
Hierarchical Conditional Proxy Re-Encryption:
A New Insight of Fine-Grained Secure

Data Sharing

Kai He1, Xueqiao Liu2, Huaqiang Yuan1(B), Wenhong Wei1, and Kaitai Liang3

1 School of Computer and Network Security, Dongguan University of Technology,
Guangdong 523808, China

kaihe1214@163.com, hyuan66@163.com, weiwh@dgut.edu.cn
2 School of Computing and Information Technology, University of Wollongong,

Wollongong, NSW 2512, Australia
xl691@uowmail.edu.au

3 Department of Computer Science, University of Surrey, Guildford, UK
ktliang88@gmail.com

Abstract. Outsource local data to remote cloud has become prevalence
for Internet users to date. While being unable to “handle” (outsourced)
data at hand, Internet users may concern about the confidentiality of
data but also further operations over remote data. This paper deals with
the case where a secure data sharing mechanism is needed when data is
encrypted and stored in remote cloud. Proxy re-encryption (PRE) is a
promising cryptographic tool for secure data sharing. It allows a “honest-
but-curious” third party (e.g., cloud server), which we call “proxy”, to con-
vert all ciphertexts encrypted for a delegator into those intended for a del-
egatee. The delegatee can further gain access to the plaintexts with private
key, while the proxy learns nothing about the underlying plaintexts. Being
regarded as a general extension of PRE, conditional PRE supports a fine-
grained level of data sharing. In particular, condition is embedded into
ciphertext that offers a chance for the delegator to generate conditional
re-encryption key to control with which ciphertexts he wants to share. In
this paper, for the first time, we introduce a new notion, called “hierar-
chical conditional” PRE. The new notion allows re-encryption rights to
be “re-delegated” for “low-level” encrypted data. We propose the seminal
scheme satisfying the notion in the context of identity-based encryption
and further, prove it secure against chosen-ciphertext security.

Keywords: Hierarchical conditional proxy re-encryption
Fine-grained data sharing · Identity-based encryption
Chosen-ciphertext security

1 Introduction

To date cloud computing has been regarded as a successful and prevalent busi-
ness model for many real-world applications due to its long-list features, such
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 118–135, 2017.
https://doi.org/10.1007/978-3-319-72359-4_7

Hierarchical Conditional Proxy Re-Encryption 119

as considerable storage and computing power. Internet users have been “encour-
aged” to outsource their data to cloud in order to save the cost of local data
maintenance and management but also to enjoy various cloud-based data ser-
vices. To prevent their sensitive data from being compromised by cloud server,
Internet users may choose to encrypt the data before outsourcing. However, the
encryption may limit “out-of-physical” sharing. For example, a user A may share
his data with another user, say B. Assume the data of A is stored in a cloud
server. A naive way for the sharing is to let A first download his encrypted
data locally and decrypt it, then re-encrypt the data for B. The solution, how-
ever, may require A to be on-line and meanwhile, bear all the workloads of
decryption-and-re-encryption. To offload the workloads to the server, one may
choose to allow the server to execute the decrypt-then-re-encrypt task. But this
will compromise the confidentiality of the data.

Proxy re-encryption (PRE), which is a useful cryptographic primitive, has
been introduced to tackle the above dilemma. By using PRE, A does not need to
download, decrypt and re-encrypt the data. Instead, he is only required to gener-
ate a re-encrypted key, which supports ciphertext conversion, so that a semi-trust
(i.e. honest-but-curious) cloud server (i.e. proxy) can use the re-encryption key to
transform the ciphertext of A for B. Even if the proxy obtains the re-encryption
key, it cannot gain access to the underlying data. Since its introduction, PRE has
been widely applied in many real-world applications, such as digital rights man-
agement systems [35], secure distributed files systems [1,9] and email forwarding
systems [2].

In a traditional PRE mechanism, using a re-encryption key from A to B,
the proxy may transform all ciphertexts of A into those intended for B. This
“all-or-nothing” data sharing mode may not scale well in practice. What if some
data is extremely sensitive to A so that he does not want it to be shared with
others, even including B? A fine-grained PRE may be desirable in this case. In
2009, Weng et al. [41] introduced the notion of conditional PRE (CPRE), in
which the proxy who has a re-encryption key with a special condition can only
convert the ciphertext of a delegator (e.g., A) with the same special condition
for a delegatee (e.g., B). Due to its innate feature, CPRE, however, limits the
data sharing in the sense that one re-encryption key only corresponds to the
sharing of one ciphertext. This one-to-one sharing mode brings inconvenience
for delegator. Specifically, if A plans to share 10,000 encrypted files (which are
embedded with distinct conditions) with B, he has to generate the same amount
of re-encryption keys.

To address the above limitation, we introduce a new notion, which we call
“hierarchical conditional” PRE (HCPRE). The new notion allows re-encryption
rights to be “re-delegated” to lower level of encrypted data. It brings convenience
and flexibility for delegator in the sense that a delegator may only need to
generate a re-encryption key for high level data and further, the key can be “re-
formed” for the lower level data shoring. Below we use cloud data sharing as an
example to illustrate the basic idea behind the notion to motivate our work.

120 K. He et al.

PHRs
W0

Personal
Measurements

W00

Gastroenterology
W010

Internal Medicine
W01

Surgical
W02

Respiration
W011

Cardiology
W012

Fig. 1. Hierarchical conditional access structure

Assume outsourced data is under a specific data structure for some purposes,
e.g., efficient retrieval. A first forms his data in a hierarchical structure as shown
in Fig. 1, in which a data is tagged with a hierarchical condition set, for example,
the data (related to) Respiration is with a condition set W = {W0,W01,W011}.
A further encrypts the data together with the corresponding hierarchical con-
dition set before outsourcing to a cloud serer. Assume B is a Physician, who
is allowed to access all of the Internal Medicine data of A. To share the
data with B, A may generate a re-encryption key RK{W0,W01}|A→B , which is
embedded with hierarchical conditions {W0,W01}, and sends it to the semi-
trust cloud server. When B requests to access the Internal Medicine data,
including Gastroenterology, Respiration and Cardiology, the proxy uses the
re-encryption key RK{W0,W01}|A→B, which is for the conditions {W0,W01}, to
“delegate” a new re-encryption key RK{W0,W01,W01i}i∈{0,1,2}|A→B for the “lower-
level” hierarchical conditions {W0,W01,W01i}i∈{0,1,2}. The proxy further uses
the resulting key RK{W0,W01,W01i}i∈{0,1,2}|A→B to convert the encrypted data for
B, so that B may use his private key to access the Internal Medicine data
of A. In particular, if A decides to share all of his data to B, he only needs
to generate a “root” re-encryption key for condition W0 from A to B; while A
chooses to share one leaf data to B, he generates a re-encryption key for one of
the conditions {W0,W01,W01i} corresponding to the leaf of the structure.

