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Abstract. Cloud storage services have become accessible and used by
everyone. Nevertheless, stored data are dependable on the behavior of
the cloud servers, and losses and damages often occur. One solution is
to regularly audit the cloud servers in order to check the integrity of the
stored data. The Dynamic Provable Data Possession scheme with Public
Verifiability and Data Privacy presented in ACISP’15 is a straightforward
design of such solution. However, this scheme is threatened by several
attacks. In this paper, we carefully recall the definition of this scheme as
well as explain how its security is dramatically menaced. Moreover, we
proposed two new constructions for Dynamic Provable Data Possession
scheme with Public Verifiability and Data Privacy based on the scheme
presented in ACISP’15, one using Index Hash Tables and one based
on Merkle Hash Trees. We show that the two schemes are secure and
privacy-preserving in the random oracle model.
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1 Introduction

Storage systems allow everyone to upload his/her data on cloud servers, and
thus avoid keeping them on his/her own devices that have often limited storage
capacity and power. Nevertheless, storage services are susceptible to attacks or
failures, and lead to possible non-retrievable losses of the stored data. Indeed,
storage systems are vulnerable to internal and external attacks that harm the
data integrity even being more powerful and reliable than the data owner’s
personal computing devices. A solution is to construct a system that offers an
efficient, frequent and secure data integrity check process to the data owner such
that the frequency of data integrity verification and the percentage of audited

c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 485–505, 2017.
https://doi.org/10.1007/978-3-319-72359-4_29



486 C. Gritti et al.

data should not be limited by computational and communication costs on both
cloud server’s and data owner’s sides.

A Provable Data Possession (PDP) enables a data owner, called the client,
to verify the integrity of his/her data stored on an untrusted cloud server, with-
out having to retrieve them. Informally, the client first divides his/her data
into blocks, generates tags on each block, and then forwards all these elements
to the server. In order to check whether the data are correctly stored by the
server, the client sends a challenge such that the server replies back by creating
a proof of data possession. If the proof is correct, then this means that the stor-
age of the data is correctly done by the server; otherwise, this means that the
server is actually cheating somehow. Natural extension features of PDP include:
(1) Dynamicity (D) that enables the client to update his/her data stored on
the server via three operations (insertion, deletion and modification); (2) Public
verifiability (PV) that allows a client to indirectly check that the server correctly
stores his/her data by enabling a Third Party Auditor (TPA) or everyone else to
do the audit; (3) Data privacy (DP) preservation that ensures that the contents
of the stored data are not leaked to neither the TPA nor anyone else. We require
that a Dynamic PDP (DPDP) with PV and DP system is secure at untrusted
server, which means that the server cannot successfully generate a proof of data
possession that is correct without actually storing all the data. In addition, a
DPDP with PV and DP system should be data privacy-preserving, which means
that the TPA should not learn anything about the client’s data even by having
access to the public information.

Gritti et al. [9] recently constructed an efficient and practical DPDP system
with PV and DP. However, we have found three attacks threatening this con-
struction: (1) The replace attack enables the server to store only one block of
a file m and still pass the data integrity verification on any number of blocks;
(2) The replay attack permits the server to keep the old version of a block mi

and the corresponding tag Tmi
, after the client asked to modify them by sending

the new version of these elements, and still pass the data integrity verification;
(3) The attack against data privacy allows the TPA to distinguish files when
proceeding the data integrity check without accessing their contents. We then
propose two solutions to overcome the adversarial issues threatening the DPDP
scheme with PV and DP in [9]. We give a first new publicly verifiable DPDP
construction based on Index Hash Tables (IHT) in the random oracle model. We
prove that such scheme is secure against replace and replay attacks as well as
is data privacy-preserving according to a model differing from the one proposed
in [9]. We present a second new publicly verifiable DPDP construction based on
Merkle Hash Trees (MHT) in the random oracle model. We demonstrate that
such scheme is not vulnerable against the three attacks mentioned above. In
particular, we use the existing model given in [9] to prove that the MHT-based
scheme is data privacy-preserving.
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1.1 Related Work

Ateniese et al. [1] introduced the notion of Provable Data Possession (PDP)
which allows a client to verify the integrity of his/her data stored at an untrusted
server without retrieving the entire file. Their scheme is designed for static data
and used homomorphic authenticators as tags based on public key encryption for
auditing the data file. Subsequently, Ateniese et al. [2] improved the efficiency of
the aforementioned PDP scheme by using symmetric keys. The resulting scheme
gets lower overhead and partially supports partial dynamic data operations.
Thereafter, various PDP constructions were proposed in the literature [10,20,23,
24]. Moreover, PDP schemes with the property of full dynamicity were suggested
in [4,18,19,25,26]. An extension of DPDP includes version control [3,6] where
all data changes are recorded into a repository and any version of the data can
be retrieved at any time. DPDP protocols with multi-update capability were
suggested in [5]. More recently, data privacy-preserving and publicly verifiable
PDP schemes were presented in [7,9,14–17].

2 Preliminaries

Let G1, G2 and GT be three multiplicative cyclic groups of prime order p ∈ Θ(2λ)
(where λ is the security parameter). Let gk be a generator of Gk for k ∈ {1, 2},
that we denote < gk >= Gk.

Bilinear Maps: Let e : G1 × G2 → GT be a bilinear map with the following
properties: (1) Bilinearity: ∀u ∈ G1,∀v ∈ G2,∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
(2) Non-degeneracy: e(g1, g2) �= 1GT

. G1 and G2 are said to be bilinear groups
if the group operation in G1 × G2 and the bilinear map e are both efficiently
computable. Let GroupGen denote an algorithm that on input the security param-
eter λ, outputs the parameters (p, G1, G2, GT , e, g1, g2).

Discrete Logarithm (DL) Assumption: Let a ∈R Zp. If A is given an instance
(g1, ga

1 ), it remains hard to extract a ∈ Zp. The DL assumption holds if no
polynomial-time adversary A has non-negligible advantage in solving the DL
problem.

Computational Diffie-Hellman (CDH) Assumption: Let a, b ∈R Zp. If A is given
an instance (g1, ga

1 , gb
1), it remains hard to compute gab

1 ∈ G1. The CDH assump-
tion holds if no polynomial-time adversary A has non-negligible advantage in
solving the CDH problem.

