0.01 8.801 2.576 0.749
0.50 2.00 0.10 8.718 2.518 0.757
0.50 0.10 0.01 8.751 2.551 0.771
0.10 0.10 0.10 8.667 2.491 0.779
0.50 0.50 0.01 8.713 2.530 0.786
0.10 0.50 0.10 8.641 2.476 0.789
0.10 1.00 0.10 8.615 2.462 0.800
0.50 1.00 0.01 8.678 2.510 0.800
0.10 1.50 0.10 8.596 2.452 0.808
0.50 1.50 0.01 8.652 2.495 0.811
0.10 2.00 0.10 8.581 2.444 0.814
0.50 2.00 0.01 8.631 2.484 0.820
0.10 0.10 0.01 8.521 2.425 0.867
0.10 0.50 0.01 8.511 2.420 0.871
0.10 1.00 0.01 8.502 2.415 0.875
0.10 1.50 0.01 8.495 2.411 0.878
0.10 2.00 0.01 8.490 2.409 0.880
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Table 18.4 Root-mean-square for the neutral atoms and atomic ions with +1, +2, 43, +4, and +5
charge, H-Ar, for symmetrized weighted density approximations (Opt-WDA, 1pt-WDA, 2pt-WDA)
described in Sect. 18.3. The arithmetic mean (¢ = 1) is chosen

a0 by a; Op-WDA Ip-WDA 2p-WDA| [ay by a1 Op-WDA Ip-WDA 2p-WDA
2.00 0.10 0.10 11.382  4.066 _ 0.498 1.00 0.50 0.01 10.540 3.547 _ 0.731
2.00 0.50 0.10 11.220  3.956  0.530 0.50 0.10 0.10 10.476  3.501  0.740
2.00 0.10 0.01 11.230 3.978  0.545 1.00 2.00 0.10 10.466 3491  0.742
1.50 0.10 0.10 11.101  3.886  0.560 1.00 1.00 0.01 10.458 3.497  0.757
2.00 1.00 0.10 11.065 3.854  0.565 0.50 0.50 0.10 10.409 3.461  0.762
2.00 0.50 0.01 11.080 3.877  0.577 1.00 1.50 0.01 10.397 3.460  0.777
1.50 0.50 0.10 10.966 3.796  0.592 0.50 1.00 0.10 10.347 3.423  0.784
2.00 1.50 0.10 10.946 3.778  0.595 1.00 2.00 0.01 10.349 3431  0.794
2.00 1.00 0.01 10.938 3.784  0.612 0.50 1.50 0.10 10.300 3395  0.801
1.50 0.10 0.01 10.939 3.794  0.615 0.50 2.00 0.10 10.262 3.374  0.814
2.00 2.00 0.10 10.850 3.717  0.621 0.50 0.10 0.01 10.291 3.403  0.817
1.50 1.00 0.10 10.838  3.715  0.626 0.50 0.50 0.01 10.243  3.373  0.833
1.00 0.10 0.10 10.800  3.697  0.640 0.10 0.10 0.10 10200 3.339  0.838
2.00 1.50 0.01 10.829 3.715  0.640 0.50 1.00 0.01 10.199 3.347  0.849
1.50 0.50 0.01 10.818 3.715  0.646 0.10 0.50 0.10 10.166 3320  0.850
1.50 1.50 0.10 10.740  3.653  0.654 0.50 1.50 0.01 10.165 3.327  0.861
2.00 2.00 0.01 10.742  3.660  0.665 0.10 1.00 0.10 10.135 3302  0.862
1.00 0.50 0.10 10.696  3.631  0.669 0.50 2.00 0.01 10.139  3.312  0.871
1.50 2.00 0.10 10.662 3.605  0.678 0.10 1.50 0.10 10.111 3289  0.871
1.50 1.00 0.01 10.705 3.643  0.678 0.10 2.00 0.10 10.092 3278  0.878
1.00 1.00 0.10 10.599 3.571  0.699 0.10 0.10 0.01 10.003 3238  0.924
1.50 1.50 0.01 10.618 3.589  0.704 0.10 0.50 0.01 9.991 3230  0.929
1.00 0.10 0.01 10.627 3.602  0.705 0.10 1.00 0.01 9.980 3224  0.933
1.00 1.50 0.10 10.525 3.526  0.723 0.10 1.50 0.01 9.971 3219  0.936
1.50 2.00 0.01 10.549 3.547  0.725 0.10 2.00 0.01 9.965 3216  0.939

increasing a ; for fixed values of by, a; the errors seem to decreasing when increasing
ay. For fixed values of ag, a; the errors seem to decrease when decreasing by.

These observations can be understood since s diverges in asymptotic regions.
Therefore a small value of a; is needed, but if a; > 1 it becomes practically impos-
sible to satisfy the normalization condition [38, 39]. Near the nucleus a much larger
value of p is needed, p ~ 20. Therefore it is desirable that the ratio ag/by should
be on the order of 10. Thus, while this is in no sense an optimization of the form in
Eq. (18.12), we nonetheless were able to learn something about the underlying prin-
ciples that must be followed to design a GGA-based weighted density approximation
for exchange.

18.4 Summary

We have used a two-points weighted density approximation (2pt-WDA) to compute
the exchange energies for all ions with charges from —1 to +12 for the first thirty-six
atoms in the periodic table. While the 2pt-WDA is still competitive with popular
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generalized gradient approximations, its performance worsens for highly charged
atomic cations, probably because it is better to use a larger value of the power
p in Eq.(18.8) for those systems. This motivated us to build a density functional
expression for p by writing p as a rational function of the reduced gradient, s(r).
Preliminary tests reveal the order of magnitude for the parameters in the mean, and
allow us to suggest the form:

1
pr,r) = 5 (p(s;0) + p(s; 1)), (18.14a)
v 20+s(r)
p(s;r) = T 1050 (18.14b)

The numerical parameters in Eq. (18.14b) are not optimized, and are merely indica-
tive of important features for the functional form.
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Chapter 19 )
From Molecules and Clusters of Atoms Guca i
to Solid State Properties

G. Forte, A. Grassi, G. M. Lombardo, R. Pucci and G. G. N. Angilella

Abstract Several structural and electronic properties of solid-state systems can be
thought of as emerging from the correlation of individual molecules in suitable clus-
ters, which may be viewed as precursors of the solid phases. This is reviewed through
reference to numerous cases studied by N. H. March and collaborators by quantum
chemical methods.

19.1 Introduction

In a seminal paper of 1972, P. W. Anderson stated that qualitatively different prop-
erties stem from the aggregation of quantitatively many individual constituents [1].
He concisely phrased such a fact by saying that ‘more is different’. Indeed, Bloch
states in solid-state crystals, the renormalized, effective properties (such as mass or
spin) of Landau quasiparticles in correlated electron liquids, or superconductivity
in several materials are probably the best-known examples of many-body effects
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emerging from the correlation of many (order of the Avogadro number) single parti-
cles, that could not be directly ascribed to any individual constituent, or to any small
number of them. Actually, the latter example, i.e. superconductivity, is a paradigm
for many phase transitions characterized by the spontaneous breaking of some con-
tinuous symmetry (gauge invariance, in this case), and one formal requirement from
statistical mechanics would actually be the system to be infinite, even though devi-
ations from a true phase transition are hardly visible, experimentally, in finite, but
macroscopic samples [2, 3] (see also Ref. [4] for a review).