1.1 Related Work

In 1998, Blaze et al. [2] constructed the first bidirectional PRE scheme. In 2005,
Ateniese et al. [9] proposed the first unidirectional PRE scheme. Both of the
schemes are secure only against chosen-plaintext attacks (CPA). In 2007, Canetti
et al. [3] designed a bidirectional PRE scheme with chosen-ciphertext security.
In 2008, Libert et al. [24] introduced a re-playable chosen ciphertext secure
(RCCA) unidirectional PRE scheme. Since then, various PRE schemes have
been proposed in the literature (e.g., [7,11,25,29,34,37,40]).

Hierarchical Conditional Proxy Re-Encryption 121

PRE can be extended in the context of identity-based encryption. In 2007,
Green and Ateniese [10] proposed the first identity-based proxy re-encryption
(IBPRE) scheme, which is CCA secure in the random oracle model, where hash
functions are assumed to be fully random. Chu and Tzeng [6] constructed a CCA
secure IBPRE scheme in the standard model. After that, many identity-based
proxy re-encryption (IBPRE) schemes have been proposed, such as [6,10,18,20,
28,30,31,33,38].

However, among all of the aforementioned schemes, the semi-trust proxy can
use a given re-encryption key to transform all the ciphertexts of a delegator into
those of a delegatee. But in reality, the delegator does not want to transform
all of his data for the delegatee. Therefore, type-based PRE [36] and condi-
tional PRE (CPRE) [41,42] were proposed, in which the proxy can only fulfill
ciphertext conversion “conditionally”. Later, Liang et al. [16,19] proposed two
IBCPRE schemes with CCA secure in the standard model. However, He et al.
[12] presented the security analysis to show that their schemes only achieve CPA
security. In 2016, He et al. [13] proposed an efficient identity-based conditional
proxy re-encryption (IBCPRE) scheme with CCA secure in the random oracle
model.

PRE can be extended in the attribute-based setting. Attribute-based proxy
re-encryption (ABPRE) can effectively increase the flexibility of data sharing. In
2009, Liang et al. [23] first defined the notion of ciphertext-policy ABPRE (CP-
ABPRE), where each ciphertext is labeled with a set of descriptive conditions
and each re-encryption key is associated with an access tree that specifies which
type of ciphertexts the proxy can re-encrypt, and they presented a concrete
scheme supporting AND gates with positive and negative attributes. After that,
several CP-ABPRE schemes (e.g., [27]) with more expressive access policy were
proposed. In 2011, Fang et al. [8] proposed a key-policy ABPRE (KP-ABPRE)
scheme in the random oracle model, whereby ciphertext encrypted with condi-
tions W can be re-encrypted by the proxy using the CPRE key under the access
structure T if and only if T (W) = 1. More recent ABPRE systems can be seen
in [15,17,21,22].

In 2016, Lee et al. [14] proposed a searchable hierarchical CPRE (HCPRE)
scheme for cloud storage services, and cloud service provider is able to generate
a hierarchical key, but the re-encryption key generation algorithm also requires
the private keys of the delegator and delegatee.

So far, the proxy re-encryption scheme [13] is the only one which is conditional
and chosen-ciphertext secure scheme in the identity-based setting. Therefore,
based on the scheme [13], we propose a HCPRE scheme with more scalability
and flexibility in controlling data sharing and which is in identity-based setting
and further achieves CCA security. Note that secure access control have also
been proposed in the literature for fine-grained data sharing (e.g., [4,5,32]).

We here compare our scheme with other related PRE schemes, namely CPRE,
IB-PRE and AB-PRE, in terms of computation, communication, features as
well as security in the following tables. We state that AB-PRE allows proxy
to convert a group of ciphertext satisfying attribute description embedded into

122 K. He et al.

re-encryption key. This is somewhat similar to our scheme. But the distinct
feature of our scheme is that we can support re-encryption key re-delegation in
a secure and scalable way. Let Ce, Cp, CS and CE be the computational cost of
an exponentiation, a bilinear pairing, a signature and a symmetric encryption,
respectively. u is the total number of attributes used in system, w is the number
of conditions in the ciphertext and d is the size of an access formula. |G1| and
|GT | denote the bit-length of an element in G1 and GT , respectively. |Sym|
and |Sign| denote the bit-length of a symmetric encryption and a signature,
respectively.

From Table 1, it can be seen that our scheme achieves constant pairing cost
in all metrics, much like others, except for the re-encryption phase. We state
that this will not bring heavy computational burden to system user because this
phase is handled by cloud server. Since our scheme supports flexible condition
control, the number of condition used in ciphertext and sharing/re-encryption is
based on the preference of user. If a user chooses to use only one condition (i.e.
w = 1), our scheme also achieves constant computational cost in all metrics.

Table 2 shows the communication cost comparison. Much like the analysis
mentioned previously, our scheme would achieve constant communication cost
while w = 1. We note that w = 1 may indicate that a delegator delegates the
decryption rights of a “root” data to a delegatee.

Table 1. Computation cost comparison

Schemes Enc Re-Enc Dec1 Dec2 Rekey

[16] 8Ce + Cp + CS 6Ce + 7Cp 5Ce + 6Cp 5Ce + 6Cp 16Ce

[41] 4Ce + 2Cp 8Cp 2Ce + 2Cp Ce + Cp 2Ce

[10] 4Ce + Cp + CS 2Ce 2Ce + 3Cp 2Ce + 10Cp 4Ce + Cp + CS

[26] 3Ce + Cp 4Cp 2Cp 2Cp 4Ce

[23] (2 + u)Cp (1 + u)Cp (1 + u)Cp 2Cp (2u + 1)Ce

Ours (2 + w)Ce + Cp (3 + w)Cp Ce + 2Cp 2Ce + 2Cp (2w + 1)Ce + Cp

Table 2. Communication complexity comparison

Schemes RKey Original ciphertext Re-encryption ciphertext

[16] 6|G1| 3|G1| + |GT | + |Sign| 3|G1| + |GT | + |Sign|
[41] 2|G1| 4|G1| 2|G1| + |GT |
[10] 3|G1| + |GT | + |Sign| 9|G1| + 2|GT | + 2|Sign| 5|G1| + |GT | + |Sign|
[26] 2|G1| 3|G1| + |GT | 2|G1| + |GT |
[23] (3 + 3u)|G1| + |GT | (2 + u)|G1| + |GT | (3 + u)|G1| + (4 + u)|GT |
Ours (3 + w)|G1| + |GT | (3 + w)|G1| + |GT | 3|G1| + 2|GT |