Decisional Diffie-Hellman Exponent (DDHE) Assumption: Let β ∈R Zp. If A is
given an instance (g1, g

β
1 , · · · , gβs+1

1 , g2, g
β
2 , Z), it remains hard to decide if either

Z = gβs+2

1 or Z is a random element in G1. The (s+1)-DDHE assumption holds
if no polynomial-time adversary A has non-negligible advantage in solving the
(s + 1)-DDHE problem.
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2.1 Definition of the DPDP Scheme with PV and DP

Let m be a data file to be stored that is divided into n blocks mi, and then each
block mi is divided into s sectors mi,j ∈ Zp, where p is a large prime. A DPDP
scheme with PV and DP is made of the following algorithms:
• KeyGen(λ) → (pk, sk). On input the security parameter λ, output a pair of
public and secret keys (pk, sk).
• TagGen(pk, sk,mi) → Tmi

. TagGen is independently run for each block. There-
fore, to generate the tag Tm for a file m, TagGen is run n times. On inputs the
public key pk, the secret key sk and a file m = (m1, · · · ,mn), output a tag
Tm = (Tm1 , · · · , Tmn

) where each block mi has its own tag Tmi
. The client sets

all the blocks mi in an ordered collection F and all the corresponding tags Tmi
in

an ordered collection E. He/she sends F and E to the server and removes them
from his/her local storage.
• PerfOp(pk, F, E, info = (operation, l,ml, Tml

)) → (F′, E′, ν′). On inputs the
public key pk, the previous collection F of all the blocks, the previous collection
E of all the corresponding tags, the type of the data operation to be performed,
the rank l where the data operation is performed in F, the block ml to be
updated and the corresponding tag Tml

to be updated, output the updated
block collection F

′, the updated tag collection E
′ and an updating proof ν′. For

the operation: (1) Insertion: ml = m i1+i2
2

is inserted between the consecutive
blocks mi1 and mi2 and Tml

= Tm i1+i2
2

is inserted between the consecutive

tags Tmi1
and Tmi2

. We assume that m i1+i2
2

and Tm i1+i2
2

were provided by

the client to the server, such that Tm i1+i2
2

was correctly computed by running

TagGen. (2) Deletion: ml = mi is deleted, meaning that mi1 is followed by mi2

and Tml
= Tmi

is deleted, meaning that Tmi1
is followed by Tmi2

, such that
i1, i, i2 were three consecutive ranks. (3) Modification: ml = m′

i replaces mi and
Tml

= Tm′
i

replaces Tmi
. We assume that m′

i and Tm′
i

were provided by the
client to the server, such that Tm′

i
was correctly computed by running TagGen.

After operations, the set of ranks becomes (0, n + 1) ∩ Q.
• CheckOp(pk, ν′) → 0/1. On inputs the public key pk and the updating proof ν′

sent by the server, output 1 if ν′ is a correct updating proof; output 0 otherwise.
• GenProof(pk, F, chal,Σ) → ν. On inputs the public key pk, an ordered collec-
tion F ⊂ F of blocks, a challenge chal and an ordered collection Σ ⊂ E which
are the tags corresponding to the blocks in F , output a proof of data possession
ν for the blocks in F that are determined by chal.
• CheckProof(pk, chal, ν) → 0/1. On inputs the public key pk, the challenge
chal and the proof of data possession ν, output 1 if ν is a correct proof of data
possession for the blocks determined by chal; output 0 otherwise.

Correctness. We require that a DPDP with PV and DP is correct
if for (pk, sk) ← KeyGen(λ), Tm ← TagGen(pk, sk,m), (F′, E′, ν′) ←
PerfOp(pk, F, E, info), ν ← GenProof(pk, F, chal,Σ), then 1 ← CheckOp(pk, ν′)
and 1 ← CheckProof(pk, chal, ν).
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2.2 Security and Privacy Models

Security Model Against the Server. The model follows the ones in [1,4,9].
We consider a DPDP with PV and DP as defined above. Let a data possession
game between a challenger B and an adversary A (acting as the server) be as
follows:
	 Setup. B runs (pk, sk) ← KeyGen(λ) such that pk is given to A while sk is
kept secret.
	 Adaptive Queries. First, A is given access to a tag generation oracle
OTG. A chooses blocks mi and gives them to B, for i ∈ [1, n]. B runs
TagGen(pk, sk,mi) → Tmi

and gives them to A. Then, A creates two ordered
collections F = {mi}i∈[1,n] of blocks and E = {Tmi

}i∈[1,n] of the corresponding
tags. Then, A is given access to a data operation performance oracle ODOP . For
i ∈ [1, n], A gives to B a block mi and infoi about the operation that A wants to
perform. A also submits two new ordered collections F

′ of blocks and E
′ of tags,

and the updating proof ν′. B runs CheckOp(pk, ν′) and replies the answer to A.
If the answer is 0, then B aborts; otherwise, it proceeds. The above interaction
between A and B can be repeated. Note that the set of ranks has changed after
calls to the oracle ODOP .
	 Challenge. A chooses blocks m∗

i and info∗
i , for i ∈ I ⊆ (0, n+1)∩Q. Adaptive

queries can be again made by A, such that the first info∗
i specifies a full re-

write update (this corresponds to the first time that the client sends a file to
the server). B still checks the data operations. For i ∈ I, the final version of
mi is considered such that these blocks were created regarding the operations
requested by A, and verified and accepted by B beforehand. B sets F = {mi}i∈I
of these blocks and E = {Tmi

}i∈I of the corresponding tags. It then sets two
ordered collections F = {mij

}ij∈I,j∈[1,k] ⊂ F and Σ = {Tmij
}ij∈I,j∈[1,k] ⊂ E. It

computes a resulting challenge chal for F and Σ and sends it to A.
	 Forgery. A computes a proof of data possession ν∗ on chal. Then, B runs
CheckProof(pk, chal, ν∗) and replies the answer to A. If the answer is 1 then A
wins.

The advantage of A in winning the data possession game is defined as
AdvA(λ) = Pr[A wins]. The DPDP with PV and DP is secure against the server
if there is no PPT (probabilistic polynomial-time) adversary A who can win the
above game with non-negligible advantage AdvA(λ).

Data Privacy Model Against the TPA. In a DPDP protocol, we aim to
ensure that data privacy is preserved at the verification step, meaning that data
are accessible to all but protected only via a non-cryptographic access control,
and the verification process does not leak any information on the data blocks.

First Data Privacy Model. The model is found in [17,20]. We consider a DPDP
with PV and DP as defined above. Let the first data privacy game between a
challenger B and an adversary A (acting as the TPA) be as follows:
	 Setup. B runs KeyGen(λ) to generate (pk, sk) and gives pk to A, while sk is
kept secret.
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	 Queries. A is allowed to make queries as follows. A sends a file m =
(m1, · · · ,mn) to B. B computes Tm = (Tm1 , · · · , Tmn

) and gives it back to
A. Then, two ordered collections F = {mi}i∈[1,n] of blocks and E = {Tmi

}i∈[1,n]

of tags are created.
	 Challenge. A submits a challenge chal containing k ≤ n ranks, the k corre-
sponding blocks in F and their k tags in Σ.
	 Generation of the Proof. B computes a proof of data possession ν∗ ←
GenProof(pk, F, chal,Σ) such that the blocks in F are determined by chal and
Σ contains the corresponding tags.

