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Preface

This volume contains the papers presented at ISPEC 2017: the 13th International
Conference on Information Security Practice and Experience held during December
13–15, 2017 in Melbourne, Australia.

In response to the call for papers, 105 submissions were received. Submissions were
evaluated on the basis of their significance, novelty, and technical quality, with an
average of three reviews per paper. Based on the review and the Program Committee
discussions, 34 full and 14 short papers were accepted. The program also includes nine
papers from the SocialSec (3rd International Symposium on Security and Privacy in
Social Networks and Big Data) Track.

We would like to express our thanks to all Program Committee members. Without
their hard effort in reviewing papers in such a short time, the conference would not have
been successful. We would also like to thank our general co-chairs, Prof. Robert Deng,
Prof. Yang Xiang, and Prof. Wanlei Zhou, and our publicity chair, Dr. Yu Wang.
They all devoted a large amount of time for the preparation of this conference.

Finally we would like to thank our sponsor, Huawei, for their continuing support of
this conference!

December 2017 Joseph K. Liu
Pierangela Samarati
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Abstract. The gas mechanism in Ethereum charges the execution
of every operation to ensure that smart contracts running in EVM
(Ethereum Virtual Machine) will be eventually terminated. Failing to
properly set the gas costs of EVM operations allows attackers to launch
DoS attacks on Ethereum. Although Ethereum recently adjusted the gas
costs of EVM operations to defend against known DoS attacks, it remains
unknown whether the new setting is proper and how to configure it to
defend against unknown DoS attacks. In this paper, we make the first
step to address this challenging issue by first proposing an emulation-
based framework to automatically measure the resource consumptions of
EVM operations. The results reveal that Ethereum’s new setting is still
not proper. Moreover, we obtain an insight that there may always exist
exploitable under-priced operations if the cost is fixed. Hence, we pro-
pose a novel gas cost mechanism, which dynamically adjusts the costs of
EVM operations according to the number of executions, to thwart DoS
attacks. This method punishes the operations that are executed much
more frequently than before and lead to high gas costs. To make our solu-
tion flexible and secure and avoid frequent update of Ethereum client,
we design a special smart contract that collaborates with the updated
EVM for dynamic parameter adjustment. Experimental results demon-
strate that our method can effectively thwart both known and unknown
DoS attacks with flexible parameter settings. Moreover, our method only
introduces negligible additional gas consumption for benign users.

1 Introduction

Being the second largest blockchain [8], Ethereum distinguishes itself by its
Turing-complete execution environment (i.e., EVM) [19] that can run various
applications through smart contracts. Besides transferring money, transactions
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 3–24, 2017.
https://doi.org/10.1007/978-3-319-72359-4_1
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in Ethereum are also involved in deploying and invoking smart contracts. To
ensure that the execution of smart contracts will be terminated eventually,
Ethereum charges gas (i.e., execution fee) from transaction senders, and lets
it be part of the rewards to miners for executing smart contracts. In particular,
gas serves as a protection mechanism against resources abusing in case execut-
ing certain smart contracts consumes lots of computing resources. The money
paid for executing an EVM operation (e.g., addition, multiplication, reading the
balance of an account) is the multiplication of the gas price with the gas cost of
that operation, where the gas price indicates the value of one unit of gas and the
gas cost of an EVM operation stands for the units of gas required to execute the
operation. The gas cost is determined by the EVM in Ethereum client, and the
gas price can be set by transaction senders. Every transaction has a gas limit,
dubbed TGL (Transaction Gas Limit), so that the execution of a smart contract
will trigger an out-of-gas exception if the execution requires more gas than the
TGL. Ethereum attempts to associate EVM operations’ gas costs proportionally
to the computing resources needed to execute them [19], because a proper set-
ting of gas costs can give miners proper awards and thwart DoS attackers who
aim at wasting a large amount of resources.

However, it is non-trivial to properly set the gas cost of each operation
because it requires a deep understanding of EVM internals, an accurate measure-
ment of resource consumptions by EVM operations, and the awareness of the
market price for different types of computing resources (e.g., CPU, memory, etc.).
Failing to select suitable gas costs for EVM operations gives attackers opportu-
nities to launch DoS attacks on Ethereum at low cost by exploiting under-priced
operations. An operation is regarded as under-priced if its gas cost is lower
than what it should be. Actually, two DoS attacks exploiting such operations
were discovered in 2016, which repeatedly execute two under-priced operations,
namely EXTCODESIZE [7] and SUICIDE [6], thus resulting in slow transaction pro-
cessing, wasted hard drive space, and long synchronization time. More seriously,
the confidence of users in Ethereum will be shaken, and consequently the mar-
ket price of Ethereum will be impacted [21]. Since each Ethereum node should
maintain the complete copy of blockchain and replay all transactions in history
for synchronization, such DoS attacks happened in history will also impact the
newly enrolled nodes. Although Ethereum adjusted the gas costs of operations
to defend against such known attacks [6,7], it remains unknown whether or not
the new setting is resistant to unknown attacks and how to properly configure
the gas costs of operations to mitigate DoS attacks.

In this paper, we make the first step to address this challenging issue by first
proposing an emulation-based framework (in Sect. 4) to automatically measure
the consumptions of computing resources of EVM operations. The framework
consists of the interpretation handler for each EVM operation, the related data
structures and diverse simulated environments in an attempt to explore all pro-
gram paths of those handlers. The experimental result reveals that the latest
setting in Ethereum is still not proper although it can mitigate the known DoS
attacks. From this investigation, we obtain the insight that there may always
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exist exploitable under-priced operations if the operation costs are fixed, because
the factors influencing the costs of EVM operations keep changing.

Therefore, we propose a novel adaptive gas cost mechanism (in Sect. 5), which
will dynamically adjust the costs of EVM operations according to the number of
executions, to defend against known and unknown DoS attacks. This mechanism
punishes the operations leading to abnormal high gas costs if they are executed
much more frequently than before. Consequently, the exponentially increased
gas costs will impede the attackers without unlimited money from conducting
effective DoS attacks. Our experiments in a private blockchain show that the
new mechanism can effectively thwart both known and unknown DoS attacks
and introduce negligible additional gas consumption to benign users.

Moreover, by exploiting Ethereum’s unique feature, we realize our mech-
anism through a novel approach in order to make it secure and flexible in
terms of parameter adjustment. More precisely, we develop a specific smart con-
tract and provide a patch to EVM. After patching the EVM, the developers
of Ethereum can adjust the parameters by sending transactions to that smart
contract, and then the updated EVM can fetch the parameters periodically by
reading the storage of that smart contract. Our new approach leverages the
underlying blockchain technique to make the parameters auditable and untam-
perable. Moreover, our approach has good deployability because it only needs
updating the EVM once.

In summary, we make the following major contributions:

(1) We propose the first emulation-based measurement framework, which can
automatically estimate the resource consumptions of EVM operations, to
assess whether or not the gas costs in Ethereum are properly configured
(Sect. 4).

(2) We propose a novel adaptive gas cost mechanism, which dynamically adjusts
operation costs according to their execution times, to defend against known
and unknown DoS attacks with negligible impacts on benign users.

(3) We design a new approach to realize our gas cost mechanism by exploiting
Ethereum’s smart contract and its underlying bloackchain technique. This
approach makes our mechanism secure, flexible, easy to be deployed.

(4) We conduct experiments in a private blockchain to evaluate our mechanism.
The results show that it can effectively thwart both known and unknown
DoS attacks and introduce negligible additional gas consumption to benign
users. Moreover, the parameters can be dynamically adjusted by authorized
users.

The remainder of this paper is organized as follows. Section 2 introduces
background knowledge. Section 3 presents our analysis of two real DoS attacks
on Ethereum. Section 4 details the measurement framework. We describe the
adaptive gas cost mechanism and its implementation in Sect. 5 and Sect. 6,
respectively. The experiment results are introduced in Sect. 7. After summarizing
related studies in Sect. 8, we conclude the paper in Sect. 9.
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2 Background

This section introduces some background knowledge of Ethereum. Besides pro-
viding a cryptocurrency (i.e., Ether), Ethereum supports deploying and running
smart contracts. There are two types of accounts in Ethereum, including exter-
nal owned accounts (EOA) and smart contracts. The major difference between
them is that only smart contracts contain executable bytecode [1]. Ethereum
uses the underlying P2P overlay to deliver transactions among Ethereum nodes.
A transaction refers to the signed data package that stores a message to be sent
from an EOA to another account on the blockchain [1]. A block is a data struc-
ture to store zero or more transactions. Each node runs an Ethereum client that
obeys Ethereum protocol [24]. The consensus in Ethereum is achieved by using
a modified version of GHOST protocol [19], and as the result of the consensus,
every node maintains the same copy of the blockchain. In particular, a newly
joined node should download all blocks (i.e., synchronization) and then run all
historical transactions to reach the same state as the other nodes.

Ethereum can be considered as a state machine where a state is a snap-
shot of the blockchain (e.g., the balances of all accounts, the value of a variable
in a smart contract) and a transaction results in a state transfer. If the tar-
get of a transaction is a smart contract, the smart contract will be executed in
EVM. Since EVM is usually embedded in the Ethereum client, the execution of
smart contracts consumes the computing resources (e.g., CPU, disk, network)
of each node. Consequently, a DoS attack will impact all nodes because each
of them should execute all historical transactions. To prevent abusing comput-
ing resources, Ethereum leverages gas to charge execution fee from transaction
senders. The amount of gas consumption is determined by the executed EVM
operations, and different operations may have different gas costs [24]. In Sect. 3,
we use real attacks to explain how attackers exploit the improper setting of gas
cost to launch DoS attacks at low expense.

3 Analyzing Real DoS Attacks on Ethereum

This section dissects two real DoS attacks exploiting under-priced operations.

3.1 EXTCODESIZE Attack

Approach: The attacker sends lots of transactions to invoke a deployed smart
contract involving many EXTCODESIZE operations, which gets the size of an
account’s code [24]. Such attack forces EXTCODESIZE to be executed roughly
50,000 times per block [7].

Symptom: Clients spend a very long time to process those blocks that contain
the transactions sent from the attacker, and hence the throughput of Ethereum
for processing transactions is decreased.
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Cause: EXTCODESIZE has a very low gas cost (i.e., 20 in go-ethereum V 1.3.5),
but it involves expensive operation (i.e., reading information from the disk).
Hence, the execution of a great number of EXTCODESIZE results in busy I/O and
slow transaction processing speed.

Countermeasure: New Ethereum (e.g., go-ethereum V 1.6) increases the gas
cost of EXTCODESIZE to 700 [5] (in the source file gas table.go). Consequently, the
transaction senders have to pay 35 (= 700/20) times more money when using
go-ethereum V 1.6. 700 gas is equal to about 0.000014 Ether (many senders
set the gas price to 0.00000002 Ether at August, 2017), whose value is about
0.0042 USD (1 Ether can be exchanged into about 300 USD at August 13th,
2017 [11]). Although a single operation does not cost much, the accumulative
gas consumption is considerable, because each transaction incurs the execution
of many operations and there are more than 45 million transactions from the
launch of Ethereum to August 13th, 2017 [2].

3.2 SUICIDE Attack

Approach: The attacker creates lots of smart contracts with a loop in their
constructors. In the loop, the SUICIDE operation is executed. According to
Ethereum’s protocol, SUICIDE is used to remove the executed smart contract
from the blockchain and send the remaining Ether to the designated account [24].
For each generated smart contract, the transaction for creating it triggers its con-
structor, and hence lots of SUICIDE whose target accounts do not exist, will be
executed. Note that a nonexistent account does not need to be stored in the
Ethereum state tree [6], which represents the state of the blockchain.

Symptom: About 19 million accounts were created by the attack, which con-
sume considerable disk space, and thus the synchronization and transaction pro-
cessing are slowed down.

Cause: If the target account does not exist, a SUICIDE operation will turn it
into existent, which will be stored in the Ethereum state tree [6]. However, the
gas cost of SUICIDE is zero. Therefore, an attacker creates a huge number of
accounts by executing SUICIDE repeatedly at very low cost.

Countermeasure: New Ethereum increases the gas cost of SUICIDE to 5,000
and additional 25,000 if it creates a new account [5] (in the source file
gas table.go). Moreover, new clients can delete the zombie accounts created by
the attack.

3.3 Remarks

From the above analysis, we learn that to exploit the under-priced operations for
launching DoS attacks, the attacker has to first find or prepare a smart contract
containing the under-priced operations, and then cause such operations to be
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executed lots of times by sending transactions to the smart contract. Moreover,
since the gas cost for sending a transaction is high (e.g., at least 21,000 in
go-ethereum V 1.6), the attacker usually lets each transaction trigger multiple
executions of the under-priced operations. To defend against such DoS attacks,
we should either properly set the costs of EVM operations (i.e., remove under-
priced operations) or force the attacker to pay a lot of money for executing the
under-priced operations many times.

In Sect. 4, we propose a novel emulation-based measurement framework to
assess whether or not the latest gas cost setting is proper. Unfortunately, we find
that the latest setting still has exploitable under-priced operations, and it is dif-
ficult, if not impossible, to eliminate all under-priced operations if the operation
costs are fixed, because the factors influencing the cost of each EVM operation
keep changing. Therefore, we explore an alternative approach by proposing a
novel adaptive gas cost mechanism in Sect. 5.

4 Emulation-Based Measurement Framework

Although Ethereum has changed the gas costs of some under-priced operations
to defend against the known DoS attacks [6,7], little is known whether or not
the latest gas cost setting is immune to DoS attacks exploiting under-priced
operations. To address this issue, the resource consumption of each EVM oper-
ation should be measured. However, it is non-trivial to measure the computing
resources consumed by a single EVM operation because the execution of a smart
contract involves not only many EVM operations but also various utility func-
tions for supporting the execution.

To tackle this problem, we propose a novel emulation-based measurement
framework. More precisely, by exploiting EVM’s architecture, we extract the
interpretation handler for each operation (e.g., the opAdd() function is respon-
sible for executing the addition operation), the related data structures (e.g.,
stack, memory, storage) from the EVM implementation, and prepare an emu-
lated environment, which consists of the Go compiler, runtime libraries (e.g., the
bigInt library to handle large integers) and the state of the blockchain (e.g., the
balance of an account), for executing the operation. Then, we run the interpreta-
tion handler in the emulated environment millions of times, because a single run
is too short to conduct the measurement, and record the execution time. Note
that the current implementation of our framework can automatically measure
the CPU consumption in terms of the execution time, and we will support the
measurement of other resources in future work.

There is a challenge in preparing the emulated environment. In particular,
since a handler may have various execution paths with different resource con-
sumption, we need to explore all execution paths for measuring the handler’s
resource consumption. The example in Fig. 1 shows that the handler for execut-
ing SUICIDE consists of an expensive path (Line 15, CreateStateObject() allo-
cates disk space to store accounts) if the target account is nonexistent since
it will become existent after executing SUICIDE and a cheap path (Line 16)
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Fig. 1. An expensive path and a cheap path of opSuicide

if the target is existent. To address this challenge, we run the handler mil-
lions of times, providing with different inputs and proper runtime environ-
ment. If the operation manipulates the stack/memory/storage, we synthesize
the stack/memory/storage with random length and generates random numbers
as their items. If the operation needs the information from EVM (e.g., block
number, gas price, gas limit) or the smart contract (e.g., code length, input to
the contract, the address of the contract), we prepare an EVM/smart contract
object with randomly generated fields. If the operation needs to interact with
another account, we take into account the following three situations. First, if
the target account is nonexistent, no special preparation is needed. Second, if
the target account is an EOA, we generate one using the command provided by
Etheruem’s client. Third, if the target account is a smart contract, we develop
and deploy one in the private chain, whose code is a RETURN since we measure the
resources consumed by the invocation, rather than the execution of the invoked
smart contract.

We classify all EVM operations into five categories in terms of the data
structures on which they operate. The operations in the first category do not
manipulate any data structures (e.g., JUMPDEST). The operations in the second
category handle the stack (e.g., ADD). The operations in the third category get
access to the specific fields related to blockchain (e.g., ORIGIN). The fourth cate-
gory of operations manipulates the memory (e.g., MSTORE). The operations in the
fifth category manipulate the storage (e.g., SLOAD). Note that in Ethereum mem-
ory is an infinitely expandable byte-array that resets after computation ends,
while storage is a long-term key/value store that persists for the long term [19].

Figure 2 (the y-axis is on a log scale) presents the CPU consumptions of some
EVM operations running 50 million times from all the five categories. Experi-
ments are conducted on a desktop equipped with an Intel i3-4160 CPU and 8 GB
memory. The number on top of each box is the operation’s gas cost according to
Ethereum’s yellow paper [24]. All measurements repeat 100 times. JUMPDEST is
the destination of a jump (e.g., JUMP, JUMPI) operation, which belongs to the first
category. ADD, SUB, MUL, DIV, SDIV, MOD, SMOD, ADDMOD, MULMOD are arithmetic
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operations. NOT and XOR are bitwise operations. ISZERO and LT are comparison
operations. These operations belong the second category. ORIGIN is the repre-
sentative of the third category which reads a field of the block’s head. MSTORE
and SHA3 belong to the fourth category. MSTORE writes a word to memory while
SHA3 can operate multiple items in memory. In particular, SHA3 hashes the data
in memory and its gas cost is the summation of basic gas (i.e., 30) with the gas
for operating memory. The more memory it reads, the more gas it requires. EXP
is a special arithmetic operation whose gas cost is the summation of basic gas
(i.e., 10) with the remaining part which is determined by the bit length of the
exponent. In other words, the gas cost of EXP becomes high if it has a large expo-
nent. Figure 2 shows that EXP costs considerable CPU resources. SLOAD loads an
item from the storage.
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The results show that the latest gas costs are not proportional to the con-
sumptions of CPU resources. For example, DIV (division) has the same gas cost
of SDIV (signed division), but the execution time needed by DIV is about 23%
(10.4 s/45 s) of that needed by SDIV. We find the reason by investigating the
source code of handlers for DIV and SDIV, which is listed in Fig. 3. Figure 3 lists
the source code (from go-ethereum V 1.6) of division (function opDiv(), Line
10) and signed division (function opSdiv(), Line 26), respectively, whose gas
costs are equivalent. For the ease of presentation, we simplify the source code.
We can see that the functions opDiv() and opSdiv() consist of stack operations
(e.g., stack.pop()) and math computations (e.g. x.And()) provided by the bigInt
library. Further experiments reveal that math computations (in red color) take
up most of the execution time. We also find that the execution of a division
operation needs 4 math computations (i.e., 1 Div, 1 And, 1 Sub and 1 Exp) at
most whereas the execution of a signed division needs 11 (i.e., 3 Sub, 3 Exp, 2
Abs, 1 Mul, 1 Div and 1 And) at most. Hence, SDIV is more resource-consuming
than DIV. Consequently, some operations (e.g., EXP, SHA3, as shown in Fig. 2)
may be under-priced and thus could be exploited by DoS attacks.
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Fig. 3. EVM source code for executing DIV and SDIV (Color figure online)

5 Adaptive Gas Cost Mechanism

The investigation in Sect. 4 shows that it is not easy to properly assign gas costs
to EVM operations. Hence, we propose a novel adaptive gas cost mechanism for
defending against DoS attacks.

5.1 Threat Model

We assume that the attacker can discover under-priced operations (if any) and
then launch the attack by invoking either existing smart contracts or new smart
contracts crafted by the attacker. Moreover, the attacker is rational and does
not have unlimited money for launching attacks. In this case, she will give up
the attack if her money cannot force the under-priced operations to be executed
for lots of times. Moreover, she will not send a transaction that can execute the
under-priced operations only a few times because sending a transaction is not
cheap (i.e., gas cost is 21,000). Last but not least, normal users will not accept
a gas cost mechanism that charges much money from them.

5.2 Adaptive Adjustment of Gas Costs

Exploiting the observation in Sect. 3.3 that a successful DoS attack has to trigger
lots of executions of under-priced operations, we propose a new mechanism that
increases the gas cost of an operation dynamically if it has been executed much
more frequently than before. More precisely, we collect the execution traces
(i.e., a sequence of executed operations) of normal transactions, and model the
execution frequency of each EVM operation. Then, for every new transaction,
we set a basic gas cost for each operation by default, and count the number
of executions of each operation. If the number of an operation is larger than a
threshold, its gas cost will be increased. The advantage of our mechanism is that
it does not need to know which operations are under-priced. Instead, it punishes
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the over-frequent EVM operation through the increased gas cost. Hence, it can
defend against known and unknown DoS attacks.

We define a threshold μi for the operation i as shown in Eq. (1). The operation
i that has been executed for more than μi in one transaction is regarded as over-
frequent, and its gas cost will be increased. avei and stdi stand for the average
and the standard deviation of the number of executing operation i, respectively.
Section 6.1 details how to compute them. base count is an integer used to prevent
increasing the gas cost of an infrequently-executed operation too fast. m is a
parameter for adjusting the threshold.

μi = max{base count, avei + m × stdi} (1)

The gas cost of an EVM operation is dynamically adjusted according to
Eq. (2), where counti is the number of executions of operation i, base gasi is the
default gas cost of i. We uses an exponential function to punish over-frequent
operations with accelerating increments in gas costs. Its base (i.e. α > 1) deter-
mines the speed of increasing the gas cost. We let the exponent as counti

μi
− 1

that includes μi for taking into account the operation’s normal frequency. Since
our mechanism will assign an operation a very high gas cost if it has been exe-
cuted much more times in a transaction than before, it deters an attacker from
executing an under-priced operation many times by one transaction. Moreover,
our mechanism avoids charging much more gas from benign senders by setting
proper parameters. We evaluate the effects of various parameters in Sect. 7.3.
gasi is restored to base gasi for a new transaction, and hence the attacker can-
not affect the initial operation costs of benign transactions. Figure 4 shows the
curves of Eq. (2) with various parameters, indicating that μi and α can affect
the point from where to increase gas cost and the speed to increase gas cost,
respectively. We have several observations. First, μi determines the point from
where gasi should be increased. Moreover, α determines the increasing speed of
gasi. Typically, gasi should be increased with the increase of execution number
counti, and hence α should be larger than 1.

gasi =

{
base gasi, if counti ≤ μi

base gasi + α
counti

µi
−1

, if counti > μi

(2)

Section 5.3 will describe the way to adjust the parameters in Eqs. (1) and (2),
and we will try other functions (e.g., linear, polynomial) in Eq. (2) in future work.

5.3 Dynamic Parameter Configuration

Since Ethereum and its smart contracts evolve over time, the parameters should
be changed accordingly. Therefore, we need an approach for dynamic parameter
configuration. This approach should meet the following requirements. First, the
parameter configuration should be auditable by any users of Ethereum. Second,
the parameter configuration should be secure so that attackers cannot modify the
parameters. Third, the approach should not need to frequently update Ethereum
client due to the risk of hard fork.
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Fig. 4. Curves of Eq. (2), base gasi = 3

Exploiting Ethereum’s unique feature, we propose a novel approach for real-
izing dynamic parameter configuration by developing a specific smart contract
and providing a patch to EVM. The developers of Ethereum can adjust the
parameters by sending transactions carrying new parameters to that smart con-
tract. They can adjust a variable, block number, in the smart contract, which is
used to determine when the new setting takes effect. Then, the patched EVM can
fetch the parameters periodically by reading the storage of that smart contract.
The period (measured by blocks) of querying new parameters should be shorter
than the difference between the variable, block number, in the smart contract
and the block number when setting the new parameters so that all clients can
get the newest setting before the block when the setting takes effect.

Our new approach leverages the underlying blockchain technique to make
the parameters auditable and untamperable. Note that no one can change the
setting of gas costs by just subverting her EVM. Moreover, the smart contract
for updating parameters cannot be tampered by attackers who do not have
more than 50% computing power because the contract itself will be validated in
the process of consensus. The change of parameters will be auditable because
all transactions are publicly available in the blockchain. Last but not least the
Ethereum client (i.e., its EVM) should only be updated once for adopting our
new gas cost mechanism. After that, they do not need to be updated again for
using the new parameters.

6 Implementation

The implementation of our new mechanism consists of four parts (Fig. 5). The
first part collects execution traces of smart contracts and computes avei and
stdi. Part 2 is the smart contract storing the parameters that can be updated by
Ethereum developers. Part 3 and 4 describe the patch to EVM, including how
to fetch new parameters and how to apply them, respectively.
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developer smart contract

traces

avei, stdi
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Fig. 5. Overview of our implementation.

6.1 Computing avei and stdi

To compute avei and stdi, we first leverage EVM’s built-in tracing ability to record
all execution traces. We define a sliding window, and use all traces within that
window for computing avei and stdi. Figure 6 shows avei and stdi of PUSH1 with
different window sizes (i.e., 100, 1,000 and 10,000) in the first 16,000 execution
traces since the launch of Ethereum. We assume that these traces were triggered
by benign transactions since no known attacks were discovered in them. Please
note that PUSH1 is the most frequent operation, which pushes one byte on stack.

(a) Ave (b) Std

Fig. 6. Average number and standard deviation of the executions of PUSH1. (Color
figure online)

The x-axis gives the window index and for example, a point (x, y) on the
red line of Fig. 6(a) indicates that avei of PUSH1 of the traces within the window
[x + 1, x + 10, 000] is y. We can see that the avei of PUSH1 increases as time
goes on, indicating that smart contracts become more complicated than before.
Second, as we expected, the larger the window is, the more stable avei and stdi

will be. Moreover, it is difficult for an attacker to tamper avei and stdi by filling
the large window with crafted transactions. Our approach allows developers to
adjust the window size.
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6.2 Smart Contract

We implement a smart contract (as shown in Fig. 7) to store parameters which
allows the contract’s creator to update parameters through executing transac-
tions, and then we deploy it on our private blockchain. For ease of presentation,
we omit the details of updating avei and stdi of each operation i, which is the
same as the updating the other parameters (e.g., m). Line 2 declares several
global variables which store in the storage. address (Line 3) is a built-in variable
type of Ethereum which can only be used for storing account address. N is the
time interval of two consecutive queries, and delta is a small number that we
consider all clients can get the new setting in the time period of N + delta (Line
13). The function AdaptiveGas() is the construct function that will be executed
during the creation of the smart contract. Please note that the arguments of
AdaptiveGas() are also given in the transaction for contract creation.

Fig. 7. The smart contract for updating the setting of parameters

Besides setting the default parameters in AdaptiveGas() (Lines 5–7), we
record the contract owner (Line 8), ensuring that only the owner can change
parameters setting (Line 11). The function UpdateSetting() accepts the new set-
ting of parameters from transaction senders. Lines 12, 13 ensure that the time
period (N + delta) is enough for all clients to check the update. Please note
that msg.sender and block.number are two built-in properties of Ethereum that
get the address of transaction sender and the number of block which contains
the transaction, respectively. Please note that the transaction fees for sending
the transactions to adjust paramters are negligible for Ethereum official society
because a single transaction does not cost much (always less than 1 USD [2])
and parameters do not need to adjust very frequently.

6.3 Querying New Parameters

Figure 8 shows the code snippet (simplified for presentation) for an EVM to get
the new setting of parameters. Since each Ethereum node keeps a complete copy
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of blockchain, their EVMs can get the values of all storage variables given the
address of the smart contract by accessing the local copy of blockchain. It is more
efficient than an intuitive approach that fetches the new parameters by sending
a transaction to the smart contract, because the latter will add transactions to
the blockchain periodically and cause additional fee for sending transactions.
Our approach can avoid these issues. Line 1 specifies the address (i.e., ac43...)
of the contract, which is known because the contract is developed and deployed
by us. Then, Lines 2–5 obtain individual parameters by directly accessing (i.e.,
invoking the internal function evm.StateDB.GetState() of EVM) the storage of
the contract. The integers 0, 1, etc. give the locations of parameters stored in
the storage. Finally, those parameters are used for computing gas costs.

Fig. 8. Modifications of EVM to obtain new parameters.

6.4 Applying New Parameters

We modify go-ethereum V 1.3.5 to realize our mechanism because it has several
known under-priced operations, and we compare the original V 1.3.5 with the
patched one in Sect. 7.1. When Ethereum starts, we load the setting of param-
eters (e.g., avei, stdi, m, α) in the entry function (i.e., the main() function in
\cmd\geth\main.go). Please note that the default gas cost of each operation
(i.e., base gasi) is the same as that in go-ethereum V 1.3.5. We replace the code
in the function CalculateGasAndSize() in \core\vm\vm.go, which is responsible
for computing the gas consumption of individual operation, with our code to cal-
culate gas cost and increase the execution number of the EVM operation by one.
In other words, Eqs. (1) and (2) are implemented in CalculateGasAndSize(). The
number of executions will be reset before the execution of each transaction, which
is implemented in the function ApplyTransaction() in \core\state processor.go.
To reduce the runtime overhead, we cache the gas costs of operations, which
have already been computed, in main memory.

7 Evaluation

This section answers the following questions through experiments.

RQ1: Can our mechanism thwart known and unknown DoS attacks effectively?
RQ2: How much additional gas will be charged from benign users by our
mechanism?
RQ3: What are the effects of parameters?
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All experiments are conducted in a private Ethereum blockchain on a desktop
equipped with an Intel Xeon E312 processor and 8 GB memory. Our private
blockchain has one miner and is isolated with the public Ethereum blockchain
and other testing blockchains. We create an account to hold the rewards from
mining. We guarantee that the account has enough money to send transactions
by setting a low mining difficulty. Every block also has a gas limit, dubbed
BGL (Block Gas Limit), which restricts the size of a block (i.e., the number
of transactions contained in the block). The BGL is set as 4 million, which is
comparable with that in the public chain at present. We let the TGL be equal to
the BGL, in order to see how many under-priced operations can be executed by
a single transaction using the original gas cost mechanism and our mechanism,
respectively. The parameters base count, m and α in Eqs. (1) and (2) are set to
5, 3 and 2 by default, respectively. We evaluate our mechanism under different
settings in Sect. 7.3.

7.1 Experiments with DoS Attacks

We simulate the two real attacks [6,7] in our private blockchain. To launch
the EXTCODESIZE attack, we develop a smart contract with a public function
extAttack() that can be called by our account. extAttack() has a loop where
we use inline assembly to execute EXTCODESIZE directly. The SUICIDE attack is
launched in a more intricate way since a smart contract will be removed (i.e.,
cannot get accessed) by executing SUICIDE. The SUICIDE attack exploits the
feature of Ethereum: a smart contract will not be removed before the completion
of the transaction that triggers the SUICIDE operation. Consequently, we create
a smart contract whose constructor invokes SUICIDE in a loop. When creating
the contract, the corresponding transaction executes SUICIDE repeatedly. We
also use the built-in tracing ability of EVM to record the execution traces of
smart contracts as well as the gas consumption of each operation.

The experimental results reveal that the two attacks execute 92,494 and
11,335 times of EXTCODESIZE and SUICIDE, respectively, in one transaction using
the original (i.e., go-ethereum V 1.3.5) gas cost mechanism. By contrast, the
two attacks only execute 99 and 81 times of EXTCODESIZE and SUICIDE, respec-
tively, with the same cost (i.e., 4 million gas) after our mechanism is applied.
Figure 10(a) (y-axis is on a log scale) and Fig. 10(b) shows the gas cost of each
operation in descending order after the attacks when our mechanism used. Note
that these two figures do not include all operations due to the page limit. We can
see that the gas costs of the two under-priced operations become very expensive
(i.e., 457,119 and 37,640 respectively) after attacks. We also find some other
expensive operations (e.g., CALLDATALOAD, CALL) because they are also in the
loop, resulting in over-frequent executions than before. Figure 9 demonstrates
that the execution frequencies of different operations vary. Moreover, the two
under-priced operations (i.e., EXTCODESIZE and SUCIDE) exploited by real attacks
are rarely executed by benign users.

To evaluate our approach against unknown DoS attacks, we synthesize three
attacks by executing three under-priced operations (i.e., EXTCODECOPY, SLOAD



18 T. Chen et al.

PUSH1 EXTCODESIZE.......SUICIDE......
0

5

10

15

20

25

30

35

Operation

Av
e 

ex
ec

ut
io

n 
nu

m
be

r

32.124849619

0.00.0853495521989

Fig. 9. Average execution number of every EVM operation, 10,000 benign transactions
collected from 07:40:00 AM, April 28, 2017 to 01:58:56 PM, April 28, 2017

1

10

100

1000

10000

100000

1e+006

G
as

 C
os

t

OperationEXTCODESIZE
 EXP JUMP

MSTORE
 JUMPI DIV  ADD  POP

DUP1
 PUSH1 ......

457119

(a) EXTCODESIZE

0

2

4

6

8
x 104

G
as

 C
os

t

OperationCALLDATALOADCALL

 EXTCODESIZE
 DUP8

 CALLVALUE GAS
SUICIDE

 PUSH1
 POP  SUB ......

37640

(b) SUICIDE

Fig. 10. Gas of each operation after attacking

Fig. 11. Execution numbers of under-priced operations

and BALANCE) in a loop, respectively, which are similar to the EXTCODESIZE
attack. Note that go-ethereum V 1.3.5 will be affected by the DoS attacks exploit-
ing these operations whereas the latest version of Ethereum has increased their
gas costs. Figure 11 demonstrates that our method reduces the number of execu-
tions of under-priced operations by several orders of magnitude. Therefore, the
answer to RQ1 is:

Our gas cost mechanism can effectively thwart known and unknown DoS
attacks.

7.2 Experiments with Normal Transactions

To evaluate how much additional gas will be charged from normal users by our
mechanism, we first randomly select 10 smart contracts and then replay their
transactions in the original go-ethereum V 1.3.5 and the updated go-ethereum
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V 1.3.5 with our gas cost mechanism, respectively. 84 transactions in total are
replayed, and 15 transactions (2 to one contract and the other 13 to another
contract) out of them incur additional gas by our mechanism. The total gas
consumed by 84 transactions under the original gas cost setting is 2,441,340,
and the total additional gas incurred by our mechanism is 444. Therefore, the
percentage of additional gas charged from benign users is about 0.018%.

As a case study, we detail the experiment with one smart contract. More
precisely, the smart contract is deployed at 0x61F9d1cE56aC1623FeD4e949
D7D420251fef0896. We compile the source and deploy the smart contract in
the private blockchain. There are 37 transactions to that smart contract in total
until April 29, 2017. We do not replay the transaction for contract creation since
it does not trigger the execution of any public functions provided by the smart
contract, nor the 4 transactions with internal transactions because our private
blockchain is isolated from other accounts. Note that an internal transaction is
not a real transaction and will not be stored in the blockchain. Instead, it is
made by calling (via CALL, CALLCODE, DELEGATECALL etc.) an account from a
smart contract. We also skip the transaction running out of gas, and hence we
replay 31 (37 − 1 − 4 − 1) transactions.

The results show that 18 out of 31 transactions consume the same amount
of gas under our mechanism and the original mechanism. The total increment
in gas consumption of the other 13 transactions incurred by our mechanism
is 130, and the largest increment in gas consumption of one transaction is 10.
Please note that the total gas consumption of the 31 transactions under original
mechanism is 1,357,654. That is, the increment in gas consumption due to our
mechanism is negligible (i.e., 0.01%). Hence, the answer to RQ2 is:

Our gas cost mechanism charges negligible additional gas from benign users.

7.3 Different Parameter Settings

We evaluate our mechanism under three different settings as listed in Table 1.
For example, “3(5/1.2)” means that in setting 3, m and α are set to 5 and
1.2, respectively. Please note that the setting 2 is the default setting. Table 1
also presents the execution numbers of under-priced operations and the highest
gas costs of them. For example, “48/1,026,690” in row 2, column 2 indicates
EXTCODECOPY executes 48 times under setting 1 and the gas cost of the 48th
EXTCODECOPY is 1,026,690. Please note that the gas cost of an operation keeps
increasing if its execution number exceeds μi (Eq. (2)).

The experimental results demonstrate that our approach is sensitive to DoS
attacks by setting a small m and a large α. The setting 1 detects attacks
quicker (i.e., the execution numbers of under-priced operations are the lowest)
than the other two settings. For example, the EXTCODESIZE attack executes 48
EXTCODESIZE, and its gas cost reaches 1,026,187 under the setting 1 whereas
the attack executes 328 EXTCODESIZE and the gas cost of EXTCODESIZE reaches
131,049 under the setting 3. The results are as expected since the threshold μi

depends on m and α determines the speed of increasing gas costs.
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Table 1. Execution numbers (before/) and the highest gas costs (after/) of under-
priced operations under different settings

Setting BALANCE EXTCODECOPY EXTCODESIZE SLOAD SUICIDE

1(1/5) 48/1,026,387 48/1,026,690 48/1,026,687 48/1,026,187 22/237

2(3/2) 99/456,819 99/457,122 99/457,119 99/456,619 81/37,640

3(5/1.2) 329/135,590 328/131,052 328/131,049 329/135,390 289/31,440

One may feel strange that SUICIDE presents different trend with the other
attacks under different settings. For example, the gas cost of SUICIDE under the
setting 2 is larger than that under the other two settings, whereas the gas costs
of the other four under-priced operations under the setting 1 reach the largest
value. The reason is that SUICIDE is not the most expensive operation during
attack (as shown in Fig. 10(b)), and thus the execution number of SUICIDE is
influenced by the gas consumption of other expensive operations. Figure 12 shows
the increment in gas consumption of applying 31 transactions to the smart con-
tract at 0x61F9d1cE56aC1623FeD4e949D7D420251fef0896 under three different
settings. The x-axis specifies transactions in short, e.g., 3d1b is the first two
bytes of a transaction hash which is 32 bytes in length. The results reveal that
a setting that is more sensitive to DoS attacks may charge more execution fee
from benign users.
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Fig. 12. Additional gas consumption of 31 transactions under three different settings

We also evaluate whether our mechanism can defend against DoS attacks
exploiting the five under-priced operations under the default setting with dif-
ferent window sizes. We compute avei and stdi of each operation i for different
windows sizes, including 100, 500, 1,000, 5,000 and 10,000. We use the first 16,000
transactions since the launch of Ethereum for experiments, which do not include
attacks. The attacks exploiting the five under-priced operations are conducted
in our private chain for this experiment.

Figure 13 presents the execution numbers of SLOAD with different window
sizes (the experiments of other four under-priced operations produce similar
results). It shows that our method is effective using the parameters computed



An Adaptive Gas Cost Mechanism for Ethereum 21

Fig. 13. Execution numbers of SLOAD with different window sizes

from all window sizes because the under-priced operation executes more than the
threshold μi at any window sizes and hence its gas cost increases during attacks.
More precisely, the original gas cost method allows SLOAD to execute nearly
100,000 times (Fig. 11) whereas our method reduces this number significantly.

We assume all transaction in the windows for computing parameters are
benign. Attackers may want to place crafted transactions into the windows to
affect the process of computing avei and stdi for the sake of evading the detec-
tion. To make our approach more robust, we suggest analysts to set a relatively
large window size (e.g., 10,000) that consists of many transactions. In another
words, a large window size raises the difficulty for attackers to fill the win-
dow with crafted transactions and tamper parameters. Besides, after detecting
an attacking transaction, we can filter out the attacking transactions in the
windows by matching the transaction senders, attached data (specifying which
function to call and providing augments) of transactions, the execution traces of
contracts etc.

Hence, the answer to RQ3 is:

The experimental result show that DoS attacks can be detected quickly and
negligible additional gas is introduced to benign users under different parameter
settings. Our mechanism allows developers to easily adjust parameters with the
evolving of Ethereum.

8 Related Work

DoS attacks have posed a severe threat to the Internet [17,25] and various sys-
tems [10,14] and services [23]. Although DoS attacks on Ethereum have been
reported, there lacks of a systematic study on the attacks and the defense mech-
anisms. To the best of our knowledge, this paper presents the first work on
defending against under-priced DoS attacks on Ethereum.
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BLOCKBENCH [12] is an evaluation framework for measuring the
throughput, latency, scalability and fault-tolerance of private blockchains.
Yasaweerasinghelage et al. propose to predict the latency of blockchain-based
applications using architectural performance modeling and simulation tools [26].
However, they [12,26] do not investigate the consumptions of computing
resources for executing EVM operations. OYENTE [18] is a symbolic execu-
tor for smart contracts which discovers four types of security vulnerabili-
ties. GASPER [9], based on OYENTE, finds under-optimized smart contracts
automatically that cost more gas than necessary. A recent survey [3] reports
that smart contracts suffer from several kinds of vulnerabilities. One kind is
gasless send, indicating that a transaction sender may not consider the situation
that sending Ether to another account is possible to fail due to the out-of-
gas exception. Sergey et al. reveal that smart contracts will suffer from similar
problems that often occur in transitional concurrent programs [22]. However,
they [3,9,18,22] do not consider DoS attacks to Ethereum, which exploit under-
priced EVM operations.

Verification is used for verifying the runtime safety and functional correctness
of smart contracts. Bhargavan et al. propose to translate a smart contract into
F�, a functional language before formal analysis [4]. Similarly, Pettersson and
Edström suggest developing smart contracts in Idris, a functional language, and
using type system to capture errors at compile time [20]. Hirai formally defines
EVM in Lem, an intermediate language similar to a functional language, facil-
itating further analysis and generation of smart contracts [13]. However, they
neither verify nor detect DoS attacks due to under-priced operations [4,13,20].
Hawk is a smart contract system protecting transactional privacy [16]. Town
Crier [27] aims at providing trustworthy data to smart contracts since they need
data out from the blockchain. Juels et al. report that smart contracts can be
used to commit crimes, such as privacy leakage, theft of cryptographic keys [15].
However, they [15,16,27] do not discuss the threats resulting from Ethereum
DoS attacks.

9 Conclusion

We investigate the gas cost setting in Ethereum because it could be exploited
to launch DoS attacks. By proposing an emulation-based framework to auto-
matically measure the resource consumptions of EVM operations, we find that
Ethereum does not assign proper gas costs to operations and it is difficult to
properly assign fixed gas costs to operations for defending against known and
unknown DoS attacks. Therefore, we propose a DoS-resistant gas cost mecha-
nism, which dynamically adjusts the costs of operations according to the num-
ber of executions. Our approach is flexible and secure, and we design a special
smart contract that collaborates with the customized EVM to avoid frequently
updating Ethereum client. Experimental results show that our method effectively
thwarts known and unknown DoS attacks, and introduces negligible additional
gas to benign users.
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Abstract. In the absence of the trusted third party, the cryptocurren-
cies headed by Bitcoin realized the consistency of the distributed ledger
successfully. However, Bitcoin, based on proof of work, has serious waste
of computational resources, poor scalability and bad monetary policy.
Compared with Bitcoin, RSCoin utilizes two-phase commit to construct
a scalable centrally banked cryptocurrency frame, avoiding the waste of
computational resources caused by proof of work. But it does not con-
sider the communication cost of users. We present a user-friendly cen-
trally banked cryptocurrency, UFCBCoin, based on RSCoin. We take
advantage of a representative mechanism that the user entrusts a rep-
resentative to send messages, to reduce half of the communication cost
of the user. We also prove that UFCBCoin is secure theoretically in the
synchronous network communication model we defined, and introduce
an evaluation mechanism to enhance security.

Keywords: Cryptocurrency · RSCoin · Scalability
Evaluation mechanism

1 Introduction

Since Bitcoin has been proposed in [1] in October 2008 and implemented in
January 2009, it has spread throughout the world. The anonymity and decen-
tralization it offers attracts more and more researchers, business and even gov-
ernments. As of March 2017, almost 16 million Bitcoins are in circulation [2],
whose exchange rate is more than 2000 US dollars [3]. Moreover, alternative cryp-
tocurrencies derived from Bitcoin such as Litecoin and ETH have been already
in circulation as a form of payment.

Bitcoin, as the representative of decentralized cryptocurrencies, has gained
great success. However, it is exposed to some problems in the following aspects.

First, Bitcoin is faced with poor scalability [4]. The size of blocks is limited
and cannot be infinitely increased. Each transaction is confirmed when it is
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 25–42, 2017.
https://doi.org/10.1007/978-3-319-72359-4_2
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included in the blockchain with several blocks behind it, while a new block is
generated by miners after finding a mathematical puzzle solution on average
10 min [5]. Due to the block structure and delayed confirmation, it can only
handle 3.3–7 transactions per second. In comparison, VISA [6] had reported
to deal with 2000 transactions per second at least in 2016. Thus improving
scalability is a major challenge for Bitcoin to deal with fast payments [7].

Second, Bitcoin causes serious waste of computational resources by utilizing
proof of work. The mining process relies on a huge amount of computational
power to find a meaningless number to solve the proof-of-work puzzle [5]. The
resource needed for generating a new block is positive correlated to the difficulty
target of puzzle. In the process of generating a new block, a mass of electricity
fritters away.