However, precursor signatures of some properties to be seen in larger complexes
can be recognized already in clusters and molecules. Here, we will briefly review
some results from quantum chemistry calculations in molecules and clusters which
were often motivated by novel materials in the solid state. These results have been
obtained by Professor Norman H. March and the present collaboration over the last
two decades.

19.2 Periodane

Correlated molecules can be recognized, at least theoretically, as individual units in
larger complexes. Such is the case, for example, of periodane. This is a molecular
cluster, originally hypothesized by Kriiger [5], made by the first atoms in each column
of the Periodic Table of the elements (the first ‘period’, hence its name). Its chemical
formula would then be LiBeBCNOF, and its ground-state isomer has been determined
by Bera et al. [6] within density functional theory (DFT) applied to the whole cluster.
However, much information, especially concerning the geometry of the low-lying
isomers of this cluster, could be obtained by applying simpler theories to smaller
blocks treated as constituent molecules, such as Hartree—Fock theory to LiOB and
coupled cluster singles and doubles (CCSD) theory to FBeCN [7]. In particular, a
planar structure for periodane was predicted by Forte et al. [7], much similar to that
found by Bera et al. [6].

19.3 C-Based Clusters

Motivated by the very early work by N. H. March on benzene [8], where Thomas-
Fermi theory was applied for the first time to study the electronic density in molecules,
thereby anticipating density functional theory (DFT) (see Refs. [9, 10] for reviews),
Forte et al. [11] followed a ‘molecular’ approach to study impurity effects in
graphene. Graphene, an atomically thick layer of carbon atoms in the honeycomb
lattice, was there modeled as the limiting case of an infinitely large cluster of ben-
zene rings. Forte et al. [11] then studied several carbon clusters with the honeycomb
geometry, with increasing size, ranging from phenalene, including three benzene
rings, up to coronene-61, with 61 benzene rings. In the absence of impurities, Forte
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et al. [11] found a decreasing value of the difference between the highest occupied
molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO). This
was interpreted as evidence of the tendency towards a zero-gap semimetal, as is the
case for solid-state graphene. This simplified model enabled the authors to study
the effect of impurities, such as that of a chemisorbed H atom, of a vacancy, and a
substitutional proton [11]. Their results for the density of states are reminiscent of
those available for the local density of states around isolated impurities in graphene
(see e.g. Ref. [12]).

This was followed by a study of the orientational properties of a water molecule
on coronene at the Hartree—Fock (HF) level [13]. Again, this was motivated by much
current experimental interest in the interaction of H,O with nanographene [14], with
possible applications towards water purification by means of graphene filters [15].

Some quite recent theoretical interest in solid lithium carbide under pressure [16]
was probably motivated by the more general proposal that several carbon allotropes
(including graphite, carbon nanotubes, fullerenes, and graphene) may serve as effec-
tive reservoirs for hydrogen storage. Hence, the interest for carbon compounds with
the intercalation of alkali metals, such as lithium. Motivated by these studies, Forte
et al. [17] then considered the free-space molecule Li,C; plus its dimer and trimer.
Albeit at the Hartree—-Fock plus Mgller—Plesset (HF-MP2) level, their study pre-
dicted the (Li»C,), cluster to have four carbon atoms on a linear chain, whereas the
six carbon atoms in the trimer (Li,C;)s; were predicted to lie on a hexagon, thus
mimicking the precursor structure of graphene. However, the Li atoms prefer each
to bond to two carbon atoms, rather than following the geometry of benzene. It was
then proposed that it should be possible to study the dependence of these free-space
results on pressure by imposing vanishing boundary conditions on the molecular
wavefunction on a finite three-dimensional closed surface.

19.4 Si-Based Clusters

A molecular approach was fruitful to study the formation of interstitial (BO),, impu-
rity complexes in solid-state silicon [18]. To this aim, Forte et al. [19] considered
a free space cluster BOSi,, with Si, simulating the elementary unit in solid-state
silicon. Although the approximation used was Hartree—Fock (HF) theory supple-
mented by low-order Mgller—Plesset (MP2) perturbation theory, the results of Forte
et al. [19] were already in good quantitative agreement with the structural details
experimentally available for this system in the solid state.

Molecular methods were helpful to gain some insight on the properties of solid-
state systems under extreme conditions, in particular under high pressure. One exam-
ple is provided by the various crystalline forms, which have been predicted to occur
for SiO; and GeO;, under pressure [20]. Therefore, Forte et al. [21] considered neu-
tral and cationic free-space oxygen-silicon clusters SiO,, and GeO,, (1 <n < 6) at
various average internuclear distances.
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In addition to silicon oxide, silicon hydride (silane, SiH4) with intercalated hydro-
gen under pressure is receiving much attention, both theoretically [22, 23] and
experimentally [24], with possible metallization and superconductivity arising at
a relatively high temperature [22, 25]. This justified the study within a quantum
mechanical approach of a cluster of SiHs and two H, molecules, together with its
dimer and trimer, (SiH4(H»),), (n = 1, 2, 3), by Forte et al. [26]. The geometries
for the clusters under consideration were found to be in qualitative agreement with
those predicted or observed experimentally for the corresponding solid-state phases.

It is worth mentioning at this point the study of Grassi et al. [27], concerning
the role of bond-order correlation energy for small molecules containing Si. Also, it
was shown that the Lowdin correlation energy E, per electron, E./N, where N is
the total number of electrons is nearly constant, with E./N = —0.039 £ 0.007 a.u.,
for some 20 Si-containing molecules in the series SiX,Y,, (where X, Y = H, F, Cl)
[28]. A similar result, with a slightly different value of E./N = —0.033 + 0.003 a.u.,
was found for the closed-shell isoelectronic molecules CH4, NH3, H,O, all having
N = 10 electrons. These findings supported the conclusion that the Lowdin correla-
tion energy density, &.(r) say, is, albeit approximately, a local functional e[ o] of the
ground-state electron density p(r) at equilibrium. In the lowest degree approxima-
tion, somewhat suggested by the behaviour found for the aforementioned molecules,
all containing light atomic components, one is led to assume a linear functional
relation e.[p] ~ p, which implies in turn that the dominant effect of the Lowdin cor-
relation energy for closed-shell molecules at equilibrium merely consists of a shift
in the chemical potential [28].

