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Abstract. As far as we know, for impossible differentials and zero corre-
lation linear hulls of SIMON-like ciphers (denoted as SIMON in our paper),
the distinguishers previously constructed by the miss-in-the-middle tech-
nique are all based on bit-level contradictions. Under this condition, our
results on the two kinds of distinguishers are presented as follows:

Firstly, by introducing both the diffusion matrix and the dual cipher
of SIMON, we establish some links between impossible differentials and
zero correlation linear hulls for SIMON and its dual cipher. For SIMON,
we prove that there is a one-to-one correspondence between impossible
differentials and zero correlation linear hulls. Meanwhile, for SIMON and
its dual cipher, we show that there is also a one-to-one correspondence
between impossible differentials of one cipher and zero correlation linear
hulls of the dual one. Secondly, we show that impossible differentials and
zero correlation linear hulls of SIMON can be constructed by a matrix cal-
culation approach. Finally, when applying our method to SIMON with
some specific parameters, we show that SIMON with parameter (1,0,2)
recommended at CRYPTO 2015 is worse than the original SIMON with
respect to security against impossible differential and zero correlation lin-
ear cryptanalysis.
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1 Introduction

With the development of network techniques, information security has been
increasingly important. Due to the restrictions in constrained environments like
RFID tags, many lightweight block ciphers have been designed to protect data
confidentiality in those devices, such as PRESENT [1], LED [2], LBlock [3],
PICCOLO [4], PRINCE [5].

In 2013, SIMON [6] was designed by National Security Agency (NSA) as a
lightweight block cipher. It uses only simple operations such as XOR, bitwise
AND and bit rotation to improve its implementation performance. After it was
published, a large number of cryptanalysis on SIMON were proposed [7–16].

To investigate the design principle of the rotation number selection of
SIMON, some cryptanalysts focused on SIMON-like ciphers that only differ at
the rotation number. At CRYPTO 2015, Kölbl et al. [22] studied the differential
and linear properties of SIMON-like ciphers with block sizes no more than 64-bit.
They recommended three parameters (12,5,3), (1,0,2) and (7,0,2). Among them,
SIMON-like ciphers with parameters (12,5,3) and (1,0,2) have better differential
and linear properties than those of the original SIMON. Moreover, the parame-
ter (7,0,2) cipher has the best diffusion when it is restricted to b = 0 for all
possible choices. At ACNS 2016, Kondo et al. [20] constructed some impossible
differential and integral distinguishers of SIMON-like ciphers whose block sizes
are only restricted to 32-bit. They found the parameter (12,5,3) may be a good
alternative parameter to the original one against differential, linear, impossible
differential as well as integral attacks. Recently, Zhang et al. [21] presented a
security evaluation for SIMON-like ciphers against integral attack and showed
that among all possible choices of the rotation numbers, there exist 120 para-
meters that are equal or superior to the original one with respect to the length
of integral distinguishers.

As far as we know, for SIMON-like ciphers with arbitrary rotation number
and all block sizes, there is no literature on impossible differentials and zero
correlation linear hulls. We mainly focus on these two kinds of distinguishers in
this paper. Impossible differential cryptanalysis was independently proposed by
Knudsen [23] and Biham et al. [24]. The most popular impossible differential
is the so-called truncated impossible differential, which is independent of the
choices of S-boxes. Several approaches have been proposed to derive truncated
impossible differentials of a block cipher effectively such as U-method [25], UID-
method [26] and the extended tool of the former two methods generalized by
Wu and Wang [27]. To search impossible differential distinguishers we mainly
use the miss-in-the-middle method, by which the contradictions are obtained
in the middle matching from the encryption and decryption directions. Zero
correlation linear cryptanalysis was firstly proposed by Bogdanov and Rijmen
[28]. The main idea is to construct some linear characteristics with correlation
exactly zero, which is similar to impossible differential cryptanalysis.