Hierarchical Conditional Proxy Re-Encryption 123

Table 3. Feature and security comparison

Schemes Conditional sharing
RKey number

Complexity Security Adaptivity RKey
re-delegation

[16] O(d) �-wBDHI∗ CCA × ×
[41] O(d) 3-QBDH CCA

√ ×
[10] O(d) DBDH CPA

√ ×
[26] O(d) DBDH CPA × ×
[23] O(1) ADBDH CPA × ×
Ours O(1) DBDH CCA

√ √

The comparison of feature and security is shown in Table 3. We can see that
our scheme is the first and only achieving all features. Like [23], our scheme only
needs constant number of re-encryption key while the others need the number
of O(d). It also achieves adaptively CCA security under well-study complex-
ity assumption, DBDH. A re-encryption key in our scheme can be further re-
delegated by proxy (for re-encryption key recycle purpose) without jeopardizing
security.

1.2 Contributions

The contributions of this paper are described as follows.

– Taking into account structured data, we introduce the new notion, hierarchi-
cal conditional PRE. The new notion allows a proxy to “re-formed” a given
re-encryption key, so that the resulting key can be used to re-encrypt “lower-
level” encrypted data. In other words, a re-encryption key in our notion may
be “recycled”.

– We concretely explore the notion in the context of identity-based encryption,
and further define the corresponding system and security notion. We present
a concrete construction satisfying the notion, which is the first of its type.
Specifically, the construction is inspired by [13].

– The premise of our construction is quite similar to the hierarchical identity-
based secret key re-delegation technique. A semi-trust proxy is allowed to
delegate an “upper level” re-encryption key generation to lower-level “condi-
tions”. Therefore, a delegator can control which specific data blocks located
in the structure can be accessed by others without generating a huge amount
of re-encryption key.

– Our scheme is proved secure against chosen-ciphertext attacks in the random
oracle model.

1.3 Organization

The rest of this paper is organized as follows. Some necessary preliminaries, sys-
tem definition and security notion are given in Sect. 2. The concrete construction

124 K. He et al.

is introduced in Sect. 3 and the security analysis are described in Sect. 4. The
conclusion is presented in Sect. 5.

2 Preliminaries

2.1 Bilinear Map

Two multiplicative cyclic groups G and GT whose orders are prime p and a
bilinear map e : G × G → GT has following three properties:

– Bilinearity: e(ua, vb) = e(u, v)ab given u, v ∈ G and a, b ∈ Zp.
– Non-degeneracy: e(g, g) → G given a generator g of G.
– Computability: There exists a probabilistic algorithm to compute e(u, v) given

u, v ∈ G.

2.2 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

The definition of DBDH assumption [39] in a bilinear group (p,G,GT , e) is given
as follows: A challenger takes as input (g, ga, gb, gc, Z) for the unknown a, b, c ←R

Zp. A probabilistic polynomial time (PPT) adversary needs to decide whether
Z = e(g, g)abc or Z is a random chosen from GT . The advantage of the PPT
adversary A solving the DBDH assumption is defined like this:

AdvDBDH
A = |Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, Z) = 1]|.

If the advantage is negligible, it means that the DBDH assumption holds.

2.3 Identity-Based Hierarchical Conditional Proxy Re-encryption
(IBHCPRE)

We here define the algorithms and security notion for IBHCPRE. An IBHCPRE
scheme includes the following algorithms:

– Setup(1λ): Intake a security parameter 1λ, output a public parameter params
and a master secret key msk.

– Extract(msk, ID): Intake the master secret key msk and an identity ID,
output a private key skID.

– Enc(params, IDi,Wn,m): Intake the public parameter params, an identity
IDi, a condition vector Wn = {w1, w2, · · · , wn} of depth n and a plaintext
m ∈ M, output an initial ciphertext CT(IDi,Wn).

– ReKeyGen(skIDi
, IDj ,Wn): Intake a private key skIDi

, an identity IDj , and
a condition vector Wn = {w1, w2, · · · , wn} of depth n, output a re-encryption
key rkWn|IDi→IDj

from IDi to IDj associated with the condition vector Wn.
– HCReKeyGen(rkWn|IDi→IDj

,Wn+1): Intake a re-encryption key
rkWn|IDi→IDj

for the parent condition Wn = {w1, · · · , wn} of depth n and a
condition vector Wn+1 = {Wn, wn+1} of depth n+1, output the re-encryption
key rkWn+1|IDi→IDj

from IDi to IDj for condition Wn+1 = {w1, · · · ,
wn, wn+1}.

Hierarchical Conditional Proxy Re-Encryption 125

– ReEnc(rkWn|IDi→IDj
, CT(IDi,Wn)): Intake a re-encryption key rkWn|IDi→IDj

and an initial ciphertext CT(IDi,Wn), output a transformed ciphertext
CT(IDj ,Wn).

– Dec2(skIDi
, CT(IDi,Wn)): Intake a private key skIDi

and an initial ciphertext
CT(IDi,Wn), output a plaintext m or an invalid symbol ⊥.

– Dec1(skIDj
, CT(IDj ,Wn)): Intake a private key skIDj

and a transformed
ciphertext CT(IDj ,Wn), output a plaintext m or an invalid symbol ⊥.

Correctness: For any m ∈ M, skIDi
and skIDj

are generated from Extract
algorithm, it holds that Dec2(skIDi

, CT(IDi,Wn)) = M and Dec1(skIDj
,

ReEnc(ReKeyGen(skIDi
, IDj ,Wn), CT(IDi,Wn)) = M .

Next, we give the security definition for IBHCPRE in the sense of indis-
tinguishability under chosen-ciphertext attacks (IND-CCA), which is described
by the following game between a challenger C and an adversary A. Adversary
A is able to obtain a series of queries. In spite of this, an adversary A cannot
distinguish which message is encrypted from the challenge ciphertext.