A related study was directly concerned with SigHg subjected to bond stretching
[29]. This work was motivated by an analysis of the cleavage force in crystalline Si
[30], showing that Si—Si bonds in the diamond lattice structure could have compa-
rable elasticity to the bond in the free space H, molecule. Of course, Si atoms in
such a structure are characterized by sp? hybridization, at variance with quasi-sp?
hybridization in the benzene-like, as yet unsynthesized, free space molecule SigHg.
Therefore, Grassi et al. [29] included 3 p, orbitals in their unrestricted Hartree—Fock
calculations, expecting the formation of molecular w-orbitals. The geometry of the
low-lying stable ring was predicted to be slightly buckled, rather than planar, with
m-electron localization occurring in the range 1.2—1.5 times the equilibrium distance
[29], in good qualitative agreement with earlier variational calculations on H; [31].
The latter finding suggested a tendency towards localization of the m-electrons in
stretched SigHg, at variance with what happens in the (planar) benzene ring [8]. The
cluster SigHg can also be thought as a precursor to silicene, i.e. a two-dimensional
allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene
(see Chap. 5 by Baskaran in the present volume, and references therein, for an account
of possible superconductivity in silicene [32]).
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19.5 Other Clusters

We conclude by briefly summarizing results for other elemental and molecular clus-
ters.

Lithium clusters Li, (1 < n < 10) were extensively studied by Grassi et al. [33]
within Hartree—Fock (HF) theory, supplemented by low-order Mgller—Plesset (MP2)
correlation corrections. Both geometry, energy, and vibrational frequencies of the
low-lying isomers of this class of clusters were determined. Their study pointed out
the importance of electron correlation, especially in determining the structure and
actual geometry of these clusters. For instance, a comparison of HF + MP2 energies
and HF energy plus bond-order correlation energy shows that indeed inclusion of
bond-order correlation confirms the hypertetrahedral 7} structure for Lig, as experi-
mentally observed with Raman spectroscopy [34].

The high-pressure, high-density phase of solid oxygen [35, 36] stimulated Forte
etal. [37] to study elemental oxygen clusters O,, (n = 6, 8, 12). In particular, starting
from the triplet state of molecular O, and in view of the magnetic (and possibly even
superconducting [38]) correlations in the solid phases of oxygen, particular attention
was devoted to the spin configuration of the stable geometries determined through
quantum mechanical calculations, again at the HF + MP2 level (plus further calcu-
lations at the CCSD level of approximation). Specifically, while the Og cluster in the
triplet configuration does not form, one finds a Og cluster in the singlet configura-
tion, but unstable. One further result was that the bare electrostatic nuclear-nuclear
potential energy U, correlates closely with the total number of electrons in the equi-
librium clusters O,, with increasing n = 2 — 12, in accord with the conclusions of
Mucci and March [39] on tetrahedral and octahedral molecules.

The analysis of structural and electronic properties of a quite specific metallic ion
cluster, viz. (Li3Al4)~, enabled Grassi et al. [40] to consider the possible occurrence
of ‘aromaticity’ in a metallic cluster. Indeed, ‘aromaticity’ is a popular concept,
which is usually applied to metallic species [41, 42]. It was originally proposed by
Pauling and Wheland [43] in connection with the nature and stability of the chemical
bond in benzene and other hydrocarbons, such as naphtalene. An aromatic character
is generally thought to enhance the kinetic and thermodynamic stability of such
molecules, as well as several other remarkable physical and chemical properties
[44, 45]. Therefore, quantum chemistry calculations were performed on (LizAls)~
to test its possible aromaticity [40]. The main outcome of this study was that the
chemical shifts corresponding to the low-lying stable isomers numerically found,
were intepreted as clear fingerprints of antiaromaticity in this metal cluster [40].

The issue of long-range orientational ordering in bulk water is a long-standing
problem (see e.g. Refs. [46, 47], and references therein), with possible important
implications also in biochemistry [48]. This stimulated Howard et al. to study water
cages (H,0), and (D,0), (n =2 and 8), both structurally and in connection with
their interaction with a H, molecule [49, 50]. One initial concern of their quantum
chemistry calculations was of course that of making contact with available inelastic
neutron scattering experiments [51] and Raman spectroscopy results [52, 53] on ice.
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However, an important direction for future study relates to larger clusters, whose
study may be relevant to understand the solid-liquid-like transition with increasing
cluster size [54]. Such studies would provide further insight into the nature of hydro-
gen bonding, and its relevance for the liquid state, starting from properties at the
molecular scale. Clusters larger than the water octamer considered by Howard et al.
[49, 50] have been in fact studied by Rousseau et al. [55] within density functional
theory. Also, the importance of water molecules and clusters in nanotechnology
should be emphasized, with possible applications in wastewater purification [56].

19.6 Conclusions

We have reviewed several quantum chemical studies on molecules and clusters, per-
formed by N.H. March and collaborators over the last few decades. These were
mostly motivated by their possible relevance for larger systems, whereof the clus-
ters can be thought as precursors. In several instances, both structural and electronic
properties somehow anticipated physical and chemical properties of the correspond-
ing solid-state phases, featuring genuinely many-body effects, such as metallicity,
superconductivity, or other phase transitions. The origins of these are then to be
thought in the electron correlations, already emerging in clusters of a few atoms.
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Chapter 20
Alchemical Derivatives of Atoms: A Walk  oe
Through the Periodic Table

Robert Balawender, Andrzej Holas, Frank De Proft,
Christian Van Alsenoy and Paul Geerlings

Abstract Exploring the Chemical Compound Space is at stake when looking for
molecules with optimal properties. In order to guide experimentalists to navigate
through this unimaginably huge space, theoreticians should look for efficient and
cheap algorithms. One of the strategies put forward some years ago was to look for
transmutation of molecular structures, thereby changing their nuclear charge content,
for which alchemical derivatives are instrumental. A collection of well tested isolated
atom alchemical derivatives would be a basic instrument in a navigation toolbox.
In this work, isolated atom alchemical derivatives were evaluated with different
techniques, from the more accurate numerical differentiation and Coupled Perturbed
Kohn—Sham approaches to the Z~! energy expansion model which upon derivation
with respect to Z yields the desired derivatives. For this third approach a systematic,
computationally elegant, method is developed to routinely evaluate an optimal set
of all expansion coefficients in the energy expansion for a given N. For the lighter
elements, Z = 1 — 18, the comparison between the three approaches shows that the
order of magnitude and sequences in the different approaches are similar paving the
way for a walk through the complete Periodic Table by combining the Z~! expansion
approach with the National Institute of Standards and Technology (NIST) databank
atomic energy values at various levels of LDA. A uniform decrease is retrieved
not only for the alchemical potential (the electrostatic potential at the origin) but
also for the alchemical hardness, with some minor exceptions. The latter values
are relatively strongly influenced by relativistic effects for the heavy elements. The
uniform decrease of the first derivative is evidenced and quantified. Periodicity shows
up in some exploratory calculations on the third derivative (the hyperhardness) which
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turn out to be strongly basis set dependent. The Periodic Tables generated could be
used in a first step in exploring Chemical Compound Space in a systematic, efficient
and cheap way. Some possible refinements (atoms-in-molecules corrections) and
extensions (inclusion of mixed Z and N derivatives) are touched upon.