At CRYPTO 2015, Sun et al. proposed the concept of “structure”, which
contains all ciphers that only differ at the nonlinear parts, to characterize those
cryptanalytic methods that are independent of the details of the S-boxes [29].
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Furthermore, with the help of “dual structure”, they built a link between impos-
sible differential and zero correlation linear cryptanalysis, e.g., an impossible
differential of a structure always implies a zero correlation linear hull of the
corresponding dual structure. However, the nonlinear component of SIMON-like
ciphers is made up of XOR, bit-wise AND and rotation, which often have a weak
confusion and diffusion. When applying the concept of “structure” to SIMON-
like ciphers, we can only get 4-round impossible differentials and 4-round zero
correlation linear hulls, respectively, which are far less than the known results.
Therefore, the concept of “structure” can not be directly applied to get an accu-
rate security margin for SIMON-like ciphers and the link built by Sun et al.
can not be applied to SIMON-like ciphers. Thus, it motives us to study how to
get a relatively tight security evaluation and build the link between impossible
differentials and zero correlation linear hulls of SIMON-like ciphers in a new way.

For most ciphers which adopt S-boxes, the contradiction is found when the
difference/mask is zero from encryption/decryption direction and non-zero from
the other direction. However, for SIMON-like ciphers, the contradiction some-
times could be built at the bit level, e.g., we could compute the exact values of
some bits of the difference/mask from both the encryption and decryption direc-
tions. To the best of our knowledge, all impossible differentials and zero correla-
tion linear hulls of SIMON-like ciphers found so far are constructed based on the
bit-level contradictions. Therefore, we are going to investigate the properties of
impossible differential and zero correlation linear distinguishers for SIMON-like
ciphers based on bit-level contradictions.

Our Contribution. In this paper, we use SIMON to denote the family of
SIMON-like ciphers with the rotation number (a, b, c). Furthermore, with the
diffusion matrix defined in our paper, we build some links between impossible
differentials and zero correlation linear hulls for SIMON and Dual-SIMON (see
Definition 1 in Sect. 2.2) based on bit-level contradictions in Fig. 1.

Fig. 1. Links between impossible differentials (ID) and zero correlation linear hulls
(ZC) for SIMON and Dual-SIMON

(1) With the diffusion matrix, for SIMON, we prove that there is a one-to-one
correspondence between impossible differentials and zero correlation linear
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hulls. Meanwhile, for SIMON and Dual-SIMON, we show that there is also
a one-to-one correspondence between impossible differentials of one cipher
and zero correlation linear hulls of the dual one, which extends the link built
by Sun et al. at CRYPTO 2015 for Sbox-based ciphers.

(2) With our method, we can construct impossible differentials and zero corre-
lation linear hulls of SIMON based on bit-level contradictions. Furthermore,
when applying our method to SIMON with some specific parameters, some
results are obtained.
• We show that SIMON with parameter (12,5,3) may not be a good alter-

native to the original SIMON against impossible differential and zero
correlation linear attack when the block size is larger than 32-bit.

• We present that SIMON with parameter (1,0,2) is worse than the original
SIMON with respect to the resistance against impossible differential and
zero correlation linear attacks.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we give some notations and concepts that will be used in this paper. Moreover,
we also present the brief description of SIMON-like ciphers. Then, we introduce
the definition of the diffusion matrix and give some properties about it in Sect. 3.
After that, some links between impossible differentials and zero correlation linear
hulls of SIMON-like ciphers are presented in Sect. 4. In Sect. 5, we apply our
matrix-based method to SIMON with some parameters. Finally, Sect. 6 concludes
this paper.

2 Preliminary

2.1 Notations and Concepts

In this subsection, we give some notations in Table 1, which will be used in the
rest of this paper. Note that all vectors used in our paper are row vectors and
X0 is the least significant bit for a vector X = (Xn−1,Xn−2, · · · ,X1,X0).

Table 1. Notations used in this paper

⊕ XOR operation

≪ l, ≫ l Left and right rotation for l bits, respectively

& Bitwise AND operation

Xi The i-th round state

Xi
j The j-th bit of Xi

Xj The j-th bit of vector X

Ki The i-th round subkey

Y T Transpose of vector Y

MT Transpose of matrix M

ε{i1,i2,··· ,it} The {i1, i2, · · · , it}-th bits of vector ε are 1 and the others are 0



Dual Relationship Between ID and ZC of SIMON-Like Ciphers 241

We recall the concepts of impossible differential and zero correlation linear
hull of a vectorial function.

Given a function G: F
n
2 → F

k
2 , let δ ∈ F

n
2 and Δ ∈ F

k
2 . The differential

probability δ → Δ is defined as

p(δ G−→ Δ) �
#{X ∈ F

n
2 |G(X) ⊕ G(X ⊕ δ) = Δ}

2n
.