Additionally, the intrinsic value and sustainability of Bitcoin is questioned in
the centralized society. Because of the elimination of the trusted central bank,
the exchange rate of Bitcoin is out of control, undulating dramatically from less
than 1 US dollar to more than 3000 US dollars. Furthermore, the total gross of
Bitcoin, 21 million, may cause deflation and other economic issues. It is an open
question that how Bitcoin keeps progressing when miners cannot get reward any
more [8], apart from the transaction fee.

Against these problems, RSCoin [10], a centrally banked cryptocurrency
framework was published in 2016, allowing any central bank to deploy mone-
tary currency on it. The central bank makes the monetary policy and authorizes
mintettes to maintain the blockchain. Besides, RSCoin replaces proof of work
with two-phase commit to avoid the waste of computational resources. The cen-
tral bank divides all the miners into shards, also known as mintettes, to validate
and confirm transactions. The users just submit their transactions to a certain
shard of mintettes and gets the valid signatures from the corresponding shard.
If the user gets enough valid signatures in both two phases, the transaction will
be deemed to be confirmed. It is more scalable than Bitcoin because the users
do not need to wait 60 min to confirm transactions. However, from the view
of users, it is not efficient and scalable enough for the reason that the amount
of transaction messages those the user sends and receives is the same with the
mintettes for every transaction. High communication cost for users is a barrier
for RSCoin to be implemented in lightweight devices, e.g. mobile phone. Our
study focuses on reducing the user’s traffic in centrally banked cryptocurrencies.

Our Contributions. We present UFCBCoin, a user-friendly centrally banked
cryptocurrency, inspired by RSCoin. We consider the communication cost of the
user as a measure of performance of centrally banked cryptocurrencies. In more
detail, our contributions are as follows.

Firstly, we present a representative mechanism and describe a user-friendly
centrally banked cryptocurrency based on it. In UFCBCoin, the user randomly
selects a representative to post transactions to other corresponding mintettes on
behalf of itself. By this way, the user’s traffic is transferred to the representative
mintette it selected.



A User-Friendly Centrally Banked Cryptocurrency 27

Secondly, we redefine the security of cryptocurrencies and require that a
cryptocurrency system is secure only if every valid transaction can be confirmed
by the system and every confirmed transaction is valid. We also prove that our
scheme is secure under the assumption that the majority of every shard is honest
in the synchronous network communication model.

Thirdly, we compare RSCoin and UFCBCoin in the aspect of user’s com-
munication cost. For simplification, we assume that each transaction has only
one input and one output. The analysis results show that the communication
cost of the user in our scheme, including all transactions that the user sends and
receives, is nearly halved compared to RSCoin in the best case. In other cases,
UFCBCoin is also more efficient than RSCoin.

Finally, we provide a new evaluation mechanism without additional mes-
sages. In order to restrict malicious behaviour, we propose a more concise evalu-
ation mechanism than RSCoin. We define the degree for evaluating the mintettes
behaviour. The degree of a mintette is determined by the number of valid sig-
natures it created, and the malicious mintette with the lowest degree will be
punished by the central bank.

Related Work. Many researches have focused on solving the problem of scala-
bility and computational resource waste of cryptocurrencies based on blockchain.
Alternative cryptocurrencies based on Bitcoin take efforts to find methods to
replace proof of work. Litecoin, published in 2011, uses scrypt [9] instead of
SHA256 as the proof-of-work algorithm to achieve nearly 2.5 min to generate a
block. PPcoin, published in 2012, reduces the cost of block generation by utiliz-
ing both proof-of-stake and proof-of-work algorithms [12]. Proof of stake avoids
wasting resources by changing computational puzzles into virtual mining. Proof
of space [13] is another method to replace proof of work. Removing a lot of com-
putation, these schemes do shorten the time of the block generation. However,
the mining processes based on scrypt or proof of space depend on the size of
memory or space, resulting in another demand of memory. The simple proof
of stake may cause the security and fairness problems due to the inappropriate
stakes. In these schemes in which the balance is chosen as the stake, the adver-
sary with high balance can allocate the balance reasonably or bribe others to
control the system [14]. When time is considered as the stake [12], the adversaries
can keep some old transactions not being spent to destroy the security.

Others try to modify proof of work into a more efficient and resource-friendly
mechanism. Bitcoin-NG [15] utilizes proof of work to select a leader. The leader
validates and records all transactions until the next leader appears by solving
the proof-of-work puzzle. In this way, the transactions those users submit can
always be confirmed in a short time. But it can not avoid the simultaneous
creation of two or more leaders. It can bring about forks. Byzcoin [16] combines
the Byzantine agreement with proof of work. After selecting leaders by proof
of work, the leaders implement the Byzantine agreement to agree on a set of
transaction. It also causes disagreement in the leader selection phase, and its
security relies on a lower fault tolerance. Elastico [17] tries to find a reasonable
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grouping method to improve the efficiency of transaction confirmation. All nodes
are grouped randomly by proof of work. Only in the particular group, they can
validate and record transactions. Despite the savings of resources, the restriction
on adversarial computing power gets stricter. In all the discussion above, they do
not reckon the communication cost of users because they submit transactions in
the form of broadcast. We consider users’ communication cost as an important
measurement criteria.

Organization of the Paper. The remaining part of the paper is organized
as follows. In Sect. 2 we introduce the background of our study, including the
basics of Bitcoin and RSCoin. In Sect. 3 we present the notation and threat
model in which we formally describe the adversarial attack goal and the defi-
nition of security. In Sect. 4 we elaborate our system in detail focusing on the
interaction among the central bank, mintettes and users. In Sect. 5 we provide a
comprehensive proof of security and comparison with RSCoin in the respect of
users communication traffic. In Sect. 6, we propose an evaluation mechanism to
ensure the security and other improvements on the system. Finally, we conclude
our construction briefly in Sect. 7 and list the main algorithms of UFCBCoin in
the Appendix.

2 Background

We start by describing the basics of Bitcoin and RSCoin briefly, mainly intro-
ducing the whole process of the transaction confirmation in these systems. Our
introduction only focuses on the terms of scalability. Readers can learn more
details from the original Bitcoin paper [1] and RSCoin paper [10].

2.1 Bitcoin

Bitcoin [1] is the most successful decentralized cryptocurrency until now, pub-
lished in October 2008 and implemented in January 2009. It is a peer-to-peer
electronic payment scheme, accepted by 100,000 merchants and vendors until
February 2015.

In the Bitcoin system, the users transfer money through the transactions
among their addresses. The transaction is formed by the payers’ signatures on
the key items, including the origins of money, the transaction value, the recip-
ients’ addresses and the transaction fee. The origin of money is the previous
transaction that the user received but not spent yet. The one who owns the
recipients private key can spend the corresponding Bitcoin. When a transaction
has been created, the user broadcasts it to all nodes in the network. Every node
validates all transaction it receives and transmits the valid one. Among the nodes,
there are many special nodes called miners, responsible for recording the legal
transactions. They record valid transactions on the block. In order to achieve
consistency on the transaction records, the miners compete to find a solution
of a mathematical puzzle. For simplicity, the fastest one can add its new block
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to the blockchain, a data structure storing the transaction set in chronological
order. A transaction is finally confirmed, when it is in the blockchain included
in several blocks.

From the user’s point of view, Bitcoin is struggling between the strengths
and weaknesses. Due to the form of transaction, users do not need to interact
with miners or other nodes. For one trade, each user simply sends a transac-
tion message and then waits for the transaction confirmation. Unfortunately,
considering the security and consistency of the system, the performance and
scalability of the system is poor. The transaction confirmation delay reaches
approximately 60 min as a result of broadcasting latency and the proof-of-work
mining mechanism. Apart from this, every new block is created with a lot of
energy consumption. Some opponents of Bitcoin worry about the stability of the
system when the mining reward gradually diminishes.

2.2 RSCoin

RSCoin [10], a centrally banked cryptocurrency, was released in 2016. Taking
it into account that Bitcoin’s poor scalability, high resource consumption and
worrisome monetary policy, RSCoin presents a centralized cryptocurrency frame-
work which is applicable to multiple cryptocurrencies.

Unlike maintaining only one complete blockchain by all nodes in Bitcoin,
RSCoin is separated into two parts, the generation of the monetary supply and
the maintenance of the transaction ledger. The central bank is a trusted third
party, responsible for money supply and recording the transaction but not trans-
action collection and verification. The central bank authorizes the mintettes to
manage the stage of transaction collection, verification and confirmation. All
mintettes are divided into shards. Every shard is in charge of a set of trans-
actions. Meanwhile, the validation and confirmation of the same transaction
is handled by the different shards. They use a two-phase commit method, com-
posed of the vote collection phase and the commitment phase. The blockchain in
RSCoin is seemed to resemble a distributed database with undeniable property.

Fig. 1. Two-Phase commit in RSCoin [10]
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For simplification, we describe the process of two-phase commit in detail, tak-
ing Bitcoin as an example running on RSCoin. The data structure of transaction
is the same with Bitcoin, where tx := (txprev, addrA, addrB , v, σA) means that
user A transfers vBTC to user B which the money originates from the transaction
txprev that user A received before, and addrA and addrB donate respectively the
address of A and B, and v is the transaction value. As described in Fig. 1 from
[10], the user first learns which shards should be used to validate and confirm
its transaction. Then it enters into the vote collection phase. The user sends tx
to every member of the corresponding shard. After receiving tx, every mintette
validates txprev independently. If txprev has not appeared as an input before, the
mintette returns its signature on tx. Otherwise, return ⊥. Every valid signature
is considered as a vote on the transaction. If A receives more than half number
of the votes, it deems txprev is legal. Then, it turns into the commitment phase.
The user sends tx with the set of valid signatures from previous shard to every
member of the corresponding shard. After receiving tx and a set of signatures,
each mintette validates all the signatures independently. If valid signatures are
more than half, it records tx in its own lower-level blockchain and returns its
signature on it. Otherwise, it abandons tx and returns ⊥. Here, blockchain is
utilized as a distributed ledger [11]. In this method, the set of transactions in
lower-level blockchains maintained by different shards are different. The central
bank ultimately incorporates all lower-level blockchains in the main blockchain,
called high-level blockchain.

In comparison with Bitcoin, RSCoin eliminates unnecessary electricity con-
sumption and decreases the transaction confirmation delay in the way that the
mintettes manage the ledger authorized by the central bank. In the terms of the
whole system, RSCoin certainly improves the scalability. From the view of users,
however, its scalability is hardly ideal in the fact that the communication cost
of the user is as much as the whole mintettes. For users, the communication cost
is too high to transfer a transaction so that it is hard for RSCoin to be deployed
on the lightweight devices such as the smart phone.

3 Notations and Threat Model

In this section, we present the related notations in order to facilitate the descrip-
tion of the system. We introduce the threat model which is modified on the
RSCoin and redefine the security requirement of cryptocurrency schemes.

3.1 Notations

We introduce the notations first. In the system, the main cryptographic building
blocks are hash functions and signature schemes. We denote by H (·) the hash
function and by (SigKeyGen,Sig.Sign,Sig.Verify) the signature scheme. There are
three different roles in the system, the central bank, mintettes and users. We
denote the central bank as CB. The set of mintettes is represented as M . All
mintettes are divided into x shards on average in which every shard is composed
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of q members, with q = 2k + 1, where k ∈ N . mi,j denotes the mintette which
is the jth member in shard i, where i, j ∈ N , i � x and j � q. Every mintette
mi,j is certificated by CB with key pairs (pki,j , ski,j). The user is identified by
(pk, sk). Every user can create its address through calculating addr = H (pk).
In addition, every user has two types of operations called query message and
commit message.

We use the data structure of Bitcoin transaction in the system represented
by (TXprev,ADDRin,ADDR,Vout, {σ}) supporting multiple input and output
addresses. For simplicity, there is only one input address and one output address
for each transaction. The transaction is denoted by (txprev, addrA, addrB , v, σA),
as described in the previous section.

In the system, the central bank and every shard maintain different
blockchains with different functionalities. In a nutshell, the blockchain main-
tained by the central bank is composed of the blockchains of shards.
This blockchain is the higher-level blockchain, denoted HLBC. Similarly, the
blockchain held by each mintette is the lower-level blockchain, denoted LLBCi,j .
Every mintette holds three lists for the transaction validation. Lutxo and Lstxo
contain all unspent transactions and all received transactions which the mintette
is responsible for. Another one contains all valid transaction waiting to be
recorded to the blockchain, denoted by Ltx. In each epoch, every mintette gener-
ates a new block. Meanwhile, the central bank generates a new block by process-
ing all blocks from mintettes in a period. For describing the system, we take the
round as the minimum unit of time. For each user, it can only submit one query
message in a round. In round n, the user selects a mintette as its representative
for two types of messages, denoted rn,query and rn,commit.

3.2 Threat Model

We describe our system in the synchronous network communication model. In
our system, we do not study the blockchain formation in detail, but the interac-
tion among the three roles to maintain the ledger. We assume that the central
bank is trusted and the majority of mintettes is honest in each shard. In other
words, there are k malicious mintettes at most in every shard. We refer to our
model as the (q, k) −bounded model. However, in our system, a valid transaction
can be confirmed by more than half mintettes even if there is no central bank.

The adversarial model in our system is adaptive. We give a brief description
of the adversaries’ attack goals and behaviours. Because of multiple roles in the
system, the goals of adversaries are slightly different.

– If a user is malicious, its goal is to submit an illegal transaction and make it
valid, including double spending attack. The ability of a malicious user is as
follows.
1. It can submit two transactions with the same transaction origin simulta-

neously or change the order of its own transactions.
2. It can take control of a part of mintettes less than the half of every shard

and even conclude with the representative.
3. It is incapable of producing valid signatures from the honest parties.
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– If a mintette is malicious, its goal mainly includes two parts, confirming an
illegal transaction and rejecting a valid transaction. The ability of a malicious
mintette is as follows.
1. It can collude with others only limited by quantity, whose amount is less

than half in each shard. It can also conspire with the users.
2. It can respond or ignore the messages received from the honest users or

mintettes, and even send some illegal messages.
3. If an adversarial representative mintette, which a user chosen, intends to

refuse the transaction submission, it will not send the transaction to other
mintettes for validation in consideration of his own communication cost.

4. The same as the adversarial users is that they cannot forge signatures
from the honest users or mintettes.

3.3 Security

In comparison with no double spending or double spending detection, we define
system security from a positive perspective. The definition of security we pro-
posed is universally applicable in both cryptocurrencies and distributed ledgers,
regardless of whether there is a trusted third part in the system.

Definition 1. A cryptocurrency system is secure only if every valid transaction
can be confirmed by the system and every confirmed transaction is valid.

Taking into account different constructions of the systems, the definition of
valid and confirmed transaction may vary. In our system, a transaction is valid
only if the input transaction has not appeared as the input of any valid trans-
action in more than half corresponding lower-level blockchains. A transaction is
confirmed in our system means that it is recorded in more than half correspond-
ing lower-level blockchains.

The security definition we proposed above is stronger than no double spend-
ing. The security a system can reached is restricted. We call the system reaches
the bounded security when it is secure under some assumption. In our sys-
tem, we refer it as (q, k) −bounded security that the system is secure in our
(q, k) −bounded model.

4 Construction of UFCBCoin

In this section, we present a user-friendly centrally banked cryptocurrency
scheme. We intuitively explain the basic process of the scheme. The main algo-
rithms of UFCBCoin is presented in the Appendix. From the view of the lower-
level blockchains, the entire process of the scheme can be divided into two parts,
the validation phase and the confirmation phase. In the validation phase, the
mintettes only verify the transactions that users submit without logging them
in their lower-level blockchains. In contrast, the mintettes in the confirmation
phase are only responsible for recording the valid transactions. We propose the
representative mechanism in each phase which can reduce the communication
cost of users. The basic algorithms of UFCBCoin is presented in the Appendix
(Fig. 2).
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Fig. 2. The frame of UFCBCoin

– In the validation phase, a user requests to verify the input of the transaction
is legal or not.
1. The user finds the corresponding shard of mintettes and selects a repre-

sentative mintette randomly through H (txprev). The user sends a query
message with the transaction tx to the representative mintette.

2. Upon receiving a query message and tx, the representative mintette does
as follows.

– It first determines whether the transaction is verified by itself. If it is
true, then it validates that the input of the transaction has not been
any other transactions input before and the value of txprev is no less
than the value of tx. If txprev is valid, the representative mintette
returns its signature on tx.

– Then it removes txprev from Lutxo and records it in Lstxo. Otherwise,
it returns ⊥ and sends the query message with tx to the remaining.

– Finally it sends other corresponding mintettes with the query message
and tx.

3. Upon receiving the query message and tx, every mintette validates txprev

in the same way with the representative mintette except relaying mes-
sages.

4. In the process of the validation phase, each signature the user received
can be considered as the evidence of the related mintette, wherein the
legal signature can be viewed as a vote on the legal transaction.

– If the user receives more than half signatures than the shard size, then it
turns into confirmation phase.
1. The user finds the corresponding shard of mintettes for confirmation and

selects a representative mintette from the shard in the same way with the
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validation phase. It collects all signatures associated with tx, and sends
a commit message including all signatures and tx.

2. Upon receiving a commit message with tx and a set of signatures, the
representative mintette does as follows.

– It judges that the transaction is in charge of itself or not. If it is true,
then it verifies the signatures respectively.

– If the total legal signatures on tx is more than half the size of the
shard, tx will be deemed valid by the representative mintette. Then
it returns its signature on tx and sends the commit message and tx
to other related mintettes in the same shard. Besides, it adds tx to
its own Ltx waiting for recording in the next lower-level block.

– If not, it returns ⊥ and sends the commit message and tx to the
remaining mintettes in the same shard.

3. Upon receiving the commit message with tx and a set of signatures, every
mintette validates txprev in the same way with the representative mintette
except relaying messages.

4. In the end of this stage, if the user has a reception of majority signatures
from confirmation mintettes, it can ensure that the transaction will be
recorded in more than half lower-level blockchain. It is meaning that the
transaction that it submitted is confirmed.

5 Analysis of Security and Scalability

We now proceed to analyze the system from two aspects of security and scala-
bility. We show that our system achieves security in the (q, k) −bounded model.
We theoretically analyze the scalability of our system and compare with the
RSCoin.

5.1 Security

We show that our system is secure in the (q, k) −bounded model. Recall that in
this model all mintettes are randomly divided into m shards in which each shard
is composed of q mintettes. The majority of mintettes is honest in each shard
while at most k mintettes are malicious where k =

⌊
q
2

⌋
.

In our informal definition, the security of cryptocurrencies should satisfy the
following two properties:

– Validation. Any transaction confirmed is valid.
– Confirmation. Any valid transaction will be confirmed in a reasonable

period of time.

Because of different roles and different attack goals, we analyze security in a
variety of cases.

– From the user’s point of view, a malicious user aims to submit an illegal trans-
action and to make it valid. In the worst case, the adversarial user colludes k
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mintettes respectively in two corresponding shards, one of which is in charge
of the validation and the other is in charge of the confirmation. Moreover,
the user can control the representative mintettes helping it to implement the
attacks. In the validation phase, for every query the user submits, it can
receive k signatures at most, not exceeding half in number. Even though the
user submits the transaction with k signatures into the confirmation phase,
the majority of the related mintettes do not record the invalid transaction
into their own lower-level blockchains. The malicious user can not get half of
votes on both the validation and confirmation phases. Eventually, this kind
of attack cannot succeed.

– From the mintette’s point of view, a malicious mintette can destroy the secu-
rity in two ways that confirming the invalid transactions or rejecting the valid
transactions.
1. Considering that the malicious mintette aims to confirm an invalid trans-

action, it is the same with the case of the malicious users. The mintette
cannot conspire with more than k − 1 mintettes in every corresponding
shard to get over half valid signatures of the invalid transaction. The
system is secure under this circumstance.

2. Considering that the malicious mintette aims to reject a valid transaction,
the security of the system is analyzed as follows.

– We first focus on the validation phase. Assume that the user is lucky
to select an honest mintette as the validation representative in the
first round. It can give an honest response and forward information.
Although the malicious mintette may not return a valid signature,
the user will still receive at least k + 1 valid signatures.

– If the user chooses a malicious representative, the representative
returns ⊥ to it. Then the user will select another representative to
submit transaction once more. In the worst case, the user may select
k consecutive malicious representatives until the k + 1th selection is
honest. The probability of this extreme case is quite small. There is
a theoretical analysis of probability in the next part. Eventually, the
user can get half valid signatures on the transaction and turn to the
confirmation phase.

– The analysis of security in the confirmation is similar with the valida-
tion phase. Overall, in the worst case, the user can still gain success
through k + 1 selection in each of two phase.

5.2 Scalability

Compared with the RSCoin, we exactly reduce the transaction communication
cost of users by the representative mechanism. Meanwhile, the overall commu-
nication cost of the system and the throughput of the mintettes rise slightly. In
this part, we compare the communication and computational cost between two
systems.

Recall the model first. The threat models of two systems are generally con-
sistent. Assume that there are only one input address and one output address in
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every transaction. All mintettes are divided into x shards on average and each
shard is composed of q members, where q = 2k + 1, k ∈ N . The process of the
two phases is so similar that we can only analyze the transaction communication
cost of the validation phase. Suppose that T transactions should be processed
per second.

In RSCoin, a user submits a transaction to q corresponding mintettes and
waits for q response messages. Obviously, the total amount of communication
messages handled by the system is 2q per transaction. The total communication
messages the user processed are 2q per transaction, including q query messages
and q received messages. The amount of messages the related mintettes handled
is the same. The transaction communication cost of the system is 4qT per second.

In our scheme, because of the introduction of the representative mechanism,
the scalability analysis of the system is relatively complicated. Whether the
representative the user chosen is honest or not has a direct impact on the com-
munication volume of the system. Here we assume that the user does not select
an honest representative until the ith round, where i ∈ N+, i ≤ k + 1. Pr (i)
denotes the probability that the user does not select an honest representative
until the ith round:

Pr (i) =
Ai−1

k · (k + 1)
Ai

2k+1

(1)

Now we analyze the communication costs of different roles in different situations.
In the best case, the user is so lucky that it selects an honest mintette in the
first round. It creates one query message and receives at most q signature mes-
sages from the shard of validation mintettes, totally q + 1 transactions for the
user in this stage. For the representative, it receives a query message, returns a
signature and sends the query message to other q−1 mintettes. For the ordinary
mintettes, each of them receives a query from the representative and sends its
own signatures to the user. All mintettes in the related shard send and receive
3q − 1 messages totally. Above all, the transaction communication cost of our
scheme is 4qT per second, identically with the RSCoin.

In other cases, the user may find an honest representative first in the ith
round. For the previous i − 1 failed selections, the user sends only one query
message and gets one ⊥ response in each round. For each malicious mintette, it
does not forward the target messages considering its communication costs. The
user deals with 2i−2 transaction messages in the first i−1 rounds. Meanwhile, the
first i−1 malicious mintettes hold a communication volume of 2i−2 transaction
messages. The communication volume of the system in the ith round is consistent
with the best case. Consequently, the transaction communication costs of the
system, user, and the whole mintettes are 4q + 4i − 4, q + 2i − 1 and 3q +
2i − 3 respectively, equal to 8k + 4i, 2k + 2i and 6k + 2i. In the worst case,
the user may try k + 1 times to submit its transaction. The user sends and
receives 4k + 2 messages and all mintettes send and receive 8k + 2 transactions
in total. Therefore, the communication volume of the system is 12k+4 messages
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per transaction. Above all, assuming that k is too large, the average of the
communication volume of the system is

k+1∑

i=1

Pr (i) · (8k + 4i) <
16 (k + 1)2

2k + 1
. (2)

The average of the communication volume of the user is

k+1∑

i=1

Pr (i) · (2k + 2i) <
4 (k + 1) (k + 2)

2k + 1
. (3)

The average of the communication volume of the mintettes is

k+1∑

i=1

Pr (i) · (6k + 2i) <
4 (k + 1) (3k + 2)

2k + 1
. (4)

Table 1 illustrates the comparison between RSCoin and UFCBCoin in terms of
the communication volume for one transaction. When k is quite large, in general,
the whole communication volume of our scheme is nearly equal to the RSCoin.
The amount of the transactions a user handles for one transaction in our scheme
is nearly half of that in RSCoin. The amount of the transactions the mintettes
handle for one transaction in our scheme is nearly one and half of that in RSCoin.

Table 1. Comparison of communication cost between RSCoin and UFCBCoin in
general

k User Mintettes Total

RSCoin UFCBCoin RSCoin UFCBCoin RSCoin UFCBCoin

0 2 2 2 2 4 4

1 6 4.67 6 8.67 12 13.33

2 10 7 10 15 20 22

3 14 9.2 14 21.2 28 30.4

4 18 11.33 18 27.33 36 38.67

5 22 13.43 22 33.43 44 46.86

6 26 15.5 26 39.5 52 55

However in practice, the amount of mintettes in a system is limited. The
number of mitettes in one shard affects the system communication cost. Table 2
illustrates the comparison of communication volume between RSCoin and our
scheme in the average case when k is from 1 to 13. Observing that when k grad-
ually increases, the total communication volumes of two systems are almost the
same, while the communication volume of user in our scheme is approximately
half of RSCoin. Our scheme is superior to RSCoin in the view of users with a
not-too-large shard.
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6 Evaluation Mechanism and Improvements

Our scheme is inspired by the RSCoin. However, the form of shards places restric-
tions on the security of the system. When the number of shards increases, the sys-
tem achieves security hardly when less than half of total mintettes is malicious. In
this section, we propose a new evaluation to guarantee the mintettes’ behaviours.
We also offer some aspects that can be improved on the basis of UFCBCoin.

6.1 Evaluation Mechanism

Without adding new data structures, the evaluation mechanism can be imple-
mented directly in our scheme. In fact, a valid signature for a transaction is
the proof of the honest behaviour of the mintette. In the end of a period, every
mintette submits its lower-block to the central bank, together with the set of sig-
natures of the transactions included in the new lower-block. The valid signatures
can be used to evaluated the mintette’s behaviour by the central bank.

In the confirmation phase, upon receiving a transaction and a set of sig-
natures of it, the mintette (no matter it is the representative or not) judges
whether the number of valid signatures is over a half firstly. If the transac-
tion it refers is valid, it invokes the evaluation mechanism. Every mintette has
a degree in other mintettes lower-blocks with its valid signatures as witness.
degreen,j (pkm,i) denotes the amount of valid signatures that mintette mn,j

received from the mintette whose public key is pkm,i. In the end of a period,
every mintette submits all degreen,j (pkm,i) to the central bank. As the central
bank receives all lower-blocks and degrees, it counts the legal transactions and
all degrees. Because the degree is decided by all others, the central bank counts
the degree for the validation phase as follows.

degree′ (pkm,i) =

∑
n∈[x]\{m}

∑
j∈[q] degreen,j (pkm,i)

x · q
. (5)

But degree′ is calculated from the valid signatures from the validation phase.
For the confirmation phase, ones degree is rated by the central bank based on the
amount of final legal transactions that its submits, denoted by degree′′ (pkm,i).
Therefore, the actual degree that the mintette gets is

degree (pkm,i) = degree′ (pkm,i) + degree′′ (pkm,i) . (6)

At the start of next period, the central bank rearranges the mintettes and pun-
ishes the mintettes whose degrees are too low. By this way, the risk of malicious
behavior of adversaries is increased.

6.2 Improvements

Representative Selection. In the basis of UFCBCoin, the users select the rep-
resentatives randomly in different phases, byH (txprev) andH (tx). After the intro-
duction of the evaluation mechanism, the user can select the representative in cor-
responding shard according to the degree the mintette gained. It is reasonable that
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the mintette with higher degree is likely to be honest. In this way, the mintette with
the highest degree is the only representative of this shard in the current period.
We can consider it as the leader during this period. Assume that the majority of
each shard is honest. If there is a valid transaction which can not be confirmed
finally, the related representative must be punished by the central bank.

We can also adopt the proof-of-stake mechanism to select the representative.
At the start of the period, every mintette can compute a hash function with its
degree as the input to verify that the output is in a certain range or not. When
the mintette solves the proof-of-stake problem, it broadcasts its public key with
the proof of solving the proof-of-stake problem. If no one in a shard can pass
the proof of stake mechanism, the central bank will modify the proof-of-stake
problem and the corresponding mintettes will try again.

Incentivizing Mechanism. The miners are incentivized by the transaction fee
and the mining rewards in Bitcoin. But the limited total number of Bitcoin and
the transaction fee cause the problems of stability and fairness. In UFCBCoin,
the central bank can not only punish the adversaries, but also can incentivize the
honest. There are two kinds of incentives. For the short-term honesty, the central
bank can increase the honest mintettes’ degrees by the evaluation mechanism.
In the case of representative selection by solving proof-of-stake problem, these
mintettes have higher probabilities to be chosen. For the long-term honesty, the
central bank can reward some money to the honest, which the money comes
from the adversaries by punishing their malicious behaviours.

7 Conclusion

In this paper, based on RSCoin, we present a user-friendly centrally banked
cryptocurrency scheme firstly considers the communication costs from the view
of users. We utilize a representative mechanism to assist the users to communi-
cate with the mintettes the central bank has authorized. We also demonstrate
the security of our scheme and give a complete theoretical analysis of the scala-
bility and efficiency. By the representative mechanism we proposed, we decrease
communication costs of the users to the half of RSCoin. We finally propose a
new evaluation mechanism to enhance the security of our scheme.
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Appendix

In this appendix, we provide the main algorithms of UFCBCoin. Algorithm 1
is run by a user to submit and validate a transaction, including the represen-
tative selection. Algorithm 2 is run by the mintettes to validate or confirm a
transaction. Algorithm 3 is used to check the transaction has been spent or not.
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Algorithm 1. Submitting and validating a transaction run by user A
Input: A transaction tx (txprev, addrA, addrB , v, σA) that user A created before;

TIMEOUT is the maximum time for each phase, and t and t′ are timers. owners (tx)

is used to find the shard of mintettes who are charge of tx.

1: bundle ← φ;

2: M ← owners (txprev);

3: mi ∈R M ;

4: Send tx to mi;

5: On receiving a signature σ on tx from M ;

6: if (txprev �→ (pkm, σ)) /∈ bundle AND t < TIMEOUT then

bundle ← bundle ∪ {txprevx �→ (pkm, σ)} ;

7: end if

8: M ′ ← owners (tx);

9: m′
j ∈R M ′;

10: Send (tx, bundle) to m′
j ;

11: On receiving a signature σ′ on tx from M ′;
12: if (txprevx �→ (pkm′ , σ′)) /∈ bundle′ AND t′ < TIMEOUT then

bundle′ ← bundle′ ∪ {tx �→ (pkm′ , σ′)} ;

13: end if

14: if |bundle′| ≥ q
2
then

return True;

15: else

return False;

16: end if

Algorithm 2. CheckNotSpend, run by a mintette
Input: A transaction tx (txprev, addrA, addrB , v, σA) and a mintette identifier m;
1: if m /∈ owners (txprev) then

return ⊥;
2: else
3: if tx ∈ Lm,utxo OR (txprev �→ tx) ∈ Lm,stxo then

Lm,utxo ← Lm,utxo\ {txprev};
Lm,stxo ← Lm,stxo ∪ {(txprev �→ tx)};
return (pkm, Sig.Sign (pkm, tx));

4: else
return ⊥;

5: end if
6: end if
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Algorithm 3. Validating and confirming a transaction run by a mintette m

1: On receiving a transaction tx (txprev, addrA, addrB , v, σA) from user A;
2: M ← owners (txprev);
3: if m ∈ M then

(pkm, σm) ← CheckNotDoubleSpend (txprev, m);
4: end if
5: Send (pkm, σm) to user A;
6: Send tx (txprev, addrA, addrB , v, σA) to all others m′ ∈ M ;
7: On receiving a transaction tx (txprev, addrA, addrB , v, σA) from a mintette;
8: M ← owners (txprev);
9: count = 0;

10: if m ∈ M then
(pkm, σm) ← CheckNotDoubleSpend (txprev, m);

11: end if
12: Send tx (txprev, addrA, addrB , v, σA) to all others in M ;
13: On receiving (tx, bundle) from user A;
14: M ′ ← owners (tx);
15: if m ∈ M ′ then
16: for all (pk, σ) ∈ bundle do
17: b ← Sig.Verify (pk, tx, σ);
18: count = count + b;
19: end for
20: end if
21: if count > q

2
then

Lutxo ← Lutxo ∪ {tx};
Ltx ← Ltx ∪ {tx};
Send (pkm, Sig.Sign (pkm, tx)) to user A;
Send tx (txprev, addrA, addrB , v, σA) to all others in M ′;

22: else
Send ⊥ to user A;
Send tx (txprev, addrA, addrB , v, σA) to all others in M ′;

23: end if
24: On receiving (tx, bundle) from a mintette;
25: M ′ ← owners (tx);
26: count′ = 0;
27: if m ∈ M ′ then
28: for all (pk, σ) ∈ bundle do
29: b ← Sig.Verify (pk, tx, σ);
30: count′ = count′ + b;
31: end for
32: end if
33: if count′ > q

2
then

Lutxo ← Lutxo ∪ {tx};
Ltx ← Ltx ∪ {tx};
Send (pkm, Sig.Sign (pkm, tx)) to user A;

34: else
Send ⊥ to user A;

35: end if



42 X. Han et al.

References

1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
bitcoin.org/bitcoin.pdf

2. Bitcoin Block Explorer (2016). https://blockchain.info/
3. Wikipedia. Economics of Bitcoin (2016). https://en.wikipedia.org/wiki/

Economics of bitcoin
4. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to Better — How to Make Bitcoin a

Better Currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 29

5. Bonneau, J., Mille, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: S&P, pp.
104–121 (2015)

6. Visa: Visas transactions per second (2016). https://usa.visa.com/content library/
modal/benefits-accepting-visa.html

7. Karame, G., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: CCS, pp. 906–917 (2012)

8. Carlsten, M., Kalodner, H.A., Weinberg, S.M., Narayanan, A.: On the instability
of Bitcoin without the block reward. In: CCS, pp. 154–167 (2016)

9. Haferkorn, M., Quintana Diaz, J.M.: Seasonality and interconnectivity within cryp-
tocurrencies - an analysis on the basis of Bitcoin, Litecoin and Namecoin. In:
Lugmayr, A. (ed.) FinanceCom 2014. LNBIP, vol. 217, pp. 106–120. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28151-3 8

10. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: NDSS (2015)
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Abstract. We envision a scenario where contract signers put their
portable document format (PDF) contract into a blockchain applica-
tion that outputs a signed contract, while blockchain nodes don’t know
the contract content, contract signers’ identities and contract signa-
tures. Comparing to current centralized online contract signing ser-
vices, blockchain applications could avoid single point of failure, internal
attacks and data loss. More importantly, the application also provides
fairness and privacy properties. By fairness, we mean that contract sign-
ers obtain a signed contract simultaneously, or obtain nothing, or some
signer obtains a singed contract at the cost of paying contract coins.
By privacy, we mean that contract contents, signatures, and signers’
identities are hidden from blockchain nodes. At last, we support RSA
signatures whose verification is embedded in most PDF readers, which
makes the whole solution practical.

Keywords: Contract signing · Fairness · Privacy · Blockchain · Practice

1 Introduction

Blockchain is roughly a growable list of linked data blocks distributed in many
dynamic nodes. A list of linked data blocks are nothing to amazing since
researchers found the similarities of the blockchain data structure to a basic data
structure linked list and to a basic hash function structure Merkle-Damgard con-
struction. However, a blockchain could grow longer and the data in the longest
chain are consistent with a high probability among many dynamic nodes. This
requires a practical consensus mechanism, which could be viewed as the soul of
a blockchain. Bitcoin provides the proof of work as a practical consensus mecha-
nism. With a good incentive for minters, Bitcoin blockchain records almost con-
sistent Bitcoin transactions among globally dynamic nodes for about eight years.

Bitcoin is a witness of the possible success of blockchain techniques. Many
alternative coins appeared after Bitcoin. From the website “coinmarketcap”,
we could find more than 1000 kinds of coins. The top one is certainly Bit-
coin. The second is Ethereum, which redefines part of the consistent data in a
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 43–61, 2017.
https://doi.org/10.1007/978-3-319-72359-4_3
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blockchain as Turing machine states and supports a Turing complete scripts.
Programs on the Turing machine are called as smart contracts, which are exe-
cuted consistently in many nodes. The third is Ripple, which is designed as a
basic coin for a global financial balancing network. Ripple has get supported by
more than 20 banks. Generally, some alternative coins are designed with new
features for general usage, some are designed for special application scenarios.

Following the approach, we propose a contract coin for business companies
to sign commercial contract easily. We observe that the conditions for electronic
contracts are mature:

– Digital signatures are widely accepted as Law evidences. From the wiki item
“electronic signatures and law”, we could find worldwide legislation status
concerning the effect and validity of electronic signatures. Here the electronic
signatures include cryptographic digital signatures. United States, European
Union, China, Japan etc. have legislations about electronic signatures.

– Certificate Authorities (CAs) are widely available. Although there is no a
globally trusted CA, there are many national or regional CAs. These CAs
could provide certificates for commercial companies in the same nation or
region to sign contracts.

– Portable document format (PDF) file is widely used. PDF is a file format
used to present documents in a manner independent of application software,
hardware, and operating systems. Especially, PDF/A is an ISO-standardized
version of the PDF specialized for use in the archiving and long-term preserva-
tion of electronic documents. This makes PDF a practical choice for contract
signing.

However, practical online services to produce a signed contract are not well
developed.

– Trustable online contract signing services (CSSs) are rare. An online CSS
should grantee the fairness in a contract signing process. That is, if party A
sends a signed contract to party B, a CSS should make sure that party A
could receive party B’s signed contract back within an expected time period.
The best practice is to employ an offline trustable third party (TTP) to solve
possible disputes. However, why should contract signers trust a CSS to be
fair? Employees in a CSS may be corrupted to help one party of contract
signers to get return.

– Proposed online CSS solutions usually consider no privacy. Blockchain based
CSSs could solve the internal attack problem and could be trustable. How-
ever, data on a blockchain are typically open to all. If we don’t consider the
privacy property, everybody could know the identities of signers and contract
signatures. Note that, as a commercial contract, the identities in a contract
could make people think a lot about their collaboration and affects their
stock prices. And the contract signatures may be used to guess some valuable
information about a contract since most commercial contracts are uniform.
A valid signature may help an attacker to guess some sensitive information
about the contract. The attacker also has a chance to rebuild a valid signed
contract with the contract signatures.
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Currently, Liu et al. [26] proposed a fair exchange smart contract to help
an offline TTP to be stateless without privacy. Wan et al. [39] proposed
distributed timestamp servers as witnesses and storage servers of contracts
without privacy. Tian et al. [22] gave a blockchain CSS with privacy. How-
ever, they only support a pairing based signature [43] that is not default in
PDF [2].

Our contract coin system fills the gap to give a practical blockchain CSS.
Basically, we propose a new RSA blinded verifiable encrypted signature (RSA-
BVES) scheme to exchange RSA signatures on blockchain. Since RSA signatures
are supported by PDF/A specification, the exchanged signature could really be
filled into a PDF contract file to form a signed contract. The contract signing
procedure needs the underlying blockchain system to support a signature veri-
fication algorithm RSA-BVESVer in the RSA-BVES scheme which makes it
different to Bitcoin.

We notice the hard fork of Bitcoin to BTC and BCC recently, and believe that
it is difficult to incorporate our special script opcode into the Bitcoin system.
And the transaction fee of the Bitcoin system is a little high. Ethereum platform
could support our system theoretically. However, Ethereum platform does not
support some cryptographic operations. If these operations are embedded in a
smart contract, the smart contract will be fat and will cost a lot of gas similar
to that in [33]. Additionally, as the cost of supporting more script commands,
smart contracts may exist subtle program flaws and need to be checked carefully
[30]. These considerations make us finally choose to propose a new coin specially
for our application. We believe our application serves as a positive application
of cryptographic currencies since we only use them as deposits to sign PDF
contracts used in our real life, which is against the cases in [27].

1.1 Related Works

Contract Signing. At present, there are many proposals on contract sign-
ing. According to their degree of dependence on a TTP, we give a very brief
classification survey.

The first category includes no TTP protocols. Blum [12] gave a protocol to
exchange RSA secret factors based on Rabin encryption scheme. Contract signers
first claim “A contract is valid if and only if the signer knows the RSA secret
factors related to the RSA modules in the contract”. The signers then fairly
exchange their RSA secret factors to produce a contract. Even [16], Goldreich
[21], Okamoto and Ohta [32], Stini and Mauve [37] also gave similar protocols.

The second category includes protocols with online TTPs. Deng et al. [14]
proposed a fair authenticated email protocol in which a TTP transmits each
email and the corresponding email receipt. Franklin et al. [17] also employed a
TTP to ensure the fairness of each transaction. Alawi et al. [3] required a TTP
to record every contract to be signed.

The final category needs an offline TTP. Ben-Or et al. [10] introduced the
method of using an offline TTP to solve a premature stop problem. The prob-
lem is that if one party stops a protocol too early, the other party has to wait
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indefinitely. A TTP could act as an arbiter, allow the party who has to wait indef-
initely to apply for arbitration. Asokan et al. [6] used a TTP to recover encrypted
signatures when disputes occur between signers. Garay et al. [18], Ateniese [7],
Wang [40] also used TTPs in a similar way. Huang et al. [24] employed a TTP
to produce a ring signature when there is a dispute.

Blockchain. Dwork and Naor [15] proposed a method for dealing with spam,
which required an email sender to compute some moderately expensive function
of the message. This work is taken as an early-stage example of the “proof-of-
work” consensus mechanism. Back [1], Vishnumurthy [38] developed the mecha-
nism in different fields. Nakamoto [31] proposed to use the mechanism in a pure
cash system, resulting in the Bitcoin system. Since then, there have been many
alternative coins similar to the Bitcoin system, including Litecoin, Primecoin
[35], Namecoin [29] and so on. Wood [41] gave a yellow paper to describe the
basic mechanism of the Ethereum. As an innovative platform, the Ethereum
enables developers to quickly design a new coin system. The blockchain is a
common underlying technique of all these digital currencies and the Ethereum.

Protocols on the Blockchain. Barber et al. [8] gave a fair exchange protocol
to construct a bitcoin transaction mixer. Andrychowicz et al. [4] gave a simulta-
neous timed commitment protocol that could be used to construct a two party
fair computation protocol. Kiayias et al. [28] introduced a general fair multiparty
secure computation protocol. Zhao [44] presented a secret ballot protocol based
on the blockchain. While there are many other blockchain protocols, we focus
on possible contract signing protocols below.

Wan [39] proposed a fair contract signing protocol that could be implemented
on blockchain. In their paper, contract signers Alice and Bob first negotiate a
contract signing deadline, and then claim in the contract that the contract is
valid only if both parties sign the contract before the deadline. Next Alice signs
the contract with the deadline, and sends the signature to Bob. And then Bob
signs the contract with the deadline and Alice’s signature, and sends everything
about the contract to their timestamp servers (Blockchain nodes). Finally, the
timestamp server verifies their signatures, checks the deadline, and generates a
timestamp on their contract. The fairness property is a little weak since within
the deadline, Bob get Alice’s signed contract while Alice gets nothing. The times-
tamp servers know the signers’ identities and everything of their contract.

Liu et al. [26] proposed a smart contract to build a stateless TTP of a fair
exchange protocol. Basically, Alice sends Bob a verifiable encrypted item and its
expectation of Bob’s item. Bob responds its verifiable encrypted item to Alice.
Alice then sends the plain item to Bob and Bob sends back its plain item to
Alice. If Bob does not respond to Alice after Alice’s first message, Alice may
invoke an “abort” function in their smart contract. If Alice does not sends its
plain item, Bob could ask a TTP to resolve. The TTP decrypts Alice’s encrypted
item, returns it to Bob, and invokes an “resolve” function in their smart contract
to record Bob’s plain item in the blockchain, where Alice could get Bob’s plain
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item from a possible later “abort” invocation. The fairness of the proposal is the
same as that of [6]. It is better if there is no TTP involved at all.

Tian et al. [22] proposed a privacy preserving fair contract signing protocol
on blockchain. In their proposal, Alice and Bob produce a joint commitment
Bitcoin transaction where the output script includes a new script opcode BV
to verify a bilinear equation. Then Alice and Bob produce an open transaction
including their BVES signatures to finish their protocol. They first coin the name
of BVES and give a bilinear based BVES scheme. We here propose a RSA-BVES
scheme which could be used in PDF files directly.

