
Toward Fuzz Test Based on Protocol
Reverse Engineering

Jun Cai(B), Jian-Zhen Luo, Jianliang Ruan, and Yan Liu

School of Electronic and Information, Guangdong Polytechnic Normal University,
Guangzhou 510665, China

{caijun,luojz}@mail.gpnu.edu.cn, 1891089@qq.com, liuyan sysu@163.com

Abstract. Fuzz test is effective and efficient technique in discovering
serious vulnerability in a network protocol by inserting unexpected data
into the input message of the protocol and finding its bugs or errors.
However, traditional fuzz test requires a large number of test cases to
cover every test case, which is a time-consumed and inefficient process. In
order to address this problem, we propose a novel method to reduce the
number of test cases. The proposed method uses the technique of protocol
reverse engineering to reconstruct the protocol’s specification and create
test cases by inserting fault fields into protocol input according to its
format. The experimental results show that the proposed method can
effectively identify the message fields of protocol and the total number
of test cases is dramatically reduced.

Keywords: Vulnerability detection · Network security
Protocol reverse engineering

1 Introduction

Fuzz testing is a security test to discover the vulnerabilities of software systems
by inserting random data or faults into the input of the software systems and
detecting the software exceptions. Generally, there are two types of fuzz testing,
i.e., Generation and data mutation [1]. The former type constructs test cases
based on the complete specification of target protocol, while the latter type
generates test cases by inserting faults into existing sample files.

The main problem of data mutation fuzz testing is that it needs too many
fault-inserted files to cover all test cases, such as FileFuzz and SPIKEfile. The
number of fault-inserted files come up to 28×FILESIZE if the size of sample file is
FILESIZE. However, it is time consuming to handle so great sum of fault-inserted
files when FILESIZE becomes large and many of which are not necessary for
successful testing. Actually, a software system parses its input by considering
the format of input and treats any file that do not follows the file format as
invalid input. The system may throw an error and exit before it reaches the
fault pieces of code.

c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 892–897, 2017.
https://doi.org/10.1007/978-3-319-72359-4_56



Toward Fuzz Test Based on Protocol Reverse Engineering 893

Hence, it is a novel idea to use the generation type of fuzz testing and create
test cases by taking the file format into account, such as PROTOS, a network
protocol fuzzer. The advantage of generation type testing is that it decreases
greatly the number of test cases but still maintains the maximum test cases cov-
erage [2]. However, one has to completely analyze the target system and fully
understand the protocol specification before he generates a series of effective but
ad-hoc test cases. Since protocol reverse engineering [3] a the most promising
technique to reconstruct the specification of private protocol, we apply the pro-
tocol reverse engineering technique to enhance the efficiency of network protocol
fuzz test.

2 System Design

The protocol specification consists of both protocol message format and protocol
state machine. The former is the protocol syntax rules which conduct the process
of constructing different types of protocol messages, while the latter regulates
the behaviors of protocol entities during the communication process, such as the
order in which different types of messages should be sent or received.

In order to recover the protocol specification and perform a efficient fuzz
test, we propose an architecture of protocol-reverse-engineering based fuzz test
system. The core of the fuzz test is called QCD-PInfer, as shown in Fig. 1.
The QCD-PInfer module includes the following four components: Data Pre-
Processing, Multi-Change-Point Detection, Message Segmenting and Message
Format Inference.

Data Set

Data Pre-processing

Multi-Change-Point Detection

Suffix Trie Construction

Computing Probability Metric

Change-Point Detection

Message
Segmenting

Message Format Inference

Post-processing

Semantic Analysis

Position Test Analysis

Occurrence Probability Analysis

Message Formats Fuzz Fields

Keyword Fields

Data Fields

Legends:

INPUT/OUTPUT

PROCESS MODULE

Fig. 1. The system architecture of QCD-PInfer.