If p(δ G−→ Δ) = 0, then δ → Δ is called an impossible differential of G [23,24].
Let ΓX = (ΓXn−1, ΓXn−2, · · · , ΓX1, ΓX0) ∈ F

n
2 ,X ∈ F

n
2 . Then

ΓX · X � ⊕
i,ΓXi=1

Xi

denotes the inner product of ΓX and X. It is notable that the inner product
of ΓX and X can be written as (ΓX)XT where the multiplication is defined as
matrix multiplication.

For a function G: Fn
2 → F

k
2 , the correlation of the linear approximation for

an n-bit input mask ΓX and a k-bit output mask ΓY is defined by

c(ΓX · X ⊕ ΓY · G(X)) �
1
2n

∑

X∈F
n
2

(−1)ΓX·X⊕ΓY ·G(X).

If c(ΓX · X ⊕ ΓY · G(X)) = 0, then ΓX → ΓY is called an zero correlation
linear hull of G [28].

2.2 Brief Description of SIMON-Like Ciphers

SIMON-like ciphers are based on Feistel structures. Let Xi = (Xi
L||Xi

R) =
(Xi

2n−1,X
i
2n−2, . . . , X

i
n||Xi

n−1,X
i
n−2, . . . , X

i
0), where 2n denotes the block size

and 2n ∈ {32, 48, 64, 96, 128}.

Fig. 2. The round function of SIMON-like ciphers
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According to the Feistel structure described in Fig. 2, the round function is
given below

{
Xi+1

L = f(Xi
L) ⊕ Xi

R ⊕ Ki,

Xi+1
R = Xi

L,

where the f -function is defined by

f(X) = (X≪a&X≪b) ⊕ X≪c, 0 ≤ a, b, c ≤ n − 1.

Note that when (a, b, c) = (1, 8, 2), it is the original SIMON.
In this paper, we are going to investigate impossible differentials and zero

correlation linear hulls of SIMON-like ciphers which are often independent of
the details of the key schedule. We refer to [6] for the details of the key schedule.
Moreover, we give the following definition to study the links between impossible
differentials and zero correlation linear hulls of SIMON-like ciphers.

Definition 1. For any specific instance of the SIMON-like ciphers with rotation
number (a, b, c), the dual cipher is defined as the one with rotation number (n −
a, n−b, n−c). If n and (a, b, c) are clear from the context, we simply use SIMON
and Dual-SIMON as the specific instance SIMON-like cipher and its dual cipher.

3 Diffusion Matrix and Its Properties

For a vectorial boolean function F : Fn
2 → F

n
2 , we can always associate F with

a graph G which has 2n vertices, denoted by X0, . . . , Xn−1, Y0, . . . , Yn−1. There
are 3 types of edges eij in G:

eij = 0 means that Yj is not inverted when the value of Xi is changed;
eij = 1 means that Yj is always inverted when the value of Xi is changed;
eij = λ means that Yj is sometimes inverted and sometimes not inverted
when the value of Xi is changed.

If we do not investigate the exact value of F but only focus on the 3 types
of relations between Xi and Yj , we can get that
⎛

⎜⎜⎜⎝

Yn−1

Yn−2

...
Y0

⎞

⎟⎟⎟⎠ �

⎛

⎜⎜⎜⎝

e(n−1)(n−1) e(n−2)(n−1) · · · e0(n−1)

e(n−1)(n−2) e(n−2)(n−2) · · · e0(n−2)

...
... · · · ...

e(n−1)0 e(n−2)0 · · · e00

⎞

⎟⎟⎟⎠

n×n

⎛

⎜⎜⎜⎝

Xn−1

Xn−2

...
X0

⎞

⎟⎟⎟⎠ = E

⎛

⎜⎜⎜⎝

Xn−1

Xn−2

...
X0

⎞

⎟⎟⎟⎠ .

Note that all vectors used in our paper are row vectors. The above equa-
tion could be written as Y T = EXT , where X = (Xn−1,Xn−2, · · · ,X0), Y =
(Yn−1, Yn−2, · · · , Y0). The matrix E is used to characterize the bit pattern prop-
agation from the bit pattern of X to the bit pattern of Y . We give the following
example to describe the matrix E.
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Example 1. Let F : F3
2 → F

3
2 be a boolean function which is presented below

⎧
⎪⎨

⎪⎩

Y2 = X2 ⊕ X1X0,

Y1 = X2X1,

Y0 = X2X0 ⊕ X1 ⊕ X0.