1.2 Contributions

We propose a contract coin system based on which contract signers could produce
signed PDF contracts:

– Contract coin: We introduce two time functions used as output script opcodes,
which could exactly specify what operation is expected in which time period.
We also define a verification opcode to execute the RSA-BVESVer algo-
rithm, which is used to verify RSA-BVES signatures. Except these modifica-
tions and some parameters, we currently do not need to modify other aspects
of the Bitcoin system.

– RSA-BVES scheme: Basically, we turn the RSA version of verifiable encrypted
signature (VES) in [7] into a RSA-BVES scheme. Roughly, in the RSA version
of VES, there is a signer, a verifier and a TTP. In a RSA-BVES scheme, the
signer keeps unchanged, the verifier acts as a blockchain node, and the TTP is
a normal signature extractor. We add some steps for the extractor and signer
to get an agreement about the signing contents, public keys and a freshly
shared secret. The secret is used to hide messages to be signed.

– Fair PDF based contract signing (FPCS) protocol: It is roughly an application
of the RSA-BVES scheme on the blockchain. A small exception is that we
use a temporal key pair to sign a contract. Contract signers hold a chain of
certificates so that they know whether a temporal key is the expected one.
However, blockchain nodes could only get a temporal public key and have no
chance to link that key pair to an identity. So the signers’ identities are hidden
from the blockchain nodes. Only the contract signers could link a transaction
on the blockchain to a real signed PDF file, which could be viewed as a tamper
resistant evidence of the contract signing process when necessary.

1.3 Organizations

The next section describes some concepts and symbols of Bitcoin system.
Section 3 is the RSA-BVES scheme and proofs. Section 4 is the contract coin
and the FPCS protocol with security and performance analysis. The last section
concludes the paper.
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2 Bitcoin

The Bitcoin system contains a chain of blocks. A block contains a header and
some Bitcoin transactions. Each transaction has an identity which is the hash
value of the entire transaction. All identities of the transactions in a block form
the leaves of a Merkle tree. The root of the Merkle tree is in a field in the block
header. So the transactions are bound together with a block header. Another
field in the block header is the hash value of the previous block header. This
field makes the blocks a chain. New blocks are generated under the proof of
work consensus mechanism. Minters compute hash values of header candidates
to generate and broadcast a new block. When most minters verify and accept
the new block, it is added to the chain, and the transactions in the new block
are confirmed once.

2.1 Basic Assumptions of Bitcoin System

There are some common assumptions about the Bitcoin system [5,28].

1. Assume that the parties are connected by an insecure channel.
2. Assume that each party can access the current contents of the Bitcoin

blockchain.
3. Assume that each party can post transactions on the Bitcoin blockchain

within a maximum delay maxD.
4. The confirmed transactions on the blockchain are tamper resistant.

The assumptions 2 and 3 state that each party could connect to the Bitcoin
blockchain. These assumptions are not true if the observations of Heilman
et al. [23] and Gervais et al. [20] could not be fixed. Their attacks could lead to
double spending, which breaks the baseline of any electronic cash system. We
believe the Bitcoin system will take advices in [19,20,23,25] to defend against
such attacks. So as long as the Bitcoin system is usable, the assumptions 2 and
3 hold.

2.2 Bitcoin Transactions

A Bitcoin transaction has some inputs and outputs. We follow the work in [5] to
express a transaction in a box. In Fig. 1, we give two transactions TA and TB .
The producer of the transactions is expressed as A and B. They are actually
two public keys. If an input of TB contains the TxID of TA and an output
index of TA, the input of TB should be connected to the output of TA. The
connection is represented as a line with an arrow in Fig. 1. TB is usually called
as the redeeming transaction of TA.

The input of TB contains the input script (is) that matches the output script
(os) of TA. Roughly, the input script of TB contains a signature SigB and the
public key B. The signature message of TB contains the output script of TA

and all of the contents of TB except the input script. This signature message is
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denoted by [TB ]. Sometimes, one need to express the content of a transaction
excluding its input script, which is called as a simplified transaction [44]. It is not
equivalent to the signature message of a transaction that includes some informa-
tion of its connected transaction. The output script of TA contains a hash value
of the public key B and a signature verification opcode. To connect the TB to
TA, minters match the hash value in the output script of TA to the hash value
of the public key in the input script of TB , and verify the signature in the input
script of TB . The connection requirement of TA is denoted by os(body, δB). That
is, the output script requires a signature message and a signature to form verifi-
cation conditions. Here the verification condition is mainly to verify a signature,
which is denoted by verB(body, δB). An output of a transaction also includes a
value representing Bitcoins. The symbol C and δC in Fig. 1 denote the public
key of any user C and their signature.

d B d B
TA

is:SigA([TA])

os(body,δB):verB(body, δB)
val: d B

d B
TB

is:SigB([TB])

os(body,δC):verC(body, δC)
val: d B

Fig. 1. Two connected transactions.

The Bitcoin system includes many other aspects such as chain forking, min-
ing, networking and so on. These contents are not closely related to the contract
signing protocol and are omitted here.

3 The RSA-BVES Scheme

Tian et al. [22] coined the name BVES since the verifiers in a BVES scheme
knows nothing about the message to be signed. Their scheme relies on a special
bilinear signature scheme [42,43]. We here give the RSA version.

3.1 Construction

We design a RSA-BVES scheme based on the full domain hash (FDH) RSA
[9] scheme and a VES scheme in [7]. A RSA-BVES scheme consists of three
players, a signer Alice, a signature extractor Bob, and a verifier Minter. With
the help of the Minter, Bob gets a signature from Alice on a message m known
by Alice and Bob. The scheme consists seven algorithms. Three of them are the
KeyGen, Sign, and Verify algorithms which rewrites the FDH RSA scheme [9].
A PreSignAgree algorithm builds a special label l for the message to be signed
for Alice and Bob. The signature corresponding to the label l is produced by the
RSA-BVESSign algorithm. Minter executes the RSA-BVESVer algorithm
to verify the signature for the label. Bob uses the Ext to extract a normal
signature from Alice.
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– KeyGen: On input 1k, it picks a pair of random distinct (k/2)-bit safe primes
and multiplies them to produce a modulus N . It also picks, at random, an
encryption exponent e ∈ Z

∗
φ(N) and computes the corresponding decryption

exponent d so that ed = 1 mod φ(N). The public verifying key is (N, e)
and the private signing key is (N, d). There is a full domain hash function
H : {0, 1}∗ → Z

∗
N .

– Sign: On inputs a message m and the signing key (N, d), it computes a
signature

δ = H(m)d mod N.

– Verify: On inputs a message signature pair (m, δ) and the verifying key
(N, e), it checks whether

δe = H(m) mod N.

– PreSignAgree: Suppose Alice wants to sign a message m for Bob.
1. Alice sends her certificate of (N, e) to Bob.
2. Bob verifies Alice’s certificate and selects randomly g1 ∈ Z

∗
N and a k-bit

integer xB ∈ {0, 1}k. He computes g = g21 mod N and yB = gxB mod N .
He sends back Alice g, yB .

3. Alice selects randomly a k-bit integer xA ∈ {0, 1}k and an integer r ∈
{0, 1}k. She computes s = yxA

B mod N , yA = gxA mod N , yr = gr mod N
and mb = seH(m) mod N . Alice sets l = (N, e, g, yB , yA, yr,mb) and
sends (yA, yr,mb) to Bob.

4. Bob computes s′ = yxB

A mod N , and verifies whether mb = s′eH(m) mod
N . If all validations are good, Bob sets l′ = (N, e, g, yB , yA, yr,mb).

– RSA-BVESSign: On inputs l, d and r, Alice randomly selects t ∈ {0, 1}k,
computes δb = m2d

b yr
B mod N , ye = ye

B mod N , yer = yr
e mod N , yt = gt mod

N , yet = yt
e mod N , c = H(mb, yer, yr, ye, g, yet, yt), and z = t − rc. She sets

δB = (δb, c, z) as the RSA-BVES signature.
– RSA-BVESVer: On inputs l′ and δB, Minter computes wer = δe

bm
−2
b mod

N , y′
e = ye

B mod N , wet = y′z
e wc

er mod N , and computes c′ =
H(mb, wer, yr, y

′
e, g, wet, wt). If c = c′, Minter returns true.

– Ext: On inputs δb, yr, s′ and xB , Bob computes δsqu = δb(yxB
r )−1s′−2 mod N ,

and gets a normal signature H(m)d from δsqu by the Euclidean algorithm.
That is, suppose 2α + eβ = 1, then H(m)d = δα

squH(m)β mod N where α
and β are two integers.

3.2 Security Model

The security model is based on the VES security model in [13] where an adver-
sary has a signing oracle. In the unforgeability game, we remove an arbitration
oracle that provides normal signatures. The reason is that our adversary in the
unforgeability game may be Bob. That is, our adversary could extract normal
signatures by itself with private keys.
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Unforgeability. The unforgeability property is defined in a game played by a
simulator and an adversary. The adversary has to forge a selected message. The
unforgeability game is defined as follows:

– Init: The simulator gives the adversary a public key as a signature verification
key. The adversary selects a message m∗ as the target, and selects a key pair
to extract a normal signature from a RSA-BVES signature. The simulator
interacts with the adversary to produce a label l∗.

– SignQueries: The adversary adaptively requests at most qs messages
{m1, . . . ,mqs}. The simulator responds to the ith query with a valid RSA-
BVES signature and a label (li, δBi) where i ∈ {1, . . . , qs}.

– Output: The adversary should output a valid RSA-BVES signature δ∗
B to

the label l∗, and wins the game.

The advantage of the adversary is directly defined as the probability that the
adversary wins the game. A RSA-BVES scheme is unforgeable if the adversary’s
advantage is negligible.

Opacity. The opacity property is defined in a game played by a challenger and
an attacker. The attacker has to extract a normal signature from a RSA-BVES
signature after it is fully trained.

The opacity game is defined as follows:

– Init: The challenger gives the attacker a public key as a signature verification
key.

– SignQueries: The adversary adaptively requests at most qs messages
{m1, . . . ,mqs}. The simulator responds to the i-th query with a valid RSA-
BVES signature δBi with a label li where i ∈ {1, . . . , qs}.

– ExtQueries: The adversary adaptively requests at most qb RSA-BVES sig-
natures and labels {(δB1, l1), . . . , (δBqb , lqb)}. The simulator responds to the
i-th query with a normal signature δi where i ∈ {1, . . . , qb}.

– Output: To win the game, the adversary should output a valid normal sig-
nature δ∗ for a RSA-BVES signature (l∗, δ∗

B) that has never been requested.

The advantage of the adversary is directly defined as the probability that the
adversary wins. A RSA-BVES scheme has the opacity property if the adversary’s
advantage is negligible.

3.3 Unforgeability Proof

Claim. If the FDH RSA scheme [9] is unforgeable under the chosen message
attack, the RSA-BVES scheme is unforgeable according to the unforgeability
definition.

Proof. Suppose a simulator Sim. The simulator tries to break the FDH RSA
that is known secure under the chosen message attack. The strategy of Sim is to
run a RSA-BVES adversary Adv against the unforgeability property. Sim and
Adv play as follows:
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– Sim takes as input a public key (N, e) of a FDH RSA scheme. Sim then
sends (N, e) to Adv as a PreSignAgree message.

– Adv receives (N, e), computes (g, yB) as Bob, and replies Sim (g, yB) as
another PreSignAgree message.

– Adv selects a message as m∗ and sends it to Sim.
– Sim computes (y∗

A, y∗
r ,m∗

b) as Alice in the step 3 of the PreSignAgree algo-
rithm and sets l∗ = (N, e, g, yB , y∗

A, y∗
r ,m∗

b). Sim returns l∗ to Adv.
– Adv then asks Sim to sign messages mi �= m∗, 1 ≤ i ≤ qs.
– For each signing request mi, Sim computes (s, yA, yr,mb) as Alice in the

step 3 of the PreSignAgree algorithm. Sim takes mi as a chosen message,
asks the FDH RSA to produce a signature δi = H(m)d mod N . Sim then
computes δsqu = δ2i mod N , δb = s2δsquyr

B . Sim then computes (c, z) as the
RSA-BVESSign algorithm. Finally, Sim sets li = (N, e, g, yB , yA, yr,mb)
and δBi

= (δb, c, z), and returns (li, δBi
) to Adv.

– When the adversary produces a forged RSA-BVES signature δ∗
B match-

ing to the label l∗, Sim verifies the RSA-BVES by the RSA-BVESVer
algorithm. If it is a valid RSA-BVES signature, Sim computes (δ∗)2 =
δ∗
b (yr

B)−1(s∗)−2 mod N and get δ∗ by the Euclidean algorithm.

The simulation is sound since Sim feeds Adv with qualified RSA-BVES signa-
tures. So Adv is expected to produce a valid δ∗

B corresponding to l∗. Sim could
extract δ∗ from δ∗

B as an output of the chosen message attack game. The advan-
tage of Sim is the same as that of Adv except a negligible probability. Since the
FDH RSA is secure under the chosen message attack, the RSA-BVES scheme is
also secure according to the unforgeability definition here.

3.4 Opacity

Claim. If an ElGamal encryption scheme under a decisional generalized
Diffie-Hellman assumption [11,36] is sematic secure, the RSA-BVES scheme has
the opacity property.

Proof. Suppose a challenger Cha. The challenger tries to break the sematic
security of an ElGamal encryption scheme with public parameters (N, g, yB).
The strategy of Cha is to run a RSA-BVES scheme attacker Tac against the
opacity property. Cha and Tac play as follows.

– Cha selects e to form a public key (N, e) and sends it to Tac as a PreSig-
nAgree message.

– Tac then asks Cha to sign messages mi, 1 ≤ i ≤ qs.
– Cha has no private signing key. So Cha maintains a random oracle H

to set δe
i mod N = H(mi) for a randomly selected δi. Cha randomly

selects i∗ ∈ qs. If i �= i∗, Cha computes (si, gi, yBi, yAi, yri,mbi) as Alice
and Bob in the PreSignAgree algorithm. It computes δbi = s2i δ

2
i yri

Bi,
and computes (ci, zi) as the RSA-BVESSign algorithm. Next, Cha sets
li = (N, e, gi, yBi, yAi, yri,mbi) and δBi

= (δbi, ci, zi), and returns (li, δBi
)
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to Tac. If i = i∗, Cha sets g, yB as public parameters of the ElGamal encryp-
tion scheme. Cha computes yAi∗ and si∗ as the RSA-BVESSign algorithm.
It then computes m0 = s2i∗δ2i∗ , randomly selects m1 ∈ QR(N). Cha then
asks the ElGamal encryption scheme (m0,m1) to obtain an encryption of
mb ∈ {m0,m1} as (δbi∗ , yri∗). Without ri∗ , Tac randomly selects c∗ ∈ Z

∗
N

and z∗ ∈ {0, 1}2k, and sets c∗ as the random oracle output of a query
(mbi∗ , weri∗ , yri∗ , y′

ei∗ , weti∗ , wti∗) where the computations are according to
the RSA-BVESVer algorithm. Tac then sets li∗ and δBi∗ , and sends Tac
(li∗ , δBi∗).

– Tac could ask Cha to extract a normal signature from (lj , δBj
), 1 ≤ j ≤ qb.

– For each extraction queries, Cha simply computes H(m) from mbj in lj and
returns the selected δj to Tac.

– When Tac produces a normal signature δj∗ , Tac wins if (lj∗ , δB∗
j
) has not

been extracted.

The simulation of Cha is not perfect since δbi∗ may be not qualified. Suppose
Tac has a probability ε1 to distinguish the bad simulation and stops when Tac
feels the simulation is wrong. Then Cha could guess b = 1 to win the sematic
security game of the ElGamal encryption scheme. However, if Tac could not
distinguish a bad simulation, it should always produce a qualified output with
an advantage ε2. If j∗ = i∗, Cha could judge mb and win the sematic security
game. The probability of j∗ = i∗ is 1/qs since Tac knows nothing about i∗.

So if Tac could extract a normal signature from public labels and RSA-
BVES signatures with an advantage ε2 or could distinguish a bad simulation
with an advantage ε1, Cha could wins the sematic security game of the ElGamal
encryption scheme with an advantage ε1 + (1 − ε1)ε2/qs. The ElGamal encryp-
tion under a decisional generalized Diffie-Hellman assumption [11,36] could be
proven sematic secure similar to a standard ElGamal encryption scheme under a
standard decisional Diffie-Hellman assumption. So the advantage of Tac should
be negligible.

4 Contract Coin and FPCS Protocol

4.1 Contract Coin

We add some new script opcodes to the Bitcoin system. We coin the name
contract coin and use the symbol C to denote contract coins.

– BF (t) opcode: It specifies a time period. The beginning time point is the
height or time when the transaction is recorded. The ending time is the begin-
ning time plus t blocks or seconds. If the current time is in the time period,
the BF (t) function returns true. Otherwise, the BF (t) function returns false.

– AT (t) opcode: It is similar to the BIP 65 proposal of Bitcoin [34]. It specifies
a time point after which the function returns true. The beginning time point
of AT (t) is just the ending time of BF (t).
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– BV (l, δ) opcode: We redefine the BV opcode in [22]. It is now parameterized
as a label l and a signature δ. It runs the RSA-BVESVer algorithm and
returns the result of the algorithm.

– Parameter modifications: The contract coin system modifies the block size,
block producing time and so on of Bitcoin system for a well accommodation
of contract signing applications.

All these modifications make our system different to Bitcoin. The value of
the contract coin could be determined by the market. As it has value, it could
be used as deposit in the following contract signing protocol.

4.2 FPCS Protocol

Suppose two contract signers party A and party B. Party A and party B should
find a common CA as their identity trust root. Party A has a pair of long term
key (pkA, skA) and pkA is in a certificate CertA issued by the common CA.
Party B similarly has a key pair (pkB , skB) and pkB is in a certificate CertB .
Now Party A and Party B want to sign a PDF contract file C. The contract has
an agreed value about d C.

The goals of the protocol are as follows:

– If party A and party B exchange the contract’s signatures, no one will lose
contract coins.

– If party A and party B do not exchange anything, no one will lose contract
coins.

– If only one party obtains a signature on the contract, the party should lose d C.
– Minters could not infer the contract to be signed and the identities of contract

signers.

The details of the protocol are as follows. Figure 2 shows all the transactions
in the protocol.

– BeforeBlockChain Phase:
1. Party A produces a temporal RSA key pair (NA, eA, dA). Party A then

uses skA to sign the temporal public key (NA, eA) to produce a temporal
certificate TCA. Now Party A sends CertA and TCA to party B.

2. On receiving CertA and TCA, party B verifies that the CertA is trustable,
and the signature in TCA is valid. If the verifications are passed, party
B produces a temporal certificate TCB including a temporal public key
(NB , eB) similar to party A. And party B produces (gA, yAB) as specified
in the step 2 of the PreSignAgree, and sends CertB , TCB , (gA, yAB) to
party A.

3. On receiving CertB , TCB , (gA, yAB), party A verifies CertB and TCB sim-
ilar to party B. If the verifications are passed, party A produces (gB , yBA)
as specified in the step 2 of the PreSignAgree. And then party A
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computes sA, yAA, yAr and mAb as specified in the step 3 of the PreSig-
nAgree. Then, party A sends (gB , yBA), yAA, yAr, mb to party B. Party
A sets lA = (NA, eA, gA, yAB , yAA, yAr).

4. On receiving (gB , yBA), yAA, yAr and mb, party B verifies mAb as specified
in the step 4 of the PreSignAgree. If the verification passed, party B sets
l′A = (NA, eA, gA, yAB , yAA, yAr). Party B then computes sB , yBB , yBr,
mBb as specified in the step 3 of the PreSignAgree. Then party B sends
yBB , yBr, mBb to party A. Party B sets lB = (NB , eB , gB , yBA, yBB , yBr).

5. On receiving yBB , yBr, mBb, party A verifies mBb as specified in the step
4 of the PreSignAgree. If the verification passed, party A sets

l′B = (NB , eB , gB , yBA, yBB , yBr).

– BlockChain Phase:
1. Joint Commit Transaction: Party A finds an unspent transaction TA

with d C. Party A sends the TxID of TA to party B. Party B finds an
unspent transaction TB with the same d C. And party B sends the TxID
of TB to party A. Now Party A could produce a partially joint commit
transaction Commit as follows:
(a) The input script includes the signature of Party A.
(b) Party A specifies two outputs:

• The first output script requires body, δA, δB and δAB as inputs. The
boolean condition requires that either within time t there is a valid
signature δA from party A and the BV (lA, δAB) algorithm returns
true, or beyond time t, there is a valid signature δB from party B.
The first output has a value d C.

• The second output script similarly requires body, δA, δB and δBB

as inputs. The boolean condition requires that either within time
t there is a valid signature δB from party B and the BV (l′B , δBB)
algorithm returns true, or beyond time t, there is a valid signature
δA from party A. The second output has the same d C value.

Party A then sends the partially joint commit transaction to Party B.
Party B checks the two outputs. It checks the output values and output
scripts. Note that Party B has l′A and lB , knows transaction identities of
TA and TB. Party B checks that the signature of Party A could possibly
redeem TA. If all checks passed, party B adds its own signature to the
input scripts field. And Party B broadcasts the joint commit transaction
Commit to the contract blockchain.

2. Open Transaction: If the Commit transaction appears on the
blockchain on time, party A produces a RSA-BVES signature δAB as spec-
ified by the RSA-BVESSign algorithm. Party A produces a transaction
OpenA as follows:



56 H. Tian et al.

(a) The input script includes the signature of Party A and the RSA-BVES
signature δAB .

(b) Party A specifies an output with d C. The output script only requires
body and a signature from party A. The boolean condition requires
that the signature from party A should be valid.

Party A then broadcasts its OpenA transaction.
Similarly, after party B finds that the Commit transaction appears on the
contract blockchain on time, party B produces a RSA-BVES signature
δBB as specified by the RSA-BVESSign algorithm. And then party B
produces and broadcasts a OpenB transaction as party A.

Contract signers may stop the contract signing procedure if the
expected Commit transaction does not appear after an expected time
period. To do so, one party may simply redeem their deposit and stops.
For example, party A waits for half an hour, but the Commit transaction
does not appear. Party A then redeem TA and quits the contract signing
procedure.

3. Claim Transaction: If the OpenA transaction appears on the contract
blockchain on time and the OpenB transaction does not appear even when
the AF (t) function returns True, party A produces a ClaimA transaction
as follows:
(a) The input script includes the signature of Party A.
(b) Party A specifies an output with d C. The output script only requires

body and a signature from party A. The boolean condition requires
that the signature from party A should be valid.

Party A then broadcasts the transaction to get the deposit of party B.
Similarly, party B could get the deposit of party A if the OpenA transac-
tion does not appear on the contract blockchain on time.

– AfterBlockChain Phase:
1. If the OpenB transaction appears on the contract blockchain on time,

party A could extract a RSA signature from (lB , δBB) in the scripts of
Commit and OpenB transactions. Party A runs the Ext algorithm with
inputs δBb in δBB , yBr in lB , s′

B and xBA of yBA. It is expected to produce
a valid RSA signature with respect to (NB , eB).
Similarly, party B could produce a normal RSA signature with respect to
(NA, eA).

2. Party A now could put the RSA signature with respect to (NB , eB),
and the temporal certificate TCB, and the certificate CertB as a whole
evidence list of Bob’s signature on the contract C. Party A puts these
evidences into the PDF format contract to form a signed contract of
party B.
Similarly, party B could produce a signed contract of party A.
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d C d C

Commit(in : TA, TB)

is1:SigA([Commit])

os1(body,δA, δB , δAB):

(BF (t) ∧ verA(body, δA) ∧ BV (lA, δAB))

∨ (verB(body, δB) ∧ AT (t))

val1: d C

is2:SigB([Commit])

os2(body,δA, δB , δBB):

(BF (t) ∧ verB(body, δB) ∧ BV (lB , δBB))

∨ (verA(body, δA) ∧ AT (t))

val2: d C

d C

d C

OpenA(in:Commit1)

is:SigA([OpenA]), ⊥, δAB

os(body,δA):verA(body, δA)

val: d C

d C

d C

OpenB(in:Commit2)

is:⊥, SigB([OpenB ]), δBB

os(body,δB):verB(body, δB)

val: d C

d C

d C

ClaimA(in:Commit2)

is:SigA([ClaimA]), ⊥, ⊥
os(body,δA):verA(body, δA)

val: d C

d C

ClaimB(in:Commit1)

is:⊥, SigB([ClaimB ]), ⊥
os(body,δB):verB(body, δB)

val: d C

d C

Fig. 2. A fair PDF contract signing (FPCS) protocol

4.3 Security Analysis

Claim. The FPCS protocol is fair for party A and party B, and keeps contract
signatures and signers’ identities private to blockchain nodes.

Proof. Party A and party B in the “before blockchain” phase establish common
labels. Party A has lA and l′B . Party B has l′A and lB . According to the steps in
the “before blockchain” phase, lA = l′A and l′B = lB .

Then at the “blockchain phase”, party A produces a partial Commit trans-
action. The output script in the Commit transaction specifies t, lA and l′B . Party
B could verify that lA and l′B are the same as l′A and lB . Party B could also check
the time parameter t for a quality evaluation. That is, t is not too big or small.
If party B satisfies the three parameters, party B checks the signature of party
A and the linkage to TA. If all verifications pass, party B believes that party A
provides a good transaction. Party B should sign the transaction and broadcast
it out. If party B stops too long time, party A could redeem TA to falsify the par-
tial Commit transaction. There is no premature stop problem here. If party B
signs and broadcasts the Commit transaction, party A and party B redeem their
TA and TB simultaneously. And the time counter for this transaction begins.

Note that we assume party A and party B could access blockchain contents.
After the Commit transaction is included in a block, party A and party B have
the following choices:

– Within time t, party A and party B produce their OpenA and OpenB transac-
tions, and these transactions are included in a block. This is the expected case.
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Party A and party B could extract normal signatures from the OpenB and
OpenA transactions, and could get their deposit back.

– Within time t, party A and party B broadcast nothing. After time t, party
A gets the deposit of party B and party B gets the deposit of party A. Since
the deposit of both parties are the same, no one losses contract coins.

– Within time t, one party, say B, broadcasts its OpenB transaction. Then after
time t, party A has no chance to get the deposit back, and party B could get
the deposit of party A as a compensation. So party A get a signed contract of
party B at the cost of losing the deposit. Note that we require that the deposit
should have a similar value as the contract to be signed. So the compensation
should satisfy party B.

Minters could get RSA-BVES signatures (lA, δAB), (l′B , δBB). According to
the opacity property, no minters could extract a normal signature from them. So
the contract signature is hidden. The public keys (NA, eA) in lA and (NB , eB)
in l′B are temporal keys selected in the “before blockchain” phase. Except party
A and party B, no one knows the linkage of these keys to contract signers’
identities. So the contract signers’ identities are hidden.

In summary, the FPCS protocol could achieve the design goals of fairness
and privacy.

Remark 1. A small detail is about the communication channel of party A and B
in the “before blockchain” phase. Since certificates are transmitted in that phase,
if the communication channel is not secure, an attacker may link temporal keys
on the blockchain to real signers’ identities. So we suggest a secure channel for
party A and party B.

4.4 Performance Analysis

We use the symbol tcomm to denote the time to transmit a message, the symbol
tme to denote the modular exponentiation time. We assume one modular expo-
nentiation to sign a temporal certificate. Suppose party A and party B begins
the FPCS protocol at time t0. Then the “before blockchain” phase mainly needs
two rounds of communication time 4tcomm and eighteen modular exponentia-
tions 18tme. At time about t0 + 4tcomm + 18tme, party A begins the blockchain
phase. Party A signs the partial Commit transaction and sends it to party B. So
at the time about t0+5tcomm+19tme, party B receives the partial Commit trans-
action. Party A signs it and broadcasts it to the blockchain nodes at the time
about t0 +5tcomm +20tme. Since we suppose the maximal delay of a transaction
is maxD. At the time t1 ≤ t0+5tcomm +20tme +maxD, the Commit transaction
should appear on the blockchain. Then before the time t1 + t − maxD, party
A and party B should broadcast their OpenA and OpenB transactions. Before
the time t1 + t, OpenA and OpenB should appear on the blockchain. Roughly,
before the time t1 + t + 3tme, party A and party B could get a signed contract.
In summary, the maximal contract signing time is 5tcomm + 20tme + maxD + t
where t > maxD.
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The communication cost of party A is three times unicast and one time broad-
cast. Party B needs two times unicast and two times broadcast. The computation
cost of party A or party B is mainly about 19 modular exponentiations.

5 Conclusion

We give new script functions and name the modified Bitcoin system as contract
coins. On the contract coin system, we build a fair PDF based contract signing
protocol that could hide contract signatures and signers’ identities. The core of
the contract signing protocol is a RSA-BVES scheme that could transmit a RSA
signature in a verifiable encryption fashion without the leakage of the message
to be signed. Next, we shall adjust parameters to evaluate the overhead and
network latency in a real contract coin system.
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Abstract. Based on the decentralized Bitcoin network, this paper pro-
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behaves in the execution phase of exchange; (2) TTP-freeness, meaning
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through one-time address. Of independent interest, we propose a new
primitive called committed key generation that converts committed mes-
sage into public/private key paring, specifically, an ECDSA key pair used
in the Bitcoin in our construction, with non-interactive zero-knowledge
proof. This tool allows us to bind a committed file with a transaction
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1 Introduction

As the basis of E-commerce, fair exchange over Internet has increasingly impor-
tant significance in the modern society. Broadly speaking, two potentially dis-
trusted parties, say Alice (A for short) and Bob (B for short) want to exchange
digital items in a fair manner, which means that by the very end of the exchange,
either each participant gets prospective item, or neither participant does. Digital
items here could be regarded as its owner’s signature in most cases, thus, it’s
of great significance to focus on the fair exchange of digital signatures on the
Internet.

The gradual release protocol was the first paradigm proposed to resolve fair
exchange problems, which only needs two parties to be engaged in. Even et al.
[17] raised the corresponding protocol of contract signing in 1985. Afterwards,
Okamoto [23] put forward specific exchange protocol. In the exchange each party
releases the its secret bit by bit, meaning that either party has a slight advantage
of one bit over the other in every round. Besides, it also takes many information
interactions between parties. After that, online TTP (third trusted party) was
first involved to propose a new purchase protocol by Cox et al. [13], improving
fairness to some extent. And Gollman et al. [28] raised relative non-repudiation
scheme in 1996. However, the TTP has to stay online during the whole exchange
process, or even simply relaying the message to parties, which makes it of great
difficulty to keep transmission channel reliable. Based on this consideration, Bao
et al. [5] and Asokan et al. [4] put forward a more efficient fair exchange protocol
with offline TTP, which includes the TTP to guarantee fairness only in the event
of disputes. Without participation of TTP in most cases, it decreases the cost of
time and money in some way. In 2004, Chen et al. [12] gave a contract signing
protocol without TTP, namely concurrent signature, to solve fair exchange of
signature in the random oracle model. It has gradually become a new hotspot
due to no participation of TTP and fairness guarantee.

In summary, fair exchange problem has been studied for over three decades
due to its extensive applications and inherent characteristics. However, either
the gradual release protocol or fair protocol with online (or offline) TTP can-
not guarantee complete fairness while circumventing the reliance on the TTP.
Although Chen has proposed the concurrent signature scheme to solve the prob-
lem, it seems hard to witness its wide range of application at present.

Bitcoin is a peer-to-peer digital network proposed by Satoshi [22] at 2008. it’s
widely agreed that Bitcoin is the first practical decentralized digital payment
system, which substitutes the trusted bank in the way that all electronic trans-
actions are visible to any network nodes (see Miers et al. [21] for more details).
Bitcoin use one-time ECDSA signature to endorse bitcoin transfer and achieve
pseudonym based on elliptic curves which has shown a powerful tool in cryp-
tography [27]. More importantly, the employment of this cryptographic scheme
makes it rather secure than some traditional payment paradigms. Apart from
simple transactions, it supports creating complex transactions by setting certain
conditions for redemption of the output of transactions, with its original script
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language. Later, Barber and Boyen [6] raised some proposals in 2012 to optimize
Bitcoin, making it a better e-cash payment system. Also, that Bitcoin system
is energy-consuming and not environment sustainable [11], and some work has
been proposed to address this problem with proof of stake (PoS) [25]. However,
these proposals need more time to be recognized. Although other analogous dig-
ital currency system (e.g., Zerocash [7], Litecoin, and Dash) has been presented
since then, Bitcoin is still believed to be the most well-developed, robust and
widespread e-cash system.

1.1 Our Contribution

As a decentralized digital system, Bitcoin has inspired many new ideas to resolve
some traditional cryptographic problems. Since Bitcoin deploys the ECDSA sig-
nature scheme1 to keep its transactions working accurately, we focus our atten-
tion on achieving the exchange of digital signatures with Bitcoin. And, we here
design a novel primitive called committed key generation denoted as FMK, with
which we can convert any committed messages m into an ECDSA key pair
(skm, pkm) embedded in the Bitcoin transactions, thereby translating the release
of digital signatures into the broadcast of corresponding transactions. By com-
bining the primitive with Bitcoin transactions, we propose a new TTP-free fair
exchange scheme with monetary penalization for digital signature exchange and
demonstrate the concrete construction meanwhile.

Based on Bitcoin, the exchange can be implemented without any TTP. The
construction consists of two phases: preparation phase and execution phase. In
the first phase, each party computes the key pair with respect to its message
content by calls of the committed key generation FMK, and pays a deposit of its
digital signature via Bitcoin. Here, the deposit is some bitcoins of value higher
than that of the signature itself to achieve strong misbehavior penalization. Dur-
ing the execution phase, the honest party that releases the valid digital signature
by signing Bitcoin transaction timely can successfully redeem the deposit. How-
ever, the misbehaving party that does not release valid signature timely will be
penalized by losing the deposit. In other words, we guarantee the fairness of the
participants through the penalization mechanism that the honest party will be
compensated whenever the adversary misbehaves.

By means of address pseudonym, Bitcoin provides the users with privacy to
some extent. And the transactions deployed here is designed masterly, which
makes two parties may release valid signature asynchronously. Through appro-
priate extension, the scheme can also be extended to multi-party fair exchange
of digital signatures and other Bitcoin-like environments, thereby may having a
wide range of application scenarios.

1 The security parameter λ equals a 128-bit number viewed as discrete logarithm
security level.



TTP-free Fair Exchange of Digital Signatures with Bitcoin 65

1.2 Related Work

To solve fair exchange problems, the gradual release protocol was first proposed
in [17,23]. However, either party has a slight advantage of one bit over the other in
every round of the interactions. Later protocols with TTP [4,5,13,28] involved the
third party while guaranteeing fairness, giving raise to some inefficiency in other
ways. Chen’s work [12], namely concurrent signature also seems few applications
to practical scenarios in spite of abandoning any TTP in the exchange. To the
best of our knowledge, fair exchange protocol with offline TTP [4,5] is the most
well-developed protocol to resolve fair exchange problems.

Besides, Jayasinghe et al. [18] constructed an anonymous optimistic fair
exchange protocol based on Bitcoin. However, Bitcoin not only occupies some
kind of trade anonymity, but provides a decentralized secure environment for
interactions between the stakeholders. A scheme of secure multi-party compu-
tations on Bitcoin was introduced in 2013 by Andrychowicz et al. [1,2], who
also put forward a fair two-party computation construction afterwards. How-
ever, the two-party computation construction was infeasible then. Concurrently,
Bentov et al. [8] gave a functional overview of Bitcoin system to design fair pro-
tocols in 2014, including secure multi-party computing, multi-gambling, and fair
exchange.

Either these work only gives a functional design to achieve fair exchange with
Bitcoin, without defining concrete implementation, or relative constructions were
infeasible then. Different to [1] about signature exchange, we focus on taking the
ECDSA-based signature deployed in Bitcoin as the digital signature scheme,
thereby constructing such a specific and practical scheme for digital signature
exchange between two parties. Moreover, the committed key generation primitive
FMK we proposed here may own some potential to other contexts.

1.3 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, we present some prelim-
inaries employed in our fair exchange scheme of digital signatures. In Sect. 3, we
introduce our basic scheme with system model and new tools. In Sect. 4, we then
give a concrete construction about contract signing in the random oracle model.
Section 5 discusses the security of the construction in terms of completeness and
fairness, and analyzes the performance of the novel primitive committed key gen-
eration. In Sect. 6, we involve its possible variants, and future work. In Sect. 7,
we make a conclusion about our scheme in short.

2 Preliminaries

Before introducing the system model, we briefly review some cryptographic
building blocks deployed in the fair exchange scheme.
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2.1 Collision-Resistant Hash Function

With regard to message m to be signed, we simplify it by viewing its digest as a
random oracle. To make it more practical, we instead employ a collision-resistant
one-way hash function H : {0, 1}∗ → {0, 1}L where L stands for the length of
the digest satisfying the following properties:

1. For any m ∈ {0, 1}∗, it’s easy to compute hash value h = H(m) ∈ {0, 1}L;
2. Given h, it’s hard to find any message m such that h = H(m);
3. Given m, it’s hard to find another message m′ such that H(m) = H(m′);
4. It’s hard to find two messages m,m′ such that H(m) = H(m′).

Note that we discuss properties in the sense of polynomial time. Dang [16] has
provided some secure hash functions, of which SHA-256 is deployed in the Bitcoin
system.

2.2 Non-interactive Zero-Knowledge Proof

Assume that there is one player A who informs player B that he possesses some
secret information s, zero-knowledge proof of knowledge is a method by which A,
say prover, can prove to B, say verifier, that the statement A possesses the secret
information s is true, without disclosing any information apart from the state-
ment itself. Non-interactive zero-knowledge proof of knowledge (NIZK) is one of
that which may help the prover convince the verifier with only one information
tuple. We refer the reader to [10,26]. Besides, we assume that the zero-knowledge
proof system here is a special honest verifier non-interactive zero-knowledge proof
of knowledge (HVNIZK for short), i.e. the proof system release nothing extra
information to the honest verifier, but it does notown security against a cheating
verifier. Cramer and Bitansky discussed these concepts in [9,14] respectively.

Informally, given a language L, a general NIZK system consists of a triple of
polynomial algorithms (KeyGen,Prove,Verify) as follows:

– KeyGen(1λ) → (PK,VK). Taking as input a security parameter λ, the key
generator KeyGen probabilistically samples a proving key PK and a corre-
sponding verification key VK. The algorithm can be run during an offline
phase by the verifier or someone verifier trusts. Both keys are claimed as
public parameters to prove/verify membership in L.

– Prove(PK, x, w) → π. Taking as input x and PK, the prover Prove produces
a proof π for the statement x ∈ L given a witness w.

– Verify(VK, x, π) → b. Taking as input x, proof π, and VK, the verifier Verify
outputs b = 1 if he is convinced that x ∈ L.

An NIZK system satisfies the following properties.

Completeness: For every security parameter λ, x ∈ L, and w ∈ RL(x),
the prover can convince the honest verifier with overwhelming probability.
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In other words, algorithm Verify outputs b = 1 with probability 1 − negl(λ)
in the experiment:

(PK,VK) → KeyGen(1λ);π → Prove(PK, x, w); b → Verify(VK, x, π)

where negl() is a polynomial-time function.
Soundness: If the prover does notknow the witness, he can only convince

the honest verifier with negligible probability. Namely, for every ploy(λ)-size
adversary A�, there is a ploy(λ)-size extractor E� such that Verify(VK, x, π) =
1 and w /∈ RL(x) with probability negl(λ) in the following experiment:

(PK,VK) → KeyGen(1λ); (x, π) → A�(PK,VK);w → E�(PK,VK)

Zero-knowledge: The proof π gives no information apart from the validity of
it. Namely, there is no computational difference between verifier convinces
himself and prover convinces the verifier with the same x, π. We refer readers
to [7] for more details.

2.3 Bitcoin Transaction

We assume the reader is familiar with the basic knowledge of Bitcoin. Here,
we review some details related to our scheme about the Bitcoin transaction.
In Bitcoin system, a transaction tx is a transfer of bitcoins, which can include
multiple inputs and outputs. More precisely, the inputs of tx are specified by a
list [(h1, α1, σ1), . . . , (hm, αm, σm)], where each hi stands for the hash of some
previous transaction txhi

, αi is the index of some output in transaction txhi
,

and σi called ScriptSig is the input script satisfying the ScriptPubKey of
the αi-th output in transaction txhi

. The outputs of tx are presented as a list
[(μ1, w1), . . . , (μn, wn)], where each μj reveals the exact value of the j-th output
and wj defines the condition for how the j-th output of tx can be redeemed. Both
the ScriptSig and ScriptPubKey are described using a non-Turing-complete
stack-based script language, which can be used to set the conditions for redemp-
tion of corresponding transaction. Besides, any difference between the values of
the inputs and that of the outputs is considered to be a transaction fee for the
miners who includes it into a Bitcoin block with PoW [22] first.

Unlike other currency system, transactions in Bitcoin are not encrypted,
thereby visible to the whole Bitcoin network. It keeps anonymity of the traders
by means of one-to-many mapping between the identity and addresses, which is
usually the hash of the corresponding public key pk.

2.4 Basic Propositions

RSA Problem. The RSA problem is stated as follows [15]. Given a randomly
generated RSA modulus N of unknown factorization, a ciphertext C, a random
e ∈ Z�

N , find m ∈ Z�
N such that c = me mod N . Note that here N is a large

semiprime (i.e., N = p · q for two large prime numbers p, q).

Proposition 1 (RSA Assumption). The RSA problem is intractable in poly-
nomial time so long as (e, ϕ(N)) = 1 holds.
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ECDL Problem. The Elliptic Curve Discrete Logarithm Problem (ECDLP)
states as follows [19]. Given an elliptic curve E defined over a finite field Fp,
a point P ∈ E(Fp) and a point Q = lP where 0 ≤ l ≤ n − 1, determine the
parameter l.

Proposition 2 (ECDSA Assumption). The ECDLP is intractable in poly-
nomial time.

3 System Model and New Tools

Assume that there are two parties, named A and B, who do nottrust each other,
and yet agree on the value of each other’s digital signature of some messages (e.g.
the context of some contracts). The fair exchange problem is that either party
wants obtains the other’s digital signature while revealing his, however, neither
party wants to reveal his signature first with the risk of the other disappearing
after learning his signature.

3.1 The Exchange Model

Based on the decentralized Bitcoin system, we employ the Bitcoin transactions
to realize the fair exchange of digital signature without any TTP. And by the
digital signature here, we mean the ECDSA-based signature deployed in Bitcoin.
The keys used to generate and verify the digital signature are generated based
on the secp256k1 elliptic curve EBT .

The digital signature is presented as a triple of algorithms (Sig = Ksig,
Ssig,Vsig). For lack of space we do notgive more details, which is described in [19].
For simplicity, we denote sigm = Ssig(m, sk) as the digital signature signed on
message m under corresponding private key sk. And Vsig(sigm,m, pk) → true
holds for any valid signatures and corresponding parameters.

We denote
∏

as the basic scheme for the fair exchange problem, which is
also the abstract expression of the concrete construction in Sect. 4. It consists
of a tuple of polynomial-time primitives denoted as (FMK,FBT). Functionality
FMK stands for the committed key generation, which converts the message m
into a valid ECDSA key pair (skm, pkm) in Bitcoin. Functionality FBT stands
for the transaction model construction, which constructs a complex exchange
model with Bitcoin transactions.

Based on these two primitives, the execution of the scheme consists of two
phases described as follows.

– In preparation phase, each party first performs offline computations with
primitive FMK in random oracle to acquire necessary parameters. After that,
they transfer information through the communication channel to construct
the transaction model with FBT. Here, we assume that the channel is resilient
[3], meaning that a message transferred here may be delayed by an attacker
with arbitrary but finite amount of time, and it will eventually be delivered.
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– In execution phase, each party reveals his valid signature by signing and
broadcasting the corresponding transaction. Here we use the security model
defined in [1,2]. However, with the deployment of Segregated Witness, the
non-malleability of Bitcoin transactions is solved right now. Similarly, we
denote maxd as the max delay between sending a transaction and including
it in a block. Besides, we simply assume that the transaction fee paid to the
miners are zero and leave it to latter section to discuss.

