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Abstract. In PKC 2014, Dana Dachman-Soled, et al. introduced
enhanced chosen-ciphertext security (ECCA) for public key encryption.
The enhancement refers to that the decryption oracle provided to the
adversary is augmented to return not only the output of the decryption
algorithm on a queried cipher-text but also of a randomness-recovery
algorithm associated to the scheme. The authors have given the applica-
tion of ECCA-secure encryption and we believe that ECCA security will
find more application in the future. In this paper, we consider ECCA
security of the well-known hybrid encryption (Tag-KEM/DEM) which
was presented by Masayuki Abe, et al. in EUROCRYPT 2005. Mean-
while, we also consider ECCA security of hybrid encryption (KEM/Tag-
DEM). We have proved that the hybrid encryption is secure against
enhanced chosen cipher-text attack (ECCA) if both KEM part and DEM
part satisfy some assumptions.
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1 Introduction

Secure encryption is the most basic task in cryptography, and some significant
works have gone into defining and attaining it. In many commonly accepted def-
initions, such as chosen-plaintext attack (CPA) security and chosen-ciphertext
attack (CCA) security, CCA security means that the adversary obtains no infor-
mation about messages encrypted in other ciphertexts even she is allowed to
query a decryption oracle on specifically chosen ciphertexts, therefore the CCA
security has been accepted as the standard requirement for encryption schemes.
However, in some conditions, randomness-recovering encryption is important,
such as adaptive functions [8]and PKE with non-interactive opening [6]. ECCA
security is motivated by the concept of randomness-recovering encryption, which
was presented by Dana Dachman-Soled et al. [4]. The enhanced chosen cipher-
text attack security means that the decryption oracle provided to the adversary
not only outputs the decryption algorithm on a queried ciphertext but also
a randomness-recovery algorithm associated to the scheme [11]. Furthermore,
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the authors have given many public-key encryptions satisfying ECCA security
and the application of ECCA security. In this paper, our results mainly con-
cern the case in which the randomness-recovering algorithm is efficient. ECCA
security is of both practical and theoretical interest.

The first standard-model construction of CCA-secure randomness-recovering
PKE was achieved by Peikert and Waters [11] but public key encryption is too
slow for encrypting long messages and big data. Under such a circumstance, the
hybrid encryption method, which means encrypting a key k used for symmetric
encryption to encrypt the messages by asymmetric encryption, has been created.
In order to obtain secure ECCA hybrid encryption, we consider the ECCA secu-
rity of hybrid public key encryptions. Cramer and Shoup proved that the hybrid
encryption scheme (Tag-KEM/DEM) satisfies CCA secure if the part of KEM is CCA
secure and the part of DEM also satisfies CCA secure [13]. Masayuki Abe, et al.
presented a hybrid encryption scheme (Tag-KEM/DEM) which provided a simple
way to create threshold versions of CCA-secure hybrid encryption schemes [2].
R. Canetti, H. Krawczyk, and J. Nielsen proposed a relaxed variant of CCA
security, called Replayable CCA (RCCA) security [3]. Chen and Dong consid-
ered RCCA security for the KEM+DEM paradigm. They also considered RCCA
security for (Tag-KEM/DEM) and KEM/Tag-DEM paradigm [10]. Motivated by their
work, we consider the ECCA security of the Tag-KEM/DEM paradigm and its of
the KEM/Tag-DEM paradigm.

Organizations of the Paper. In Sect. 2, we introduce some basic notations
and definitions of the building blocks. In Sect. 3, we recall the definition of well
known hybrid encryptions, KEM/Tag-DEM and Tag-KEM/DEM. Then we prove its
ECCA security in detail. Conclusions can be found in Sect. 4.

2 Preliminaries

In this section, we will review some useful notations and definitions.

Notations. Let N be the set of natural numbers. If M is a set, then |M | denotes
its size and m

R←− M denotes the operation of picking an element m uniformly at
random from M. We denote λ as the security parameter. For notational clarity we
usually omit it as an explicit parameter. PPT denotes probabilistic polynomial
time. Let z ← A(x, y, · · · ) denote the operation of running an algorithm A with
inputs (x, y, · · · ) and output z. We say a function negl(λ) is negligible (in λ) if
λ > k0 and k0 ∈ Z, negl(λ) < λ−c for any constant c > 0.