Then,

E =

⎛

⎝
e22 e12 e02
e21 e11 e01
e20 e10 e00

⎞

⎠ =

⎛

⎝
1 λ λ
λ λ 0
λ 1 λ

⎞

⎠ .

For the matrix E, it is called the diffusion matrix of F as follows.

Definition 2 (Diffusion matrix of F ). For a vectorial boolean function F :
F

n
2 → F

n
2 , the diffusion matrix of F is defined as

E = (aij)n×n, aij = e(n−1−j)(n−1−i), 0 ≤ i, j ≤ (n − 1).

There are 3 kinds of elements {0, 1, λ} in the diffusion matrix E, and addition
and multiplication tables are shown in Tables 2 and 3, respectively.

Table 2. Addition table

+ 0 1 λ

0 0 1 λ

1 1 0 λ

λ λ λ λ

Table 3. Multiplication table

× 0 1 λ

0 0 0 0

1 0 1 λ

λ 0 λ λ

Many block ciphers adopt S-boxes as their nonlinear components, which could
be also regarded as the vectorial boolean functions. Due to the principle of
designing S-boxes, there should not be 1 or 0 in the diffusion matrix of S-boxes.
However, for lower diffusion block ciphers, such as SIMON-like ciphers, there are
many entries of 1 and 0 in the diffusion matrices.

For each component boolean function of the f -function used in the SIMON-
like ciphers, say Yj = (Xi1&Xi2) ⊕ Xi3 , it is obvious for eij that

eij =

⎧
⎪⎨

⎪⎩

λ i = i1, i2;
1 i = i3;
0 i �= i1, i2, i3.

We recall the definition of circ[x0x1 · · · xn−1], which is defined as

circ[x0x1 · · · xn−1] �

⎛

⎜⎜⎜⎝

x0 x1 · · · xn−1

xn−1 x0 · · · xn−2

...
...

. . .
...

x1 x2 · · · x0

⎞

⎟⎟⎟⎠ .
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For SIMON, we define L[n,a,b,c] = circ[x0x1 · · · xn−1], where

xj =

⎧
⎪⎨

⎪⎩

λ j = a, b;
1 j = c;
0 j �= a, b, c.

In the following theorem, we show that L[n,a,b,c] could be used to characterize
the diffusion matrix of the f -function.

Theorem 1. For SIMON, we use Ef to denote the diffusion matrix of the f-
function. Then,

Ef = L[n,a,b,c].

Example 2. For SIMON with parameter (0,1,2) and 8-bit block size, the f -
function is defined by

f(X) = (X&X≪1) ⊕ X≪2.

Then,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y3 = X3X2 ⊕ X1,

Y2 = X2X1 ⊕ X0,

Y1 = X1X0 ⊕ X3,

Y0 = X0X3 ⊕ X2.

Thus,

Ef = L[4,0,1,2] = circ[λλ10] =

⎛

⎜⎜⎝

λ λ 1 0
0 λ λ 1
1 0 λ λ
λ 1 0 λ

⎞

⎟⎟⎠

Remark 1. Let ΔX and ΔY be the input and output differences of the f -
function, respectively. Obviously, we have ΔY T = EfΔXT = L[n,a,b,c]ΔXT

with the definition of Ef and Theorem 1.

Remark 2. The method illustrated above could be extended to linear cases: Let
ΓX and ΓY be the input and output masks of the f -function, respectively. Since
Y T = EfXT = L[n,a,b,c]X

T , we have (ΓX)XT = (ΓY )Y T = ΓY (L[n,a,b,c]X
T ).

Thus, ΓX = ΓY L[n,a,b,c].

Corollary 1. For SIMON, we use D[2n,a,b,c] to denote the diffusion matrix of
the round function. Then,

D[2n,a,b,c] =
(

L[n,a,b,c] In×n

In×n On×n

)
,

where In×n is the n × n identity matrix and On×n is the n × n zero matrix.
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According to the definition of D[2n,a,b,c], we have
(
Xs+1

)T = D[2n,a,b,c]

(Xs)T , which is similar to Y T = L[n,a,b,c]X
T . Furthermore, (Xs+t)T =

Dt
[2n,a,b,c] (X

s)T
.