A succeeds in the first data privacy game if F � F and Σ � E, and
CheckProof(pk, chal, ν∗) → 1. The advantage of A in winning the first data
privacy game is defined as AdvA(λ) = Pr[A succeeds]. The DPDP with PV and
DP is data privacy-preserving if there is no PPT adversary A who can win the
above game with non-negligible advantage AdvA(λ). This implies that there is no
A who can recover the file from a given tag tuple with non-negligible probability.

Second Data Privacy Model. The model follows the ones in [7,9,24]. We consider
a DPDP with PV and DP as defined above. Let a second data privacy game
between a challenger B and an adversary A (acting as the TPA) be as follows:
	 Setup. B runs KeyGen(λ) to generate (pk, sk) and gives pk to A, while sk is
kept secret.
	 Queries. A is allowed to make queries as follows. A sends a file m to B. B
computes the corresponding Tm and gives it to A.
	 Challenge. A submits two different files m0 and m1 of equal length, such
that they have not be chosen in the phase Queries, and sends them to B. B
generates Tm0 and Tm1 by running TagGen, randomly chooses a bit b ∈R {0, 1}
and forwards Tmb

to A. Then, A sets a challenge chal and sends it to B. B
generates a proof of data possession ν∗ based on mb, Tmb

and chal, and replies
to A by giving ν∗.
	 Guess. Finally, A chooses a bit b′ ∈ {0, 1} and wins the game if b′ = b.

The advantage of A in winning the second data privacy game is defined as
AdvA(λ) = |Pr[b′ = b] − 1

2 |. The DPDP with PV and DP is data privacy-
preserving if there is no PPT adversary A who can win the above game with
non-negligible advantage AdvA(λ).

3 The Three Attacks

3.1 DPDP Construction with PV and DP in [9]

The DPDP scheme with PV and DP construction presented in [9] is as follows:
• KeyGen(λ) → (pk, sk). The client runs GroupGen(λ) → (p, G1, G2, GT , e, g1, g2)
such that on input the security parameter λ, GroupGen generates the cyclic
groups G1, G2 and GT of prime order p = p(λ) with the bilinear map e :
G1 × G2 → GT . Let < g1 >= G1 and < g2 >= G2. Then, h1, · · · , hs ∈R G1

and a ∈R Zp are randomly chosen. Finally, he/she sets the public key pk =
(p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ) and the secret key sk = a.
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• TagGen(pk, sk,mi) → Tmi
. A file m is split into n blocks mi, for i ∈ [1, n].

Each block mi is then split into s sectors mi,j ∈ Zp, for j ∈ [1, s]. Therefore,
the file m can be seen as a n × s matrix with elements denoted as mi,j . The
client computes Tmi

= (
∏s

j=1 h
mi,j

j )−sk =
∏s

j=1 h
−a·mi,j

j . Yet, he/she sets Tm =
(Tm1 , · · · , Tmn

) ∈ G
n
1 .

• PerfOp(pk, F, E, info = (operation, l,ml, Tml
)) → (F′, E′, ν′). The server first

selects at random uj ∈R Zp, for j ∈ [1, s], and computes Uj = h
uj

j . It also chooses
at random wl ∈R Zp and sets cj = ml,j ·wl +uj , Cj = h

cj

j , and d = Twl
ml

. Finally,
it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d, wl) ∈ G

2s+1
1 to the TPA. For the

operation: (1) Insertion: (l,ml, Tml
) = ( i1+i2

2 ,m i1+i2
2

, Tm i1+i2
2

); (2) Deletion:

(l,ml, Tml
) = (i, , ), meaning that ml and Tml

are not required (the server
uses mi and Tmi

that are kept on its storage to generate ν′); (3) Modification:
(l,ml, Tml

) = (i,m′
i, Tm′

i
).

• CheckOp(pk, ν′) → 0/1. The TPA has to check whether the following equation
holds:

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2)
?= e(

s∏

j=1

Cj , g2) (1)

If Eq. 1 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.
• GenProof(pk, F, chal,Σ) → ν. The TPA first chooses I ⊆ (0, n + 1) ∩ Q,
randomly chooses |I| elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . After
receiving chal, the server sets F = {mi}i∈I ⊂ F of blocks and Σ = {Tmi

}i∈I ⊂ E

which are the tags corresponding to the blocks in F . It then selects at random
rj ∈R Zp, for j ∈ [1, j], and computes Rj = h

rj

j . It also sets bj =
∑

(i,vi)∈chal mi,j ·
vi + rj , Bj = h

bj

j for j ∈ [1, s], and c =
∏

(i,vi)∈chal T
vi
mi

. Finally, it returns
ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G

2s+1
1 to the TPA.

• CheckProof(pk, chal, ν) → 0/1. The TPA has to check whether the following
equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

s∏

j=1

Bj , g2) (2)

If Eq. 2 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. Given the proof of data possession ν and the updating proof ν′, we
have:

e(c, ga2 ) · e(
s∏

j=1

Rj , g2) = e(
∏

(i,vi)
∈chal

T vi
mi

, ga2 ) · e(
s∏

j=1

h
rj

j , g2) = e(

s∏

j=1

h
bj

j , g2) = e(

s∏

j=1

Bj , g2)

e(d, ga2 ) · e(
s∏

j=1

Uj , g2) = e(Twi
mi

, ga2 ) · e(
s∏

j=1

h
uj

j , g2) = e(
s∏

j=1

h
cj

j , g2) = e(
s∏

j=1

Cj , g2)
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N.B. In the construction in [9], the definition of the tag Tmi
corresponding to

the block mi and enabling to remotely verify the data integrity is independent
of the rank i; thus, this begs for being used for an attack. Note that if mi = 0,
then Tmi

= 1 and thus, one can trivially cheat since the tag is independent of
the file.

3.2 Replace Attack

Let the server store only one block (e.g. m1) instead of n blocks as the client
believes. The TPA audits the server by sending it a challenge chal for blocks
with ranks in I ⊆ [1, n] such that |I| ≤ n. The server generates a proof of data
possession on the |I| blocks m1 (instead of the blocks defined by chal) by using
|I| times the block m1 to obtain the proof of data possession. The attack is
successful if the server manages to pass the verification process and has its proof
of data possession being accepted by the TPA.