By monetary penalization, we mean that each party has to pay some deposit
(denoted as z BTC) in the preparation phase, and it’s guaranteed that he can
redeem the deposit so long as he complies with the scheme until the very end of
the execution phase. Moreover, whoever misbehaves during the execution phase
will lose his deposit that will be given to the other party instead. Note that the
deposit evaluates more than the value of its signature, and it’s not that difficult
for two parties to reach agreement. More importantly, we set the time T of the
execution phase to force players to release valid signature timely.

Behavior of Honest Party. As we stated before, each party is involved in sig-
nature generation and interaction with the other. By honest party, we mean
the player who first generates signature on agreed message under valid private
key, and broadcasts corresponding Bitcoin transaction with signature embedded
within T time. Here, time T is set longer than the time required for a Bitcoin
transaction to be confirmed maxd described below.

Behavior of Malicious Party. Analogous to the definition above, the malicious
party is defined as the player who either does notbroadcast its valid signature on
corresponding message in T time, or tries cheating counterpart with a signature
on another message m′ to obtain counterpart’s valid signature.

3.2 New Tools

With the intractability assumptions stated before, we give the formal definition
of the two primitives FMK,FBT below.

Functionality FMK takes as inputs message m and outputs a valid ECDSA key
pair (skm, pkm). It’s described as follows.

FMK(m) → (skm, pkm)

The private key skm stay secret along the whole exchange, and the public key
pkm is used to generate a Bitcoin address to redeem the deposit. We stress that
the key pair (skm, pkm) generated from message is not related with the key pair
(sk, pk) employed to sign and verify the signature on transaction including hash
of pkm. In later section we give the concrete construction and take advantage of
HVNIZK system to prove the consistency between pkm and message m.
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Functionality FBT takes as inputs public key pkm, pk, deposit z BTC and other
parameters necessary for Bitcoin transactions, then outputs a concrete exchange
model consist of some Bitcoin transactions. It’s described as follows.

FBT(pkm, pk, z, ∗params) → ∗tx

It is skillful that the primitive sets the hash value of the public key pkm as the
payment address of corresponding transaction so that the deposit is directed to
the public key address. Consequently, the player can redeem the deposit so long
as he provides a valid signature of the transaction and broadcast it2. We would
like to stress that we use the BIP of Segregated Witness [20] in the construction.

3.3 Security Definition

We define the security in terms of completeness and fairness.
Completeness of the TTP-free scheme

∏
= (FMK,FBT) requires that each

party will acquire the desired valid signature and redeem his deposit by the very
end of the exchange guaranteeing that each party is honest. Under the security
model stated above, we formalize an incompleteness game called IN-COMP
as follows. Assume that there is an adversary E who can delay the information
transferred between two honest players A,B by arbitrary but finite amount of
time and delay the transactions broadcast by time at most maxd. When the
game ends, the adversary E wins if he succeeds in making the honest player lose
his deposit whether he releases his valid signature timely or not.

Definition 1 (Completeness). A TTP-free fair exchange scheme
∏

is com-
plete if no polynomial-time adversary A� wins in the IN-COMP with more
than negligible probability.

Asokan et al. [3] introduced the fairness property formally. In the economic
sense, fairness of the TTP-free scheme with the monetary penalization

∏
=

(FMK,FBT) requires that any misbehaving player will be penalized by loss of
deposit that can be redeemed by the other party. Since the deposit of z BTC
is worth much more than the value of signature itself, the honest party then
benefits more than the valid signature. Under the security model stated above,
we formalize an unfairness game called UN-FAIR as follows. Assume that there
is an adversary A� who tries to learn the counterpart’s valid signature without
releasing his valid signature. When the game ends, the adversary A� wins if he
succeeds in acquiring desired signature without loss of deposit while not releasing
his valid signature.

Definition 2 (Fairness). A TTP-free fair exchange scheme
∏

is fair if no
polynomial-time adversary A� wins in the UN-FAIR with more than negligible
probability.

2 Due to the fact that the player is aware of the private key skm corresponding to the
public key, it obtains the ownership of the deposit again.
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4 Concrete Construction

The language deployed in Bitcoin only supports the signature generation and
verification of the raw transaction itself. Considering this, we design the prim-
itive FMK to convert the message m into a valid ECDSA key pair (skm, pkm)
in Bitcoin, and then construct a complex Bitcoin transaction model with FBT

for the concrete fair exchange of signatures. Note that the hash value of relevant
public key pkm is embedded into the ScriptPubKey of some transaction, there-
fore the player’s signature of the transaction is equivalent to the signature of the
contract text. And each party can reveal the digital signature by broadcasting
corresponding transaction in time T . The honest party who releases a valid sig-
nature in time T may successfully redeem the deposit and be compensated with
counterpart’s deposit whenever the other misbehaves.

4.1 A Concrete Committed Key Generation Scheme

We design the committed key generation denoted as FMK to convert the message
into a valid key pair (skm, pkm) according to the secp256k1 curve EBT in Bitcoin.
Here, the private key skm is only known to the generator for redemption of
the deposit, and the public key pkm is used to generate a Bitcoin transaction
containing signature in ScriptSig.

There maybe many possible implementations, we here only give one feasi-
ble construction. Without loss of generality, we introduce the committed key
generation in A’s perspective as follows. We denote λ as the security parameter.

Step 1. A randomly choose a RSA modulus NA with NA = p̃A · q̃A holds. Here
NA, p̃A, q̃A are numbers satisfying the RSA assumption.

Step 2. A randomly samples rA ∈ {0, 1}λ, and compute cA = H(mA||rA) as
the digest of message mA.

Step 3. Let skm
A = (cA

1
3 mod NA) mod q where q is the order of basic point G

in curve EBT . If skm
A �= 0, A chooses (skm

A , pkm
A ) = (skm

A , skm
A · G); otherwise

A returns to the previous step.

With each of p̃A, q̃A mutually prime to the other, it concludes that ϕ(NA) =
(p̃A − 1)(q̃A − 1) holds. Here, tuple (mA, rA, cA, NA, q,G, pkm

A ) is available as
public parameters to B, while (skm

A , p̃A, q̃A) is only known to A itself.
We achieve the conversion from message mi to public key pkm

i with these
steps for ∀i ∈ {A,B}. However, to sign on the transaction including the public
key pkm

i above instead of signing on message mi, each party must prove that
pkm

i is indeed generated by message mi without disclosing private key skm
i .

Theorem 1. The public key pkm
i claimed to be generated by message mi is

publicly verifiable with HVNIZK system.

From Theorem 1, we mean that the public key of (pkm
i , skm

i ) ← FMK(m) is
publicly verifiable with NIZK system if the verifier is honest. Here, pkm

i = skm
i ·G

holds and the NIZK proof only reveals the validity of public key. In this way,
either party is accountable for its behavior in this round of interaction. For lack
of space, we will give the related proof in the extended version of this paper.
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4.2 Concrete Fair Exchange of Signatures

Differently from the fair two-party computation due to Andrychowicz et al. [1],
our construction of the Bitcoin transaction model does notrely on the Simulta-
neous Commitment. Broadly speaking, the exchange process works as follows.
In the preparation phase, each party acquire the key pair (skm

i , pkm
i ) by calls

of FMK, then pays z BTC as deposit to create a Funding Transaction txF .
Meanwhile, each party takes as input relevant parameters including pkm

i to cre-
ate the Refunding Transaction txR, and Timeout Refunding Transaction txT .
In the execution phase, each party can release valid digital signature by broad-
casting Refunding Transaction within time T . Either party complying with the
scheme above can redeem his deposit z BTC as the payment address of Refund-
ing Transaction is generated from pkm

i . Either party not broadcasting Refunding
Transaction timely is considered as misbehaving party, whose deposit is gained
by the counterpart through broadcasting Timeout Refunding Transaction after
time T .

Concrete Exchange Model. In Bitcoin, each transaction tx has a unique iden-
tifier, namely, txid (transaction identification). Generally, txid is calculated by
hashing the raw transaction, therefore, it is infeasible to acquire txid before sign-
ing the transaction. Hence it’s also infeasible to generate a new transaction txnew

consuming output of previous transaction txprev before txprev is signed. How-
ever, this problem has been solved with the application of Segregated Witness,
which suggests the Bitcoin to compute the txid without input script ScriptSig.
Consequently, we may generate a sub-transaction txnew allocating the output of
parent transaction txprev before txprev is signed. Once parent transaction txprev

is included in the Bitcoin block chain, the sub-transaction txnew can also be
broadcast immediately. Indeed, our work is heavily inspired by Poon and Dryja
[24], who proposed a Lightning Network for building new offline micropayment
schemes to improve the transaction processing capacity of Bitcoin. Likewise, we
construct a Bitcoin transaction model for digital signature exchange in Fig. 1. We
would like to stress that the transaction model achieving fairness is not unique,
and we leave other possibilities in future work.

The In Script indicates the ScriptSig to make transaction valid, and the Out
Script sets the condition for redemption of the output with ScriptPubKey. For
instance, the first output of txF can be redeemed either by txR

A with A providing
the signature sigM

A and sig1B within time T , or by txT
B with B providing signature

sig2B after time T . (skm
i , pkm

i ) where i ∈ {A,B} is the key pair generated from
message mi. The signature sigm

i is generated by signing on transaction including
pkm

i under private key ski, therefore sigm
i is equivalent to the signature on

contract mi under private key ski. And the signature sig∗
i is generated by signing

on any transaction under private key skm
i . Here, the signature sigj

i where i ∈
{A,B}, j ∈ {1, 2, 3} is generated by signing on relevant transaction under other
different private key skj

i .
Here we deploy the 2-of-2 multisig to deter each party from creating false trans-

actions, which can be implemented with the Pay-To-Script-Hash (P2SH) script
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Fig. 1. Funding Transaction is generated by both parties to pay z BTC, where z
BTC needs to be larger than the value of digital signatures in bitcoins. Only one
of the Refunding Transaction txR

A and Timeout Refunding Transaction txT
B can be

confirmed, and likewise, txR
B and txT

A. Only after transactions txR and txT are ready
Funding Transaction txF can be broadcast.

and opcode OP CHECKMULTISIG. Also we set the time limit T for transaction
txR

i with the parameter nsequence and opcode OP CHECKSQUENCEVERIFY.

Funding Transaction txF is generated by A and B together, with inputs of 2z
BTC and outputs of 2z BTC. Look at A’s perspective, he has to broadcast
Refunding Transaction txR

A within time T to redeem the output of txF ; other-
wise, B can broadcast the Timeout Refunding Transaction txT

B after time T to
gain A’s deposit. The ScriptPubKey of first output is designed as follows.

ScriptPubKey: OP HASH160 < HASH160(RedeemScriptF) > OP EQUAL

RedeemScriptF: OP IF
OP 2 < pk1

B > < pkA > OP 2 OP CHECKMULTISIG
OP ELSE

< T time > OP CHECKSQUENCEVERIFY OP DROP
< pk2

B > OP CHECKSIG
OP ENDIF

Refunding Transaction txR is generated by each party with output of z BTC.
It involves two valid signatures in the In Script. Look at A’s perspective, the
ScriptPubKey contains the hash value of pkm

A , hence the signature on raw trans-
action is equivalent to that on contract text mA under private key skA. After
getting B’s signature, he may provide valid signature and broadcast txR

A to Bit-
coin network within T time. In this way, A redeems the deposit cause only
he knows skm

A corresponding to pkm
A . It’s designed as follows in terms of A.
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ScriptSig: OP 0 < sig1
B > < sigm

A > OP 1 < RedeemScriptF >

ScriptPubKey: OP DUP OP HASH160 < HASH160(pkm
A ) > OP EQUALVERIFY

OP CHECKSIG

Timeout Refunding Transaction txT is generated by each party with output of
z BTC. It involves one signature and time limit T in the In Script. Either party
can be compensated with the other’s deposit whenever his counterpart does not-
broadcast transaction txR

i timely. Look at A’s perspective, he can broadcast txT
A

after time T if B does notbroadcast transaction txR
B timely.

ScriptSig: < sig2
A > OP 0 < RedeemScriptF >

ScriptPubKey: OP DUP OP HASH160 < HASH160(pk3
A) > OP EQUALVERIFY

OP CHECKSIG

Concrete Exchange Process. Now we describe the exchange process in two
phases: preparation phase, execution phase.

Preparation Phase. In this phase, each party first achieves the conversion from
message mi to public key pkm

i , then pays z BTC as deposit to construct the
exchange model above. Assume A is organizer, it follows these steps.

Step 1. each party computes the ECDSA key pair (skm
i , pkm

i ) by calls of FMK

and reaches agreement on the deposit denoted as z BTC.
Step 2. A offers information of z BTC deposit, denoted as (hA, αA), and the

RedeemScriptFA of transaction txF ’s first output, then he sends them to B.
Step 3. B checks whether these parameters are reasonable. If so, he offers tuple

(hB , αB) and RedeemScriptFB , generates transaction txF without In Script,
txT

B with his signature sig2B , txR
B without signature, and sends (hB , αB),

RedeemScriptFB , txF , txR
B to A; otherwise, he aborts the interaction.

Step 4. A checks whether these parameters and transactions are reasonable.
If so, he signs transaction txR

B, generates transaction txT
A with his signature

sig2A, txR
A without signature, and sends sig1A, txR

A to B.
Step 5. B checks whether txR

A is reasonable. If so, he offers the sig1B to A.
Step 6. A signs transaction txF and sends the signature to B.
Step 7. B signs transaction txF and broadcasts it to the Bitcoin network.

Either A or B can always force a timely and fair termination because of
whatever reason in this phase. Note that public signature sig1i can be detected
with corresponding public key pk1

i if it’s invalid. More importantly, every step
here is harmless for each party. Therefore, two parties will execute the above
steps in most cases.
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Execution Phase. It takes some time for the Funding Transaction to be con-
firmed by the Bitcoin network. In this phase, each party wanting to redeem his
deposit has to broadcast corresponding Refunding Transaction txR

i within time
T . Assume A is organizer, it follows these steps.

Step 1. Before time T runs out, A may sign on transaction txR
A under skA, and

broadcast it to the Bitcoin network.
Step 2. If txR

A isn’t broadcast after time T , B may broadcast Timeout Refunding
Transaction txT

B to gain A’s deposit of z BTC.

Complying with the agreement, A can consume the output of Refunding
Transaction txR

A whenever he wants since only A is aware of private key skm
A

corresponding to pkm
A . If A misbehaves, he will suffer deposit loss of z BTC

which is much larger than the value of its digital signature in bitcoins and the
counterpart is compensated with this deposit.

As the channel of offline interactions described in Sect. 3.1 is resilient, it’s
hard to estimate the time of preparation phase. However, it takes at most T
time to carry out the execution phase. The concrete value of T may change over
different occasions, however, it reasonable that time T is longer than the max
network delay maxd between sending a transaction and including it in a block.

5 Construction Analysis

In this Section, we first discuss the security in terms of fairness and completeness,
then we give a brief performance analysis of the construction described above.

5.1 Security

Here, we discuss the security of the concrete construction of the TTP-free fair
exchange scheme in terms of completeness and fairness.

Completeness. The completeness requires that each player will acquire the
desired valid signature by the very end of the exchange guaranteeing both play-
ers are honest. We formalize an incompleteness game called IN-COMP where
an adversary E can only delay the information transmission by arbitrary but
finite amount of time in the preparation phase and the propagation of Bitcoin
transactions by at most maxd time in execution phase. Then we discuss the
probability of E winning in the game in polynomial time.

Theorem 2. The construction of scheme
∏

= (FMK,FBT) is complete in poly-
nomial time.

Proof. If both players are honest, then each player can inform the other necessary
parameters after offline computations in spite of some delay. Thus, two players
can successfully construct the transaction model with correct pkm embedded into
the Refunding Transactions txR. In execution phase, each player can broadcast
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the txR
i containing the valid signature of pkm

i timely since time limit T is set to
be larger than the max delay time maxd. In consequence, each player acquires
the other’s valid signature and redeem the deposit so long as txR

i is included
in a Bitcoin block. Note that we combine the digital signature with transaction
ScriptSig so that it’s difficult for others to figure out the transaction with dig-
ital signature. As the adversary E cannot succeed in breaking the information
transmission, he may win this game with no more than negligible probability. In
other words, the construction of scheme

∏
is complete in polynomial time.

Fairness. Assume that there is an adversary A� who tries to learn the counter-
part’s valid signature without releasing his valid signature. The fairness requires
that A can succeed in acquiring desired signature without loss of deposit even
not releasing his valid signature with no more than negligible probability. We
have defined a unfairness game called UN-FAIR to simulate the situation and
evaluate probability of A� winning in the game in Sect. 3.3.

Theorem 3. The construction of scheme
∏

= (FMK,FBT) owns fairness in
polynomial time.

Proof. By fairness, we mean the fairness achieved by monetary penalization
when either player misbehaves during execution phase. Note that either player
not complying with the agreement makes no influence on the fairness as the
other party can terminate subsequent interactions unilaterally. We discuss three
situations where adversary A� may try to cheat as follows.

– A� informs B with incorrect pkm
A . We give the accountability of each player

generating public key pkm
i from message mi with NIZK proof system in

Sect. 4.1. Based on Theorem 1, there is no doubt that A� can be detected
for cheating in publishing a public key not generating form mA. It owns fair-
ness as B can terminate the exchange without any loss right away.

– A� informs B with incorrect txR
A. As stated before, Refunding Transaction

txR
i requires 2-of-2 multisig to be confirmed by the Bitcoin network. Thus,

B can refuse to sign on transaction txR
A in preparation phase if txR

A conflicts
with the correct pkm

A received before and abort the exchange, which still does
notaffect the fairness of the scheme.

– A� does notbroadcast valid txR
A within T time. Assume that B broadcasts the

valid txR
B independently, thereby redeeming his deposit. The Refunding Trans-

action txR
A won’t be confirmed whether A� does notbroadcast txR

A within T
time or the txR

A contains invalid signature. Thus, B can also gain the deposit
of A� by broadcasting transaction txT

B after T time. As z BTC of deposit
owns more than the signature, the scheme owns fairness by compensating B
and penalizing A� simultaneously with more valuable bitcoins than signature.

By the discussion above, it concludes that the construction of scheme
∏

indeed
owns fairness in polynomial time.
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5.2 Performance

We introduce an instantiation of the TTP-free fair exchange scheme for digital
signatures with Bitcoin in Sect. 4. Compared the traditional paradigms with
TTP, there are two innovations about our scheme. First, we design a primitive
FMK converting any message into a valid ECDSA key pair, which also can be
extended into other contexts. Then, we design an exchange model with monetary
penalization by Bitcoin transactions. Here we discuss the performance of two
parts more seriously.

Key Pair Generation. To construct primitive FMK, we involve the numerical
computations and the HVNIZK proof system, resulting in two distinct choices
for security parameter λ. However, the key pair generation only involves the
former. Assume that The RSA modulus N is a semiprime of n-bit. Thus the
offline generation involves a hash operation of SHA256, a multiplication of n-
bit, a modular exponentiation of n-digit number and n-bit exponent, and a
multiplication in elliptic curve group EBT (Fp). We then program to achieve the
generation in pure Python 3.x and conduct several experiments with different
platforms, parameter sizes of RSA modulus N and message m.

Here, modulus N is of five sizes: 1024 bits, 1536 bits, 2048 bits, 2560 bits,
3072 bits3 and message m is of five sizes: 1 KB, 10 KB, 100 KB, 1 MB, 10 MB. We
conduct the experiment both on a laptop and a mobile phone to demonstrate its
efficiency. The laptop running 64-bit Ubuntu System is equipped with an Intel
i5-7300 HQ (2.50 GHz quad-core) processor with 8 GB of RAM, and the mobile
phone running Android 5.0 is equipped with a Hisilicon Kirin 935 processor with
3G of RAM. Each number stands for the average time of 100 loops. The results
are shown in Fig. 2.

(a) Time cost with 1KB m
under different sizes of N on
laptop

(b) Time cost trend under d-
ifferent sizes of N and m on
laptop

(c) Time cost with 1KB m
and 1024-bit N on different
platforms

Fig. 2. FMK performance under different conditions

Obviously, it costs no more than 200 ms on the laptop even with 3072-
bit N and 10 MB m, and the generation can be completed within 1 s on the
3 Viewed as discrete logarithm security level, modulus N of 3072 bits equals to security

parameter λ = 128 bits.
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mobile phone. In reality, it will be 30 times faster if the code is programmed with
C language. Given the results above, it concludes that the key pair generation
offers relatively high efficiency.

Exchange with Transactions. In the Bitcoin transaction model, we involve
a Funding Transaction, two Refunding Transaction, and two Timeout Refunding
Transaction. However, A and B may broadcast corresponding transaction with
asynchronous clock in the execution phase. We denote maxd as the max delay
between sending a transaction and including it in a block. And the time limit is
set to T (T > maxd) for the Refunding Transaction to be confirmed. Considering
this, it concludes that the total time for the Bitcoin transactions confirmation
is T + maxd in the ideal environment.

Assume that the whole network delay is zero and A, B execute the exchange
procedure with no delay, we then estimate the time consumption of the whole
exchange in Table 1.

Table 1. Time consumption of whole exchange under ideal condition

Phase Behavior of A,B Time (ms)

Preparation phase Each party generate a key pair 76.24

A Signs on transaction txR
B 36.95

A Signs on transaction txF 36.95

B Signs on transaction txF 36.95

Transaction txF is validated 73.54

Execution phase Each party signs on txR
i 36.95

Transaction txR
i is validated 73.54

Total 408.07

Here the time of key pair generation is computed with 1024-bit N and 1 KB
message m. And we run the RCDSA-based signatures generation and verification
on the laptop above. Under ideal condition, the time consumption of the whole
exchange is 400 ms approximately.

6 Extensions

6.1 Non-zero Transaction Fees

In Sect. 4, we design the exchange model with Bitcoin transactions assuming that
the transaction fee is zero. However, it’s out of the fact in both main network
and testnet network. We would like to stress that it does not affect the fairness
property of our scheme. We can solve this problem simply by modifying the
value of each output. And the scheme still owns fairness as each party will pays
the same fee to the miners.



TTP-free Fair Exchange of Digital Signatures with Bitcoin 79

6.2 Multi-party Fair Exchange

With the application of Segregated Witness, we can extend the scheme to multi-
party fair exchange of digital signatures. Assume that there are three parties
every of which wants to exchange its valuable signature for others’. To imple-
ment this, we just need modify the exchange model moderately with every party
still paying the identical deposit to the Funding Transaction txF that has three
outputs respectively. Each output can be redeemed either by the Refunding
Transaction with a 3-of-3 valid multisig, or by the Timeout Refunding Transac-
tion with a 2-of-3 multisig. And every deposit is equally divided into two parts in
the latter situation. Still, the scheme possesses fairness by designing the model
suitably.

6.3 Future Work

We proposed a TTP-free fair scheme for digital signature exchange with Bitcoin
in this paper, which is feasible under the application of the Segregated Witness.
Based on this, we will focus on the following two improvements in later work.

– The scheme is only applicative to the two-party situation now. By extending
the transaction model, we will give the multi-party fair exchange scheme with
full description and concrete construction.

– We convert the message into a public key and embed it into corresponding
transaction in this scheme. There may also exist other possibilities for the
transaction model. We will try to design other schemes with more efficiency.

7 Conclusion

We have proposed a novel TTP-free scheme with Bitcoin to resolve fair exchange
problem of digital signatures. It achieves fairness through penalization mecha-
nism with Bitcoin transactions. The security is guaranteed by the intractability
assumptions of some difficult problems in polynomial time. Furthermore, the
primitive FMK we described here is capable of converting any message into a
valid ECDSA key pair, and it may also show application in other contexts. Due
to its feasibility with Bitcoin and property of TTP-free, the scheme may occupy
a wide range of scenarios in the E-commerce nowadays.
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Abstract. In CT-RSA 2001, Okamoto and Pointcheval proposed a
general conversion: Rapid enhanced-security asymmetric cryptosystem
transform (REACT, for short), which achieves the CCA security in the
random oracle from very weak building blocks and is (almost) optimal
in terms of computational overload.

In this paper, we consider the key-dependent message (KDM) security
of REACT and prove that it can be KDM-CCA secure under exactly the
same assumptions on its building blocks as those used by Okamoto and
Pointcheval. When presenting our proof, we mainly adopt the deferred-
analysis technique proposed in [25] and the random-oracle-splitting tech-
nique which has been used in [17,23] according to the roles of the random
oracles in different phases.

Keywords: Key-dependent message (KDM)
Chosen ciphertext attack (CCA) · REACT · Random oracle

1 Introduction

Secure encryption is the most basic task in cryptography, and significant works
have gone into defining and attaining it. Many commonly accepted definitions,
such as chosen-plaintext attack (CPA) security and chosen-ciphertext attack
(CCA) security, assume that the plaintext messages don’t depend on the secret
keys. However, in the last few years, it was observed that, in many situations,
such as anonymous credential system [12], BitLocker disk encryption utility (used
in Windows Vista) [7], fully homomorphic encryption [20], the event that the
plaintext messages do depend on the secret keys may occur or even be desirable.
In [6], Black et al. formally call them key-dependent message (KDM) security.
In fact, around the same time, Camenisch and Lysyanskaya [12] introduced the
notion circular security, which can be seen as a special case of KDM security,
when they were designing the anonymous credential system.

It seems that KDM security does not follow from standard security [13,14],
and there are also indications that KDM security (at least in its most general
form) can not be obtained using standard techniques [22]. Therefore, KDM secu-
rity has received much attention in many setting, including the public-key [7],

c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 85–101, 2017.
https://doi.org/10.1007/978-3-319-72359-4_5
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secret-key [8], and identity-based [15] settings. In this paper, we mainly focus on
the public-key encryption (PKE) setting.

In the standard model, the definition of KDM security is often accompanied
by a function family Φ, which consists of functions of secret keys, since the exist-
ing work indicates that it is almost impossible to construct an encryption scheme
satisfying the KDM security for any family [22]. Therefore, in 2008, Boneh et al.
gave the first KDM-CPA secure PKE scheme under the decisional Diffie-Hellman
(DDH) assumption, in which the KDM security is relative to the family of affine
functions (affine-KDM, for short). Later, affine-KDM secure encryption schemes
are constructed based on other assumptions, including quadratic residuosity
(QR) [9], decisional composite residuosity (DCR) [9], learning with errors (LWE)
[2] etc. In recent years, some non-affine-KDM secure schemes are also be intro-
duced, such as [1,4,10]. However, all of them are limited in the KDM-CPA case.
How to construct KDM-CCA secure schemes seems to be much harder and the
related works are rare. In this direction, Camenisch et al. showed that a variation
of the Naor-Yang paradigm allows one to combine any KDM-CPA secure scheme
and any regular CCA secure encryption scheme, together with a non-interactive
zero knowledge (NIZK) proof, to obtain a KDM-CCA secure encryption scheme
[11]. In recent work [21], Han et al. constructed an efficient KDM-CCA secure
PKE for polynomial functions based on DDH and DCR assumptions (free of
NIZK and pairing) with the help of authenticated encryption with auxiliary-
input (AIAE).

In the random oracle model, the situations seem to be better and almost
all the designed schemes can be KDM-CCA secure with respect to any (length-
regular) function families. In particular, in 2008, Backes et al. proved that the
famous OAEP (see [5]) is KDM-CCA secure if the underlying trapdoor permu-
tation is partial domain one-way [3]. In 2014, Davies and Stam studied the KDM
security of hybrid encryption. Concretely, they proved that if a key derivation
function (KDF) is used between key encapsulation mechanism (KEM) and data
encapsulation mechanism (DEM), and this KDF is modelled as a random oracle,
then the one-wayness (OW) of KEM and the indistinguishability (IND) of DEM
will be sufficient for the KDM-CCA security of the resulting hybrid scheme [17].
In the recent work [23], Kitagawa et al. considered the KDM-CCA security of the
two conversions introduced in [18,19], which are denoted by FO-I and FO-II,
respectively. As a result, they obtained that, in general, the scheme FO-I is not
KDM-CCA secure while FO-II satisfies KDM-CCA security under exactly the
same assumptions on the building blocks.

Our Contribution. In this paper, we consider the KDM-CCA security of the
famous scheme: REACT (i.e. Rapid Enhanced-security Asymmetric Cryptosys-
tem Transform), which is proposed by Okamoto and Pointcheval in [24] and has
been proven to be CCA secure in the random oracle model.

In REACT, one can obtain the CCA security from very weak building blocks:
An asymmetric encryption scheme with one-way plaintext-check attack (OW-
PCA, for short) security and an indistinguishable symmetric scheme, together
with two hash functions. The encryption algorithm of this conversion works as
follows.
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c1 ← Encasym(pk, r), c2 ← Encsym(G(r),m), c3 = H(r,m, c1, c2),

where r is random, G and H are two hash functions. Here, we remark that
REACT does not belong to the standard hybrid encryption model [16], which
consists of two separated parts: KEM and DEM, as well as the intermediate
transition part: KDF. The reason lies in that the authentication part c3 needs to
choose “KEM-part” c1 as its input. Morever, when giving the security proof, both
of the hash functions G and H are modeled as the random oracles. Therefore,
this is different from that of [17], in which they consider the KDM-CCA security
of the standard hybrid encryption model and only the KDF is modeled as the
random oracle.

As the main result of this paper, we prove that the conversion REACT
achieves the KDM-CCA security based on exactly the same assumptions on
the building blocks.

Organizations of the Paper. In Sect. 2, we introduce some basic notations and
definitions of the building blocks. In Sect. 3, we first recall the original conversion
of REACT and then prove its KDM-CCA security in detail. Conclusions can be
found in Sect. 4.

2 Preliminaries

In this section, we review some useful notations and definitions.

Notations. If M is a set, then |M | denotes the number of elements in it and

m
$←− M denotes the operation of picking an element m uniformly at random from

M. For two strings x and y, x||y denotes the concatenation of x and y. [�] means the
set of integers {1, · · · , �}. We denote by λ a security parameter and by 1λ the unary
form of λ. For notational clarity, we usually omit it as an explicit parameter. PPT
denotes probabilistic polynomial time. Let z ← A(x, y, · · · ) denote the operation
of running an algorithm A with inputs (x, y, · · · ) and output z. We say a function
negl(λ) is negligible (in λ) if for λ > k0 and k0 ∈ Z, negl(λ) < λ−c for any constant
c > 0.

2.1 PKE Scheme and OW-PCA Security [24]

A public key encryption (PKE) scheme Σ consists of the following algorithms:

– GenP. Input: A security parameter 1λ. Output: A pair of public-secret keys
(pk, sk).

– EncP. Input: The public key pk and a plaintext m ∈ M. Output: A cipher-
text c.

– DecP. Input: The secret key sk and a ciphertext c. Output: A plaintext m
or a symbol ⊥, which denotes that this ciphertext is invalid.
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The correctness requires that, for any (pk, sk) ← GenP (1λ), m ← M, it holds
that

DecP (sk,EncP (pk,m)) = m.

The OW-PCA security of Σ is defined by the following experiment between
a challenger and an adversary A.

OW-PCA-Experiment:

– Initialization. The challenger runs (pk, sk) ← GenP (1λ) and gives pk to A.
– Query and Challenge Phase. A is allowed to adaptively query (m, c) to

the Plaintext-Checking Oracle (played by the challenger), which returns 1 if
c is a ciphertext of m and returns 0 if it is not. Then the challenger chooses
m∗ $←− M and runs c∗ ← EncP (pk,m∗). Give c∗ to A.

– Guess. A outputs a message m as the guess of m∗.

We call A wins the experiment if m = m∗. Denote by AdvOW-PCA
A, Σ (1λ)

the probability that A wins the experiment. If for any PPT adversary A,
AdvOW-PCA

A, Σ (1λ) is negligible, then Σ is called OW-PCA secure.

2.2 Secret Key Scheme and IND Security [24]

A secret key scheme Π consists of the following two algorithms:

– EncS. Input: A random secret key k ∈ K and a message m ∈ M. Output: A
ciphertext c (of m).

– DecS. Input: A secret key k ∈ K and a ciphertext c. Output: A message m
or a symbol ⊥, which means that the ciphertext c is invalid.

The correctness requires that, for all k ∈ K, m ∈ M, it holds that

DecS(k,EncS(k,m)) = m.

The IND security of Π is defined by the following experiment between a
challenger and an adversary A.

IND-Experiment:

– Initialization. The challenger chooses k
$←− K, and a bit b

$←− {0, 1}.
– Challenge Phase. A submits two messages m0 and m1 (in M). Then the

challenger runs c∗ ← EncS(k,mb) and returns it to A.
– Guess. A outputs a bit b′ ∈ {0, 1} as a guess of b.

Let

AdvIND
A, Π :=

∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣

be the advantage of A winning the IND experiment. If for any PPT adversary
A, its advantage is negligible, then Π is called IND secure.
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2.3 KDM-CCA Security

In this subsection, we present the stronger security of PKE scheme: KDM-CCA
security. In particular, let Γ = (Gen,Enc,Dec) be a PKE scheme. We define the
following KDM-CCA-experiment played by a challenger CH and an adversary A.

KDM-CCA-Experiment:

– Initialization. First, CH chooses b
$←− {0, 1} and runs � times Gen(1λ) and

obtains the key-pairs
(pk1, sk1), · · · , (pk�, sk�).

Give (pk1, · · · , pk�) to A. Then, initialize an empty list Lkdm, which will be
used to store the pairs that A obtains through KDM encryption query.

– Queries. The adversary A is allowed to adaptively make the following queries.
• KDM Encryption Queries. When A submits (j, f), where j ∈ [�] and

f is a function, CH returns c∗ ← Enc(pkj , f(sk1, · · · , sk�)) if b = 1 or
c∗ ← Enc(pkj , 0|f(·)|) if b = 0. Add (j, c∗) into Lkdm.

• Decryption Queries. When A submits (j, c), CH first checks if (j, c) ∈
Lkdm. If it is, then return ⊥. Otherwise, run m ← Dec(skj , c) and return
m to A.

– Guess. A outputs a bit b′ ∈ {0, 1}.

Define

AdvKDM-CCA
A, Γ (1λ) :=

∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣
,

which is called the advantage of A winning the KDM-CCA experiment. If for
any PPT adversary, its advantage is negligible, then we call the PKE scheme Γ
is KDM-CCA secure.

Remark. In [6], when Black et al. first giving the definition of KDM security, they
assumed the functions that the adversary A queries in the KDM experiment are
length-regular. Specifically, we call a function f (of secret keys sk1, · · · , sk�) is
length-regular if the length of f(sk1, · · · , sk�) is independent of the value of
sk1, · · · , sk�. Therefore, we can determine 0|f(sk1,··· ,sk�)| only from f and does
not need sk1 · · · , sk�. In this paper, we also assume the functions A queries are
length-regular.

In addition, when proving the KDM security of PKE schemes in the ran-
dom oracle model, the adversary A is allowed to make queries to the random
oracle (i.e. hash queries). Hence, it is also natural to permit the KDM func-
tion f (A queries) to access to the random oracle, which can be denoted by
fH(sk1, · · · , sk�), for some random oracle H.

3 REACT and Its KDM-CCA Security

3.1 REACT

First, we recall the classical transform REACT proposed by Okamoto and
Pointcheval in [24]. Concretely, let Σ = (GenP,EncP,DecP ) be a PKE scheme
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and Π = (EncS,DecS) a secret key scheme. Let G and H be two hash functions
which output k1-bit and k2-bit strings, respectively. Then the REACT scheme
REACT = (Gen,Enc,Dec) can be constructed as follows.

– Gen(1λ) : Run (pk, sk) ← GenP (1λ) and output (pk, sk).
– Enc(pk,m) : Choose r

$←− {0, 1}�1 and run

c1 ← EncP (pk, r).

Then compute
c2 ← EncS(K,m),

where K := G(r), and the checking part

c3 ← H(r,m, c1, c2).

Finally, output the ciphertext (of m) c := (c1, c2, c3).
– Dec(sk, c) : First, parse c as c1||c2||c3. Run

r ← DecP (sk, c1),

and compute
m ← DecS(G(r), c2).

Then, check if
c3 = H(r,m, c1, c2).

If it is, output the message m. Otherwise, output the “reject” symbol ⊥.

3.2 The KDM-CCA Security of REACT

In this subsection, we describe and prove the KDM-CCA security of the above
scheme REACT. Concretely, we have

Theorem 1. If the schemes Σ and Π are OW-PCA and IND secure, respec-
tively, and the hash functions G,H are two random oracles, then the scheme
REACT is KDM-CCA secure.

Proof. Let A be a PPT adversary who attacks on the scheme REACT, and makes
at most qe KDM encryption queries, qd decryption queries, qG G-hash queries
and qH H-hash queires. Now, the theorem can be proved via the following games.
(Denote by Wini the adversary A wins in the i-th game.)

Game0: This is the original KDM-CCA experiment on the scheme REACT in the
random oracle model, played between a challenger CH and the adversary A. In
particular,

– Initialization. First, CH chooses b
$←− {0, 1} and runs � times Gen(1λ) and

obtains the key-pairs
(pk1, sk1), · · · , (pk�, sk�).

Give (pk1, · · · , pk�) to A. Then, initialize three empty lists Lkdm, LG, and
LH , which will be respectively used to store A’s KDM encryption queries,
G-hash queries, and H-hash queries.
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– Queries. The adversary A is allowed to adaptively make the following queries.
• Hash Queries.

∗ G-Hash Queries. When r is submitted to G oracle, CH checks if
it has been queried in LG. If it is, return the corresponding value.
Otherwise, choose and return K

$←− {0, 1}k1 . Then add (r,K) into
LG.
∗ H-Hash Queries. Same as the G-hash queries except that the input
of H is the form (r,m, c1, c2) and the output is k2 bits.

• KDM Encryption Queries. When A submits (j, f), where j ∈ [�] and f
is a (length-regular) function, CH returns c∗ ← Enc(pkj , f(sk1, · · · , sk�))
if b = 1 or c∗ ← Enc(pkj , 0|f(·)|) if b = 0. Add (j, c∗) into Lkdm.

• Decryption Queries. When A submits (j, c), CH first checks if (j, c) ∈
Lkdm. If it is, then return ⊥. Otherwise, run m ← Dec(skj , c) and return
m to A.

– Guess. A outputs a bit b′ ∈ {0, 1}.

Naturally, it holds that

AdvKDM-CCA
A, REACT (1λ) =

∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣
Pr[Win0] − 1

2

∣
∣
∣
∣
. (1)

Game1: This game is identical to the above game except that the two random
oracles G and H are “subdivided” into G, G∗, GG∗ and H, H∗, HH∗, respectively,
according to the type of queries made by A. Here, we also use the random-oracle-
splitting technique, which has been widely used in [17,23]. In particular, we have
known that the random oracles G and H are queried at the following four cases:

– Case 1. A makes a direct hash query;
– Case 2. When A makes a KDM query, the challenger needs to compute the

hash values to generate the key K of DEM-part and the checking part c∗
3;

– Case 3. When A makes a KDM query (j, f), the function f has access to
the random oracles;

– Case 4. When A makes a decryption query, the challenger needs to compute
the hash values to respond to it.

The random oracles in Case 1 are still denoted by G and H. The random
oracles in Case 2 are now denoted by G∗ and H∗. The other cases (i.e. Case
3 and Case 4) are denoted by GG∗ and HH∗. The oracles G, H, G∗ and H∗

respectively maintain the query/answer pairs lists LG, LH , LG∗ , and LH∗ , and
are implemented by lazy sampling. Moreover, G and G∗ are synchronized. That
is, both of them refer not only to their own list but also to the list of the other
one. H and H∗ are also synchronized. The remainder ones GG∗ and HH∗ are
implemented still by lazy sampling. But both of them do not have their own list.
When needing to sample a fresh (random) value, GG∗ adds it into the list LG

and HH∗ adds it into the list LH . In addition, GG∗ runs by referring to both
lists LG and LG∗ , and HH∗ runs by referring to both lists LH and LH∗ .

For clarity, we describe in Table 1 how the challenger answers to A’s KDM
query, decryption query and how the six random oracles work.
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Table 1. The challenger’s responses to A’s KDM query, decryption query and the
modes of random oracles in Game1.

KDM-Query (j, f): Decryption-Query (j, c) /∈ Lkdm:
m1 ← fGG∗, HH∗

(sk1, · · · , sk�) Parse c as c1||c2||c3
m0 ← 0|f(·)| r ← DecP (skj , c1)

r
$←− {0, 1}�1 m ← DecS(GG∗(r), c2)

c∗
1 ← EncP (pkj , r) Check if c3 = HH∗(r,m, c1, c2)
c∗
2 ← EncS(G∗(r),mb) If it is, output m
c∗
3 ← H∗(r,mb, c

∗
1, c

∗
2) Else, output ⊥

add (j, (c∗
1, c

∗
2, c

∗
3)) to Lkdm

Output c∗ = (c∗
1, c

∗
2, c

∗
3)

G(r) : (= GG∗(r)) H(r,m, c1, c2) : (= HH∗(r,m, c1, c2))
If (r,K) ∈ LG ∪ LG∗ If ((r,m, c1, c2), c3) ∈ LH ∪ LH∗

return K return c3
Else Else

K
$←− {0, 1}k1 c3

$←− {0, 1}k2

add (r,K) to LG add ((r,m, c1, c2), c3) to LH

return K return c3
G∗(r) : H∗(r,m, c1, c2) :
If (r,K) ∈ LG ∪ LG∗ If ((r,m, c1, c2), c3) ∈ LH ∪ LH∗

return K return c3
Else Else

K
$←− {0, 1}k1 c3

$←− {0, 1}k2

add (r,K) to LG∗ add ((r,m, c1, c2), c3) to LH∗

return K return c3

Since the difference between Game0 and Game1 is only conceptual, we have

Pr[Win0] = Pr[Win1]. (2)

Game2: This game is identical to Game1 except for the following behaviors of
the random oracles G∗ and H∗. Concretely, for G∗, it does not refer to the list
LG. Moreover, when given an input r, it randomly chooses a value K ∈ {0, 1}k1

and adds (r,K) to the list LG∗ , even if there exists some query/response pair(s)
(r,K1) ∈ LG∗ . Hence, in the list LG∗ , it is possible that there exist multiple
responses for the same input r. However, when the random oracles G and GG∗

referring to the list LG∗ , they only adopt the first entry that was added in
LG∗ . The random oracles H∗, H and HH∗ run analogously to G∗, G and GG∗,
respectively. The pseudocodes of G∗ and H∗ can be found in Table 2.

Denote by Col the event that there exists an entry of the form (r, ·) ∈ LG ∪
LG∗ or the form ((r, ·, ·, ·), ·) ∈ LH when the challenger chooses r

$←− {0, 1}�1 to
answer A’s KDM query.1

1 Note that (r, ·) ∈ LG∗ if and only if ((r, ·, ·, ·), ·) ∈ LH∗ .
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Table 2. The pseudocodes of G∗ and H∗ in Game2.

G∗(r) : H∗(r,m, c1, c2) :

K
$←− {0, 1}k1 c3

$←− {0, 1}k2

add (r,K) to LG∗ add ((r,m, c1, c2), c3) to LH∗

return K return c3

Table 3. The pseudocodes of G and H in Game3.

G(r) : H(r,m, c1, c2) :
If (r,K) ∈ LG If ((r,m, c1, c2), c3) ∈ LH

return K return c3
Else Else

K
$←− {0, 1}k1 c3

$←− {0, 1}k2

add (r,K) to LG add ((r,m, c1, c2), c3) to LH

return K return c3

Obviously, Game1 and Game2 are identical if Col does not occur. Hence, we
have

|Pr[Win1] − Pr[Win2]| ≤ Pr[Col]. (3)

We can easily know that, for each KDM query, a random r ∈ {0, 1}�1 causes
the event Col occurs with probability at most 2qe+2qd+qG+qH

2�1
. Hence, for the

total qe KDM queries,

Pr[Col] ≤ qe(2qe + 2qd + qG + qH)
2�1

,

which is negligible.

Game3: This game is identical to Game2 except that G does not refer to the
list LG∗ and H does not refer to the list LH∗ . The concrete pseudocodes of them
can be found in Table 3. However, we remark that the other random oracles GG∗

and HH∗ still refer to the lists LG ∪ LG∗ and LH ∪ LH∗ , respectively.
In this and subsequent games, we denote by BHQi the event that, in Gamei,

when the adversary A queries r to G-oracle or (r,m, c1, c2) to H-oracle, there
exists an entry (r, ·) ∈ LG∗ .

We can easily know that, if BHQ3 does not occur, then Game2 and Game3
are identical. Therefore, we have

|Pr[Win2] − Pr[Win3]| ≤ Pr[BHQ3]. (4)

In order to bound the value Pr[BHQ3], we need to adopt the deferred analysis
technique [25]. Hence, we continue to introduce the following game(s).