Let Dt
[2n,a,b,c] =

(
d
(t)
ij

)
, where d

(t)
ij stands for the i-th row and j-th column

element of Dt
[2n,a,b,c]. There are 3 kinds of values for d

(t)
ij and their meanings are

similar to those of 3 types of edges eij .

d
(t)
ij = 0 means that Xs+t

j is not inverted when the value of Xs
i is changed;

d
(t)
ij = 1 means that Xs+t

j is always inverted when the value of Xs
i is changed;

d
(t)
ij = λ means that Xs+t

j is sometimes inverted and sometimes not inverted
when the value of Xs

i is changed.

Remark 3. Let ΔXs and ΔXs+t be the input difference of the s-th and (s+t)-th
round, respectively. We have (ΔXs+t)T = Dt

[2n,a,b,c] (ΔXs)T . Furthermore, this
method could also be applied to characterize linear trails.

For Dt
[2n,a,b,c], we give the following proposition.

Proposition 1. Let

Dt
[2n,a,b,c] =

(
D

(t)
11 D

(t)
12

D
(t)
21 D

(t)
22

)
, t ≥ 1.

Then all D
(t)
11 ,D

(t)
12 ,D

(t)
21 ,D

(t)
22 are n × n circulant sub-matrices and

D
(t+2)
22 = D

(t+1)
12 = D

(t+1)
21 = D

(t)
11 .

Proposition 1 can be directly obtained by calculating the power of D[2n,a,b,c].
It indicates that we only need to consider D

(t)
22 to characterize the maximum

round number r that contains 1 or 0 in Dt
[2n,a,b,c]. In other words, there does not

exist 0 or 1 in Dt
[2n,a,b,c] when t ≥ r+1. Furthermore, we use r1 and r0 to denote

the maximum round number that contains 1 and 0 in Dt
[2n,a,b,c], respectively.

And r1 and r0 are defined as

r1 = max{t|∃{i, j1, j2, · · · , jk}, ⊕
j1,j2,··· ,jk

dij
(t) = 1};

r0 = max{t|∃{i, j1, j2, · · · , jk}, ⊕
j1,j2,··· ,jk

dij
(t) = 0},

where ⊕
j1,j2,··· ,jk

dij
(t) is denoted as the XOR sum of d

(t)
ij1

, d
(t)
ij2

, · · · , d
(t)
ijk

and d
(t)
ij ∈

{0, 1}, j = j1, j2, · · · , jk, 1 ≤ k < n.
According to the Feistel structure, when a bit of the output difference after

r1 rounds from the encryption direction is 1 and the same bit of the output
difference after (r0−1) rounds from the decryption direction is 0, an (r1+r0−1)-
round impossible differential of SIMON could be constructed based on bit-level
contradictions. Therefore, we give the following proposition.
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Proposition 2. For SIMON, there exist (r1 + r0 − 1)-round impossible differ-
ential distinguishers.

With the definition of r1 and r0, we know that the longest impossible differ-
ential distinguishers based on bit-level contradictions are bounded by r1+r0−1.
Since r1 and r0 are determined by D[2n,a,b,c] which is only related to the block
size 2n and the rotation number (a, b, c), the longest impossible differentials
of SIMON based on bit-level contradictions are only determined by the four
parameters (n, a, b, c). Moreover, all impossible differentials based on bit-level
contradictions could be constructed by the matrix-based approach.

Example 3. For SIMON with parameter (0,1,2) and 8-bit block size, which has
been given in Example 2, we have

D[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ 1 0 1 0 0 0
0 λ λ 1 0 1 0 0
1 0 λ λ 0 0 1 0
λ 1 0 λ 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D2
[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ λ λ λ λ 1 0
λ λ λ λ 0 λ λ 1
λ λ λ λ 1 0 λ λ
λ λ λ λ λ 1 0 λ
λ λ 1 0 1 0 0 0
0 λ λ 1 0 1 0 0
1 0 λ λ 0 0 1 0
λ 1 0 λ 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D3
[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ 1 0
λ λ λ λ 0 λ λ 1
λ λ λ λ 1 0 λ λ
λ λ λ λ λ 1 0 λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D4
[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, r0 = r1 = 3 and a 5-round impossible differential (0, ε0) → (ε3, 0)
is constructed as follows:

(0000, 0001)
D[8,0,1,2]−−−−−−→ (0001, 0000)

D[8,0,1,2]−−−−−−→ (01λλ, 0001)
D[8,0,1,2]−−−−−−→ (λλλλ, 01λλ)

(1000, λ01λ)
D[8,0,1,2]←−−−−−− (0000, 1000)

D[8,0,1,2]←−−−−−− (1000, 0000).