The client computes Tm = (Tm1 , · · · , Tmn
) ∈ G

n
1 for a file m = (m1, · · · ,mn)

where Tmi
= (

∏s
j=1 h

mi,j

j )−sk = (
∏s

j=1 h
mi,j

j )−a for s public elements hj ∈
G1 and the secret key sk = a ∈ Zp. Then, the client stores all the blocks
mi in F and the tags Tmi

in E, forwards these collections to the server and
deletes them from his/her local storage. Yet, the server is asked to generate
a proof of data possession ν. We assume that it only stores m1 while it has
deleted m2, · · · ,mn and we show that it can still pass the verification process.
The TPA prepares a challenge chal by choosing a set I ⊆ [1, n] (without loss
of generality, we assume that the client has not requested the server for data
operations yet). The TPA then randomly chooses |I| elements vi ∈R Zp and sets
chal = {(i, vi)}i∈I . Second, after receiving chal, the server sets F = {m1}i∈I ⊂ F

of blocks (instead of F = {mi}i∈I) and Σ = {Tm1}i∈I ⊂ E (instead of Σ =
{Tmi

}i∈I). The server finally forwards ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G
2s+1
1

to the TPA, where Rj = h
rj

1 for rj ∈R Zp and Bj = h

∑
(i,vi)∈chal m1,j ·vi+rj

j

(instead of Bj = h

∑
(i,vi)∈chal mi,j ·vi+rj

j ) for j ∈ [1, s], and c =
∏

(i,vi)∈chal T
vi
m1

(instead of c =
∏

(i,vi)∈chal T
vi
mi

). The TPA has to check whether the following
equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

s∏

j=1

Bj , g2) (3)

If Eq. 3 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. Given the proof of data possession ν, we have:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2) = e(
∏

(i,vi)∈chal

T vi
m1

, ga
2 ) · e(

s∏

j=1

h
rj

j , g2)
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= e(
∏

(i,vi)∈chal

s∏

j=1

h
m1,j ·(−a)·vi

j , ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
s∏

j=1

h
bj

j , g2) = e(
s∏

j=1

Bj , g2)

Therefore, Eq. 3 holds, although the server is actually storing one block only.

3.3 Replay Attack

The client asks the server to replace mi with m′
i. However, the server does not

proceed and keeps mi on its storage. Then, the TPA has to check that the
operation has been correctly done and asks the server for an updating proof ν′.
The server generates it, but using mi instead of m′

i. The attack is successful if
the server manages to pass the verification process and has ν′ being accepted by
the TPA.

A client asks the server to modify the block mi by sending m′
i and Tm′

i
.

However, the server does not follow the client’s request and decides to keep
mi and Tmi

, and deletes m′
i and Tm′

i
. The server receives i, m′

i and Tm′
i

from the client but deletes them, and generates the updating proof ν′ =
(U1, · · · , Us, C1, · · · , Cs, d) ∈ G

2s+1
1 by using mi and Tmi

such that Uj = h
uj

1

where uj ∈R Zp and Cj = h
mi,j ·wi+uj

j (instead of Cj = h
m′

i,j ·wi+uj

j ) for j ∈ [1, s],
and d = Twi

mi
(instead of d = Twi

m′
i
). It gives ν′ to the TPA. The TPA has to check

whether the following equation holds:

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2)
?= e(

s∏

j=1

Cj , g2) (4)

If Eq. 4 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. Given the updating proof ν′, we have:

e(d, ga2 ) · e(
s∏

j=1

Uj , g2) = e(Twi
mi

, ga2 ) · e(
s∏

j=1

h
uj

j , g2) = e(
s∏

j=1

h
mi,j ·(−a)·wi

j , ga2 ) · e(
s∏

j=1

h
uj

j , g2)

= e(
s∏

j=1

h
cj

j , g2) = e(
s∏

j=1

Cj , g2)

Therefore, Eq. 4 holds, although the server has not updated the block m′
i and

the corresponding tag Tm′
i
.

3.4 Attack against Data Privacy

The adversarial TPA and the server play the second data privacy game. The TPA
gives two equal-length blocks m0 and m1 to the server and the latter replies by
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sending Tmb
of mb where b ∈R {0, 1} is a random bit. Then, the TPA selects a

bit b′ ∈ {0, 1}. The attack is successful if using mb′ , the TPA can discover which
block mb ∈ {m0,m1} was chosen by the server.

Let m0 = (m0,1, · · · ,m0,n) and m1 = (m1,1, · · · ,m1,n). The server computes
Tmb,i

= (
∏s

j=1 h
mb,i,j

j )−sk = (
∏s

j=1 h
mb,i,j

j )−a, for b ∈R {0, 1} and i ∈ [1, n],
and gives them to the TPA. Note that e(Tmb,i

, g2) = e((
∏s

j=1 h
mb,i,j

j )−a, g2) =
e(

∏s
j=1 h

mb,i,j

j , (ga
2 )−1). The computation of e(

∏s
j=1 h

mb,i,j

j , (ga
2 )−1) requires only

public elements. Therefore, for b′ ∈ {0, 1}, the TPA is able to generate the pairing
e(

∏s
j=1 h

mb′,i,j

j , (ga
2 )−1) given pk and the block that it gave to the server, and

e(Tmb,i
, g2) given the tag sent by the server. Finally, the TPA compares them.

If these two pairings are equal, then b′ = b; otherwise b′ �= b.

N.B. This attack is due to the public verifiability property of the scheme in [9]
based on the definition of the second data privacy game. Moreover, in the proof
for data privacy in [9], the analysis is wrong: the affirmation “The probability
Pr[b′ = b] must be equal to 1

2 since the tags Tmb,i
, for i ∈ [1, n], and the proof

ν∗ are independent of the bit b.” is incorrect since Tmb,i
and ν∗ actually depend

on b.

4 IHT-based DPDP Scheme with PV and DP

A solution to avoid the replace attack is to embed the rank i of mi into Tmi
.

When the TPA on behalf of the client checks ν generated by the server, it requires
to use all the ranks of the challenged blocks to process the verification. Such idea
was proposed for the publicly verifiable scheme in [13]. A solution to avoid the
replay attack is to embed the version number vnbi of mi into Tmi

. The first time
that the client sends mi to the server, vnbi = 1 (meaning that the first version
of the block is uploaded) and is appended to i. When the client wants to modify
mi with m′

i, he/she specifies vnbi = 2 (meaning that the second version of the
block is uploaded) and generates Tm′

i
accordingly. When the TPA on behalf of

the client checks that the block was correctly updated by the server, it has to
use both i and vnbi of mi. Moreover, we stress that the rank i of the block mi is
unique. More precisely, when a block is inserted, a new rank is created that has
not been used and when a block is modified, the rank does not change. However,
when a block is deleted, its rank does not disappear to ensure that it won’t be
used for another block and thus, to let the scheme remain secure.

4.1 IHT-based Construction

The IHT-based DPDP scheme with PV and DP construction is as follows:
• KeyGen(λ) → (pk, sk). The client runs Group- Gen(λ) → (p, G1, G2, GT ,
e, g1, g2) such that on input the security parameter λ, GroupGen generates the
cyclic groups G1, G2 and GT of prime order p = p(λ) with the bilinear map
e : G1 × G2 → GT . Let < g1 >= G1 and < g2 >= G2. Let the hash
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function H : Q × N → G1 be a random oracle. Then, h1, · · · , hs ∈R G1

and a ∈R Zp are randomly chosen. Finally, he/she sets the public key pk =
(p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ,H) and the secret key sk = a.

• TagGen(pk, sk,mi) → Tmi
. A file m is split into n blocks mi, for i ∈ [1, n].