Game4: This game is identical to Game3 except that the challenger answers A’s
decryption queries by querying the lists of random oracles instead of using the
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Table 4. The concrete description of challenger’s answering decryption queries in
Game4.

Decryption-Query (j, c) /∈ Lkdm:
Parse c as c1||c2||c3
If ∃ ((r,m, c1, c2), c3) ∈ LH ∪ LH∗

Compute K ← GG∗(r)
Check if c2 = EncS(K,m)
If it is,
Submit (j, (r, c1)) to Plaintext-Checking Oracle
If the response is 1
Output m

Else, output ⊥.
Else, output ⊥.

Else, output ⊥

secret keys. The concrete description of answering the decryption queries can be
found in Table 4.

Denote by BDQ the event that the query (j, c) = (j, (c1, c2, c3)) (from A)
is a correct ciphertext (i.e. c1 is a legal ciphertext of some message r under the
public key pkj , c2 is the encryption of some plaintext m under the key GG∗(r),
and it holds that c3 = HH∗(r,m, c1, c2)) but the query (r,m, c1, c2) has not
been asked to HH∗ (i.e. ((r,m, c1, c2), c3) /∈ LH ∪ LH∗).

We note that the two games Game3 and Game4 are identical unless BDQ
occurs. Therefore, we have

|Pr[BHQ3] − Pr[BHQ4]| ≤ Pr[BDQ], (5)

and
|Pr[Win3] − Pr[Win4]| ≤ Pr[BDQ]. (6)

However, the value Pr[BDQ] is negligible. The reason lies in that, if the adversary
A does not query (r,m, c1, c2) to HH∗, then he can correctly guess the value
HH∗(r,m, c1, c2) only with probability 1/2k2 . That is,

Pr[BDQ] ≤ 1
2k2

. (7)

Game5: This game is identical to Game4 except that the challenger answers the
decryption queries with the manner described in Table 5.

Here, we define BDQ′ as the event that the decryption query (j, c) =
(j, c1||c2||c3) /∈ Lkdm (from A) satisfies one of the following two conditions:

– Condition 1. There exist ((r,m, c1, c2), c3) ∈ LH , (r,K) ∈ LG∗ , and

r ← DecP (skj , c1), m ← DecS(K, c2). (8)
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Table 5. The manner of challenger’s answering decryption queries in Game5.

Decryption-Query (j, c) /∈ Lkdm:
Parse c as c1||c2||c3
If ∃ ((r,m, c1, c2), c3) ∈ LH

Compute K ← G(r)
Check if c2 = EncS(K,m)
If it is,
Submit (j, (r, c1)) to Plaintext-Checking Oracle
If the response is 1
Output m

Else, output ⊥.
Else, output ⊥.

Else, output ⊥

– Condition 2. There exist ((r,m, c1, c2), c3) ∈ LH∗ , (r,K) ∈ LG∗ , and (8)
holds.

In order to analyze the differences of Game4 and Game5, we still need to
use the deferred analysis technique. Hence, in this and the subsequent games,
we denote by BDQ′

i the event BDQ′ occurs in Gamei. Obviously, if BDQ′
5 (or

BDQ′
4) does not occurs, then the two games are identical. Therefore, we have

|Pr[Win4] − Pr[Win5]| ≤ Pr[BDQ′
5] ≤ |Pr[BDQ′

5] − Pr[BDQ′
6]| + Pr[BDQ′

6]. (9)

|Pr[BHQ4] − Pr[BHQ5]| ≤ Pr[BDQ′
5] ≤ |Pr[BDQ′

5] − Pr[BDQ′
6]| + Pr[BDQ′

6]. (10)

Game6: This game is identical to Game5 except that the challenger ignores the
challenge bit b and always encrypts the message 0|f(·)| when answering A’s KDM
encryption queries.

Note that, in Game6, the challenger always responds to the KDM queries
(j, f) by returning an ciphertext of 0|f(·)| regardless of the challenge bit b. That
is, the choice of b and the behavior of A (in Game6) are independent. Thus, it
holds that ∣

∣
∣
∣
Pr[Win6] − 1

2

∣
∣
∣
∣
= 0. (11)

Combining with the (in)equalities (1-11), and the following Lemmas 1 and 2,
we know that the scheme REACT is KDM-CCA secure in the random oracle if Σ
and Π are OW-PCA and IND secure, respectively.

� (Theorem 1)

Lemma 1. If the secret key scheme Π is IND secure, then

|Pr[Win5] − Pr[Win6]| = negl(λ), (12)

|Pr[BHQ5] − Pr[BHQ6]| = negl(λ), (13)
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and
|Pr[BDQ′

5] − Pr[BDQ′
6]| = negl(λ). (14)

Proof of Lemma 1. For lack of space, we only prove the Eq. (12) by using hybrid
argument. The other ones (i.e. (13) and (14)) are similar and hence omitted,
which can be found in the full version of this paper.

Now, we first introduce qe +1 games Game5,0, · · · ,Game5,qe
, where Game5,0

equals to the game Game5, and other ones are defined as follows. For 1 ≤ t ≤ qe,

Game5, t: This game is identical to the game Game5, t−1 except that the chal-
lenger returns the ciphertext of 0|f(·)| when A makes the τ -th KDM query, where
qe − t < τ ≤ qe.

Obviously, Game5, qe
is just the game Game6. If we can prove that, in the two

adjacent games, the difference of the probabilities for A winning is negligible,
then (12) follows. Now, we prove it holds for any two adjacent games Game5, t−1

and Game5, t. In particular, we construct an adversary Bt, attacking on the IND
security of Π, by using A as a subroutine.

– Initialization. Bt generates (pki, ski) ← GenP (1λ), for 1 ≤ i ≤ �, chooses

b
$←− {0, 1}, and sets

Lkdm = LG = LG∗ = LH = LH∗ = ∅.

Return (pk1, · · · , pk�) to A.
– Queries. A is allowed to adaptively make the following queries.

• Hash Queries. When A queries r to G-oracle, Bt checks if there exists an
entry (r,K) ∈ LG. If it is, return K to A. Else, choose K

$←− {0, 1}k1 ,
return it to A, and add (r,K) to LG. When A queries (r,m, c1, c2) to
H-oracle, Bt checks if there exists an entry ((r,m, c1, c2), c3) ∈ LH . If it

is, return c3 to A. Else, choose c3
$←− {0, 1}k2 , return it to A, and add

((r,m, c1, c2), c3) to LH .
• KDM Queries. For the τ -th KDM query (j, f), Bt responds to it as follows.

∗ For 1 ≤ τ < t, set m1 = fGG∗, HH∗
(sk1, · · · , sk�) and m0 = 0|f(·)|.

Choose r
$←− {0, 1}�1 ,K

$←− {0, 1}k1 , c∗
3

$←− {0, 1}k2 , and run

c∗
1 ← EncP (pkj , r), c∗

2 ← EncS(K,mb).

Add (j, (c∗
1, c

∗
2, c

∗
3)), (r,K), and ((r,mb, c

∗
1, c

∗
2), c

∗
3) to Lkdm, LG∗ and

LH∗ , respectively. Maintain the lists LG and LH according to A’s
queries. Finally, return (c∗

1, c
∗
2, c

∗
3) to A.

∗ For τ = t, still set m1 = fGG∗, HH∗
(sk1, · · · , sk�) and m0 = 0|f(·)|.

Submit them to its own encryption oracle and obtain the response
c∗
2. Then choose r

$←− {0, 1}�1 and run c∗
1 ← EncP (pkj , r). Also

choose c∗
3

$←− {0, 1}k2 . Return (c∗
1, c

∗
2, c

∗
3) to A. Finally, add (r,⊥) and

((r,⊥, c∗
1, c

∗
2), c

∗
3) to LG∗ and LH∗ , respectively. That is, Bt simulates

the random value G∗(r) of r with its challenger’s secret key, which he
does not know.
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∗ For t < τ ≤ qe, choose r
$←− {0, 1}�1 ,K

$←− {0, 1}k1 , c∗
3

$←− {0, 1}k2 ,
and run

c∗
1 ← EncP (pkj , r), c∗

2 ← EncS(K, 0|f(·)|).

Add (j, (c∗
1, c

∗
2, c

∗
3)), (r,K), and ((r, 0|f(·)|, c∗

1, c
∗
2), c

∗
3) to Lkdm, LG∗ and

LH∗ , respectively.
• Decryption Queries. For the decryption query (j, c) /∈ Lkdm, Bt first parses

c as c1||c2||c3. Then look for all the pairs (r,m) such that the query
(r,m, c1, c2) has been asked to H with the answer c3. For any of these
pairs, Bt computes K = G(r) (using his simulation of G-oracle), checks if
c2 = EncS(K,m) and r = DecP (skj , c1). In the positive case, Bt outputs
m. Otherwise, output ⊥.

– Guess. Finally, when A outputs a bit b, Bt also outputs it.

This ends the description of Bt, from which we know that, if Bt’s challenger
responds with the encryption of m1 (resp. m0), then he simulates the game
Game5, t−1 (resp. Game5,t) for A. Therefore, we have

|Pr[Win5, t−1] − Pr[Win5, t]| ≤ AdvIND
Bt, Π(1λ).

Since the secret key scheme Π is IND secure, AdvIND
Bt, Π(1λ) is negligible. Hence,

(12) follows.
� (Lemma 1)

Lemma 2. If the public key scheme Σ is OW-PCA secure, then

Pr[BHQ6] = negl(λ), (15)

and
Pr[BDQ′

6] = negl(λ). (16)

Proof of Lemma 2. We first prove the Eq. (15). In particular, we construct an
adversary B attacking on the OW-PCA security of Σ by using A as a subroutine.

– Initialization. Given a public key pk∗ and his challenge ciphertext c∗∗
1 , B

first chooses s
$←− [�], sets pks = pk∗, and runs (pki, ski) ← GenP (1λ) for

i = 1, · · · , s − 1, s + 1, · · · , �. Then choose t
$←− [qe], and initialize

Lkdm = LG = LG∗ = LH = LH∗ = Lans = ∅.

Return pk1, · · · , pk� to A.
– Queries. A is allowed to adaptively make the following queries.

• Hash Queries. When A queries r to G-oracle, B checks if there exists
an entry (r,K) ∈ LG. If it is, return K to A. Else, choose K

$←−
{0, 1}k1 , return it to A. Add (r,K) to LG and r to Lans. When
A queries (r,m, c1, c2) to H-oracle, B checks if there exists an entry

((r,m, c1, c2), c3) ∈ LH . If it is, return c3 to A. Else, choose c3
$←− {0, 1}k2 ,

return it to A. Add ((r,m, c1, c2), c3) to LH and r to Lans.
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• KDM Queries. For the i-th KDM query (j, f), B first chooses K
$←−

{0, 1}k1 , and c∗
3

$←− {0, 1}k2 . Run c∗
2 ← EncS(K, 0|f(·)|). Then check if

i = t.
∗ If it is not, then he continues to choose r

$←− {0, 1}�1 , and run c∗
1 ←

EncP (pkj , r). Add (r,K) to LG∗ and ((r, 0|f(·)|, c∗
1, c

∗
2), c

∗
3) to LH∗ .

∗ Else, he continues to check if j = s. If it is not, he stops the sim-
ulation and output ⊥. Else, set c∗

1 = c∗∗
1 , add (⊥,K) to LG∗ and

((⊥, 0|f(·)|, c∗
1, c

∗
2), c

∗
3) to LH∗ .

Add (j, (c∗
1, c

∗
2, c

∗
3)) to Lkdm and return c∗ = (c∗

1, c
∗
2, c

∗
3) to A.

• Decryption Queries. For the decryption query (j, c) /∈ Lkdm, B first parses
c as c1||c2||c3 and looks for all the pairs (r,m) such that the query
(r,m, c1, c2) has been asked to H with the answer c3. For any of these
pairs, B then computes K = G(r) (using his simulation of G-oracle),
checks if c2 = EncS(K,m), and r = DecP (skj , c1) using the Plaintext-
Checking Oracle if j 	= s and sks if j = s. In the positive case, B outputs
m. Otherwise, output ⊥.

– Guess. When A outputs a bit b ∈ {0, 1}, B randomly chooses the τ -th
element r in Lans and outputs it.

This ends the description of B.
If B does not stop the simulation, then he perfectly simulates the game Game6

for A. We note that s, t, and τ are chosen uniformly and the choice of them is
information-theoretically hidden to A if B does not abort. Therefore, all of them
are independent of A (in the case that B does not abort).

When A queries r to G-oracle or (r,m, c1, c2) to H-oracle, B adds it to Lans.
If BHQ6 occurs, then there exists an entry (r, ·) in LG∗ . That is, for some item
r ∈ Lans, it is used to answer A’s some KDM query.

Therefore, if BHQ6 just occurs in the t-th KDM query (j, f) and B does
not abort the simulation (i.e. j = s), then A has queried the “plaintext” r∗

of c∗∗
1 to G-oracle or H-oracle. Since t, s are independent of A’s view, the event

BHQ6 occurs in the t-th KDM query occurs with probability 1/qe and the other
event j = s occurs with probability 1/�. At the final phase, since B randomly
chooses the “answer” in Lans, he can correctly obtain r∗ at least with probability
1/|Lans|.

Putting all the facts together, we have

Pr[BHQ6] ≤ qe · � · |Lans| · AdvOW-PCA
B, Σ (1λ),

which is negligible. That is, the Eq. (15) holds.
Next, we consider the Eq. (16). Recall that BDQ′

6 means that, in Game6,
the decryption query (j, c1||c2||c3) /∈ Lkdm (from A) satisfies one of the following
two conditions:

– Condition 1. There exist ((r,m, c1, c2), c3) ∈ LH , (r,K) ∈ LG∗ , and

r ← DecP (skj , c1), m ← DecS(K, c2). (17)
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– Condition 2. There exist ((r,m, c1, c2), c3) ∈ LH∗ , (r,K) ∈ LG∗ , and (17)
holds.

Now, we first bound the probability of Condition 2. According to the description
of Condition 2, we know that there exists some entry (j∗, c∗

1||c∗
2||c∗

3) ∈ Lkdm

satisfying
r = r∗, m = m∗, c1 = c∗

1, c2 = c∗
2, and c3 = c∗

3,

where
r∗ = DecP (skj∗ , c∗

1), m∗ = DecS(G∗(r∗), c∗
2).

Hence, it naturally holds that j 	= j∗. In addition, from (17), we know that
r ← DecP (skj , c1), which yields

DecP (skj , c
∗
1) = DecP (skj∗ , c∗

1) (18)

when combined with r = r∗, c1 = c∗
1. However, the probability that (18) occurs is

at most negligible, since the OW-PCA security of Σ guarantees that the common
ciphertext c∗

1 is decrypted to the same plaintext r(= r∗) under independent secret
keys skj , skj∗ with at most negligible probability.

Therefore, the decryption query (j, c1||c2||c3) /∈ Lkdm satisfies Condition 2
with at most negligible probability negl(1λ).

As a result, we only need to consider the event BDQ′
6 when Condition 1

holds, which can still be reduced to the OW-PCA security of Σ. Concretely,
we construct another adversary B′ attacking on the OW-PCA security of Σ by
using A as a subroutine. In fact, B′ runs in exactly the same way as B except
that, when answering A’s hash queries, he only adds r to Lans, where r is the
first element of some entry (r,m, c1, c2) queried to H-oracle.

If the event BDQ′
6 satisfying Condition 1 occurs, then there exists

((r∗,m, c1, c2), c3) ∈ LH , where r∗ is some randomness used to answer A’s i0-th
KDM query (j0, f). We note that only when A makes a H-oracle query, an entry
is added to LH . Hence, ((r∗,m, c1, c2), c3) ∈ LH means that the adversary A has
queried (r∗,m, c1, c2) to H-oracle. From the construction of B′, we know that
this r∗ is included in Lans.

Therefore, if i0 = t and B′ does not abort the simulation (i.e. j0 = s), then
B′ just embeds his own challenge ciphertext c∗∗ in the t-th KDM ciphertext
(for A) and this r∗ is just the decryption of c∗∗. By randomly choosing element
from Lans, B′ can find r∗ with probability 1/|Lans|. On the other hand, s, t are
also randomly chosen by B′, and the choice of them is information-theoretically
hidden to A. Hence, the probabilities of i0 = t and j0 = s equal to 1/qe and 1/�,
respectively.

Putting all the facts together, we know that

Pr[BDQ′
6] = Pr[BDQ′

6 when Condition 1 holds] + Pr[BDQ′
6 when Condition 2 holds]

≤ qe · � · |Lans| · AdvOW-PCA
B′,Σ (1λ) + negl(1λ),

which is still negligible. That is, the Eq. (16) holds.
� (Lemma 2)
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4 Conclusion

In this paper, we prove the KDM-CCA security of the REACT scheme, which
has been proven to be CCA secure in the random oracle if the asymmetric
encryption part is OW-PCA secure, the symmetric encryption part is IND secure
and both the hash functions G and H are modeled as random oracles. Our result
illustrates that it can naturally “obtain” KDM security based on exactly the
same assumptions on its building blocks as those used in original REACT.
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8. Böhl, F., Davies, G.T., Hofheinz, D.: Encryption schemes secure under related-
key and key-dependent message attacks. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 483–500. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 28

9. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-540-89255-7_31
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1


The KDM-CCA Security of REACT 101

10. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 13

11. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

12. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

13. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 540–557. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 32

14. Chang, J., Dai, H., Xu, M., Xue, R.: Separations in circular security for arbitrary
length key cycles, revisited. Secur. Commun. Netw. 9(18), 5392–5400 (2016)

15. Chen, Y., Zhang, J., Deng, Y., Chang, J.: KDM security for identity-based encryp-
tion: construction and separations. IACR Cryptology ePrint Archive 2016: 1020

16. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

17. Davies, G.T., Stam, M.: KDM security in the hybrid framework. In: Benaloh, J.
(ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 461–480. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-04852-9 24

18. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

20. Gentry, C.: A full homomorphic encryption scheme. PHD thesis, Standford Uni-
versity (2009). crypto.standford.edu/craig

21. Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for
polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 307–338. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 11

22. Haitner, I., Holenstein, T.: On the (Im)possibility of key dependent encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00457-5 13

23. Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: On the key dependent
message security of the fujisaki-okamoto constructions. In: Cheng, C.-M., Chung,
K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 99–129.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7 5

24. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9 13

25. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004: 332

https://doi.org/10.1007/978-3-642-19571-6_13
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-642-30057-8_32
https://doi.org/10.1007/978-3-642-30057-8_32
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-319-04852-9_24
https://doi.org/10.1007/978-3-319-04852-9_24
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/3-540-48405-1_34
https://crypto.stanford.edu/craig/
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-642-00457-5_13
https://doi.org/10.1007/978-3-662-49384-7_5
https://doi.org/10.1007/3-540-45353-9_13


Privacy-Preserving Extraction of HOG Features
Based on Integer Vector Homomorphic

Encryption

Haomiao Yang1(B), Yunfan Huang1(B), Yong Yu2, Mingxuan Yao1,
and Xiaosong Zhang1

1 School of Computer Science and Engineering, Center for Cyber Security,
University of Electronic Science and Technology of China, Chengdu, China

haomyang@uestc.edu.cn, huangyf0714@163.com, mingxuanyao@hotmail.com,
s x zhang@163.com

2 Shaanxi Normal University, Xi’an, China
yuyong@snnu.edu.cn

Abstract. Along with the growing popularity of social networks, the
number of multimedia image grows explosively. For the resource con-
strained owners, dealing with tremendous number of images on their
own is a challenging job. Therefore, there is a general trend to out-
source the heavy image processing (e.g., feature extraction) to the cloud.
Abundant contents in images may expose the owner’s sensitive infor-
mation (e.g., face, location and event), and outsourcing the image data
to the untrusted cloud directly has raised privacy concerns of public.
In this work, we explore the outsourcing of the famous feature extrac-
tion algorithm-Histogram of Oriented Gradients (HOG) to the public
cloud with privacy protection. In our proposed scheme, the image owner
encrypts the original images by using the Vector Homomorphic Encryp-
tion (VHE) that encrypt vector directly and is much suitable for image
processing. Then the image owner sends the encrypted images to the
cloud which elaborately applies the linear transformation of VHE to
the realization of the improved HOG algorithm in ciphertext domain.
The security analysis based on the hardness of Learning with Error
(LWE) Problem verifies that the extraction of HOG features is privacy-
preserving in our scheme without leaking privacy contents to any other
parties. We implement pedestrian detection by using the extracted HOG
features to validate the efficiency and effectiveness of our proposed
scheme, and the result shows that our solution can extract the HOG
features correctly in ciphertext domain and approximate the original
HOG in plaintext domain. Compared with existing solution, our scheme
has less time and communication cost of HOG feature extraction.
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1 Introduction

With the arrival of the era of Big Data, the number and manner of image gen-
eration are increased considerably, which stimulates a lot of image applications,
e.g., pedestrian detection, machine vision. Especially, along with the popularity
of multimedia social network, the number of user-contributed images is sharply
increased. According to the statistics, a number of images users upload to the
social network servers only through Facebook has reached 500 million every day,
making it difficult to deal with massive image in storage, sharing and search
etc. In order to eliminate the influence of random factors of original images
such as noise information, lack of pixels etc., and to get more efficient results
in these image applications, it is essential to extract features from the original
images, which means extracting information is of strong robustness to express
the attributes of the images. The research of image feature extraction is of great
significance in processing and analyzing massive image data, and it is the base
of the applications of massive images.

Because of the powerful storage and computing in the cloud, more and more
social server providers choose to provide image service based on the cloud server,
such as Amazon Cloud Drive, Apple iCloud, Flicker and Google etc. However,
the original images always contain users’ sensitive information, e.g., personal
identity, home address, and even financial conditions. And the cloud is not such
believable as people imagine, existing the leakage of users’ privacy information
intentionally or unintentionally. In 2013, the report of PRISM [6] revealed privacy
invasion to user-contributed data. In this event, the security authority has access
to the social network servers owning to IT giants’ permission. As a result, the
security authority can inspect all the image data stored in cloud server, and it
cause the public’s concern about their own privacy.

Therefore, the privacy in image feature extraction with large-scale magni-
tude is an urgent problem that eagerly to be solved. When the cloud is not as
reliable and trustworthy as people think, some other cloud security methods has
been proposed, such as, data anonymization, secure multi-party computation
(SMC) [9]. However, those methods are not very suitable and practical to deal
with large-scale images under privacy protection. For example, multiple interac-
tions between image owners and the queries in SMC lead to high communication
cost. The other way to protect the privacy of image is image encryption. Tra-
ditional encryption schemes (e.g. DES, AES) change the original image data
format in the encryption process, which will hinder further feather extraction
and applications. Compared with those scheme, Homomorphic Encryption (HE)
can handle the ciphertext before decryption, and there is a great possibility that
HE can become a good solution to guarantee the privacy and security of images.
After using of the homomorphic encryption, image data has converted from
plaintext to ciphertext. By utilizing homomorphism, the ciphertext of images are
computed and processed under the protection of privacy, and then the results as
equivalent as the plaintext results can be obtained.

In previous researches, Hsu et al. [7] studied privacy-preserving SIFT algo-
rithm under ciphertext domain through Paillier HE [11]. But this solution either
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has a large overhead in computation or has security weaknesses as discussed in
[14]. In [13], Qin et al. proposed an alternative solution on the basis of order-
preserving encryption (OPE) [1] and random permutation to ensure confidential-
ity and privacy. From [17], the authors Wang et al. set out to find a better solution
to privacy problems through garbled circuits [8] and homomorphic encryption
scheme, and they respectively proposed two schemes with different security
levels. Although there are obvious improvements in both privacy and efficiency,
the proposed schemes are lackof comprehensive analysis and evaluation as pre-
vious schemes. As a following work, Q. Wang et al. carried out a research on the
HOG algorithm [16] in ciphertext domain with somewhat homomorphic encryp-
tion, but it need the support of SIMD [15] to perform well.

In this paper, we provide a feasible solution to extract image feature by using
HOG algorithm, meanwhile users privacy is well protected. The main ideas are
as follows: The image owners encrypt their own image data by homomorphic
encryption based integer vector and upload the ciphertext to the cloud, the
cloud gains the image data in ciphertext domain and then carries out extraction
algorithm—Histogram of Oriented Gradient (HOG), as s result, the cloud finally
gets the HOG feature vectors in encrypted domain. In practice, the features of
HOG are widely used in object detection, especially in pedestrian detection. In
the whole process, the most time-consuming work is the generation of image
features, and the main challenge is how to protect the untrusted cloud against
the sensitive information of the images, meanwhile, the extracted feature can be
effective and valid in object detection. In response to this challenge, we proposed
a novel and original scheme that combines HOG feature extraction and integer-
vector-based homomorphic encryption [18], which can achieve secure and efficient
HOG feature extraction of the encrypted images.

Compared with the previous work [7,13,16,17], the contribution of this paper
mainly includes three aspects:

1. We explore the privacy-preserving Extraction of the HOG features by uti-
lizing the vector homomorphic encryption (VHE) that is more efficient than
existing homomorphic scheme. Especially, the HOG extraction algorithm in
our scheme has been improved to better adapt the homomorphic operations
in ciphertext domain. And in our proposed system model, the cloud can know
nothing but the ciphertext of images when it conducts the outsource com-
putation of our HOG feature extraction, which ensure the privacy of image
owners.

2. We have carried out a lot of experiments to verify the correctness of our
solution with a large number of images in INRIA Database. And by the
comparison with existing work, our scheme shows apparent efficiency and
safety advantages.

3. We conduct the pedestrian detection in the Support Vector Machine (SVM)
algorithm with extracted HOG descriptors from our scheme, the results of
detection indicate that our solution can extract the HOG features correctly
in ciphertext domain and approximate well the original HOG in plaintext
domain.
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The organization of the remaining paper is illustrated as follows: The sys-
tem and threat models are proposed detailedly in Sect. 2. The integer vector
homomorphic encryption(VHE) and the original HOG algorithm are depicted
as preliminaries in Sect. 3. Section 4 presents our privacy-preserving HOG
algorithm in ciphertext domain. Then we conduct implementations and analyze
the whole scheme in multiple aspects in Sect. 5. At last, Sect. 6 gives some
conclusions.

2 System Model and Design Goals

In this part, we design the system model according to the practical requirements
in the HOG feature extraction of encrypted images, in addition, we construct
our threat model. On one hand, the image owners has large-scale multimedia
image data, but they have little ability to handle the data by theirselves due to
resource constraints. When the image owners want to do the object detection
jobs, they may have a tendency to delegate the heavy work of feature extraction
to the cloud so that they can be free from the burden of image storage and heavy
computations. On the other hand, original multimedia data contains sensitive
information of the owners, outsourcing the data directly to the untrusted cloud
leads to owners’ privacy leaking. To solve this problem, we consider our system
model is mainly composed of two entities: the image owners O and the cloud C
as shown in Fig. 1.

HOG feature of ciphertext 
The image 
owner O

The cloud C

Each row of image is encrypted as

{OrBlock1e , OrBlock2e , . . . , OrBlockke}{OrBlock1e , OrBlock2e , . . . , OrBlockke}

Iie(x, y) = Enc(II(x, y),S)Iie(x, y) = Enc(II(x, y),S)

Fig. 1. System model

In this model, the image owners O encrypt original images using vector-
based homomorphic encryption, and upload the ciphertext to the cloud C. After
receiving the ciphertext, the cloud C will carry out the improved HOG algorithm
in ciphertext domain. All the computations of the algorithm are conducted by
the cloud, and because of the encryption, the owners’ privacy information is well
protected from the cloud, i.e. the cloud can get nothing about the image contents
through the process.

Under the design of this system model, we set a hypothesis that the cloud is
not absolutely honest. In fact, the cloud will honestly execute the HOG algorithm
and return the results of feature vectors in ciphertext to the image owners O,
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but it is curious about the image contents, and infer the sensitive information
from the encrypted images and all the data it can get in computational process.
Therefore, we must ensure the cloud can infer nothing about the image contents
from the encrypted images so that the owners’ privacy is guaranteed.

We consider the challenge how to outsource computing process of the HOG
descriptor to the cloud without leaking the original image information, the final
purpose of our system is that the system model must ensure image owners’
privacy through the whole process under this threat. The overall design goal of
our system is as follows:

– Correctness: The HOG features extracted by the improved HOG algorithm
have the same attribute as those extracted by the original HOG algorithm,
which can performs well in the pedestrian detection.

– Security: By the usage of vector homomorphic encryption scheme, the real
contents of images can not be revealed to the cloud or other parties to protect
the image owner’s privacy.

– Efficiency: Compared with existing work, ensure time and communication
cost of our scheme have obvious advantages.

3 Preliminaries

To make this paper better understanding, before elaborating our scheme, it is
essential to give some preliminaries, including the integer vector homomorphic
encryption and the overview of the original Histogram of Oriented Gradient
(HOG) algorithm.

3.1 Vector Homomorphic Encryption Scheme

The Vector Homomorphic Encryption scheme that we utilize in the system is
designed as an expansion on the basis of the PVW scheme [12], and the encrypted
objects are changed from bit-wise vectors to integer-based vectors.

Before the introduction of the VHE scheme, we give some basic notations
in advance to lead a easy understanding as below Table 1. Note that the lower-
case bold and capital bold characters represent vectors and matrices respectively
(e.g., v is a column vector and A is a matrix):

Key Generation: Under a security parameter λ, select some appropriate
integers l, w,m, n, p, q ∈ Z as parameters in VHE. Construct the secret key
S = [I,T] ∈ Zm×n

q , where I is an identity matrix.

Encryption Operation: Given the secret key S ∈ Zm×n
q , so the x ∈ Zm

p ,
c ∈ Zn

q , S can satisfies:
Sc = ωx + e (1)

For keeping the error term small later, it’s necessary to assume that |S| << ω
when applying operations in ciphertext domain.
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Table 1. Notations

Notation Meaning

λ A security parameter in VHE

l The length parameter in VHE

p, q Two large prime integers in VHE and q >> p

m, n Two integers as length parameters in VHE and n > m

χ The probability distribution

ω A large integer as a parameter in VHE

e An error vector with elements smaller than ω/2 in χ

Zp A finite field with alphabet size p

a ∈ Zm
p An integer vector a with length m in the finite field Zp

|v | Maxi{| vi |}, for a vector v ∈ Z
n

|M | Maxi{| Mij |}, for a matrix M∈ Z
n×m

�a�q The nearest integer to a with the modulus q

�a�q Round each ai to the nearest integer with modulus q

Decryption Operation: As for the decryption, it’s straightforward:

x = �Sc
ω

�
q

(2)

Addition: For arbitrary plaintexts x1,x2 and their corresponding ciphertexts
c1, c2 that are encrypted with the same secret key S, then

S(c1 + c2) = ω(x1 + x2) + (e1 + e2) (3)

Let c′ = c1 + c2, x′ = x1 + x2, and we can observe that

Sc′ = ωx′ + (e1 + e2) (4)

Linear Transformation: Given a plaintext x and its corresponding ciphertext
c with the secret key S, the linear transformation Gx can be computed that

(GS)c = ωGx + Ge (5)

with an arbitrary matrix G ∈ Zm′×n. Therefore, we can treat c as the encryption
of Gx with the secret key GS.

When several ciphertexts need to be computed, it’s essential to keep their
secret keys to be the same. Key switching technique makes it possible to convert
a secret key to another chosen secret key and maintain to encrypt the original
integer vectors. Based on the relinearization technique introduced by Brakerski
et al. in [3] and matrices switching method in [2], the key-switching technique
in VHE achieves this conversion.
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Key Switching Technique: Suppose the initial secretkey-ciphertext pair
{S, c} and a new secretkey-ciphertext pair {S′, c′} with predefined S′ = [I,T],
which can satisfy

S′c′ = Sc (6)

Select a length parameter l satisfies |c| < 2l and convert each element ci of the
ciphertext c to l-bit binary form bi = [bi(l−1), · · · , bi1, bi0]

T , and the ciphertext
can be expressed as:

c∗ = [b1T , · · · , bn
T ]

T
. (7)

Then construct S∗ ∈ Zm×nl by converting each element Sij in S to a vector
[Sij , Sij · 2, · · · , Sij · 2l−1], which can absolutely satisfy Sc = S∗c∗.

Key switching matrix M can be generated through the transformation as:

M =
[
S∗ − TA + E

A

]
(8)

where A is a random matrix and E is a noise matrix with |E| is small enough.
Then the new ciphertext c′ is computed as c′ = Mc∗.

3.2 Histogram of Oriented Gradients (HOG) Algorithm

For a fixed-size image (e.g., 128 × 64 pixels in human detection), the detail
extraction of HOG features is descripted as the following steps [4].

Image Preprocessing: The raw images are usually color images containing a lot
of color information, however, because the focus of HOG descriptor is on gra-
dients rather than the color of pixels, it is necessary to reduce this redundant
information by graying the raw images. Besides, for adjusting the contrast of the
images and decreasing the effects of local shadows and illumination changes, the
grayscale images are standardized in color space by using Gamma Correction as
the following formula:

I(x, y) = I(x, y)γ

where the value of γ can be 1/2.

Orientation histogram building: For each pixel I(x, y) in the image I, let Diffx =
I(x+1, y)−I(x−1, y) and Diffy = I(x, y+1)−I(x, y−1) represent the horizontal
and vertical gradients of the pixel. Then the gradient magnitude m(x, y) and
the orientation θ(x, y) can be computed as m(x, y) =

√
Diff2

x + Diff2
y and

θ(x, y) = tan−1 Diffy

Diffx
.

In an image I, a cell is defined as a local square region with a certain prede-
fined size, such as 8 × 8 pixels, and then 4 adjacent cells are defined as a block
that contains 16 × 16 pixels. Within a cell, the gradient orientation is divided
into 9 bins equably among the angle space 0◦–180◦ (unsigned gradient), and
the bin that a pixel belongs to can be decided by its orientation. In each pixel,
consider the gradient magnitude as a weighted vote, the orientation histogram
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of a cell can be built by accumulating the bins of all pixels. Finally, concatenate
the four orientation histograms of cells orderly, the orientation histogram of a
block is obtained.

Block normalization: Obviously, the formed orientation histogram of each block
contains a 4×9 dimensional feature vector. Suppose v be the unnormalized block
descriptor vector, then its σ − norm is defined as ||v||σ, where σ can be 1, 2.
The normalization procedure of each block descriptor vector with L2 − norm
is executed as v ← v√

||v||22+ε
, where ε is a minimal constant. The process of

normalization further weakens the interference of light to the images.

HOG descriptor generation: Concatenate the normalized block descriptor from
left to right and top to bottom by the step of 8 pixels in the fixed-size image,
the final HOG descriptor is generated (e.g., in a 128 × 64 pixels image, a 3780-
dimensional feature vector is enmerged).

4 Privacy-Preserving Extraction of HOG

In this section, the privacy-preserving extraction of HOG is proposed between
the image owners and the untrusted cloud. The final purpose is stated detailedly
as follows. Firstly, the original image contents must be protected from any other
parties except the image owner to ensure the security of our scheme. Secondly,
after improvement and simplification, the HOG algorithm should have as much
similar extraction results as the original HOG algorithm, which can keep the
effectiveness. Finally, the image owner is always considered as resource con-
strained, so the computation cost on owner side must reduced significantly and
the computational burden on the cloud side must be acceptable and practical to
guarantee the efficiency of the HOG algorithm.

In the previous studies, [7,16] have done the similar research on explor-
ing privacy-preserving outsourcing of HOG algorithm with SHE and HE cryp-
tosystem respectively. Different from that scheme, we build our system by
using the VHE (Vector Homomorphic Encryption) scheme as described above.
The key point in our scheme is that the fully combination of image data for-
mat and vector-based encryption leads to much higher efficiency under privacy
protection.

4.1 Image Encryption

For the protection of image owners’ privacy, the encryption of the original image
data is an essential process before uploading to the cloud. Assume that, the
image data has been preprocessed, including graying and Gamma Correction.
The owner generates a secretkey S to encrypt preprocessed images. We regard
the image I as a matrix I(x, y) with the size of n × m, and take each row of
this image matrix as an integer vector to be encrypted. In the support of the
Vector Homomorphic Encryption scheme, the encryption of each row vector can
be expressed as

Ii
e(x, y) = Enc(Ii(x, y),S),
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which means the ciphertext of the ith row pixels of image I. After encryption,
the ciphertext vector group of the image I is generated:

{I1e(x, y), I2e(x, y), ..., In
e (x, y)}.

4.2 Computing Gradient Magnitude

Because of the limited computing operations that the VHE supports, some com-
plex operation in the original HOG algorithm must be simplified. So we eliminate
some steps and reduce the amount of the original orientation directions from nine
to four ones (i.e., 0◦, 45◦, 90◦, 135◦), which represent 4 bins for each orientation
descriptor in a cell. The detail computing method is expressed in the plaintext
form as below:

Diff0◦ = I(x + 1, y) − I(x − 1, y),

Diff45◦ = I(x − 1, y − 1) − I(x + 1, y + 1),

Diff90◦ = I(x, y + 1) − I(x, y − 1),

Diff135◦ = I(x + 1, y − 1) − I(x − 1, y + 1).

In the ciphertext domain, we utilize the Linear Transformation in the VHE
to achieve these gradients computation over the encrypted image vector. Define
some certain transformation matrices to shift the vector correspondingly, and
then carry out different homomorphic operations to get the gradient of different
orientation. Especially, considering the image edge, we add the last pixel value
to the original pixel value when shifting, in other words, the pixel value at the
right edge is set to the original value when the vector moves left, and the pixel
value at the left edge is set to the original value when the vector moves right.

Thus, the gradient magnitude along 0◦ direction of the ith row is computed
as following steps. First, define two shifting linear transformation matrices, left-
shifting matrix GL and right-shifting matrix GR, which can lead the plaintext
vector to move a single position left and right respectively. Second, according
to the Linear Transformation, computing a new secret key GLS can obtain a
relative pair of plaintext-ciphertext {GLIi(x, y), Ii

e(x, y)}. To support the direct
homomorphic operation later, we use key-switching to keep the same secretkey S.
So in the procedure of changing GLS to S, we can get the key-switching matrix
ML, and the left-shifting plaintext vector Ii(x + 1, y) = GLIi(x, y) can corre-
spond to the following ciphertext vector under the secret key S:

Ii
e(x + 1, y) = MLIi

e(x, y).

The right-shifting plaintext vector Ii(x − 1, y) = GRIi(x, y) and the relative
ciphertext vector can be computed analogously,

Ii
e(x − 1, y) = MRIi

e(x, y).

Finally, under the same secret key S, the orientation gradient magnitude of the
ith row ciphertext vector is derived as:

Diff i
0◦ = Ii

e(x + 1, y) − Ii
e(x − 1, y). (9)
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Therefore, the gradient magnitude along the other three directions can be
obtained as:

Diff i
45◦ = Ii

e(x − 1, y − 1) − Ii
e(x + 1, y + 1) (10)

where Ii
e(x − 1, y − 1) = MRIi−1

e (x, y) and Ii
e(x + 1, y + 1) = MLIi+1

e (x, y).

Diff i
90◦ = Ii

e(x, y + 1) − Ii
e(x, y − 1) (11)

where Ii
e(x, y + 1) = Ii+1

e (x, y) and Ii
e(x, y − 1) = Ii−1

e (x, y).

Diff i
135◦ = Ii

e(x + 1, y − 1) − Ii
e(x − 1, y + 1) (12)

where Ii
e(x + 1, y − 1) = MLIi−1

e (x, y) and Ii
e(x − 1, y + 1) = MRIi+1

e (x, y).

4.3 HOG Descriptor Generation

On the owner’s side, it predefines several linear transformation matrices G and
compute the relevant key-switching matrices M. After a few round of communi-
cations, the cloud get a series of key-switching matrices from the owners. Then
the cloud can conduct linear transformation and key switching to generate HOG
descriptor based on those matrices.

Given that a cell contains 8 × 8 pixels. The feature vector of a cell is formed
by accumulating the gradient magnitude of four orientations among all the 8×8
pixels. Let GH be the transformation matrix to add every 8-pixel gradient in a
ciphertext vector horizontally. Take the accumulation of the direction 0◦ in a cell
for example, translate the secret key GHS to S by key-switching method and get
the key-switching matrix MH . Then compute the new ciphertext MHDiff i

0◦ to
represent the sum gradient of every 8-pixel in each ciphertext vector row. Finally,
adding 8 consecutive rows of gradient ciphertext leads to the accumulation of
the direction 0◦ in a cell as following:

Or0j
e = MH(Diff i

0◦ + ... + Diff i+7
0◦ ).

Similarly, the accumulation of the other three directions in a cell are computed,
i.e., Or45j

e, Or90j
e, Or135j

e.
Define four transformation matrices G0,G45,G90,G135 to shift the sum ori-

entation of four directions in cells, and let the four matrices M0,M45,M90,M135

to be the corresponding key-switching matrices when transformating secret key.
Every row of cell descriptor can be derived by

OrCellje = M0Or0j
e + M45Or45j

e + M90Or90j
e + M135Or135j

e

A block contains 2 × 2 cells, so the block descriptor of each row can be
obtained by two adjacent rows of cell descriptor in the ciphertext domain. In
the cell descriptors of two rows, we cascade the block descriptor by the order
of zigzag with the step of a cell. By the usage of two transformation matrices
Gu,Gd and corresponding key-switching matrices Mu,Md, the block descriptor
of each row in ciphertext is derived as:

OrBlockk
e = MuOrCellje + MdOrCellj+1

e .
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Because the limit of division operation in ciphertext domain, the block normal-
izations are carried out by the image owners O. Thus, the final HOG descriptor
can be described by block descriptors of all rows:

HOG = Dec{(OrBlock1
e , OrBlock2

e , ...OrBlockk
e ),S}.

4.4 Descriptor Descryption

Once the cloud C has completed the process of HOG descriptor extraction in
encrypted domain, it sends the results in ciphertext to the image owners O.
Next, the owners O will descript the HOG descriptor with the secret key S, and
perform normalization operations on each block descriptor by using L2 − norm
algorithm. Ultimately, the owners O get the actual HOG deacryptors.

5 System Analysis and Evaluation

In this part, we complete the simulation on the C++ environment to prove
the feasibility and practicality of our scheme, combining the MATLAB with its
image processing functions. We show the experimental results based on hundreds
of pedestrian images in INRIA Database, in which we choose 1000 sample images
with and without humans respectively. According to the experimental results,
We first present the correctness evaluation to prove that our proposed solution
is feasible and practical. Then the security analysis shows that our system can
be practical in protecting the owners’ privacy. Finally, we evaluate the efficiency,
which proves the better performance of our scheme.

5.1 Correctness Evaluation

For pedestrian detection, we conduct the SVM algorithm to detect whether
there are humans in an image. In the training stage, we use 1000 HOG features
extracted by the original HOG and our improved HOG under privacy respec-
tively, which contains 500 negative samples and 500 positive samples. In the
testing stage, the same number of image samples are detected. Through many
experiments, we choose two types of kernel functions in SVM algorithm with a
comprehensive consideration of various factors.

First, we can contrast the Undetected Rate and the Wrong-Detection Rate
under different kernel functions in Table 2. Though our improved HOG performs
a little bit inferior than the original HOG in the undetected rate, our solution
shows a better results in terms of wrong detection rate under the two functions.
In practice, the effect of detection is dependent on these two rates, meaning that
our HOG is acceptable and practical.

To further evaluate the detection results, we measure the SVM detector by
precision and accuracy as follows:

precision =
TruePositive

TruePositive + FalsePositive
,
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Table 2. Average detection error rate

Kernel function The original HOG The improved HOG

Undetected rate ‘Quadratic’ 0.068 0.308

Wrong detection rate 0.292 0.122

Undetected rate ‘rbf’, ‘rbf sigma’= 100 0.066 0.252

Wrong detection rate 0.264 0.188

accuracy =
TruePositive + TrueNegtive

TotalSamples
.

An image sample is detected as true positive if it matches the ground truth
annotation with less than 50% overlap errors according to the PASCAL crite-
ria [5]. The construction of the precision between our HOG features detection
and the original HOG feature detection in different kernel functions is shown
as follows Table 3. Not surprisingly, both our improved HOG and the original
HOG perform very well in precision and accuracy, indicating that our solution is
consistent with the original HOG. This result is a better proof that our solution
can extract the HOG features correctly in ciphertext domain and approximate
the original HOG in plaintext domain.

