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Preface

This volume contains selected papers presented at the Energy Technologies
Symposium organized in conjunction with the TMS 2018 Annual Meeting &
Exhibition in Phoenix, Arizona, USA, and organized by the TMS Energy
Committee. The papers in this volume intend to address the issues, intricacies, and
the challenges relating to energy and environmental science. This volume also
contains selected papers from the following symposia: Deriving Value from
Challenging Waste Streams: Recycling and Sustainability Joint Session, Materials
for Energy Conversion and Storage, Solar Cell Silicon, and Stored Renewable
Energy in Coal.

The Energy Technologies Symposium was open to participants from both
industry and academia and focused on energy efficient technologies including
innovative ore beneficiation, smelting technologies, recycling, and waste heat
recovery. The volume also covers various technological aspects of sustainable
energy ecosystems, processes that improve energy efficiency, reduce thermal
emissions, and reduce carbon dioxide and other greenhouse emissions. Papers
addressing renewable energy resources for metals and materials production, waste
heat recovery and other industrial energy efficient technologies, new concepts or
devices for energy generation and conversion, energy efficiency improvement in
process engineering, sustainability and life cycle assessment of energy systems, as
well as the thermodynamics and modeling for sustainable metallurgical processes
are included. This volume also includes topics on CO2 sequestration and reduction
in greenhouse gas emissions from process engineering, sustainable technologies in
extractive metallurgy, as well as the materials processing and manufacturing
industries with reduced energy consumption and CO2 emission. Contributions from
all areas of nonnuclear and nontraditional energy sources, such as solar, wind, and
biomass are also included in this volume.

We hope this volume will provide a reference for the materials scientists and
engineers as well as metallurgists for exploring innovative energy technologies and
novel energy materials processing.

We would like to acknowledge the contributions from the authors of the papers
in this volume, the efforts of the reviewers dedicated to the manuscripts review
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process, and the help received from the publisher. We appreciate the efforts of
Energy Committee members for enhancing this proceedings volume. We also
acknowledge the organizers of the four other symposia that contributed papers.

Energy Technologies Symposium Organizers

Ziqi Sun, Queensland University of Technology, Australia
Cong Wang, Northeastern University, China

Donna Post Guillen, Idaho National Laboratory, USA
Lei Zhang, University of Alaska Fairbanks, USA

Neale R. Neelameggham, IND LLC, USA
Tao Wang, Nucor Steel, USA

John A. Howarter, Purdue University, USA
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Gas Hydrate-Based CO2 Separation
Process: Quantitative Assessment
of the Effectiveness of Various Chemical
Additives Involved in the Process

Hossein Dashti and Xia Lou

Abstract Gas hydrates technology has been considered as an alternative method
for carbon dioxide (CO2) separation. A wide range of studies have been reported in
the past decade on the improvement of the separation efficiency by using chemical
additives. While most of these studies have shown improved kinetics, thermody-
namics and/or separation efficiency at the laboratory scale, there has been no
quantitative analysis of the energy consumption for viable industrial applications.
Comparison of the effectiveness of the chemical additives from separate studies or
groups also is impossible. The present work is focused on the modelling of the
hydrate-based CO2 separation process and provides a quantitative approach that is
new in its analysis of the effectiveness of chemical additives in relation to the
energy required and the kinetic parameters involved in the process.

Keywords CO2 capture � CO2 hydrates � Chemical additives

Introduction

Carbon dioxide (CO2) separation and capture is one of the most challenging issues
to investigate in order to alleviate the problem of CO2 emissions worldwide. Gas
hydrate-based CO2 capture/separation (HBCC) is a relatively new separation
method for CO2 and has attracted increasing attention in the past decade. The
technology employs a unique separation mechanism that is easy to regenerate and is
capable of separating various gas mixtures, which might not be achievable via
conventional methods. The feasibility study of the process was first reported by
Spencer [1], and later supported by Tam et al. [2] According to the authors, the cost
of HBCC technology in an integrated gasification combined cycle plant was US$
8.75 per ton of CO2 captured. It was reportedly comparable to that of US$ 57 per
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ton of CO2 captured through the pressure swing adsorption (PSA) method, and that
of US$ 49 per ton of CO2 captured using the monoethanolamine (MEA) chemical
absorption method [3].

CO2 form hydrates between 1.1–4.3 MPa and 273–283 K respectively.
Separating CO2 from the other gases such as oxygen and nitrogen can be achieved
by first forming a solid hydrate phase that is enriched with CO2, followed by
separation of the hydrate phase from the gaseous phase and dissociation of the
hydrates, leading to the recovery of CO2 that is much higher in concentration than
in the original gas mixture. Upon dissociation, one volume of CO2 hydrates can
release 175 volumes of CO2 gas at standard conditions [4]. However, the high
operation pressures required in the HBCC process lead to the high compression
costs and energy consumption. This has limited the viable industrial application of
the HBCC [5]. The relatively low separation efficiency also is a challenge [6, 7].
Many chemical additives have been investigated in an attempt to lower the oper-
ation pressure, and to increase the formation rate, of CO2 gas hydrates. Among the
most commonly studied chemical additives, tetrahydrofuran (THF) and cyclopen-
tane (CP) have been found to be useful in reducing the operating pressure and
increasing the CO2 recovery rate. Other additives, like tetra-n-butyl ammonium
bromide (TBAB), dodecyl-trimethyl-ammonium chloride (DTAC) and TBANO3,
have been found to be useful in increasing the gas storage capacity and reducing the
operating pressure. Surfactants, such as sodium dodecyl sulphate (SDS), only
enhance the hydration rate of the process. Mixed chemical additives also have been
studied to enhance their effects in HBCC.

Studies on chemical additives have been mostly focused on the effect of the
chemical additives upon the kinetics, the operational conditions and the separation
efficacy. Details of the progress in chemical additives improved HBCC can be
found in a few recent review papers [6–8]. Other work on chemical additives
associated HBCC includes thermodynamic modelling of the CO2 fluid and hydrate
phase behaviour. For instance, Herslund et al. [5, 9, 10] modelled the fluid phase
and hydrate phase in the presence of THF, CP and the mixture of both. Verrett et al.
[11] developed a thermodynamic model to simulate the HBCC process in the
presence of TBAB. Another study by Shi and Liang [12] proposed a thermody-
namic model to investigate the effects of TBAB, tetrabutyl ammonium fluoride
(TBAF) and tetrabutyl ammonium chloride (TBAC) in HBCC process. Kinetic
studies on gas hydrate formation are mostly based on the model established by
Englezos et al. [13] that considers both mass transfer and crystallisation processes at
the gas-liquid interface. The driving force in this model is the difference between
the fugacity of the dissolved gas and the fugacity at equilibrium. However, the
report on kinetic models for chemical additives enhanced HBCC process is limited.
A recent study by ZareNezhad et al. [14] reported a single component gas (CO2)
hydrates kinetics in the absence and presence of SDS. In this model, the crystal-
lization theory was coupled with the mass transfer phenomena but the gas com-
position difference between the liquid phase and the solid-liquid interface was
considered as the driving force. Sun and Kang [15] also proposed a two-parameter
kinetic model to predict the CO2 hydrate formation rate in presence of THF. In this
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work, the Gibbs free energy difference was considered as the driving force. In terms
of quantitative analysis of the energy consumption associated with the HBCC,
Tajima et al. [16] reported the energy consumption by a designed HBCC process
for separating CO2 from the emitted flue gases, using the thermodynamic approach.
There was no chemical additive used in the design. A later report by Duc et al. [17]
used the process simulator PRO II, to estimate the energy consumption involved in
a multi-staged HBCC process in the presence of TBAB.

The present work is focused on the development and validation of a quantitative
approach for the energy estimation of the HBCC process using the production scale
reported by Tajima et al. [16]. The proposed approach will then be applied to the
reported HBCC processes in the presence of THF [18, 19], TBAB [20, 21], and a
mixture of TBAB with DATC [22]. The impact of the chemical additive on the
energy consumption in relation to the formation pressure and temperature, and the
kinetics of the CO2 hydrates will be discussed.

Methodology

A schematic flow diagram (Fig. 1) is first established based on the reported HBCC
process by Tajima et al. [16]. Two compressors and three heat exchangers are used
before the flue gas enters the reactor where the flue gas mixes with water with or
without chemical additives. Gas hydrates form in the reactor. The hydrates slurry is
separated from the gas phase and sent to a hydrates dissociation reactor from which
purified CO2 is collected.

According to the authors: (1) the process was applied to the treatment of total
emission from a 1,000 MW power plant; (2) the total flow rate of the input flue gas
was 1:0� 106Nm3: h�1; (3) the volume of the reactor was about 7,000 m3; (4) the
pressurisation was performed using adiabatic compressors with 80% efficiency;
(5) the inlet and outlet temperatures of coolant were 253 K and 263 K, respectively;
(6) the coefficient of performance (COP) in heat exchangers is assumed to be 3 and
(7) the composition of CO2 in the hydrates stream is 100%. Based on these

Fig. 1 A schematic flow diagram of the gas hydrate-based CO2 separation process
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assumptions, the total energy consumption involved in this process was calculated
using Eq. 1:

Etotal ¼ Ecompression þEcooling þEhydrates ð1Þ

in which Ecompression and Ecooling represent the energy consumption during the
compression and cooling stages and Ehydrates is the energy consumption associated
with hydrate formation and dissociation.

Estimation of Ecompression and Ecooling

The energy consumption values in the pressurising and cooling processes were
simulated using Aspen HYSYS (V.8.6). The temperature and pressure of the input
flue gas were, reportedly, 298 K and 0.1 MPa [16].

Estimation of Ehydrates

For the estimation of Ehydrates, an energy balance around the formation and disso-
ciation reactor (Fig. 2) was first established (Eq. 2).

Ehydrates ¼
X5

i¼1
FiHi � rfDHf þ rdDHd ð2Þ

where Fi is the flow rate of stream i, Hi is the enthalpy of stream i, rf and rd are the
rates of hydrate formation and dissociation, respectively, and DHf and DHd are the
enthalpies of hydrate formation and dissociation, respectively. Below are the details
of the modelling of each of the parameters.

Fig. 2 CO2 hydrates formation and dissociation unit
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Enthalpy of Different Streams

The enthalpy of different streams was calculated using Eq. 3:

Hi ¼
Z Ti

0
Cp mixtureð Þ;idTi i ¼ 1; 2; 3; 4; 5 ð3Þ

where i denotes a specific stream, Ti is the temperature of the stream i and
Cp mixtureð Þ;i is the specific heat capacity of the gas mixture of the stream i at pressure
p, given by Eq. 4:

Cp mixtureð Þ ¼
P

xj;iCP;j j ¼ CO2;N2;H2O;O2

i ¼ 1; 2; 3; 4; 5
ð4Þ

in which xj;i is the mole fraction of component j in stream i and CP;j is the specific
heat capacity of component j at pressure, p, which was determined using Eqs. 5–9
[23]:

Cp;CO2 ¼ 36:11þ 4:23� 10�2� �
T � 2:88� 10�5� �

T2 þ 7:46� 10�9� �
T3 ð5Þ

Cp;N2 ¼ 29þ 0:21� 10�2� �
T þð0:57� 10�5ÞT2 � 2:87� 10�9� �

T3 ð6Þ

Cp;O2 ¼ 29:10þ 1:15� 10�2� �
T þð0:60� 10�5ÞT2 � 1:31� 10�9� �

T3 ð7Þ

Cp;H2O gð Þ ¼ 33:46þ 0:69� 10�2
� �

T þð0:80� 10�5ÞT2 � 3:60� 10�9
� �

T3 ð8Þ

Cp;H2O Lð Þ ¼ 75:4 ð9Þ

Enthalpy of Hydrate Formation

The formation of hydrates in the form of a reaction is illustrated by Eq. 10,

CO2 Vaporð Þþ nH2O Liquidð Þ ! CO2hydrates Solidð Þ ð10Þ

where n is the hydration number, which is reportedly between 5.75 and 7.66 for
CO2 [4, 24]. The enthalpy of hydrate formation is calculated using Eq. 11, taken
from Kamath [25],

DHf ¼ C1 þC2T ð11Þ

where DHf is in cal/gmol gas and T is the temperature at which hydrates form with
C1 ¼ 9:290� 103 and C2 ¼ �12:93 at-25 < T < 0 °C, and C1 ¼ 19:199� 103

and C2 ¼ �14:95 at 0 < T < 11 °C.
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Enthalpy of Hydrate Dissociation

The amount of heat required to dissociate hydrate crystals is a key thermodynamic
property in the hydrate formation and dissociation process. Obtaining this param-
eter from the numerical equations or experiments is a challenging area of research
[26]. While the high-pressure differential scanning calorimeter (DSC) has been
found to be useful for the measurement of the dissociation heat in the laboratory
setting [27], the application of the Clausius-Clapeyron Eq. 12 has been widely used
for simple hydrates systems and it has proven to be thermodynamically correct, as
long as the system is univariant [4]. Recent studies by Kang et al. [28], Delahaye
et al. [29], and Sabil [30] have further demonstrated the suitability of the Clausius–
Clapeyron equation for the calculation of the dissociation enthalpy of single and
mixed CO2 hydrates. The equation is expressed as,

dlnPeq

d 1
Teq

� � ¼ �DHd

ZR
ð12Þ

where Teq and Peq are the absolute temperatures and pressures that were obtained
from literature data, [18, 20, 22] R is the gas constant, and Z is the gas com-
pressibility. Note that the equation was derived from the Clapeyron equation
assuming that the volume of solid hydrates approximates that of water in the
hydrates formation reaction therefore the changes of volume equals to the volume
of gases (see Eq. 10). The value of Z was calculated using the Peng-Robinson
equation of state [31] by solving Eq. 13:

Z3 � 1� Bð ÞZ2 þ A� 2B� 3B2� �
Z � AB� B2 � B3� � ¼ 0 ð13Þ

where A and B are determined by Eqs. 14–16,

A ¼ 0:45724 1þ j 1�
ffiffiffiffiffi
T
Tc

r� �	 
2
P=Pc

T=Tcð Þ2 ð14Þ

B ¼ 0:07780
PTc
TPc

ð15Þ

j ¼ 0:37464þ 1:54226x� 0:26992x2 ð16Þ

Taking Tc = 304.2 K, Pc = 7.38 MPa and x = 0.228 for CO2 [23] and plotting

ln Peq against 1
Teq

results in a slope which equals � DHd
ZR .
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Hydrate Formation Rate

Research into gas hydrates kinetic models has not been as prevalent as that for
thermodynamic models. A recent paper by Ribeiro and Lage [32] has reviewed the
kinetic models for hydrates formation. Among all models, the work by Englezos
et al. [13] is most commonly quoted and applied. [33] In their model, the hydrates
formation rate is expressed as a function of the fugacity difference between the
operating condition and equilibrium condition, based on Eq. 17:

rf ¼ aK� fg � feq
� � ð17Þ

where a is the interfacial area, fg and feq represent the fugacity of the dissolved gas
and fugacity at equilibrium, respectively, and K� is the overall kinetic constant that
is determined by Eq. 18,

1
K� ¼

1
kf

� 1
kL

ð18Þ

where kf is the crystal growth constant and kL is the mass transfer coefficient in the
liquid phase. For vigorous mixing systems, Fan et al. [21] further developed the
model as described by Eq. 19:

rf ¼ Vg

RT

P� Peq
� �

Dt
ð19Þ

in which P is the operating pressure and Peq is equilibrium pressure, Vg is the
volume of the gas phase and Dt is the time to reach equilibrium. The term Peq is
calculated based on the hydrate formation condition inside the reactor, for which
Chen-Guo’s model [34] was used. It assumes that the fugacity in vapour, f vi , equals
that in the hydrate phase, f Hi , at equilibrium condition. Using the equations dis-
played in Table 1, in which h is the fraction of linked cavities occupied by gas
molecules, c is the Langmuir constant, f 0T is an Antoine-like function, f 0 is a
function of pressure and temperature, aw is the activity of water and a is the value
dependant on the type of hydrate structure, the value of Peq was computed itera-
tively via the contracting Newton method until it satisfied f vi ¼ f Hi .

Hydrate Dissociation Rate

For hydrates dissociation, a published work on methane hydrates [35] was adapted
by this study. The rate of hydrate dissociation, rd , is calculated using Eq. 20:

Gas Hydrate-Based CO2 Separation Process … 9



rd ¼ kdAs feq � fg
� � ð20Þ

where Kd is the dissociation rate constant and is determined using Eq. 21,

kd ¼ k0de
�DE=RT ð21Þ

where k0d ¼ 1:83� 1014 mol
m2MPas is the intrinsic rate constant of CO2 hydrates dis-

sociation, and DE ¼ 102:88 kJ
mol is CO2 activation energy [36]. As in Eq. 22 is

determined using:

As ¼ 6
wqHD0

	 

n1=30 n1=3H ð22Þ

where w is the sphericity factor and the shape of the CO2 hydrates is assumed to be
spherical, w ¼ 1, qH is the superficial density of CO2 (25,431.42 mol/m3) [37], D0

is the CO2 hydrate diameter (5.12 � 10−10 m) and n0 and nH are the numbers of
moles at t = 0 and time of hydrate formation, respectively. Assuming that the
pressure difference is the driving force, the rate of dissociation can be obtained by
Eq. 23, as a result of substituting kd and As into Eq. 20.

rd ¼ 1:09� 109

uqHD0

	 

e�102880=RT Peq � P

� �
n1=30 n2=3H ð23Þ

Energy Consumption Calculations

The above model was first applied to the process reported by Tajima et al. [16],
assuming that both N2 and CO2 form hydrates at the operating conditions. The
model was further applied to three cases, assuming the same production scale, in
which the chemical additives THF, TBAB, and TBAB + DTAC were used,

Table 1 Governing equations and constants for the determination of Peq [34]

Equations Constants for CO2 gas species

f vi ¼ 10
Z�1ð Þ�lnðZ�BÞ� A

2
ffiffi
2

p
B
ln

Zþ ffiffi
2

p þ 1ð ÞB
Z� ffiffi

2
p þ 1ð ÞB

� �
þPeq

Z, A and B are calculated by Eqs. 13–15

h ¼ cf vi
1þ cf vi

c ¼ X exp Y
T�z

� �
X ¼ 1:6464� 10�17MPa; Y ¼ 2799:66K; z ¼ 15:90K

f 0T ¼ A expð B
T�CÞ A ¼ 963:72� 109MPa; B ¼ �6444:50K; C ¼ 36:67K

f 0 ¼ f 0T exp
bPeq

T

� �
a�1=k
w

b ¼ 4:242 K
MPa ; k ¼ 3=23; aw ¼ 1

f Hi ¼ f 0 1� hð Þa a ¼ 1=3
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respectively. It is noteworthy that only the optimal chemical loadings that have
produced the maximum CO2 separation efficiency have been selected for this study.
More details are given in Table 2.

Results and Discussion

For Case I, the computed energy consumption by the compressors and heat
exchangers, as well as that associated with the hydrates formation and dissociation,
are listed in Table 3. The reported data [16] also are tabulated for comparison. It
can be seen that the computed values of Ecompression and Ehydrates are in good
agreement with the reported data. It should be noted that the Ehydrates reported by
Tajima is a sum of the energies associated with the removal of the heat of hydrates
formation (29.5 MW), the supply of the sea water for hydrates dissociation

Table 2 Operational parameters for energy consumption calculations

Case Chemical additives Operating Conditions: (T [K], P [MPa])/(xCO2 ,
xN2 )/Molar flow rate � 107 mol/h

References

Stream 1 Stream 3 Stream 4

I None (274, 14)/
(0.10, 0.79)a/
4.46

(274, 14)/
(0.005, 0.87)b/
4.03

(274, 0.10)/
(1, 0)/42.3

[16]

II THF (1 mol%) (274, 0.35)/
(0.17, 0.83)/
4.46

(274, 0.35)/
(0.10, 0.90)/
3.32

(274, 0.10)/
(0.37, 0.63)/
1.13

[18, 19]

III TBAB (5 wt%) (283, 3.16)/
(0.17, 0.83)/
4.46

(283, 3.16)/
(0.05, 0.95)/
2.48

(283, 0.10)/
(0.32, 0.68)/
1.98

[20, 21]

IV TBAB (0.29 mol
%) + DTAC
(0.028 mol%)

(275, 1.66)/
(0.17, 0.83)/
4.46

(275, 1.66)/
(0.05, 0.95)/
3.57

(275, 0.10)/
(0.65, 0.35)/
0.9

[22]

aThe remaining fraction is 0.04 of O2 and 0.07 of H2O
bThe remaining fraction is 0.04 of O2 and

0.08 of H2O

Table 3 Computed energy consumption for Case I. Data in brackets are taken from Tajima’s
work [16]

Item Energy consumption, MW

Ecompression 234.5(240.1)

Ecooling 36.4(15.3)

Ehydrates ¼
P5
i¼1

FiHi � rfDHf þ rdDHd
−16.5(29.5 + 0.85 + 0.40)

Erecovery −113.7(−127.7)

Etotal 140.8(158.4)
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(0.85 MW) and the water supply for hydrates formation (0.40 MW). There is no
provision of the computational details by the authors. The reported recovery energy
(Erecovery) was −127.7 MW from the off-gas stream which was used to cool the feed
gas. Our estimation is −113.7 MW, which is slightly lower than the reported data.
However, the energy involved in the precooling stage was estimated to be
36.4 MW, which is higher than that of the reported data, 15.3 MW. Taking the
differences in the recovered energy from the off-gas stream into consideration, this
result also is acceptable. It should be noted that, while Tajima et al. [16] have
reported the inclusion of a brine stream to maintain the temperature of the hydrate
formation reactor at 274 K, there was no indication of how this has contributed to
the cooling energy. Regardless, the computed total energy consumption, using
Eq. 1, is 136.4 MW, while the reported value was 158.4 MW, indicating an
effective approach for the energy estimation of other cases.

Using the same model, energy consumption values in the presence of different
chemical additives also were calculated. The results are summarised in Table 4. In
this table, Em is energy per unit mass of captured CO2 and ERecovery is recovery
energy. In comparison with Case I, reduced compression energy was seen in all
cases where chemical additives were used in the HBCC process, mostly due to the
reduced operating pressures in the presence of chemical additives [7]. The lowest
Ecompression was seen in Case II, when THF was used due to the significant pressure
reduction from 14 to 0.35 MPa. The presence of TBAB also reduced the
hydrates-forming pressure, but by a lesser degree. That is, the compression energy

Table 4 Energy consumption involved in four different case studies

Energy value (MW) Case I Case II Case III Case IV

Ecompression 234.5 52.5 195.4 139.1

Ecooling 36.4 10.8 8.7 6.8

Ehydrates Hydrate
formation

rf � 106(mol/h) 1.2 0.8 1.4 0.8

DHf � 104 (J/
mol)

6.3a

(5.0)b
6.3a

(12.0)b
6.3a

(16.0)**
6.3a (12.0)b

Hydrate
dissociation

rd � 104 (mol/
h)

6.9 1.7 55.0 5.9

DHd � 104 (J/
mol)

5.0 12.0 16.0 12.0

Energy of streams,
P5

i¼1 FiHi −0.3 2.3 2.4 1.8

P5
i¼1

FiHi � rfDHf þ rdDHd
−16.5 −23.1 −33.7 −22.5

Erecovery −113.7 −28.6 −89.7 −47.6

Etotal 140.8 11.6 80.7 75.9
Em (MJ/Kg CO2) 2.7 0.2 1 1.1
a and b denoting that data were obtained from Eqs. (11) and (12) respectively. The latter was used
for Ehydrates calculation

12 H. Dashti and X. Lou



was reduced in comparison with Case I, however, the reduction was not as much as
that seen in Case II. Using mixed chemical additives (TBAB + DTAC), a more
effective reduction in compression energy was observed, due to the resultant lower
hydrates formation pressure than when TBAB alone was used [22]. Similarly, the
cooling energy was lowered when chemical additives were added to the HBCC
process. A greater than 70% reduction was seen in all cases. The results indicate
that the influence upon the cooling energy by chemical additives is strongest in the
presence of TBAB + DTAC, followed by TBAB alone then THF, in comparison
with Case I.

The calculated enthalpy of hydrate formation, DHf, is of a similar value in all
cases by using Eq. 11. This is understandable because DHf is a rather weak
function of the temperature in this equation. The addition of chemical additives has
resulted in some changes in the rate of hydrates formation, as shown in Table 4.
The slightly lower rates in Cases II and IV are probably due to the lower operating
pressures and, therefore, the lower driving forces for hydrates to form. The enthalpy
value of hydrate dissociation,DHd, obtained from the Clausius-Clapeyron Eq. 12,
indicated more significant changes upon the addition of chemicals. This is due to
the more sensitive nature of the approach, being a function of both the temperature
and the pressure. The computed values of DHd for Cases I and II are 5 � 104 J/mol
and 12 � 104 J/mol, respectively, which are in agreement with the reported values
of 5.7 � 104 J/mol by Yoon et al. [38], and 10.9 � 104 J/mol by Kang et al. [28].
For Cases III and IV, the calculated dissociation enthalpies are 16 � 104 J/mol and
12 � 104 J/mol, respectively, and, to the best of our knowledge, no reported data is
available in the open literature. The values of DHd in Cases II, III and IV are greater
than that of Case I. Pure CO2 forms Structure I hydrates. However, in the presence
of chemical additives, it forms Structure II and/or semi-clathrate hydrates, which are
more stable or contain higher numbers of CO2 molecules in the cavities, resulting in
higher values for the enthalpy of dissociation [30]. There also was a significant
increase in the hydrates dissociation rate,rd, when TBAB was used. This is likely to
be due to the higher operating temperature. The lowest dissociation rate was found
when THF was used, resulting from the lowest operating temperature. The higher
rate and enthalpy of hydrates formation/dissociation in the presence of TBAB has
led to its highest absolute value of Ehydrates which was followed by Case II
(THF) and Case IV (TBAB + DTAC), and Case I (no chemical additive). These
results demonstrate that the presence of chemical additives can also reduce the
energy consumption associated with CO2 hydration.

The energy distribution in each case is displayed in Fig. 3. A significant
reduction in all categories was well demonstrated in all cases where chemical
additives were used. The presence of THF has resulted in the lowest total energy
consumption among the four cases (Table 4). The significant impact of THF on the
overall energy consumption profile is a result of both the drastic reduction in the
hydrates formation pressure and the improved hydrates formation/dissociation
kinetics. It is well known that the use of THF as a thermodynamic chemical additive
encourages structure II hydrates to form, which allows CO2 to occupy both small
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and large water cages at lower pressure [7, 39]. It is interesting to note that the total
energy consumption in the presence of TBAB is not much lower than for Case I,
although the lowest Ehydrates is associated with the presence of TBAB. This is due to
the fact that the changes in the hydrates-forming pressure and temperature are not
sufficiently significant in Case III, therefore, the reduction in both compression and
cooling is not apparent, although TBAB allows greater gas capacity and conse-
quently higher conversion rates. On the other hand, using a mixture of TBAB and
DTAC has produced a greater degree of energy reduction, since DTAC lowers the
equilibrium pressure of CO2 hydrates [22]. In general, energy consumption values
in both the hydrate formation and dissociation stages are much lower than that
during the cooling and compression processes.

When the total energy was converted into the energy demand per unit mass of
captured CO2, EM, the results further confirmed that the addition of suitable chemicals
can reduce the total energy associated with the HBCC processes. This, in turn, would
lead to a reduction in the economic costs of HBCC. The economic impact of the
chemical additives to the HBCC processes is currently under investigation.

Conclusions

In summary, a model has been developed to estimate the energy required at various
stages during a hydrate-based CO2 separation process. Application of the established
energy analysis to the HBCC process in the presence of chemical additives has
demonstrated that the chemical additives reduced the total energy consumed,
through their impact on the pressures and temperatures at which CO2 hydrates form
and dissociate, and on the CO2 hydration kinetics. Among the chemical additives
investigated, THF has shown a significant reduction in the energy required in all
stages, including the cooling, the compression, the formation and the dissociation of
CO2 hydrates. The quantitative analysis was proved to be effective in the comparison
of the effectiveness of different chemical additives reported by various groups. The
results also indicated that the chemical additives being able to reduce the operation
pressure will bring more benefit to the ultimate application of the HBCC process.
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Tar Removal from Hot Coke Oven Gas
for H2 Amplification with in Situ CO2
Capture

Huaqing Xie, Qin Qin and Qingbo Yu

Abstract A novel sorption-enhanced steam reforming (SESR) process of hot coke
oven gas (HCOG) was proposed for tar removal and H2 amplification, and was
studied with the comparison of conventional steam reforming (SCR) process. Both
of the processes could remove tar effectively and improve the H2 amount in the
COG obviously. For CSR process, after the temperature and the S/HCOG ratio
reached 700 °C and 2.4 respectively, the H2 amplification factor kept 4.30 around,
with its concentration less than 75%. However, for SESR process, the H2 amount
and concentration get improved further, with the optimal temperature moving
toward low temperature. At 600 °C and the S/HCOG ratio of 2.4, the H2 ampli-
fication factor and concentration could reach 4.91 and 97.55% respectively when
the CaO/C ratio was 2.0. Under the respective optimal reforming conditions of the
two processes, the energy consumption of the SESR process was lower than that of
CSR process.

Keywords Hot coke oven gas � Hydrogen amplification � Tar removal
Steam reforming � Thermodynamic analysis � Adsorption-enhanced

Introduction

As the main co-product of coke-making process, the coke oven gas (COG) contains
48–55 mol% for H2, and thus was as a high-quality fuel and chemical raw material
[1]. For China as the largest COG producer in the world, over 200 billion Nm3 per
year COG was produced [2, 3]. COG emitted from the coking chamber, normally
called hot COG (HCOG) with the temperature of 700–900 °C, is a complex mix-
ture, containing tar components (such as benzene and naphthalene) aside from H2,
CH4, CO, and CO2. The tar components accounting for about 30% of the total
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HCOG mass will become a kind of viscous liquid below about 500 °C, more likely
causing equipment blockage [4]. At present, the main industrial method to remove
tar from HCOG is ammonia solution spraying with high-efficient removal.
However, the temperature of COG was cooled to less than 100 °C, causing huge
amounts of high-quality sensible heat loss, and as a result of part of tar dissolved in
water, substantial waste energy was lost, leading to serious secondary pollution [5].
Therefore, developing a new technology to convert COG into more energy-valued
products or to recover COG more efficiently is urgent and significant for enhancing
the energy efficiency of the coking enterprises and the steel enterprises [6].

Hydrogen, regarded as a promising energy carrier, is currently mainly produced
from fossil fuels containing natural gas and coal via steam reforming, gasification,
etc. However, as a result of the depletion of fossil fuel and the deterioration of the
environment, finding a new approach for hydrogen production is attracting
increasing attentions [7]. The industrial by-products may be potential alternatives
for hydrogen production. Among them, COG is one of the most attractive sources
and was considered as one of the raw materials to most likely realize large-scale
economical hydrogen production in the short and medium term [8–10]. Currently,
the main method for hydrogen production from COG is physical separation (such as
pressure swing adsorption, PSA) of the cleaned COG (free-tar) [2]. But, this method
just obtained the original H2 in COG with other components (such as CO, CH4, tar
and other hydrocarbons) yet not rationally used (normally as fuel to be directly
combusted) [11]. Besides, some chemical methods (such as steam reforming, partial
oxidation, auto-thermal reforming, etc.) were put forward to reutilize CO, CH4 and
other hydrocarbons in the clean COG (free-tar) [1, 12–15]. Although up to 90% of
these components could be converted, the H2 concentration in the after-reacted
COG was just about 70%, and their object mainly was COG after cleaning, causing
the wastes of tar and high-temperature sensible heat of HCOG.

So, for H2 amplification with utilizing the chemical energy of tar and the HCOG
heat efficiently, the approaches via some chemical methods to deal with HCOG
were reported. Among them, steam reforming was considered as a kind of feasible
approaches for hydrogen production, since the more hydrogen can be produced not
just from the COG, but also from the steam [16]. However, the relative reports on
the steam reforming process of HCOG were rare. Although there is literature on the
steam reforming reaction of tar compounds from HCOG, these heavy hydrocarbons
were just converted to light fuel gases, such as CH4, CO, H2, with not reacting
completely [17–19]. Commonly, just about 70 vol.% H2 with over 20 vol.% CO2

was in the produced gas via steam reforming, to limit the application of such a
hydrogen-containing gas [20–22]. Thus, a novel sorption-enhanced steam reform-
ing process of HCOG was put forward in this paper, through separating CO2 from
produced gas by the situ addition of CO2 sorbent, not only improving the H2

concentration, but also accelerating the steam reforming reactions so as to improve
H2 amount.

So, in this paper, the sorption-enhanced steam reforming (SESR) process of
HCOG is investigated via thermodynamic analysis, with the comparison of the
conventional steam reforming (CSR) process. The effects of temperature, S/HCOG
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ratio (the ratio of the additional steam mole number and the total mole number of all
the components of HCOG) and CaO/C ratio (the ratio of the additional CaO mole
number and the total C mole number in HCOG) on the tar removal and H2

amplification were discussed. And, the energy consumptions of the two processes
were also analyzed comparatively.

Methodology

Feedstock

The components of HCOG are seen in the literature [11], with the tar simplified as
1-methylnaphthalene (C11H10), mainly because its reaction process under high
temperature much approaches the conversion process of the real tar in HCOG. The
key chemical reactions involved in the steam reforming process of HCOG were
shown in Table 1.

Table 1 Key chemical reactions involved in the steam reforming process of HCOG

Reaction Equation DH800 °C
h /kJmol−1 No.

Thermal cracking nC11H10 ! mCxHy + oH2 + pCO +
qCH4 + rCO2 + sC

− (1)

Hydrodealkylation C11H10 + H2 ! C10H8 +CH4 −53.89 (2)

Hydrocracking C11H10 + 17H2 ! 11CH4 −1075.82 (3)

C10H8 + 16H2 ! 10CH4 −1021.93 (4)

C6H6 + 9H2 ! 6CH4 −599.71 (5)

Steam reforming C11H10 + 11H2O ! 11CO + 16H2 1401.54 (6)

C11H10 + 22H2O ! 11CO2 + 27H2 1026.27 (7)

C10H8 + 4H2O ! C6H6 + 4CO + 5H2 478.64 (8)

C6H6 + 6H2O ! 6CO + 9H2 751.58 (9)

CxHy + xH2O ! xCO + (x + y/2)H2 − (10)

CH4 + H2O ! CO + 3H2 225.22 (11)

Dry reforming C11H10 + 11CO2 ! 22CO + 5H2 1776.82 (12)

C10H8 + 4CO2 ! C6H6 + 8CO + H2 615.10 (13)

C6H6 + 6CO2 ! 12CO + 3H2 956.28 (14)

Carbon formation C11H10 ! 11C + 5H2 −91.88 (15)

CxHy ! xC + y/2H2 − (16)

Methanation CO + 3H2$CH4 + H2O −225.22 (17)

C + 2H2$CH4 −89.45 (18)

Water gas C + H2O$CO + H2 135.77 (19)

Water gas shift CO + H2O$H2 + CO2 −34.12 (20)

Bell 2CO$C + CO2 −169.88 (21)
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In the SESR presence, CaO was selected as CO2 sorbent, due to the wide
application of Ca-based sorbent in the sorption-enhanced steam reforming process
[7, 20, 21]. CaO mainly occurred with the carbonation reaction (Eq. (24)) to adsorb
CO2:

CaO þ CO2 $ CaCO3 DHh
800�C ¼ �167:62 kJ=mol ð22Þ

Process

For the novel SESR process and the CSR process of HCOG, the equilibrium of the
involved chemical reactions was solved by minimization of the Gibbs free energy
of the systems, using HSC chemistry software. Then, based on the equilibrium
results, the energy consumption of the two processes can be investigated, with
given mass-balances as the boundary conditions.

Figure 1a and b show the simplified flow diagram of CSR process and SESR of
HCOG, respectively. For the CSR process, there is only one core unit, the
reforming reactor, where the HCOG set at 800 °C and the 25 °C water are trans-
ported into and the reforming reactions occurred. Then, the reformed gas (H2-rich
gas and unreacted steam) from the reforming reactor was cooled to 25 °C. Because
the reforming reactions of the main HCOG compositions are strongly endothermic
reaction, extra heat has to be provided, to maintain the temperature of the reforming
reactor. For the SESR process, there are two core units, the reforming reactor and
the regenerator. Besides HCOG and water, 900 °C CaO from the regenerator is also
transported into the reforming reactor. Due to the released heat from the CaO
carbonation reaction, the extra heat added into the reforming reactor will be
obviously reduced, compared to the CSR process. However, another extra heat is
demanded to the regenerator, in which the endothermic decomposition reactions of
calcium carbonate and calcium hydroxide transported from the reforming reactor
occur. Note that the energy loss was ignored in the following calculation.

(a)

25 oC
Water

25oC

800oC
HCOG

H2-rich COG
Water 

QD, reform.

Reforming 
Reactor

CO2
Water 

(b)

25 oC

H2-rich COG
Water 

CaCO3
Ca(OH)2

CaOWater

HCOG

QD, reform. QD, desorb.

Reforming 
Reactor Regenerator

800 oC

25 oC 25 oC

900 oC 

Material flow Energy flow Heat exchanger

Fig. 1 Simplified flow diagram. a for CSR process and b for SESR process
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Model Evaluation

In order to study and compare the two processes, the following indexes were chosen.

1. Tar removal rate, REtar, is defined as the ratio of the C mole number removal
from the tar components and the C mole number of tar in the original HCOG.

2. H2 yield, yH2, was calculated as follows.

yH2 ¼ H2 amount in the reformed gas
theoretical H2 amount after SR

� 100% ð23Þ

where, the theoretical H2 amount after SR was the amount when all the
compositions of HCOG except the original (H2 CO2, N2 and H2O) reacted
completely via steam reforming (SR) reactions (Eq. (6–11)) and water gas shift
(WGS) reaction (Eq. (20)).

3. H2 amplification factor,AFH2, used to evaluate the amplification degree of H2 after
reforming, compared to the original H2 in HCOG. And, it was defined as Eq. (24).

AFH2 ¼ H2 amount in the reformed gas
H2 amount in the original HCOG

ð24Þ

4. Composition concentration of the reformed gas, Cx, defined as

Cx ¼ moles of x in the reformed gas
total moles of the reformed gas

� 100% ð25Þ

where, x represented H2, CO, CH4, CO2 in the reformed gas, respectively.
5. C capture efficiency, ηC-capture, was applied to evaluate its adsorption perfor-

mance and defined as

gC�capture ¼
moles of CaCO3 after adsorption
moles of C in original HCOG

� 100% ð26Þ

6. Qreform., Qdesorb., Qtotal are defined as the energy consumed in the reforming
reactor, the regenerator (for SESR process) and the whole process, kJ/molHCOG,
respectively.

Results and Discussion

Steam Reforming in the Absence of CO2 Sorbent

Figure 2 shows the effects of temperature and S/HCOG ratio on the CSR process.
Through SR reactions, the tar and other hydrocarbons in the original HCOG were
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completely converted. The H2 yield via the SR reaction was obviously higher than
that via the own reaction, mainly attributed to Eqs. (6–11, 19, 20) accelerated by
adding extra water. At lower temperatures, the H2 yield was lower with higher CH4

content, mainly because the hydrodealkylation reaction (Eq. (2)) and the hydroc-
racking reactions (Eqs. (3–5)) occurred. As the temperature rose, the endothermic
reactions (Eqs. (6–14)) were accelerated, thus causing the decreases of CH4 and the
increases of H2 and CO. But at higher temperatures, the amounts of H2, CO, CO2

flattened out, mainly because the WGS reaction was thermodynamically dis-
favoured at higher temperature. Noteworthy, due to no involvement of the reaction
dynamics and the purpose of the Gibbs free energy minimization of the whole
reaction system, the thermodynamic result to some extent was not very coherent
with actual one.

As the S/HCOG ratio rose, the H2 yield gradually increased, especially under
high temperature zone, where yet the increase amplitude of H2 yield was gradually
decreased, with just a slight increase at the S/HCOG ratio above 2.4, indicating
increasing blindly steam amount for hydrogen production is economically inad-
visable. The temperature corresponding to the highest H2 yield moved toward low
temperature with the S/HCOG increase. When the S/HCOG ratio was above 2.4,
the H2 yield reached the maximum between 650 and 700 °C, yet just 80% around
with the AFH2 lower than 4.5. Besides, the H2 concentrations under such a tem-
perature zone were concentrated around 70%.

Steam Reforming in the Presence of CO2 Sorbent

Although the H2 yield was obviously promoted via the CSR of HCOG, but the H2

concentration in the gaseous products was undesired, just about 70%, to limit the
application of such a hydrogen-containing gas. To improve the hydrogen content in

Fig. 2 Product distribution of the CSR process of HCOG

22 H. Xie et al.



gaseous products, the steam reforming process of HCOG with suit in CO2 ad-
sorption will be discussed with thermodynamic analysis in the following.

Figure 3 shows the effect of temperature on HCOG steam reforming process in
the presence of CO2 sorbent, under the conditions: S/HCOG ratio of 2.4 and CaO/C
ratio of 3.0. Compared with the case without CaO addition, the H2 yield and
concentration were improved obviously after the addition of CaO. Especially in the
temperature range between 550 and 650 °C, they can improve to over 92% and
over 97% both from 70%, respectively. This was attributed to the adsorption of
CaO for CO2. The above temperature range was beneficial to the carbonation
reaction of CaO, so CO2 from the SR reactions was capture and then the SR
reactions in return were accelerated. From Fig. 3, the C capture efficiency was very
high, 90% around, indicating that the majority C of HCOG was converted into CO2

via SR reactions and then was captured by CaO. So, this also caused that the
carbonaceous gases (CO, CO2, CH4) had just the concentrations close to zero in the
reformed gas. It is worth to note that about 10% unreacted C in the HCOG was
mainly converted into coke, attributed to the Bell reaction (Eq. (21)) accelerated
due to the decrease of CO2. So, the elimination of coke in the SESR process is an
urgent problem to be solved before application, although it can obviously remove
tar and improve H2 amount.

Figure 4a and b show the effects of CaO/C ratio and S/HCOG ratio on the SESR
process at 600 °C. From Fig. 4a, as the CaO/C ratio rose, the H2 produced amount
increase gradually, attributed to the SR equilibrium displaced to the direction of H2

production, and after the CaO/C ratio reached 2.0, the amount flattened out. As the
S/HCOG ratio rose, the H2 amount also increased significantly, and then when the

Fig. 3 Effect of temperature on the steam reforming process of HCOG in the presence of CO2

sorbent
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S/HCOG ratio reached over 2.4, the change was not obvious any more, especially at
the CaO/C ratio � 2.0. Under such conditions, the H2 yield and AFH2 can reach
over 92% and 4.90, respectively. From Fig. 4b, as the CaO/C ratio and S/HCOG
ratio rose, CH2 increase gradually on the whole, and then flattened out when the
CaO/C ratio and S/HCOG ratio reached over 2.0 and 2.4, respectively, with the CH2

of over 97.5%. For other three main compositions (CO, CO2, CH4) of the reformed
gas, they decreased with the increases of the CaO/C ratio and S/HCOG ratio, and
they had just very trace amounts and no obvious change when the CaO/C ratio and
S/HCOG ratio reached over 2.0 and 2.4, respectively.

Energy Consumption

From the above, for the CSR process the optimal SR conditions for H2 production
were the temperature of 700 °C and the S/HCOG ratio of 2.4. Under such condi-
tions, although the tar components were removed from HCOG completely, the H2

amplification factor was just 4.37 with the CH2 being just 74.17% (seen in Table 2).
However, under the above same conditions with the CaO/C ratio of 2.0, the SESR
process can obtain the AFH2 of 4.75 and the CH2 of 91.52%, and more importantly,
the energy consumption of the novel process was lower than the conventional
process. On the other hand, for SESR process the optimal SR conditions for H2

production were the temperature of 600 °C, the S/HCOG ratio of 2.4 and CaO/C
ratio of 2.0, where the H2 amplification factor and the CH2 can reach 4.91 and
97.55%, respectively. At the same temperature and S/HCOG ratio, the CSR just had
the AFH2 of 3.75 and the CH2 of 71.12%. Although SESR process had slightly
higher energy consumption than the CSR process, the energy consumed for
obtaining the same amount of H2 was about 10% lower than the latter. Under the
respective optimal reforming conditions of the two processes, the energy con-
sumption of the SESR process was obviously lower than that of CSR process.

Fig. 4 Effects of CaO/C ratio and S/HCOG ratio on the steam reforming process of HCOG in the
presence of CO2 sorbent. a for the H2 production, b for the concentrations of the reformed gas
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Conclusions

To realize the reutilization of the unused components (such as tar) in HCOG and the
recovery of the waste heat of HCOG, a new hydrogen production technology from
HCOG via SESR was put forward. The equilibrium compositions and energy
consumption of the novel process were investigated, compared with CSR process.
Although both of the processes can remove tar effectively, the CSR process just can
obtain the AFH2 of 4.30 around and the CH2 of less than 75%. Compared the CSR
process, the SESR process can improve the H2 amount and concentration obvi-
ously, and the optimal temperature move toward low temperature. At 600 °C and
the S/HCOG ratio of 2.4, the H2 amplification factor and concentration could reach
4.91 and 97.55% respectively when the CaO/C ratio was 2.0. For energy con-
sumption, although the energy consumed of SESR process has little difference with
that of CSR process for disposing the same HCOG amount, the energy consumed of
the former was lower than the latter for producing the same H2 amount.
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An Evaluation Method for Material
and Energy Conversion Effect with Steel
Manufacturing Process Data

Shipeng Huang, Zhong Zheng, Xiaoqiang Gao, Shenglong Jiang
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Abstract Steel enterprises in China are trending to improve material and energy
conversion effect, because they are facing great challenges including energy
saving and emission reduction, quality and efficiency improvement. According to
the theory of metallurgical process engineering, with the process data in steel
manufacturing, some novel indices are designed for quantifying the conversions in
different metallurgical unit processes. By analyzing common technologic charac-
teristics in different units, the main manufacturing units are divided into two cat-
egories: metallurgical reaction unit and other manufacturing unit. The novel
concepts named as “material dissipation rate of unit process”, “material accumu-
lation rate of unit process”, “enthalpy change of unit process” and “energy dissi-
pation rate of unit process” are proposed for describing the effect and dynamic
characteristics of the conversions in manufacturing units. Finally, material
dissipation rate and energy dissipation rate in unit processes are calculated and
analyzed respectively with the real-world process data from a steel plant in China.
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Introduction

As one of the most important basic pillar industries of the national economy, iron
and steel industry has made great contributions to the rapid economic development
in China [1]. China’s steel production has been the largest quantity in the world for
more than 20 years. Moreover, China’s crude steel production in 2016 has reached
808 million tons, accounting for 49.64% of global crude steel production [2].
However, steel industry is a resource and energy intensive process manufacturing
industry, facing with serious problems such as overcapacity, high production costs,
large resource and energy consumption, serious pollution and lack of competi-
tiveness. Therefore, research on material and energy conversion in the steel man-
ufacturing process has attracted more and more attentions of researchers.

At present, the research on energy and material conversion in steel manufac-
turing process is mainly based on the thermodynamic analysis method, such as
thermal equilibrium analysis method, exergy equilibrium analysis method, energy
level analysis method and thermal economic analysis method. Thermal equilibrium
analysis method [3, 4], which calculating thermal equilibrium for the system (or
equipment) and setting the thermal efficiency as an index, can analyze the con-
version, transmission, use and loss of energy from the perspective of energy
“quantity”, but don’t consider the decline of the energy “quality” resulting from
various irreversible factors inside the energy system. Exergy equilibrium analysis
method [5, 6], which setting the exergy efficiency of system (or equipment) as an
index, can analyze the conversion, transmission, use and loss of energy from the
perspective of energy “quality” so as to reveal the loss of system energy more
efficiently, but don’t analyze whether the supply of energy match the demand of
user from the perspective of energy “quality”. Energy level analysis method [7, 8],
mainly applies “energy level difference” to analyze, evaluate, plan, and control the
system, which makes the energy-using process rationalized, can match different
energy levels between the supply and use of energy, but ignores the changes of
energy “quantity”. Thermal economic analysis method [9, 10], which takes ther-
modynamic analysis and economic factors into account uniformly, considers the
problem of energy “quantity” and “quality” together, can track energy production
process and cost formation process to get the solution of product cost. Besides,
industrial metabolism [11] is also a quantitative method to research metabolic rule
of material and energy in industrial system, describing a series of interrelated
changes in the conversion from material and energy to final products and wastes.
Based on the method, Brunner and Rechberger [12] put forward a new method of
material flow analysis, which established the material total analysis model and the
material use intensity model to analyze the input and output of materials. Then,
Milford et al. [13] analyzed and predicted the development trend of material and
energy consumption and carbon emission in steel manufacturing, by material flow
analysis method based on process emission intensity.

For the problem to evaluate the effect of material and energy conversions in steel
manufacturing process, according to conditions and industry characteristics in
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China, different energy consumptions are converted into standard coal, so that
process energy consumption, comprehensive energy consumption of per ton steel
and comparable energy consumption of per ton steel can be used to evaluate the
effect [14]. For example, Cai [15] analyzed the energy consumption status of iron
and steel industry in China with the indices of comprehensive energy consumption
of per ton steel and comparable energy consumption of per ton steel, and compared
them between China and the advanced steel producing countries. Furthermore, Cai
[15] proposed the potential direction of energy saving in the future for China’s steel
enterprises. Wang et al. [16] analyzed energy consumption in steel enterprises with
comprehensive energy consumption of per ton steel and process energy con-
sumption, then established a diagnosis model of energy consumption bottleneck
and applied to develop energy saving programs. In addition, there were some other
evaluation indices defined by the researchers. For example, Li et al. [17] proposed a
new energy efficiency assessment system of steel enterprises on the basis of the
existing indices such as comprehensive energy consumption, product energy con-
sumption, crude steel energy consumption, sector energy consumption, process
energy consumption, yield factors, production structure factors and energy intensity
factors. From the differences of process flows and product structure, Zhang [18]
proposed a new energy consumption index system of steel enterprises and changes
of energy standard coal coefficient, which including 3 sub-indices (comprehensive
energy consumption index, process section energy consumption index, terminal
product energy consumption index) and 21 secondary-indices. Xu et al. [19] put
forward a hierarchical energy consumption index system, according to the
requirement of energy management, which focus on comprehensive energy con-
sumption of per ton steel, modified process energy consumption, energy con-
sumption of key energy consuming unit and key impact factors of energy
consumption. Besides, Zhang et al. [20] proposed a methodology for the energy
efficiency benchmarking of steel industry among different countries, taking into
account the key factors, such as boundary definitions, energy efficiency index,
energy conversion coefficient, electric furnace share, etc., to compare the energy
efficiencies of steel industry in China with those in the United States.

The above works were on the basis of statistical calculation of the material and
energy conversion or utilization of the whole manufacturing system or unit.
Essentially, the methodologies were of static equilibrium. As a consequence, it is
difficult to accurately express the dynamic characteristics of the real metallurgical
process and to be used to guide the precise regulation of production process.

In this paper, by analyzing and classifying the characteristics of steel manu-
facturing unit process, the comprehensive quantitative indices of the interval
products such as per ton iron, steel or rolled steel, in different unit process will be
introduced with the production operational data. Then the material and energy
conversion effect of each unit process will be quantitatively described. It is helpful
for steel enterprises to analyze the difference of conversion effect among unit
processes, get insight on the conversions or consumptions in each unit process, and
search new methods for the precise regulation of manufacturing process.
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Analysis and Description of Conversion Characteristics
of Materials and Energy in Steel Manufacturing Process

The theory of metallurgical process engineering [21, 22] reveals the physical nature,
structure and functional characteristics of the steel manufacturing process. From the
theory, steel manufacturing process is regarded as a complex multidimensional
logistics system in which material state transition, material property control and
logistics control optimization are carried out [23]. It is composed of material flow
(iron element flow), energy flow (carbon element flow) and a variety of key ele-
ments, with characteristics mixing discrete and continuous manufacturing process,
as shown in Fig. 1. Material flow is mainly based on iron-based materials, and
energy flow is mainly based on a variety of energy medium. The entire manufac-
turing process system consists of unit processes as subsystem with different
physical or chemical changes, such as heating, melting, refining, solidification,
phase change and plastic deformation. Each unit process can be abstracted into
manufacturing unit nodes along the process path of iron element material flow and
manufacturing process network which constituted by the unit nodes. So the material
and energy conversion or use in manufacturing unit processes can be sufficient from
process requirements and production planning.

Material and energy conversions occur in the metallurgical manufacturing unit
process. Although different manufacturing units have different metallurgical func-
tion and manufacturing function, and there are differences of the characteristics in
the process of the material flow conversion and the energy flow utilization, there are
still some common characteristics. So, the manufacturing units can be divided into
two main categories: the first category is metallurgical reaction unit, such as BF,
BOF, LF/RH, etc., in which chemical reactions occur mainly. The second one is
other manufacturing unit, such as CC, RHF, RM, etc., where physical changes
occur mainly. Both of the two categories of manufacturing units constitute a

Manufacturing
unit process

Manufacturing
process

Metallurgical reaction unit
(BF, BOF, LF/RH, etc.)

Chemical reactions 
occurs mainly

Other reaction unit
(CC, RHF, RM, etc.)

Physical reactions 
occurs mainly

Raw materials and supply energy

Products and by-product energy

Hot  metal

Fig. 1 The schematic diagram of unit processes and the whole process in real-world steel
manufacturing (BF: blast furnace; BOF: basic oxygen furnaces; LF: ladle furnaces; RH:
Ruhrstahl–Hausen vacuum refining furnace; CC: continuous caster; RHF: reheating furnace; RM:
rolling mill.)
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complex manufacturing process system together, which achieve the goal of product
production, material and energy conversion.

The material and energy conversion relationship of a manufacturing unit can be
described in Fig. 2. The brown dashed ellipse represents a metallurgical reaction
unit, i.e., a BOF. The brown dashed arrow represents the input (additional material)
and the output (waste material) only load in metallurgical reaction units. The grey
solid rectangle represents other manufacturing units such as a CC, where physical
changes occur mainly, it barely involves chemical reaction, so the quantity of
additional material and wastes are both supposed as zero. For a manufacturing unit
process, the iron element material flow inputs in the initial state and outputs in the
final state. In addition, material and energy conversions are finished in the manu-
facturing unit process. So, there are material and energy balance relationship in a
certain manufacturing unit process x(i,j) within a certain time range, which can be
described as follows [24].

Material balance relationship,

fmði; jÞin þ fmði; jÞa ¼ fmði; jÞw þ fmði; jÞr þ fmði; jÞout; ð1Þ

Energy balance relationship,

feði; jÞin þ feði; jÞa ¼ feði; jÞw þ feði; jÞr þ feði; jÞout; ð2Þ

For an other manufacturing unit,

fmði; jÞa ¼ 0; fmði; jÞw ¼ 0: ð3Þ

Fig. 2 The schematic diagram of material and energy conversion relationship in a manufacturing
unit
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Quantitative Evaluation Method for Materials and Energy
Conversion in Steel Manufacturing Process

According to above analysis of the basic characteristics of material and energy
conversion in steel manufacturing unit process, with the real-world production
operational data, several novel indices can be introduced to quantitatively evaluate
the characteristics and effects of conversions by referring to the classical theory of
thermodynamics and kinetic.

In this paper, material dissipation rate of unit process (aij) is defined to describe
material consumption in manufacturing unit processes. It is the ratio of difference
between the total input material quantity, which includes input iron element
material quantity and additional material quantity, and the total output available
material quantity, which includes output material quantity and recyclable material
quantity, to the former in a manufacturing unit x(i,j) within a certain time range. In
other words, it is the ratio of material consumption in unit process, which can be
formulated as follows,

aij ¼ ½fmði; jÞin þ fmði; jÞa� � ½fmði; jÞout þ fmði; jÞr�
fmði; jÞin þ fmði; jÞa

: ð4Þ

For the unit process mainly with chemical changes, the concept is material
dissipation rate (MDR) in chemical reaction process based on per interval products.
While, for the process mainly with physical changes, the concept is material loss
rate in physical transformation process based on per interval products. In addition,
there are output product rate (OPR) and recyclable material rate (RMR) in the
processes. So, the material balance relationship between input and output in unit
process is as follow,

ðOPRþRMRÞþMDR ¼ 1: ð5Þ

In which, both of output product rate and recyclable material rate constitute the
effectively-utilized material rate (EUMR) in unit process. They can be formulated as
follows,

EUMR ¼ OPRþRMR; ð6Þ

OPR ¼ fmði; jÞout
fmði; jÞin þ fmði; jÞa

; ð7Þ

RMR ¼ fmði; jÞr
fmði; jÞin þ fmði; jÞa

: ð8Þ

If there is an imbalance in the dynamic production process, that is to say, there is
an input and output imbalance of iron element material flow in a manufacturing unit
process, so the EUMR plus MDR in unit process not equal to 1. It will lead to
material accumulation appear, for example, the liquid steel remaining in a BOF
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after steel tapping, for which the concept named material accumulation rate of unit
process (cij) is introduced to describe the accumulation. Namely, it is defined as the
ratio of the accumulated material quantity to the total input material quantity in unit
process, can describe not only dynamic accumulated material quantity of iron
element material flow but also flexible characteristics in unit process. Moreover, if it
is 0, it means the unit process has no flexibility.

The enthalpy change of unit process (DHp
ij) is defined to describe the total energy

quantity without being effectively utilized at the final state after the material
transformations of per material quantity in unit process within the certain time
period. And energy dissipation rate of unit process (uij) is defined as the ratio of the
enthalpy change of unit process to the total input available energy quantity of per
material quantity in unit process according to the time period. They can be for-
mulated as follows,

DHp
ij ¼

feði; jÞin þ feði; jÞa
� �� feði; jÞout þ feði; jÞr

� �

fmði; jÞin þ fmði; jÞa
; ð9Þ

uij ¼
feði; jÞin þ feði; jÞa
� �� feði; jÞout þ feði; jÞr

� �

feði; jÞin þ feði; jÞa
: ð10Þ

In the above formulas, the relevant data can be obtained from the real-world steel
manufacturing process database.

For the process before steelmaking, the benchmark is set as per ton pig iron products;
for the process of steelmaking-continuous casting, the benchmark is per ton steel
products; for the process after continuous casting, the benchmark is per ton rolled steel
products. Therefore, material dissipation rate of unit process can be, respectively,
associated with the commonly used indices of iron ratio coefficient, steel ratio coeffi-
cient and material ratio coefficient. The indices of enthalpy change of unit process and
energy dissipation rate of unit process are also similar, which can describe the energy
dissipation and utilization in different processes. Besides, according to the multi-level
and multi-scale characteristics of steel manufacturing process, the indices from unit
processes can expand to describe conversions in the whole manufacturing process.

Researching and quantitatively describing ofmaterial and energy conversion of unit
processes, is helpful for steel enterprises to get insight on the dynamical material and
energy conversion or consumption in each unit process at all the time, which provide
targeted measures to make decision for energy-saving and consumption-reducing.

Experiment and Discussion

The above indices can be used to describe an object steel production organization:
heats in multi-processing processes. With the indices, it will be clear whether there
are differences of material and energy conversion in the metallurgical process types
of different steel grades.
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A few index cases for different steel products from a steel plant in China are
shown in Table 1, which contains 62 heats of 7 steel grades in one day.

With the production data collected from the plant, the material dissipation rate
and energy dissipation rate in the process of steelmaking-refining can be computed
as an example. In the case, there are 2 BOFs at steelmaking phase, 2 LFs and 1 RH
at refining phase. The material information including iron element material flow,
additional material and other auxiliary material quantity and the energy information
including temperature, power consumption and energy medium consumption in
different stage can get from the real-world production process data. Consequently,
material dissipation rate of unit process and energy dissipation rate of unit process
in all BOFs and refining furnaces (LFs/RH) of all steel grades can be calculated.
The statistical range (l-2r, l+2r) of the dissipation rate of materials and energy
are, respectively, shown in Figs. 3, 4, 5, 6, 7, 8, calculated with all unit process of
different steel grades. In which, l is the mean value of the calculated dissipation
rate, while r is standard deviation of the calculated dissipation rate. As shown in
Figs. 3, 4, 5, 6, 7, 8, the midpoint represents the value of l, the top and bottom line
represent the value of l + 2r and l − 2r, which express the material or energy
dissipation rate of all steel grades in all kinds of unit.

The above results show that the indices of material dissipation rate of unit
process and energy dissipation rate of unit process are changed with steel grade,

Table 1 The production information of seven steel grades in production plan the day

Serial
number

Steel
grade

Processing
route

Heats
amount

Serial
number

Steel
grade

Processing
route

Heats
amount

1 DC01 LD-RH-CC 2 5 SPHC LD-LF-CC 4

2 M4R30 LD-LF-CC 10 LD-RH-CC 6

3 Q235B LD-LF-CC 9 6 St12 LD-LF-RH-CC 9

4 Q345B LD-LF-CC 12 7 Stb34 LD-LF-CC 10
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which means novel indices may expand the traditional evaluation indices, focusing
on quantitatively evaluating the material or energy consumption of different steel
grades and unit. However, convincing effect of the indices have to require more
real-world production data, which certainly would be the future works.

Summary

In this paper, a few indices such as material dissipation rate of unit process,
material accumulation rate of unit process, enthalpy change of unit process and
energy dissipation rate of unit process, have been introduced to quantitatively
evaluate material and energy conversion effect in steel metallurgical process. With
the real-world production operational data, a few cases of material dissipation rate
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and energy dissipation rate in unit processes have been calculated. There are dif-
ferences of the indices among different steel grades or processes. It means that the
novel indices could be indices for quantitatively describing materials and energy
conversation in steel manufacturing unit processes. Nevertheless, more calculations
and evaluations with real-world production data are needed, as they will be helpful
for steel enterprises to achieve the production goals of energy-saving and emission-
reducing, cost-reducing and efficiency-increasing.
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Preparation and Characterization
of Activated Carbon from Waste
Ion-Exchange Resin for CO2 Adsorption

Mengqi Wei, Qingbo Yu, Qiang Guo, Zongliang Zuo and Qin Qin

Abstract Activated carbons, derived from waste ion-exchange resin by CO2

physical activation, were applied to separate CO2 from flue gas against global
warming. The BET specific surface areas of activated carbons at different activation
temperatures and times were investigated. The CO2 adsorption capacity was tested
under non-isothermal and isothermal conditions. The experimental results show that
when keeping the activation temperature constant, the specific surface area
increases firstly and then decreases with increasing activation time. For the given
activation time, the specific surface area rises firstly and then declines with
increasing activation temperature. The adsorption capacity decreases with
increasing temperature. The maximum adsorption capacity is 51.46 mg/g under the
condition of 298 K and pure CO2. Fractional order kinetic model is the best one to
describe the kinetics of CO2 adsorption. The activated carbons show the potential to
be an effective adsorbent for the removal of CO2 from flue gas.
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Introduction

Severe global climate change has been one of the most challenges with the sus-
tainable development of human beings. Global warming leading by artificial
greenhouse gas emissions has become an issue of major international concerns.
Carbon dioxide (CO2) whose amount is the largest among greenhouse gases is
emitted into the surroundings from various sources, such as power plant, cement
industry, iron and steel industry, ammonia industry, refinery and so on [1]. Carbon
capture and storage (CCS) has been thought to be a promising technology to reduce
the CO2 emissions against global warming.

Adsorption is considered as one of the most promising CCS technologies for
CO2 capture from flue gases. Adsorption process, as a mature technology, is widely
used in separation industry based on the high performance of the adsorbent
materials. Activated carbon (AC) is a common adsorbent used in gas separation and
depuration [2, 3], sewage treatment [4, 5], desulfurization and denitrification [6, 7]
etc., whereby it provides a large range of pore structures and surface chemistry
properties [8]. Generally, AC is relatively cheap, stable in acidic or basic solutions
and has much more sources of raw materials. Besides, it is also insensitive to
moisture and cost effective as it can be regenerated after being used [8, 9]. These
above-mentioned features make it the candidate adsorbent materials for
post-combustion capture [10–13].

Ion-exchange resins are mainly used for demineralization of boiler water, metal
separation from aqueous solutions, health and medicine, and the metallurgical
industry among others. Generally, they are wasted after being used for 3–5 years
and do not readily degrade in the natural environment [14]. Waste ion-exchange
resins have been found to be a suitable precursor to produce AC due to high carbon
yield and low ash content [15, 16]. From the present papers, waste ion-exchange
resins using for producing AC may be a very potential economic and ecological
advantage. Bratek et al. [15] have produced AC with waste ion-exchange resin to
clean the toluene-contaminated water efficiently. Gun’ko and his co-workers [16]
have prepared to manufacture a series of ACs by stream activation with different
waste commercial ion-exchange resins. Zhang [17] produced AC by cation
exchange resin via KOH activation for high-performance super-capacitor.

However, few people apply the waste ion-exchange resin-based activated carbons
(WIRACs) to CO2 capture against global warming. Therefore, in this paper,
WIRACs were produced by different activation conditions and the different pore
structures and surface chemistry properties were compared. Then the CO2 adsorption
capacities of different WIRACs were measured. Different adsorption kinetic models
were selected to describe the kinetics of CO2 adsorption.

40 M. Wei et al.



Experimental

Materials

The waste ion-exchange resins after being treated with demineralization of water
were soaked in the absolute ethyl alcohol overnight to wipe off the organic impurity
adsorbed on the surface of them. Then they were impregnated with 5%
hydrochloric acid (HCl) for 24 h, washed with distilled water until the pH
approached to 7. Then the resins were dried in the drying oven for 24 h.

Preparation of WIRACs

The treated resins were heated from room temperature to 1073 K in a corundum
boat at the rate of 1.5 K/min and kept 60 min for carbonization under N2 atmo-
sphere in a horizontal cylindrical furnace. After carbonization, the char was acti-
vated at a designated temperature for a certain time with CO2 in a vertical
cylindrical furnace.

Characterization of WIRACs

The pore structure of WIRACs was examined using an automatic micromeritics
NOVA 1200e volumetric adsorption analyzer by nitrogen adsorption-desorption
isotherm at 77 K. The specific surface area (SBET) was calculated by the BET
equation; the total pore volume (Vt) was evaluated by converting the adsorption
volume of nitrogen at relative pressure of about 0.985 to equivalent liquid volume
of the adsorbate. The mesopore volume (Vmes) and the pore size distributions were
determined by the BJH model.

WIRACs were ground and mixed with KBr at a mass ratio of 1:100 and then
were ground into powders together. The 151.5 mg mixed powders were pressed
into a slice and then subjected to Fourier Transform Infrared spectroscopy (FTIR)
scan. 32 scans were taken at a wave number range of 400-4000 cm−1 with a
resolution of 4 cm−1.

Carbon Dioxide Adsorption Capacity

The CO2 adsorption capacity of the WIRACs at atmospheric pressure was assessed
with a thermogravimetric analyser (TGA). The WIRACs were loaded in a corun-
dum crucible into the TGA and heated to 393 K in the atmosphere of N2 to remove
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CO2 and H2O on the surface of WIRACs before adsorption experiment. After the
temperature decreased to the designated temperature, N2 was changed to CO2 until
the weigh remained unchanged. Before adsorption experiment, the base line was
done in the same condition.

Results and Discussion

Textural Characterization and Chemical Characteristics
of WIRACs

Figures 1 and 2 illustrate the BET specific surface area of WIRACs. From Fig. 1, at
the same activation temperature, the BET specific surface area of WIRACs
increases to the maximum and then decreases with increasing activation time. When
the activation reaction occurs, activation reagent molecules enter into the interior of
char through the macropores on the surface of char and react with tar and amor-
phous carbon formed at the carbonization process. Due to the burning-off of the
blocking pore, the BET specific surface area increases. The BET specific surface
area is much bigger owing to the opening of blocking pore among the crystallites in
succession. With activation time increasing, the micropores formed previously
begin to be destroyed, and some of the micropores become mesopores. However,
when the activation time is much longer, activation reaction is excessive. The
formed mesopores become macropores, carbon matrix collapses, and the pore
structure blocks, which lead to the reduction of the BET specific surface area.

The activation reaction of char with CO2 is endothermic. At the low activation
temperature, the reaction is controlled by the reaction rate. With the increase of
activation temperature, the reaction rate of char with activation reagent becomes
faster. Low temperature is disadvantageous to the activation reaction. With the

Fig. 1 The specific surface
areas of the different
activation times
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temperature increasing, the specific surface area of WIRACs increases before the
optimum temperature, while starts to decrease on further increase of the tempera-
ture, as seen in Fig. 2. When temperature is higher than the optimum one, the
specific surface area starts to reduce significantly due to the collapsing and van-
ishing of the micropores.

Among these WIRACs, five kinds of WIRACs were chosen according to their
BET specific surface areas. The pore structure of the WIRACs was tested. The
results and the pore size distributions can be seen in Table 1 and Fig. 3,
respectively.

As revealed in Fig. 3, most pores of WIRACs are distributed in the pore size
ranging from 1.4 nm to 3.8 nm, and the latter is much bigger than the former,
especially sample C and D, which leads to the highest value of pore volumes of
sample C and D among these samples. It is beneficial to adsorb small molecule
substances for the micropores and mesopores with less than 3.8 nm diameter. From
Table 1, with the increase of BET specific surface area, the pore volume presents a
non-rule status. So the pore volume is not directly related to the BET specific
surface area. The percentage of mesopores of the produced WIRACs is the largest,
especially about 3.8 nm which can be seen in Fig. 3. The average pore diameters
are from 3.821 nm to 3.854 nm. The WIRACs are mesoporous carbons, and the
percentage of mesopores is from 88.57% to 97.34%.

Fig. 2 The specific surface
areas of the different
activation temperatures

Table 1 Pore structure parameters of WIRACs

Sample SBET (m2/g) Vt (cm
3/g) Vmic/Vt (%) Vmeso/Vt (%) Davg (nm) m (mg/g)

A 393.8 0.133 3.48 96.52 3.848 45.26

B 414.6 0.072 2.66 97.34 3.821 43.85

C 475.4 0.236 5.28 94.72 3.854 48.32

D 505.1 0.238 11.43 88.57 3.847 51.46

E 538.9 0.029 2.73 97.27 3.840 35.23
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To research the nature of the functional groups presenting on the surface of the
WIRACs, FTIR analysis was tested. Figure 4 shows the results of FTIR measurement
forWIRACs. The bands at 3402 cm−1 can be assigned to the -NH2-. The peaks at 2917
and 2834 cm−1 are attributed toC-H stretching vibration of -CH2-NH-CH2-. The bands
at 2350 cm−1 are related toC = C. The peaks at 1570, 1422, 1248 and 856 cm−1 can be
due to C = O stretching vibration of ketones, aromatic ring, C-O stretching vibration
and presence of C-H groups (located at the edges of aromatic ring).

Assessment of CO2 Adsorption Capacity

The CO2 adsorption capacity of WIRACs was tested by TGA. Firstly,
non-isothermal adsorption was tested and the temperature was from 298 K to

Fig. 3 The pore size
distributions of the WIRACs

Fig. 4 FTIR of different
WIRACs
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333 K. As shown in Fig. 5, at the beginning, the adsorption capacity increases
instantaneous to the highest. However, with the temperature increasing, adsorption
capacity begins to reduce and desorption phenomenon occurs to some extent. With
the temperature increasing, the adsorption capacity reduces obviously, indicating
that CO2 adsorption of WIRACs is a typical physical adsorption. As a rule of thumb
for physical adsorption, it is an exothermal reaction. When the adsorption occurs,
the molecules adsorbed on the surface of porous material can receive adsorption
energy. If the energy is big enough, the molecules adsorbed will get away from the
surface. The higher adsorption temperature is, the easier it is for molecules to
escape from the surface. It is disadvantageous to CO2 adsorption at high temper-
ature due to the exothermic reaction of CO2 adsorption by WIRACs. Even if the
reaction rate becomes faster at higher temperature, less CO2 is adsorbed onto the
active sites due to the faster CO2 desorption.

Figure 6 shows CO2 isothermal adsorption curves at 298 K. As revealed in
Fig. 6, the equilibrium times of WIRACs are similar, about 7 min. E is the first and
C is the last. From A to E, the adsorption capacities are 45.26 mg/g, 43.85 mg/g,
48.32 mg/g, 51.46 mg/g and 35.23 mg/g, respectively. At the beginning, the
adsorption capacity increases slowly, indicating hysteresis existing in the adsorp-
tion process. The hysteresis phenomenon is caused by CO2 molecules diffusing
from gaseous phase to pores.

Adsorption Kinetic Models

CO2 adsorption kinetics of WIRACs is desirable to evaluate the performance of
adsorbents and to understand the overall mass transfer in the CO2 adsorption
process. It is very important to design the adsorption process and determine the
adsorption equipment. So it is necessary to study the adsorption kinetics. To

Fig. 5 Non-isothermal
adsorption curve
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investigate the kinetics of CO2 adsorption of WIRACs, the following four models
were considered in Table 2.

The adsorption of different WIRACs was tested in the same condition. So the
adsorption kinetics was studied by one kind of WIRACs. Figure 7 indicates the
different kinetic models of CO2 adsorption. Table 3 shows the parameters of dif-
ferent kinetic models.

The squared regression coefficients (R2) related to the four kinetic models are all
higher than 0.83, indicating that the fitted curves are well. So the four kinetic
models all can describe the CO2 adsorption process. The fractional order kinetic
model is the best one, closely followed by Avrami’s fractional-order kinetic model,
pseudo-first order kinetic model and pseudo-second order kinetic model. According
to the kinetic models fitted curves of Fig. 7, at the beginning stage of adsorption,
adsorption capacity is overrated by pseudo-first order kinetic model and
pseudo-second order kinetic model; and at the middle stage, adsorption capacity is
underrated; at the end stage, adsorption capacity is overrated again. The final
equilibrium adsorption capacity of the two models is higher than the real. The fitted
result of Avrami’s fractional-order kinetic model is well, except at the middle stage.
The adsorption capacity is a little overrated. Compared with pseudo-first order
kinetic model and pseudo-second order kinetic model, the overrated value is a little,

Fig. 6 Isothermal adsorption
curves at 298 K

Table 2 Adsorption kinetic models

Kinetic model Differential form Equation

Pseudo-first order [18, 19] dqt
dt ¼ k1 qe � qtð Þ qt ¼ qe 1� e�k1t

� �

Pseudo-second order [19, 20] dqt
dt ¼ k2 qe � qtð Þ2 qt ¼ k2q2e t

1þ k2qet

Avrami’s fractional-order [20, 21] dqt
dt ¼ knAA tnA�1 qe � qtð Þ qt ¼ qe 1� e� kAtð ÞnA� �

Fractional order [19, 20] dqt
dt ¼ kntm�1 qe � qtð Þn qt ¼ qe � 1

n�1ð Þkn=mð Þtm þ 1=qn�1
eð Þ½ �1= n�1ð Þ
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which can be ignored to a certain degree because R2 of the kinetic model is 0.9910.
Fractional order kinetic model is the best one, whose R2 is 0.9993. The adsorption
capacity is neither overrated nor underrated, and the overall process of adsorption
can be described well. The final equilibrium adsorption capacity of Avrami’s
fractional-order and Fractional order kinetic models is very consistent with the real
adsorption capacity.

Conclusions

Waste ion-exchange resin belongs to solid hazardous waste, and how to dispose it is
a problem bothering people. And now waste ion-exchange resin is found to be a
kind of suitable precursor to produce AC via CO2 physical activation in this study.
When keeping the activation temperature constant, the BET surface area rises and
then decreases as activation time increases. For a given activation time, the BET
surface area rises and then reduces with increase of activation temperature. The CO2

adsorption capacity of WIRACs decreases with the increase of temperature. CO2

adsorption by WIRACs with porosity is physical adsorption, and a higher

Fig. 7 Different kinetic
models of CO2 adsorption by
WIRACs

Table 3 Different kinetic models parameters

Pseudo-first
order

Pseudo-second
order

Avrami’s
fractional-order

Fractional
order

qe (mg/g) 47.51 59.64 44.42 45.14

k 0.36015 5.85 � 10−3 0.41855 4.78 � 10−10

m – – – 13.58374

n – – 4.28647 4.99895

R2 0.8711 0.8313 0.9910 0.9993
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temperature is disadvantageous to CO2 adsorption. So in practical application, the
temperature of flue gas should be low. The maximum adsorption capacity is
51.46 mg/g under the condition of 298 K with pure CO2. Fractional order kinetic
model, whose R2 is 0.9993, is the best kinetic model to describe the adsorption
process. WIRACs used for CO2 adsorption not only turns waste into wealth and
solves the problem of waste resins difficult terminal dispose, but also reduces the
cost of AC, indirectly reducing the cost of emissions reduction. The WIRAC is a
promising porous adsorbent to CO2 adsorption because of its good adsorption
property and low cost.
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Evaluation of Variation in the Life Cycle
Based Environmental Impacts for Copper
Concentrate Production

Will Sikora, Trevor Saldanha and Nawshad Haque

Abstract This study reported life cycle assessment (LCA) of six copper mines in
Australia, Papua New Guinea and Portugal. Inventory data was sourced from
published papers, sustainability reports by mining companies, independent tech-
nical reports and previous CSIRO studies. SimaPro software and various databases
were used to evaluate life cycle based environmental impacts. The impact indicators
were: global warming potential (GWP), acidification potential, water footprint,
ecotoxicity potential, ozone depletion potential and human toxicity potential (car-
cinogenic and non-carcinogenic), abiotic resource depletion potential (minerals and
fossil fuels), particulate matter and ionizing radiation. Generally, open pit mines
were found to have a GWP of approximately 1.0 t CO2-eq/t Cu concentrate while
underground mines had approximately 1.3 to 1.8 t CO2-eq/t Cu concentrate.
Environmental impacts varied between mines considerably due to several factors,
most notably: ore grade, mining method, flowsheets and ore mineralogy. Energy
consumption and sources were significant contributors to most impact categories.

Keywords LCA � Copper � GHG � Sustainability � Concentrate

Introduction

Copper metal is an extremely important commodity in society being used in a wide
range of applications such as electronics, electrical wiring and energy transfer
technologies. With these applications expected to be remain in strong demand,
copper production should continue to increase into the future. There is a need to
understand the environmental impacts associated with products since an increase in
general awareness and demand from the consumer. A focus on the environmental
performance of products also drives an increased efficiency upstream processes
such as raw material extraction and metal processing. Life cycle assessment (LCA),
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in particular, is an established tool for assessing environmental impacts, including
in the mining and metals industry [1]. Environmental impacts of multiple products
have been assessed using LCA methodologies and generated Environmental
Product Declarations (EPDs) [2]. Product assessments of cars [3], tractors [4],
beverage cans [5], wind turbines [6], and copper products such as tubes, sheets and
wires [7] showed a significant impact from raw materials, particularly metals. For
this reason, the understanding of the impact of copper mining and processing is
inevitable. A study [8] showed 93% of Americans displayed a conscious willing-
ness to incorporate sustainability into their lifestyle. Other studies [9] showed
similar results that found 84% of surveyed consumers take varying actions to seek
sustainable products when they shop. This consumer interest is one of the key
drivers for sustainability. Without correct representation of the environmental
impact of products, it is more difficult for consumers to actively participate in
sustainability. Therefore, having more informative and consistently structured (i.e.
based on international standards) environmental performance indicators using
methodologies such as LCA and indicators in EPD can help society to make
informed decisions to benefit the global environment.

Previous LCAs on metal production have focussed on representative data for
production of various metals, lumping mining and mineral processing into one
stage [10], which helped to provide a complete life cycle inventory. However, metal
production LCAs have yet to compare the environmental performance of various
mines to ascertain the variation of performance between sites, and thus to assess the
sensitivity of the results.

This study conducted LCAs of copper concentrate (Cu con) production for six
mines located in Australia, PNG and Portugal. Mining and mineral processing, in
general, consume significant amounts of energy and have a large environmental
impact associated with them [11]. Furthermore, the production of copper concen-
trate uses more energy than the refining stage of copper metal production [10]. This
is different to the steel and aluminium industries which use more energy in the
refining stage [10]. In addition, the contribution of the mining and mineral pro-
cessing stages will significantly increase as ore grades continue to decrease over
time due to a larger amount of material being processed [12]. This shows the
importance of understanding the processing stage of copper production to evaluate
environmental impacts.

Many LCAs [10, 13–15] analyse the global warming potential (GWP) of mines
but ignore other major impact categories due to the lower certainty associated with
their characterisation. This study recognises that there are limitations with these
impact categories but utilises their usefulness in providing a basis for a more in
depth comparison. Haque & Norgate [15] indicate the importance of evaluating
other impacts that significantly influence public perception of environmental per-
formance. Santero & Hendry [1] also recommends the assessment of five categories
(including GWP) when performing LCAs of the metals industry and suggests
inclusion of more impact categories as data becomes more refined. Beyond these
categories, Heijungs et al [16] indicates the importance of considering dedicated
models for human and ecosystem toxicity of metals. Inclusion of multiple impact
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categories is important in copper processing in particular due to the number of
influencing factors that lead to significant variation in performance between sites.
This study looks in particular to explore these differences as understanding this
variation helps to know where and how significant improvements can be made in
environmental performance. Furthermore, through comparisons of mines limita-
tions in LCA methodology can be highlighted and improved. There is also an
opportunity to focus on and refine areas of mining and mineral processing that are
key contributors to environmental impacts of metal production.

Though social relations and environmental regulations are key drivers for envi-
ronmental performance reporting, there appears to be a lack of reporting when con-
sidering the extent of the environmental footprint of copper mining. Considering that
there are significant savings that can be made in energy use and hence environmental
damages, in depth reporting may benefit business too. This could allow peer to peer
comparisons and allow for future opportunities to be seized. Green Research [17]
conducted a study sponsored by PE-International that lists several benefits to busi-
nesses conducting LCAs including market access, increased revenue and brand
enhancement. For these reasons this study further aims to highlight the importance of
providing detailed information by showing how environmental performance can be
better represented with the use of this information in combination with LCA.

Methodology

LCA evaluates the total environmental burdens and benefits over the entire life
cycle for a product from ‘cradle’ to ‘grave’ including: material and energy used
during extraction and processing of raw materials, manufacturing, transportation,
use, recycling and end-of-life fate. International Standards (ISO 14046: 2006)
provides guidelines on undertaking an LCA with recommended four stages: goal
and scope definition, inventory analysis, impact assessment and interpretation.

The goal of this study was to determine the carbon emissions and other envi-
ronmental impacts of several copper mines producing copper concentrate. Six
copper mines, from Australia, Papua New Guinea and Portugal were selected to
perform LCA.

The study adopts a cradle to gate approach (as shown in Fig. 1) which
encompasses the entire operation from ore extraction to concentrate production. As
only copper concentrate production was included in this study, sites with
pyrometallurgical copper processing were considered. Hydrometallurgical copper
processing sites do not produce copper concentrate. All energy, reagents and
materials consumed within the system boundary were assessed, using a functional
unit of ‘one tonne of copper concentrate’ as a basis for comparison.

The study considered the following impact categories:

• Global warming potential (GWP)
• Abiotic depletion potential (for mineral and fossil fuels) (ADP)
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• Ozone depletion potential (ODP)
• Photochemical oxidation creation potential (POCP)
• Acidification potential (AP)
• Eutrophication potential (EP)
• Particulate matter
• Human toxicity potential (HTP) (carcinogenic and non- carcinogenic)
• Ionizing radiation

Life cycle inventory data was collected from a number of publicly available
sources. This included peer reviewed papers, sustainability reports from mining
companies and independent technical reports. Inventory data from previous CSIRO
studies [18] were also incorporated. Data included key mine information (e.g.
tonnage, ore grade), electricity, flotation reagents and material consumption that
also included explosives, grinding media, lime and flocculants.

The impact is calculated by multiplying each component within the inventory
data by a relevant impact factor from the method in SimaPro (Version 8.4.1.0) LCA
software environment and then summing the results. For example, electricity
consumption was multiplied by its emission factor to calculate GWP for electricity
use. These GWP contributions for all individual input items were then added up to
obtain the total GWP for the particular mine. SimaPro was used to calculate the
midpoint impact. SimaPro uses the Australian Life Cycle Inventory database as
well as other international databases.

Results and Discussion

Mine Flowsheets and Overview

A significant difference was found in the flowsheets of separate mine sites.
However, each mine contained the generic processes outlined in Fig. 2. The
detailed individual process units differ in number, size, type and in configuration.

Relevant mine information including annual milled tonnage, ore grade, con-
centrate grade, predominant ore type and mine type are provided in Table 1 for the
six mines analysed.

Fig. 1 Datasets included in gate to gate, cradle to gate and cradle to grave. ‘Cradle to gate’
approach was used in this study and is highlighted accordingly
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Impact Results

GWP for each mine sites are shown in Fig. 3 as found and also with the assumption
that all mines are using electricity from same source having same emission factors.
This assists with the comparison and also to identify what other important possible
variables are that can affect GWP. Table 2 shows other impact indicators.

Global warming potential is the most widely used impact category in LCA.
A large effort has been allocated globally to this impact category by organisations
such as the IPCC. The largest contributors to GWP were electricity and diesel
consumption. Both are fossil fuels sources (with the exception of energy produced
from renewable sources). The materials with the next biggest GWP contributions
were explosives and grinding media consumption.

Figures 4, 5, 6, 7 provided a ranking (highest to lowest GWP) and indicated the
relative annual tonnage (out of the six mines assessed). The GWP for ‘base case’
results (Fig. 4) showed a large variance between each mine. The problem with
analysing this data is that the variance between sites depends on a number of factors
(electricity fuel source, ore grade, ore mineralogy etc.). These factors each con-
tribute differently to GWP and are not always a linear scaling of results. For this
reason, the exact results give inadequate information on what exactly caused the
variance between sites.

Figures 4, 5, 6 have been constructed for a number of scenarios that correspond
to the variables considered to have a major influence on mine performance:

• Base Case Results: all results unaltered (Fig. 4)
• Common Fuel Type: electricity generation assumed to be from a common

source (natural gas) (Fig. 5)

Fig. 2 General flow sheet for copper concentrate production process

Table 1 Overview data for selected concentrate producing mines

Mine 1 2 3 4 5 6

Annual Tonnage (Mt/annum) 9.54 5.25 9.84 2.00 22.19 2.69

Ore Grade (%) 1.32 0.82 0.69 1.23 0.84 2.72

Concentrate Grade (%) 50.85 33.60 28.56 26.50 25.76 24.30

Predominant Ore Typea CC, B B M, CP CP, P CP CP

Mine Type OP UGb OP UG OP UG

Notes aOre types are: B—Bornite, CC—Chalcocite, CP—Chalcopyrite, M—Magnetite and P—
Pyrite. Mine types are: OP—Open Pit, UG—Underground. bMine 2 has both underground and
open pit mines but sources most of its process ore from the underground mine and so has been
assessed as an underground mine
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• Common Fuel Type and Ore Grade: common fuel type condition with a linear
adjustment of GWP to a common ore grade of 1% (Fig. 6)

• Common Fuel Type, Ore Grade and Concentrate Grade: common fuel type and
ore grade condition with a linear adjustment of GWP to a common concentrate
grade of 30% (Fig. 7)

Fig. 3 Global Warming Potential breakdown for each mine for: a base case - no adjustments,
b common fuel type adjusted

Table 2 Other impacts for each mine per tonne of concentrate produced

Mine 1 2 3 4 5 6

GWP (kgCO2-e/t Cu Con) 1,450 1,680 1,310 488 890 633

AP (kg SO2-e/t Cu Con) 9.67 4.26 9.74 3.02 4.45 7.20

EP (kgPO4-e/t Cu Con) 1.04 0.379 0.963 0.408 0.966 0.343

HTP cancer (107 CTUh/t Cu Con) 6.27 24.3 29.0 66.1 14.6 6.71

HTP non-cancer (105 CTUh/t Cu Con) 7.16 3.11 7.47 3.46 7.55 1.80

ODP (106 kg CFC-11-e/t Cu Con) 44.5 25.2 48.4 18.3 1.48 41.4

POCP (kg C2H4-e/t Cu Con) 0.390 0.198 0.400 0.133 0.291 0.302

AETP (10−6 CTUe/t Cu Con) 3.03 3.61 2.76 1.08 1.71 1.68

ADP element (103 kg Sb-e/t Cu Con) 3.43 50.9 59.9 153 12.7 1.60

ADP fossil fuels (10−3 MJNCV/t Cu Con) 15.8 26.9 13.8 4.89 4.34 7.52

Particulate matter (kg PM2.3/t Cu Con) 0.452 0.272 0.453 0.232 0.172 0.675

Ionizing radiation (kg Bq U235-e/t Cu Con) 0.844 3.70 3.92 10.1 0.844 3.74
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Fig. 4 Global Warming
Potential ranked analysis for
six mines assessed. ‘Other’
includes all inputs other than
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Fig. 5 Common fuel type
(Natural Gas) adjusted Global
Warming Potential ranked
analysis for six mines
assessed. ‘Other’ includes all
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Fig. 6 Common fuel type
(Natural Gas) and ore grade
adjusted Global Warming
Potential ranked analysis for
six mines assessed. ‘Other’
includes all inputs other than
electricity
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Effect of Variables on GWP

Figures 4, 5, 6, 7 refer to a number of adjustments for GWP calculation that
allowed comparisons between mines. Each mine is compared for each scenario by
ranking mines by GWP (highest to lowest GWP from left to right). The relative
tonnage is also displayed indicating a percentage milled for a particular mine out of
the total milled tonnage (for all six mines assessed).

Common Fuel Type

The first notable contribution to variance in GWP can be seen from the variance in
GWP factors for each fuel type used to generate electricity. Impact factors depend
on the source of electricity, and range from 0.00076 for hyrdro to 1.13 kg CO2-eq/
kWh for coal. This difference in emission factors for fuel source is not particularly
useful when comparing mine sites as electricity is often sourced from the grid and
thus depends largely on location. This means some mines can run as a less efficient
site and still contribute less towards global warming. Since electricity has such a
large impact on environmental performance, it is assumed that all mines are using
natural gas for electricity generation as a common basis. This allows mines to be
compared in a more representative way of their actual energy consumption rather
than a comparison of location/electricity grids.

Comparison of Figs. 4 and 5 show a significant change in electricity impacts.
Whilst ranking did not change, the GWP for each mine (with the exception of Mine
6) became much more comparable ranging from approximately 1,100–1,600 kg
CO2-eq/t Cu con compared to the previous range of 500–1,600 kg CO2-eq/t Cu con
(Mine 6 excluded). Mine 6 changed by small amount due to the impact factor for
the Portuguese electricity grid being similar to natural gas. Mine 6 also uses the
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Fig. 7 Common fuel type
(Natural Gas), ore grade and
concentrate grade adjusted
Global Warming Potential
ranked analysis for six mines
assessed. ‘Other’ includes all
inputs other than electricity
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least amount of electricity for their copper plant (i.e. after proportionate mass based
allocation for their other product (e.g. zinc)).

The largest changes from Figs. 4 and 5 are from Mine 5 and Mine 4. These
mines both source electricity from predominantly hydroelectricity. This is expected
as the GWP factor for hydroelectricity is approximately 30 times smaller than that
of natural gas.

Common Fuel Type and Ore Grade

Since ore grade is known to influence energy consumption [19], the common fuel
data was then scaled linearly to a common ore grade of 1%. Linear scaling was used
since ore grades for the mines evaluated ranged from 0.69% to 2.72% over which the
relationship between energy consumption and ore grade is approximately linear (see
Fig. 8) [19]. This scaling resulted in mines originally with ore grades larger than 1%
having a larger impact and mines originally with ore grades smaller than 1% having
a reduced impact. The result of these three mines with a GWP over 1,000 kg CO2-
eq/t Cu con and three mines below. Two of the three mines below 1,000 kg CO2-eq/t
Cu con GWP had GWPs between 400 and 500 kg CO2-eq/t Cu con.

There is still large variance between mines in terms of total GWP, namely Mine
1, which is more than one third larger than other mines evaluated. This suggests
there are still more factors contributing individual mines energy and material
consumption and the resulting impacts.

Common Fuel Type, Ore Grade and Concentrate Grade

The next variable that noticeably differed between sites was concentrate grade.
A similar linear scaling to ore grade was used. This is justified by being similar to
converting tonne of copper concentrate to tonne of contained copper.

Fig. 8 Energy requirements (in GJ/t) for copper production as a function of the ore grade. (Left)-
Results from this study, (Right)-Calvo et al [19]
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The most notable change in the impact curve (Fig. 7) is an approximate halving
of Mine 1’s GWP and an approximate one third increase of Mine 6’s GWP. These
changes in ranking lead to two mines (Mine 6 and Mine 4) having GWP’s larger
than 1,500 kg CO2-eq/t Cu con, three mines (Mine 5, Mine 1 and Mine 2) with
GWP’s of approximately 1,200 kg CO2-eq/t Cu con and only one mine (Mine 3)
having a GWP less than 1,000 kg CO2-eq/t Cu con.

When scaled for common concentrate grade (i.e. approximately per tonne of
copper metal) comparisons between mines show no clear relationship between
energy and reagent consumption like ore grade does (see Fig. 8). This is expected
since variance in ore mineralogy largely influences the concentrate grade (and
extractable metal) [20]. Therefore only mines with similar ore mineralogy should be
compared for this adjustment. However, information on orebodies was not always
publicly available, with only dominant ore types being shown. Since orebodies can
vary vastly (as discussed below in Ore Mineralogy section) and there are other
factors publicly known such as mine type that influence this performance.

Open Pit Versus Underground

Comparing the GWPs of mines Mine 4, Mine 2 and Mine 6 with Mine 3 and Mine
5 in Fig. 6 suggests that the mine type influences performance. Mine 4, Mine 2 and
Mine 6 are all underground mines and have significantly larger GWP from elec-
tricity consumption than diesel consumption. The open pit mines (Mine 5, Mine 3
and Mine 1), however, have a larger GWP associated with diesel consumption than
electricity consumption. This difference in impact is attributable to the actual
consumptions of each mine as open pit mines often use more diesel and less
electricity than underground mines [18, 19].

Ore Mineralogy

Concentrate grade is affected by treatment processes and ore type [20]. For example
chalcocite and bornite ores often result in concentrate grades of over 50% [20]
similar to the 50% copper concentrate produced at Mine 1 while chalcopyrite ores
produce concentrates of around 25% copper [20]. This further suggests that while
some energy consumption depends on concentrate grade produced (due to treatment
processes influencing the copper concentrate grade), the final concentrate grade is
highly dependent on the ore type and thus the GWP cannot be linearly scaled for
mines with different ore mineralogy.

Considering Table 1 it can be seen that there are two mines whose main copper
bearing ores are bornite (one of which also has a large amount of chalcocite) both of
which have the highest concentrate grades. This further supports the relationship
between ore mineralogy and concentrate grade. This also suggests GWP differences
depends more on the individual processes used at plants than the concentrate
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grades. For example, the requirement at Mine 1 to have a regrind size of < 20 µm
to remove fluorine bearing minerals increases the required comminution energy.

The gold only zone in Mine 1’s orebody impacts comminution due to low
grindability and high abrasivity [21]. This supports the theory that differences in ore
mineralogy and hence orebody can influence GWP significantly. This is especially
the case where the ore and its associated surrounding rock types are more difficult to
mine and haul (increased fuel consumption) or more difficult to crush and grind
(increased electricity consumption). Furthermore, Dance [22] stated that coarser or
finer mill feed size can result in a ± 15% swing in tonnage for a similar hardness
material. Ore hardness (bond work index) can also impact mill throughput [22]
which in turn can increase the specific energy consumption of the mill. This sug-
gests ore mineralogy can significantly affect an individual mines’ environmental
impact by influencing mill performance.

Mine 6 has a much larger adjusted electricity consumption than other under-
ground mines when fuel type and ore grade are accounted for (see Fig. 6). This may
be explained by the orebody containing higher levels of zinc ore (sphalerite) (for
example in the massive copper-zinc ore) than other mines assessed. Sphalerite at
Mine 6 can contain high levels of mercury [23]. The presence of sphalerite high in
mercury can affect flotation (requiring finer grinding and extensive depression) [23].
Mine 6 also contains a cassiterite mineralisation, with an ore has a hardness up to 7
Mohs. Ore hardness is a major determinant in electricity use for grinding. The
inclusion of the harder ore in the Mine 6 orebody, therefore, could explain the larger
energy consumption. These factors all suggest Mine 6 should use more energy and
hence have a larger GWP than mines without these ore types.

Finally, the gold only zone at Mine 1 and the range of non-copper ores contained
in the Mine 6 orebody demonstrate the importance of ore body characteristics on
performance. Figure 6 supports this by showing that mine sites with significant
amounts of other ore/rock types in their orebody (Mine 1 and Mine 6) have a larger
energy consumption compared to mines of the same type (open pit/underground).

Effect of Ore Grade on Primary Energy Consumption

Figure 8 shows a comparison of the results from this study with the results reported
by Calvo et al [19]. The comparison shows a similar trends for energy consumption
over a range of ore grades. This suggests that a significant variance in energy
consumption is attributable to differences in ore grade.
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Conclusions

Many LCA studies reported only a few impact categories largely due to the lack of
certainty in impact factors. However, there is a significant wealth of knowledge
available by including all available impact categories when assessing and com-
paring environmental impacts of mines. Inclusion of more LCA impact categories
provides, at least, an indication of areas of improvement in both LCA data and mine
site reporting. The lack of publicly available data reduces the ability to fully assess
and progress environmental performance of individual mine sites and leads to a
poor representation of the impact caused by the industry.

Key findings from this study included:

• Electricity, diesel, HiCr and steel grinding media, lime and explosives con-
sumption consistently contributed significantly to each impact category.

• Energy consumption (diesel and electricity), in particular, largely dominated the
environmental impact with a >50% contribution for most categories.

• Underground mines used more electricity than diesel compared to open pit
mines and showed significant environmental savings can be made from energy
efficiency and switching to renewable energy sources.

• When GWP was normalised for fuel type, the range of values reduced from
484–1,685 kg CO2-eq/t Cu con to 677–1,666 kg CO2-eq/t Cu con. This showed
electricity grid mix was a large contributor to variance in environmental
performance.

• Ore mineralogy appeared to influence energy consumption (and hence envi-
ronmental impact) significantly through influencing comminution. This seemed
to cause outlying values in GWP with values more than 500 kg CO2-eq/t Cu con
larger than other mines for Mine 1 and Mine 6 when data was normalised by
fuel type and ore grade.

• Ignoring the outlying value of Mine 1, open pit mines were found to have a
GWP of approximately 1,000 kg CO2-eq/t Cu Con while underground mines
had values between approximately 1,300–1,800 kg CO2-eq/t Cu con. This
further signifies the importance electricity grid mixes that can have on a mine’s
environmental performance.

• Flow sheeting and differences in mining and processing methods was shown to
influence some categories. For example, Mine 2’s block caving method and
Mine 4’s use of significant amounts of HiCr grinding media.

• There appears to compatibility issues when using impact factors for separate
electricity sources. This limits the ability to compare environmental impacts of
sites in locations with differing electricity grid mixes.

These results suggest that there is a potential for optimisation of environmental
performance when all impact categories are taken into account. The large contri-
bution of diesel consumption in open pit mines (approximately six times the use in
underground mines) also indicates an area of improvement especially as ore grades
continue to decrease and haulage energy costs increase as a result.
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In general, environmental impacts varied between mines considerably due to
several factors most notably: ore grade, mine type, flowsheets and ore mineralogy.
This was mostly due to energy consumption being a significant contributor to most
impact categories. Exploring each of these variables meant that most of the variance
in environmental performance (in particular GWP) between sites could be attributed
to four variables with further differences being explained by limitations in LCA and
LCI data. This highlights the significance to the LCA community and mining
industry of using comparative LCAs and how they can address issues associated
with energy savings and correct environmental impact assessment.
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Direct Reduction of Copper Slag
Composite Pellets Within Lignite Using
Biomass as Binder

Zongliang Zuo, Qingbo Yu, Huaqing Xie, Qin Qin and Mengqi Wei

Abstract The resource utilization of copper slag is an attractive option of iron
resource. Thermal energy recovery and direct reduction (TER-DR) system was
proposed in this study. By theoretical analysis, the exergy efficiency of this system
can reach to 57.3%. To investigate the feasibility of TER-DR system, copper slag
composite pellets within lignite were prepared. As a new binder, pine sawdust was
added into the pellets. The diameter of pellets was 20 mm in experiments and the
compressive strength of them was up to 831 N when the addition ratio of biomass
was 29%. The results showed that the overall iron recovery reached to 90% and the
separated iron concentrate was up to 93.5% when the temperature is at 1423 K for
90 min with CaO addition ratio of 0.3. The process reduces the secondary envi-
ronmental pollution of copper slag and will be applied well in the future.

Keywords Copper slag � Waste heat recovery � Direct reduction
Biomass

Introduction

Copper smelting making process from blowing, refine and electrolysis is an essential
copper production route. The production of copper has reached 16 million tons in
recent years, and about 80% of it is produced by the smelting making process. As a
kind of by-product of this method, for every ton of copper, about 2.2–3 tons of copper
slag is produced [1]. Copper slag mainly combines of iron oxide with SiO2 and forms
to fayalite phase (2FeO � SiO2) and magnetite phase (Fe3O4). The temperature of
molten copper slag is above 1573 K and the contents of iron in copper slag are 30–
45%, which contains high recovery of thermal energy and its grade is much higher
than that in some industrial iron ore [2, 3]. However, the thermal energy and valuable
metals of copper slag can’t be recovered efficiently by traditional quenching method.
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Many practices have proved several methods that can be used to recover iron form
copper slag. These methods include reduction method [4, 5], oxidation method [6, 7],
grinding flotation method [8] and magnetic separation method [9]. Among these
methods, reduction could obtain higher Fe recovery ratio and have obtained more
attention. Direct reduction method is one of reduction method, and it has been applied
well in the reduction of valuable metal containing wastes due to its feasibility to
recovery iron [10]. Thus, it has been developed significantly in recent years, and it is
an effective technology to dispose complex minerals or secondary resources con-
taining ferrous. Followed bymagnetic separation, melting separation or acid leaching
separation, iron ore direct reduction process was studied [11].

Besides, thermal energy recovery of pyrometallurgy slags is a worldwide
problem that is widely concerned for decades. Dry granulation presents an
opportunity to produce slag particles, and the thermal energy from high-temperature
slag particles is recovered by physical or chemical methods. At present, rotary cup
atomizer (RCA) method, spinning disk method, rotating drum method, solid slag
impingement method and air blasts method were put forward [12]. Due to the better
productivity and controlled slag particle diameter afforded, RCA method has been
extensively studied. Granulation characteristics of copper slag were studied by Liu
[13]. There was just a small change in mean diameter of solid particles with an
increase in rotating speed for copper slag with low viscosity and surface tension.
This means that RCA method can be applied in waste heat recovery of copper slag.

Based on RCA method and direct reduction technology, a new thermal energy
recovery and direct reduction system (TER-DR) for copper slag is put forward in
this article. Enthalpy-exergy diagram was originally proposed as thermodynamic
compass by Ishida [14]. Enthalpy-exergy diagram was employed for the compar-
ison of heat recovery systems [15, 16]. This method is simple but very powerful for
system design. The in-flow and out-flow enthalpy and exergy of system was cal-
culated by this method [17]. In this study, the system was analyzed by thermo-
dynamic compass method.

Based on the precedent experiment study, we found that biomass has wonderful
adhesive property. The function of adhesion and capillary force is much higher than
other reducer by cold pressed method. Thus, using biomass as binder, direct
reduction characteristics and mechanism of copper slag composite pellets within
lignite was studied.