20.1 Introduction

Chemistry and chemists are exploring Chemical or Chemical Compound Space
(CCS), the space populated by all imaginable chemicals with natural nuclear charges
and real interatomic distances for which chemical interactions exist [1-3]. In their
continuous efforts toward Molecular Design, chemists try to ‘identify’ in that space
stable molecules with interesting/optimal properties. Navigating through this space
with unimaginable size is costly, certainly for experimentalists in front of a myriad of
synthetic problems, but even so for theoreticians. Indeed, exploring Chemical Space
by even relatively moderate level ab initio or even semi-empirical brute force tech-
niques may already lead to an astonishing increase of the number and complexity
of calculations as the number and complexity of atoms characterizing the subspace
investigated is increasing.

This problem urges theoretical and computational chemists to look for efficient
ways to drastically shorten the navigation time, as they are indeed supposed to take
the lead in this kind of navigations due to the still lower cost of computational
experiments as compared to synthetic work, and so to assume their role as a guide for
experimentalists. Ingenious alternatives to the brute force approach were presented
such as simulated annealing [4], genetic algorithms [5], linear combinations of atomic
potentials [6]. The Inverse Molecular Design approach introduced by Beratan and
Yang [7, 8] has shown to be very promising. This approach leads to the rational
design of new molecules with optimal properties (see for example Refs. [9, 10]).

Another highly promising approach for a more efficient exploration of CCS has
been the Alchemical Coupling (AC) concept by von Lilienfeld [11-16]. In this
approach, two isoelectronic molecules in CCS can be ‘coupled’ alchemically through
interpolation of their electron-nucleus potentials, an approach on which energy ver-
sus nuclear charge Z derivatives appear in a natural way.

Although at first a little bit awkward, these ‘alchemical’ derivatives [11, 17, 18]
find a natural place in the context of Conceptual Density Functional Theory [19—
21], where the energy of a molecule is written as a functional of the number of
electrons N and the external potential (i.e. due to the nuclei) v(r). Upon perturbing
the molecule in N and/or v(r), a perturbation expansion can be written in which in
each term a derivative of the type 0"6™ E/dN"§v(ry) ... 8v(r,) occurs in front of
the perturbation, which can be identified as the response function of the system due
to the perturbation, independent of the magnitude of the perturbation, and as such an
intrinsic property of the system.

Numerous studies appeared involving d N and/or v (r) perturbations. Tradition-
ally, the former perturbation has been at stake in phenomena associated with electron
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transfer [20]. The density response to the external potential change, the so-called lin-
ear response function, is a central example of the latter perturbation. Its physical
and mathematical properties were studied [22—24], techniques for its numerical and
analytical evaluation were developed [25, 26] and its chemical importance was scruti-
nized [24, 27-30], up to connections with molecular conductivity [31]. The change in
external potential §v(r) is typically understood as resulting from a combined change
in geometry and charges due to a neighbouring, reacting system; §v(r) perturbations
due to a change in nuclear charge within the molecule (pure d Z perturbations) have
rarely been treated [20]. The interest displayed above to the linear response func-
tion then becomes evident as it turns out that in the expression for the second order
alchemical derivative the linear response function shows up in complete analogy to
the one variable density in the first order ones (vide infra).

In previous work by some of the authors [17, 18] it was shown that the dZ
derivatives or alchemical response functions, which have been evaluated up to third
order, are of crucial importance/use when exploration of chemical space in a quick
and standardized way is necessary. It was indeed shown that on the basis of a single
SCF type calculation and the corresponding alchemical derivatives of the reference
molecule, the CCS of first neighbours (implying changes in nuclear charge of +1)
could be fully explored by simple arithmetic operations at negligible cost as compared
to the SCF calculations. Transmutation reactions have been studied for the nitrogen
molecule, the BN iso-electronic ‘alchemical isomers’ of benzene and pyrene, and
very recently [32] the (C — C),, — (B — N),, substitution pattern of the archetypical
fullerene Cg, with n varying from 1 to 30. In all cases, correct sequences of stability
of the transmuted products were obtained indicating that the perturbation approach
involving alchemical derivatives does have great potential for efficient and accurate
screening of Chemical Space.

These considerations encouraged us to consider the following issue. As atomic
transmutations are the basis ingredients of a more general transmutation (say of a
functional group) it may be interesting to construct a data set of all first- and second-
order atomic alchemical derivatives for the Complete Periodic Table so that they
might be used as building blocks to have a first idea on the order of magnitude of a
given, more complex transmutation. Moreover, they would give us an idea of their
periodic behaviour (if any) which could be compared with the well-known periodic
behaviour of the corresponding derivatives [20], the electronic chemical potential
[33] and the chemical hardness [34].

In this endeavour, we will use three different approaches: (i) a brute force numer-
ical differentiation of E with respect to Z, to the best of our knowledge not used
hitherto in this context. Third order derivatives are evaluated ‘for the sake of com-
pleteness’; note that the corresponding N derivative (the hyperhardness) turned out
to be less insightful than its lower order congeners [21, 35]; (ii) an analytical method
based on a coupled perturbed Kohn—Sham approach [26, 36] developed by some of
the present authors, restricted however to closed shell systems [17, 18]; and (iii) a
‘model” approach based on the Z~! expansion approach for atomic and ionic energies
[37] studied in detail by Norman March [38] leading, among others, to a beautiful
joint paper with the father of conceptual DFT, Robert Parr, on the form of the E[Z, N]
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function for the total energy of atomic ions [39]. This is one of the very small number
of joint papers between these two giants of Density Functional Theory [39, 40].

Comparison of the values for Z = 1 — 18 for the three methods will provide a
sound basis for the credibility of a fourth road, yielding first and second alchemical
derivatives for the complete Periodic Table (Z = 1 — 91) on the basis of NIST data
[41] on atomic electronic structure calculations (neutral atom and cation) obtained via
LDA including relativistic corrections (vide infra), thus permitting ‘a walk through
the Periodic Table’.

20.2 Theory and Computational Details

As stated above the fundamental quantity in this study is the £ = E[Z, N] function
expressing the ground-state energy E as a function of the total number of electrons N
and the nuclear charge Z. In the context of Conceptual Density Functional Theory, the
derivatives 9" E/ON", 3™ E /0 Z™ can be regarded as response functions to investigate
the response of a system when its number of electrons or its nuclear charge is changed.
The N-derivatives are widely known and explored, in particular the n = 1 case, the
electronic chemical potential, identified with minus the electronegativity, and the
n = 2 case, identified with the chemical hardness. Various computational methods
have been proposed for it, starting from a finite difference approach [19] to analytical
gradients in a coupled perturbed Hartree—Fock [42-44] or Kohn—Sham approach
[45], the larger part being however evaluated numerically using the finite difference
Ansatz [19, 20] considering differences between the energy of the considered N-
electron system (say a neutral atom or molecule), its cation and anion, at the same
geometry (demand for constant external potential).