2.1 ECCA Security Definition

A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three algo-
rithm. Gen is a probabilistic algorithm that on input the security parameter
λ, outputs public keys and privates keys (pk, sk) and pk defines the message
space M . Enc is a probabilistic algorithm that encrypts a message m ∈ M into
a ciphertext c. Dec is a deterministic algorithm that decrypts c and outputs
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either m ∈ M or a special symbol ⊥. An adversary A = (A1,A2) is a proba-
bilistic polynomial-time oracle query machine. We now describe the attack game
between a challenger and an adversary A = (A1,A2) used to define security
against adaptive Enhanced chosen ciphertext attack.

– stage 1: The adversary queries a key generation oracle. The key generation
oracle runs (pk, sk) ← Gen(λ) and responds adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary A1 submits a ciphertext c to
Dec∗. The decryption oracle responds with m ← Dec(sk, c) and the random
recovery algorithm Dec responds with r ← Rec(sk, c). We require that for all
the messages m ∈ M (M is the space of message), (pk, sk) ← Gen(1λ),

Pr[Enc(pk,m; r
′
) �= c; r R←− {0, 1}λ; c ← Enc(pk, r,mb); r

′ ← Rec(c, sk)]

is negligible. Finally, if m =⊥, responds A with ⊥, else responds A with
(m, r).

– stage 3: The adversary A1 queries (m0,m1) to an encryption oracle with
|m0| = |m1|. The challenger chooses b

R←− {0, 1}, r
R←− {0, 1}λ, computes

Enc(pk, r,mb) = c∗, and sends c∗ to adversary A1.
– stage 4: The adversary A2 continues to make calls c to the decryption oracle
Dec and the random recovery algorithm Rec, where c is subjected to the only
restriction that a submitted ciphertext c is not identical to c∗. The decryption
oracle responds with m ← Dec(pk, c) and the random recovery algorithm Dec
responds with r ← Rec(sk, c). Finally, if m =⊥, responds A2 with ⊥, else
responds A2 with (m, r).

– stage 5: The adversary A outputs a guessing bit b
′ ∈ {0, 1}.

We define AdvECCA
PKE,A(λ) to be |Pr[b = b

′
] − 1

2 | in the above attack game.
We say that PKE = (KeyGen,Enc,Dec) is secure against enhanced adaptive

chosen ciphertext attack if for all probabilistic, polynomial-time adversary A, the
function AdvECCA

PKE,A(λ) grows negligibly in λ. IND-CCA security is defined all the
same except that the decryption oracle does not return a randomness-recovery
algorithm associated to the scheme.

2.2 Key Encapsulation Mechanism and Its ECCA Security Notions

A key encapsulation mechanism KEM is a public key encryption scheme, which
consists of the three polynomial-time algorithms (KEM.Gen, KEM.Enc, KEM.Dec)
with the following interfaces:

Key Generation:
(pk, sk) ← KEM.Gen(1λ)

Encapsulation:
ψ ← KEM.Enc(pk, K, r)

Decapsulation
K (or ⊥) ← KEM.Dec(sk, c)

where r
R←− {0, 1}λ, K ← KK , KK is the key space. KDM.Dec is a determinis-

tic algorithm, (pk, sk) is a public/secret key pair and c is a ciphertext of the



850 H. Dai et al.

encapsulated key K under pk. We now describe the attack game between the
challenger and an adversary A = (A1,A2) used to define its security against
adaptive enhanced chosen ciphertext attack.

– stage 1: The adversary queries a key generation oracle. The key generation
oracle runs (pk, sk) ← KEM.Gen(λ) and responds adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle. For
each decryption oracle query, the adversary A1 submits a ciphertext ψ to
Dec, the decryption oracle responds with K ← Dec(sk, ψ), and the random
recovery algorithm Dec responds with r ← Rec(sk, ψ). Finally, if K =⊥,
responds A with ⊥, else responds A with (K, r).