System Description

Technology Process Introduction

TER-DR system is put forward in this article. Figure 1 shows a schematic of
TER-DR system. TER-DR system mainly includes granulation and waste heat
recovery process and direct reduction and waste heat recovery process. Granulation
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and waste heat recovery process includes granulation, slag particles collection and
waste heat recovery. For recovering thermal energy from high-temperature molten
copper slag, molten copper slag is granulated in a rotary cup. The flying copper slag
liquid drop is cooled rapidly by cold air from the bottom of particle collector. And
then the copper slag particles fall into the gravity bed waste heat boiler [18]. In heat
exchanger, the thermal energy of copper slag is recovered by water. After mixing
with carbon contained reductants, binder and slag former, carbon-based pellets are
prepared by pelletizer. After dried in drying oven, carbon-based pellets fall into
reduction furnace and reduction reactions between copper slag and reductants take
place. By separation of slag and iron matte, direct reduction iron (DRI) is obtained.
The type of waste heat boiler is the same as above and is a gravity bed waste heat
boiler. The thermal energy of high temperature flue gas is recovered by waste heat
boiler.

Figure 2 shows the process schematic of TER-DR system. Unit 1–Unit5 stand
for the process of Pelletizer, Waste Heat Boiler, Ball Press Machine, Rotary Hearth
Furnace and Waste Heat Boiler.

Fig. 1 Schematic of TER-DR system

Fig. 2 The process schematic of TER-DR system
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Thermodynamic Analysis

Thermodynamic analysis of designed system is a traditional method based on the
first law and second law of thermodynamic. The quality of energy was in
decreasing. The conversion principle could be expressed by Eqs. (1) and (2).

X

j

DHj ¼ 0 ð1Þ

X

j

Dej � 0 ð2Þ

Where j is 1, 2, 3, 4…; DHj is the enthalpy change of in-flow and out-flow, MJ;
Dej is the exergy change of in-flow and out-flow, MJ. We can plot any kinds of
process as a vector of (DH, De) in the enthalpy-exergy diagram. Thus, a process is
expressed by a synthesis of energy process vectors. In-flow energy vector is put in
the third quadrant and out-flow energy vector is put in the first quadrant. Based on
the two vector lines, a parallelogram can be obtained and the diagonal coincided
exactly with y axis is the exergy loss (EXL).

The calculate method of exergy change is defined as Eq. (3). If the waste heat
recovery is by physical method without chemical reaction, Gibbs free energy
change (DG) is zero. Exergy efficiency (EE) is the ratio of output exergy and input
exergy.

De ¼ DH � T � T0ð Þ=T þDG � T0=T ð3Þ

Based on different waste heat recovery methods, the energy utilization degree is
determined on the follow conditions:

(1) 1 t copper slag is used in the system and the composition of copper slag is
shown in Table 1.

(2) The temperature of molten copper slag put into the system is 1573 K. The solid
product of the system is DRI and the production of DRI is 0.489 t. Average
specific heat of the copper slag is 1100 JK−1kg−1 and average specific heat of
the DRI is 0.46 JK−1g−1. The input enthalpy of system is 1320 MJ and the
output exergy of system is 1070 MJ. The input enthalpy and exergy of pellet
before reduction are 483 MJ and 770 MJ respectively.

(3) There is no thermal energy recovery in Pelletizer (Unit 1) and Ball Press
Machine (Unit 3). Slag particles are heated in reduction furnace and the tem-
perature of slag particles increases. This process isn’t analyzed in this paper.

Table 1 The compositions of copper slag (wt%)

FeO Fe3O4 CaO Al2O3 MFe SiO2 Cu MgO S Zn Others

37.50 18.90 0.23 0.98 1.24 31.99 0.74 0.42 0.39 2.78 4.87
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Thermodynamic Calculation Results

The assumed conditions are as follow. As shown in Fig. 2, the input temperature of
copper slag in Unit 1, Unit 2 and Unit 3 are 1573 K, 1373 K and 373 K respec-
tively. Carbon bearing pellet is heat at 1373 K in Unit 4 and DRI is cooled from
1373 K to 373 K. Hot steam is produced in Unit 2 and Unit 5 with temperature of
673 K. Besides, the thermal energy of smoke from Unit 4 is recovered. The tem-
perature of smoke is cooled from 1573 K to 473 K and steam is produced with
temperature of 773 K.

DRI is the products of direct reduction furnace and the mass of DRI is 0.489 t.
The system does not deal with secondary dross from reduction furnace.
Enthalpy-exergy diagram for the traditional water quenching method is shown in
Fig. 3. The input exergy and enthalpy of system is 1088 MJ and 1342 MJ
respectively and the output exergy of water quenching is 228 MJ. EXL of water
quenching is 860 MJ. EE is 21.0%. Enthalpy-exergy diagram for the proposed
system, ‘Granulation and waste heat recovery process’ and Unit 5 are shown in
Figs. 4, 5 and 6 respectively. The EXL of ‘Granulation and waste heat recovery

Fig. 3 Enthalpy-exergy
diagram for traditional water
quenching method

Fig. 4 Enthalpy-exergy
diagram for TER-DR system
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process’ and Unit 5 are 457 MJ and 104 MJ respectively. The EE of ‘Granulation
and waste heat recovery process’ and Unit 5 are 57.3 and 71.1%. By TER-DR
system, for every ton of copper slag, 993.7 kg steam (673 K) is acquired.
Compared with conventional method, TER-DR system acquired higher quality
thermal energy recovery from copper slag and the valuable metals in it are obtained.
EXL of it is lower than conventional method.

Direct Reduction Feasibility Experiments

Copper slag composite pellets were prepared and the direct reduction characteristics
were studied. Reducer in the experiments was lignite due to low-cost property. The
proximate analysis of biomass and lignite were shown in Table 2. Copper slag,
biomass, CaO and lignite were dried in vacuum drying oven at 393 K for 12 h and

Fig. 5 Enthalpy-exergy
diagram for ‘Granulation and
waste heat recovery process’
in TER-DR system

Fig. 6 Enthalpy-exergy
diagram for Unit 5
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then ground by crusher. The obtained copper slag, biomass and lignite samples
were crushed to the size smaller than 150 lm. The experiments procedures could be
described as follows: (1) Pellets preparation. The samples were mixed sufficiently.
8 g sample was put in a pellets mold. The diameter of pellets was 20 mm and then
it was prepared by a ball press machine. The prepare pressure for carbon based
pellets was 30–55 MPa. (2) Compressive strength test. (3) Weight. (4) Reduction.
The pellets were filled into a crucible reduction reactor. The temperature was
programmed and heat preservation for the reduction of copper slag. The tempera-
ture of reactor was measured. When the time was achieved, the pellets were cooled
in liquid N2. (5) Weight and analysis. After crushing and separating, DRI from
reduced copper slag was analyzed by XRD and SEM-EDS.

Results and Discussion

Reduction Reactions of Copper Slag

The main iron oxides in copper slag are 2FeO � SiO2 and Fe3O4.Thus, the reduction
reactions of copper slag are the reduction of iron oxide with C (direct reduction) and
CO (indirect reduction) as shown in Eqs. (4)–(8). Besides, gasification reaction
Eq. (9) takes place at high temperature and promotes the indirect reduction of
copper slag. The addition of CaO can promote the separation of Fe and Si in
2FeO � SiO2, which is in favor of the reduction of copper slag.

Fe3O4 þC ¼ 3FeOþCO gð Þ ð4Þ

FeOþC ¼ FeþCO gð Þ ð5Þ

2FeO � SiO2 þ 2C ¼ 2Feþ 2CO gð Þþ SiO2 ð6Þ

Fe3O4 þCO gð Þ ¼ 3FeOþCO2 gð Þ ð7Þ

FeOþCO gð Þ ¼ FeþCO2 gð Þ ð8Þ

Table 2 Properties of
biomass and lignite

Analytical item Biomass Lignite

Proximate analysis (wt%)

Moisture 5.68 3.13

Volatiles matter 85.14 32.78

Ash 1.77 29.30

Fixed carbon 7.41 34.79

Direct Reduction of Copper Slag Composite Pellets … 71



2FeO � SiO2 þ 2CO gð Þ ¼ 2Feþ 2CO2 gð Þþ SiO2 ð9Þ

CþCO2 gð Þ ¼ 2CO gð Þ ð10Þ

2FeO � SiO2 þ 2CþCaO ¼ 2Feþ 2CO gð ÞþCaO � SiO2 ð11Þ

2FeO � SiO2 þ 2CO gð ÞþCaO ¼ 2Feþ 2CO2 gð ÞþCaO � SiO2 ð12Þ

Effects of Biomass and CaO Addition Ratio
on Comprehensive Strength

The effects of pellets biomass addition and CaO addition ratio were shown in
Figs. 7 and 8. With the addition of biomass, the comprehensive strength of com-
posite pellets increased rapidly. It was as up to 831 N when the addition ratio of
biomass was 29%. And when the composite pellet was mixed by biomass and
copper slag exactly, the comprehensive strength was up to 2800 N. The figure
illustrated that CaO can change the structure of pellets. And CaO in pellets can react
with bound water of raw materials, which led to the volume expansion of pellets.
The increase of volume produced small gap in pellets and decreased the com-
pressive strength consequently.

Reduction of Copper Slag by Lignite

As shown in Fig. 9, the reduction ratios of pellets by lignite were analyzed from
1173 to 1473 K. With the increase of temperature, the reduction ratio of pellet
increased gradually. And the reduction ratio of pellet with biomass as binder was

Fig. 7 Effects of biomass
addition ratio on compressive
strength of biomass composite
pellets (50 MPa, 8 g, CaO
addition = 0.3)
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higher than lignite. And when the temperature was above 1423 K, reduction ratio of
copper slag was higher than 0.95. The structure of biomass was porous and it
increased the surface contact area of copper slag particles and biomass particles,
which provided better direct reduction conditions.

Figure 10 is the SEM images of reduced composite pellets. The white spherical
material was metallic iron. Human’s sweating process was exactly familiar with the
formation of metallic iron. The ‘sweating metallic iron’ reduced by lignite. Analysis
by SEM images, metallic iron outflowed from cracks in pellet and it was in the
formation of sphere under the effect of surface tension. With the extension of time,
sphere metallic iron drops grew up. Adjacent sphere metallic iron drops would form
into bulk. Therefore, massive metallic iron was formed by this method. The reduced
iron was separated from pellets and the content of reduced iron and copper from
copper slag are 93.5% and 2.07% respectively. It means that this method can be
used to produce weathering resistant steel from copper slag.

Fig. 8 Effects of CaO
addition ratio on compressive
strength of biomass composite
pellets (50 MPa, 8 g, C/
O = 1.0)

Fig. 9 Copper slag reduction
ratio with the change of
temperature (biomass addition
0.29, reduction time 90 min)
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Conclusions

By TER-DR system based on thermodynamic compass method, for every ton of
copper slag, 993.7 kg steam (673 K) is acquired. TER-DR system acquired higher
quality thermal energy recovery from copper slag and the valuable metals in it are
obtained. EXL of it is lower than conventional method.

To verify the feasibility of this system, direct reduction characteristics were
studied. Copper slag-lignite composite pellet was prepared using biomass as binder.
The compressive strength of composite pellets was improved with the addition of
biomass. Human’s sweating process was exactly familiar with the formation of
metallic iron. The ‘sweating metallic iron’ was reduced by lignite. The process
reduces the secondary environmental pollution of copper slag and will be applied
well in the future.
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Thermodynamic Analysis of Incineration
Treatment of Waste Disposable Syringes
in an EAF Steelmaking Process

Maryam Ghodrat and Bijan Samali

Abstract Disposal of waste syringes in a safe and eco-friendly way has been an
issue of considerable scale for decades. The generated amount of waste syringes has
escalated with the rapid growth in population and wide acceptance towards
single-use medical devices. Some hospitals have their own on-site incinerators, but
recent tightening of air quality regulations and landfill levies led to the closure of
many on-site incinerators. The solution to this problem implicates the development
of an environmentally-sound method that would employ these waste materials. This
work investigates a thermodynamic modelling approach for incineration treatment
of waste plastic syringes in Electric Arc Furnace (EAF) steelmaking. Mass balance
was obtained from HSC Chemistry thermochemical package. The results indicate
that the rate of iron oxide reduction in the slag is higher when coke is partially
replaced by waste plastic syringes. Furthermore, the amount of dust and stack gas
emission was reduced by around 0.4% and 1.25% respectively by replacing 20%-
weight of pure coke with waste plastic syringes. The study demonstrates part of the
coke can be successfully replaced by waste plastic syringes in electric arc furnace to
provide additional energy from combustion without affecting the main process

Keywords Thermodynamic analysis � Waste plastic syringes � Incineration
Electric arc furnace � Coke

M. Ghodrat (&) � B. Samali
School of Computing, Engineering and Mathematics,
Centre for Infrastructure Engineering, Western Sydney University, Sydney,
NSW, Australia
e-mail: M.ghodrat@westernsydney.edu.au

B. Samali
e-mail: B.Samali@westernsydney.edu.au

© The Minerals, Metals & Materials Society 2018
Z. Sun et al. (eds.), Energy Technology 2018, The Minerals, Metals & Materials
Series, https://doi.org/10.1007/978-3-319-72362-4_7

77



Introduction

Medical waste, including waste syringes has raised serious concerns because of the
possible inappropriate treatment and final disposal practices afforded to them.
Inappropriate treatment can result in negative impacts to public health and to the
environment. In recent years, Australia has experienced rapid population growth
and seen the introduction of new legislation and agreements by the government to
generate national waste management policies. Australia’s reporting to the Basel
Convention reveals that 59,000 tonnes per annum of medical waste is generated
from medical facilities and pharmaceutical production waste. This accounts for
8.14% of the total waste generated in Australia [1]. Medical wastes historically have
been disposed of in landfills or treated in incinerators located in the health care
facilities or off-site [2]. Incineration has been the most widely used treatment
technology for the disposal of medical waste especially waste syringes and has the
potential to continue to be an important waste disposal option. The main reason is
incineration sterilizes and detoxifies the wastes through combustion process and
destroys pathogens and reduces the volume of waste [3]. Heat can also be recovered
from the waste incineration process [4]. In the case of waste plastic syringes with a
high calorific value of about 47 MJ/kg [5], the process of thermal disposal is an
attractive option from the energy recovery point of view. Many researchers
investigated the possibility of the heat recovery out of medical waste incineration.
Kenyon described heat recovery from hospital systems of medical waste inciner-
ation [6]. He discussed the possibility of producing steam using waste heat from the
incineration of medical waste. Bujak reported experimental studies of useful energy
flux and the thermal efficiency coefficient of the system of thermal conversion of
waste, including heat recovery [7]. On the other hand using waste plastic syringes in
electric arc furnace (EAF) steelmaking has numerous benefits both economically
and environmentally [8]. Waste plastic can partially replace coke as a carbon source
with substantial savings in electricity and carbon usage [9]. Since carbon and
hydrogen are the main components of waste plastics, they have the potential to be
utilised as a substitute for coke in EAF [10]. Asanuma [11] studied the use of waste
plastics in a commercial blast furnace and the raceway hot model at NKK
Corporation and found the combustion performance is higher when plastics are
involved. Kim et al., [12] measured the combustibility of polyethylene by changing
experimental variables in a modelled blast furnace and found the energy efficiency
escalated with increasing blast furnace temperatures, the amount of oxygen injected
into the furnace and by using smaller particle size. Gupta [13] investigated the
simultaneous combustion of polyethylene with coal and found no adverse effects on
the combustion efficiency. The use of waste tyre as a partial fuel substitute for coke
in EAF was also studied experimentally by [14, 15]. Using thermodynamic analysis
to trace and explore industrial and environmental problems is well established [16].
Development of Gibbs energy models and computer codes for the calculation of
complex equilibria have led the researchers to rely on the theoretical studies to
explain the behaviour of a great number of chemical reactions under different
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conditions [17]. In this study, a detailed thermodynamic analysis of incineration
treatment of waste plastic syringes in EAF steelmaking has been carried out. The
mass balance flowsheet of the process has been developed and compared with the
conventional pyrometallurgical process in EAF with pure coke. Thermodynamic
based modelling of waste plastic treatment by incineration can provide insights on
the fundamental limit of the slag and off gas composition as well as the purity of the
iron and how the waste behaves at the high temperature during the process. The
results can then be used as a basis for the development of a complete flowsheet to
evaluate the mass and energy balance, the techno-economic e.g. [8] and the life
cycle analysis of the process e.g. [18, 19]. The present paper highlights the benefits
brought by the usage of recycled materials in EAF to enhance its sustainability.

Process Overview

The primary raw material used in the EAF steelmaking process is ferrous scrap,
which is melted using electric energy. Power is supplied to the furnace through the
electrodes. After formation of electrical arc, the temperature is raised to 1600 oC.
Additional inputs include fluxes and other alloying materials such as coke, waste
plastic syringes, de-oxidation materials, etc. along with oxygen and natural gas also
added to the molten scrap and mixed to remove some small amounts of impurities
[20]. After that, the molten steel is tapped into the secondary refining furnace
(special furnace such as ladle furnace (LF)) where the strong heat fluxes can be
supplied to obtain the desired chemical composition of the steel. The whole system
of EAF production processes of this study is shown schematically in Fig. l.

Materials and Operating Condition

Electric Arc Furnace (EAF) uses different carbon based materials as foaming
agents. In this study, the possibility of replacing coke with waste plastic syringes
has been investigated. Waste plastic syringes were mixed in the proportion of 20:80

Fig. 1 Schematic for inlet and outlet materials in EAF
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with coke for combustion at the temperature range of 1100–1600 oC and oxygen
partial pressure pO10−1–pO10−4. A total input rate of 65,430 kg/h of feed materials,
composed of approximately 93 wt% ferrous scrap/metal oxides, and 7 wt%
reductant (coke was chosen as reductant) was fed into the reduction furnace. 20% of
the coke was replaced by the waste plastic syringes for the purpose of the mod-
elling. This composition represents an amount of 180 kg/h (in weight) of waste
plastic syringes input into the furnace. The compositions of the main feed utilised in
this study are taken from [21] and presented in Tables 1, 2 and 3. The basic
chemical reactions taking place in the electric arc furnace (EAF) are given in
Table 4 and can also be found in Refs [22, 23].

Thermodynamic Modelling

In this study, combined chemical thermodynamic and process flowsheet modelling
were conducted to assess and describe the material and energy flow during pro-
cessing of ferrous scrap, reductant, metal oxide and waste plastic syringes in an
EAF smelting route. It is assumed that 20% of the coke in the feed materials had
been replaced by the waste plastic syringes. For simplicity, the considered scenario
named (20% WS) throughout the paper. Thermochemical packages of FactSage 7.0
and HSC Chemistry Sim 8.0 were used for the modelling. The elements listed in

Table 1 Selected composition of scrap, pig iron and de-oxidation materials used in the feed of
EAF (wt%)

wt% Fe C Si Mn P S Cr Ni Mo Cu Al Zn

Scrap 97.31 0.55 0.35 0.5 0.025 0.035 0.9 0.1 0.03 0.2 – –

Pig Iron 94.27 3.5 – 1 0.15 1 – – – – – –

De-oxidation
materials

9 1.48 16 62 0.1 0.22 – – – – 11 0.2

Table 2 Selected composition of flux used in the feed of EAF (wt%)

wt% CaO MgO Al CaCO3 SiO2 Ni Zn Ca Al2O3 Fe2O3

Flux 50 40.03 1.72 6 1 0.1 1 0.15 – –

Table 3 Selected composition of coke and waste plastic syringes used in the feed of EAF (wt%)

wt% C SiO2 Al2O3 Fe2O3 CaO SiO2 H N2 Cl O2

Coke 88.5 4 5 1 1 0.5 – – – –

Waste plastic
syringes

78.38 – – – – – 11.62 0.25 1.16 15.453
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Tables 1, 2 and 3 were included in the modelling. The HSC Chemistry Sim 8.0 was
used to develop an Ellingham diagram to predict the stability of selected metal
oxides (Fe2O3, MgO, CaO, SiO2, Al2O3); as well as to develop the process flow
sheet of EAF along with the mass balance. The HSC Chemistry 8.0 uses thermo-
dynamics data from Barin and JANAF databases [24]. The FactSage 7.0 uses
“Equilib” module to predict phase equilibria and to finalise the detailed elements
and phases distribution in EAF as shown in Figs. 2 and 3. The “Equilib” module
includes the Gibbs free energy minimization system to estimate the equilibrium of
multicomponent systems at various processing states. Optimised databases for
multicomponent systems and their related slags were used for this study; that
include FactPS (for pure substances), FToxide (for oxides and slag), and
FTmisc-FeLQ (for liquid iron) [25]. The multicomponent systems composed of
FeO, Fe2O3, SiO2, CaO, and Al2O3 had been optimised for the whole range of
compositions and valid for calculation between 1000 and 1600 °C. The liquid
oxides (slags) were modelled using a modified quasichemical model which explains
the short-range ordering of components [8]. It should be noted that FeO also
considered as an integral component of slag in this study and assumed to follow
ideal solution using rough interaction parameters. The equilibrium calculations

Table 4 Standard chemical
reactions occurring in EAF

Reactions

2[Fe] + 3[O] ➔ [Fe2O3] 2[Cr] + 3[O] ➔ [Cr2O3]

[Fe] + [O] ➔ [FeO] (CaO) + [S] ➔ (CaS) + [O]

[C] + [O] ➔ CO(g) (CaCO3) ➔ (CaO) + CO2(g)

[Si] + 2[O] ➔ [SiO2] 2[Al] + 3[O] ➔ [Al2O3]

[Mn] + [O] ➔ [MnO] [Ca] + [O] ➔ (CaO)

2[P] + 5[O] ➔ [P2O5] [Zn] + [O] ➔ [ZnO]

[]:Solid; ():liquid; (g):gas

Scrap (50.8)

Pig Iron (7.4)

Coke (0.72)

Waste syringes (0.18)

Flux (2.1)

De-oxidation materials (0.34)

Oxygen (3.58)   

Natural gas (0.16)

Liquid steel (49.219)

Slag (4.749) 

Dust (0.997)

Stack as (4.911)

Steel in slug (0.276)

EAF

g

Fig. 2 Mass balance for incineration treatment of waste plastic syringes in an EAF (20%WS)-unit
in tonne
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were conducted at temperatures ranging from 1000 to 1600 °C with oxygen partial
pressures (pO2) varying from 10−1 to 10−4 atm (which shows different reducing
conditions).

Results and Discussion

The result of the mass balance for incineration treatment of waste plastic syringes in
an EAF process (20%WS) is shown in Fig. 2. The mass balance for conventional
incineration process in EAF with pure coke (CI) is presented in Fig. 3. The values
shown in the input and output streams of Figs. 2 and 3 indicate the amount of the
materials flow in tonne. A comparison between the input and output values in
Figs. 2 and 3 shows that the amount of dusts and stack gas emission was reduced
up to around 0.4% and 3.1% respectively by replacing 20%-weight of pure coke
with waste plastic syringes.

The EAF operation started with the charging of the furnace with the input mate-
rials. Refining operations in the electric arc furnace involved the removal of phos-
phorus, sulfur, aluminum, silicon, manganese and carbon from the steel. Oxygen was
injected at the end of meltdown to reduce the carbon content to the desired level. Most
of the compounds which are to be removed during refining have a higher affinity for
oxygen than the carbon. Thus the oxygen will preferentially react with these elements
to form oxides which float out of the steel as stack gas and into the slag. To understand
the general stability of selected oxides present in the feed materials, an Ellingham
diagram was developed, as shown in Fig. 4. The predicted order of stability at
1500 °C is from Al2O3 > SiO2 > CaO > MgO > FeO. Therefore, in a suitable
reducing condition, it could be expected that FeO reduced first before MgO, CaO,
SiO2, and Al2O3. During the reduction process in (20% WS) in EAF, most of the

Scrap (50.8)

Pig Iron (7.4) 

Coke (0.9)

Flux (2.1)

De-oxidation materials (0.34)

Oxygen (3.996)   

Natural gas (0.16) 

Liquid steel (49.223)

Slag (4.763) 

Dust (1.001)

Stack gas (4.973)

Steel in slug (0.276)

EAF

Fig. 3 Mass balance for conventional incineration process in EAF with pure coke (CI)-unit in
tonne
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impurities, such as Mg, Si, Ca, Al, Ni, and Zn, were predicted to segregate in the
liquid steel, although some of them were also distributed to the slag and vapour
phases. The simplified reactions for the major elements can be seen in the followings
equations:

Cþ 1=2O2ðgÞ ¼ CoðgÞ þ heat ð1Þ

FeOð ÞþCOðgÞ ¼ FeþCO2ðgÞ ð2Þ

MgOð ÞþCOðgÞ ¼ MgþCO2ðgÞ ð3Þ

CaOð ÞþCOðgÞ ¼ CaþCO2ðgÞ ð4Þ

Fig. 4 Gibbs free energy formation of various oxides and CO (g)
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Al2O3ð Þþ 3COðgÞ ¼ 2Alþ 3CO2ðgÞ ð5Þ

The bracket “()” indicates that the compound is in solution in liquid slag, and
under bar “_” means that the metal is in solution in liquid iron. During the reduction
process in EAF, the heat and the reducing condition were supplied by the com-
bustion of excess coke plus waste plastic syringes by the oxygen supplied in the
feed materials, which given in Eq. 1. The carbon monoxide which produced from
Eq. 1 reduced some of the metal oxides into metals that are segregated in the liquid
metal phase (liquid steel), as described in Eqs. 3–5. Fluxes were added to react with
the unreduced oxides such as SiO2 from liquid slag.

Reduction of iron oxide by hydrogen, carbon and carbon monoxide are given in
Eqs. 6–8 [9].

FeOþH2ðgÞ ¼ FeðlÞ þH2OðgÞ ð6Þ

FeOþCðsÞ ¼ FeðlÞ þCOðgÞ ð7Þ

FeOþCOðgÞ ¼ FeðlÞ þCO2ðgÞ ð8Þ

The equilibrium concentration of Fe in the liquid steel (which also represents the
iron purity) at various oxygen partial pressures (pO2) and temperatures was pre-
dicted for the incineration treatment of waste plastic syringes in EAF (20%WS) and
shown in Fig. 5. It can be seen from Fig. 5 that at oxygen partial pressure (pO2) of
10−4, the purity of iron was predicted to increase from 69.2 to 99.2 wt% with
increasing temperature from 1100 to 1600 °C. Similar trends were predicted with
increasing temperatures at pO2 of 10−3, 10−2, and 10−1 atm. Overall, the purity of
iron was predicted to increase with increasing temperature at the considered oxygen
partial pressures. The changes in the impurities’ concentrations (Cu, Ni, Mo and S)
in the liquid phase with pO2 at 1500 °C for 20%WS was predicted and shown in
Fig. 6. It was predicted that, at 1500 °C, pO2 has little effect (less than 1.2 wt%) on
the equilibrium concentration of S in the liquid iron. However, the dissolution of Ni
and Mo to the liquid iron was predicted to slightly increase when the pO2 is
decreased to 10−4 atm. As it can be seen from Fig. 6, the dissolution of copper to
the liquid phase marginally decreased with decreasing oxygen partial pressure.

The change in the slag composition during reduction with temperature for the
20%WS scenario is shown in Fig. 7. The liquid slag was predicted to mainly
compose of Al2O3, SiO2, CaO, MgO and FeO. At 1100 °C, the predicted
percentage of FeO and CaO in slag is higher than 30 wt%, and Al2O3 is close to
10 wt%, as given in Fig. 7. At temperatures > 1500 °C, CaO, MgO and Al2O3
content in the slag decreased and predicted to become unstable and decompose and
join to the off gases. SiO2 was predicted to increase with increasing of temperature
up to 1500 °C and then decease with further rise in the temperature. The predicted
amount of FeO in the slag is 35 wt% at 1500 °C and pO2 = 1.01 atm that repre-
sents the loss of iron in slag during the reduction process. The overall trend in
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Fig. 7 showed that temperatures above 1500 °C are required to avoid the formation
of solid phases during reduction process in 20% WS scenario.

From the comparison of both scenarios, it could be suggested that, thermody-
namically, the processing of waste plastic syringes through EAF steelmaking is

Fig. 5 Change in the iron purity as a function of temperature and oxygen partial pressure (pO2)–
20%WS

Fig. 6 Change in the concentrations of impurities in the liquid iron at 1400 °C at pO2 from 10−1

to 10−4 atm for 20%WS
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feasible from two main points of view: first to provide additional energy from
combustion and second to find a potential alternative for treating plastic medical
waste and avoid sending them to the landfill. In the 20%WS scenario, the final
recovery of steel was predicted to be slightly lower than CI. In contrast, the dust and
stack gas emitted from 20%WS scenario is lower than CI scenario which led to
better environmental impact for the proposed recycling route. One of the benefits of
waste plastic syringes recycling is the utilisation of carbon as fuel and reductant in
the EAF smelting process. In CI scenario, carbon (in the form of coke) supplied in
the feed material which generates heat and acts as reducing agent (CO). On average,
waste plastic syringes composed of 78–80% carbon. Replacing part of coke with
this waste hence may result in better economic revenue for the process and reduce
environmental burden associated with coke making.

Conclusion

In this study, the mass balance for two defined scenarios, 20%WS (incineration
treatment of waste plastic syringes in an EAF process-20% of coke replaced by
waste plastic syringes) and CI (conventional incineration in EAF with pure coke),
supported by thermodynamic modelling have been developed using HSC
Chemistry 8.0 and FactSage 7.0 thermodynamic packages. The results of the study
indicated that the final recovery of steel in 20%WS scenario is slightly lower than

Fig. 7 Change in the slag composition in the reduction stage of the 20%WS with temperature at
pO2 = 1.01 atm
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CI scenario. However the dusts and stack gas emitted from 20%WS scenario is
marginally lower compared to that of CI scenario. This caused a lower environ-
mental impact for the proposed recycling route of plastic medical waste (e.g. waste
syringes). It was also predicted that temperatures above 1500 °C are required to
avoid the formation of solid phases during reduction process in 20%WS scenario.
Solid phases, such as CaS(s), SiS2(s), Al2S3(s) were predicted to form that remain
stable below 1500 °C and, therefore, can adversely obstruct the plastic waste
recycling process. The results also predicted that at 1500 °C, oxygen partial pres-
sure (PO2) has insignificant effect on the concentration of impurities in the liquid
iron. Based on the trial calculation of different waste plastic proportion in the coke it
has also been concluded that a higher addition of waste plastic increases the slag
generation, and therefore, the temperature of the liquid slag is shifted to higher
temperature that requires the close monitoring of slag composition (e.g. addition of
the appropriate amount of fluxes). It is also worthwhile to consider that the analysis
presented in this study was based on thermodynamic online modelling aspect and
did include the kinetic factors. Realistically, kinetic limitations can play an
important role to the processing of waste through EAF smelting route.
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The Reduction Kinetic of the Combined
Cu-Based Oxygen Carrier Used
for Chemical Looping Gasification
Technology

Kun Wang, Weipeng Luan, Qingbo Yu and Qin Qin

Abstract The oxygen uncoupling property of the oxygen carrier is essential for the
chemical looping gasification process. In this paper, the combined Cu-based oxygen
carrier were prepared by mechanical mixing method. XRD and SEM were used to
characterize the oxygen carrier prepared. TG experiments were performed in a
thermal analyzer to investigate the oxygen uncoupling property. The XRD pattern
of the fresh oxygen carriers showed that the phases of the oxygen carriers were
stable. The active phase of oxygen carrier was CuxMn3-xO4. With the increasing of
heating rate, the starting and ending temperatures of the reduction reaction
increased. However, the reaction time decreased and the reduction rate increased.
With the increasing of oxygen concentration, the starting temperatures of the
reduction reaction shifted to high level. Temperature had great effect on the
reduction rate and the reduction rate increased with increasing of the reduction
temperatures.

Keywords Chemical looping gasification � Biomass
Combined Cu-based oxygen carrier � Reduction � Property

Introduction

Biomass gasification is a process which converts biomass to gas fuel through
thermal-chemical reaction. The main products of gasification are H2, CH4, CO, CO2

and other hydrocarbons. At present, the gasification agents of biomass are mainly
air, O2, H2O, CO2 and H2O/O2, H2O/air [1, 2]. Compared to other types of gasi-
fication agents, oxygen has advantages of high gasification efficiency, high car-
bonization rate, and high concentration of combustible gas in syngas [3]. However,
the high energy consumption and high oxygen production cost of the present
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oxygen production technologies greatly increase the cost of pure oxygen gasifica-
tion [4, 5].

Chemical looping gasification (CLG) is a novel gasification technique [6]. The
principle of CLG is as follows: the lattice oxygen in the oxygen carrier reacts with
fuel in the gasification reactor and then the reduced oxygen carrier absorbs the
oxygen in the air reactor to regenerate. Compared to the traditional pure oxygen
gasification, the CLG has the following advantages: The oxygen carrier provides
lattice oxygen for the biomass gasification and the cost is low; the oxidation of the
reduced oxygen carrier in the air reactor is exothermic and the heat released can be
carried by the oxygen carrier from the air reactor to the gasification reactor; The
metal oxygen carrier is catalytic on the tar cracking, which can reduce the tar
content [7–9].

At present, Fe-based oxygen carrier was mostly used in CLG. Huang et al.
investigated the CLG property of natural hematite as oxygen carrier in fluidized bed
reactor. Results showed that the carbon conversion ratio and syngas production yields
increased by 7.47 and 11.02% compared to traditional steam gasification [10, 11].

In this study, the combined oxygen carriers were prepared and used in the CLG
technology. Compared to Fe-based oxygen carrier, these oxygen carriers have the
capability of releasing oxygen, which can increase the gasification rate and reduce
the reaction temperature. Meanwhile, the new combined oxygen carriers have high
melting points, which can improve the anti-sintering property [12, 13]. This study
was focused on the oxygen uncoupling property. The kinetics experiments were
carried out to investigate the oxygen uncoupling properties of the combined oxygen
carriers prepared.

Experimental

Materials

The combined oxygen carriers were prepared by mechanical mixing. CuO and
Mn2O3 were selected as active phases and ZrO2 was selected as binder. The mole
mass ratios of CuO, Mn2O3 and ZrO2 in the mixtures were 0.5:1:1, 1:1:1, 1.5:1:1
and 2:1:1. Graphite (10 wt%), a pore-forming additive, which can create a suitable
macro-porosity to enhance the carrier reactivity after sintering, was added during
the mixing process. Distilled water was added to the mixed powders until the
mixtures were formed, and then the mixtures were dried at 80 °C for 12 h in a dryer
and calcined at 950 °C for 6 h in a muffle furnace. Then the oxygen carriers were
ground and sieved to obtain the desired particle size of 150–180 lm [14].

The characteristics of the oxygen carrier prepared were characterized by XRD
and SEM. Figure 1 shows the phase analysis of Cu/Mn/Zr composite oxygen
carriers. The phases of Cu/Mn/Zr composite oxygen carriers with different
ratios were ZrO2 and CuxMn3-xO4 (including CuMn2O4, Cu1.4Mn1.6O4 and
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Cu1.5Mn1.5O4). The binder of ZrO2 kept stable. However, CuO reacted with Mn2O3

and a new type of combined oxygen carrier was constructed by the composite
method. The new phase replaced CuO or Mn2O3 as the active ingredient in the
oxygen carrier, which could improve the oxygen uncoupling properties of CuO or
Mn2O3 greatly.

Fig. 1 The phase composition of Cu/Mn/Zr composite oxygen carriers

Fig. 2 SEM images of the Cu/Mn/Zr composite oxygen carriers (left-Cu/Mn/Zr = 1.5:1:1;
right-Cu/Mn/Zr = 2:1:1)
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Figure 2 shows the surface morphology of the combined oxygen carriers. The
oxygen carriers prepared were porous. The different phases were staggered and the
ZrO2 binder could effectively prevent the agglomeration of the combined oxygen
carriers.

Experimental Set-up

Experiments were performed in a thermal analyzer (Netzsch, Model STA409PC).
N2 or N2/O2 mixed gas with a flow rate of 30 ml/min was used as carrier gas during
the reduction reaction. Sample was loaded in a crucible with a mass of about
10 mg. The sample was heated to 1000 °C at heating rates of 10, 15, 20 and 25 °C/
min to investigate the effect of heating rate. Isothermal thermogravimetric experi-
ments were performed to investigate the effect of reduction temperature. During the
heating process in the reduction, air with a flow rate of 30 ml/min was used to avoid
the oxygen releasing. N2 was introduced when the reduction reaction temperatures
of 800, 825, 850 and 875 °C were reached.

Data Processing

The weight variations were automatically recoded by the TGA, the reduction
conversion ratio can be calculated according to following equation.

ared ¼ moxi � m
moxi � mred

ð1Þ

Where m mass of the sample during the reduction and oxidation reaction, moxi

mass of the fully oxidized sample, mred mass of the fully reduced sample.

Results and Discussions

Effects of Mole Ratio

Figure 3 shows the mass changes of the Cu/Mn oxygen carriers under different
mole ratios. The heating rate was 15 °C/min. With the increasing content of CuO,
the mass changes of Cu/Mn oxygen carriers increased firstly and then decreased.
The mass changes of Cu/Mn oxygen carrier with mole ratio of 1.5:1:1 was biggest,
followed by mole ratio of 2:1:1. In order to heighten the gasification efficiency, the
oxygen transport capacity should be high. Base on this, the optimal mole ratios of
Cu/Mn/Zr were determined as 1.5:1:1 and 2:1:1.
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Effects of Heating Rate

Figure 4 shows the changes of reduction conversion with time under different
heating rates. With the increase of heating rate, the reaction times shortened and the
reaction rates increased. The reason was that the reaction temperatures regions
increased with the increasing of heating rate, the reactivity of the oxygen carrier
enhanced. The reaction temperatures under different heating rates of Cu/Mn oxygen
carrier were listed in Table 1. With the increase of heating rate, the starting and
ending temperatures of reduction reaction moved forward. The reason was that the
internal and external temperature of the particle could not balance in time with an
increasing of heating rate. The temperature differences between the internal and
surface, the surface and the crucible lead to the thermal hysteresis of the system.

Effect of Oxygen Concentration

Figure 5 shows the changes of reduction conversion with temperature under dif-
ferent oxygen concentrations. In the beginning, the reaction rate was low. The
reason was that the oxygen equilibrium partial pressures of the reduction reaction
were small and the driving forces of the reduction reaction were consequently low,
leading to slow reduction reaction rate. With the increase of reduction temperatures,
the oxygen equilibrium partial pressures of the reduction reaction increased greatly
and the reactivity of oxygen carrier increased greatly [15]. With the increase of

Fig. 3 The mass changes of the Cu/Mn oxygen carriers under different mole ratios
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Fig. 4 The conversion ratio of oxygen carrier versus time under different heating rates

Table 1 The starting and ending temperatures of oxygen carrier under different heating rates

Oxygen carrier 10 °C/min 15 °C/min 20 °C/min 25 °C/min

Starting temperature/°C 606 625.5 632 642.5

Ending temperature/°C 920 963 966 972.5

Fig. 5 The reduction conversion with temperature under different oxygen concentrations
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oxygen concentration, the starting and ending reduction temperatures moved for-
ward. However, the reaction time shortened and the reactivity of the oxygen carrier
enhanced. On the one hand, high oxygen concentration could restrain the reduction
of oxygen carrier and the reduction temperature should be heightened in high
oxygen concentration. On the other hand, the oxygen carrier could release oxygen
in high oxygen concentration, which can broaden the using range of Cu/Mn oxygen
carriers.

Effect of Temperature

Figure 6 shows the reduction conversion with time under different temperatures.
The reduction time shortened and the reaction rate increased greatly with the
increase of the reaction temperatures. The reason was that the increase of tem-
perature leaded to high energy in the reduction system. The collision among
molecules was severe and the chemical chain was easy to generate and break.
Moreover, with the increase of reduction temperatures, the oxygen equilibrium
partial pressures of the reduction reaction increased. The driving forces of the
reaction reactions increased. Thus, the reduction reactivity of Cu/Mn oxygen carrier
was heightened with the increase of reaction temperatures [16].

Fig. 6 The reduction conversion with time under different temperatures
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Conclusions

In this study, the combined Cu/Mn oxygen carriers were prepared and the char-
acterization and reactivity of oxygen carriers prepared were investigated. The fol-
lowing conclusions were drawn from the current study.

The XRD of oxygen carriers shows that the binder ZrO2 does not react with
metal oxides and two active oxides react to the new phase of CuxMn3-xO4, which
has the property of releasing oxygen. The optimal mole ratios of Cu/Mn/Zr were
determined as 1.5:1:1 and 2:1:1 according to the mass changes during the reduction
process.

With the increase of heating rate, the starting and ending reduction temperatures
increase. However, the reduction times shorten and the reaction rates increase. With
the increase of oxygen concentration, the starting and ending temperatures of
reduction reaction increase. High oxygen concentration is harmful for the reduction
of Cu/Mn oxygen carrier. With the increase of reduction temperature, the reactivity
of oxygen carrier increases greatly. High reaction temperature is beneficial to the
reduction of Cu/Mn oxygen carrier.
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Synergistic Effect Between Fat Coal
and Poplar During Co-Pyrolysis
with Thermal Behavior and ATR-FTIR
Analysis

Qingyun Zhang, Shengfu Zhang, Rongjin Zhu, Shuxing Qiu
and Yue Wu

Abstract Co-pyrolysis of biomass and coal was investigated as an effective way to
reduce the greenhouse gas emission. The effects of poplar on the thermal behavior
of fat coal were studied using thermogravimetric analyzer. The blended samples
heated to characteristic temperature were subjected to attenuated total reflection
Fourier transform infrared spectroscopy (ATR-FTIR) to characterize the macro-
molecular structure. The results indicated that the synergistic effects existed in
co-pyrolysis process of blends since lower char yield than calculated values, and the
synergistic effects presented positive and negative trend with the increase of tem-
perature, respectively. The carbonyl/carboxyl C=O stretching vibration functional
groups and aliphatic side chain from individual fuels were decomposed in advance
during co-pyrolysis. Furthermore, the hydrocarbon-generating potential (A-factor)
and thermal maturity(C-factor) of the mixtures showed nonadditivity performance.

Keywords Fat coal � Poplar � Co-pyrolysis � ATR-FTIR � Synergistic effects

Introduction

Fossil fuels are still the main energy of human survival and development, its
massive consumption has caused global problems such as environmental pollution,
ecological destruction and global warming. Biomass has been recognized world-
wide as a promising renewable and carbon neutral energy source, which provides
about 14% of the world’s energy supply [1, 2]. The development and utilization of
biomass can not only reduce the greenhouse effect and promote the benign circu-
lation of ecology, but also is one of the important ways to solve the energy crisis
and environmental problems by partly replacing fossil fuels such as petroleum and
coal. Biomass is the most commonly used fuels in co-processing application with
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coal. Co-pyrolysis of blended biomass and coal for bio-coke can overcome the
limited energy supplying of biomass, exert the advantages of biomass with large
reserves, low sulphur and nitrogen content, and reduce the amount of coking coal
consumption and economic cost. It is generally considered that biomass is easier to
pyrolysis than that of coal because of its lower bond energy and simpler compo-
sition [3]. Whether the synergistic effect exists in the co-pyrolysis process of bio-
mass and coal has been a focus of controversy in study. Synergistic effects exist in
some researches. Benzene substitutes can be produced by the combination of H
radicals and methoxyphenol respectively decomposed from aliphatic compounds
and lignin in biomass, when pyrolysis temperature is larger than 400 °C [4–6].
Krerkkaiwant et al. [7] found that the phenols and oxygenated compounds in
co-pyrolysis tar partially disappeared, while the aromatic compounds such as
naphthalene, anthracene and pyrene increased. Biomass can provide hydrogen
carriers for coal in the co-pyrolysis process, these carriers combine with the
nitrogen and sulphur element into NH3, H2S and COS and then removed, which
improves the denitrification and desulfurization rate [8]. However, some other
works reported a lack of significant synergistic effects between biomass and coal.
The devolatilization of biomass and coal may occur independently due to the
different pyrolysis temperature interval, hydrogen-rich volatiles from biomass can’t
be effectively utilized by coal pyrolysis and thereby without significant interactions
[9, 10]. Collot et al. [11] simulated co-pyrolysis of close contact and complete
separation of biomass and coal particles, and found that the derivation of calculated
and experimental values were less than 5%.

This work attempts to investigate the synergistic effects during the co-pyrolysis
of biomass-coal blends with TGA and ATR-FTIR analysis. Poplar (P) was selected
as biomass sample and then blended with a fat coal (FC). The co-pyrolysis char-
acteristics of mixtures were studied, including co-pyrolysis rate, characteristic
temperature and derivation of calculated and experimental values of TG curves. The
ATR-FTIR spectra of chars were also investigated, especially the changes of
functional groups. The structural parameters were deduced from ATR-FTIR
spectra.

Experimental

Fat coal (FC) supplied from Anshan Iron and Steel Group Co., Ltd in northeast
China and poplar (P) taken from Ganshu Province, located in northwest China were
used in this study. Proximate and ultimate analysis of the fat coal and poplar are
shown in Table 1. The fat coal and poplar were ground and collected the particle
size of 0.150-0.212 mm for experiments. Fuel samples were dried at 110 °C for two
hours to possibly reduce the effect of moisture content. The experiments carried out
with manual blends of fat coal and poplar in different ratios, the addition ratios of
poplar were 0%, 4%, 16%, 32%, and 100%, with names of FC, FCP4, FCP16,
FCP32, and P, respectively.
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Pyrolysis characteristics of fat coal, poplar and their blends were determined in a
STA 449C TGA made by NETZSCH Instrument Manufacturing Co., Ltd. About
10 mg of the sample was weighted to mitigate the effect of heat and mass transfer
limitations. The experiments carried out from room temperature to 1000 °C at the
heating rate of 10 °C/min under high purity nitrogen with the flow of 50 ml/min.
Pyrolysis characteristic parameters including Tin, Ti, Ri were defined by thermo-
gravimetric (TG) and derivative thermogravimetric (DTG) and showed in Fig. 1.
Where Tin is the initial decomposition temperature, Ti and Ri are the temperature
and decomposition rate of DTG peaks, respectively. It is worth noting that all the
parameters above obtained when the temperature is more than 150 °C.

To study the synergistic effect of co-pyrolysis of FC and P blend, the measured
values of char yield were compared with calculated ones from individual fuels. The
calculated values were obtained by additive model which assumed that there are no
interactions between two samples during co-pyrolysis. So, the calculated values are
the sum of values of individual samples with relevant to their blending weight ratio.

Mcal ¼ aMFC þ bMP ð1Þ

DM ¼ Mcal �Mexp ð2Þ

Table 1 Proximate and ultimate analysis of samples

Sample Proximate analysis (wt%) Ultimate analysis (wt%)

Mad Ad Vd FCd Cd Hd Od Nd Sd Other

Fat coal 1.74 9.61 28.67 61.72 77.27 4.61 5.68 1.36 1.47 9.61

Poplar 4.18 5.52 76.56 14.74 45.95 6.30 41.92 0.18 0.13 4.52

Fig. 1 Co-pyrolysis characteristics of FCP32 in TGA
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Where Mcal is the calculated values from the additive model, a and b are the
mass fraction of fat coal and poplar in the blends, MFC and MP are the measured
experimental value from TG curves of fat coal and poplar separately. The △M was
defined to further investigate the degree of the synergistic effects, and Mexp is the
experimental value from TG curves of the blends.

Samples were heated to characteristic temperature at a heating rate of 10 °C/min.
The residue chars collected from the pyrolysis were ground to under 0.074 mm and
then subjected to ATR-FTIR. The ATR-FTIR spectra of the samples were obtained
by a FTIR (model Nicolet iS5, made by Thermo Fisher in America) in the absor-
bance mode, equipping with the attenuated total reflection (ATR) diamond cou-
pling. The samples were detected at room temperature, from a collection of 32
scans per spectrum measured at a resolution of 4 cm−1 in the frequency range of
4000–400 cm−1.

To analyze the synergistic effect of blended fat coal and poplar during
co-pyrolysis, the macromolecular structures of chars were analyzed through the
spectrogram, including main functional groups and structural parameters. CH2/CH3,
A-factor, C-factor were calculated by the peak area according to Suryeddu et al.
[12], Xin et al. [13], and Wu et al. [14].

CH2=CH3 ¼ ðA2920cm�1Þ=ðA2950cm�1Þ ð3Þ

A� factor ¼ ðA3000� 2800cm�1Þ=ðA3000� 2800cm�1 þA1650� 1520cm�1Þ
ð4Þ

C � factor ¼ ðA1800� 1650cm�1Þ=ðA1800� 1650cm�1 þA1650� 1520cm�1Þ
ð5Þ

Results and Discussion

Pyrolysis Characteristics in TGA

Pyrolytic behavior of individual components and mixtures are shown in Fig. 2.
Pyrolysis characteristic parameters of individual and mixed samples are listed in
Table 2. The TG and DTG curves present different pyrolysis trends with the poplar
increased. Thermal decomposition of FC appears to start at around 321 °C, and it
continued over the whole temperature range at a relatively low and constant rate. The
maximum weight loss rate is found to be 0.016 mg min−1 at 475 °C. On the other
hand, thermal composition of P starts at around 240 °C and the maximum weight
loss rate is 0.082 mg min−1 at 345 °C. The weight of residual char at 1000 °C
decreases gradually as the mass ratio of P increase. The FCP mixture DTG curves
exhibit two main peaks. The first peak intensity increases from 0.0049 to
0.026 mg min−1. However, the second peak presents opposite trend which decreases
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from 0.015 to 0.011 mg min−1. The maximum weight loss rate mainly change from
the second peak to the first one with the increase of the P mass ratio in the mixture. It
also can be seen from Table 2 that T1 and T2 have little change, indicating the
addition of P doesn’t affect the peak temperature under same hating rate. It is worth
noting that Tin decreases with the increase amount of P, and the more the amount of
addition, the less the Tin decrease.

The different devolatilization rate between biomass (P) and coal (FC) is mainly
caused by their structural properties. Biomass is mainly made up of hemicellulose,
cellulose and lignin [15]. The macromolecular structure of those components are
mainly joined by weak ether bonds (R-O-R) with bond energy of 380–420 kJ/mol
and that will easy broken at lower temperature. On the contrary, the macro-
molecular structure of coal is mainly composed of polycyclic aromatic hydrocar-
bons and linked by alternate single and double bonds and is more resistant to
thermal decomposition with high bond energy of 1000 kJ/mol [9]. The hemicel-
lulose is the easiest pyrolysis among biomass components, and pyrolysis gas of
hemicellulose could partly absorb on the surface of coal particles. Thus, the weight
doesn’t change significantly when the addition amount of biomass is little, which
cause higher Tin compare with larger addition.

Fig. 2 TG and DTG curves for FC, P and their blends under various mass ratios

Table 2 Pyrolysis parameters of FC, P, and their blends

Sample Tin/°C T1/°C T2/°C T3/°C R1/mg min−1 R2/mg min−1 R3/mg min−1

FC 321 – 473 686 – 0.016 0.20

FCP4 297 346 474 686 0.0049 0.015 0.19

FCP16 245 345 473 684 0.016 0.013 0.18

FCP32 243 345 475 685 0.026 0.011 0.17

P 240 345 – – 0.082 – –
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Synergistic Effects Between FC and P by TGA

The comparison of experimental and calculated values of the FCP blends TG curves
are illustrated in Fig. 3. There are not consistent trends for the Mexperimental and
Mcalculated. The experimental values are similar to that of calculated under 200 °C
due to the influence of unstable moisture content. For another, the values of cal-
culated are higher than that of the experimental at the temperature range of over
200 °C. The more deviation with the greater addition amount of P, indicating that
the synergistic effects exist between FC and P during co-pyrolysis, and this effect
promotes the pyrolysis of FC for higher volatiles. According to the proximate
analysis, Hydrogen-containing free-radicals are generated by depolymerization and
dehydration during pyrolytic reaction of P. Those radicals inhibit the formation of
aromatic rings and prevent recombination and cross-linking reactions of other
free-radicals that increase char formation [16]. Alkali metals and alkaline earth
metal contained in P ash can transfer the charge on the carbon skeleton of the char
surface, which change the electron cloud distribution of the carbon atom and
improve the surface activity [17, 18]. Consequently, more volatiles are produced
during pyrolysis of the blend than that from individual pyrolysis of FC and P.

From Fig. 3, the values of △M in zone 2, 4, and 6 have no change remarkably
with the temperature rising, while zone 1, 3, 5 are the opposite, especially zone 3
and 5 which. By contrast, the zone 3 shows promotion effect while zone 5 shows
inhibition, indicating that interactions happen between FC and P. The
hydrogen-rich pyrolysis gases and the heat released by pyrolysis of P make some of
the aliphatic side chain of coal decomposed in advance, which accelerate the weight
loss of mixture at the temperature range of 220–380 °C. The early decomposition of
the FC’s aliphatic side chain also allows for more energy to decompose in zone 5.
Although the catalysis of inorganic of P present in zone 5, it does not play a leading
role. Thus, compared with raw coal, the weight loss slows down. When the tem-
perature is over 550 °C, the main pyrolysis of FC is nearing the end and it starts to
form semi-coke, only a little of catalysis from P ash. That’s why the deviation of

Fig. 3 Comparison of experimental and calculated values from FCP blends TG curves
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each mixture is almost unchanged after 550 °C. From the whole process of
pyrolysis, the addition of P has a positive and inhibitory effect on the FC pyrolysis
process, while the former is more dominant than the latter and finally shows
synergy.

ATR-FTIR Spectra of Char Obtained at Characteristic
Temperature

To determine differences between the mixture and the individual fuels during
pyrolysis process, the ATR-FTIR spectra of FC, P and FCP16 at different tem-
peratures were obtained and presented in Fig. 4. Ten regions about band assign-
ment from the ATR-FTIR spectra in this work are given in Table 3. All the samples
under heating feature a similar distribution of functional groups. From Fig. 4a, the
ATR-FTIR spectra of FC are characterized by stronger aromatic C-H stretching at
3100–3000 cm−1, higher intensity aromatic C=C stretching vibrations at 1650–
1520 cm−1 and C-H aromatic out-of-plane deformation at 950–750 cm−1 than that
of P. On the contrary, the P is characterized by more aliphatic-related functional
groups such as aliphatic ether C-O-C and alcohol C-O stretching at 1350–
1150 cm−1. What’s more, more easily decomposed bonds such as ether bonds, ester
bonds, C-O bonds and C=O bonds exist in the molecular structure of P. Those

Fig. 4 ATR-FTIR spectra of FC, P and their blends at different temperature: a room temperature,
b 345 °C, c 390 °C, d 450 °C
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above structure characteristics are consistent with the proximate analysis that P has
more volatiles than FC. A broad region of 3500–3300 cm−1 is observed and related
to –OH stretching vibrations. The P shows a stronger infra-red absorbance in this
region than FC. This observation compared well with the moisture contents of the
samples determined from proximate analysis in Table 1.

The intensity shows decrease trend in region 2 which can be attributed to
moisture evaporation. The functional groups with lower bond energy can be
decomposed generally into small molecule groups, some are released in the form of
gas, and the other part is used to form macromolecular structure by addition
reaction. The stretching intensity of the aromatic C=C ring is high at all tempera-
tures due to the higher bond energy. It is worth noting that the intensity of aromatic
C=C ring of P has an obvious increase under experimental temperature but not in
the FC. A large number of volatiles of P were decomposed in the pyrolysis process.
In addition, the aromatic C=C ring is the most stable in functional groups of P and
does not decompose under 475 °C.

The obvious synergistic effects can be observed by comparing with the
ATR-FTIR spectra of chars obtained from FC, P and FCP16 at the same temper-
ature. Take Fig. 4b for example, the peak at 1695 cm−1 which is assigned to the
aliphatic C=O and –COOH stretching vibrations was detected in the ATR-FTIR
spectra of FC char and P char but not in FCP16 char. The peak at 1260 and
1200 cm−1 which were attribute to aromatic ether C-O-C and ester C-O-O-C
stretching vibrations were observed in the ATR-FTIR spectra of P char but not in
FCP16 char. These above phenomena indicate that interactions occurred between
FC and P during co-pyrolysis process. The pyrolysis of P promoted the pyrolysis of
FC in advance, which is consistent with the analysis of TGA. Meanwhile, the free
radicals produced by FC pyrolysis also accelerated the decomposition of functional
groups of P. The same situation present in Fig. 4c, d, and the interaction presents a
downward trend due to a large number of P pyrolysis as the temperature increases.

Table 3 Band assignments for ATR-FTIR spectra of samples

Band (cm−1) Assignments

1 3700–3600 Free −OH

2 3500–3300 −OH stretching

3 3100–3000 Aromatic C−H stretching

4 3000–2800 Aliphatic C−H stretching

5 1800–1650 Carbonyl/carboxyl C=O stretching

6 1650–1520 Aromatic C=C ring stretching

7 1520–1350 Aliphatic −CH2 and −CH3 deformation

8 1350–1150 Aromatic ether C–O–C, phenolic C–O, and ester C–O–O–C stretching

9 1150–950 Aliphatic ether C−O−C and alcohol C−O stretching

10 950–750 C−H aromatic out-of-plane deformation

750–720 Polymethylenic chains (n � 4) rocking
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Structural parameter of ratio CH2/CH3 can be used to evaluate the degree of
branching and chain length of the aliphatic side functional groups within sample
macromolecular structure [13]. A-factor represents changes in the relative intensi-
ties of the aliphatic groups, which reflects the hydrocarbon-generating potential of
sample. C-factor represents the changes of C=O groups to aromatic C=C stretching
groups, which reflects the thermal maturity of sample [19]. The calculation of
CH2/CH3, A-factor and C-factor are based on Eqs. (3)–(5). The values of these
structural parameters are listed in Table 4.

It can be seen that P char has higher values of A-factor and CH2/CH3 than that of
FC at lower temperature (i.e. 350 °C). This is ascribed to hydrogen-rich charac-
teristics of P. However, values of A-factor and CH2/CH3 of P char are lower than
that of FC when temperature rises above 390 °C. A large number of volatiles of P
has been decomposed at 390 °C, the residue is mostly charcoal powder with very
little of hydrogen-containing branched chains. An interesting phenomenon was
observed that the values of C-factor for P char are higher than FC char at any
temperature. This situation compared well with the ATR-FTIR spectra in Fig. 4.
P char contains more carbonyl/carboxyl C=O stretching than FC char and is still not
fully decomposed at 475 °C, whereas the corresponding spectral bands of ketone
functional groups show a very weak intensity. Besides, the stretching intensity of
the aromatic C=C ring in FC char is higher than that of P char.

By the above analysis, it’s not difficult to find that the structural parameters of
FCP16 char are not related to that of FC char and P char, showing nonadditivity
performance. The calculated values of structural parameters from FC char and P
char are higher than that of FCP16 char for A-factor, while the opposite situation for
C-factor and CH2/CH3. It turned out that the addition of P is beneficial to increasing
the hydrogen-generating potential of FC and decreasing the thermal maturity and
chain length of the aliphatic, which accordant with the analysis of ATR-FTIR
spectra in Fig. 4.

Table 4 Structure
parameters deduced from
ATR-FTIR spectra of chars

Samples A-factor C-factor CH2/CH3

FC 345 0.23 0.10 4.17

P 345 0.29 0.16 7.29

FCP16 345 0.37 0.03 3.87

FC 390 0.33 0.04 6.04

P 390 0.17 0.12 2.57

FCP16 390 0.31 0.03 5.33

FC 475 0.17 0.02 4.87

P 475 0.10 0.07 2.42

FCP16 475 0.17 0.03 2.35
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Conclusions

This study investigates the thermal behavior and char structure during co-pyrolysis
of blended fat coal (FC) and poplar (P). From TGA analysis, the influence of P on
the pyrolysis of coal was not the pyrolysis temperature but the weight loss rate.
A positive deviation existed between calculated values and experimental values of
TG curves and showed larger with the addition of P. Interactions occurred between
FC and P and showed both of promotion and inhibition trend with the increase of
temperature. More volatiles were produced from co-pyrolysis due to the dominance
of promotion effect. From ATR-FTIR spectra analysis, functional group peaks of
carbonyl/carboxyl C=O, ether C-O-C and ester C-O-O-C stretching vibration in
mixture char showed very weak intensity and even disappeared comparing with
individual fuels at same temperature. The structural parameters of A-factor,
C-factor and CH2/CH3 showed a nonadditivity performance. Synergistic effects
exhibited during co-pyrolysis of FC and P mixtures, which caused higher
hydrogen-generating potential, lower thermal maturity and chain length of the
aliphatic.
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Flow Characteristic of Two-Phase Bubble
Reactor for Slag Waste Heat Recovery

Wenjun Duan, Qingbo Yu, Zhimei Wang and Tianwei Wu

Abstract In order to recover the waste heat of molten blast furnace slag, a reactor
with top-submerged lance was established. The numerical simulation and experi-
ment study of the flow characteristic in the reactor were conducted. The mathe-
matical model of reactor was established and the Euler-Euler model was employed
to simulate the gas-liquid flow in molten slag bath. Meanwhile, the experiment
results were obtained and compared with the simulation to testify the accuracy of
the established model. According to the bubble behavior in bath, there were four
stages: initial expansion stage, bubble detachment stage, freedom lift up stage and
bubble broken stage. When the flow field in bath fully developed, the gas fraction
decreased with the increasing of bath depth. During injection process, the area near
the nozzle and lower the bath would first generate two symmetric heliciform flow
regime, and then the flow regime in whole bath would become irregular because of
bubble lifting up and rupturing. The gas fraction in bath, the average velocity and
turbulence energy of slag would decrease before it increased to maximum and then
it would keep fluctuate in a range.
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Introduction

Iron and steel industry was among the main energy-intensive manufacturing sys-
tems worldwide: according to the International Energy Agency, the iron and steel
sector was the second largest industrial user of energy [1]. However, huge energy
consumption brought serious environmental pollution and the saving technologies
of it were still below what would be possible [2]. Therefore, it was necessary to
develop the energy saving technologies to improve the current situation.

Blast furnace slag (BFS) was one of the main by-products of iron and steel
industry, which was discharged at about 1773 K, and the energy carried was about
1700 MJ�(tslag)−1. Approximately 0.3 tons of slag was produced for each ton of
steel manufactured. In 2015, about 235 million tons of BFS were produced in
China. The total energy carried by BFS amounted to 14 million tons standard coal
[3, 4]. Therefore, developing an effective method to recover and utilize the waste
heat of BFS was necessary.

Some dry waste heat recovery methods were developed, including mechanical
crushing method, air blast method and centrifugal granulated method [5]. Although
physical methods were gradually reaching commercial testing and acceptance, they
had obvious disadvantages. With the development of the study, some researchers
proposed chemical methods to recover the waste heat. Kasai et al. [6] proposed the
method of methane reforming reaction to recover slag waste heat into chemical
energy. Purwanto [7] indicated that the slag acted as not only heat carrier but also a
good catalyst. MSW gasification using BFS heat was performed at atmospheric
pressure in a fixed bed reactor at 873 * 1173 K by Zhao [8]. The waste heat of
BFS could provide the energy required in combustible gas production from MSW
gasification. Luo [9] using slag heat to generate hydrogen-rich gas in a continuous
moving-bed biomass gasification reactor. The maximum gas yield and H2 content
achieved 1.28Nm3�kg−1 and 46.56%, respectively. Sun [10] established a two-stage
sludge gasification using the thermal heat in hot slags. The results indicated that an
Avrami-Erofeev model could best describe the stage of char gasification and the
potential CO yield achieved was estimated to be 1.92 � 109m3. A series of ther-
modynamic analysis and kinetic experiment studies on molten BFS waste heat
recovery were conducted by Li [11, 12] and Duan [13, 14]. The theory optimal
operation conditions were obtained by these methods. However, as authors’
knowledge, the study of flow characteristic in the equipment of waste heat recovery
was not still carried out. It was beneficial and necessary to obtain the flow char-
acteristic of the molten slag to enhance the waste heat recovery efficiency and
gasification reaction.

In this paper, the Euler-Euler model was used to simulate the gas-liquid flow in
molten slag bath. Meanwhile, the cold model experiment was conducted to testify
the accuracy of simulation model. The bubble behavior and gas fraction in the
molten slag were simulated. In the injection process, the average velocity and
turbulence energy of molten slag were also studied.
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Mathematical Model

Model Description

The general layout of the waste heat recovery system was illustrated in Fig. 1. The
pulverized coal and syngas were transported into the molten slag by top-submerged
lance. The following assumptions were employed to simplify the analysis:

(1) Ignore the gasification reaction.
(2) The gas-liquid two-phase flows in the reactor were incompressible.
(3) The furnace wall was simplified as adiabatic and zero-thickness wall.
(4) The top-submerged lance was rigid structure.

Governing Equation

Based on assumptions that gas phase and liquid phase were regarded as continuous
phases, an Euler-Euler model for simulating gas-liquid flow was established by
combining Geo-Reconstruct method to track the gas-liquid interface.

(1) Continuity equation

@q
@t

þ @ðquÞ
@x

þ @ qvð Þ
@y

þ @ qwð Þ
@z

¼ 0 ð1Þ

Inlet Outlet

Lance

Fig. 1 The schematic
diagram of reactor for
to-submerged lance molten
slag gasifier
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where, q was the fluid density, kg�m3; t was the time.

(2) Volume fraction equation

1
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where, aq was the volume fraction of the q; qq was the density of the q; Saq was the
quality source term of the q; mpq was the mass transport from p to q; mqp was the
mass transport from q to p.

(3) Momentum equation
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where, p was the pressure; l was the viscosity.

(4) Energy equation
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where, Sh was the source item; keff was the effective thermal conductivity; E was the
energy.

The RNG k-e model was selected to simulate the turbulent process in the waste
heat recovery system. The equations were showed as followed:

@ðqkÞ
@t

þ @ðqkuiÞ
@xi

¼ @

@xj
ðakleff

@k
@xj

ÞþGk þGb � qe� YM � Sk ð5Þ

@ðqeÞ
@t

þ @ðqeuiÞ
@xi

¼ @

@xj
ðaeleff

@e
@xj

ÞþC1e
e
k
ðGk þC3eGbÞ � C2eq

e2

k
� Re � Se ð6Þ

Results and Discussion

Model Validation

In order to confirm the validity of the simulation model, the cold model experi-
mental platform was established and high-speed camera was utilized to capture
bubble behavior. Seen from Fig. 2, the bubble behavior of the numerical simulation
result was developed to align with experiment result. Therefore, the established
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simulation model was completely right to describe the bubble behavior in the
molten slag.

Bubble Behavior in the Bath

In the molten bath, the gas spurted from the lance at a certain rate and gradually
formed bubble when the expansion velocity (l) was higher than movement velocity
(v). The jet impinging depth in the bath reached maximum when l equaled to v. The
bubbles would experience the detachment stage and freedom lift up stage when it
separate from the lance. The bubble quickly reached to interface and became broken
Fig. 3.

Fig. 2 The comparison between top-submerged lance cold model experiments results and the
numerical simulation results
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Distribution of Gas Phase in the Bath

The gas fraction at different time in the molten bath was shown in Fig. 4. With the
injection of the gas, the gas fraction in the bath increased with the time increasing.
The gas fraction reached maximum at 0.75 s, and then decreased sharply to a
certain value with a certain range of fluctuation. It was because that the bubble
completely submerged into the molten slag before 0.75 s, and the gas fraction
began to decrease with the bubble broking.

Flow Field in the Bath

The distribution of path line in the molten bath for bubble behavior was shown in
Fig. 5. The two symmetric heliciform flow regime was generated in the area near
the nozzle and lower the molten bath when the bubble separated from the lance.
However, this state was destroyed when the bubble reached to the gas-liquid
interface. The broken of the bubble caused a sharp fluctuation at the gas-liquid
interface and the distribution of trace in the molten bath became more irregular.

The average velocity and turbulence kinetic energy of the liquid were shown in
Figs. 6 and 7, respectively. Seen from figures, these changes were consistent with
the changing of the gas phase distribution. The more gas phase existed in the
molten bath, the larger average velocity and turbulence kinetic energy.

t=0.044s t=0.161s t=0.670s t= 0.768s 

Fig. 3 The gas-liquid phase diagram in the bath for initial expansion stage, bubble detachment
stage, freedom lift up stage and bubble broken stage
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Fig. 4 The gas fraction at different time in the molten bath

t=0.044s t=0.161s t=0.670s t= 0.768s 

Fig. 5 The distribution of path line in the molten bath for initial expansion stage, bubble
detachment stage, freedom lift up stage and bubble broken stage
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Conclusions

In this paper, a numerical simulation model using VOF model and RNG k-e model
was established to study the flow characteristic of the two-phase bubble reactor for
blast furnace slag waste heat recovery. The cold model experimental platform was
established and high-speed camera was utilized to capture bubble behavior. The

Fig. 6 The average velocity of liquid at different time in the molten bath

Fig. 7 The average turbulence kinetic energy at different time in the molten bath
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established simulation model could describe the flow characteristic and the bubble
behavior, gas phase distribution and flow field in the bath were investigated
sufficiently.
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Improving Energy Efficiency in Direct
Method for Continuous Casting of Lead
Sheets

Arun Prabhakar, Joanna Mielnicka, Mark Jolly
and Konstantinos Salonitis

Abstract Lead sheets are widely used for roofing applications, radiation protection
and sound proofing. Most of the sheets are either produced by rolling cast slabs of
lead sheets or via the direct method (DM) of casting of the sheet continuously.
The DM method comprises of a rotating water-cooled drum that is partly immersed
in a bath of molten lead and sheets are cast out continuously. The direct method of
casting lead is more energy efficient compared to the rolling process which requires
a casting process before rolling to achieve the required thickness. This work
investigates the energy consumption in different stages of the DM process and
suggests pointers for improvement. An energy audit of the process is conducted and
the consumption is analysed at different stages and compared with rolled lead.

Keywords Energy efficiency � Lead � Casting � Direct method

Introduction

Sustainability aspects in material processing industries are widely discussed these
days. Metal processing is highly energy consuming and contributes significantly to
carbon dioxide emissions. This sector is being examined these days as emission
reduction is a key driver for finding more energy efficient solutions. Foundries are
one of the most energy intensive industries. The average energy burden for the
foundry sector in UK is 55 GJ/tonne which is more than double the target
burden of 25.7 GJ/tonne as per the climate change agreement published by the
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UK government [1]. Metallurgical processes like melting, refining and casting
have a crucial impact on environment and as a result assessing and controlling the
emissions and energy consumptions are of supreme interest for continuous
improvement initiatives.

Lead sheets are widely used for radiation protection and in the construction
industry for roofing and flashing applications. Around 85% of the demand for lead
sheets is for these kind of applications [2]. The high ductility, malleability and
resistance to atmospheric oxidation make lead an ideal material for roofing appli-
cations. Lead is also a very dense metal and possesses a high attenuation coefficient
especially for high energy X-rays which makes it an ideal material for radiation
protection [3]. Moreover lead sheets are fully recyclable, durable, long lasting,
needs low maintenance and has a low environmental impact [4]. Lead sheets used
for construction purposes are mostly produced from recycled lead by two tech-
niques. Majority of the sheets are produced by rolling, which involves casting lead
slabs and then rolling them in a mill until the desired code/thickness is obtained.
The other technique is a direct method in which sheet of a particular thickness is
continuously cast. In this method, a water-cooled drum is immersed in a bath of
molten lead and sheets are continuously cast upon rotation of the drum. There is a
third method of manufacture of lead sheets by the traditional sand casting method
[5]. The main markets for these sheets are in the heritage industry and they are used
generally for renovation of old churches, cathedrals and castles.

More than 100,000 tonnes of lead sheet is used every year worldwide with a
high demand from countries like Belgium, France, Spain, Germany, UK, Ireland
and Netherlands [6]. Lead based products are easy to identify and economical to
collect and recycle mainly due to its physical-chemical properties and product
design. Lead is recycled more than any other metal and has one of the highest
end-of-life recycling rates amongst commonly used metals [2]. The type of lead
production has changed through the years. Previously lead was mainly obtained
though primary lead production. Primary lead is mainly obtained from its ore galena
by a roasting process [7]. However, by 2011 the secondary sources accounted for
more than 77% of lead production in Europe. Scrap from lead roofing, flashings and
lead-acid batteries are the main sources of raw materials for secondary lead man-
ufacturing [8]. These days almost 50% of the lead that is produced worldwide is
from secondary lead with high rates of production in Europe and America and high
primary rate of production in China. Scrap lead from building and construction
industries is often clean and is re-melted without smelting, however refining may be
required [9].

Energy

The foundry industry is one of the most energy consuming sectors. The type of
material is also a crucial factor that influences the amount of energy used.
Secondary lead production requires much less energy than primary lead production
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with the former taking up 5–10 GJ per tonne of lead, and the latter 7–20 GJ per
tonne [9].

A modern casting process consists of different stages like melting, refining,
moulding, pouring, etc. The cost of a process increases with increase in energy
intensiveness [10]. In most foundries, melting, holding and refining consume
majority of energy (around 70%). Melting and holding incurs a lot of energy loss
which depends on a number of factors like, type and design of the furnace, insu-
lation, frequency of metal charging, etc. [10]. Most furnaces are not very efficient,
in fact there are very few furnaces with efficiencies more than 50% [11].

There are several factors that affect energy consumption. The current study
compares energy consumption of the DM process with that of the rolling process.
The energy data for the DM has been sourced from a foundry based in the UK.
However, the values for rolling process have been theoretically calculated. It is
assumed that the melting and refining values are the same for both process, since
these activities stay unchanged irrespective of the process. The same rule accounts
for cutting and transporting the spools, hence this data is omitted.

Direct Method

The Direct Method of casting of lead sheet was initially invented in 1956 for the
production of lead sheets potentially based on a process invented by Sir Henry
Bessemer for the production of sheets of iron based on the principle of molten metal
solidifying over a cooling rotating drum [12]. In this process, a rotating drum which
is water cooled, internally, dips into a pool of molten lead, picking the liquid metal
and solidifies it into a sheet with the thickness depending on the depth of dip and
speed of rotation as shown in the schematic diagram below.

The process starts with scrap lead which consists mostly of old roofing sheets
and pipes, separated into two batches based on the bismuth content. It is then loaded
into the melting furnace with appropriate proportions of the two batches as melting
just the scrap with high bismuth content would result in large emissions from the
furnace. The furnace is heated to 440 °C using a natural gas burner. Impurities and
dross that arise during the melting process are collected using a mechanical
skimmer. The dross collected is stored in metal barrels which are sent for further
recovery.

The molten lead is transferred to a refining kettle where it is churned with an
oxidising agent such as sodium nitrate for several hours (Harris Process). The scrap
lead mostly consists of Antimony, Arsenic and tin as impurities. These elements are
more reactive than lead and as a result can be chemically removed by preferential
oxidation [13]. The impurities are separated from the lead and get suspended in the
flux as sodium arsenate, antimonate and stannate (tin); any zinc is removed as zinc
oxide. The flux and lead are separated and impurities may be extracted from the
flux. The major product, sodium antimonate, is refined [9].
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The refining process results in 99.99% pure lead which is then transferred to a
large casting tank. This is the stage where casting of the sheet by DM begins. The
casting tank consists of heating elements that keeps the melt at 400 °C. The depth
of immersion of the drum in the lead bath is a major factor that controls the
thickness of the sheet cast. To stabilise the level of molten lead and to eliminate the
need to adjust the roll to a changing level, two tanks are provided adjacent to one
another but at different heights/levels. A small pump is used to pump molten metal
from the casting tank to the tray which is at a higher level. The tray is constructed in
such a way that one of its edges is set lower than the other so that the excess melt
can overflow through this edge and flow back into the lower tank. With this
arrangement of pump and tanks, regardless of the quantity of lead withdrawn as
sheet, the level of lead remains a constant in the casting tray [12]. The cast sheets
are wound on a spool which is subsequently unrolled and cut into desired
dimensions.

Data analysis and theoretical calculations are made based on thermodynamic
properties of lead as well as from literature. The theoretical quantity of energy
required to rise 1 tonne of pure lead from room temperature (22 °C) to its melting
point, melt it and raise to the temperature of 440 °C can be calculated as 0.077 GJ
as per the equation below (Table 1).

E ¼ Hm þ Tm - Tað Þ * Cps
� �þ Tp - Tm

� �
* Cpl

� �

Figure below presents utilization of the machines in the direct machine casting
process as per data received from a foundry in the UK. The refiner and scrapper are
the most energy consuming segments of the process.

The main parts of the DM process are the scrapper, refiner, casting tank and
casting tray (Figs. 1 and 2). Figure 3 shows the consumption at each stage of the
process sourced from a foundry based in the UK in a calendar month. The company
produced 316 spools of cast lead weighing 2010 tonnes.

Rolling Process

Metal sheet rolling was invented in 1500 s. However, it was only recognized as an
alternative technique to traditional sand casting in the early 20th century. Rolled lead

Table 1 Properties of lead Property Value

Heat of melting (Hm) 22.4 kJ/kg

Specific heat of solid lead(Cps) 0.126 kJ/kg/ °C

Melting point (Tm) 327.5 °C

Specific heat of liquid lead(Cpl) 0.14 kJ/kg/ °C

Thermal conductivity 35 W/(m. K)
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Fig. 1 Schematic diagram of the DM machine

Fig. 2 a: Rolling; b: Direct Method
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sheets have a shiny appearance compared to DM sheets which have a matte finish.
However, DM sheets possess good creep resistance which increases with increasing
copper content compared to rolled sheets with similar copper contents [14].

The process starts with melting lead scrap and then refining it. The refined lead is
cast in moulds usually made of cast iron. These slabs are then passed through
multiple rollers until the desired thickness is achieved [4]. The sheets are cut to the
desired dimensions and packed for distribution as per the process flow diagram in
Fig. 2. The usual thickness of production is 0.45 mm (code 1)—3.55 mm (code 8)
—thicker rolled lead sheets up to 9.00 mm are also produced.

Metal in rolling process elongates with the rolling direction, speeding up. This
means that the material moves faster on the exit side then on the entry [15]. The
rolling calculations have been conducted based on equations for roll force and
torque in flat-rolling [16]. The needed data are initial thickness of the billet (ho),
desired thickness (hf), width of the material (w), number of revolutions per second
of the rolls (N) and roll radius (R). At first roll-billet contact is given by the formula:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R ho� hfð Þ

p

The roll force is calculated by the formula:

F ¼ LwYavg

Where Yavg is the average true stress. The total power is estimated by the
equation:

P ¼ 2pFLN
1000

� 106kW

49%

42%

8% 1%

Scrapper Refiner Cas ng tank Cas ng tray

Fig. 3 Energy usage by
different entities in DM
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Where N is the number of rotations per second. Since billets are not milled to the
required thickness in one pass, multiple rolling approach has been applied. It
assumes that with each pass the billet reduces its thickness by a percentage of its
original thickness. The sheets are assumed to be constrained from the sides which
means there is no change in the width of the sheets. The only parameters that
change during the rolling process are length and thickness. This method produces
multiple energy values which sum up to total energy of the process. The following
assumptions are made to theoretically calculate the energy consumed.

Changing the length can be captured by comparison to the volume of the
material, which stays the same though the whole process. Information regarding the
velocity of the rolls enables calculating the time needed to roll given length. Next,
multiplying the power by time gives the energy value presented in kJ. Density and
volume provide the information about the mass of the material and the energy per
tonne can be determined.

The graph shows the total time taken to attain a thickness starting from 5 mm
thickness based on the assumed data. The graph is linear and the slope of the graph
depends on the rate of reduction in thickness of the slab.

The maximum reduction in thickness (d) that can be attained is related to the
coefficient of friction (lÞ and radius of the roll (R) as per the following equation:

d ¼ l2R

Higher the value of l, higher the reduction in thickness that can be attained.
However, a higher coefficient of friction would result in higher consumption of
energy (Fig. 4).

Cost Analysis of DM

As per Table 2, the overall energy consumed in the DM process is 539836 kJ/t. The
energy consumed by the DM machine consisting of the main tank and the tray is
51412 kJ/t. The total energy consumed in reducing thickness from 5 mm to
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0.000376 is theoretically calculated to be 239142.4 kJ. The energy required per
tonne for the rolling process can be calculated as 50210.46 kJ/t. This value is
almost similar to the actual consumption of the DM process as per the energy audit
from the foundry. The actual energy consumed in the rolling process would be
much higher than the theoretically calculated values due to wastage through friction
and loss of energy. Hence the Direct Method of casting is more energy efficient than
rolling process (Tables 2, 3, 4 and 5).

There is a large difference between theoretical and actual energy consumption
values in case of the DM. Though the theoretical value can never be achieved, this
difference can be considered an opportunity for improvement. Tables 5 and 6 show
a cost analysis of the DM. The scrapper and refiner are gas kettles and consume
energy with the cost rate of £0.017202 per kWh. Direct casting machine is powered
by electricity. The electricity rate is variable throughout the day but for simplicity
the average cost has been taken.

Based on the actual cost data for the process, calculations can be made for the
theoretical value of energy needed to melt and produce the same amount of lead that
was manufactured via DM in a calendar month and this is calculated to be
155.23 GJ

This enables approximating energy values for each of the machines and possible
cost. Mentioned calculations are shown in Table 6.

The huge difference between actual cost of energy of the DM and the cost
estimated according to theoretical energy consumption shows that there is a
potential for large amount of savings. Though reducing the energy consumption to
attain the theoretical value of 0.077 GJ is impossible, there is plenty of room for
improvement.

Table 2 Energy data for DM process collected from a foundry based in UK for a calendar month

Element Stage Energy usage (GJ) Energy usage per tonne (GJ/t)

Scrapper Melting 529.57 0.263508

Refiner Refining 452 0224915

Casting tank Holding 91.19 0.045375

Casting tray Casting 12.13 0.006037

Total 1084.91 0.539836

Table 3 Assumed data for
theoretically calculating the
energy consumed in rolling
process

Data Value

Initial thickness 50 mm

Pass reduction level 25%

Length 6 m

Width 1.4 m

Roll velocity 0.3 m/s

Roll radius 0.519 m

Average true stress (Yavg) 16 MPa
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Energy Improvement Techniques for DM

There are several techniques for saving energy in foundries. Techniques like
insulating furnaces, preheating scrap, reducing losses through convection, etc. are
widely used. The following are two important areas of improvement in the DM
method of lead casting:

Waste Reduction

Operational material efficiency (OME) is the ratio between the good casting shipped
to customer and the total metal melted [17]. Improving the true yield is possibly the
simplest way in which foundries can save energy, as this method focuses on
increasing good casting production and reducing the total metal melted [18].

Table 5 Actual cost analysis of DM

Gas used
(kWh)

Gas rate
(£)

Electricity
(kWh)

Electricity
rate (£)

Total cost (£)

Scrapper 147103.16 0.017202 – – 2530.47

Refiner 125558.96 0.017202 – – 2159.87

DM tank – – 25330.86 0.075811265 1920.37

DM Tray – – 3370.20 0.075811265 255.50

6866.20

Table 6 Theoretical cost analysis of DM

%
energy
used

Energy
consumed
(GJ)

Energy
in
kWh

Type Gas rate
(£)

Average
electricity
rate (£)

Total cost
(£)

Scrapper 48.81 75.7743427 21512.40 Gas 0.017202 – 370.0563

Refiner 41.66 64.6767050 18361.77 Gas 0.017202 – 315.8592

DM
tank

8.41 13.0481862 3704.39 Electricity – 0.075811265 280.8345

DM tray 1.12 1.736023107 492.86 Electricity – 0.075811265 37.3642

1004.114

Table 7 Analysis of lumps on a batch of 6 spools

Mass of spool (kg) Mass of lump (kg) Energy required to recast (GJ)

6136 1603 3.312434

6302 1144 3.402046

6098 1421 3.29192

6072 2091 3.277884

6152 1271 3.321071

6225 1551 3.360479
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Casting in general results in formation of waste which are removed by
machining. In many casting systems, wastage can be over 50% which are machined
[18]. The DM process on the other hand is a distinct casting process in which the
metal solidifies over the rotating drum layer by layer and wastage is substantially
less compared to other casting processes. However, at times deformations can occur
at the edges of the spool as shown in Fig. 5. This accumulation results in formation
of a bulge or lump which is machined off and is re-melted, refined and recast to
utilise materials resourcefully. However, this results in increased energy costs,
labour and emissions. A reduction in the amount of material that needs to be
machined can be considered as an opportunity to improve OME thereby making the
process more energy efficient.

An analysis of the amount of wastage per spool in a day is shown in the table 7.
Therefore, if the true yield of the casting can be improved, less metal will be
required to produce the casting and the energy consumption for recasting could be
reduced. Techniques to reduce these defects to the minimum would result in large
energy savings and a higher OME can be attained.

Heat Recovery and Preheating of Scrap

Pre-heating of scrap can be very effective. It is very advantageous as it could
remove any moisture and organic materials in the scrap, thereby preventing
explosions in the furnace and reduce energy required for melting. Techniques like
using flue gases from the melting furnace are being used by foundries these days
[17]. In the DM process, the dross formed during melting is filled in metal barrels
and is sent to a rotating recovery furnace. The metal barrels are loaded into the
furnace which is heated to a temperature of over 420 °C and rotated. Recovery rates
up to 65% are obtained. The barrels are taken out and then allowed to cool. Selvaraj
et al. conducted studies on an innovative approach to preheat the scrap by using
heat released by castings when they cool. The study reported 2.83% energy savings
using this approach in which heat from the cast metals is recovered during cooling
and used to preheat scrap [18]. A similar approach can be applied to use the heat
from the recovery furnace and can be used to preheat scrap lead.

Fig. 5 Accumulation of edge deformation resulting in formation of lumps on DM spools
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Research on High Efficiency Energy
Conversion Technology for Modern Hot
Blast Stove

Fuming Zhang, Xin Li and Zurui Hu

Abstract High blast temperature is one of the important technical characteristics of
modern blast furnace (BF), which is also an important technical approach for the
green development of ironmaking. Increase blast temperature can improve and
promote the BF operation smooth and stable, reduce coke rate, fuel consumption
and CO2 emission. Top combustion hot blast stove technology has been applied in
Shougang Jingtang’s 5500 m3 BF for 8 years. Under the condition of burning
single BF gas, high efficiency energy conversion and over 1250 °C high blast
temperature have achieved. The combustion and heat transformation process were
researched by numerical simulation technology to optimize the structure design.
The high efficiency annular ceramic burner and checker brick were developed and
applied, the flue gas waste heat was recovered and reused to preheat the combustion
air and gas. Prominent achievement of high blast temperature under the condition
single BF gas burning has been realized.
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Introduction

Reducing energy consumption and cost of ironmaking process are very important to
improve the market competitiveness of iron and steel industry, [1] because energy
consumption of ironmaking process accounts for about 70% of the total energy
consumption of iron and steel manufacturing, and cost of pig iron accounts for
about 50% the total cost of iron and steel manufacturing. High temperature blast
provides about 20% of the heat in BF smelting, and high blast temperature is an
important technical characteristic of modern BF ironmaking, which is also an
important way to realize high efficiency energy conversion. High blast temperature
has the following important meaning: [2]

• Reducing fuel consumption, saving coke, reducing the production cost.
• Increasing the temperature of tuyere raceway, increasing quantity of pulverized

coal injection, further reducing coke rate.
• Increasing the hearth heat, which is helpful for the BF operational performance.
• Improving production efficiency, reducing CO2 emissions.

Chinese steel workers have studied the key technologies of hot blast stove from
their respective needs. The research they have made are as follow: The research for
the reason caused the piping broken and optimizing design [3], Study on standards
of refractory used for hot blast pipes between blast furnace and hot blast stove [4],
The optimization of hot blast stove quantity and operation [5], The optimization of
hot blast stove control system [6], High radiative coating used in checker bricks [7].

Acquisition, transmission and utilization of high blast temperature is a system-
atic project, which is composed of a series of key technologies, including low
heat-value gas utilization technology, high efficient and clean combustion tech-
nology, high efficient heat transfer technology in regenerator, low stress piping
system, etc. This paper focused on joint research which combined numerical
simulation and experimental research, and also focused on analyzing and verifying
the influence of checker brick on heat transfer process. The purpose of the research
is to increase the energy conversion efficiency of hot blast stove.

Promote Blast Temperature by Low Heat Value BF Gas

Technological Philosophy

Shougang Jingtang steel plant is an annual production capacity of approximate 10
million tons of large iron and steel union enterprises, product positioning for high
grade plate and strip, cold rolled products ratio is 54.6%, the steel products pro-
cessing facilities complete, so the high calorific value of coke oven gas, converter
gas to supply in steelmaking, rolling process, hot blast stove only the low calorific
value of BF gas as fuel. With the progress of BF operational technology, the
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utilization rate of gas is continuously increasing, and the calorific value of BF gas is
decreasing gradually, which is about 3000–3200 kJ/m3. The top combustion hot
blast stove can only reach 1200–1300 °C, with the single BF gas, and so it is
difficult to reach the high blast temperature above 1250 °C [8].

Shougang Jingtang’s 5500 m3 BF in the design process, in order to realize the
high blast temperature reaches 1250–1300 °C [9], which fuel of hot blast stove only
the BF gas, a large amount of research, comprehensive analysis and demonstration
of various technical measures of high temperature at home and abroad have been
applied, the design and development of BF gas and combustion air, preheating
process with innovation [10, 11].

Theoretical Combustion Temperature and Dome Temperature

During the hot blast stove burning, the main source of heat is the chemical heat of
the gas, and the preheated temperature of the combustion air and gas is fixed. When
all the heat is used to heat the combustion products, no other heat losses, the
temperature which can reach called the theoretical combustion temperature of hot
blast stove.

During the operation of the hot blast stove, actually the dome temperature of hot
blast stove is lower than the theoretical combustion temperature 30–50 °C because
of heat dissipation of stove wall and incomplete combustion. Practice has proved
that the theoretical combustion temperature is the main contradiction to limit the
increase of blast temperature in hot blast stove, and the formula is shown in Eq. 1.

tT ¼ QA þQG þQDW

CPVP
ð1Þ

In formula: tT -theoretical combustion temperature, °C; QA-combustion air sen-
sible heat, kJ/m3; QG-Gas sensible heat, kJ/m

3; QDW -low calorific value of gas, kJ/
m3; CP-heat capacity of combustion product at tT , kJ/(m3�°C); VP-volume of
combustion product, m3.

It can be seen from formula 1, that the theoretical combustion temperature of the
hot blast stove can be improved by increasing the physical heat (sensible heat) of
the combustion air and gas. Increase the preheat temperature of combustion air and
gas can improve their physical heat effectively. Figure 1 shows the theoretical
combustion temperature under the condition of preheating combustion air and gas.

During the blasting period, the cold blast absorb heat from checker brick, then
flow into the hot blast pipeline and blast into the BF through the tuyere. The hot
blast temperature which is received by the BF is called the blast temperature.
During the whole blasting period, the hot blast temperature at the hot blast outlet is
gradually decreased with the increase of the heat exchange between the cold blast
and the checker brick. BF operation requires constant blast temperature, so we

Research on High Efficiency Energy Conversion Technology … 135



usually mix cold blast into the hot blast pipeline system, and maintain the constant
blast temperature by adjusting the mix cold flow at different stages of blasting.

High Efficiency Preheating Technology

It is a worldwide problem to realize high temperature only by burning BF gas. The
blast temperature of Japan, Europe and other advanced BFs have reached 1250 °C,
were blended with some high calorific value gas (such as natural gas, coke oven gas,
converter gas and so on). Research shows that, the dome temperature of hot blast
stove is depending on the theoretical combustion temperature, according to theo-
retical combustion temperature calculation formula can be found that improve the
physical heat of gas and air are the effective technical measures to improve the flame
temperature at the same gas calorific value. According to the combustion calculation,
the BF gas should be preheated to 200 °C and the combustion air should be pre-
heated to over 500 °C to achieve high blast temperature at 1300 °C [12].

At the beginning of 21st Century, the combustion air preheating technology was
adopted to increase dome temperature and achieve industrial application success in
Shougang. The existing 4 seats of Shougang’s type top combustion hot stove which
belong to Shougang’s No. 2 BF were put into production in 1979 No. 2 BF rebuilt
in 2002, focusing on the innovative design of high temperature combustion air
preheating process, mainly in the following aspects:

• Remove two old top burning hot stoves, Nos. 1 and 2, which have been running
for more than 23 years. Nos. 3 and 4 top combustion hot blast stoves were used
as preheating furnace for high temperature preheated combustion air.

• The three high temperature internal combustion hot stoves introduced from Corus
were applied, which combustion air was preheated to 600 °C by the original
Shougang’s top combustion stove. The blast temperature reaches 1250 °C only
by burning BF gas. Figure 2 is a photo of Shougang’s No. 2 BF after renovation.

Fig. 1 The theoretical
combustion temperature of
hot blast stove under the
condition of combustion air
and gas preheating
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Preheating Process Integration

The comprehensive advantages and disadvantages of various preheating process,
and combined with a large number of engineering practice in the field of accu-
mulation, in the design of hot blast stove preheating system of 5500 m3 BF of
Shougang Jingtang steel plant, the longevity of independent intellectual property
rights of the two stage double preheating system. The technology is developed and
designed successfully on the basis of high temperature preheating technology of
combustion air in shougang. The main technical principle is: the separated type heat
pipe heat exchanger, using hot BF flue gas waste heat preheating gas and com-
bustion air is preheated gas and combustion air temperature can reach 200 °C, this
process is called a double preheating. Two sets of regenerative combustion air
temperature preheating stove used to preheat the combustion air, the temperature is
raised to 550 °C. The combustion air preheating furnace gas and combustion air
through the heat pipe heat exchanger preheating, by burning through a preheated
BF gas to preheat furnace after heating, the dome temperature can reach 1300 °C,
and then used for combustion air heating hot blast stove use, after combustion air
temperature after heating temperature can reach 1200 °C for export and then, after a
mixed combustion air preheating, the combustion air to control the temperature of
550 * 600 °C, this process is called two preheating. This is a process of
self-circulating preheating process, significantly improve the physical heat of air
and gas, the dome temperature of hot blast stove also improved, which can effec-
tively improve the air temperature, hot blast stove system overall efficiency is
significantly improved. Figure 3 shows the two stage dual preheating system with
high blast temperature in the hot blast stove system.

With the development of plate heat exchanger, it has shown many advantages,
such as longer service life, less fouling, and gradually began to replace the tradi-
tional tubular heat exchanger.

Internal Combustion Stove 

Top Combustion stove 

Fig. 2 Photo of Shougang’s
No. 2 BF hot blast stove
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The system has been put into operation in May 2009, and the practice has proved
that the system can satisfy the thermal air temperature of 1250 * 1300 °C under
the condition of using a single BF gas [13].

Comparison of Efficiency of Hot Blast Stove

The two processes of two stage double preheating and only heat exchanger pre-
heating are calculated and compared:

(1) The thermal efficiency of the main body of the hot blast stove
The two process gas temperature is basically the same, the two stage double
preheating process of blast temperature is 1300 °C higher than the low tem-
perature preheating 1200 °C, so the body slightly high thermal efficiency of hot
blast stove. The thermal efficiency of the two stage double preheating process
was calculated to be 77.01%, and the thermal efficiency of the hot blast stove
was 74.84% at the low temperature preheating process, and the former was
2.17% higher than that of the latter [14].

(2) The cooling, heat dissipation of the shell, pipe and valve of the hot blast stove
system
Table 1 shows the comparison of the heat dissipation of two kinds of pre-
heating process.

(3) Comparison of thermal efficiency of hot blast stove system

Fig. 3 Process flow chart of two stage double preheating system for hot blast stove
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Overall, the two stage high temperature double preheating process has improved
100 °C blast temperature, reducing coke rate 15 kg/tHM, but low temperature
preheating process to consume 34313 Nm3/h gas, the thermal efficiency of the hot
blast stove system is reduced by 0.29%, but for the entire system of BF, the energy
consumption is reduced (Table 2).

Numerical Simulation and Experimental Study

Burner is very important as the core equipment of hot blast stove. During the
research and design of huge high temperature top combustion hot blast stove, hot
blast stove accurate design system have been established, which is based on the
theoretical research, experimental investigation, industrial trial, 3-D precision
design. The system integrated application of a variety of advanced research
methods, and developed several calculation programs independent. Research group
not only analyzed and calculated the hot blast stove theoretically, but also did the
cold/hot test and industrial test to verify the calculation results. The 3-D design
method also was used to enhance design efficiency and precision, and to optimize
design scheme.

Table 1 Heat dissipation of different preheating process

Process Shell (kJ/Nm3

blast)
Pipe (kJ/Nm3

blast)
Valve cooling (kJ/
Nm3 blast)

Two stage high temperature
preheating

52.58 71.23 17.71

Low temperature preheating 44.42 57.12 8.51

Different (%) 15.5 26.2 51.9

Table 2 Comparison of different preheating process

Process Blast
temperature
(°C)

BF gas
flow
(Nm3/h)

Air
flow
(Nm3/h)

Coke
rate
(kg/tHM)

Thermal
efficiency
of hot
stove (%)

Thermal
efficiency of the
hot blast stove
system (%)

Two stage
high
temperature
preheating

1300 338089 218406 290 77.01 83.76

Low
temperature
preheating

1200 303776 196240 305 74.84 84.05

Different
(%)

100 34313 22166 −15 2.17 −0.29
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Numerical Simulation of Top Combustion Hot Blast Stove

The combustion type in the dome combustion hot blast stove is turbulent
non-premixed combustion, which is simulated by the mixed fraction k- e- g model.
The control equations include:

Continuity equation:

@q
@t

þr � ðqUÞ ¼ 0 ð2Þ

Momentum Equation:

@qU
@t

þr � ðqU � UÞ � r � ðleffrUÞ ¼ �p
0 þr � ðleff ðrUÞTÞþB ð3Þ

In the equation, q is density of main stream, U is average velocity of main
stream; leff is effective viscosity, which is defined as: leff = l+lT, lT is eddy
viscosity, B is body force.

k-e Equation:

@qk
@t

þr � ðqUkÞ � r � lþ lT
rk

� �
rk

� �
¼ PþG� qe ð4Þ

In the equation, k is the turbulent kinetic energy, e is the turbulent dissipation
rate, P is shear generated, G is volume generated, rk and re respectively represent
Prandtl number of k and e. In the calculation, rk = 1.0, re = 1.3. C1, C2 and C3 are
empirical constant, C1 = 1.44, C2 = 1.92, C3 = 0.09.

Considering that combustion in hot blast stove is diffusion combustion, a
non-premixed PDF model is used. The main fuel of hot blast stove is BF gas, which
produce CO2, H2O and N2 after combustion. CO2 and H2O belongs to polar
molecules gas, within a certain wavelength radiation and energy absorption. In
common engineering combustion equipment, radiation heat transfer is the main
method to transfer heat, up to 90%. So radiation model must be used when we
simulate the combustion in hot blast stove. For radiation heat flux qr:

�rqr ¼ aG� 4arT4 ð5Þ

The expression of −∇qr can be directly introduced to the energy equation,
thereby obtaining the heat source caused by the radiation. The absorption coefficient
and scattering coefficient of a given mixture are required for the use of this radiation
model. Because the mixture contains CO2 and H2O, the absorption coefficient is
calculated by using the gray gas weighted average model (WSGGM). Boundary
conditions: set flow, temperature and composition of air and gas inlet, resistance
coefficient of checker brick.
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Through iterative calculation, pressure distribution, velocity distribution, tem-
perature distribution, CO concentration distribution and flow field distribution of
the dome combustion hot blast stove are obtained, as shown in Fig. 4.

It is found by calculation that, after flowing into the premix chamber, velocity of
air and gas increase quickly when they down through the throat because of flowing
area decreases which is caused by shrinkage throat. A mixture of air and gas here is
greatly enhanced, and nonuniformity caused by upper stream is also effectively
reduced. Through the strengthening mixture of the throat, velocity distribution,
temperature distribution and concentration field distribution in the combustion
chamber are axisymmetric. CO is fully burned in the combustion chamber before
flowing into the checker brick, avoid the occurrence of secondary combustion
within the checker brick and to extend the service life of checker brick. The uniform
swirling flow field in dome combustion hot blast stove avoids the production of
local high-temperature zone, which can produce a large number of NOx.

Cold Blast Distribution Uniformity of Top Combustion Hot
Blast Stove

During blasting period, the cold blast flow into the bottom of the stove through the
branch pipe, and then flow into the regenerator chamber. After exchanging heat in
regenerator chamber, the cold blast become hot blast, and leave the hot blast stove
from hot blast outlet. In order to improve the efficiency of the use of regenerator
chamber, and make the heat in regenerator chamber to be taken away evenly and

(1)            (2)             (3)           (4)                 (5) 

(1)-Pressure distribution, (2)-Velocity distribution, (3)-Temperature distribution,
(4)-CO concentration distribution, (5)-Flow field distribution 

Fig. 4 Results of CFD simulation for top combustion hot blast stove
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fully as much as possible, cold blast should be distributed evenly into the chamber,
avoid nonuniformity.

Three schemes are designed: (1) Single cold blast inlet pipe; (2) Single cold blast
inlet pipe with guide plate; (3) Using the two waste gas branch pipes as cold blast
inlet pipes. After analyzing simulation results of three schemes, it is found that if
used single cold blast inlet, whether guide plate used or not, there are wide range of
high speed area and low speed area near the inlet. If two waste gas branch pipes are
used as cold blast inlets, it could decrease the high speed area and low speed area
obviously. The distribution of cold blast is more uniform, which is beneficial to
improve the heat exchanging efficiency of the regenerator chamber. Figure 5 shows
the velocity distribution of cold blast in the blasting chamber.

Industrial Cold Test of Top Combustion Hot Blast Stove

The cold industrial test for hot blast stove of Shougang Jingtang’s 5500 m3 huge
BF was carried out to verify the numerical simulation. The testing content included
air jet velocity, gas jet velocity (medium was air), velocity in throat, regenerator
chamber upper velocity distribution, regenerator chamber lower velocity distribu-
tion, flow field inside the stove, etc.

Test results show that the distribution of air and gas among nozzles are not
uniform. The speed of nozzles which are near the branch pipe is higher than others.
The gas jet velocity is more uniform than air’s. The test results are consistent with
the numerical simulation, so we believe that the simulation is reliable. Because air
and gas swirl down through the throat, and flow near the wall, the velocity near the
wall is higher, and velocity in center of the combustion chamber is lower, which
covers an area of about 10% of the regenerator chamber upper area.

(1)                           (2)                            (3) 

(1) Single cold blast inlet pipe; (2) Single cold blast inlet pipe with guide plate; 

(3) Using the two waste gas branch pipes as cold blast inlet pipes 

Fig. 5 Velocity distribution of cold blast in the blasting chamber
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Hot Condition Simulating Trial

For further study of transfer theory of combustion, gas flow and heat transfer
process of dome combustion type hot blast stove, 2 hot blast stoves for hot con-
dition trial based on prototypical of dome combustion hot blast stove of Jingtang’s
5500 m3 BF are established. The “one stove burning and one stove blasting”
working mode is applied to simulate real working process of the hot blast stove.

The 2 hot blast stoves for hot condition trial are provided with 289 temperature
meters and corresponding gas flow meters for many times of hot condition test of
hot blast stove. On-line detection is used to test temperature variety of checker brick
in the regenerator chamber at combustion and blasting statuses of hot blast stove,
and with combination of pressure detection and fume composition detection to
analyse temperature field distribution status and combustion status in the experi-
mental hot blast stoves. The results of hot condition test of hot blast stove prove
that, the results of the flow field numerical simulation of combustion chamber and
the numerical simulation of regenerator chamber are correct. The simulation and the
test provide theoretic and experimental basis for optimal design of the hot blast
stove and configure checker brick reasonably.

Research on Regenerator Chamber

Regenerator chamber has the characteristics of periodic heat absorption and
exothermic, and is another key part of hot blast stove. The design of checker brick
and channel regenerator chamber, and selection of refractory material are empha-
sized during the design of hot blast stove.

Optimization of Checker Brick

The checker brick should meets the following conditions:

• Having large heating surface, can satisfy the requirements of the heat transfer
rate;

• Having enough filling rate, can satisfy the heat storage capacity;
• Having enough compressive strength, can support regenerator chamber;
• Checker bricks in high temperature zone have excellent creep resistance;
• Easy to be manufactured, low cost, quality is stable.