Letus have some closerlook atthe (3 E /9 Z) y derivatives. In the case of anisolated
atom it is easily seen that the first Z derivative at constant number of electrons, the
alchemical potential, can be written as (obviously only the electronic part should be
considered here)

me(E) Z/(8E[N,v]) <8v(r)> Foe_ [_P®_ s
0z ), v ) 0z ), r—R|

(20.1)
Taking the position R of the nucleus at the origin further simplifies this expression.
The chain rule has been used and v(r) is the external potential in DFT, i.e. the potential
felt by the electrons due to the nuclei (in the absence of an external field), which
in the case of an atom reduces to —Z/|r — R|. As on the other hand the response
of the energy with respect to the external potential directly follows from the basic
equation of DFT and is equal to the electron density function p(r), one ends up with
a very simple equation stating that the first order alchemical potential is equal to the
electrostatic potential due to the electrons and taken at the nucleus, the electronic part
of the well-known Molecular Electrostatic Potential [46]. It is also easily seen that
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this expression corresponds to the electron-nucleus interaction energy V,, divided
by Z (vide infra)

VulZ, N1 = —Z/ E 'Of ;“ r = ZpalZ, N1. (20.2)

Analogously, the alchemical hardness can be written as (again considering the only
surviving electronic component)

b = ( ) /[( Nv]) <8v(r)> (av(rr)) Yy
972 Sv(r)sv(r’) 0z )y \ oz ),

1
d’rd’r’,  (20.3
- [ [ @
where now the linear response function y (r, r’) makes its appearance
82E[N,
xie vy = (22 L) (20.4)
Sv(r)dv(r’) N

For the evaluation of the alchemical derivatives, Egs. (20.1) and (20.3), the finite
difference approach could be followed again (vide infra). Most, if not all calculations,
have been done with a Coupled Perturbed Hartree—Fock or Kohn—Sham approach as
described in Refs. [17, 18]. Evaluation of the first order derivative is equivalent with
the calculation of the electrostatic potential at the nucleus. Both approaches will be
followed and commented below.

In the finite difference approach (for a neutral atom) the energy of an atom with
N = Z electrons (fixed) is evaluated at nuclear charge Z, Z — §, Z + §, etc. The
first-order derivative is then obtained as

E[Z + 6] — E[Z — 8]

alZ=N,N]= . 20.
earl ] 75 (20.5)

The second one as

E[Z + 6] — 2E[Z]+E[Z—8]

nalZ = N,N] = 52 (20.6)
The third-order derivative, denoted by y,, is obtained as
E[Z 4+ 251 —2E[Z + 8]+ 2E[Z — §] — E[Z — 24]
valZ = N,N] = . (207

283

Above, E[Z', N = Z] is abbreviated as E[Z']. The § value used throughout
this study was 0.1 as a compromise between numerical accuracy and extent of the
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perturbation. Test results obtained with a smaller 6 value (0.05) invariably gave the
same results in all significant figures included in the Tables.

Note that, as an internal check, the second derivatives have also been calculated
as

palZ + 8, N] — palZ — 5, N]
25 '

nalZ =N, N] = (20.8)

with u, taken from Eq. (20.2), leading again to identical results up to all significant
figures in Table20.1 (see Sect. 20.3.1). To the best of our knowledge, the finite
difference results with non-integer § are the first ones communicated in the literature.

All calculations were carried out at DFT level with the standard B3LYP functional
[47, 48] and the aug-cc-pCVTZ basis set [49-51], ensuring the presence of tight
functions in the basis set and so a proper description of the nuclear region of particular
interest in the alchemical transformations as witnessed in our earlier studies [17, 18].

The analytical approach for the derivative calculation, through a Coupled Per-
turbed Kohn—Sham (CPKS) approach, has been explained in detail in previous reports
by some of the present authors [17, 18] where working equations in an atomic basis
for the second and third order derivatives of the Hartree—Fock energy and second
order for the Kohn—Sham energy were formulated starting from the basic observation
that the dependence of the energy (be it Hartree—Fock or Kohn—Sham) on the nuclear
charges is two-fold: Z resides in the one electron ‘core’ energy operator h and indi-
rectly in the MOs or, in the present case, the AOs themselves. The CPKS equations
are general, i.e. independent of the exchange-correlation operator which has to be
plugged in at the moment of the evaluation of the matrix elements at stake. From
the numerical examples presented, it was concluded that this technique yields well
converged solutions in approaching the energy of a transmuted molecule (say BH, )
written as a Taylor expansion for CH4 changing its C nuclear charge by —1 at constant
number of electrons [17]. This CPKS approach was adopted in the present work for
the calculation of the second order derivatives with the same exchange-correlation
functional and basis as for the numerical differentiation.

The ‘third way’ to obtain alchemical energy of an atom with nuclear charge Z is
based on the Z~! expansion of the energy going back to Hylleraas [37], Layzer [52],
Lowdin [53], and March and White [38]. Within this approach, the nonrelativistic
atomic ground-state energy is written as

oo o0
EIZ NI = 3" 22776 26 1 26 4 M 13 20N, (209
j=0 j=3

where N is the number of electrons. When convenient, arguments are written as
superscripts, e.g. £;[N] = SEN]. The expansion coefficients ¢; are independent of Z
but depend on N. Although in principle they can be calculated at any j and N, they
are in general not known (for an overview see Ref. [54]).

Concentrating on alchemical derivatives using Eq. (20.9), the alchemical potential
can be written as
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[Z,N] _ 1 [N]
Ml = <—3 )N = jE 0(2 -NZ Jej

=276l + &M =3 " kz kD[] (20.10)
k=1

(note the absence of the egN ] contribution), and the alchemical hardness as

0’E[Z, N] - )@ )z
N = <T> =Y a-pe-pzieN
N i=0

oo
=26+ k(k + 12702l (20.11)
k=1

(note absence of the sEN "and sgN ! contributions).

The third order derivative, the alchemical hyperhardness y can then be written as

zn _ (PE[Z, N]
Ya ' =T .

oo
=2 iU =D =z U
j=3

= Tk + Dk + 227 Vel (20.12)
k=1

These expressions indicate that once the coefficients 8,EN I"are known for a given N,

the derivatives 14, 17a1, and y, can be obtained for all Z.

March and White [38] expanded the S,EN ! coefficients in a power series of N~1/3,

starting from the conjecture of an asymptotic behaviour of the elEN] , later on confirmed
by Tal and Levy [54]:

e = alMINFH3 4 pININK L NINK=15 (20.13)

When inserted into Eq. (20.9), it leads to the following equation which was studied
in detail by March and Parrr [39]:

E[Z,N1=Z"Pfi(N/Z)+ Z*»(N/Z)+ Z°P f5(N)Z) + .. .. (20.14)

The expressions for f, f», f3, not explicitly given in their paper, can be retrieved
with some algebra and are

AWN/Z) =alM (N 2B+ aM (N Z) B+ aM (N Z)B L (20.15a)
HWN/Z) =M (N 2 + M (N 2 + N (N2 (20.15b)
HWN/Z) =N/ 2T 4 NN 2P+ SN2+ (20150

where the regularities in the N/Z exponents are clearly discerned.
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Knowledge of the al¥1, bV, N (n = 1,2, 3, ...) yields the fi(N/Z) and via
Eq. (20.14) enables the evaluation of E[Z, N] and its alchemical derivatives. Work
along these lines has been done by Gdzquez and Vela [55-57] to study the behaviour
of the chemical potential of neutral atoms [55]. However, our calculations are not
based on this expression because evaluation of !, bV, ¢V js complicated [58-60]
and ambiguous to some extent [55].