– stage 3: The challenger chooses r
R←− {0, 1}λ and computes ψ∗ ←

KEM.Enc(pk, r,K1), chooses K0
R←− KK , σ

R←− {0, 1}. Here, KK is the key
space, |K0| = |K1| and sends (Kσ, ψ∗) to adversary A1.

– stage 4: The adversary A2 continues to make calls ψ to the decryption
oracle Dec and the random recovery algorithm Rec, where ψ is subjected to
the only restriction that a submitted ciphertext ψ is not identical to ψ∗. The
decryption oracle responds with K ← Dec(sk, ψ) and the random recovery
algorithm Dec responds with r ← Rec(sk, ψ). Finally, if K =⊥, responds A2

with ⊥, else responds A2 with (K, r).
– stage 5: The adversary A outputs a guessing bit σ

′ ∈ {0, 1}.

We define AdvECCA
KEM,A(λ) to be | Pr[σ = σ

′
] − 1

2 | in the above attack game. We
say that KEM = (KEM.Gen,KEM.Enc,KEM.Dec) is secure against enhanced adaptive
chosen ciphertext attack if for all probabilistic polynomial-time adversary A, the
function AdvECCA

KEM,A(λ) grows negligibly in λ.

2.3 Date encapsution mechanism and its one time security

A DEM = (DEM.Enc,DEM.Dec) is a symmetric encryption scheme that consists of
the two polynomial-time algorithms (DEM.Enc, DEM.Dec). DEM.ENC and DEM.Dec
are associated to a key-space KD and message space M .

Encapsulation:
χ ← DEM.Enc(K,m)

Decapsulation
m (or ⊥) ← DEM.Dec(K,χ)

DEM.Enc is an encryption algorithm that encrypts m ∈ M by using
symmetric-key K ∈ KD and outputs cipher-text χ, where K ∈ KD. DEM.Dec
is a corresponding decryption algorithm that recovers message m by using the
same symmetric-key when the input cipher-text χ. An adversary A is a proba-
bilistic polynomial-time oracle query machine. We now describe the attack game
between the challenger and an adversary A used to define one time security.
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– stage 1: The adversary A queries (m0,m1) to an encryption oracle. We
require that the output of A satisfies |m0| = |m1|. The challenger chooses
b

R←− {0, 1}, K
R←− KD, computes Enc(K,mb) = c∗ and sends c∗ to adversary

A. Here we stress that the ciphertext is made from a random key along with
the plaintext and every key has been used only once.

– stage 2: The adversary A outputs a guessing bit b
′ ∈ {0, 1}.

We define AdvOT −UF
DEM,A (λ) to be | Pr[b = b

′
] − 1

2 | in the above attack game.
We say that DEM = (DEM.Enc,DEM.Dec) is one time secure if for all probabilis-

tic polynomial-time adversary A, the function AdvOT −UF
DEM,A2

(λ) grows negligibly
in λ.

3 ECCA Security of Hybrid Scheme

3.1 Tag-KEM/DEM

Let Tag-KEM=(TKEM.Gen,TKEM.Enc,TKEM.Dec) be a public key encryption
scheme and DEM = (DEM.Enc,DEM.Dec) be a symmetric encryption scheme. Then
hybrid encryption scheme

Tag-KEM/DEM = (HybGen, HybEnc, HybDec)

can be constructed as follows.

– HybGen(1λ): Run (pk, sk) ← TKEM.Gen(1λ) and output (pk, sk).
– HybEnc(pk,m): Run (ω,K) ← TKEM.Key(pk), TKEM.Key(·) is a probabilistic

algorithm that inputs public key pk and outputs one-time key K ∈ KD along
with the internal state information ω. Here KD is the key-space of DEM. Then
choosing r

$←− {0, 1}λ and computing

χ ← DEM.EncK(m),

ψ ← TKEM.Encpk(ω, r, χ),

we get the result ciphertext (of m) c := (ψ, χ).
– HybDec(sk, c) : First, parse c as ψ||χ.

Run

K ← TKEM.Decsk(ψ, χ), and m ← DEM.DecK(χ).

Then, output the message m or “reject” symbol ⊥.