Figure 6 shows the three kinds of checker bricks currently are used in a wide
range. Table 3 shows the specification comparison of these three checker bricks.

Compare with checker brick A, checker brick C has smaller hole and living area.
Under the same simulation condition, the pressure loss will increase with smaller
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hole. If we use checker brick A (/30 mm) as the benchmark, when the hole of
checker brick decrease to 25 mm, the pressure loss will increase 50%, and when the
hole of checker brick decrease to 20 mm, the pressure loss will increase 150%, as
shown in the Fig. 7.

In order to reduce pressure loss, a series of method should be used after using
small hole checker brick, like increasing the diameter of regenerator chamber and
flow area, and lowering gas velocity. The convective heat transfer coefficient of the

(A) 19 holes- ϕ30mm (B) 19 holes- ϕ25mm (C) 37 holes- ϕ20mm 

Fig. 6 Three types checker brick

Table 3 Specification
comparison of three checker
bricks

Items A B C

Diameter of hole (mm) 30 25 20

Numbers of hole 19 19 37

Filling rate (-) 0.612 0.627 0.655

Active area (-) 0.388 0.373 0.345

Thickness of brick (mm) 120 120 120

Heating area per volume (m2/
m3)

48.6 56.1 64.7

Equivalent depth (mm) 25.2 22.4 20.2

Thickness between holes (mm) 17.3 15.2 13.5

Fig. 7 Relationship between
checker brick hole and
pressure loss
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fluid has a great relationship with the flow condition, which is showed by the
Reynolds number. The calculation formula of the Reynolds number is:

Re ¼ qvd=l ð7Þ

In formula 7, q is density of the fluid, v is velocity, d is diameter of checker brick
hole, l is dynamic viscosity. Table 4 shows regenerator chamber specification
comparison with 3 different checker bricks.

Option A uses checker brick with diameter 20 mm hole. In this situation, the
height of regenerator chamber should be less than 18 m, in order to control the
pressure loss, and avoid blocking the hole. So the diameter of the regenerator
chamber should be increased to get enough checker brick weight for storing heat.
Average Reynolds number of option A is just 1504, which is less than option B,
when they have the same pressure loss. This is not good for heat convection.

If the checker brick diameter 20 mm like option C is adopted, and keep the
heating area as same as option A and B, the weight of regenerator chamber will
increase about 12%. The Reynolds number is same as option B. So we can get
balance easily between heating area and weight, and we also can get higher using
efficiency of regenerator chamber when we use diameter 30 mm checker brick like
option B.

During the hot blast stove repair, it was founded that on the upper surface of the
wall and inner surface of upper silicon checker brick there was a thick and loosened
layer of residue which was formed by reaction of silicon bricks and dust under high
temperature condition. Colors of the residue were earth yellow and dark gray, and
the original color of silicon brick was pale yellow. After cooling to room tem-
perature, the residue began to crack and peel from the checker brick. It was clean on

Table 4 Specification comparison with 3 different checker bricks

Items Option
A

Option
B

Option
C

Effective volume of BF (m3) 5500 5500 5500

Blast volume (Nm3/min) 9300 9300 9300

Blast temperature (°C) 1300 1300 1300

Diameter of regenerator chamber (m) 10.89 10.0 10.89

Height of regenerator chamber (m) 17.48 22.5 21.48

Ratio of height to diameter 1.61 2.25 1.97

Diameter of checker brick hole (mm) 20 25 30

Average Reynolds number 1504 2036 1980

Pressure loss of regenerator chamber (Pa) 616 783 446

Heating area of hot blast stove (m2/HBS) 104452 96524 95885

Weight of checker bricks per hot blast stove (t/HBS) 2164 2175 2435

Heating area of checker brick per volume of blast
(m2�m−3�min−1)

47.48 41.52 41.24

Height of hot blast stove (m) 46.2 50 50.2
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the top surface of regenerator chamber and no residue, because the gas velocity here
was too high to keep dust staying. But silicon checker brick was eroded because of
being long-term exposed under high temperature and gas condition. The relatively
weak part of the silica brick was eroded seriously, and surface of the weak part
became honeycomb. The damaged checker brick details were shown in Fig. 8.

The internal erosion of hot blast stove is mainly determined by the chemical
composition of BF gas and the surface temperature of refractory lining. After
testing of BF gas gravity dust, it is found that the main composition of BF gas dust
were MgO, CaO, Fe2O3, K2O, Na2O and ZnO, which is related to the reaction
taking place inside the BF. There will be some small particles that have not been
removed as the gas flows into the hot blast stove. When the BF gas react in hot blast
stove, the products of combustion will adhere to the surface of the refractory lining
under high temperature condition. This will cause damage to the silica and alu-
minium siliceous refractory which always happen in BF.

Hot blast stove always works under the condition of high temperature and high
pressure. For long-term used hot blast stove which is designed to use for
25 * 30 years, it has big risk to use smaller hole (like diameter 20 mm) checker
brick.

Considering the above factors, it is advisable to use diameter 25 mm checker
brick which has large heating area, a moderate amount of pressure loss and
unblocked characteristic, to achieve high efficiency, long service life and low cost.

Numerical Simulation and Optimization of Regenerator
Chamber

The hot blast stove is a typical heat exchanger, which is made of a large number of
checker bricks. Due to the periodic characteristics of the hot blast stove, the heat
storage and heat release of the hot blast stove have the characteristic of hysteresis

Fig. 8 Erosion of upper silicon checker brick in hot blast stove
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and nonlinearity. The calculation of hot blast stove regenerator chamber has been
based on several empirical formulas for a long time [15].

The hot blast stove regenerator chamber calculation program developed by
BSIET, is based on the German H. Hausen theory to calculate the vertical tem-
perature field of regenerator chamber. After practical use and continuous opti-
mization and improvement of the program for several years, it can accurately
calculate the temperature distribution in regenerator chamber, and provide effective
guidance for hot blast stove precise design. Figure 9 shows the temperature dis-
tribution curve of regenerator chamber of hot blast stove of Tonggang’s new
No. 2 BF. It was calculated by the program. With the guidance of the calculation
result, we could choose different refractory material for different part of the
regenerator chamber. For example, the height of the silicic checker brick eventually
identified as 70 � 120 mm = 8400 mm high, which was considered with both the
calculation result and the requirement of the temperature range 1200 * 950 °C.
With the understanding of the temperature change along the height of the regen-
erator chamber in different time, we could reasonably choose the refractory mate-
rials of different parts to ensure the long-term stable operation of the hot blast stove.

Fig. 9 Temperature distribution curve in regenerator chamber
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Design of Low Stress and no Overheat System for Hot Blast
Pipeline

Static Force Analysis of Pipeline

The hot blast pipe, main pipe and ring pipe in hot blast stove system are high
temperature and high pressure pipes, and they are the most complicated piping
design of hot blast stove. Hot blast pipeline is an important link to achieve high hot
blast temperature, and is the guarantee of stable transportation of high temperature
hot blast.

In the design through the flexible structure with rigid structure should be
designed with a combination of low power pipeline, pipe system using professional
analysis software design and calculation of pipeline (Fig. 10), reasonable design of
pipe, corrugated expander, pipe rack, pipe rod, so that the hot blast pipeline into a
low stress system. Effectively guarantee the normal service life of the pipe system.
The hot blast duct and three fork pipe fixing bracket, a fixed bracket on both sides
of duct axial compensator for thermal displacement, absorption duct, is arranged
between the fixed bracket and compound compensator is used to heat the hot blast
stove, hot blast stove and the hot blast rising displacement absorption branch. The
hot blast duct with rigid rod body, overcome the expansion force, the whole
pipeline system of thermal pressure force, the end of the hot blast duct is used to
absorb the hot blast duct compensator, and the elongation of the rod thermal
expansion displacement, to overcome the blind plate force hot blast duct, hot blast
duct of the low stress drop. Through the optimization design of refractory in the
pipeline, a no overheating system of hot blast pipe was established.

Design Optimization of Hot Blast Branch Pipe

The hot blast duct and three fork branch intersection is the position of stress
concentration. Through the pull beam structure is arranged in a hot blast pipe on the
triangle layout, the characteristics of triangle stability, improve the stability of steel

Fig. 10 Force analysis of hot blast pipe system
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pipe/hot blast duct three forks (Fig. 11). Special method should be used because the
hot blast outlet exists larger vertical displacement after heating up the hot blast
stove. A vertical displacement between hot blast main pipe and hot blast outlet
should be kept when hot blast outlet is installed (Fig. 12). The hot blast outlet will
rise up with the heating of hot blast stove. When elevation of hot blast outlet and
hot blast valve is same, the hot blast valve should be installed. This method could
decrease stress of hot blast outlet.

Design Optimization of Corrugated Compensator

Hot blast pipe compensator stiffness is relatively small, high temperature and high
pressure and harsh working conditions, refractory heavy load makes the compen-
sator has become a weak link in hot blast pipe system. The load of the compensator
is improved by adding the structure of the ripple compensator. The expansion joint
of traditional double axial compensator has wide width and is prone to overheat and
even wind. By optimizing the form of compensator structure and adopting the

Fig. 11 Triangular tension
beam structure
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compound form of hinge and axial, the width of expansion joint of compensator is
reduced, and the tightness of refractory material is improved (Fig. 13).

Optimization of Refractory Structure Design

The hot blast pipeline adopts a heavy brick, three layer of heat insulation brick,
spraying a layer of unshaped refractory. The upper part of the pipeline Section 120

Fig. 12 Staggered
installation of hot blast valve

Fig. 13 Optimization of hot
blast pipe system
compensator
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degree heavy brick with locking structure, improve the structural stability of lift.
The expansion joint is designed reasonably in the axial direction of the pipe, and the
expansion joint is protected by heavy bricks. Hot blast valve located near the
expansion joints, convenient maintenance for the valve, avoid change valve,
damage the overall stability of the pipeline refractories (Fig. 14).

Application

Top combustion hot blast stove and efficient energy conversion technology has
applied to the Shougang Jingtang’s 5500 m3 huge BF, Qiangang’s No. 1 BF
(2650 m3), the new No. 2 BF (2650 m3) of TISCO, No. 8 BF (3052 m3) of
Liangang, No. 2 BF (1950 m3), the new No. 3 BF (1800 m3) of Xiangtan Iron &
Steel Co. Which is the first BF of Shougang Jingtang’s 5500 m3 the application of
the technology huge BF, after the commissioning of monthly average hot blast
temperature reached 1300°C, the combustion condition of single BF gas, BF hot
blast temperature stable design index reached 1300 °C, has created considerable
economic benefits and good social benefits for the user.

The new technology in Qiangang’s No. 2 BF (2650 m3) application, the pro-
duction index steadily, gas preheating temperature 180 * 200 °C, combustion hot
blast preheating temperature 350 * 400 °C, hot blast stove burning BF gas, can
provide 1250 °C hot blast temperature to improve the stability of BF.

Conclusions

With the using of two stage double preheating process, hot blast stove of Shougang
Jingtang 5500 m3 hot blast furnace could get hot blast as high as 1300 °C with fully
using of blast furnace gas.

With the using of joint research combined with numerical simulation, cold
condition test and hot condition experiment, the flow field in combustion chamber
and cold blast distribution in blasting chamber are optimized.

lock brick 
Structure 

Fig. 14 Optimization of refractory structure for hot blast pipe
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It is advisable to apply diameter 25 mm checker brick which has large heating
area, a moderate amount of pressure loss and unblocked characteristic, to achieve
high efficiency, long service life and low cost.

Pay attention to design optimization of hot blast pipeline, no overheat and low
stress hot blast pipeline system is applied with structure optimization, refractory
optimization and using of advanced design system.

Top combustion hot blast stove and high efficient energy conversion technology
has been applied to several hot blast furnaces, which scale from 1800 to 5500 m3.
The practical application prove that the technology can increase the blast temper-
ature efficiently, economically and steadily.
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An Exergy Study of Cowper Stove
Operations with an Iron Blast Furnace

Patrick E. Krane and Matthew John M. Krane

Abstract This study examines the operations of the Cowper stoves attached to an
iron blast furnace from a Second Law perspective. The exergetic efficiency of a
3-stove system operating at cyclic steady state is determined using a model
accounting for the thermal, mechanical, and chemical flow exergies of the top gas
and blast air, as well as the thermal exergy stored and released in the stoves. The
analysis covers the heating and mixing of blast gas in one on-blast stove, and the
combustion of top gas and its use to heat two on-gas stoves. The effect of different
cycle times, and blast furnace operating conditions on the exergetic efficiency of the
cycle is examined, and the optimal cycle time for different blast temperatures found.
In addition, a study of the combustion parameters quantifies the advantages of using
enriched oxygen in the combustors.

Keywords Cowper stove � Blast furnace � Exergy

Introduction

Energy is a large part of the cost of blast furnace ironmaking and one effort to save
on that cost is the use of Cowper stoves [1]. These devices are regenerative heat
exchangers, burning furnace waste gases and storing the heat to later preheat the
blast gas.

One metric for the analyzing and improving the performance of such an energy
intensive system is the use of exergy analysis. Exergy is the part of an energy
stream that produces useful work and so it is therefore the part of that stream with
economic value; it can be stored in thermal, mechanical, and/or chemical form.
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While energy is conserved when transferred or used in any way, it is degraded in
usefulness and so exergy is destroyed during real processes. Exergy destruction
minimization has been used successfully in the energy systems community for the
purpose of optimizing design parameters in a variety of energy-intensive systems
[2–6]. This capture of waste gases and heat minimizes exergy losses from steel
production and increases the overall efficiency of the mill [1].

Some previous studies have applied exergy analyses to blast furnaces. Bisio [7]
studied the interactions of the blast furnace, Cowper stoves, and a gas turbine
system. They noticed that the use of more blast furnace gas in the turbine and less
natural gas lessened exergetic losses. Ziebik and Stanek [8] showed an exergy
analysis of a blast furnace and stoves from which approximately half of the exergy
left in the pig iron, a quarter was destroyed internally, and the rest was lost in other
effluents. A more detailed analysis of only the blast furnace using the Rist model [9]
was done by Rasul et al. [10], who found improvements with changes in compo-
sition of the solid charge and higher blast temperatures. These studies are all based
on steady state models, but exergy analyses of simple thermal systems has shown
the optimization of cyclic, transient processes is different from steady state/steady
flow systems [4, 6]. The current study examines the operations of a Cowper stove
system, which is inherently a transient process, using exergy analysis to understand
where in the system exergy is destroyed or lost and how that might be mitigated.

Model Description

A diagram of the three Cowper stove system studied in this model can be seen in
Fig. 1. These three stoves run in a cycle with two stoves “on-gas” and one
“on-blast” at any given time, and thus each stove spends twice as much time on-gas
as on-blast. Figure 2 shows the behavior of the stove temperatures changing
through an entire cycle.

The model performs exergy calculations during one-third of a full cycle at cyclic
steady state, where one stove is on-blast, one on-gas (low temperature), and the
third on-gas (high temperature). Because each stove has identical losses and
destructions as the other stoves during each complete cycle, the system behavior
and efficiency for one-third of the cycle is the same as for the full cycle. The inputs
to this system are the top gas of the blast furnace (including CO), methane, and air
for the combustors (3,13), and air for the blast (6). The product of the system is the
blast for the furnace at the specified temperature (10), and the on-gas stoves exhaust
of hot combustion products to the environment (5).

To begin the model, the following assumptions are made:

(a) all gas flows in the cycle are steady except through the mixer and on-blast
stove;

(b) the combustion of carbon monoxide from the top gas and methane in the
combustion gas in the combustor is complete;
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(c) all devices in the system are adiabatic;
(d) the only significant pressure losses are due to friction in the stoves, and an

equivalent loss in the mixer;
(e) gas exits the on-gas stove at atmospheric pressure, and enters the blast furnace

at 3*patm and Tblast;
(f) air flow through the stove flues is turbulent and fully-developed;
(g) axial conduction in the stoves is negligible;
(h) the lateral temperature distribution in the ceramic of each stove is uniform at

any height;
(i) gas flow through the stoves is evenly distributed over stove area, and so all the

evenly-spaced, circular flues have the same mass flow rate.

+ methane + methane,11

Fig. 1 Diagram of model three-stove system
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Heat Transfer, Flow, and Combustor Models
Each device in the system is modelled to determine the temperature, pressure, and
composition changes within it. The iron blast furnace is a source of exergy (mostly
chemical) and the load on the stove system (requiring blast gas at Tblast). The Rist
model, as described in [9], is used to approximate steady furnace behavior, in
particular, to predict the top gas flow rate, composition, and temperature for a given
Tblast and blast rate. It is assumed, based on practice, that 60% of the top gas is
diverted for alternate methods of waste exergy recovery and 20% is used in each
on-gas stove.

As the top gas enters the stove system (node 1), it is saturated with water vapor
in the baghouse and cooled to T2 = To, completely destroying all thermal exergy in
the gas. The gas exits the baghouse and enters two combustors, in which CO from
the blast furnace and added CH4 are burnt; the overall reaction is:

nCO2 CO þ nCO2
2 CO2 þ nH2O

2 H2Oþ nN2
2 þ nN2

3

� �
N2 þ nO2

3 O2

þ nCH4
3 CH4 !yields nCO2

4 CO2 þ nN2
4 N2 þ nH2O

4 H2O
ð1Þ

The temperature of the gas leaving the combustor is found from the enthalpy
balance for the combustor:

nCO2 ðh2;CO þDHf ;COÞþ nCO2
2 h2;CO2 þ nN2

2 h2;N2 þ nH2O
2 h2;H2O þ nCH4

3 ðh3;CH4 þDHf ;CH4Þ
þ nN2

3 h3;N2 þ nO2
3 h3;O2 ¼ nCO2

4 h4;CO2 þ nN2
4 h4;N2 þ nH2O

4 h4;H2O þ nCO2
4 � nCO2

2

� �
DHf ;CO2

þ nH2O
4 � nH2O

2

� �
DHf ;H2O

ð2Þ

For modelling the heat transfer within stoves, they are divided into a set of
circular control volumes of equal radius and height and centered around a repre-
sentative flue through which gas flows. Because all flues have identical geometries
and mass flow rates, the temperature profiles around each flue is identical.

The convection heat transfer coefficient for the gas flow in the flues is found
from the correlation [11]:

Nu ¼ hdflue
kair

¼ 0:023Re0:8Pr0:33 ð3Þ

The effectiveness of one axial section of the stove is

e ¼ 1� e
� hAs

_mfluecp;air ð4Þ

and the heat flow rate from the gas to the stove is
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q ¼ e _mfluecp;air Tgas;i � Tstove;i;old
� � ð5Þ

The gas and stove temperatures used to find the heat transfer (q) change during
the cycle. At each time step (Dt) in the cycle, Eq. 5 is solved using the temperature
of the gas entering the (i)th section of the flue (Tgas,i) and the local stove temper-
ature from the previous time step (Tstove,i,old).

The new temperature in each stove section and the gas exiting that section can be
found from:

Tstove;i ¼ Tstove;i;old þ qDt
qcerccerVsection

ð6Þ

and

Tgas;iþ 1 ¼ Tgas;i � qDt
_mfluecp;air

: ð7Þ

The axial distribution of stove and gas temperatures are found by marching
Eqs. (5)–(7) from where the gas enters the flue, with the last gas temperature being
the output stove temperature. To reflect actual stove operation, the direction of the
flow is reversed depending on whether the stove is on-gas (flowing from top) or
on-blast (flowing from bottom).

The mixer after the on-blast stove bleeds in air at ambient temperature in order to
bring the temperature entering the furnace down to Tblast. The mass and energy
balance give the output mass flow and temperature:

_m10 ¼ _m8 þ _m9 ð8Þ

T10 ¼ _m8T8 þ _m9T9
_m10

: ð9Þ

At each time step, as the temperature of the gas exiting the stove decreases, the
on-blast section calculations were iterated to find the values of _m8 and _m9 that result
in the required blast temperature, T10 = Tblast, and flow rate, _m10:

Exergy Analysis
The flow exergy at each node, j, is the sum of thermal (th), mechanical (m), and
chemical (ch) exergy:

_Ej ¼ _Ej;th þ _Ej;m þ _Ej;ch ð10Þ

_Ej;th ¼ _mjcp;air Tnode � T0ð Þ � T0 ln
Tj
T0

� �
ð11Þ

_Ej;m ¼ _mjT0Rgas ln
Pj

P0

� �
ð12Þ
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Chemical exergy is calculated as the sum of the chemical exergies of each
compound in the gas, where the chemical exergy of a compound (X) found in air at
dead state at fraction yx,0 is calculated as follows:

_Ech;X ¼ _mX;jT0RXyX;j ln
yX;j
yX;0

� �
ð13Þ

For a compound not found at dead state, the chemical exergy is

_Ech;X ¼ _mX;jT0RXyX;j
Ech;std

T0Rgas
þ ln yX;node

� �� �
ð14Þ

For all exergy calculation, dead state was T0 = 298 K, P0 = 1.01 � 105 Pa, and
composition being air at 50% humidity calculated based on data in [12].

In addition to these terms, the tare exergy (the exergy stored in the charging
stoves during one-third of a cycle at cyclic steady state [6]) was calculated as
follows, with the stove temperatures being the temperatures at the end of one-third
of a cycle:

Etare ¼
Xn
j¼1

ToqcerccerVsectionln
Tj;stove3
Tj;stove2

� �
ð15Þ

At cyclic steady state, an equal quantity of exergy is lost in the discharging
stove, so the tare exergy is treated as both an input and an output in the equation for
system efficiency:

g ¼
_E10 þ _Etare

_E1 þ _E3 þ _E6 þ _E11 þ _E13 þ _Etare
ð16Þ

The exergy destruction in the baghouse, combustor, and mixer were calculated
using the equation:

_Edest ¼
X

_Ein �
X

_Eout ð17Þ

In the stoves, the exergy destruction is calculated using the following equation:

_Edest ¼
X

_Ein �
X

_Eout � _Estove ð18Þ

In this equation, the change in stove exergy over one-third the cycle time (s) is
found as follows:
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DEstove ¼ qcerccerVsection
Zs

0

Xn
j¼1

Tj � Tj;old � T0ln
Tj

Tj;old

� �
dt

 !
ð19Þ

For each subsystem (j), the entropy generation number is calculated as follows:

NS;j ¼
_Ed;j þ _EL;j

_E1 þ _E3 þ _E6 þ _E11 þ _E13 þ _Etare
; ð20Þ

where every subsystem destroys exergy _Ed;j
� �

and only the on-gas stoves have
exergy losses to the environment ( _EL;j).

The sum of all entropy generation numbers is related to overall system
efficiency:

g ¼ 1�
X
j

NS;j ð21Þ

A study comparing different cycle times at different blast temperatures and one
examining the effect of different air compositions added to the top gas in the
combustor, were conducted using this model and the values for stove geometry
found in Table 1. Thermodynamic property values were taken from [9].

Results and Discussion

Two parametric studies were performed using this model. Both studies used the
blast furnace Rist model [9] to generate different top gas states and flow rates of top
gas and blast for different blast temperatures.

Effects of Blast Temperature
For the first study, conditions were evaluated at three values of Tblast. At each blast
temperature, the Rist model data (Table 2) were used as inputs into the Cowper
stove model operating over a range of cycle periods (s).

Table 1 Cowper stove
geometry used for all cases in
this study. Volume ratio is
ratio of ceramic volume/flue
volume in stove

Number of flues 21000

Flue length (m) 36.2

Flue diameter (m) 0.025

Volume ratio 1.5

Number of axial flue sections 100

Blast Furnace Wind Rate (Nm3/hr) 1.6 � 105

ceramic density (q, kg/m3) 1500

ceramic specific heat (c, J/kgK) 1000
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Figure 3 shows the exergetic efficiency of the stove system over the range of s.
This efficiency decreases with higher blast temperatures, primarily because at lower
blast temperatures, the combustor does not destroy as much exergy heating gas to as
high a temperature. However, a higher blast temperature does improve the exergetic
performance of the blast furnace itself [10], so an analysis of the entire
stove-furnace system is needed to understand the details of these tradeoffs. It should
be noted that the slope of the η-s curve near the optimal cycle time is shallow,
especially for low Tblast, so gains from altering the cycle time near the optimum
point are small.

By plotting NS(s), Fig. 4 shows in which devices exergy destructions and losses
occur when operating at Tblast = 1500 K. The exergy destructions in the baghouse
and mixer are so small that they are not included on this graph. As can be seen, the
dominant sources of exergetic inefficiency are the exergy destruction in the com-
bustor, and the exergy destructions and losses in the on-gas stove.

While the destruction in the combustor changes very little with cycle time, the
exergy destroyed in the on-gas stove increases as cycle time decreases, while the
exergy lost from the on-gas stove increases with cycle time. This exchange of a
destruction for a loss in the on-gas stoves is because, when cycle time increases, the
gas spends more time moving through a stove that has already been heated by the
earlier gas. The consequent lower temperature difference between stove and gas
results in less exergy destruction, but less heat is removed from the gas, resulting in

Table 2 Outputs of the rist
blast furnace model different
Tblast

Tblast (K) 1200 1350 1500

_m top gas (tonne/stove/hr) 132 135 138

Ttop gas (
oC) 340 304 269

%mass COtop gas 19.1 19.1 19.1

%mass CO2, top gas 35.3 36.4 37.5

%mass N2, top gas 45.6 44.5 43.4

_m blast gas (tonne/hr) 393 392 391

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

900 1350 1800 2250 2700 3150 3600

η

τ (s)

1500 K

1350 K

1200 K

Fig. 3 Efficiency of the
Cowper stove system at
different cycle times and blast
temperatures
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a greater exergy loss at the stove exit. One practical implication of this tradeoff is
that running the stove at cycle times greater than optimum would make economic
sense if some way of re-capturing the exergy lost in the stove exhaust is found.

Effects of combustor air composition
The cycle time study was run assuming that the air in the combustor was a standard
composition of oxygen and nitrogen (21% O-2, 79% N2), and that exactly the
oxygen required for complete combustion is used. However, in a real stove, to
ensure complete combustion, the air would be in excess of that required for com-
bustion, and could be enriched with oxygen to increase efficiency. To see the effects
of combustor air composition, a study was run at a cycle time of 30 min and a blast
temperature of 1500 K, looking at combustor air flows between 100 and 150%, at
10% intervals, of the requirements for complete combustion, at compositions of 21,
25, and 30% oxygen. Figure 5 shows the resulting efficiencies of the system under
these conditions, as a function of the mole fraction of the air reacted (the fraction of
the air that is oxygen used in the reaction, as compared to unused oxygen or
nitrogen).

One thing that can be seen in this plot is that the effect of the composition of the
unreacted gas (whether it is oxygen or nitrogen) is negligible. The decreased effi-
ciency from adding excess air (for complete combustion) will be made up by the
increased proportion of oxygen in the air, resulting in the same molar flow rate of
air going into the combustor. It can also be seen that there are large efficiency gains
for increasing the mole fraction reacted by lower values, but as the mole fraction
increases past around 0.22, there are diminishing returns in efficiency. This
decreasing slope suggests that when running with excess air in the combustor,
oxygen enrichment to a composition of 30% would bring substantial benefits, but at
some point beyond that, it would no longer be worthwhile.
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Fig. 4 Exergy destructions
and losses at Tblast = 1500 K,
by subsystem. For each
subsystem, NS is the
difference between the curve
and the one below. For
components in the on-gas
subsystem, the values from
each of the two stoves are
combined
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The exergy destructions and losses in the different devices as a function of air
composition are seen in Fig. 6. This plot shows that the increase in efficiency with
increased mole fraction reacted is due mainly to decreased exergy destruction in the
combustors and decreased losses from the on-gas stoves. One reason for the
increased destruction in the combustor for lower reacted mole fractions is that
the combustor must heat up a larger amount of air for it to still heat the stove to the
same temperature, and so needs to burn more natural gas to do so. Exergy losses
also increase for lower mole fractions reacted because there is a greater mass flow
of gas exiting the stove. This trend suggests that the more excess air used in the
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combustor, or the less oxygen-enriched it is, the more potential for improvement
there is in recapturing some of the exergy in the air leaving the stoves.

Cyclic thermal response of a stove
To better see how the stove changes over the course of a cycle, Fig. 7 shows the
axial temperature profile of the stove and the gas flowing through it at the beginning
and end of the on-blast state when operating at 40% excess air, 25% oxygen.
Because the system is operating at cyclic steady state, the temperature distribution
at the start of the on-blast state is that at the end of the on-gas state, and vice versa.

It can be seen from Fig. 7 that the stove is not fully heated in the on-gas state,
except at the top. There is very little change in temperature over time because the
top of the stove must be above 1500 K during all the on-blast condition to keep the
blast gas above Tblast. As the cycle goes on, the axial variation in temperature along
the stove increases, while the differences between the stove and gas temperatures
decrease.

Finally, it should be noted that, in all cases, the changes in thermal and chemical
exergy account for effectively all the exergy destruction, while the destruction of
mechanical exergy is negligible, only equaling 0.06% of the total exergy input for
the case. Any significant exergy improvements should focus on the economical
prevention of destruction and loss of thermal and chemical exergy, not mechanical.

Conclusions

A model was developed to study the exergy destructions and losses in the Cowper
stove system attached to an iron blast furnace. The first part of this work used this
model to find an optimal cycle time for each blast temperature. It would be eco-
nomical for the stoves to run at a cycle time longer than the optimum if there is a

Tblast
Fig. 7 Axial temperature
profiles of the ceramic in the
stove and the blast air flowing
through it, from bottom to
top, at the beginning and end
of the on-blast cycle
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way to use the exergy lost in the stove exhaust. The second part of the study
revealed that oxygen enrichment in the combustor up to 30% would produce sig-
nificant gains in exergetic efficiency, but that the benefits from further enrichment
would be smaller. Finally, an examination of the types of losses that occur in the
system shows that efforts to improve efficiency should focus on the destruction of
thermal and chemical exergy, and not mechanical. It should be noted that these
values depend on the geometry and operating conditions of a specific stove system
and blast furnace, and are not general results. However, the conclusions about the
general trends in behavior would still apply to other similar systems.

Acknowledgements The authors thank Mr. Robert Steiger of Paul Wurth, Inc., for helpful dis-
cussions concerning practical aspects of Cowper stove operations.
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Waste Heat Recovery from Aluminum
Production

Miao Yu, Maria S. Gudjonsdottir, Pall Valdimarsson
and Gudrun Saevarsdottir

Abstract Around half of the energy consumed in aluminum production is lost as
waste heat. Approximately 30–45% of the total waste heat is carried away by the
exhaust gas from the smelter and is the most easily accessible waste heat stream.
Alcoa Fjarðaál in east Iceland produces 350 000 tons annually, emitting the 110 °C
exhaust gas with 88.1 MW of heat, which contains 13.39 MW exergy. In this
study, three scenarios, including organic Rankine cycle (ORC) system, heat supply
system and combined heat and power (CHP) system, were proposed to recover
waste heat from the exhaust gas. The electric power generation potential is esti-
mated by ORC models. The maximum power output was found to be 2.57 MW for
an evaporation temperature of 61.22 °C and R-123 as working fluid. 42.34 MW
can be produced by the heat supply system with the same temperature drop of the
exhaust gas in the ORC system. The heat requirement for local district heating can
be fulfilled by the heat supply system, and there is a potential opportunity for
agriculture, snow melting and other industrial applications. The CHP system is
more comprehensive. 1.156 MW power and 23.55 MW heating capacity can be
produced by CHP system. The highest energy efficiency is achieved by the heat
supply system and the maximum power output can be obtained with the ORC
system. The efficiency of energy utilization in aluminum production can be effec-
tively improved by waste heat recovery as studied in this paper.
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Introduction

Aluminum production is a power-intensive industry. Around 72.3% of produced
electricity in Iceland was consumed by aluminum production in 2016 [1].
Approximately half of the energy consumed in aluminum production is lost as
waste heat and the 30–45% of total waste heat is carried away by the exhaust gas
from the aluminum smelter as seen in Fig. 1. Alcoa Fjarðaál is an aluminum plant,
producing 350 000 tons aluminum per year, in east Iceland close to the town of
Reyðarfjörður. The space heating demand of Reyðarfjörður is estimated at
approximately 4.05 MWth.

Power generation and direct heat utilization are two approaches to utilize the
low-temperature energy. The conventional Rankine cycle is widely used in power
generation from high-temperature heat sources. The ORC system is considered as a
low-temperature heat recovery technology for power generation, using an organic
substance with a low boiling point as the working fluid. A temperature-entropy
diagram of the ORC system is shown in Fig. 2 The Kalina Cycle is a power
generation cycle which converts low-temperature thermal energy to mechanical
power, using a mixture of ammonia and water as the working fluid [2].
Thermoelectric generator (TEG) can convert thermal energy from a temperature
gradient into electric energy by Seebeck effect. Comparing the three methods for
power generation, the technology of ORC is considered to be the most feasible one.

As a consequence of the second law of thermodynamics, the conversion of
low-temperature heat to electricity has low efficiency. From the view of the first law
of thermodynamics, higher energy efficiency can be obtained by direct heat uti-
lization. Various approaches are possible to utilize thermal energy directly, such as
space heating, snow melting, swimming pools, agriculture applications and
industrial use [3]. Power generation by the Rankine cycle and Brayton cycle to

Cathode Block

Anode Anode
Bath

Aluminum

Bottom 7%

Sidewall 
35%

Exhaust gas 
30~45%

Fig. 1 Heat loss distribution
in aluminum smelter [6]
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recover the waste heat from aluminum smelter exhaust gas was studied by Ladam
et al. [4]. An ORC system was designed by Ke (2009) to recover the heat from
aluminum production [5]. Most research focuses on electricity generation from the
waste heat in aluminum production, but ignore the heating potential and the
combination of electricity generation and heat utilization.
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Fig. 2 Temperature-entropy diagram of an ORC system
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Nomenclature

Ex exergy (kW) cond condenser

h specific enthalpy (kJ/kg) eva evaporator

m mass flow rate (kg/s) fan fan

P pressure (bar) hex heat exchanger

Q heat transfer rate (kW) gas state of gas

S entropy (kJ/kg K) gen generator

T temperature (°C) gral general

U heat transfer coefficient (kW/m2K) mid middle

v specific volume (m3/kg) net net amount

w Power (kW) pin pinch point

η efficiency pre preheater

sup superheater

Subscripts sys system

amb ambient turb turbine

cw cooling water wf working fluid

In this study, three scenario studies were carried out, concentrating on both
electricity generation and heat utilization. A proper multiple-objective target
function was proposed for the power generation scenario and CHP scenario. The
optimal parameters for each scenario were found by optimization.

System Description

The three scenarios are composed of four modules, which are the heat source
module, the power module, the cooling module and the heating module (Table 1).
The heat source module is the same module in all scenarios. The cooling module
serves the power module as the cold sink. An interface for the heating system can
be provided by the heating module.

Table 1 System module component

Heat source
module

Power
module

Cooling
module

Heating
module

Power generation system
(Fig. 3a)

✓ ✓ ✓ ✓

Heat supply system (Fig. 3b) ✓ ✓

CHP system (Fig. 3c) ✓ ✓ ✓ ✓
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Model

To simplify the model, the assumptions are made:

• The system and heat source is at a steady state. The temperature of the exhaust
gas is 110 °C and the volumetric flow rate is 910 m3/s.

• The heat sink of the cycle is the sea water, which is close to the aluminum
smelter. The temperature is assumed at 6 °C, the mean temperature of the local
sea surface [7].

• 2 °C of superheat and 2 °C of subcooling are assumed at the outlet and inlet of
the evaporator.

• On the working fluid side, the pressure drops and heat losses to the environment
in the evaporator, condenser, turbine, and pump are neglected.

• The thermal resistance of conduction in heat exchanger pipes/walls is neglected.
• The pressure drop in the heat source module after waste heat recovery unit is

considered constant.

The T-s diagram of ORC system is shown in Fig. 2. The thermal energy content
of the exhaust gas can be calculated by

_Qgas ¼ Cp;gasqgas _Vgas Tgas;1 � �Tamb
� � ð3:1Þ

The Cp;gas is the heat capacity of the gas. The qgas is the density of the gas.
The heat transfer through preheater can be given as following equations.

_Qpre ¼ _mwf hwf ;2 � hwf ;1
� � ð3:2Þ

_Qpre ¼ _mgascp;gas Tgas;4 � Tgas;5
� � ð3:3Þ

Heat exchanger area can be calculated by

area ¼
_Q

UDTm
ð3:4Þ

The logarithmic mean temperature difference can be calculated by

DTm ¼ DTmax � DTmin

ln DTmax
DTmin

ð3:5Þ

In general, the overall heat transfer coefficient can be calculated by

1
U

¼ 1
Uinside

þ d
k
þ 1

Uoutside
ð3:6Þ

The heat resistance of conduction, d
k, is ignored, then
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1
U

¼ 1
Uinside

þ 1
Uoutside

ð3:7Þ

The minimum temperature difference between the hot and cold stream in the heat
transfer unit is referred to as the pinch point temperature difference (PPTD). The
pinch position in a heat exchanger emerges at the place where the heat transfer is
the most constrained [8]. Therefore, the PPTD is the critical parameter in an
evaporator and condenser. The heat transfer area and cycle performance are
influenced by PPTD. The PPTD in evaporator is

DTpin;eva ¼ Tgas;3 � Twf ;3 ð3:8Þ

The heat transfer in the evaporator can be given by following equations.

_Qeva ¼ _mwf hwf ;5 � hwf ;2
� � ð3:9Þ

_Qeva ¼ _mgascp;gas Tgas;1 � Tgas;4
� � ð3:10Þ

Where the _Qrhs refer to the heat transfer in the evaporator excluding the preheat
section.

The power of turbine is given as

_Wturb ¼ _mwf hwf ;5 � hwf ;6
� � ð3:11Þ

The efficiency of turbine is

gturb ¼
hwf ;5 � hwf ;6
hwf ;5 � hwf ;6s

ð3:12Þ

The generator power output is given as

_Wgen ¼ ggen
_Wturb ð3:13Þ

The heat transfer in condenser can be given as following equations.

_Qcond ¼ _mwf hwf ;6 � hwf ;8
� � ð3:14Þ

_Qcond ¼ _mcwcp;cw Tcw;3 � Tcw;1
� � ð3:15Þ

Where _Qcond;con is the heat transfer rate in the condensation section in condenser.
The power of working fluid pump is calculated as
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_Wwf ;pump ¼ _mwfDhwf ;pump ð3:16Þ

gpump ¼
hwf ;1s � hwf ;8
hwf ;1 � hwf ;8

ð3:17Þ

The power of cooling seawater pump can be calculated by

_Wcw;pump ¼ _mcw qcwgDhþDpð Þ
qcwg

ð3:18Þ

The power of gas fan can be calculated by

_Wgas;fan ¼
_vgas pgas;1 � pgas;5

� �
ggas;fan

ð3:19Þ

The volume flow was changed by the temperature drop of the exhaust gas. The
power consumption of original fan module reduces with the less volume flow after
cooling, which originally exists in the gas treatment center (GTC). The flow rate of
the exhaust gas at the outlet of waste heat recovery unit can be calculated by the
following equation:

_Vgas;out ¼ _Vgas;in
Tgas;out
Tgas;in

Pgas;in

Pgas;out
ð3:20Þ

The original fan power is saved by the volume flow rate descending:

_Wfan;save ¼
_Vgas;inDPgas

gfan;ori
�

_Vgas;outDPgas

gfan;ori
ð3:21Þ

The net power output is considered as

_Wnet ¼ _Wgen � _Wgas;fan � _Wcw;pump � _Wwf ;pump ð3:22Þ

The saving power of the gas fan module is considered as a part of power output
by the ORC system. Therefore, the general net power output can be defined as

_Wnet;gral ¼ _Wgen � _Wgas;fan � _Wcw;pump � _Wwf ;pump þ _Wfan;save ð3:23Þ

The general thermal efficiency of the system is

gsys;thermal ¼
_Wnet;gral

_Qgas
ð3:24Þ

The enthalpy exergy of gas can be calculated by
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_Ex;gas ¼ _mgas cp T � T0ð ÞþRgT0ln
p
p0

� cpT0ln
T
T0

� �
ð3:25Þ

The general exergy efficiency of system

gsys;exergy ¼
_Wnet;gral

_Ex;gas
ð3:26Þ

For the heat supply system, the heat transfer in the waste heat recovery unit is
considered as

_Qheat ¼ _mgascp;gas Tgas;5 � Tgas;out
� � ð3:27Þ

_Qheat ¼ _mwatercp;water Twater;in � Twater;out
� � ð3:28Þ

The power input for the heat supply system is

_Winput ¼ _Wfan;save � _Wgas;fun � _Wwater;pump ð3:29Þ

The thermal efficiency of heat supply system is

gheat ¼
_Qheat

_Qgas
ð3:30Þ

Optimization

Objective Function

A multi-objective function, which combines various single objective functions, can
make the optimization comprehensive. The scalarization method is an efficient
approach to obtain the multi-objective function from multiple individual objective
functions [9]. For the power generation system, the objective function and direction
are shown below:

max : _Wnet ð4:1Þ

max : gsys;exergy ð4:2Þ

min : Area ð4:3Þ
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Three objective functions are integrated into two functions and keep the same
direction. These two objective functions can be combined into F xð Þ with the
weighting factors u;w.

max : f1 ¼
_Wnet�
Area

ð4:4Þ

max : f2 ¼ gsys;exergy ð4:5Þ

max : F xð Þ ¼ uF1 xð ÞþwF2 xð Þ ð4:6Þ

Therefore, the objective function is proposed as

max : F xð Þ ¼ u
_Wnet;gral

Area
þw 100 � gsys;exergy

� � ð4:7Þ

By the similar principle, the objective function of optimization for CHP
system is

F xð Þ ¼ u
_Wnet;gral

AORC
þw

_Qheat

Ahex
ð4:8Þ

In the condition, the dimension and magnitude of two terms are same. The
weighting factor can be decided by following equations [10].

u ¼ F1
2 � F2

2

F2
1 � F1

1

� �þ F1
2 � F2

2

� � ð4:9Þ

w ¼ F2
1 � F1

1

F2
1 � F1

1

� �þ F1
2 � F2

2

� � ð4:10Þ

Where F1
1 is the maximum value of F1 xð Þ; F2

2 is the maximum value of F2 xð Þ;
F2
1 is the value of F1 xð Þ when F2 xð Þ reaches the maximum; F1

2 is the value of F2 xð Þ
when F1 xð Þ reaches the maximum.

Iteration Procedure

The design variables for power generation system are Twf ;eva, Twf ;cond , DTpin;eva and
DTpin;cond . When the differences between the input and results of design variables
are less than 0.05%, convergence condition is met and then output the result.
Otherwise, the next iteration will be conducted, shown in Fig. 4. For CHP system,
the design variables are Tgas;mid , Twf ;eva, Twf ;cond and DTpin;cond , shown in Table 4.
A critical parameter, the gas temperature at the outlet of evaporator, is defined as the
middle temperature Tgas;mid .
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Result and Discussion

Figure 5 shows the variation of the objective function with the various evaporation
temperature for 14 different working fluids. Five working fluids, R-236fa, R-245fa,
R-236ea, R-123 and R-600a, have good thermodynamic performance. The envi-
ronmental issue and safety of the working fluid are considered as well. R-123 has
good environmental friendly property, comparing with R-236fa, R-245fa, and
R-236ea, shown in Table 2. The high flammability makes R-600a a low safety.

Weighting factor
φ,ψ

Evaporation temperature
Teva

Condensation temperature
Tcond

PPTD in evaporator
TPPTD,eva

PPTD in condenser
TPPTD,cond

Δ<0.005

Working fluid

Initial data input
Working fluid, 

Teva,Tcond,TPPTD_eva,TPPTD_cond

Results output
Working fluid, 

Teva,Tcond,TPPTD_eva,TPPTD_cond

Working fluid , Teva,Tcond,TPPTD_eva,TPPTD_cond

Yes

No

Fig. 4 Iteration procedure of
optimization
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Therefore, R-123 is selected as working fluid in the iteration. The optimal pa-
rameters of the power generation system and CHP system are shown in Table 3.

In the condition of the same temperature drop for the exhaust gas, the optimal
performance of each system is shown in Table 4. A considerable difference of the
evaporation temperature between the power generation system and CHP system is
owing to the different heat source conditions for the two systems.

The highest exergy efficiency of 19.22% is obtained and 2.573 MW electricity is
produced by the power generation system. The thermal efficiency of 48.1% and
heating capacity of 42.34 MW are obtained by the heat supply system. The power
output and heating capacity of CHP system are 1.156 and 23.55 MW separately.
The gas fan power consumption in the three systems are considerable. More heat
exchanger area is required by CHP system than heat supply system.

From the thermodynamic view, the low emission temperature of the gas is the
more thermal energy is recovered by the waste heat recovery unit. However, the
temperature is also limited by the acid dew point temperature in the exhaust gas and
cannot reach too low. The dew point temperature is influenced by the partial
pressure of the acid in the exhaust gas. The absolute pressure of exhaust gas is as
low as 0.96 bar. Therefore, a low acid dew point temperature is possible, which
will pose an effective lower temperature limit on exhaust gas temperature The
further quantitative analysis should be taken in the future.

Fig. 5 Working fluid selection for ORC system
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Conclusion

In this study, the low-temperature waste heat of exhaust gas from the aluminum
smelter is recovered the three different scenarios. The ORC technology is used in
the power generation system and CHP system. A multiple-objective function and a

Table 2 Properties of working fluids [11]

R-236fa R-245fa R-236ea R-123 R-600a

Molecular
formula

CF3CH2CF3 CF3CH2CHF2 CF3CHFCHF2 CHCl2CF3 CHðCH3Þ3

ODP 0 0 0 0.02 0

GWP(100 years) 9810 1030 1370 77 3

Table 3 Iteration results of optimal parameters

System Working
fluid

Evaporation
temperature (°C)

Condensation
temperature (°C)

PPTD in
evaporator (°C)

PPTD in
condenser (°C)

Power
generation
system

R-123 61.22 16.33 9.469 3.501

CHP system R-123 76.02 17.10 Middle
temperature

3.857

86.43

Table 4 System
performance of three
scenarios

Parameters ORC Heat supply CHP
_Wgral 2.573 MW −0.104 MW 1.156 MW

_Qheat 0 42.34 MW 23.550 MW

gexergy 19.220% 0 8.63%

gthermal 2.921% 48.1% 28.05%

Area 21115 m2 14412 m2 25509 m2

_Wnet 1.248 MW 0 −0.195 MW

_Wgen 4.17 MW 0 2.344 MW

_Wgas;fan −2.417 MW −1.39 MW −2.295 MW

_Wfan;save 1.325 MW 1.324 MW 1.351 MW

_Wcw;pump −0.465 MW 0 −0.194 MW

_Wwf ;pump −0.0403 MW −0.03792 MW −0.0291 MW

Tgas;outlet 58.84°C 58.89°C 58°C

_mwf 207.4 Kg/s 0 91.97 Kg/s

_mcw 1278 Kg/s 0 533.1 Kg/s

_mheat 0 252.81 Kg/s 140.61 Kg/s
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new optimization method were proposed for the optimization of the ORC system.
Four design variables were selected by the optimization iteration procedures. From
the result, the main conclusion can be summarized as follows:

1. At the optimal condition, 2.573 MWe electricity can be produced by the power
generation system. For CHP system, 1.156 MWe power and 23.55 MWth

heating capacity can be produced. 42.34 MWth heating capacity can be pro-
duced by heat supply system. The considerable potential of waste heat recovery
from aluminum production was established.

2. The performance of ORC is significantly influenced by selection of working
fluid and design parameters.

3. Comparing various scenarios, the highest exergy efficiency, 19.22%, can be
obtained by power generation system and the highest energy efficiency of 48.1%
can be obtained by the heat supply system. The efficiency of organic Rankine
cycle is limited by the low temperature of the exhaust gas. A high energy
efficiency can be obtained by heat direct utilization.

4. The system selection should be integrated with the local demand. For the town
of Reyðarfjörður in east Iceland, the basic space heating load can be amply met
by the heat supply scenario or CHP scenario. More direct thermal utilizations
can be developed with this considerable heat potential, such as snowing melting,
greenhouse, desalinization, drying industry and other industrial applications.
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Leaching and Carbonation of Electric Arc
Furnace (EAF) Slag Under a Microwave
Field for Mineral Carbonation

Zhibo Tong, Guojun Ma, Xiang Zhang, Junjie Liu and Langsha Shao

Abstract The aqueous mineral carbonation process that leaching alkaline earth
metals from industrial residues by ammonium salt and carbonation thereafter is one
of the potential technologies for CO2 sequestration. In this paper, the effect of
particle size of waste slag on the leaching rate of metals under a microwave field
and effect of microwave irradiation on the carbonation process were investigated. It
was found that the initial leaching ratio of Ca decline seriously with the particle size
of EAF slag increasing, and the Ca leaching ratio is relatively low during 120 min
leaching. The lower leaching ratio of Ca with large particle size is due to the
existence of a silica product layer produced on the surface of calcium silicates.
Moreover, due to the microwave irradiation, the leaching ratio of calcium and the
crystallization rate of calcium carbonate increase, though the particle size and
distribution range of calcium carbonate reduce.

Keywords Leaching � Mineral carbonation � Kinetics � EAF slag
Carbonation

Introduction

Carbon capture, utilization and storage (CCUS) has been considered as one of the
effective solutions to regulate anthropogenic CO2 emissions in which mineral
carbonation, as one of the major proposed options for CO2 sequestration, occurs
spontaneously in nature and involves the reaction between atmospheric CO2 and
alkaline earth metals contained silicate minerals, with the formation of chemically
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stable carbonate forms [1, 2]. Natural minerals has been tested as alkaline feedstock
for mineral carbonation from the very beginning, particularly including forsterite,
serpentine and wollastonite [3–6]. As the research moves along, it is noticed that
industrial residues show more reactive properties than natural ores, moreover, the
site where produce industrial waste is often close to the source of CO2 emissions,
which is in favour of saving the transportation cost [7–9]. Typically, these industrial
wastes are basic, such as steelmaking slag, fly ashes from combustion processes
[10, 11], cement kiln dust [12], cement waste [13], and mining residue [14].

Kakizawa et al. puts forward that the lower acidity and recyclable ammonium
salt, such as ammonium chloride can be used as extracting agent [5]. The main
reacption equations are shown as the following:

2CaO � SiO2 sð Þ þ 4NH4Cl aqð Þ ! 2CaCl2 aqð Þ þ 2H2O þ SiO2 sð Þ
# þ 4NH3 aqð Þ ð1Þ

4NH3 aqð Þ þ 2CO2 aqð Þ þ 2CaCl2 aqð Þ þ 4H2O lð Þ ! 2CaCO3 sð Þ
# þ 4NH4Cl aqð Þ ð2Þ

Only calcium ions can be extracted at the pH range of 8.0–10.5 in the leaching
system, and precipitate calcium carbonate as the by-product is of high purity. In
addition, the extraction agent can be recycled to effectively reduce the process cost,
nevertheless, the leaching rate of ammonium chloride as extraction medium is
relatively lower than that with strong acid.

In order to improve the reaction rate at leaching experiments, numerous
researchers succeeded in promoting the extraction reaction by various methods,
such as physically activated [6], heat activated [15], ultrasonic [16] and microwave
[17]. Microwave irradiation helps the leaching of alkaline earth metal form slag on
account of its thermal effect and non-thermal effect [17], and our previous study
indicated that the calcium leaching ratio from EAF steelmaking slag at the constant
temperature under microwave field increases about 10% than that under the water
bath [18]. However, the calcium leaching mechanism from EAF steelmaking slag
by ammonium salt and effects of microwave on the precipitation of calcium car-
bonate are still not clear. In this study, the effect of particle size of waste slag on the
leaching rate of metals under a microwave field and effect of microwave irradiation
on the carbonation process were investigated.

Experimental Procedure

The EAF steelmaking slag was collected from a local steelmaking plant in northern
China. The as-received slag had undergone magnetic separation to obtain the
metallic iron content and contains mainly 39 wt% CaO, 28 wt% Fe2O3, 12 wt%
SiO2, 8 wt% MgO and 4 wt% Al2O3. The slag samples were dried in an oven at
110 °C for 24 h to remove residual moisture, and then comminuted in a vibratory
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disk mill to achieve a fine particle size. The fine milled samples were then sieved
into 4 size fractions, i.e., 54–74, 74–97, 97–150 and 150–340 lm. The sieved EAF
steelmaking slag portion were stored separately in the drying apparatus for further
use. The calcium contents of the four size fractions are 37.84 wt%, 38.11 wt%,
38.51 wt%, 39.6 wt% for the portions of 54–74, 74–97, 97–150 and 150–340 lm,
respectively.

Calcium leaching experiments from EAF slag by ammonium chloride under
microwave filed were carried out in a microwave chemical reactor (Model: MCR-3)
which can provide a stable temperature with variable microwave power output. It
operated with a continuous microwave at 2.45 GHz and equipped a continuous
monitoring of the measured temperature with a trifluoroethylene thermocouple. The
leaching system was stirred by a magnetically stirrer. The leaching experiments in a
microwave field, were carried out in a 500 ml flat bottom narrow neck flask, which
reactor was positioned in the middle of the microwave chemical reactor and
equipped with condenser system to minimize the evaporation losses of leaching
system.

The typical leaching experiment were conducted as follows: the 500 ml glass
reactor filled with 340 ml of 2 mol/l ammonium chloride solution was firstly heated
to the desired leaching temperature. Then, 17 g EAF steelmaking slag with certain
particle size was added into the leaching solution, agitation of the solution was
maintained at three-quarters of the maximum agitation speed, and small portion of
samples were drawn at designed time schedule of 2, 5, 10, 20, 30, 60, 90, 120 min
and whereafter filtered. Calcium ion contents in the filtrates were titrated with
EDTA. The leached residues were triply washed by Reverse Osmosis water
(RO) and dried for scanning electron microscopy (SEM) (Nova 400 Nano SEM,
FEI, Hillsboro, OR, USA) -energy dispersive spectrometer (EDS) (INCAIE 350
PentaFET X-3 EDS, Oxford, UK) analysis. The as-received EAF slag sample were
also analyzed with SEM-EDS.

The carbonation experiments were conducted either in a microwave field (mi-
crowave chemical reactor MCR-3) or with conventional precipitation method. In
the microwave assisting carbonation process, the synthetic solution (2.4 mol/l
NH4Cl-0.8 mol/l CaCl2-1.6 mol/l NH3�H2O, 400 ml) was placed in a microwave
reactor, then the high purity carbon dioxide gas was bubbled and the time was
started. After the sampling time was reached, 2 ml of the reaction slurry was
transferred to the filter by a syringe and the concentration of calcium ions in filtrate
was measured. Moreover, the filtered residue was triply washed with distilled water
and rinsed to a 50 ml beaker with ethanol, then diluted with 20–30 ml of ethanol.
Finally, the beaker containing calcium carbonate and ethanol was placed in a water
bath with ultrasound processing for 10 min, a drop of the slurry was removed on
the silicon plate with a capillary and sprayed with gold for SEM analysis. The
particle size distribution of the remaining residue-alcohol emulsion was immedi-
ately measured with laser particle analyzer (Malvern Mastersizer 2000). In the
conventional carbonation experiment under a water bath, the synthetic solution was
heated to the experimental temperature for half an hour. The rest of the steps were
the same as that in the carbonation experiment under a microwave field.
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Results and Discussion

Calcium Leaching Process from Different Size Particles of
EAF Steelmaking Slag with Ammonium Chloride

The effects of particle size on the calcium leaching rate from EAF slag by
ammonium chloride were studied at 60 °C under microwave filed, as the higher
temperature is conducive to calcium leaching while resulting in dissolved ammonia
leakage from leaching solution. Four size fractions were chosen to verify the effect
of particle size on the leaching rate (Fig. 1). It can be seen from Fig. 1 that the
initial calcium leaching ratio decline seriously with the increase of particle size of
EAF slag, and the leaching ratio is relatively lower during 120 min though it is
improved and tend to balance as leaching time goes on. This is due to the smaller
specific surface area, leaded by the larger EAF particle size, the smaller contact area
of the leaching solution and particles, which reducing the calcium leaching rate
under the same leaching condition.

Microstructure Analysis of the as-Received EAFSlag
and Leached Residues

SEM Analysis of the as-Received EAF Slag

As calcium silicate, calcium ferroalumnates and RO phase are the main phases in
EAF slag [19], the SEM analysis will be focused on these three phases. It is shown
in Fig. 2 that the particle surface of calcium silicate phase is smooth and dense, and
the calcium content of which is much higher than iron and silicon. Figure 3 is the
SEM image of typical three-phase symbiosis containing calcium silicate, calcium

Fig. 1 The effect of particle
size on the leaching rate of
calcium
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ferroalumnates and RO phase, from which it can be found that the slag particle
mainly contains iron, as well as large amounts of magnesium and calcium.
Moreover, iron and silicon usually exist with calcium and does not coexist.

Calcium silicate, with good hydration activity, is the mainly phase in EAF slag,
and it usually coexist with low hydration activity phases such as calcium fer-
roalumnates and RO phase. As aluminum element often dissolves into calcium
ferrite and the average ratio of CaO/(Fe2O3 + Al2O3) is close to 2, the Al-bearing
phase was usually expressed as Ca2(Al, Fe)2O5 [19, 20].

RO phase is a solid solution, which mainly contains iron, magnesium and small
amount of manganese. During the steelmaking process, CaO as a free state usually
leads to the crystallization precipitation of MgO, FeO and MnO from steelmaking
slag when the content of CaO increasing. Moreover, it is helpful to form a limited
solid solution for the ion radius difference among magnesium, iron and manganese

CaSi

Fe

Fig. 2 SEM image of calcium silicate in EAF slag

RO phase

Ca2SiO4

RO phase

Ca2(Fe,Al)2O5

Fig. 3 SEM image of typical three-phase symbiosis
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less than 15% [19, 20]. In this study, RO phase is wustite and difficult to react with
other phases due to its small value of KM according to the KM properties of RO
phase (KM = w(MgO)/w(FeO + MnO) < 1).

SEM Analysis of the Leached EAF Slag Residues

Figure 4 shows the typical microstructure of the leached EAF slag residues at
certain leaching time. Figures 4a, b are SEM images of 54–74 lm leached residues
at leaching time of 2 min and 120 min respectively. It can be seen from Fig. 4a that
calcium is completely extracted from calcium silicate while it is difficult to extract
from the phase riching in iron and aluminum. As the leaching time was prolonged
(Fig. 4b), it still can’t be extracted from calcium ferroalumnates. However, the
micro-crack generated among different phases of particles under microwave field
(the dashed area Fig. 4b), which is leaded by the thermal stress due to different
capacity of absorbing microwave for different phases, expands the exposed surface
area, and this is beneficial to the calcium leaching. Furthermore, the RO phase
contains less calcium and do not react with ammonium chloride. Therefore, it
explains the leaching curve of 54–74 lm EAF slag in Fig. 1 that the calcium

Ca2(Fe,Al)2O5

Leached calcium silicate

(a)

Leached calcium silicate

Ca2(Fe,Al)2O5

(b)

Leached calcium silicate
RO phase

Unreacted
calcium silicate

RO phase

Ca2(Fe,Al)2O5
(c) (d)

Fig. 4 SEM image of leached residues a 54–74 lm, 2 min; b 54–74 lm, 120 min; c 97–150 lm,
2 min; d 97–150 lm, 120 min
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leaching rate rise obviously within 2 min due to the leaching reaction of the calcium
silicate, while it tends to balance in subsequently leaching time.

As the SEM image of larger leached residues (such as 97–150 lm) at leaching
time of 2 min shows in Fig. 4c, the calcium silicate phase which is associated with
RO phase and calcium ferroalumnate has not been fully leached. However, calcium
continues to be leached with the increase of leaching time and the calcium silicate
phase which is associated with RO phase and calcium ferroalumnates has also been
leached partly. The reaction is hindered by silica (leached calcium silicate), on the
particle surface (Fig. 4d).

Figure 5 is the SEM image of separate calcium silicate phase (97–150 lm and
2 min). It can be seen that there is a silica passivation layer coming from the
calcium silicate phase on the particle surface after leaching, of which is loose and
with a certainty thickness. It indicates that when the loose silica passivation layer
has a certainty thickness for larger size, the leaching reaction of the separate cal-
cium silicate phase will be prevented as the leaching time goes on, and the center of
particles will be difficult to react. It is in keeping with the leaching curve of larger
size particle that calcium leaching rate is relatively slower at the start of experiment
and become more slower as the core of particles will be difficult to react due to the
silica passivation layer.

The Leaching Mechanisms of Different Phase in EAF Slag

As RO phase, one of the main three phases in the EAF slag, contains a small
amount of calcium, the main calcium sources leached from EAF slag are calcium
silicate and calcium ferroaluminate at the leaching process. According to the Gibbs
free energy thermodynamic theory, calcium ferroaluminate can react with ammo-
nium chloride [17]. However, experiments in this study verify that calcium fer-
roaluminate almost does not participate in the leaching reaction. This is probably

Silica passivation layer

Unreacted calcium silicate

Fig. 5 SEM image of
separate calcium silicate
phase (97–150 lm, 2 min)
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due to that the dissolved Al(III) and Fe(III) at the leaching reaction completely
hydrolysis into passivation layer on the particle surface, and hampering diffusion of
ammonium chloride and further calcium leaching considering the fact that Al(III)
and Fe(III) will complete hydrolysis in the system of NH3-NH4Cl-H2O [21].
Therefore, the main involved calcium-bearing phase in EAF slag reacting with
ammonium chloride is calcium silicate.

Based on the calcium leaching curve and SEM analysis of different granularity
of EAF slag, it is shown that a silica product layer will be produced in the dis-
solving process of calcium silicate, and the silicate solid product layer under
microwave field has permeability. When the particle size is small (54–74 lm),
calcium silicate phase participates in leaching reaction completely. However, when
the particle size is large (97–150 lm), calcium is difficult to be extracted from
calcium ferroaluminate and calcium silicate. The final calcium leaching ratio is
lower than that of small size particle due to a silica product layer produced on the
surface of calcium silicate.

Effects of Microwave on the Carbonation Process

In the conventional carbonation process, the crystallization rate of calcium car-
bonate at different water bath temperatures was shown in Fig. 6. It is shown that the
reaction rate is low, and the crystallization rate is only 66% at 70 min with the
crystalline temperature of 12 °C. With the increase of the crystalline temperature,
the crystallization rate of calcium carbonate is accelerated. When the temperature
increases up to 50 °C, the carbonation reaction stops in 50 min. While keep in
heating to higher temperature, the crystallization rate does not increases signifi-
cantly. This could be due to the rate of diffusion and reaction accelerated with the
crystallization temperature [22], while when the temperature reaches a certain
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degree, ammonia will evaporate and thus affects the dissolution of carbon dioxide,
and the crystallization rate of calcium carbonate does not increase significantly.

Figures 7 and 8 show the crystallization rate of calcium carbonate and the
heating curve of the solution under different microwave powers, respectively. The
results show that the crystallization rate increases with an increase of microwave
power. When the microwave power increases to 360 W, the solution will boil in
30 min leading to the difficulty of dissolving carbon dioxide into the solution and
thus the crystallization reaction of calcium carbonate is unable to continue.
Comparing to Fig. 6, it can be seen that the crystallization rate is very low at the
initial stage in the microwave irradiation environment. However, with the increase
of reaction time, the crystallization rate increased rapidly until the end of the
carbonation reaction. From the crystallization curve, it can be deduced that the
formation of nuclei is delayed under the action of microwave. As the carbonation
reaction time increased, the crystallization rate increases rapidly until the reaction
ends, and this explosive homogeneous nucleation is favorable for the refinement of
the crystal and concentration of the particle size distribution.
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Figure 9 shows the effect of different water bath temperatures on the particle size
of calcium carbonate. It can be seen that with the temperature increases, the particle
size of calcium carbonate increases and the distribution range becomes larger. That
is due to the fact that increasing the crystallization temperature promotes crystal-
lization reaction rapidly, thus increasing the supersaturation of the calcium car-
bonate in the reaction system and promoting nucleation of calcium carbonate. At
the same time, the higher temperature can improve the crystal surface activity and
growth rate, resulting in the increase of the grain size [23].

It can be seen from Fig. 10 that the grain size of calcium carbonate is changed
insignificantly under microwave irradiation with different microwave power of 90,
180 and 270 W. but it is obviously smaller and more concentrated than that in water
bath (except water bath at 12 °C), which agrees with the crystallization rate of
calcium carbonate under different microwave power. As the microwave irradiation
can affect the internal energy of the solution, and water and other polar molecules
will vibrate and activate after microwave absorption which result in the decreased
of surface tension and viscosity coefficient of the solution, thus increasing the
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nucleation rate and reducing the critical nucleation radius. In addition, the micro-
wave irradiation can heat the solution evenly which provides the power for
homogeneous nucleation [24].

It can be seen from Figs. 9 and 10 that there are two peaks on the particle size
distribution curve. The peak of small particle size is between 0.4 and 2.5 lm which
corresponds to the initial crystalline particle size, comparing the effects of different
time under microwave irradiation on the particle size distribution of calcium car-
bonate. And peak of larger particle size may be due to the large agglomeration of
many particles, which is the same as that reported in the literature [25].

Conclusions

(1) The initial leaching ratio decline seriously with the particle size of EAF slag
increasing, and the leaching ratio is relatively lower during 120 min though it is
improved and tends to balance as time goes on.

(2) When the particle size is small (54–74 lm), calcium silicate phase participate in
leaching reaction completely, however, when the particle size is large (97–
150 lm), calcium is difficult to be extracted from calcium ferroaluminate and
calcium silicate.

(3) The final leaching ratio is lower than that of small size particle due to a silica
product layer produced on the surface of calcium silicate.

(4) Due to the microwave irradiation, the leaching ratio of calcium and the crys-
tallization rate of calcium carbonate increase, though the particle size and
distribution range of calcium carbonate reduce.
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A Novel Preparation of Bi2O3 and Their
Potent Photocatalytic Activity Under
Visible-Light Irradiation

C. Jun, Z. Jing, L. Qihou, Z. Yumeng and L. Hui

Abstract Three phases of Bi2O3 were first synthesized by extraction-stripping-
precipitation and post decomposition from BiCl3 leaching solution. The as-prepared
Bi2O3 were characterized by X-ray powder diffraction (XRD), Fourier transform
infrared spectra (FT-IR), scanning and transmission electronmicroscopy (SEM, TEM),
UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Brunauer-Emmett-Teller
(BET) and X-ray photoelectron spectroscopy (XPS). The photocatalytic performances
of the oxides were investigated by decomposing rhodamine B (RB) under visible
irradiation. It shows that the Bi2O3 with different crystal structures and morphology
were obtained under different decomposition temperature. The band gaps of
as-prepared samples were 2.36, 2.41, and 2.78 eV for b-Bi2O3, a-Bi2O3, and d-Bi2O3,
respectively, and the photocatalytic activities followed the order:
b-Bi2O3 > a-Bi2O3 > d-Bi2O3, which was in good accordance with the photolumi-
nescence spectra measurement results. The b-Bi2O3 exhibited the best photocatalytic
performance which can effectively degrade 99.23% RB within 240 min.
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Introduction

The depletion of the fossil energy and the pollution of the environment are two
severe global problems. That is why the photocatalytic oxidation technology, which
utilizes renewable clean solar energy to curb environmental pollution, is a very
promising technology, by which the organic pollutions are oxidized and degraded
to even carbon dioxide and water under light, especially sunlight, irradiation at
ambient temperature in the presence of photocatalysts [1–3]. Nowadays, many
semiconductor materials including TiO2 [1, 4, 5], ZnO [6, 7] and SrTiO3 [4, 8] have
been investigated as photocatalysts in degradation of organic pollutants for water
treatment. However, these photocatalysts have a rapid recombination rate of
photo-generated electronehole pairs, a low efficiency for utilizing solar light, and a
high band gap energy, which significantly restrict its practical applications. Bi2O3, a
p-type semiconductor, has been proven to be one of interesting photocatalyst due to
its significant energy band gap, fresh-construction, and well-dispersed valence
bands by the hybridization of Bi 6 s and O 2p orbits [9–12].

Bi2O3 exhibits four main polymorphs that are consisted of a-, b-, c-, and
d-Bi2O3. The a-Bi2O3 phase and d-Bi2O3 phase are stable at room and high tem-
perature, respectively, while others are all metastable phases [13]. It is commonly
considered that the phase structure of crystals plays a crucial parameter in the
determination of their properties. Moreover, the photocatalytic activity of Bi2O3

strongly depends on its crystalline structure [14]. Though, many researches on
a-Bi2O3 [15–17] have been reported, there were only a few on b-Bi2O3 and
d-Bi2O3 [18–21]. What’s more, Bi2O3 was prepared usually using analytical grade
bismuth material or high-purity bismuth as raw materials, there was no reported on
prepared three polymorphs of Bi2O3 from BiCl3 leaching solution. In this paper,
synthesis of three polymorphs Bi2O3 using BiCl3 leaching solution as raw materials
was first investigated. The photocatalytic activity and the effects of crystal type on it
were also investigated, taking the degradation of RB under visible light.

Experimental Details

Materials

Tributyl phosphate (TBP), hydrochloric acid, oxalic acid, ammonium hydroxide,
sulfonated kerosene (0.8 g/mL) and ethanol were provided by Xilong Chemical Co.
Ltd., China. All the chemicals used in this study were of analytical grade without
further purification. The BiCl3 leaching solution was obtained according to previous
report use low grade bismuthinite and pyrolusite ores [22], and followed by puri-
fied, the contents of BiCl3 leaching solution showed in Table 1.
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Synthesis of Bi2O3

The Bi2O3 was synthesized by extraction-stripping-precipitation and post decom-
position. The typical synthesis procedure was as follows. 100 mL of BiCl3
(19.0566 g/L) leaching solution was extracted with 100 mL of 60% v/v
TBP-sulfonated kerosene use separatory funnel and then the organic-aqueous
phases were separated by separatory funnel. An equal volume of the stripping phase
(15 g/L oxalic acid) was used to strip and precipitate Bi from organic phase at a
temperature of 25 °C. After phase separation, the white precipitate was separated
and washed with ethanol for several times successively, and then was dried at 80 °C
for 12 h. The white precipitate was known as precursor, usually. Finally,
as-prepared precursor was calcined in a tube furnace with temperature increased at a
rate of 5 °C/min to a certain temperature (300, 500, 730 °C) and then held there for
2 h.

Characterization

X-ray diffraction (XRD-6000, Shimadzu Inc., Japan) pattern of the samples were
obtained for phase identification. The morphologies were examined by scanning
electron microscopy (SEM, Quanta 200 F, Japan) and transmission electron
microscopy (TEM, JEOL, JEM-2100, Japan). The banding energy of the elements
was investigated by X-ray photoelectron spectra spectrometer (XPS, VG Multilab
2000, USA). The specific surface area of product was determined according to the
Brunauer-Emmett-Teller (BET, ASAP2020 M, Mike instruments inc., USA)
method in the relative pressure range (P/P0) of 0.01–0.3. Equilibration interval was
controlled at 10 s. Photoluminescence spectra were taken using Horbia
Fluorolog@3 spectrophotometer. Ultraviolet-visible diffuse reflectance spectra
were recorded on a JASCO V-550 UV-Vis spectrophotometer. Fourier Transform
Infrared (FT-IR) spectra for the photocatalysts were monitored using Agilent, Cary
660, USA.

Photocatalytic Experiments

The photocatalytic activity for the photocatalysts were evaluated for the degradation
of aqueous RB under visible light illumination. A 300 W Xenon lamp was used as a

Table 1 Contents of BiCl3 solution

Elements Bi Fe Cu Mn Pb

Concentration (g/L) 19.0566 4.3939 0.0896 0.9009 0.6114
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light source (k > 400 nm). 25 mL RB aqueous solution (10−5 M) and 0.025 g (1 g/
L) Bi2O3 sample were put into a glass reactor, the temperature of which was kept at
25 °C in a following water bath. Before light illumination, RB with catalyst was
stirred under dark condition to attain adsorption-desorption equilibrium. At a given
time interval, supernatant was collected, centrifuged and transferred to 3 mL of
quartz cuvette for measuring the UV-vis absorbance value.

Results and Discussion

Preparation of Bi2O3 Photocatalysts

TBP was used as the extracting agent. The BiCl3�xTBP(x = 2 or 3) complexes was
obtained from BiCl3 leaching solution and TBP in the extraction process and the
precipitation stripping reaction between the BiCl3�xTBP complexes and oxalic acid
may be written as the following Eq. (1) [23]: The Bi2(C2O4)3�7H2O can be further
decomposed to prepare the Bi2O3 photocatalysts.

2BiCl3 � xTBP þ 3H2C2O4 þ 7H2O¼Bi2ðC2O4Þ3 � 7H2OðsÞ þ 2xTBP þ 6HCl

ð1Þ

Figure 1 was the XRD patterns of the prepared precursor and it can be indexed
as a triclinic lattice of Bi2(C2O4)3�7H2O with crystal cell constants a 6¼ b 6¼ c, and
a = 9.43Å, b = 9.18Å, c = 11.17Å, a = 78.3°, b = 101.0°, c = 73.7°, which are
close to the JCPDS file data (PDF no. 38–0548). The sharpness of the peaks
suggested that the obtained precursor was well crystallized. The Fig. 2 showed that
the precursor was hierarchical flower-like. Thus, the main contents of as-prepared
Bi2O3 was listed in Table 2. It obviously showed that the main impurity was iron.

Fig. 1 XRD patterns of
precursor
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The XRD patterns of the as-prepared Bi2O3 was depicted in Fig. 3. The product
calcined at 300 °C can be indexed to well crystallized b-Bi2O3 (PDF no. 78–1793).
As the decomposition temperature increased to 500 °C, metastable b-Bi2O3 chan-
ged into a-Bi2O3 (PDF no. 41–1499). When the decomposition temperature
increased to 730 °C, the a-Bi2O3 changed into d-Bi2O3 (PDF no. 65–2366).
Meanwhile, the results revealed that the samples have strong and sharp diffraction
peaks, which revealed a high degree of crystallization. The apparent diffraction
peaks of the three curves show that the all as-prepared Bi2O3 samples can be

Fig. 2 SEM images of
precursor

Table 2 Contents of Bi2O3

Element Al K Fe Cu Mo W Bi2O3

Unit (wt%) 13.6 � 10−6 19 � 10−6 99 � 10−6 12.8 � 10−6 11.7 � 10−6 28.1 � 10−6 99.929

Fig. 3 XRD patterns of the
Bi2O3 calcined at different
temperature
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indexed closely to the single phases of Bi2O3 semiconductor; b-, a-, and d-Bi2O3

phase.
The FT-IR spectra of the as-prepared Bi2O3 photocatalyst was depicted in Fig. 4.

The bands observed near 3423 and 1637 cm−1 correspond to the O-H stretching
and banding vibration of residual H2O molecules absorbed from the environment
[24, 25]. The bonds appearing in the wavenumber rang of 400–1000 cm−1 were
assigned to the Bi-O-Bi and the Bi-O [23, 26, 27]. Additionally, the bands located
at 2400 cm−1 were assigned to the Bi = O group vibrations in Bi2O3.

SEM and TEM analysis was carried out to identify the effect of crystal type on
morphology of Bi2O3 photocatalyst. Figure 5a–c shows SEM images of different
crystal type Bi2O3. It can be seen that the morphology was transformed from
aggregated microplates into micromesh under the different decomposition tem-
perature. As displayed in Fig. 5d–f, the integer appearance of the microplates
remained. Combined with high magnification TEM (Fig. 5f), the lattice fringes of
0.3190 nm was measured, corresponding to (201) plane of b-Bi2O3. In the Fig. 5d
and f, the dark portion may resulted by the smooth surface.

To investigate BET and porous nature of the product further, the N2

adsorption-desorption isotherm of the b-Bi2O3 sample measured at 77.5 K was
displayed in Fig. 6. Meanwhile, the BET of prepared Bi2O3 was listed in Table 3.
The smaller specific surface area may be due to the higher decomposition tem-
perature that makes part of the sample sintered. The specific surface area can
provide more reaction adsorption-desorption sites for photocatalytic reaction. The
photocatalytic performance of the sample can benefit from the specific surface area
of photocatalyst, which provides a large number of adsorption sites [28].

In order to study the chemical state of the surface elements, XPS analysis of
Bi2O3 was carried out. Figure 7a showed the survey XPS spectra of Bi2O3, in
which only the element Bi and O were observed, except for inevitable carbon
contamination. Figure 7b showed the high-solution spectra of Bi in the Bi2O3. The
characteristic Bi peaks at 158.77 and 164.08 eV show a high degree of symmetry.

Fig. 4 FT-IR spectra of
Bi2O3
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They belong to Bi4f7/2 and Bi4f5/2. Along with the sharp features of the Bi4f XPS
spectra, those values indicate that the Bi was Bi3+ state. The high-resolution XPS
spectra of O can be resolved into two peaks by deconvolution (Fig. 7c). The
binding energy at 529.5 and 531.1 eV were assigned to the lattice oxygen (OL), and
the O2− ion located in an imperfect lattice with oxygen deficiencies (OM),

Fig. 5 SEM images of b-Bi2O3 (a), a- Bi2O3 (b) and d-Bi2O3 (c) and the TEM images of b-Bi2O3

(d–f)
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Fig. 6 N2

adsorption-desorption
isotherms (a) and BJH pore
size distribution polts of
b-Bi2O3 (b)

Table 3 Specific surface area of photocatalysts

Photocatalysts b-Bi2O3 a-Bi2O3 d-Bi2O3

SBET (m2/g) 2.3496 1.4783 0.5181

Fig. 7 a wide XPS survey of Bi2O3. b O1 s XPS spectra of Bi2O3. c Bi4f XPS spectra of Bi2O3
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respectively [29]. The area ration of OM to OL provides a semiquantitative method
to determine the concentration of oxygen vacancy. The calculated values of OM/OL

were 0.79, 0.59, and 0.31 for the b, a, and d-Bi2O3, respectively. This strongly
suggests the presence of a significant amount of oxygen deficiencies in the Bi2O3,
this is consistent with the photocatalytic activities of Bi2O3.

Photocatalytic Properties

The absorption performance and the band gaps of the prepared Bi2O3 were shown
in Fig. 8. The absorption edges of the products calcined at 300, 500 and 730 °C,
which have been evidenced by XRD to be b-Bi2O3, a-Bi2O3 and d-Bi2O3 were
located at 465 nm, 545 nm and 552 nm, respectively, showing high absorption till
visible light region. As crystalline semiconductors of direct transition, their optical
near the bang edge follows the formula (ahm)2 = A (hmEg), where a, h, m, A, and Eg

were the absorption coefficient, Plank constant, light frequency, a constant and band
gap energy, respectively. The band gap energies of b-Bi2O3, a-Bi2O3 and d-Bi2O3

were estimated to be 2.36 eV, 2.41 eV and 2.78 eV, respectively, below to those
were reported [17, 19], indicating the high absorption of Bi2O3 in wide visible light
region and implying the higher photocatalytic activity under visible light
irradiation.

Photoluminescence (PL) emission spectra can be obtained to study the separa-
tion of photogenerated electrons and holes in the semiconductor photocatalysts.
Figure 9 shows the room temperature PL spectra of the Bi2O3 polymorphs with the
excitation wavelength at 300 nm. We can observed that both a-Bi2O3 and d-Bi2O3

show a strong broad emission peak around 460 nm [30], implying the high
recombination rates of the photoinduced carries. However, b-Bi2O3 shows a rather

Fig. 8 a UV-vis absorption
spectra of Bi2O3

photocatalysts recorded in
diffuse reflectance spectra
(DRS) and b Tauc plot of
Bi2O3 photocatalysts
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lower intensity, which means the high efficient separation rate of the carriers in
b-Bi2O3 structure.

The decolorization rate of blank and adsorption-desorption to RB was listed in
Table 4. The results demonstrated that the RB has a high stability under visible
light, the photocatalysts have a certain absorption effect on the RB and the
absorbility of the photocatalyts followed the order: b-Bi2O3 > d-Bi2O3 > a-Bi2O3.

The removal of RB with Bi2O3 as photocatalyst irradiated by Xenop lamp were
shown in Fig. 10a and c. It shows that after 240 min of irradiation, 95.4%, 97% and
99.23% of RB was photocatalytically degrade by the d-Bi2O3, a-Bi2O3, and
b-Bi2O3, respectively. Therefore, it’s clear that the photocatalytic activities of
b-Bi2O3 are higher than other phases, which was in consistent with what has been
reported [16]. To further compare the catalytic activity of the a-Bi2O3, b-Bi2O3 and
d-Bi2O3, the pseudo-first order model was used to fit the experimentally obtained
data. Since the initial concentration was low, the photocatalytic degradation of
organic pollutants in water follows the pseudo-first order model given by Eq. (2)
[31]:

ln C0=Cð Þ = Kappt ð2Þ

where C0 and C are the concentrations of RB in an aqueous solution at time 0 and t,
respectively, and Kapp was the pseudo-first order rate constant. The relation between
ln(C0/C) and irradiation time was plotted in Fig. 10b. The excellent fitness indicates
that the photoreaction follows the way of first-order reaction kinetics. The Kapp of
the b-Bi2O3, a-Bi2O3 and d-Bi2O3 were 0.02022 min−1, 0.01614 min−1 and
0.01263 min−1, respectively. A photocatalyst that can function for a long time
would lead to significant reduction of cost. For this reason, the Bi2O3 were tested in

Fig. 9 PL spectra of the
different Bi2O3 polymorphs
(kexc = 300 nm)

Table 4 Decolorization rate
of contrast experiments

Contrast
experiment

Blank Adsorption/desorption

b-Bi2O3 a-Bi2O3 d-Bi2O3

Decolorization
rate (%)

0.387 26.11 14.62 12.27
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four runs for the degradation of RB under visible light irradiation. As shown in
Fig. 10c, the photocatalytic activity of b-Bi2O3 did not obviously decrease after
four successive cycles of degradation tests, indicating that the b-Bi2O3 was fairly
stable under the studied conditions. On the basis of the results, the main reason may
be discussed to explain the high photocatalytic activity of Bi2O3. The high pho-
tocativity of Bi2O3 can be ascribed to the Fe ions introduced between the con-
duction and valence band of Bi2O3, from which the electrons can be promoted to
the conduction band [32, 33]. Fe doping increases the trapping sites while
enhancing effective trapping sites for charge carriers [32–35].

Conclusions

Three different phases of Bi2O3 were synthesized via extraction-stripping-precipitation
and post decomposition method. The microplates of b-Bi2O3 was obtained at a tem-
perature of 300 °C of decomposition in the air. Decomposition at 500 and 730 °Cwere

Fig. 10 a and c Removal of RB under visible light irradiation with Bi2O3. b Kinetic linear
simulation curve of RB photocatalytic degradation by Bi2O3. c Cycling runs in the photocatalytic
degradation of RB by Bi2O3
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obtained for themicaomesh ofa-and d-Bi2O3 in the air, respectively. The BET ofb-,a-
, and d- Bi2O3 were 2.3496, 1.4783 and 0.5187 m2/g, respectively. The band gaps of
as-prepared samples were 2.36, 2.41, and 2.78 eV for b-Bi2O3, a-Bi2O3, and d-Bi2O3,
respectively. The photocatalytic experiments indicated that b-Bi2O3 displayed much
higher photocatalytic performance and high stability than other phases and the pho-
tocatalytic activities of Bi2O3 polymorphs followed the order:
b-Bi2O3 > a-Bi2O3 > d-Bi2O3. After 240 min of irradiation, 95.4%, 97% and 99.23%
of RB was photocatalytically degraded by the d-Bi2O3, a-Bi2O3, and b-Bi2O3,
respectively. These results indicated that the synthesized b-Bi2O3 photocatalyst was a
potential candidate for environmental remediation processes.
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Energy Conservation in Sintering Ignition
Process Based on Comprehensive Ignition
Intensity

Wen Pan, Xia Zhao, Si-bin Zhang, Jun-hua Zhao, Huai-ying Ma
and Zhi-xing Zhao

Abstract Ignition is the start point of the sintering circuit, which plays an
important role during the whole sintering process. The gas consumption accounts
for 80% energy cost in the sintering ignition process. Therefore, gas flow reduction
is of great significance to energy conservation in the sintering ignition process. In
current study, the concept of comprehensive ignition intensity (CII) was introduced
to determine the ignition effect. The experimental results indicate that the value of
CII increases with higher air-fuel ratio at gas flow of 550 and 600 Nm3/h. From
another point of view, given constant CII value, lower gas flow can be achieved
with higher air-fuel ratio. Based on the comprehensive ignition intensity, the
ignition parameters were optimized and the gas flow was subsequently reduced. By
increasing the air-fuel from 5.5 to 6.6, the gas flow is reduced from 450 Nm3/h (8.1
GJ/h) to around 350 Nm3/h (6.3 GJ/h).

Keywords Ignition parameters � Air-fuel ratio � Gas flow
Comprehensive ignition intensity

Introduction

Ignition process is a connecting link between the preceding and the following
processes of the iron ore agglomeration circuit, which has great influence on the
quality of iron ore sinter, the permeability of sinter layer, the return fine ratio, etc. [1].
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The fuel consumption is affected by the ignition process as well. For the past few
years, a large amount of research work has been conducted on the sintering ignition
process [2]. Structural design of the ignition furnace [3–5], ignition fuel selection
[6, 7], and the ignition parameters optimization [8, 9], etc. are included in the above
research. The ignition parameters involve fuel flow, air flow, air-fuel ration and so
on. Currently, the ignition parameters are adjusted or optimized based on the tem-
perature within the ignition furnace which measured by several thermocouples
installed in the ignition furnace. In current study, the concept of comprehensive
ignition intensity (CII) was introduced based on the heat perception of the sintering
layer. The comprehensive ignition intensity can be used to determine the ignition
effect. Along with the research result on the combustion characteristic of the solid
fuel in sinter mixture, the ignition parameters were optimized and the gas flow was
subsequently reduced.

Experimental Procedure

The temperature of burden surface in the sintering ignition furnace was recorded
continuously as shown in Fig. 1. Based on the temperature curve, the absolute
ignition intensity of high temperature, the absolute ignition intensity of medium
temperature, the comprehensive ignition intensity of high temperature and the
comprehensive ignition intensity of medium temperature are defined in Eqs. (1)–
(4), respectively. Where, AII1 is the absolute ignition intensity of high temperature
(°C.Sec), AII2 is the absolute ignition intensity of medium temperature (°C.Sec),
CII1 is the comprehensive ignition intensity of high temperature (°C.m), CII2 is the
comprehensive ignition intensity of medium temperature (°C.m), T is the temper-
ature of burden surface (°C), t is the amount of time the burden spends in the
ignition furnace (sec), t1 is the intersection point between the high temperature base
line and the upward section of the temperature curve (sec), t2 is the intersection
point between the high temperature base line and the downward section of the
temperature curve (sec), t3 is the intersection point between the medium temper-
ature base line and the upward section of the temperature curve (sec), t4 is the
intersection point between the medium temperature base line and the downward
section of the temperature curve (sec), V is the speed of sinter machine (m/sec).The
complete combustion temperature of the solid fuel in sinter mixture is defined as the
high temperature base line. The temperature at which the solid fuel begins to
decompose is defined as the medium temperature base line.

AII1 ¼
Z t2

t1
TðtÞ � dt ð1Þ

AII2 ¼
Z t4

t3
TðtÞ � dt �

Z t2

t1
TðtÞ � dt ð2Þ
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CII1 ¼
V � R t2

t1 TðtÞ � dt

60
ð3Þ

CII2 ¼
V � R t4

t3 TðtÞ � dt � R t2
t1 TðtÞ � dt

� �
60

ð4Þ

To investigate the optimal ignition parameters, a series of experiments were
conducted in the ignition furnace of Shougang, as shown in Table 1.

Fig. 1 Temperature curve of
burden surface in the sintering
ignition furnace

Table 1 Experimental
conditions of current study

No. Gas flow/(Nm3/h) Air flow/(Nm3/h) Air-fuel ratio/-

0 600 3300 5.5

1 600 3600 6.0

2 600 3900 6.5

3 600 4200 7.0

4 600 4500 7.5

5 550 3025 5.5

6 550 3300 6.0

7 550 3575 6.5

8 550 3850 7.0

9 550 4125 7.5

10 520 3900 7.5
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Combustion Characteristics of the Solid Fuel in Sinter
Mixture

The combustion characteristics were analyzed by using thermogravimetric analysis
under oxygen partial pressure of 16.5% and 21% respectively, as shown in Figs. 2
and 3. The solid fuel begins to decompose at temperature around 620 °C. At
720 °C, the weight loss rate reaches its peak. The combustion of solid fuel com-
pletes at around 920 °C . Based on this, the high temperature and medium tem-
perature base line in Fig. 1 are 920 °C and 620 °C respectively.

By comparison, the initial temperature of combustion decreases from 625 to
601 °C with higher oxygen partial pressure. Meanwhile, higher oxygen partial
pressure may lead to better burning effect of the solid fuel. The total mass loss after
combustion increases from 73.71 to 82.44% with higher oxygen partial pressure.
So, it can be inferred that the combustion process of the solid fuel in the ignition
furnace can be improved by increasing the air-fuel ratio to get higher oxygen partial
pressure within the ignition furnace.

Experimental Results

The ignition and sintering parameters are listed in Table 2, in which mean tem-
perature is the average temperature measured by the thermocouples within the
ignition furnace. Figure 4 shows the maximum temperature of the burden surface
under the ignition furnace at air-fuel ratio of 5.5–7.5 and gas flow of 550 Nm3/h and
600 Nm3/h, respectively. It can be seen that, at the same air-fuel ratio, the maximum
temperature of burden surface increases by around 60 °C with higher gas flow.
While at the same gas flow, there appears to be a slight decline with the maximum
temperature of burden surface at higher air-fuel ratio. Figures 5 and 6 show the time
duration at high and medium temperature at air-fuel ratio of 5.5–7.5 and gas flow of
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Fig. 2 TG and DTG curves of the solid fuel under oxygen partial pressure of 16.5%
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550 Nm3/h and 600Nm3/h, respectively. At the same air-fuel ratio, the time duration
at high temperature and medium temperature both increase with higher gas flow.
With the gas flow being kept constant, the time duration at high temperature and
medium temperature increase with high air-fuel ratio as well.

According to Eqs. (3) and (4), the comprehensive ignition intensity of high
temperature (CII1) and medium temperature (CII2) are calculated, as shown in
Figs. 7 and 8, respectively. Similar to maximum temperature and time duration of
high, medium temperature, the comprehensive ignition intensity of high tempera-
ture and medium temperature increase with higher gas flow at the same air-fuel
ratio. With constant gas flow, CII1 and CII2 increase linearly with higher air-fuel
ratio.
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Fig. 3 TG and DTG curves of the solid fuel under oxygen partial pressure of 21%

Table 2 Ignition and sintering parameters

No. Mean
temperature/
°C

Pressure
within ignition
furnace/Pa

Air
flow/
(m3/h)

Gas
flow/
(m3/h)

Velocity of
sinter
machine/(m/
min)

Actual
air-fuel
ratio/-

0 1062.43 −8.83 3400.00 610.20 0.80 5.60

1 1067.59 −8.42 3607.15 606.05 0.80 6.00

2 1118.27 −8.21 3938.05 604.85 0.80 6.50

3 1084.39 −8.70 4348.95 608.00 0.78 7.15

4 1119.99 −7.88 4542.80 607.35 0.82 7.45

5 981.38 −9.40 2984.05 559.65 0.78 5.35

6 1024.36 −8.66 3319.40 556.80 0.67 6.00

7 995.25 −8.66 3624.25 558.55 0.71 6.45

8 1048.84 −8.30 3937.80 557.25 0.80 7.05

9 1067.51 −8.44 4210.10 554.80 0.78 7.60

10 1020.57 −8.30 3894.20 516.10 0.75 7.55
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Fig. 4 Maximum
temperature of burden surface
at various air-fuel ratio and
gas flow

Fig. 5 Time of duration at
high temperature

Fig. 6 Time of duration at
medium temperature
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From another point of view, better combustion effect and lower gas consumption
may both be achieved by increasing the air-fuel ratio to some extent. But the gas
consumption cannot decrease unlimitedly even at high air-fuel ration, as shown in
Figs. 9 and 10. When the air-fuel ratio increases from 5.5 to 7.5, gas flow decreases
from 600 to 550 Nm3/h, similar comprehensive ignition intensity of high temper-
ature and medium temperature can be achieved with air-fuel ratio at 5.5 and gas
flow at 600 Nm3/h. With the gas flow further decreasing to 520 Nm3/h, the com-
bustion effect deteriorates dramatically even at air-fuel ratio of 7.5. The compre-
hensive ignition intensity of high temperature drops to only a quarter of the value at
air-fuel of 5.5, gas flow of 600 Nm3/h.

Fig. 7 Comprehensive
ignition intensity of high
temperature (CII1) at various
air-fuel ratio and gas flow

Fig. 8 Comprehensive
ignition intensity of medium
temperature (CII2) at various
air-fuel ratio and gas flow
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Industrial Test

Based on the above experimental research results, industrial test on adjusting ig-
nition parameters was conducted. Figure 11 shows the gas flow at air-fuel ratio of
5.5 and 6.6 in the sintering ignition furnace of Shougang. By increasing the air-fuel
from 5.5 to 6.6, the gas flow is reduced from 450 Nm3/h (8.1 GJ/h) to around 350
Nm3/h (6.3 GJ/h).

Fig. 9 Comprehensive
ignition intensity of high
temperature (CII1) at air-fuel
ratio of 5.5 and 7.5

Fig. 10 Comprehensive
ignition intensity of medium
temperature (CII2) at air-fuel
ratio of 5.5 and 7.5
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Conclusions

(1) Based on the combustion characteristics analysis results of the solid fuel in the
sinter mixture, the combustion process of the solid fuel can be improved by
increasing the air-fuel ratio to some extent to increase the oxygen partial
pressure in the ignition furnace.

(2) The temperature curve of the burden surface within the ignition furnace was
recorded continuously. Derived from the above temperature curve, the concept
of comprehensive ignition intensity was introduced in current study, with which
the combustion effect could be quantificationally measured.

(3) The comprehensive ignition intensity of high temperature and medium tem-
perature at various air-fuel ratio and gas flow have been tested. The results
showed that the comprehensive ignition intensity of high temperature and
medium temperature were positively correlated with air-fuel ratio in the range
of 5.5 to 7.5. In other words, the gas consumption can be reduced by increasing
the air-fuel ratio to some extent.

(4) According to the above fundamental research results, industrial test was con-
ducted in the ignition furnace of Shougang. By increasing the air-fuel from 5.5
to 6.6, the gas flow is reduced from 450 Nm3/h (8.1 GJ/h) to around 350 Nm3/h
(6.3 GJ/h).
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Behavior of Co, Ni and Precious Metals
in Copper Converting Process:
Experimental Study

Keiran Holland, Dmitry Sukhomlinov, Ville Naakka,
Ari Jokilaakso and Pekka Taskinen

Abstract This study is focused on distribution of Co, Ni, Ag, Au, and Pd between
molten copper and molten copper sulfide (‘white metal’) phases in copper con-
verting conditions. The behavior of the elements selected was studied experimen-
tally at 1300 °C and at various sulfur dioxide partial pressures (0.01, 0.05, 0.1, 0.5,
and 1 atm). The experimental technique employed involves a high temperature
equilibration followed by rapid quenching in ice water, with subsequent quantita-
tive elemental analysis of the equilibrium phases with an electron micro probe

analyzer. The distribution coefficients LCu=wm
Me determined in this work can be

arranged in the following sequence: Co < Ag < Ni < (Au, Pd).

Keywords Distribution � Trace elements � White metal � Matte

Introduction

Conventional copper converting process is conducted in Peirce-Smith converters,
where crude ‘blister’ copper is produced from copper-iron-sulfur melt (‘matte’). In
this batch process, iron is oxidized by oxygen-enriched air blowing and reacts with
silica flux forming slag phase. Slag is skimmed when remaining iron concentration
in matte has been reduced to less than one weight percent. The molten phase
produced is mainly comprised of copper and sulfur (‘white metal’) and it is further
processed by blowing oxygen-enriched air to oxidize the remaining sulfur and to
make blister copper [1].
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Copper concentrates as well as secondary copper bearing scraps contain a wide
range of impurities. These impurities dissolve and distribute between immiscible
liquids formed in the processing. Behavior of cobalt, nickel and precious metals in
the copper converting conditions has been investigated in several previous funda-
mental studies and their distribution coefficients between molten copper and white
metal phases have been measured at various temperatures and gas atmospheres.
However, data are in some degree inconsistent and scarce for some elements.

Distribution coefficient of nickel (LCu=wm
Ni ) was measured by Asano at 1200 °C by

equilibrating the sample in an evacuated fused silica ampoule to be 3.059 [2].

Another study suggests a temperature correlation with LCu=wm
Ni derived from exper-

imental data, LCu=wm
Ni ¼ 7:296� 0:0035T=�C (1150 to 1250 °C) [3]. In addition, the

effect of sulfur dioxide partial pressure on LCu=wm
Ni was investigated by Kashima et al.

[4] and Yazawa [5] and it was found to be insignificant. Cobalt distributes rather

evenly between copper and white metal phases. The distribution coefficient (LCu=wm
Co )

was reported to be nearly independent of sulfur dioxide partial pressure [4, 5]. Its
value was reported to be 1.124 [2] at 1200 °C, and between 1.03 [4]–1.14 [5] at
1300 °C.

Among the precious metals selected, distribution of silver is the most studied one,
while data concerning gold and palladium are rather scarce. The distribution coef-

ficient of silver between copper and white metal (LCu=wm
Ag ) was measured in previous

studies [6–9] from 1127 to 1250 °C to be in the range from 2.17 to 2.93. In addition,

LCu=wm
Ag was investigated at 1200 °C as a function of sulfur dioxide partial pressure

and a gradual rise from 2.8 to 3.6 was reported in the range of 0.7–20 kPa by

Kashima et al. [4]. Schlitt and Richards reported LCu=wm
Au determined at 1200 °C in a

protective atmosphere of N2 to be 125 [7], while Asano measured a higher value
171.5 at the same temperature [9]. Sinha et al. measured distribution coefficient of
gold at 1127 and 1227 °C to be 102 and 127, respectively [8]. Data concerning

palladium distribution are particularly scarce. LCu=wm
Pd was reported to be 166.67 at

1200 °C [7], measured in a protective atmosphere of N2. Burylev et al. experi-

mentally measured LCu=wm
Pd at 1150 and 1300 °C to be 94 and 62, respectively [10].

Consequently, the aim of this study was to determine the distribution coefficients
of Co, Ni, Ag, Au, and Pd between molten copper and white metal phases at 1300 °
C as a function of sulfur dioxide partial pressure, applying a reliable and
well-established experimental technique [11–13]. Such fundamental data show a
potential to improve recovery of the metals selected as by-products in the copper
converting process.
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Experimental

Distribution of the selected trace elements between molten copper and molten
copper sulfide (‘white metal’) phases was studied experimentally by applying
equilibration and quenching technique, followed by electron probe micro analyzer
(EPMA) employed for elemental analysis of the equilibrium phases.

A master alloy comprised of 1 wt% of Co, Ni, Ag, Au, Pd, 0.25 wt% Fe (to mimic
real converting process) and 94.75 wt% Cu was synthesized from pure metals
(Table 1). The weighed amounts of the metals were sealed in a fused silica ampoule
flushed with Ar gas (99.999 vol.%, AGA, Finland) and evacuated to 3�10−5 atm. The
ampoule was heat-treated for 120 h at 1200 °C and quenched in ice water. The
sample produced was analyzed with a LEO 1450 (Carl Zeiss Microscopy GmbH,
Jena, Germany) scanning electron microscope (SEM) coupled to an Oxford
Instruments X-Max 50 mm2 energy dispersive spectrometer (EDS) (Abingdon,
Oxfordshire, UK) and its homogeneous composition was confirmed.

The synthesized master alloy and pure copper sulfide (Cu2S) were utilized as
starting materials mixed in the equal mass fractions and pressed into a pellet. The
mass of the pellet was about 0.2 g. Flat-bottomed calcia-stabilized zirconia
(CSZ) crucibles (10–12 mm in diameter) were cut along the axis and produced
halves were utilized as an inert container for equilibration of the pellets. Such a
shape of the container improves exposure of the sample to the gas phase during the
equilibration. The CSZ crucible with the sample inside (Fig. 1a) was put into a
basket made of a platinum wire (0.5 mm diameter, Johnson Matthey, UK). The
basket was introduced into the alumina working tube of the furnace from below
with a platinum suspension wire.

A Lenton vertical resistance furnace (PTF 15/–/450) with a gas-impermeable
alumina work tube (38/45/1100 mm, Friatec) was employed for the equilibration
experiments (Fig. 1b). Eurotherm PID controllers 3216 were employed for tem-
perature control. The experimental temperature was measured with a calibrated
S-type Pt/Pt-10%Rh thermocouple (Johnson Matthey, UK) right next to the sample
during the entire equilibration (accuracy of ±2 °C). The thermocouple was con-
nected to a multimeter (Keithley 2010 DMM, USA). A Pt100 resistance

Table 1 Chemicals utilized
in the study, their purity and
suppliers

Chemical Purity, wt% Supplier

Co 99.99 Koch-Light Laboratories (UK)

Ni 99.996 Alfa Aesar (Germany)

Ag 99.99 Alfa Aesar (Germany)

Au 99.95 Alfa Aesar (Germany)

Pd 99.9 Alfa Aesar (Germany)

Fe 99.99 Alfa Aesar (Germany)

Cu 99.999 Alfa Aesar (Germany)
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thermometer (SKS-Group, Finland) connected to a multimeter (Keithley 2000
DMM, USA) performed the cold junction compensation.

The sulfur dioxide partial pressure was fixed by mixtures of SO2 (99.98 vol.%)
and Ar (99.999 vol.%) both supplied by AGA (Finland). The gas flowrates were
controlled with Alborg DFC26 mass-flow controllers (USA). The total flow rate
was 300 ml/min.

The experiments were conducted at 1300 °C and sulfur dioxide partial pressures
were controlled to 0.01, 0.05, 0.1, 0.5, and 1 atm. The necessary and sufficient
equilibration time was found in a series of preliminary experiments to be 16 h.
After equilibration, the samples were rapidly quenched in ice water. The small
sample size facilitated a rapid quenching rate. The quenched samples were dried at
room temperature and mounted in EpoFix epoxy resin (Struers, Denmark).
Metallographic methods of wet grinding and polishing were applied to prepare
cross-sections. After carbon coating, the polished sections were examined with
Cameca SX100 microprobe (Cameca SAS, France) EPMA equipped with five
wavelength dispersive spectrometers (WDS). The number of identical measure-
ments per phase was eight. The PAP matrix correction procedure [14] was applied
for the raw data. The beam diameter employed was varying from 20 to 100 µm.
The accelerating voltage employed was 20 kV and beam current was 60 nA.
Table 2 shows EMPA detection limits for every element analyzed.

Fig. 1 a The CSZ crucible with the sample inside and b the schematics of the experimental setup
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Results and Discussion

A micrograph presented in Fig. 2 shows a typical microstructure of the quenched
samples. It was comprised of CSZ crucible with multiple cracks occurring in
quenching due to the thermal shock, copper metal and white metal phases.