Table 3. Precision and accuracy

Kernel function The original HOG The improved HOG

Precision ‘Quadratic’ 0.7614 0.808

Accuracy 0.82 0.785

Precision ‘rbf’, ‘rbf sigma’ = 100 0.7796 0.7991

Accuracy 0.835 0.78

5.2 Security Analysis

As described in our model, the cloud can get nothing but the ciphertext image
to preserve the privacy of the image owners. The security of our homomorphic
encryption scheme VHE plays an important role in the security of our solution,
which can be reduced to the speculated difficulty of an mathematical problem
named “Learning with Error” [2]. Next we illustrate our scheme is secure by
using VHE as follows.

Definition 1: Learning with Error (LWE) Problem. Given polynomial multiple
samples of (ai, bi) ∈ Zm

q × Zq satisfy

bi = vT ai + εi (13)
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where error term εi ∈ Zq is generated from a certain probability distribution χ.
and there is almost no chance to get the vector v ∈ Zm

q with non-ignored
possibility.

Theorem 1: If the problem of Learning with Error (LWE) is difficult, there is of
little possibility to retrieve S′ from S′M = S∗ +E, given M and S∗ is available.

Obviously, we can reduce this problem to LWE to prove the safety of our
encryption scheme. Suppose there is a solver to the S′M = S∗ + E, and we
take each of the elements in the matrices to be the element of Zq with a large
prime integer q >> max{|S′|, |M|, |S∗|, |E|}. Take this special circumstance into
account, i.e., given S′ = (s′)T is a n-dimensional row vector, meanwhile S∗ = s∗

and E = e are both row vectors in the same dimension n. Next the transforma-
tion of our problem can be stated that mi and s∗ are available in

(s′)T mi = s∗ + e,

i.e., there are n samples of (mi, si
∗) in

si
∗ = (s′)T mi − ei.

Then we can use the solver to solve the above equation for s′, which is equivalent
to solving bi = vT ai + εi for v.

Therefore, if the problem of LWE is hard, solving S′M = S∗ +E is also hard.
In other words, given the LWE problem is hard to conjecture, it is also impracti-
cal to retrieve the new secret key S′ on the premise of the key-switching matrix
M under known. Thus any other adversaries who intercept the communication
between the image owners and the cloud can not recover the secret key S and
the plaintext image.

5.3 Efficiency Evaluation

In the simulation implementation, we consider every row of an image as a plain-
text to be encrypted. Because the same secret key S is used to encrypt each
plaintext vector, we compute the key-switching matrix M in advance, and then
conduct encryption operations, i.e., M(wx) based on M, which can be time-
saving on the image owner’s side. In comparation with the HE scheme - the
Paillier cryptosystem [10] in [7], in which the parameter setting is within a 1024-
bit modulus under the comprehensive consideration, although the time cost of
our scheme increases nearly linearly with the change in image size, its quantity
is still within a reasonable scope. As shown in Fig. 2, and the comparison results
are shown in Fig. 3. Obviously, due to the vector based encryption in VHE, our
scheme performs excellent advantages than the pailliar cryptosystem in time
cost. Especially, the images in our dataset are preprocessed in fixed size (i.e.,
128 * 64 pixels), which can be encrypted in less than 1 s.

In the cloud, the main operation of HOG algorithm in ciphertext domain
is linear transformation, therefore the cloud only need to compute the Mc∗ to
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Fig. 2. Encryption Time Cost on VHE
with different image sizes
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Fig. 3. Comparison of Time Cost with
different image sizes

get the new ciphertext, where the M is the key-switching matrix corresponding
to the linear transformation G. Due to the strong computing capability of the
cloud, the time cost is largely shortened when it conducts the cipher computing
steps. With different sizes of image, the changing tendency of time cost in the
cloud is shown as follows Fig. 4.

Also, we evaluate the communication cost between the image owner and the
cloud in the outsourcing HOG extraction. In Fig. 5, although the communica-
tion costs also increase when image sizes grow, all of those cost are acceptable
in practice. In the whole process of our scheme, merely the occurrence of the
computation of key-switching matrices M, the communication would be made
between the image owners and the cloud. So the interaction times can be con-
trolled as a constant, which has important significance. In order to better reflect
the efficiency advantage in our solution, we still compare the communication
costs of the VHE used in our scheme with the HE scheme - the Paillier cryp-
tosystem. The comparison results are shown in Fig. 6, and we can observe that
the VHE scheme outperforms the HE scheme in the time and communication
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Fig. 4. Time Cost on cloud with different image sizes
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Fig. 5. Communication Cost on VHE
with different image sizes
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Fig. 6. Comparison of communication
Cost with different image sizes

costs. Therefore, in terms of efficiency, our scheme has great improvement owing
to the use of the VHE scheme.

6 Conclusion

In this paper, we first simplify the original HOG algorithm to adapt our encryp-
tion scheme-VHE. Then we conduct the extraction operations of the improved
HOG in the ciphertext domain, which outsource most heavy computation to
the cloud to release the burden of the image owners. In this proposed model,
the original contents of images are well protected against the cloud and any
other party by using of VHE, so the privacy preservation of image owner has
been achieved. Finally, we analyze the security and effectiveness of the system to
show that our proposed scheme is feasible and practical. Besides, to verify these
analysis, we carry out a lot of experiments by comparing the improved HOG
and the original HOG, and the results of experiments indicate that our solution
is well consistent with and approximate the original HOG solution.
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Abstract. Outsource local data to remote cloud has become prevalence
for Internet users to date. While being unable to “handle” (outsourced)
data at hand, Internet users may concern about the confidentiality of
data but also further operations over remote data. This paper deals with
the case where a secure data sharing mechanism is needed when data is
encrypted and stored in remote cloud. Proxy re-encryption (PRE) is a
promising cryptographic tool for secure data sharing. It allows a “honest-
but-curious” third party (e.g., cloud server), which we call “proxy”, to con-
vert all ciphertexts encrypted for a delegator into those intended for a del-
egatee. The delegatee can further gain access to the plaintexts with private
key, while the proxy learns nothing about the underlying plaintexts. Being
regarded as a general extension of PRE, conditional PRE supports a fine-
grained level of data sharing. In particular, condition is embedded into
ciphertext that offers a chance for the delegator to generate conditional
re-encryption key to control with which ciphertexts he wants to share. In
this paper, for the first time, we introduce a new notion, called “hierar-
chical conditional” PRE. The new notion allows re-encryption rights to
be “re-delegated” for “low-level” encrypted data. We propose the seminal
scheme satisfying the notion in the context of identity-based encryption
and further, prove it secure against chosen-ciphertext security.

Keywords: Hierarchical conditional proxy re-encryption
Fine-grained data sharing · Identity-based encryption
Chosen-ciphertext security

1 Introduction

To date cloud computing has been regarded as a successful and prevalent busi-
ness model for many real-world applications due to its long-list features, such
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 118–135, 2017.
https://doi.org/10.1007/978-3-319-72359-4_7
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as considerable storage and computing power. Internet users have been “encour-
aged” to outsource their data to cloud in order to save the cost of local data
maintenance and management but also to enjoy various cloud-based data ser-
vices. To prevent their sensitive data from being compromised by cloud server,
Internet users may choose to encrypt the data before outsourcing. However, the
encryption may limit “out-of-physical” sharing. For example, a user A may share
his data with another user, say B. Assume the data of A is stored in a cloud
server. A naive way for the sharing is to let A first download his encrypted
data locally and decrypt it, then re-encrypt the data for B. The solution, how-
ever, may require A to be on-line and meanwhile, bear all the workloads of
decryption-and-re-encryption. To offload the workloads to the server, one may
choose to allow the server to execute the decrypt-then-re-encrypt task. But this
will compromise the confidentiality of the data.

Proxy re-encryption (PRE), which is a useful cryptographic primitive, has
been introduced to tackle the above dilemma. By using PRE, A does not need to
download, decrypt and re-encrypt the data. Instead, he is only required to gener-
ate a re-encrypted key, which supports ciphertext conversion, so that a semi-trust
(i.e. honest-but-curious) cloud server (i.e. proxy) can use the re-encryption key to
transform the ciphertext of A for B. Even if the proxy obtains the re-encryption
key, it cannot gain access to the underlying data. Since its introduction, PRE has
been widely applied in many real-world applications, such as digital rights man-
agement systems [35], secure distributed files systems [1,9] and email forwarding
systems [2].

In a traditional PRE mechanism, using a re-encryption key from A to B,
the proxy may transform all ciphertexts of A into those intended for B. This
“all-or-nothing” data sharing mode may not scale well in practice. What if some
data is extremely sensitive to A so that he does not want it to be shared with
others, even including B? A fine-grained PRE may be desirable in this case. In
2009, Weng et al. [41] introduced the notion of conditional PRE (CPRE), in
which the proxy who has a re-encryption key with a special condition can only
convert the ciphertext of a delegator (e.g., A) with the same special condition
for a delegatee (e.g., B). Due to its innate feature, CPRE, however, limits the
data sharing in the sense that one re-encryption key only corresponds to the
sharing of one ciphertext. This one-to-one sharing mode brings inconvenience
for delegator. Specifically, if A plans to share 10,000 encrypted files (which are
embedded with distinct conditions) with B, he has to generate the same amount
of re-encryption keys.

To address the above limitation, we introduce a new notion, which we call
“hierarchical conditional” PRE (HCPRE). The new notion allows re-encryption
rights to be “re-delegated” to lower level of encrypted data. It brings convenience
and flexibility for delegator in the sense that a delegator may only need to
generate a re-encryption key for high level data and further, the key can be “re-
formed” for the lower level data shoring. Below we use cloud data sharing as an
example to illustrate the basic idea behind the notion to motivate our work.
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Fig. 1. Hierarchical conditional access structure

Assume outsourced data is under a specific data structure for some purposes,
e.g., efficient retrieval. A first forms his data in a hierarchical structure as shown
in Fig. 1, in which a data is tagged with a hierarchical condition set, for example,
the data (related to) Respiration is with a condition set W = {W0,W01,W011}.
A further encrypts the data together with the corresponding hierarchical con-
dition set before outsourcing to a cloud serer. Assume B is a Physician, who
is allowed to access all of the Internal Medicine data of A. To share the
data with B, A may generate a re-encryption key RK{W0,W01}|A→B , which is
embedded with hierarchical conditions {W0,W01}, and sends it to the semi-
trust cloud server. When B requests to access the Internal Medicine data,
including Gastroenterology, Respiration and Cardiology, the proxy uses the
re-encryption key RK{W0,W01}|A→B, which is for the conditions {W0,W01}, to
“delegate” a new re-encryption key RK{W0,W01,W01i}i∈{0,1,2}|A→B for the “lower-
level” hierarchical conditions {W0,W01,W01i}i∈{0,1,2}. The proxy further uses
the resulting key RK{W0,W01,W01i}i∈{0,1,2}|A→B to convert the encrypted data for
B, so that B may use his private key to access the Internal Medicine data
of A. In particular, if A decides to share all of his data to B, he only needs
to generate a “root” re-encryption key for condition W0 from A to B; while A
chooses to share one leaf data to B, he generates a re-encryption key for one of
the conditions {W0,W01,W01i} corresponding to the leaf of the structure.

1.1 Related Work

In 1998, Blaze et al. [2] constructed the first bidirectional PRE scheme. In 2005,
Ateniese et al. [9] proposed the first unidirectional PRE scheme. Both of the
schemes are secure only against chosen-plaintext attacks (CPA). In 2007, Canetti
et al. [3] designed a bidirectional PRE scheme with chosen-ciphertext security.
In 2008, Libert et al. [24] introduced a re-playable chosen ciphertext secure
(RCCA) unidirectional PRE scheme. Since then, various PRE schemes have
been proposed in the literature (e.g., [7,11,25,29,34,37,40]).
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PRE can be extended in the context of identity-based encryption. In 2007,
Green and Ateniese [10] proposed the first identity-based proxy re-encryption
(IBPRE) scheme, which is CCA secure in the random oracle model, where hash
functions are assumed to be fully random. Chu and Tzeng [6] constructed a CCA
secure IBPRE scheme in the standard model. After that, many identity-based
proxy re-encryption (IBPRE) schemes have been proposed, such as [6,10,18,20,
28,30,31,33,38].

However, among all of the aforementioned schemes, the semi-trust proxy can
use a given re-encryption key to transform all the ciphertexts of a delegator into
those of a delegatee. But in reality, the delegator does not want to transform
all of his data for the delegatee. Therefore, type-based PRE [36] and condi-
tional PRE (CPRE) [41,42] were proposed, in which the proxy can only fulfill
ciphertext conversion “conditionally”. Later, Liang et al. [16,19] proposed two
IBCPRE schemes with CCA secure in the standard model. However, He et al.
[12] presented the security analysis to show that their schemes only achieve CPA
security. In 2016, He et al. [13] proposed an efficient identity-based conditional
proxy re-encryption (IBCPRE) scheme with CCA secure in the random oracle
model.

PRE can be extended in the attribute-based setting. Attribute-based proxy
re-encryption (ABPRE) can effectively increase the flexibility of data sharing. In
2009, Liang et al. [23] first defined the notion of ciphertext-policy ABPRE (CP-
ABPRE), where each ciphertext is labeled with a set of descriptive conditions
and each re-encryption key is associated with an access tree that specifies which
type of ciphertexts the proxy can re-encrypt, and they presented a concrete
scheme supporting AND gates with positive and negative attributes. After that,
several CP-ABPRE schemes (e.g., [27]) with more expressive access policy were
proposed. In 2011, Fang et al. [8] proposed a key-policy ABPRE (KP-ABPRE)
scheme in the random oracle model, whereby ciphertext encrypted with condi-
tions W can be re-encrypted by the proxy using the CPRE key under the access
structure T if and only if T (W ) = 1. More recent ABPRE systems can be seen
in [15,17,21,22].

In 2016, Lee et al. [14] proposed a searchable hierarchical CPRE (HCPRE)
scheme for cloud storage services, and cloud service provider is able to generate
a hierarchical key, but the re-encryption key generation algorithm also requires
the private keys of the delegator and delegatee.

So far, the proxy re-encryption scheme [13] is the only one which is conditional
and chosen-ciphertext secure scheme in the identity-based setting. Therefore,
based on the scheme [13], we propose a HCPRE scheme with more scalability
and flexibility in controlling data sharing and which is in identity-based setting
and further achieves CCA security. Note that secure access control have also
been proposed in the literature for fine-grained data sharing (e.g., [4,5,32]).

We here compare our scheme with other related PRE schemes, namely CPRE,
IB-PRE and AB-PRE, in terms of computation, communication, features as
well as security in the following tables. We state that AB-PRE allows proxy
to convert a group of ciphertext satisfying attribute description embedded into



122 K. He et al.

re-encryption key. This is somewhat similar to our scheme. But the distinct
feature of our scheme is that we can support re-encryption key re-delegation in
a secure and scalable way. Let Ce, Cp, CS and CE be the computational cost of
an exponentiation, a bilinear pairing, a signature and a symmetric encryption,
respectively. u is the total number of attributes used in system, w is the number
of conditions in the ciphertext and d is the size of an access formula. |G1| and
|GT | denote the bit-length of an element in G1 and GT , respectively. |Sym|
and |Sign| denote the bit-length of a symmetric encryption and a signature,
respectively.

From Table 1, it can be seen that our scheme achieves constant pairing cost
in all metrics, much like others, except for the re-encryption phase. We state
that this will not bring heavy computational burden to system user because this
phase is handled by cloud server. Since our scheme supports flexible condition
control, the number of condition used in ciphertext and sharing/re-encryption is
based on the preference of user. If a user chooses to use only one condition (i.e.
w = 1), our scheme also achieves constant computational cost in all metrics.

Table 2 shows the communication cost comparison. Much like the analysis
mentioned previously, our scheme would achieve constant communication cost
while w = 1. We note that w = 1 may indicate that a delegator delegates the
decryption rights of a “root” data to a delegatee.

Table 1. Computation cost comparison

Schemes Enc Re-Enc Dec1 Dec2 Rekey

[16] 8Ce + Cp + CS 6Ce + 7Cp 5Ce + 6Cp 5Ce + 6Cp 16Ce

[41] 4Ce + 2Cp 8Cp 2Ce + 2Cp Ce + Cp 2Ce

[10] 4Ce + Cp + CS 2Ce 2Ce + 3Cp 2Ce + 10Cp 4Ce + Cp + CS

[26] 3Ce + Cp 4Cp 2Cp 2Cp 4Ce

[23] (2 + u)Cp (1 + u)Cp (1 + u)Cp 2Cp (2u + 1)Ce

Ours (2 + w)Ce + Cp (3 + w)Cp Ce + 2Cp 2Ce + 2Cp (2w + 1)Ce + Cp

Table 2. Communication complexity comparison

Schemes RKey Original ciphertext Re-encryption ciphertext

[16] 6|G1| 3|G1| + |GT | + |Sign| 3|G1| + |GT | + |Sign|
[41] 2|G1| 4|G1| 2|G1| + |GT |
[10] 3|G1| + |GT | + |Sign| 9|G1| + 2|GT | + 2|Sign| 5|G1| + |GT | + |Sign|
[26] 2|G1| 3|G1| + |GT | 2|G1| + |GT |
[23] (3 + 3u)|G1| + |GT | (2 + u)|G1| + |GT | (3 + u)|G1| + (4 + u)|GT |
Ours (3 + w)|G1| + |GT | (3 + w)|G1| + |GT | 3|G1| + 2|GT |
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Table 3. Feature and security comparison

Schemes Conditional sharing
RKey number

Complexity Security Adaptivity RKey
re-delegation

[16] O(d) �-wBDHI∗ CCA × ×
[41] O(d) 3-QBDH CCA

√ ×
[10] O(d) DBDH CPA

√ ×
[26] O(d) DBDH CPA × ×
[23] O(1) ADBDH CPA × ×
Ours O(1) DBDH CCA

√ √

The comparison of feature and security is shown in Table 3. We can see that
our scheme is the first and only achieving all features. Like [23], our scheme only
needs constant number of re-encryption key while the others need the number
of O(d). It also achieves adaptively CCA security under well-study complex-
ity assumption, DBDH. A re-encryption key in our scheme can be further re-
delegated by proxy (for re-encryption key recycle purpose) without jeopardizing
security.

1.2 Contributions

The contributions of this paper are described as follows.

– Taking into account structured data, we introduce the new notion, hierarchi-
cal conditional PRE. The new notion allows a proxy to “re-formed” a given
re-encryption key, so that the resulting key can be used to re-encrypt “lower-
level” encrypted data. In other words, a re-encryption key in our notion may
be “recycled”.

– We concretely explore the notion in the context of identity-based encryption,
and further define the corresponding system and security notion. We present
a concrete construction satisfying the notion, which is the first of its type.
Specifically, the construction is inspired by [13].

– The premise of our construction is quite similar to the hierarchical identity-
based secret key re-delegation technique. A semi-trust proxy is allowed to
delegate an “upper level” re-encryption key generation to lower-level “condi-
tions”. Therefore, a delegator can control which specific data blocks located
in the structure can be accessed by others without generating a huge amount
of re-encryption key.

– Our scheme is proved secure against chosen-ciphertext attacks in the random
oracle model.

1.3 Organization

The rest of this paper is organized as follows. Some necessary preliminaries, sys-
tem definition and security notion are given in Sect. 2. The concrete construction
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is introduced in Sect. 3 and the security analysis are described in Sect. 4. The
conclusion is presented in Sect. 5.

2 Preliminaries

2.1 Bilinear Map

Two multiplicative cyclic groups G and GT whose orders are prime p and a
bilinear map e : G × G → GT has following three properties:

– Bilinearity: e(ua, vb) = e(u, v)ab given u, v ∈ G and a, b ∈ Zp.
– Non-degeneracy: e(g, g) → G given a generator g of G.
– Computability: There exists a probabilistic algorithm to compute e(u, v) given

u, v ∈ G.

2.2 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

The definition of DBDH assumption [39] in a bilinear group (p,G,GT , e) is given
as follows: A challenger takes as input (g, ga, gb, gc, Z) for the unknown a, b, c ←R

Zp. A probabilistic polynomial time (PPT) adversary needs to decide whether
Z = e(g, g)abc or Z is a random chosen from GT . The advantage of the PPT
adversary A solving the DBDH assumption is defined like this:

AdvDBDH
A = |Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, Z) = 1]|.

If the advantage is negligible, it means that the DBDH assumption holds.

2.3 Identity-Based Hierarchical Conditional Proxy Re-encryption
(IBHCPRE)

We here define the algorithms and security notion for IBHCPRE. An IBHCPRE
scheme includes the following algorithms:

– Setup(1λ): Intake a security parameter 1λ, output a public parameter params
and a master secret key msk.

– Extract(msk, ID): Intake the master secret key msk and an identity ID,
output a private key skID.

– Enc(params, IDi,Wn,m): Intake the public parameter params, an identity
IDi, a condition vector Wn = {w1, w2, · · · , wn} of depth n and a plaintext
m ∈ M, output an initial ciphertext CT(IDi,Wn).

– ReKeyGen(skIDi
, IDj ,Wn): Intake a private key skIDi

, an identity IDj , and
a condition vector Wn = {w1, w2, · · · , wn} of depth n, output a re-encryption
key rkWn|IDi→IDj

from IDi to IDj associated with the condition vector Wn.
– HCReKeyGen(rkWn|IDi→IDj

,Wn+1): Intake a re-encryption key
rkWn|IDi→IDj

for the parent condition Wn = {w1, · · · , wn} of depth n and a
condition vector Wn+1 = {Wn, wn+1} of depth n+1, output the re-encryption
key rkWn+1|IDi→IDj

from IDi to IDj for condition Wn+1 = {w1, · · · ,
wn, wn+1}.
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– ReEnc(rkWn|IDi→IDj
, CT(IDi,Wn)): Intake a re-encryption key rkWn|IDi→IDj

and an initial ciphertext CT(IDi,Wn), output a transformed ciphertext
CT(IDj ,Wn).

– Dec2(skIDi
, CT(IDi,Wn)): Intake a private key skIDi

and an initial ciphertext
CT(IDi,Wn), output a plaintext m or an invalid symbol ⊥.

– Dec1(skIDj
, CT(IDj ,Wn)): Intake a private key skIDj

and a transformed
ciphertext CT(IDj ,Wn), output a plaintext m or an invalid symbol ⊥.

Correctness: For any m ∈ M, skIDi
and skIDj

are generated from Extract
algorithm, it holds that Dec2(skIDi

, CT(IDi,Wn)) = M and Dec1(skIDj
,

ReEnc(ReKeyGen(skIDi
, IDj ,Wn), CT(IDi,Wn)) = M .

Next, we give the security definition for IBHCPRE in the sense of indis-
tinguishability under chosen-ciphertext attacks (IND-CCA), which is described
by the following game between a challenger C and an adversary A. Adversary
A is able to obtain a series of queries. In spite of this, an adversary A cannot
distinguish which message is encrypted from the challenge ciphertext.

– Setup: Challenger C runs (params,msk)← Setup(1λ), it sends params to A
and keeps msk itself.

– Phase 1: Adversary A adaptively issues a polynomial number of queries:
• Extraction query 〈IDi〉: Challenger C runs Extract(msk, IDi) to obtain a

private key skIDi
and returns it to adversary A.

• Re-encryption key query 〈IDi, IDj ,Wn〉: Challenger C first gets the
private key skIDi

← Extract (msk, IDi) and runs rkWn|IDi→IDj
← ReKey-

Gen(skIDi
, IDj ,Wn), and then it returns rkWn|IDi→IDj

to adversary A.
• Hierarchical condition re-encryption key query 〈rkWn|IDi→IDj

,Wn+1〉:
Challenger C gets the re-encryption key for parent condition vector Wn

of depth n and runs rkWn+1|IDi→IDj
←HCReKeyGen(rkWn|IDi→IDj

,
Wn+1).

• Re-encryption query 〈IDi, IDj , CT(IDi,Wn)〉: Challenger C first gets the
re-encryption key rkWn|IDi→IDj

←ReKeyGen(skIDi
, IDj ,Wn) and runs

CT(IDj ,Wn) ← ReEnc(rkWn|IDi→IDj
, CT(IDi,Wn)), and then it returns

CT(IDj ,Wn) to adversary A.
• Decryption query 〈ID,CT(ID,Wn)〉: Challenger C first gets the private

key skID ←Extract(msk, ID) and runs the decryption algorithm and
returns the result Dec1(skID, CT(ID,Wn)) or Dec2(skID, CT(ID,Wn)) to
adversary A.

– Challenge: Adversary A outputs a target identity ID∗ and condition W ∗
n as

well as two distinct plaintexts m0,m1 ∈ M. Challenger C picks β ∈R {0, 1}
and returns CT ∗

(ID∗,W ∗
n) =Enc (params, ID∗,W ∗

n ,mβ) to adversary A.
– Phase 2: Adversary A keeps on issuing all queries as in Phase 1, challenger C

responds the queries as in Phase 1. But the difference is that Phase 2 needs
to satisfy the following conditions:

• Adversary A cannot issue Extraction query on ID∗.
• Adversary A cannot issue Decryption query on neither 〈ID∗, CT ∗

(ID∗,W ∗
n)〉

nor 〈IDj , ReEnc(rkW ∗
n |ID∗→IDj

, CT ∗
(ID∗,W ∗

n))〉.



126 K. He et al.

• If adversary A gets skIDj
on IDj , it cannot issue Re-encryption query on

〈ID∗, IDj , CT ∗
(ID∗,W ∗

n)〉 and Re-encryption key query on 〈ID∗, IDj ,W
∗
k 〉,

where W ∗
k = {w1, · · · , wk} and k ∈ [1, n].

– Guess: Adversary A makes a guess β′ ∈ {0, 1} and wins the game if β′ = β.

We define adversary A’s advantage in the above game as

AdvIND-IBHCPRE-CCA
A = |Pr[β′ = β] − 1/2|.

Definition 1 (IND-IBHCPRE-CCA Security). We say that an IBHCPRE
scheme is IND-CCA secure, if for any PPT adversary A, the advantage in the
above security game is negligible, that is AdvIND-IBHCPRE-CCA

A ≤ ε.

3 Construction

– Setup(1λ): Given a security parameter 1λ, first output a bilinear group
(p,G,GT , e), and then choose a generator g ∈R G, α ∈R Zp and com-
pute g1 = gα. Finally, choose six hash functions H1, H2, H3, H4, H5 and
H6, where H1 : {0, 1}∗ → G, H2 : GT × M → Zp, H3 : GT → M,
H4 : {0, 1}∗ × G × GT × M × G

n → G, H5 : {0, 1}∗ → G and H6 : M → G,
where M is the massage space. The public parameter is

PPs = ((p,G,GT , e), g, g1,H1,H2,H3,H4,H5,H6)

and the master secret key is msk = α.
– Extract(msk, ID): Given the master secret key msk and an identity ID, it

computes QID = H1(ID) and sets the private key as

skID = Qα
ID.

– Enc(PPs, IDi,Wn = {w1, · · · , wn},M): Given the public parameter PPs, an
identity IDi, a condition vector Wn = {w1, · · · , wn} and a message M ∈ M,
pick δ ∈R GT and set r = H2(δ||M),

A = gr

B = δ · e(g1,H1(IDi))r

C = H3(δ) ⊕ M

D1 = H5(IDi||w1)r

D2 = H5(IDi||w1||w2)r

· · ·
Dn = H5(IDi||w1|| · · · ||wn)r

S = H4(IDi||A||B||C||D1|| · · · ||Dn)r

Then output an initial ciphertext

CT(IDi,Wn) = (A,B,C,D1, · · · ,Dn, S,Wn).
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– ReKeyGen(skIDi
, IDj ,W

′
n = {w′

1, · · · , w′
n}): Given the private key skIDi

, an
identity IDj and a condition vector W ′

n, first pick θ ∈R M, δ′ ∈R GT and
set r′ = H2(δ′||θ) and pick s1, · · · , sn ∈R Z

n
p

rk1 = gr′

rk2 = δ′ · e(g1,H1(IDj))r′

rk3 = H3(δ′) ⊕ θ

RK1 = skIDi
· H5(IDi||w′

1)
s1 · · · H5(IDi||w′

1|| · · · ||w′
n)sn · H6(θ)

RK1
2 = gs1

· · ·
RKn

2 = gsn

Finally, output the re-encryption key

rkW ′
n|IDi→IDj

= (rk1, rk2, rk3, RK1, RK1
2 , · · · , RKn

2 ).

– HCReKeyGen(rkW ′
n|IDi→IDj

,W ′
n+1): Give the re-encryption key

rkW ′
n|IDi→IDj

for a parent condition vector W ′
n = {w′

1, · · · , w′
n}, compute

a hierarchical conditional re-encryption key rkW ′
n+1|IDi→IDj

for a condition
vector W ′

n+1 = {w′
1, · · · , w′

n, w′
n+1} as follows:

Choose r′′, s′
1, s

′
2, · · · , s′

n, sn+1 ∈R Zp and compute

rk′
1 = rk1 · gr′′

rk′
2 = rk2 · e(g1,H1(IDj))r′′

rk′
3 = rk3

RK ′
1 = RK1 · H5(IDi||w′

1|| · · · ||w′
n+1)

sn+1 · H5(IDi||w′
1)

s′
1 · · ·

H5(IDi||w′
1|| · · · ||w′

n)s′
n

RK
′1
2 = RK1

2 · gs′
1

· · ·
RK

′n
2 = RKn

2 · gs′
n

RK
′n+1
2 = gsn+1

Finally, output the re-encryption key

rkWn+1|IDi→IDj
= (rk′

1, rk
′
2, rk

′
3, RK ′

1, RK
′1
2 , · · · , RK

′n+1
2 )

which is a valid re-encryption key, as the distribution of the re-encryption key
is the same as the distribution of keys generated by ReKeyGen.

– ReEnc(rkWn|IDi→IDj
, CT(IDi,Wn)): Given a re-encryption key rkWn|IDi→IDj

and an initial ciphertext CT(IDi,Wn), check whether

e(SD1 · · · Dn, g) =
e(H4(IDi||A||B||C||D1|| · · · ||Dn)H5(IDi||w1) · · · H5(IDi||w1|| · · · ||wn), A).
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If not, output ⊥; otherwise compute

B′ = B · e(D1, RK1
2 ) · · · e(Dn, RKn

2 )
e(A,RK1)

= δ/e(A,H6(θ)).

Then output the transformed ciphertext

CT(IDj ,Wn) = (A,B′, C, rk1, rk2, rk3).

– Dec2(skIDi
, CT(IDi,Wn)): Given the private key skIDi

and the initial cipher-
text CT(IDi,Wn), first check whether

e(SD1 · · · Dn, g) =
e(H4(IDi||A||B||C||D1|| · · · ||Dn)H5(IDi||w1) · · · H5(IDi||w1|| · · · ||wn), A).

If not, output ⊥; otherwise, compute

δ = B/e(A, skIDi
)

M = H3(δ) ⊕ C.

Then check whether
A = gH2(δ||M).

If not, output ⊥; otherwise output M .
– Dec1(skIDj

, CT(IDj ,Wn)): Given the private key skIDj
and the transformed

ciphertext CT(IDj ,Wn), first compute

δ′ = rk2/e(rk1, skIDj
)

θ = H3(δ′) ⊕ rk3.

Then it checks whether
rk1 = gH2(δ

′||θ).

If not, output ⊥; else compute

δ = B′ · e(A,H6(θ))
M = H3(δ) ⊕ C.

Finally, check whether
A = gH2(δ||M).

If not, output ⊥; otherwise output M .

4 Security Analysis

In the following, we prove that our construction is IND-IBHCPRE-CCA secure
in the random oracle model.
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Theorem 1. Suppose that the DBDH assumption holds in a bilinear group
(p,G,GT , e), then the above IBHCPRE scheme is IND-CCA secure in the ran-
dom oracle model.

Concretely, if adversary A with a non-negligible advantage against the above
IBHCPRE scheme, then there exists a challenger C to solve the DBDH assump-
tion with a non-negligible advantage.

Proof. Suppose that adversary A has a non-negligible advantage to attack the
above IBHCPRE scheme. We can build a PPT challenger C that makes use
of adversary A to solve the DBDH problem. Challenger C is given a DBDH
instance (g, ga, gb, gc, Z) with unknown a, b, c ∈ Zp, challenger C’s goal is to
decide Z = e(g, g)abc or Z is a random value. Challenger C works by interacting
with A in the above security game as follows:

– Setup: Adversary A is given the public parameter params = ((p,G,GT , e), g,
g1,H1,H2,H3,H4,H5,H6) where g1 = ga and H1,H2,H3,H3,H4,H5,H6 are
random oracles managed by challenger C. The master secret key a is unknown
to challenger C.

– Phase 1: Adversary A adaptively asks the following queries:
• Hash Oracle Queries. Adversary A freely queries Hi with i ∈

{1, 2, 3, 4, 5, 6}. Challenger C maintains six hash tables Hi-list with i ∈
{1, 2, 3, 4, 5, 6}. At the beginning, all of the tables are empty. Challenger
C replies the queries as follows:
Hash1 Query (IDj):
If IDj is on the H1-list in the form of 〈IDj , Qj , qj ,�j〉, challenger C
returns the predefined value Qj ; otherwise, it chooses qj ∈R Zp and gen-
erates a random �j ∈ {0, 1}, if �j = 0, challenger C computes Qj = gqj ;
else it computes Qj = gbqj and adds 〈IDj , Qj , qj ,�j〉 into the H1-list,
and then it returns Qj .
Hash2 Query (δ||M):
If 〈δ||M〉 is on the H2-list in the form of 〈δ||M, r, gr〉, return r; otherwise,
challenger C selects r ∈R Z∗

p and adds 〈δ||M, r, gr〉 into the H2-list, then
it returns r.
Hash3 Query (δ ∈ GT ):
If δ is on the H3-list in the form of 〈δ,X〉, challenger C returns X; oth-
erwise, it chooses X ∈R M and adds 〈δ,X〉 into the H3-list, then it
returns X.
Hash4 Query (IDj ||A||B||C||D1|| · · · ||Dn):
If 〈IDj ||A||B||C||D1|| · · · ||Dn〉 is on the H4-list in the form of
〈IDj ||A||B||C||D1|| · · · ||Dn, Tj , tj〉, challenger C returns the value Tj ;
otherwise, it chooses tj ∈R Zp, computes Tj = gtj and adds
〈IDj ||A||B||C||D1|| · · · ||Dn, Tj , tj〉 into the H4-list, and then C returns Tj .
Hash5 Query (IDj ,Wn = {w1, · · · , wk}):
1. If k = 1, that is while 〈IDj , w1〉 is on the H5-list in the form of

〈IDj ||w1, ̂Q1, q̂1, �̂1〉, challenger C returns the value ̂Q1; otherwise, it
picks q̂1 ∈R Zp and �̂1 ∈R {0, 1}. If �̂1 = 0, it computes Q1 = gq̂1 ;
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else it computes Q1 = gbq̂1 . It adds 〈IDj ||w1, ̂Q1, q̂1, �̂1〉 into the
H5-list and responds with ̂Q1.

2. If k 
= 1, that is while 〈IDj , w1, · · · , wk〉 is on the H5-list in the
form of 〈IDj ||w1|| · · · ||wk, ̂Qk, q̂k〉, challenger C returns the value
̂Qk; otherwise, it picks q̂k ∈R Zp and computes Qk = gq̂k . It adds
〈IDj ||w1|| · · · ||wk, ̂Qk, q̂k〉 into the H5-list and then responds with ̂Qk.

Hash6 Query (θ ∈ M):
If θ is on the H6-list in the form of 〈θ, Y 〉, challenger C returns the value
Y ; otherwise, it chooses Y ∈R G and adds 〈θ, Y 〉 into the H6-list, and
then challenger C returns Y .

• Extraction query(IDj): Challenger C recovers the tuple 〈IDj , Qj , qj ,�j〉
from the H1-list. If �j = 1, challenger C outputs ⊥ and aborts; otherwise,
challenger C returns skIDj

= g
qj
1 to adversary A. (Note that skIDj

=
g

qj
1 = gaqj = Qa

j = H1(IDj)α, so that this is a proper private key for the
identity IDj).

• Re-encryption key query(IDi, IDj ,Wn): Challenger C first picks δ′ ∈R

GT , θ ∈R M and recovers 〈IDi, Qi, qi,�i〉 and 〈IDj , Qj , qj ,�j〉 from
the H1-list and 〈δ′||θ, r′, gr′〉 from the H2-list, 〈δ′,X〉 from the H3-list,
〈IDi||w1, ̂Q1, q̂1, �̂1〉 and 〈IDi||w1|| · · · ||wn, ̂Qn, q̂n〉 from the H5-list and
〈θ, Y 〉 from the H6-list. Lets rk1 = gr′

, rk2 = δ′ ·e(g1, Qj)r′
, rk3 = X ⊕θ.

Then challenger C constructs RK1, RK1
2 , RK2

2 , · · · , RKn
2 as follows:

1. If �i = 0, challenger C picks s1, · · · , sn ∈R Zp and lets RK1 =
gqi
1 · ̂Q1

s1 · · · ̂Qn

sn · Y , RK1
2 = gs1 , · · · , RKn

2 = gsn .
2. If �i = 1 and �̂1 = 1: challenger C picks s′, s2, · · · , sn ∈R Zp

and sets RK1 = gbq̂is
′
̂Q2

s2 · · · ̂Qn

sn · Y , RK1
2 = g

−qi/q̂1
1 gs′

, RK2
2 =

gs2 , · · · , RKn
2 = gsn , where s1 = −aqi/q̂1 + s′.

3. If �i = 1 and �̂1 = 0: challenger C outputs ⊥ and aborts.
Finally, challenger C returns the re-encryption key rkw|IDi→IDj

= (rk1,
rk2, rk3, RK1, RK1

2 , · · · , RKn
2 ) to adversary A.

• Hierarchical condition Re-encryption key query〈rkWn|IDi→IDj
,Wn+1〉:

Challenger C first gets the re-encryption key rkWn|IDi→IDj
for a condition

Wn = {w1, · · · , wn}, it first chooses r′, s1, s2, · · · , sn, sn+1 ∈R Zp and com-
putes rk′

1 = rk1 ·gr′
, rk′

2 = rk2 ·e(g1,H1(IDj))r′
, rk′

3 = rk3, RK ′
1 = RK1 ·

H5(IDi||w1|| · · · ||wn+1)sn+1 · H5(IDi||w1)s1 · · · H5(IDi||w1|| · · · ||wn)sn ·
H6(θ), RK

′1
2 = RK1

2 · gs1 ,· · · , RK
′n
2 = RKn

2 · gsn , RK
′n+1
2 = gsn+1 .

Challenger C returns the hierarchical conditional re-encryption key
rkWn+1|IDi→IDj

for the conditional Wn+1 = {w1, · · · , wn, wn+1} to
adversary A.

• Re-encryption query(IDi, IDj , CT(IDi,Wn)): Their exists the following
two cases to generate the re-encrypted ciphertext:
1. If �i = 1 and �̂1 = 0, challenger C first parses the ciphertext

CT(IDi,Wn) as (A,B,C,D1, · · · ,Dn, S,Wn) and checks whether
e(SD1 · · · Dn, g) = e(H4(IDi||A||B||C||D1|| · · · ||Dn)H5(IDi||w1) · · ·
H5(IDi||w1|| · · · ||wn), A). If not, it returns ⊥; otherwise, chal-
lenger C checks whether there exists a tuple 〈δ||M, r, gr〉 from the
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H2-list such that A = gr. If no, it returns ⊥; otherwise, C recov-
ers the tuple 〈IDj , Qj , qj ,�j〉 from the H1-list and then it picks
θ ∈R M, δ′ ∈R GT , C recovers the tuple 〈δ′,X〉 from the
H3-list and sets r′ = H2(δ′||θ), rk1 = gr′

, rk2 = δ′ · e(g1, Qj)r′
,

rk3 = X ⊕ θ. Next, C recovers the tuple 〈θ, Y 〉 from the H6-list and
sets B′ = δ/e(A, Y ). Finally, C outputs the transformed ciphertext
CT(IDj ,Wn) = (A,B′, C, rk1, rk2, rk3) to adversary A.

2. Otherwise, challenger C first queries the re-encryption key to get
rkWn|IDi→IDj

, and then it runs ReEnc (rkWn|IDi→IDj
, CT(IDi,Wn))

algorithm to obtain the transformed ciphertext CT(IDj ,Wn). Finally
challenger C returns the transformed ciphertext CT(IDj ,Wn) to
adversary A.

• Decryption query(ID,CT(ID,Wn)): Challenger C checks whether
CT(ID,Wn) is an initial or a transformed ciphertext.
1. For an initial ciphertext, challenger C first extracts CT(ID,Wn) as

(A,B,C,D1, · · · ,Dn, S,Wn). Then it recovers a tuple 〈ID,Q, q,�〉
from the H1-list. If � = 0 (meaning skID = gq

1), challenger
C decrypts the ciphertext CT(ID,Wn) using skID; otherwise, chal-
lenger C first checks whether e(SD1 · · · Dn, g) = e(H4(IDi||A||B||C||
D1|| · · · ||Dn)H5(IDi||w1) · · · H5(IDi||w1|| · · · ||wn), A) holds. If no, it
returns ⊥; else challenger C searches the tuple 〈δ||M, r, gr〉 from the
H2-list such that A = gr. If it cannot find such tuple, it returns ⊥;
else it searches whether there exists a tuple 〈δ,X〉 from the H3-list
such that M ⊕ X = C, a tuple 〈ID||w1, ̂Q1, q̂1, �̂1〉 and some
tuples {〈ID||w1|| · · · ||wk, ̂Qk, q̂k〉}1≤k≤n from the H5-list and a tuple
〈ID||A||B||C||D1|| · · · ||Dn, T, t〉 from the H4-list, such that ̂Q1

r
=

D1, · · · , ̂Qk

r
= Dk and T r = S. If not, it returns ⊥; otherwise, chal-

lenger C returns M = C ⊕ X to adversary A.
2. For a transformed ciphertext, challenger C first parses CT(ID,Wn)

as (A,B′, C, rk1, rk2, rk3). Then challenger C recovers tuple
〈ID,Q, q,�〉 from the H1-list. If � = 0 (meaning skID = gq

1),
challenger C decrypts the ciphertext CT(ID,Wn) using skID; other-
wise, challenger C searches whether there exists a tuple 〈δ′||θ, r′, gr′〉
from the H2-list such that rk1 = gr′

. If not, it returns ⊥; else
searches whether there exists a tuple 〈δ′,X〉 from the H3-list and
a tuple 〈ID,Q, q, 1〉 from the H1-list such that θ ⊕ X = C and
δ′ · e(g1, Q)r′

= rk2. If not, it returns ⊥; otherwise, challenger C
recovers 〈θ, Y 〉 from the H6-list, and it computes δ = B′ · e(A, Y ) and
M = H3(δ) ⊕ C. Finally, challenger C returns M to adversary A.

– Challenge: Adversary A outputs an identity ID∗, a condition W ∗
n of depth

n and two different plaintexts M0,M1 ∈ M. Challenger C recovers the tuple
〈ID∗, Q∗, q∗,�∗〉 from the H1-list, a tuple 〈ID∗||w∗

1 ,
̂Q∗, ̂q∗, ̂�∗〉 and several

tuples {〈ID∗||w∗
1 || · · · ||w∗

k, ̂Q∗
k, ̂q∗

k〉}1≤k≤n from the H5-list. If �∗ = 0 or ̂�∗ =
1, challenger C outputs ⊥ and aborts; else challenger C first picks β ∈R {0, 1},
δ∗ ∈R GT , X∗ ∈R {0, 1}n, and then it inserts the tuple 〈δ∗,X∗〉 into the
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H3-list and the tuple 〈δ∗,Mβ , ·, gc〉 into the H2-list. Next challenger C sets
A∗ = gc, B∗ = δ∗ ·T q∗

, C∗ = X∗ ⊕Mβ ,D∗
1 = gĉq∗

, · · · ,D∗
n = ĝcq∗

n and selects
t∗ ∈R Zp, and then it inserts the tuple 〈ID∗||A∗||B∗||C∗||D∗

1 || · · · ||D∗
n, gt∗

, t∗〉
into the H4-list, and sets S∗ = gct∗

. Finally, challenger C sends the challenge
ciphertext CT ∗

(ID∗,W ∗
n) = (A∗, B∗, C∗,D∗

1 , · · · ,D∗
n, S∗) to adversary A.