Each block mi is then split into s sectors mi,j ∈ Zp, for j ∈ [1, s]. Therefore, the
file m can be seen as a n × s matrix with elements denoted as mi,j . The client
computes Tmi

= (H(i, vnbi)·
∏s

j=1 h
mi,j

j )−sk = H(i, vnbi)−a ·∏s
j=1 h

−a·mi,j

j . Yet,
he/she sets Tm = (Tm1 , · · · , Tmn

) ∈ G
n
1 .

• PerfOp(pk, F, E, info = (operation, l,ml, Tml
)) → (F′, E′, ν′). The server first

selects at random uj ∈R Zp, for j ∈ [1, s], and computes Uj = h
uj

j . It also chooses
at random wl ∈R Zp and sets cj = ml,j · wl + uj , Cj = h

cj

j for j ∈ [1, s], and
d = Twl

ml
. Finally, it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d, wl) ∈ G

2s+1
1 to the

TPA. For the operation: (1) Insertion: (l,ml, Tml
) = ( i1+i2

2 ,m i1+i2
2

, Tm i1+i2
2

)

and vnbl = vnb i1+i2
2

= 1; (2) Deletion: (l,ml, Tml
) = (i, , ) and vnbl = vnbi =

, meaning that ml, Tml
and vnbl are not required (the server uses mi, Tmi

and
vnbi that are kept on its storage to generate ν′); (3) Modification: (l,ml, Tml

) =
(i,m′

i, Tm′
i
) and vnbl = vnb′

i = vnbi + 1.
• CheckOp(pk, ν′) → 0/1. The TPA has to check whether the following equation
holds:

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2)
?= e(H(l, vnbl)wl , g2) · e(

s∏

j=1

Cj , g2) (5)

If Eq. 5 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.
• GenProof(pk, F, chal,Σ) → ν. The TPA first chooses I ⊆ (0, n + 1) ∩ Q,
randomly chooses |I| elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . After
receiving chal, the server sets F = {mi}i∈I ⊂ F of blocks and Σ = {Tmi

}i∈I ⊂ E

which are the tags corresponding to the blocks in F . It then selects at random
rj ∈R Zp, for j ∈ [1, s], and computes Rj = h

rj

j . It also sets bj =
∑

(i,vi)∈chal mi,j ·
vi + rj , Bj = h

bj

j for j ∈ [1, s], and c =
∏

(i,vi)∈chal T
vi
mi

. Finally, it returns
ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G

2s+1
1 to the TPA.

• CheckProof(pk, chal, ν) → 0/1. The TPA has to check whether the following
equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

∏

(i,vi)
∈chal

H(i, vnbi)vi , g2) · e(
s∏

j=1

Bj , g2) (6)

If Eq. 6 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.
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Correctness. Given the proof of data possession ν and the updating proof ν′, we
have:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2) = e(
∏

(i,vi)∈chal

T vi
mi

, ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

(H(i, vnbi) ·
s∏

j=1

h
mi,j

j )−a·vi , ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

H(i, vnbi)vi , g2) · e(
s∏

j=1

Bj , g2)

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2) = e(Twl
ml

, ga
2 ) · e(

s∏

j=1

h
uj

j , g2)

= e(H(l, vnbl) ·
s∏

j=1

h
ml,j

j , ga
2 )−a·wl · e(

s∏

j=1

h
uj

j , g2)

= e(H(l, vnbl)wl , g2) · e(
s∏

j=1

Cj , g2)

N.B. The client or TPA must store the values vnb locally. However, this does
not incur more burden if we consider the values vnb as bit strings.

4.2 Security and Privacy Proofs

Security Proof Against the Server

Theorem 1. Let A be a PPT adversary that has advantage ε against the IHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH >
0 queries to H. Then, there is a challenger B that solves the Computational
Diffie-Hellman (CDH) and Discrete Logarithm (DL) problems with advantage
ε′ = O(ε).

We give the security proof in the Appendix A.

First Data Privacy Proof Against the TPA

Theorem 2. Let A be a PPT adversary that has advantage ε against the IHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH > 0
queries to H. Then, there is a challenger B that solves the CDH problem with
advantage ε′ = O(ε).

We give the first data privacy proof in the full version of this paper [8].
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4.3 Performance

We compare the IHT-based scheme with the original scheme proposed in [9].
First, the client and TPA obviously have to store more information by keeping
the IHT. Nevertheless, we stress that in any case, the client and TPA should
maintain a rank list. Indeed, they need some information about the stored data
in order to select some data blocks to be challenged. We recall that the challenge
consists of pairs of the form “(rank, random element)”. By appending an integer
and sometimes an auxiliary comment (only in case of deletions) to each rank, the
extra burden is not excessive. Therefore, such table does slightly affect the client’s
as well as TPA’s local storages. The communication between the client and TPA
rather increases since the client should send more elements to the TPA in order
to keep the table updated. Second, the client has to perform extra computation
when generating the verification metadata: for each file block mi, he/she has to
compute H(i, vnbi). However, the communication between the client and server
overhead does not increase. Third, the TPA needs to compute an extra pairing
e(H(i, vnbi), g2)wi in order to check that the server correctly performed a data
operation requested by the client. The TPA also has to compute |I| multiplica-
tions in G1 and one extra pairing when checking the proof of data possession:
for each challenge chal = {(i, vi)}i∈I , it calculates

∏
(i,vi)∈chal H(i, vnbi) as well

as the pairing e(
∏

(i,vi)∈chal H(i, vnbi)vi , g2). This gives a constant total of four
pairings in order to verify the data integrity instead of three, that is not a big
loss in term of efficiency and practicality. Finally, apart the storage of a light
table and computation of an extra pairing by the TPA for the verification of
both the updating proof and proof of data possession, the new construction for
the DPDP scheme with PV and DP is still practical by adopting asymmetric
pairings to gain efficiency and by still reducing the group exponentiation and
pairing operations. In addition, this scheme still allows the TPA on behalf of the
client to request the server for a proof of data possession on as many data blocks
as possible at no extra cost, as in the scheme given in [9].