– Setup: Challenger C runs (params,msk)← Setup(1λ), it sends params to A
and keeps msk itself.

– Phase 1: Adversary A adaptively issues a polynomial number of queries:
• Extraction query 〈IDi〉: Challenger C runs Extract(msk, IDi) to obtain a

private key skIDi
and returns it to adversary A.

• Re-encryption key query 〈IDi, IDj ,Wn〉: Challenger C first gets the
private key skIDi

← Extract (msk, IDi) and runs rkWn|IDi→IDj
← ReKey-

Gen(skIDi
, IDj ,Wn), and then it returns rkWn|IDi→IDj

to adversary A.
• Hierarchical condition re-encryption key query 〈rkWn|IDi→IDj

,Wn+1〉:
Challenger C gets the re-encryption key for parent condition vector Wn

of depth n and runs rkWn+1|IDi→IDj
←HCReKeyGen(rkWn|IDi→IDj

,
Wn+1).

• Re-encryption query 〈IDi, IDj , CT(IDi,Wn)〉: Challenger C first gets the
re-encryption key rkWn|IDi→IDj

←ReKeyGen(skIDi
, IDj ,Wn) and runs

CT(IDj ,Wn) ← ReEnc(rkWn|IDi→IDj
, CT(IDi,Wn)), and then it returns

CT(IDj ,Wn) to adversary A.
• Decryption query 〈ID,CT(ID,Wn)〉: Challenger C first gets the private

key skID ←Extract(msk, ID) and runs the decryption algorithm and
returns the result Dec1(skID, CT(ID,Wn)) or Dec2(skID, CT(ID,Wn)) to
adversary A.

– Challenge: Adversary A outputs a target identity ID∗ and condition W ∗
n as

well as two distinct plaintexts m0,m1 ∈ M. Challenger C picks β ∈R {0, 1}
and returns CT ∗

(ID∗,W ∗
n) =Enc (params, ID∗,W ∗

n ,mβ) to adversary A.
– Phase 2: Adversary A keeps on issuing all queries as in Phase 1, challenger C

responds the queries as in Phase 1. But the difference is that Phase 2 needs
to satisfy the following conditions:

• Adversary A cannot issue Extraction query on ID∗.
• Adversary A cannot issue Decryption query on neither 〈ID∗, CT ∗

(ID∗,W ∗
n)〉

nor 〈IDj , ReEnc(rkW ∗
n |ID∗→IDj

, CT ∗
(ID∗,W ∗

n))〉.

126 K. He et al.

• If adversary A gets skIDj
on IDj , it cannot issue Re-encryption query on

〈ID∗, IDj , CT ∗
(ID∗,W ∗

n)〉 and Re-encryption key query on 〈ID∗, IDj ,W
∗
k 〉,

where W ∗
k = {w1, · · · , wk} and k ∈ [1, n].

– Guess: Adversary A makes a guess β′ ∈ {0, 1} and wins the game if β′ = β.

We define adversary A’s advantage in the above game as

AdvIND-IBHCPRE-CCA
A = |Pr[β′ = β] − 1/2|.

Definition 1 (IND-IBHCPRE-CCA Security). We say that an IBHCPRE
scheme is IND-CCA secure, if for any PPT adversary A, the advantage in the
above security game is negligible, that is AdvIND-IBHCPRE-CCA

A ≤ ε.

3 Construction

– Setup(1λ): Given a security parameter 1λ, first output a bilinear group
(p,G,GT , e), and then choose a generator g ∈R G, α ∈R Zp and com-
pute g1 = gα. Finally, choose six hash functions H1, H2, H3, H4, H5 and
H6, where H1 : {0, 1}∗ → G, H2 : GT × M → Zp, H3 : GT → M,
H4 : {0, 1}∗ × G × GT × M × G

n → G, H5 : {0, 1}∗ → G and H6 : M → G,
where M is the massage space. The public parameter is

PPs = ((p,G,GT , e), g, g1,H1,H2,H3,H4,H5,H6)

and the master secret key is msk = α.
– Extract(msk, ID): Given the master secret key msk and an identity ID, it

computes QID = H1(ID) and sets the private key as

skID = Qα
ID.

– Enc(PPs, IDi,Wn = {w1, · · · , wn},M): Given the public parameter PPs, an
identity IDi, a condition vector Wn = {w1, · · · , wn} and a message M ∈ M,
pick δ ∈R GT and set r = H2(δ||M),

A = gr

B = δ · e(g1,H1(IDi))r

C = H3(δ) ⊕ M

D1 = H5(IDi||w1)r

D2 = H5(IDi||w1||w2)r

· · ·
Dn = H5(IDi||w1|| · · · ||wn)r

S = H4(IDi||A||B||C||D1|| · · · ||Dn)r

Then output an initial ciphertext

CT(IDi,Wn) = (A,B,C,D1, · · · ,Dn, S,Wn).

Hierarchical Conditional Proxy Re-Encryption 127

– ReKeyGen(skIDi
, IDj ,W

′
n = {w′

1, · · · , w′
n}): Given the private key skIDi

, an
identity IDj and a condition vector W ′

n, first pick θ ∈R M, δ′ ∈R GT and
set r′ = H2(δ′||θ) and pick s1, · · · , sn ∈R Z

n
p

rk1 = gr′

rk2 = δ′ · e(g1,H1(IDj))r′

rk3 = H3(δ′) ⊕ θ

RK1 = skIDi
· H5(IDi||w′

1)
s1 · · · H5(IDi||w′

1|| · · · ||w′
n)sn · H6(θ)

RK1
2 = gs1

· · ·
RKn

2 = gsn

Finally, output the re-encryption key

rkW ′
n|IDi→IDj

= (rk1, rk2, rk3, RK1, RK1
2 , · · · , RKn

2).