3.2 ECCA Security of Tag-KEM/DEM

Theorem 1. If the scheme Tag-KEM is IND-ECCA secure and DEM is one time
secure, then the hybrid scheme (Tag-KEM/DEM) is IND-ECCA secure. In particular,
for every probabilistic polynomial time (PPT) adversary A, there exists probabilis-
tic adversaries A1 and A2 whose running times are essentially the same as that
of A, such that for all λ ≥ 0, we have

AdvECCA
Tag-KEM/DEM,A(λ) ≤ 2AdvECCA

Tag-KEM,A1
(λ) + AdvOT −UF

DEM,A2
(λ). (1)
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Proof. Fix A and λ, A be a PPT adversary that attacks the hybrid scheme
Tag-KEM/DEM. Now, the theorem can be proved via the following games. (Denote
Ti if the adversary A wins in the i-th game).

Game0: This is an ECCA experiment on the scheme Tag-KEM/DEM played between
the challenger and an adversary A. In particular, there is:

– stage 1: The adversary queries a key generation oracle. Then the challenger
runs (pk, sk) ← TKEM.Gen(λ) and responds adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary A1 submits a ciphertext c =
(ψ, χ) to the challenger. Then the challenger runs

K ← TKEM.Decsk(ψ, χ), and m ← DEM.DecK(χ).

and runs the random recovery algorithm r ← Rec(c, sk). If m =⊥, the chal-
lenger responds A1 with ⊥, else the challenger responds A1 with (m, r).

– stage 3: The adversary A1 queries (m0,m1) to an encryption oracle, and the
challenger runs (ω,K) ← TKEM.Key(pk), K ∈ KD, where KD is the key-space
of DEM. Then the challenger chooses r

R←− {0, 1}λ and computes

DEM.EncK(m0) = χ∗, TKEM.Encpk(r, ω, χ∗) = ψ∗,

and sends c∗ = (ψ∗, χ∗) to the adversary A1.
– stage 4: The adversary A2 continues to make calls c = (ψ, χ) to the chal-

lenger, where c subjects to the only restriction that a submitted ciphertext c
is not identical to c∗. The challenger runs

K ← TKEM.Decsk(ψ, χ), and m ← DEM.DecK(χ)

and runs the random recovery algorithm r ← Rec(c, sk). If m =⊥, the chal-
lenger responds A2 with ⊥, else responds A2 with (m, r).

– stage 5: The adversary A outputs a guessing bit b
′ ∈ {0, 1}.

Naturally, it holds that

AdvECCA
Tag-KEM/DEM,A(λ) =

∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
. (2)

Game1: This game is identical to the above game except we use a completely
random symmetric key K0

R←− KD to encrypt m0 in the step-4 of Game0, so
we have

Lemma 1. There exists a probabilistic adversary A1 whose running time is
essentially the same as that of A, such that

| Pr[T1] − Pr[T0]| ≤ AdvECCA
Tag-KEM,A1

(λ). (3)
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Proof. The claim is proven by constructing the adversary A1 that attacks
Tag-KEM. The adversary A1 offers the environment for A. We describe the inter-
action as follows.

– stage 1: The adversary A1 was given (pk,Kσ), and at the same time, pk was
sent to adversary A.

– stage 2: The adversary A makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the decryption oracle responds with m ←
Dec(sk, c) and the random recovery algorithm responds with r ← Rec(sk, c).
Finally, if m =⊥, responds A with ⊥, else responds A with (m, r).

– stage 3: The adversary A queries (m0,m1) to an encryption oracle, |m0| =
|m1|. The adversary A1 computes DEM.EncSKσ

(m0) = χ∗ and outputs χ∗ as
the target tag, then it receives ψ∗ as a challenge cipher. Finally, the adversary
A1 sends c∗ = (ψ∗, χ∗) to adversary A.

– stage 4: The adversary A continues to make calls c = (ψi, χi) to decryption
oracle query, where c subjects to the only restriction that a submitted cipher-
text c is not identical to c∗. The adversary A1 runs

Ki ← TKEM.Decsk(χi, ψi), m ← DEM.DecKi
(ψi).

and runs the random recovery algorithm r ← Rec(c,sk). If m =⊥, the
adversary A1 responds A with ⊥, else responds A with (m, r).