5 MHT-based DPDP Scheme with PV and DP

A second solution to avoid the three attacks is to implement a MHT [12] for
each file. In a MHT, each internal node has always two children. For a leaf
node ndi based on the block mi, the assigned value is H ′(mi), where the hash
function H ′ : {0, 1}∗ → G1 is seen as a random oracle. Note that the hash values
are affected to the leaf nodes in the increasing order of the blocks: ndi and
ndi+1 correspond to the hash of the blocks mi and mi+1 respectively. A parent
node of ndi and ndi+1 has a value computed as H ′(H ′(mi)||H ′(mi+1)), where
|| is the concatenation sign (for an odd rank i). The Auxiliary Authentication
Information (AAI) Ωi of a leaf node ndi for mi is a set of hash values chosen
from its upper levels, so that the root rt can be computed using (mi, Ωi).
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5.1 MHT-based Construction

Let DPDP be a DPDP construction with PV and DP such as defined in Sect. 3.1
and [9]. Let SS = (Gen,Sign,Verify) be a strongly unforgeable digital signature
scheme. The MHT-based DPDP scheme with PV and DP construction is as
follows:
• MHT.KeyGen(λ) → (pk, sk). Let GroupGen(λ) → (p, G1, G2, GT , e, g1, g2)
be run as follows. On input the security parameter λ, GroupGen gener-
ates the cyclic groups G1, G2 and GT of prime order p = p(λ) with the
bilinear map e : G1 × G2 → GT . Let < g1 >= G1 and < g2 >=
G2. The client runs Gen(λ) → (pkSS, skSS) and KeyGen(λ) → (pk, sk) =
((p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ), a), where h1, · · · , hs ∈R G1 and a ∈R Zp

are randomly chosen. The client sets his/her public key pk = (pk, pkSS) and
his/her secret key sk = (sk, skSS).
• MHT.TagGen(pk, sk,mi) → Tmi

. The client runs n times TagGen(pk, sk,mi) →
T ′

mi
= (

∏s
j=1 h

mi,j

j )−sk = (
∏s

j=1 h
mi,j

j )−a for i ∈ [1, n] and obtains T ′
m =

(T ′
m1

, · · · , T ′
mn

) ∈ G
n
1 . He/she also chooses a hash function H ′ : {0, 1}∗ → G1

seen as a random oracle. Then, he/she creates the MHT regarding the file
m = (m1, · · · ,mn) as follows. He/she computes H ′(mi) and assigns it to the
i-th leaf for i ∈ [1, n]. He/she starts to construct the resulting MHT, and obtains
the root rt. Finally, the client runs Sign(skSS, rt) → σrt. Using the hash values,
he/she computes the tags as Tmi

= H ′(mi)−sk ·T ′
mi

= H ′(mi)−a ·∏s
j=1 h

−a·mi,j

j

for i ∈ [1, n]. Then, the client stores all the blocks mi in an ordered collection F

and the corresponding tags Tmi
in an ordered collection E. He/she forwards these

two collections and (H ′, σrt) to the server. Once the server receives (F, E,H ′), it
generates the MHT. It sends the resulting root rtserver to the client. Upon get-
ting the root rtserver, the client runs Verify(pkSS, σrt, rtserver) → 0/1. If 0, then
the client aborts. Otherwise, he/she proceeds, deletes (F, E, σrt) from his/her
local storage and keeps H ′ for further data operations.
• MHT.PerfOp(pk, F, E, R = (operation, i), info = (mi, Tmi

, σrt′)) → (F′, E′,
rt′server). First, the client sends a request R = (operation, i) to the server,
that contains the type and rank of the operation. Upon receiving R, the server
selects the AAI Ωi that the client needs in order to generate the root rt′ of
the updated MHT, and sends it to the client. Once the client receives Ωi,
he/she first constructs the updated MHT. He/she calculates the new root rt′

and runs Sign(skSS, rt′) → σrt′ . Then, the client sends info = (mi, Tmi
, σrt′)

(note that mi and Tmi
are not needed for a deletion). After receiving info

from the client, the server first updates the MHT, calculates the new root
rt′server and sends it to the client. Upon getting the root rt′server, the client
runs Verify(pkSS, σrt′ , rt′server) → 0/1. If 0, then the client aborts. Otherwise,
he/she proceeds and deletes (mi, Tmi

, σrt′) from his/her local storage. For the
operation: (1) Insertion: mi0 is added before mi by placing mi0 at the i-th leaf
node, and all the blocks from mi are shifted to leaf nodes by 1 to the right; (2)
Deletion: mi is removed from the i-th leaf node and all the blocks from mi+1

are shifted to leaf nodes by 1 to the left; (3) Modification: m′
i simply replaces

mi at the i-th leaf node.
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• MHT.GenProof(pk, F, chal,Σ) → (ν, rtserver, {H ′(mi), Ωi}i∈I). The TPA
chooses a subset I ⊆ [1, nmax] (nmax is the maximum number of blocks after
operations), randomly chooses |I| elements vi ∈R Zp and sets the challenge
chal = {(i, vi)}i∈I . Then, after receiving chal and given F = {mi}i∈I ⊂ F

and Σ = {Tmi
}i∈I ⊂ E, the server runs GenProof(pk, F, chal,Σ) → ν such

that ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G
2s+1
1 , where rj ∈R Zp, Rj = h

rj

1 ,
bj =

∑
(i,vi)∈chal mi,j · vi + rj ∈ Zp and Bj = h

bj

j for j ∈ [1, s], and
c =

∏
(i,vi)∈chal T

vi
mi

. Moreover, the server prepares the latest version of the
stored root’s signature σrt provided by the client, the root rtserver of the cur-
rent MHT, the H ′(mi) and AAI Ωi for the challenged blocks, such that the
current MHT has been constructed using {H ′(mi), Ωi}i∈I . Finally, it returns
(ν, σrt, rtserver, {H ′(mi), Ωi}i∈I) to the TPA.
• MHT.CheckProof(pk, chal, ν, σrt, rtserver, {H ′(mi), Ωi}i∈I) → 0/1. After
receiving {H ′(mi), Ωi}i∈I from the server, the TPA first constructs the MHT
and calculates the root rtTPA. It then checks that rtserver = rtTPA. If not, then
it aborts; otherwise, it runs Verify(pkSS, σrt, rtserver) → 0/1. If 0, then the TPA
aborts. Otherwise, it proceeds and checks whether the following equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

∏

(i,vi)∈chal

H ′(mi)vi , g2) · e(
s∏

j=1

Bj , g2) (7)

If Eq. 7 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. We suppose that the correctness holds for DPDP and SS protocols.
Given the proof of data possession ν, we have:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2) = e(
∏

(i,vi)∈chal

T vi
mi

, ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

(H ′(mi) ·
s∏

j=1

h
mi,j

j )−a·vi , ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

H ′(mi)vi , g2) · e(
s∏

j=1

Bj , g2)

N.B. In MHT.GenProof, since I is a subset of ranks, the server has to be given
the appropriate {Ωi}i∈I along with {H ′(mi)}i∈I to obtain the current MHT and
thus complete the proof generation. Otherwise, the TPA won’t get the proper
MHT.

5.2 Security and Privacy Proofs

We give the proofs in the full version of this paper [8].
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Security Proof Against the Server

Theorem 3. Let A be a PPT adversary that has advantage ε against the MHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH′ > 0
queries to H ′. Then, there is a challenger B that solves the CDH and DL problems
with advantage ε′ = O(ε).

Second Data Privacy Proof Against the TPA

Theorem 4. Let A be a PPT adversary that has advantage ε against the MHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH′ > 0
queries to H ′. Then, there is a challenger B that solves the (s+1)-DDHE problem
with advantage ε′ = O(ε).