Asymptotic expansions, like in Eq. (20.9), are often divergent. Nevertheless, when
truncated after the K th term, they may reasonably approximate the expanded function
as

o) K—1
E[Z,N]= Z 72777 eM ~ Z 72278V = B[z, N: K1. (20.16)
j=0 j=0

The value K, of K providing the best approximation is specific for each expanded
function (here, at fixed N, for the energy, Eq. (20.9), and its derivatives, Egs. (20.10)—
(20.12).

Our proposal here is to calculate &y, &, ... €¢—; from the energy expansion
E[Z,N; K]. The best K and corresponding ég.N;K] are then determined by the
requirement that the absolute values of consecutive terms of the expansion are
decreasing. So the best value of K is the largest integer K for which the relations

22801 > |2V -

e A (20.17)

are fulfilled. It should be noted that when Eqgs. (20.17) are satisfied for Z = N, they
are also satisfied for Z > N.

For the chosen N and K , the values of 8!, j = 0, 1,... K—1,inEq. (20.16) are
determined from the given energies Eppr[Z, N] (i.e. evaluated by means of DFT) of
the neutral atom, Z = N, and isoelectronic cations, Z = N+1, N+2,... N+ K—1.
It is done by equating these energies to the truncated approximation, Eq. (20.16),
i.e., by solving the set of K equations

E[Z,N:;K]= Eppr[Z,N], for Z=N,N+1,N+2,...N+K —1.

(20.18)
This set of K linear equations written in the matrix form is
~[N:K] [N,N]
N? N 1 N3K %0 Eper
<[N;K] [N+1,N]
(N +1)? (N+1) 1... (N+1)3-K & Eppr
(N+2?  (N+2) 1. (N+2)PK AR I
: ) : Do . : :
(N+K—-12(N+K—-D1...(N+K—1 . T
€K1 DFT
(20.19)
The K value and the corresponding coefficients ég.N;KJ were determined for all N

values considered, N = 1 — 18, all calculations of Eppr[Z, N] were again done
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with the B3LYP functional and the aug-cc-pCVTZ basis for reasons of internal
consistency.

Note that, as will be seen explicitly in the detailed examples in Sect. 20.3.2, once
the values of E[jN Kl for a given, say neutral atom (Z = N), have been determined,
the alchemical derivatives become available not only for that atom but also for all
cations of the isoelectronic series Z = N+ L,with L = 1,2, ... K — 1. In principle,
also anions could be considered but in view of their instability only the case of a
mono-anion will be considered, though not included in the error analysis.

The final approach, enabling us in an easy way to walk through the Periodic Table,
is based on the data in the above mentioned NIST website [41] on the total energies
for the ground state neutral configurations and their mono-cations for all atoms with
Z < 92, with three variants of the local density approximation (LDA) [41]. The
NIST website tabulates, for both cases and for all LDA versions considered, always
the total energy, El[\IZIS]¥] and the electron-nucleus interaction energy, Ve[f ]\I}II]ST which
is equal to the alchemical potential multiplied by Z, Eq. (20.2).

This offers the possibility, for a fixed value of N, N < 91, to write K = 4 linear
equations in terms of 4 unknowns E(EN;‘”, EEN;‘”, EgN A EgN 4 the parameters of the
truncated Z~' expansion, namely

E[Z,N;4] =EJ,

(20.20)
falZ, N;4]1 = V20 /Z, forZ=N,N+1.
Here, i, denotes truncated 1i,, Eq. (20.10). This set of 4 linear equations written in
the matrix form is given in Appendix 20.A, Egs. (20.29). The analytical solution of
this system of equations in given there too, Egs. (20.30).
For Part 1, use was made of the BRABO program [61, 62] developed by one of
the present authors (CVA), for Part 2 a locally modified version of the GAMESS
package [63] was used.

20.3 Results and Discussion

20.3.1 Finite Difference and Analytical Derivatives

In Table20.1 an overall view of the alchemical derivatives with the three methods
described above is given for the atoms with Z = 1 — 18. At this moment, we only
concentrate on the finite difference and the CPKS method, the latter being used only
for closed shell systems.

Concerning the alchemical potential obtained with the numerical differentiation
method (the quantity not being calculated as such in CPKS), the results are in line
with the B3LYP/6-311G (3df) results by Politzer in his review [46] which can be
obtained by dividing his V,, values by Z (the small differences can be ascribed
to the difference in basis). The values show a monotonous decrease (more negative
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Table 20.1 Comparison of numerical, ‘Z —1 and analytical (CPKS) results for the first and second
alchemical derivatives for Z = 1 — 18 at N = Z. For CPKS only closed shell atoms are considered.
All values are obtained at the B3LYP(G)/aug-cc-pCVTZ level. All data in a.u

Alchemical derivatives
Numerical method Z~1 method CPKS
Mal Nal Mal Nal Nal
H —0.999 —0.995 —0.625 —1.000
He —3.371 —1.964 —3.376 —1.984 —1.945
Li —-5.719 —2.203 —5.715 —2.268
Be —8.420 —2.480 —8.419 —2.506 —2.479
B —11.391 —2.746 —11.390 —2.769
C —14.697 —3.001 —14.698 —-3.018
N —18.337 —3.254 —18.329 —3.309
(¢} —22.257 —3.511 —22.266 —3.503
F —26.511 —3.765 —26.487 —3.854
Ne —31.098 —4.020 —31.131 —4.005 —4.020
Na —35.418 —3.745 —35.433 —4.181
Mg —39.925 —4.098 —39.937 —4.278 —4.103
Al —44.499 —4.079 —44.515 —4.397
Si —49.243 —4.228 —49.258 —4.508
—54.146 —4.363 —54.161 —4.614
S —59.181 —4.490 —59.200 —4.710
Cl —64.374 —4.618 —64.396 —4.816
Ar —69.724 —4.743 —4.743

value) upon increasing Z. This behaviour should be discerned from the corresponding
derivative where a pattern of periodicity shows up in the electronegativity which has
been identified with this derivative. An interpretation of the monotonous decrease
could be found as follows. The change in the alchemical potential when passing from
one neutral atom to another, implying d N = dZ, can be written as

+ (a/"Lal[Z’ N])
IN ZIN=Z

N=Z
11 1/0
=//X(I', r’)——d3rd3r’—/— p(r) d’r.
rr’ r oN /,

(20.21)

dpy _ OpalZ, N
az 3z v

The first term is simply the alchemical hardness calculated for the neutral atom,
Eq. (20.3). As the linear response function, x (r, r’), is a seminegative definite oper-
ator due to the concavity in v(r) of the E[v, N] functional [23], the atomic alchem-
ical hardness, Eq. (20.3), is a non positive number. The (dp(r)/dN), derivative in
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the atomic case can be identified as the Fukui function, f(r) = (dp(xr; N,v)/9N),
[64-66], and the second term is the Fukui potential at the nuclear position
[67, 68]. The electrostatic potential of the Fukui function does not show negative
value, it exhibits a maximum close to the nuclear position and decays with the distance
[68, 69]. Concluding, the change in the alchemical potential for a neutral atom, i.e.
when passing from one neutral atom to another, is negative upon increasing Z.