The distribution of a solute element Me between molten copper and white metal
phases can be described by the following equilibrium reaction [4]:

Meþ ½Cu2S� ¼ MeSþ 2Cuð Þ; ð1Þ

where () and [] refer to the copper metal and white metal phases, respectively.
The distribution coefficient of the solute elements between copper metal and

white metal phases was defined with Eq. (2):

LCu=wm
Me ¼ wt%Með Þ

wt%Me½ � : ð2Þ

The uncertainty of the distribution coefficients measured in the study was cal-
culated as:

LMe

LMe
¼ Dwt%Me

wt%Me

� �
þ Dwt%Me

wt%Me

� �
; ð3Þ

Table 2 EPMA detection limits

Phase Detection limit, ppm

Cu S O Fe Co Ni Pd Ag Au

Copper metal 347 147 1061 176 178 260 171 355 553

White metal 335 147 1248 182 187 257 171 347 534

Fig. 2 A typical
microstructure of the
quenched samples: CSZ is the
crucible, Cu is the copper
alloy phase, and WM is the
white metal phase
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where wt%Me and Dwt%Me stand for the average concentration of Me in the phase
and the standard deviation, respectively.

The distribution coefficients of Ni, Co and Ag determined at 1300 °C as a
function of sulfur dioxide partial pressure (PSO2) in the present work are depicted in

Fig. 3. An explicit dependence between LCu=wm
Co and PSO2 can be seen. LCu=wm

Co
decreases from 0.87 to 0.22 with increasing PSO2, within the range studied. These

findings contradict to the previous reports [4, 5], which claimed that LCu=wm
Co is

nearly independent of PSO2, probably due to lower accuracy of the analytical

measurements in the previous studies. However, LCu=wm
Co values measured at the

lower SO2 partial pressures are close to those reported previously [2, 4, 5]. The

similar trend of LCu=wm
Ni can be noticed. Its value decreases from 2.64 to 1.57 within

the PSO2 range studied, but in the previous reports [4, 5] it was stated that LCu=wm
Ni

dependence of PSO2 is negligible, as in the case of Co. Nevertheless, the values
reported previously [2–5] are in a good agreement with those measured in the
present work at the lower PSO2 side.

The distribution coefficient of silver (LCu=wm
Ag ) seems to be practically indepen-

dent of PSO2 and its value is about 1.35 at 1300 °C throughout the PSO2 range

studied (Fig. 3). In the previous studies LCu=wm
Ag was measured at lower tempera-

tures, from 1127 to 1250 °C and higher values were reported [6–9], what is rea-

sonable. However, a gradual rise of LCu=wm
Ag at 1200 °C was reported in the PSO2

range of 0.7–20 kPa [4], which was not observed at 1300 °C in the present work.
The detection limits of EPMA were insufficient to analyze the equilibrium

concentrations of Au and Pd dissolved in the white metal phase reliably. These
precious metals mostly distribute into the copper alloy phase. Therefore, their
distribution coefficients between copper and white metal phases were roughly
estimated based on their equilibrium concentrations in the metal phase and the
respective detection limits of EPMA for the white metal phase. The distribution
coefficient of palladium is higher than 50, while the distribution coefficient of gold

Fig. 3 The distribution
coefficients of Ni, Co and Ag
between copper and white
metal phases at 1300 °C as a
function of partial pressure of
SO2

222 K. Holland et al.



is higher than 15. Probably, these values are highly underestimated, but an ana-
lytical technique that is more sensitive than EPMA is essential for the accurate
evaluation.

Conclusions

High temperature equilibration followed by rapid quenching in ice water with
subsequent quantitative elemental analysis of the equilibrium phases was employed
to determine the distribution coefficients between the copper metal and white metal
phases of the solute metals of interest. The equilibration experiments were con-
ducted at 1300 °C within the PSO2 range from 0.01 to 1 atm. The distribution

coefficients of the solute metals between copper and white metal LCu=wm
Me measured

in the present work can be arranged in the following sequence:
Co < Ag < Ni < (Au, Pd). However, the distribution of Au and Pd was only
roughly estimated, due to difficulties in the analytical technique applied to detect the
low concentrations in the white metal phase.

The correlations between LCu=wm
Me and PSO2 were determined. Ni and Co dis-

tribute more to the copper metal phase at lower partial pressures of sulfur dioxide,
while the behavior of Ag at 1300 °C seems to be essentially independent of PSO2.
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Recycling of EAF Dust Through Source
Separation

Naiyang Ma

Abstract Along with fast growth of EAF steelmaking, better ways of treating EAF
dust have been continuously pursued for better environmental protection and better
economic benefits. In this contribution, various ways of collecting EAF dust in EAF
off-gas cleaning systems are reviewed, and generation of dust and concentration of
zinc in the dust from various collecting devices are examined. Accordingly, recy-
cling of EAF dust through source separation is discussed.

Keywords EAF steelmaking � EAF dust � Recycling � Source separation
Zinc

Introduction

EAF steelmaking generates EAF dust, and the EAF dust is a listed hazardous solid
waste [1]. There are only three ways to treat the EAF dust allowed by environ-
mental protection authorities: disposal of the dust at landfills for permanent storage,
recycling of the dust at zinc recycling facilities for zinc recovery and selling the dust
to exempt markets [2–5].

Selling EAF dust to exempt markets has not been well developed, and hence this
treatment method of the EAF dust plays an insignificant role in solving issues of the
EAF dust.

In treating EAF dust by landfilling, the dust is first chemically stabilized and then
shipped to well-lined landfills and stored. [2–4] Disposal of the EAF dust at
landfills may jeopardize EAF dust producers with potential environmental liabili-
ties. It is increasingly difficult to obtain new permits for landfilling the EAF dust
due to increasing public resistance. In addition, environmental regulations are
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increasingly becoming tougher. Consequently, landfilling of the EAF dust is
increasingly becoming unpopular and has been dramatically decreased [5].

When recycling EAF dust at zinc recycling facilities, there is a fundamental
limitation to EAF dust producers. The EAF dust must contain at least 15% zinc, to
be economically treatable [1]. The minimum zinc content is generally associated
with recycling fees charged by zinc recyclers. If zinc concentration in the EAF dust
becomes higher, zinc recyclers will offer credits to EAF dust producers to subsidize
part of the recycling fees.

Clearly, concentration of zinc in EAF dust is a crucial parameter affecting
recyclability of the EAF dust, recycling cost paid by EAF dust producers and
profitability of EAF dust recyclers. High concentration of zinc in the EAF dust will
secure recyclability of the dust and will help maintain strong financial stability for
both EAF dust producers and recyclers. As a result, how to increase concentration
of zinc in the shipped EAF dust in economic ways becomes a critical step for EAF
dust producers to keep recyclability of the EAF dust and to lower their financial
burden in recycling of the EAF dust. In the same time, high concentration of zinc in
EAF dust is also beneficial to EAF dust recyclers.

Recycling of EAF dust back into EAF furnaces has been regarded as an
important step to increase concentration of zinc in the shipped EAF dust and has
been widely tested in many EAF steelmaking plants. [2–4, 6–11] Iron, lime and
carbon are beneficial components for EAF steelmaking, but zinc is not needed by
the EAF steelmaking process. As a matter of fact, since reduction and vaporization
of zinc in EAF bath are associated with huge energy consumption, it is often
questionable whether recycling of all the EAF dust back into the EAF for zinc
enrichment makes any economic senses. In addition, it is also often a concern that
too much zinc in the EAF furnaces may interfere with EAF operation and harm
steel quality [12].

Therefore, when recycling the EAF dust back into the EAF furnaces, it is
beneficial to minimize zinc looping in the EAF steelmaking process. As such, in
this contribution, various ways of collecting EAF dust in EAF off-gas cleaning
systems are reviewed, generation of dust and concentration of zinc in the dust from
different collecting devices are examined, and source separation of the various EAF
dusts based on concentration of zinc and source recycling of the lesser-zinc EAF
dusts are discussed for increment of concentration of zinc in the shipped EAF dust.

Overview of Various Collecting Devices in EAF off-gas
Cleaning Systems

A modern EAF steelmaking shop generally has two off-gas cleaning systems. One
is the primary off-gas cleaning system which captures gas and dust emissions
directly extracted through the fourth hole of the furnace during melting and refining.
The other is the secondary off-gas cleaning system which collects dust and fumes
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from the furnace through canopy suction when the furnace is open for charging and
tapping, and captures fugitive dust inside the EAF shop from the roof.

The primary off-gas cleaning system consists of at least a combustion chamber
and primary baghouses. For some EAF shops, there might exist one or more cooling
dropout boxes and reaction chambers between the combustion chamber and the
primary baghouses for cooling the off-gas and for removing contaminants [7, 13–16].

The combustion chamber, the dropout box(es) and the reaction chambers may also
act as dust collectors besides their primary functions for burning combustibles in EAF
off-gas, for cooling the off-gas and for removal of contaminants from the off-gas.

The secondary off-gas cleaning systemmay also receive off-gas and dust from ladle
metallurgy furnace (LMF) shops and other dust sources [13]. In some EAF shops, the
secondary off-gas cleaning systems may have their own fans and baghouses. In other
EAF shops, the secondary off-gas cleaning systems may share fans and baghouses
with the primary off-gas cleaning systems [13, 16]. The secondary off-gas might mix
with the primary off-gas partially or in full to cool the primary off-gas.

Some electric arc furnaces might be equipped with scrap preheating facilities.
[17–19] The scrap being preheated in the scrap preheaters can capture dust from the
primary EAF off-gas while the hot and dirty off-gas is passing through the scrap.

As a summary, EAF shops might have the following devices that can capture
EAF off-gas dust: scrap preheaters, combustion chambers, cooling dropout boxes,
reaction chambers, primary baghouses and secondary baghouses.

Generation of EAF Dust by Various Devices in EAF off-gas
Cleaning Systems

As discussed in last section, EAF dust can be captured not only by primary bag-
houses, but also by many other devices in the off-gas cleaning systems, including
scrap preheaters, combustion chambers, cooling dropout boxes, reaction chambers
and secondary baghouses.

Generation of EAF dust by these various devices depends on many factors, and
may vary greatly. It is estimated that generation rate of primary EAF dust ranges
from 7.5 to 20 kg per tonne of liquid steel, and the generation rate of secondary
EAF dust varies from 0.5 to 3.5 kg per tonne of liquid steel [20]. As a result, ratio
of the secondary EAF dust to the total EAF dust could change from about 6% to
around 15%. Estimated by another source, the secondary EAF dust is about one
tenth of the primary EAF dust [4]. The ratio could be higher if the secondary off-gas
cleaning systems also capture fumes from LMF shops and other dust sources.

For EAF shops equipped with scrap preheating facilities, considerable amounts
of EAF dust in off-gas can be filtered out. It is estimated that up to 20–30% of total
EAF dust could be caught by scrap in scrap preheaters [17, 21].

Combustion chambers are also very important in collecting large EAF dust
particles. Based on experience of some ArcelorMittal EAF steelmaking plants, the
combustion chambers could collect about 10% of the total EAF off-gas dust.
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A cooling dropout box might not capture significant amount of EAF dust,
perhaps about 1% of the total EAF dust according to experience of some
ArcelorMittal EAF steelmaking plants.

Activated carbon is often used in reaction chambers for removal of contaminants
in EAF off-gas. Depending on whether the reaction chambers use fixed activated
carbon beds or injected activated carbon, the reaction chambers may or may not
capture EAF dust. For the reaction chambers with activated carbon beds, consid-
erable amounts of EAF dust particles can be absorbed in the beds.

In summary, scrap preheaters can capture up to 20–30% of the total EAF dust,
generation of the secondary EAF dust is up to 15% of the total EAF dust, com-
bustion chambers can collect about 10% of the total EAF dust, cooling dropout
boxes may catch about 1% of the total EAF dust, reaction chambers of activated
carbon may or may not capture EAF off-gas dust, and primary baghouses collect
most of the EAF off-gas dust.

Concentration of Zinc in EAF Dust Collected by Various
Devices in EAF off-gas Cleaning Systems

Two ArcelorMittal EAF steelmaking plants, denoted by A and B, are used as
examples in the following discussion. A plant primary off-gas cleaning system
consists of a combustion chamber and baghouses. Its secondary off-gas cleaning
system shares fans and baghouses with the primary off-gas cleaning systems. Dusts
generated by the combustion chamber and the baghouses were sampled and ana-
lyzed for zinc. The results are shown in Fig. 1.
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Fig. 1 Variation of concentration of zinc in EAF offgas dusts of ArcelorMittal A EAF
Steelmaking Plant
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From Fig. 1, one can see that the combustion chamber dust contained signifi-
cantly less zinc than the baghouse dust, and the concentration of zinc in the
combustion chamber dust did not fluctuate very much as the baghouse dust did over
the sampling period. The combustion chamber dust was treated as EAF slag, and
the baghouse dust was chemically stabilized and landfilled.

ArcelorMittal B EAF steelmaking plant primary off-gas cleaning system collects
dust via direct evacuation through the fourth hole and indirect evacuation through
the canopy hood. The primary off-gas cleaning system has a combustion chamber, a
cooling dropout box and baghouses. Its secondary off-gas cleaning system receives
dust from the EAF shop and the LMF shop, and has a dedicated fan and dedicated
baghouses. The combustion chamber dust is treated as EAF slag, and the dropout
box dust and the baghouse dust are sent to the zinc recycler. The dropout box dust
and the baghouse dust are separately sent to the zinc recycler, but the primary
baghouse dust and the secondary baghouse dust are combined.

The generation of dust and concentration of zinc in the dust from various col-
lecting devices of the B EAF steelmaking plant are presented in Table 1. Based on
the data in Table 1, concentration of zinc in the primary baghouse dust can be
calculated out and is 21.735%. Clearly, EAF offgas dusts collected by other devices
contain significantly less zinc than the primary baghouse dust and cannot be eco-
nomically recycled in zinc recycling facilities.

Source Separation and Source Recycling of EAF Dust
Based upon Concentration of Zinc in the Dust

From the data presented in previous sections, EAF off-gas dusts collected in other
devices in EAF off-gas cleaning systems contain much less zinc than primary EAF
baghouse dust. Therefore, only primary EAF baghouse dust should be shipped out
to zinc recyclers while other EAF off-gas dusts could be recycled back to the
source—EAF furnaces for zinc enrichment and for recovery of valuable compo-
nents in the EAF dust.

In the two ArcelorMittal EAF steelmaking plants, combustion chamber dust was
treated as EAF slag, iron in the dust was recovered by magnetic separation, and
residual slag was sold to construction industry. The combustion chamber dust could
also be directly recycled back into the EAF furnaces for zinc enrichment and

Table 1 Generation of dust and concentration of zinc in the dust from various collecting devices
at ArcelorMittal B EAF steelmaking plant

Device Combustion
chamber

Dropout
box

All baghouses
combined

Secondary
baghouses

Percentage out of total dust, % 10 1 89 10

Zn, % 4 6.407 19.405 1
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utilization of iron, lime and carbon in the dust. Separation of the combustion
chamber dust from primary baghouse dust can be readily facilitated. It is possible to
significantly increase the ratio of the combustion chamber dust to the total EAF
off-gas dust for recovering more iron in the combustion chamber dust and for
significantly raising zinc levels in the primary baghouse dust by adopting in-process
separation strategy [22, 23].

Since the secondary EAF off-gas dust contains very small amount of zinc, it
should not be mingled with the primary EAF baghouse dust if it is separately
collected. For ArcelorMittal B EAF steelmaking plant, separation of the secondary
EAF off-gas dust from the primary EAF baghouse dust can increase zinc content of
the shipped EAF dust from 19.405 to 21.735%. The secondary EAF off-gas dust
can be recycled back to the EAF furnace for reuse of iron, lime and carbon in the
dust.

Zinc content in the cooling dropout box dust is far below the minimum zinc
requirement. Therefore, it is not worth to ship the dust to the zinc recycler.

For EAF shops with scrap preheaters, the retained dust in the scrap will go back
to the EAF furnaces by nature with the preheated scrap. This dust presumably
contains high iron and lime and little zinc. Enhancing the filtration capability of the
scrap preheater could be a very effective method to increase zinc content in the
shipped EAF baghouse dust and to reduce quantity of the total shipped EAF
baghouse dust.

Conclusions

Beside primary EAF baghouses, EAF steelmaking off-gas cleaning systems are
composed of various other collecting devices like scrap preheaters, combustion
chambers, cooling dropout boxes, reaction chambers and secondary baghouses,
which also collect EAF off-gas dusts. The EAF off-gas dusts collected by these
different devices are quite different and should be classified for adopting different
treatment methods. In general, other EAF off-gas dusts contain much less zinc than
the primary EAF baghouse dust. As a result, only the primary EAF baghouse dust
should be shipped out for zinc recycling, and other EAF off-gas dusts could be
recycled back to EAF furnaces for zinc enrichment and for utilization of iron, lime
and carbon in the dusts. Concentration of zinc in the shipped EAF dust can be
significantly increased simply by source separation and source recycling of the EAF
dusts collected by other devices rather than the primary EAF baghouses. Further
greater increment of concentration of zinc in the shipped EAF dust can be facilitated
by adopting in-process separation strategy.
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A Sustainable Methodology for Recycling
Electric Arc Furnace Dust

Joseph Hamuyuni, Petteri Halli, Fiseha Tesfaye, Maria Leikola
and Mari Lundström

Abstract In a race to save the planet of its rapidly depleting natural resources, the
use of Secondary Raw Materials (SRMs) as replacements in several processes is
currently intensively pursued. In fact, this is currently one of the European Union
(EU)’s mandates. Valorization of SRMs is consistent with circular economy, where
resource efficiency is maximized for the benefit of both businesses and the
environment. In line with this mandate, this paper focuses on investigating process
phenomena related to hydrometallurgical recycling of Electric Arc Furnace
(EAF) dust. In the experimental study, selective dissolution of zinc and other metals
is investigated to acquire a recyclable leach residue. Based on the experimental and
theoretical investigations, zinc could be extracted from the EAF dust and a recy-
clable leach residue produced, having chemical composition suitable as a feed
material into electric arc furnace.

Keywords SRMs � Recycling � EAF dust � DSC-TGA curves
Alkaline roasting

Introduction

Recovery of valuable metals and energy from secondary raw materials (SRMs) has
a two-fold effect on natural resources. Firstly, using SRMs lessens the pressure on
the earth’s fast depleting raw materials, thereby ensuring extended supply of metals
and other products for a foreseeable future. Secondly, since SRMs emanate from
waste streams, recovering resources from them ensures a cleaner environment [1].

J. Hamuyuni (&) � P. Halli � M. Leikola � M. Lundström
Department of Chemical and Metallurgical Engineering (CMET),
School of Chemical Engineering, Aalto University, 16200, 00076 Aalto, Finland
e-mail: joseph.hamuyuni@aalto.fi

F. Tesfaye
Laboratory of Inorganic Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi
University, Piispankatu 8, 20500 Turku, Finland

© The Minerals, Metals & Materials Society 2018
Z. Sun et al. (eds.), Energy Technology 2018, The Minerals, Metals & Materials
Series, https://doi.org/10.1007/978-3-319-72362-4_20

233



Using SRMs also keeps metals in circulation, a process often referred to as a
circular economy. This is why for example, the European Union (EU), has outlined
a detailed plan through the European Commission (EC) [2] on how to move
towards a more circular economy.

Electric Arc Furnace (EAF) dust, is a potential SRM. Currently, up to 20 kg of
EAF dust is generated per tonne of steel [3]. This is an enormous amount of
material considering the total amount of steel produced by this method [4].
Presently, EAF dust is classified a toxic waste and cannot end up in landfills or be
recycled through the conventional methods [5, 6]. This is because of the presence of
Pb, Cr and Zn among other metals. Hexavalent chromium (Cr6+) [7, 8] and lead
(Pb) [2, 9] are carcinogenic while zinc renders direct EAF dust recycling process
impracticable: high zinc content in recycled scrap would react and cause damage to
the refractory of the electric furnace [3]. It would also choke the gas uptake, which
may lead to the entire process shut down.

Several studies have been conducted to offer a solution to use EAF dust as a
SRM. However, these studies are dominated by direct inorganic acid leaching using
acids such as sulphuric, nitric and hydrochloric acids [10–14]. The problems and
limitations related to inorganic acids, such as poor selectivity, low zinc recovery
and problematic leach residues are discussed in a recent study of Halli et al. [1]. In a
quest to overcome these limitations, a method that is both selective and generates a
recyclable iron rich residue is investigated in the current study.

Experimental Section

Materials and Method

The composition of the five metals of interest in the EAF dust raw material
employed in the study, were Zn (33.16%), Fe (17.89%), Mn (2.52%), Pb (1.64%),
and Cr (0.23%). Additionally, the EAF steel dust also contained oxides of alkalis
(Na, K, Mg, and Ca), silica, and carbon. Silica and alkalis are useful as slag formers
in the EAF feed material and carbon will be easily removed through decarburization
during the high temperature process. Therefore, the leaching behaviour of these
elements is not critical to the quality of the leach residue to be recycled back to the
EAF process. In the first part of the project, 16 leaching media were utilized for
mapping experiments and they are detailed in Halli et al. [1].

EAF steel dust was homogenized at Geological Survey of Finland laboratory,
before experiments. Roasting was performed at 450 °C in a Scandia oven, (Type
K4/PDI 40). A 1000 mL lab scale reactor and a LAUDA Aqualine AL 25 water
bath were employed for leaching experiments. The bath was used to maintain the
leaching temperature. During leaching, constant stirring speed of 500 RPM using a
four blade lab agitator stirrer was maintained. A digital Glass Body pH Electrode HI
11310 (Hanna Instruments) and an In Lab Ag/AgCl 3 M KCl (Mettler Toledo)
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were employed for pH and Redox potential measurement, respectively. After the
leaching experiments, dried residues were analyzed using XRD (X-Ray
Diffraction), X’Pert PRO Powder, NL (with Rietveld method, PANalytical
HighScore Plus software version 4.0) [15, 16]. The leach solutions were analyzed
using AAS for extractions of Zn, Fe, Mn, and Pb. Cr was analyzed by ICP-OES due
to its high vaporization temperature.

Roasting was done at an EAF dust/NaOH ratio of 1.94, NaOH being � 99.5%
assay (VWR Chemicals Belgium). During leaching experiments, sampling was
done at various intervals (5, 15, 30, 60, 120 min) to map the progress of dissolution
of metals. Solid/liquid ratio for all leaching experiments was kept at 100 g/L under
oxygen purging. The yield of each element was determined by dividing the ana-
lyzed metal concentration with the metal concentration obtained after total leaching
of equal amount of solids into an equal volume of 100% aqua regia.

Thermal Analysis

Thermal analyses of the EAF-dust mixed with NaOH were conducted by using a
TA Instruments SDT Q600 simultaneous TG/DTA. The calorimeter was calibrated
with the melting temperatures of high purity zinc, aluminium, and gold. The
average measurement accuracies of temperatures were determined to be ±2 °C.

Two calorimetric measurements were performed for the sample under the same
experimental conditions. In all runs, mass change and heat flow during linear
heating were measured simultaneously. The runs were performed under a protective
99.999% pure N2 atmosphere. In both runs the furnace was heated up to 450 °C and
then maintained isothermally for 1 h. The heating rate was 5 °C/min, and the flow
rate of gas was 100 ml/min. Al2O3 crucibles were used as sample holders and
references during all runs.

Results and Discussion

The study was conducted in two phases. The first part where 16 leaching media
were used serves as a mapping phase while the second part using citric acid as the
only leaching medium is an optimization phase. Key observations from the map-
ping phase are documented in Halli et al. [1]. From this study, it was concluded that
citric acid was the optimal leaching medium to be employed in the optimization
phase. Table 1 shows performance of investigated organic acids in the absence of
pretreatment of EAF dust.

From Table 1 it can be seen that citric acid resulted in the highest Zn extractions
and more selectivity for Fe among all investigated organic acids. Furthermore, the

A Sustainable Methodology… 235



Pb dissolution was considered an added advantage. Therefore, citric acid was
selected as preferred candidate for further experimentation.

Citric Acid Leaching

The influence of time, concentration, temperature, and pH on metals extraction in
the citric acid solution, were predicted using MODDE Version 8.0. Table 2 shows
the impact of each parameter on the metal (Fe, Zn, Mg, Cr, Pb) leaching behaviour,
scale 1–3 describing the importance of the parameter.

From Table 2, it can be deduced that within the investigated parameter ranges,
concentration, followed by temperature had greatest (positive) influence on the
yields of all the five metals. Moreover, whilst the concentration coefficient had a
positive influence, temperature displayed a negative effect on the yields of all
metals. This is assumed to be due to degradation of the citric acid with increasing
temperature

Table 1 The performance of organic acids as leaching media for EAF dust. The extraction results
are ranked with highest Zn extraction to solution (>75% or >50%) and with the lowest Fe
extraction (<5% or <20%). Pb removal is considered advantageous in terms of preventing
accumulation

Leaching media Zn
>75%

Zn
>50%

Zn
>10%

Zn
<1%

Fe
<1%

Fe
<5%

Fe
<20%

Fe
>80%

Pb
%

H2CO2 (Formic
acid), 0.27 M

X X 49

H2CO2 (Formic
acid), 2.7 M

X X 0.6

C6H8O7 (Citric
acid), 0.09 M

X X 0.3

C6H8O7 (Citric
acid), 0.94 M

X X 49

C2H2O4 (Oxalic
acid), 0.16 M

X X 18

C2H2O4 (Oxalic
acid), 1.6 M

X X 22

C2H4O2 (Acetic
acid), 1.75 M

X X 60

C2H4O2 (Acetic
acid), 17.5 M

X X 35
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Roasting—Leaching

In the study, it was observed further that the highest zinc extraction achievable by
direct organic acid leaching was only 78%, which is well below the target of 90%.
Therefore, the mineralogy of the sample was studied in more detail. It was observed
that zinc was present not only as zinc oxide and minor zinc sulphide, but also
partially as zinc ferrite (ZnFe2O4). Zinc ferrite is known to be more refractory and
thus insoluble in citric acid in the investigated environment, resulting zinc
extraction below 80%. Figure 1 shows the main phase composition of EAF dust
(XRD).

In order to transform the zinc ferrite into a more leachable form, a roasting step
was introduced. Roasting of EAF dust and specifically zinc ferrite in the presence of
NaOH supports the formation of sodium zincate and sodium ferrate, following
Eq. (1):

ZnFe2O4 sð Þ + 4NaOH sð Þ = Na2ZnO2 sð Þ + 2NaFeO2 sð Þ + 2H2O " ð1Þ

Table 2 Scaled and centred
coefficients for iron, zinc,
manganese, chromium, and
lead metals yields. The
numbers in brackets ()
represents the magnitude of
the influence of each
parameter on the yield of a
particular metal. The
parameters t, c, and T are
time, concentration and
temperature, respectively

Parameter
and scale

Fe Zn Mg Cr Pb

t (0–120 min) " (1) " (1) " (1) Invalid Invalid
C(0.05–
0.8 M)

" (3) " (3) " (3) " (3) " (3)

T (25–50 °C) # (2) #
(2.5)

# (2) # (2) # (1.5)

pH (1–8) #
(2.5)

# (2) #
(2.5)

# (2) # (2.5)

MODDE is an experimental design and statistical analytical tool

1.8%

16.8%

38.8%

42.6%

 ZnO
 ZnxFe3-xO4

 Fe2O3

 ZnS

Fig. 1 A chart showing
composition of EAF dust by
phases present in large
fractions. Beside zinc oxide, a
significant amount of zinc
exist in the ferrite phase
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The DSC-TGA curves in Fig. 2 illustrate the decomposition and formation of
compounds during the roasting phase of the experiments. As can be observed from
the figure, there are mass losses below 200 °C which are due to evaporation of
water. This phenomenon is common for the Zn-based and NaOH containing phases.
There is one small peak before isothermal temperature has been reached (onset: 267
°C and Peak: 280 °C). This is due to chemical reaction during the formation of the
Na2ZnO2. From this study, it may be deduced that decomposition of zinc ferrite and
formation of the two compounds Na2ZnO2(s) and 2NaFeO2 occurs at temperatures
lower than 300 °C. Such a low temperature would require less energy for the
roasting of EAF dust, a feature that makes the method more lucrative.

After adopting the pre-treatment step of alkaline roasting at T = 450 °C
(established from literature to be high enough), the citric acid leaching was con-
ducted for the roasted EAF dust. Figure 3 shows the extraction of Fe, Zn and Pb
into the citric acid solution for this pre-treated dust material. Zinc present in the
roasted EAF dust was shown to be easily soluble and reached high extraction after
only 5 min. This suggests that zinc ferrite was transformed into sodium zincate
during the roasting process and furthermore, that zincate was easily soluble into
citric acid. At the same time, iron extraction into the solution was low (<10%) due
to leaching pH > 3, keeping iron in a solid form [17]. Thus, pH monitoring and
control can support the selective leaching process of EAF dust.

Figure 3 illustrates the effect of alkaline roasting on selective dissolution of zinc,
iron, and lead. Leaching with citric acid was shown to improve both zinc extraction
and selectivity between zinc and iron. It can be observed that zinc extraction
reached 100% while iron extraction remained below 10%, a feature supporting the
recyclability of EAF dust back into the steel process. Additionally, lead extraction
was over 80%.

Fig. 2 DSC-TGA curves for the sample composed of EAF-dust mixed with NaOH heated up to
450 °C and kept isothermal for 1 h
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Conclusions

The current study was aimed at observing the phenomena related to EAF dust
recycling, producing an iron rich solid with low Zn and Pb, suitable as a secondary
feed material to the EAF. The organic acids were discussed as potential lixiviants
for Zn leaching. Both citric acid (0.94 M) and acetic acid (1.75 M) could result in
high Zn extraction (>75% and >50%, respectively) into the solution whereas acetic
acid dissolved initially lower iron (<5%) compared to citric acid (<20%). As a
result, the factors affecting EAF dust leaching in citric acid media were investi-
gated. The main parameters affecting metal extraction (Fe, Zn, Mg, Cr, and Pb)
were citric acid concentration (increased all metals extraction) and temperature
(decreased all metal extraction). The latter was suggested being due to decompo-
sition of the organic acid. It was observed further that the highest zinc extraction
achievable by direct citric acid leaching was only 78% due to Zn being partially
present as zinc ferrites. This was addressed by applying an alkaline roasting pre-
treatment prior to citric acid leaching of the EAF dust, increasing the Zn extraction
up to 100%.
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Thermal Separation and Leaching
of Valuable Elements from Waste-Derived
Ashes

Daniel Lindberg, Emil Vainio and Patrik Yrjas

Abstract Recovery of trace elements from different industrial waste streams is
important in realizing the goals of the circular economy. Ash streams from waste
combustion can contain high levels of both toxic and valuable trace elements. These
elements can be separated during the combustion process based on volatilization
and condensation, as well as being separated in post-combustion processes, through
thermal or leaching treatment. In this study, an overview is given of the thermal
methods for recovery of valuable elements from ash fractions derived from waste
incineration. In addition, a case study is presented of the behaviour of ash-forming
elements in combustion of MSW and demolition wood, with special focus on the
elements Co, Cu, and Sb. In conclusion, it is shown that thermodynamic modeling
of high temperature processes can be a useful tool to predict ash behavior both
during combustion and in the post combustion treatment of the ash.

Keywords Ash treatment � Thermodynamic modeling � Waste incineration
Thermal processing

Introduction

Different types of ash fractions and various types of APC (air pollution control)
residues are formed in thermal conversion of waste-derived fuels. The solid resi-
dues from WtE (Waste-to-Energy) plants may contain harmful components, such as
toxic metal compounds and organic micropollutants, which may lead to problems in
the utilization or safe disposal of the material. Various treatment methods and
processes can be used to reduce the leachability of harmful residue constituents,
destroy toxic organic compounds (organic micropollutants), reduce residue volume,
and produce material suitable for utilization.
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Van der Sloot et al. [1], Sabbas et al. [2], Quina et al. [3], Whiticar and Ralph
[4], and Zacco et al. [5] have recently reviewed different approaches in the man-
agement of the ash and solid APC residues from waste combustion. The two main
approaches are safe disposal and recycling or reuse of the ash. In order to safely
dispose of or reuse/recycle the ash, separate treatment processes are often required.

The main treatment methods for ash and APC residues can be divided into three
groups: (1) separation process (physical or chemical); (2) stabilization and solidi-
fication; (3) thermal treatment. Table 1 gives an overview of the principles and
methods for treatment of MSW (municipal solid waste) ash, based on the reviews of
the International Ash Working Group [6], van der Sloot et al. [1], Sabbas et al. [2],
and Whiticar and Ralph [4].

Lindberg et al. [7] recently reviewed different thermal treatment methods of
MSW ash residues. The main categories for thermal treatment are vitrification,
fusion/melting, and sintering. The thermal methods are mainly differentiated based
on the characteristics of the process product, rather than the process itself. In
vitrification, a glassy phase is produced, whereas in fusion processes, a crystalline
or heterogeneous product is formed by melting the ash or residue. In sintering, the
residues are heated to achieve a reconfiguration of solid materials.

Table 1 Overview of principles and methods of treatment of ash residues from WtE plants [1, 2,
4, 6]

Treatment principle Processes/Methods and unit operations

Chemical and physical
separation

Washing

Chemical precipitation

Crystallization/evaporation

Ion exchange

Density and particle size based separation

Distillation

Electrolysis

Electrokinetic separation

Magnetic separation

Eddy-current separation

Chemical extraction/mobilization

Adsorption

Stabilization and/or
solidification

Solidification/stabilization with hydraulic binders and
pore-filling additives

Chemical stabilisation

Ageing/weathering

Thermal treatment Sintering

Vitrification

Melting

Vaporization/condensation
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In addition, thermal separation processes may also be combined with the
above-mentioned processes to vaporize harmful trace elements from the bulk
material. Thermal treatment processes are among the best methods to destroy
harmful organic compounds, such as dioxins and furans, present in the solid
residues.

Most of the thermal methods are processes that are separate from the thermal
conversion of the fuel. One exception is the gasification-melting process or the
direct melting process [8–10]. MSW is gasified in a fluidized bed reactor and the
syngas is used as the heat source for the ash melting. The gasification-melting
process may lead to better separation of different elements compared to traditional
MSW incineration, with elements distributed between a silicate slag, the fly ash in
the process and a metallic phase [10]. Pb, Zn, and Cl tend to form fly ash, whereas
Fe and Cu form a metallic phase. Other common ash-forming elements are dis-
tributed in both fly ash and the silicate slag.

Another in situ process for elemental separation into different fractions is the use
of hot cyclones in the combustion unit. During combustion or gasification, heavy
metals such as Cd and Pb volatilize. The volatilized metals condense when the gas
is cooled and will be found in the fly ash or filter ash. The use of a hot cyclone prior
to the heat exchanger could make it possible to separate the heavy metals from the
fly ash. In a hot cyclone separation concept, the fly ash is collected in a hot cyclone,
where volatilized heavy metals continue with the flue gas stream and is collected as
filter ash. In an ideal case, the cyclone ash is heavy-metal free, and can be used
directly as a product, while the filter ash is highly enriched in heavy metals and may
be more easily handled due to lower volumes of hazardous ash.

Ljung and Nordin [11] studied the fate of different elements during combustion
of a fast-growing energy tree (Salix spp.) and hot cyclone separation in theory using
chemical equilibrium model calculations. Calculation results indicated that hot
cyclone separation might be possible for Cd, Pb and Cu due to their relatively low
volatilization temperatures. According to the calculations Ni, Zn and V would be
difficult to separate with the hot cyclone due to their high volatilization tempera-
tures. The calculations were in good agreement with results from previous field
studies.

Obernberger and Biedermann [12] compared a combustion plant (Lofer) and a
plant with integrated fractionated heavy metal separation (Strabwalchen). The
temperature in the combustion zones was varied to check the influence on the heavy
metal concentrations. A high-temperature cyclone was placed behind the furnace in
Strabwalchen. The temperature in the cyclone varied between 950 and 1050 °C.
The Cd concentrations in the bottom ashes were about 20 times lower in the new
plant compared to the old. Cd levels in combustion zone fly ash and fly ash from the
high-temperature cyclone were also lower for the new plant. Cd concentrations in
hot-precipitated fly ash showed clear temperature dependence. The Cd concentra-
tions decreased with increasing temperature of ash precipitation. Zn concentrations
in the bottom ash were 5 times lower in the ash from the new plant compared to the
old. Zn concentration in the combustion zone fly ash were lower than in
hot-precipitated fly ashes produced in the old plant but considerably higher in the
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fly ash precipitated in the high-temperature cyclone. Zn showed no temperature
dependence in the investigated range in either plant. The amounts of fly ashes
produced were lower in the new plant and the amount of condensation sludge
higher. Coarse fly ash particles could be separated from in the combustion zone at
high temperatures with a hot cyclone catching the large scale particles between the
furnace and the boiler of the plant. The temperature in the hot cyclone has to be
above 900 °C to be efficient for heavy metal fractionation.

According to calculations Cd, Pb and Cu could be removed by hot cyclone
separation from the fly ash [11]. Due to higher volatilization temperatures Ni and
Zn would be difficult to separate from the fly ash. According to Obernberger et al.
[12, 13] the cyclone temperature has to be over 900 °C for efficient separation.

Objective and Approach

The objective of the study is to investigate the ash chemistry in combustion of
waste-derived fuels (SRF) with emphasis on the separation of ash-forming elements
in different ash streams during the thermal conversion of the fuel. The main division
between different ash element streams is between elements that stay in a condensed
form during the main conversion process and elements that form volatile species at
temperatures prevailing at the conversion temperatures and air/fuel ratios.
Predictions of this separation is done by using thermodynamic modeling based on
Gibbs Energy Minimization. Thermodynamic modeling predicts the amount and
composition of stable phases and components at chemical equilibrium at a specified
temperature, total pressure and overall elemental composition. The approach does
not require any prior knowledge of specific chemical reactions or initial speciation
of elements. In the general approach, chemical kinetics cannot be considered.
However, Kangas et al. [14, 15] have utilized a so-called constrained Gibbs Free
Energy Method, where kinetic limitations can be considered for certain reactions.
This is however not included in the present study.

Thermodynamic Equilibrium Calculations

Thermodynamic equilibrium calculations were made to predict the speciation of the
ash-forming elements as a function of temperature for both oxidizing and reducing
conditions. The advanced thermodynamic modeling was performed using the
software package Factsage, version 6.4 [16]. A tailor-made thermodynamic data-
base was used for the calculations. The data for the gas phase and the stoichiometric
solid phases of the elements C−H−O−N−S−Cl–Na−K−Zn−Pb–Ca−Mg–Fe−Al–
Si−P−Ti−Co−Cr−Cu−Mn−Sb−Sn were taken from the FACT Pure substance
database in the Factsage software. It was assumed that N2 was the only stable
nitrogen compound as the formation of NOx compounds in biomass combustion is

244 D. Lindberg et al.



strongly dependent on kinetics and N-speciation in the fuel. A multicomponent
molten salt phase including NaCl−KCl−Na2SO4−K2SO4−Na2CO3−K2CO3 was
also included together with corresponding solid solutions [17]. A molten silicate/
slag phase is available in the thermodynamic databases in Factsage but was
excluded due to calculational limitations. All condensed silicate phases are there-
fore considered as stoichiometric phases in the current calculations.

The main fuel studied in the present report is SRF (solid recovered fuel). SRF is
mainly the non-recoverable paper, plastics and textiles fractions from MSW that has
been shredded and dehydrated for incineration. The chemical composition of the
fuel is given in Table 2. It was based on the chemical composition of a SRF fuel
that has been burned in an BFB (Bubbling Fluidized Bed) plant in Anjalankoski,
Finland operated by Stora Enso.

Table 2 Fuel composition of SRF used as input for the calculations

Ultimate analysis (dry solids) C wt% (d.s.) 51.0

H wt% (d.s.) 6.5

S wt% (d.s.) 0.2

O wt% (d.s.) 37.4

N wt% (d.s.) 0.7

Cl wt% (d.s.) 0.258

F wt% (d.s.) 0.003

Br wt% (d.s.) 0.001

Element concentrations in the dry substance Al g/kg 3.324

Si g/kg 8.936

Ti g/kg 1.067

Na g/kg 1.772

Mg g/kg 1.421

K g/kg 1.612

Ca g/kg 17.884

Fe g/kg 1.596

P g/kg 0.559

Heavy metals concentrations in the dry substance Sb mg/kg 3.58

As mg/kg 0.73

Cd mg/kg 0.24

Cr mg/kg 50.16

Co mg/kg 0.44

Cu mg/kg 24.44

Pb mg/kg 42.63

Mn mg/kg 378.38

Ni mg/kg 9.91

Sn mg/kg 15.91

V mg/kg 3.30

Zn mg/kg 159.44
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The fuel compositions taken from Table 2 were used as input for the calcula-
tions. The calculations were made as a function of temperature and air-to-fuel ratio
(k). The air-to-fuel ratio was varied between 0.4 and 1.2 with steps of 0.01 and the
temperature was varied between 400 and 1300 °C with steps of 10 °C. Additional
calculations with either double amounts of Cl and S or completely Cl- and S-free
fuels have been calculated, but the detailed results are not shown here.

Results

The predicted main ash phases and the minor gas components of ash forming
elements (>1 ppm) are shown in in Fig. 1 as a function of temperature for reducing
and oxidizing conditions (k = 0.7 and k = 1.2). Ca–Al—and Ca–Mg-silicates
dominate the condensed phases, whereas HCl, KCl, and SO2 (oxidizing conditions)
or H2S (reducing conditions) are the main alkali, sulfur or chlorine species.

The elements Co, Cu, and Sb are of special interest in the present study for
assessing the viability to recycle these elements from the ash [18–20]. It was
concluded that these elements often occur in the waste ashes at levels higher

0

5

10

15

20

25

30

400 600 800 1000 1200

m
as

s [
g/

kg
 fu

el
 d

s]
 

Ash phases (λ=0.7) 
CaCO3

NaAlSiO4 

Na2Ca2Si3O9 

Ca5(PO4)3OH 

Mn2SiO4 

Melt 

(Na,K)Cl(ss)

Oxides

Sulfides

Metallic phases

Ca-Mg-silicates

Ca-Al-silicates 

Ca-Fe-silicates 

1.0E-06 

1.0E-05 

1.0E-04 

1.0E-03 

400 600 800 1000 1200

Pa
rti

al
 p

re
ss

ur
e 

[b
ar

]

Minor gas components (λ=0.7) Na
NaOH
HS
H2S
SO2 
HCl 
NaCl
(NaCl)2
K
KOH
KCl 
(KCl)2
Cu
Zn

0

5

10

15

20

25

30

400 600 800 1000 1200

m
as

s [
g 

/ k
g 

fu
el

 d
s]

 

Temperature [°C]

Temperature [°C]

Temperature [°C]

Temperature [°C]

Ash phases (λ=1.2) CaCO3 

CaSO4

NaAlSiO4 

Na2Ca2Si3O9

Ca5(PO4)3(OH) 

Ca3Fe2Si3O12

Ca2ZnSi2O7

Ca-silicates 

Ca-Mg-silicates

Ca-Al-silicates 

Oxides

(Na,K)2(SO4,C
O3) 
(Na,K)Cl(ss)

Melt 

1.0E-06 

1.0E-05 

1.0E-04 

1.0E-03 

400 600 800 1000 1200

Pa
rti

al
 p

re
ss

ur
e 

[b
ar

]

Minor gas components (λ=1.2) NaOH

SO2

SO3

HCl

NaCl 

KOH

K2SO4 

KCl

(KCl)2

CrO2(OH)2

CuCl

Fig. 1 Predicted condensed phases (left), and minor (right) gas components as a function of
temperature for SRF conversion at k = 0.7 (top) and k = 1.2 (bottom)

246 D. Lindberg et al.



compared to other sources, and therefore may have a potential to be recovered from
the ash. In the present study, where solid recovered fuel was studied, Cu has the
highest concentration in the fuel and Co has the lowest. It is of interest to predict if
these elements can be enriched in the flue gas so that they may be captured in filter
ash instead of fly ash or bottom ash.

Cobalt is predicted to be present as Co(s, g), Co9S8(s), CoCl2(g) at reducing
conditions and Co3O4(s), CoCr2O4(s), CoCl2(g) at oxidizing conditions. Copper is
predicted to present as Cu (s,l,g), Cu2S(s), Cu5FeS4(s), CuCl(g) at reducing con-
ditions, and CuO(s), CuFeO2(s), CuCl(g) at oxidizing conditons. Antimony is
predicted to be present as SbO(g), and Sb2S3(g) at reducing conditions and SbO(g),
and Sb2O5(s) at oxidizing conditons. At reducing conditions, no condensed anti-
mony compounds were predicted to be stable at temperatures above 400 °C.

The fraction of volatile Co, Cu, and Sb as a function temperature and air-to-fuel
ratio is shown in Fig. 2. In addition, the volatile fraction of the important
ash-forming elements Pb, Zn, K, and Na, as well as Sn, are shown. It can be seen
that Co is volatilized mainly at reducing conditions and at temperatures above
1100 °C. If the chlorine content in the fuel is doubled, the volatilization of cobalt
becomes considerable at temperatures above 700 °C. Copper is volatilized at 600–
700 °C at oxidizing conditions except if there is no Cl or S present, where tem-
peratures above 1100 °C are needed for copper to volatilize. At reducing condi-
tions, copper is volatilized at temperatures above 1000 °C. Antimony is predicted to
be in a condensed phase only at temperatures below 500 °C and only at oxidizing
conditions. Sn and Zn are mainly in the condensed phase at oxidizing conditions up
to 1000 °C, whereas Pb is volatilized at oxidizing conditions even down to around
500 °C. K is the main volatilized alkali element, occurring as KCl(g), KOH(g) or
KOH(g), and Na occurs as condensed NaAlSiO4(s) up to high temperatures.

Enrichment of Co, Cu, Sb in gas phase
The enrichment of Co, Cu, and Sb in relation to the other ash-forming elements
were calculated for the four different compositional input conditions. The enrich-
ment was calculated as follows:

Enrichment factor of element in gas ¼ m i; gasð Þ=m total metals; gasð Þ
m i; fuelð Þ=m total metals; fuelð Þ

In addition to the metals, phosphorus was also included, whereas the halogens
and sulfur were excluded. The calculated enrichment factors for Co, Cu, and Sb are
shown in Fig. 3 at air/fuel ratios of 0.7 and 1.2. An enrichment factor <1 means that
the element is preferentially stable in the condensed phases, whereas values >1
means an enrichment in the gas phase. It can be seen that cobalt is depleted in the
gas phase except for high temperatures at reducing conditions and at around 600 °C
at oxidizing conditions. Copper becomes enriched in the gas phase above 900 °C at
reducing conditions and above 600 °C at oxidizing conditions. Antimony is pre-
dicted to be strongly enriched in the gas phase, especially at lower temperatures.
There is a thousandfold enrichment of Sb at both reducing and oxidizing conditions
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below 600 °C. At higher temperatures, the level of volatilized ash-forming ele-
ments, such as K, Na, Pb, start to become significant.

Cobalt is mainly depleted from the gas phase and is therefore expected to be
found in the bottom ash of different combustion units. The bottom ash fraction is
typically considerably larger than fly ash or filter ash fractions, which makes it
unlikely of finding high levels of cobalt in any ash fraction.

Copper enrichment in the gas phase is predicted to be the highest at oxidizing
conditions at around 600–900 °C. Antimony is predicted to exist mainly for the
studied conditions, with the exception of low temperatures at oxidizing conditions.
The highest enrichment is predicted to be mainly at temperatures below 600 °C at
reducing conditions.

Discussion and Conclusions

In a previous report [19], thermodynamic predictions of the speciation of Co, Cu,
and Sb in MSW ash showed that the elements mainly occur as different oxides, such
as Co3O4, CuO, Sb2O5. Experimentally determined speciation of Cu and Sb suggest
similar results. Additional Cu compounds were also observed, such as CuSO4 and
Cu3(PO4)2. Firing MSW fuels containing high concentrations of halogens may lead
to formation of metal halides. We have performed leaching tests in a continuous
flow reactor [18, 19, 21] and analyzed the metals that were leached from different
waste-derived ashes online by inductively coupled plasma optical emission spec-
trometry (ICP-OES). It was shown that Co, Cu and Sb are not leached out from the
ash in H2O to any notable extent, except for Sb if the leaching is continuous for
24 h (about 40% for CFB boiler ash from waste wood). If the leaching agent is
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changed from H2O to 5% HNO3 solution, total leaching of Co, Cu, and Sb will
reach roughly 40–70% of the original content. If the initial H2O leaching stage is
longer (24 h), larger fractions of Co, Cu and Sb will dissolve compared to shorter
H2O leaching stages (30 min). It was shown that Co, Cu and Sb can be leached out
from the ash in acids. However, more experiments are needed to optimize the
leaching processes.

In the present study, the speciation and volatilization of Co, Cu, and Sb in
thermal conversion of SRF at various temperatures and air/fuel ratios were studied
using thermodynamic equilibrium modeling. The main goal was to determine if
there are conditions in the combustion unit where it is possible to separate and
enrich these elements in relation to the bulk ash composition. Based on the pre-
dicted results, cobalt occurs mainly in the condensed phases and is not feasible for
enrichment in fly ash or filter ash. Copper is enriched in the gas phase at especially
oxidizing conditions if chlorine levels in the fuel is high. Controlled conditions in
relation to local temperature of the flue gas and air staging are possible methods to
form fly ash or filter ash enriched in copper compounds. In general, concentration of
copper is considerably higher than antimony and cobalt in waste-derived fuels.
Antimony is predicted to be mainly in the flue gas except at oxidizing conditions
below 600 °C, and it is therefore possible to enrich antimony in filter ash if a hot
cyclone is utilized to separate condensed fly ash particles from the flue gas stream
that contains the volatilized ash forming elements.

The effect of sulfur and chlorine on the ash chemistry was not very pronounced
in the present study. Higher chlorine levels increased volatility of alkali species, Pb,
Zn, and Co, but Cu and Sb were not affected to any large extent. Increase of sulfur
levels had only minor effects. Complete removal of sulfur and chlorine decreased
the volatility of Pb and the alkali metals at lower temperatures.

As a final example to study the possible overall chemistry of ash phases and flue
gas in SRF combustion, a case where the condensed fly ash/bottom ash composition
as well as the possible compounds condensating from the flue gas was calculated.
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The calculated condensed phases at 900 °C show that Cu and Sb are predicted to be
in the gas phase, whereas the Co concentration in the condensed phases (bottom
ash/condensed fly ash) is only 3 ppm. If the corresponding flue gas is cooled to
around 200 °C or lower, the Co concentration in the condensate is only 1 ppm, but
the Sb concentration is 1630 ppm and the Cu concentration is 11130 ppm (Fig. 4).

This suggests that Cu and Sb concentrations in filter ash condensates are con-
siderably higher than the levels in the bulk fuel. However, uncertainties in the
calculations stemming from missing or uncertain thermodynamic data, or appli-
cability of the thermodynamic equilibrium assumption for the predictions, are
issues that need to be studied, and the predicted results need to be verified with
experimental data.
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Different Methods for the Characterization
of Ash Compositions in Co-Firing Boilers

J.-E. Eriksson, T. Khazraie and L. Hupa

Abstract With increased co-firing of coal and different biomasses in power plants,
there is a growing need to study and characterize the produced, often heterogeneous
ashes and to assess their utilization as secondary raw materials. In this work, we
compare different methods for characterizing the ash compositions. These methods
include scanning electron microscopy-energy dispersive X-ray analysis
(SEM-EDS), X-ray fluorescence (XRF) and inductively coupled plasma emission
spectroscopy (ICP-OES). The content of carbonaceous residues in the ashes was
measured with CHNS analyzer. The methods and the pretreatment required for each
of the analysis were studied in detail for three ashes: (1) coal, (2) peat and wood,
(3) peat and wood residue with dolomite addition. The limitations of each method
will be discussed. This work gives guidelines for selecting a rapid and reliable
method for analyzing the suitability of the ash for a particular application.

Keywords Ash characterization � Biomass � SEM-EDS � XRF � ICP-OES

Introduction

In modern circular economy, industrial, agricultural and municipal waste and side
streams are becoming increasingly important as secondary raw materials as such or
as sources for separation and refining of metals and other valuable elements. Ashes
belong to waste streams which are widely used as landfilling or as substitutes for
minerals e.g. in ceramics and for Portland cement in concrete [1, 2]. Today, the
utilization of ashes as added-value materials is intensively studied. In order to
ensure safe reuse and recycling, various treatments are often needed to eliminate
harmful residue constituents or toxic components from the ashes [1, 3]. To select a
suitable ash treatment, the ashes must be analyzed and characterized by suitable
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methods. The composition of ashes depends on the fuel composition, the site of the
collection in the combustion device, and the combustion technique used.

The composition of the ash is usually classified according to the major elements
present, or according to the mineral composition. Based on their concentrations, the
elements in ashes are divided into three categories: major elements (>10,000 mg/
kg), minor elements (1,000–10,000 mg/kg, and trace elements (<1000 mg/kg).
Besides the inorganic elements and compounds, the ashes may contain organic
micropollutants such as polycyclic hydrocarbons, chlorobenzenes, polychlorinated
biphenyls, furans, etc. [3]. Apart from limiting the utilization of the ashes as sec-
ondary raw materials, the elements in the ashes may also create problems in furnace
operation or lead to degradation of materials used in boilers [4]. The increasing
utilization of biomass-based fuels, waste incineration and co-combustion of various
solid fuels challenge the lifetime of the metals and refractories used in the boilers
[4–6]. The challenges with safe reuse and circulation of the ashes and efficient
boiler operation call for reliable methods to analyze the chemical composition of the
ashes. Traditionally, the chemical composition of fuels is characterized according to
standard methods to reveal the amount of moisture, mineral residues (ash), volatile
matter and fixed carbon. These analyses are essential when studying the fate of the
ash-forming elements during combustion and estimating their effect on the boiler
operation. In contrast, for ash recycling purposes the elemental and mineralogical
composition of the sample collected from a certain site is crucial.

The chemical composition of ashes can be measured by different techniques.
Often, the oxide composition of ashes is characterized using one of the following
methods: Scanning electron microscopy (SEM-EDS), X-ray fluorescence (XRF) or
inductively coupled plasma emission spectrometer (ICP-MS) [7–9]. Recently,
Romero et al. used all these methods for chemical analyses of ashes [10]. ICP-MS
was employed to measure the total concentration of major to trace elements in ashes
after digestion in aqua regia, while the major elements were characterized using
XRF. They used SEM-EDS to study the morphology and composition of individual
ash particles. Finally, the mineralogical composition of the ashes was studied using
XRD, while different surface-functional groups were analyzed by FTIR [10].
However, the differences in the ash analyses obtained by these different methods
have rarely been compared.

Though detailed analysis provides crucial information of the suitability of the
ashes to various reuse purposes, a first reliable screening of the ash composition
gives guidelines for the further steps needed to analyze and treat a particular ash for
recycling as a secondary raw material. This work compares commonly used
instrumental methods of ash elemental analysis. The ashes used as examples were
fly ashes but the methods utilized are valid also for other inorganic waste streams.
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Experimental

In this work, the chemical composition of fly ashes from full-scale boilers using
three different types of solid fuels was characterized. (i) Ash A—coal ash from
circulating fluidized bed boiler, (ii) Ash B—peat (60%) and wood (40%) ash from
circulating fluidized bed boiler, and (iii) Ash C—peat (45%) and wood residue
(55%) ash with a dolomite addition from bubbling fluidized bed boiler.

SEM-EDS

The elemental composition and morphology of the ash particles were studied using
scanning electron microscope equipped with energy dispersive X-ray analysis
(SEM-EDS, Leo 1530 Gemini, Thermo Scientific UltraDry SDD X-ray detector).
To study the impact of sample preparation on the ash analysis results, two types of
ash samples are prepared: First, the ash particles were directly fixed to the carbon
tape on aluminum plates. Five samples of each ash were analyzed. Typical analysis
area was *12 mm2.

Second, the ashes were pressed into pills (diameter 10 mm, thickness 3–4 mm)
to give a large homogeneous measurement area. The pills were prepared by placing
300–400 mg of each ash in a sample holder and then applying hydraulic pressure
(220 bar, 30 s). Five pills of each ash were studied. The pills were first put into the
SEM without any further preparation to determine if they could be analyzed without
a conducting coating. However, due to the low conductivity, the samples had to be
coated with a thin carbon layer to prevent charging effects. The coating was created
with an “Emscope TB 500” carbon evaporator. In the SEM-EDS, the accelerating
voltage was set at 15 kV and the area that was analyzed was *12 mm2. In the
analysis, carbon was excluded. To verify that the carbon amount was negligible, the
total carbon content of the ashes was measured with CHNS elemental analyzer;
FLASH 2000 organic elemental analyzer (Thermo Scientific, UK)

XRF

The elemental composition of the ashes was also analyzed using energy dispersive
X-ray fluorescence analyzer (ED-XRF, PANanalytical Epsilon 3X) with Rh anode.
For each sample, 8 g of ash and 2 g of wax (Licowax C micro powder PM) were
weighed and mixed thoroughly, after which pellets with diameter 40 mm and
thickness 5–8 mm were pressed under 20 tons. The spectrum of each pellet was
analyzed for elements with 5 alternative settings for different elements from Na to
Am using the Omnian software.
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ICP-OES

The third analysis method was inductively coupled plasma optical emission spec-
troscopy (ICP-OES, Perkin Elmer Optima 5300 DV). When preparing the solution
for the analysis, 0.1 g of dried ash was weighed in a polytetrafluoroethylene (PTFE)
bomb after which 2 ml 65% HNO3 and 2 ml 85% H3PO4 and 2 ml 50% HBF4
were added for total dissolution of the ash. The bomb was placed in a microwave
sample preparation system (Perkin Elmer Multiwave 3000), ramped to 1400 W in
15 min, held for 20 min and then cooled for 20 min. After this pre-treatment, no
solid residue was observed in the solution. The element concentrations were then
analyzed with the ICP-OES using the Perkin Elmer multi-standard 25 for simul-
taneous analysis of all ash-forming elements at preferred wavelengths. For each ash,
three samples were analyzed.

Finally, the element concentrations measured with the three methods were cal-
culated into typical oxide composition of the ash. For each ash, the contribution of
different carbon-containing (char, carbonate, etc.) species is not taken into account.

Results and Discussion

SEM-EDS

The SEM micrographs in Fig. 1 show the shape and size of the ash particles.
Element mapping images of the ash particles in the ashes are given in Fig. 2. Ash A
shows typical small (mainly Al, Si, O) and larger (Si, Ca, O) spherical particles of
coal fly ash while the Ash B (peat and wood) has irregular particles of various
shapes and size. Besides Si and Al, the particles also contain Fe, Ca and K. Ash C
from the combustion of peat and wood with dolomite addition consists mainly of
irregular rather large particles along with some spheres (Fig. 1).

According to the overall composition analysis of the ashes, the major elements
include Al, Ca, Fe, K, Mg, Na, Si. Minor elements are Ba and Ti (see also Fig. 4). It
should be pointed out that trace elements are difficult to detect with SEM-EDS. The
detection limit is around 1000 ppm depending on the element. The variations in the
element concentrations between the parallel samples were low as indicated by the
standard deviations of each element analyzed and calculated to oxides (Fig. 4).
Thus, although the thickness of the ash particle layer was small, the large surface
area used in the EDX analysis gave a reasonable accuracy of the composition of a
material consisting of particles of varying size and composition. It should be noted
that the carbon tape used to fix the particles on the substrate was partly uncovered
and therefore its contribution is seen in the overall analysis of the SEM powder
spectra in Fig. 3.
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The analyzed elements of five pills and powders of each ash from SEM-EDX
were converted to the relevant stable oxide compounds. Then the oxide contents
were normalized to 100 by calculating the percentage of each. The normalized
oxide composition is shown in Fig. 4. To be able to compare the results from
different methods, all ash compositions were normalized. Thus, the impact of
organic species could be neglected. In general, the variation of the oxide contents
between the five parallel samples was minor, thus suggesting that the pills give a
good basis for repeatable SEM analysis of heterogeneous ashes. Although the pills
had to be coated with a thin carbon layer, the contribution of carbon is markedly
smaller than with powders as shown by the EDX spectra for Ash B analyzed for
powder and pills in Fig. 3. According to the CHNS analysis, the total carbon
content of the ashes was below 1% Thus, neglecting its contribution to the total
composition was justified. On the other hand, the relative carbon content as sug-
gested by the SEM-EDS of the pills gives also appropriate concentrations of the

Fig. 1 SEM micrographs of ash A, B, and C
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Fig. 2 SEM elemental mapping of the compositions of the particles in the ashes
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total carbon content in the sample. Accordingly, the contribution of the carbon
coating to the total analysis is minor. When the carbon in the EDS results was
neglected, no essential differences were seen between the powder or pill samples
(Fig. 4). The minor differences seen for some oxides were assumed to depend on
the share of the elements in the particles of various sizes in the sample surface.
Larger hard particles may be partly embedded in the finer particles of another
composition.

Fig. 3 EDX spectra (counts) of powder (above) and pills of Ash B (below) showing the relative
carbon content in the samples. The carbon peak is indicated with an arrow
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Fig. 4 The composition of the ashes (wt%) using different analysis methods
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XRF

Figure 4 compares the oxide compositions calculated from the elemental composi-
tions analyzed using different techniques: SEMof ash powder, SEM of ash pills, XRF
of ashes and ICP-OES of dissolved ash solutions. XRF samples consisting of the ash
andwax do not give any signal for carbon-containing species but gives concentrations
of typical (harmful) trace elements present. The trace elements identified were V, Ni,
Cu, Zn, Sn, Pb, Br. SEM-EDS was not able to detect any of the trace elements.

For comparison with the other methods, the concentration of the major and
minor elements (excluding Ba) were normalized to 100% of oxides. The oxide
composition of the ashes calculated for the measured and normalized values are
given in Fig. 4. In general, slightly higher Si contents were measured with XRF
than with SEM-EDS. The original values, however, can be used as an indication of
the true content of each element, if present as an oxide, in the ash. However, any
accurate analysis is possible only through identifying all the compounds present e.g.
through appropriate standards for various compounds and/or X-ray diffractometry.

ICP-OES

The ash analysis with ICP-OES requires first a total dissolution of the ash into the
highly acidic solution. Some of the elements such as S were likely to partly evaporate
during the solution preparation. Moreover, the addition of H3PO4 in the solution
prevents the P analysis. The concentrations of the other major and minor oxides as
suggested by ICP-OES are given in Fig. 4. In the ICP-OES analysis, the trace ele-
ments present in the Multistandard 25 used could be identified. The trace elements
recorded were V, Cr, Cu, Zn, Pb, As, most of which are the same as suggested by
XRF. In this work, we did not use ICP-MS, which would enable a more accurate
analysis of the trace elements. In general, comparing the ICP-OES data with the other
methods gives very similar trends—given as the relative amounts of the oxides- but
the absence of S and P affected the overall analysis. Taking this into account still,
suggests that ICP-OES results differed from the composition suggested by SEM-EDS
andXRF.Although the ashes appeared to dissolve completely into the acidic solution,
incomplete dissolution of some minerals in the ash may affect the result.

Summary

A comparison of different methods for the analysis of the chemical composition of
ashes suggests that each method has its own pros and cons.

• SEM-EDS is fairly easy to perform and, with pressed pills, also enables an
estimation of the total carbon content. The presence of some trace elements can

Different Methods for the Characterization of Ash Compositions … 261



be identified. SEM also enables the estimation of the morphology and particle
size distribution of the sample.

• In contrast, XRF also enables the analysis of trace elements but fails to give
elements lighter than Na. The sample preparation is more laborious than the
sample preparation for SEM-EDS.

• ICP-OES requires total dissolution of the solid sample. This extra step may be
cumbersome and time-consuming. If the elements to be analyzed are present in
the sample in very different concentrations, the detection limits of certain ele-
ments may affect the results, especially when performing simultaneous analysis
of all the elements. Thus, several dilutions are often needed for one and the same
sample. However, when using ICP-OES, and especially ICP-MS, very low
concentrations can be detected. This can be of importance for the analysis of
harmful trace elements.

Conclusions

Different instrumental techniques were used to analyze the oxide composition of
three ash samples. SEM-EDS was suitable as a rapid technique for analyzing the
major and minor elements and also to give indications of some trace elements
present in the samples. SEM-EDS is thus suitable for overall analyses. XRF suc-
cessfully gave major, minor and trace elements in the ashes. This method is thus
recommended when studying samples, which are likely to contain harmful trace
elements. Finally, ICP-OES also enabled the analysis of major, minor and trace
elements. However, the preparation of the sample for the analysis, total dissolution
of the ash, may be difficult. Also, several dilutions are needed to give an accurate
analysis of all the elements present. Thus, the method is laborious and requires, like
the two other methods studied, skilled personnel.
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Utilization CFA-Derived Tobermorite
Fiber as Crystallization Revulsive
in Autoclaved Concrete Block Production

Pengxu Cao, Jun Luo, Guanghui Li, Yijia Dong, Mingjun Rao
and Zhiwei Peng

Abstract Coal fly ash (CFA), as a by-product generated from coal fired power
stations, is widely used for autoclaved concrete block production. It has been found
that the generation of tobermorite is great benefit to the block strength during
autoclaving. In this study, the tobermorite fibers synthesized from CFA and lime via
the hydrothermal process are used as the revulsive to promote the mechanic
strength of the concrete blocks. The results show that tobermorite fibers with
0.01–0.5 lm in diameter and 1–3 lm in length are obtained at 200 °C for 0.2 h. As
the addition of prepared tobermorite fibers increases from 0 wt% to 2.0 wt%, the
compression strength of concrete block increases from 24.6 to 40.5 MPa, and the
compression strength of aerated concrete block produced under the optimized
conditions can reach above 7.5 MPa.

Keywords Coal fly ash � Tobermorite fiber � Autoclaved concrete block
Mechanic strength

Introduction

About 1,000 million tons of CFA annually is produced around the world, and the
utilization ratio keeps below 50% [1, 2]. This means large amount of CFA is
obliged to be discharged into the environment, which brings about series of
problems, such as decreasing the agriculture acreage, polluting the atmosphere and
ground water, and so on. Owing to the high temperature combustion, CFA is
characterized as fine particle size, high pozzolanic activity and rich in silicon- and
aluminum-bearing constituents, making it a potential raw material for production of
cement, concrete and construction materials [3–7].
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Utilization of CFA as material for producing autoclaved concrete blocks is a
mature technology [6, 7]. The compressive strength, volume-weight and thermal
conductivity are considered as the most important indexes of the products, which
are associated with tobermorite generation during autoclaving [6, 7]. As has been
reported in the literature [8–12], tobermorite is a rare mineral but can be synthesized
from various siliceous materials via the hydrothermal method. The synthesized
tobermorite was certified to be efficient in the disposal of harmful emissions [8–10],
and heat-insulating and fire-resistant materials made from it can meet the standards
[11, 12].

To discharge the silicon-based lye obtained from the silicate minerals after
alkali-leaching metallic resources, we have synthesized fibrous tobermorite via the
hydrothermal method at 240 °C for 3 h with 100 g/L NaOH, Ca/Si 1.0, Ca/Al 5.0
and Ca/Cl 5.0 [13, 14]. Then synthesizing tobermorite fiber from CFA was certified
to be feasible in our patent [15], and our recent development found that tobermorite
fiber synthesized at the lower temperature for a shorter duration possesses good
activity when used as the material for construction materials.

This study extends the knowledge of using the synthesized tobermorite fiber as
the crystallization revulsive for producing high-mechanical-performance autoclaved
concrete blocks. The specific focus was placed on the optimal revulsive dosage for
the autoclaving process, and function mechanism of revulsive on mechanical
strength of the autoclaved concrete blocks was illuminated.

Experimental

Materials

Raw materials used in this experiment including CFA, lime, Ordinary Portland
Cement (OPC), phosphogypsum (PG) and powdery metallic aluminum, were all
taken from Tongling, Anhui province of China. The sodium hydroxide was analytic
reagent.

The main chemical compositions of CFA, lime, OPC and PG are listed in
Table 1. The morphology of CFA particles, in Fig. 1, shows as solid spheres,
hollow spheres and irregular granules. The phase compositions of CFA (in Fig. 2)
include quartz (SiO2), mullite (3Al2O3�2SiO2) and amorphous substance. The
active CaO content in lime tested by hydrochloric titration is 71.94 wt%.

Table 1 Main chemical compositions of raw materials/wt%

Materials SiO2 Al2O3 CaO Fe2O3 MgO Na2O K2O P2O5 SO3

CFA 57.44 34.15 1.62 3.39 0.64 0.24 0.79 0.11 –

Lime 9.60 2.64 83.30 0.64 2.40 – 0.33 0.02 –

OPC 22.87 6.19 63.99 2.31 2.11 – 0.82 0.07 –

PG 10.22 1.63 36.73 – 0.06 0.19 0.47 1.35 48.10
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Methods

Hydrothermal Synthesis

The CFA and fresh slaked lime were mixed under the conditions of Ca/Si molar
ratio of 1.0, liquid-solid ratio of 20 mL/g and in the presence of 20 g/L NaOH.
Then the mixture was transformed into a 1 L electromagnetic-stirring autoclave and
electrically heated with 200 rpm stir. The mixture was kept at 200 °C for 0.2 h, and
then it was water-cooled to room temperature. The product was taken out, filtrated,
washed with tap-water three times and utilized in the downstream autoclaving
procedure.

Fig. 1 SEM image of CFA

Fig. 2 XRD result of CFA
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Autoclaving Procedure

The autoclaving process was shown in Fig. 3. The suspension was mixed by
ball-milling with 58 wt% CFA, 3 wt% PG and 39 wt% water, the fineness was
controlled by the overflow of ball mill. The suspension was stirring all the time until
it was pumped into the agitating vessel, then 8 wt% OPC, 0–2 wt% tobermorite
fiber, 10 wt% lime and 0.085 wt% powdery metallic aluminum were successively
added with violent agitation. Then the mixture was poured and moulded within 45 s
and sent to be precured. After procuring for 60–90 min, the preformed bodies were
sliced and sent to be autoclaved at 185 °C for 5 h. Finally, the autoclave was
depressurized and cooled below 55 °C. The obtained autoclaved products were cut
into cubes of 10 cm in size for mechanic strength tests.

Characterization

The chemical composition, phase and morphology of the samples were tested by
X-ray fluorescence (XRF, Axios mAX, PANalytical, Netherlands), X-ray diffrac-
tion (XRD, D500, Siemens, Germany) and scanning electron microscope (SEM,
JSM-6360LV, JEOL, Japan), respectively.

Results and Discussion

Characterization of Synthetics Obtained via Hydrothermal
Process

It was shown in Fig. 4 that the main phases of the products synthesized from the
CFA and lime mixture were tobermorite, portlandite (Ca(OH)2), mullite and quartz.
Due to the short treatment time, tobermorite was of poor crystallization in the
(002) direction (2h = 7.76°). The mullite and quartz in CFA were not completely

Fig. 3 The autoclaving procedure
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dissolved in the slurry and the redundant Ca2+ was transformed into potlandite (Ca
(OH)2). Morphology of the synthetics was shown in Fig. 5, tiny tobermorite fibers
with 1–3 lm in length and 0.01–0.5 lm in diameter and assembled as spherical
particles with 30–50 lm in diameter were obtained.

As the binder of autoclaved concrete blocks [7], the generation of tobermorite is
advantageous to the mechanical performance of the products. The synthesized
tobermorite fiber is of small crystal size that possesses large specific surface area,
which is fittingly used as the crystallization revulsive in concrete block production
via the autoclaving process.

Fig. 4 XRD result of the synthetic

Fig. 5 SEM images of the synthetic
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Effect of Crystallization Revulsive on Autoclaved Concrete
Blocks

Effect of Revulsive on Autoclaved Concrete Blocks

The effect of revulsive dosage on compressive strength and volume-weight of the
autoclaved concrete blocks was shown in Fig. 6. The compressive strength of
autoclaved concrete blocks was improving with the increasing revulsive dosage,
and it was enhanced rapidly when the dosage was below 1.0 wt%, yet the
enhancement was slowed down as the revulsive usage increased above 1.0 wt%.
While the volume-weight of the products was continuously enhancing with the
increasing revulsive dosage from 0 to 2.0 wt%. Therefore the suitable revulsive
dosage is recommended as 1.0 wt%. Contrast with production without revulsive
addition, the compressive strength of the products increased from 24.6 to 40.3 MPa
when 1.0 wt% was added, the corresponding volume-weight increased from 1564
to 1650 kg/m3, and the enhancement ratio increased 63.82% and 5.50%,
respectively.

Effect of Revulsive on Autoclaved Aerated Concrete Blocks

As can be obtained from Fig. 6 that with addition of revulsive, the compressive
strength of autoclaved concrete blocks was improving from 24.6 to 40.5 MPa as the
revulsive dosage increased from 0 to 2.0 wt%. And similar improvement was
observed from Fig. 7, the compressive strength of autoclaved aerated concrete

Fig. 6 Effect of revulsive dosage on autoclaved concrete blocks
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blocks was improved from 4.2 to 7.8 MPa with revulsive addition increasing from
0 to 2.0 wt%. The compressive strength increased obviously when the revulsive
dosage was below 1.0 wt% and leveled off when the revulsive dosage increased
above 1.0 wt%, while the volume-weight of autoclaved aerated concrete blocks was
increasing with the increased revulsive dosage all the time. Therefore the optimal
revulsive addition is recommended as 1.0 wt%, and the corresponding compressive
strength of autoclaved aerated concrete blocks reaches 7.5 MPa with the
volume-weight of 700–725 kg/m3 under laboratory conditions, which meets A7.5
grade of the Chinese national standard.

Mechanism on Strength Improvement of Autoclaved Concrete
Blocks

The phase composition and morphology of the autoclaved products with and
without adding 1.0 wt% tobermorite fiber were shown in Figs. 8 and 9, respec-
tively. The main phases of the product obtained without revulsive addition were
quartz, mullite and katoite. When 1.0 wt% revulsive was added, tobermorite was
generated and the katoite peaks were enhanced, and the quartz and mullite
diffraction peaks were weakened simultaneously.

Fig. 7 Effect of revulsive dosage on autoclaved aerated concrete blocks
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Morphology of the autoclaved products was unconnected tiny particles without
revulsive addition, it was transformed into the interconnected fibers when 1.0 wt%
revulsive was added. This is because the hydration of silicon-bearing components
in CFA was accelerated and the generation of tobermorite fibers was promoted
when crystallization revulsive was used, thus the compressive strength of the
products was heightened.

Fig. 8 Effect of revulsive utilization on phase species of the products a—none revulsive addition;
b—1.0 wt% revulsive addition

Fig. 9 Effect of revulsive utilization on microstructure of the products a—none revulsive
addition; b—1.0 wt% revulsive addition
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Conclusions

This study was dedicated to use tobermorite fiber as crystallization revulsive to
improve the mechanic strength of the autoclaved concrete blocks, and therefore
promoting the comprehensive utilization of CFA in construction materials. The
compressive strength of autoclaved concrete blocks and autoclaved aerated concrete
blocks enhanced 63.82% and 85.71% when 1.0 wt% tobermorite fiber was added as
the crystallization revulsive during the autoclaving process, and the volume-weight
of the materials just increased 5.50% and 13.56%, respectively. The results showed
that adding tobermorite fiber is beneficial to tobermorite generation during the
autoclaving process. Additional work is underway to optimize the ratio of ingre-
dients and enhance the mechanical performance of the blocks further.
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An Electrochemical Procedure for Copper
Removal from Regenerated Pickling
Solutions of Steel Plants

Esra Karakaya, Mustafa Serdal Aras, Metehan Erdoğan,
Sedef Çift Karagül, Merve Kolay Ersoy and İshak Karakaya

Abstract Pickling is the treatment of metal surfaces by removing oxide layer, rust,
scale, inorganic contaminants or other impurities from ferrous metals, copper or
precious metals. A strong inorganic acid such as hydrochloric acid is used for plain
carbon or low alloy steel pickling. When the concentration of copper in the pickling
solution exceeds about 100 mg/L, reversion may take place and randomly plating
of copper onto the steel strips which causes visual incompatibility occur.
Furthermore, efficiency of pickling decreases with the increase of copper content.
The reversion may be delayed to higher Cu concentrations by adding fresh acid to
the line. Increased acid consumption only delays the time to discard the solution but
increases the cost and hazardous nature effect on the environment. An experimental
electrochemical procedure has been conducted to remove copper from pickling
solution to reduce the concentration below 100 mg/L. Within this scope, effects of
applied current density, copper concentration and electrolysis duration on copper
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deposition were studied. Current density was determined as the most effective
parameter to remove copper from the regenerated pickling solutions of steel plants.

Keywords Pickling solution � Copper � Electrochemical treatment
Environmental treatment � Current density

Introduction

Surface treatment of metals involves plating, galvanizing, anodizing, painting, heat
treating, and many other operations. Degreasing, cleaning, pickling, and etching are
processes used to prepare metal surfaces for subsequent surface treatment pro-
cesses. Pickling is a chemically cleaning process employing strong inorganic acids
[1], used to get rid of oxide layer, rust, scale, inorganic contaminants or other
impurities coming from ferrous metals, copper or precious metals [2]. Very large
amount of acid is spent during the pickling process. The spent pickling acid con-
tains dissolved metals and metal salts. In order to purify the acid, regeneration
process is carried out.

In the regeneration process, the spent acid is cleaned from its impurities except
for copper ion. When this copper waste ion concentration exceeds the level of
100 mg/L, in hydrochloric acid used in this study at 60–80 °C, the copper starts to
plate indiscriminately onto the steel. It was detected that the copper ion in the
solution comes from the steel itself. During the production of steel, especially from
scrap, little amount of copper is infused in the iron and this copper cannot make
alloy with the iron so it remains free in the structure. Hence copper from the steel
quickly dissolves in the acid, because it is highly soluble in hydrochloric acid,
during the pickling process.

There are many mills that add new fresh acid to the line to delay the problem.
But this action is not economical and cause environmental concerns. Removal of
copper from pickling solution can be considered as an alternative to reduce acid
consumption. Use of a consumable copper precipitant, ion exchange, electroplating
or other relevant technology may be considered for this purpose.

Recently, there is a rising attention in the effective electrochemical methods for
the removal of metal ions from waste solutions [3, 4]. Although it is possible to
recover metal ions from dilute solutions by using ion exchange or other methods
employing organics, the use of electrochemical process may be considered
advantageous, because it doesn’t need any other consecutive application [5, 6].

Electrochemical removal of copper from 30% HCl containing regenerated
pickling solution at 60 °C was performed to reduce copper level below 100 mg/L.
The recovery of valuable metallic copper product and possible extension of the life
of pickling solution was aimed to answer economical and environmental concerns.
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Experimental

Experimental tests were conducted in the laboratory. The electrochemical reactor
used in this study was composed of a 300 ml Pyrex glass beaker, which was closed
by a polypropylene cover at the top. A graphite anode and a copper cathode were
installed into the reactor as electrodes. Anode was made of cylindrical graphite bar
and cathode was made of copper foil of 0.5 mm thickness. Both anode and cathode
had 5 cm2 effective areas. The experiments were held at a constant temperature of
60 °C. A schematic drawing of the electrochemical test apparatus is shown in
Fig. 1. Effects of current density, electrolysis duration and copper concentration on
copper deposition were studied.

The electrochemical reactor was operated at a constant current mode. The
applied current density values were changed from 0.005 to 0.02 A/cm2. The values
were chosen in this range in order to apply similar electrode potential values as
realized from the linear sweep voltammetry measurements. The electrolysis
experiments were done using Agilent B2901A power supply. Experiments were
performed for 2–6 h durations. Liquid samples and deposited cathode samples were
collected after each experiment to determine the mass of copper removed from the
pickling solution.

The pickling solution that contained 85 mg/L copper was delivered by Borcelik
Inc. As copper cementation was observed on the steels when the copper amount in
the pickling solution was above 100 mg/L, the copper content of the stock solution
was increased by dissolving appropriate amount of CuCl2 powder. Therefore,
experiments were performed in pickling solutions containing 85 to 154 mg/L
copper. The extent of copper removal was determined by chemical analysis and by
gravimetry. Chemical analyses were performed by Inductively Coupled Plasma—
Mass Spectrometer (ICP-MS).

Three levels of parameters; applied current density, electrolysis duration and
initial copper concentration were used in the full factor analysis using Minitab®
Statistical Software [7] to determine experimental routes shown in Table 1.

Fig. 1 The schematic
drawing of experimental
apparatus for The
electrochemical tests
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Results and Discussion

The gravimetric results were obtained from the difference between the weight of
copper foil cathode before and after each experiment. In addition, the initial and
final ICP-MS analysies of solutions were used to determine copper removal for all
experiments. Effects of current density, copper concentration and electrolysis
duration were evaluated.

Current density is the amount of electrical current passing through a unit area.
The range of applied current density was from 0.005 to 0.02 A/cm2 to make a
detailed discussion. The initial copper concentrations of the pickling solution were
85–154 mg/L. The electrolysis duration of the experiments were 2–6 h.

Table 1 Experimental routes determined by full factor analysis and averages of gravimetric and
ICP-MS analysis results on the amount of Copper removal from 300 ml pickling solution

Run order Copper concentration (mg/L) current density
(A/cm2)

Duration
(hour)

Average
(g)

1 154 0.020 4 0.02010

2 85 0.010 6 0.00087

3 127 0.010 6 0.00586

4 85 0.020 2 0.00923

5 154 0.005 6 −0.01049

6 127 0.020 2 0.00045

7 127 0.010 4 0.01462

8 154 0.010 2 0.00114

9 85 0.010 4 −0.00434

10 85 0.005 4 0.00578

11 154 0.005 4 0.00282

12 154 0.005 2 0.00005

13 85 0.020 6 0.01551

14 85 0.010 2 −0.00402

15 127 0.005 6 0.00851

16 85 0.005 2 −0.00105

17 154 0.010 4 0.00673

18 127 0.010 2 0.00574

19 127 0.020 4 0.00609

20 127 0.005 2 0.00365

21 154 0.020 6 0.02567

22 154 0.020 2 0.00756

23 127 0.020 6 0.00468

24 85 0.005 6 0.00029

25 85 0.020 4 0.00192

26 154 0.010 6 0.01446

27 127 0.005 4 −0.00793
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The averages of gravimetric and ICP-MS analysis results on the amount of
copper removal from 300 ml pickling solution are given in Table 1 for each
experiment. The data were used to construct Fig. 2 to show main effects of current
density, initial copper concentration and the duration of electrolysis on the amount
of copper removal. The graphical representation was obtained by using Minitab®
Statistical Software.

Minitab® is a statistical software that helps to analyze data. By using full fac-
torial design, a chart and a run order were created for the experiments due to the
variables that were given by the executer. After performing the experiments, the
results were written to the chart and the graphs and performed statistical analyses
were created by the software. With the help of this software, results for the test
conditions can be predicted without performing any new experiments.

The main effects graphics were chosen to drive statistical conclusions on the
effects of parameters on the small amount of copper collected from the solution.
Each graph shown in Fig. 2 was constructed by Minitab® Statistical Software using
the results of all 27 experiments given in Table 1. They were plotted against three
different experimental parameters. Since three parameters had three levels, each
point on these graphs was the average value of 9 experiments of that level of the
parameter.

It can be seen from Fig. 2 that the copper removal was not possible when current
density was 0.005 A/cm2. Further increase in current density increased copper
removal from the pickling solution. Furthermore, copper removal was increased
with increase in electrolysis duration.

Fig. 2 The main effects of current density, initial Copper concentration and duration of
electrolysis on the amount of Copper removal from 300 ml pickling solution
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It was observed that the deposited copper layers were more compact for 0.01 A/
cm2 current density than 0.02 A/cm2 and there were powdered electrodeposition at
higher current density values. Figure 3a, b shows the XRF images of surface
morphologies of electroplated copper foils from 154 mg/L copper containing
regenerated pickling solutions at 0.01 and 0.02 A/cm2 current densities respec-
tively. The powdered accumulation was increased with increasing electrolysis
duration. Figure 4a, b shows the effect of electrolysis duration at 0.02 A/cm2

current density after 2 and 6 h of electrolysis. The deposited layer was found to
contain 99.9% Cu together with 0.1% Fe as determined by Fischerscope X-Ray
XDV-SDD 604-447, XRF.

Fig. 3 XRF images of surface morphology of electrodeposited Copper foils at a 0.01 A/cm2

current density for 2 h and b 0.02 A/cm2 current density for 2 h

Fig. 4 Pictures of cathodes showing the effect of electrolysis duration at 0.02 A/cm2 current
density after a 2 h and b 6 h of electrolysis
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Conclusion

Based on the laboratory studies the current density parameter was more influential
on the copper removal from the regenerated pickling solutions of steel plants.

In order to have a sleekier morphological electrodeposition and not to loose the
collected copper, less than 0.02 and more than 0.005 A/cm2 current density is more
feasible.

Longer electrolysis duration results in the more copper collection as expected.
Increase in initial copper concentration increases the amount of copper collec-

tion, but final concentration after copper removal increases with increased initial
concentration as expected.

Copper removal from dilute pickling solution by electrolysis technique is a
promising and environmentally friendly method for steel plants.

Acknowledgements Authors express their gratitude to Borusan Technology Department and
R&D Co. for the economical support in the project.
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Upgrading the Copper Value in a Waste
Copper Smelter Dust with the Falcon
Gravity Concentrator

D. O. Okanigbe, A. P. I. Popoola, A. A. Adeleke and O. M. Popoola

Abstract The physical, chemical, mineralogical and morphological characteristic
of the waste copper smelter dust (CSD) from Palabora Copper (PTY), Limpopo,
South Africa, has been reported in the open literature. The bulk of this material falls
within the −53 µm particle size fraction with a copper weight percent of 18.02 as
determined with the XRF. The high presence of reactive gangue minerals such as
mullite (42.97 wt%) and quartz (11.45 wt%) necessitates that the waste CSD be first
upgraded of its copper value in the falcon gravity concentrator before subsequent
hydrometallurgical treatment. As an initial step, a sample preparation was carried
out to make the sample amenable to both real density determination and copper
upgrade experiment, thus resulting in 97% of the particles passing the 300 µm sieve
aperture (d97 = 300). The laser particle size analyzer (LPSA) was used to analyze
the d97 = 300 and the results showed a %change from 90.82% to 95.59%, with a
real density of 2.830 for the waste CSD. The result of the copper upgrade showed
that test 8 with treatment combination of 80 rpm and 4.5 l/min gave the highest %
copper grade of 1.37 which is still less than the %grade of copper in the feed
(1.49%). It thus lead to the recommendation that another type of centrifugal sep-
arator that will allow the introduction of the feed as slurry so that the pulp density
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and feed rate can factored into the whole upgrade experiment, consequently
reducing the significant amount of losses and the chances of an improved grade and
recovery of copper from this waste CSD.

Keywords Fine gravity method � Waste copper smelter dust � Characterization
EPS � Slurry � Mass balance

Introduction

The metallurgical industries produce huge quantities of different types of wastes
such as the electric arc furnace (EAF) dust, basic oxygen furnace (BOF) sludge,
jarosite residue and dust of secondary copper smelting [1, 4, 14].The loss of copper
in form of waste copper smelter dust (CSD) during copper smelting is put at 5–10%
[3]. On the basis of this value, no less than one million tons of these wastes have
been produced in China per year [5], while at the Palabora copper (PTY), Limpopo,
South Africa an annual average dust deposition at the smelter, vermiculite operation
plant and Phalaborwa town, between 23rd of June 2009 to 23rd of June 2010 of
77,223.09 mg/m2/annum of CSD was calculated [8]. At present, the disposal of
metallurgical wastes such as waste CSD is becoming costly owing to increasingly
stringent environmental regulations [6], because the physical and chemical nature
of waste CSD (such as the content of heavy metals) causes it to be classified as
hazardous waste [13]. In South Africa, the South African National Standard
(SANS) annual target level of dust is 300 mg/m2/day and the industrial action level
of dust is reported to be 1200 mg/m2/day [15].

In view of the above, there has been an increasing interest in developing pro-
cesses for the recovery of metal value from this waste [11]. But existing process
options for metal recovery are higher with respect to capital and operating costs
than revenue from the recovered metal [16]. It becomes necessary to investigate a
processing method by which contaminants could be separated from the metal value
in the waste CSD, while maintaining an acceptable level of revenue metals in the
resultant concentrate. In addition, it would be profitable if this could be done in an
economic manner so as to justify the treatment of stockpiled dust [12]. Mineral
processing techniques can be used to reduce/remove impurities in the waste CSD,
prior to it being subjected to hydrometallurgical processing [2]. Since, it is expected
to serve the purpose of upgrading its contained value metal(s), at the barest minimal
slimes loss. Furthermore, as a requirement for effective separation is a marked
difference in specific gravity between minerals contained in the waste CSD as
reported in the open literature by [10], according to the authors a clear difference in
Specific gravity (S.G.) exists between some of the minerals contained in the waste
CSD; a good example is Tenorite (S.G. = 6.50) and Arsenolite or Gunningite (3.20
and 3.87 respectively); for which separation is possible as it satisfies the concen-
tration criterion (CC), which is essential for effective separation; expressed math-
ematically as follows:

284 D. O. Okanigbe et al.



D1 � D3

D2 � D3
[ � 2:5 ð1Þ

Where D1 is the specific gravity of the heavy mineral, D2 is the specific gravity
of the light mineral, and D3 is the specific gravity of medium which is more often
than not water [16]. But with the average size of this dust falling within the size
range of 5–50 µm [3], [7], [9] and, [10] only the modern gravity techniques
(Knelson and Falcon concentrators) have proven to be efficient for beneficiation of
materials in this particle size range of up to 50 lm [16].

In the light of the above, this study is aimed at using the Falcon gravity con-
centrator (FGC) to upgrade the copper value in the −300 µm waste copper smelter
dust (CSD) from Palabora Copper (PTY) Ltd (PC), Limpopo, South Africa prior to
a hydrometallurgical treatment [17].

Material and Method

Ore Handling and Sampling

The copper smelter dust (CSD) used in this study was obtained from Palabora
Copper (PTY) Ltd (PC), Limpopo, South Africa. The dust was collected over a
7-day period during the smelting operation from the electrostatic precipitator (EPS)
attached to the reverberatory furnace. Exactly 120 kg of the waste CSD was
received from the contact person at the mines, which was confirmed at the mineral
processing and extractive metallurgy laboratory at the Tshwane University of
Technology, Pretoria, South Africa. The as-received waste CSD sample was first
re-weighed and subsequently homogenized by subjecting it to coning and quar-
tering sample preparation method; after which, aliquot samples were derived from
the homogenized CSD sample, using a riffle splitter, to be used for subsequent work
in the course of this study.

From the aliquot samples produced, the 300 µm sieve was used to separate the
waste CSD into two portions, the undersized and oversized particles. The oversize
was subjected to grinding to further reduce the particles in order to eliminate the
effect of porosity and particle size on the real density test and gravity separation
experiment respectively. The ground oversized waste CSD was sieved with the
300 µm sieve again to produce undersized particles which were mixed with the
previously produced undersize CSD, thus forming the −300 µm waste CSD
(d97 = 300), used for this study. The laser diffraction particle size analyzer
(LDPSA) was then used to ascertain the reduction/removal of particle size distri-
bution on the sample preparation. The results can be seen in Table 3 and Fig. 1.
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Moisture Content Determination

The moisture content of the sample was determined prior to subsequent study of the
waste CSD. The determination of the surface moisture was done by placing 1 g of
the waste CSD into three pre-weighed porcelain crucibles, which were (porcelain
crucibles + CSD) reweighed and were subsequently placed in the open to be air
dried for 48 h. At the end of this period the three sets of porcelain crucibles plus
waste CSD were re-weighed and the mass recorded, the results can be seen in
Table 4.

Density Determination

A number of pycnometers were tested simultaneously and one validation sample of
silica material (SICER) was run in parallel with the real density measurements
carried out and these results were added and compared with previous results in the
proficiency file. The ambient temperature in the laboratory was recorded (24 °C).

The empty pycnometer was first cleaned dried at 110 °C and allowed to cool to
within 5 °C of ambient. The number on the pycnometer and its stopper were
recorded. The empty clean pycnometers with their individual stoppers in position
were weighed to the nearest 0.0002 g(m0). The −300 µm waste CSD (d97 = 300)
was carefully added to the pycnometers until they were about one-third (1/3) full.
The outer surfaces of the pycnometers were cleaned with a dry paper towel and
afterwards weighed to the nearest 0.0002 g. The mass of the pycnometer with
sample were subtracted from the respective mass of the empty pycnometer. The
result thus represents the mass of the −300 µm waste CSD (d97 = 300) in the
pycnometer (m1).

De-aerated boiled water was added to the pycnometer containing the dry
−300 µm waste CSD (d97 = 300) until the pycnometer was filled to two-third (2/3)
its capacity. The pycnometers were then placed in a desiccator and exposed to a
vacuum where the pressure was not greater than 25 mbar until no more air bubbles

Fig. 1 Particle size distribution of a Homogenized waste CSD b milled Homogenized waste CSD
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were seen to rise. The pycnometers were then shaken to ensure complete wetting.
The pycnometers were then removed from the desiccator and were filled almost
completely with water. The contents of the pycnometers were allowed to settle until
the liquid was only slightly cloudy. The glass stoppers were inserted and the water
that overflowed was carefully wiped. The pycnometers were put in a thermostati-
cally controlled bath and the temperature was raised to 5 °C above ambient tem-
perature; while maintaining the temperature constant to within ±0.5 °C.
A thermometer was placed in the bath and the temperature of the water was
recorded. Care was taken to remove any overflows of water from the stopper as the
temperature rises. At the point where no more water comes out from the capillary
bore the pycnometer is believed to have attained the test temperature. This took an
average of 20 min. The pycnometers were removed from the bath, wiped dry with
care and weighed to the nearest 0.0002 g, this is mass m2.

Empty and clean the pycnometers afterwards fill them almost completely with
water. The glass stopper was carefully inserted, while eliminating overflows of
water. The pycnometers were put in a thermostatically controlled bath which was
raised to a temperature of 5 °C above ambient temperature. It was ensured that the
temperature of the water was the same as recorded earlier. Whilst maintaining the
temperature to within ±0.5 °C. The water that overflowed from the stopper as a
result of rise in temperature was carefully removed. At the point where no more
water comes out from the capillary bore, it is believed that the pycnometer has
attained the test temperature. The pycnometer is eventually removed from the bath,
wiped dry and weighed to the nearest 0.0002 g, this is mass m3. The result of the
real density is shown in Table 5.

Slurry Preparation

The slurry is a combination of water and waste CSD at a constant ratio. The
determination of particle density for the waste CSD played a vital role in the
preparation of the slurry for the Falcon gravity concentrator experiment.
The Slurries were prepared using Eq. 1 below, to determine the volume of the pulp
needed to make up 35% solids ratio for the gravity separation.

Vpulp ¼ Vsolid þVwater ð2Þ

Where:

Vpulp = Volume of pulp (l)
Vsolid = Volume of waste CSD (l)
Vwater = Volume of water (l)

The result of these calculations can be seen in Table 6.
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Upgrading CSD via Fine Gravity Separation Method

The falcon gravity concentrator (FGC) with model number SB4-VFD was used for
the copper upgrade experiment. A summary of parameters considered during the
experiment are detailed in Table 1. Naturally, the more information that can be
obtained the better. Unfortunately, obtaining more information often requires
increased experimentation and the resources available may become a limiting
factor. The shortage of any necessary resource, whether it be time, money or
materials can greatly hinder the conduct of the experiment and even preclude
obtaining the desired amount of information from the experimentation. Howbeit, in
a full factorial experiment at least one trial is required for all possible combinations
of factors and levels. This exhaustive approach makes it impossible for any inter-
actions to be missed as all factor interactions are accounted for. Furthermore, when
factors are taken at three levels instead of two, the scope of an experiment increases
and as such becomes more informative; such that a study to examine if a change is
linear or quadratic is possible when the factors are at three levels. Hence, a system
of factorial effects for 3 k factorial designs based on orthogonal polynomials on
equally spaced levels is known as the linear-quadratic system. Computer methods
are used almost exclusively for the analysis of factorial and fractional designs. But,
the Yates’s algorithm can be modified for use in the 3 k factorial design. Hence, the
design of experiment (DOE) was carried out using the 2 by 3 full factorial design
methods, as shown in Table 2. The resulting concentrates and tailings from the
experiment were dried in preparation for subsequent analyses; the results of these
analyses can be seen in Tables 7 and 8 and in Figs. 2 and 3.

Table 1 Parameters considered at three levels

S/N Parameters Low (0) Medium (1) High (2)

1 Rotational bowl speed (rpm) 40 60 80

2 Fluidized water flow rate (l/min) 3.0 4.5 6.0

Table 2 DOE for PC’s waste
CSD copper upgradeusing the
32 full factorial design

Tests RBS
(G)

FWFR (l/
min)

Treatment
combination

1 0 0 00

2 0 1 01

3 0 2 02

4 1 0 10

5 1 1 11

6 1 2 12

7 2 0 20

8 2 1 21

9 2 2 22
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Results and Discussion

Laser Particle Size Analyzer (LPSA)

The laser particle size analyzer (LPSA) was used to analyze the d97 = 300 and the
results showed a % change from 90.82% to 95.59% (Table 3). A look at the
distribution curve of the as-received waste CSD (Fig. 1a) presents an almost
symmetric distribution with one half of the distribution almost mirroring the other
half. But after grinding the waste CSD the distribution curve (Fig. 1b) became
skewed to the left making the distribution asymmetric, giving a good illustration of

Table 3 Result of LPSA for both as-received and milled as-received waste CSD

Category Serial. No. Particle size fraction % passing

As-received waste CSD A −300 to 74 µm 9.18

B −63 µm to pan 90.82

300 µm to pan (d97 = 300) waste CSD A −300 to 74 µm 4.41

B −63 µm to pan 95.59

Table 4 Results of moisture content determination

Tests W1 (g) CSD (g) W2(g) W3 test 1
(g)

W3 test 2
(g)

W3 test 3
(g)

Avg
MC%

A 249.95 3.00 252.92 252.90 252.90 252.89 0.8

B 219.52 3.00 222.52 222.52 222.48 222.51 0.6

C 223.16 3.00 226.16 226.16 226.12 226.13 0.8

Mean MC% 0.73

Table 5 Results of real density calculation of the −300 µm waste CSD (d97 = 300) at CSIR

Sample PYC
NO. 1

PYC
(g)

m0 (g) m1(g) BATH
(°C)

m2(g) m3 (g) LD
(g/
cm3)

RD
(g/
cm3)

SICER 1 22.5127 29.5725 7.0598 27 52.7592 48.3496 0.9965 2.655

WCSD

A1 2 22.4596 27.8584 5.3988 27 52.9906 47.4825 0.9965 2.845

A2 3 22.3683 29.8042 7.4359 27 52.4643 47.6626 0.9965 2.813

A3 4 24.5317 31.7441 7.2124 27 53.9232 49.2481 0.9965 2.833

MEAN 2.830

SD 0.016

Key: PYC NO. = Pycnometer number; PYC (g) = mass of Pycnometer; m0 =mass of Pycnometer and
−300 µm waste CSD; m1=mass of the −300 µm waste CSD; m3 =mass of pycnometer filled with water
and −300 µm waste CSD; LD = liquid density; RD = real density; SD = standard deviation;
WCSD = homogenized copper smelter dust
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the effect of the grinding during the sample preparation of the waste CSD for its
appropriateness for the separation experiment.

Moisture Content (MC)

The percentage moisture content (%MC) of the −300 µm waste CSD (d97 = 300)
were determined as % dry −300 µm waste CSD (d97 = 300) weight. The moisture
of the sample as received was less than 1.0% (Table 4).

Table 6 Results of slurry calculations of the −300 µm waste CSD (d97 = 300)

S/N Parameters Values Units

1 Volume of pulp 0.50 l

2 Density of solids 2,830 g/l

3 % water 85 %

4 % solids 15 %

5 Mass of pulp 553.7077 g

6 Mass of water 470.6515 g

7 Mass of solids 83.0562 g

8 Volume of water 0.4706 l

9 Volume of solid 0.0294 l

10 Density of water 1,000 g/l

Table 7 Mass of copper and iron in the as-received waste CSD and its concentrates

Chemical
composition (wt
%)

As T1C1 T2C1 T3C1 T4C1 T5C1 T6C1 T7C1 T8C1 T9C1

CuO 14.60 14.83 14.47 14.68 14.68 14.79 14.80 14.68 14.94 14.85

Fe2O3 10.52 10.94 11.03 10.72 10.78 10.71 10.72 10.64 10.91 10.84

Key: T1C1 = Test 1 concentrate 1, T2C1 = Test 2 Concentrate 1, T3C1 = Test 3 Concentrate 1,
T4C1 = Test 4 Concentrate 1, T5C1 = Test 5 Concentrate 1, T6C1 = Test 6 Concentrate 1, T1C7 = Test
7 Concentrate 1, T8C1 = Test 8 Concentrate 1, T9C1 = Test 9 concentrate 1

Table 8 %grade and %recovery of the copper and iron at optimum test conditions using the XRD
(FGC)

Tests %grade
of Cu (1)

%grade
of Fe (1)

%grade
of Cu (2)

%grade
of Fe (2)

%recovery
of Cu (2)

%recovery
of Fe (2)

8 1.49 2.10 1.37 4.89 ?? 77.80

Key: 1 = as-received; 2 = concentrate; Cu = Copper; Fe = Iron
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MC% ¼ W2 �W3

W3 �W1
X100 ð3Þ

Where:

MC% = percentage moisture content
W1 = weight of tin (g)
W2 = weight of −300 µm waste CSD (d97 = 300) + tin + lid (g)
W3 = weight of dried −300 µm waste CSD (d97 = 300) + tin + lid (g)

Fig. 2 X-ray diffractogram of waste CSD: As-received (D97-300): 1-Aluminum Silicon Oxide,
2-Silicon Oxide, 3-Copper Aluminum Sulphate, 4-Iron Oxide, 5-Copper Sulfate Hydroxide,
6-Copper Oxide, 7-Calcium Sulfate Hyroxide, 8-Titanium phosphate; Concentrate (F31C) and
Tailing (F31T): 1,2,3,4,5,9-Copper Selenate Hydroxide

Fig. 3 Morphology and interaction between copper, iron, calcium, bromium, Aluminum and
silicon in the as-received, concentrate and tailings produced at test 8
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Density Determination

An initial density determination was carried out, but the set-up was not placed
under vacuum, so that the result produced was not the real density but the apparent
density. But when this test was done again with the set up placed under vacuum, the
result gotten which is also shown in Table 5 (real density-2.830) is greater than that
earlier obtained, (apparent density-2.691). The difference in results can be clearly
attributed to the presence and absence of porosity; hence the later result can be
conveniently referred to as the real density of the waste CSD.

Slurry Determination

The liquid to solid ratio can be seen in Table 6.

Gravity Separation Experiment

Weight Percent (Wt%) of Copper and Iron Before and After
Upgrade

See Table 7.

Grade and Recovery of Copper and Iron Before and After
Upgrade

The maximum iron recovery of 77.80% to the concentrate was discovered at test
conditions of 80 rpm and 4.5 l/min fluidization rate with a copper grade of 1.37%
less than the grade of copper in the feed (1.49%). This was further corroborated by
the results obtained from the qualitative and quantitative mineralogical analyses
using the EDS, SEM and XRD in Figs. 2, 3 and Table 9 respectively; from which it
can be deduced that there was no significant separation of the heavy reactive gangue
material: aluminum, silicon magnesium, calcium. But rather an increase in the
grade of the hematite phase from 2.10% to 4.89%, which runs contrary to the aim of
the study, which is to reduce the amount of Iron and other contaminants in the
waste CSD (Table 8).
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Mineralogical Interaction Before and After Upgrade

Corroborating the results from the XRD analysis, the SEM images in Fig. 3 show
amore copper minerals than iron in the concentrate than the as-received and tailings
at test conditions of 80 rpm and 4.5 l/min; with the bulk of the particles been
spherical an indication of the process that produced this waste CSD, as the molten
metals solidified into spherical shaped after the parent ore was pretreated via
roasting. Also Fig. 3b shows two generation of minerals a younger and older one.
The older playing host to the most recent, pointing to two products of different
condensation. Mineral logically, copper predominates in terms of amount, while
mullite, quartz and gypsum are more pronounce in the as-received and tailings.
Even though the separation of this unwanted materials.