5.3 Performance and Discussion with Other Existing Works

We first compare the MHT-based scheme with the original one presented in [9].
The MHT-based construction seems less practical and efficient than the con-
struction in [9]. Communication and computation burdens appear in order to
obtain the desired security standards against the server and TPA. The com-
munication overheads increase between the client and server. The computation
overheads for the client raise also, although the client is limited in resources.
The storage space of the server should be bigger, since it has to create and pos-
sibly stores MHTs for each client. The TPA has to provide more computational
resources for each client in order to ensure valid data integrity checks. Neverthe-
less, experiments might show that the time gap between the algorithms in the
scheme proposed in [9] and the ones in the MHT-based scheme is acceptable.

The MHT is an Authenticated Data Structure (ADS) that allows the client
and TPA to check that the server correctly stores and updates the data blocks.
Erway et al. [4] proposed the first DPDP scheme. The verification of the data
updates is based on a modified ADS, called Rank-based Authentication Skip List
(RASL). This provides authentication of the data block ranks, which ensures
security in regards to data block dynamicity. However, public verifiability is
not reached. Note that such ADS with bottom-up leveling limits the insertion
operations. For instance, if the leaf nodes are at level 0, any data insertion that
creates a new level below the level 0 will bring necessary updates of all the level
hash values and the client might not be able to verify. Wang et al. [21] first
presented a DPDP with PV using MHT. However, security proofs and technical
details lacked. The authors revised the aforementioned paper [21] and proposed a
more complete paper [22] that focuses on dynamic and publicly verifiable PDP
systems based on BLS signatures. To achieve the dynamicity property, they
employed MHT. Nevertheless, because the check of the block ranks is not done,
the server can delude the client by corrupting a challenged block as follows: it is
able to compute a valid proof with other non-corrupted blocks. Thereafter, in a
subsequent work [20], Wang et al. suggested to add randomization to the above
system [22], in order to guarantee that the server cannot deduce the contents
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of the data files from the proofs of data possession. Liu et al. [11] constructed
a PDP protocol based on MHT with top-down leveling. Such protocol satisfies
dynamicity and public verifiability. They opted for such design to let leaf nodes
be on different levels. Thus, the client and TPA have both to remember the total
number of data blocks and check the block ranks from two directions (leftmost
to rightmost and vice versa) to ensure that the server does not delude the client
with another node on behalf of a file block during the data integrity checking
process. In this paper, the DPDP scheme with PV and DP is based on MHT
with bottom-up leveling, such that data block ranks are authenticated. Such
tree-based construction guarantees secure dynamicity and public verifiability
processes as well as preservation of data privacy, and remains practical in real
environments.

6 Conclusion

We provided two solutions to solve the adversarial issues encountered in the
DPDP scheme with PV and DP proposed in [9]. These solutions manage to
overcome replay attacks, replace attacks and attacks against data privacy by
embedding IHT or MHT into the construction in [9]. We proved that the two
new schemes are both secure against the server and data privacy-preserving
against the TPA in the random oracle.

Acknowledgments. This work was partially supported by the TREDISEC project
(G.A. no 644412), funded by the European Union (EU) under the Information and
Communication Technologies (ICT) theme of the Horizon 2020 (H2020) research and
innovation programme.

A Security Proof Against the Server for the IHT-based
Scheme

For any PPT adversary A who wins the game, there is a challenger B that wants
to break the CDH and DL problems by interacting with A as follows:
	 KeyGen. B runs GroupGen(λ) → (p, G, GT , e, g). Then, it is given the CDH
instance tuple (g, ga, gb) where < g >= G, chooses two exponents x, y ∈ Zp and
computes g1 = gx and g2 = gy. It also sets G1 =< g1 > and G2 =< g2 >. Note
that (ga)x = ga

1 , (gb)x = gb
1, (ga)y = ga

2 and (gb)y = gb
2. B chooses βj , γj ∈R Zp

and sets hj = g
βj

1 · (gb
1)

γj for j ∈ [1, s]. Let a hash function H : Q × N → G1

be controlled by B as follows. Upon receiving a query (il′ , vnbil′ ) to H for some
l′ ∈ [1, qH ], if ((il′ , vnbil′ ), θl′ ,Wl′) exists in LH , return Wl′ ; otherwise, choose
βj , γj ∈R Zp and set hj = g

βj

1 · (gb
1)

γj for j ∈ [1, s]. For each il′ , choose θl′ ∈R Zp

at random and set Wl′ = g
θ

l′
1

g

∑s
j=1 βjmi

l′ ,j

1 (gb
1)

∑s
j=1 γjmi

l′ ,j
for a given block mil′ =

(mil′ ,1, · · · ,mil′ ,s). Put ((il′ , vnbil′ ), θl′ ,Wl′) in LH and return Wl′ . B sets the
public key pk = (p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ,H) and forwards it to A.

B keeps ga
1 , gb

1 and gb
2 secret.
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	 Adaptive Queries. A has first access to OTG as follows. It first adaptively
selects blocks mi = (mi,1, · · · ,mi,s), for i ∈ [1, n]. Then, B computes Tmi

= (W ·∏s
j=1 h

mi,j

j )−sk = (W ·∏s
j=1 h

mi,j

j )−a, such that if ((i, vnbi), θ,W ) exists in LH ,
then W is used to compute Tmi

. Otherwise, θ ∈R Zp is chosen at random, W =
gθ
1

g

∑s
j=1 βjmi,j

1 (gb
1)

∑s
j=1 γjmi,j

is computed for hj = g
βj

1 · (gb
1)

γj , ((i, vnbi), θ,W ) is put

in LH and W is used to compute Tmi
. Note that we have

∏s
j=1 h

mi,j

j ·H(i, vnbi) =

(
∏s

j=1 h
mi,j

j ) · gθ
1

g

∑s
j=1 βjmi,j

1 ·(gb
1)

∑s
j=1 γjmi,j

= g

∑s
j=1 βjmi,j

1 (gb
1)

∑s
j=1 γjmi,j ·gθ

1

g

∑s
j=1 βjmi,j

1 ·(gb
1)

∑s
j=1 γjmi,j

= gθ
1 and

so, Tmi
= (H(i, vnbi) · ∏s

j=1 h
mi,j

j )−sk = (H(i, vnbi) · ∏s
j=1 h

mi,j

j )−a = (ga
1 )−θ.

B gives the blocks and tags to A. The latter sets an ordered collection F =
{mi}i∈[1,n] of blocks and an ordered collection E = {Tmi

}i∈[1,n] which are the
tags corresponding to the blocks in F.