In order to get a more quantitative idea on the this decrease, we use the Z~!
expansion for E[Z, N] and put N = Z for a neutral atom case. Equation (20.14)
then gives

E(Z,Z1=Z" i)+ Z* () + Z°P (1) + . .. (20.22)

In a Thomas—Fermi based Ansatz, March and Parr were able to write [39]
1 /3 1 5/3
Vel Z, Z]=—§Z f1(1)+§Z L)+ (20.23)

where the term in Z2 vanishes. Using the virial theorem and Eq. (20.2), one gets for
Hal
T a3 S a3
malZ, Z] = §Z H) +2Zf(1) + §Z [+ (20.24)

Based on analytical and numerical results by March and Parr [39], it turns out that
| fi(D] > |f2(D] > |f3(1)], so that in a first approximation, for not too small Z,
Eq. (20.24) can be simplified by retaining only the leading term

nalZ, Z] =~ gfl(l)Z“”. (20.25)

This results already shows that || is expected to increase as Z*/3. Inserting the
exact Thomas-Fermi result for fi(1) (—0.7687) one obtains more precisely , ~
—1.793Z%3. 1f instead use is made of the Hartree—Fock results for the noble gas
atoms (Table 6.1 in Ref. [19]) via a fitting procedure with Z7/3 one obtains E[Z, Z] ~
—(0.6240.05)Z773, yielding [ Z, Z] ~ —1.45Z*3. When dividing the numerical
ar values in Table20.1 by Z*/3 for Z = 3 — 18, one arrives at an average value
of -1.42, decreasing from -1.45 to -1.48 for the large Z sequence. These findings
support a Z*? dependence for 11, and so for the electrostatic potential at the origin
with a proportionality constant of -1.5 except for two light elements.

Passing to the second derivative no results are available in the literature to compare
with. It is pleasing to note that for the closed shell systems the results are nearly
identical with the two methods, giving confidence in our computational approach.
With the exception of Na and Mg at the beginning of the second row, again a uniform
decrease (more negative value) is observed, as opposed again to a periodic pattern
in the chemical hardness. Note that overall for the Z = 6 — 18 values the alchemical
hardness is one order of magnitude smaller than the alchemical potential so that
even for as large a change in nuclear charge as 1 the second order term in the energy
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expansion is one order of magnitude smaller than the first one. The same trend persists
when going to the higher order term, evaluated only in the finite difference approach
(not shown). Its values are not trustworthy yet due to the extreme demand on the basis
set close to the nucleus. We therefore did some exploratory calculations with the
aug-cc-pCVTZ basis set (Appendix 20.B), where the results show greater diversity
between the atoms, are systematically one order of magnitude smaller than the second
derivatives and, most interesting, begin to display some periodicity. Periodicity shows
up in the sense that for the p-block elements a uniform decrease from left to right is
observed in each row, the values for an atom of the lower row being always larger
than that of its congener of the higher row suggesting that y decreases from left to
right in a row and increases when going down in a column. The s-block behaviour is
less transparent. In other words, one has to eliminate the influence of the two large
terms and work at a refined level to discern most probably periodicity in alchemical
derivatives. Further research is at stake in this direction.

A final remark concerns the comparison with Balawender’s ‘atoms in molecules’
values of 1, for some selected atoms studies on molecular alchemical transforma-
tions [18, 19]. Based on some values from Ref. [18] (C in pyrene: —3.192, C in CO:
—3.189, N in N,: —3.314, and O in CO™: —3.544, values calculated with the same
basis set as for the isolated atoms), and the comparison with isolated atom values,
Table20.1, we see that the order of magnitude of the alchemical hardness for the
atoms-in-molecules and isolated atoms considered is the same (in fact the values are
quite close and the influence of the molecular environment is rather weak) and also
their sequence is the same, indicating that the isolated atom values can indeed be
used in a preliminary exploration of CCS. For more accurate explorations in CCS
a correction term for both u, and 1, (one for each atom type) could be introduced
reminiscent of the corrections on the electronic chemical potential or electronega-
tivity and hardness as proposed and fitted by Mortier in his still widely used (cf.
force field programs) Electronegativity Equalization Method [70-72] to account for
the entrance of an atom in (whatever type of) molecule. For efficient screening of
Chemical Compound Space, the isolated atom values may yield first guesses in a
very simple way and at very low cost. In this sense it is important to go further down
in the Periodic Table, for which the prelude is testing the Z~! approach.

20.3.2 The Z~! Approach

We first demonstrate obtaining of the optimal K and EEN;K], j=0,1,...K — 1,
values for some concrete, neutral atom examples, taking Mg as the first example
for which both finite difference and analytical derivatives are available for compar-
ison (cf. Table20.1). In Table 20.2 we present the different terms in the expansion
(Eq. (20.16) with Z = N = 12). The criterion of decrease in magnitude of successive
terms, Eq. (20.17), is obeyed for K = 3, 4, 5 but no longer for K = 6, where the
third term of the expansion is smaller than the fourth one. Hence, we conclude that in
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Table 20.2 Values of the terms in the E[IZ, 12, K] expansion, Eq. (20.16), for Mg, N = 12, as a
function of K (see text). Here, £; denotes 55»12’1(1. The fitting error, Eq. (20.26), is given in the final
column. All data in a.u

K | [8oN?| | [EIN| |52 B3N] 18N 72 [ 1EsN 3] 186N~ | 87N 5] | ALZ KT (%)
3 306.5 | 133.6 27.2 0.48
4 301.8 | 1184 10.8 5.9 0.35
5 | 306.2 |[138.4 44.4 19.2 7.0 0.34
6 | 302.1 |[114.3 11.6 459 30.6 8.7 0.34
7 303.2 | 122.1 11.8 8.4 3.1 7.4 3.2 0.35
8 204.8 | 607.5 22292 |3652.4 |3293.8 |1548.9 |278.8 11.7 2.82

this case the optimal K value is 5. With this value, trustworthy E[/.N =121 yalues can

be obtained. For the sake of comparison, we also tabulate the results for K values
lower than the optimal K, starting at K = 3 (K = 2 would not yield an EgN:U;K]
value essential for E [Z, N; K]). The K > 5 values will be commented below. The
5([)N =12:K1 yalues for the different K values up to 5 are very close to each other, their
average (—2.117) being almost identical to the exact ‘hydrogenic atom’ solution of
—2.111 [73]. The other ESNZ]Z;K] values show larger fluctuations in K with increas-
ing j, but as will be seen below the overall quality of the derivatives increases up to
K = 5. The values for K > 5, given for the sake of comparison, indicate very strong
fluctuations.