– Phase 2: Adversary A continues to adaptively issue queries as in Phase 1. But
it needs to satisfy the conditions which are described in the above security
model.

– Guess: Adversary A outputs a guess β′ ∈ {0, 1}.

5 Conclusion

In this paper, we propose an identity-based hierarchical conditional proxy re-
encryption scheme, which is the first of its type. The new scheme allows delegator
to achieve more flexibly encrypted data sharing. The scheme is proved secure
against chosen-ciphertext attacks in the random oracle model. Via comparison,
we show the flexibility and scalability of our scheme. This paper leaves some
interesting open problems, for example, how could we prove the security in the
standard model, and how to reduce the re-encryption key size to constant.
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Abstract. In CRYPTO 2014, Blazy et al. [2] proposed a new and effi-
cient identity-based encryption scheme (denoted by BKP) with almost
tight security in the prime order setting. However, their scheme is trans-
formed from affine message authentication code and cannot give a stan-
dard proof in the IBE setting. Furthermore, it is not proven secure in
the multi-instance, multi-ciphertext (MIMC, or multi-challenge) setting.
Based on Blazy et al.’s work, we propose a generalized almost tightly
secure IBE scheme from BKP IBE scheme and give a new proof in
the standard security model under the Matrix Diffie-Hellman (MDDH)
assumption. Based on the generalized IBE scheme, we propose a new
almost tightly secure IBE scheme in the MIMC setting. Compared with
a recent IBE scheme proposed by Gong et al. in the MIMC setting,
our scheme is more efficient under the decisional linear (DLIN, or 2-LIN)
assumption in the symmetric bilinear groups.

Keywords: Identity-based encryption · Tight security
Multi-challenge security

1 Introduction

The concept of Identity-Based Encryption (IBE) was proposed by Shamir [17]
in 1984 to simplify the public-key infrastructure. In an IBE system, any arbi-
trary strings can form users’ public keys, such as e-mail addresses, IP addresses
or other meaningful strings. Anyone can encrypt messages for any identity, and
only the owner of the corresponding identity can decrypt the messages. However,
no concrete construction of IBE was given by Shamir until Boneh and Franklin
[4] proposed the first practical IBE system based on bilinear groups. At the same
year, Cocks [7] proposed another but less efficient IBE system using quadratic

c© Springer International Publishing AG 2017
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residues. Following Boneh and Franklin’s work, many new IBE schemes are pro-
posed considering several features such as security model, strength of complexity
assumption, or public key size [3,9,18,19].

In order to gain confidence for the security of the scheme, we always reduce
the security of an IBE scheme to the hardness of a computational problem.
Namely, we assume an adversary A who breaks the scheme and then show
another adversary B who solves the (assumed) hard problem using A. Such a
reduction should be as tight as possible, in the sense that B’s success probability
is as large as A.

Recently, Chen and Wee [6] proposed the first almost tightly secure IBE
scheme in the standard model under the k-LIN assumption. Here almost tight
means the security loss can be bounded by a polynomial in security parame-
ter. To achieve almost tight security, Chen and Wee combined the proof idea
underlying Naor-Reingold PRF [16] and the dual system methodology [19]. Fol-
lowing Chen and Wee’s method, Blazy et al. [2] proposed a more efficient IBE
scheme (denoted by BKP) which is transformed from an almost tightly secure
affine message authentication code (MAC). Unfortunately, since their scheme is
transformed from affine MAC, their IBE cannot provide a standard proof in the
IBE setting. Furthermore, BKP IBE is not proven secure in the multi-instance,
multi-ciphertext (MIMC, or multi-challenge) setting.

Inspired by Blazy et al.’s work, we naturally consider the following two
questions:

– Can BKP IBE scheme be proven secure in the standard IBE setting?
– Can BKP IBE scheme be extended to the MIMC setting?

1.1 Our Result

In this paper, we focus on the construction and proof technique of almost tightly
secure IBE schemes. We begin with Blazy et al.’s IBE construction, try to prove
its security in the standard IBE setting and obtain the following results.

– We propose a generalized almost tightly secure IBE scheme (denoted by Φibe)
from BKP IBE scheme and give a new proof in the standard IBE security
model under the MDDH assumption.

– Like BKP IBE, we also prove the weak anonymity of Φibe. We show that
anonymity can be proven by adding a restriction in key generation that the
same randomness should be used for the same identity.

– Based on Φibe, we propose a new almost tightly secure IBE scheme in the
MIMC setting (denoted by Φmimc). Compared with a state-of-the-art IBE
scheme proposed by Gong et al. [11] in the MIMC setting (denoted by
GDCCmimc), our scheme is more efficient than GDCCmimc in storage and
decryption under the DLIN assumption in the symmetric bilinear groups.

We give a brief comparison for Φmimc with GDCCmimc in Table 1. We consider
group number of master public key (MPK), secret key (SK), ciphertext (CT),
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the number of pairing in decryption (Pairing) and tightness in both schemes.
In the following table, n is the binary length of an identity. Furthermore, both
schemes are limited to the symmetric bilinear groups which means G := G1 = G2

and XDLIN = DLIN.

Table 1. Brief comparison

Scheme MPK SK CT Pairing Security Tightness

GDCCmimc [11] (8n + 12)|G| + 2|GT | 8|G| 8|G| + |GT | 8 DLIN O(n)

Φmimc (8n + 8)|G| + 2|GT | 6|G| 6|G| + |GT | 6 DLIN O(n)

1.2 Our Technique

Our core idea is trying to prove BKP IBE in the IBE setting using Chen and
Wee’s original technique. Fortunately, when we compared Chen and Wee’s almost
tightly secure IBE in the composite-order setting and Blazy et al.’s almost tightly
secure IBE, we found there exists a direct map between these two schemes. The
hardness comes from how to use the Matrix Diffie-Hellman (MDDH) assumption
to simulate Chen and Wee’s composite assumption. We use an equivalent MDDH
assumption (see Definition 3) to overcome this problem.

1.3 Related Work

Chen and Wee [6] proposed the first almost tightly secure IBE by using a bit-
based partitioning strategy which in turn draws from an argument of Naor and
Reingold [16]. Their IBE scheme has constant ciphertext size but linear public
parameters. Blazy et al. generalized this method and proposed a transforma-
tion from an almost tightly secure affine MAC to an almost tightly secure IBE.
However, in Chen and Wee’s proof, they should guess the i-th bit of the chal-
lenge identity which makes their technique cannot be extended to the MIMC
setting. Hofheinz et al. [14] solved the problem and proposed the first almost
tightly secure IBE in the MIMC setting by composite-order bilinear groups. In
the prime-order setting for the MIMC security, Attrapadung et al. [1], Gong
et al. [10,11] proposed new almost tightly secure IBE schemes with different
properties. Quite recently, Chen et al. [5] proposed a new almost tightly secure
IBE scheme in composite-order groups, but surprisingly with constant-size pub-
lic parameters.

Recently, Hofheinz [12,13] proposed a series of novel techniques called alge-
braic partitioning and adaptive partitioning based on Chen and Wee’s tech-
nique, which achieved constant-size parameters and better efficiency for public
key encryptions with chosen-ciphertext security and signatures. However it is
not clear how to apply these techniques to IBE.

Independent Work. An independent work by Gong et al. [11] extended BKP
IBE to the MIMC setting. Their start point is also BKP IBE and they achieved
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a new IBE in the MIMC setting, but their proof is within the general frame-
work of nested dual system groups while we focus on direct proof and concrete
constructions of almost tightly secure IBE schemes.

1.4 Organization

The paper is organized as follows. We give necessary background information
and definition of security in Sect. 2. Section 3 shows a generalized IBE scheme
from BKP IBE scheme, while Sect. 4 shows how to modify the generalized scheme
to achieve anonymity. In Sect. 5 we show a specified IBE scheme from the gen-
eralized IBE scheme is also secure in the MIMC setting.

2 Preliminaries

Notation. For n ∈ N, let [n] denote the set {1, . . . , n}. If x ∈ Bn, then |x|
denotes the length n of the vector. Further, we use the notation x ←R S to
express that x is chosen from the finite set S uniformly at random. A function
f : N → R≥0 is said to be negligible, if for all c > 0, there exists N such
that f(n) < 1/nc for all n > N . We denote by negl(n) a negligible function. If
A ∈ Z

�×k
q is a matrix with � > k, then A ∈ Z

k×k
q denotes the upper square

matrix of A and then A ∈ Z
(�−k)×k
q denotes the remaining �−k rows of A. With

span(A) := {Ar|r ∈ Z
k
q} ⊂ Z

�
q, we denote the column span of A. We will use E

and 0 to denote the identity matrix and the zero matrix, respectively. We will
omit a matrix’s size when its size is clear from the context; if necessary, we may
give out its size in the subscript.

2.1 Bilinear Groups

Let GGen be a probabilistic polynomial time (PPT) algorithm called a bilinear
group generator that takes as input a security parameter 1λ and outputs a
tuple G := (q,G1,G2, GT , g1, g2, e) where q is a λ-bit prime, G1, G2 and GT

are multiplicative cyclic groups of order q, g1 and g2 are generators of G1 and
G2, respectively, and e : G1 × G2 → GT is an efficiently computable map (or
“pairing”) satisfying the following properties:

– (Bilinear) ∀a, b ∈ Zq, e(ga
1 , gb

2) = e(g1, g2)ab.
– (Non-degenerate) e(g1, g2) has order q in GT , i.e., e(g1, g2) is a generator

of GT .

We assume that the group action in G1,G2 and GT as well as the bilinear
map e are all polynomial time computable in λ. For simplicity, we define gT :=
e(g1, g2).

We use implicit representation of group elements as introduced in [8]. For
s ∈ {1, 2, T} and a ∈ Zq, define [a]s = ga

s ∈ Gs as the implicit representation of
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a in Gs. More generally, for a matrix A = (aij) ∈ Z
n×m
q we define [A]s as the

implicit representation of A in Gs:

[A]s :=

⎛
⎝

ga11
s · · · ga1m

s

· · · · · · · · ·
gan1

s · · · ganm
s

⎞
⎠ ∈ G

n×m
s

We will always use this implicit notation of elements in Gs, i.e., we let
[a]s ∈ Gs be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to
compute the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT

it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion prob-
lem). Obviously, given [a]s, [b]s ∈ Gs and a scalar x ∈ Zq, one can efficiently
compute [a + b]s and [ax]s. Further, given [a]1, [b]2 one can efficiently compute
[ab]T using the pairing e. For two matrices A,B with matching dimensions define
e([A]1, [B]2) := [A�B]T ∈ GT .

2.2 Matrix Diffie-Hellman Assumption

We recall the definition of the Matrix Diffie-Hellman (MDDH) assumption [8]
and get some related results.

Definition 1 (Matrix Distribution). Let �, k ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A ←R D�,k form an
invertible matrix. The D�,k-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A]s, [Aw]s) and ([A]s, [u]s) where A ←R D�,k, w ←R Z

k
q ,

u ←R Z
�
q and s ∈ {1, 2, T}.

Definition 2 (D�,k-Matrix Diffie-Hellman Assumption D�,k − MDDH).
Let D�,k be a matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-Matrix
Diffie-Hellman (D�,k-MDDH) Assumption holds relative to GGen in group Gs if
for all PPT adversaries A, AdvMDDH

D�,k,GGen,Gs
(A) :=

|Pr[A(G, [A]s, [Aw]s) = 1] − Pr[A(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G ←R GGen(1λ), A ←R D�,k, w ←R Z
k
q and

u ←R Z
�
q.

For each � > k ≥ 1, [8] specifies distributions Lk,SCk (and others) over
Z
(k+1)×k
q , U�,k over Z

�×k
q such that the corresponding D�,k-MDDH assumptions

are generically secure in bilinear groups and form a hierarchy of increasingly
weaker assumptions. Lk-MDDH is the well known k-Linear assumption k-LIN
with 1-LIN = DDH and 2-LIN = DLIN.
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Lk : A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 · · · 0

. . .
0 0 0 · · · ak

ak+1 ak+1 ak+1 · · · ak+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, U�,k : A =

⎛
⎜⎝

a1,1 · · · a1,k

...
. . .

...
a�,1 · · · a�,k

⎞
⎟⎠ ,

where ai, ai,j ←R Zq.
Let Q > 1. For W ←R Z

k×Q
q , U ←R Z

�×Q
q and s ∈ {1, 2, T}, we consider the

Q-fold D�,k-MDDH assumption which consists in distinguishing the distributions
([A]s, [AW]s) from ([A]s, [U]s). That is, a challenge for the Q-fold D�,k-MDDH
assumption consists of Q independent challenges of the D�,k-MDDH assumption
(with the same A but different randomness w). In [8] it is shown that the D�,k-
Matrix Diffie-Hellman assumption has the random self-reduction property, i.e.,
the two problems are equivalent, where (for Q ≥ � − k) the reduction loses a
factor � − k and a negligible constant 1/(q − 1). The following lemma is implied
by the random self-reduction property, but we get a slightly tighter version for
the special case of D�,k := Dk.

Lemma 1 (Random Self-Reduction of Dk-MDDH). Let s ∈ {1, 2, T}. For
any PPT adversary A, there exists an adversary B such that Time(B) ≈
Time(A) + Q · poly(λ) with poly(λ) is independent of Time(A), and

AdvQ-MDDH
Dk,GGen,Gs

(A) = AdvMDDH
Dk,GGen,Gs

(B)

where AdvQ-MDDH
Dk,GGen,Gs

(A) := |Pr[A(G, [A]s, [AW]s) = 1] − Pr[A(G, [A]s, [U]s) = 1]|
and the probability is taken over G ←R GGen(1λ), A ←R Dk, W ←R Z

k×Q
q and

U ←R Z
(k+1)×Q
q .

Proof. To prove it, we show that there exists an efficient transformation of any
instance ([A]s, [z]s) of the Dk-MDDH problem into another instance ([A]s, [Z]s)
of the Q-fold problem, and vice versa.

Given ([A]s, [z]s), we pick R ←R Z
k×Q
q , r ←R Z

Q
q and compute Z = AR +

zr�. If z = Aw then Z = AW for W = R+wr�, which is uniformly distributed
in Z

k×Q
q ; if z is uniform, note that rank(A) = k, so rank(A|z) = k + 1 then

Z = (A, z)
(

R
r�

)
is uniformly distributed in Z

(k+1)×Q
q .

Given ([A]s, [Z]s), we pick r ←R Z
k
q , t ←R Z

Q
q and compute z = Ar + Zt. If

Z = AW then z = Aw for w = r + Wt, which is uniformly distributed in Z
k
q ;

if Z is uniform, then z is uniformly distributed in Z
k+1
q .

The lemma follows readily. 	


Note that Aw =
(

A
A

)
w =

(
Aw
Aw

)
. Let t = Aw, then w = A

−1
t, we can

get an equivalent definition of the D�,k-Matrix Diffie-Hellman assumption.
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Definition 3 (D�,k-Matrix Diffie-Hellman Assumption D�,k-MDDH). Let
D�,k be a matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-Matrix
Diffie-Hellman (D�,k-MDDH) Assumption holds relative to GGen in group Gs if
for all PPT adversaries A, AdvMDDH

D�,k,GGen,Gs
(A) :=

|Pr[A(G, [A]s, [t]s, [AA
−1

t]s) = 1] − Pr[A(G, [A]s, [t]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G ←R GGen(1λ), A ←R D�,k, t ←R Z
k
q and

u ←R Z
�−k
q .

By this definition we could establish a many-tuple lemma which is implied by
the random self-reduction property of the Dk-MDDH assumption. When Dk =
Lk, it is the many-tuple lemma of k-LIN shown in [15,16].

Lemma 2 (Many-Tuple Lemma of Dk-MDDH). Let A ←R Dk. For s ∈
{1, 2, T}, there exists an efficient algorithm that on input 1Q and

[A]s, [t]s, [AA
−1

t + z]s

we can generate Q tuples of the form ([tj ]s, [Tj ]s) where

Tj =

{
AA

−1
tj if z = 0

AA
−1

tj + zj if z �= 0

and tj ←R Z
k
q , zj ←R Zq for each j from 1 to Q.

Proof. The algorithm works exactly like the transformation of a Dk-MDDH
instance ([A]s, [z]s) into a Q-fold Dk-MDDH instance ([A]s, [Z]s) where z =(

t
AA

−1
t + z

)
and the j-th column of Z is

(
tj

Tj

)
, as shown in the proof of

Lemma 1. 	

Let s ∈ {1, 2}. Note that in the D�,k-MDDH assumption, we are provided

only [A]s while [A]3−s is not provided. We state the external decisional linear
assumption in Gs as follows, which considers the analogous elements in G3−s for
the decisional linear assumption.

Definition 4 (External Decisional Linear Assumption XDLIN). Let s ∈
{1, 2}. We say that the External Decisional Linear (XDLIN) Assumption holds
relative to GGen in group Gs if for all PPT adversaries A,

AdvXDLIN
GGen,Gs

(A) := |Pr [A(D, [a3(s1 + s2)]s) = 1] − Pr[A(D, [z]s) = 1]| = negl(λ),

where

D :=
(

G,
[a1]1, [a2]1, [a3]1, [a1s1]1, [a2s2]1
[a1]2, [a2]2, [a3]2, [a1s1]2, [a2s2]2

)

and the probability is taken over G ←R GGen(1λ) and a1, a2, a3, s1, s2, z ←R Zq.
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2.3 Identity-Based Encryption

An identity-based encryption scheme consists of the following five algorithms:
Par, Setup, KeyGen, Encrypt, and Decrypt.

Par(1λ, n) → (pp, sp). This algorithm takes as input a security parameter 1λ and
the length of identity n, outputs a public parameter pp and a secret parameter
sp. The public parameter also implies a message space M, a key space K and
an identity space ID.

Setup(pp, sp) → (mpk,msk). This algorithm takes as input a public parameter
pp and a secret parameter sp, outputs a master public key mpk and a master
secret key msk.

KeyGen(mpk,msk, ID) → skID. This algorithm takes as input the master public
key mpk, the master secret key msk and an identity ID and outputs a private
key skID associated with ID.

Encrypt(mpk, ID,M) → CT. This algorithm takes as input the master public key
mpk, an identity ID and a message M, and outputs a ciphertext CT.

Decrypt(skID,CT) → M. This algorithm takes as input a private key skID and the
ciphertext CT. If the ciphertext is an encryption to ID, then the algorithm
outputs the original message M.

In our scheme, the identity ID = (x1, . . . , xn) is a binary vector from Z
n
2 . To

avoid the birthday attack, we always set n = O(λ).

Security Model. We define the (chosen-plaintext) security for an IBE scheme
Φ = (Par, Setup, KeyGen, Encrypt, Decrypt) in the single-challenge, single-
instance setting according to the following game.

Setup. The challenger B gets (pp, sp) ←R Par(1λ, n) and creates (mpk,msk) ←R

Setup(pp, sp) and gives mpk to the adversary A.
Phase 1. A submits an identity ID ∈ ID. B creates a private key skID and gives

it to A.
Challenge. A submits a challenge identity ID∗ ∈ ID and a message M0 ∈

M to B with the restriction that each identity ID �= ID∗. Then B chooses
M1 ←R M, flips a random coin β ∈ {0, 1}, creates the ciphertext CT∗ =
Encrypt(mpk, ID∗,Mβ) and passes CT∗ to A.

Phase 2. Phase 1 is repeated with the restriction that any queried identity
ID �= ID∗.

Guess. A outputs its guess β′ of β.

The advantage of A in this game is defined as Advind-cpa
Φ,λ,n (A) = |Pr[β′ =

β] − 1
2 |.

Definition 5. An IBE scheme Φ is fully (or adaptively) secure if Advind-cpa
Φ,λ,n (A)

is negligible for any valid PPT adversary A.

Anonymity. We also consider anonymity for identity-based encryption. To
define anonymity for an IBE scheme Φ, we change the form of Challenge phase
in the above game as follows.
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Challenge. A submits a challenge identity ID∗
0 and a message M0 ∈ M to B

with the restriction that ID∗
0 is not queried . Then B chooses ID∗

1 ←R ID
and M1 ←R M, flips a random coin β and creates the ciphertext CT∗ =
Encrypt(mpk, ID∗

β ,Mβ), and passes CT∗ to A.

The advantage of A in this game is defined as Advanon
Φ,λ,n(A) = |Pr[β′ = β]− 1

2 |.
Definition 6. An IBE scheme Φ is anonymous if Advanon

Φ,λ,n(A) is negligible for
any valid PPT adversary A.

3 Generalized IBE from BKP with Almost Tight Security

Let �, k1, k2 ∈ N with � > k1 and � > k2. We call the generalized IBE scheme
Φibe(D�,k1 , k2), or Φibe for short.

3.1 Construction

Par(1λ, n) → pp, sp. Given the security parameter λ and the binary length of
identity n, the algorithm first gets G = [q, G1, G2, GT , g1, g2, e] ← GGen(1λ).
Then it chooses A ←R D�,k1 and U1, . . . ,U2n ←R U�,k2 . It sets the master
public parameter as

pp :=
(G, [A]1, [U�

1 A]1, . . . , [U�
2nA]1

)
.

The master secret parameter is

sp := (U1, . . . ,U2n).

Setup(pp, sp) → mpk,msk. The setup algorithm chooses α ←R Z
�
q and sets the

master public key as
mpk :=

(
pp, [α�A]T

)
.

The master secret key is
msk := (sp,α).

KeyGen(mpk,msk, ID) → skID. On input an identity ID = (x1, . . . , xn) ∈ Z
n
2 ,

the key generation algorithm chooses t ←R Z
k2
q and computes k = α +

(
∑n

i=1 U2i−xi
)t.

The private key is created as skID :=
(
[k]2, [t]2

)
.

Encrypt(mpk, ID,M) → CT. The message space M is GT . On input a message
M ∈ M, an identity ID = (x1, . . . , xn) ∈ Z

n
2 , the encryption algorithm chooses

s ←R Z
k1
q and computes

C = M · [α�As]T , c1 = As, c2 =
n∑

i=1

U�
2i−xi

As.

The ciphertext is created as CT := (C, [c1]1, [c2]1).
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Decrypt(skID,CT) → M. The decryption algorithm takes in a private key skID for
ID = (x1, . . . , xn) and a ciphertext CT = (C, [c1]1, [c2]1) encrypted to ID. The
decryption algorithm computes

B :=
e([c1]1, [k]2)
e([c2]1, [t]2)

.

Then the message is computed as M = C/B.
Correctness

B =
e([As]1, [α + (

∑n
i=1 U2i−xi

)t]2)
e([

∑n
i=1 U�

2i−xi
As]1, [t]2)

= [α�As]T .

Note. Let k1 = k2 = k and � = k + 1, then Φibe(Dk, k) is BKP IBE.

3.2 Security

Our IBE scheme has the following security result.

Theorem 1. Under the D�,k1-MDDH assumption in G1 and the Dk2-MDDH
assumption in G2, Φibe(D�,k1 , k2) is fully, almost tightly secure. More precisely,
if the binary length of identity is n, for any adversary A that makes at most Q
key queries against the IBE scheme, there exist adversaries B1 and B2 such that

Advind-cpa
Φibe,λ,n(A) ≤ AdvMDDH

D�,k1 ,GGen,G1
(B1) + 2n · AdvMDDH

Dk2 ,GGen,G2
(B2),

and
max{Time(B1), Time(B2)} ≈ Time(A) + Q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

Proof. To prove Theorem 1, we need to define some auxiliary structures. These
will not be used in the real construction, but they will be used in our proof.

For each i from 0 to n we use RFi to denote a random function from {0, 1}i

to Zq where {0, 1}0 denotes the singleton set containing just the empty string ε.
Next, let ID|i denote the i-bit prefix of ID, i.e., ID|i := (x1, . . . , xi).

Let A be the matrix chosen by the Par algorithm, we choose a ←R

ker(A)\{0} and define the auxiliary structures as follows.

Pseudo-normal ciphertext
Given an identity ID = (x1, . . . , xn) and a message M, we choose r ←R Z

�
q and

create the pseudo-normal ciphertext as

M · [α�r]T , [r]1, [
n∑

i=1

U�
2i−xi

r]1.
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Semi-functional ciphertext of type i, for i = 0, 1, . . . , n
Given an identity ID = (x1, . . . , xn) and a message M, we choose r ←R Z

�
q and

create the semi-functional ciphertext of type i as

M · [α�r + RFi(ID|i) · a�r]T , [r]1, [
n∑

j=1

U�
2j−xj

r]1.

Semi-functional key of type i, for i = 0, 1, . . . , n
Given an identity ID = (x1, . . . , xn), we choose t ←R Z

k2
q and create the semi-

functional key of type i as

[α + RFi(ID|i) · a + (
n∑

j=1

U2j−xj
)t]2, [t]2.

We prove Theorem 1 via a hybrid argument over a series of games based on
normal ciphertext and key and the above structures. These related games are
defined as follows.

Game 0: This is the chosen-plaintext security game for IBE defined previously
in which the challenge ciphertext and all private keys are normal.

Game 1: This is like Game 0 except that the challenge ciphertext is pseudo-
normal.

Game 2.i, 0 ≤ i ≤ n: This is like Game 1 except that the challenge ciphertext
and all private keys are semi-functional of type i.

Game 3: This is like Game 2.n except that the challenge ciphertext is a semi-
functional encryption of a random message in GT .

For simplicity, we write Advxx(A) to denote the advantage of A in
Game xx. Obviously, Adv0(A) = Advind-cpa

Φibe,λ,n(A). Observe that we have
Adv3(A) = 0 since the view of A is independent from the value of β in Game 3.
In the following lemmas, we will show these games are indistinguishable.

Lemma 3. If the binary length of identity is n, for any adversary A that makes
at most Q key queries, there exists an adversary B1 such that |Adv0(A)−
Adv1(A)| ≤ AdvMDDH

D�,k1 ,GGen,G1
(B1) and Time(B1) ≈ Time(A) + Q · poly(λ, n).

Proof. Game 0 and Game 1 only differ in the distribution of r in the challenge
ciphertext, namely, r ∈ span(A) or uniform. From that, we obtain a straightfor-
ward reduction to the D�,k1-MDDH assumption. 	

Lemma 4. For any adversary A, Adv1(A) = Adv2.0(A).

Proof. Observe that α and α + RF0(ε) · a are identically distributed, so
in Game 2.0 we syntactically replace α with α + RF0(ε) · a. The result-
ing distribution is identically distributed to that in Game 1 except we use
[(α+RF0(ε)·a)�A]T instead of [α�A]T . Note that a ∈ ker(A), then (α+RF0(ε)·
a)�A = α�A, the master public key mpk remains unchanged. So Game 1 and
Game 2.0 are identically distributed. 	
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Lemma 5. If the binary length of identity is n, for each i from 1 to n, for any
adversary A that makes at most Q key queries, there exists an adversary B2

such that |Adv2.i−1(A) − Adv2.i(A)| ≤ 2AdvMDDH
Dk2 ,GGen,G2

(B2) and Time(B2) ≈
Time(A) + Q · poly(λ, n), where poly(λ, n) is independent of Time(A).

Proof. We construct an adversary B2 who attacks the Dk2-MDDH problem in G2

from an adversary A who distinguishes the games. At the beginning of the game,
B2 is given a Dk2-MDDH challenge ([B]2, [t]2, [T ]2) ∈ G

(k2+1)×k2
2 × G

k2
2 × G2,

B2 needs to decide whether T is either BB
−1

t or uniform. From Lemma2, B2

can generate Q tuples ([tj ]2, [Tj ]2), j = 1, . . . , Q.
For simplicity, We let IDj denote the j-th value of ID, i.e., if ID = (x1, . . . ,

xj , . . . , xn) then IDj := xj . With additional input i ∈ [n], B2 first picks a random
value b ∈ {0, 1} which is a guess for ID∗

i at the challenge phase, then proceeds
as follows.

Setup. B2 chooses A ←R D�,k1 , α ←R Z
�
q, Ũ1, . . . , Ũ2n ←R Z

�×k2
q , a ←R

ker(A) \ {0}, and computes Uj , j = 1, . . . , 2n as follows.

Uj =

{
Ũj j ∈ [2n] \ {2i − 1 + b}
Ũj + a · BB

−1
j = 2i − 1 + b

Note that a ∈ ker(A), so a�A = 0 and (Ũj + a · BB
−1

)�A = Ũ�
j A +

(BB
−1

)� · a�A = Ũ�
j A. Hence all [U�

j A]1 and [α�A]T can be easily com-
puted since we know A, Ũj and α. Finally B2 publishes the master public
key mpk to A.
B2 picks an injective function IFi : {0, 1}i → {1, . . . , Q}. B2 also picks a
random function RFi−1 : {0, 1}i−1 → Zq and implicitly sets RFi(ID|i) =
RFi−1(ID|i−1) for IDi = b. The other case IDi = 1 − b will be defined later.

Key Queries. On input a secrete key query for ID, we consider two cases: –
Case 1: IDi = b. Note that RFi(ID|i) = RFi−1(ID|i−1), so B2 chooses t′ ←R Z

k2
q

and outputs the semi-functional key as

[α + RFi−1(ID|i−1) · a + (
n∑

j=1

U2j−IDj
)Bt′]2, [Bt′]2.

Here we implicitly set t = Bt′. Since B is invertible, t is also uniform in
Z

k2
q . Note that when Uj = Ũj , we can easily compute Ujt = ŨjBt′, while

when Uj = Ũj + a · BB
−1

, Ujt = ŨjBt′ + a · Bt′, so all components in the
semi-functional key can be computed.
– Case 2: IDi = 1 − b. Let c = IFi(ID), B2 chooses t′ ←R Z

k2
q and outputs the

semi-functional key as
[α + RFi−1(ID|i−1) · a + (

∑

j∈[n]\{2i−IDi}
U2j−IDj + Ũ2i−IDi)x + a · Bt′ + Tc · a]2,

[Bt′ + tc]2.
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Here x = Bt′ + tc and we implicitly set t = Bt′ + tc. Note that Tc =
BB

−1
tc + zc, if zc = 0 then this is a semi-functional key of type i − 1;

else if zc is uniform, then this is a semi-functional key of type i where we
implicitly set RFi(ID|i) = RFi−1(ID|i−1) + zc. Furthermore, when zc is uni-
form, RFi(ID|i−1||0) and RFi(ID|i−1||1) are independent and both uniformly
random.

Challenge Ciphertext. B2 receives a challenge identity ID∗ and a messages
M0. If ID∗

i �= b, B2 will output a random bit and halt. Assume B2 correctly
guesses b such that ID∗

i = b (which happens with probability 1/2), it chooses
r ←R Z

�
q, M1 ←R M, picks a bit β ←R {0, 1} and outputs the challenge

ciphertext as Mβ · [α�r + RFi−1(ID∗
|i−1) · a�r]T , [r]1, [

∑n
j=1 U�

2j−ID∗
j
r]1. By

the definition of RFi and by ID∗
i = b we have RFi(ID∗

|i) = RFi−1(ID∗
|i−1), which

implies this challenge ciphertext is identitcally distributed in Game 2.i-1 and
Game 2.i.

Guess. When A outputs β′, B2 outputs 1 if β′ = β and 0 otherwise.
Analysis. If T = BB

−1
t, we have Tj = BB

−1
tj for j = 1, . . . , Q, the output is

identical to that in Game 2.i-1; else if T is uniform, all Tj are uniform, the
output is identical to that in Game 2.i. Hence, we have

AdvMDDH
Dk2 ,GGen,G2(B2) =

∣∣∣Pr[ID∗
i = 1 − b] · 0 + Pr[ID∗

i = b]

·(Pr[A outputs β′ = β in Game 2.i-1] − Pr[A outputs β′ = β in Game 2.i])
∣∣∣

= 1
2

·
∣∣∣Pr[A outputs β′ = β in Game 2.i-1] − Pr[A outputs β′ = β in Game 2.i]

∣∣∣
≥ 1

2
· ∣∣Adv2.i−1(A) − Adv2.i(A)

∣∣.

We then have |Adv2.i−1(A) − Adv2.i(A)| ≤ 2AdvMDDH
Dk2 ,GGen,G2

(B2). 	

Lemma 6. For any adversary A, if the binary length of identity is n, then

Adv2.n(A) = Adv3(A).

Proof. In Game 2.n, the message is masked by [α�r + RFn(ID∗) · a�r]T . Note
that RFn(ID∗) is uniformly distributed over Zq and all of the secret key queries
reveal no information about RFn(ID∗). So [α�r + RFn(ID∗) · a�r]T is hence
uniformly random, which implies that the challenge ciphertext is identically
distributed to a semi-functional encryption of a random message in GT , as in
Game 3. 	


Taking Lemmas 3, 4, 5 and 6 together, we complete the proof of Theorem 1. 	


4 Anonymity

Note that the original BKP IBE is anonymous. However, the anonymity of
BKP IBE is weaker than standard anonymity which was first pointed out by
Attrapadung et al. In BKP IBE, anonymity is proven under the restriction that
all secret keys for the same identity must be created using the same randomness.
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In this section, we show that Φibe can be also proven weak anonymity with the
same restriction, i.e., the key generation algorithm KeyGen always use the same
randomness t for the same ID. This restriction can be easily accomplished by
using a PRF or an internal log. We have the following result for Φibe’s anonymity.

Theorem 2. Under the D�,k1-MDDH assumption in G1 and the Dk2-MDDH
assumption in G2, Φibe is almost tightly anonymous. More precisely, if the binary
length of identity is n, for any adversary A that makes at most Q key queries
against the IBE scheme, there exist adversaries B1 and B2 such that

Advanon
Φibe,λ,n(A) ≤ (1 + k2)AdvMDDH

D�,k1 ,GGen,G1
(B1) + 2n · AdvMDDH

Dk2 ,GGen,G2
(B2),

and
max{Time(B1), Time(B2)} ≈ Time(A) + Q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

Proof Sketch. We define pseudo-normal, semi-functional ciphertexts and semi-
functional keys as in Theorem1. Furthermore, to prove anonymity, we define
pseudo-random and random ciphertexts as follows.

Pseudo-normal ciphertext
On input an identity ID = (x1, . . . , xn) and a message M, the algorithm chooses
r ←R Z

�
q and creates the pseudo-normal ciphertext as

M · [α�r]T , [r]1, [
n∑

i=1

U�
2i−xi

r]1.

Semi-functional ciphertext of type i, for i = 0, 1, . . . , n
Given an identity ID = (x1, . . . , xn) and a message M, we choose r ←R Z

�
q and

create the semi-functional ciphertext of type i as

M · [α�r + RFi(ID|i) · a�r]T , [r]1, [
n∑

j=1

U�
2j−xj

r]1.

Pseudo-random ciphertext of type i, for i = 0, 1, . . . , k2
Given an identity ID = (x1, . . . , xn) and a message M, we choose R ←R GT ,
r ←R Z

�
q, y1, . . . , yi ←R Zq and create the pseudo-normal ciphertext of type i as

R, [r]1, [
n∑

j=1

U�
2j−xj

r + y1e1 + · · · + yiei]1.

Here we denote the pseudo-random ciphertext of type 0 by

R, [r]1, [
n∑

j=1

U�
2j−xj

r]1.
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Random ciphertext
Given an identity ID = (x1, . . . , xn) and a message M, we choose R ←R GT ,
r ←R Z

�
q, u ←R Z

k2
q and create the random ciphertext as

R, [r]1, [u]1.

Semi-functional key of type i, for i = 0, 1, . . . , n
Given an identity ID = (x1, . . . , xn), we choose t ←R Z

k2
q and create the semi-

functional key of type i as

[α + RFi(ID|i) · a + (
n∑

j=1

U2j−xj
)t]2, [t]2.

We prove Theorem 2 via a hybrid argument over a series of games based on
normal ciphertext and key and the above structures. These related games are
defined as follows.

Game 0: This is the real security game for anonymity.
Game 1: This is like Game 0 except that the challenge ciphertext is pseudo-

normal.
Game 2.i, 0 ≤ i ≤ n: This is like Game 1 except that the challenge ciphertext

and all private keys are semi-functional of type i.
Game 3.i, 0 ≤ i ≤ k2: This is like Game 2.n except that except that the chal-

lenge ciphertext is pseudo-random of type i.
Game 4: This is like Game 3.k2 except that the challenge ciphertext is

random.

For simplicity, we write Advxx(A) to denote the advantage of A in
Game xx. Obviously, Adv0(A) = Advanon

Φanon,λ,n(A). We remark that the chal-
lenge ciphertext in Game 4 leaks no information about the identity and the
message since it is composed of random group elements. Hence, Adv4(A) = 0.
We will show these games are indistinguishable via a series of lemmas. Concrete
proof is put in full version of this paper for space consideration.

5 Extending to the MIMC Setting

In this section we consider whether Φibe can be proven secure in the MIMC
setting. Surprisingly, we found Φibe with a specified parameter can be proven
secure in the MIMC setting. For convenience, security definitions for IBE in the
MIMC setting are provided in Appendix A.

Let Φmimc := Φibe(U4,2, 2). We can show that Φmimc is weakly secure in the
MIMC setting. However, with an additional assumption (the BDDH assumption),
we can prove that Φmimc is fully secure in the MIMC setting.

Theorem 3. Under the DLIN assumption in G1, the XDLIN assumption in G1

and the DLIN assumption in G2, Φmimc is weakly secure in the multi-instance,
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multi-ciphertext setting. More precisely, if the binary length of identity is n,
for any adversary A that makes at most Qk key reveal queries and at most
Qc challenge queries for pairwise distinct challenge identity against at most μ
instances, there exist adversaries B1, B2 and B3 such that

Advind-cpa
Φmimc,λ,n(A, μ,Qk, Qc, 1) ≤

AdvDLIN
GGen,G1

(B1) + 4n · AdvXDLIN
GGen,G1

(B2) + n · AdvDLIN
GGen,G2

(B3),

and

max{Time(B1), Time(B2), Time(B3)} ≈ Time(A) + μ(Qk + Qc) · poly(λ, n),

where poly(λ, n) is independent of Time(A).

Proof Sketch. The overall structure of the proof is similar to [14] but slightly
different. We first define some auxiliary structures of ciphertexts and private keys
as follows. In the following, we will pick random functions R̂Fi : {0, 1,⊥}i → Zq,
R̃Fi : {0, 1}i → Zq for i = 0, 1, . . . , n where {0, 1}0 denotes the singleton set
containing just the empty string ε. Furthermore, we use ID|i to denote the i-bit
prefix of ID.

Let A be the matrix chosen by the Par algorithm, we expand A to an
invertible matrix D = (A, d̂, d̃) ∈ GL4(Zq). We compute D∗ = (D�)−1 =
(d∗

1,d
∗
2, â, ã). Note that D�D∗ = E, so we have â, ã ∈ ker(A). Furthermore, we

have â�d̂ = ã�d̃ = 1 and â�d̃ = ã�d̂ = 0. We define the auxiliary structures
as follows.

Pseudo-normal ciphertext
Given an identity ID = (x1, . . . , xn) and a message M, we choose s ←R Z

2
q,

ŝ ←R Zq and create the pseudo-normal ciphertext as

M · [α�(As + ŝd̂)]T , [As + ŝd̂]1, [
n∑

i=1

U�
2i−xi

(As + ŝd̂)]1.

Semi-functional ciphertext of type (∧, i) and(∼, i), for i = 0, 1, . . . , n
Given an identity ID = (x1, . . . , xn) and a message M, we choose s ←R Z

2
q,

ŝ ←R Zq and create the semi-functional ciphertext of type (∧, i) as

M · [α�As + R̂Fi(ID|i) · ŝ]T , [As + ŝd̂]1, [
n∑

j=1

U�
2j−xj

(As + ŝd̂)]1.

We choose s ←R Z
2
q, s̃ ←R Zq and create the semi-functional ciphertext of

type (∼, i) as

M · [α�As + R̃Fi(ID|i) · s̃]T , [As + s̃d̃]1, [
n∑

j=1

U�
2j−xj

(As + s̃d̃)]1.
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Semi-functional ciphertext of type i, for i = 0, 1, . . . , n
Given an identity ID = (x1, . . . , xn) and a message M, we choose s ←R Z

2
q,

ŝ, s̃ ←R Zq and create the semi-functional ciphertext of type i as

M · [α�As+ R̂Fi(ID|i) · ŝ+ R̃Fi(ID|i) · s̃]T , [As+ ŝd̂+ s̃d̃]1, [
n∑

j=1

U�
2j−xj

(As+ ŝd̂+ s̃d̃)]1.

Semi-functional key of type i, for i = 0, 1, . . . , n
Given an identity ID = (x1, . . . , xn), we choose t ←R Z

2
q and create the semi-

functional key of type i as

[α + R̂Fi(ID|i) · â + R̃Fi(ID|i) · ã + (
n∑

j=1

U2j−xj
)t]2, [t]2.

Next, we define a sequence of games to establish the security of the IBE scheme.
We write Advxx(A) to denote the advantage of A in Game xx for simplicity.

Game 0: This is the (μ,Qk, Qc, 1)-security game for IBE.
Game 1: This is like Game 0 except that the challenge ciphertext is pseudo-

normal.
Game 2.i.0, i ∈ [n + 1]: This is like Game 1 except that all the challenge

ciphertexts are are semi-functional of type (∧, i − 1) and all secret keys are
semi-functional of type i − 1.

Game 2.i.1, i ∈ [n]: This is like Game 2.i.0 except that
– all challenge ciphertexts for identities whose i-th bit is 1 are semi-functional
of type i − 1.

Game 2.i.2, i ∈ [n]: This is like Game 2.i.1 except that
– all challenge ciphertexts for identities whose i-th bit is 1 are semi-functional
of type (∼, i − 1).

Game 2.i.3, i ∈ [n]: This is like Game 2.i.2 except that
– all secret keys are semi-functional of type i;
– all challenge ciphertexts for identities whose i-th bit is 0 are semi-functional
of type (∧, i);
– all challenge ciphertexts for identities whose i-th bit is 1 are semi-functional
of type (∼, i).

Game 2.i.4, i ∈ [n]: This is like Game 2.i.3 except that
– all challenge ciphertexts for identities whose i-th bit is 1 are semi-functional
of type i.

Game 2.i.5, i ∈ [n]: This is like Game 2.i.4 except that
– all challenge ciphertexts for identities whose i-th bit is 1 are semi-functional
of type (∧, i).

Game 3: This is like Game 2.n + 1.0 except that all challenge ciphertexts are
for random messages.

Obviously, Adv0(A) = Advind-cpa
Φmimc,λ,n(A, μ,Qk, Qc, 1). Observe that we have

Adv3(A) = 0 since the view of A is independent from the value of β in Game 3.
We will show these games are indistinguishable via a series of lemmas. Concrete
proof is put in full version of this paper for space consideration.
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A IBE in the MIMC Setting

Security Model. We define (μ,Qk, Qc, Qr)-security for an IBE Φ = (Par, Setup,
KeyGen, Encrypt, Decrypt) in the MIMC setting according to the following game.

Setup. The challenger B gets (pp, sp) ←R Par(1λ, n) and creates (mpk(j),
msk(j)) ←R Setup(pp, sp) for j ∈ [μ] and gives {mpk(j)}j∈[μ] to the adversaryA.
The challenger flips a random coin β ∈ {0, 1} whose value is fixed throughout
the game.
Finally the challenger initializes Qk and Qc as two empty sets.
Query. The adversary A can adaptively make the following two types of
queries in an arbitrary order.

– Key Query. A submits an index j ∈ [μ] and an identity ID ∈ ID.
The challenger creates a private key skID ←R KeyGen(mpk(j),msk(j), ID)
and gives the adversary the private key. Finally the challenger updates
Qk := Qk ∪ {(j, ID)}.

– Challenge Query. A submits an index j∗ ∈ [μ], a challenge identity
ID∗ ∈ ID and a message M0 ∈ M to B. B chooses M1 ←R M, creates the
ciphertext CT∗ = Encrypt(mpk(j

∗), ID∗,Mβ) and passes CT∗ to A. Finally
the challenger updates Qc := Qc ∪ {(j∗, ID∗)}.

Guess. A outputs its guess β′ of β.

We say that the adversary A is valid if and only if (1) Qk ∩ Qc = ∅, i.e.,
for each (j, ID) ∈ Qk, for all (j∗, ID∗) ∈ Qc, if j = j∗, ID �= ID∗; (2) A has
made at most Qk key reveal queries, i.e., |Qk| ≤ Qk; (3) A has made at most
Qc challenge queries for every scheme instance and identity, i.e., |Qc| ≤ Qc; (4)
for each (j∗, ID∗) ∈ Qc, A has made at most Qr challenge queries.