– HCReKeyGen(rkW ′
n|IDi→IDj

,W ′
n+1): Give the re-encryption key

rkW ′
n|IDi→IDj

for a parent condition vector W ′
n = {w′

1, · · · , w′
n}, compute

a hierarchical conditional re-encryption key rkW ′
n+1|IDi→IDj

for a condition
vector W ′

n+1 = {w′
1, · · · , w′

n, w′
n+1} as follows:

Choose r′′, s′
1, s

′
2, · · · , s′

n, sn+1 ∈R Zp and compute

rk′
1 = rk1 · gr′′

rk′
2 = rk2 · e(g1,H1(IDj))r′′

rk′
3 = rk3

RK ′
1 = RK1 · H5(IDi||w′

1|| · · · ||w′
n+1)

sn+1 · H5(IDi||w′
1)

s′
1 · · ·

H5(IDi||w′
1|| · · · ||w′

n)s′
n

RK
′1
2 = RK1

2 · gs′
1

· · ·
RK

′n
2 = RKn

2 · gs′
n

RK
′n+1
2 = gsn+1

Finally, output the re-encryption key

rkWn+1|IDi→IDj
= (rk′

1, rk
′
2, rk

′
3, RK ′

1, RK
′1
2 , · · · , RK

′n+1
2)

which is a valid re-encryption key, as the distribution of the re-encryption key
is the same as the distribution of keys generated by ReKeyGen.

– ReEnc(rkWn|IDi→IDj
, CT(IDi,Wn)): Given a re-encryption key rkWn|IDi→IDj

and an initial ciphertext CT(IDi,Wn), check whether

e(SD1 · · · Dn, g) =
e(H4(IDi||A||B||C||D1|| · · · ||Dn)H5(IDi||w1) · · · H5(IDi||w1|| · · · ||wn), A).

128 K. He et al.

If not, output ⊥; otherwise compute

B′ = B · e(D1, RK1
2) · · · e(Dn, RKn

2)
e(A,RK1)

= δ/e(A,H6(θ)).

Then output the transformed ciphertext

CT(IDj ,Wn) = (A,B′, C, rk1, rk2, rk3).

– Dec2(skIDi
, CT(IDi,Wn)): Given the private key skIDi

and the initial cipher-
text CT(IDi,Wn), first check whether

e(SD1 · · · Dn, g) =
e(H4(IDi||A||B||C||D1|| · · · ||Dn)H5(IDi||w1) · · · H5(IDi||w1|| · · · ||wn), A).

If not, output ⊥; otherwise, compute

δ = B/e(A, skIDi
)

M = H3(δ) ⊕ C.

Then check whether
A = gH2(δ||M).

If not, output ⊥; otherwise output M .
– Dec1(skIDj

, CT(IDj ,Wn)): Given the private key skIDj
and the transformed

ciphertext CT(IDj ,Wn), first compute

δ′ = rk2/e(rk1, skIDj
)

θ = H3(δ′) ⊕ rk3.

Then it checks whether
rk1 = gH2(δ

′||θ).

If not, output ⊥; else compute

δ = B′ · e(A,H6(θ))
M = H3(δ) ⊕ C.

Finally, check whether
A = gH2(δ||M).

If not, output ⊥; otherwise output M .

4 Security Analysis

In the following, we prove that our construction is IND-IBHCPRE-CCA secure
in the random oracle model.

Hierarchical Conditional Proxy Re-Encryption 129

Theorem 1. Suppose that the DBDH assumption holds in a bilinear group
(p,G,GT , e), then the above IBHCPRE scheme is IND-CCA secure in the ran-
dom oracle model.

Concretely, if adversary A with a non-negligible advantage against the above
IBHCPRE scheme, then there exists a challenger C to solve the DBDH assump-
tion with a non-negligible advantage.

Proof. Suppose that adversary A has a non-negligible advantage to attack the
above IBHCPRE scheme. We can build a PPT challenger C that makes use
of adversary A to solve the DBDH problem. Challenger C is given a DBDH
instance (g, ga, gb, gc, Z) with unknown a, b, c ∈ Zp, challenger C’s goal is to
decide Z = e(g, g)abc or Z is a random value. Challenger C works by interacting
with A in the above security game as follows:

– Setup: Adversary A is given the public parameter params = ((p,G,GT , e), g,
g1,H1,H2,H3,H4,H5,H6) where g1 = ga and H1,H2,H3,H3,H4,H5,H6 are
random oracles managed by challenger C. The master secret key a is unknown
to challenger C.

– Phase 1: Adversary A adaptively asks the following queries:
• Hash Oracle Queries. Adversary A freely queries Hi with i ∈

{1, 2, 3, 4, 5, 6}. Challenger C maintains six hash tables Hi-list with i ∈
{1, 2, 3, 4, 5, 6}. At the beginning, all of the tables are empty. Challenger
C replies the queries as follows:
Hash1 Query (IDj):
If IDj is on the H1-list in the form of 〈IDj , Qj , qj ,�j〉, challenger C
returns the predefined value Qj ; otherwise, it chooses qj ∈R Zp and gen-
erates a random �j ∈ {0, 1}, if �j = 0, challenger C computes Qj = gqj ;
else it computes Qj = gbqj and adds 〈IDj , Qj , qj ,�j〉 into the H1-list,
and then it returns Qj .
Hash2 Query (δ||M):
If 〈δ||M〉 is on the H2-list in the form of 〈δ||M, r, gr〉, return r; otherwise,
challenger C selects r ∈R Z∗

p and adds 〈δ||M, r, gr〉 into the H2-list, then
it returns r.
Hash3 Query (δ ∈ GT):
If δ is on the H3-list in the form of 〈δ,X〉, challenger C returns X; oth-
erwise, it chooses X ∈R M and adds 〈δ,X〉 into the H3-list, then it
returns X.
Hash4 Query (IDj ||A||B||C||D1|| · · · ||Dn):
If 〈IDj ||A||B||C||D1|| · · · ||Dn〉 is on the H4-list in the form of
〈IDj ||A||B||C||D1|| · · · ||Dn, Tj , tj〉, challenger C returns the value Tj ;
otherwise, it chooses tj ∈R Zp, computes Tj = gtj and adds
〈IDj ||A||B||C||D1|| · · · ||Dn, Tj , tj〉 into the H4-list, and then C returns Tj .
Hash5 Query (IDj ,Wn = {w1, · · · , wk}):
1. If k = 1, that is while 〈IDj , w1〉 is on the H5-list in the form of

〈IDj ||w1, ̂Q1, q̂1, �̂1〉, challenger C returns the value ̂Q1; otherwise, it
picks q̂1 ∈R Zp and �̂1 ∈R {0, 1}. If �̂1 = 0, it computes Q1 = gq̂1 ;

130 K. He et al.

else it computes Q1 = gbq̂1 . It adds 〈IDj ||w1, ̂Q1, q̂1, �̂1〉 into the
H5-list and responds with ̂Q1.