Since Ve[,f gl,lr is available from calculated E ][)ZF{V !'and should be equal to Z uglz‘N I
Eq. (20.2), the following error function
V[Z,N;KJ _ V[Z’N]
A[N;K] _ en en, DFT 20.26
en Ze{N,NJrrrll,E.l.).(NjLKfl} ylZ.N ( )

en, DFT

where ‘7eanN Kl — 7 ;I%’N’K], Eq. (20.27a), characterizes the accuracy of the Z~!
expansion for each K . Itis seen in the last column in Table 20.2 that the error decreases
from K = 3 to the optimal value K = 5, and although the errors for K = 6 and 7
are only slightly bigger than for K = 5, it explodes at K = 8. This error analysis
confirms K = 5 to be optimal, as we found at the beginning of the present Section.

Table 20.3 Alchemical potentials and hardness of the isoelectronic series N = 12 with Z varying
from 11 to 19 for Kope = 5. The Na anion is given for comparison (see text)

Na~ Mg Alt Sizt p3t s crt Ar®t Cadt

fla | —35.640 | —39.937 | —44.202 | —48.450 | —52.689 | —56.924 | —61.158 | —65.392 | —73.864
Afla | —4.298 | —4.265 | —4248 | —4239 | —4.235 | —4.234 | —4234 | —4.236
lal —4.322 | —4278 | —4.255 | —4242 | —4237 | —4.234 | —4234 | —4.235 | —4.238
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Table 20.4 Values of the terms in the E [6, 6, K] expansion, Eq. (20.16), for C, as a function of

K (see text). Here, &; denotes & g6 rl K1 The fitting error, Eq. (20.26) is given in the final column. All
data in a.u

K [[2oN? |IEN |2l BN 18N BN 18N | 4G (k)
3 |54.1 20.1 3.8 0.23
4 1539 19.2 2.8 0.4 0.07
5 |54.0 19.7 3.7 0.3 0.2 0.04
6 |585 49.8 83.3 104.8 68.2 17.6 0.99
7 |48.0 855.9 3098.3 5807.1 6058.6 3339.5 759.6 19.63
Having E[N 12K yalues, the alchemical derivatives can be evaluated. Namely
K—1
[L[ZN K] Z(z J)Zl jS[N K1
j=0
=28 Mz + 8"+ + - KEg 2K, (20.27a)
U Z(z - A=z IEN"
Jj=0
=280V 1+ 3 -K)2 - K&K ZzI-K, (20.27b)
In Table 20.3, we give their values for optimal K = 5. The middle line there shows
Afly = (ﬂng+Az’N;K1 - ﬂg,Z’N;K]) J/AZ (here AZ = 1, except for the Ar cation,

for which AZ = 2). It can be viewed as the numerical first derivative of w, with
respect to Z, i.e. 1,1, and consistent with the last line, 77, It should be mentioned that
the values of M[Z N:K] and 7 ~[Z N:KT obtained by us for the other K (not shown) are
almost the same as for K = 5, despite a significant dependence of é;N =12kl on K.

On the other hand, the weak dependence of ﬁ‘ng’N;K] on Z is due to the fact that its
leading term, &y, Eq. (20.27b), is independent of Z.

Note indeed that with the sEN =12:KT yalues not only the alchemical derivatives for
the neutral system (Z = N, N) can be generated, but also those of all its isoelectronic
congeners (Z = N+ 1, N),(Z = N + 2, N), etc. Also, the (Z = N — 1, N)
anion is considered in Table 20.3. More highly charged anions are expected to be
unstable. Finally, note that the optimal value for the alchemical potential of neutral Mg
(—39.937 a.u.) is close to the one obtained with the numerical method (—39.925 a.u.)

As a second and the last example we consider the carbon atom (Z = 6, N = 6),
an open-shell case where no comparison can be made with analytical derivatives.
Table20.4 indicates that the optimum K value for the energy expansion is also 5
(this is a coincidence with the magnesium case, in the fluorine case for example one
gets Kope = 4). The error analysis (last column in Table 20.4) now clearly shows
that at higher values than the optimal K, the results start worsening considerably
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Table 20.5 Alchemical potential and hardness of the isoelectronic series N = 6 with Z varying
from 5 to 13 for Kope = 5. The B anion is given for comparison (see text)

B— C N+ 02+ B3t Ned+ Nad+ Mg6+ AT+

fa | —11.669 | —14.698 | —17.710 | —20.716 | —23.719 | —26.720 | —29.720 | —32.720 | —35.720
Aflg| —3.029| -3.012| —3.006 | —3.003 | —3.001 | —3.000 | —3.000| —3.000| —3.000
Tal —3.044| -3.018| —3.008 | —3.004 | —-3.002| —-3.001| —3.000 | —3.000| —3.000

at K = 6. The values of the alchemical derivatives are shown in Table 20.5. The
hardness value for C (—3.018 a.u.) being close to the numerical value (—3.001 a.u.).
Note again that the average Z:EN:@K' = —1.501 for K = 3 — 5 is almost identical to
the exact ‘hydrogenic atom’ solution (—1.500) [73].

In this way, the Z~! method was exploited to evaluate all alchemical potential
and hardness values for the neutral atoms (Z = 1 — 18), Table20.1, and their iso-
electronic congeners (not shown) by optimizing K and extracting all &y, &, ... Ex_
for each N value.

Going back to Table20.1, concentrating on the neutral atoms and comparing
with the numerical differentiation values for 1), an average difference of 0.010 was
found for the first-row atoms and 0.016 for second row atoms, the corresponding
deviations for the alchemical hardness being 0.037 and 0.269, respectively. The
latter value includes an almost systematic lowering of the Z~!' method value of —0.2
as compared to the numerical one (the two series show an excellent correlation of
R? = 1.00 for the alchemical potential, and of R? = 0.991 for the alchemical
hardness).

To conclude this section, we depict the difference between the values obtained
with K = 3, the minimal value considered, and those with optimal K for &y, £}, &
coefficients in Fig. 20.1, for ji, and 7, in Fig.20.2. It is seen that despite stronger

ZINSK]

differences (sj EIJ.N ;3') with increasing j (see Fig.20.1), the two choices of

K yield only very small difference in fi,, almost negligible in 7,, see Fig.20.2
(astriking example being that of the fluorine atom). This case indicates that by adding
more terms in the series expansion (retaining convergence) individual fluctuations
in the &; are compensated (up to the optimal K value). The overall result for 7 is
already correct at K = 3.

We finally rescaled the energy and its derivatives by dividing E by Z2, jia by 2Z,

anq a1 by 2, yielding then in all cases 5([)N;K°p‘] as the first term in the corresponding
series expansion

ZIZEp[Z,N;K—Kom] — gk %ggN;K(,pll N %%N;K‘,pd P Zl—K(,mg[l?:;{(_u;lu]’ (20.282)

S ) o) LK)y 4 G- Kz el (20.28b)

%ﬁgﬁN?K:"ovd =g M+t %(3 — Kop) @ — Kop)Z! Kzl ol (20.28¢)
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