It should be pointed out that the differentials from decryption direction of the
above 5-round impossible differential are interchanged the left and right branch
differentials before working by D[8,0,1,2] as well as after working by D[8,0,1,2].

4 Links Between Impossible Differentials and Zero
Correlation Linear Hulls of SIMON-Like Ciphers

In this section, we mainly study the links between impossible differentials and
zero correlation linear hulls of SIMON-like ciphers. To prove our results, we give
the definition of the index permutation P and present a proposition about it.
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We use P to denote the index permutation mapping the index i to (n − i)
(mod n). It can be expressed as Pv = P (vn−1vn−2 · · · v1v0) = (v1v2 · · · vn−1v0)
and we define Pv = v × M , where M is the corresponding index permutation
matrix

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

...
. . .

...
...

...
0 1 · · · 0 0 0
1 0 · · · 0 0 0
0 0 · · · 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

Obviously, the index permutation matrix M is symmetric, i.e., M = MT .
Since v = P 2v = P (vM) = vM2, M2 = In×n. Therefore, M is involutional.
Thus, M = M−1 = MT . Furthermore, we present the relations among LT

[n,a,b,c],
L[n,n−a,n−b,n−c] and L[n,a,b,c] in the following proposition:

Proposition 3. Let M be the index permutation matrix and L[n,a,b,c] be the
diffusion matrix of the f-function. Then,

LT
[n,a,b,c] = L[n,n−a,n−b,n−c] = M−1L[n,a,b,c]M.

Proposition 3 can be directly verified. With the definition of the index per-
mutation P and Proposition 3, we give the following theorem to show the link
between impossible differentials of SIMON and zero correlation linear hulls of
SIMON based on bit-level contradictions.

Theorem 2. Based on bit-level contradictions, (δ1, δ0) → (δr+1, δr) is an
impossible differential of SIMON if and only if (Pδ0, P δ1) → (Pδr, P δr+1) is
a zero correlation linear hull of SIMON, where P is the index permutation.

Sketch of the proof. After studying the link between one round differential
characteristic and one round linear trail, we prove that there exists a one-to-
one correspondence between them. Then, the relationship could be extended to
iterated rounds. Finally, with the help of miss-in-the-middle method, Theorem 2
can be proved based on bit-level contradictions. The details of the proof are
presented in AppendixA.

The above approach could be also exploited to build the link between impos-
sible differentials and zero correlation linear hulls of SIMON and Dual-SIMON.
We only need to note LT

[n,a,b,c] = L[n,n−a,n−b,n−c] shown in Proposition 3. Then,
the corollary is given below.

Corollary 2. Based on bit-level contradictions, (δ1, δ0) → (δr+1, δr) is an
impossible differential of SIMON if and only if (δ0, δ1) → (δr, δr+1) is a zero
correlation linear hull of Dual-SIMON.
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Fig. 3. Links between impossible differentials (ID) and zero correlation linear hulls
(ZC) for SIMON and Dual-SIMON

Combining Theorem 2 and Corollary 2, we establish the links between impos-
sible differentials and zero correlation linear hulls for SIMON and Dual-SIMON
depicted in Fig. 3.

Especially, when a + b = n, c =
n

2
, SIMON is the same as Dual-SIMON.

Thus, with Theorem 2 and Corollary 2, we get that if (δ1, δ0) → (δr+1, δr)
is an impossible differential/zero correlation linear hull of SIMON, both
(Pδ0, P δ1) → (Pδr, P δr+1) and (δ0, δ1) → (δr, δr+1) are zero correlation lin-
ear hulls/impossible differentials of SIMON.

Corollary 3. For SIMON and Dual-SIMON, there exist (r1 + r0 − 1)-round
impossible differentials and zero correlation linear hulls.

Proof. With the links built in Fig. 3, for SIMON and Dual-SIMON, we get that
they are the same for the length of impossible differentials and zero correlation
linear hulls based on bit-level contradictions. Moreover, with Proposition 2, there
are (r1 + r0 − 1)-round impossible differentials of SIMON. Therefore, there exist
(r1 + r0 − 1)-round impossible differentials and zero correlation linear hulls for
SIMON and Dual-SIMON.