2. If k
= 1, that is while 〈IDj , w1, · · · , wk〉 is on the H5-list in the
form of 〈IDj ||w1|| · · · ||wk, ̂Qk, q̂k〉, challenger C returns the value
̂Qk; otherwise, it picks q̂k ∈R Zp and computes Qk = gq̂k . It adds
〈IDj ||w1|| · · · ||wk, ̂Qk, q̂k〉 into the H5-list and then responds with ̂Qk.

Hash6 Query (θ ∈ M):
If θ is on the H6-list in the form of 〈θ, Y 〉, challenger C returns the value
Y ; otherwise, it chooses Y ∈R G and adds 〈θ, Y 〉 into the H6-list, and
then challenger C returns Y .

• Extraction query(IDj): Challenger C recovers the tuple 〈IDj , Qj , qj ,�j〉
from the H1-list. If �j = 1, challenger C outputs ⊥ and aborts; otherwise,
challenger C returns skIDj

= g
qj
1 to adversary A. (Note that skIDj

=
g

qj
1 = gaqj = Qa

j = H1(IDj)α, so that this is a proper private key for the
identity IDj).

• Re-encryption key query(IDi, IDj ,Wn): Challenger C first picks δ′ ∈R

GT , θ ∈R M and recovers 〈IDi, Qi, qi,�i〉 and 〈IDj , Qj , qj ,�j〉 from
the H1-list and 〈δ′||θ, r′, gr′〉 from the H2-list, 〈δ′,X〉 from the H3-list,
〈IDi||w1, ̂Q1, q̂1, �̂1〉 and 〈IDi||w1|| · · · ||wn, ̂Qn, q̂n〉 from the H5-list and
〈θ, Y 〉 from the H6-list. Lets rk1 = gr′

, rk2 = δ′ ·e(g1, Qj)r′
, rk3 = X ⊕θ.

Then challenger C constructs RK1, RK1
2 , RK2

2 , · · · , RKn
2 as follows:

1. If �i = 0, challenger C picks s1, · · · , sn ∈R Zp and lets RK1 =
gqi
1 · ̂Q1

s1 · · · ̂Qn

sn · Y , RK1
2 = gs1 , · · · , RKn

2 = gsn .
2. If �i = 1 and �̂1 = 1: challenger C picks s′, s2, · · · , sn ∈R Zp

and sets RK1 = gbq̂is
′
̂Q2

s2 · · · ̂Qn

sn · Y , RK1
2 = g

−qi/q̂1
1 gs′

, RK2
2 =

gs2 , · · · , RKn
2 = gsn , where s1 = −aqi/q̂1 + s′.

3. If �i = 1 and �̂1 = 0: challenger C outputs ⊥ and aborts.
Finally, challenger C returns the re-encryption key rkw|IDi→IDj

= (rk1,
rk2, rk3, RK1, RK1

2 , · · · , RKn
2) to adversary A.

• Hierarchical condition Re-encryption key query〈rkWn|IDi→IDj
,Wn+1〉:

Challenger C first gets the re-encryption key rkWn|IDi→IDj
for a condition

Wn = {w1, · · · , wn}, it first chooses r′, s1, s2, · · · , sn, sn+1 ∈R Zp and com-
putes rk′

1 = rk1 ·gr′
, rk′

2 = rk2 ·e(g1,H1(IDj))r′
, rk′

3 = rk3, RK ′
1 = RK1 ·

H5(IDi||w1|| · · · ||wn+1)sn+1 · H5(IDi||w1)s1 · · · H5(IDi||w1|| · · · ||wn)sn ·
H6(θ), RK

′1
2 = RK1

2 · gs1 ,· · · , RK
′n
2 = RKn

2 · gsn , RK
′n+1
2 = gsn+1 .

Challenger C returns the hierarchical conditional re-encryption key
rkWn+1|IDi→IDj

for the conditional Wn+1 = {w1, · · · , wn, wn+1} to
adversary A.

• Re-encryption query(IDi, IDj , CT(IDi,Wn)): Their exists the following
two cases to generate the re-encrypted ciphertext:
1. If �i = 1 and �̂1 = 0, challenger C first parses the ciphertext

CT(IDi,Wn) as (A,B,C,D1, · · · ,Dn, S,Wn) and checks whether
e(SD1 · · · Dn, g) = e(H4(IDi||A||B||C||D1|| · · · ||Dn)H5(IDi||w1) · · ·
H5(IDi||w1|| · · · ||wn), A). If not, it returns ⊥; otherwise, chal-
lenger C checks whether there exists a tuple 〈δ||M, r, gr〉 from the

Hierarchical Conditional Proxy Re-Encryption 131

H2-list such that A = gr. If no, it returns ⊥; otherwise, C recov-
ers the tuple 〈IDj , Qj , qj ,�j〉 from the H1-list and then it picks
θ ∈R M, δ′ ∈R GT , C recovers the tuple 〈δ′,X〉 from the
H3-list and sets r′ = H2(δ′||θ), rk1 = gr′

, rk2 = δ′ · e(g1, Qj)r′
,

rk3 = X ⊕ θ. Next, C recovers the tuple 〈θ, Y 〉 from the H6-list and
sets B′ = δ/e(A, Y). Finally, C outputs the transformed ciphertext
CT(IDj ,Wn) = (A,B′, C, rk1, rk2, rk3) to adversary A.

2. Otherwise, challenger C first queries the re-encryption key to get
rkWn|IDi→IDj

, and then it runs ReEnc (rkWn|IDi→IDj
, CT(IDi,Wn))

algorithm to obtain the transformed ciphertext CT(IDj ,Wn). Finally
challenger C returns the transformed ciphertext CT(IDj ,Wn) to
adversary A.