– stage 5: A outputs a guessing bit b
′ ∈ {0, 1} and A1 outputs σ

′
= b

′
.

This completes the description of A1. By construction, it is clear that decryp-
tion for A is perfectly simulated because the correct decryption is obtained from
TKEM.Dec for every query.

– If σ = 0, we know that K0 is a random key used for computing χ and the
view of A is identical to that in Game0.

– If σ = 1, we know that K1 is the correct key embedded in ψ and the view of
A is identical to that in Game1.

we have that
| Pr[T1] − Pr[T0]| ≤ AdvECCA

Tag-KEM,A1
(λ).

The Lemma 1 is proved.
Game2: This game is identical to Game1 except that we encrypt m1 instead of
m0 in the step-4 of Game1.

Lemma 2. There exists a probabilistic adversary A2 whose running time is
essentially the same as that of A, such that

| Pr[T2] − Pr[T1]| ≤ AdvOT −UF
DEM,A2

(λ). (4)

Proof. The claim is proven by constructing the adversary A2 that attacks DEM,
the adversary A2 offers the environment for A. We describe the interaction as
follows.
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– stage 1: The adversary A2 runs the key generation oracle (pk, sk) ←
TKEM.Gen(λ) and sends pk adversary to A.

– stage 2: The adversary A makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary A submits a ciphertext c to
the decryption oracle. The decryption oracle runs m ← Dec(sk, c) and the
random recovery algorithm r ← Rec(sk,c). If m =⊥, responds A with ⊥,
else responds A with (m, r).

– stage 3: The adversary A sends (m0,m1) to A2, A2 queries (m0,m1) to
an encryption oracle and receives challenge ciphertext χ∗. The adversary A2

chooses r
R←− {0, 1}λ, runs (ω,K) ← TKEM.Key(pk), then computes

TKEM.Encpk(r, ω, χ∗) = ψ∗,

and finally sends c∗ = (ψ∗, χ∗) to adversary A.
– stage 4: The adversary A continues to make calls c = (ψi, χi) to decryption

oracle query, where c is subjected to the only restriction that a submitted
ciphertext c is not identical to c∗. The the adversary A2 runs

Ki ← TKEM.Decsk(ψi, χi), m ← DEM.DecKi
(ψi),

and runs the random recovery algorithm r ← Rec(c, sk). If m =⊥, the adver-
sary A2 responds A with ⊥, else the adversary A2 responds A with (m, r).

– stage 5: A outputs a guessing bit b
′ ∈ {0, 1} and A2 outputs σ

′
= b

′
.

This completes the description of A2. By construction, the view of A is identical
to that in Game1 and Game2, it is clear that we have

| Pr[T1] − Pr[T2]| ≤ AdvOT −UF
DEM,A2

(λ).

Game3: This game is identical to Game2 except that we use the correct key K
generated by TKEM.Key for DEM.Enc in the step-3 of Game2.

Lemma 3. There exists a probabilistic adversary A1 whose running time is
essentially the same as that of A, such that

| Pr[T2] − Pr[T1]| ≤ AdvECCA
Tag-KEM,A1

(λ). (5)

Proof. The proof is similar to Lemma 1, so we omit it here.
We know that A’s advantage in Game0

AdvECCA
Tag-KEM/DEM,A(λ) =

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
≤ 2AdvECCA

Tag-KEM,A1
(λ) + AdvOT −UF

DEM,A2
(λ)

is negligible.
Putting all the facts together, the Theorem1 is proved.
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3.3 KEM/Tag-DEM

Let KEM = (Gen,KEM.Enc,KEM.Dec) be a public key encryption scheme and
Tag-DEM = (TDEM.Enc, TDEM.Dec) be a symmetric key encryption scheme. Then
hybrid cryptosystem scheme

KEM/Tag-DEM = (HybGen,HybEnc, HybDec)

can be constructed as follows.

– HybGen(1λ) : Run (pk, sk) ← Gen(1λ) and output (pk, sk).
– HybEnc(pk,m) : Choose r

R←− {0, 1}λ, K ∈ KD. Here KD is the key-space of
DEM.
Then compute

ψ ← KEM.Encpk(r,K),

χ ← TDEM.EncK(m,ψ),

and output the ciphertext (of m) c := (ψ, χ).
– HybDec(sk, c) : First, parse c as ψ||χ.