With the definitions of r1 and r0, for SIMON and Dual-SIMON, the length
of impossible differentials and zero correlation linear hulls based on bit-level
contradictions could be bounded by r1 + r0 −1, which is only determined by the
block size 2n and the rotation number (a, b, c).

Example 4. For the original SIMON with 32-bit block size, we have

D[32,1,8,2] =
(

L[16,1,8,2] I16×16

I16×16 O16×16

)
.

By calculating the power of the matrix D[32,1,8,2], we get that r1 = r0 = 6.
According to Corollary 3, there are 11-round impossible differential and zero
correlation linear hull distinguishers. In [13], the authors presented the impossi-
ble differential (0, ε0)

11−→ (ε9, 0) and the zero correlation linear hull (ε0, 0) 11−→
(0, ε7), which are consistent with our result.
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5 Applications

At CRYPTO 2015, Kölbl et al. recommended the three parameters (12,5,3),
(7,0,2) and (1,0,2). SIMON with these three parameters are regarded to be
promising when compared with the original SIMON for the differential and lin-
ear properties. Meanwhile, SIMECK [17–19] is a family of lightweight block
ciphers proposed at CHES 2015, which could be viewed as SIMON with para-
meter (5,0,1).

In this section, we study SIMON with these parameters on impossible differ-
ential and zero correlation linear distinguishers. SIMON with parameter (a, b, c)
is called SIMON[a, b, c] for short. With our matrix-based method, we present the
length of impossible differential and zero correlation linear distinguishers of the
original SIMON with all block sizes in Table 4. The results are consistent with
previous results.

Table 4. The length of the distinguishers for SIMON

Block size r1 r0 ID/ZC

32 6 6 11

48 6 7 12

64 6 8 13

96 7 10 16

128 8 12 19

The length of impossible differentials and zero correlation linear hulls of
SIMECK with all block sizes are shown in Table 5. 11/13/15-round zero cor-
relation linear distinguishers of SIMECK32/48/64 have been presented in [30].
According to Theorem2, we can directly prove without any search that there are
also 11/13/15-round impossible differential distinguishers for SIMECK32/48/64,
respectively. The results are also given in [31] where 11/13/15-round impossible
differential distinguishers for SIMECK32/48/64 are searched with the help of
computer search.

Table 5. The length of the distinguishers for SIMECK

Block size r1 r0 ID/ZC

32 5 7 11

48 6 8 13

64 6 10 15

For SIMON with the three parameters recommended in [22], they have
good performance on the differential and linear properties. However, in Table 6,
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the length of ID/ZC distinguishers of SIMON with the three parameters are
no shorter than those of the original SIMON (SIMON[1, 8, 2]). Especially, for
SIMON[1, 0, 2], the length of the distinguishers are much longer than those of
the original SIMON. From this point, SIMON[1, 0, 2] is worse than the original
SIMON and it is necessary to evaluate the security again. We present a 17-
round impossible differential distinguisher as an example in AppendixB. For
SIMON[12, 5, 3], it is considered as a good alternative to the original SIMON
for differential, linear, impossible differential and integral attacks in [20]. How-
ever, the block size considered in [20] is only 32-bit. Compared with the orig-
inal SIMON for various block sizes, the length of ID/ZC distinguishers of
SIMON[12, 5, 3] have 1 round more than those of the original SIMON when the
block size takes 48-bit and 96-bit in Table 6. Therefore, SIMON[12, 5, 3] needs to
be further evaluated with all block sizes against impossible differential and zero
correlation linear attacks.

Table 6. The length of the distinguishers for SIMON with different parameters

ID/ZC 32-bit 48-bit 64-bit 96-bit 128-bit

(1,8,2) 11 12 13 16 19

(12,5,3) 11 13 13 17 19

(7,0,2) 13 15 17 19 21

(1,0,2) 17 25 33 49 65

6 Conclusion

In this paper, we investigated impossible differentials and zero correlation linear
hulls of SIMON. By introducing the diffusion matrix, we established some links
between impossible differentials and zero correlation linear hulls for SIMON and
Dual-SIMON based on bit-level contradictions. Furthermore, when applying our
matrix-based method to SIMON with some specific parameters, SIMON with
parameter (1,0,2) is worse than the original SIMON with respect to security
against impossible differential and zero correlation linear attacks. Thus, it is
necessary to evaluate the security again. In brief, our results can provide more
generic security evaluation against impossible differentials and zero correlation
linear hulls of SIMON-like ciphers.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their useful comments, and Yunwen Liu, Yi Zhang for fruitful discussions.