Conclusions

The concentrates from the copper upgrade of the PC’s waste CSD using the FGC
with model number SB4-VFD, whilst varying parameters such as the rotational
bowl Speed and the fluidization Water Flow rate; the effect of mineralogical phases,
density and an almost constant particle size were also established. From which the
following deductions were made:

• That based on the calculated CC from the specific gravity difference between the
heavy minerals like tenorite, hematite, chalcopyrite, bornite (6.50, 5.30, and
5.30 respectively) and the host light minerals which are majorly quartz, mullite
and gypsum (2.72, 3.16 and 2.4 respectively) separation was predicted.

• The maximum iron recovery of 77.80% to the concentrate was discovered at test
conditions of 80 rpm and 4.5 l/min fluidization rate with a copper grade of
1.37% less than the grade of copper in the feed (1.49%).

• This was further corroborated by the results obtained from the qualitative and
quantitative mineralogical analyses using the EDS, SEM and XRD, which
indicated no significant separation of the heavy reactive gangue material: alu-
minum, silicon magnesium, calcium. But rather an increase in the grade of the
hematite phase from 2.10% to 4.89%.

Table 9 EDS spot analysis of as-received, concentrate and tailings before and after upgrade
experiment (test 8)

Waste CSD Elements (wt%)

Cu Fe Al Si Ca Ti S

As 29.10 17.73 25.60 48.13 11.67 1.30 4.15

Concentrate 4.52 5.38 13.20 13.62 6.36 0.52 0.82

Tailing 3.04 5.52 10.72 21.62 1.56 0.78 3.86
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• So therefore, it will be said that the results were not in agreement with the
hypothesis that states that the upgrade of the waste CSD will lead to the
reduction/removal of reactive gangue minerals which should invariably affect
the recovery of copper from this dust during the leaching process.

• This failure to achieve the set ojectives can be attributed to the type of Falcon
gravity concentrator used; this equipment is designed to take the feed as solid
instead of slurry, Thus resulting in significant amount of waste CSD been blown
off in the process. Based on these limitations/challenges the feed rate and pulp
density were factored into the upgrade study, which would have had significant
impact on the outcome of this study.

Hence, it is recommended that another type of centrifugal separator be used, one
that will allow the introduction of the material into the equipment as slurry,
avoiding loss as a result of the rotating bowl and discharging water.
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Towards Commercialization of Indium
Recovery from Waste Liquid Crystal
Display Screens

Thomas Boundy and Patrick Taylor

Abstract Indium recovery from liquid crystal display (LCD) waste has been the
subject of over 50 peer reviewed publications over the last decade; however, the
first commercial recycling facilities are just beginning to be built. The low value of
indium in the LCD screen material has posed a major challenge to would-be
recyclers. Uncommon material combinations and geometries have further chal-
lenged development. A review of published literature regarding extraction of
indium from LCDs will be presented and themes of advantageous processes will be
highlighted. Barriers to rapid expansion of any recycling technology in the form of
manufacturing practices, environmental regulations, and geographic constraints will
be discussed.

Keywords Indium � LCD � Recycling

Introduction

The cathode ray tube (CRT) displays are commonly recognized as an enormous
burden on the recycling industry. The low value of the contained materials com-
bined with the high costs of managing leaded glass waste for which there is no
longer a market in CRT manufacture have required government intervention to
keep recyclers operating and prevent abandonment or mismanagement of these
materials. In a similar fashion, however, the technological replacement for the CRT,
the liquid crystal display (LCD), poses challenges to recyclers. Like CRTs, safe
dismantling of LCDs requires great attention. Unlike CRT glass in the U.S., LCD
glass is not considered potentially hazardous and is not subject to the regulations for
hazardous waste, whether or not it is recycled. Currently, LCD glass lacks end-use
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markets that would support its recycling and is not recycled as a specific commodity
in the U.S. Extraction of indium from LCD glass is currently not part of the process
of recycling LCDs in the U.S.

While the human health and environmental concerns drive much interest in LCD
recycling, interest in LCD recycling has been further stimulated by a desire for
responsible indium supply chain management. Some of the unique properties of
indium in transparent conductive oxides and light emitting diodes make it extre-
mely valuable in clean energy photovoltaics and low energy lighting applications.
Currently, the majority of indium consumption is used for manufacturing LCDs
(the European Commission estimated 74% went towards flat panel displays as early
as 2010 [1]). The approach to indium stewardship must begin, therefore, with the
approach to waste LCD stewardship.

While environmental and resource stewardship considerations make used LCDs
an important material to recycle, the labor-intensive processing and low material
values make recycling difficult. Despite these difficulties, the first few processors
worldwide have begun to recover indium from LCDs. This paper will review LCD
construction and material values, dismantling approaches, indium recovery
approaches, global policy and industrial environments with relevance to processing
decisions, and the themes of processors currently recycling LCDs with a focus on
indium recovery.

LCD Materials and Construction

Naturally, recycling practices for LCD-containing devices are dictated by the
material composition and construction of such devices. Such devices have become
ubiquitous in modern society in the form of mobile phones, computer monitors, and
televisions. In each of these classes of devices, LCDs produce an image for a viewer
by creating a uniform flux of white light across the display from which red, green,
and blue light can be selectively filtered in small localized regions forming indi-
vidual pixels. Therefore, a number of fundamental components enable operation: a
white backlight, optical diffusers capable of presenting a uniform light flux to the
screen, a grid of color filters, and a means of controlling the amount of light passed
through each color filter.

The backlight of choice for LCD manufacturers prior to 2009 were
mercury-containing cold cathode fluorescent lightbulbs (CCFLs). In about 2009,
the shift towards light emitting diodes (LEDs) began, and by 2013 LEDs largely
displaced CCFLs as backlights.

For both of these backlight options, various plastic diffuser and reflector sheets
are used to present a uniform flux to the display for localized filtering.

The localized light filtering apparatus is characterized by a layered structure as
shown in Fig. 1. Outer plastic layers are often composed of tri-acetyl cellulose and
poly(vinyl alcohol) as light polarizers [3]. Alkali-free sheet glass composes the next
outermost layer [4]. Organic color filter and electrode layers of which indium tin
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oxide (ITO) is the innermost coat the inner layer of the glass sheets [5]. Liquid
crystal blends fill the gap between these glass plates. The liquid crystal blends
themselves are used to control the light flux through each color filter by manipu-
lating the voltage applied to the individual ITO domains. As such, a computer and
attendant printed circuit boards (PCBs) must be electrically connected to the device.

A typical configuration for all of these components is shown in Fig. 2.
Components are mated together through screws, plastic and metal clips, and
adhesives.

Fig. 1 a A simplified diagram of the structure of a typical LCD screen. 1 = liquid crystals,
2 = orientation layer, 3 = color filter, 4 = ITO layer, 5 = glass sheet, and 6 = polarizer. Not drawn
to scale. b Micrograph of shredded LCD screen showing the individual pixels composed of three
adjacent, independently controlled regions. Scale bar = 200 microns. Adapted from Boundy et al.
[2]

Fig. 2 An exploded view of
a generalized LCD monitor
adapted from Zhao et al. [6]
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Material Values

Salhofer et al. in collaboration with Saubermacher (a recycling company in Austria)
performed a thorough characterization of LCD material composition and values
based upon previously stockpiled LCDs in 2009 [7]. The material compositions and
expected revenues generated from them are presented in Table 1.

Ryan et al. characterized average material fractions present in 17 large monitors
(between 20 and 40 inch displays) [8]. These data are compared with those of
Salhofer et al. [7] in Fig. 3.

Rotter et al. presented a review of indium content in the LCD screens of mobile
phones and computer monitors and presented some of their own data as well [9].
The reviewed literature reported widely varying indium concentrations in LCD
screens (58.5–1102 mg indium/kg screen). Rotter et al. report based on indium
content determination in 23 computer monitors and 11 mobile phone displays
contents of 175 ± 60 and 320 ± 160 mg/kg, respectively [9]. The reported stan-
dard deviations give an indication as to the widely variable manufacturing practices
and indium content present in various displays. These data compare favorably with
more recently published values of indium content in both computer monitors and
mobile phones as reviewed by Boundy et al. [2]. Ueberschaar et al. have performed
the most thorough characterization of indium content in LCD screens for various
device types [10]. Their results are shown in Fig. 4.

Table 1 Material composition of LCDs and suggested associated values reported by Salhofer
et al. [7]

Material Composition
monitors

Composition
TV-sets

Revenues Revenue
monitors

Revenue
TV-sets

(kg/tonne) (kg/tonne) (euro/kg) (euro/tonne) (euro/tonne)

Ferrous
metal

409 535 0.04 16 21

Aluminum 52 6 0.55 29 3

PCBs 81 61 2 163 122

Cables 11 9 0.7 8 7

Backlight 3 11 −0.7 −2 −8

LC
display

81 77 −0.6 −49 −46

ABS 120 179 0.13 16 23

PC-ABS 43 0.13 6

PMMA 124 17 0.15 19 2

PS 5 43 0.05 0 2

Other
plastics

20 36 −0.16 −3 −6

FR
plastics

50 26 −0.16 −8 −4

Total 1000 1000 194 117
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As previously discussed, the indium content is often used to recommend LCD
recycling from a criticality perspective. When approached from an economic per-
spective; however, the challenge emerges. Assuming 200 mg indium per kg of
screen and the recent market price of $200/kg, the indium content in one tonne of
waste screens is $40 or about $0.01 per 14-inch screen. Even during the indium
price spike of 2014 when indium reached about $700/kg, the economics make
processing decisions difficult.

Fig. 3 A comparative bar graph for the selected material fractions found in LCDs by Salhofer
et al. [7] and Ryan et al. [8]

Fig. 4 Indium content determined by [10] in various types of LCD-containing devices with error
bars representing standard deviations
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LCD Disassembly

The major challenge with LCD disassembly is handling the mercury-containing
CCFL backlight. Zhao et al. noted that recyclers are unable to shred these devices as
a whole due to the emission of mercury into the atmosphere and products [6].
Because of this, the majority of recycled LCDs are manually dismantled. Ardente
et al. thoroughly reviewed LCD dismantling practices and challenges and present
some of their own findings as well. Disassembly times for LCD devices are
commonly found to be in the range of five to 15 min with disassembly time
increasing with screen size [11]. It has been noted that partial rather than complete
disassembly is often employed. In the case of one Italian study, manual dismantling
is utilized to remove CCFLs, LCD screen, PCBs, and PMMA sheets [11]. In these
incomplete disassembly situations, the remainder of the attached materials are sent
to shredding and subsequent particulate separations.

The relatively high labor costs and required dismantling times have driven some
innovation in automated disassembly process capable of safety managing associ-
ated mercury risks; however, many features of the LCD-containing devices such as
thin, heterogeneous materials and device variability make design of such automated
processes difficult [12]. One commercial solution has been developed as an
industrial shredding device capable of capturing mercury through gas and fines
collection and sequestration. The other common approach to mercury management
through automated processes has been mechanical cutting of the screen and
recovery of the intact CCFLs. The remains of the device can then be safely sub-
mitted to a conventional electronics shredder. At the time of this writing, such
automated LCD dismantling equipment is now being sold by a number of vendors
across Europe.

As a greater fraction of LCD-containing devices with LED backlights reach
end-of-life management operations, automated device characterization equipment
will become increasingly economical to separate devices that require CCFL
removal from those that do not.

Indium Recovery from Screens

In traditional extractive metallurgical processes, separations are designed to pro-
gressively increase the concentration of a value material while rejecting waste or
gangue materials. These processes can be separated into physical/mechanical or
chemical processes. Physical/mechanical processes tend to be relatively low-cost
and non-polluting, with the exception of the carbon used to power them. Chemical
processes, by contrast, are often more expensive, but enable concentration and often
reduction of value materials to states that cannot be achieved by mechanical/
physical means.
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Chemical methods are more commonly employed in published investigations of
indium recovery from LCD screens. These investigations have been reviewed in
detail by Boundy et al. [2], Ueberschaar et al. [10], and Zhang et al. [13]. The
results are as expected. Nitric acid, sulfuric acid, and hydrochloric acid are all
effective, low-cost leachants, and leaching kinetics can be improved with increased
temperature. These techniques, however, are found to be economically unfeasible
for this low-grade indium feedstock in a commercial environment due to the rel-
atively high losses due to low solution concentration and high costs of acids
required to leach low-grade feedstocks. One metallurgical engineering approach to
address the challenges of leaching low-grade ores is counter-current leaching. This
technique enables greater solid to liquid ratios to be achieved in the leaching
process than could be achieved if the leaching is confined to a single mixed slurry.
A modified cross-current leach has been demonstrated for indium recovery from
LCD screens by Rocchetti [14].

High-temperature pyrometallurgical processes have also been investigated tak-
ing advantage of the unique volatility of a number of indium species. He et al. have
demonstrated recovery of indium through carbothermal reduction and vaporization
of the In2O species under vacuum [15]. Takahashi et al. reported using HCl to
convert the In2O3 in ITO to InCl3 and recoveries of greater than 80% at 400 °C
[16]. The economics of these approaches have not been reported in any published
research.

Investigations into mechanical/physical processes for indium beneficiation from
LCD screens have been sparingly published. Without specifics, Rotter et al. sug-
gested among many possible approaches that due to the surface confinement of
indium on the LCD glass, an abrasive approach might be a viable method of
producing an indium concentrate [9]. Dodbiba et al. demonstrated an electrical
disintegration approach to increase the availability of indium to the leachant, but
with no apparent subsequent separation [17]. Boundy et al. report an autogenous
attrition scrubbing process in which inter-particle abrasive action causes the
removal of the indium containing semi-conductor film as fine particulate which is
separated from the coarse shredded glass by screening to produce an indium con-
centrate of approximately 2000 mg/kg [2]. In the same month Zhang et al. pub-
lished a description of a mechanical stripping process whereby whole LCD screens,
once separated from their respective devices, are opened to expose the indium and
ground with a roller brush to remove the indium as fine particulate [18]. The
produced fine particulate containing about 8% indium is contaminated with a large
fraction (53%) of liquid crystals which must be vaporized under inert atmosphere in
order to be separated from indium particulate enabling the indium to be further
refined without harming downstream operations [18].
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Geopolitical Processing Environments

Processing possibilities and decisions for waste LCDs are dictated by the geopolitical
environments within which recyclers operate. Many variables including government
policy, population density, recycling rates, labor costs, access to capital, proximity to
purchasers of products, equipment availability, and technical understanding con-
tribute to processing decisions by recyclers. Historically, LCD glass along with the
roughly 200 mg/kg of indium have been landfilled or used as flux in lead or zinc
smelters [18] whichmay recover indium from the off-gas. Primary indium circuits are
estimated to recover only about 35% of indium in the feed material [19].

Europe

The European Union has passed the most aggressive measures with regard to waste
electrical and electronic equipment (WEEE) with the most recent legislation (WEEE
Directive 2012/19/EU) requiring recovery ofmercury containing components such as
backlighting bulbs and the screens of LCD units and that 70% of the material shall be
prepared for re-use or recycling [20]. There exists some contention about the envi-
ronmental risk associated with liquid crystals. MERCK, a major liquid crystal blend
manufacturer, has published studies failing to demonstrate any ecotoxicity or human
health risk associated with common liquid crystal blends [21]. It should be noted that
these blends often contain halogenated organic compounds; therefore the same
cannot be said of the combustion products [18]. Nonetheless, the EU has mandated
that LCD screens themselves be collected and disposed of separately [22]. In addition
to mandating segregation of certain hazardous materials and a weight fraction of the
overall devices to be recycled, the EU has removed the burden of recycling costs from
the consumer in an effort to improve WEEE collection. This legislation has led to
relatively high recycling rates across Europe, which, when combined with a relatively
large population density, gives recyclers access to relatively large economies of scale.

It is worth noting that the EU adopted some of the first WEEE recycling
mandates, and with the recognition of the high costs of labor and manual disas-
sembly, research and development into automated dismantling processes began
early. These technologies were developed in light of EU mandate that LCD screens
as well as backlights be collected separately. As recyclers with economies of scale
grew and gained access to increasing capital, the developed automated dismantling
technology began to be deployed across Europe. This produces conditions very
favorable to one interested in recovering indium from these devices as large vol-
umes are processed within a fairly limited geographical area and the screens are
recovered in a fairly pure form without contamination of other plastics or low value
materials that might otherwise be left in the waste fraction. While a government
sponsored entity has begun operating a pilot plant, no commercial ventures recy-
cling the LCD screens have begun.
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United States

The United States have not passed meaningful federal legislation but have instead
allowed individual states to legislate their own agendas. Notably, California has
implemented extended producer responsibility legislation requiring manufacturers
to contribute to the costs of recycling enabling consumers to drop off monitors at no
cost. A fee ($10–25 per device) is associated with disposal of LCD TVs and
monitors in all other states. Landfill bans on flat panel displays currently exist in 17
states [23]. It is common for many of the states with electronic waste legislation to
require that recyclers be certified by either E-Stewards or R2. Therefore, processors
are generally required to refurbish when possible, perform testing to assure quality
of refurbished or re-used components, and recycle material values instead of landfill
disposal or recovering energy value through incineration.

While the landfill bans and non-consumer paid recycling fees increase recycling
rates for LCDs in the US, many obstacles to processing remain. One major barrier
lies in the low population density of the US and much of its non-coastal area in
particular. These low population densities lead to low throughput and revenue in
processing facilities which makes capital investment and automation for these
recyclers unreasonable. As the low value of LCD containing devices makes ship-
ping these devices to larger urban centers for recycling uneconomical, the value of
the screen by-product after local dismantling is even more prohibitive. Urban
centers in the coastal areas have the population density to support larger plant
revenues and capital investment; however, because the LCD screen is not classified
as a hazardous material, after the CCFLs have been manually removed, the
remaining monitor is often subjected to shredding. This leads to the accumulation
of LCD screens either intact or as shredder residue mixed with other materials
whose value did not justify separation from the waste stream. Dispersed in multiple
forms and purity levels, the relatively small quantities of LCD screen scrap gen-
erated in the U.S. have also not found a commercial recycling route.

China

In 2011, China implemented a tax on electronics manufacturers to fund subsidies
for disposal of WEEE (CLI.2.114171 Article 7). Recyclers must apply for the funds
based on the volume of waste electronics processed [24]. While the funding
mechanisms are not as mature as in the EU, China has much lower labor costs than
the EU. Li et al. found that recycling of monitors (CRTs and LCDs together) in
China, cost between $7.6 and $13.5 per unit with an average of 7% of the cost
attributable to labor [24]. Zeng et al. recently reviewed the experience of China in
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implementing environmental and waste management strategies with respect to
WEEE and suggest that the government programs have increased the recycling rate
as high as 35% in 2014 [25].

China also has a distinct technological and population density advantage over
both the EU and the US. With the LCD manufacturing industry operating pre-
dominantly out of Asia, companies in and around China have been recycling LCD
screens rejected by their manufacturing lines (reject rates in manufacturing lines can
be as high as 5 to 15% [26]) for years [27]. It has been demonstrated that after
subjection to color filter stripping solution the glass surface can be regenerated and
coated once again with ITO without a significant decrease in performance [28]. If
truly commercially achievable, regeneration of LCD glass at a value on the order of
$1/ft2 has the potential revenue to justify these transistor stripping operations so
long as an interested manufacturer can be found. Indium concentrates, too, have an
easy processing route as China is the world’s leading producer of indium, con-
tributing 44% of the world’s production in 2016 [29].

It is with this government commitment to recycling, high population density,
technical capability, and local manufacturing industry that Ningda Noble Metal Co.
Ltd. permitted the first large scale indium recovery facility from end-of-life LCD
units in 2016 in Yangzhou, China. While the long-term success of this facility
remains to be seen, it appears China has taken the first step towards stewardship of
indium from end-of-life LCDs.

Conclusions

Investigations into policy and processing routes for recovery of rare and valuable
materials have become common themes of research in recent years. If the recovery
of indium from LCDs is of any use as a case study, however, a few additional
themes emerge. Recycling involves the practice of converting a used or obsolete
product or material into a useable material with value for another. Especially with
materials which are difficult or costly to transport, processes will be most successful
when preparing products that are appealing to manufacturers of reasonably close
proximity. Additionally, especially within a world of increasingly complex pro-
prietary technology and manufacturing methods, it is often the manufacturers or a
product or at least those with intimate knowledge of manufacturing practices most
equipped to recycle it.
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Engineering, Scientific, and Policy Inputs
for Developing a Levelized Cost of Energy
Storage Model

Timothy W. Ellis, John A. Howes and Roger D. Feldman

Abstract Scope: The new generation of more powerful, energy-intensive devices
for communications, industrial production, energy storage and other purposes is
creating new challenges to guard against environmental harm and protect national
security. Many devices are designed, used and disposed of in a linear, rather than
circular manner. This causes scientific, legal and economic issues because the
life-cycle costs of components are not adequately considered. Dealing with these
issues in isolation from each other can lead to unintended consequences. New
models to confront these issues are being defined. This paper suggests a funda-
mental tool for dealing with material science issues while taking into account the
engineering, economic and policy perspectives. That tool is the development of a
true, levelized cost of energy storage model with a wide spectrum of inputs for
comprehensive analysis. This paper will discuss inputs and the process which can
yield meaningful, useful comparisons among batteries and energy-intensive
products.
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Introduction

Lithium-ion (Li-ion) batteries, introduced commercially in the latter part of the 20th
century, have become commonplace in a variety of held-held electronic appliances
because of the favorable energy density of the batteries compared to other com-
mercially available rechargeable batteries. Within the past 20 years, Li-ion battery
cells assembled in larger-format battery packs have been entering the market for use
in hybrid and electric vehicles. They now are also being used increasingly for
uninterruptible power supply and electric grid functions. However, risks associated
with the safe operation and end-of-life management of Li-ion batteries have grown
and are receiving considerable attention from government, insurance underwriters,
consumer advocates and the environmental community [1].

The purpose of this paper is to view some of the major design, operational,
safety and, especially, end-of-life recycling issues through scientific, economic and
legal perspectives.

Scientific Perspective

Several characteristics about lithium-ion batteries contribute to the difficulty in
recycling them. Among them:

• Lithium-ion batteries have been designed in a “linear” manner, meaning they
have been designed without considering how battery materials can be recovered
for reuse, remanufacturing or recycling.

• Lithium-ion batteries are part of a complex family of chemistries that utilize
lithium and contain certain materials (copper, nickel, lead, fluoride compounds,
etc.) that are potentially toxic. They also contain organic electrolytes that can
cause fire hazards [2]. Care must be taken in the storage of these batteries to
guard against leaching into landfills [3].

• Because of the complexity of designing lithium batteries from such a wide
spectrum of materials, a recycling process used for one lithium battery design
may not be as compatible with others.

• An infrastructure to collect from consumers the lithium batteries when they
reach their end-of-life is in its early development stage.

These factors contribute to the low recycling rate of lithium-ion batteries, which
is less than five per cent [4]. This suggests a gap exists between how lithium
batteries presently are designed in a linear manner and how they might be designed
in a “circular” manner. It is a gap that requires research into how battery materials
can be recycled with the resulting materials becoming economically competitive
with virgin materials. Addressing this gap is a priority in the automotive industry as
hybrid and electric vehicles utilizing lithium-ion batteries enter the marketplace.
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This stands in contrast to lead-acid batteries, which are recycled at a rate
reaching 99%. Lead-acid batteries, which have been recycled for more than
100 years, are an example of how a product can be designed, manufactured, used
and recycled in a “circular” manner. Materials in a lead-acid battery, lead, plastic,
acid, are continually recovered and reprocessed for use in new batteries. Among the
reasons for the high recycling rate of lead-acid batteries is that they are manufac-
tured with fewer materials than lithium batteries and those materials have residual
value when the battery no longer is used [5].

The U.S. Environmental Protection Agency (EPA) has in place strict guidelines
for recycling lead-acid batteries that enable the recycling process to be classified
under “universal waste” regulations. Lead-acid recycling plants must be fully
enclosed to prevent the escape of lead micro particles. Smokestacks must be fitted
with scrubbers. To check for possible escape of lead particles into the outside air,
the plant perimeter must be surrounded with lead-monitoring devices.

Lead-acid battery recycling plants not only must comply with stringent waste
processing standards, they must also be on guard for lithium batteries mixed into
the waste stream of lead-acid batteries fed into secondary lead recycling smelters,
either inadvertently or on purpose. This has resulted in several explosions as the
lithium-ion batteries are crushed by the equipment used to crush lead-acid batteries.
In addition, the absence of comparable waste processing standards for lithium
batteries in the U.S. has, in effect, resulted in “pollution havens” being created. Not
only have lithium-ion batteries been placed in the waste streams of U.S. recycling
facilities, batteries also have been exported to recycling facilities in other countries
that lack emission and safety standards comparable to those in the U.S [6].

Continued research is needed to address the challenges of bringing a closed loop
design that is the hallmark of lead-acid batteries to products that use advanced
chemistries like lithium. Among these challenges are the juxtaposition of various
recycling processes with the variety of lithium battery designs. Will manufacturers
have confidence in the quality of recycled materials compared to virgin materials?
Can recycling be factored economically into the design of materials as well? Do
such decisions depend only on price?

Economic Perspective

Consumer demand for high efficiency products has created increased use of
materials, such as rare earths and specialty metals like lithium, that are not readily
and economically recycled. After the consumer is finished with the batteries, the
question of what to do with them is left to the consumer. In some instances, they
can be sold at a cost lower than the original purchase price, placed in a container
designated for shipment to a waste treatment facility or, in most cases, thrown into
landfills or other waste streams.

Presently, the average cost of recycling lithium-ion batteries exceeds the cost of
sending them to landfills. According to one study, the cost of collecting spent
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lithium-ion batteries is approximately $1,120 per ton and the tipping fee paid to
landfill operators for taking them is approximately $45 per ton [7]. The estimated
cost of recycling lithium batteries is approximately 20–30% more than cost of
transporting them to a landfill. It is conceivable that end-of-life processing costs
could be in part recovered if recycled materials were of comparable quality and
competitively priced with virgin materials used in lithium-ion batteries.

Not only is the cost of recycling lithium-ion batteries more expensive than
simply discarding them into landfills or other waste streams, there is no nationwide
legal requirement throughout the U.S. for lithium battery manufacturers to collect
batteries at their end-of-life. Therefore, the expenses associated with managing
these spent batteries are considered “externalities” or costs borne by society. With
batteries becoming increasingly utilized in automotive and electric power appli-
cations, several economic studies [8] have undertaken levelized cost calculations to
compare various battery chemistries on an equitable economic basis. However, in
most comparisons, end-of-life costs are not included.

Since end-of-life costs are included in the retail price of all lead-acid batteries,
such costs must be included in the assessment of batteries using lithium and other
chemistries if a true equitable, levelized model is to be developed.

Internal costs are those upon which a business calculates the price of a product.
The internal cost reflects variable costs such as materials and purchased items,
direct labor and overhead. These internal costs also reflect fixed costs such as
general administration, sales, research and development, depreciation and profits
after taxes [9]. However, when costs such as product disposal, environmental
degradation and toxic substance leaching are not included in the calculation of a
product price, they become “external” costs that are borne by society. Such costs
can be handled by the imposition of taxes to finance disposal or penalties assessed
against polluters. Estimates for mandatory take-back costs can range as high as 40%
of variable costs [10].

The chart below (Fig. 1) illustrates how the internal and external costs, plus
associated profit, are embedded in the retail price of lead-acid batteries (average
price $150/kWh). While the internal costs, plus associated profit, are embedded in
the average retail price ($250/kWh) of lithium-ion batteries, they do not include
end-of-life disposal costs which must be borne by society. These end-of-life costs
for lithium-ion batteries are therefore “external” costs that must be borne by society.

To achieve sustainability on an ongoing basis, the way in which production and
disposal cycles are integrated will come into focus more sharply as the market for
lithium-ion batteries continues to grow and resulting solid waste disposal issues
become more apparent. This will result in the need for a more circular approach that
has been a hallmark of lead-acid batteries, one that will be needed for lithium-ion.
This discussion also will be enhanced by technological developments in the recy-
cling of lithium-ion batteries sponsored by government and industry.

Economies of scale for the recycling of lithium-ion batteries are as important as
the recycling technology itself to justify sufficient investment in the technology. For
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smaller recycling facilities including typical electronic waste processors, it may be
difficult to achieve economies of scale due to their limited resources and recycling
capacity.

Legal Perspective

Bringing together scientific, economic and legal analysis can be useful in
addressing the primary challenges of bringing lithium-ion batteries into a circular
profile similar that that of lead-acid batteries. These challenges include the lack of
design for recycling, inadequate collection infrastructure and insufficient incentives
for consumers to place discarded batteries into recycling facilities rather than into
landfills or other linear waste streams.

Various public policy proposals have been advanced in the lithium recycling
discussion. The proposals range from an outright ban on the landfill disposal of
batteries to integrating end-of-life protocols into the design and manufacture of
lithium batteries.

Throughout Europe, many countries have enacted extended producer responsi-
bility (EPR) laws requiring producers to take back rechargeable batteries, including
lithium-ion, to manage them in an environmentally beneficial manner. In the U.S.,
such laws have not been legislated by the U.S. Congress. The Mercury-Containing
and Rechargeable Battery Management Act of 1996 (Battery Act) requires that
certain batteries (mercury-based, nickel-cadmium, and lead-acid) are considered
hazardous waste and fall under the standards for universal waste management.

Fig. 1 Internal and external costs, plus associated profit, embedded in the retail price of lead-acid
batteries (average 131 price $150/kWh)
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While the Battery Act mandates guidelines for disposal of hybrid, plug-in hybrid
and electric vehicle batteries, the EPA universal waste rule does not consider
lithium-ion batteries to be hazardous and, therefore, they are excluded. However, a
regulatory system could be adapted to include lithium-ion batteries in anticipation
of a high volume of these batteries that will be removed from hybrid and electric
vehicles at their end-of-life [11]. In the meantime, only California, New York and
Minnesota have enacted laws restricting the landfill disposal of lithium-ion, and
other rechargeable batteries. (Lead-acid recycling laws are commonplace
throughout the U.S.).

The question is what comprises a legal framework for the effective solution of
practical problems affecting environmental concerns, energy infrastructure devel-
opment, and the use of natural resources law that is consistent with how markets
operate and equitable to all parties. There are three areas of law within which
battery end-of-life are considered:

• Public law, which is created by governmental mandates and formal policy
guidance.

• Private governance, which is established through sustainability metrics that
companies develop and implement on their own, and structured market initia-
tives which private firms banding together have developed.

• Private law, which is an application by governments of law relating to things
like supply chain relationships and project credit enhancement techniques.

The application of public law in the U.S. has been uneven in the treatment of
lithium-ion batteries. Nevertheless, a type of private environmental governance
through public-private partnerships has begun to emerge that is facilitating the
creative adoption of commercial law related to sustainability through scientific and
economic analysis [12].

This type of private governance can take into account the financeability of
innovative technologies and facilitate the introduction of innovative technologies
on a basis that is positive for the overall societal benefit. One public-private
enterprise is the U.S. Center for Automotive Research (USCAR), a collaboration
between the U.S. automakers (General Motors, Ford and Fiat Chrysler) and the U.S.
Department of Energy (DOE). USCAR has initiated competitive awards to several
firms undertaking lithium recycling research and development programs [13].

Another example is the creation of public-private programs in which money is
provided by both government and the private sector to develop products where
certain procurement standards are met and where revenue streams will support the
public interest in assuring the sound financing of these new technologies using
lithium-ion batteries and other products [14]. The manner in which procurement
decisions are made is important to ensure that manufacturers produce batteries in
accordance with industry standards and tests.

Financeability involves not just how much money is made, but how firm is the
cash flow. Is the transaction one that bankers will find well organized? Are there
assurances of performance? Is the sustainability of the performance long-lasting
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enough that the process can be relied upon by the public? Another is by encour-
aging public and private models resourcing and supporting each other in the
research and commercialization of resource efficient products.

Other policies have emerged in the context of private law that identify proce-
dures to deal with the operational and end-of-life risks of lithium-ion batteries.
These operational risks can be managed to consider the battery technology, elec-
trical protection, fire detection systems, etc.

The insurance industry has undertaken such initiatives in policy underwriting
[15]. Risks are being classified in the following manner:

• Chemical and mechanical risks result from a battery sustaining mechanical
damage which causes internal shorting of the battery and can liberate corrosive
and flammable electrolyte from the battery.

• Electrical risks include issues associated with current flow in the battery, such as
short circuits, overcharging, rapid-discharge, battery cell shorting, etc.

• Operational risks include those that result from the loss of a critical battery
function. Examples include loss of emergency systems, failure of high asset
value systems and failure of equipment to shut down properly.

While most of these insurance underwriting procedures deal with the safe
operation of lithium-ion batteries, the procedures can also extend to safe end-of-life
battery treatment.

Levelized Cost of Storage Model

One way to assess the economic impact of public law, private governance and
private law is the development of a levelized cost of storage model that will apply
certain criteria (internal and external) costs on an equitable basis. These criteria
include the costs of materials, production, energy/water consumption, emissions
control, end-of-life management and commodity recovery (recycling). resolution.

Using a levelized cost methodology encourages the incorporation of “circular”
considerations into the design of batteries (and by extension other products) so that
manufactured goods ultimately will have a lower cost profile for the benefit not only
of battery consumers, but society (and the environment) at large. The process of
using a true levelized cost model that reflects all internal and external costs in a
single formula promotes a net value gain in the batteries themselves and, by
extension, the materials used in them.

An estimated baseline manufacturing cost of a typical lithium-ion battery unit in
a plug-in hybrid electric vehicle has been developed by Argonne National
Laboratory [16]. Variable costs (materials, purchased items, direct labor and vari-
able overhead) account for approximately 72% of the total battery cost, while fixed
costs (administration, research/development, depreciation and profit after taxes)
account for the rest. This calculation, however, does not consider expenses
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associated with end-of-life battery management. An estimated cost for collecting
and recycling spent lithium-ion batteries, from a separate analysis, has been esti-
mated to be between 40–60% of variable costs [17]. Taking these data together, a
40% increase in variable costs would raise the total levelized cost of a typical
12-volt lithium-ion battery by approximately 28%. The cost of a 12-volt lithium-ion
battery, about $250/kWh, would increase to approximately $320/kWh. It is
important to note that this approximate increase in the total levelized-cost of a
lithium-ion battery is entirely dependent upon (1) the material composition of the
battery, (2) whether recycling has been incorporated into the battery design and
(3) the degree to which materials emerging at the end of the recycling process
would be of comparable quality to materials from virgin sources.

The relationship of these criteria for lead-acid (PbA), lithium-ion (Li-ion) and
nickel metal hydride (NiMH) can be visualized (Fig. 2) in a circular diagram
accompanying a simplified calculation formula that incorporates end-of-life man-
agement costs. In this instance, lead-acid (PbA) batteries can be considered within
the circular paradigm by virtue of their 99% recycling rate, which is based on the
quality of recycled materials being competitive (in both cost and quality) with
virgin materials. In contrast, neither nickel metal hydride (NiMH) nor lithium-ion
(Li-ion) can be considered to be within the circular diagram since nickel recovered
from spent batteries is used primarily for steel plating and the recycling rate of
lithium-ion batteries is only approximately five per cent.

LCOS =
P ðCapitalþO&Mþ Fuel + EOL)

P
MWh

Where:

Capital= Total capital expenditures in year
O and M= Fixed operation and maintenance costs in year
Fuel= Charging cost in year

Fig. 2 The relationship of criteria for lead-acid (PbA), lithium-ion (Li-ion), and nickel metal
hydride (NiMH) battery cost
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EOL= End-of-Life costs in year
MWht= The amount of electricity discharged in MWh year measured for

capacity factor

A preliminary cost estimated in a simplified formula such as the one above
shows that more research is required. By providing an all-encompassing list of
criteria for the circular management of all battery chemistries in a levelized eco-
nomic modelling format, a clearer picture of battery costs on a truly comparative
basis will emerge.
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Recovery of Gallium and Arsenic
from Gallium Arsenide Semiconductor
Scraps

Dachun Liu, Guozheng Zha, Liang Hu and Wenlong Jiang

Abstract In this paper, a novel technique for recovery of gallium and arsenic by
thermal decomposition under vacuum is presented. The effects of distillation tem-
perature on the volatilization behavior of each component were investigated.
Theoretical calculations and experimental studies have shown that the method is
feasible. The results show that under optimum conditions, highly pure Ga can be
extracted with advantages over conventional techniques, including simple operation
and environmental friendliness. For example, metallic gallium (purity > 99.99%) is
obtained at 1273 K after 3 h under 3–8 Pa. Arsenic is obtained in the form of a
elementary substance which could be preserved with relative ease.

Keywords GaAs � Vacuum thermal decomposition � Volatilization
Recovery � Gallium

With the continuous consumption of gallium resources and the impact of energy
shortage recovery from secondary resources containing gallium is particularly
important. GaAs is the most important and most advanced semiconductor material. It
is widely used in the field of light, electron andmicroelectronics and so on. In existing
processes for GaAs production, the final yield is often less than 15%, and the
remaining GaAs is discarded as debris [1]. GaAs waste has become an important raw
material for the production of recycled gallium, in which the content of Ga is close to
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50%. How to separate and recover gallium in a simple, low consumption and efficient
way without pollution is of great significance for realizing the comprehensive uti-
lization and sustainable development of the secondary resources.

For many years, researchers have worked on waste treatment and extraction of
gallium. Hydrometallurgy and pyrometallurgy are the two main processes.
Matsumura Tadanori et al. [2] dissolved waste material with nitric acid. The organic
solvent such as Diisooctyl phosphate(P204)was extracted, and then the gallium was
extracted by adjusting the pH of the solution obtained by the reverse extraction,
finally the gallium can be obtained by electrolysis. Gallium nitrate was recovered
from gallium arsenide waste by neutralization and precipitationin a plant in China
[3]. Guo Xueyi et al. [4] in Central South University recover the gallium by nitric
acid decomposition and sulfide precipitation, and obtained 99.99% purity gallium
by electrolysis, the recovery rate of arsenic was 99%, and the loss of gallium slag
was 0.3 to 1.5%. The hydrometallurgy process is basically by acid leaching and
electrolysis. It has the disadvantages of long process, serious environmental pol-
lution such as the generation of waste acid, waste alkali, waste gas (NO2) and other
pollutants. Another is pyrometallurgy. Mitsubishi Metal Corp [5] chloridize the
waste containing gallium with chlorine, AsCl3 and PCl3 were separated by distil-
lation, the resulting GaCl3 was converted to a lower melting point GaCl2, then the
metal was reduced by metals such as Zn, and finally the residual impurities were
removed by vacuum distillation. Masayoshi Inooka [6] reported that the waste
containing gallium was mixed with oil to be calcined at 400 °C, turn oil into coke,
and then mixed into a vacuum furnace to obtain molten metal gallium. It would
produce a great deal of AsCl3 in the process of pyrometallurgical chlorination, with
considerable risks, and other methods [6, 7] also have disadvantage of long process.

Vacuum metallurgy [8–12] has been widely applied because of its low energy
consumption, simplicity and environment-friendliness. In view of these, a vacuum
thermal decomposition method was chosen to treat gallium arsenide waste. The
influence of distillation temperature and distillation time on the separation efficiency
of Ga and As was studied, under the condition of vacuum (3–8 Pa). The optimum
technological conditions for vacuum pyrolysis of gallium arsenide wastes were
investigated, which provided theoretical and technical basis for the comprehensive
recovery of valuable metals such as Ga and As.

Theoretical Analysis of GaAs Vacuum Thermal
Decomposition

Thermodynamic Analysis

GaAs is chemically stable and does not react chemically with oxygen or water
vapor in air, nor does it react with with non-oxidizing acids, at room temperature. It
does decompose at higher temperature. Equations (1)–(4) are the main reactions
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that may occur during its thermal decomposition. Taking into account that the
vacuum thermal decomposition experiment is carried between 1 and 100 Pa, the
relations between Gibbs free energy (DGT) and temperature (T) are shown in
Figs. 1 and 2.

GaAs ¼ GaþAs gð Þ ð1Þ

GaAs ¼ Gaþ 1=2As2 gð Þ ð2Þ

GaAs ¼ Gaþ 1=3As3 gð Þ ð3Þ

GaAs ¼ Gaþ 1=4As4 gð Þ ð4Þ

Figure 1 shows that, at atmospheric pressure, the direct thermal decomposition
temperature of GaAs is 1773 K, with formation of As2(g) following Eq. (2). If
the system pressure is 10 Pa, as shown in Fig. 2, GaAs begins to react at 1204 K,
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also with generation of As2 gas. The equilibrium temperatures of Eq. (4) and
Eq. (3) are 1326 and 1370 K, whereas the Gibbs free energy of Eq. (1) is still
positive at 1500 K. Thus, working under vacuum allows a much lower temperature
for the decomposition of GaAs, whose initial reaction temperature dropped from
1773 K to 1204 K.

Vapor Pressure Criterion for Metal Separation in Alloys

A metal has a fixed vapor pressure at a certain temperature. Whether a binary alloy
can be separated by vacuum distillation depends on the difference in vapor pressure
between components at a given temperature. The elements with high saturation
vapor pressure are preferentially volatilized into the condenser, and another element
is not volatilized at all and remains for separation purposes. The relationship [13]
between vapor pressure and temperature of pure substances can be expressed as

lg p ¼ AT�1 þB lg T þCT þD ð5Þ

Where A, B, C and D are the evaporation constants for each element, which can
be obtained from the literature [14]. The relation between the saturated vapor
pressure and the temperature of pure substances such as arsenic and gallium is
obtained by substituting them (5). Drawing the results of the calculation into a
lgp-T diagram, gives Fig. 3. P is vapor pressure, T is temperature.

It can be seen that at the same temperature, the saturated vapor pressure of As is
much larger than Ga, and the difference between them is more than 106. Thus, we
can control the temperature to make As preferentially evaporate over Ga, so that
gallium and arsenic can be separated.
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Separation Factor b Criterion for Metal Separation in Alloys

Since the vapor pressure of the alloy composition is different from the vapor
pressure of its pure material, each component evaporates in different degrees and
has some component in the vapor, which affects the purity of the evaporated main
metal. In order to further determine the possibility of separation of alloy compo-
nents, the separation coefficient can be introduced,

bA¼
cA
cB

*
Ph
A

Ph
B

ð6Þ

Where c is activity coefficient, Ph is a saturated vapor pressure of pure com-
ponent. When bA >1, the larger the separation coefficient is, the easier it is to
separate. For binary alloy of A-B, the metal A with large saturated vapor pressure
will be enriched in vapor phase and metal B with small saturated vapor pressure is
enriched in liquid phase. When bA <1,in the same way, alloys can be separated,with
A will be enriched in the liquid phase, while B will be enriched in the vapor phase.
When bA = 1, alloy components A and B are difficult to separate by vacuum
distillation. Figure 4 shows the separation factor b of As and Ga at different tem-
peratures. It can be seen that the separation coefficients of As and Ga are far greater
than 1. Arsenic and gallium are more easily separated during vacuum distillation.
Arsenic is volatilized into the vapor phase and gallium remains.

Phase Diagram Analysis

From the binary alloy phase diagram Ga-As [15], we can see that the
‘Homogeneous melting point compound’is formed between Ga and As, and the
intermolecular force is stronger. The solid GaAs below 1083.15 K is so stable that
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gallium and arsenic are not easily separated. Above 1083.15 K, it is possible to
separate gallium from arsenic because of the formation of liquid phase (Fig. 5).

Figure 6 shows the relationship between the pressure and temperature of the
Ga-As [16], It can be seen that more than 700 K, the saturated vapor pressure of
As2 was much higher than that of gallium, As2 is more volatile and separates
gallium and arsenic. Moreover, with the increase of partial pressure and tempera-
ture, the vapor phase changed from As2 to mixture of As2 and As4. When the
temperature above 1373 K, the content of gallium in vapor phase will be signifi-
cantly increased, resulting in condensate containing gallium more, and affect the
recovery of gallium.

Experiment

Experimental Materials and Equipment

The raw material used in the experiment is gallium arsenide waste material from a
semiconductor plant in Japan, and the main phase is GaAs. The results of chemical
analysis are shown in Table 1.

Experimental Process

The experimental setup is shown in Fig. 7. The operation process is as follows. The
experimental material is placed in the crucible in the vacuum furnace. The furnace

Fig. 5 Ga-As binary phase diagram
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is sealed, the cooling water and the vacuum pumps are turned on..When the limit
vacuum (3 Pa) of vacuum furnace is reached, the experimental temperature is
increased to 1073–1373 K at a rate of 8–12 K/min. After 1–3 h The vacuum and
cooling are kept on until the temperature drops to room temperature. Finally,
samples are taken for analysis.

Results and Discussion

Effect of Distillation Temperature on Residue Quality

Figure 8 shows the relationship between distillation temperature and mass of
residue under different temperatures at the condition of 3–8 Pa and 2 h of distil-
lation time. It can be seen that when the temperature was below 1123 K, the residue
quantity was 100 g, i.e. no reaction occurred. The reaction started around 1173 K.
As the temperature increased, the reaction was more intense and the mass decreased
more rapidly. At 1273 K, 50.30 g residue was obtained, the surface of which was
coated with a layer of slag, which indicated that the material was not fully reacted at

Fig. 6 Pressure-temperature
equilibria for the Ga-As
system

Table 1 Assay of semiconductor scraps

Component Ga As Zn Cu Fe Si Others

wt% 48.20 49.82 1.0 0.3 0.03 0.1 0.55
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this time. When the temperature was 1373 K, the mass of residue was 38.51 g,
much lower than its theoretical content of 48.20 g. The reaction temperature is so
high, that the gallium volatilizes into the vapor, resulting in a greater loss of
gallium.

Effects of Distillation Temperature on Gallium Volatilization

As arsenic has a low boiling point and is volatile, the arsenic produced by pyrolysis
of gallium arsenide has substantially evaporated into the condensate at a lower

1-Adjustment knob; 2-Cooling 
water outlet; 3-Wate-cooled walls; 

4-Graphite condensing system; 
5-Thermal insulating layer; 

6-Graphite heater; 7-Vacuum pump; 
8-Steel condensing system; 

9-Reaction crucible; 10-Cooling 
water inlet ; 11-Thermocouple 

Fig. 7 Schematic diagram of vacuum furnace 1-Adjustment knob; 2-Cooling water outlet;
3-Wate-cooled walls; 4-Graphite condensing system; 5-Thermal insulating layer; 6-Graphite
heater; 7-Vacuum pump; 8-Steel condensing system; 9-Reaction crucible; 10-Cooling water inlet;
11-Thermocouple
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temperature. Figure 9 shows the relationship between the distillation temperature
and arsenic content in the volatiles at the system pressure of 3–8 Pa and the dis-
tillation time of 2 h. The arsenic content in the volatiles decreases as the temper-
ature increases, because the increase in temperature promotes the volatilization of
Ga, and the higher the temperature, the higher the gallium content in the volatiles,
which affects the recovery rate of gallium. When the temperature is 1373 K, the
condensate contains gallium up to 20.54%, so to maximize the removal of arsenic
and enrichment of gallium, the distillation temperature should be kept below
1373 K.

Effects of Distillation Temperature Time

In order to realize the maximum enrichment of Ga and As, the effect of distillation
time on the components was investigated at the system pressure of 3–8 Pa, taking
into account the influence of the distillation temperature discussed above. The
results are shown in the Table 2.

It can be seen from the table, the condensate containing gallium at least when the
distillation temperature is 1273 K, time 2 h, and the volatile content of gallium is
1.80% at this time, thus the amount of the upper layer of more weight 7.83 g, not
fully react. Followed by 1273 K, 3 h, the volatiles in gallium containing 6.72%,
upper slag mass is 5.23 g.

Then, we used the VG9000 Glow Discharge Mass Spectrometer from Thermo
Elemental Company in UK to analyze the total element content of the residue
gallium obtained at the distillation temperature of 1273 K and the constant tem-
perature for 2 and 3 h. The samples were tested by liquid nitrogen cooling. The
results are shown in Table 3.

As can be seen from Table 3 above, when the distillation temperature is 1273 K
and the distillation temperature time is 3 h, the product gallium is obviously purer
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than that obtained at 1273 K and 2 h. The detection of iron is not reliable. The
remaining impurities are lower than the quality of rough gallium standards [16].
Based on the above results, the optimum experimental conditions for the thermal
decomposition of gallium arsenide waste are 1273 K for distillation temperature
and 3 h for distillation time, and the content of gallium in the condensate is less. It
can be seen that the experimental results are basically consistent with the previous
theoretical analysis.

TG-DTG Analysis of Raw Materials

The thermal analysis of non-constant temperature TG-DTG from room temperature
to 1323 K is carried out by German Chi-Chi STA449F3A-0046-M synchronous
thermal analyzer, which can study the quality of gallium arsenide waste during
heating with temperature changes. Thermogravimetry under vacuum and the pro-
tection of nitrogen at room temperature, sample is weighed and put into the balance
on the instrument. Then continue to pass through the nitrogen for 10 min, turn off
the intake valve, and start the vacuum pump.

When the instrument pressure is reduced to 10 kPa, which began to programmed
temperature, heating rate is 10 K/min, the experimental results are shown in
Fig. 10.

Table 2 The experimental condition and products

NO. Distillation
temperature/
°C

Distillation
time/h

Mass of
raw
material/
g

Residue Volatiles Upper
slag

Experimental
value/g

Theoretical
value/g

Ga/
%

As/% Mass/
g

1 1050 1 100 47.22 48.20 8.90 90.98 5.51

2 1000 2 50.30 1.80 91.59 7.83

3 1050 2 45.22 9.68 84.52 2.88

4 1000 3 47.96 6.72 92.97 5.23

Table 3 Results of GDMS test of Ga

Element contents
(ppm)

Na Mg Al Si Ca Ti V Cr Mn Bi

Ga (1273 K,2 h) 10 <0.03 0.2 3.4 5 1.1 <0.009 <0.04 1.8 <0.07

Ga (1273 K,3 h) 0.07 <0.002 0.22 3.6 0.62 0.49 <0.3 0.03 0.8 <0.003

Element contents
(ppm)

aFe Ni Cu Zn Ge In Cd Sn Hg Pb

Ga (1273 K,2 h) 58 <0.6 <0.1 <0.2 <0.3 <0.07 <0.7 <0.2 <0.5 <0.08

Ga (1273 K,3 h) 70 <0.007 <0.009 <0.02 <0.03 <0.003 <1 <0.01 <0.04 <0.006

Note: a possible interference
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As shown in Fig. 10, from 867.2 K to 968 K, there is a smaller reduction in
weight (?), about 0.94%, mainly because of a small excess of arsenic in the waste
material and near the boiling point of 887 K, endothermic sublimation. In the
temperature range of 1017.2–1197.2 K, the TG curve is very steep and the weight
loss is fast, which is 49.2%. During the period, a violent chemical reaction occurred
and the gallium arsenide waste was decomposed to produce gallium and arsenic.
The theoretical weight loss rate is 51.80%, which is close to the experimental value.
The temperature from 1197.2 K has been increased to 1323 K, TG curve is rela-
tively flat, weight loss rate becomes smaller, and the final residue of the amount of
43.80%, less than the theoretical residue of 48.20%, because some of the gallium
heat and volatile at this time.

Conclusion

(1) For gallium arsenide waste, vacuum heat decomposition method can effectively
recover the metal gallium, and the product obtained is higher than the quality
requirement of crude gallium. Compared with the traditional process, this
method has the advantages of simple process, no waste water, waste gas and
other pollutants. Arsenic is recovered in the form of arsenic. It can not only
reduce environmental pollution, but also change waste into treasure, avoid
waste of resources, and meet the development needs of cleaner production in
metallurgical industry.

(2) The distillation temperature and distillation time have great influence on the
enrichment of gallium and arsenic. When the temperature is higher than
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1373 K, the gallium is volatile and the content of gallium in the gas phase
increases greatly, which affects the recovery of gallium. When at the condition
of 3–8 Pa, 1273 K and constant time is 3 h, the quality of the residual gallium
is better, the purity is greater than 99.99%, and the content of arsenic in the
volatile matter is 87.97%, containing gallium 6.72%.

(3) Due to strong interaction between gallium and arsenic, which leads to the
incomplete decomposition of raw materials, the condensate containing few
gallium, thus affecting the recovery of gallium. For this problem, we can solve
it by second distillation to the scum and condensate, or the improvement of
existing methods and equipment.
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Rapid Removal of Pb(II) from Acid
Wastewater Using Vanadium
Titanium-Bearing Magnetite Particles
Coated by Humic Acid

Manman Lu, Yuanbo Zhang, Zijian Su, Bingbing Liu, Guanghui Li
and Tao Jiang

Abstract Acid wastewater containing toxic metal ions has become increasingly
important global environmental concern and lead (Pb) is one of the prime toxic
heavy metal ions. Humic acid (HA), a kind of natural organic matter, has been
proven to have a great adsorption capacity for metal cations (Pb2+, Cu2+, etc.). Our
previous study has verified that HA has excellent adsorbing ability on vanadium
titanium-bearing magnetite(VTM) particles. In this study, VTM-HA complex
magnetic particles were prepared for removing Pb(II) from acid wastewater, which
could be easily recycled by magnetic separation. The effects of pH value, ionic
strength and VTM-HA concentration on the removal ratio of Pb(II) were deter-
mined by isothermal adsorption tests. The results indicated that Pb(II) adsorption
was subject to pH and ionic strength. When initial Pb(II) concentration is 100 mg/
L, the residual concentration and removal ratio of Pb(II) reach 0.17 mg/L and
99.83%, respectively, which are much lower than the discharge standard.

Keywords Acid wastewater � Removal of Pb(II) � Humic acid
V, Ti-bearing magnetite

Introduction

Water pollution due to the indiscriminate disposal of metal ions and organic con-
taminants has been a rising worldwide environmental concern. [1] Lead (Pb) has
been considered as one of the most hazardous heavy metals. [2] Nowadays,
adsorption has become one of the major methods for removing Pb(II) from
wastewater owing to the high removal efficiency, environmentally friendly,
excellent recyclability, etc. [3] Many researches indicate that preparing an efficient,
green and easy-recycled absorbent is critical to all of the adsorption methods.
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Humic acid (HA) is a kind of natural organic matter extracted from lignite,
weathered coal, soil, etc. [4] As reported, HA has great adsorption capacity with
metal cations (Pb2+, Cu2+, etc.) due to the skeleton of alkyl and aromatic ring
attached by the oxygen-containing groups (carboxyl, hydroxyl, etc.). [5] HA was
ever used as natural adsorbents to remove heavy metal ions from wastewater [6].
However, high concentration of HA would increase the chemical oxygen demand
(COD) of water and deteriorate the water quality [7]. Therefore, HA adsorbents
must be combined with efficient carriers to prevent them from entering into the
water.

Previous literatures demonstrated that iron oxides, especially Fe3O4, were good
carriers for HA adsorbents [8–10]. The synthetic Fe3O4/HA complex sorbents are
easily recycled due to the strong magnetism. Liu, et al. reported that the removal
ratios of Cu(II), Cd(II), Hg(II) and Pb(II) by Fe3O4/HA complex were much higher
than those by single Fe3O4 particles, especially at low pH value range. [11] Other
studies showed that iron oxides could react with heavy metal ions so as to improve
the adsorption effect. Jiang, et al. found the Fe(II) in magnetite can initiate the
reduction of Cr(VI) to Cr(III). Then, Cr(III) can be complexed with the functional
groups (hydroxyl, carboxyl, etc.) of HA. [12] Most of previous literatures indicated
that synthetic iron oxide nanoparticles were used as the carriers for HA. However,
there was almost no investigation that natural iron minerals (hematite, magnetite,
etc.) particles were applied to be carriers for HA. In addition, the iron oxide
nanoparticles are highly susceptible to air oxidation, easily aggregated in various
water systems [13] and are expensive, which restricts the large-scale application in
environment remediation.

Vanadium titanium-bearing magnetite (VTM) is a kind of natural iron minerals,
the main components of which include magnetite, titanomagnetite, ilmenite, etc.
[14] The previous researches conducted by the author’s group reported that HA had
special affinity to the VTM particles compared with other natural iron oxide min-
erals (magnetite, hematite, etc.). [15]

In this study, therefore, we put forward to use the VTM microparticles as
magnetic carriers for HA adsorbents. Then, the VTM-HA magnetic complex was
used to remove Pb(II) from acid wastewater. The effect of pH, ionic strength and
VTM-HA concentration on removal of Pb(II) were determined.

Materials and Methods

Materials

The VTM samples from Sichuan province in China were firstly ground to a small
particle size (d0.5 = 2.94 lm, specific surface area = 9.23 m2/g) for preparing the
magnetic carriers for HA adsorbents. HA was extracted from the lignite samples
taken from Shanxi province in China. [16] The properties of HA have been reported
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in our previous publication [17]. All the reagents were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Ultrapure water (>18 mX) was
used to prepare all of the solutions.

Adsorptive Experiments

The naked VTM particles were put into HA solution and stirred for 24 h to prepare
the VTM-HA complexes particles. The adsorption experiments were carried out
under isotherm conditions by using batch techniques. The Pb(II) solution prepared
from Pb(NO3)2 (AR) was used in adsorptive experiments. 50 mL Pb(II) solution
with different concentration was poured into an Erlenmeyer flask. Then the
VTM-HA complexes were weighted and added into the Erlenmeyer flask, oscil-
lating for 24 h at 298 K to achieve the adsorption equilibrium state. Next, the
suspension was filtered using a 0.45 lm membrane filter. Pb(II) concentration of
filtrate was analyzed by ICP-MS, which was identified as the equilibrium con-
centration of Pb(II). The amount of Pb(II) adsorbed by the VTM-HA complex
under different experimental conditions was obtained from the following equation:

qe ¼ Co � Ceð Þ � V
m

ð1Þ

Where qe is the adsorbing amount of Pb(II) on VTM-HA, Co and Ce are the
initial and equilibrium concentrations of Pb(II) (mg�L−1), respectively; V is the
volume of Pb(II) solution (L); m is the weight of VTM-HA adsorbent (g).

The effect of pH and ionic strength on removal of Pb(II) was measured using the
same procedure mentioned above, the pH value was adjusted from 3 to 8 and the
ionic strength was adjusted to 0.001, 0.01 and 0.1 M by adding a certain amount of
NaNO3 powders.

The isotherm adsorption experiments were conducted under 298, 308 and
318 K, respectively. Meanwhile, the initial concentration of Pb(II) varied from 5 to
150 mg/L and the pH value was fixed as 5. The suspension was filtered immedi-
ately when the adsorptive time reached at 30 s, 1 min, 2 min, 3 min, 5 min, 7 min,
10 min, 20 min, 30 min, 60 min, 120 min, respectively. The adsorption kinetics
were measured by changing the adsorptive time.

Results and Discussions

Effect of PH on Adsorption of Pb(II)

The pH value of the solution plays an important role on the adsorption of Pb(II) on
VTM-HA complexes. Figure 1 showed that the adsorption of Pb(II) on VTM-HA at
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various pH value. The adsorption of Pb(II) increased quickly within the pH value
range of 3 * 6, then maintained nearly constant within pH range of 6 * 8. It was
known that lead species presented in the forms of Pb2+, Pb(OH)+, Pb(OH)2 and Pb
(OH)3

− at different pH values. Figure 2 is the present forms of lead at different pH
values. When pH is less than 4, the dominant lead specie was Pb(II) and the
removal of Pb(II) was mainly accomplished by adsorption reaction. At the low pH,
the competition between H+ and Pb(II) on the surface sites impeded the adsorption
of Pb(II). On the other hand, the agglomeration degree of HA was extremely high at
low pH, [5] therefore the adsorption sites for Pb(II) on the VTM-HA complex
surface were reduced, decreasing the adsorbing efficiency of Pb(II). The main
species of Pb at pH 5 * 8 were Pb(OH)+ and Pb(OH)2 and thus the adsorption of
Pb was possibly accomplished by adsorption of Pb(OH)+ and simultaneous

Fig. 1 The adsorption of Pb
(II) on VTM-HA at various
pH value (Pb
(II)initial = 10 mg/L, VTM-HA
concentration (m/V) = 0.4 g/
L, I = 0.01 M NaNO3,
T = 298 K)

Fig. 2 The distribution of Pb
species at different pH values
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precipitation of Pb(OH)2. With the increasing of pH value, the agglomeration
degree of HA weakened. [5] These reasons facilitated the adsorption of Pb on the
VTM-HA. From the results, it was verified that the suitable pH values for Pb(II)
removal were 6–8.

Effect of Ionic Strength on Adsorption of Pb(II)

The ionic strength of solution was also a factor worthy of attention to Pb(II)
adsorption. Figure 3 shows the adsorbing characteristics of Pb(II) at different ionic
strength, and the electrolyte was sodium nitrate. As shown in Fig. 3, with increasing
ionic strength, the adsorption of Pb(II) decreased slightly, indicating that higher
ionic strength of solution was detrimental to Pb(II) adsorption. The main cause was
likely that with the increase of ionic strength, the activity coefficient of Pb(II) was
declined, impeding the diffusion of Pb(II) onto the surface of VTM-HA.

Effect of VTM-HA Concentration on Adsorption of Pb(II)

The emission monitoring of wastewater manifested that the Pb(II) concentration of
wastewater was around 100 mg/L in general. Next, the effect of adsorbent dosage
on Pb(II) adsorption was conducted under the condition of Pb(II) concentration of
100 mg/L. As shown in Fig. 4, the Pb(II) adsorption was promoted with the
increasing of VTM-HA concentration. Under the optimum condition, the removal
and residual amount of Pb(II) could achieve 99.83 wt% and 0.17 mg/L respec-
tively, which is far below the emission standard (0.5 mg/L). The results showed

Fig. 3 The adsorption of Pb
(II) on VTM-HA at various
ionic strength (Pb
(II)initial = 10 mg/L, VTM-HA
concentration (m/V) = 0.4 g/
L, T = 298 K)
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that higher VTM-HA concentration could provide more adsorbing site for Pb(II),
thus the Pb(II) adsorption increased with the increasing of VTM-HA concentration.

Adsorption Kinetics

The Pb(II) adsorption kinetics was analyzed for investigating the adsorption process
of Pb(II) onto VTM-HA. The adsorption of Pb(II) as a function of adsorption time
was showed in Fig. 5, which were analyzed according to pseudo-second-order

Fig. 4 The effect of
VTM-HA concentration (Pb
(II)initial = 100 mg/L, pH = 5,
T = 298 K)

(a) (b)

Fig. 5 Relationship between adsorption capacity of VTM-HA to Pb(II) and adsorbing time (a).
The fitting curves of the pseudo-second-order model (b) (Pb(II)initial = 10 mg/L, VTM-HA
concentration (m/V) = 0.4 g/L, I = 0.01 M NaNO3, pH = 5 and T = 298 K)
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kinetics model. [2] The linear form of the equation that represents this model is as
follows:

t
qt

¼ 1
k2qe2

þ 1
qe

� �
t ð2Þ

Where k2 (g/ mg�min−1) is the pseudo-second-order rate constant of adsorption,
qe and qt (mg�g−1) are the amounts of the Pb(II) adsorbed at equilibrium and at time
t.

As shown in Fig. 5, the Pb(II) was adsorbed onto VTM-HA rapidly, and the
adsorption equilibrium achieved at about 10 min. The result indicated that the
VTM-HA adsorbent has a strong combination with Pb(II). The plot of t/qt versus t
yielded a well-fitted straight line with a good correlation coefficient (R2 = 0.999),
suggesting that the adsorption on the VTM-HA complex followed a
pseudo-second-order kinetic model. It proved that the Pb(II) adsorption on
VTM-HA belonged to chemisorption.

Adsorption Isotherms

The adsorption isotherms of Pb(II) onto VTM-HA at 298, 308 and 318 K were
given in Fig. 6. As shown in Fig. 6, the adsorption capacity of VTM-HA to Pb(II)
was the highest at 318 K, indicating that the higher temperature promoted the
adsorption of Pb(II). The experimental data for Pb(II) adsorption onto VTM-HA
were analyzed by Langmuir and Freundlich model. The form of the Langmuir
isotherm can be represented by the following equation:

Fig. 6 Adsorption isotherms
and the Langmuir, Freundlich
models fitting for Pb(II) on
VTM-HA at three different
temperatures (Pb(II)initial = 5
−150 mg/L, I = 0.01 M
NaNO3, VTM-HA
concentration (m/V0 = 2 g/L,
pH = 5)
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qe ¼ bqmaxCe

1þ bCe
ð3Þ

Where qe (mg/L) is the amount of Pb(II) adsorbed per weight unit of solid after
equilibrium, Ce (mg�L−1) is the equilibrium concentration of Pb(II) remained in
solution, qmax (mg�L−1) is the amount of Pb(II) at complete monolayer coverage and
b (L�mg−1) is a constant that relates to the heat of adsorption.

Another common adsorption isotherm model is Freundlich model which is
usually used for several kinds of adsorption sites on the solid surface and represents
properly the adsorption data at low and intermediate concentrations on heteroge-
neous surface. The model equation was shown below:

qe ¼ kFCe
n ð4Þ

Where qe (mg/L) is the amount of Pb(II) adsorbed per weight unit of solid after
equilibrium, kF (mg1−n�Ln�g−1) represents the adsorption capacity when Pb(II) ion
equilibrium concentration equals to 1, Ce (mg�L−1) is the equilibrium concentration
of Pb(II) remained in solution and n represents the degree of dependence of
adsorption at equilibrium concentration.

The adsorption of Pb(II) on VTM-HA were regressively fitted with Langmuir
and Freundlich model, and the fitting curves were shown in Fig. 6. The related
values fitted by these two model and the model parameters were listed in Table 1.
The R2 values posted in Table 1 illustrated that the Pb(II) adsorption isotherms
were more subject to Freundlich model compared with Langmuir model. The result
manifested that the Pb(II) adsorbing sites on the surface of VTM-HA were
non-uniform and the Pb(II) ion was probably adsorbed on the VTM-HA in mul-
tilayer. Further investigation would be carried out on this phenomenon.

Conclusions

The study indicated that the VTM-HA complex adsorbent can effectively remove
Pb(II) from the wastewater. From the results, it is concluded that the Pb(II)
adsorption on VTM-HA is strongly dependent on pH value and ionic strength of the
solution. The appropriate pH range for Pb(II) adsorption is at 6–8, and the low ionic

Table 1 Parameters for Langmuir and Freundlich models of Pb(II) adsorption on VTM-HA

T (K) Langmuir Freundlich

qmax (mg/g) b (L�mg−1) R2 kF (mg1−n�Ln�g−1) n R2

298 14.088 0.235 0.811 5.918 0.192 0.986

308 15.53 0.346 0.898 6.075 0.165 0.990

318 19.21 0.178 0.844 5.620 0.281 0.976
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strength is favorable for the Pb(II) adsorption. Under the optimal conditions, the
removal rate and residual amount of Pb(II) could achieve 99.83 wt% and 0.17 mg/
L, respectively.

The adsorption isotherm of Pb(II) by VTM-HA complex is more consistent with
Freundlich model, indicating that the Pb(II) was adsorbed onto the VTM-HA in
multilayer. In addition, the adsorption of Pb(II) was positively related to the tem-
perature. Further investigation will be carried out and reported in future.
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Study of the Synthesis of MgAl2O4 Spinel
Refractory from Waste Chromium Slag
of a Chrome Plant in China

Jinxia Meng, Weiqing Chen, Jizeng Zhao and Li Liu

Abstract This paper discusses the utilization of chromium slag, which presently
has no useful application in China, as a resource. The following research has been
done in this paper: (1) After determining the composition and properties of chro-
mium residue we decided to test the idea of using chromium slag as a component in
synthetic MgAl2O4 spinel material. (2) Through experiments on sintering and
electric melting of refractory materials we determined the best conditions for a
practical process. (3) We compared the performance of the refractory material
obtained with traditional spinel refractory materials and confirmed the excellent
performance of our system. The results show the feasibility of preparing MgAl2O4

spinel material from chromium slag by electric melting.

Keywords Chromium slag � MgAl2O4 spinel � Refractory raw material
Electric-melting method � Sintering method

Introduction

Magnesium aluminate (MgAl2O4) spinel is the only compound in the MgO-Al2O3

system. It possesses a high melting point (2135 °C) and is known for its high
refractoriness, low thermal expansion, chemical stability, thermal shock resistance
and corrosion resistance [1–5]. In recent years, the primary high aluminum ore
resources are becoming increasingly scarce and the cost is increasing. Chromium
slag is at the low-end of the market, not only the price is low, and the sales volume
is not high, but there is the problem of toxicitye of the hexavalent chromium. Some
ferroalloy enterprises began to consider using chromium slag to make a high-end
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refractory material. The higher value would support the cost of the detoxification
treatment. Therefore, we studied preparation of magnesium aluminate spinel
refractory materials from chromium slag.

Materials and Methods

Material

Origin of Chromium Slag

Chromium slag is a waste residue produced in the smelting of chromium. The slag
we tested came from a large ferroalloy plant in China. It is high in Al2O3. The
composition, the physical and chemical properties of the slag are shown in Tables 1
and 2. As of November 2015, the this inventory of chromium slag in the plant was
42000t. Due to the continuous smelting of chromium metal, the plant’s chromium
slag inventory increases by 25000 to 35000t per year.

Process

The slag is produced by the thermite method,. The process uses elemental alu-
minum to react with chrome oxide to make chromium metal.

The equation for the chemical reaction is:

AlþCr2O3 ¼ Al2O3 þCr: ð1Þ

The process involves intense reaction of aluminum powder and chromium oxide
in the molten state, then rapid transition from alumina to corundum, and a small
amount of unreacted Cr2O3 forms a solid solution with the reaction product Al2O3,
namely the aluminum chromium slag, referred to as the chromium slag.

Process Design for Preparation of Refractory Raw Material
from Chromium Slag

According to the research of the predecessors, generally two methods are used for
the synthesis of MgAl2O4 spinel i.e. sintering and electric melting. Taking into

Table 1 Chemical composition of chromium slag studied in this paper (%)

Al2O3 Fe2O3 MgO CaO SiO2 Na2O Cr2O3

72–82 0.2 0.5 1.4–2.4 0.3 1.5–2.0 13–18
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account the characteristics of the raw material, we designed the experiments as
follows: First, conduct the one-step process sintering experiments (that is, the
typical synthesis methods of refractory materials), then the two-step sintering
experiments, and finally the experiments where the raw materials are melted in an
electric furnace.

Experimental Design of Sintering Method

The sintering process is a method of synthesizing MgAl2O4 spinel by calcination at
high temperature. The calcination equipment used in China is mainly the rotary
kiln. First, grind the material to a fine powder, then press it into pellets in the dry
state, and calcine it finally into the rotary kiln. The process is shown schematically
in Fig. 1a.

(1) Design of the one-step sintering experiments

The chemical indicators of main raw materials are shown in Table 3. Light burning
magnesium and chromium slag using different ratios (see Table 4). The raw
material is mixed, trapped, shaped, dried and sintered at first, and then sintered at

Table 2 Physical characteristics of chromium slag

Bulk density,
g/cm3

Porosity,
%

Water
absorption, %

Mohs
hardness

Refractoriness,
°C

Load softening
temperature
of T0.6, °C

3.68 5.24 1.48 9 � 1950 � 1750

(a) Sintering process

(b) Electric melting process

Mixing

Industry Al2O3/ 
High bauxite

Fine 
grinding

Molding Calcination Finished 
products

Light burned 
MgO

Light burned 
MgO

Mixing

Industry Al2O3/ 
High bauxite

Fine 
grinding

Molding Electric 
melting

Cooling

CrushingGradingFinished 
product

Fig. 1 Process routes of the synthesis of MgAl2O4 spinel. a Sintering process, b Electric melting
process
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1500, 1600, 1700, and 1750 °C, in average temperature for 3 h, finally examine the
performance of the synthesis of refractory materials.

(2) Design of the two-step sintering experiments

First, the sample was calcined at 1350 °C for 3 h, then ground, put in molds, and
finally sintered at different temperatures.

Design of Electric-Melting Experiments

First, a suitable block of material is melted into an arc furnace with a three-phase
electrode, and then cooled into a solid MgAl2O4 spinel (see Fig. 1b). Due to the
high temperature of the arc, the raw material is completely melted into liquid, so the
MgAl2O4 spinel structure is expected to be more compact. Power consumption will
be relatively high, however, and so will be the. In industry, electric-melting method
is usually used in the production of high-purity MgAl2O4 spinel.

The ratio of MgO and the cooling rate of the melt have great influence on the
crystallinity and density of the spinel, which are the main factors of this stage. We
did tests at 3 different scales: (1) a semi-industrial, small-volume electric melting
furnace, (2) a large-volume industrial electric melting furnace and (3) small labo-
ratory electric melting equipment..

(1) Design of small-volume electric melting experiment

In a factory in Dengfeng City, we carried out a small-volume electric melting
experiment to study the effect of different cooling methods on spinel density. Use
the following three cooling methods: natural cooling, the cooling of circulating
water and poured into the crucible quenched.

Table 3 Chemical analysis of main raw materials for sintering experiment (%)

Al2O3 Fe2O3 MgO CaO SiO2 Na2O Cr2O3 Burning
reduction

Total

Chromium slag 81.07 0.18 0.65 1.56 0.33 1.99 13.86 0.00 99.64

Light burned
magnesium

0.01 0.43 95.41 1.19 0.78 / / 1.93 99.76

Table 4 Tests on different ratios of chromium slag and light burned magnesium (%)

Particle size/
mesh

A B C D E F

Chromium slag 200 95.00 84.00 72.00 60.00 48.00 34.00

Light burned
magnesium

200 5.00 16.00 28.00 40.00 52.00 66.00
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(2) Design of large-volume electric melting experiment

The experiment was carried out in the shell furnace of Anshan City Lantian
magnesia production co., LTD. Raw materials including chromium slag 70%, 95
magnesia 30%, and the chemical composition of the materials as shown in Table 5.

(3) Experimental design of laboratory test

In order to further the study of chromium residue synthetic spinel materials, we
performed tests with different proportions of magnesia and chromium slag. The
contents of MgO were: 5, 10, 15, 20, 25, 27 and 30%.

Design of Performance Test

The performance of materials is directly related to the life of refractory materials. The
properties to be studied include: refractoriness, refractoriness under load, high tem-
perature creep, high temperature stability, thermal shock resistance and slag resis-
tance, etc. Because thermal shock and chemical erosion are the two main reasons for
the damage of refractory materials, the thermal shock resistance and slag resistance of
refractory materials are very important. We plan to compare the advantages and
disadvantages of the MgAl2O4 spinel prepared by the best process and the traditional
MgAl2O4 spinel, to judge whether the research purpose of this paper can be realized.

(1) Design of slag resistance test xxx

Slag resistance: it refers to the ability of the refractory material to resist the erosion
and erosion of slag at high temperature. There are many methods for testing the slag
resistance of refractories, it can be roughly divided into two categories: a class is
static method, namely in the process inspection refractories is stationary, and
another kind is the dynamic method, namely in the process inspection refractories is
movement. Static method slag experiment includes crucible method, induction
furnace method, dipping method and dropping slag method. The most common slag
resistance test method in the laboratory is the crucible method.

Crucible experiment matrix was used traditional MgAl2O4 spinel powder and
chromium slag synthetic MgAl2O4 spinel fine powder, aggregates were used brown
corundum and white corundum, and samples were added to 4%wt Al2O3 powder
and bonded by q-Al2O3. There are two kinds of slag used in slag resistance
experiment, and the composition is in Table 6.

Table 5 Raw material composition of large -volume electric melting synthesize experiment (%)

Name Al2O3 Fe2O3 MgO CaO SiO2 Na2O Cr2O3 Burning
reduction

Chromium slag 81.07 0.18 0.65 1.56 0.33 1.99 13.86 0.00

95 magnesia 1.05 0.78 95.50 1.40 1.18 / / 0.05
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(2) Design of thermal shock resistance test

As the production of refractory lining materials and components used at high
temperatures, in addition to withstand high temperature, but also to resist damage to
its rapid change of temperature. The effect of temperature change on refractory
material is called thermal shock. The ability of refractory material to resist the rapid
change of temperature is the thermal shock resistance of refractory material, which
is referred to as thermal stability. Thermal shock damage is one of the refractory
two damaged reasons, and therefore, thermal shock resistance of refractory material
is its important properties.

How accurate characterization and evaluation of thermal shock resistance of
refractory material is an important but difficult problem. Although the predecessors
have made a lot of work, but is not yet a good way to have a recognized. In the
practical work of the most common method is to make the refractory samples
through repeated heating–cooling cycle, with the damage degree of sample to
evaluate the stand or fall of thermal shock resistance.

We design the thermal shock resistance of test sample size is 70 mm � 70
mm � 70 mm, 1100 °C by 0.5 h, circulating water cooling. The sample matrix
was used traditional MgAl2O4 spinel powder and chromium slag synthetic
MgAl2O4 spinel fine powder, aggregates were used brown corundum and white
corundum, and samples were added to 4%wt Al2O3 powder and bonded by
q-Al2O3. In the first thermal shock resistance experiment, the use of small-volume
electric melting spinel, aggregate use of brown corundum; second thermal shock
experiments in the use of large-volume electric melting spinel, aggregate use of
white corundum.

Results and Discussion

Experimental Results and Discussion of Sintering Method

(1) Experimental results of the one-step process sintering: As the sintering tem-
perature increases, the volume density of the sample increases gradually, but
the bulk density of the sample is still not satisfactory even at 1750 °C. Here
we only listed the data for 3 h at 1750 °C sintered samples (see Fig. 2). It can
be seen that the results of one-step sintering method is not ideal, especially the
bulk density is low, cannot meet the requirements of refractory raw materials.

Table 6 Composition of the slag used in the slag resistance furnace experiments (%)

Ingredients Al2O3 Fe2O3 MgO CaO SiO2 MnO

Slag used for the first time 5.65 1.08 12.2 45.7 30.82 2.86

Sslag used for the second time 3.25 18.11 9.16 32.64 29.34 3.86
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(2) Experimental results of the two-step process sintering: The relative data of
sintered samples after heat insulation 3 h at 1750 °C is listed in Fig. 2. It can
be seen that with the increase of the two sintering temperature, the volume
density of the sample is getting higher and higher. Table 7 lists the results of
chemical analysis of samples, it can be seen that the sample after high tem-
perature sintering, Cr2O3 content increased significantly, which shows a large
amount of metal chromium oxidation, but the Na2O content has not changed.
Comprehensive Fig. 2, Table 7, shows that the two-step process sintering
method in the higher temperature, the heat preservation time is longer, the
alkali metal is not effectively removed, and the physical properties of
MgAl2O4 spinel material is not ideal.

(a) Bulk density, g/cm3

(b) Porosity ratio, %

Fig. 2 Physical properties of samples synthesized by sintering method and electric melting
method. a Bulk density, g/cm3, b Porosity ratio, %
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Experimental Results and Discussion of Electric-Melting
Method

(1) Experimental results of small-volume electric melting experiment: The
experimental results of small-volume electric melting are shown in Table 8.
From the point of view of the experimental results, the furnace cooling should
be adopted after the electric melting. With the furnace cooling of the sample is
obviously a three-layer structure: lower density, the middle is a loose hon-
eycomb structure, the upper part is a dense layer. Because of using graphite
electrodes for heating, the sample will produce gas and cooling speed affects
the gas discharge: too fast cooling, gas cannot be in the solidified samples
timely discharge, resulting in the specimen structure is loose; with the furnace
cooling can prolong the clotting time, the gas is expelled completely, more
compact structure can be obtained.

Table 7 Chemical analysis results of the spinel synthesized by the two-sintering method (%)

Name Chemical composition of samples after treatment at 1750 °C

Al2O3 Fe2O3 MgO CaO SiO2 Na2O P2O5 Cr2O3 Burning
reduction

Total

A 68.75 0.95 5.10 1.56 0.40 1.65 0.15 21.33 0.06 99.95

B 64.13 0.94 15.69 1.73 0.86 1.60 0.23 14.68 0.09 99.95

C 56.13 0.89 26.75 1.66 1.21 1.09 0.15 12.08 0.17 100.13

D 47.05 0.86 37.86 1.74 1.62 0.43 0.22 10.07 0.05 99.90

E 36.82 0.81 49.61 1.64 2.02 0.47 0.31 8.19 0.10 99.97

F 25.52 0.72 63.45 1.62 2.19 0.42 0.24 5.75 0.16 100.07

Table 8 Small-Volume electric melting experiments of chromium slag under different conditions

Heat Electro melting
time/min

Cooling way Discharged
amount/kg

Electro fusion effect

1 11 Charcoal pan
quench

20 Honeycomb, porosity and more
large, crisp, not strength

2 24 Charcoal pan
quench

20 Honeycomb, porosity and more
large, crisp, not strength

3 14 Natural cooling 130 The bottom and top of the dense,
high strength, hardness of the
ceramic, central honeycomb

4 12 Circulating
water cooling

25 Honeycomb, porosity and more
large, crisp, not strength

5 18 Natural cooling 130 The bottom and top of the dense,
high strength, hardness of the
ceramic, central honeycomb, at
the bottom of the dense material
increase
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With the furnace cooling conditions, we investigate the different ratio of light
burned magnesium and chromium residue synthetic fused material performance,
test conditions and results as shown in Table 9. We can see that the fused material
is still three layers: the upper and lower dense, central to the honeycomb. After
testing, the composition and physical properties are shown in Table 10, and Fig. 2.
These results are compared with the experimental results. It is showed that the
performance of the fused materials is obviously better than that of the sintered
materials, and the basic requirements of refractory raw materials are met after the
melting of chromium slag. Low yield is the main problem of the small-volume
electric melting.

(2) Experimental results of large-volume electric melting experiment

Large-volume electric melting experiment share 12 tons of raw materials, smelting
process of 5 h, power consumption is 11720 KWH. Electric melting experiment the
feeding and discharging data are shown in Table 11. Electric melting of spinel
aggregate real as shown in Fig. 3, the chemical composition of the electric melting
of spinel as shown in Table 12 below, which in Fig. 3 A, B two physical index as
shown in Table 13.

Large-volume electric melting experiment of MgAl2O4 spinel micro structure as
shown in Fig. 4 and figure in light gray is MgAl2O4 spinel, dark gray is periclase.
In Fig. 4, the metal chromium is reduced and dispersed, and the structure is still
uniform and dense under the electron microscope magnification 200 times.

Table 9 Related parameters of small- volume electric melting synthesize experiments

MAC22 MAC30 MAC40 MAC50 MAC60

Light burning MgO
powder/200 mesh

22% 30% 40% 50% 60%

Chromium slag/200 mesh 78% 70% 60% 50% 40%

Mixed material handling
mode

Press the
ball

Press the
ball

Press the
ball

Press the
ball

Press the
ball

Electro melting time/min 15 25 40 40 40

Cooling-down method Furnace
cooling

Furnace
cooling

Furnace
cooling

Furnace
cooling

Furnace
cooling

Table 10 Chemical compositions of different ratio samples after fusion

Name Chemical composition, %

Al2O3 Fe2O3 MgO CaO SiO2 Na2O Cr2O3 Total

MAC22 61.01 0.96 22.03 1.86 0.72 1.14 12.12 99.84

MAC30 53.42 0.70 33.43 1.47 0.74 0 9.99 99.75

MAC40 47.52 0.91 39.97 1.66 0.82 0 8.97 99.85

MAC50 38.11 0.70 52.14 1.31 0.60 0 7.06 99.92

MAC60 31.52 0.69 59.51 1.20 0.86 0 5.68 99.46
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The results of comprehensive large quantities of electric melting experiments,
we can see that: Large quantities of fused better performance than small quantities
of fused refractory materials obtained, the yield is also higher. In the large-scale
enterprises electric melting production, will further increase the rate of finished
products of product performance, and greater efficiency.

Table 11 Feeding and discharging data of large-volume electric melting experiment (ton)

Charge Discharge

Chromium
slag

95
magnesia

Finished
products

Semi-finished
products

Epidermis,
lining

8.4 3.6 4.0 6.0 2.0

A

B

Fig. 3 SEM photos of electric-melting method sample

Table 12 Compositions of MgAl2O4 spinel prepared by electric melting experiment (%)

Al2O3 Fe2O3 MgO CaO SiO2 Na2O Cr2O3 Cr(VI)/ppm

MgAl2O4 spinel 55.35 0.11 32.91 1.47 0.92 0.69 7.86 87.4

Table 13 Physical indicators of MgAl2O4 spinel prepared by electric melting experiment

Bulk density, g/cm3 Porosity,% Water absorption rate,%

MgAl2O4 spinel (A)
a 3.47 1.67 0.51

MgAl2O4 spinel (B)
a 3.43 4.74 1.40

aA, B refers to the location in Fig. 3
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(3) The experimental results of fused MgAl2O4 spinel synthesized in the
laboratory

The composition detection results after electro fusion are shown in Table 14, the
typical spinel is shown in Fig. 5, and the XRD test is shown in Fig. 6. There are 8
XRD curves from the figure in order that raw slag, adding MgO powder were 5, 10,
15, 20, 25, 27 and 30% of the test results of synthetic spinel materials. By the
detection results show that the original slag of high content of alkali metal and after
fused synthesis, the alkali metals are effectively removing, and synthetic materials
are primarily MgAl2O4 spinel. In short, through the process of chromium slag
synthetic spinel, we get the expected material.

Fig. 4 Microstructure and morphology of electric-melting method sample under SEM

Table 14 Chemical analysis of chromium slag and MgAl2O4 spinel materials of different
proportions of chemical analysis results (%)

Name Al2O3 Fe2O3 MgO CaO SiO2 Cr2O3 K2O Na2O

Chromium slag 81.78 0.08 0.44 2.35 0.10 13.34 – 1.83

A 85.22 0.028 5.56 3.89 0.67 2.50 0.01 1.85

B 81.16 0.015 11.17 2.11 0.76 3.30 – 1.24

C 77.51 0.015 13.39 4.79 0.38 2.68 – 1.05

D 74.85 0.019 19.21 4.79 0.39 0.50 – 0.05

E 68.87 0.014 25.96 3.18 0.32 1.35 – 0.04

F 68.46 0.014 27.70 2.37 0.29 0.73 – –

G 63.65 0.019 30.98 4.39 0.43 0.28 – –
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(4) Discussion on electric-melting method

Through the above experimental results can be known, electric-melting method can
be used to synthesize dense MgAl2O4 spinel raw material, and to overcome the slag
high alkali metal content. All these are required to strictly control the electro fusion
process,and these processes include:

Fig. 5 Typical spinel morphology sample synthesized by chromium slag

Fig. 6 XRD diagram of raw slag and synthetic samples
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(a) To adopt shelling furnace, rather than using the pouring furnace, and when the
capacity of the furnace is larger, it is more advantageous to the densification of
the material.

(b) Along with the furnace cooling slowly get refractory raw material denser than
quenching.

(c) Through the detection of the experimental results, the chromium slag added
with magnesia fused spinel material has been synthesized.

Results of Performance Test

(1) Result of slag resistance test

First slag resistance experiment, the crucible after the slag erosion as shown in
Fig. 7, which “MA” matrix using traditional MgAl2O4 spinel, “MAC” matrix with
small-volume electric melting MgAl2O4 spinel; second experiment on slag resis-
tance test, the crucible after the slag erosion as shown in Fig. 7, which “MA” matrix
by traditional MgAl2O4 spinel, “MAC” matrix using large-volume electric melting
MgAl2O4 spinel.

It can be seen from the experimental results that the slag resistance of the spinel
prepared by chromium slag is equal to that of traditional MgAl2O4 spinel, so we can
replace the traditional MgAl2O4 spinel in terms of slag resistance.

First thermal shock performance test results as shown in Fig. 8 and figure in
“MA” matrix using traditional MgAl2O4 spinel, “MAC” matrix with small-volume
electric melting MgAl2O4 spinel; diagram “MA” sample for heat shock after 8
times of real, “MAC” specimen for the thermal shock after 22 times real. The
second thermal shock resistance test results as shown in Fig. 8 and figure in “MA”
matrix using traditional MgAl2O4 spinel, “MAC” matrix with large-volume electric
melting MgAl2O4 spinel; diagram “MA” sample for heat shock after 21 times of
real, “MAC” specimen for the thermal shock after 30 times real.

Fig. 7 Result of slag resistance test: a made of small batch MgAl2O4 spinel and traditional
MgAl2O4 spinel; b made of large batch MgAl2O4 spinel and traditional MgAl2O4 spinel
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It can be seen from the results of the thermal shock experiment that our
MgAl2O4 spinel is obviously better than the traditional MgAl2O4 spinel, so it can
replace the traditional MgAl2O4 spinel from the aspect of thermal shock resistance.

To sum up, we have made use of chromium slag preparation of MgAl2O4 spinel
materials in terms of physical properties, the use of performance, and so on, can
replace the traditional MgAl2O4 spinel materials.

Discussions

(1) Discussion on sintering process: With chromium slag and light burning MgO
powder, adding mineralizer or burning assistant by sintering method synthesis
of MgAl2O4 spinel, much lower cost. It is also conducive to the two oxidation
of chromium metal, but it will bring two problems: The first is the sintering
raw material is hard to densification, although the sintering temperature to
1750 °C high temperature, burn out the raw material is still very loose; The
second is the impurity in the chromium slag can’t eliminate, especially Na2O,
still remain down.

Fig. 8 Result of thermal shock resistance test: a made of small batch MgAl2O4 spinel and
traditional MgAl2O4 spinel; b made of large batch MgAl2O4 spinel and traditional MgAl2O4 spinel
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Conclusions

This paper discusses chromium slag resource utilization, and chromium slag is
produced chromium thermite byproduct. Through experimental research, we obtain
the following conclusions:

(1) It is difficult to synthesize dense MgAl2O4 spinel by sintering method.
(2) By the method of electric melting, the MgAl2O4 spinel meets the requirement

of the production of refractory materials.
(3) In the performance test, the slag resistance of the MgAl2O4 spinel prepared

from chromium slag is equal to that of the traditional spinel, and the thermal
shock resistance of the former is better than that of the latter.
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Effect of Ferrosilicon on Reduction
of Cr2O3 in Steelmaking Slags

Yue Yu, Jianli LI, Di Wang and Hangyu Zhu

Abstract The stainless steel slag as the by-product of steel-making plants contains
2–10 wt% Cr2O3, and the potential elution of hexavalent chromium impedes the
utilization as a secondary resource. The reduction of chromium oxide in steel-
making slag containing Cr2O3 by FeSi at 1550 °C was investigated in the labora-
tory. The experiments were performed in a carbon-tube furnace, and the samples
collected during tests were analyzed using X Ray Fluorescence (XRF) and
Scanning Electron Microscope (SEM) equipped Energy Dispersive Spectroscopy
(EDS). The results show that the FeSi addition could efficiently enhance the
reduction and recovery of chromium. When the amount of FeSi ranged from 2 upto
9 wt%, the recovery increased from 65.60% to 84.19%. The occurrence of residual
chromium was metal particles, which dispersedly distributed in silicate phases
owing to the size limitation. The sufficient FeSi could easily reduce chromium
oxides into metal, but the critical factor of chromium recovery is the precipitation of
suspending metal particles from the molten slag. Thus, some measures should be
proposed in order to make sure that the suspending particles are adequate to
aggregate into bigger ones.

Keywords Stainless steel slag � Cr2O3 � FeSi � Occurrence � Reduction
Recovery rate

Introduction

The stainless steel slags containing 2–10 wt%Cr2O3 are the by-product of stainless
steel-making process, and generated 150 kg/ton steel for Electric Arc Furnace
(EAF) [1–3]. The possible leaching of chromium hinders the utilization as a kind of
raw material [4, 5]. In terms of the leachability and generation of hexavalent chro-
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mium, there are a few references in the world. The treatment process of molten slags
includes cooling, crushing, milling and magnetic separation. Besides the cooling
procedure, the effect of milling and crushing on the formation and elution of hex-
avalent chromium could not be ignored. Glastonbury [6] reported that the shattering
process of chromite coursed the transformation of chromium from trivalent, and the
prolongation of treating time would enhance the Cr6+ amount. Beukes [7] found that
the crushing and milling processes also promoted the Cr6+ generation in quantity.
After milling for 10 min, the dissolution quality of chromium increased sharply from
0 upto 168.10 mg/kg for the steelmaking slag containing Cr2O3.

The generation of hexavalent chromium during the treatment processes is mainly
on account of the existence of Cr2O3. Although some measures had been proposed
to stabilize the chromium in silicates, such as the additions (Al2O3, MgO, SiO2) to
impel the formation of expected minerals [8, 9], they were hardly carried out due to
the cost and operations. Therefore, the reduction and recovery of Cr2O3 from
molten slags are the credible method to resolve the problem. So far, many
researchers have focused the reduction of stainless steel slag by the different kind of
reductants, for instance aluminum, graphite and silicon [10–12]. The content of
chromium could be controlled to a fairly low grade, and the recovery rate of
chromium was quite high upto 98.6% [13]. On basis of the present literatures, there
are few ones that are associated with the occurrence of residual chromium and the
relations between recovery rate and precipitation of metal particles in silicate melt.

In the present work, in order to further understand the reduction mechanism of
stainless steel slags, the influence of FeSi Occurrence and Recovery of Chromium
was investigated through a batch of experiments performed in a carbon-tube furnace.

Experiments

Materials

The raw materials include stainless steel slag collected from Electric Arc Furnace
and FeSi (75.04 wt% Si and 24.00% Fe) taken as reductant. As shown in Table 1,
the stainless steel slag consists of CaO, SiO2, MgO and Cr2O3, etc. And the content
of chromium oxide is upto 6.39 wt%. According to the XRD results, the major
minerals of the slag are dicalcium silicate (Ca2SiO4), spinel (MgCr2O4) and trical-
cium aluminate (Ca3Al2O6). The slag microstructure acquired through SEM presents
4 different kinds of mineral phase. The Cr element mainly exists as the form of spinel
phase and metal particle, while a few dissolved into silicate phase, such as Ca2SiO4

Table 1 Chemical composition of raw materials/wt%

CaO MgO Al2O3 SiO2 FeO MnO Cr2O3 TiO2

47.40 5.04 2.22 31.90 1.46 2.17 6.39 0.86
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and matrix. Based on the assumption that Cr2O3, FeO and MnO containing in the
slag could be reduced completely to corresponding metals, the accurate addition of
FeSi is 3.30 wt%, calculated according to the thermodynamic data.

Experimental Procedure

Seen in Table 2, all the experiments were conducted in a carbon-tube furnace
(25 kW) under the protecting atmosphere of argon. For the tests about reductant
amount, the addition was divided into four different grades, 2.0, 3.3, 6.0 and 9.0 wt
%, and the samples were heated for 10 min at 1550 °C. The weights of original
slags are 400 g. All the samples were cooled in air, and collected into a desiccator.

Sample Analysis Methods

The treated slags were cut into two parts from the middle in order to prepare the
samples for the following tests. Meanwhile, the metal containing reduced pro-
duction and the residue slag were separated. The chemical composition of the slag
were detected through X Ray Fluorescence, and the slag microstructural properties
and the occurrence state of chromium were performed based on the scanning
electron microscopy (SEM, Nova 400 Nano), equipped with a energy- dispersive
spectrometer (EDS, Penta FET x-3 Si).

According to the chemical composition of slag samples and the assumption that
the amount of CaO is a constant, the weight of treated slags (Ms) and the recovery
rate of chromium (RCr) could be obtained, Eqs. (1) and (2).

Ms ¼ x0ðCaOÞ � w
xðCaOÞ ðg) ð1Þ

RCr ¼ x0ðCr2O3Þ � w� xðCr2O3Þ �Ms

x0ðCr2O3Þ � w
� 100 ð2Þ

where, w is the weight of the original slags, x0ðCaOÞ and x0ðCr2O3Þ refer to the
contents of CaO and Cr2O3 in the original slags respectively, and xðCaOÞ and

Table 2 The details of the
experiments

No. Slag weight,g FeSi,wt% T,°C t,min

S1 400 2 1550 10

S2 400 3.3 1550 10

S3 400 6 1550 10

S4 400 9 1550 10
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xðCr2O3Þ present the concentrations of CaO and Cr2O3 in the treated slags
separately.

Results and Discussions

The reduction product of Cr2O3, FeO and MnO could form metal particles or
briquettes with the iron contained in the FeSi, and might precipitate to the bottom of
melts. The chemical composition of reduced slags and the recovery ratio of chro-
mium are summarized in Table 3. Note that the element of chromium might exist as
metal and metallic oxide in the treated slags, but is shown as Cr2O3 due to the
limitation of XRF.

The experiments, the slags added 2, 3.3, 6.0 and 9 wt% FeSi, were conducted in
a carbon-tube furnace at 1550 °C for 10 min, and the chemical composition and
recovery ratio of chromium of reduced slags are shown in Table 3 and Fig. 1. The
Table 3 reveals that the content of Cr2O3 in the slag phase decreases with the
increase of FeSi addition. When the addition of FeSi varied from 2.0 upto 9.0 wt%,
the content of Cr2O3 declined from 2.18 wt% down to 1.07%. MnO has the similar
trend with Cr2O3. The Table 3 and Fig. 1 represent that the rise of FeSi addition
promoted the recovery of chromium. When the usage of FeSi was 2.0 wt%, the
recovery ratio of chromium was merely 65.60%. However, in terms of the sample
with 9 wt% reductant, the ratio was enhanced upto 84.19%. According to the
chemical reaction equilibrium of Eqs. (3) and (4), the rise of Si content in metal
remarkably promotes the reduction of chromium oxide. Hence, the increase of FeSi
amount effectively improved the reduction of chromium oxide and suppressed the
content of Cr2O3 in the slag.

While in accordance with the theoretical arithmetic, the theoretical required
amount of the reductant is just 3.3 wt% to completely reduce the metallic oxides
(Cr2O3, MnO and FeO) in the original sample. Therefore, it is to be testified that
whether the excess reductant could reduce the chromium oxide into metal com-
pletely and how the residual chromium existed in silicate phases.

The Fig. 2 presents the microstructure of S1 sample, observed through SEM.
The four different mineral phases existed obviously, and were measured with
SEM-eds. According to the chemical compositions of each phase, summarized in

Table 3 Chemical compositions (wt%) and recovery rate of chromium (%) of the reduced slags

No. CaO MgO Al2O3 SiO2 MnO Cr2O3
a TiO2 RCr

S1 47.00 4.96 4.54 40.00 1.00 2.18 0.89 65.60

S2 48.40 6.50 2.45 38.00 1.36 1.91 0.79 70.73

S3 46.10 5.01 4.58 38.30 1.04 1.42 0.61 77.15

S4 50.20 9.50 2.68 42.50 0.46 1.07 0.28 84.19
aAll chromium element evaluated as Cr2O3
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Table 4, the gray sections include silicate matrix (phases “1”) and dicalcium silicate
(phase “2”, a kind of solid solution), and the bright phases are spinel crystal (phase
“3”) and metal particle (phase “4”). The both phases always exist together, and
distribute dispersedly. As shown in Table 4, the chromium element is the major
component of metal particles, and the solid solution of C2S contains a few amount
of chromium (0.67 wt%) besides silicon and calcium. The sizes of spinel particles
are about 10 lm, and they mainly comprise chromium, manganese and magnesium.
Therefore, the residual chromium after reduction has three different kinds of oc-
currence states in the slag. The portions of chromium contained in the dicalcium
silicate and spinel reveal that the chromium and manganese oxides in S1sample
added 2.0 wt% FeSi were not reduced completely. The part involved in the metal
phase indicates that all the reduced product could not precipitate onto the bottom
owing to the limitation of quite small size [14]. Hence, the incomplete reduction
and the existence of metal caused the low recovery ratio of S1.

Fig. 1 Effect of FeSi amount
on recovery rate of chromium

Fig. 2 The microstructure of
S1 observed through SEM
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3 Si½ � þ 2 Cr2O3ð Þ ¼ 3 SiO2ð Þþ 4 Cr½ � ð3Þ

DG ¼ DGh þRTln
a4Cr½ � � a3SiO2ð Þ
a3Si½ � � a2Cr2O3ð Þ

ð4Þ

For the S2, S3 and S4 samples, the micro properties and the composition of
mineral phases were summarized in Fig. 3 and Table 5, respectively. The 3 samples
have the similar mineral components, consisting of dicalcium silicate, merwinite,
matrix and metal particles. The differences among them are that the number of
metal particles decreases and the size increases with the added amount of FeSi
rising, which evidently illustrates the trend of chromium recovery ratio. On the
basis of Table 5, there are few chromium existing in silicate phases due to the
content lower than the limitation of detection devices, and the residual chromium
presented mainly as metal. Moreover, the basic mineral phase in stainless steel slag,
chromium spinel, was not detected in these samples. It elucidates that the chromium
oxides are quite finite due to the addition of excess ferrosilicon. Therefore, the
reduction of chromium oxides is simply and quite thorough with sufficient FeSi at
1550 °C, and the separation of metal particle by means of precipitation is the
critical factor in the recovery rate of chromium.

And the difference of the surface tension between molten slag and liquid metal
dominates the reduction product existing as metal droplets, which distribute dis-
persedly in liquid slag. There are three kinds of forces on the droplet, namely
gravity, buoyancy and viscous resistance. On basis of the resultant force, the
Stoke`s law is employed to describe the sedimentation velocity of a droplet (tm), as
the Eq. 5 [15, 16].

tm ¼ qm � qsð Þd2
18l

� g ð5Þ

where qm and qs represent the density of metal droplet and molten slag respectively,
l is the viscosity of liquid slag, d is the diameter of the droplet, and g infers the
acceleration of gravity. The Eq. (5) is suit for the separation of sphere droplet with
the diameter less than 200 lm. It suggests that the precipitating velocity of droplets
depends on the difference of density between slag and metal, droplet size, and the
medium viscosity. The decline of slag viscosity and the increases of density dif-
ference and droplet size could observably enhance the separation speed.

Table 4 The chemical composition of mineral phases marked in Fig. 2/wt%

No. Phase O Mg Al Si Ca Ti Cr Mn Fe

1 Matrix 35.06 4.83 8.09 18.42 32.41 – – 1.18 –

2 C2S 33.84 1.45 0.81 19.39 42.64 – 0.67 0.7 –

3 spinel 20.14 8.79 4.34 0.84 1.33 2.81 50.06 11.64 –

4 metal – – – 4.35 – – 84.68 2.74 8.23
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Fig. 3 The microstructures
of reduced samples with
different addition of
ferrosilicon, a S2 with 3.3 wt
%FeSi; b S3 with 6 wt%
FeSi; c S4 with 9 wt%FeSi

Effect of Ferrosilicon on Reduction of Cr2O3 in Steelmaking Slags 363



Furthermore, the size is more important than other factors. Therefore, the increase
of droplet size is taken as the effective measure to promote the sedimentation of
reduction product.

According to the minimization of Gibbs free energy, the molten slag containing
a certain amount of metal droplets is unstable, and the droplets will aggregate
spontaneously to form a bigger one [17]. For a certain system, the aggregation is
critically controlled by the number of suspending particles and the time. Hence, this
could be used to explain the influence of FeSi amount on the recovery of chromium.
The increase of ferrosilicon addition not only insures the reduction of chromium
oxide, but also raises the number of metal droplets due to the fusion of excess
reductant, which make the distances among the suspending particles shrink. So the
closer ones could combine together easily in a period of time. The growth of metal
particles promotes the precipitation speed and enhances the rise of chromium
recovery finally. Therefore, some measures should be proposed in order to make
sure that the suspending particles are adequate to aggregate the reduction product.