We assume that a stochastic process is undergone by the observed messages
and different type of fields have different statistical properties. So multiple change
points would occur in the process and each of the change points indicates a
change undergone by the statistical properties of the process. A change point
means the ending of previous field and the beginning of a new field in a message.
Under these assumption, our goal is transformed into the problem of multiple



894 J. Cai et al.

change-point detection and one can address this problem by using techniques of
change-point detection [4,5].

Once the change-points are detected, message fields are identified. In order
to determine the type of fields, a two-phase inference procedure, including occur-
rence probability analysis (OPA) and position test analysis (PTA), is present to
classify the message fields into keyword fields, data fields and uncertain fields.
In the OPA phase, fields with approximate zero-probability are marked as data
fields. The other fields are passed to PTA to be further classified as keyword
fields and uncertain fields. In the PTA phase, a benchmark position is selected
for each field, and a binomial test is applied to test whether the field positions
are equal to the benchmark position with probability 1 given a significance level
α. The fields passed the statistic test are selected as keyword fields, while the
rest fields are uncertain fields.

3 Results and Analysis

In this section, we perform experiments to evaluate the effectiveness of the pro-
posed method. We also compare our results with those of Discoverer [6] and
PI [7]. We implement the proposed approach on a system called QCD-PInfer in
C/C++ and run all experiments on PCs with 2.93 GHz dual-core CPU, 4 GB
RAM and operation system of Windows 7.

The recall and precision of inferred keyword fields are shown in Tables 1 and 2,
respectively. It is important for us to note that, the true keywords are keywords
occurred in the data set. Any keywords that do not appear in the data set will
be omitted. We also note that the keyword quality of DNS and QQ would not be
consider since the two protocols are pure binary protocol with no keyword defined
in their protocol specifications.

As we seen, the recall rate of QCD-PInfer is higher than both Discoverer and
PI. We also find that the recall rate of PI is too low: the recall rates of HTTP,
FTP, SMTP and POP are less than 10%.

Table 1. The recall rate of protocol keyword.

System HTTP FTP SMTP POP SSDP BitTorrent

QCD-PInfer 87.0 92.9 85.7 84.0 74.1 100

Discoverer 78.3 60.7 64.3 40.0 33.3 100

PI 4.4 3.6 7.1 4.0 18.5 50.0

The precision of Discoverer is much lower than QCD-PInfer since Discoverer
infers too many segments as keyword fields most of which are false positive. The
precision of HTTP and FTP inferred by PI is 100%. However, recall rate of the
two protocol by PI is 4.4% and 3.6%, respectively. The reason is that PI infers
too few (less than 5) keyword fields, which leads to a low recall rate.



Toward Fuzz Test Based on Protocol Reverse Engineering 895

Table 2. The precision rate of protocol keyword.

System HTTP FTP SMTP POP SSDP BitTorrent

QCD-PInfer 66.7 97.0 35.0 95.8 66.0 66.7

Discoverer 7.2 23.3 19.2 22.8 33.9 5.3

PI 100 100 20.0 16.7 35.6 33.3

As shown in Fig. 2, the F-score of QCD-PInfer is higher than both Discoverer
and PI for all the six protocols, which means that the quality of inferred keyword
by QCD-PInfer is better than the other systems. Thus, QCD-PInfer outperforms
Discoverer and PI in inferring keyword fields.

HTTP FTP SMTP POP SSDP BitTorrent
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−
sc

or
e

QCD−PInfer
Discoverer
PI

Fig. 2. The F-score value of keywords.

In this paper, we combine the proposed method with the idea of PROTOS
to implement an automated fuzz testing tool (APREFuzz) for detecting the
buffer overflow vulnerability of an information-centric network system in our
test bed. The protocol used by the system could be considered as unknown
protocol or private protocol since its protocol specification is not available to
public. There are 5 message formats defined by the protocol specification, includ-
ing “INTEREST” message, “DATA DISTRIBUTION” message, “DATA PUSH-
ING” message, “RESPONSE WITH DATA” message and “RESPONSE WITH-
OUT DATA” message. APREFuzz is a proof-of-concept tool and only focuses
on the buffer overflow vulnerability caused by the “DATA PUSHING” message.