Appendix A. Proof of Theorem2

Proof. The differential and linear propagations of SIMON are shown in Fig. 4.
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Fig. 4. Differential (left) and linear (right) propagations of SIMON

For the round function of SIMON, we prove that there is a one-to-one cor-
respondence between the differential propagation (δi, δi−1) → (δi+1, δi) and the
linear propagation (Pδi−1, P δi) → (Pδi, P δi+1).

According to the definition of the diffusion matrix, we know that the dif-
ferential propagation of the f -function is

(
βi

)T = L[n,a,b,c]

(
δi

)T . Meanwhile,
the linear propagation of the f -function is Pβi =

(
Pδi

)
L[n,a,b,c]. Since δi+1 =

δi−1⊕βi ⇔ Pδi+1 = Pδi−1⊕Pβi, we could prove the one-to-one correspondence
between one round differential propagation and one round linear propagation of
SIMON if (

βi
)T

= L[n,a,b,c]

(
δi

)T ⇔ Pβi = PδiL[n,a,b,c].

With Proposition 3, LT
[n,a,b,c] = M−1L[n,a,b,c]M . Therefore,

(
βi

)T
= L[n,a,b,c]

(
δi

)T ⇔ βi = δiLT
[n,a,b,c],

⇔ βi = δiM−1L[n,a,b,c]M,

⇔ βiM−1 = δiM−1L[n,a,b,c].

Since M−1 = M ,
(
βi

)T
= L[n,a,b,c]

(
δi

)T ⇔ βiM = δiML[n,a,b,c].

According to the definition of P , Pβi = βiM,Pδi = δiM . Then,
(
βi

)T
= L[n,a,b,c]

(
δi

)T ⇔ Pβi = PδiL[n,a,b,c].

Therefore, we have proved that there is a one-to-one correspondence between
the differential propagation (δi, δi−1) → (δi+1, δi) and the linear propagation
(Pδi−1, P δi) → (Pδi, P δi+1).

Naturally, considering i-round differential and linear propagations, we get
that there is a one-to-one correspondence between the differential characteristic

(
δ1, δ0

) → (
δ2, δ1

) → · · · → (
δi+1, δi

)
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and the linear trail
(
Pδ0, P δ1

) → (
Pδ1, P δ2

) → · · · → (
Pδi, P δi+1

)
.

Since constructing impossible differentials and zero correlation linear hulls of
SIMON are based on bit-level contractions in this paper, (δ1, δ0) → (δr+1, δr)
is an impossible differential if and only if (Pδ0, P δ1) → (Pδr, P δr+1) is a zero
correlation linear hull.

Appendix B. An Impossible Differential

See Table 7.

Table 7. A 17-round impossible differential of SIMON[1, 0, 2] with 32-bit block size

Round Left Right

0 0000000000000000 0000000000000001

1 0000000000000001 0000000000000000

2 00000000000001λλ 0000000000000001

3 000000000001λλλλ 00000000000001λλ

4 0000000001λλλλλλ 000000000001λλλλ

5 00000001λλλλλλλλ 0000000001λλλλλλ

6 000001λλλλλλλλλλ 00000001λλλλλλλλ

7 0001λλλλλλλλλλλλ 000001λλλλλλλλλλ

8 01λλλλλλλλλλλλλλ 0001λλλλλλλλλλλλ

9 λλλλλλλλλλλλλλλλ 01λλλλλλλλλλλλλλ

8 λ0001λλλλλλλλλλλ λ01λλλλλλλλλλλλλ

7 λ000001λλλλλλλλλ λ0001λλλλλλλλλλλ

6 λ00000001λλλλλλλ λ000001λλλλλλλλλ

5 λ0000000001λλλλλ λ00000001λλλλλλλ

4 λ000000000001λλλ λ0000000001λλλλλ

3 λ00000000000001λ λ000000000001λλλ

2 1000000000000000 λ00000000000001λ

1 0000000000000000 1000000000000000

0 1000000000000000 0000000000000000
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