Conclusion

The occurrence and recovery of chromium in the stainless steel slag reduced by
ferrosilicon at 1550 °C for 10 min in a carbon-tube furnace were investigated, and
the conclusions are obtained as follows. The increase of FeSi addition could effi-
ciently promote the recovery of chromium. The recovery ratio rises from 65.60 upto
84.19% when the addition become from 2 to 9 wt%. And the excess reductant
ensured that the content of chromium oxides dissolved into silicate minerals is
lower than the detected limitation. The residual chromium distributed dispersedly
among the silicates as the occurrence of metal particles, which could not precipi-
tated into the crucible bottom in a certain time due to the limitation of size. Overall,

Table 5 The chemical composition of mineral phases marked in Fig. 3/wt%

No. Phase O Mg Al Si Ca Cr Mn Fe

1 Merwinite 33.20 7.70 0.49 19.46 38.48 – 0.68 –

2 Matrix 35.08 6.02 3.41 22.77 30.96 – 1.77 –

3 C2S 34.25 1.18 1.00 18.32 45.26 – – –

4 Metal – – – 1.26 – 85.35 1.09 12.29

5 Merwinite 34.64 7.10 0.56 19.02 38.37 – – 0.31

6 Matrix 35.36 7.43 3.05 23.26 30.90 – – –

7 C2S 33.23 3.56 0.35 18.95 43.91 – – –

8 Metal – – – 16.21 – 64.05 5.90 13.84

9 Merwinite 33.43 7.66 0.77 19.57 38.57 – – –

10 Matrix 33.55 7.30 3.07 23.66 32.42 – – –

11 C2S 33.76 0.78 0.47 18.25 46.75 – – –
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the sufficient FeSi could reduce chromium oxides thoroughly, while the precipi-
tation of reduced production is the critical factor in the recovery of chromium.
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Bacterial Degradation of Free Cyanide
in Alkaline Medium Using Bacillus
Licheniformis Strain

Amzy Tania Vallenas-Arévalo, Carlos Gonzalo Alvarez Rosario,
Denise Crocce Romano Espinosa and Jorge Alberto Soares Tenório

Abstract Cyanide is a toxic chemical used in mining industry to recover gold and
silver in leaching process. Effluents containing cyanide can be treated by biore-
mediation instead of physical and chemical processes which are often more
expensive and less efficient. This study evaluated the capacity for free cyanide
degradation of a Bacillus licheniformis strain previously isolated from an aban-
doned gold mine. First, bacterial growth in LB medium through OD600 was studied.
Then, bacteria was adapted to grow on alkaline medium using CAPS buffer to keep
pH10. Finally, cyanide degradation assays were performed using a 500 mgL−1

KCN pH10 50 mM CAPS solution. Free cyanide was measured using a polaro-
graphic method. Temperature influence was evaluated at 27, 32 and 37 °C. Results
showed that B. licheniformis was able to degrade 99% of free cyanide after 5 days
of incubation and works better at 32 °C showing the strain potential for cyanide
biotreatment in mining industry.

Keywords Cyanide � Biodegradation � Bacillus licheniformis � Bacteria
Gold mining

Introduction

Cyanide is a highly toxic chemical that can be present in the environment in high
concentrations as a result of human activities including electroplating, fiber pro-
duction, coal processing, cassava-processing and metallurgic processes [1–3].
Effluents containing cyanide represent a high risk for the environment because
cyanide can be lethal for most living organisms as it inhibits the cytochrome-c
oxidase, a key enzyme in the mitochondrial respiratory chain [4, 5]. In mining
industry, it is used for gold and silver recovery in leaching processes [6].
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Cyanidation is a widely used process for obtaining gold without using mercury
since it has a lower environmental impact. However, cyanide is still and important
environmental and occupational risk for operators [7].

There’s a variety of methodologies for cyanide degradation including biological,
chemical and physical processes. Thus, cyanide also suffers natural attenuation
where cyanide is oxidized to more stable and less-toxic products [8]. However,
complete cyanide destruction requires chemical processes despite the fact that part
of residual cyanide is naturally degraded by sunlight or air oxidation [7]. Most
common technologies for cyanide-treatment include oxidation using hydrogen
peroxide and catalyzed by copper; oxidation with Caro’s acid; sulfur dioxide
process; and alkaline chlorination [6, 9]. Nevertheless, chemical and physical
processes are often expensive and complex to operate [8]. In this context,
biotreatment of cyanide-containing effluents represent a potential alternative to
conventional processes.

It has been demonstrated that cyanide can be treated by bacteria in a viable
process of cyanide-containing effluents [10]. Biological treatments represent eco-
nomic advantages in operation costs. Commonly, Pseudomonas sp. and Bacillus sp.
are used to treat cyanide-containing effluents [2, 3] but other bacteria, fungus and
algae have also been reported [11]. This study aims to evaluate the ability for a
Bacillus licheniformis strain, previously isolated from a gold mining tailing and
identified, to treat free-cyanide in alkaline environments that minimize cyanide
volatilization.

Methodology

A previous study isolated a cyanide-degrading bacteria from a gold mine tailing
identified as Bacillus licheniformis [12]. However, bacterial isolation had been
performed at physiological pH 7. Cyanide is known to be a highly volatile sub-
stance with pKa = 9.2. In order to minimize cyanhidric acid (HCN) formation,
alkaline levels of pH have to be maintained during treatment processes. In order to
achieve that, microorganisms used in cyanide treatment have to be able to grow in
these kind of environments. Consequently, previously isolated bacteria was adapted
to grow in alkaline medium prior to evaluation of cyanide degradation.

Adaptation to Alkaline Medium

Bacteria reproduce and mutate very fast; hence, they can adapt rapidly to hostile
environments. Menawhile, in cyanide-containing effluents is important to keep high
pH values to minimize HCN volatilization. Therefore, is important that microor-
ganisms used are adapted to grown in these conditions. In order to achieve that,
previously isolated and identified bacteria were activated in nutritive LB media
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(15 gL−1 peptone, 5 gL−1 yeast extract, 10 gL−1 NaCl). Bacterial growth curves
were calculated at pH 7, 8, 9 and 10. LB medium was prepared at different pH
values using 50 mM Tris-HCl as buffer for LB medium at pH 7 and 8; and 50 mM
CAPS-NaOH buffer for LB medium at pH 9 and 10. In all cases, mediums were
sterilized by autoclaving.

Strain was grown in 250 mL Erlenmeyer flasks incubated at 190 RPM at 37 ºC
with 50 mL of desire medium and a 100 µL inoculum of activated bacteria (1:500
proportion). Bacterial adaptation was measured using growth curves for each strain.
Cellular growth was measured using OD600 absorbance.

Free-Cyanide Measurement

Free cyanide refers to the CN− and HCN in aqueous solution, which are the most
toxic forms of cyanide [9]. Free-cyanide concentration in aqueous solution was
measured using a polarographic technique with a voltammetric analyzer
(VA) Computrace Control 797, Metrohm. For this method an electrolyte solution
with 0.2 M boric acid (H3BO3) and 0.17 M potassium hydroxide (KOH) was used.
PH adjustment to 10.2 was done with a 0.01 M potassium hydroxide solution.

Cyanide Degrading Assays

To evaluate degrading efficiency a synthetic solution with a 500 mgL−1 of KCN
concentration was prepared. First, bacteria adapted to pH 10 was grown in 50 mL
sterile falcon tubes with 15 mL of LB medium incubated at 37 °C 190 RPM
overnight; then an aliquot of 200 µL was transferred to an 250 mL Erlenmeyer flask
containing 50 mL of LB 50 mM CAPS pH 10 NaOH medium and incubated to 190
RPM 37 °C until OD600 = 0.8. Bacterial solution with OD = 0.8 was transferred
to sterile falcon tubes and centrifuged at 8000 rpm for 3 min. Supernatant was
discarded and pellet was washed twice using buffer solution. Then, bacteria was
re-suspended in 100 mL assay solution (500 mgL−1 CN−, 50 mM CAPS pH 10
KOH), put into a 250 mL Erlenmeyer flask and incubated. Assay incubation lasted
5 days and were performed in triplicates together with a control with no bacteria
inoculated. A 5 mL aliquot was taken from each flask to measure pH, cellular
concentration, and free-cyanide each day.

Optimal conditions for degradation were tested with degradation assays at 27, 32
and 37 °C; and different rotation speed of 65 and 190 rpm. Cyanide degradation
curves were elaborated with results obtained from free-cyanide measurements in %
of cyanide concentration reduction according to Eq. 1.
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% CN½ �d ¼ CN½ �i� CN½ �f
CN½ �i

� 100% ð1Þ

Where:
%[CN]: Percentage of free-cyanide concentration degraded
[CN]i: Initial concentration of free-cyanide in solution (mg/L)
[CN]f: Final concentration of free-cyanide in solution (mg/L)

Results and Discussion

Bacterial Adaptation to Alkaline Environments

Growth curves for Bacillus licheniformis strains are shown in Fig. 1. Strains was
able to grow in increasing pH conditions. Cellular growth was measured during
26 h. In every case, B. licheniformis strains achieved stationary phase of growth in
less than 24 h. Strain showed exponential growth between 6 and 22 h of incubation
and reached OD = 0.8 after 13 h when viable cell concentration was 106.4 CFU/
mL. Strain achieve adaptation to alkaline environemts; however, increasing levels
of pH resulted in a longer lag phase in bacterial growth. This shows the potential for
bacteria to be used in the treatment of alkaline cyanide-containing effluents.

Fig. 1 Bacillus licheniformis growth in LB medium at pH 7, 8, 9 and 10 in orbital agitation at
37 °C 190 rpm. Assays were performed successively by increasing pH medium. Error bars show
standard deviation between triplicates
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Cyanide Degradation

Degradation assays at different temperatures were tested using Bacillus licheni-
formis strain. At all degradation assays, alkaline environments was kept by using
50 mM CAPS as buffer, and monitored daily to assure pH 10. Free-cyanide mea-
surements during assays are show in Fig. 2. This showed that B. licheniformis
degraded better free-cyanide solution at 32 °C obtaining a 98% degradation after
5 days of incubation.

Then, degrading assays at different rotations speed were performed. Results are
shown in Fig. 3. Higher rotation speed resulted in better cyanide degradation rate.
At 190 RPM rotation speed, B. licheniformis strain was able to degrade 79% of
cyanide after 5 days of incubation whereas at 65 RPM speed, the degradation rate
was 42% after the same period of time.

Rotation speed and temperature influence in natural degradation of free-cyanide
as well, as these increase the amount of dissolve oxygen in water which can oxidize
cyanide in synthetic solution. That is why is important to perform biodegradation
assays together with a negative control that can identify the difference in the bac-
teria effect and degradation due to natural conditions. An assay using optimal
conditions previously calculated compared with a negative control was performed,
results are shown in Fig. 4. Compared to blank, B. lciheniformis strain was able to
degrade more than 50% more than negative control showing a real bacterial
degradation action to reduce cyanide concentrations in solution.

Fig. 2 Cyanide degradation using Bacilus licheniformis strain at 27, 32, and 37 °C 190 RPM
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Conclusions

Cyanide-containing effluents must be treated before discharge to the environment as
their toxicity represents a high risk for every living organisms. Normally, these
effluents have high pH values to assure cyanide is contained in aqueous solution

Fig. 3 Cyanide degradation using Bacillus licheniformis at 190 and 65 RPM, 27 °C

Fig. 4 Cyanide degradation using Bacillus licheniformis at optimal conditions (190 RPM, 32 °C)
compared to control without bacteria
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and HCN formation is minimum. In this context, it’s highly important for bacteria
used in biodegradation to be adapted to alkaline environments and to be able to
degrade cyanide in these conditions.

Bacillus licheniformis strain had previously been isolated and identified as a
cyanide-degrading bacteria and adapted easily to nutritive medium at pH 10
showing its ability to grown in alkaline environments. Thus, B. licheniformis is able
to degrade cyanide at these conditions. Cyanide degradation assays showed that
strains degrades free-cyanide better at 32 °C and 190 RPM achieving up to 98% of
cyanide degradation. This study shows that B. licheniformis isolated from mining
wastes can degrade cyanide in alkaline environments and therefore, become a
potential alternative in cyanide-containing effluents treatment.
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Determination of Limiting Current
Density of a Solution with Copper, Zinc
and EDTA from the Effluent of Brass
Electrodeposition

K. S. Barros, J. A. S. Tenório and D. C. R. Espinosa

Abstract In the last decades, authors have been focused in the development of a
cyanide-free bath for the electroplating industry of brass due to the risks that
involves the use of cyanide and they have been evaluated the electrodialysis as an
alternative method for the treatment of the effluent generated in this type of industry
because of the limitations caused by the chemical precipitation. Hence, the present
paper aimed to determine the limiting current density of the effluent generated in the
free-cyanide electrodeposition of copper and zinc using EDTA as chelating agent
for the treatment of the effluent by electrodialysis. The synthesized solutions were
prepared with copper sulfate and zinc sulfate in different conditions of pH (10–12)
and proportion of cupric ions (30%, 50%, 70%). According to the results, the
increase of pH and the cupric ions proportion caused an increase in the limiting
current density because of the larger amount of anionic species in solution and the
consequent difficult to achieve the concentration polarization phenomenon.

Keywords Brass � EDTA � Electroplating industry � Limiting current
Chronopotentiometry

Introduction

The electrodeposition of metal alloys coatings is usually used to produce materials
with improved mechanical, decorative, electrochemical, magnetic or optical prop-
erties [1]. The electrodeposition of brass (copper + zinc), for example, was firstly
tested in 1841 and has been widely used for decorative purposes, protection of steel
and promotion of rubber adhesion to steel and other metals in many types of
industries [2]. In general, cyanide is used in this process since it guarantees
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high-quality deposits [3] due to the formation of a stronger complex of cyanide ions
with Cu2+ compared to Zn2+, bringing the reduction potentials of both metals closer
together. However, it is widely known that cyanide is toxic and its use requires a
rigorous maintenance and control of the pH of the solutions [4], which can make it
unfeasible to be used. Hence, in the last years many authors have been tested
alternative chelating agents to replace the cyanide, such as EDTA [5, 6], tri-
ethanolamine [7], glycine [8, 9], sorbitol [3, 10], tartrate [11], citrate [12], acetate
[13], D-mannitol [14], pyrophosphate-oxalate [15] glucoheptonate [16] and
gluconate-sulfate solutions [4]. Among the chelating agents, the use of EDTA is
interesting since its properties are widely known, it does not cause risks for human
health and it has already been tested as complexing agent in metals separation such
as Ca and Cd [17], Ni and Co [18, 19], Ag, Zn and Cu [20], Na and Ca [21], Li e Co
[22].

The most widely method used for the treatment of effluents generated in elec-
troplating industry is chemical precipitation due to its simplicity, inexpensive
equipment requirement and convenient and safe operations [23]. However, chem-
ical precipitation requires a large amount of reagents and produces a huge volume
of sludge which is difficult to be disposed and that requires further treatment.
Hence, other methods have been evaluated and electrodialysis is one of the most
considered options since it does not require additional reagents and allows the
recovery and reutilization of water and the metals [24]. However, it is important to
assess some properties of the membrane/solution system such as the limiting current
density (LCD) to guarantee the viability of the electrodialysis use. The importance
of the determination of LCD is related to the concentration polarization phe-
nomenon, since if the current applied in electrodialysis is greater than the limiting
one, the concentration of the cations at the membrane surface on the depleting
solution side vanish, leading to a mass transfer limitation and high cell voltages
[25]. For the determination of current limiting density, some electrochemical
characterization methods can be used and among them, chronopotentiometry is a
valuable method since it allows a direct access to the voltage contributions in
different states of the solution–membrane system and the construction of
current-voltage curves.

In view of the exposed, the present paper aimed the determination of limiting
current densities of synthesized solutions from the effluent generated in the study of
Almeida et al. [5, 6], which tested the non- cyanide brass electrodeposition on 1010
steel using EDTA as chelating agent. For the LCD determination, current-voltage
curves (CVC) were constructed by chronopotentiometry with a system of three
compartments and the anionic HDX 200 membrane. The synthesized solutions
were prepared with copper sulfate and zinc sulfate in different conditions of pH
(10–12) and proportion of cupric ions (30, 50 and 70%) to evaluate the influence of
each metal and pH in the limiting current density of the solutions.
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Experimental

Solutions

The synthesized solutions of brass electroplating effluent were prepared with copper
sulfate pentahydrate, zinc sulfate heptahydrate, EDTA sodium salt and for the pH
adjustment it was used NaOH since sodium is already present in EDTA molecule.
The concentrations of the metals and EDTA were chosen based on the work made
by Almeida et al. [5, 6], since the authors evaluated the deposition of brass using the
proportion of cupric ions of 30, 50 and 70% with the total cationic concentration of
Cu2+ and Zn2+ equal to 0.2 M, a fixed molar ratio of EDTA/Cu2+ equal to 2.5 and
pH = 14. Hence, in the present paper the solutions were prepared by the dilution in
1% of the solutions tested by Almeida et al. As it was already verified by the
software Hydra-Medusa [26] that both metals are complexed with EDTA in pH 10
and the membranes degrade under extreme pH values [27], the pH values evaluated
in this paper were 10, 11 and 12. All the reagents employed were of analytical grade
and the conditions tested are shown in Table 1.

Ion Exchange Membranes

The anion-exchange membrane evaluated in this work was HDX 200 (provided by
Hydrodex®), which contains quaternary amine groups attached to its matrix. The
cation-exchange membrane HDX 100 with sulfonic acid group was also used to
compose the system. Both membranes are heterogeneous and have effective of
3.14 cm2. Before the experiments, they were equilibrated in the working solutions
for a period of 24 h. These membranes were chosen in this study since they were
already tested in other papers in the field of chronopotentiometry and electrodialysis
[28–31]. Table 2 presents the main characteristics of HDX 100 and HDX 200.

Table 1 Composition of the work solutions

Evaluation ID pH Cu2+proportion
(%)

EDTA/
Cu2+

Concentration (mol/L)

Cu2+ Zn2+ EDTA

Cu2+ I 10 30 2.5 0.0006 0.0014 0.0015

II 10 50 2.5 0.0010 0.0010 0.0025

III 10 70 2.5 0.0014 0.0006 0.0035

pH IV 10 50 2.5 0.0010 0.0010 0.0025

V 11 50 2.5 0.0010 0.0010 0.0025

VI 12 50 2.5 0.0010 0.0010 0.0025
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Electrochemical Cell and Chronopotentiometric
Measurements

For the chronopotentiometric experiments it was used a three-compartment cell
with a volume of 130 ml (each) and an anionic (HDX 200) and cationic membrane
(HDX 100), which separated the central compartment from the anode and cathode,
respectively. The potential drop through the anionic membrane was measured by
two reference electrodes made by Ag/AgCl immersed in Luggin capillaries. The
current applied was supplied by a potentiostat/galvanostat AUTOLAB and two
graphite electrodes were disposed in the extremities of the cell to guarantee the
current transport. The current-voltage curves were obtained from the steady-state
polarization voltage corresponding to an applied current and as it was already
detailed explained in the work published by Barros et al. [30], the CVC usually
presents three regions. The first region is known as ohmic region since it shows a
linear relation between the current density applied and the potential measured. The
second region is known as a plateau zone and in this condition, there is no passage
of ions through the membrane because of the achievement of the concentration
polarization phenomenon. Hence, the limiting current density was determined in the
present paper by the intersection of the tangents to the first and second regions.
Finally, in the third region the current intensity increases again with the potential
because of other mechanisms that promote ions transport such as the formation of
water splitting products or electroconvection occurrence.

Table 2 Main characteristics of HDX 100 and HDX 200 membranes

Parameter HDX 100 HDX 200 Unit

Ion group attached �SO�
3 �NRþ

3 –

Water content 35–50 30–45 %

Ion exchange capacity � 2.0 � 1.8 mol.kg−1

(dry)

Surface resistance (0.1 mol de NaCl) � 20 � 20 Ohm.cm−2

Permeselectivity (0.1 mol KCl/0.2 mol
KCl)

� 90 � 89 %

Burst strengh � 06 � 0.6 MPa

Dimensional change rate � 2 � 2 %

Water permeability � 0.1
(<0.2 MPa)

� 0.2
(<0.035 MPa)

mL.h.cm−2
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Results and Discussion

Evaluation of Copper Proportion

Current-voltage curves for solutions with 30, 50 and 70% of cupric ions (solutions
I, II and III from Table 1) and pH = 10 were constructed and the limiting current
densities were obtained. Figure 1 presents the curves for the solutions tested.

According to Fig. 1, the current-voltage curves obtained in the evaluation of the
cupric ions proportion are typical for monopolar membranes and present the three
regions clearly defined except for the solution with 30% of Cu2+. It was also
verified that the limiting current density increased with the copper proportion, even
with the maintenance of the total cationic concentration of Cu2+ and Zn2+ equal to
0.002 mol/L. For the understanding of which species are responsible to the increase
of the LCD, speciation diagrams for the three solutions were constructed by
Hydra-Medusa and they are shown in Figs. 2, 3 and 4.

As can be seen in Figs. 2, 3 and 4, in pH = 10 the number of anionic species that
passes through the anion-exchange membrane increases with the increase of copper
proportion, which is responsible to the increase in the LCD. It can be verified, for
example, three anionic species when the proportion of copper was 30%, while it
was observed at least six anionic species when the proportion was 50 and 70%.
Hence, as the LCD occurs in the moment of the ions scarcity in the membrane
surface, its increase is related to the increase of the number of anionic species.

Evaluation of the PH

Current-voltage curves of solutions with Cu2+ proportion of 50% and pH of 10, 11
and 12 were constructed (solutions IV, V and VI) and the results are presented in
Fig. 5.

Fig. 1 CVC for solutions
with 30, 50 and 70% of cupric
ions
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Fig. 2 Speciation diagrams for the solutions with cupric ions proportion of 30%

Fig. 3 Speciation diagrams for the solutions with cupric ions proportion of 50%

Fig. 4 Speciation diagrams for the solutions with cupric ions proportion of 70%
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According to Fig. 5, only the solution with pH 10 presented the three regions
clearly defined since in the curves of the solutions with pH 11 and 12 it is not
possible to identify the third region. However, the limiting current density could be
effectively determined since it depends only on the first and second regions of the
CVC. As it can be seen, there was no drastic change in the LCD from pH 10 to 11,
while in pH 12 this property increased more than two times. It is also possible to
verify in Fig. 2b that this difference in the behavior of the LCD may occurred
because of the presence of chelates with copper and zinc, since these components
are present in high concentration in pH 12 and in low concentration in pH equal to
10 and 11.

Conclusions

Current-voltage curves were effectively constructed by chronopotentiometry and
limiting current densities were determined for solutions from the non-cyanide brass
electroplating industry. According to the results, the LCD increases with the
increase in copper proportion because of the larger amount of anionic species and
the consequent increase in the difficult to achieve the depletion of ions in the
membrane surface.

Finally, different pH values of the solution were evaluated and it was verified
that when pH was increased from 10 to 11 there was no variation in the LCD since
the ionic species in solution were almost the same. For pH equal to 12, it occurred
an increase in the LCD due to the presence of chelates with copper and zinc, since
these components are present in high concentration in this condition.

Fig. 5 CVC for solutions
with 50% of cupric ions and
pH 10, 11 and 12
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Effect of the pH on the Recovery
of Al3+, Co2+, Cr3+, Cu2+, Fe3+, Mg2+,
Mn2+, Ni2+ and Zn2+ by Purolite S950

Isadora Dias Perez, Mónica M. Jiménez Correa,
Jorge A. Soares Tenório and Denise C. Romano Espinosa

Abstract The generation of mining waste has been the subject of environmental,
economic and social concern. Alternative and sustainable methods of recycling
metals technologies are desired. The present work focuses on the application of the
ion exchange technique for the extraction of metals contained in a lateritic nickel
mining effluent. The Purolite S950 chelating resin was used in the present work
because it has the ability to adsorb transition metals present in an acidic solution.
The experiments were carried out in a batch varying the pH in the range of 0.5–2.0.
1 g of resin was placed in contact with 50 mL of solution and stirred for 120 min at
a speed of 200 rpm and temperature at 25 °C. The results demonstrated that the
affinity of the resin varied with pH. The adsorbed metals were only copper, man-
ganese, magnesium and zinc. The most extracted metal was copper, corresponding
to 37%, when the solution was conditioned at pH 2.0.

Keywords Ion exchange � Transition metals � Chelating resin

Introduction

Lateritic nickel ore accounts for 60% of nickel reserves around the world, however,
accounting for only 40% of world production [1]. This ore is processed according to
its composition, emphasizing the pyrometallurgical and hydrometallurgical routes.
As a consequence of the beneficiation via hydrometallurgical route, the leaching of
the ores produces liquor. The leaching processes are rarely selective and the leach
liquors contain impurities. On the other hand, the lateritic nickel ore processing
generates liquor with solutions containing high concentrations of iron and man-
ganese, traces of copper, nickel, cobalt, zinc and among others [2].
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Therefore, the metals present in the mining effluents could be separated by
hydrometallurgical techniques. These techniques are able to purified and recovery
of the desired metal [3]. Among the techniques used in the literature can be evi-
denced chemical precipitation, membranes, reverse osmosis, electrochemical pre-
cipitation, solvent extraction and ion exchange with resins [4–8]. These techniques
provide the concentration of dilute solutions [3].

For the present work, the technique chosen to investigate the separation of the
metals from the liquor was the chelating ion exchange resin, which has been used in
several studies for the recovery of transition metals [9–11]. The leach liquor con-
tains metals such as aluminum, cobalt, copper, chromium, iron, manganese, mag-
nesium, nickel and zinc. Since the Purolite S950 chelating resin is capable of
recovering transition metals, it has been chosen for its use.

Purolite S950 is characterized by aminophosphonic functional group. This
chelating resin is bound in a macroporous polystyrene matrix [12]. Figure 1 shows
the resin structure used in the study.

This paper focuses on the application of ion exchange technology for the
recovery of metals from the mining effluent of lateritic nickel by chelating resin
Purolite S950. The effect of pH was studied.

Materials and Methods

Material

For this research, the resin adopted was the chelating resin Purolite S950. Table 1
shows the resin characteristics.

Pretreatment of Resin

Prior to the batch studies, the resin was pretreated to remove impurities. The pro-
cedure was developed into a flask shaken and repeated 2 times to ensure that the

Fig. 1 The chemical
structure of Purolite S950 [13]
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resin was clean and ready for use. In the pretreatment, the resin was washed with
deionized water and eluted with acid solution (4 M HCl) and base solution (2 M
NaOH). Then, the resin was washed with deionized water at 60 °C.

The resin and solution separation was by filtration through a Millipore 20 µm
filter paper. After filtration, the resin was dried in an oven at 60 °C for 120 min.

Preparation of Synthetic Solution

Analytical grade reagents Al2(SO4)3.17H2O, CoSO4.7H2O, Cr2(SO4)3.xH2O,
CuSO4.5H2O, Fe2(SO4)3.xH2O, MgSO4.7H2O, MnSO4.H2O, NiSO4.6H2O,
ZnSO4.7H2O were used to prepare the synthetic solution. The concentrations of the
metals are shown in the Table 2.

Batch Tests

For these tests, 1 g of chelating resin Purolite S950 was shaken with 50 mL of
synthetic solution during 120 min. The shaking speed and the temperature were
kept constant corresponding to 200 rpm and 25 °C, respectively. Figure 2
demonstrates how the experiments were developed. At the end of experiments, the
resin was separated by filtration through a Millipore 20 µm filter paper. The
remaining solution was chemically analyzed.

For the study of the effect of pH variation, the pH varied between 0.5–2.0. The
choice of pH values was based on the precipitation of the metals present in the
synthetic solution. According to the precipitation diagram (Fig. 3), ferric iron
precipitates at pHs close to 2.

Table 1 Physical and
chemical characteristics of
commercial resin Purolite
S950 [14]

Functional group Aminophosphonic

Matrix Macroporous
styrene-divinylbenzene

Ionic form Na+

Moisture content
(mass fraction)

60–68%

Particle size 0.3–1.2 mm

pH range (operation) H+ 2–6, Na+ 6–11

Table 2 Composition of the synthetic solution

Metal Al3+ Co2+ Cr3+ Cu2+ Fe3+ Mg2+ Mn2+ Ni2+ Zn2+

Concentration
(mg/L)

4101.5 78.1 195.2 146.9 18713.5 7774.5 397.2 2434.2 36.7
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Therefore, the analyzed pH values were 0.5, 1.0, 1.5 and 2.0. To adjust the pH
value desired, 5 M H2SO4 or 2 M NaOH was used.

The adsorption capacity at equilibrium (qe) was calculated by (1) [11]:

qe ¼ Co � Ceð Þ
M

� V ð1Þ

Where qe is the adsorption capacity at the equilibrium (mg/g), Co and Ce is the
initial and equilibrium metal concentration (mg/L), M is the amount of resin (g) and
V is the volume (L) of metal solution used for sorption experiments, respectively
[11].

Fig. 2 Batch tests (a) contact of resin with synthetic solution (b) flask shaken during the
experiments

Fig. 3 Precipitation diagram of metal ions in the hydroxides form as a function of the pH
variation in temperature of 25 °C [15]
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The percentage removal of metal in equilibrium was calculated by (2) [16]:

% ¼ Co � Ceð Þ
Co

� 100 ð2Þ

Instrumentals

The chemical analysis of remaining metals in solution was obtained by Energy
Dispersive X-ray Fluorescence Spectroscopy (EDX) PANalytical Epsilon 3XL
equipment, identifying and quantifying of them. The INFORS HT Multitron Pro
shaker was used by batch tests including adsorptions and temperature experiments.
The pH meter chosen was Hanna pH 21.

Results

According to Diniz et al. [2], it is necessary to know the impact of pH variation
during metal recovery processes. The solution pH is one of the parameters capable
of controlling the resin adsorption process affecting the surface charge of adsorbent.
In addition, pH change is responsible for the formation of specific chelates between
the chelating agents and metal ions [11, 17].

Thus, the effect of pH variation on the adsorption capacity of the chelating resin
with the metal ions present in the solution was studied. The solution was condi-
tioned up to pH 2.0 in order to avoid the ferric iron precipitation and also the
co-precipitation of other metals, such as copper [3, 15, 18].

The contact time was 120 min at 25 °C. The results are presented in Figs. 4 and
5 and they express the adsorption capacity and the percentage of each adsorbed
metal, respectively.

Referring to Figs. 4 and 5, it may be assumed that the aluminum, cobalt,
chromium, iron and nickel metals were not extracted by the Purolite S950. The
adsorbed metals were only copper, manganese, magnesium and zinc.

For pH values 0.5, 1.0, 1.5 and 2.0, copper exchange capacity was 0.2, 1.6, 2.2
and 2.6 mg of copper/g of resin, respectively. The percentage of copper extracted
increased from 1.8% (pH 0.5) to 37.2% (pH 2.0).

It was observed that the manganese showed a similar behavior to the copper, so
when the pH increased from 0.5 to 2.0, exchange capacity changed from 1.7 mg of
manganese/g of resin to 3.8 mg of manganese/g of resin. The maximum percentage
removal of Mn2+ occurred at pH 2.0, corresponding to 11.5%.

As can be noticed in Figs. 4 and 5, the adsorption capacity of zinc was only
0.3 mg of zinc/g of resin at pH 2.0. However, the percentage extracted was 23.5%.
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For magnesium, the adsorption was the highest among the metal ions studied,
considering the mass adsorbed by the resin. The adsorption capacity of Mg2+ was
15.9 mg of magnesium/g of resin at pH 2.0. However, adsorption of magnesium is
not only justified by its affinity with the resin, but also high magnesium concen-
tration compared to the other metals. The concentration of Mg2+ is 53 times higher
than the concentration of Cu2+, 20 times greater than of Mn2+ and 212 times higher
than of Zn2+.

Analyzing the results for Cu2+, Mn2+, Mg2+ and Zn2+, it was verified that the
percentage of extraction of these metals increased progressively with the pH
increase. This behavior has been extensively reported in literature. According to
Bhatt and Shah [17], the sorption capacity of chelating resin is dependent on

Fig. 4 Absorption capacity
of metals in relation to the pH
for the chelating resin Purolite
S950. Experimental
conditions: 1 g of resin;
50 mL of synthetic solution;
120 min; 25 °C

Fig. 5 Percentage of
adsorption of metals in
relation to the pH for Purolite
S950 chelating resin.
Experimental conditions: 1 g
of resin; 50 mL of synthetic
solution; 120 min; 25 °C
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solution pH. This situation is related to the charge of the functional group, which
tends to become more electronegative as the pH increases, providing greater
electrostatic attraction between the metal cations and the resin [17]. In addition, as
the solution becomes more acidic, the concentration of H+ increases. H+ ions
compete with the metal ions at the adsorption sites, reducing the exchange capacity
of the resin [19].

It was also concluded that the metal most extracted by the resin was copper. This
fact can be justified by the selectivity order of resin reported by some authors [20,
21]. According to Hamabe et al. [20], the selectivity of chelating resin Purolite S950
toward divalent metal ions at acidic pH is given by:
Ni2+ < Ca2+ < Mg2+ < Zn2+ < Cu2+ < Pb2+. Therefore, in the absence of Pb2+ in
the working solution, Cu2+ is the metal that have the highest sorption affinity for
Purolite S950. Copper has shown higher affinity for chelating resins with the
aminophosphonic functional group than zinc, magnesium and manganese. In this
way, copper is able to form chelates with an electron pair donor base (Lewis base)
and be adsorbed by the resin even in situations where the solution is conditioned at
pH <2.0 [22].

After evaluating the adsorption of zinc, this was the second metal most adsorbed
by the resin. According to Hamabe et al. [20], the only commercial chelating resin
capable of removing zinc ions from aqueous solution is the resin with the
aminophosphonic functional group.

In theory, there are situations where the pH increases and the adsorption
decreases. This is related to the formation of insoluble complexes composed of the
hydroxides of the metallic ions present in the solution [17]. However, this situation
was not verified in the present study, since the solution was conditioned up to pH
2.0, making it impossible to form complexes for the experimental conditions used.

Conclusions

The present work demonstrates that the chelating resin shows negligible higher
selectivity for copper, magnesium, manganese and zinc. It was concluded that the
aluminum, cobalt, chromium, iron and nickel metals were not extracted by the
Purolite S950.

After the experiments, it can be concluded that the adsorbed percentage of the
metals increased as the pH values ranged from 0.5 to 2.0. In addition, the adsorption
capacity of the metals decreased as the solution became more acidic.

Through the batch tests was evaluated the effect of pH, the best performance for
copper, magnesium, manganese and zinc occurred at pH 2.0, removing 37.2%
Cu2+, 6.8% Mg2+, 11.5% Mn2+ and 23.5% Zn2+.
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Evaluation of the Occurrence of Fouling
and Scaling on the Membrane HDX 200
for the Treatment of the Effluent of Brass
Electrodeposition with EDTA
as Complexing Agent

K. S. Barros, J. A. S. Tenório and D. C. R. Espinosa

Abstract Considering the risks involving the use of cyanide, other complexing
agents have been evaluated for the treatment by electrodialysis of the effluent of
brass electrodeposition and among them, EDTA is interesting since it has been
already tested for many years to separate ions. The main objective of the present
paper was to evaluate the occurrence of fouling and scaling on the surface of the
anion-exchange membrane HDX 200 by the construction of chronopotentiometric
curves and speciation diagrams in different conditions (pH between 10–12 and
proportion of cupric ions of 30%, 50%, 70%). According to the results, the
chronopotentiometric curves did not show additional inflexion points typical for the
cases which occurs fouling and scaling for the pH values evaluated, which is in
accordance with the speciation diagrams of the solutions constructed with the aid of
Hydra-Medusa software. Hence, the pH and the proportion of cupric ions did not
show influence on the curves behavior.

Keywords Brass � EDTA � Fouling � Scaling � Chronopotentiometry

Introduction

The electrodeposition of metals is widely present in different segments of industries
since in general it is used for decorative purpose, protection of steel and promotion
of rubber adhesion to steel or other metals [1]. Besides the deposition of pure metals
is employed depending on the desired characteristics for the materials, the elec-
trodeposition of alloys as brass (copper and zinc) is also used, for example,
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for corrosion protection and decorative purposes [2]. In the brass electroplating
industry, cyanide is widely used as chelating agent since it is able to reduce the
activity of Cu2+ ions in solution and produces high- quality deposits [3]. However,
it is widely known that cyanide is highly toxic, requires a rigorous maintenance and
the disposal and decomposition of its bath causes concerns to human health and the
environmental [4]. Hence, in the last years efforts have been made to discover an
alternative substance to the cyanide [1, 3–14] and among the chelating agents
already evaluated, EDTA is promising since its properties are widely known, it is
simple to be obtained and it does not cause risks for human health.

The wastewater from the electroplating industry are in general treated by
hydroxide or sulfide precipitation because its relative simple and inexpensive to
operate [15]. However, it requires a great amount of reagents and generates a large
volume of relative low density sludge that causes dewatering and disposal problems
[16]. To overcome these limitations, electrochemical processes have been tested to
treat the effluent from the electroplating industry and among the options, electro-
dialysis is interesting since it does not require the addition of more reagents and
allows the recovery and reutilization of water and the metals. However, for the
technical viability of electrodialysis is essential to study the ions transport through
the membrane and evaluate, for example, the species formed in solution and the
occurrence of clogging of organic (fouling) or inorganic components (scaling) [17]
since it can damage the membranes and enhance the resistance of the ions passage
[18]. Some characterization electrochemical methods can be used in the study of
precipitate formation and chronopotentiometry is usually used since it allows a
direct access to the potential contributions in different states of the membrane/
solution system and provides more information about the membrane behavior
because the dynamic voltage response in time can be analyzed [19, 20].

In view of the exposed, the present paper aimed the evaluation of precipitates
formation during the treatment by electrodialysis of the effluent from the
free-cyanide brass electrodeposition using EDTA as chelating agent. The assess-
ment was performed by chronopotentiometry since from the curves behavior
obtained in this method it is possible to suggest the formation of a bipolar layer in
the membrane caused by the precipitate formation. For the experiments, it was used
a three-compartment cell, the membrane evaluated was the commercial HDX 200
and solutions in different cupric ions proportion (30, 50 and 70%) and pH (10–12)
were evaluated. These conditions of solutions were chosen since Almeida et al. [6,
7] have studied the electrodeposition of brass on 1010 steel using EDTA as com-
plexing agent and did not treated the effluent generated. For more detailed expla-
nations about the species formed in the solution, speciation diagrams were
constructed by the software Hydra-Medusa [21].
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Experimental

Solutions

In the work developed by Almeida et al. [6, 7], the authors studied the influence of
the metals concentration on the brass electrodeposition with solutions in pH 14,
with cupric ions proportion of 30, 50 and 70% with a total cationic concentration of
Cu2+ and Zn2+ equal to 0.2 M and a fixed EDTA/Cu2+ molar ratio of 2.5. Hence,
the solutions evaluated in this paper were prepared by the dilution in 1% of those
assessed by Almeida et al. to simulate the effluent generated in the brass elec-
trodeposition industry using copper sulfate pentahydrate, zinc sulfate heptahydrate,
EDTA sodium salt and NaOH for the pH adjustment. Firstly it was assessed the
influence of the Cu2+ and Zn2+ ions by the solutions I, II and III from Table 1,
which contains a proportion of cupric ions of 30, 50 and 70%, respectively. The
solution pH was also evaluated by the solutions IV, V and VII. In this case, the pH
values assessed were from 10 to 12 since it was verified by the software
Hydra-Medusa [21] that both metals are already complexed with EDTA in pH 10
and the operation in pH higher than 12 can damage the membranes [22]. All the
reagents employed were of analytical grade and their compositions are present in
Table 1.

Ion Exchange Membranes

For the evaluation of precipitate formation and the clogging occurrence on the
membrane surface, the commercial anion-exchange membrane HDX 200 (provided
by Hydradex®) was used while the cation- exchange membrane was also used to
compose the system. Both membranes are heterogeneous, have an effective circular
area of 3.14 cm2 and have similar properties, although HDX 200 has quaternary
amine as fixed group and HDX 100 is charged with sulfonic acid [23]. The
experiments were accomplished after a membrane equilibration period of 24 h

Table 1 Composition of the work solutions

Evaluation ID pH Cu2+ proportion
(%)

EDTA/
Cu2+

Concentration (mol/L)

Cu2+ Zn2+ EDTA

Cu2+ I 10 30 2.5 0.0006 0.0014 0.0015

II 10 50 2.5 0.0010 0.0010 0.0025

III 10 70 2.5 0.0014 0.0006 0.0035

pH IV 10 50 2.5 0.0010 0.0010 0.0025

V 11 50 2.5 0.0010 0.0010 0.0025

VI 12 50 2.5 0.0010 0.0010 0.0025
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using the same solution used in the experiments. Table 1 presents the main char-
acteristics of the HDX membranes evaluated in the present paper (Table 2).

Electrochemical Cell and Chronopotentiometric
Measurements

The experiments were accomplished in a system with three compartments with
130 mL (each), a cation-exchange membrane and anion-exchange membrane that
separated the central compartment from the cathode and anode, respectively. As the
complexed components have negative charge and consequently tended to pass from
the central compartment to the anode, the potential drop through the HDX 200 was
measured by two reference electrodes made by Ag/AgCl immersed in Luggin
capillaries and disposed in each side of the membrane. Two graphite electrodes
were disposed in the extremities of the cell to allow the current transport, which was
provided by a potentiostat/galvanostat AUTOLAB. The chronopotentiometric
curves were constructed after the application of some current densities applied
below and above the limiting current density.

Results and Discussion

Evaluation of Copper Proportion

The copper proportion was evaluated by the construction of chronopotentiometric
curves for solutions with 30, 50 and 70% of cupric ions in pH = 10 and for the
better understanding of which species are present in solution and their influence on

Table 2 Main characteristics of HDX 100 and HDX 200 membranes [24]

Parameter HDX 100 HDX 200 Unit

Ion group attached −SO−3 −NR+3 –

Water content 35–50 30–45 %

Ion exchange capacity � 2.0 � 1.8 mol.kg−1 (dry)

Surface resistance (0.1 mol de NaCl) � 20 � 20 Ohm.cm−2

Permeselectivity (0.1 mol KCl/
0.2 mol KCl)

� 90 � 89 %

Burst strengh � 06 � 0.6 MPa

Dimensional change rate � 2 � 2 %

Water permeability � 0.1
(< 0.2 MPa)

� 0.2
(< 0.035 MPa)

mL.h.cm−2
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the chronopotentiometric curves, speciation diagrams were constructed by the
software Hydra-Medusa and the diagrams obtained are present in Figs. 1, 2 and 3.

According to Figs. 1, 2 and 3, it can be verified that the proportion of cupric ions
caused significant alterations on the speciation diagrams. The formation of insol-
uble species, for example, occurred only when the proportion was 30% (Fig. 1).
The curves of 50 and 70% did not present formation of precipitate and their
behavior was similar.

The chronopotentiometric curves obtained for the solutions I, II and III of
Table 1 are present in Fig. 4a–c.

According to Fig. 4 (a–c), for the solution with the cupric ions proportion from
50% to 70%, the chronopotentiometric curves were typical for a monopolar mem-
brane since the curves for the current densities applied above the limiting current
density showed a rapid increase and them the curves reached a steady state where the
potential varied no more with time. In these cases, there was no suggestion of

Fig. 1 Speciation diagrams for the solutions with cupric ions proportion of 30%

Fig. 2 Speciation diagrams for the solutions with cupric ions proportion of 50%
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precipitate formation by the behavior of the chronopotentiometric curves. According
to the literature, when the voltage continues increasing even in a long time period for
the experiments and the curves do not reach the constant value after a rapid voltage
increase due to the scarcity of ions in the membrane surface at the moment of the

Fig. 3 Speciation diagrams for the solutions with cupric ions proportion of 70%

Fig. 4 Chronopotentiometric curves for solutions with cupric ions proportion of a 30%, b 50%
and c 70%
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concentration polarization phenomenon, it occurs due to the formation of a precipitate
since it can lead to an increase of the resistance and consequently to an enhance of the
voltage. The absence of oscillations or additional inflexion points is confirmed by the
Figs. 1, 2 and 3, since no precipitate is formed under pH 10. However, we suggest
the application of higher current densities to confirm this behavior regarding the
chronopotentiometric curves.

Evaluation of the PH of the Solution

The pH of the solution was also assessed and the chronopotentiometric curves
obtained are presented in Fig. 5a–c.

According to Fig. 5 (a–c), typical chronopotentiometric curves were obtained for
pH equal to 10, 11 and 12, since the curves showed a rapid increase in the potential
due to the concentration polarization phenomenon and then they showed a constant
potential behavior. Hence, we did not verify for any pH a non-expected additional
increase in the potential in the moment of the stead steady. Additional inflexion
points are typical for bipolar membranes but in monopolar membranes it can occur
because of a bipolar layer formed by the recombination of the metals and hydroxide
ions, since the pH in the surface of the anion-exchange membrane can achieve

Fig. 5 Chronopotentiometric curves for solutions with pH equal to a 10, b 11 and c 12
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extreme values because of the OH− ions passage [24–26]. As it can be seen in the
speciation diagram of Fig. 2, in pH 10, 11 or 12 it does not occur formation of an
insoluble specie in the solution with cupric ions proportion of 50%.

Conclusions

Chronopotentiometric curves were effectively constructed and their behaviors were
evaluated in function of the cupric ions proportion and pH of the solution. The
curves obtained for 30%, 50% and 70% were typical for monopolar membranes and
did not show an unexpected behavior. Hence, it was not verified the influence of the
increase of cupric ions on the formation of a bipolar layer at the membrane surface.

Finally, the pH of the solution was evaluated and it was verified that typical
chronopotentiometric curves for monopolar membranes were also obtained for pH
10, 11 and 12. Although the pH can achieve extreme values due to the rapid
transport of hydroxyl ions, in this case it was not verified formation of an insoluble
specie as a consequence of the recombination of the metals and hydroxide ions.

We suggest the application of higher current densities using the same solution
composition to confirm the absence of precipitate formation, which can occur due
to the smaller size of hydroxyl ions.
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High Temperature Crystallization Kinetics
of MgSO4 � H2O

Kristine Bruce Wanderley, Denise Crocce Romano Espinosa
and Jorge Alberto Soares Tenório

Abstract Magnesium is present in nickels leach liquor and it is often disposed in
waste barriers. However, new technologies with the aim of recuperating magnesium
and other metals in the liquor have proven that it is possible to reduce the amount of
metal lost during nickel ore processing. In this context, high temperature crystal-
lization removes magnesium, with a concentration of 8 g/L, as MgSO4 � H2O from
the leach liquor. Kinetic studies of this process are needed to evaluate the ther-
modynamics of the growth of crystals. Thus, this work aims to study the crystal-
lization kinetics of MgSO4 � H2O. Temperatures of 230, 210 and 200 °C were
investigated in a batch crystallization system in solutions with pH2. Aliquots were
taken at each hour up to 5 h of time residence and analysed by ion chromatography
for magnesium concentration. The reaction mechanism as well as rate constant and
activation energy for each reaction temperature were obtained.

Keywords Monohydrate � Leachate liquor � Avrami model

Introduction

Nickel is present in various materials and thus plays a major role in societies
everyday life. However, mining of nickel ores to obtain nickel generates large
volumes of waste which are carried to waste barriers. This waste consists of an
aqueous solution with dissolved metals and is called liquor. A typical composition
of the leach liquor consists of 5 g/L Ni2+, 0,3 g/L Co2+, 23 g/L Fe3+, 6 g/L Al3+,
1 g/L Cr3+, 1 g/L Mn2+, 8 g/L Mg2+ [1].

In order to minimize environmental impacts caused by waste barriers and also to
reuse metal values both present and lost in the barrier, these metals must be
recovered. To recover these metals values from solution, processes such as
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precipitation/crystallization, solvent extraction and ion exchange may be carried out
[2, 3]. Magnesium, which is present in the liquor as magnesium sulphate, may be
removed from solution by crystallization.

The system MgSO4-H2O is very complex since temperature and humidity
influence the transformation of the salt in different hydrated forms, each one being
stable at a certain temperature and pressure [4, 5]. The three main stable forms are
the heptahydrate (seven water molecules), which is stable at temperatures below
52 °C, hexahydrate (six water molecules), stable from 52 to 71 °C and monohy-
drate (one water molecule) which is stable at temperatures above 71 °C [6].
Therefore, as the temperature rises less hydrated forms are being formed.

The solubility curve for this salt begins with an increase in solubility with the
increase in temperature. However, as the hydrated salt reaches one molecule of
water, an inverse solubility is observed and the solubility decreases with the
increase of temperature. Therefore, the monohydrate presents the lowest solubility
at around 200 °C as can be seen from Fig. 1. Therefore, the present study aims to
investigate the crystallization kinetics of the formation of MgSO4.H2O at 230 °C at
pH 2 at different time residences.

Johnson-Mehl-Avrami-Kolmogorov (JMAK) describes a kinetic model in which
the extent of the crystallization of a material occurs as a function of time and
temperature. The model describes the temporal dependence of the crystallized
fraction (x) as follows [8]:

X ¼ 1� e�ktn ð1Þ

where,

X = Crystallized fraction;
K = Rate constant;

Fig. 1 Solubility curve of MgSO4 [7]
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n = Index of reaction

Equation 1 may be written in the logarithmic form:

� lnð1� XÞ ¼ ktn ð2Þ

The index of reaction in the Avrami model corresponds to the sum of two
constants that represent the mechanisms of crystallization in terms of steps in the
process of crystallization and dimensionality of the growth process [9]. Table 1
shows how the value of n corresponds to the crystallization mechanism.

Values of k and n are evaluated by the logarithmic of Eq. 2 resulting in Eq. 3.

ln½� lnð1� XÞ ¼ lnðkÞþ n lnðtÞ ð3Þ

The plot of ln [- ln (1-X) ] as a function of ln(t) results in a straight line having a
slope of n and an intercept of ln k.

Materials and Methods

A solution with a concentration of 8 g/L of magnesium was prepared using mag-
nesium sulphate heptahydrate and deionized water. This concentration corresponds
to the concentration found in the leaching liquor of nickel limonite ore.

Batch experiments were carried out using a pressure reactor, shown in Fig. 2.
The pH of the MgSO4 solution was adjusted to 2 with the addition of H2SO4 1 M.
A volume of 200 mL of the solution was placed inside the reactor. Agitation speed
was maintained at 1000 rpm throughout the residence time of 1, 2, 3, 4 and 5 h of
operation at temperatures of 230, 210 and 200 °C.

The aliquots taken each hour were analyzed by ion chromatography to quantify
residual magnesium in the solution. The crystals formed were analysed by DRX
and MEV-EDS to evaluate the morphology and composition of the product.
Product size distribution of the crystal was also carried out by sieve agitators.

Table 1 Values of n and the
corresponding crystallization
mechanism

Implied mechanism n

Diffusion controlled 0.54–0.62

Phase boundary 1.07–1.11

Nucleation and growth 2.00, 3.00

Zero order 1.24

First order 1.00
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Results and Discussion

Removal of Magnesium from Mother Liquor

The aliquots taken were analyzed by ion chromatography for magnesium concen-
tration and indicate that the residence time of 5 h at 230 °C favored the removal of
magnesium from solution and thus was the optimum time for crystallization
amongst the investigated.

Figure 3 shows the percentage of magnesium removed from solution at tem-
peratures of 230, 210 and 200 at 1 to 5 h of residence time.

Crystallization Kinetics

The values of magnesium crystallization at each temperature were applied to Eq. 3
and ln [− ln (1 − X) ] as a function of ln(t) was plotted in Fig. 4.

Table 2 shows the values obtained from the straight line in Fig. 3 for n, k and R2.

Fig. 2 Pressure reactor used
in the present study
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The distribution coefficient values (R2) of 0.97, 0.95 and 0.94 for temperatures
of 230, 210 and 200 °C, respectively, indicate that the study data follow the Avrami
model.

Fig. 3 Magnesium %
removal at temperatures of
230, 210 and 200 at pH 2 °C
as a function of time

Fig. 4 Avrami model applied
to the results of crystallization
at temperatures of 230, 210
and 200 °C

Table 2 Values of n, k and
R2 obtained from the Avrami
model

T (°C) n k (1/h) R2

230 0,55 0,30 0,97

210 1,08 0,08 0,95

200 1,96 0,02 0,94
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Also, the index of reaction equal to 0,55 suggest that crystallization mechanism
is controlled by diffusion at 230 °C. At 210 °C the mechanism is controlled by
phase boundary and at 200 °C it is controlled by nucleation and growth.

The highest rate constant was for the temperature of 230 °C with a value of
0.30 h−1 and the lowest rate of 0.02 h−1 for the run performed at 200 ° C. This is
due to the fact that the higher the temperature the more energy the molecules have,
thus collision occurs and consequently a higher velocity rates are expected.

Activation Energy

Svante August Arrhenius in the late 1800 s suggested that the rate constant, k,
varies with the system temperature according to Eq. 4 [8]. This equation, known as
the Arrhenius equation, relates the reaction rate to temperature.

k ¼ A � e�Ea=RT ð4Þ

where,

k = rate constant (t−1);
A = frequency factor (m−1);
Ea = activation energy (kJ/mol);
R = gas constant (J/mol.K);
T = temperature (K)

The linearization of Eq. 4 results in Eq. 5:

lnk ¼ lnA� Ea
R

� 1
T

ð5Þ

The plot of ln k as a function of the inverse of the temperature results in a
straight line having a slope of -Ea/R and an intercept of ln A, as shown in Fig. 5.
The values o k and of temperature used are those shown in Table 2.

From the equation of the straight line, the activation energy is equal to 172 kJ/
mol (41 kcal/mol) and ln A equal to 40,2

Product Characterization

Morphology

Samples of the crystals formed at 230 °C and at 5 h were analyzed by SEM-EDS,
as shown in Fig. 6.
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Three peaks corresponding to O, Mg and S may be seen and the SEM image
shows irregular shaped crystals surrounding an elongated crystal in the center.

Composition

DRX analysis of the product formed at each hour formed at 230 °C was carried out.
As can be seen from Fig. 7, the peaks shown in the diffractograms increase in

intensity with increasing residence time. This represents a typical progression of

Fig. 5 Plot of ln k as a function of the inverse of the temperature

Fig. 6 SEM-EDS of crystals formed at 230 °C and at 5 h
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crystallization as a function of residence time, as evaluated by XRD, since larger
residence times allow greater crystalline growth and therefore more intense peaks
are observed [10].

It is noteworthy that although peak intensities varied according to residence
time, the composition of each peak was related to magnesium sulfate monohydrate.

Conclusion

Crystallization kinetics of magnesium sulphate monohydrate was studied at three
different temperatures: 230, 210 and 200 °C with residence time varying from 1 to
5 h. Magnesium removal from solution increased with the increase in residence
time and temperature of the system.

At 5 h of residence time and at 230 °C, the removal of from solution was
favoured compared to the other temperatures.

The distribution coefficient values (R2) of 0.97, 0.95 and 0.94 for temperatures
of 230, 210 and 200 °C, respectively, indicate that the study data follow the Avrami
model.

Applying experimental data to the Arrhenius equation it was possible to obtain a
value of 172 kJ/mol (41 kcal/mol) for the activation energy.

MEV-EDS analysis showed a heterogeneous crystal growth and DRX analysis
proved that the crystals formed were composed of magnesium sulphate
monohydrate.

Fig. 7 X-ray diffraction
(XRD) data for crystals
formed at 230°C at each hour
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Preparation of Glass-Ceramic
from Titanium-Bearing Blast Furnace Slag
by “Petrurgic” Method

Kuiyuan Chen, Yu Li, Long Meng, Yaodong Yi and Zhancheng Guo

Abstract Blast furnace slag is the main by-product discharged in the iron and steel
industry and contains considerable waste heat at dischargeing temperature between
1450 and 1550 °C. To fully utilize waste heat and slag, this study directly converted
high temperature liquid Ti-bearing blast furnace slag into glass-ceramics via the
“Petrurgic” method. Samples at different crystallization temperature were prepared
and its influence on crystal phases, pore structure, and compressive strength were
investigated via SEM, XRD techniques, and compressive strength measurements.
Results showed that all glass-ceramic samples contained main crystals of per-
ovskite, diopside and gehlenite and had a qualified mechanical performance with
compressive strength above 100 Mpa, which meets the requirement of Chinese
national standard for natural granite stone. With increasing crystallization temper-
ature, pore size decreased, while the size of the perovskite phase firstly decreased
and then increased with decreasing crystallization temperature. Samples had an
optimum crystallization temperature of 1215 °C, maximum grain size and a den-
sified structure with minimal pore defect.
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Introduction

Blast furnace (BF) slag is the main by-product of the iron and steel industry.
Discharged between 1450 and 1550 °C, the slag contains considerable metallur-
gical waste heat. In 2014, China’s crude steel output reached 823 million tons,
resulting in about 274 million tons of BF slag [1], with a waste heat equivalent to
1590 tons of standard coal.

At present, the water quenching technique is the most effective disposal method
for slag to obtain glass structure. However, it not only consumes excessive water,
but also does not effectively utilize heat. To pursue the sustainable development of
iron and steel industry and to meet the increasing demand for higher value added
products, an efficient method of integrated recovery of waste heat and utilization of
BF slag is urgently required. Therefore, an exploration of glass-ceramic prepared
from BF slag using the “Petrurgic” method is meaningful.

The main components of BF slag are CaO, SiO2, Al2O3, and MgO, which can be
used to produce cement and glass ceramics [2]. In contrast to ceramics,
glass-ceramics are fine-grained polycrystalline materials that are formed when
glasses of suitable compositions are heat treated and thus undergo controlled
crystallization to a lower energy, crystalline state [3, 4]. Heat treatment is critical for
the attainment of an acceptable and reproducible product. Usually a glass-ceramic is
not fully crystalline; typically the microstructure is 50–95 vol.% crystalline with the
remainder being residual glass. One or more crystalline phases might form during
heat treatment and since their composition normally differs from the parent glass,
the composition of the residual glass also differs from the parent glass.

The conventional method for producing a glass-ceramic is to devitrify the glass
via two-stage heat treatment (Fig. 1b). The first stage consists of a low temperature
heat treatment at a temperature that provides a high nucleation rate (around TN in
Fig. 1a) thus forming a high nuclei density throughout the interior of the glass.
A high nuclei density is important as it leads to the desirable microstructure con-
sisting of a large number of small crystals. The second stage consists of a higher
temperature heat treatment at around temperature TG, which leads to growth of the
nuclei at a reasonable rate. The parent glass may be shaped prior to the crystal-
lization, employing any of the well-established and traditional glass shaping
methods such as casting and forming [3–6] or more specialized methods such as
extrusion [7–9]. Glass production and subsequent heat treatments are generally
energy intensive and thus expensive.

The reason for such two-stage heat treatment of the glass is a consequence of the
limited overlap between nucleation and growth rate curves (Fig. 1a). If an extensive
overlap region of the rate curves exists, nucleation and growth can simultaneously
take place during a single-stage heat treatment at temperature TNG as indicated in
Fig. 2. The rate curves, and the nucleation rate curve in particular, is sensitive to
composition. Therefore, by optimizing the glass composition in some cases, such as
for the nuclear reagent, the nucleation rate curve may be moved toward the overlap
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region with the growth rate curve. This is the first implementation of the glass
ceramic system known as “Silceram” [10], which will be discussed below (Fig. 3).

It has been reported to make little difference whether the glass was heated up to
TNG from room temperature or whether the molten glass was cooled to TNG [10].
Both results in the production of specific glass ceramics via controlled, usually very
slow cooling from molten maternal glass, without a waiting period at an interme-
diate temperature. In the recent literature, this method is called the “petrurgic”
method [11, 12], and can be used for nucleation and crystal growth during the
cooling process. Traditional methods (single stage) and “petrurgic” methods are
more economical than traditional methods (two-stage). However, the “petrurgic”
method can directly use blast furnace slag, which saves a considerable energy
compared to traditional methods. Therefore, the glass-ceramic produced with this

Fig. 1 Two-stage method. a Temperature dependence of the nucleation and growth rates with
negligible overlap and b two-stage heat treatment

Fig. 2 One-stage method. a Temperature dependence of the nucleation and growth rates with
significant overlap and b single-stage heat treatment
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method requires less energy consumption and produces less pollution, has a simpler
process, and thus has great economic benefits. This article will introduce in detail,
the glass-ceramic prepared via the “petrurgic” method from hot BF slag.

Experimental Procedure

Material

The BF slag (provided by the Panzhihua Iron and Steel Corporation of China) was
pulverized via ball milling for about 1 h (arriving at a size below 74 lm). Then the
slag was analyzed via X-ray fluoroscopy (SHIMADZU XRF-1800) to determine
the content of slag, as indicated in Table 1. XRD measurements were performed to
determine the original phase content of samples, as indicated in Fig. 4. The XRD
patterns were obtained using a Rigaku XRD-D/max-1200 system with a scanning
speed of 10° min−1. Fig. 4 shows that the original phase of the slag was not
amorphous. To conduct a DTA analysis on that slag, slag melting and water
quenching were required. Then, 100 g slag powder was put into a graphite crucible
(50 mm inner diameter and 80 mm height) and melted under an argon atmosphere
at 1773 K (1500 °C) for 1 h in a MoSi2 furnace to homogenize the slag. After
melting, the slag was taken out for water quenching. Subsequently, the slag was
pulverized via electromagnetic crushing for about 2 min (size below 74 lm), and
the XRD test was conducted, as indicated in Fig. 5.

Fig. 3 Petrurgic method. a Temperature dependence of the nucleation and growth rates with
significant overlap and b petrurgic treatment

Table 1 Composition of titanium-bearing slag powder

Component CaO SiO2 Al2O3 MgO FeO TiO2 K2O NaO

Content/% 27.35 24.69 13.00 7.41 1.23 21.44 0.80 0.62
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Differential Thermal Analysis (DTA)

A DAT instrument was applied to analyze the characteristic temperature of the blast
furnace slag, including the glass transition temperature, crystallization peak tem-
perature, and melt temperature with the temperature accuracy of ±0.05 °C. The
sample was requested for 15 mg with 200 mesh powder. Sample analysis was
conducted in argon atmosphere with a heating rate of 10 °C/min at a temperature
range of 0–1200 °C, as indicated in Fig. 6.

Fig. 4 XRD of original slag

Fig. 5 XRD of water
quenched slag
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Thermodynamic Calculation

The equilibrium phases of the normalized titanium-bearing slag (CaO-SiO2-Al2O3-
MgO-TiO2 quinary system) at different temperatures were calculated via using
FactSage 7.0, as shown in Fig. 7. It can be seen that the melting temperature of the
slag was predicted to be 1440 °C. Perovskite is the primary phase crystal from the
molten slag obtained during cooling. Titania spinel and CaAl2Si2O8 are predicted to

Fig. 6 Different thermal
analysis of water quenched
slag

Fig. 7 Theoretical equilibrium phases of the normalized titanium-bearing slag at different
temperatures (SLAGA, liquid slag; CaTiO3, perovskite; cPyrA, clinopyroxene; TiSp, titania
spinel)
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crystallize at 1310 and 1235 °C, respectively. At the end of solidification,
clinopyroxene is predicted to crystallize at 1215 °C. The perovskite phase provides
the biggest percentage of phases above 1220 °C. The proportion of each phase is no
longer changed below 1210 °C. Clinopyroxene and perovskite are similar in con-
tent with a content of about 40% and titanium spinel provides the smallest per-
centage with a content of about 8%.

Sample Preparation

According to Fig. 6, the crystallization peak temperatures were 850, 915, and
1176 °C. As clinopyroxene is predicted to crystallize at 1215 °C, to explore the
equispaced temperature in higher temperature and one crystallization temperature
upon 1200 °C, the following crystallization temperatures were selected 850, 915,
1015, 1115, and 1215 °C. Each sample consisted of 40 grams, and was heated to
1500 °C in a muffle furnace and insulated for 1 h, then cooled to 850, 915, 1015,
1115, and 1215 °C and retained at these temperatures for 1 h, respectively.
Afterwards, the sample was cooled to for 650 °C and retained 1 h. The
glass-ceramics sample was cleaned in an ultrasonic cleaning apparatus for 10 min.
Samples were divided longitudinally, half of them were used to investigate the
macro structure and were then polished for the SEM test, while the other half were
broken in the electromagnetic for crusher about 2 min (below 74 lm), and were
used for XRD analysis. The microstructure of the glass-ceramics was obtained via
SEM (JSM-5310, JEOL) at an accelerating voltage of 15 kV. The samples were
polished via SiC powder (2000 mesh) and chemically etched for 1 min in 5 mass%
HF (0.5 mol/l). The other samples with parts that contained holes were horizontally
cut off to test the compressive strength. The compression strength (plate-to-plate)
was recorded with a Zwick Benchtop tensile/compression tester (Ulm, Germany) at
a crosshead speed of 0.5 mm/min.

Results and Discussion

Macro Structure

The macro structures of samples with different crystallization temperatures were
shown in Fig. 8. According to Fig. 8, the pores of all samples were in the upper part
besides the sample with a crystallization temperature of 915 °C. The size of the
pores in the samples were decreased with increasing crystallization temperature.
The heat transfer schematic diagram in the crucible was shown in Fig. 9. The heat
was focused on the slag surface, and then moved from the surface of the BF slag to
the inside of the BF slag. Finally the heat radiation was transferred from the bottom
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of the crucible. Liu et al. reported that the bottom temperature of the crucible was
71.3 K lower than the surface temperature of the slag, and the temperature of the
crucible wall was lower [13]. During the continuous cooling process, the melt in the

Fig. 8 Macro structures of samples with different crystallization temperatures: a 850 °C;
b 915 °C; c 1015 °C; d 1115 °C; e 1215 °C

Fig. 9 Schematic diagram of
heat transfer in slag sample
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crucible had a sufficient time for heat transfer in the crucible. The heat dissipation
direction of the melt moved from introversion to outside through the wall of the
crucible, leading to a decrease of temperature of the bottom and outer walls of the
crucible. Therefore, the bottom and outer walls of the crucible priority solidified
during the cooling process. The higher the crystal temperature, the lower the degree
of supercooling was, the difference between the inside and the outside temperature
and the viscosity were small and the inner and outer shrinkage was more consistent
when the slag changed from the liquid phase to the solid phase, resulting in smaller
pores.

Crystalline Phase

The XRD patterns of samples with different crystallization temperature are shown
in Fig. 10. According to Fig. 8, the main phases of samples with different crys-
tallization temperature were perovskite, diopside-alunimian and gehlenite. In gen-
eral, a stronger peak results in greater crystallinity, while a weaker peak with greater
width results in thinner grain [14]. The intensity and crystallinity of the diffraction
peak had a specific relationship; however, this was not the only factor that deter-
mines the crystallinity. The lower base of the graph and higher intensity of the

Fig. 10 XRD patterns of
samples with different
crystallization temperature
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diffraction peak result in sharper diffraction peak and the better crystal quality. The
test method was usually determined by the ratio between the area of the crystal peak
and the total area; however, this was only a relative value.

According to Fig. 10, we knew all the peak types were sharp and the intensity of
the peaks varied with temperature. A previous theory suggested that the crystal
content (perovskite > diopside > gehlenite with a larger difference) was the least
for a crystallization temperature of 850 °C, the crystal content (per-
ovskite > diopside > gehlenite with a smaller difference) was the second largest but
the relative content of diopside was the most for a crystallization temperature of
915 °C, the crystal content (perovskite > diopside > gehlenite with a larger dif-
ference) was the third largest but the relative content of perovskite was the most for
a crystallization temperature of 1015 °C, the crystal content (per-
ovskite > gehlenite > diopside with a small difference) was the fourth largest for a
crystallization temperature of 1115 °C, the crystal content (gehlenite > per-
ovskite > diopside with a small difference) was even smaller but the relative con-
tent of gehlenite was largest for a crystallization temperature of 1115 °C.

Microstructural Analysis

The SEM micrographs of relevant glass–ceramic microstructures are shown in
Fig. 11. The EDS of the bright white area are shown in Fig. 12. Fig. 12 shows that
the bright white area was perovskite. As a result, the dendrites observed were

Fig. 11 The microstructure of samples with different crystallization temperatures at 500X
magnification: a 850 °C; b 915 °C; c 1015 °C; d 1115 °C; e 1215 °C
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perovskite, while gehlenite and diopside were not observed probably because they
had no clear specific crystal morphology within observable experimental temper-
ature or because their size was too small to be detected.

According to Fig. 11, the grain size was decreased and then increased
with decreasing crystallization temperature. The grain size reached a maximum at
1215 °C and a minimum at 1015 °C. Although the slag structure was complex, the
solidification process of the perovskite still followed the theory of crystal precipi-
tation [15]. The CaO - SiO2 - TiO2 - Al2O3 - MgO quinary system slag was formed
via single ion (Ca2+, Mg2+, O2−, Ti2+, Ti3+) and composite anion (SiO4

4−, AlO2
1−,

TiO3
2−) [16]. The perovskite phase consisted of Ca2+ and TiO3

2−. The dendrite
array grew toward the same direction where the primary dendrite trunks were
parallel to each other. The secondary dendrite arms grew in the perpendicular
direction with the primary truck and stopped growing when they encountered with
each other. The concentration of Ca2+ and TiO3

2− in the surrounding dendrites was
lower as perovskite with high melting temperature precipitated. At high tempera-
ture, the viscosity was low and the resistance of the ion movement was small.
Therefore, the size of perovskite particles was largest at 1215 °C. The viscosity
increased with decreasing crystallization temperature, the resistance of ion move-
ment enlarged, resulting in smaller and smaller grains until 1015 °C. When the
crystallization temperature continued to decrease, the degree of supercooling
became greater, the driving force of crystallization became greater. This also gave
more time for the precipitation of perovskite. As a result, the crystals were getting
bigger.

Fig. 12 EDS of bright white area
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The crystal content was defined as the ratio between the crystal region and the
whole field of vision. Therefore, the content of perovskite was maximal at 1015 °C,
which was consistent with the results of the XRD analysis. The sample at 915 °C had
almost no micro holes. The micro holes of the sample of 1215 °C treatment was
larger while the micro holes of sample of 850 °C treatment were more numerous.

Mechanical Properties

Compressive strength was an important mechanical property of microcrystalline
glass-ceramic especially in the application of building materials and decorative
materials. The compression strength of samples is shown in Fig. 13. Fig. 13 shows
that the compressive strength of all specimens were above 100 MPa, which met the
requirements of natural stone (granite � 100 MPa and marble � 50 MPa). The
compression strength of the 915 °C temperature sample was maximal while the
compression strength of the 1215 °C temperature sample was minimal. The com-
pression strength of 850 °C temperature sample was slightly larger than that of the
1215 °C temperature sample.

The compressive strength depended on both the amount and size of the crystal
and the number of micro voids. In general, the more the crystal content was, the
smaller and more homogeneous the grain size was, and the better the sample per-
formance followed: In general, the priority order of good performance of minerals
was diopside > perovskite > gehlenite. Furthermore, the better the density was, the
less the hole was, the better the performance was. In the condition of 915 °C, and the
highest proportion of diopside, the small and homogeneous distribution of the
perovskite particles and the good density with few micro holes, the compressive
strength was maximal. The compressive strength of sample of 1215 °C condition
was minimal due to the highest proportion of gehlenite, the big perovskite particles

Fig. 13 Compression
strength of samples a 850 °C;
b 915 °C; c 1015 °C;
d 1115 °C; e 1215 °C
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and the poor density with larger micro holes. Since the sample in the condition of
850 °C had the least crystal content and poor density with many micro holes, the
compressive strength was similar to that of the 1215 °C temperature sample.

These datas of the mechanical properties supplied the lower half of the samples,
without considering the influence of macro holes. However, if the holes were
considered, the samples with higher temperature heat treatment would have higher
strength, while the mechanical performance of the large cavity will be much lower.
Therefore, the best crystallization temperature was 1215 °C comprehensively
considering the factors of compressive strength and holes.

Conclusion

In this paper, studies on converting titanium-bearing BF slag directly into glass
ceramics have been conducted. Glass-ceramic prepared via titanium-bearing BF slag
using the “Petrurgic” method is feasible. By this method, slag and its waste heat
could be simultaneously reused with simpler process, lower cost, fewer environ-
mental pollutions and higher economic benefits than those by the traditional method.
From this research, the following main conclusions could be simultaneously:

(1) The size of pores defects in the samples simultaneously crystallization tem-
perature, which was mainly caused by rapider solidification speed of outside
liquid slag than that of inside liquid slag due to temperature difference between
the inside and the outside temperature of the slag in crucible when it was
undergoing a rapid cooling process.

(2) All glass-ceramic samples contained main crystals of perovskite, diopside, and
gehlenite. Grain size of perovskite crystals firstly decreased and then increased
as the crystallization temperature decreased, and reached a maximum at 1215 °C
and reached a minimum at 1015 °C.

(3) The compressive strength of all specimens were above 100 MPa, which met the
requirements of Chinese national standard for natural stone (granite and marble).
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Recovery of Copper from Nickel Laterite
Leach Waste by Chemical Reduction
Using Sodium Dithionite

A. B. Botelho Junior, I. A. Anes, M. A. Carvalho, D. C. R. Espinosa
and J. A. S. Tenório

Abstract Recovery of metals from reserves with low grade and from waste with
high presence of contamination is a challenge to be overcome. Metals like nickel,
cobalt and copper could be recovery from nickel laterite leach waste by many
different processes. Among recovery processes that could be applied are ion
exchange, solvent extraction and precipitation. The aim of this work was recover
copper from liquor of nickel laterite by precipitation using chemical reduction.
Copper concentration in liquor was 146 mg L−1 and reducing agent used was
sodium dithionite 1 mol L−1. Influence of stirring speed was studied between 0–
200 rpm. Results indicated a selective precipitation of copper on solution with
others metals at 240 mV. The analyzes were conducted in SEM, energy-dispersive
X-ray spectroscopy and XRD, that indicated presence of copper and sulfur.

Keywords Precipitation � Reducing process � Mining � Low grade ore

Introduction

There are two principal nickel ore types: sulfides and laterites. Laterites ores rep-
resent 72% of resources, but only 42% of primary nickel production. This occurs
mainly because the difficulty of processing laterite ores compared to sulfides, that
requires extensive and complex treatment, making it more expansive [1, 2].
Technologies has been developed in order to make the processing from laterite ores
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economically feasible. Among these technologies are high pressure acid leaching
(HPAL) and atmospheric acid leaching (AL) using sulphuric acid as leaching agent
[3, 4]. Besides nickel extraction, cobalt and copper could be also present in mineral
and in solution obtained by leaching process [5–7].

In order to recover these metals from liquor generate in leaching step, there are
ion exchange [8, 9], solvent extraction [10, 11] and precipitation [7, 12]. The
problem of precipitation process is that, if use hydroxides to precipitate iron present
in liquor at high concentration, it will precipitate with others metals like cobalt and
copper, and further purification steps will be required [7]. Precipitation by reducing
potential may be a solution to recover metals selectively.

Sodium dithionite is used to recover copper from solutions by reducing process.
Chou et al. [13, 14] studied recovery process by chemical reduction using sodium
dithionite on wastewater containing copper contaminated with ligands composts.
Sodium dithionite could be applied as reducing agent in nickel laterite liquor, in
order to reduce Fe(III) to Fe(II) [15].

The goal of this work was recovery copper from synthetic solution of nickel
laterite, to simulate conditions of liquor obtained from leaching step using sulphuric
acid. Influence of stirring speed was verified: 0, 45, 90, 150 and 200 rpm. Precipitate
obtained by reducing process was analyzed at scanning electron microscope (SEM),
energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD).

Materials and Methods

Sodium dithionite solution 1 mol L−1 was used in order to reduce potential of
solution until 240 mV. Synthetic solution had follow composition: Al
(4101 mg L−1), Co (78 mg L−1), Cu (147 mg L−1), Cr (195 mg L−1), Fe
(18713 mg L−1), Mg (7774 mg L−1), Mn (387 mg L−1), Ni (2434 mg L−1) and Zn
(37 mg L−1). The synthetic solution was prepared in order to simulate real conditions
of leach solution of nickel laterite waste. The pH was adjusted at 0.5 using sulphuric
acid concentrated P.A. Experiments were realized at 25 °C during 120 min.

Potential was measured at t = 0 and at t = 120 min using an electrode Ag/AgCl
(3 mol L−1). Synthetic solution with reducing agent was analyzed at different
stirring speeds: 0, 45, 90, 150 and 200 rpm. Metals concentration was analyzed at
Energy-dispersive X-ray spectroscopy (EDX), and precipitate was analyzed at
scanning electron microscope (SEM/EDS) and X-ray Diffraction (XRD).

Results and Discussion

Figure 1 presents percentage of copper removal by precipitation process using
sodium dithionite as reducing agent for each stirring speed. Experiment realized
without stirring speed (0 rpm), 94 ± 5% of copper present in solution precipitate.
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This percentage of removal was observed also on 45 and 90 rpm. However, a
different percent was observed on 150 and 200 rpm, that 85% ± 5% and
78% ± 5% of copper was removed, respectively. These results indicate that re-
ducing process has efficiency decreased, while stirring speed increase.

When percentage of copper removal is compared with potential of solution after
120 min of time reaction, it was verified that potential at t = 0 increase while
stirring speed increase, possibly due to solution aeration during experiment, in

Fig. 1 Percentage of copper removal varying stirring speed

Fig. 2 EDS analyses and SEM of dried precipitate obtained after reducing process at pH 0.5
and 25 °C
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which oxygen from air could have behave as oxidant agent in solution. On 45 rpm,
potential at t = 120 was 410 mV, while on 150 rpm was 440 mV, that it has been
enough to oxidize copper again to solution as Cu(II).

Precipitate obtained was analyzed in XRD and SEM/EDS. Figure 2 present
result of EDS analyses and SEM of dried precipitate, that was verify presence of
only copper and sulfur. Using XRD analyses (Fig. 3), it was determined that the
precipitate’s composition was 77 ± 5% CuxSy.

Table 1 present composts of precipitate. Chalcocite and Djurleite are two copper
sulfides obtained by process, that represent 77 ± 5% of solid. Sulfur, that represent
23 ± 5% of solid, could be form due to high quantity of sulphate present in solid in
which the conditions of experiment was realized sulfur could precipitate, but also
due to sodium dithionite decomposition [16].

Conclusion

Precipitation by reducing process demonstrated be efficient to separate selectively
copper from liquor with presence of many metals different. Synthetic solution was
prepared to simulate real conditions of real leach solution of nickel laterite waste.
Results shows that working with potential, it is possible precipitate only one metal,
where MEV/EDS analyses detected only copper and sulphur at precipitate obtained,

Fig. 3 XRD of dried precipitate obtained after reducing process at pH 0.5

Table 1 Composts obtained
on precipitation by reducing
process determined using
XDR

Formula %

Chalcocite Cu2S 29

Djurleite Cu31S16 48

Sulfur S8 23

Total 100

CuxSy 77%

432 A. B. Botelho Junior et al.



indicating a selective precipitation. This precipitate could be dissolved easily for
any applications. The problem with other methods of metals separation by pre-
cipitation is co-precipitation, that will be necessary more steps of purification. By
reducing process, it will be not necessary.
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Recovery of Nickel and Cobalt
from a Waste Zone of Nickel Laterite Ore
Using a Mixture of Extractants in Solvent
Extraction Technique

Paula Aliprandini, Mónica M. Jiménez Correa, Jorge A. Soares
Tenório and Denise Crocce Romano Espinosa

Abstract The surface zone of nickel laterite ore is generally considered as residue.
However, because of the depletion of ore sources and the increase in demand, this
previously discarded zone may now be processed economically for nickel and
cobalt. After leaching and removal of the impurities, the solution contains cobalt,
magnesium, manganese and nickel. Solvent extraction is a hydrometallurgical
technique used in the separation of metals from aqueous solutions. Cyanex 272 and
D2EHPA are extractants used to separate nickel from cobalt. The mixture of
extractants can change the performance during the metals extraction. This work
aims to evaluate the solvent extraction of nickel and cobalt when Cyanex 272 and
D2EHPA are mixed. The results showed that the increased concentration of
D2EHPA in the organic phase increased the extraction of nickel and magnesium.
However, cobalt extraction was reduced and the manganese extraction was not
altered.

Keywords Cobalt separation � Nickel separation � Cyanex 272
D2EPA � Hydrometallurgy

Introduction

Lateritic nickel ore is the major source of nickel. Approximately 60% of the world’s
nickel resources are found in laterites deposits [1]. The ore is divided into zones.
The superficial zone is known as limonite, followed by saprolite zone [2]. Due to
the different compositions, each zone is processed by a method.

Saprolite is the nickel-rich zone in the laterite ore [3]. For this reason, the zone is
used to recover nickel. The high nickel concentration is usually linked to high
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magnesium concentration [4]. Because of this, saprolite tend to be treated by
pyrometallurgical process [5].

On the other hand, limonite is considered a low-grade resource of nickel. The
limonite zone contains between 1 and 1.8% nickel [6]. In addition, this zone is a
complex and heterogeneous mixture of metals [2, 7–10]. Other metals, such as iron
and aluminum, make up more than 40% of the ore and are considered impurities
[11, 12]. The low nickel concentration made the zone economically unviable and
therefore, used to be discarded. However, as grades drop across the world because
of the depletion of resources, limonite processing may become economical [13].
Besides nickel, cobalt can also be recovered from the limonite. Recovery of both
metals is of great commercial interest [4].

Because of high iron concentration, the pyrometallurgical processes make metals
recovery economical unattractive [5]. For this, hydrometallurgical techniques are
used to treat limonite ore. Sulfuric acid is the most commonly used leaching agent.
After leaching, several methods for metal separation and recovery are applied [2, 7].
The impurities are removed from leaching solution by precipitation processes
before nickel and cobalt recovery [14].

Solvent extraction technique is applied to the metals recovery, including sepa-
ration of nickel and cobalt [15–19]. This technique uses two immiscible solutions.
One phase is aqueous from a leaching process which contains dissolved metals. The
other phase is an organic solvent, which is composed of extractants and diluent [8,
17, 18, 20–22]. The extractants are capable of selectively extract metals from an
aqueous phase. The diluent makes the organic phase easier to handle, without
affecting the extraction process [8, 22]. The target metal ions are transferred from
the aqueous phase to the organic phase when the phases are mixed. After extraction
the aqueous phase is called the raffinate, while the organic phase is known as the
loaded organic [8, 18, 21, 23].

Cyanex 272 is a commercial extractant. The active component is bis-(2, 4,
4-trimethylpentyl) phosphinic acid (Fig. 1). Cyanex 272 can be used to separate
nickel and cobalt [2, 24, 25].

D2EHPA is another commercial extractant. D2EHPA is an acid extractant and
the active component is the di-(2-ethylhexyl) phosphoric acid. Its structure is shown
in Fig. 2 [25, 26].

According to Flet [25], the selectivity order for metals extraction with Cyanex
272 and D2EHPA follows the sequence:

Cyanex 272 : Feþ 3 [Zn[Cu[Co[Mg[Ca[Ni

D2EHPA : Feþ 3 [Zn[Ca[Cu[Mg[Co[Ni

Fig. 1 Commercial
extractant Cyanex 272 (bis (2,
4, 4-trimethylpentyl)
phosphinic acid)
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It could be observed that both extractants can be used to separate cobalt from
nickel. In addition, it is possible to extract magnesium before extract nickel.

This paper aims to study the solvent extraction behavior of cobalt, magnesium,
manganese and nickel using a mixture of Cyanex 272 and D2EHPA in the organic
phase. In theory, the metals extraction will increase with the mixture of extractants
classified as acid [22, 27].

The mixture of Cyanex 272 and D2EHPA was studied for the separation of some
metals. For Ahmadipour et al. [28] the mixture of the extractants increased the
separation factor between zinc and manganese. At pH 5 with 15% Cyanex 272 and
5% D2EHPA in the organic phase compared to only one extractant.

For Darvishi et al. [29] the separation of cobalt and nickel during the solvent
extraction was increased for a mixture of Cyanex 272 and D2EHPA at a concen-
tration ratio 1/1, compared to only D2EHPA.

It is expected that the mixture of extractant can improve the separation of metals.
For limonite ore, the separation of cobalt and nickel is focused on the beneficiation.

Experimental

For the study, a synthetic solution was prepared. The metals concentrations used are
shown in Table 1. Analytical grade metal sulfates were dissolved in deionized
water.

The synthetic solution was based on the leaching from limonite zone. Impurities
such as iron, aluminum and zinc were previously considered to be removed from
the leaching solution. Therefore, the metals remaining in the solution were cobalt,
magnesium, manganese and nickel. The pH of the aqueous solution was adjusted to
5 using 1 M NaOH. The value of pH was chosen based on a previous study [30].

The organic phase was prepared using two extractants: Cyanex 272 and
D2EHPA. They were mixed and the following relationships were used, as shown in
Table 2. Kerosene was used as diluent.

Fig. 2 The structure of
D2EHPA (Di-(2-ethylhexyl)
phosphoric acid)

Table 1 Metals concentrations in synthetic leach solution used for the study of solvent extraction

Metal Co Mg Mn Ni

Concentration (mg/L) 78 6350 360 2520
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Solvent extraction tests were carried out mixing equal volumes of aqueous and
organic solutions (40 mL). The experiments were conducted at room temperature
(25 ± 2 °C) with stirring for 20 min. The pH was maintained constant at 5 by
adding 1 M NaOH. A separatory glass funnel was used to separate the two phases
after extraction. The metals concentration in raffinate was determined by
Energy-dispersive X-ray spectroscopy (EDX) and the metal concentrations in the
loaded phase were calculated by mass balance.

The distribution ratio D (Eq. 1), the percentage of extraction %E (Eq. 2) and the
separation factor S (Eq. 3) were calculated as follows [8, 21].

D ¼ X½ �o
X½ �a

ð1Þ

S ¼ Dx

Dy
ð2Þ

%E ¼ D � 100
Va

Vo
þD

ð3Þ

where:

[X]o is the concentration of metal X in the organic phase;
[X]a is the concentration of metal X in the aqueous phase;
Dx is the distribution ratio of metal x;
Dy is the distribution ratio of metal y;
Va is the volume of aqueous solution;
Vo is the volume of organic solution

Results

Figure 3 shows the percentage of metals extraction from the synthetic leach
limonite solution using different organic systems. As can be seen in the figure,
manganese extraction was almost achieved in all the performed experiments. In
other words, Mn was not affected by changing the composition of the organic
solution. The cobalt extraction decreased from 90 to 74% with increasing D2EHPA
concentration in the organic phase. The extraction behavior of nickel and

Table 2 Composition of the
organic systems for different
Cyanex 272 to D2EHPA
ratios

Organic phases (v/v %)

Cyanex 272 20 15 10 5 0

D2EHPA 0 5 10 15 20

Kerosene 80 80 80 80 80
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magnesium changed when different organic phase composition were used. For both
metals, increasing the concentration of D2EHPA, increased the metals extraction.
Magnesium and nickel extraction were 59% and 27%, respectively, when organic
phase composition was 0% Cyanex 272 and 20% D2EHPA.

Cyanex 272 confirmed the selectivity theory for cobalt over nickel.
The distribution ratio D is a comparative value. It is a measure of their extraction

into the organic phase for each composition of the organic system. The higher the
value of D means the greater tendency to transfer ions from the aqueous phase to
the organic phase. Table 3 shows the values of D for the metals when the organic
phase was changed.

The values of D for manganese showed that the metal had the greatest tendency
to extract. However, the values of D for nickel showed the least tendency to extract,
especially when the organic phase was formed only by Cyanex. For cobalt, the
tendency to be extracted decreased with increasing of D2EHPA concentration.
Magnesium showed the opposite behavior.

The separation factor S represents the process selectivity for separating one ion
from another. Table 4 shows the S between cobalt and the other metals.

Fig. 3 Percentage of metals extracted from the synthetic leach solution with mixture of Cyanex
272 and D2EHPA in organic phase

Table 3 Distribution ratio of metals after solvent extraction with different organic systems

Organic phase DCo DMg DMn DNi

20% Cyanex 272 0% D2EHPA 12.31 0.37 134.45 0

15% Cyanex 272 5% D2EHPA 8.22 0.65 292.65 0

10% Cyanex 272 10% D2EHPA 7.65 0.87 208.82 0.05

5% Cyanex 272 15% D2EHPA 6.67 1.68 407.95 0.16

0% Cyanex 272 20% D2EHPA 4.01 2.03 105.57 0.51
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Based on Table 4, the best separation occurred between cobalt and nickel for all
organic systems, especially when the organic phase was formed by 20% Cyanex
272 and 0% D2EHPA. For nickel and magnesium, better separation from cobalt
were achieved with organic solution composed of only Cyanex 272. The worst
separation values were between cobalt and manganese, where SCo/Mn values were
less than 0.09 for all systems. This means that using Cyanex 272 alone or a
combination of this extractant with D2EHPA made it difficult to separate cobalt
from manganese.

The results presented showed that the combination of the extractants used in this
study had an unfavorable performance during the separation of cobalt and/or nickel
from magnesium and manganese impurities in leached limonite. The extraction of
magnesium was improved by D2EHPA presence. However, the presence of
D2EHPA also increased the nickel extraction. D2EHPA hindered the separation of
cobalt and nickel from the impurities from leached limonite.

However, further complementary studies will be required to further develop this
application.

Conclusions

The results from this study indicate that:

• Manganese extraction was almost complete in all the performed experiments.
This metal was not affected by changing the composition of the organic solution.

• The cobalt extraction decreased from 90 to 74% with increasing D2EHPA
concentration in the organic phase.

• Increasing the concentration of D2EHPA, increased the magnesium and nickel
extraction. When organic phase composition was 0% Cyanex 272 and 20%
D2EHPA, the extractions were 59% and 27%, respectively.

• For nickel and magnesium, better separation from cobalt were achieved with
organic solution composed of only Cyanex 272.

• The worst separation values were between cobalt and manganese.
• The combination of the extractants Cyanex 272 and D2EHPA had an unfa-

vorable performance during the separation of cobalt and nickel from magnesium
and manganese impurities in leached limonite.

Table 4 Separation factor between cobalt and the other metals using different organic systems

Organic phase SCo/Mg SCo/Mn SCo/Ni
20% Cyanex 272 0% D2EHPA 33.12 0.09 12309.39

15% Cyanex 272 5% D2EHPA 12.61 0.03 6023.65

10% Cyanex 272 10% D2EHPA 8.82 0.04 153.98

5% Cyanex 272 15% D2EHPA 3.98 0.02 42.84

0% Cyanex 272 20% D2EHPA 1.97 0.04 7.82
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Mechanical Behavior of White Ordinary
Portland Cement Paste with Iron Oxide
Powders Containing Arsenic

Manuela Castañeda and Henry A. Colorado

Abstract This paper is about the use and stabilization of iron oxide based powders
with arsenic contents coming from the purification of water. Cement paste samples
with 0.0, 2.5, 10 and 20wt% of waste were fabricated by mixing mechanically all
components. There are two main positive impacts of using this waste, first, this
waste is produced in large amounts worldwide, and therefore the stabilization has a
significant impact for the environment. Second, the waste can be used as an
admixture and filler for cement, and therefore reduce the amount of cement in the
concrete, which has a major impact in the CO2 footprint since cement industry
produces a lot of this gas. Compressive strength and density tests were tested after
28 days. Microstructure was analyzed with scanning electron microscopy and x-ray
diffraction. Results show that compressive strengths greater than 20 MPa were
obtained and the samples had calcite, portlandite and ettringite phases.

Keywords Arsenic � Water purification � Environmental � Cement

Introduction

Many countries experience an enormous issue with arsenic contaminating water
sources, such as Bangladesh where it is a public health emergency [1] considered
the largest poisoning of a population in history, and in many other nations
worldwide [2, 3].
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Drinking water with arsenic for a long-term in can cause cancer in the skin, lungs,
bladder and kidney. Arsenic has been associated with non-carcinogenic effects such
as diabetes, peripheral neuropathy, and cardiovascular diseases as well [4].

Some countries like USA and Canada have understood clearly the risks and
force the regulations to decrease the maximum allowable level from 50 to 10 lg/L
[5]. On the contrary, some developing countries have a lack in the regulation or
even no law of using arsenic in products such as pesticides and other massive
consume products potentially affected with arsenic contamination [6].

Several techniques have been developed in order to remove arsenic (such as As
(III) and As(IV)) from water or remediate a process with high arsenic contents:
arsenic removal by oxidation techniques, by phytoremedation, by coagulation-
flocculation, by electrocoagulation, adsorption, ion exchange, electrokinetics, and
membranes [7]. Particularly adsorption uses iron based sorbents [8, 9] and can
generate significant amount of ceramic powders (iron oxides based) difficult to
dispose because its arsenic contents.

This investigation aims to understand the valorization and effective stabilization
of iron oxide compounds containing arsenic in white ordinary Portland cement
(WOPC) paste, coming from the remediation process of water containing arsenic.
Previous research [10] presented the leachability and stabilization of
arsenic-bearing iron wastes with cement, so this paper focus in the mechanical
behavior in a similar mix.

Therefore, this paper looks for the understanding in the structure-property
relation of the cement paste with the mentioned waste in order to be used in
structural applications. Thus, compressive strength and density tests were con-
ducted over diverse formulations and analyzed by scanning electron microscopy
and x-ray diffraction. Other goal is to conduct investigation in arsenic contamina-
tion that can be applied in developing countries such as Colombia, where there are a
lack in both the regulation in arsenic in food and agriculture [6, 11] and solutions
for processing these type of wastes [12–14].

Experimental

White ordinary Portland cement (WOPC) was used in this research as a binder
material for the fabrication of a composite cementitious material stabilizing haz-
ardous waste. This waste is iron oxide containing arsenic. In all cases, water and
cement were mixed first, then the waste was added to the mix. Thus, in all samples,
water to cement ratio (W/C) was maintained 0.4. Samples with 0.0, 1.0, 2.5, 5.0, 10
and 20wt% of this iron oxide rust with arsenic contents. It was try to add up to
40wt% of waste but no successful samples were obtained, difficult to mix because
its lack of water and difficult to handle was well. Samples have been cured in
containers close to air contact and released at 28 days. A summary of the powders
used in the samples formulations is in Table 1.
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Compression tests were conducted in a universal Shimadzu Autograhp machine,
at a cross head speed of 1 mm/min, over at set of 6 samples per cement-waste
formulation. Sample dimensions were 20 mm diameter and 24 mm height. X-ray
diffraction (XRD) characterization was performed in a X’Pert PRO diffractometer
with Cu Ka radiation of 1.5406 Å) for all fabricated samples and raw waste, over
powdered samples. The XRD scanning was performed with 2h between 5 and 70°,
with a step size 0.02°. A JEOL JSM—6490 Scanning electron microscopy
(SEM) was utilized to observe the microstructure of cured cement samples. Density
tests were simply measured, over 6 samples, by weighting them and using their
measured dimensions for this estimation. For both compressive strength and density
the results were reported by the mean and its standard deviation.

Results and Analysis

Samples fabricated for compression and density tests are shown in Fig. 1. All these
cylinders were carefully prepared as flat cylinders in order to obtain actual values.

The morphology of the waste powder is shown in Fig. 2 taken in the SEM. The
powder is very fine in size, and have a complex shape mostly composed by many
agglomerated particles, see Fig. 2a. At high magnification, see Fig. 2b, magnesium

Table 1 Sample’s
composition fabricated in this
investigation from WOPC and
waste containing arsenic

Sample (wt%) Waste (wt%) WOPC (wt%)

0.0 0.0 100

1.0 1.0 99

2.5 2.5 97.5

5.0 5.0 95

10 10 90

20 20 80

Fig. 1 Samples fabricated in this research with different waste contents for compression and other
tests
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calcite and ferrihydrite phases appeared, which has been confirmed by the XRD
evaluation later presented. The ferrihydrite exhibits an agglomerated particle like
structure, with some of the individual particles going into the nanoscale. These
particles have a rounded shape. On the other hand, magnesium calcite shows a
complex branched structure, with some micro-plates consolidating a flower like
structure.

Fig. 2 Raw powder used as admixture for making cementitious samples at two different
magnifications, a 10000X, b 35000X

Fig. 3 SEM of samples fabricated with WOPC and iron oxide containing arsenic at different
concentrations, a 0.0wt%, b 2.5wt%, c 10wt%, and d 20wt%
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Figure 3 is a summary of SEM images for the WOPC with waste samples, after
samples were released from molds close to air for 28 days. Images were collected
over fractured surfaces and pores, which favored the nucleation of ettringite. This
phase has been detected in all samples. Samples with 0.0 and 2.5wt% of waste,
showed a lot of ettringite, see Fig. 3a, b. As the waste based on iron oxide with
arsenic contents increased, the ettringite phase decreased as well, see Fig. 3c, d. The
irregular shapes in these two last images are calcium silicate hydrate (C-S-H).

Figure 4 summarizes XRD data for the raw waste material and also for some of
the fabricated samples. Figure 4a shows the XRD for the waste powder, an iron
oxide based containing arsenic, showed magnesium calcite (CaCO3) and ferrihy-
drite ((Fe3+)2O3•0.5H2O) phases. Figure 4b–d, show XRD spectra for WOPC with
0.0, 5.0 and 20wt% of waste. In all cases cement phases were found (calcite,
portlandite, and ettringite). Only a reduction in ettringite was found as waste
contents increased.

Finally, compression strength and density both had a trend of continuous
decrease as the waste content increases, see Fig. 5a, b. This can be explained as lack
of cement impregnation due to agglomeration of waste particles, which also leads to
a greater porosity and as consequence a poor strength a low density. In terms of the
compression tests, up to 2.5wt% of waste slightly increased the mean compressive
strength, which typically mean the powdered waste is acting as filler of voids. Even

Fig. 4 XRD of a raw waste powder, b 0.0wt%, c 5wt%, d 20wt%
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with 20wt% of waste the compressive values were acceptable for either non high
strength applications such as sidewalks or decoration, or just as a hazardous waste
stabilizer. Density did not experienced significant changes up to 10wt% of waste.

Conclusions

The addition of iron oxide base waste containing arsenic shows some positive
results as an admixture or filler for cementitious materials. Even up to 20wt% the
waste in the cement produced a composite material with acceptable values of
strength, which is expected because the waste is based on iron oxide and it is very
fine in size, which certainly can be not far from some of the components of typical
cement. Thus, the stabilization of this waste in cement is a good solution for this
problem that can be implemented in several countries that use this ceramics to filter
the arsenic and other hazardous metals.
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Part III
Solar Cell Silicon



Three-Dimensional Crystal-Plasticity
Based Model for Intrinsic Stresses
in Multi-junction Photovoltaic

Khaled H. Khafagy, Tarek M. Hatem and Salah M. Bedair

Abstract Our understanding for intrinsic stresses and defects evolution in photo-
voltaic devices has became an essential part of new developments. In particular,
Multi-Junction Photovoltaic (MJ-PV) modules depend on multi-layer structures that
may suffer high dislocation-densities as a result of high lattice and thermal
expansion coefficient mismatch. These defects limit the performance, reliability,
and lifetime of PV devices. In the current study, a three-dimensional multiple-slip
crystal-plasticity model and specialized finite-element formulations are used to
investigate InGaN growth on Si substrates. The formulation is based on accounting
for thermal and intrinsic stresses as a result of different processing conditions and
microstructures. Furthermore, the formulation was used to investigate a recently
developed technique, Embedded Void Approach (EVA), which can be used to
address both the high density of defects and the cracking/bowing of InGaN growth
on Si. The current work lays the groundwork for more extensive use of silicon in
MJ-PV devices.
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Introduction

Over the last decade, the III-Nitride family has been identified as a commonly
accepted semiconductor material after achieving a crucial development in several
applications such as LED and Solar Cell applications. Furthermore, InGaN is a
semiconductor that constitutes from GaN and InN that has a wide application in
optical devices, especially in multi-junction photovoltaic (MJPV), as a result of its
wide spectrum (from 0.7 to 3.4 eV). On the other hand, silicon is an optimum
substrate to grow InGaN, and the rest of III-N family, in-terms of cost, efficiency,
properties and available sizes. Although the growth of InGaN on silicon substrate
offer good properties for solar devices, the deposition of InGaN layer on silicon is
inherently difficult due to the chemical dissimilarities and the large thermal and
lattice mismatches between both layers. The lattice and thermal expansion coeffi-
cient mismatch at the InGaN/Si interface leads to generate defects such as dislo-
cations. Placing voids near to the interface could absorb the misfit dislocations
therefore reducing the defects density at the top surface of the thin-film.

Therefore, the current study focuses on improving the efficiency of MJ-PV cells
affected by dislocations generated from intrinsic stresses at the interface between
different layers of MJPV cells. Furthermore, this research investigates a recently
developed technique, Embedded Void Approach (EVA), which can be used to
overcome high thermal expansion coefficient and lattice mismatch between different
layers of MJ-PV device. The proposed technique reduces dislocation-densities as
well as cracking/bowing that might result of the growth of Indium Gallium Nitride
In(x)Ga(1-x)N on Silicon Si substrates [1].

Voids are generated experimentally after the growth of III-nitride by etching the
film using ICP-RIE plasma etching in order to produce III-nitride nanowires as
shown in Fig. 1. Based on Bediar et al. [1], nanowires can be created using
ICP-RIE plasma etching with no need for lithography processes. This mask-less
etching technique is mainly based on the presence of dislocation in III-nitride at the
beginning of the process. High etching rates occur at high dislocation sites pro-
ducing nanowires with low defect density.

Fig. 1 Proposed MJ-PV
structure with EVA [2]
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This approach is experimentally validated to reduce dislocation-density on the
surface of thin-film two orders of magnitude. In principle, due to the very high
density of these voids and their lengths (a few microns), most of the misfit dislo-
cations generated at the interface due to thermal expansion coefficient mismatch
between the substrates and the epitaxial III-N films can be annihilated at the free
surface of these voids.

A three-dimensional multiple-slip crystal plasticity model and specialized
finite-element formulations are used to address InGaN growth on Si substrates. The
formulation is based on accounting of thermal and intrinsic stresses as a result of
different processing conditions and device structures. Commercial FE solver
(ABAQUS) is used along with Düsseldorf Advanced Materials Simulation Kit
(DAMASK) to model elastic and plastic behavior of InGaN growth on Si substrate,
both with/without embedded voids. It is found that EVA considerably reduces the
interface stresses leading to low stress at the thin film layer. Consequently, less
dislocation-densities on the top surface leading to an increase in the diffusion length
of the electron and overall efficiency the device.

Constitutive Model

A constitutive solution that couples deformation and stress is used to solve the value
of continuum mechanical boundary problem [3–7]. This is carried out by calcu-
lating _ca is the plastic shear strain rate as function of the Second Piola–Kirchhoff
Stress S tensor.

In that formulation, it has been assumed that the deformation gradient can be
decomposed into elastic and inelastic components

Dij ¼ 1
2

Vi;j þVj;i
� � ð1Þ

where, Dij: is the deformation rate tensor or stretching tensor and Wij is the spin
tensor or vorticity tensor,

Wij ¼ 1
2

Vi;j � Vj;i
� � ð2Þ

The total deformation-rate tensor, Dij, and the total spin tensor, Wij, are then
each additively decomposed into elastic and plastic components as:

Dij ¼ D�
ij þDP

ij ð3Þ

Wij ¼ W�
ij þWP

ij ð4Þ
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where, Wij includes the rigid body spin. The inelastic parts are defined in terms of
the crystallographic slip-rates as:

DP
ij ¼ P að Þ

ij _c að Þ ð5Þ

Wp
ij ¼ x að Þ

j _c að Þ ð6Þ

where, a is summed over all slip-systems, and the tensors P að Þ
ij and x að Þ

ij are sym-
metric and skew-symmetric second-order tensors, and are defined in terms of the
unit normal and the unit slip vectors as

P að Þ
ij ¼ 1

2
S að Þ
i n að Þ

j þ S að Þ
j n að Þ

i

� �
ð7Þ

x að Þ
ij ¼ 1

2
S að Þ
i n að Þ

j � S að Þ
j n að Þ

i

� �
ð8Þ

where, n að Þ
i is the unit vector normal to the slip plane, and s að Þ

i is the unit vector in
the slip direction. Material state is formulated as a function of total shear and shear
rate as follows:

_ca ¼ _c0
sa

sac

����
����sgn sað Þ ð9Þ

where, _ca is the shear rate for slip system a subjected to the resolved shear stress sa

at a slip resistance sac ; _c0 and m are material parameters that quantify the reference
shear rate and the rate sensitivity of slip, respectively.