• Decryption query(ID,CT(ID,Wn)): Challenger C checks whether
CT(ID,Wn) is an initial or a transformed ciphertext.
1. For an initial ciphertext, challenger C first extracts CT(ID,Wn) as

(A,B,C,D1, · · · ,Dn, S,Wn). Then it recovers a tuple 〈ID,Q, q,�〉
from the H1-list. If � = 0 (meaning skID = gq

1), challenger
C decrypts the ciphertext CT(ID,Wn) using skID; otherwise, chal-
lenger C first checks whether e(SD1 · · · Dn, g) = e(H4(IDi||A||B||C||
D1|| · · · ||Dn)H5(IDi||w1) · · · H5(IDi||w1|| · · · ||wn), A) holds. If no, it
returns ⊥; else challenger C searches the tuple 〈δ||M, r, gr〉 from the
H2-list such that A = gr. If it cannot find such tuple, it returns ⊥;
else it searches whether there exists a tuple 〈δ,X〉 from the H3-list
such that M ⊕ X = C, a tuple 〈ID||w1, ̂Q1, q̂1, �̂1〉 and some
tuples {〈ID||w1|| · · · ||wk, ̂Qk, q̂k〉}1≤k≤n from the H5-list and a tuple
〈ID||A||B||C||D1|| · · · ||Dn, T, t〉 from the H4-list, such that ̂Q1

r
=

D1, · · · , ̂Qk

r
= Dk and T r = S. If not, it returns ⊥; otherwise, chal-

lenger C returns M = C ⊕ X to adversary A.
2. For a transformed ciphertext, challenger C first parses CT(ID,Wn)

as (A,B′, C, rk1, rk2, rk3). Then challenger C recovers tuple
〈ID,Q, q,�〉 from the H1-list. If � = 0 (meaning skID = gq

1),
challenger C decrypts the ciphertext CT(ID,Wn) using skID; other-
wise, challenger C searches whether there exists a tuple 〈δ′||θ, r′, gr′〉
from the H2-list such that rk1 = gr′

. If not, it returns ⊥; else
searches whether there exists a tuple 〈δ′,X〉 from the H3-list and
a tuple 〈ID,Q, q, 1〉 from the H1-list such that θ ⊕ X = C and
δ′ · e(g1, Q)r′

= rk2. If not, it returns ⊥; otherwise, challenger C
recovers 〈θ, Y 〉 from the H6-list, and it computes δ = B′ · e(A, Y) and
M = H3(δ) ⊕ C. Finally, challenger C returns M to adversary A.

– Challenge: Adversary A outputs an identity ID∗, a condition W ∗
n of depth

n and two different plaintexts M0,M1 ∈ M. Challenger C recovers the tuple
〈ID∗, Q∗, q∗,�∗〉 from the H1-list, a tuple 〈ID∗||w∗

1 ,
̂Q∗, ̂q∗, ̂�∗〉 and several

tuples {〈ID∗||w∗
1 || · · · ||w∗

k, ̂Q∗
k, ̂q∗

k〉}1≤k≤n from the H5-list. If �∗ = 0 or ̂�∗ =
1, challenger C outputs ⊥ and aborts; else challenger C first picks β ∈R {0, 1},
δ∗ ∈R GT , X∗ ∈R {0, 1}n, and then it inserts the tuple 〈δ∗,X∗〉 into the

132 K. He et al.

H3-list and the tuple 〈δ∗,Mβ , ·, gc〉 into the H2-list. Next challenger C sets
A∗ = gc, B∗ = δ∗ ·T q∗

, C∗ = X∗ ⊕Mβ ,D∗
1 = gĉq∗

, · · · ,D∗
n = ĝcq∗

n and selects
t∗ ∈R Zp, and then it inserts the tuple 〈ID∗||A∗||B∗||C∗||D∗

1 || · · · ||D∗
n, gt∗

, t∗〉
into the H4-list, and sets S∗ = gct∗

. Finally, challenger C sends the challenge
ciphertext CT ∗

(ID∗,W ∗
n) = (A∗, B∗, C∗,D∗

1 , · · · ,D∗
n, S∗) to adversary A.

– Phase 2: Adversary A continues to adaptively issue queries as in Phase 1. But
it needs to satisfy the conditions which are described in the above security
model.

– Guess: Adversary A outputs a guess β′ ∈ {0, 1}.

5 Conclusion

In this paper, we propose an identity-based hierarchical conditional proxy re-
encryption scheme, which is the first of its type. The new scheme allows delegator
to achieve more flexibly encrypted data sharing. The scheme is proved secure
against chosen-ciphertext attacks in the random oracle model. Via comparison,
we show the flexibility and scalability of our scheme. This paper leaves some
interesting open problems, for example, how could we prove the security in the
standard model, and how to reduce the re-encryption key size to constant.

Acknowledgment. This work was supported by National Science Foundation of
China (No. 61572131), Guangdong Provincial Science and Technology Plan Projects
(No. 2016A010101034) and Project of Internation as well as Hongkong, Macao &
Taiwan Science and Technology Cooperation Innovation Platform in Universities in
Guangdong Province (No. 2015KGJHZ027).

References

1. Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

3. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 2007 ACM Conference on Computer and Communications Secu-
rity (CCS 2007), Alexandria, Virginia, USA, 28–31 October 2007, pp. 185–194
(2007)

4. Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A., Huang,
X.: Cryptographic hierarchical access control for dynamic structures. IEEE Trans.
Inf. Forensics Secur. 11(10), 2349–2364 (2016)

5. Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A., Li, J.,
Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics
Secur. 11(4), 850–865 (2016)

6. Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random
oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75496-1 13

https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-540-75496-1_13
https://doi.org/10.1007/978-3-540-75496-1_13

Hierarchical Conditional Proxy Re-Encryption 133

7. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-ciphertext secure proxy re-
encryption without pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
CANS 2008. LNCS, vol. 5339, pp. 1–17. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-89641-8 1

8. Fang, L., Susilo, W., Ge, C., Wang, J.: Interactive conditional proxy re-encryption
with fine grain policy. J. Syst. Softw. 84(12), 2293–2302 (2011)

9. Giuseppe, A., Kevin., Matthew, G., Susan, H.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: Proceedings of the
Network and Distributed System Security Symposium (NDSS 2005), San Diego,
California, USA (2005)

10. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72738-5 19

11. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao,
Y.: Generic construction of chosen ciphertext secure proxy re-encryption. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 22

12. He, K., Weng, J., Deng, R.H., Liu, J.K.: On the security of two identity-based
conditional proxy re-encryption schemes. Theor. Comput. Sci. 652, 18–27 (2016)

13. He, K., Weng, J., Liu, J.K., Zhou, W., Liu, J.-N.: Efficient fine-grained access
control for secure personal health records in cloud computing. In: Chen, J., Piuri,
V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 65–79. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46298-1 5

14. Lee, C.-C., Li, C.-T., Chen, C.-L., Chiu, S.-T.: A searchable hierarchical conditional
proxy re-encryption scheme for cloud storage services. ITC 45(3), 289–299 (2016)

15. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Yu, Y., Yang,
A.: A secure and efficient ciphertext-policy attribute-based proxy re-encryption for
cloud data sharing. Future Gener. Comput. Syst. 52, 95–108 (2015)

16. Liang, K., Chu, C.-K., Tan, X., Wong, D.S., Tang, C., Zhou, J.: Chosen-ciphertext
secure multi-hop identity-based conditional proxy re-encryption with constant-size
ciphertexts. Theor. Comput. Sci. 539, 87–105 (2014)

17. Liang, K., Fang, L., Wong, D.S., Susilo, W.: A ciphertext-policy attribute-based
proxy re-encryption scheme for data sharing in public clouds. Concurr. Comput.
Pract. Exp. 27(8), 2004–2027 (2015)

18. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revoca-
ble identity-based proxy re-encryption scheme for public clouds data sharing. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 257–272.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 15

19. Liang, K., Liu, Z., Tan, X., Wong, D.S., Tang, C.: A CCA-secure identity-based
conditional proxy re-encryption without random oracles. In: Kwon, T., Lee, M.-K.,
Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 231–246. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37682-5 17

20. Liang, K., Su, C., Chen, J., Liu, J.K.: Efficient multi-function data sharing and
searching mechanism for cloud-based encrypted data. In: Chen, X., Wang, X.,
Huang, X. (eds.) Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security (AsiaCCS 2016), Xi’an, China, May 30 - June 3,
2016, pp. 83–94. ACM (2016)

21. Liang, K., Susilo, W.: Searchable attribute-based mechanism with efficient data
sharing for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 10(9), 1981–
1992 (2015)

https://doi.org/10.1007/978-3-540-89641-8_1
https://doi.org/10.1007/978-3-540-89641-8_1
https://doi.org/10.1007/978-3-540-72738-5_19
https://doi.org/10.1007/978-3-642-27954-6_22
https://doi.org/10.1007/978-3-319-46298-1_5
https://doi.org/10.1007/978-3-319-11203-9_15
https://doi.org/10.1007/978-3-642-37682-5_17

134 K. He et al.

22. Liang, K., Susilo, W., Liu, J.K.: Privacy-preserving ciphertext multi-sharing con-
trol for big data storage. IEEE Trans. Inf. Forensics Secur. 10(8), 1578–1589 (2015)

23. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with del-
egating capabilities. In: Proceedings of the 2009 ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2009), Sydney, Australia, 10–
12 March 2009, pp. 276–286 (2009)

24. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

25. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inf. Theory 57(3), 1786–1802 (2011)

26. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-
encryption schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17455-1 21

27. Lin, S., Zhang, R., Wang, M.: Verifiable attribute-based proxy re-encryption for
secure public cloud data sharing. Secur. Commun. Netw. 9(12), 1748–1758 (2016)

28. Luo, S., Shen, Q., Chen, Z.: Fully secure unidirectional identity-based proxy re-
encryption. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 109–126. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9 8

29. Matsuda, T., Nishimaki, R., Tanaka, K.: CCA proxy re-encryption without bilinear
maps in the standard model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 261–278. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 16

30. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Tak-
agi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol.
4575, pp. 247–267. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73489-5 13

31. Mizuno, T., Doi, H.: Secure and efficient IBE-PKE proxy re-encryption. IEICE
Trans. 94–A(1), 36–44 (2011)

32. Nabeel, M., Bertino, E.: Privacy preserving delegated access control in public
clouds. IEEE Trans. Knowl. Data Eng. 26(9), 2268–2280 (2014)

33. Shao, J., Cao, Z.: Multi-use unidirectional identity-based proxy re-encryption from
hierarchical identity-based encryption. Inf. Sci. 206, 83–95 (2012)

34. Shao, J., Rongxing, L., Lin, X., Liang, K.: Secure bidirectional proxy re-encryption
for cryptographic cloud storage. Pervasive Mobile Comput. 28, 113–121 (2016)

35. Smith, T.: DVD jon: Buy DRM-less tracks from Apple iTunes, January 2005.
http://www.theregister.co.uk/2005/03/18/itunespymusique

36. Tang, Q.: Type-based proxy re-encryption and its construction. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 130–
144. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 11

37. Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger security
model extended from CT-RSA2012. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 277–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36095-4 18

38. Wang, L., Wang, L., Mambo, M., Okamoto, E.: Identity-based proxy cryptosystems
with revocability and hierarchical confidentialities. IEICE Trans. 95–A(1), 70–88
(2012)

39. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/978-3-540-78440-1_21
https://doi.org/10.1007/978-3-642-17455-1_21
https://doi.org/10.1007/978-3-642-31912-9_8
https://doi.org/10.1007/978-3-642-13013-7_16
https://doi.org/10.1007/978-3-642-13013-7_16
https://doi.org/10.1007/978-3-540-73489-5_13
https://doi.org/10.1007/978-3-540-73489-5_13
http://www.theregister.co.uk/2005/03/18/itunespymusique
https://doi.org/10.1007/978-3-540-89754-5_11
https://doi.org/10.1007/978-3-642-36095-4_18
https://doi.org/10.1007/978-3-642-36095-4_18
https://doi.org/10.1007/11426639_7

Hierarchical Conditional Proxy Re-Encryption 135

40. Weng, J., Chen, M.-R., Yang, Y., Deng, R.H., Chen, K., Bao, F.: CCA-secure uni-
directional proxy re-encryption in the adaptive corruption model without random
oracles. Sci. China Inf. Sci. 53(3), 593–606 (2010)

41. Weng, J., Deng, R.H., Ding, X., Chu, C.-K., Lai, J.: Conditional proxy re-
encryption secure against chosen-ciphertext attack. In: Proceedings of the 2009
ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS 2009), Sydney, Australia, 10–12 March 2009, pp. 322–332 (2009)

42. Weng, J., Yang, Y., Tang, Q., Deng, R.H., Bao, F.: Efficient conditional
proxy re-encryption with chosen-ciphertext security. In: Samarati, P., Yung, M.,
Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 151–166.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8 13

https://doi.org/10.1007/978-3-642-04474-8_13

	Hierarchical Conditional Proxy Re-Encryption: A New Insight of Fine-Grained Secure Data Sharing
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Map
	2.2 Decisional Bilinear Diffie-Hellman (DBDH) Assumption
	2.3 Identity-Based Hierarchical Conditional Proxy Re-encryption (IBHCPRE)

	3 Construction
	4 Security Analysis
	5 Conclusion
	References