Run
K ← KEM.Decsk(ψ), and m ← TDEM.DecK(χ, ψ).

Then, output the message m or “reject” symbol ⊥.

3.4 ECCA Security of KEM/Tag-DEM

Theorem 2. If the public key encryption scheme KEM = (Gen,KEM.Enc,KEM.Dec)
is IND-ECCA secure and symmetric key encryption Tag-DEM = (TDEM.Enc,
TDEM.Dec) is IND-CCA secure, the hybrid encryption scheme KEM/Tag-DEM is
IND-ECCA secure. In particular, for every probabilistic polynomial time (PPT)

adversary A, there exists probabilistic adversary A1 and A2 whose running times
are essentially the same as that of A, such that for all λ ≥ 0, we have

AdvECCA
KEM/Tag-DEM,A(λ) ≤ AdvECCA

KEM,A1
(λ) + AdvCCA

Tag-DEM,A2
(λ).

Proof. Fix A and λ. Let A be a PPT adversary who attacks on the hybrid scheme
KEM/Tag-DEM. Now, the theorem can be proved via the following games. (Denote
by Ti the adversary A wins in the i-th game).

Game0: This is an original ECCA experiment on the hybrid scheme
KEM/Tag-DEM played between the challenger and the adversary A. In particular,

– stage 1: The adversary queries a key generation oracle. The challenger runs
(pk, sk) ← Gen(λ) and responds the adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle. For
each decryption oracle query, the adversary A1 submits a ciphertext c to the
challenger. The challenger then runs the decryption oracle m ← Dec(sk, c)
and the random recovery algorithm r ← Rec(sk, c). If m =⊥, the challenger
responds with ⊥, else the challenger responds with (m, r).
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– stage 3: The adversary A1 queries (m0,m1) to an encryption oracle. The
challenger chooses b

R←− {0, 1}, r
R←− {0, 1}λ,K

R←− KD, computes

KEM.EncPpk(r,K) = ψ∗, TDEM.EncSK(mb, ψ) = χ∗

and sends c∗ = (ψ∗, χ∗) to adversary A1.
– stage 4: The adversary A2 continues to make calls c = (ψ, χ) to the chal-

lenger, where c is subjected to the only restriction that a submitted ciphertext
c is not identical to c∗. The challenger runs

K ← KEM.Decsk(ψ), m ← TDEM.DecK(χ, ψ).

and the random recovery algorithm r ← Rec(c, sk). If m =⊥, the challenger
responds A2 with ⊥, else the challenger responds A2 with (m, r).

– stage 5: The adversary outputs a guessing bit b
′ ∈ {0, 1}.

Naturally, it holds that

AdvECCA
KEM/Tag-DEM,A(λ) =

∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
. (6)

Game1: This game is identical to Game1 except that we use a completely ran-
dom symmetric key K0 in place of the key K1 in both the encryption and
decryption oracles. We have

Lemma 4. There exists a probabilistic adversary A1 whose running time is
essentially the same as that of A, such that

| Pr[T0] − Pr[T1]| ≤ AdvECCA
KEM,A1

(λ). (7)

Proof. The claim is proven by constructing a probabilistic adversary A1 that
attacks KEM: A1 offers the environment for A. We describe the interaction as
follows.

– First, the adversary A1 receives pk and sends it to A.
– A1 chooses (m0,m1) and sends them to A1. Meanwhile, the adversary A1

runs the encryption of KEM.Enc, and receives (Kδ, ψ
∗). Then the adversaryA1

chooses b ∈ {0, 1} and computes TDEM.Enc(mb, ψ
∗) = χ∗. Finally, A1 sends

(ψ∗, χ∗) to A.
– A continues to submit a cipher-text c = (ψ, χ) to the decryption oracle,

where c is subjected to the only restriction that a submitted ciphertext c is
not identical to c∗.