Then, the influence of any slip system b on the hardening behavior of slip
system a is given by

sac ¼ hb _cb
�� �� ð10Þ

hab ¼ qab ho 1� sbc
ss

� �a	 

ð11Þ

where, ho, a, and ss are slip hardening parameters and qab is a hardening matrix.

Numerical Model

As shown in Fig. 2, the structure has 4lm height and 2lrmm � 2lm square base
area, as well it has two layers InGaN and Si that are shown in red and blue colors.
A mesh convergence study has been conducted, where the mesh size of 0:2 lm has
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been adapted for both InGaN and Si layers. However, lower mesh size is used
around the void to account for high stress gradient around the void due to stress
concentration. Plastic and elastic parameters of InGaN and Si are listed in Table 1.
Periodic Boundary Conditions (PBCs) is used coupling the opposite sides (both in
the X and Z directions) of the structure, while free boundary condition is assumed
in both sides in the Y-direction.

In order to verify the numerical models developed here, the results of 2D and 3D
elastic simulations have been compared to analytical results. The analytical results
have been calculated as r ¼ E:e ¼ E:a:Dt; where, r is stresses due to thermal load
(MPa), E is a Young’s modulus (MPa), e is a strain, a is the thermal expansion
coefficient (K−1), Dt is temperature change (K).

Model Parameters

Elastic and plastic parameters of InGaN and Si materials have been used with the
proposed model to estimate the stresses, strains, and dislocation-densities of the
structure.

Si

InGaN

3 μm

1 μm

2 μm

2 μm

Y
X

Z

Fig. 2 InGaN/Si structure
used in the current model,
PBCs is introduced on both X
and Z sides to account for an
infinite extended structure in
both directions

Table 1 Plastic and elastic model parameters of InGaN and Si [8–12]

Parameters In0.65 Ga0.35 N Si

E GPað Þ 186.5 168.9

m Poisson ratioð Þ 0.3535 0.262

a (K−1) aa ¼ 3:646� 10�6

ac ¼ 3:44� 10�6
2:6� 10�6

Initial dislocation density ð=m2Þ 108 107

Max. Dislocation density ð=m2Þ 1011 14 � 1010
Thermal Conductivity ðW=m�CÞ 97.5 130

Thickness (lmÞ 3 1
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Results

Results of the Structure Without Introducing Embedded
Voids

As shown in Fig. 3 the two-dimensional elastic model shows that the theoretical
calculation and numerical results match. Theoretical calculations showed that the
maximum stress for 3lm height InGaN thin film layer was 476 MPa, and the
minimum stress for 1lm height silicon substrate was 309:8 MPa , which match the
results of the numerical analysis.

As shown in Fig. 4, because of the thermal mismatch in the interface of InGaN
and Si, the maximum stress reveals at the interface reaches to around 1400 MPa.
Further, higher stresses in the plastic results rather than elastic results are due to the
effect of material plasticity parameters such as slipping.

Fig. 3 Two-dimensional elastic model without voids used to validate the analytical results;
a Von-Mises stresses along the thickness of the structure; b contour plot of Von-Mises stresses

Fig. 4 Three-dimensional plastic model compared to elastic model without voids; a Von-Mises
stresses along the thickness of the structure; b contour plot of Von-Mises stresses
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Results After Introducing the Embedded Void

Introducing voids periodically to the presented structure resulted in slight increase
from 710 to 748 MPa in Von-Mises stresses at the top surface. Similarly it led to
slight increase in the stresses at the interface exactly from 710 to 748 MPa. Also,
the void itself is considered as a stress concentration area, where a maximum stress
of 1135 MPa is observed as shown in Fig. 5.

Figure 6 shows the plastic behavior of the void. The results of the plastic run showed
further reduction in the interface stresses from that of the elastic run. At the top surface,
stresses experienced no reduction. However, it experienced maximum increase at a
distance of 0.5 by 520 MPa. Such significant increase in Von-Misses stresses occurred

Fig. 5 Three-dimensional elastic model with embedded void (aspect ratio 1:1:2 and volume ratio
7%); a Von-Mises stresses along the thickness of the structure; b contour plot of Von-Mises
stresses

Fig. 6 Three-dimensional plastic model with embedded void (aspect ratio 1:1:2 and volume ratio
7%); a Von-Mises stresses along the thickness of the structure; b contour plot of Von-Mises
stresses
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near the void as a result of stress concentration due to geometrical discontinuity.
Noticeable reduction occurred at a distance range from 0:5 to 2:8lm with minimum
and maximum stress reduction by 550 MPa and 667 MPa, respectively.

Conclusion

Numerical study of EVA that reduce defects and has potential to increase efficiency
in MJ-PV cells has been introduced in the current work. Such an aim is achieved
through investigating EVA effect in the reduction of stress and plastic strain to
overcome thermal expansion coefficient and lattice mismatches between different
MJ-PV layers. Analytical calculations for the analyzed system have been used to
verify numerical results assuming elastic behavior. Results of CP-FEM simulations
are compared to Elastic runs with/without embedded void approach.

Furthermore, numerical models was utilized to investigate the mentioned
approach; the computational analysis encompasses addressing InGaN growth on Si
substrate using three-dimensional multiple-slip crystal plasticity model and spe-
cialized commercial FE solver ABAQUS is integrated with crystal plasticity con-
stitutive model implemented in DAMASK. Consequently, stress reduction will
reduce the dislocation density at the top surface as voids act as a sink to interface
generated dislocations.-
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Review of Solar Silicon Recycling

York R. Smith and Pamela Bogust

Abstract Photovoltaic (PV) modules are becoming an ever increasingly larger part
of our energy portfolio. As more and more PV modules are installed and come
on-line, management of end-of-life (EOL) modules becomes an important issue.
Currently, management of overburden EOL PV modules is not an issue, but is
anticipated to be by 2030. Recovery and recycling of valuable metals in PV
modules presents several environmental and economic advantages. In this brief
review, we will describe processes for refurbishing and recycling of PV silicon.
These processes involve some combination of mechanical, thermal, and chemical
processing, all of which all have their oPV) modules have become wn respective
challenges. Also, projections of PV module material streams are also highlighted.

Keywords Photovoltaic � Silicon � Recycling

Introduction

Photovoltaic (PV) modules have become a significant contributor to our current
global power production in a short amount of time, with a production of only 40
GW in 2010 up to 227 GW in 2015 [1–3]. The growth rate of power production
from PV’s was 74% from 2006–2011 and 42% from 2010–2015, a significantly
higher growth rate than any other renewable energy [2, 3]. The amount of power
supplied by PV modules is expected to keep growing with an estimated cumulative
installed capacity of 4,512 GW by 2050 [2, 3]. This dramatic increase in use of PV
modules in a short time and the long life of PV modules (25–30 years) will result in
a dramatic influx of PV module waste around 2030 [1, 4–6].
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Currently, most EOL PV modules are being disposed of in landfills [4–6].
However, PV modules contain hazardous metals such as Pb and Cd, and leaching of
these chemicals into water supplies from landfills would be harmful to the envi-
ronment [6, 7]. The sale of some PV modules containing Cd are prohibited in China
because of the high toxicity [7]. Recycling of PV modules can be even costlier then
proper waste disposal, even in the case of hazardous waste disposal which,
depending on the module type and applicable laws/regulations, may be required
[4, 5, 7, 8]. Common recycling processes currently available focus on recycling the
largest percent mass, and not on recovering valuable or hazardous materials [4, 5, 9].
This increases the environmental impact of PV use, making PV use less attractive [4, 5].
The cost of recycling is expected to decrease as the technology continues to develop,
however [4, 5]. Disposal in landfills and as hazardous waste is expected to increase
discouraging landfill use and encouraging recycling [4, 5].

The recycling of metals from PV modules would not only reduce the amount of
waste but also preserve our limited supply of natural resources and reduce the
amount of energy consumed to obtain and refine these resources [5, 6, 10]. There
are currently studies investigating the need to recycle PV modules from an eco-
nomic and environmental stand point. Many of these studies discuss the cost of
recycling versus the cost of waste disposal [7, 8]. The low levels of valuable
materials in the PV modules makes recycling currently not economical for crys-
talline Si modules and CdTe, while CIGS can be recycled for a profit [4, 8].
Commonly discussed alongside the economics of recycling is the responsibility of
recycling. Studies of other electronic recycling regulations are compared to the PV
market in an attempt to increase recycling of PV modules while not harming the PV
market or detracting from PV use [4, 7].

Recoverable Materials and Projections

In crystalline Si modules, a p-n junction is installed on the front surface of the Si wafer
and then coated with an anti-reflective layer [6]. An Al contact and a grid of Ag is
screen printed on the back and front of the wafer, respectively to create cells [1, 11–
13]. The cells are then connected by electrodes to make a module [6]. Ethylene vinyl
acetate (EVA) is used to adhered the cells to the front glass and back sheet, commonly
made of polyethylene terephthalate [14]. An aluminum frame is sometimes added to
the modules for structural strength [14]. The general construction of a crystalline
Si PV cell can be seen in Fig. 1. The crystalline Si wafers used in these modules
accounts for about 4% of the panel by weight but themanufacturing of the high-purity
Si wafer accounts for about 65% of the cost of the crystalline Si modules [6, 15, 16].

There are several common types of PV modules currently used; Copper indium
gallium (Cu(InxGa1–x)Se2 (CIGS)), CdTe, monocrystalline Si and polycrystalline
Si. CIGS make up about 4% of the current market and are expected to make up
about 6.4% of the market by 2030 [1]. CdTe modules currently make up about 5%
of the market and are expected decline to about to about 4.7% of the market by
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2030 [1]. About 92% of modules in use today are crystalline Si modules and they
are projected to continue to dominate the market with 82% of market in 2020
[1, 6, 15]. Amorphous Si PV modules have recently been phased out due to their
low efficiency and they contain the least value in metals and are therefore not
considered in this analysis [1, 7].

Waste projections of PV modules were reported by International Energy Agency
and International Renewable Energy Agency [1]. The production of each module
type as well as the composition of the different modules was used for projections of
waste categorized by material. The recovery rates of each material are from past
reported studies, as seen in Table 1. A projection of the amount of valuable metals
was estimated using the percentage of each metal by weight in each panel type and
the amount of each panel manufactured as well as the expected recycling date of the
panels, seen in Fig. 2. By mass, Si represents the second largest recoverable metal
from PV modules.

Current Recycling Methods

In order to make recycling of PV modules economical, the cost of recycling must be
reduced and the recovery of the valuable materials increased. A single recycling
processes that could recycle all common types of PV modules would reduce the

Fig. 1 Components of a crystalline Si PV cell
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Table 1 The weight percentage of the materials in each module type and their respective recovery
rates

Component Crystalline Si modules CIGS modules CdTe modules Recovery rate

Weight [%} Weight [%} Weight [%}

Glass 71 88 96 0.9

Silcon 4 0 0 0.9

Aluminum 13 7 0 0.9

EVA 9 4 3 0

Copper 0.1 0.1 0.02 0.95

Silver 0.1 0 0 0.95

Indium 0 0.28 0 0.85

Gallium 0 0.1 0 0.85

Selenium 0 0.52 0 0.85

Nickel 0 0 0.1 0.85

Zinc 0 0 0.1 0.85

Tin 0 0 0.1 0.85

CdTe 0 0 0.12 0.85

Sources [1, 10–13, 17–20]

Fig. 2 The cumulative possible recovery of each metal from PV modules by year
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costs of recycling [18, 21]. A recycling method that can allow for disposal of
different PV module types is available, but this method does not recover the PV cell
material. In this method, the frame and glass are manually removed for recycling
and then the PV material is disposed of [4]. This method requires fewer treatments
for recycling and reduces the amount of material to be disposed of in a landfill
dramatically, making it a cheap waste treatment method [4]. While, this method
allows for the processing of different PV module types, it does not extract the
valuable or hazardous metals form the module [4].

Recycling Methods of Crystalline Si Modules

There are a few different focuses in current research on recycling and reuse of
crystalline Si modules. These focuses are the reuse of PV cells and of Si wafers
(remanufacturing), and the recovery and recycling of Si, Ag, and/or the largest
percent of the panel [12]. A recent review by Tao and Yu [20] examines three types
of recycling pathways from the perspectives of close-loop life cycle, which are
manufacturing waste recycling, disposed module re-manufacturing, and recycling.

In order to reuse the PV cell or wafer they must not be damaged, if they are
damaged they can be recycled and used as raw material [22]. The Si wafers used in
crystalline Si modules are manufactured by melting Si and then solidifying it using
a variety of techniques, such as Czochralski or directional solidification, to produce
ingots [16, 20, 23]. The ingots are sliced using a multi-wire saw with an abrasive of
ethylene glycol and silicon carbide to create the wafers [20, 24]. More than 40% of
the Si ingot is lost in the slurry waste in the processes of manufacturing the wafer
[16, 20, 23]. The loss of Si in manufacturing of the wafer as well as, the energy
consumed in manufacturing processes makes the reuse of wafers desirable [20].
However, in the processes of etching the wafer to remove the p-n junctions part of
the Si is lost leaving a thinner wafer [6, 24]. As much as 38% of the Si is lost in the
etching processes performed by Wang et al. [24].

First Solar Inc. has developed a process for recovering crystalline Si cells, where
the modules are lightly heated to remove the backing [4]. Then a thermal pyrolysis
treatment is performed on the cells to decompose the EVA [4]. This leaves the
crystalline Si cells to be recovered and reused [4]. The cells need to be intact to be
reused and these reused cells have a slightly lower efficiency then new cells [4].

A recent study on the reuse of recovered Si wafers from crystalline Si modules
was performed by Klugmann-Radziemska et al. [15]. The first step in recovering
the Si wafer was heating the PV module in a SiO2 bed. This process allowed for the
separation of the cell from the PV module. The top Ag layer is first removed using
aq.HNO3 at 40 °C and then the Ag is recovered from the waste acid by electrolysis.
The Al layer is removed next using KOH at 80 °C. The AR coating and p-n
junction are removed last using a mixture of HNO3, HF, CH3COOH and Br2 at
temperatures ranging from 70 to 80 °C dependent on module type. The intact
recovered Si wafers are then rinsed with deionized water and laser cut in
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preparation to be reused for a new PV cell. In order to create a new cell, the wafer
was texturized by etching with KOH and isopropyl alcohol for 30 min at 80 °C
followed by HF for monocrystalline wafers and HF + HNO3 + H2O at 25 °C for
polycrystalline. The wafers are then rinsed with deionized water again, before the
p-n junction is formed. The p-n junction is formed through the process of diffusion
with the liquid donor source, POCl3, from 825 to 900 °C. The wafers are then
covered by a phosphorus-silicate glass while a donor-doping layer is applied to the
sides and edges. This is followed by chemical etching using HF + HNO3 + H2O to
remove the parasitic junction. The wafer is then immersed in HF for 2 min to
remove the phosphorus-silicate glaze. The wafer is then subject to a surface pas-
sivation process and then coated with a layer of SiO2 by thermal oxidation. The
electrical contacts are then printed on the wafer and annealed. These new cells had
efficiencies of 12.7 and 15% without the AR layer. It was recognized that that the
chemicals used in the etching process are toxic, reactive, and if released could be
hazardous [15].

Another recent study to recover the Si wafer was performed by Shin et al. [25].
The modules were heated to 480 °C at a rate of 15 °C/min, separating the PV cells
from the module. The unbroken wafers are then collected and immersed in HNO3

then, KOH at 80 °C removing the Ag and Al. An etching paste containing phos-
phoric acid is then applied to the wafers and then the wafer are annealed with the
applied paste. The wafers are then dipped in KOH, removing the top layer of the
wafer and dissolving the AR coating. The new solar cells are then fabricated using
the cleaned Si wafer, by first dipping the wafer in KOH to texturize the wafer. The
n-doped layer is formed by thermal treatment with liquid source, POCl3.
Phosphosilicate glass is then removed using an HF solution. The AR coating is
applied to the wafer by plasma-enhanced chemical vapor. This is followed by
screen printing of the Al and Ag metal contacts to the wafer with an annealing
step. Mini modules were then made using Pb free solder, 60SN-38Bi-2Ag, lami-
nated using glass, EVA, and Tedlar. The modules had power conversion efficien-
cies of 15.0–16.0% compared to the initial module efficiencies of 16.5–17.0%. This
process demonstrates that the Si wafer could be recovered without the use of
harmful surfactants and the cell could be manufactured without the use of Pb [25].

Research on recovery of Si particles from crystalline Si modules was performed
by Kang et al. [6]. The first step in the recycling processes was determining an
organic solvent that would cause dissolution and swelling of the EVA resin. The
module was immersed in toluene for 2 days at 90 °C, resulting in swollen and
dissolved EVA that was separate from the tempered glass. The swollen EVA
remained attached to the PV cell. The PV cell and EVA was heated to 600 °C and
held there for 1 h under a flow of argon gas. This resulted in the complete removal
of the EVA, but the metal electrodes, anti-reflective coating and the p-n junction
layers remained on the PV cell. The PV cell particles were then put in a chemical
etching solution made of HF, HNO3, H2SO4, CH3 COOH, distilled water and a
surfactant of CMPMO- 2 for 20 min [6]. The metal impurities were oxidized,
reduced and dissolved in the etching fluid, leaving Si of purity 99.999%. The
recovery of the high purity Si was 86% using this method. In both recycling
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methods performed by Kang et al. and Shin et al., the metals removed from the PV
cell are not recovered while, Klugmann-Radziemska recovers Ag and not the Al
from the etching processes [6, 13, 15].

Conclusion

Studies show that recycling technologies for EOL PV modules are explored and
some are commercially available, although challenges still remain in process
efficiency/continuous processing, reduction in process complexity, energy
requirements, and use of chemicals. Environmental benefits and economic viability
are also important to the establishment of feasible PV recycling systems, thereby
improving the sustainability of PV. Studies suggest that EOL module recycling can
have significant positive impacts on reducing environmental loads, required
chemicals, scarce resources and energy for new modules are reduced. However,
economic motivation to recycle is currently not favorable. The realization of PV
recycling will depend on developing innovative processes and technologies capable
of handling and separating large throughputs of PV material.
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Thermo-Calc of the Phase
Diagram of the Fe–Si System

Shadia Ikhmayies

Abstract In this work Thermo-Calc software was used to calculate the phase
diagram of the Fe–Si system. The deduced phase diagram includes twenty fields,
where three fields represent pure phases; two solid solutions and a liquid phase.
There are several fields of two co-existing phases; mixed solid phases, and mixed
solid with liquid phases. A set of eutectic and eutectoid points were found, where
transformation reactions and temperatures were identified. The results were com-
pared with results in the literature and good agreements with some differences were
found. This study is a step to understand the phase diagram of Ca–Fe-Si system for
refining metallugical grade silicon (MG-Si).

Keywords Iron-silicon alloys � Phase diagrams � Fe–Si system
Ca–Fe-Si system � Silicon refining

Introduction

In order to understand and optimize the complex chemical reactions during refining
of metallurgical grade silicon (MG-Si) and understand the evolution of Si alloy
microstructure in various applications, knowledge of the phase diagram and ther-
modynamic properties of Si alloy is critical [1]. Phase diagrams and thermodynamic
properties of impurity elements found in MG-Si is very important to understand the
impurity behavior in Si-rich regions. In addition, thermodynamic parameters and
phase diagrams are necessary to understand the reactivity with molten slag for
slag-refining processes, and to understand impurity segregation between solid Si
and liquid Si during solidification [1]. Typically, it is difficult to remove Fe molten
Si during the slag-refining process; therefore, alternative acid-leaching processing
routes were proposed to eliminate it [2]. In the acid-leaching process, the evolution
of Fe intermetallic precipitates in solidified Si is important to determine the removal
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rate of Fe. In the case of Fe removal by the acid-leaching process, Si–Ca-Fe ternary
alloys can be considered. In order to maximize Fe removal, proper amounts of Ca
can be intentionally added to Fe (Ca can also be dissolved from molten
CaO-containing slag during the slag treatment). Studying the binary Fe–Si and
Ca–Si systems are steps towards understanding the ternary Si–Ca-Fe system. On
the other hand, Fe–Si alloy is used in steel industry and electrical-magnetic
applications, and it is the most fundamental binary system for the ferrosilicon
production. That is, impurity control in the liquid and solid Fe–Si alloys is
important for the production and application of ferrosilicon alloy. Thus, the phase
diagram of the Fe–Si system is of importance for the whole chain of the silicon steel
and ferrosilicon alloy production and applications [3].

Unfortunately, little work was conducted to studying the phase diagram of Fe–Si
binary system. Chart [4, 5] evaluated the thermodynamic properties related to the
solid and liquid Fe–Si alloys, and reported a very early version of the calculated
Fe–Si phase diagram. Kubaschewski [6] reported the most accepted version of the
Fe–Si phase diagram based on the evaluation by Chart [5], and the experimental
work by Schürmann and Hensgen [7]. In this work, Thermo-Calc software was
used to deduce the phase diagram of Fe–Si system. A comparison between the
results of this work and previous work was performed and discussed.

Methodology

The Thermo-Calc software is a sophisticated database and programming interface
package used to perform thermodynamic calculations. It can calculate complex
homogeneous and heterogeneous phase equilibria, and then plot the results as
property diagrams and phase diagrams [8]. The software utilizes Gibbs free energy
minimization procedure to calculate phase equilibria and thermodynamic properties
of a chosen system [9]. For a given set of conditions, the computer determines the
change in free energy for each possible combination of phases and phase compo-
sitions. Then, it selects the state that minimizes the total Gibbs free energy.
Thermo-Calc is used in conjunction with different thermodynamic databases which
contain the descriptions of the Gibbs free energies assessed using the CALPHAD
approach. CALPHAD is a phase-based approach to model the underlying thermo-
dynamics and phase equilibria of a system through a self consistent framework [10].

In this work, MAP calculations—a type of the calculations in the Thermo-Calc
software—were used to calculate the equilibrium phase diagram of the Fe–Si
system in the temperature range 0–1600 °C. The used database is the TCBIN: TC
Binary Solutions v1.1 database and the mole fraction of silicon was varied from
0 to 1. The calculation type was chosen to be phase diagram.
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Results and Discussion

Figure 1 shows the calculated phase diagram obtained in this work using
Thermo-Calc software. The figure shows twenty (20) phase fields that include solid,
liquid and mixed phases. Three (3) of them are single phase regions; the solid
solution FCC-A1, the solid solution BCC-B2, and the liquid. There are seventeen
(17) two phase co-existing fields; where five (5) of them contain a solid phase
mixed with liquid, and twelve (12) fields contain two mixed solid phases. As the
figure shows, the melting point of Fe is 1537.5 °C, which is very close to the known
value 1538 °C [11]. While the melting temperature of Si is 1414.5 °C, which is also
very close to the accepted value which is 1414.0 °C [12]. As Fig. 1 shows, pure Fe
is ferrite (bcc) for T < 914.5 °C, but austenite (fcc) for 914.5 °C < T < 1392 °C.
The ferrite (bcc) structure reappears at T > 1400 °C.

The solid solutions FCC-A1 and BCC-B2 are mostly Fe. FCC-A1 extends from
921.5 to 1885 °C, where the phase boundary varies in two directions with Si mole
fraction; in the lower part, transition temperature increases, and in the upper part it
decreases with Si mole fraction. That is, transformation temperature takes two
values at each Si mole fraction in the range 0-0.033 due to the arc-shaped phase
boundary. The field of the solid solution BCC-B2 extends from 0-0.3 Si mole
fractions. In the region near the FCC-A1 field, the phase boundary takes the shape
of an arc—as said before—which means the transition temperature also has two

Fig. 1 Temperature- Si mole fraction percent phase diagram of the Fe–Si System
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directions; increase and decrease with Si content, and it takes two values for each
value of Si mole fraction. For Si mole fraction more than 0, transformation tem-
perature drops with Si mole fraction until the point (0.27, 1197.4 °C), then it drops
strongly until the point (0.30, 1050 °C) where it sharply drops to 21.3 °C. Pure
liquid phase exists for T > 1202.5 °C, where the liquid consists of Fe and Si, and
the ratio of Fe to Si decreases with Si mole fraction.

From the twelve (12) two solid phases co-existing fields, there are four (4) in
which the BCC-B2 phase is stable. The first one is in the range 0.30–0.5 Si mole
fraction between T = 26.5–825 °C and it contains the mixed phase
FeSi + BCC-B2. The second field contains the mixed phase BCC-B2 + Fe5Si3
which is restricted in the ranges 0.3–0.37 Si mole fraction and 825–1050 °C. The
third field contains the mixed phase BCC-B2 + Fe2Si and extends in the temper-
ature range 1050–1197.4 °C and 0.270–0.333 Si mole fraction, where the trans-
formation temperature drops with the increase of Si content. The fourth field
contains the mixed solid phase BCC + FCC and exists in a narrow arc-shaped strip
that extends between 914.5 °C < T < 1400 °C and 0–0.038 Si mole fraction, where
two directions of transformation temperature are found, in the lower part it increases
with Si mole fraction and in the upper one it decreases with Si mole fraction.

The other eight (8) fields of two co-existing solid phases are FeSi + Fe5Si3 in the
ranges 0. 0.375–0.50 Si mole fraction and 824.9–1091.3 °C, Fe5Si3 + Fe2Si in the
ranges 0.333–0.375 Si mole fraction and 1049.8–1091.3 °C, FeSi + Fe2Si in the Si
mole fraction range 0.333–0.5 and temperature range 1091.3–1202.5 °C,
FeSi + FeSi2-L in the region surrounded by the lines 0.5, 0.667 Si mole fractions
and T = 26.9 °C, T = 1002.5 °C, FeSi2-L + FeSi2-H in the small region sur-
rounded by 0.667, 0.700 Si mole fractions and T = 959.7 °C and 1002.5 °C,
FeSi + FeSi2-H in the region 0.50–0.7 Si mole fraction and 1002.5–1204 °C,
Si-A4 + FeSi2-L from 0.667–1.0 Si mole fraction and T = 26.9–959.7 °C, and
FeSi2-H + Si-A4 from 0.70–1.0 Si mole fraction and T = 959.7–1205.2 °C.

Figure 1 also shows five two co-existing phases where solid is mixed with
liquid. The first of these phases is BCC-B2 +liquid, where this phase exists in the
strip that starts at T = 0 and ends at T = 1197.5 °C in the Si mole fraction range
0.272–0.305. The second one is liquid + Fe2Si which exists in the ranges 0.305–
0.357 Si mole fraction and T = 1197.5–1214.8 °C. The third mixed phase of solid
and liquid is liquid + FeSi which exists in the region 1202.6–1109.1 °C and 0.357–
0.672 Si mole fraction. The fourth field of mixed solid and liquid phases contains
FeSi2-H + liquid, which is located in the ranges 1204.0–1207 °C and Si mole
fraction 0.672–0.726. The fifth field of this set contains liquid + Si-A4 and it
extends from 0.726–1.0 Si mole fraction and 1205.2–1414.6 °C. All of these phases
are found for T � 1197.4 °C, which is the minimum melting temperature, where
no liquid can be found below it. It is noticed that this temperature is smaller than the
melting points of pure Fe and Si. The composition at this temperature is restricted in
the range 0.272–0.333 Si mole fraction.
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BCC-B2 phase start to melt as a function of Si mole fraction starting from the
melting temperature of Fe at Si mole fraction equals to 0.0. Then, the melting line
drops with Si mole fraction to 1197.4 °C at Si mole fraction of 0.272. It continues
melting at this temperature in the Si mole fraction range 0.333–0.357. The phase
Fe2Si starts to melt at the same temperature (1197.4 °C) in the range 0.357–0.672 of
Si mole fraction. From 0.7–0.726 Si mole fraction, Si-A4 (diamond) starts to melt at
1205.2 °C, where the melting temperature is independent on Si content. From
0.726–1.0 Si mole fraction, the hexagonal FeSi2-H phase starts to melt at
T = 1205.2 °C, where the melting point is also independent on Si content. In the
region 0.305–0.357 Si mole fraction the phase Fe2Si melts completely, where the
melting temperature which started at 1197.4 °C first increases with Si content and
reaches maximum value of 1214.8 °C at 0.333 Si mole fractions, then decreases to
1197.4 °C with Si content until 0.357. The phase FeSi melts completely starting
from T = 1214.8 °C at 0.333 Si mole fraction, then melting temperature increases
with Si content, and reaches a maximum of 1409.2 °C at 0.5 Si mole fractions, then
it decreases to 1204.0 °C at 0.672 Si mole fractions. Si (diamond) starts to melt at
1205.2 °C and Si mole fraction of 0.726, where melting temperature increases
slowly with Si content and it reaches the melting point of pure silicon (1.0 Si mole
fraction). FeSi2-H phase melts completely in the ranges 0.672–0.70, where the
melting temperature increases with Si content and reaches a maximum of
1208.8 °C, then decreases with Si content to reach 1205.2 at 0.726 Si mole fraction.

There are four eutectic points, where the eutectic transitions are as follows:
At 0.305 Si mole fraction and T = 1197.5 °C;

Liquid � BCC B2þFe2Si ð1Þ

At 0.357 Si mole fraction and T = 1202.6 °C;

Liquid � FeSiþFe2Si ð2Þ

At 0.672 Si mole fraction and T = 1204.4 °C;

Liquid � FeSiþFeSi2 ð3Þ

And at 0.726 Si mole fraction and T = 1205.1 °C there is an eutectic point
where;

Liquid � FeSi2 þ Si ð4Þ

In addition, there are five eutectoid points, with the following transformations;
First, at about T = 825 °C and 0.298 Si mole fraction

BCC B2 � FeSiþFe5Si3 ð5Þ
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Second, at 0.299 Si mole percent and T = 1049.7 °C

BCC B2 � Fe2SiþFe5Si3 ð6Þ

Third, at 0.5 Si mole fraction and T = 825 °C

BCC B2þFe5Si3 � FeSi2 ð7Þ

Fourth, at 0.667 Si mole fraction and T = 952.5 °C

FeSi � FeSi2 � Hþ Si ð8Þ

Fifth, at 0.7 Si mole fraction and T = 1002.5 °C

FeSiþFeSi2 � L � Si ð9Þ

Figure 2 shows the phase diagram of Fe-Si system taken from Cui S et al. [1].
Comparing Fig. 1 with Fig. 2, it is noticed that there is a good agreement between
them, where most phases and temperatures were approximately the same. But there
are small differences. In Fig. 1 the pure solid phases are FCC-A1 and BCC-B2, but
in Fig. 2 there are three pure solid phases; FCC-A1, BCC-A2 and BCC-B2. In
addition the phase Fe3Si7 was not observed in Fig. 1, but it exists in Fig. 2. The
differences are due to differences in the experimental data used in each case.

Fig. 2 Calculated phase diagram of the Fe-Si system. Reprinted after Cui S et al. [1]. Copyright ©
2014. The Minerals, Metals and Materials Society and ASM International
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Conclusions

Phase diagram of the Fe-Si system was calculated using thermo Calc-software. Two
pure stable solid solutions were found, in addition to a pure stable liquid phase.
A set of two co-existing solid phases were obtained in addition to mixed solid with
liquid phases. The different phases were discussed and compared with the results
obtained from the literature, and a good agreement was observed. The differences
are related to differences in experimental data used in both cases to deduce the
results.
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Crystal Growth Mechanism of Si
in Hypereutectic Al–Si Melt During
the Electromagnetic Directional
Solidification

Jie Li, Wenzhou Yu and Xuewei Lv

Abstract An efficient enrichment of primary silicon from the Al–Si melt can be
beneficial for the Si purification and the cost reduction of the solvent refining
process. In this paper, an alternating magnetic field was used to enhance the mass
transfer and promote the crystal growth of primary silicon during the directional
solidification of hypereutectic Al–Si alloy. The results show that the growth rate
and morphologies of Si crystals changed continuously along the directional solid-
ification direction. With the decreasing of Si content in the melt and the weakness
of the electromagnetic stirring, the crystal growth rate of primary silicon gradually
decreased and the Si morphologies changed from plane to cellular, cellular dendrite,
and columnar dendrite, respectively. This provides a deeper understanding of the Si
crystal growth during the electromagnetic solidification, which will be good for
achieving a high-efficiency enrichment of primary silicon in Al–Si melt.

Keywords Al–Si alloy � Electromagnetic directional solidification
Primary Si � Enrichment

Introduction

The rapid growth of photovoltaic (PV) industry has triggered a huge demand of
solar-grade silicon (SOG-Si, Si purity: 99.9999%) in the past decade. Currently,
SOG-Si is mainly manufactured by the modified Siemens technology, which is a
high cost process along with high energy consumption and environmental impact.
In order to reduce the production cost of SOG-Si, metallurgical technologies have
been proposed for Si purification by removing the impurities from the metallurgical
grade silicon (MG-Si, 98–99.9% purity). The traditional metallurgical methods
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usually include acid leaching [1], slag refining [2, 3], vacuum melting [4, 5],
electro-beam melting [6] and directional solidification [7, 8].

Recently, a solvent refining using Al–Si melt has shown outstanding results in
purifying Si more effectively and economically. Compared to traditional metal-
lurgical routes, solvent refining with Al–Si melt can reduce costs because the
refining temperatures are much lower than the Si melting point (1683 K). On the
other hand, the segregation coefficient of impurities between solid Si and Al–Si
melts is significantly smaller than that between solid and liquid Si, especially for B
and P. Generally, the solvent refining process consists of three steps: (1) fusing the
mixture of MG-Si and Al to obtain an Al–Si melt, (2) cooling the melt slowly to
induce nucleation and growth of Si crystals, and (3) acid leaching to remove Al and
other impurities for collecting Si crystals.

Owing to the similar densities of solid Si (*2300 kg/m3) and Al–Si melt
(*2400 kg/m3) [9], the collection of Si crystals from the Al–Si melt is extremely
difficult because the Si crystals always randomly distribute in the alloy. Acid
leaching can remove Al solvent and collect Si crystals effectively; however, use of
large amounts of acid will inevitably cause losses of Al and have negative impact
on the environment. If the refined Si can be separated from the Al–Si melt and
agglomerated at the end of the melt, the Si refining process will be more practical.
Thus, to reduce the loss of Al and the amount of acid used, effective separation of
primary silicon is necessary during the refining process. Recently, some researchers
suggested that electromagnetic solidification could facilitate Si separation [9–11].
An electromagnetic force caused by the interaction of the magnetic field and the
induced current may promote mass transfer and increase the growth rate of Si
crystals. However, the continuous growth mechanism of Si crystals in the Al–Si
melt under the condition of electromagnetic force has not yet been known. Thus, it
is important to gain a deeper understanding of the Si crystal growth behavior; with
this understanding, economical and efficient Al removal methods and Si purification
technologies can be achieved.

In the present study, macro- and micro-growth behavior of Si crystals were
studied to reveal the continuous growth mechanism. Additionally, the theory of
constitutional supercooling was introduced to explain the growth morphologies of
the Si crystals.

Experimental

30 g of hypereutectic Al-45 wt% Si alloy was prepared first by mixing of 16.5
grams high purity Al shot (99.999 wt%) and 13.5 g bulk MG-Si (99.9 wt%) in a
graphite crucible. It was then placed in the middle of the induction coil of a 60 kW
high frequency induction furnace for heating 30 min until the alloy melted com-
pletely. The electromagnetic directional solidification of the alloy was carried out
by pulling the samples down from the induction coil at the velocity of 5 lm/s and
the pulling distance is controlled at 10 cm below the initial position. During the
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process, the current intensity of coil was controlled at 10 A. High-purity argon gas
was circulated through the system to prevent sample oxidation. The temperature of
graphite crucible outer wall was determined by an infrared thermometer.
A schematic diagram of the experimental setup is shown in Fig. 1.

After solidification the alloy samples were cut longitudinally to further reveal the
crystal growth feature. The metallographic sections were ground using SiC paper
and polished. The macrostructures and microstructures of solidified samples were
respectively observed using a Sony digital camera and Olympus PME3 light optical
microscope (LOM) along with a KAPA image analyzer. The mass fraction of
primary Si in the enrichment zone was determined by an Image-Pro Plus image
analysis software.

Results

Figure 2 shows the cross section of the Al-45 wt%Si alloy after electromagnetic
directional solidification. It can be seen that the primary Si crystals are successfully
enriched in the lower part of the sample and the separation interface appears clearly
at the middle of the sample.

In order to further investigate the enrichment mechanism of primary Si, the
microstructures at different positions in Fig. 2 are presented in Fig. 3. The distance

Fig. 1 Schematic of the
experimental apparatus: 1.
stainless steel plate, 2. ball
screw, 3. silicon plug, 4.
porous alumina holder, 5.
primary silicon, 6.Al–Si melt,
7. infrared pyrometer, 8.
graphite crucible, 9. induction
coils, 10. quartz chamber, 11.
stepping motor, 12. Ar inlet
tube, 13. Ar outlet tube
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between two adjacent points in Fig. 2 (position 1 to position 2, position 2 to
position 3 and position 3 to position 4) is 5 mm. It can be seen that the bulk Si with
a thickness of about 1 mm formed at the bottom. The other positions show a
gradual change from plane to cellular, cellular dendrite, and columnar dendrite,
respectively, as shown in Fig. 3a–d. Additionally, the amounts of entrapped Al–Si
alloy in the primary Si enrichment zone increased in the following order: Fig. 3a
(position 1 in Fig. 2) < Fig. 3b (position 2 in Fig. 2) < Fig. 3c (position 3 in
Fig. 2) < Fig. 3d (position 4 in Fig. 2).

Fig. 2 Vertical section of
Al-45 wt% Si alloy with a
pulling rate of 5 lm/s
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Discussion

Enrichment Mechanism of Primary Si

The enrichment of primary Si from Al–Si alloy can be attributed to the combined
effect of electromagnetic stirring and temperature gradient. Figure 4 shows a
schematic diagram of the Si enrichment mechanism. In the process of electro-
magnetic directional solidification, the sample gradually leaves from the induction
heating zone, which results in the temperature of Al–Si melt gradually decreases
from the top to the bottom. As the temperature of Al–Si melt at the bottom

Fig. 3 Microstructures of different positions in Fig. 2: a position 1, b position 2, c position 3 and
d position 4

Fig. 4 Simulation diagram of
Si enrichment mechanism

Crystal Growth Mechanism of Si in Hypereutectic … 483



decreased to its liquidus temperature, the Si atom began to nucleate and grow.
Simultaneously, a mushy zone formed at the front of the Si enrichment layer. With
the continuous growth of primary Si, electromagnetic stirring plays an important
role on the mass transfer. Under this condition, the melt flowing can be convective
and the Si atoms would be homogeneous distributed in the whole melt. Thus, the
concentration of Si atoms in the mushy zone is much higher than that without
electromagnetic stirring. This helps to promote the continuous growth of primary
Si. However, as the process continues, the concentration of Si atoms in the melt
gradually decreases, which cause the Si morphology to change. Also, the Si
enrichment efficiency changed. The crystal growth morphology of primary Si will
be analyzed in the next section.

Crystal Growth of Primary Si

The concentration and temperature of the Al–Si melt are the two decisive factors for
the growth of primary Si. Thus, it is necessary to calculate the Si atoms concen-
tration and measure the temperature in the Al–Si melt during the solidification
process.

According to the conservation of mass, the concentrate of Si atoms in the Al–Si
melt expressed in Eq. (1):

CSi in Al�Simelt ¼ mSi �msolid Si

mAl�Si alloy �msolid Si
ð1Þ

Where CSi in Al�Simelt is the concentration of Si atoms in Al–Si melt, mSi is the
initial mass of Si in Al–Si alloy, msolid Si is the mass of solid Si, mAl�Si alloy is the
initial mass of Al–Si alloy. In these parameters, and msolid Si is the function of
the height of the primary Si enrichment zone. Here, we define that the concentration
of primary silicon is f xð Þ when the height of enrichment zone is x, msolid Si can be
represented as Eq. (2):

msolid Si ¼ pqr2
Z h

0
f xð Þdx ð2Þ

Where q is the density of solid Si, r is the radius of enrichment zone of primary
Si, h is the height of primary Si enrichment zone, and x is the integral variable. In
order to obtain the f xð Þ, the mass fraction of primary Si in the enrichment zone is
measured at four different positions(as shown in Fig. 2).

Figure 5 shows the relationship between the mass fraction of primary Si and the
height of enrichment zone. It is clearly seen that the mass fraction of primary Si in
enrichment zone decreased with increasing height of enrichment zone. Figure 6
expresses the calculation results of mass fraction of Si atoms in Al–Si melt.
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The mass fraction of Si atoms in Al–Si melt decreased from 45% before solidifi-
cation to 11.7% after solidification.

The melt temperature plays an important role in the enrichment of primary Si
from Al–Si melt. According to the mass fraction of Si atoms in the Al–Si melt and
Al–Si binary diagram [12], the liquid phase melting temperature gradient in the
mushy zone can be represented as Eq. 3:

dTL

dx
¼ ml

dCL

dx
ð3Þ

Where TL is the melt temperature, ml is the liquidus slope and CL is the mass
fraction of Si atoms in melt.

Fig. 5 Mass fraction of
primary Si in enrichment zone
dependence of enrichment
zone height

Fig. 6 Mass fraction of Si
atoms in Al–Si melts
dependence of enrichment
zone height
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Figure 7 presents the calculated liquid phase melting temperature gradient and
measured true temperature gradient in the mushy zone. It is surprising to see that
there is an intersection point between the two curves, where the corresponding
enrichment zone height is 0.3 cm. As the height of the enrichment zone is less than
0.3 cm, the liquid phase melting temperature gradients are less than the true tem-
perature gradients in the mushy zone. Therefore, the true temperature of the melt at
the front of the solid-liquid interface melt is higher than the crystallization tem-
perature, which results in the absence of constitutional supercooling. Within this
range, the morphology of the primary Si is bulk, as shown in Fig. 3a. However, the
height of the bulk Si is only 0.1 cm, which is less than the theoretical height of
0.3 cm. This may be caused by a certain error between the outer wall of the crucible
and the actual temperature of the melt. When the height of the enrichment zone is
greater than 0.3 cm, the true temperature is lower than the crystallization temper-
ature of melt. Therefore, the constitutional supercooling emerge at the front of the
solid-liquid interface, which results in the Si morphology change from bulk to
cellular, as shown in Fig. 3b. With the increasing of enrichment zone height, the
degree of constitutional supercooling is more serious, by which the Si morphology
changes from cellular and dendrite, as shown in Fig. 3c. The above analysis is
consistent with the morphological change of primary Si in Fig. 3a–d.

Conclusions

In present work, the enrichment of primary Si was obtained from hypereutectic
Al–Si alloy and the change of morphology of primary crystalline Si has been
analyzed. The conclusions are summarized as follows:

Fig. 7 Liquid phase melting
temperature gradient and true
temperature gradient in
mushy zone under different
height of enrichment zone
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(1) The enrichment of primary Si from Al–Si alloy is attributed to the temperature
gradient and melt flowing.

(2) With the enrichment of primary Si, the morphology of primary Si gradual
change from the plane to cellular, cellular dendrite, and columnar dendrite.
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Thermo-Calc of the Phase
Diagram of Calcium Silicon (Ca–Si)
System

Shadia Ikhmayies

Abstract Thermo-Calc software was used to investigate the phase diagram of the
calcium silicon (Ca–Si) system for the range of Si mass percent 0–100, and tem-
perature range T = 200–1800 K. The melting points of Ca and Si deduced from the
phase diagram are very close to the values obtained experimentally. Three stable
intermediate solid phases were found, which are Ca2Si, CaSi, and CaSi2, where the
first one appeared in the Ca rich side of the phase diagram, and the third one in the
Si rich side. In addition, three eutectic points were found at Si mass percents of
3.95, 33.00, 62, and temperatures T = 1048.7, 1519.14, 1308.5 K respectively.
Atomic Si (Diamond structure) is found mixed with CaSi2 intermediate phase for
temperatures less than 1305 K, and mixed with a liquid CaSi for higher tempera-
tures. These results are important for thermodynamic and metallurgic studies of
these intermediate phases.

Keywords Phase diagrams � Binary systems � Calcium silicides
Intermediate phases

Introduction

A great deal of research has been devoted to calcium silicides, due to the electronic
and superconductive properties of some of these compounds, which make them
potentially attractive in materials applications [1]. The Ca–Si system has been the
object of several investigations [2–6] in order to obtain information concerning the
possible existence of new calcium silicide phases and then to examine their
properties as possible candidates to superconductivity [6]. Calcium silicon alloy is a
compound alloy made up of elements silicon, calcium, and iron, is widely used to
improve the quality, castability and machinability of steel. It is an ideal compound
deoxidizer, and desulfurization agent in steel manufacturing.
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On the whole, accurate studies on phase diagrams of the Ca-Si system are rather
scarce. Manfrinetti et al. [6] experimentally investigated the Ca–Si phase diagram in
the composition range 0–75 at.% Si. Wynnyckyj et al. in two papers [7, 8] reported
on the measurement of calcium vapor pressure over a few calcium–silicon alloys
mainly in the silicon rich side of the phase diagram (50–76at.% Si) and in the
liquidus domain, and calculated the components activity. They confirmed the
existence of five intermediate phases and characterized for the first time a new com
pound, the Zintl-phase Ca3Si4. On the basis of phase diagram and thermodynamic
information at the time available, Anglezio et al. [9] assessed the whole system by
using the Calphad approach]. So, due to the incomplete knowledge of the phase
diagram a correct attribution of vapor pressures to well define two-phase equilibria
appears questionable [1], hence there is a need for more research on the phase
diagrams of the Ca–Si system. The objective of this paper is to produce a phase
diagram of this system using Thermo-Calc software, and to identify the interme-
diate in the temperature range 200–1800 K, then compare with experimental
results. The three main solid silicides Ca2Si, CaSi and CaSi2 are identified and
discussed in the light of experimental results found in the literature.

Methodology

Thermo-Calc software is a computational thermodynamic software that utilizes a
Gibbs free energy minimization procedure to calculate phase equilibria and ther-
modynamic properties of a chosen system [10]. For a given set of conditions, the
computer determines the free energy change for each possible combination of
phases and phase compositions, and it selects the state that minimizes the total
Gibbs free energy. Thermo-Calc is used in conjunction with different thermody-
namic databases which contain the descriptions of the Gibbs free energies assessed
using the CALPHAD approach. CALPHAD is a phase-based approach to model
the underlying thermodynamics and phase equilibria of a system through a self
consistent framework [11].

In this work, MAP calculations-a type of the calculations in the Thermo-Calc
software–were used to calculate the equilibrium phase diagram of the Ca–Si system
in the temperature range 200–1800 K. The used database is the TCBIN: TC Binary
Solutions v1.1 database and the mass percent of silicon had varied from 0 to 100.
The calculation type was chosen to be phase diagram.

Results and Discussion

Figure 1 displays the phase diagram of the Ca–Si system as obtained by the
Thermo-Calc software, which represents the relationship between temperature and
mass percent of Si in the temperature range 200–1800 K. From Fig. 1 the melting
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points of Ca and Si were deduced and found to be 1112.4 K (839.25 °C) for Ca,
and 1683.64 K (1410.49 °C) for Si. These are very close to the accepted values
(Tmelting (Ca) = 839 °C, and Tmelting (Si) = 1410 °C) [12], and to the values
obtained by Manfrinetti et al. [6] who got Tmelting (Ca) = 842 °C, and Tmelting

(Si) = 1414 °C as seen in Fig. 2. Also, Fig. 1 shows the presence of three inter-
mediate stable solid phases, which are Ca2Si (PbCl2-type), CaSi (CrB type), and
CaSi2 (CaSi2-type), where the first one appears in the Ca rich side of the phase
diagram, and the third one appears in the Si rich side. But, the second phase appears
mixed with the other two. Table 1 lists the crystallographic data for the intermediate
phases of the Ca-Si System.

The Ca2Si (PbCl2-type) phase appears with increasing Si mass percent from 0-25
in the temperature ranges 300–725 K mixed with fcc Ca, 725–1100 K mixed with
bcc Ca, and mixed with CaSi liquid for Si mass percent 4 to 25 and temperature
range 1050–1560 K, where its concentration increases with temperature. This phase
is also found in the Si mass percent 25–41 mixed with CaSi (CrB type) in the
temperature range 300–1520 K, and mixed with liquid (CaSi) in the temperature
range 1520–1560 and mass range 25–33%, where its concentration decreases with
the increase of Si mass percent.

The phase CaSi (CrB type) appears first mixed with the phase Ca2Si (PbCl2-
type) for Si mass percent 25–41 in the temperature range 300–1520 K-as mentioned
in the previous paragraph, and mixed with (CaSi) liquid in the Si mass percent
range 33–41, and T = 1514–1592 K. Then it is found first mixed with the CaSi2

Fig. 1 Temperature against Si mass percent phase diagram of Ca–Si System
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(CaSi2-type) in the Si rich region 41–58 Si mass percent range and T = 300–
1306 K, and second mixed with liquid CaSi in the Si mass percent range 41–60 and
T = 1306–1592 K, where its concentration decreases with temperature.

The solid phase CaSi2 (CaSi2-type) appears in the Si rich region; first-as men-
tioned in the previous paragraph—mixed with CaSi (CrB type), in the Si mass
percent range 41–58 and T = 300–1306 K, and second mixed with diamond Si in
the Si mass percent range 58–100, and T = 300–1306 K. But as Si mass percent

Fig. 2 Ca–Si phase diagram. Reprinted with permission from Manfrinetti et al. [6]. Copyright ©
2000 Elsevier Science Ltd

Table 1 Crystallographic data for the intermediate phases of the Ca-Si System taken from
reference [6]

Compound At.% Si Structure type Lattice constants (pm)

a0 b0 c0
CaSi2 66.67 CaSi2 386.3 – 3071.0

CaSi 50 CrB 456.1 1073.5 389.1

Ca–2Si 33.33 (anti-PbCl2-type) 769.1 481.6 903.5
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increases from 62 to 100, and temperature increases from 1306 to 1691 K, the
CaSi2 (CaSi2-type) phase disappears and a liquid of composition Si and Ca appears
mixed with diamond Si, where its concentration increases with temperature until
T = 1683.64 K at which Si melts.

There are six liquid domains, where the liquid phase is mixed with other solid
phases as seen in Fig. 1. These domains extend in the Si mass percent range 0-100
and temperature range 1050-1691 K. The pure liquid phase- white regions in Fig. 1
—is found in all Si mass percent amounts starting from the melting of Ca at 1050 K
until the melting of Si at 1691 K, where all solid phases decompose to their
constituents.

Comparing the phase diagram shown in Fig. 1 with that obtained experimentally
by Manfrinetti et al. [6] and shown in Fig. 2, it is found that there is a good
agreement between both of them. But, in this work just there are three intermediate
phases, while Fig. 2 contains five intermediate phases. Manfrinetti et al. [6] got the
additional phases: Ca5Si3, Ca3Si4, and Ca14Si19, where the first one is found in the
Ca rich part, in the range 32–38 Si at.% and temperature range 400–1240 °C. The
second one is found in the Si rich part of the phase diagram at 50–58 Si at.% and
temperature range 400–910 °C. While the third one is found in the same Si atomic
percent range, but for temperature range 910–1058 °C.

Three eutectics were found in the phase diagram hown in Fig. 1. The first one
occurs as a result of the increase of Si mass percent that causes an eutectic reaction
at Si mass percent of 3.95 and temperature 1048.7 K (775.55 °C). This is very close
to the value obtained experimentally by Manfrinetti et al. [9] in this system: at about
3.5 at.% Si and 795 °C as seen in Fig. 2. The second eutectic reaction occurs at
1308.5 K (1035.35 C) and Si mass percent of 62%. While the same point in
reference [6] occurs at 1020 °C and 72 at.% Si as seen in Fig. 2. The third eutectic
reaction occurs at 33% Si mass percent and temperature 1519.14 K (1245.99 °C),
which is comparable to that obtained by Manfrinetti et al. [6], which is 1230 °C and
Si 42.5 at.%.

Conclusions

The phase diagram of the Ca-Si system was performed using thermo-Calc software
in the silicon mass percent range 0–100%, and compared with an experimental one.
The melting points of Ca and Si were deduced and found very close to accepted
values. Three stable intermediate solid phases were found, which are; Ca2Si, CaSi,
and CaSi2.Three eutectic points were found and they are comparable to those
obtained experimentally. These results are important for thermodynamic and
crystallographic characterization of intermediate phases of this system.
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Leaching of Indium from ITO Present
in Amorphous Silicon Photovoltaic
Modules

Pedro F. A. Prado, Jorge A. S. Tenório and Denise C. R. Espinosa

Abstract There is an increasing challenge of waste management regarding the
growth of photovoltaic (PV) technology. Often overlooked by its environmental
benefits of greenhouse gas emission reduction, PV technology contain metals that
are highly hazardous for the environment. Amorphous silicon (a-Si) PV modules
employ indium-tin-oxide as transparent conductive oxide and given the high price
of indium its recovery could be advantageous from an economic perspective as
well. Leaching of indium was predicted by comparing the Pourbaix diagram with
the values of oxidoreduction potential and pH measured on a phosphoric acid
solution. The a-Si panel was subjected to thermal treatment to remove the propri-
etary, protective coating and allow leaching to occur. Then, indium could be lea-
ched by phosphoric acid in a jacketed reactor, reaching a concentration of 55 ppm
(67% leaching rate) with a 0.2 g/mL of a-Si panel to aqueous solution ratio. The
leaching of indium with phosphoric acid is novel and could open doors for many
other recycling routes for solar panels.

Keywords Indium � Leaching � Phosphoric

Introduction

Production of photovoltaic (PV) modules is growing at a fast rate, with panels
reaching an amount of 50.6 GW generated in 2015 from 40 GW in 2014 [1].
However generation of solid waste by this technology is a concern projected for the
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next decades, since the lag time between production and disposal is longer when
compared to other electrical and electronic equipment and the lifetime of the
modules reaches 25 years. Toxic elements such as silver and indium could be
released to the environment once PV waste is disposed negligently [2]. Since the
ideal method for disposal is recycling, future research should encompass recycling
methods for this recent new kind of electronic waste [3].

Amorphous silicon (a-Si) is a semiconductor employed in a wide range of
electronics, particularly in calculators, watches and most recently, as stand-alone
photovoltaic modules. The triple junction a-Si PV module is among those with
highest efficiency in amorphous silicon technology, displaying three different p-i-n
junctions (Fig. 1).

Each of these alloys of a-SiGe have different spectrum of light absorption.
Above the triple junction, a fine coat (70 nm) of indium-tin-oxide (ITO), a trans-
parent conducting oxide, is employed as an electrical contact to collect the electrons
produced in the semiconductor material yet allowing most light to pass through [5].
Even though zinc oxide has less noble properties than ITO, it is employed as an
inferior contact layer since there is no need for an optimal transparent conductor.
Aluminum and zinc oxide are used to reflect photons which have not been absorbed
by the semiconductor layers and avoiding diffusion of species into the

Fig. 1 Triple junction a-Si:H/a-SiGe:H/a-SiGe:H module and respective bandgaps to each
semiconductor layer [4]

496 P. F. A. Prado et al.



semiconductor. The backsheet is generally made of stainless steel, providing an
unshatterable and flexible surface. A polymeric coating is generally applied to the
surface of the resulting module, to protect against weathering [6].

Recovery of indium from ITO present in waste electrical and electronic equip-
ment (WEEE) has only been reported for LCD panels, generally employing hot
sulfuric acid as leaching agent [7]. Phosphoric acid is a cheaper acid and has a
strong complexing effect [8]. Therefore its effectiveness for indium leaching was
evaluated.

Materials and Methods

To evaluate whether phosphoric acid could be used as leaching agent for indium
dissolution, the Pourbaix diagram for indium and sulfuric acid at 75 °C was built in
the HSC 6.0 software with the equilibrium equations of oxidation and reduction
reactions involving water (such as oxygen and hydrogen formation), phosphoric
acid and indium. A 1 M phosphoric acid solution was prepared and the pH and
oxidoreduction potential were measured. Comparing the values obtained with the
Pourbaix diagram could indicate if the process was feasible thermodynamically.

Since a polymeric coating was located above the ITO layer, hindering the
leaching of indium, it was removed by thermal treatment in an oven at 400 °C,
according to [9]. The leaching solution of 1 M phosphoric acid was prepared and
heated up to 75 °C in a jacketed reactor (Fig. 2).

Once the set temperature was reached and remained stable, samples of 25 cm2 of
the a-Si module were cut and fed into the reactor in a ratio of 0.2 g/mL of a-Si panel
to phosphoric acid solution. A stirring rate of 800 rpm was necessary to maintain
module samples fluidized. Aqueous samples were taken at every 5 min of exper-
iment and then analyzed by inductively coupled plasma mass spectrometry
(ICP-MS) in an Agilent 70 Series.

Results

The Pourbaix diagram for phosphoric acid and indium was built in the HSC 6.0
software and it is depicted in Fig. 3.

According to Fig. 3, indium is solid at very acidic (pH lower than 2) and
reductive conditions (lower than—1.5 V). Some oxides are observed at pH higher
than 10 and oxidative conditions (potential around 1.5 V). The conditions measured
in a 1 M solution of phosphoric acid were 0.64 V oxidoreduction potential and pH
1.5. Therefore, the Pourbaix diagram supports that at these conditions indium might
be leached by 1 M phosphoric acid at 75 °C. A leaching process however would
only be commercially interesting once indium could be leached at a fast rate (kinetic
factor).
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The leaching experiment revealed that indium could be leached with a stirring
rate of 800 rpm. The a-Si module particles were effectively fluidized.
A concentration of approximately 55 ppm was reached after 30 min, suggesting
that 11 mg of indium was leached in 200 mL of solution (Fig. 4).

The reaction kinetics reached 20 ppm of indium by 5 min, with a leaching rate
that decreased gradually up to reaching a plateau at 55 ppm. ITO layers of 70 nm
are either sputtered or evaporated on a-Si cells [10] and since the density of ITO
(which is 90% In2O3) is 7.14 g/cm3 [11], it would be expected that 100% leaching
would result in a concentration of 82 ppm under the solid-liquid ratio used.
However, 55 ppm yields 67% of indium, revealing that further improvements in the
experimental conditions should be targeted in the future.

Fig. 2 Jacketed reactor used
for leaching of indium from
a-Si module
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Fig. 3 Pourbaix diagram for indium in 1 M phosphoric acid at 75 °C. Dotted lines are reduction
and oxidation of water. Continuous lines are equilibrium reactions involving indium and
phosphoric acid

Fig. 4 Indium leaching kinetics for 1 M phosphoric acid at 75 °C and 0.2 g/mL solid-liquid ratio
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Conclusion

The Pourbaix diagram revealed that was possible to leach indium with phosphoric
acid, what was confirmed by the leaching results. A 1 M phosphoric acid solution at
75 °C and solid-liquid ratio of 0.2 g/mL leached indium up to a concentration of
55 ppm, representing a 67% leaching rate within 30 min.

Acknowledgements We acknowledge the support of CAPES and FAPESP (Projeto de Pesquisa
2012/51871-9).
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Direct Performance Simulation Based
on the Microstructure of SOFC
Electrodes: A Phase Field Approach

Yinkai Lei, Tian-Le Cheng and You-Hai Wen

Abstract A phase field model is developed to simulate the performance of SOFC
electrodes. By solving the conduction equations on both the electrolyte and elec-
trode phases, and incorporating the three-dimensional microstructure and reaction
front at triple phase boundaries, the current-voltage relation of an electrode is
directly simulated. By further coupling it to our recently developed coarsening
model, we are able to investigate the effect of initial microstructure on the per-
formance degradation in SOFC electrode. This model is applied to LSM-YSZ
cathodes with different LSM volume fraction. The volume fraction effect on the
electrode performance and its degradation rate has been analyzed and discussed.

Keywords SOFC � Coarsening � Phase field � Overpotential � Microstructure

Introduction

Solid oxide fuel cell (SOFC) is an electrochemical device with high fuel-to-electricity
efficiency [1–3] and low pollutant emission [4]. It is considered as a promising can-
didate to achieve clean electricity generation. Operating at a relatively high temper-
ature, e.g. 600–1000 °C [1], SOFC suffers from several degradation mechanisms

Y. Lei (&) � T.-L. Cheng � Y.-H. Wen
U.S. DOE National Energy Technology Laboratory, Albany, OR 97321, USA
e-mail: yinkai.lei@netl.doe.gov

T.-L. Cheng
e-mail: tianle.cheng@netl.doe.gov

Y.-H. Wen
e-mail: youhai.wen@netl.doe.gov

Y. Lei
Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA

T.-L. Cheng
AECOM, Albany, OR 97321, USA

© The Minerals, Metals & Materials Society 2018
Z. Sun et al. (eds.), Energy Technology 2018, The Minerals, Metals & Materials
Series, https://doi.org/10.1007/978-3-319-72362-4_47

503



including thermal coarsening [5], secondary phase formation [6], catalyst poisoning
[7], etc. Understanding how those degradation mechanisms affect the performance of
the SOFC electrode is important to improve the long term stability of SOFC.

Thermal coarsening is an important degradation mechanism in both SOFC anode
and cathode which has been intensively investigated both in experiments and sim-
ulations [5, 6, 8–11]. Previous experiments show that the thermal coarsening in
Ni-YSZ anode reduces the percolating volume fraction of Ni and triple phase
boundary (TPB) density, which in turn increases the Ohmic and polarization
resistance in anode [5, 7]. Previous phase field simulations show that both the
specific surface area and TPB density decrease due to thermal coarsening, which is
expected to increase the polarization resistance in cathode [10, 12]. In addition, our
recent work shows that the degradation rate of the microstructure properties in SOFC
electrode can be tuned by adjusting the attributes of the initial microstructure [11].
However, most of previous works on thermal coarsening are focused on the property
degradation on the microstructure level, but failed to provide a direct link between
the degradation of microstructure properties and the electrode performance.

There are several electrochemical models that can provide such a link between the
degradation of microstructure properties and the electrode performance [9, 13–15].
The average effective microstructure properties were used as inputs in most of these
electrochemical models. However, local change in microstructure is important to the
degradation in SOFC electrode [16, 17], which is hard to be captured by using
average effective properties. In addition, it is expected that the spatial distribution of
microstructure properties would also affect the performance of SOFC electrodes.
Therefore, an electrochemical model that can evaluate the electrode performance
directly from its microstructure is essential to understand the link between the mi-
crostructure evolution and performance degradation in SOFC electrode.

In this work, we develop such an electrochemical model to simulate the elec-
trode performance in SOFC. The performance of LSM-YSZ cathode with different
volume fraction of LSM phase has been evaluated. Furthermore, we use our
recently developed phase field model [10, 11] for coarsening to simulate the mi-
crostructure evolution, then evaluate the corresponding performance degradation in
SOFC electrodes. The correlation between the microstructure property and the
electrode performance has been analyzed and the effect of volume fraction on
performance degradation rate has been investigated.

Methodology

Electrochemical Model

In this work, the SOFC electrode is represented by a model with an active layer in
between an electrolyte layer and an electrode layer, as schemed in Fig. 1. The active
layer is composed of three phases, i.e. electrolyte phase, electrode phase and pore
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phase. The electrolyte phase is assumed to be ionic conductor while the electrode
phase is assumed to be electronic conductor. The chemical reaction in the electrode
is assumed to be happening on active TPB which is connected to both the electrode
layer and electrolyte layer.

The transport of oxygen ions and electrons are described by the Poisson’s
equations, i.e.

r � rOð~rÞrwOð~rÞ½ � ¼ SOð~rÞ
r � reð~rÞrweð~rÞ½ � ¼ Seð~rÞ

ð1Þ

where rOð~rÞ and reð~rÞ are the local conductivity of oxygen ion and electron
respectively. The value of rOð~rÞ in the electrolyte phase is set to be the bulk ionic
conductivity of electrolyte phase, while the value of reð~rÞ in the electrode phase is
set to be the bulk electronic conductivity of electrode phase. Both values are set to
be zero elsewhere. wOð~rÞ and weð~rÞ are the electrochemical potential of oxygen ion
and electron respectively, i.e.

wOð~rÞ ¼ � lOð~rÞ
2F

þ/ð~rÞ

weð~rÞ ¼ � leð~rÞ
F

þ/ð~rÞ
ð2Þ

where lOð~rÞ and leð~rÞ are the chemical potential of oxygen ion and electron
respectively, and /ð~rÞ is the electrostatic potential. The source of oxygen ion SOð~rÞ
and electron Seð~rÞ in the active layer is non-zero only at active TPB. Their value is
related to the chemical reaction at an active TPB segment by the Butler-Volmer
equation, i.e.

SO ¼ �Se / jTPB0 lTPB exp
bzF
RT

g

� �
� exp �ð1� bÞzF

RT
g

� �� �
ð3Þ

where jTPB0 is the exchange current per unit TPB length, lTPB is the length of a TPB
segment, z is the number of charge transfer in the chemical reaction at TPB, which
is equal to 2 in LSM-YSZ cathode, b is the charge transfer coefficient, F and R are
the Faraday constant and gas constant respectively, T is the temperature, and g is
the overpotential at TPB, which is defined by [18]

Fig. 1 The scheme of SOFC
electrode in the
electrochemical model
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g ¼ ðwTPB
e � wTPB

O Þ � l0O
2F

� RT
4F

ln pPoreO2
ð4Þ

where wTPB
O and wTPB

e are the electrochemical potential of oxygen ion and electron
at TPB respectively, l0O is the standard chemical potential of oxygen, and pPoreO2

is
the partial pressure of oxygen in pore. At the steady state, the overpotential is
always negative. Therefore, we use the magnitude of overpotential in all the fol-
lowing discussion for convenience.

Equations (1), (3) and (4) are solved self-consistently. At iteration N, the
overpotential at TPB is evaluated from wN

Oð~rÞ and wN
e ~rð Þ by Eq. (4), then the source

of oxygen ion and electron is calculated by Eq. (3), which in turn are used to
calculate w0

Oð~rÞ and w0
eð~rÞ from Eq. (1). The wNþ 1

O ð~rÞ and wNþ 1
e ð~rÞ for the iteration

Nþ 1 are calculated by

wN þ 1
O ð~rÞ ¼ kw0

Oð~rÞþ ð1� kÞwN
Oð~rÞ

wN þ 1
e ð~rÞ ¼ kw0

eð~rÞþ ð1� kÞwN
e ð~rÞ

ð5Þ

where k is the mixing constant that affects the convergence of the iterations. The
simulation is stopped when the changes in wOð~rÞ and weð~rÞ between two iterations
are less than a predefined accuracy. Because the solution of Eq. (1) can be differing
by an arbitrary constant field, it is essential to shift wTPB

O ð~rÞ and wTPB
e ð~rÞ at each step

before evaluate the overpotential at TPB. In this work, the shift is determined by
requiring the electrostatic potential difference between the electrode layer and
electrolyte layer to be equal to IRext, where I is the total current in the electrode, and
Rext is a given external resistance. Using Eq. (2), this shift becomes

welectrode
e ¼ welectrolyte

O þ IRext � ENernst þ l0O
2F

þ RT
4F

ln pPoreO2
ð6Þ

where ENernst is the Nernst potential between the electrode and electrolyte phase,
which can be estimated from the equilibrium oxygen vacancy concentration in the
electrode and electrolyte phase, i.e.

ENernst ¼ DlV
2F

þ RT
2F

ln
celectrolytev

celectrodev
ð7Þ

where DlV is the difference between the chemical potential of oxygen vacancy in
the electrolyte and electrode phase. The parameters used in this work are given in
Table 1.

In this work, the microstructure is discretized on a cubic mesh with edge unit
length of Dl. As a result, TPB is discretized into segments of length Dl. There are
four unit cells surrounding a TPB segment. The average value of wO over all
electrolyte unit cells and we over all electrode unit cells surrounding a TPB segment
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are used to calculate the local difference between wTPB
O and wTPB

e . The source terms
SO and Se are assigned to the unit cells surrounding the TPB segments with a
strength of

S ¼ jTPB0

nðDlÞ2 exp
bzF
RT

g

� �
� exp �ð1� bÞzF

RT
g

� �� �
ð8Þ

where n is the number of electrode or electrolyte unit cells surrounding the TPB
segment. To keep the electrode charge neutral, a uniform drain of oxygen ion and
electron has been added to the boundary of electrolyte and electrode layer
respectively with the total strength equal to that of the TPB sources but with
opposite sign. The whole electrode is modeled on a mesh with 128 � 128 � 136
mesh points, in which the size of the electrolyte, electrode and active layer is
128 � 128 � 4, 128 � 128 � 4, and 128 � 128 � 128 respectively. The edge
length Dl is set to 0.1 µm. The iterative solver developed by Eyre and Milton [25] is
implemented to solve Eq. (1), which is efficient in current work given the huge
conductivity contrast between LSM and YSZ/Pore. A vacuum layer of size
128 � 128 � 136 points is added on top of the simulation cell to satisfy the
periodic boundary condition required to apply this solver.

Phase Field Simulation

Our recently developed phase field model is used to simulate the microstructure
evolution in the active layer [10, 11]. In this model, the three-phase active layer is
described by two types of order parameters, i.e. the composition order parameter
(COP) Ci and grain order parameter (GOP) gij. The COP represents the phase
fraction of each phase, and the GOP represents the grains in the solid phases. The
free energy of the system is assumed to be a functional of COPs and GOPs, i.e.

Table 1 The parameters
used in electrochemical
simulations

b 0.5

jTPB0 ðA=mÞ [19] 1.3 � 10−5

l0OðkJ=molÞ [20] −144.3

pPoreO2
ðatmÞ 0.2

celectrolytev ð8%YSZÞ 0.08

celectrodev ðLSMÞ [21] 5 � 10−9

DlV ðkJ=molÞ [22] −7.7

T ð�CÞ 1000

rYSZO ðS=mÞ [23] 11.54

rLSMe ðS=mÞ [24] 8000
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FðfCig; fgijgÞ ¼
Z

f0ðfCig; fgijgÞþ
X2
i¼1

XMi

j¼1

jijg
2
ðrgijÞ2 þ

X2
i¼1

X2
j¼i

jijC
2
ðrCi � rCjÞ2

" #
dv

ð9Þ

where jijg and jijC are the gradient energy coefficients. The bulk free energy density

f0 Cif g; gij

n o� �
is defined as

f0ðfCig; fgijgÞ ¼
X2
i¼1

qif1ðCiÞþ q12f1ðC1 þC2Þþ
X2
i¼1

vi f2ðCiÞþ
XMi

j¼1

f3ðCi; g
i
jÞ

" #

þ
X2
i¼1

XMi

j¼1

XMi

k¼jþ 1

eijkf4ðgij; gikÞ

ð10Þ

where

f1ðCÞ ¼ C2ð1� CÞ2

f2ðCÞ ¼ 1
4
C4

f3ðC; gÞ ¼ � 1
2
C2ð2g3 � g4Þþ 1

4
g4

f4ðgj; gkÞ ¼
1
2
ðgjÞ2ðgkÞ2

ð11Þ

These functions are chosen so that f0ðfCig; fgijgÞ has three degenerate local minima
which correspond to three phases in the SOFC electrode. The value of the energetic
parameters qi, q12, vi and eijk, and the gradient energy coefficient jijg and jijC are
tuned to match the interfacial energy of the LSM-YSZ material system.

The governing equations of the evolution of COPs and GOPs are the
Cahn-Hilliard equation and the time-dependent Ginzburg-Landau equation
respectively, i.e.

@Ci

@t
¼ r � Mi

Cr
@f0
@Ci

�
X2
j¼1

jijCr2Cj

 !" #
ð12Þ

@gij
@t

¼ �Mij
g

@f0
@gij

� jijgr2gij

 !
ð13Þ

whereMi
C andMij

g are the mobility of COPs and GOPs respectively.Mi
C is related to

the atomic diffusivity, and Mij
g is related to the grain boundary (GB) mobility in one
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phase. In this work, Mi
C and Mij

g are set to match the bulk diffusivity of Mn ion and
the GB mobility in LSM phase at 1000 °C respectively [10]. A detailed discussion
on energetic parameters and the mobility has been given in Ref. [10].

DREAM.3D [26] is used in this work to generate initial microstructure of the
active layer in LSM-YSZ cathode. The initial average grain size and standard
deviation of grain size in the active layer are set to 0.53 µm and 0.13 µm
respectively for all phases. To investigate the effect of LSM volume fraction, we
create three cathode models with the volume fraction of LSM (YSZ) to be 25%
(45%), 35% (35%) and 45% (25%) while keeping the porosity to be 30%. The
microstructure evolution in the active layer is simulated up to 150 h.

Results

Performance Degradation in the Cathode with 35%LSM

The microstructures in the cathode with 35% LSM at 0 and 150 h are given in
Fig. 2a. The increase in the grain size of LSM can be seen clearly. The
current-voltage and power density curve of the corresponding cathode at different
time step are given in Fig. 2b. It shows that the electrode performance consistently
degrades with time. The overpotential at current density 1 A/cm2 increases from
0.42 to 0.44 V while the maximum power density decreases from 0.96 to 0.88 W/
cm2 after 150 h, as shown in Fig. 3a.

The time evolution of the overpotential at current density 1 A/cm2 and the
maximum power density of the cathode is given in Fig. 3a. It shows that the
degradation is fastest in the first 50 h then it gradually slows down. This is con-
sistent with the time evolution of the average LSM grain radius which increases by
1.37 µm in the first 50 h but only by 0.86 µm in the last 100 h. The correlation
between the TPB density in the cathode and its performance is given in Fig. 3b.

Fig. 2 a The microstructure of the cathode with 35% LSM at 0 and 150 h. The red and green
phases are YSZ and LSM respectively. b The current-voltage and power density curve at different
time step
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A very good linear correlation can be seen, which suggests that the reduction of
TPB density is responsible for the performance degradation in cathode.

Volume Fraction Effect

The current-voltage and power density curve for the cathodes with 3 different LSM
volume fraction at 0 h are given in Fig. 4a. It shows that the electrode performance
worsens as the volume fraction of LSM increases. The maximum power density of
the cathode decreases by 0.55 W/cm2 and the overpotential at current density 1 A/
cm2 increases by 0.06 V as the volume fraction of LSM increases from 25 to 45%.
Similar trend has been observed at 50, 100 and 150 h as well. To further understand
this effect of LSM volume fraction, the activation and resistance overpotential of the
cathode are given in Fig. 4b. The activation overpotential of the cathode is cal-
culated by Eq. (4), whereas wTPB

e and wTPB
O are the average electrochemical

Fig. 3 a The time evolution of overpotential at 1 A/cm2 and maximum power density. b The
correlation between TPB density and the cathode performance

Fig. 4 a The current-voltage and power density curve, and b the activation and resistance
overpotential for the cathode with 25% LSM, 35% LSM and 45% LSM at 0 h
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potential of electron and oxygen over all TPBs. The resistance overpotential of the
cathode is calculated by the summation of the resistance overpotential in both YSZ
and LSM phase, which are in turn determined by the difference between the average
we and wO at TPBs and electrolyte/electrode layer in the YSZ and LSM phase
respectively. Figure 4b shows that the activation overpotential in all three cathodes
are similar while the resistance overpotential significantly increases as the LSM
volume fraction increases. Since the resistance overpotential is mainly contributed
by the YSZ phase due to its relatively small conductivity comparing to LSM phase,
Fig. 4b clearly demonstrates that the slow ionic transport in YSZ has an important
role in determining the electrode performance.

The time evolution of the overpotential at current density 1 A/cm2 and the
maximum power density in the cathodes with three different LSM volume fractions
are given in Fig. 5. In order to compare the degradation rate in all three cathodes,
both the overpotential and maximum power density are normalized by the corre-
sponding property at 0 h. Interestingly, Fig. 5 shows that the LSM volume fraction
has significant effect on the degradation rate of cathode performance only when it is
less than a certain critical volume fraction, e.g. 35%. Below such critical volume
fraction, the degradation rate of the cathode performance reduces as the volume
fraction of LSM decreases. But increasing the LSM volume fraction over the
critical volume fraction would not significantly increase the degradation rate of
cathode performance.

Conclusions

In this work, we developed an electrochemical model that evaluates the electrode
performance directly from the three dimensional microstructure of SOFC electrode.
We applied this model to three cathode with 25% LSM, 35% LSM and 45% LSM
respectively and found that the performance of the cathode improves as the LSM

Fig. 5 The time evolution of the normalized overpotential at current density 1 A/cm2 (left) and
the normalized maximum power density (right) in the cathode with 25% LSM, 35% LSM and 45%
LSM
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volume fraction decreases. Furthermore, we coupled this electrochemical model to
our recently developed phase field model to simulate the performance degradation
in LSM-YSZ cathode. We found that the performance degradation in cathode is
well correlated with the TPB density reduction due to coarsening and the LSM
volume fraction has significant effect on the degradation rate of cathode only when
it is below a critical volume fraction.
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Effect of Sonication Power on Al2O3
Coated LiNi0.5Mn0.3Co0.2O2 Cathode
Material for LIB

Dila Sivlin and Ozgul Keles

Abstract Lithium ion batteries are potential energy source of next generation
electric vehicles (EVs). However, some problems such as safety, durability, low
capacity, cycle life etc. restrict their use in EVs. These problems mostly related with
cathode materials, an improvement in cathode materials may cause significant
changes in battery performance. In this work, to overcome cycle life problem Al2O3

coating on LiNi0.5Mn0.3Co0.2O2 cathode material produced by sol—gel method. The
surface modification of LiNi0.5Mn0.3Co0,2O2 was started by adding
LiNi0.5Mn0.3Co0.2O2 powders into alumina sol. Then, sonication was started and two
different sonication powers were tested (45, 100%). After the second gel is obtained,
last heat treatment for Al2O3 crystallization was done at 600 °C for 4 h. X—ray
diffraction (XRD) measurements showed that the material had a well—ordered
layered structure and Al was not in the LiNi0.5Mn0.3Co0.2O2. Al2O3 coated materials
show better cycling performance compared to the pristine material. It is believed that,
this improvement is caused by the fact that Al2O3 layer prevents direct contact
between active material and electrolyte and reducing decomposition reactions.

Keywords Surface modification � NMC cathode materials � Al2O3 coating
Lithium ion batteries

Introduction

With the increasing demand for clean energies, the high efficient, high capacity and
long life energy storage devices are broadly needed and investigated [1]. Compared to
other energy storage devices lithium ion batteries are the most preferred devices in
terms of storage higher energy in per unit weigh and volume and design flexibility
[2, 3]. Due to these properties lithium ion batteries are widely used in electronic
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applications such as smart phones, laptops etc. [4]. However, some problems restrict
their usage in high energy applications such as hybrid electric vehicles (HEVs) and
electric vehicles (EVs), these are safety, cost, capacity fading and cycle life [5]. To
overcome these problems cathode materials which are key component of the batteries
and determine its quality are extensively investigated [6]. LiCoO2 one of the layered
structure cathode material has been widely used as cathode materials in commercial
applications [9]. However; this cathode material can not meet the requirements for
high energy applications since, although its theoretical capacity is 274 mAh/g, the
practical capacity in applications approximately 150 mAh/g by charging up to 4.2 V
[9, 10]. When charge cut-off voltage increases more than 4.2 V crystal structure
deteriorated because of phase transformation and the battery shows weak electro-
chemical performance results from microcracks formed by [24]. Among all cathode
materials NMC’s (LiNi1−x−yMnxCoyO2) are mostly studied materials due to their
high discharge capacity, high rate capability and good structural stability [7].
However, despite these promising advantages, NMC cathodes have several draw-
backs that restrict their usage in high energy required applications [8]. One of these
restrictions is that NMC cathode materials show undesireable irreversible capacity
loss during first charge—discharge [11]. Lu et al. claimed that this irreversible
capacity loss is related with the loss of oxygen from the crystal lattice [12]. Also, Choi
et al. claimed that owing to an overlap of the metal: 3d band with the top of the
oxygen:2p band, layered oxide cathode materials tend to loose oxygen from the
lattice at deep charge and result in a huge capacity loss [16]. Another restriction is that
when LiPF6which is the key component of electrolyte decomposes in the existence of
moisture, one of the product is HF that leads to transition metal dissolution in elec-
trolytes resulting surface corrosion of cathode material [13]. In addition, Ni4+ ion is
easily dissolved into the electrolyte at high voltages. The reactions between cathode
materials and electrolytes decreases capacity and cyclic performance of the battery
[10]. To overcome these problems, one of the approaches is coating of active material
surface with electrochemically inactive metal oxides, phosphates and fluorides [14].
Surface modification can prevent the reactions between electrolytes and cathode
materials and can reduce the oxygen activity of the cathode at high voltages [10, 15].
Among the surface modifiers metal oxides are the most preferred materials in order to
provide better protection than the others [17]. Various coatings, such as ZrO2, ZnO,
TiO2, LiAlO2 and Al2O3 have been applied on several cathodes however; Al2O3

stands forward among the other metal oxides, due to its abundance, low cost and the
ease of coating [18, 19]. In addition, it is reported that Al2O3 coating reduces capacity
difference between first charge and discharge and cathode surface corrosion [20].
When all these advantages are taken into consideration Al2O3 is chosen as a surface
modifier for this study.

In this work, LiNi0.5Mn0.3Co0.2O2 cathode material was produced by sol—gel
method and Al2O3 coating was applied by dispersing the alumina source in the
water using ultrasonic stirrer with 45% (NMC-45) and 100% (NMC-100) sonica-
tion power. The aim of the study is investigating the effect of sonication power on
alumina distribution on the LiNi0.5Mn0.3Co0.2O2 cathode materials and investi-
gating cathode performance.
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Experimental

Layered LiNi0.5Mn0.3Co0.2O2 was synthesized by sol—gel method using citric acid
as a chelating agent. Stoichiometric amounts of lithium acetate (Alfa Aesar), nickel
acetate (Alfa Aesar), manganese acetate (Alfa Aesar) and cobalt acetate (Alfa
Aesar) were dissolved in distilled water and mixed with citric acid. Metal/acid ratio
was kept at 1/2. The pH value was adjusted to 8–9 by addition of 30% ammonia
solution. The solution was stirred at 80 °C for 4 h to obtain green viscous gel. The
gel was dried at 120 °C for 24 h. The dried powder was precalcined at 500 °C for
7 h to eliminate the organic substances then, the powder calcined at 900 °C for
12 h to obtain crystalline LiNi0.5Mn0.3Co0.2O2 cathode material.

To produce Al2O3 coating on LiNi0.5Mn0.3Co0.2O2 powders, Al(NO3).9H2O
(Alfa Aesar) was dissolved in distilled water and stirred by ultrasonic stirrer
(Hielscher–UP200Ht) 5 min (water and the Al(NO3).9H2O with the weight ratio
was kept at 200:1). Then, active material was slowly added into the solutions with
the Al(NO3).9H2O content of 0.5 wt% and stirred 5 min with the sonication power
of 45 and 100%. X-ray diffraction patterns for the sample was recorded using
Rigaku with Cu Ka radiation. It was operated at 40 kV in the 2h range of 10–80o in
the continuous scan mode 0.02 with step size 3o min−1. Scanning electron micro-
scope (FESEM; JSM 7000 F, JEOL Ltd.) was used to observe particle morphology
of the powders.

The electrodes were fabricated from 80:10:10 (wt%) mixture of active material,
polyvinylidene difluoride (PVDF) as binder and carbon black as conductor.
The PVDF was dissolved in N-methylpyrrolidione (NMP) and conductor added and
stirred 45 min then active material was added and stirred 12 h. Obtained slurry was
coated on aluminum foil which is used as a current collector and dried overnight at
120 °C.

Standard 2032 coin cells were assembled in an argon filled glove box
(O2 < 0. 01 ppm, H2O < 0. 01 ppm) in order to test the electrochemical properties
of the cathode material. Lithium foil was used as a reference electrode, 1 M LiPF6
in EC: DMC (1:1 in volume) used as electrolyte, and a polypropylene micro-porous
film (Cellgard 2300) as a separator. The galvanostatic tests were performed between
3.0–4.5 V on the Neware battery test system.

Results and Discussion

Figure 1 shows the XRD patterns of the pristine LiNi0.5Mn0.3Co0.2O2 pristine
NMC, NMC-45 and NMC-100, respectively. It is observed that all samples have a
layered structure. Also, all the peaks can be identified clearly indicating that the
samples are well crystallized. No impurity peak observed in the XRD patterns of the
coated materials. This shows that Al2O3 coating do not change the crystal structure
of the cathode material [10]. The intesity ratio of (003) and (104) planes shows the
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degree of cation mixing which is the results of partial occupation of Ni2+ lattice
sites by Li+ ions [21, 22]. When this ratio is higher than 1.2, the degree of cation
mixing is lower and materials show better electrochemical performances [23].
I003/I104 intesity ratio calculated for the NMC, NMC-45 and NMC-100 are 1.324,
1.325 and 1.333, respectively. Also, R factor (R = (I006 + I102)/I101) that is, the
intesity ratio of the doublet peaks which show the hexagonal characteristic of the
material, is calculated for all samples and the values are found to be 0.4782, 0.4596
and 0.444 for NMC, NMC-45 and NMC-100, respectively. When this ratio is
higher than 0.5, it is expected that materials could show weak electrochemical
performance [10, 25].

The SEM images of the samples are given in Fig. 2. All particles are 200–
300 nm in size and have cornes. Particles with and without surface modification
have similar morphologies. With the help of EDS analyses, the stoichiometric ratios
are given in Table 1. It is clear that all samples are produced in expected ratios.
A slight difference is observed in aluminum content in Table 1. NMC-100 sample
contains more Al than the other sample.

Galvanostatic performances of the cathode materials with and without surface
modification are given in Fig. 3. First discharge capacities of the samples are
calculated as 178.28, 130.22 and 141.34 mAh/g for pristine NMC, NMC-45 and

Fig. 1 XRD patterns of the
samples

Fig. 2 SEM images of the Samples a NMC b NMC-45 c NMC-100
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NMC-100, respectively. The discharge capacity difference among samples can be
explained with Al2O3 modification assumed to be on the surface of the particle
which may lead to change Li diffusion during lithiation. Chen et al. [10] claimed
that Al2O3 coating layer acts as a barrier for Li+ ions diffusion and prevent
intercalation/deintercalation of Li+ ions from the active material. NMC-45 sample
shows the lowest discharge capacity and this could be a result of non- uniform
alumina on the cathode material. On the other hand, NMC-100 sample shows
slightly better first discharge capacity. This difference between coated samples
could result from the sonication power. When the solution stirred fast, the alumina
could be distributed more homogeneously resulting thinner protective layer on the
cathode surface. After 20 cycles the discharge capacities of the samples are cal-
culated to be 149.50, 110.24 and 129.17 and the capacity retentions 83.83%,
84.65% and 91.38% for pristine NMC, NMC-45 and NMC-100, respectively. It is
clear that even though first discharge capacities are lower than pristine material, the
surface modified samples show better capacity retention. Kim et al. [9] found that
Al2O3 coated material shows lower discharge capacity than the pristine material.
The surface modified sample has 89.1% capacity retention and 93.9% coulombic
efficiency. After 20 cycles coulombic efficiencies of the samples are found to be
91.95, 99.01 and 99.56% for pristine, NMC-45 and NMC-100. The first charge and

Fig. 3 Specific capacity and cycle profiles of the samples a Pristine b NMC-45 c NMC-100

Table 1 EDS analysis of the
samples

Ni Mn Co Al O

NMC 0.504 0.286 0.197 – 1.941

NMC-45 0.506 0.308 0.214 0.408 1.945

NMC-100 0.516 0.328 0.208 0.541 1.949
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discharge capacities of the samples are given in Table 2. The pristine sample has
the highest first charge and discharge capacity difference. On the other hand, surface
modified samples show rather small differences in first discharge and charge
capacities. This could be a result of surface modification. Liu et al. [26] claimed that
Al2O3 layer may prevent the oxygen loss from the crystal structure also prevents
side reactions and makes the structure more stable.

Conclusions

In this work, LiNi0.5Mn0.3Co0.2O2 cathode material was produced by sol—gel
method. Al2O3 was chosen as a surface modifier and coated on
LiNi0.5Mn0.3Co0.2O2 cathode material by using ultrasonic stirrer. No impurity
phase observed. The particles are 200–300 nm size and have corners. NMC-100
sample contains more Al and this could result from the sonication power. The first
discharge capacities of the samples are 178.28, 130.22 and 141.34 and coulombic
efficiencies are found to be 91.95, 99.01 and 99.56% for pristine, NMC-45 and
NMC-100 samples respectively. Surface modification increases coulombic effi-
ciency. Also, the first charge and discharge capacities differences of the samples are
calculated as 54.62, 30.94 and 31.99 for pristine, NMC-45 and NMC-100
respectively. We think that slight difference between the first charge and discharge
capacities is resulted from surface modification. Coating reduces the oxygen loss
from the crystal structure and make the structure more stable.
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Effect of Nano-Graphite Dispersion
on the Thermal Solar Selective
Absorbance of Polymeric-Based Coating
Material

Iman S. El-Mahallawi, Ahmed A. Abdel-Rehim, N. Khattab, Nadia
H. Rafat and Hussein Badr

Abstract The basic part of solar water heaters is the collector and the main
functional part of the collector is the absorber layer. In this work, a commercial
locally available black painting (PACEN code 10382 colour 890), used for
swimming pools solar heating, was modified by adding nano-graphite dispersion.
The effect of nano-graphite particles percentage on the spectral absorbance of the
material was examined on samples containing two values of 1.5 and 2.5%
nano-graphite particles by weight. Fourier transform spectroscopy (FTIR) analysis
was also used to identify the functional groups in the developed material. A simple
experimental setup was designed to evaluate the performance of the developed
nanodispersed selective coating polymeric based material, by measuring the
increase in temperature of circulating water. It was shown that adding 1.5–2.5%
nano-graphite particles to a polymer based black coating causes an increase in the
optical absorptance, and an increase in the circulating water temperature.

Keywords Solar heaters � Selective absorber � Nano-graphite particles
Polyurethanes composites � Polymer coating

I. S. El-Mahallawi (&) � N. H. Rafat � H. Badr
Faculty of Engineering, Department of Metallurgical Engineering,
Cairo University, Giza 12316, Egypt
e-mail: ielmahallawi@bue.edu.eg

N. H. Rafat
e-mail: nhrafat@hotmail.com

H. Badr
e-mail: husseinbadr93@gmail.com

I. S. El-Mahallawi � A. A. Abdel-Rehim
Centre for Renewable Energy, British University in Egypt, Cairo 11837, Egypt
e-mail: Ahmed.Azim@bue.edu.eg

A. A. Abdel-Rehim
Shoubra Faculty of Engineering, Benha University, Cairo 11629, Egypt

N. Khattab
National Research Centre NRC, Cairo 12622, Egypt
e-mail: nag_khb@yahoo.com

© The Minerals, Metals & Materials Society 2018
Z. Sun et al. (eds.), Energy Technology 2018, The Minerals, Metals & Materials
Series, https://doi.org/10.1007/978-3-319-72362-4_49

523



Impact Statement

Adding 1.5–2.5% nano-graphite particles to a polymer based black coating causes
an increase in the optical absorptance, providing an economic alternative for
selective solar coatings

Introduction

Solar water heaters are widely used in the domestic sector where the demand
temperature is low, for provision of hot water to residents. A solar thermal system
consists of many components: a collector, a heat storage unit, pumps, sensors and
control instruments. The basic part of the system is the collector and the main
functional part of the collector is the absorber layer, which is protected by a
transparent cover. The absorber converts short-wave radiation into thermal energy
(photo-thermal conversion) and it must be temperature resistant (up to 200 ºC). The
most important material requirement for selecting the absorber layer is based on its
surface emission e, absorbance a, and transmittance, which are functions of the
wavelength of the radiation, as well as the recipient material.

Selective surfaces combine a high absorptance for radiation with a low emittance
for the temperature range in which the surface emits radiation. This combination of
surface characteristics is possible because 98% of the energy in incoming solar
radiation is contained within wavelengths below 3 lm, whereas 99% of the radi-
ation emitted by black or gray surfaces at 400 K is at wavelengths longer than
3 lm. Almost all black selective surfaces are generally applied on a metal base
(copper or aluminium), which provides low emittance for thermal radiation and
simultaneously good heat transfer characteristics for photo thermal applications [2,
3]. Previous studies showed that the performance of solar thermal absorber can be
improved by change of absorber materials and coating thickness [2–4].

The efficiency of any solar absorber depends on its ability to transform incident
solar radiation into thermal energy. Materials used for thermal solar panels must be
capable of absorbing, storing and transmitting energy from the sun to a transport
medium (generally water or water-based fluid coolant) with minimum thermal
losses. Consequently, for this application, one must use materials of high absorp-
tivity (a > 0.95) and low emissivity (e < 0.10). In addition, as thermal transmission
is usually by conduction, good thermal conductivity for such materials is necessary.
Selective coatings take advantage of the differing wavelengths of incident high
irradiance solar radiation and the infrared emissive radiation. In some
low-temperature flat-plate collectors, black coating may be simply used as the
absorber material. Black coatings are mostly prepared by liquid phase deposition or
vapor phase deposition. Black nickel and black chromium are the most important
electrodeposited materials whereas the films elaborated by vapor phase deposition
include mainly titanium alloys and carbon based materials.
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The ideal spectrally selective surface should be of low-cost, easy to manufacture
and chemically and thermally stable in air at the operational temperatures. By
means of a special mixture of coating as well as the surface structure, heat radiation
can be reduced. The absorbance of the collector surface for shortwave solar radi-
ation depends on the nature and color of the coating and on the incident angle [5].

Interest is growing on developing spectrally selective paint coatings which are
regarded as a cheap alternative to currently available sophisticated surface treat-
ments. Earlier attempts have been made to replace the expensive oxide selective
absorber coatings by cheaper lightweight collector surfaces made by polymers [6,
7]. It has been shown [7] that using cheap thermoplastic materials for selective
absorber coated with dispersions of inorganic colorant particles retain considerable
radiation selectivity, though the actual composition of the materials was kept
confidential. Compared to metals, polymers are known to possess low thermal
conductivity (0.17–0.23 Wm−1 K−1) and relatively high specific heat capacity
(polyethylene 1800 J kg−1 K−1). Those properties, combined with lightweight and
low cost, have persuaded solar water heater designers to use polymers as low-cost
alternative materials for solar thermal conversion applications [6–10]. However, the
low thermal conductivity is a crucial drawback of polymers. It has been shown by
previous work that photo-thermal and electrical properties of materials are changed
by adding gold and platinum nanoparticles [11–17].

Though, the nanocarbon group (nano-graphite, nanotubes, etc.) are known for
high thermal conductivity [18, 19], no previous work is found in literature to show
the effect of adding nano sized carbon based particles (nano-graphite or carbon
nanotubes) to polymers to enhance their spectral selective properties. Previous work
by the authors [13] has illustrated the effect of adding carbon multi-walled nan-
otubes to a host matrix of polyvinyl alcohol, at different testing conditions, where a
gain in temperature of the circulated water between 8 and 15 °C was achieved.
Carbon nanotubes possess attractive thermal conductivity properties (an average
thermal conductivity of 6600 Wm−1 K−1 was reported [20]) compared to
1900 Wm−1 K−1 for graphite [21]. The structure of a nanotube is similar to that of
graphite, with the difference that the sheets are closed to form a tube or a cylinder
with a small diameter tending to have a polygonal cross section as the diameter
increases [20].

This idea of this work is to enhance the thermal conductivity of commercial
economic polymer based black coating material (initially developed to be used for
heating swimming pools) by introducing nano-graphite particles to the slurry.
Nano-graphite is selected in this work because it possesses high conductivity
combined with its economy and ease of preparation. At this stage, proof of concept
on the laboratory scale was targetted, which will open the door for improved
collector efficiencies and more economic products. The effect of nano graphite on
both the emittance and water heating capacity during summer and winter will be
examined in this work.
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Materials and Methods

In this work a polymer based selective absorber coating was prepared by adding 1%
nano-graphite particles to a commercial black coating (PACEN code 10382 colour
890) used for thermal solar absorptance in Egyptian market. Material and perfor-
mance characterization are carried out. A prototype thermal solar collector was built
(Fig. 1) to evaluate the performance of the developed selective absorber coating,
where the copper serpentine was coated with the new material, the thickness of the
coating was about 100 µm.

The effect of nano-graphite particles percentage on the spectral absorbance of the
material was examined on samples containing two values of 1.5 and 2.5%
nano-graphite particles by weight. The commercial coating is manufactured by a
local manufacturer in Egypt (Paints and Chemical Industries) and is coded as
PACEN code 10382 color 890. The nano-graphite particles were purchased in
micro scale, and they were ground to the nanosize at the Central Metallurgical
Research and Development Institute (CMRDI) [22]. The size of particles was in the
average range (50-70) nm. The nano-graphite particles used have properties of
2.27 g/cm3 mass density, 960 MPa ultimate tensile strength, 3500 °C melting
temperature and 150 GPa Young’s modulus.

A V-570 Spectrophotometer from Jasco Company Japan was used to record the
intensity of the transmitted light resulting from three samples without and with 1.5
and 2.5% nano-grpahite dispersion in the commercial black coating. A hydrogen
lamp generated light with wavelength of 220–2000 nm and a silicon photodiode
was used to record the transmitted light. Fourier transform spectroscopy (FTIR)
analysis was also used to identify the functional groups in the developed material.
Hydrogen Magnetic Resonance Test (HNMR) was also made.

Fig. 1 Proto-type Cu
serpentine collector
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The test was designed to simply rely on measuring the difference in temperature
of inlet and outlet water, using T type thermocouples. The water flow rates were
selected to be in the range of 0.4–1.0 L/min. The tests were done at the National
Research Centre, Giza, Egypt during June 2012 and Feb 2014 between. The tests
were run twice daily on two days, first between 11:45 AM and 12:45 PM, and then
between 12:45 and 01:45 PM. It is worth mentioning that both inlet and outlet water
temperatures were measured initially at the start of the test, simultaneously, after the
water was forced into the system.

Results and Discussion

The results obtained from the spectrophotometry test are shown in Fig. 2, from
which it is seen that the material with 2.5% nano-graphite has the highest absor-
bance. This effect is attributed to the beneficial effect of the nano-graphite particles
on enhancing the absorbance of the polymer black paint. Addition of fine inorganic
metal powders in heat absorbing coatings was shown to enhance the temperature
rise in a given interval of time [7, 11], and was attributed to rendering the coating
more optically selective and to enhancing its absorbance efficiency, thus, enhancing
the solar to thermal conversion efficiency. The specific effect of nano-graphite is
attributed to its high thermal conductivity due to strong C–C covalent bonds and
phonon scattering, its black color that allows solar energy absorbance over a broad
range of solar spectrum, as well as the high surface area to volume ratio [19].

FTIR of purchased commercial polymer is shown in Fig. 3. the absorption peak
observed at 3443.28 cm−1 is characteristic of N-H stretching vibration. The second
peak observed at 2927.41 cm−1 is due to symmetric stretching vibration of CH2

group. Another important peaks of 1726.26 cm−1 and 1652.7 cm−1 is observed to
originate the presence of stretching vibrations of hydrogen bonded carbonyl group
(−C = O) in a urethane group. The other peak observed at 1952.7 cm−1 is also
characteristic of stretching vibrations of carbonyl group but may originating the
usage of amides as chain extender for polyurethane. These amides chain extenders
are used for polyurethane thermal and environmental properties enhancement.
These functional groups originating that the commercial polymer is amid chain
extender polyurethane. The addition of nano-garphite particles introduces no further
different bonds to the fabricated composite as it is inherent material to its hosting
matrix.

Figure 4 shows a sample of the measured temperatures for the three systems
tested at the National Research Centre: bare Copper tubes, black coated copper
tubes, and black coated with nano-graphite copper tubes. The first three figures (a, b
and c) show the results obtained during summer 2012, whereas the figure (d) shows
the results for winter 2014. It can be seen from Fig. 4a (wind speed 12 km/hr) that
the inlet temperature is 33 °C at the beginning and reaches the maximum of 39 °C
at 12:15 PM during the first hour between 11:45 AM to 12:45 PM with flow rate
0.47 L/min. It is also noted that the outlet temperature was 39 °C at the beginning

Effect of Nano-Graphite Dispersion on the Thermal Solar … 527



of the test and reached its maximum temperature of 44 °C at 12:15PM. The tem-
perature gain was 4.8 °C, while the intensity at the first hour reached its maximum
value of 951 W/m2 at 12:00 PM and it decreased gradually during that hour to a
minimal and final value of 800 W/m2 at 12:45 PM. Figure 4b (wind speed 11 km/
hr) shows the measured temperatures for the case of black coated copper tubes.
During the first hour with flow rate of 0.4 L/min, it is shown that the inlet tem-
perature was 38 °C, and at the end of the hour there was a slight increase to 41 °C.
The inlet temperature reached a maximum of 42 °C at 12:05 PM. The outlet
temperature was 44 °C at the start and end of the test, while it reached the maxi-
mum of 49 °C at 12:05 PM and at 12:35 PM. The temperature gained was 6.5°C.

Fig. 2 Absorbance (a) and reflectance (b) spectral characteristics of the 0, 1.5 and 2.5%
nano-graphite
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Fig. 3 FTIR of the developed material
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Fig. 4 Inlet and outlet temperature verses time. a for (bare Cu) flow rate = 0.47 L/min and wind
speed 12 km/hr, solar radiation intensity 800–950 W/m2. b (Cu-Black coating) for flow
rate = 0.41 L/min and wind speed 11 km/hr, solar radiation intensity 810–900 W/m2.
c (Cu-Black coating with nano graphite) flow rate = 0.46 L/min and wind speed 13 km/hr, solar
radiation intensity 850–950 W/m2. d Cu-Black coating with nano- graphite flow rate = 0.4 L/min
and wind speed 24 km/hr, day time temperature 230C, solar radiation intensity 100–325 W/m2
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The solar intensity readings decreased from a maximum of 905 W/m2 at 12:00 PM
to a minimum value of 800 W/m2 at 12:45 PM. Figure 4c (wind speed 13 km/hr)
shows the measured temperatures for the third case of black coating with
nano-graphite. During the first hour with flow rate of 0.47 L/min, the figure
illustrates that the lowest temperature of 36 °C was recorded at the beginning, while
the maximum value of 39.5 °C was reached at the end of that hour. The outlet
temperature reached the maximum of 47 °C at 12:25 PM. The temperature gained
was 7.2 °C. As for the solar intensity, the maximum value was 950 W/m2 at 11:55
AM and the minimum value was 850 W/m2 recorded at 12:05 PM, which then
increased gradually until the end of that hour till it reached 875 W/m2. Figure 4d
shows the black coated Cu tubes with nano-graphite dispersion during February
2014, between 10.00 and 12.00 AM, wind speed 24 km/hr and water flow rate
0.4 l/min. It is shown from Fig. 4d that during the first hour the lowest temperature
of 22.7 °C was recorded at the beginning of the test, while the maximum value of
29.3 °C was reached after 45 min. The outlet temperature reached the maximum of
29.7 °C at 10:40 PM. The temperature gained was 7.7 °C. As for the solar intensity,
the maximum value was 325 W/m2 at 10.00 AM and the minimum value was
200 W/m2 recorded towards the end of the testing time.

Figure 5 shows a comparison of the circulating water temperature gain versus
the incident solar radiation intensity for the three tested systems at water flow rate
(0.4–0.47 L/min). It can be seen that generally as the incident solar intensity
increases the temperature gain in circulating water also increases. For most of the
intensities range, the temperature gain for the nanodispersed black coating system is
the highest followed by the plain black coating then the pure copper.