A has also access to ODOP as follows. Repeatedly, A selects a block ml and
the corresponding infol and forwards them to B. Here, l denotes the rank where
A wants the data operation to be performed: l is equal to i1+i2

2 for an insertion
and to i for a deletion or a modification. We recall that only the rank is needed for
a deletion and the version number vnbl increases by 1 for a modification. Then,
A outputs two new ordered collections F

′ and E
′, and a corresponding updating

proof ν′ = (U1, · · · , Us, C1, · · · , Cs, d, wl), such that wl ∈R Zp, d = Twl
ml

, and for
j ∈ [1, s], uj ∈R Zp, Uj = h

uj

j , cj = ml,j · wl + uj and Cj = h
cj

j . B runs CheckOp
on ν′ and sends the answer to A. If the answer is 0, then B aborts; otherwise, it
proceeds.
	 Challenge. A selects m∗

i and info∗
i , for i ∈ I ⊆ (0, n + 1) ∩ Q, and forwards

them to B who checks the data operations. In particular, the first info∗
i indicates

a full re-write. B chooses a subset I ⊆ I, randomly selects |I| elements vi ∈R Zp

and sets chal = {(i, vi)}i∈I . It forwards chal as a challenge to A.
	 Forgery. Upon receiving chal, the resulting proof of data possession on the
correct stored file m should be ν = (R1, · · · , Rs, B1, · · · , Bs, c) and pass the
Eq. 6. However, A generates a proof of data possession on an incorrect stored
file m̃ as ν̃ = (R̃1, · · · , R̃s, B̃1, · · · , B̃s, c̃), such that r̃j ∈R Zp, R̃j = h

r̃j

j ,

b̃j =
∑

(i,vi)∈chal m̃i,j · vi + r̃j and B̃j = h
b̃j

j , for j ∈ [1, s]. It also sets
c̃ =

∏
(i,vi)∈chal T

vi

m̃i
. Finally, it returns ν̃ to B. If ν̃ still pass the verification,

then A wins. Otherwise, it fails.

Analysis. We define Δrj = r̃j − rj , Δbj = b̃j − bj =
∑

(i,vi)∈chal(m̃i,j −mi,j)vi +
Δrj and Δμj =

∑
(i,vi)∈chal(m̃i,j − mi,j)vi, for j ∈ [1, s]. Note that rj and bj

are the elements of a honest proof of data possession ν such that rj ∈R Zp and
bj =

∑
(i,vi)∈chal mi,j · vi + rj where mi,j are the actual sectors (not the ones

that A claims to have).
We prove that if A can win the game, then solutions to the CDH and DL

problems are found, which contradicts the assumption that the CDH and DL
problems are hard in G and G1 respectively. Let assume that A wins the game.
We recall that if A wins then B can extract the actual blocks {mi}(i,vi)∈chal

in polynomially-many interactions with A. Wlog, suppose that chal = {(i, vi)},
meaning the challenge contains only one block.
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◦ First case ( c̃ �= c): According to Eq. 6, we have e( c̃
c , g2) = e

(
Tm̃i

Tmi
, g2

)vi

=

e(
∏s

j=1 h
Δμj

j , g−a
2 ) = e(

∏s
j=1(g

βj

1 · (gb
1)

γj )Δμj , g−a
2 ) and so, we get that e( c̃

c ·
(ga

1 )
∑s

j=1 βjΔμj , g2) = e(gb
1, g

−a
2 )

∑s
j=1 γjΔμj meaning that we have found the solu-

tion to the CDH problem, that is (gb
1)

a = (gx)ab = ( c̃
c · (ga

1 )
∑s

j=1 βjΔμj )
−1∑s

j=1 γjΔμj

unless evaluating the exponent causes a divide-by-zero. Nevertheless, we notice
that not all of the Δμj can be zero (indeed, if μj = mi,jvi = μ̃j = m̃i,jvi

for j ∈ [1, s], then c = c̃ which contradicts the hypothesis), and the γj

are information theoretically hidden from A (Pedersen commitments), so the
denominator is zero only with probability 1/p, which is negligible. Finally,
since B knows the exponent x such that g1 = gx, it can directly compute

(( c̃
c · (ga

1 )
∑s

j=1 βjΔμj )
−1∑s

j=1 γjΔμj )
1
x and obtains gab. Thus, if A wins the game,

then a solution to the CDH problem can be found with probability equal to
1 − 1/p.
◦ Second Case ( c̃ = c): According to Eq. 6, we have e(c̃, ga

2 ) = e(H(i, vnbi)vi , g2)·
e(

∏s
j=1 B̃j , g2)·e(

∏s
j=1 R̃j , g2)−1. Since the proof ν = (R1, · · · , Rs, B1, · · · , Bs, c)

is a correct one, we also have e(c, ga
2 ) = e(H(i, vnbi)vi , g2) · e(

∏s
j=1 Bj , g2) ·

e(
∏s

j=1 Rj , g2)−1. We recall that chal = {(i, vi)}. From the previous analysis
step, we know that c̃ = c. Therefore, we get that

∏s
j=1 B̃j · (

∏s
j=1 R̃j)−1 =

∏s
j=1 Bj · (

∏s
j=1 Rj)−1. We can re-write as

∏s
j=1 h

b̃j−r̃j

j =
∏s

j=1 h
bj−rj

j or even

as
∏s

j=1 h
Δbj−Δrj

j =
∏s

j=1 h
Δμj

j = 1. For g1, h ∈ G1, there exists ξ ∈ Zp such
that h = gξ

1 since G1 is a cyclic group. Wlog, given g1, h ∈ G1, each hj could
randomly and correctly be generated by computing hj = g

yj

1 · hzj ∈ G1 such
that yj and zj are random values in Zp. Then, we have 1 =

∏s
j=1 h

Δμj

j =
∏s

j=1(g
yj

1 · hzj )Δμj = g
∑s

j=1 yj ·Δμj

1 · h
∑s

j=1 zj ·Δμj . Clearly, we can find a solution
to the DL problem. More specifically, given g1, h = gξ

1 ∈ G1, we can compute

h = g

∑s
j=1 yj ·Δμj

∑s
j=1 zj ·Δμj

1 = gξ
1 unless the denominator is zero. However, not all of the

Δμj can be zero and the zj are information theoretically hidden from A, so the
denominator is only zero with probability 1/p, which is negligible. Thus, if A
wins the game, then a solution to the DL problem can be found with probability
equal to 1 − 1/p. Therefore, for A, it is computationally infeasible to win the
game and generate an incorrect proof of data possession which can pass the
verification.

The simulation of OTG is perfect. The simulation of ODOP is almost perfect
unless B aborts. This happens when the data operation was not correctly per-
formed. As previously, we can prove that if A can pass the updating proof, then
solutions to the CDH and DL problems are found. Following the above analysis
and according to Eq. 5, if A generates an incorrect updating proof which can
pass the verification, then solutions to the CDH and DL problems can be found
with probability equal to 1 − 1

p respectively. Therefore, for A, it is computa-
tionally infeasible to generate an incorrect updating proof which can pass the
verification. The proof is completed.
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5. Esiner, E., Küpçü, A., Özkasap, O.: Analysis and optimization on flexDPDP: a
practical solution for dynamic provable data possession. In: Proceedings of ICC
2014 (2014)
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