Given a sample message, we firstly identify all protocol keyword fields and
data fields in the message. Then generate test files by inserting fault data into
these fields. In keyword fields, we insert fault data by replacing a particular



896 J. Cai et al.

keyword field with one of the inferred protocol keywords or one random string.
In data fields, if the field contains only figures, we insert a boundary value of
numbers into the field. Otherwise, we insert a random string into the field.

We compare our results with FileFuzz in Table 3. APREFuzz identifies 7
keyword fields and 7 data fields in the sample message. One of the data fields
contains only figures. The number of inferred protocol keywords is 12. Thus, the
total number of fault-inserted files is 248 (= (12 + 11) × 7 + 21 × 1 + 11 × 6).
However, FileFuzz generates 393, 216 (= 1.5 × 1024 × 28) fault-inserted files
by replacing each byte with values from 0x00 to 0xFF . The results show that
APREFuzz has detected one vulnerability while FileFuzz failed to detect the
vulnerability.

Table 3. Fuzz testing to the information-centric network.

Fuzz system Sample file Fault-inserted files Vulnerability

APREFuzz 1.5KB 248 1

FileFuzz 1.5KB 393,216 0

4 Conclusion

The key idea of the proposed method is to introduce the technique of proto-
col reverse engineering to enhance the performance of fuzz test. The proposed
method considers the statistic properties of message fields and identifies the mes-
sage fields by detecting the change point in these statistic properties and recover
the message format by determining type and semantic of message fields. The
technique of change point detection is an excellent solution to detect the change
points. In order to deal with multiple change-points each of which corresponds to
message field, a multi-change-point detection technique is proposed based on the
traditional change point detection by restarting the detection procedure from an
initial condition once a change point is detected. The message fields are further
analyzed via occurrence probability test and position test, so as to identify the
data fields, keyword fields and uncertain fields. The minimal description length
criteria based position test analysis is proposed to identify those keyword fields
which have multiple position in the message. The experiment results show that
the protocol specification is useful for generating test cases for fuzz test.

Acknowledgment. This work was supported by the National Natural Sci-
ence Foundation of China (61571141); Guangdong Natural Science Foundation
(2014A030313637); The Excellent Young Teachers in Universities in Guangdong
(YQ2015105); Guangdong Provincial Application-oriented Technical Research and
Development Special fund project (2015B010131017); Science and Technology Pro-
gram of Guangzhou (201604016108); Guangdong Future Network Engineering Tech-
nology Research Center (2016GCZX006); Special funds for public welfare research and
capacity building in Guangdong Province (2014A010103032); Science and Technology
Program of Guangdong (2016A010120010).



Toward Fuzz Test Based on Protocol Reverse Engineering 897

References

1. Munea, T.L., Lim, H., Shon, T.: Network protocol fuzz testing for information
systems and applications: a survey and taxonomy. Multimed. Tools Appl. 75(22),
14745–14757 (2016)

2. Kim, H.C., Choi, Y.H., Lee, D.H.: Efficient file fuzz testing using automated analysis
of binary file format. J. Syst. Archit. 57(3), 259–268 (2011). Special Issue on Security
and Dependability Assurance of Software Architectures

3. Duchêne, J., Le Guernic, C., Alata, E., Nicomette, V., Kaâniche, M.: State of the
art of network protocol reverse engineering tools. J. Comput. Virol. Hacking Tech.,
1–16 (2017)

4. Zhao, Q., Ye, J.: Quickest detection in multiple on-off processes. IEEE Trans. Signal
Process. 58(12), 5994–6006 (2010)

5. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point
detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

6. Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse engineer-
ing from network traces. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, Berkeley, CA, USA, pp. 1–14. USENIX Association
(2007)

7. Beddoe, M.A.: Network protocol analysis using bioinformatics algorithms (2004).
http://www.baselineresearch.net/PI/

http://www.baselineresearch.net/PI/

	Toward Fuzz Test Based on Protocol Reverse Engineering
	1 Introduction
	2 System Design
	3 Results and Analysis
	4 Conclusion
	References