According to the above results, it can be seen that there are great options for
enhancing the efficiency of thermal solar collectors through the development of new
materials, which have appropriate selective absorbing properties. The results
obtained from the prototype experimental setup showed that: in the case of pure
copper the gain in temperature was only 4.5 °C, after applying the black matt
coating the gain in temperature increased to 6 °C, which means 25.7% increase in
water temperature. The use of black coating loaded with nano-graphite particles
caused the temperature to increase to 7.7 °C, which means 51.7% increase in water
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temperature, which indicates enhancement in the selective absorptive properties of
the absorber. It has been shown [7] that dispersions of suitable inorganic colorant
particles in a polymer matrix result films with an infra-red (IR) radiation charac-
teristic that is of high opacity in the visible wavelength and low absorptivity (and
therefore emissivity) in the IR region. Understanding the role of nanoparticles has
been revealed by a recent study [16], which showed that nanoparticles influence the
emission spectra of the multilayered structures. The study has also stated that
wavelength selectivity can be altered and controlled by size and/or volume fraction
of the nanoparticles. It has been also shown that the presence of nanoparticles in a
host material gives rise to an appearance of new emission peaks and a shift in the
existing peaks in the emission spectra.

The previous study by the authors [23] has shown that the differences in cal-
culated efficiencies of different absorber coating materials become smaller at low
temperature differences, where the FPSC are used for low temperature applications
(50 °C < T < 100 °C), thus it is more convenient to use less expensive coatings at
that temperature range without affecting the collector`s performance. The study has
highlighted that both the design and the absorber material play a crucial role in
determining the efficiency of FPSCs. This study has shown that there are significant
options for developing new economic ideas for solar water heating based on
development of new materials.

Conclusions

1. In this work it was demonstrated that coating copper tubes with the commercial
polymer based black solar coating (PACEN code 10382 colour 890) dispersed
with graphite nanoparticles results an enhancement in its heating capacity rep-
resented by an increase in the water temperature circulating through these pipes
compared to the temperature increase for the monolithic material. The use of
black coating loaded with nano-graphite particles caused an increase of 7.7 °C
in water temperature, compared to 6.5 °C for the black coating without
nanoparticles and 4.8 °C for the bare copper without coating, This finding opens
options for manufacturing simple economic low temperature (<100 °C) thermal
solar systems by combining simple materials and a nano-graphite dispersed
commercial polymer based black coating.

2. It was also shown that adding 1.5 and 2.5% nano-graphite particles to the
polymer based black coating causes an increase in the optical absorbance and a
decrease in the emittance, where the highest absorptance and lowest emittance
were obtained for 2.5% addition.

3. The commercial polymer base coatings carrier used as a solar selective absorber
consists of polyurethane based mixtures with some additions (such as amides
chain extenders) for thermal and environmental stability enhancement.
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Synthesis of MoAlB Particulates and Their
Porous Derivatives by Selective
Deintercalation of Al from MoAlB

S. Gupta and M. Fuka

Abstract This paper reports for the first time the synthesis of deintercalated
MoAlB particulates which belongs to a family of novel ternary borides called MAB
phases by selected etching of Al from these particulates by treating them with a
solution of LiF and HCl. The FESEM analysis showed that these particulates had a
stacked 2D-particles like morphology reminiscent of multilayered MXenes, but
unlike MXenes, the 2D layers were interconnected with anisotropic porosity
between them with an average length and width of pores being 257 ± 126 nm and
35 ± 10 nm, respectively. The EDS analysis of particulates showed that a typical
particulate had a chemistry of (Mo0.67Al0.33)B{O0.19F0.02} which indicate partial
deintercalation of Al from the particulates. These novel particulates were also
referred to as MABenes due to their microstructural similarity with multilayered
MXenes.

Keywords MAB phases � MABenes � Particulate design � MXenes

Introduction

By now, it is well established that 2D materials have unusual electronic,
mechanical, and optical properties which have led to their extensive study in the
past decade for diverse applications [1–9]. Several types of novel 2D materials, for
example, single-element 2D materials like graphene [1–3], silicone [4], germanene
[5], and phosphorene [6]; two elements like dichalcogenides and oxides or more
elements like clays [3, 7, 8] have been studied. For further tuning the properties, it is
critical to design novel chemistries where these complex layers can contain more
than one element which can offer novel properties as they provide different com-
positional variable for tuning the specific properties [9, 10].
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MXenes are a promising addition to the novel 2D materials as they can be
synthesized in different types of chemistry [9, 10]. More particularly, MXenes can
be fabricated by selective etching of A group element from MAX phases [9, 10]. As
a background, Mn+1AXn (MAX) phases (over 70+ phases), where n = 1, 2, 3; M is
an Early Transitional Metal, A is a Group A element (mostly groups 13 and 14);
and X is C and/or N, are novel ternary carbides and nitrides (space group P63/mmc)
[11–14]. In these solids, the selective etching of A-element from the layers are
possible as the M–A bonds are more chemically active than the stronger M–X
bonds [9]. Neguib et al. [10] reported for the first time that 2D nanosheets, com-
posed of a few Ti3C2 layers and conical scrolls, can be produced by exfoliating
Ti3AlC2 in hydrofluoric acid. Later, Ghidiu et al. [15] demonstrated that MXene can
be synthesized by etching in HCl–LiF solution where HCl and LiF react to form HF
in situ, which then selectively etches the A atom from MAX phases. MXenes have
also been derived from non-MAX-phase precursors, for example, Mo2CTx is fab-
ricated by etching Ga layers from Mo2Ga2C [16]. These fundamental research has
showed that 2D solids can potentially derived from complex ternary phases.

Ternary transition metal borides where boride sub-lattice is interleaved by one or
two Al layers in M2AlB2-type (space group Cmmm) and MAlB-type (space group
Cmcm) are promising candidates for exfoliation because of above mentioned rea-
sons [17, 18]. Ade et al. [19] noted the similarity of these phases to MAX Phases
and referred to these ternary solids as “MAB-phases”. In a recent paper, Kota et al.
[20] reported dense and predominantly single-phase MoAlB by using a reactive hot
pressing method. In this proceeding paper, we will present a preliminary study to
explore the etching behavior of MoAlB particulates.

Experimental

Initially, MoAlB powder was fabricated by mixing powders of MoB (Part number
12563 (99% pure), Alfa Aesar, Haverhill, MA) and Al powder (Part number 11067
(99.5% pure), Alfa Aesar, Haverhill, MA) in the molar ratio of 1:1.2 by dry ball
milling (8000 M mixer Mill, SPEX SamplePrep, Metuchen, NJ) for 5 min.
Thereafter, the powders were cold pressed, and annealed at 750 °C for 2 h at a
ramp rate of 10 °C/min. The annealed samples were then heat treated at a ramp rate
of 5 °C/min to 1550 °C for 120 min in a tube furnace under flowing Ar. XRD
analysis was performed to confirm whether the reacted powders were single phase
(Fig. 1a). Predominantly single phase MoAlB powder was then ball milled and
sieved until −325 mesh by using a sieve shaker.

MoAlB particulates were etched by treating the particulates with *40 ml of
12 M HCl (ACS reagent 37%, Sigma Aldrich, St. Louis, MO) and 1 g (*1 M) LiF
(BioUltra, � 99.0%, Sigma Aldrich, St. Louis, MO). Initially, 1 M LiF was dis-
solved in 40 ml of 12 M HCl by stirring in a plastic container on a heated plated by
Teflon coated magnetic stirrer at *40 °C for *15 min. Thereafter, 1 g (*0.2 M)
of MoAlB was added to the stirring solution. The resulting suspension was stirred
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for *40 h at *40 °C. The resulting suspension was then centrifuged at *3,000
rpm for 5 min. The resulting filtrate was drained, and fresh DI (distilled) water was
added to the residue. The suspension was centrifuged again for 5 min. This cycle
was continued for 6 cycles until the pH was 6. The resulting suspension was
sonicated. Few drops were collected for microscopy analysis and rest of the sus-
pension was then dried in oven at *100 °C. XRD analysis was then performed on
the dried and etched particulates. In future, the authors plan to perform centrifu-
gation after the sonication step to compare the results with current study.

Rigaku Diffractometer (SmartLab, Rigaku, Japan) was used for all XRD mea-
surements at a scan rate of 0.05 o/min from 20 to 50o. JEOL JSM-6490LV Scanning
Electron Microscope (JEOL USA, Inc., Peabody, Massachusetts.) was used to
obtain Secondary electron (SE) and Backscattered Electrons (BSE) images of the
synthesized MoAlB particulates. X-ray information was obtained via a Thermo
Nanotrace Energy Dispersive X-ray detector with NSS-300e acquisition engine. All
the other images were taken by Field Emission Scanning Electron Microscope
(FESEM) in SE (Secondary) and BSE (Backscattered Electron) mode by a JEOL
JSM-7600F scanning electron microscope (JEOL USA, Inc., Peabody, MA).
Energy-dispersive spectroscopy information was acquired by using an UltraDry
silicon drift X-ray detector and NSS-212e NORAN System 7 X-ray Microanalysis
System (Thermo Fisher Scientific, Madison, Wisconsin). Please note, it is very
difficult to detect B by EDS, hence the result presented here is very qualitative.
More studies are needed to understand the exact chemistry. In addition, an average
of 3 results is presented for each experimental reading.

For qualitative comparison, the length (l) and width (w) of pores in the etched
grain was measured by Image J software [21]. An average of 10 pores is reported
for a sample.
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Results and Discussion

XRD pattern shows that MoAlB is the predominant phase in the pattern (Fig. 1).
Figure 2 show morphology of MoAlB particulates. However, at higher magnifi-
cation, micron sized Al2O3 particles were also detected. Based on the XRD and
SEM results (Figs. 1 and 2), it can construed that the MoAlB formed during the
synthesis process is predominantly single phase although EDS analysis showed that
there is some O signal in MoAlB particulate which may also be due to the presence
of neighboring Al2O3 particles. Currently, the authors have no tools to differentiate
this and detailed studies are recommended to further explore the chemistry of
MoAlB particulates. (Fig. 2b).

10 µm 1 µm

(a) (b)
MoAlB

Al2O3

Fig. 2 SEM SE micrograph of as-synthesized MoAlB particulates at, a lower, and b BSE image at
higher magnifications. The average of composition of MoAlB particulate was Mo0.48Al0.52O0.33B

100 nm 

1 µm 100 nm 

100 nm 100 nm 

(a) (b) (c) 

(d) (e) (f) 

100 nm 

(Mo0.67Al0.33)B{O0.19F0.02}

Fig. 3 FESEM SE micrographs of, a etched MoAlB particulates, b top surface of etched MoAlB
particulate at higher magnification, c BSE of the same region, d higher magnification of the
marked region in (b), e side view of a etched particulate, and f higher magnification of the same
region
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Figure 3 shows the morphology of different particulates after the chemical
treatment. Figure 3a shows an overview of etched surface of different particulates.
Several particulates are observed with etched surfaces. On a closer inspection of the
top surface of a single particulate (Fig. 3b–d), it seemed that several interconnected
2D layers within a single particulate are present. In addition, the pores between the
layers are linear and highly anisotropic, for example, on average—the length of the
interlaminar pores was 257 ± 126 nm, and the width of the pores was
35 ± 10 nm. The EDS analysis of the particulate showed the composition of a
region is (Mo0.67Al0.33)B{O0.19F0.02}. The reaction of HCl and LiF resulted in the
in situ formation of HF [16]. The HF formed by in situ reaction reacts with the
MoAlB particulates, and the Al is then selectively etched from the particulates.
XRD of the etched MoAlB particulates showed that the MoAlB peaks are broad-
ened as compared to the as-synthesized MoAlB which further support the formation
of Al-deficient MoAlB (Fig. 1). Figures 3e–f shows the morphology of edge of a
etched particulate. Several pores (<100 nm) were observed on the surface.
Detailed TEM studies are needed to document the crystal structure of these etched
phases. The XRD pattern also detected the presence of Mo2B and MoB which
indicate that some of the particulates have converted fully to binary borides. Based
on the oxidation results, Kota et al. [20] also reported that MoAlB can exist with a
deficiency of Al, thus MoAlB phase can be a potential candidate for particulate
design.

The chemistry of etched particulates ((Mo0.67Al0.33)B{O0.19F0.02}) is very sim-
ilar to MXenes which have a general formula of Mn + 1XnTx, where T represents the
surface terminations which is a combination of –OH, –O and –F groups [9]. This
study shows that novel particulates can be designed by partial selective etching of
Al from MoAlB (MAB Phases). The stacked layers are reminiscent of multilayered
MXenes (Fig. 2 in Ref. 9), but the multilayers are connected in this case (Fig. 3d).
Due to structural similarity to multilayered MXenes, these novel particulates can be
referred as MABenes as the Al is not completely deintercalated from the MoAlB
particulate. Authors accept the fact that more detailed studies are needed to
understand the composition of filtrate as it may possible that residual AlF3 is
trapped inside the porous structures. As mentioned the experiment section, the
authors plan to perform centrifugation after the sonication step to compare the
results with current study. In an excellent review article, Anasori et al. [9] sum-
marized that etching rate of Al-containing MAX phases is dependent on the atomic
number of M, for example M with larger atomic number requires a longer and
stronger etching. In addition, MXenes with larger n in Mn + 1CnTx require stronger
etching and/or a longer etching time. For example, Mo2Ti2AlC3 (n = 3) requires an
etching time that is twice as long as its n = 2 counterpart (that is, Mo2TiAlC2)
under the same etching conditions [9]. Based on these findings, it can be further
hypothesized that by optimizing the etching conditions, it will be possible to
generate MXene like MBene phases which will offer scientists more flexibility in
materials design for energy applications.
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Interestingly, there has not been significant study on the design of particulates by
partial etching of MAX phases. It is also hypothesized that MAXenes particulates
can be fabricated by the partial etching of MAX Phases.

Conclusions

Novel porous particulates were designed by deintercalation of MoAlB particulates
by treating them with a solution of LiF and HCl. These particulates showed a
unique stacked 2D-particles like morphology and were riddled with pores of
dimensions 257 ± 126 nm and 35 ± 10 nm, respectively. The EDS analysis
showed that particulates had a chemistry of (Mo0.67Al0.33)B{O0.19F0.02} due to
partial deintercalation of Al from MoAlB.
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A New Economical Method
for Fabricating High-Purity Bi2O3
via Extraction-Precipitation Stripping
and Post Annealing

C. Jun and Z. Jing

Abstract High-purity Bi2O3 was prepared via extraction-preparation stripping
method use BiCl3 leaching solution. Parameters such as oxalic acid concentration,
phase ration, aging duration, feeding duration, were examined for their effect on the
size and morphology of precipitate. The precipitate was characterized by X-ray
diffraction (XRD), scanning electron microscopy (SEM), particle size analysis,
differential scanning calorimetry and thermal gravity analysis (DSC-TGA) and
infrared spectroscopy analysis (FT-IR). Bi2O3 was characterized by elements
analysis, particle size analysis and scanning electron microscopy (SEM). Bi2O3

product of 680 nm was obtained using 15 g/L oxalic acid, 1/1 phase ration, 0 min
aging duration, 0 min feeding duration and calcinating at 500 °C for 2 h.

Keywords Bi2o3 � Oxalic acid � Bismuth oxalate � Particle size
Morphology

Bismuth oxide is an environmental and friendly material [1–4], it has been widely
used in gas sensors, solid oxide fuel cells, optical coating, ceramic glass manu-
facturing, due to its excellent physical and chemical properties [5–8]. Usually,
Bi2O3 was prepared via various methods as follows: oxidative metal vapor transport
deposition [9], chemical bath decomposition [7, 8, 10, 11], solvothermal method
[12], hydrothermal method [13, 14], aqueous crystallization method [15],
anodization method [16], chemical vapor deposition method [17] from analytical
grade bismuth material or high-purity bismuth. Such as Lu et al. prepared Bi2O3 by
aqueous crystallization strategy use bismuth nitrate [15]. Faisal et al. synthesized
Bi2O3 nanosheets via hydrothermal processes use bismuth nitrate [13]. But, all
the above methods were comparatively complicated with high material cost.
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What’s more, few researchers have been reported on prepared high-purity Bi2O3

from leaching solution of copper smelter converter dust or bismuth ore. Generally,
the preparation of Bi2O3 from leach solution consist of hydrolysis and dechlori-
nation transformation. Ha et al. [2] prepared Bi2O3 through hydrometallurgy pro-
cess use leaching solution, the process for preparation of bismuth oxide was carried
out in three stages: SO2 reduction; hydrolysis; conversion of BiOCl to Bi2O3.
However, the drawback of this method was the product of high chlorine due to it
difficult to be dechlorinated. Herein, we are seeking for a new economical method
for production of Bi2O3 from leaching solution.

It was well know that, the rare earths were recovered from leaching solution by
solvent extraction and finally precipitated from the strip solution as rare oxalates
[18–21]. Chen et al. fabricated nanoscaled yttrium oxide by citrate precipitation
method from YCl3 solution [22]. Mei et al. nano-size ceria by stripping precipi-
tation using oxalic acid as a precipitating agent from cerium nitrate solution [23].
However, there was no reported that high-purity Bi2O3 was synthesized via
extraction-precipitation stripping and calcination. Herein, we will synthesized
Bi2O3 via extraction-precipitation stripping and calcination use BiCl3 leaching
solution, and, we have reported the extraction mechanism of Bi by TBP from
hydrochloric acid medium [24]. So, this paper aims at investigating the effects of
oxalic concentration, aging duration, phase ration, and feeding duration on the size
and morphology of precursor.

Experimental

Materials and Reagents

Tributyl phosphate(TBP), hydrochloric acid, oxalic acid, ammonium hydroxide,
sulfonated kerosene (0.8 g/mL) and ethanol were provided by XiLong Chemical
Co., Ltd., China. All the chemicals used in this study were of analytical grade
without further purification. The contents of BiCl3 solution was listed in Table 1.

Preparation of Bi2O3

(1) The BiCl3 solution was prepared through this method [4], and followed by
hydrolysis purified. In the solvent extraction tests the procedure followed was
as follows: a measured amount of BiCl3 solution and extraction agents were put

Table 1 Contents of BiCl3 solution

Elements Bi Fe Cu Mn Pb

Concentration (g/L) 19.0566 4.3939 0.0896 0.9009 0.6114
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into the separatory funnel and shook rapidly. The shaking speed which gave
sufficient mixing was kept constant in all the experiments. At the end of solvent
extraction duration, organic-aqueous phases were separated by separatory
funnel.

(2) In the stripped tests the procedure followed was as follows: a measured amount
of loaded organic and oxalic acid was put into the separatory funnel and shook
rapidly. The shaking speed which gave sufficient mixing was kept constant in
all the experiments. At the end of stripped duration, organic-aqueous-precursor
phases separation by that separatory funnel. The organic phase was used to
extract again after washing.

(3) The precursor was washed with ethanol for removing organic matter which was
subsequently heated at various temperatures to get the Bi2O3 powder. The
decomposition behavior was listed in Eqs. (1) and (2).

Bi2ðC2O4Þ3 � 7H2O ! Bi2O2CO3 þBi2O3 þCO2 + H2O ð1Þ

Bi2O2CO3 ! Bi2O3 + CO2 ð2Þ

Characterizations

X-ray diffraction (XRD, D8 Advance) pattern of the samples were obtained for
phase identification. Scanning electron microscopy (SEM, JSM-6490LV) operated
at 20 kV to observe morphologies and particle size. Differential scanning
calorimetry and thermal gravity analysis (DSC-TGA, SDTQ600) were employed to
investigate the decomposition behavior of the precipitates. The particle size dis-
tribution of Bi2O3 was analysed by particle size laser analyzer (Masterssizer 2000).
The functional group of precursor were obtained from the absorption peaks of
fourier transform infrared spectroscopy (FT-IR, WQF-510A).

Results and Discussion

Extraction of Bi

The optimum extracting conditions of Bi were obtained at a temperature of 25 °C
for a extracting duration of 5 min with 60%TBP-sulfonated kerosene system and
using a aqueous-organic ration 1/1 mL/mL. Under these optimized conditions, the
extracting rate of Bi (III) was about 82% through 1 stage. The loaded organic phase
contents showed in Table 2.
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Precipitation Stripping of Bi

The purpose of stripped experiments were to investigated the effect of oxalic acid
concentration, phase ration (Vo/Va), aging time, feeding duration on the size and
morphology of precursor. The stripped experiments were carried out at 25 °C.

Influence of Oxalic Acid Concentration

Concentration of oxalic acid has an important impact on the size and morphology of
precursor. Bi was stripped by varying the concentration of oxalic acid from 12 to
20 g/L. Other parameters was listed in the notes of Fig. 1. The average particle
diameter was increased as the concentration of oxalic acid increase, and the size
distribution was shown in Fig. 1. The distribution of the particle size become
narrower for higher concentration of oxalic acid. The concentration of oxalic from
12 to 15 g/L, morphologies of precursor could be changed from sphere-like to
block-shape (Fig. S1). By reason that when concentration of oxalic acid was
increased gradually, crystal nucleation rate becomes faster, the crystal grows up in a
regimental way [25].

Influence of Phase Ratio (Vo/Va)

Phase ratio has a remarkable effect on the size and morphology of precursor. Ratio
of organic phase to aqueous phase was changed from 1:2 to 2:1. Other parameters
was listed in the notes of Fig. 2. The particle size of precursor was increased as the

Table 2 Contents of loaded organic

Elements Bi Fe Cu Mn Pb

Concentration (g/L) 15.6264 3.6029 0.0428 0.0964 0.0288

Fig. 1 Effect of oxalate acid
concentration on the size
distribution of precursor.
Phase ration: 1:1, feeding
duration: 0 min, aging time:
0 min
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ratio increases. The size distribution was shown in Fig. 2, and it can be seen that the
distribution of the particle size become narrower for higher phase ration. As the
phase ration increase, the effect of phase ration on the morphology of precursor is
similar to that the effect of oxalic acid concentration on it (Fig. S2). By reason that
the phase ratio from 1:2 to 2:1, the mixed phase from W/O microemulsion region to
O/W microemulsion [17], the major growth mechanism of precursor was Ostwald
ripening, this was similar to that of CuO nanoplates reported by Li et al. [26].

Influence of Aging Duration

Aging duration has a little influence on the size and morphology of precursor, it was
ranging from 0 to 30 min. Other parameters was listed in the notes of Fig. 3. The
particle size of precursor was decreased as the aging duration increase and the size
distribution was shown in Fig. 3, it was apparent that the distribution of particle size
become wider for a higher phase ration. With the extension of aging time, the
size of the sheet-like precursor becomes smaller as the aging time was prolonged
(Fig. S3). By reason that extract and stripped of Bi were commutative caused by
extending the aging duration, as the contact between the precursor and organic
phase becomes larger, so that part of the precursor redissolved, causing the pre-
cursor particle size distribution was not uniform.

Influence of Feeding Duration

The effect of feeding duration on the size and morphology of precursor was obvious
as shown in Fig. 4. Feeding duration was varying from 0 to 30 min. Other
parameters was listed in the notes of Fig. 4. The particle size of precursor was
decreased as the feeding duration increase. As it was observed from the Fig. 4, the
distribution of the particle size become wider for a longer aging duration. When

Fig. 2 Effect of phase ration
on the size distribution of
precursor. Oxalic acid
concentration:15 g/L, aging
duration:0 min, feeding
duration: 0 min
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lowering the feeding rate, the degree of agglomeration of the precursor was
exacerbated (Fig. S4). The reason may be that newly generated precipitates will be
overlapped on the original precipitate [27], and part of the precursor was
redissolved.

Characterization of Precursor

Figure 5 was FT-IR spectra of bismuth oxalate. The precursors Bi2(C2O4)3.7H2O
showed a wide absorption band at 3444 cm−1, corresponding to the stretching and
bending modes of dissociative hydrocarbon chain, indicating a large amount of
crystal-water inside. The peaks at 1585 cm−1 was ascribed to the stretching
vibration of the C = O.

The corresponding XRD pattern of bismuth oxalate powder was shown in
Fig. 6. The peaks at 15.883° and 18.819° of XRD patterns can be indexed as a
triclinic lattice of Bi2(C2O4)3▪7H2O with crystal cell constants a 6¼ b 6¼c, and
a = 9.43 Å, b = 9.18 Å, c = 11.17 Å, a = 78.3°, b = 101.0°, c = 73.7°,which are

Fig. 3 Effect of aging
duration on the size
distribution of precursor.
Oxalic acid
concentration:15 g/L, phase
ration:1:1, feeding duration:
0 min

Fig. 4 Effect of feeding
duration on the size
distribution of precursor.
Oxalic acid
concentration:15 g/L, aging
duration:0 min, phase
ration:1:1
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close to the JCPDS file data (PDF no. 38-0548). The sharpness of the peaks
suggested that the precursor was well crystallized.

To understand the decomposition behavior of bismuth oxalate, DSC-TGA
curves were shown in Fig. 7. Decomposition processed in a two-step process: at
first, a weight loss of 5.80% was noted from 25 to 245 °C, the second sharp weight
loss of 28.82% was noted from 245 to 285 °C. The total weight loss (34.43%) was
lower than in the earlier reports assigned for Bi2(C2O4)3▪7H2O decomposition
(42.20%) [28], indicating that some organic residues were wrapped into precursor.
The flat roof appeared when the temperature was higher than 300 °C, implying no
weightlessness at high temperature. TGA study showed one exothermic peak at
270 °C and three endothermic peaks at 180, 480, and 720 °C, respectively. The first
one was due to the decomposition of organic residues, the second one could be
attributed to the decomposition of bismuth oxalate, the last two were ascribed to the
b-Bi2O3 ! a-Bi2O3 and a-Bi2O3 ! d-Bi2O3, respectively. And this behavior was
consistent with the earlier reports assigned for bismuth oxalate transformation into
Bi2O3 [16, 29].

Fig. 5 FT-IR spectra of
bismuth oxalate

Fig. 6 XRD pattern of
bismuth oxalate
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Characterization of Bi2O3

The corresponding XRD pattern of the thermally decomposed products from bis-
muth oxalates with different calcination temperature were shown in Fig. 8. It was
clear that Bi2O3 can be changed from beta phase to delta phase as the calcination
temperature increased from 260 to 730 °C. In Fig. 8b all the diffraction peaks of
XRD pattern can be indexed to tetragonal crystal structure of the b-Bi2O3 phase
with lattice parameters of a = b = 7.741 Å, c = 5.634 Å, and a = b = c = 90°(PDF
no. 78-1793). In Fig. 8d, the XRD pattern show that the synthesized a-Bi2O3

belongs to monoclinic system with lattice parameters of a = 5.8486 Å, b = 8.1661
Å, c = 7.509 Å, and a = b = c = 113.0°(PDF no. 41-1499). In Fig. 8e all the
diffraction peaks of XRD pattern can be indexed to monoclinic crystal structure of
the d-Bi2O3 phase and the corresponding lattice parameters were: a = 5.84 Å,
b = 8.16 Å, c = 7.49 Å, a = 90°, b = 67.07°, c = 90°(PDF no. 65-2366). In the
XRD pattern of Bi2O3, the sharp peaks indicated that all the samples were highly
crystallized, and the phase transition was consistent with the DSC-TGA curves

The chemical analysis of Bi2O3 was presented in Table 3. The main impurity
elements as follows: Ca, Fe and Pb, the content (w%) was 132 � 10−6 %,

Fig. 7 DSC-TGA curves of
bismuth oxalate

Fig. 8 XRD of Bi2O3 with
different calcination
temperature
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99 � 10−6 %, 245 � 10−6 %, respectively. The purity of Bi2O3 was 99.929%,
achieved the demand of high-purity Bi2O3.

To characterize the prepared Bi2O3 powder, size distribution of Bi2O3 are given
in Fig. 9a and their SEM pictures are revealed in Fig. 9b on the scales of 200 and
500 nm. In this study, the conditions for synthesizing precursor precipitates from
loaded organic phase were 15 g/L oxalic acid, 1/1 phase ration, 0 min aging
duration and feeding duration of 0 min. Then, the precursor precipitates was cal-
cined at 500 °C for 2 h. As shown was Fig. 9a, the size distribution was relatively
narrow, about 400–800 nm. As for the morphologies of Bi2O3 powders, SEM
pictures shown in Fig. 9b reveal that the product was hovenia aceerba-like and size
distribution around 680 nm. Fine particles were sized between 100 and 2500 nm,
and coarse particles cover a range between 2500 and 10000 nm [30, 31].

Conclusions

A economical process has been developed to extract Bi as Bi2O3 from leaching
solution. Bi2O3 powders were prepared by oxalic precipitation method in this study.
The results indicated that concentration of oxalic acid and aging duration made a
full impact on the precursor morphologies, while the aging and feeding duration
have an obvious influence on the size of precursor. Bi2O3 product of 680 nm was
obtained using 15 g/L oxalic acid, 1/1 phase ration, 0 min aging duration, 0 min
feeding duration and calcinating at 500 °C for 2 h. Using this method, Bi2O3

product of 99.929%, purity was achieved.

Table 3 Elements contents of Bi2O3

Element Na Al K Ca Fe Cu Zn Mo W Pb Bi2O3

Unit(wt%) 82.9
� 10−6

13.6
� 10−6

19
� 10−6

132
� 10−6

99
� 10−6

12.8
� 10−6

63.1
� 10−6

11.7
� 10−6

28.1
� 10−6

245
� 10−6

99.929

Fig. 9 Size distribution (a) and SEM (b) photos of Bi2O3
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Aluminum-Silicon Alloys Prepared
from High-Aluminum Fly Ash to Extract
Magnesium from Serpentine

Huimin Lu, Guangzhi Wu and Neale R. Neelameggham

Abstract In China’s Inner Mongolia Tuquan County, 1.4 billion tons of reserves
of serpentine deposits were found. Because serpentine belongs to magnesium sil-
icate, there is no good reducing agent to reduce magnesium. In the local there is
also a large reserves of high-aluminum bituminous coal for thermal power, power
plants each year produce a large number of high-aluminum fly ash. The
aluminum-silicon alloys obtained from this high-aluminum fly ash as the raw
material by carbothermal reduction method can reduce the magnesium from the
serpentine. In this paper, first, the feasibility of producing aluminum-silicon alloys
by carbothermal reduction of high-alumina fly ash was studied, the hypereutectic
aluminum-silicon alloys were obtained; and then the investigation on
aluminum-silicon alloy as a reducing agent to reduce of metal magnesium from
serpentine was carried out. According to the previous investigation, the optimized
technical process for the extraction of metal magnesium from serpentine was
proposed.
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Introduction

Magnesium is the lightest metal of all the commonly utilized metal and applied in
as structural material, such as construction material, in the automotive industry,
medical industry and other industries [1]. In 2016 the global production of mag-
nesium reached 900 thousand tons. The production of magnesium is based on
Pidgeon process and electrolytic process, and more than 90% production of mag-
nesium was produced by Pidgeon process from China.

Magnesium production in the world is currently dominated by the Pidgeon
process which uses silicon, in the form of ferrosilicon, to reduce magnesia from
calcined dolomite under vacuum. The overall reaction of the process can be written
as follows [2]:

2MgO sð Þþ 2CaO sð Þþ xFeð ÞSi sð Þ ¼ 2Mg gð ÞþCa2SiO4 sð Þþ xFe sð Þ ð1Þ

The reaction is performed in batch mode within steel retorts that operate around
1200 °C and a vacuum of 10–20 Pa to produce approximately 20 kg of Mg over an
eight to ten hour period. The process suffers from high energy usage and low
productivity.

In China’s Inner Mongolia Tuquan County, 1.4 billion tons of reserves of ser-
pentine deposits were found. Because serpentine belongs to magnesium silicate,
there is no good reducing agent to reduce magnesium. Magnesium production in
the laboratory is carried on by the Pidgeon process which uses aluminum-silicon
alloy, to reduce magnesium silicate from serpentine under vacuum. The overall
reaction of the process can be written as follows:

54CaO sð Þþ 14 2MgO � SiO2 sð Þ½ � þ 7 MgO � SiO2 sð Þ½ � þ 14Al sð Þþ 7Si

¼ 12CaO � 7Al2O3 sð Þþ 14 2CaO � SiO2 sð Þ½ � þ 35 Mg½ � gð Þþ 14 CaO sð Þ � SiO2 sð Þ½ �
ð2Þ

At present the Al–Si alloys are produced from silicon and aluminum separately,
alloying while aluminum is melted for subsequent casting. Primary aluminum is
generally produced from bauxite using molten salt electrolysis which is an extre-
mely costly process. Silicon is generally produced in an electric arc furnace from
pure quartz and extremely pure coal and coke. Each of these processes requires
considerable amounts of energy and places high demands on the raw materials. It is
therefore of great interest to be able to produce aluminum-silicon alloys directly
from the high-aluminum bearing minerals, such as andalusite, cyanite, kaolinite,
sillimanite and so on [3, 4]. The energy consumption in such a process will be
considerably lower. This process also has many other advantages such as short
production time, small investments for equipment, high production and energy
utilization rates [5, 6]. Some countries, mainly Russia and Ukraine, have been
conducting industrial trails on a large scale, where attempts have been made to
recover aluminum-silicon alloys from various aluminum-silicon minerals
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carbo-thermically in an electric arc furnace. In this case the mineral and carbon
powder are mixed and formed into briquettes. After heat-treatment, the briquettes
are charged into an electric arc furnace. The authors also produced
aluminum-silicon alloys directly from andalusite by carbothermal reduction method
in laboratory [7].

In the local there is also a large reserves of high-aluminum bituminous coal for
thermal power, power plants each year produce a large number of high-aluminum
fly ash. The aluminum-silicon alloys obtained from this high-aluminum fly ash as
the raw material by carbothermal reduction method can reduce the magnesium from
the serpentine. In this paper, first, the feasibility of producing aluminum-silicon
alloys by carbothermal reduction of high-alumina fly ash was studied, the hyper-
eutectic aluminum-silicon alloys were obtained; and then the investigation on
aluminum-silicon alloy as a reducing agent to reduce of metal magnesium from
serpentine was carried out. According to the previous investigation, the optimized
technical process for the extraction of metal magnesium from serpentine was
proposed.

Experimental Procedure

Laboratory experiments for producing aluminum-silicon alloys were conducted in a
100kVA DC submerged arc furnace, as pictured in Fig. 1. Process conditions were
as follows: electrode diameter /150 mm; furnace crucible diameter /300 mm;
depth of furnace 380 mm; transformer primary voltage 380 V, three-phase bridge
rectifier DC voltages divided into four levels 22 V, 25 V, 28 V, 32 V; ratio of
current to voltage 4; maximum current 4000 A when voltage at 1000 V. The
electrodes used in the furnace were graphite electrodes.

Laboratory experiments for producing magnesium were conducted in a 120 kW
serpentine continuous reduction of magnesium test furnace, as pictured in Fig. 2.
Process conditions were as follows: the reaction is performed in semi-continuous
feeding charge 30 kg each within magnesium test furnace that operate around
1200 °C and a vacuum of 10–20 Pa over an two to four hour period.

Fig. 1 100kVA DC
submerged arc furnace
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Raw Materials

High-aluminum bearing coal fly ash. High-aluminum bearing coal fly ash
(HACFA) was taken from Hequ Second Power Co. Ltd.; its sizes were smaller than
120 lm. The main composition in HACFA is 88.16 mass% ash content, 2.66 mass
% volatile content, 1.54 mass% moisture content, 5.91 mass% solid carbon content.
The chemical compositions of the ash content are as follows: 38.05 mass% Al2O3,
41.12 mass% SiO2, 4.66 mass% Fe2O3, 4.07 mass% CaO, 0.34 mass%MgO,
Na2O�K2O0.32 mass% and 11.44 mass% ablation.

Bitumenite. Bitumenite (BT) was from Shanxi Datong Washing Coal Plant. Prior
to use it was ground to <0.5 mm. Its composition was 12.64 mass% ash content,
28.92 mass% volatile content, 3.70 mass% moisture content, 54.74 mass% solid
carbon content. The chemical compositions of the ash content are as follows: 19.52
mass% Al2O3, 49.84 mass% SiO2, 6.52 mass% Fe2O3, and 11.72 mass% CaO.

Petroleum coke. Petroleum coke (PC) was from Tianjin Dagang Petroleum
Chemical Industrial Company. Before experiments it was ground to <0.5 mm. Its
composition was 0.28 mass% ash content, 8.04 mass% volatile content, 0.39 mass
% moisture content, 91.29 mass% solid carbon content.

Charcoal. Charcoal (CL) used in experiments was purchased from market, its sizes
were smaller than 0.5 mm. Its composition was 1.03 mass% ash content, 2.99 mass
% volatile content, 3.94 mass% moisture content, 92.04 mass% solid carbon content.

Adhesive paper industry wastewater. Adhesive paper industry wastewater was from
Jizhou Paper Mill. Its composition was 27.04 mass% ash content, 46.74 mass%
volatile content, 5.26 mass% moisture content, 20.96 mass% solid carbon content.

Iron oxide powder. Iron oxide powder was from Tangshan Iron and Steel Plant. Its
composition was 54.12 mass% Fe2O3, 12.74 mass% CaO, 14.02 mass% MgO, 6.11
mass%Al2O3 and 9.01 mass%SiO2.

Fig. 2 120 kW serpentine
continuous reduction of
magnesium test furnace
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Serpentine. Serpentine ore powder was taken from Inner Mongolia Xintai
Construction and Installation Group Co., Ltd, the size was smaller than 0.5 mm.
The main minerals in the serpentine ore are 96 mass% serpentine, and with a small
amount of olivine, chrome spinel, and metal minerals including magnetite, hema-
tite, chromite, nickel pyrite and chalcopyrite. The assay of the serpentine ore is
shown in Table 1.

Test Methods

The raw materials for producing aluminum-silicon alloys were mixed uniformly in
the given proportions in a stirring machine, briquetted into ovals with the major axis
60 mm and the minor axis 40 mm, and dried in the electrothermal drying box at
150 °C for 2 h until the moisture content was lower than 1%. The average density
of briquettes was 1.12–1.36 g/cm3, the porosity was 40–44%. The dried briquettes
were charged into the 100 kVA DC submerged arc furnace with temperature 2000–
2200 °C and time 4 h. The Al–Si alloy was discharged. The samples were analyzed
by XRD, XRF analysis, SEM analysis and chemical analysis.

The raw materials for producing magnesium were mixed uniformly in the given
proportions in a stirring machine, dry pressure briquetted into ovals with the major
axis 40 mm and the minor axis 20 mm. The average density of briquettes was 1.62–
1.66 g/cm3, the porosity was 44–47%. The briquettes were charged into the
120 kW serpentine continuous reduction of magnesium test furnace with temper-
ature 1150–1200 °C, vacuum of 10–20 Pa and time 2–4 h. The Mg was dis-
charged. The samples were analysed by XRD, SEM analysis and chemical analysis.

Results and Discussion

Comprehensive Experiment for Producing Al–Si Alloys

The content of the furnace charge is 65 mass% HACFA in which the impurities are
quartz, calcium oxide and magnesia etc. and the total impurities amount is not in
excess of 20 mass%; 22 mass% reducing agent (bitumenite and petroleum coke,
mixing ratio of bitumenite and petroleum coke 70:30) 7 mass%iron oxide powder

Table 1 Analysis of serpentine ore used in this work/mass%

MgO Al2O3 CaO Fe2O3 FeO SiO2 Na2O

35.54 0.64 3.36 5.23 1.47 37.17 0.0097

K2O Mn Ni Cr H2O P S

0.055 0.048 0.22 0.12 0.48 0.0022 0.0009
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and 6 mass% adhesive paper industry wastewater. First, all the raw materials are
mixed uniformly, briquetted and dried, then the carbothermal reduction experiments
are conducted in the 100kVA DC submerged arc furnace with reducing temperature
2200 °C and reducing time 4 h, the aluminum-silicon alloys containing 35.00 mass
% aluminum, 48.06 mass% silicon and 17% mass%iron are obtained with alu-
minum recovery rate 80% and silicon 70%. Table 2 lists the results of chemical
analysis for the Al–Si alloys.

The analysis results of the slag by element fluorescence analysis were as follows
(mass%): Al 18.13, Si 20.50, O 21.88, Ca4.54, Fe 2.53, Mg 1.03, Cr 0.05, S 0.04, K
0.02, Co 0.02, Zr 0.01, Ni0.01and C 31.24. The slag can be used as a deoxydizing
or dephosphorizing agent in steel smelting. Therefore, no waste accumulates when
using high-aluminum bearing coal fly ash as raw material for carbothermal Al–Si
alloy production.

The analysis of the smoke from the experiments were as follows: N2 78 vol.%,
O2 19 vol.%, CO21.5 vol.%, SO2140 mg/Nm3, solid particales 0.6 g/Nm3; Al2O3

50 mass% of solid particles, SiO2 26 mass% of solid particles. Al–Si fine powder
collected from the off-gas could be used as the raw material for smelting Al–Si alloy
again.

Comprehensive Experiment for Producing Magnesium

According to the condition test parameters, the comprehensive experiment was
carried out on a 120 kW new serpentine semi-continuous magnesium reduction
furnace. Each filling 35.8 kg, of which dry serpentine 20 kg, lime 12 kg, Al–Si alloy
3 kg, fluorite 0.8 kg, mixed even dry powder ball into the furnace, keeping vacuum
10 Pa, temperature 1200 °C, to maintain the reduction time 3 h. Comprehensive
experimental raw materials and products taken from the serpentine semi-continuous
magnesium reduction furnace were pictured in Fig. 3. The recoveries of magnesium
extracted from serpentine by Al - Si alloy can reach 85%. The chemical analysis
results of the crude magnesium obtained in the test is shown in Table 3. Visible, as
crude magnesium, its quality is very good. Further refined, high quality Mg products
can be obtained. The reduction slag can be used as a cement raw material due to the
transformation of calcium dichromate crystal in form of expansion and self-crushing
loose white powder, the size smaller than 50 lm, the chemical analysis results were
as follows: 61.69 mass%CaO, 13.45 mass% Fe2O3, 17.44 mass%SiO2, 4.39 mass%
Al2O3, and 3.03 mass%MgO. The obtained residue was subjected to magnetic

Table 2 The results of
chemical analysis for the Al–
Si alloys (mass%)

Al Si Fe Cu Ti Mg

35.00 48.06 16.31 0.022 0.011 0.021

Zn Mn Ni Ca

0.13 0.13 0.023 0.35
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separation to obtain a nickel iron block. The chemical analysis results were as
follows: 2.32 mass%Ni, 97.68 mass% Fe. Nickel iron recovery rate was about 85%.

Conclusions

1. It is feasible to produce aluminum-silicon alloys by carbothermal reduction of
high-aluminum bearing coal fly ash. The optimum mixing ratio of furnace
charge was determined to be 65% high-aluminum bearing coal fly ash; 22%
bitumenite and petroleum coke as reducing agent, the mix proportion of bitu-
menite and petroleum coke should be in the range of 8:2–6:4; with 6% binder
calcium lignosulphonate and 7 mass% iron oxide powder. All these raw
materials are mixed uniformly, briquetted and dried, the carbothermal reduction
experiments are conducted in a 100kVA DC submerged arc furnace with

Fig. 3 Comprehensive experimental raw materials and products. (Left upper: pellet; left lower:
crystalline magnesium; Right upper: nickel-iron alloy; right lower: slag)

Table 3 The chemical analysis results of the crude magnesium (mass%)

Si Cr Ni Cu Zn Ca Fe Al Mg

0.001 0.002 0.002 0.002 0.002 0.003 0.005 0.002 99.58
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reducing temperature 2000–2200 °C and reducing time 4 h, the aluminum-
silicon alloys containing 35 mass% aluminum, 45 mass% silicon and 17 mass%
Fe can be obtained with aluminium recovery rate 80% and silicon 75%.

2. The process of extracting magnesium from the aluminum-silicon alloy
heat-reducing serpentine is reasonable. The Al–Si alloy and the calcium oxide
can extract the metallic magnesium from the serpentine at 10–20 Pa of vacuum
and from 1100 to 1200 °C. In the process of magnesium extraction, at the same
time these nickel-iron alloy and dicalcium silicate and aluminum silicate slag
used as raw materials for the preparation of cement can be obtained.

3. Laboratory scale of comprehensive experimental studies has shown that ser-
pentine extraction of magnesium metal is feasible, and magnesium recovery rate
reaches 80%. This is a cleaning process with no carbon dioxide emissions.

4. Laboratory semi-continuous reduction furnace improves magnesium production
efficiency and reduces costs, it is worth further study, and it has a bright future.
Raw materials for production of Al–Si alloy are obtained easily, such as coal
gangue, fly ash and so on. Semi-continuous process with aluminum-silicon alloy
from the serpentine extraction of metal magnesium is simple, clean production,
and low cost.
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Organic Agriculture Using Natural
Material Coal

Neale R. Neelameggham and Brian R. Davis

Abstract Organic agriculture is using natural materials such as degrading plant
matter to replenish soils. This includes use of naturally degraded plant components
such as peat, humus and weathered brown coals. Another important natural organic
matter which has not been applied in agriculture thus far has been the black coal,
Here we show that reversing the coal formation reaction by combined
hydro-oxidation principles of biochemical engineering in natural conversion
methods in an accelerated fashion. The modified coal soil additive can convert arid
lands into farm lands for the future to sustain the population growth. In addition, the
development of this new use of black coal will revive economically deprived areas
from phasing out coal in the USA and Europe. This will show how the Stored
energy in coal can be made renewable in helping plant growth under the soil to
facilitate above ground photosynthesis.

Keywords Organic agriculture � Soil organic carbon � Humates
Coal � Bituminous � Lignite � Hydro-oxidation � Arid land greening

Introduction

Using natural materials such as degrading plant matter to replenish the soils is
termed as organic agriculture. This includes use of naturally degraded plant com-
ponents such as peat, humus and weathered brown coals called leonardite. Another
important natural organic matter which has not been applied in agriculture thus far
has been black coal containing considerable organic elements of carbon, hydrogen,
oxygen and nitrogen. With the advent of alternate energy resources for nonfood
items it becomes feasible to use this coal in agriculture. There is a need for

N. R. Neelameggham (&)
IND LLC, UT, South Jordan, UT, USA
e-mail: neelameggham@outlook.com

B. R. Davis
Brian Davis Consultants Associates, Manvel, TX, USA

© The Minerals, Metals & Materials Society 2018
Z. Sun et al. (eds.), Energy Technology 2018, The Minerals, Metals & Materials
Series, https://doi.org/10.1007/978-3-319-72362-4_53

565



replenishing organic matter in soils which have become weak in organic matter.
Increasing population and the projected increase in population during the next
several decades indicates the need for increased water as well as food resources.
The increased need for food supplies means increased agricultural growth. This can
only happen by improving nonagricultural lands including arid lands.

Soil Organic Carbon

The land types are classified by their soil organic carbon amounts. [1, 2]. Naturally
available ‘peat’ material such as sphagnum act as the effective organic matter and in
retaining water, help initiate sprouting from seeds, and root growth. Peat becomes
lignite or brown coal during the long-term natural decay of plant matter. The
reversal of the process on lignite–called weathering recreates leonardite containing
humates used in organic gardening. The short-term decay of plant matter is called
Compost—which also contains humates applied by household organic gardening
[3]. It should be noted that although decay of plant matter in the short term is called
‘composts’ for partial decaying and long term conversion to more complete decay is
termed conversion to ‘brown and black coals’. Understanding of the chemical
phenomenon can facilitate 21st century methods of carrying out both the forward
decay of plants which had ‘life’ and the reverse revival back from black to brown
coal—humates—peat and to higher moisture laden matter capable of
self-propagation. The forward or the reverse process can be accelerated to shorter
time periods.

Soils rich in organic carbon is usually dubbed as topsoil, and is considered a
matter of commerce, similar to sphagnum peat, soil amendments from leonardite,
and natural humus which are essentially ‘coal in the making’. Freeman Dyson had
noted that “replenishing topsoil world-wide in its efficient use of products of energy
component release in the air as follows—“Good topsoil contains about ten percent
biomass, [Schlesinger, 1977], so a hundredth of an inch of biomass growth means
about a tenth of an inch of topsoil. Changes in farming practices such as no-till
farming, avoiding the use of the plow, cause biomass to grow at least as fast as this.
If we plant crops without plowing the soil, more of the biomass goes into roots
which stay in the soil, and less returns to the atmosphere…’\” [4].

Humates

The study of humates presented by Robert E Petitt, Texas A and M, discusses the
importance of organic matter in healthy and fertile soils. Pettit shows that “the
oxidative degradation of some humic substances produces aliphatic, phenolic, and
benzenecarboxylic acids in addition to n alkanes and n fatty acids. The major
phenolic acids released contain approximately 3 hydroxyl (OH) groups and
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between 1 and 5 carboxyl (COOH) groups [5]. Petitt also notes the importance of
the humic components to keep the soil fertile for several centuries.

One of the volumes of UNESCO books–Encyclopedia of Life support systems
ELOSS discusses the structure of different types of coal—notes parts of the phe-
nolic groups present in humates. [5]. The differences between the hydrophobic and
hydrophyllic nature of different ranks of coal—black (hydrophobic) and brown
(hydrophyllic) have also been noted during the clean coal production by froth
flotation. The difference is due to the variation of the phenolic and carboxylic
groups of the coal. Students of organic chemistry know the methods of carboxy-
lation or carbonylation of phenolic groups to carboxylic group [6]. Such methods
are also parts of weathering reactions can be stimulated in an organic fashion in the
soil. These are evidenced by the changes in the soil carbon content and water
holding capacity in the revegetated coal mines which takes place within a short
period of 10 to 12 years [7].

Flora Friendliness of Coal

The Flora friendliness of coal—and its organic matter utilization is evidenced in
plants growing among coal spills as shown in Fig. 1 taken near an abandoned coal
mine in Utah.

The natural manures—which are animal digested vegetation—when dried
becomes energy fuel and are combustible similar to longer term deoxygenated and
dehydrated plant matter which is coal. Humates are also naturally decayed vege-
tation and are used as fuel matter where necessary similar to bio-fuels from wood
burning [still younger decaying wood] or charcoals. While full conversion reactions
to carbon dioxide and water vapor make these energy maerial. The partial soil

Fig. 1 Indian paint brush
plant growing on coal spills
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reactions make the core of organic agriculture providing energy for consumption in
the form of agricultural products. This is the basis for organic energy conversions.

It is to be noted that most of the coals formed from plant matter decay still
contain mineral nutrients [ash formers when combusted] besides the basic plant life
producing major elements of carbon, hydrogen, oxygen, nitrogen with minor [in-
terim quantities] elements of phosphorous, potassium and sulfur.

Organic Agricoal

We have been developing the manufacturing of an organic agricultural matter from
coals. These methods include

[a] use of accelerated natural conversion of black coals in providing increase in
soil carbon

[b] use of accelerated natural conversion of black coals in facilitating organic
agriculture of arid lands as well as promoting fertile land in depleted soils

[c] quantify organic gardening methods of natural conversion of black coals in
providing the fundamental reactions by laboratory measurements of func-
tional soil chemistry.

We have the fundamentals for developing manufacturing methods for large scale
natural conversion of the coals into agricultural products of commerce. The con-
versions can be monitored using proven techniques of FTIR methods used in the
studies of humates [8–11].

Arid Lands Worldwide

There are vast areas of the world which were made arid several centuries ago—
which are known as Deserts of the world. In addition, the human population growth
has created ‘drought prone’ areas and arid lands—due to the trials and errors of
anthropogenic misjudgments. Allan Savory [12] had expressed that such follies as
getting rid of ‘elephant population’ in Africa and how it caused desertification of
grass-lands. Similar events of lowering cattle population in other parts of Africa—
causing lowering of soil carbon, nitrogen and other nutrients which cattle were
recyling back to the grass lands from their solid and liquid excretions, leading to
desertification. Cattle or animal excreta are full of the basic elements CHON with
minor P and K and other micro elements from their plant matter fodder digestion.
Deforesting is another of our follies to cause an imbalance in photosynthesis of our
‘soul vapor re-incarnation’. City scaping making soil impervious by asphalt roads
[without sufficient permeable soils] leading to lack of ground water replenishments
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is another ‘error’ even in high rain area cities lacking drinking water. This is in
addition to urban heat islands.

Allan Savory’s holistic approach to reverse desertification is impressive, but we
need a larger scale rapid conversion of global arid lands to help provide water and
food for the human population increases in the coming decades. Material balances
would show that it would require a large quantitative replenishment of soil carbon
in a short time. We can accomplish such conversions with the plentiful coal in the
world by judicious applications in the arid lands of the world providing the res-
urrection of the land—by resurrecting the valuable elements in coal, lignite and the
like by reversing coalification. This is a method of extracting the stored energy in
the renewable energy matter—COAL.

Conclusion

Arid lands lack soil organic carbon to facilitate plant growth. Our initial studies
have indicated the use of naturally available organics such as modified coal—can
act as soil amendment for organic ‘agriCoalture’, usable in providing the organic
carbon required for plant growth. Organic carbon alone cannot sustain plant growth
—the soil amendment should be made in a manner to maintain soil moisture for the
growth of the plants. The modified coal should also preferably be augmented by
other basic minor and macro nutrients of ‘life of plants’ besides the essential CHON
major matter in the arid soils. Proprietary techniques are being developed to show
enhancing water retention properties along with needed carbon in the arid soils to
facilitate root system buildup for efficient plant growth.

We are considering demonstrations of this in arid areas of the US—around
Mojave Desert as well as in the Horn of Africa arid lands in Ethiopia, Somalia and
Kenya,
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Extraction and Production of Rare Earth
Elements from Coal-Seam Bedrock
and Caprock

John Gordon

Abstract Rare earth elements (REE) required in modern technological products
are found in shale rocks above and below coal seams. Often during the process of
mining coal, shale rock adjacent to the seam inadvertently is removed then diverted
to landfill sites. Ecologically sound and potentially economic methods of extracting
the REEs from these landfills are proposed. Methods include utilizing
geomemembrane barrier beneath the landfill site, ion exchanging with moderate
pH, slightly acidic, sodium chloride solutions. Sodium hydroxide is utilized to
precipitate the REE-hydroxides subsequently converted to REE-chlorides with
suitable amount of hydrochloric acid. All acid and base streams are co-produced
with efficient membrane/electrolysis technology. Concentrated-REE chlorides are
transported to centralized solvent extraction facilities for isolation and purification.
Solvent extraction processes also employ the methodology of using co-produced
acid/base streams. This paper details minimization of environmental impacts and
maximizing economics to produce valuable REEs while increasing the economics
of coal mining.

Keywords Rare earth elements � Coal byproducts � Ion exchange
Solvent extraction

Background

Rare earth elements such as light rare earth elements (LREE) Sc, La, Ce, Pr, Nd,
Eu, Sm, Gd and heavy rare earth elements (HREE) Y, Tb, Dy, Ho, Er, Tm, Yb, Lu
are produced nearly exclusively in China but are strategic to modern technology
used in permanent magnets, phosphors, lasers, automotive catalytic converters, fiber
optics/superconductors, electronic device, cell phone displays, advanced batteries,
and wind generation turbines. Developing additional supplies of these elements as a
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byproduct to existing operations in other industries would work toward stabilizing
supply and prices. One of the problems which occurred in both the US in the past
and in China currently is negative environmental impact due to strong acids utilized
in extraction of the REE’s. REE’s can be found in the bedrock and caprock sur-
rounding coal seams. For example, S. Miskovic in “Extraction of REE from Coal,
Univ. Of Utah—REE recovery from Western Coals”, January 2015 [1], reported
REE content between 200—over 600 ppm in the inorganic content of coal samples
in the Western United States [1]. Ion exchange is a technique which has been
utilized to pull REE’s from REE bearing clays and rock in some cases.

Goals

A goal is to develop a methodology for extracting REE’s from the waste rock of
coal mining operations which are destined for landfill where the methodology is
cost effective and environmentally sensitive.

A second goal is to expand the methodology to reduce environmental impact
from the REE separation and purification required for saleable products.

We propose to focus on coal byproduct resources rich in clay type material
suitable for ion-exchange.

Typically physical separation/mineral processing methods are used to concen-
trate REE minerals. According to Papangelakis and Moldoveanu, many REE
bearing minerals require harsh leaching conditions: concentrated sulfuric or
hydrochloric acid and sometimes high temperature with concentrated sulfuric or
70% sodium hydroxide. At the same time, “in spite of their low grade,
ion-adsorption clays account for –35% of the China’s total REE production …” [2]
While pursuing the high concentration minerals would provide higher yield, the
methods used may not be appropriate for extracting REE’s from low grade sources
such as coal byproducts because of high process expense and also because of the
risk of leaving behind undesirable acidic or basic waste streams.

Hower et al. report “rare earths have been found in interesting concentrations in
the strata above and below certain coal seams” [3]. Finkelman estimated that not
more than 10% of the total REE’ in the lignite had an organic association, the
remaining 90% of the REE were associated with REE-bearing minerals [4]. Hower
reports Finkelman and Palmer presented in unpublished U.S. Geological Survey
data, the distribution of light and heavy REE’s vary in distribution from association
with clays, phosphates, and carbonates. REE’s associated with clays require the
least aggressive conditions to extract, and at the same time result in lower uptake in
non-REE’s such as alumina and silica in the process [3]. Looking at 36 samples of
coal byproducts in the Western U.S. from 7 states, Sanja Miskovic of the University
of Utah reported REE content in the inorganic portion of a variety of samples
ranging from less than 100 ppm to over 600 ppm total REE with about half in the
200–450 ppm range [1]. Among these, the distribution of REE’s includes a sizable
portion of scandium, one of the most valuable REE’s. Miskovic found no benefit
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from physical methods of concentration such as particle classification density
separation, flotation, and wet magnetic separation in concentrating the REE’s
content. In part to confirm Miskovic’s findings, samples were obtained from two
veins of a in the mine near Price, Utah and another coal mine near Salina, Utah.
These were rock samples. Analysis of REE’s in the roof rock of these veins, verified
the presence of REE’s and significant amounts of scandium. Analysis of volcanic
ash based rock obtained from a source in Emery, Utah, located between the two
coal mines was rich in REE’s and about 50 ppm scandium. This finding is con-
sistent with Hower reporting:

Some Kentucky, Utah, and Wyoming REY occurrences are largely the result of
volcanic ash falls. Crowley et al. noted three enrichment mechanisms:

(1) Leaching of volcanic ash with subsequent concentration by organic matter;
(2) Leaching of volcanic ash with subsequent incorporation into secondary min-

erals; and
(3) Incorporation of volcanic minerals into the peat [3].

We propose to use mildly acidic sodium chloride lixiviant and concentrate the
REE with hydroxide precipitation in mildly basic pH

Papangelakis andMoldoveanu report, while aggressive conditions in terms of acid
or base concentrations and temperatures are required to extract REE’s from many
minerals such as the bastnasite, monazite, xenotime, breaking downmineral matrixes,
with clays ion exchange at room temperature is possible. “A simple leach using
monovalent sulphate or chloride salt solutions at ambient temperature can produce a
high-gradeREOproduct.”…“…under atmospheric conditions, the leaching power of
monovalent ions for REE extraction depends on the hydration energy of the exchange
ion, following the order Cs+>NH4+>Na+>Li+, in both sulphate and chloride. Batch
leaching studies also revealed that the ion exchange process achieved equilibrium in
as little as 5 min, regardless of the experimental conditions; ambient temperatures and
moderately acidic acid pH values (4–5) represent optimum conditions for maximum
REE recovery.”…“REE occur as soluble free cations/hydrated cations or part
positively-charged complexes in solution adsorbed species on clays [2]. These species
account for 60−90% of total content of rare earths in ores and can be recovered by
ion-exchange leaching with monovalent salts.”

The standard ion exchange process utilizes ammonium sulfate solution contacted
with the REE bearing clays. Ammonium ion exchanges for the REE cations sol-
ubilizing the REE:

2Clay-REE þ 3ðNH4Þ2SO4ðaqÞ! 2Clay-ðNH4Þ3 þ REE2ðSO4Þ3ðaqÞ
The next step is utilized to concentrate the REE from the dilute solution. Oxalic

acid is used to precipitate the REEs:

REE2 SO4ð Þ3 + 3H2C2O4 + 10 H2O!REE2 C2O4ð Þ3�10H2O + 3H2SO4
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Following precipitation, REE-oxalate is roasted to convert to REE-oxide,
releasing carbon monoxide and carbon dioxide as part of the process.

Earlier, in what Papangelakis and Moldoveanu call “first generation leaching
technology,” in the early 1970s, NaCl was used instead of ammonium sulfate [2].
NaCl is less expensive and less harmful ultimately to streams if leakage were to
occur. The reason NaCl was less preferred was that Na-oxalate co-precipitated with
the REE-oxalate resulting in low purity and poor utilization of the oxalate.

We propose precipitation with mild pH sodium hydroxide—it is lower in cost
than oxalic acid and avoids a roasting step

Fortunately, Clifford Meloche and Frederick Vratny reported on the formation of
REE- hydrous hydroxides and their solubility’s as a function of pH. Essentially all
the REE’s form hydroxides and precipitate by pH 9 as the pH is increased. Even
with varying temperature, the solubility of the REE-hydroxide is very low once pH
9 is reached [5]. Thus, addition of sodium hydroxide can be utilized to precipitate
REE’s and separate them from dilute chloride solutions. In this way the expense of
purchasing oxalic acid with associated roasting and CO2 emissions can be avoided.

We propose utilizing less expensive and environmentally preferred NaCl, nearly
as effective as NH4

+ for exchanging with REE+++, over ammonium sulfate. NaCl is
lower in cost, we will exchange with a higher concentration, say 1M NaCl versus
0.3 M ammonium sulfate. Thus the proposed scheme is the following:

• Reactions

Clay-REE + 3NaCl aqð Þ ! Clay-Na3 + REE Clð Þ3ðaqÞ Ion - Exchange

REE Clð Þ3 aqð Þ + 3NaOH aqð Þ!REE(OH)3 sð Þ + 3NaClðaqÞ Precipitation

��������������������������������
Clay-REE + 3NaOH !REE(OH)3ðsÞ + Clay�Na3 Overall

Maintaining overall process neutrality
Simply converting REE’s to REE-hydroxides creates an acid/base imbalance. If

a goal is to have an overall neutral process, after crashing out REE-hydroxides, the
hydroxides can be converted to chlorides with the co-generated HCl.

REE OHð Þ3 þ 3HCl!REE - Cl3 þ 3H2O

Once dried the REE-chlorides mixture can be ship to a central processing site for
further processing, separating the REEs, after crashing out REE-hydroxides, the
hydroxides can be converted to ch

Producing all the acid and base on-demand with inexpensive NaCl feedstock
Figure 1 shows a schematic 4 chamber electrochemical cell which can be uti-

lized for taking inexpensive NaCl (the same material to be used as a lixiviant) and
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produce all the acid and base necessary for adjusting the pH of the lixiviant to the
desired level (pH 3–5 likely), to raise the pH of the pregnant leach solution to pH9
to produce REE-hydroxides, then to neutralize the hydroxides back to chlorides
desirable for shipping and subsequent separation and purification processing.
Sodium chloride solution enters the second chamber. Under a potential gradient,
sodium ion passes through a cation exchange membrane to the first (left) chamber
where hydroxyl ion is formed at the cathode, and hydrogen is evolved—thus
sodium hydroxide is produced in the first chamber. Concurrently, chloride ion
passes from the second chamber through an anion exchange membrane to the third
chamber. In the fourth chamber, protons are formed at the anode, evolving oxygen.
Those protons pass through a cation exchange membrane from the fourth to the
third chamber. The reason for dividing the third and fourth chamber is to avoid the
possibility of chlorine evolution at the anode. Thus hydrochloric acid is produced in
the third chamber at the same rate as sodium hydroxide in the first chamber. The
overall acid/base production and requirements are balanced. The same type of cell
is used later in the separation and purification processing. The hydrogen and oxygen
gases from the anode and cathode reactions can be reacted back to water or used for
some other purpose.

Anode (+)Cathode (-)

Anion Exchange MembraneCa on Exchange Membranes

H+

HClNaClNaOH

Na+

Cl -

Cathode
2H2O + 2e-  H2 + 2OH

Anode
H2O  ½ O2 + 2H + 2e-

Fig. 1 Schematic of electrochemical cell and process
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Assuming average REE atomic weight of 139, REE concentration of 300 ppm
(based on weighted averages of the REE distribution found by Miskovic and typical
REE concentrations reported), and 40% overall yield, and $100/ton for the NaCl
cost, the cost for NaCl will amount to about $0.30/kg REE-oxide.

For the electrolysis the standard open circuit potential is about 2.06 V.
Assuming 4 V operating, $0.10/kWh, average REE atomic weight of 139, REE
concentration of 300 ppm, and 40% overall yield, the power cost will amount to
about $0.49/kg-REE-oxide.

This overall scheme thus far is shown schematically in Figs. 2 and 3.
The method by which the ion-extraction can be executed may vary. For example,

crushed rock may be placed in tanks then exposed to lixiviant. Tanks may be far
easier to execute quickly since permitting process would be more easily obtained.
But possibly the lowest cost approach may involve heap leaching. At some mines,

Fig. 2 Overall schematic of ion extraction procession-extraction process
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for example, the waste rock is transported into a cavity in the terrain where it fills in,
is packed, then eventually covered with soil for land reclamation. As an alternative,
the process could be altered where a geomembrane is first placed at the bottom of
the cavity and a liquid collection system. After the rock is place, pipes for dis-
tributing lixiviant could be place on the top and a leaching cycle could begin. Once
the lixiviant is pregnant with REE with REE a leaching cycle could begin. Once the
lixiviant is pregnant with REE with REEREEembrane is first placed at the bottom
of the cavity atation waste rock to the cavity are already born by the standard coal
mining process. The incremental change is the addition of the geomembrane.
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Fig. 3 Schematic ion-extraction process
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The simplicity of the process and the lack of expensive equipment makes the
process economic for metals such as gold and copper. In the case of gold ore
leaching the process is performed on ores that contain only 1–2 parts per million
gold in the host rock matrix. In the case of rare earth elements, the concentrations
are much higher, but the values are lower. However the process is also performed
commercially for relatively low cost copper with concentration levels of around
2500 ppm. Thus, with the concentration of rare earth elements of around 300 ppm
with average values of recovered elements that are much higher than copper, it is
clear that this approach for metal extraction and recovery of rare earth elements
could be economically viable and provide additional income to coal mining com-
panies, and in some cases may have sufficient value to justify rare earth element
production without coal production.

Extraction Technology

Low concentration resources such as those found for rare earth elements in coal
necessitate low-cost methods of extraction in order to make the extraction eco-
nomically viable. The lowest cost, practical chemical extraction method for
extraction of metals from host rock ore particles such as coal or minerals adjacent to
coal seams is heap leaching. Heap leaching begins after the metal-bearing minerals
are crushed to an appropriate size. Ideally, the size is fine enough for excellent
penetration and extraction, but coarse enough that piles of material have excellent
mechanical stability [6]. The mechanical stability of the heaps is necessary to
eliminate legacy issues such as tailings failures that have been problematic in some
closed coal processing facilities. The process of heap leaching can be easily
modeled by appropriate methods [Michael L. Free, Proceedings of Copper 2016,
Nov. 15, 2016, Kobe, Japan] [7].

For heap leaching, Smith and Parra reviewed the pad costs for 28 installations
over the world and normalized the costs to 2014 dollars [8]. They report an average
of $36/m2 for earthworks costs and $9/m2 for the geomembrane liner system for a
total of $45/m2. Cost in the US were 35% less than average and conventional pads
were about 40% less than valley leach pads, but in the interest of being conservative
we assumed the overall average cost; although, it can be argued much of the expense
of earthworks is already part of the current coal mining expense. Heap leach depths
typically are 100 to 200 feet and as high as 500 feet. Assuming 200 foot depth of the
heap (61 m), and assuming waste rock specific gravity of 2.65 g/cc and overall
effective density of 1.17 g/cc the earthworks and geomembrane, assuming average
REE atomic weight of 139, REE concentration of 300 ppm, and 40% overall yield
and no credit for current waste rock disposal costs, the heap leaching structure and
membrane cost amounts to $2.67/kg yielded REE-oxide.

Figure 4 depicts a modular extraction skid housing tanks, pumps, electrolysis
module, filter and solids dryer coupled to a heap leach pad with three zones (not to
scale).
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We propose using nearly standard solvent extraction with the exception that the
acid/base cell developed for ion-extraction is also used for pH adjustments and to
finally concentrate the purified REE’s

Chemical Separation Technology

Effective separations of rare earth elements require appropriate use of separation
technologies such as solvent extraction or liquid-liquid extraction. In solvent
extraction loading, an organic solvent containing selective organic extractant
molecules is mixed in a mixer (see Fig. 4) with an aqueous solution containing
metal that was dissolved during an extraction step such as heap leaching as dis-
cussed previously. As the selective organic extractant molecules in the solvent
contact the metal-bearing aqueous phase, the metal binds to the extractant mole-
cules and is dissolved in the mixture of organic solvent and organic extractant that
form an organic phase. After the metal has been transferred from the aqueous phase
to the organic phase, the organic phase is allowed to separate from the aqueous
phase in a settler. The organic phase is then transferred to a stripping unit that has a
mixer and settler that utilize an aqueous phase that contains a high acid concen-
tration that replaces the dissolved metal in the organic phase, thereby transferring
the metal into a more concentrated and acidic solution than in the previous loading
stage [9].

Solvent extraction is typically performed using multiple loading stages in a
counter-current flow pattern The number of stages is determined using a
McCabe-Thiele diagram. The McCabe-Thiele diagram is based on equilibrium
measurements for the aqueous and organic phases at different metal ion concen-
trations as well as a mass balance for the aqueous and organic flows in the system.
Several authors detail the specifics of solvent extraction purification including Feng
Xie et al., C. K. Gupta and N. Krishnamurthy. W. Wang and C. Y. Cheng
specifically provide details for scandium separation and purification which is of
particular importance to us because of the large presence observed in
coal-byproducts and very high market price [10–12].

Fig. 4 Cartoon of a modular extraction skid coupled with 3 heap leach zones
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In general, if we assume the we will primarily utilize REE-chlorides as feed to
the aqueous phase, and organophosphate acids like Di-(2-ethylhexyl)phosphoric
acid (D2EHPA, DEHPA, HDEHP) in the organic phase, there is a certain amount
of acid and base required to maintain optimal loading and stripping. For example,
raffinate from solvent extraction separation is acidic due to the protons released
from the organophosphoric acid as it loads up with REE, we want to neutralize the
raffinate with base before feeding to the next separation stage. On the other hand,
aqueous chloride solution feed to the scrub section is acidified to about pH4 to

Separa on 1 Purifica on 1

Separa on 2 Purifica on 2

Separa on 3 Purifica on 3

Separa on n Purifica on n

REE 1-Cl3

REE2-Cl3

REE3-Cl3
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(REE2)2-03

or
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(REE3)2-03

or
REE3-Cl3

 To Market

(REEn)2-03

or
REEn-Cl3

 To Market

Neutralized Non-REE

Separa on and Purifica on of Rare Earth Elements with Solvent Extrac on

Fig. 5 Schematic of overall Solvent Extraction separation and purification

580 J. Gordon



promote uptake of protons from the organophosphoric acid so it unloads the REE
and likewise, for the Purification solvent extraction train for the same purpose.
These acids and bases can be generated by the same type of cell shown in Fig. 4.
Exiting the purification train scrub exit, we will use the same methodology as at the
ion-exchange site, where we add sodium hydroxide bringing the pH to about 9 to

Separa on and Purifica on of Rare Earth Elements with Solvent Extrac on
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Fig. 6 Detailed schematic flow chart of separation/purification Solvent Extraction Process
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precipitate purified REE-hydroxide which is filtered from the solution. Following
filtration, the REE-hydroxide will either be dried and roasted to for an oxide form
product or neutralized with hydrochloric acid to form purified REE-chloride which
may be sent to electrowinning (conversion to metal) depending on market demand.
Ideally the REE is converted to the chloride form so our acid and base production
evenly matches. Otherwise acid and base may be purchase or sold to provide
overall balance. Again, the electricity cost for the acid/base production, assuming
40% yield is $0.49/kg REE-oxide.

Figure 5 is a simplified schematic of the separation/purification process with
solvent extraction.

Figure 6 is another schematic process flow diagram with more detail.

Partial Summary of Preliminary Costs

Table 1 provides a summary of the estimated extraction and purification costs
estimated so far. These costs are rolled into the costs shown in Table 1.

The estimates are based on 40% yield. Some REE-oxides are below $3.95 today
in the market place such as La, Ce, and Sm, but the rest are valued higher and some
much higher, especially scandium oxide valued at $4200/kg. Thus if the scandium
is only 5% of the REE mass, the process could cost $210 per kg justified by the
scandium alone, well above $3.95 per kg. The known costs are less than 2% of the
value of the scandium alone.

Also, scandium is one of the very first REE’s expected to be separated from the
solvent extraction process while the others follow, it would be possible to discard
the raffinate after scandium but at that point, the incremental cost is just $0.49/kg
for the power to produce acid/base. All of the REE-oxides are valued above that
value, so it would make sense to proceed separating and purifying them.

Table 1 Process cost estimates

Process Item $/kg REE-oxide

Ion extraction Heap leach preparation and membrane 2.67

Ion extraction Sodium chloride 0.30

Ion extraction Acid base power cost 0.49

Solvent extraction Acid base power cost 0.49

Total 3.95
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Summary of advantages of proposed technology approach

(1) Suitable for low grade feedstock
(2) Lowest cost inputs (only need NaCl, water, electricity)
(3) Mild pH range of process—4 to 9
(4) On-demand co-generation production of acid & base needed
(5) No waste streams other than neutral non-REE extracted
(6) Known process costs are less than 2% of expected salable product value when

40% yield was assumed

Description of Laboratory Work to Date

Numerous samples of waste rock were collected from the a coal mine near Salina,
UT and from two seams in the a mine near Price, UT. Also samples were collected
of volcanic ash origin rock near Emery, UT close to the Emery coal mine. The lab
work to date focuses on roof rock from the 3 sources and the volcanic ash rock. All
could be broken without much effort in mortar and pestle. These 4 samples were all
analyzed for 8 REE’s (to minimize cost). They all had REE’s, not quite at the level
reported by Miskovic but at attractive levels. The volcanic ash rock was higher than
in Miskovic’s report. All of the coal mine samples had around 20 ppm scandium
and the volcanic ash rock was about 50 ppm scandium. Based on the scandium
alone, these feedstocks all appear viable.

Block Flow Diagram Identifying Steps

See Fig. 2: Overall schematic of ion extraction process,
Fig. 3: Schematic ion-extraction process,
Fig. 5: Schematic of Overall Solvent Extraction Separation and Purification
Fig. 6: Detailed schematic flow chart of Separation/Purification Solvent

Extraction Process,
and Fig. 7: Block flow diagram of overall process.

Our concept is to provide an “Extraction module” at multiple mine locations
which could be anywhere in the USA. From there, REE-chlorides which are >50%
REE are transported to a central facility for separation and purification steps which
would be in the form of chloride, or oxide. Select REE-chlorides may be reduce to
metals but not part of the immediate program [13].
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How the Technology Would Be Scaled up?

This technology is very scalable. The extraction skids will be portable. Power for
electrolysis is only about 1000 Watts requiring very little energy. The potential for
scale-up is enormous. If every coal mine in the US closed today, there would be the
waste rock from the decades of mining in the past that could be processed with this
technology. Individuals at mines currently operating were receptive to this tech-
nology because it opens the door to additional revenue. The limiting factor will be
obtaining permitting for leaching operation but the mild nature of the lixiviant
should provide the best scenario for obtaining permits.

Preliminary Economics

Preliminary cost estimates were made for capital costs for the extraction units,
solvent extraction and the respective operating costs. A business model was
developed which showed favorable economics through the sale of the REE’s.

Fig. 7 Block flow diagram of overall process
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Summary

A first look at extraction of REE’s from coal mine waste rock using environmen-
tally benign methods looks economically attractive.

Samples of caprock from sources in Utah confirmed that REE’s indeed exist in
rock currently removed in day to day coal mining operations which are sent to
landfill.

Developing a process to extract the REE’s from these wastes would provide an
additional revenue stream to coal mining operations and increase the supply of
REE’s.
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Extraction and Thermal Dissolution
of Low-Rank Coal
by N-Methyl-2-Pyrrolidinone

Jun Zhao, Haibin Zuo, Siyang Long, Jingsong Wang
and Qingguo Xue

Abstract In order to effectively use of low rank coal, the thermally dissolve coal
(TDC) was extracted from four kinds of low-rank coals by
N-2-methyl-2-purrolidinone(NMP) at high temperature and high pressure. The
structures of thermally dissolve coal and residues were characterized by element
analysis, FT-IR spectra. The effects of temperatures, coal rank, solid-liquid ratio
and extraction time on the extraction yields of TDC were studied, respectively.
Moreover, the extraction mechanism of TDC at mild conditions is proposed. The
results show that the ash contents of TDCs from four raw coals are significantly
lower than that of raw coals, and the volatile contents and H/C are significantly
improved. For KL coal, with the increase of temperature, the extraction yield of
KL-TDC is improved evidently from 33.75% to 56.25% and the ash content is
decreased from 0.57% to 0.49% at 350 °C.

Keywords Low-rank coal � Extraction yield � Reaction mechanism
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Introduction

Coal is one of the most important energy sources in our society, and there has been
increasing environment concern toward coal utilization [1]. The combustion of coal
emits a great deal of carbon dioxide and forms the ash deposition, causing some
serious problems, such as erosion and corrosion of turbine blade and fouling when
used in coal-fired power. Therefore more efficient coal utilization is required to
minimize the ash content of coal [2]. Thermal dissolution (TD) with organic sol-
vents can produce low-ash coal, as reported by some researches [3–5]. The ash
content of thermally dissolve coal (TDC) can be approximately reduced by 90%.
TDC can be produced from a wide range of low-rank coals, such as sub-bituminous
coals and lignite coals, and this thermal dissolution process can convert these
low-rank coals to caking coals. Therefore, the development and utilization of TDC
is the key to reduce the environment population of coal industry.

The extraction yield of coal is one of most important factors in the TDC pro-
duction process. In order to have a better knowledge of the extraction behavior of
TDC, some of research methods were proposed one after another. The research
methods of extraction behavior are classified into the following types: acid
extraction [6], organic solvent extraction [7] and oxidant extraction [8]. Masaki K
[6] investigated that the extraction yield of low-rank coal by carbonic acid at high
temperature, it was found that the thermal extraction yields of 52% and 45% for
WY (sub-bituminous) and ND (lignite) coal at 360 °C, respectively. Iino M [9]
researched the effect of coal rank on the extraction behavior by CS2-NMP at room
temperature, it was discussed that high yields of 30-66% were obtained for bitu-
minous coal (C% 76.9–90.6% daf). Pan [8] studied the oxidative depolymerization
of shenfu sub-bituminous coal at 320 °C, the results revealed that the conversion of
TDI at 60 °C in 20% H2O2 was 41.8%. According to the researches of coal
extraction, it is of great potent for its characters of high extraction yield, environ-
mental protection and saving energy in extraction coal by NMP [10]. Consequently,
it is needed to study the extraction behavior of coal in NMP.

In this study, the extraction behavior of four kinds of low-rank coals by NMP
were investigated. The effects of coal type, temperature, solid-liquid ratio, and
extraction time on the extraction yield were preliminary determined. The structures
of thermally dissolve coals and residues were characterized by elemental-analysis
and FT-IR spectra and the reaction mechanism of TDC by NMP was proposed. This
study aims to providing theoretical guidance for its industrial application.

Experimental

Materials

Two sub-bituminous coals (KL, GD) and two lignite coals (XB, ZS) were used in
this study. The coal samples were dried at 80 °C for 12 h in vacuum and ground
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into less than 200 mesh (74 lm), then deposited in sealed bags carefully for suc-
ceeding experiments. NMP (AR, >99.0%) was purchased from Shanghai Aladdin
bio-chem technology co. LTD. All solvents used are commercial pure chemical
reagent without further purification. The proximate and ultimate analyses of the
coal samples are given in Table 1.

Thermal Dissolution

The coal thermal dissolution was performed following a published procedure [5].
The TD of four coal samples was conducted using an apparatus for thermal dis-
solution, as shown in Fig. 1. Approximate 8 g of coal sample and 400 mL NMP
was charged into a stain steel tuber cell. High purity nitrogen was introduced into
the autoclave reactor with a flow of 400 mL/min for 15 min to ensure inert
atmosphere. The cell was heated to required temperature at a rate of −10 °C/min,
and held at that temperature for 60 min. the cell was then cooled to room tem-
perature for 2–3 h. about 200 mL ethanol was put into the cell to wash the residue,
and the filtrate was also collected into round-bottom flask, the residual solid was
recovered, washed with ethanol, and dried at 80 °C for 12 h in vacuum. The filtrate
was added to a rotary evaporator to recovery organic solvent and precipitate soluble
constituents The soluble constituents were flushed repeatedly by ethanol, and then
the TSCs were dried at 80 °C for 12 h in vacuum. The thermal soluble constituents
from four kinds of coals were named KL-TSC,GD-TSC,XB-TSC and ZS-TSC
respectively. The yield of soluble constituents was calculated according to Eq. (1):

Y;% ¼ Mr �Mc
Mr � 1� Adð Þ�100% ð1Þ

Where Mr (g), Mc (g) and Ad (%) were the initial mass of the coal, the mass of
the residue, and the ash content of the initial coal, respectively.

Table 1 Proximate and ultimate analysis of coal samples

Samples Proximate analysis
(wt% on dry basis)

Ultimate analysis
(wt% on dry basis)

Atomic
ratio

V A FC N C S H O H/C O/C

KL 32.20 10.37 57.43 1.59 73.38 0.96 4.73 7.48 0.77 0.08

GD 14.31 9.14 76.55 1.23 80.19 1.22 3.78 3.65 0.57 0.03

XB 31.81 9.87 58.33 0.65 63.83 0.89 3.89 8.95 0.73 0.11

ZS 29.11 11.42 59.47 0.61 61.75 0.25 3.68 9.46 0.71 0.11

V, volatile matters; A, ash; FC, fixed carbon
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1. Gas cylinder
2. Gas inlet
3. Pressure relieve valve
4. High-pressure reactor
5. Thermocouple
6. Heating jacket
7. Temperature control unit
8. Gas outlet
9. Pressure gauge

10. Mechanical agitator.

Results and Discussion

Ultimate and Proximate Analyses of TDCs

The properties of four kinds of TDCs were shown in Table 2. The ash contents of
TDCs were all less than their raw coals. It was confirmed that most of ash in coal
could be removed by thermal dissolution process.
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Fig. 1 Schematic diagram of apparatus for thermal dissolution
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The carbon contents and volatile contents of TDCs were far higher than their raw
coals, indicating that the structure of coal was interrupted by the solvent and
thermal, and substantial amounts of hydrocarbons were dissolved in the solvent.
The H/C ratio of KL-TDC, GD-TDC and ZS-TDC was much higher than the raw
coals, it implied that the enrichment of aliphatic in these TDCs. However, the
produced TDC from XB showed lower H/C than its raw coal, this was probably due
to the extraction temperature was much higher than its softening temperature, the
light hydrocarbon components were reassembled to form the heavy aromatic
hydrocarbon components. The sulfur content showed significantly decreased in the
TDCs compared to raw coals. But ZS coal had less change of sulfur content since
the sulfur content in ZS raw coal was low. The inorganic sulfur in TDCs was
completely removed by the thermal dissolution process, and only some organic
sulfur remained. A significant amount of nitrogen was contained in TDCs might be
the result of forming the nitrogen-containing-compounds between the NMP and the
light components during the thermal dissolution process. The O/C ratio showed
slightly decreased in the TDCs compared with raw coals. while GD coal expressed
opposite result owning to the low oxygen content in its raw coal.

Effect of Coal Rank on the Extraction Yield

Figure 2 shown variations of extraction yield by coal type. The extraction yields
using NMP were 12–57%, and the highest yield was found in KL coal. GD gave the
lowest extraction yield (12.57%), it might be ascribed to the higher degree of
coalification and C/H ratio than other coals, leading to the lower content of aliphatic
and higher heat-stability for GD coal. Accordingly, the structure of GD coal was
little effected by thermal and solvent. While XB coal and ZS coal as a low-rank
coal, the softening temperature was far lower than KL and GD. When the extraction
temperature exceeding its softening temperature, the light hydrocarbon components
were reassembled to form the heavy aromatic hydrocarbon components, which
were hardly extracted by NMP.

Table 2 ultimate and proximate analyses of four kinds of TDCs

Samples Proximate analysis (wt
% on dry basis)

Ultimate analysis
(wt% on dry basis)

Atomic
ratio

V A FC N C S H O H/C O/C

KL-TDC 49.91 0.49 50.00 4.14 79.13 0.53 5.27 6.85 0.80 0.06

GD-TDC 29.00 0.68 70.32 3.25 83.34 1.20 4.70 6.46 0.68 0.06

XB-TDC 47.02 1.26 51.72 3.08 80.84 0.27 4.60 8.65 0.68 0.08

ZS-TDC 44.77 0.90 54.34 2.75 77.97 0.26 5.66 10.85 0.87 0.10

V, volatile matters; A, ash; FC, fixed carbon
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Figure 3 shown FT-IR spectra for four TDCs from the extraction of NMP at
350 °C. For all TDCs, the absorbance at 1669, 1262, 1192 cm−1 were stronger and
almost no absorbance due to hydroxyl groups around 3640 and 3300 cm−1 could be
obtained, indicating that oxygen-containing groups in raw coals were converted to -
COOCH3 by thermal dissolution. The absences of aliphatic groups at 2920 and
2858 cm−1 in TDCs were remarkably stronger than aromatic groups (3050 cm−1),
suggesting that the light hydrocarbon components were extracted in TDCs. the
magnitude ordering of absences for oxygen-containing groups and aliphatic groups
as follows: KL-TDC > ZS-TDC > XB-TDC > GD-TDC. This was fortunately
consistent with the results of extraction yield, it indicated that the extraction yields
of TDCs were affected by the light hydrocarbon components and
oxygen-containing groups in raw coals and the softening temperature.
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As shown in previous results, KL coal had performed better in terms of
extraction yield. Therefore, it was decided to study the effects of temperature,
charge ratio and thermal dissolution time on the extraction yield utilizing the KL
coal.

Effect of Temperature on Extraction Yield and Ash Content

Figure 4 shown the extraction yield of KL coal in NMP at different temperatures.
the extraction yield increased rapidly with the raising of thermal dissolution tem-
perature and the maximum yield (56.25%) was obtained at 350 °C. Further raising
the temperature to 380 °C, the extraction yield decreased to 45.28%. NMP was a
polar solvent, the high extraction yield of KL coal by NMP might be attributed to
the result of heat-induced and solvent-induced structural relaxation followed by
dissolution of coal micromolecular components in the NMP. The decreased
extraction yield above 360 °C was caused by the promoted polymerization of
micromolecular components to form heavy aromatic components which was hardly
extracted by NMP at high temperature. With an increasing of temperature, the ash
content of KL-TDC slightly decreased.

Figure 5 shown FT-IR spectra for KL raw coal (RAW), the residue (RE) and the
KL-TDC obtained by NMP extraction at 300–380 °C. For the spectra of TDCs at
different temperature, the peaks assigned to mineral matter (500–600 cm−1, 1000–
1100 cm−1, 3600–3700 cm−1) almost disappeared compared to those of raw coal
and residue. These results were consistent with the ash content of KL-TDC was
lower than its raw coal. It indicated that the thermal dissolution process could be
used to improve the quality of the low-rank coal. With an increasing of temperature,
the peaks assigned to aliphatic hydrocarbon (2920 and 2858 cm−1) and
oxygen-containing compounds (1669, 1262 and 1192 cm−1) remarkably increased.
it was reported that polar solvent such as NMP are strongly absorbed on -OH and
aliphatic hydrocarbon by forming rather strong hydrogen bonds with the released

300 330 350 380
0

10

20

30

40

50

60

A
sh

 c
on

te
nt

/

Ex
tra

ct
io

n 
yi

el
d /

Temperature/

 Extraction yield
 Ash content

0.0

0.2

0.4

0.6

0.8

1.0
Fig. 4 Effect of temperature
on extraction yield and ash
content

Extraction and Thermal Dissolution of Low-Rank Coal … 593



OH groups and aliphatic hydrocarbon [11], as a nucleophilic atom in NMP,
nitrogen could attack and cleave the C-H and C-O by hydrogen bond force.
Therefore, it can be concluded that NMP released nitrogen in KL coal and formed
rather strong hydrogen bonds with the released OH groups. This would give an
additional solvent-induced relaxation of coal structure, resulting in much higher
extraction yield and peak intensity. When the temperature above 350 °C, the peaks
gradually decreased. This was owing to the high temperature induced
poly-condensation reaction between the NMP and the light aliphatic hydrocarbon
and oxygen-containing groups. It produced a great deal of gas, such as CO2 and
H2O, leading to the extraction yield decreased.

Effect of NMP/Coal Ratio on the Extraction Yield and Ash
Content

In order to reduce the amount of NMP used and improved the economy of the
thermal dissolution of KL coal, effects of the NMP/coal ratio on the extraction yield
and ash content of KL coal were studied and the results were shown in Fig. 6. The
thermal dissolution was carried out at 350 °C for 1 h with 400 mL NMP and a
varied amount of KL coal. It can be found that the extraction yield and ash content
of KL coal reached to 56.25% and 0.49% respectively, during the ratio of NMP/
coal was 400/8. With an increasing of NMP/coal ratio, the extraction yield of KL
coal decreased, the ash content of KL-TDC slightly decreased. This was because
the extraction efficiency of NMP reached maximum value at 400/8, continuing to
increase the ratio of NMP/coal, the light hydrocarbon components were difficultly
extracted by NMP and reassembled to form the heavy aromatic components, these
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would seriously affect the ability that NMP dissolved and permeated in the carbon
skeletal structure of coal.

Effect of Thermal Dissolution Time on the Extraction Yield
and Ash Content

As shown in Fig. 7. It can be found that the thermal dissolution time insignificantly
affected the extraction yield and ash content. When the thermal dissolution time is
30 min, the extraction yield and ash content reached about 45 and 0.52%. While
continuing to increase the time, the extraction yield and ash content were basically
maintained at about 56 and 0.45%. Thus, it can be concluded that thermal disso-
lution time played an inessential role in extraction process.
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In conclusion, the optimized process conditions were: thermal dissolution tem-
perature 350 °C, thermal dissolution time 1 h, charge ratio of 400 mL:8 g (NMP/
KL coal).

Determination of the Reaction Mechanism for Thermally
Dissolve Coal

According to the above results, the proposed mechanism of coal extraction by NMP
was as follows:
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The process of coal extraction was inferred to begin with the structure of coal
interrupting by thermal, some light aliphatic hydrocarbon components and
oxygen-containing groups to be released since the NMP dissolved and permeated in
the carbon skeletal structure of coal. Then, some hydrogen bonds were formed
between NMP and light aliphatic hydrocarbon and oxygen-containing groups.
Meanwhile, with a substantial amount of micromolecular components releasing,
polymerization reaction was produced by itself, and a great deal of gas to be
formed, such as CO2 and H2O. The release of these interactions should increase the
extraction yield of subbituminous coal.

Conclusions

1. The ash content and sulfur content can be significantly reduced by the thermal
dissolution process, and the combustion property of TDC can be effectively
improved based on the increasing of volatile.

2. KL coal has a good reaction activity with NMP compared with other coals. the
extraction yield of KL coal and ash content of KL-TDC reached to 56.25% and
0.49% at 350 °C for one hour with the NMP/coal ratio equal to 400 mL/8 g,
respectively.
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3. During the thermal dissolution process, coal rank and temperature played the
main role on the effect of extraction yield and ash content compared with other
factors.

4. The proposed mechanism of coal extraction by NMP was deduced, the main
reaction was the formation of hydrogen bonds between NMP and light micro-
molecular components.
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Enhancement of Coal Nanostructure
and Investigation of Its Novel Properties

B. Manoj

Abstract Coal is a mineral and is extensively used as a solid fuel in developing
nations and has a sizeable share in the global fossil fuel reserve. Utilization of this
resource generates excess spoil and large volume of low grade waste to the envi-
ronment. In recent years there have been serious research on enhancing its value
and exploring the utility of this carbonaceous material to novel carbon materials.

Keywords Nano carbon � Low grade coal � Crystalline carbon
Fungal leaching

Fungal Solubilisation of Coal

Coal is extensively used as a solid fuel in developing nations and has a sizeable
share in the global fossil fuel reserve [1–5]. Utilization of this resource generates
excess spoil and large volume of low grade waste to the environment. Being
inherently low quality due to the mineral matter and ash, leaching of coal is need
before any application. Generally mineral acids or alkalis are used for the complete
demineralization of coal, although froth flotation can reduce the ash content of coal
close to 2% from about 10 or 12% Even though mineral matter could be removed,
the disposal of the used chemical in safe manner is a serious concern. These
chemicals generally corrode the environment and generates serious environmental
pollution. In this scenario, a facile, ecofriendly demineralization technique of coal is
worthwhile problem to be investigated. Microorganisms have the ability to
breakdown while beneficiating the low grade coal. For commercial utility of coal
bio-demineralization, fungal leaching is an ideal eco-friendly method. These fungus
secretes mild organic acids which partially removes the minerals in coal without
much modification to the organic structure [6, 7].
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Solubilization of minerals in coal has the potential to elevate this inherently dirty
solid fuel to a value-added products like graphene, graphene quantum dots or
carbon nanotubes [1–5]. Carbon structure in coal has short domain characteristics
and is an ideal precursor for nano carbon dots and diamonds. Graphene is sp2

hybridized form of carbon, appears in many forms like graphite, nanotubes or
fullerenes [4, 5]. Nano domain in coal consists of about 3–4 stacked carbon layers,
with lateral dimension and interlayer spacing of 3 nm and *0.35 nm respectively.
The amorphous realms constituted of polycyclic aromatic compounds, which are
graphene sheets having irregular onion-like arrangement along with other organic
constituents.

In the present work, efficacy of the fungus Aspergillus niger in leaching coal and
its effect on nano carbon layer stacking is discussed. It is a green extraction of
preformed carbon structure from low rank coal. Changes in the stacking structure,
nature of defect, degree of graphitization and change surface morphology with
bioleaching is also highlighted. The mechanism of demineralization with carboxylic
acid secreted by Aspergillus niger was elaborated in our earlier work and studies
carried out by other groups [8–12].

Coal biodegradation is a naturally complex process, which appears to be driven
by extracellular enzymes in the presence of various chelators released by different
fungi. Under favourable conditions, microorganism secretes organic acids which
have the ability to degrade the coal minerals in an eco-friendly manner [13–17]. The
present research work is focused on laboratory scale screening methodologies to
investigate both the microorganisms and mechanism involved.

Indian coal of different rank are biosolubilzed with various fungi and the
obtained product are charcterized by various techniques. Proximate analysis and
elemental composition of raw coal and its biosolubilized products are presented in
Tables 1 and 2. The carbon content was incremented by 20%, accompanied by a
reduction in oxygen, which clearly indicates that, overt oxidation in the solid
portion did not occur during bioleaching. The ash content was lowered from 12.87
to 0.55 wt%, owing to the removal of all minerals by A. niger. It was observed for
the first time that, Aspergillus leaching could reduce the traces of ash to less than
0.6 wt%.

The mixed culture (GM) and Pencillium leaching (GP) could also reduce the ash
to 1.21% and 3.05 wt% respectively. The mechanism for demineralization by fungi
is discussed in our earlier reported studies [8, 13].

When the sample (GX) was treated with A. niger (GA) alone, the sulphur content
was decreased from 0.46 to 0.09 wt%, because of the reaction with bassanite
(Table 2). Other elements such as carbon and nitrogen were increased, but oxygen
content was decreased from 31.11 to 19.14 wt%. The proximate analysis confirmed
maximum removal of ash A. niger leaching (95.7%), followed by mixed culture
leaching (90.6%), by eliminating Al and Si minerals. The ash content of various
leached coal samples are shown in Fig. 1.

When the raw coal was treated with A. niger, the carbon content was enhanced
to 72.05 wt% from an initial value of 60.12 wt%, while hydrogen decreased from
6.84 to 2.98 wt%. On inoculating coal with A. flavus, the oxygen content was furher
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diminished to 19.14 wt%, while carbon was increased to 71.56 wt%. When the
sample was treated with a mixed culture of A. niger and Penicillium spp (GM), no
further enhancement in carbon was observed. Proximate analysis of the sample
reported an increase of fixed carbon content for about 51% after Pencillium spp
leaching. The percentage of volatile matter remained constant, at *25 wt%. The
calorific value of sub-bituminous coal (GX), after demineralization with different
fungal leachants on ash free basis, was also calculated. The leaching process with
A. niger (GA) reportd a rise in calorific value of coal by 26.6%, while on leaching
with Penicillium spp (GP) and mixed culture (A. niger and Penicillium spp-GM) the
calorific value was raised by 23.7 and 27% respectively.

Table 1 Proximate analysis of coal after bio-demineralization

GX GA GF GP GM
Moisture 4.57 3.7 3.66 3.68 3.5
Ash 12.87 0.55 4.12 3.05 1.21
Fixed carbon 45.66 64.09 60.12 68.01 68.55
VM 36.9 31.66 32.1 25.26 26.68
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Table 2 Ultimate analysis of coal after bio-demineralization

(GX- Virgin sample, GA -leached with Aspergillus niger, GP-Leached with Penicillium 
spp. GF- Leached with Aspergillus Flavus, GM- Leached in mixed culture of all three)

GX GA GP GF GM
H 6.84 2.98 6.23 4.96 5.02
N 1.47 2.98 2.49 2.66 2.64
S 0.46 0.49 0.59 0.55 0.57
C 60.12 72.05 71.56 71.22 71.5
O 31.11 21.5 19.14 20.62 20.27
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The existence of crystallites in the bio-solubilized coal structure was identified
by the (002) and (110) reflections in the XRD spectrum [4, 5]. It is notice that the
crystallites in all coal samples possess intermediate structures between graphite and
amorphous state, the so called turbostratic or random layer lattice structure [4, 5].
Penicillium spp treated sample (GP) exhibited only two defined peaks at 26.40˚

(p-band) and 20.57˚ (c-band) and has more of graphitic or ordered structure.
The intensity ratio (I20/I26) of c to p-band is a measure of imperfection in

amorphous carbon [13]. The lower the ratio, higher the ordering of carbon layers in
coal sample and it approaches graphitic nature. For Penicillium leached coal
samples, the values of (I20/I26) and aromaticity were evaluated as 0.19 and 0.86
respectively. The lateral size along the c-axis (Lc) was found to be varied from
22.32 to 2.25 nm, while La from 343.64 to 1.50 Å. The calculated structural
parameters are presented in Table 3.

The X-ray diffraction studies could confirm the removal of minerals more effi-
ciently in A. niger leaching than A. flavus, Penicillum spp and mixed culture. On
Penicillium spp leaching, the carbon atoms were reorganized to graphite like
structure.
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Fig. 1 X-ray spectrum of biosolubilized coal samples with A. Niger (PG-Pure graphite,
GP-Penicillium sp. Leached sub-bituminous coal, KN-Aspergillus niger leached bituminous coal,
GF-Sub-bituminous coal leached with Aspergilllus flavus)
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Coal as a Source of Novel Nanocarbon Materials

The nanostructure and graphene layers present in coals of different rank was
determined from demineralized coal after chemical leaching. The structural
parameters of the samples were elucidated by the modified Scherer formula as
reported earlier by same research group [4]. The X-ray profile analysis of samples
shows two peaks at 2h–18.29˚ and 24.85˚ originated from the c-band and the
p-band (Fig. 2). The p-band being for the aromatic ring while the c-band is due to
the aliphatic content. The diffraction profile shows broadening of peak in the
(20–26˚) region mainly due to the existence of carbon nano crystallites as reported
earlier [1–5].

Table 3 Structural
parameters of coal samples
treated with various fungi

Sample I20/I26 fa La (nm) Lc (nm) d002 (Å)

GP 0.19 0.86 34.36 22.32 0.337

GA 0.61 0.44 39.77 3.22 0.343

GF 0.41 0.86 0.15 2.25 0.360

PG 0.00 1.00 30.58 15.53 0.335

Fig. 2 XRD spectrum of nanostructure obtained from Lignite (L1H)
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The X-ray analysis confirms the formation of stacked graphene layers in coal.
The stacking height increases with decrease in coal rank or and the number aro-
matic lamellae shows a reverse trend with increase in rank. With the chemical
synthesis, the high rank coals are converted to few layer graphene oxide while
lignite shows the structure of graphite with wrinkles.

Raman spectra of the nanocarbon from coal is presented in Fig. 3. Raman
spectrum of graphite comprises of strong peaks at 1580 and 2700 cm−1 named as G
band and 2D band (a second order of D band) respectively. The G band arises due
to the in plane optical phonon modes. G mode has E2g symmetry which does not
require the presence of six fold rings and hence it occurs at all sp2 sites [1, 2, 18–20].
The 2D band originates from the double resonance process and hence appears to be
dispersing in nature. In addition to these bands, a D band is noticed at 1350 cm−1

which arises due to the proximity of The sp3 carbon network show characteristic
Raman features prominently at 1148 cm−1, secondary peaks at 1274 and
1307 cm−1 (ta-C) for sub-bituminous coal. Earlier studies assigned this band to
hexagonal diamond, nanocrystalline diamond or sp3 rich carbon structures. There
are also studies which have designated the origin of this band to be sp2–sp3 mixed
structure [9].

Fig. 3 Raman spectrum of nanostructure obtained from Lignite (L1H)
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Other than the G and 2D peaks, D and D’ peaks are also observed in the
spectrum and are attributed to defect-induced Raman features which are inactive in
highly crystalline carbon. The intensity ratio (ID/IG) of the D and G band is widely
used for characterizing the defect quantity in graphitic materials and was found to
be 0.54 for sub-bituminous coal, 0.58 for bituminous coal (spectra not shown) and
0.63 for lignite. This reveals the presence of graphitic nano carbon with fewer
defects. The intensity ratio (ID/ID

’ ) gives the information about the nature and
concentration of defects. D’ peak have generally low intensity compared to D peak
(which generally appear as a small shoulder to G peak). This ratio was found to be
3.40 for sub-bituminous coal due to boundary like defects, 3.16 for bituminous coal
indicating boundary like defects and 6.8 for lignite attributed to vacancy—like
defects [9, 20].

The TEM image of the carbon nano dots formed in the bituminous coal (B1H) is
presented in Fig. 4. Spherical carbon nano dots of the size 14 to 4.8 nm are
observed in the micrograph.

Conclusions

The mineral content in coal samples was completely removed by leaching with
A. niger and its mixed cultures. The concentration of ash was decreased by 98.5%
(A. niger leaching) and 90% (mixed culture leaching). The intensity ratio (I20/I26), a
measure of disorder in amorphous carbon, was found to be 0.19 for Penicillium spp
leached coal samples. A. niger was able to remove minerals efficiently, than
A. flavus, as evident from the XRD studies. The interlayer spacing of Pencillium
spp leached sample was computed to be 3.37 Å, which is near to ordered graphite
(3.35 Å). Therefore, it is concluded that, the fungal stains: A. niger, A. flavus and

Fig. 4 TEM micrograph of nanostructure obtained from bituminous coal and sub-bituminous coal
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Penicillium spp could significantly affect the structure of carbon layers of coal
samples upon leaching.

Different types of coal are investigated for the production of mixed phase gra-
phene like nanostructures by simple oxidation followed by sonication. They have
the unique structure and are ideal precursor for the synthesis of graphene quantum
dots, nano diamonds, graphene layers, carbon dots and mixed phase graphene
structure. The properties of the carbon structure, its shape and size is highly
dependent on the rank of the coal used. It could be concluded that Sub-bituminous,
Bituminous and Lignite coal serve as efficient precursors for the production of
carbon nanostructures at low cost by exploiting the simple acidic oxidation method.
The preformed nanostructure are mixed phase in nature.
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