• If ψ �= ψ∗, A1 sends ψ to its own decryption oracle K ←
KEM.Decsk(ψ),m ← TDEM.DecK(ψ, χ), r ← Rec(c, sk). If m =⊥, the A1

responds A with ⊥, else responds with (m, r).
• If ψ = ψ∗, A1 uses Kσ to decrypt (χ, ψ): m ← TDEM.DecK(ψ, χ), r ←

Rec(c, sk). If m =⊥, the A1 responds A with ⊥, else responds with (m, r).
– Finally, A outputs a guessing bit b

′ ∈ {0, 1},
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A1 outputs 1 if b = b
′

and 0 if b �= b
′
. This completes the description of A1

and it is clear that we have

| Pr[T0] − Pr[T1]| ≤ AdvECCA
KEM,A1

(λ). (8)

In game G1, we use a random symmetric key in both the encryption and
decryption oracles so the cipher-text ψ∗ cannot be decrypted. To see this, it is
noticed that in game G1 the cipher-text χ∗ is produced by using the random
symmetric encryption key K0. Meanwhile, some other cipher-texts χ = χ∗ are
being decrypted by using K0 which plays no other role in game G1. Thus, in game
G1, the adversary A essentially just carries out an adaptive chosen cipher-text
attack against Tag-DEM. So we have

Lemma 5. There exists a probabilistic adversary A2 whose running time is
essentially the same as that of A, such that

| Pr[T1] − 1
2
| ≤ AdvCCA

Tag-DEM,A2
(λ). (9)

Proof. We construct a probabilistic adversary A2 that attacks Tag-DEM and A2

offers the environment for A. We describe the interaction as follows.

– The adversary A2 runs the key generation oracle (pk, sk) ← TKEM.Gen(λ) and
sends pk adversary to A.

– The adversary A makes a sequence of calls to a decryption oracle. For each
decryption oracle query, the adversary A submits a ciphertext c to the decryp-
tion oracle and the decryption oracle runs m ← Dec(sk, c) and the random
recovery algorithm r ← Rec(sk,c). If m =⊥, responds A with ⊥, else
responds A with (m, r).

– The adversary A sends (m0,m1) to A2. A2 chooses K
R←− KD, r

R←− {0, 1}λ,
runs ψ∗ ← KEM.Encpk(r,K) and then sends (m0,m1, ψ

∗) to encryption oracle
Tag-DEM. The A2 receives ciphertext χ∗, and sends c∗ = (ψ∗, χ∗) to A. We
note that the key K∗ chosen as the encryption key of Tag-DEM as well as
embedded in ψ∗ is completely random and mutually independent with each
other.

– A continues to submit a ciphertext c = (ψ, χ) to the decryption oracle, where
c is subjected to the only restriction that a submitted ciphertext c is not
identical to c∗. A2 runs the decryption oracle by using the secret key sk.

K ← KEM.Decsk(ψ),m ← TDEM.DecK(ψ, χ),

and runs the random recovery algorithm r ← Rec(c, sk), If m =⊥, A2

responds A with ⊥, else A2 responds A with (m, r).
– Finally, A outputs a guessing bit b

′ ∈ {0, 1} and A2 also outputs b
′
.

This completes the description of A2. By construction, it is clear that the
decryption for A is perfectly simulated, and whenever A wins, so does A2. We
have that

| Pr[T1] − 1
2
| ≤ AdvCCA

Tag-DEM,A2
(λ). (10)
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we know that the A’s advantage in Game0

AdvECCA
KEM/Tag-DEM,A(λ) =

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
≤ AdvECCA

KEM,A1
(λ) + AdvCCA

Tag-DEM,A2
(λ),

which is negligible.
Putting all the facts together, the Theorem 2 is proved.

4 Conclusion

In this paper, we discuss the security results for achieving ECCA secure
hybrid encryptions from the well-known hybrid paradigms, KEM/Tag-DEM and
Tag-KEM/DEM. We have proven that the hybrid encryption scheme (KEM/Tag-DEM)
can beECCA secure if the KEM part is ECCA secure and the DEM part is CCA
secure. Meanwhile, we have also proven that the hybrid encryption scheme
(Tag-KEM/DEM) can beECCA secure if the KEM part is ECCA secure and the DEM
part is one-time secure.
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