The advantage of A in this game is defined as Advind-cpa
Φ,λ,n (A, μ,Qk, Qc, Qr) =

|Pr[β′ = β] − 1
2 |.

Definition 7. An IBE scheme Φ is (μ,Qk, Qc, Qr)-secure if Advind-cpa
Φ,λ,n (A, μ,

Qk, Qc, Qr) is negligible for any valid PPT adversary A.

Weak Security. We consider a weak adversary in the above game who cannot
request challenge ciphertexts for the same scheme instance and identity twice,
i.e., Qr = 1. An IBE scheme is weakly secure if and only if Advind-cpa

Φ,λ,n (A, μ, Qk,
Qc, 1) is negligible for all weak PPT adversaries.
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Abstract. The study of multivariate encryption algorithm is an impor-
tant topic of multivariate public key cryptography research. However,
quite few secure and practical multivariate encryption algorithms have
been found up to now. The SRP encryption scheme is a multivariate
encryption scheme that combines Square, Rainbow and the Plus method
technique, which is of high efficiency and resistant to existing known
attacks against multivariate schemes. In this paper, an improved SRP
scheme with shorter private key and higher decryption efficiency is pro-
posed. We introduce rotation relations into parts of the private key, which
enables us to reduce the private key size by about 61%. And the decryp-
tion speed is 2.1 times faster than that of the original SRP. In terms of
theory and experiment, we analyze the security of the improved SRP for
several attacks against SRP. The results show that our modifications do
not weaken the security of the original schemes.

Keywords: Multivariate public key algorithm · SRP encryption
Quantum-safe public key cryptography · Shorter private key

1 Introduction

Multivariate public key cryptography is one of the promising candidates for
quantum-safe public key cryptography. And its security depends on the diffi-
culty of solving a set of multivariate polynomial equations over a finite field.
Multivariate schemes have fast computational speed and take fewer computa-
tional resources, so it is very suitable for resource-limited environments such as
wireless sensor network environment.

There exist many multivariate encryption and signature schemes such as MI
[13], HFE [16], PMI+[2], ABC [22], ZHFE [19], SRP [26], UOV [12], QUARTZ
[17], Rainbow [3], STS [24], RGB [20], Gui [18] and so on. However, most schemes
are compromised by a variety of attacks, such as Direct attack [5–7], Differen-
tial attack [10,21], Rank attack [1,8,9,25], Linearization Equation attack [15]
and so on. At present, practical multivariate signature schemes mainly include
UOV, Rainbow, Gui, etc., while the secure and practical multivariate encryption

c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 156–167, 2017.
https://doi.org/10.1007/978-3-319-72359-4_9
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scheme is quite rare. Therefore, the study of multivariate encryption scheme is
a key point of multivariate public key cryptography research.

In 2015, Yasuda et al. [26] proposed a multivariate encryption scheme which
combines Square and Rainbow. The scheme is highly efficient and can resist all
existing attacks. In 2016, Duong et al. [4] proposed a method that insert circular
series into the public key matrix to reduce the size of the public key and improve
the speed of encryption.

In this paper, the rotation method is applied to the private key to reduce
the size of the private key by making the rotation relation appearing among the
different polynomials of the central map. At the same time, this relationship
benefits us in getting some better structure in the process of decryption, thus
improving the speed of decryption. By using our construction it can reduce the
size of the private key by about 61%. Furthermore, the special structure obtained
in the process of decryption allows us to speed up the decryption process of the
scheme by up to 68%. Through security analysis, our improvements will not
affect the security of the original scheme.

The rest of this paper is arranged as follows. Section 2 concisely introduces
scheme theory of SRP encryption scheme. Section 3 describes the construction of
our improved SRP and the influence of the improved method on SRP, including
the efficiency of decryption, the probability of decryption success and the size
of the private key. The impact of the improved method on the original scheme
is analyzed from the security aspect in Sect. 4. In Sect. 5, the improved scheme
and the original scheme are compared with the key size and the performance of
decryption. And Sect. 6 draws conclusions.

2 Preliminaries

We describe the basic theory of the encryption and decryption of SRP [26] in
this section. The SRP encryption scheme combines Square and Rainbow. So the
decryption of SRP is efficient.

2.1 Notations for SRP

Let K = GF (q) be a finite field of odd characteristic and cardinality q(q ≡
3 mod 4), E be an extension of degree d over K, and φ be an isomorphism
between the field E and the vector space Kd. Let o1, ..., oh, r, s and l be non-
negative integers, and n = d + o1 + ... + oh − l, n′ = d + o1 + ... + oh, m =
d+ o1 + ...+ oh +hr + s. The number of equations is m and number of variables
is n.

The central map F : Kn′ → Km of SRP is the concatenation of three maps
FS , FR and FP . These maps are defined as follows.

The Square part FS : Kn′ → Kd is defined by:

FS : Kd+o1+...+oh
projection−−−−−−−→ Kd φ−1

−−→ E
X �→X2

−−−−−→ E
φ−→ Kd.
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The Rainbow part FR : Kn′ → Kd+o1+...+oh+hr is constructed as follows.
Let h be the number of layers in Rainbow. For each layer k = 1, ..., h, let vk =
d + o1 + ... + ok−1 , Vk = {1, 2, ..., vk} , Ok = {vk + 1, ..., vk + ok}. The kth layer
consists of ok + r polynomials which are chosen by the multivariate quadratic
polynomials of the form

fR
k(x1, ..., xn′) =

∑

i∈Ok,j∈Vk

αijxixj +
∑

i,j∈Vk,i<j

βijxixj +
∑

i∈Ok∪Vk

γixi + η,

where αij , βij , γi, η are randomly chosen in K.
The Plus part FP : Kn′ → Ks consist of randomly chosen s multivariate

quadratic polynomials of the form

fP (x1, ..., xn′) =
∑

1≤i≤j≤n′
αijxixj +

∑

1≤i≤n′
βixi + γ(αij , βi, γ ∈ K),

The central map F = FS ||FR||FP . Randomly chooses an affine embedding
T : Kn → Kn′

of full rank and an invertible affine map S : Km → Km. The
public key is given by P = S ◦ F ◦ T : Fn → Fm and the private key includes of
S, F and T .

2.2 SRP Encryption

For a given message M ∈ Kn , the ciphertext C corresponding to M is obtained
by the polynomial evaluation

C = P (M) ∈ Km.

2.3 SRP Decryption

For a ciphertext C ∈ Km , the decryption is executed as follows.

Step 1. Compute Y = (y1, ..., ym) = S−1(C) and X = φ−1(y1, ..., yd).
Step 2. Compute R = ±X(qd+1)/4 and D0 = φ(R).
Step 3. For k = 1 to h do:
(3-1) For Yk = (ytk+1, ..., ytk+ok+r), where tk = vk + (k − 1)r, substitute
Dk−1 into fR

k to get a system of linear equations with respect to Xk =
(xvk+1, ..., xvk+ok

),
fR

k(Dk−1,Xk) = Yk.

(3–2) Solve the system using Gauss Elimination and denote the solution by
D′

k. Let Dk = Dk−1||D′
k.

Step 4. Compute M ′ = T−1(Dh), which is the corresponding plaintext.
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3 Our Improved Scheme

In [4], Duong et al. proposed a method to reduce the public key size of SRP by
applying the idea of circulation. Inspired by this idea, we propose a method to
reduce the size of the private key and improve the speed of decryption.

During the SRP decryption process, the inverse process of the central map is
divided into two parts, Square part and Rainbow part, while the private key only
needs to store the OV polynomials coefficients of the Rainbow. Therefore, we aim
to reduce the size of the private key. In the inverse process of Rainbow, we need
to plug in the Vinegar variables layer by layer, and thus calculate Oil variables
of the corresponding layer, namely solving Lx = u, in which L is a coefficient
matrix of size (ok+r)∗ok obtained by substituting Vinegar variables into the OV
polynomials. The Rainbow part of SRP has an extra r OV equations per layer
compared to the original Rainbow scheme. Because the Vinegar variable of the
scheme is not selected randomly, it increase the number of equations to reduce
the probability of degeneration. Here, we introduce rotation relations into parts
of the private key so that L becomes a Toeplitz matrix. We define a (ok + r) ∗ ok

Toeplitz matrix L take the form:

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1 l2 · · · lok−1 lok

lok+1 l1 · · · lok−2 lok−1

...
...

. . .
...

...
l2ok−1 l2ok−2 · · · lok+1 l1
l2ok

l2ok−1 · · · lok+2 lok+1

...
...

. . .
...

...
l2ok+r−1 l2ok+r−2 · · · lok+r+1 lok+r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

3.1 Construction

First, for each central polynomial, its coefficient matrix is represented by M , as
is shown in Fig. 1. Among them, V V denotes the coefficients of Vinegar-Vinegar
cross-terms and V O denotes Oil-Vinegar quadratic cross-terms coefficients. V
stands for the coefficients of the linear term of Vinegar variables and O stands
for the coefficients of the linear term of Oil variables, C denote the constant
term. The white area stands for zero elements.

To suit L for the above form, for each layer of Rainbow, we construct the
central map as follows.

(i) For the kth layer, we randomly select the first central Oil-Vinegar equation.
In other words, all non-zero elements of Mk1 are randomly selected. Shown
as the follows:

V V k
1 = (vvk

1 ,vvk
2 , · · · ,vvk

vk
),

V Ok
1 = (vok

1 ,vok
2 , · · · ,vok

ok
),

V k
1 = (αk

1 , α
k
2 , · · · , αk

vk
)T ,
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Fig. 1. Coefficient matrix of central polynomial

Ok
1 = (βk

1 , βk
2 , · · · , βk

ok
)T ,

Ck
1 = ck

1 .

(ii) For the next ok + r − 1 Oil-Vinegar polynomials, we first arbitrarily choose
V V k

i , V k
i and Ck

i (i = 2, · · · , ok + r − 1), then, we let

V Ok
2 = (vok

ok+1,vok
1 , · · · ,vok

ok−1)
V Ok

3 = (vok
ok+2,vok

ok+1,vok
1 , · · · ,vok

ok−2)
...
V Ok

ok
= (vok

2ok−1,vok
2ok−2, · · · ,vok

ok+1,vok
1)

V Ok
ok+1 = (vok

2ok
,vok

2ok−1, · · · ,vok
ok+1)

...
V Ok

ok+r = (vok
2ok+r−1,vok

2ok+r−2, · · · ,vok
ok+r).

and
Ok

2 = (βk
ok+1, β

k
1 , · · · , βk

ok−1)
T

Ok
3 = (βk

ok+2, β
k
ok+1, β

k
1 , · · · , βk

ok−2)
T

...
Ok

ok
= (βk

2ok−1, β
k
2ok−2, · · · , βk

ok+1, β
k
1 )T

Ok
ok+1 = (βk

2ok
, βk

2ok−1, · · · , βk
ok+1)

T

...
Ok

ok+r = (βk
2ok+r−1, β

k
2ok+r−2, · · · , βk

ok+r)
T .

Where vok
ok+i and βk

ok+i (i = 1, 2, · · · , ok + r − 1) are random selected.

3.2 Inverting the Central Map

In the process of decryption, take the inverse of the Square part as the Vinegar
variable of the first layer, and substitute it into the central polynomials, and solve
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the linear system. The calculation result and the Vinegar variable of the layer
together are substituted into the central polynomials of the next layer as the Vine-
gar variable of the next layer, and thus continuing the same process until the cal-
culation result of the last layer is generated. If the Vinegar variable of the kth layer
is v = (v1, · · · , vvk

), we plug it into the central polynomial and a linear equation
system of ok + r linear equations in ok variable can be got.

vT · V V k
i · v + vT · V k

i + Ck
i︸ ︷︷ ︸

constant

+vT · V Ok
i · o + Ok

i · o︸ ︷︷ ︸
linear in o

= ytk+i(i = 1, · · · , ok + r).

Let
etk+i = ytk+i − (vT · V V k

i · v + vT · V k
i + Ck

i ),

We have ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT · V Ok
1 + Ok

1

vT · V Ok
2 + Ok

2
...

vT · V Ok
ok

+ Ok
ok

vT · V Ok
ok+1 + Ok

ok+1
...

vT · V Ok
ok+r + Ok

ok+r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L

⎡

⎢⎢⎢⎣

xtk+1

xtk+2

...
xtk+ok

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

etk+1

etk+2

...
etk+ok

etk+ok+1

...
etk+ok+r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

and L is a (ok + r) ∗ ok Toeplitz matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V T · vok
1 + βk

1 V T · vok
2 + βk

2 · · · V T · vok
ok + βk

ok

V T · vok
ok+1 + βk

ok+1 V T · vok
1 + βk

1 · · · V T · vok
ok−1 + βk

ok−1

...
...

. . .
...

V T · vok
2ok−1 + βk

2ok−1 V T · vok
2ok−2 + βk

2ok−2 · · · V T · vok
1 + βk

1

V T · vok
2ok + βk

2ok V T · vok
2ok−1 + βk

2ok−1 · · · V T · vok
ok+1 + βk

ok+1

...
...

. . .
...

V T · vok
2ok+r−1 + βk

2ok+r−1 V T · vok
2ok+r−2 + βk

2ok+r−2 · · · V T · vok
ok+r + βk

ok+r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix L that is constructed at this point is exactly what we want.

Computing L: It can be seen from the structure of L that we have to compute
only 2ok + r − 1 elements of L. The rest of L are generated by shift operations.
Consequently, large amount of time and cost could be saved.

Solving the linear equation system: In general, solution for x can be cal-
culated by Gaussian elimination. By our construction, we only need to solve a
Toeplitz system which would be easier. There are many methods which can be
used to solve a Toeplitz systems [11,14,27]. Therefore, we can obtain the solution
in O(n2) time.
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3.3 Probability of Decryption Success

In order to get the unique correct plaintext in the decryption process of SRP, the
inverse result of the central map is hoped to be unique. Given that any ciphertext
is generated from a certain plaintext, it can be concluded that Lx = u has at
least one solution. For such a solvable linear equation system of ok + r equations
in ok variables, to make it have a unique solution, the rank of matrix L must be
ok. In the case of random selection of L, the probability that the rank is ok is
(1 − q−ok−r)(1 − q−ok−r+1 · · · (1 − q−r−1)). Based on the three sets of security
parameters given by [26], the probability of full rank of a random matrix of size
(ok + r) ∗ ok and a Toeplitz matrix of size (ok + r) ∗ ok are tested respectively.
The results of our test are averaged over 105 set test results. The probability of
full rank of different types of matrices is displayed in Table 1. As is presented,
under the three sets of parameters, the probability of the full rank is very close
to 1.

Table 1. The probability of full rank of different types of matrices

(K, d, h, {o1, · · · }, r, s, l) Security level Random matrix
((o1 + r) ∗ o1)

Toeplitz matrix
((o1 + r) ∗ o1)

(GF (31), 33, 1, {32}, 16, 5, 16) 80-bit 1.0000 1.0000

(GF (31), 47, 1, {47}, 22, 5, 22) 112-bit 1.0000 1.0000

(GF (31), 71, 1, {71}, 32, 5, 32) 160-bit 1.0000 1.0000

3.4 Key Sizes of Our Improved SRP

Compared with the original SRP scheme, our improved scheme only needs to store
the following items for each layer of the Rainbow Part: V V k

i (i = 1, · · · , ok + r),
V k

i (i = 1, · · · , ok + r), Ck
i (i = 1, · · · , ok + r), vok

i (i = 1, · · · , 2ok + r − 1), βk
i (i =

1, · · · , 2ok + r − 1). Therefore,
The size of the private key of our improved scheme is :

m · (m+1)+ (n+ l) · (n+1)+

h∑

k=1

((r + ok) · (
vk · (vk + 1)

2
+ vk + 1)+ (vk +1) · (2ok + r− 1))

field elements.
The size of the public key of our improved scheme is: m · (n+1)·(n+2)

2 field
elements.

4 Security Analysis

In order to study the impact of the proposed method on the security of the
original SRP scheme, existing mainstream attacks are applied to carry out the
security analysis from the theoretical and experimental aspects.
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4.1 Direct Attack

The basic principle of direct attack is to compute the plaintext by directly solving
the equation system obtained by the ciphertext and the public key. This is also
the most intuitive way. The direct attack algorithm includes F4/F5 algorithm,
XL algorithm, Zhuang-Zi algorithm and so on. Currently, the most effective
direct attack method is F4/F5 algorithm. Therefore, we carried out a number of
experiments using the Magma implementation of F4. The results of our experi-
ments against the original SRP scheme and our improved scheme are displayed
in Table 2.

Table 2. Timing results of the direct attack using Magma

q, d, o, r, s, l m, n Random system The original SRP Our improved SRP

31, 11, 10, 6, 5, 6 32, 15 0.839 s 0.841 s 0.843 s

31, 11, 10, 6, 5, 4 32, 17 37.765 s 37.127 s 37.127 s

31, 11, 10, 6, 5, 3 32, 18 105.864 s 104.742 s 104.826 s

31, 11, 11, 6, 5, 6 33, 16 2.333 s 2.385 s 2.391 s

31, 13, 10, 6, 5, 6 34, 17 27.238 s 27.318 s 27.312 s

4.2 Linearization Equation Attack

The linearization equation attack was first applied to break MI. Its basic idea is
to obtain the potential linear relationship between the input and the output of
the public key polynomial by analyzing the special structure of the central map,
as is shown below:

n∑

i=1

m∑

j=1

aijxiyj +
n∑

i=1

bixi +
m∑

j=1

cjyj + d.

where, Y = {y1, ..., ym} is comprised of m polynomials on k[x1, ..., xn]. This
linear relationship is derived from that the central map also suits the linear
relationship similar to the above form. In fact, the linear affine will not change
the linear relation of this form in the process of constructing a public key. The
coefficients in the linear relationship can be solved as long as the attacker has
obtained enough plaintext-ciphertext pairs in advance. For SRP or improved
SRP, the Rainbow part and the Plus part of central map are immune to this
attack. We generate enough plaintext-ciphertext pairs and substitute them into
the equations for solving. Experimental results show that there exists no linear
relationship between the plaintext and ciphertext. Actually, there is no special
relationship between the input variable and the output variable of the central
map of our improved SRP, which means linear relationship or higher order linear
equations is inexistent. Therefore, it can resist the linearization equation attack
and the high order linearization equation attack.
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4.3 Differential Attack

Given the public key P, the difference equation is defined as follows:

DP (A,X) = P (X + A) − P (X) − P (A) + P (0).

Differential attack can be used to find the invariant space of the simple Square
scheme to recover the key of simple Square. However, the singature schemes
UOV and Rainbow can resist against the differential attack. The SPR scheme
introduces the central map FR, FP , therefore, differential attack is not feasible
for SRP or improved SRP scheme.

4.4 MinRank Attack

MinRank attack transforms the security analysis of the scheme into the problem
of MinRank, which is a very effective attack for multivarite public key cryptog-
raphy. The principle of MinRank attack is to find a linear combination of the
coefficient matrix corresponding to the public key polynomial, so that the rank
of the obtained matrix is less than or equal to r. A partial key is restored by
obtaining such a linear combination. By construction, we have rank (f i

s) ≤ d,
rank (f i,k

r ) ≤ Vk+1, rank (f i
p) ≤ n′ for the overall structure of SRP. Therefore,

the MinRank attack against SRP is to look for a combination of the public key
polynomials having a rank of at most d. Thomae and Wolf [23] adapt the method
of [1] to analyze the complexity of MinRank attack against Double-Layer Square,
which is also used in our scheme. For a random but fixed Sw, the probability
that it lies in the kernel of a linear combination of f i

s(i = 1, .., d) is greater than
1/q. Because T is a not a n′ × n′ square matrix but a n′ × n matrix, so we
will obtain ql parasitic solutions. Therefore, the complexity of MinRank attack
against SRP is approximately O(d∗ ql+1 ∗m3). It can be seen that the improved
SRP does not affect the rank of f i

s(i = 1, .., d). As a result, the complexity of the
MinRank attack is not reduced. So we conclude that the complexity of MinRank
attack against the improved SRP is O(d ∗ ql+1 ∗ m3).

5 Experiments

To demonstrate the efficiency of our improved SRP, our improved scheme and
the original scheme are compared with the key size and the performance of
decryption. We implemented the three sets of secure parameters proposed in [4]
with Sage, and performed 125 times for each set of parameters. The results
of the experiment are given in Table 3. It can be seen from the table that
the improved scheme has a significant improvement in performance. Under the
128-bit security level, the private key of our improved scheme can reduce by 61%,
and the decryption speed is 2.1 times faster than that of the original scheme.
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Table 3. Comparison between our improved SRP and the original SRP

q, d, o, r, s, l 31, 33, 32,
16, 5, 16

31, 47, 47,
22, 5, 22

31, 71, 71,
32, 5, 32

m, n 86,49 121,72 179,110

Security level 80-bit 112-bit 160-bit

The original SRP Public Key Size (KB) 68.5 204.3 695.4

Private Key Size (KB) 57.2 161.5 528.3

Encryption (ms) 0.84 1.26 2.39

Decryption (ms) 3.69 7.25 13.45

Our improved SRP Public Key Size (KB) 68.5 204.3 695.4

Private Key Size (KB) 26.2 67.6 206.9

Encryption (ms) 0.85 1.25 2.38

Decryption (ms) 1.91 3.86 4.35

6 Conclusion

In this paper, we propose a SRP variant with shorter private key and higher
decryption efficiency. The improved scheme can reduce the size of the private
key by 61% and the speed of decryption is 2.1 times faster than the original
scheme. Such improvements can make the SRP encryption scheme more appli-
cable to resource-limited environments. We analyzed the improved scheme from
the security perspective, and the results show that the improved scheme does
not reduce the security of the scheme.
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reduction to zero (F5). In: ACM ISSAC 2002, pp. 75–83 (2002)

8. Faugère, J.C., Din, M.S.E., Spaenlehauer, P.J.: On the complexity of the general-
ized MinRank problem. J. Symb. Comput. 55, 30–58 (2013)

9. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 16

10. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 20

11. Gover, M.J.C., Barnett, S.: Inversion of certain extensions of Toeplitz matrices. J.
Math. Anal. Appl. 100(2), 339–353 (1984)

12. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

13. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

14. Ng, M.K., Rost, K., Wen, Y.W.: On inversion of Toeplitz matrices. Linear Algebra
Appl. 348(1), 145–151 (2002)

15. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 20

16. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

17. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 21

18. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14

19. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryp-
tion scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4 14

20. Shen, W., Tang, S.: RGB, a mixed multivariate signature scheme. Comput. J.
59(4), 439–451 (2015)

21. Smith-Tone, D.: On the differential security of multivariate public key cryp-
tosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 130–142.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 9

22. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption.
In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 16

https://doi.org/10.1007/978-3-540-85174-5_16
https://doi.org/10.1007/11426639_20
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-44750-4_20
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-45353-9_21
https://doi.org/10.1007/978-3-662-48797-6_14
https://doi.org/10.1007/978-3-319-11659-4_14
https://doi.org/10.1007/978-3-642-25405-5_9
https://doi.org/10.1007/978-3-642-38616-9_16


A Secure Variant of the SRP Encryption Scheme with Shorter Private Key 167

23. Thomae, E., Wolf, C.: Roots of square: cryptanalysis of double-layer square and
square+. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 83–97.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 6

24. Wolf, C., An, B., Preneel, B.: On the security of stepwise triangular systems. Des.
Codes Crypt. 40(3), 285–302 (2006)

25. Yang, B.-Y., Chen, J.-M.: Building secure Tame-like multivariate public-key cryp-
tosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). https://doi.org/10.
1007/11506157 43

26. Yasuda, T., Sakurai, K.: A multivariate encryption scheme with rainbow. In: Qing,
S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6 19

27. Zohar, S.: Toeplitz matrix inversion: the algoritm of W. F. Trench. J. ACM 16(4),
592–601 (1969)

https://doi.org/10.1007/978-3-642-25405-5_6
https://doi.org/10.1007/11506157_43
https://doi.org/10.1007/11506157_43
https://doi.org/10.1007/978-3-319-29814-6_19


Key Bit-Dependent Attack on Protected PKC
Using a Single Trace

Bo-Yeon Sim and Dong-Guk Han(B)

Kookmin University, 77 Jeongneung-ro, Seongbuk-Gu, Seoul 02707, South Korea
{qjdusls,christa}@kookmin.ac.kr

Abstract. Public key cryptosystems are typically based on scalar
multiplication or modular exponentiation algorithms where the key is
unknown to an attacker. Such algorithms are vulnerable to side-channel
attacks, and various countermeasures have been proposed. However, no
combination of countermeasures is effective against single trace attacks.
Hence, template and collision attacks have been the focus of research.
However, such attacks require complicated pre-processing to eliminate
noise. In this paper, we present a single trace attack based on the power
consumption properties of the key bit check phase. The proposed attack
does not require sophisticated pre-processing. We apply the attack to
hardware and software implementations. In hardware implementation,
we target the Montgomery-López-Dahab ladder algorithm and determine
that private key bits can be extracted at a 100% success rate. In software
implementation, we target the key bit check functions of mbedTLS and
OpenSSL, and observe that private key bits can be recovered at 96.13%
and 96.25% success rates, respectively. Moreover, if we use leakage asso-
ciated with referred register addresses, the success rate is 100% in both
cases. We propose two countermeasures to eliminate these vulnerabili-
ties. Experimental results show that the proposed countermeasures can
address these vulnerabilities effectively.

Keywords: Side-channel analysis · Public key cryptosystems
Single trace attack · Simple power analysis · Clustering

1 Introduction

Physical vulnerabilities that occur when algorithms are performed on an embed-
ded system, i.e., side-channel attack (SCA), were discovered by Paul Kocher
in 1996 [17]. Subsequently, various attacks against public key cryptosystems
(PKCs) have been studied. In particular, diverse power and electromagnetic
analysis, which are differentiated into simple power analysis (SPA), differential
power analysis (DPA), template attack (TA), and collision attack (CA), have
also been studied [3,5,6,9–12,18,23–28]. Various algorithms that are resistant
to SPA and DPA have been suggested [2,4,15,16,20,21]; consequently, TA and
CA focus on single trace attacks. Thus, sophisticated methods to obtain traces
with high signal-to-noise ratio (SNR) are required.
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 168–185, 2017.
https://doi.org/10.1007/978-3-319-72359-4_10
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Previously proposed attacks were primarily based on patterns of data depen-
dent branches, statistical characteristics according to intermediate values, or the
interrelationships between data. However, such attacks did not consider using
the private key bit check phase. Private key bits are directly loaded during
the check phase, and no countermeasures have been considered to protect this
phase. If vulnerabilities are revealed, private keys can be exposed even if pre-
viously proposed SCA countermeasures are applied. Thus, investigating leakage
associated with the key bit check phase to determine whether it is sufficient to
recover private keys is required. The contributions of this paper are summarized
as follows.

Our Contributions. In this paper, we categorize the power consumption prop-
erties of the key bit check phase and show that attacks based on these prop-
erties are practical. The proposed attack requires a single trace and does not
require any knowledge about the input values; thus, it can defeat any combi-
nation of existing countermeasures. Moreover, pre-processing to reduce noise is
not required. Two platforms, i.e., hardware and software, are targeted, and we
can extract private keys by applying SPA and a k-means clustering algorithm.
In hardware implementation, we target the Montgomery-López-Dahab ladder
algorithm and determine that it is possible to extract private key bits at a 100%
success rate. In software implementation, we target the mbedTLS and OpenSSL
key bit check functions. Here, private key bits can be recovered at 96.13% and
96.25% success rates, respectively. Moreover, if we use leakage associated with
referenced register addresses, the success rate is 100% in both cases. We propose
two types of countermeasures and demonstrate experimentally that they can be
applied effectively.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
describe SCA on PKCs and define our attack target. In Sect. 3, we summarize
the power consumption properties of the attack target. Experimental results are
given in Sect. 4. Potential countermeasures are discussed in Sect. 5, and conclu-
sions are presented in Sect. 6.

2 Preliminaries

2.1 Conventional SCA on PKCs

SPA exploits the patterns of data-dependent conditional branches from a single
power trace [18]. For example, binary scalar multiplication can be broken by
distinguishing differences between doubling and addition operations. In other
words, an n-bit private key k can be recovered because the algorithm behaves
irregularly according to the key bit ki. Similarly, binary modular exponentiation
can be broken by distinguishing squaring and multiplication.

To make algorithms behave regular, various countermeasures have been pro-
posed. The algorithms presented in Fig. 1 are representative examples [15,16,21].
However, these SPA-resistant algorithms can be defeated due to DPA [18]. Specif-
ically, since power consumption can be correlated to manipulated data values,
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an adversary can obtain the private key k by analyzing the power consumption
measurements from multiple cryptographic operations. Thus, countermeasures
that apply a randomization method to eliminate the association between inter-
mediate data and power consumption have been proposed [2,4,20].

These countermeasures are effective against SPA and DPA; thus, sophisti-
cated attacks, such as TA [10,24] and CA [11,23,25], that can recover private
keys from a single trace are receiving increasing attention. A TA is a type of
profiling attack that combines statistical modeling and power analysis. A CA
is a type of higher-order DPA based on the interrelationships between data.
Given the focus on TA and CA, research to obtain traces with high SNR has
been actively pursued. Decapsulation and localization [10,11,23,25], multi-probe
[11], principle component analysis (PCA) [25] have been used for attacks. How-
ever, there are environmental constraints that make practical application of
such methods difficult. Decapsulation requires physically modifying the target
devices, and numerous electromagnetic or power consumption traces are required
to build templates.

An interesting single trace attack on scalar multiplication has been reported
previously [22]. This approach appears to be associated with the experimental
results of our software implementation. However, this is a TA, and can be applied
to a conditional move (or conditional XOR swap) instruction based on secret
dependent memory accesses. Furthermore, use of this instruction depends on
the microcontroller.

2.2 Key Bit Check Phase

Scalar multiplication and modular exponentiation are a fundamental calculations
in numerous PKCs. They are consisted of iterative operations determined by
the value of the private key bit ki [15,16,19,21]. For example, in the algorithms
shown in Fig. 1, the referring registers are determined by the ki value.

Left to Right

Input : P = (x, y) a point on ECECEC,
an n-bit key k = (kn−1, · · · , k0)2

Output : Q = kP

1: R0 ← ∞, R1 ← P
2: for i = n − 1 down to 0 do

3: R1−ki ← Rki +R1−ki

4: Rki ← 2Rki

5: end for
6: Return R0

Right to Left

Input : P = (x, y) a point on ECECEC,
an n-bit key k = (kn−1, · · · , k0)2

Output : Q = kP

1: R0 ← ∞, R1 ← P , R2 ← P
2: for i = 0 up to n − 1 do

3: R1−ki ← R1−ki +R2

4: R2 ← R0 +R1

5: end for
6: Return R0

Fig. 1. Examples of regular algorithms for scalar multiplication
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Therefore, at the beginning of each loop, there generally exists a phase that
checks the ki value, i.e., the key bit value is extracted from an n-bit key string
k = (kn−1, kn−2, · · · , k0)2 and stored in a ki variable. We refer to this step as the
key bit check phase, which has two common characteristics, i.e., private key bits
ki are extracted at the beginning of each loop and referring register addresses
are determined by the ki value. In this paper, we take note of two common
characteristics of these regular algorithms.

3 Key Bit-Dependent Attack

This section describes the properties of the key bit check phase and how protected
PKCs can be attacked using a single trace.

3.1 Key Bit-Dependent Properties

Scalar multiplication and modular exponentiation consist of iterative operations
associated with the private key bit ki value (Fig. 1). Accordingly, at the begin-
ning of each iteration, the key bit value is extracted from an n-bit key string
k = (kn−1, kn−2, · · · , k0)2 and stored in a ki variable. Thus, power consumption
is related to the ki value. Currently, there are two common power models, i.e.,
hamming distance (HD) and hamming weight (HW) models. The HD model is
commonly used in hardware implementation, while the HW model is employed
in software implementation. Thus, we can summarize power consumption prop-
erties as follows.

Property 1. In hardware implementation, power consumption in the key bit
check phase is associated with the HD between ki+1 and ki (0 ≤ i < n − 1). In
other words, if ki+1 = ki, power consumption related to ki+1 ⊕ ki = 0 occurs.
Otherwise, power consumption is associated with ki+1 ⊕ ki = 1.

Property 2. In software implementation, power consumption in the key bit
check phase is associated with the HW of ki (0 ≤ i ≤ n−1), i.e., if ki = 0, power
consumption related to 0 occurs. Otherwise, power consumption is associated
with 1.

Power consumption differs when leakage is zero or one, i.e. Pw(0) �= Pw(1);
therefore, by exploiting Properties 1 and 2, we can classify power consumption
traces into two groups. Once the traces are classified, the private key can be
recovered based on the properties. We define a study based on these properties
as Case study 1 (Fig. 4(a)).

3.2 Key Bit-Dependent Properties of Regular Algorithms

To cope with SPA, the algorithms in Fig. 1 are configured to repeatedly per-
form regular operations regardless of the ki value. Therefore, steps 3 and 4 are
composed identically. However, the referred register addresses differ according
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to the ki value, and these affect power consumption. In particular, in hard-
ware implementation, registers to be accessed and the ki value are determined
simultaneously, i.e., the operations are executed in parallel. Hence, power con-
sumption when checking the ki value is also affected by the HD between the
register addresses used in two consecutive loops. In software implementations,
the operations are performed sequentially. Thus, differing from hardware imple-
mentations, these two types of information do not affect power consumption
simultaneously. In what follows, additional power consumption properties are
described. The register address is symbolized as RegAddr.

Property 3. In hardware implementation, power consumption in the key bit
check phase is affected by the HD between ki+1 and ki (0 ≤ i < n − 1) and
the HD between the register addresses determined by ki+1 and ki (0 ≤ i <
n − 1). In other words, if ki+1 = ki, power consumption related to ki+1 ⊕ ki = 0
and RegAddrki+1 ⊕ RegAddrki

= 0 occurs. Otherwise, power consumption is
associated with ki+1 ⊕ ki = 1 and RegAddrki+1 ⊕ RegAddrki

�= 0.

Property 4. In software implementation, power consumption is affected by the
HW of ki (0 ≤ i < n − 1) and the HW of register addresses determined by ki
(0 ≤ i < n − 1), i.e., if ki = 0, power consumption related to 0 and RegAddr0
occurs. Otherwise, power consumption is associated with 1 and RegAddr1. Note
that in general RegAddr0 is not equal to RegAddr1. Thus we can assume that
the power consumption depending on the RegAddr0 is different from that on
the RegAddr1.

By exploiting Properties 3 and 4, we can classify power consumption traces
into groups G1 and G2. Power consumption associated with G1 occurs when
leakage is zero and the remainder occurs when leakage is non-zero. Once the
traces are classified, the private key can be recovered based on these properties.
We define a study based on these properties as Case study 2 (Fig. 4(b)).

3.3 Key Bit-Dependent Attack Framework

In this paper, we consider implementations based on regular algorithms protected
by intermediate data randomization. Therefore, we assume that an attacker must
attack a single trace rather than use numerous traces. In addition, we suppose
that the attacker can identify the iterative structure in the trace. The attack
framework is composed of four steps.

Step 1. Pre-processing: First, a trace is divided into sub-traces corresponding
to each iteration. We describe trace T as a series of n sub-traces (Fig. 2) as

T = {On−1 || On−2 || · · · || O0}

because the loop performs a total of n iterations (Fig. 1). Therefore, we align
sub-traces after dividing the trace into n sub-traces.
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Fig. 2. Power consumption trace of 10 iterations (cf. Fig. 1(left))

Step 2. Choose Points of Interest (PoIs): If we can use the same device
as the target, it is easy to find PoIs. First, record a power trace using known
input, and then calculate the sum of squared pairwise t-differences (SOST) [8]
of the sub-traces classified according to the property described in Sects. 3.1 and
3.2. Then, select points with high SOST values as the PoIs. SOST is calculated
as follows:

SOST =

( mG1−mG2√
σ2

G1
nG1

+
σ2

G2
nG2

)2

(1)

where m denotes the mean, σ is standard deviation, and n is the number of ele-
ments. If we cannot use the same device, we must know how the target algorithm
is implemented. Besides, we need to identify the key bit check phase position
through SPA. Then, we can select points where the target operation is performed
as PoIs. In general, PoIs are positioned near the beginning of each sub-trace Oi

(0 ≤ i ≤ n − 1) because ki must be determined prior to each loop operation.
Note that pi represents PoI of each sub-trace Oi.

Step 3. Classification into Two Groups: Apply SPA or a clustering algo-
rithm (e.g. k-means, fuzzy k-means [7] or EM algorithm [1]) to divide pi
(0 ≤ i ≤ n − 1) into two groups G1 and G2. Consequently, pi in G1 indicates
that leakage is zero, while that in G2 indicate that leakage is non-zero.

Step 4. Extract Private Key Bit: Since the most significant bit is always 1,
set kn−1 = 1 and recover the respective bit ki (0 ≤ i ≤ n − 2) according to the
power model. With the HD model, if pi is included in G1, ki has the same value
as ki+1; otherwise, the value of ki differs. With the HW model, if pi is included
in the group that includes pn−1, ki = 1; otherwise, ki = 0.



174 B.-Y. Sim and D.-G. Han

4 Experimental Results

In this section, we present the experimental results of a key bit-dependent attack.
Note that we use two platforms to demonstrate the feasibility of the attack.

1. The first platform is a VHDL implementation on a SASEBO-GII FPGA
board. We measure power consumption at a sampling rate of 2.5 GS/s. Power
consumption is recorded using an FPGA clocked at 24 MHz.

2. The second platform is a software implementation on an Atmel AVR
XEMEGA 128D4 microcontroller equipped with a ChipWhisperer-Lite
(CW1173) Two-Part Version. Power consumption is recorded using the micro-
controller clocked at 29.5 MHz and CLKGEN× 4 via DCM.

4.1 Key Bit-Dependent Attack on Hardware Implementation

We focus on 224-bit scalar multiplication over elliptic curves. Specifically, we
discuss an attack on the Montgomery-López-Dahab ladder algorithm [19] pro-
tected by scalar randomization [4]. Hence, we assume that an attacker is obliged
to attack a single trace. The attack is executed as follows.

Fig. 3. Hardware implementation: one of the sub-traces (top) and SOST between two
sub-trace groups (bottom)
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Step 1. Pre-processing: Because the loop of the target algorithm performs
except for the most significant bit (Algorithm 1, steps 4 to 13; AppendixA)
a trace T is made up of n − 1 sub-traces for an n-bit scalar. Thus, we align
after uniformly dividing the trace T into n − 1 sub-traces Oi (0 ≤ i ≤ n − 2).
Figure 3(top) shows one of the sub-traces captured from the first platform. Each
sub-trace consists of six finite field multiplications.

Step 2. Choose Points of Interest: The target algorithm performs the key bit
check operation on the second clock of each sub-trace. Accordingly, we choose
points of the second clock of the sub-traces as PoIs. The SOST value is the
greatest before starting the first multiplication, as shown in Fig. 3(bottom), when
we classify sub-traces into two groups according to Property 1 (or 3) described
in Sects. 3.1 and 3.2. This point is located on the second clock of the sub-traces
that perform the key bit check operation.

(a) Hardware case study 1 (b) Hardware case study 2

Fig. 4. The key bit check phase (Hardware Implementation)

Step 3 & 4. Classification into Two Groups and Extracting Private
Key Bit: Figure 4(b) shows some parts of the hardware implementation of the
target algorithm, and we determine that this satisfies Property 3. Consequently,
we can classify pi (0 ≤ i ≤ n − 2) into two groups based on this property.
Since there is no regular algorithm that satisfies only Property 1, we modify the
implementation as Fig. 4(a) to identify the amount of leakage of Property 1. Note
that we do not consider side-channel atomicity algorithms. Here, the registers
are fixed, so there is no HD leakage between the register addresses used in two
consecutive loops. The experimental results are shown in Fig. 5. There is no need
for additional processes, such as decapsulation and localization, to obtain trace
with high SNR.

(a) Two distributions overlap as shown Fig. 5(a), and it is impossible to per-
fectly classify two groups through SPA. Hence, we apply a k-means clustering
algorithm [7] to classify pi (0 ≤ i ≤ n − 2) into two groups. The success rate
reaches 95.5% (i.e. 12 errors). This is sufficiently small. As a result, a brute-force
attack may still be feasible to recover the entire key. (b) We can clearly distin-
guish two groups through SPA. The classification success rate is 100%, and we
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(a) Hardware case study 1 (b) Hardware case study 2

Fig. 5. Classification according to hamming distance between ki and ki+1

can recover the entire key. This provides evidence to support that changing a reg-
ister operation according to private key bits leaks more significant information
than changing the key bits. The attack is repeated over 100 power consumption
traces.

4.2 Key Bit-Dependent Attack on Software Implementation

In this section, we present experimental results based on Properties 2 and 4.
It is impossible to capture a whole scalar multiplication trace from the second
platform; thus we use the modified algorithm shown in Fig. 7, which is based on
the functions in Fig. 6.

Figure 6 shows the private key bit check function of the mbedTLS (polarSSL),
which is the most widely used embedded transmission security TLS/SSL public

Fig. 6. The key bit check function of mbedTLS (Software Implementation)

Fig. 7. Trace acquisition range
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encryption library. Figure 14 shows the function that determines the private
key bit in OpenSSL. The key bit check functions are called each time at the
beginning of the loop to extract the ki value from an n-bit key string k =
(kn−1, kn−2, · · · , k0)2. The experimental results for an openSSL key bit (Fig. 14)
are described in AppendixB.

Step 1. Pre-processing: We align after uniformly dividing the trace into sub-
traces. Figure 8(top) shows one of the sub-traces.

Fig. 8. Software implementation (mbedTLS): one of sub-traces (top) and SOST
between two groups of sub-traces (bottom)

Step 2. Choose Points of Interest: The first target position comes immedi-
ately after the & 0x01 operation is performed, as shown in Figs. 6 (step 6) and
14 (step 9). The position where the register is referenced according to ki is the
second target. With our second platform, there is an operation to the register
LOAD when performing a long integer operation. Thus we select these positions
as the second target. We classify the sub-traces into two groups according to
Property 2 (or 4) described in Sects. 3.1 and 3.2, and calculate the SOST value.
Similar to the results described in Sect. 4.1, a high SOST value occurs when
the key bit check function is performed, see Fig. 8. The other point is that HW
leakage of the referred register address occurs later because the operations are
performed sequentially in the software implementations. Here, we select a section
containing a high SOST value as PoIs.
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(a) Software case study 1 (b) Software case study 2

Fig. 9. Classification according to hamming weight of ki (mbedTLS)

Step 3 & 4. Classification into Two Groups and Extracting Private
Key Bit: The points where the key bit check function is called comprise the
first PoIs, and this satisfies Property 2. The points where HW leakage of the
referenced register address occurs comprise the second PoIs; thus, we can validate
Property 4.

(a) The first target position comes immediately after the & 0x01 operation
is performed. As shown in Fig. 9(a), the distribution of power consumption over-
laps; so, we classify two sets using a k-means algorithm. Consequently, there are
misclassified bits, and the success rate is approximately 96.13%. The number of
error bits is sufficiently small; thus, a brute-force attack may still be feasible to
recover the entire key. (b) The second target position is where the register is
referenced according to ki, i.e., the operation to the register LOAD when per-
forming a long integer operation. It is possible to distinguish two groups through
SPA. Here, the classification success rate is 100%, and we can recover the entire
key. This shows that referenced register address according to the private key bits
has greater effect than the key bits, similar to the results in Sect. 4.1. The attack
is repeated over 1000 power consumption traces.

Remark. With the OpenSSL key bit check function, the success rates are 96.25%
and 100%, refer to Appendix B for more details.

5 Countermeasures

Thus far, we have shown the key bit-dependent attack using a single trace and
that we can recover the entire private key. Here, we discuss countermeasures
against the proposed attack.

First, we propose the initialization of ki to a random value before the key
bit check operation is performed, as Fig. 10. Note that it is possible to eliminate
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(a) Hardware case study 1 (b) Hardware case study 2

Fig. 10. Countermeasure: Initialized by random bit

leakage of Properties 1 and 3. According to the experimental results, we confirm
that the success rate is approximately 50%, which is similar to randomly guessing
the key bits with a probability of 1/2, see Fig. 11.

(a) Hardware case study 1 (b) Hardware case study 2

Fig. 11. Classification according to hamming distance between ki and ki+1

Second, we suggest bit masking as a countermeasure to eliminate leakage of
Properties 2 and 4, as Fig. 12. This is a type of address-bit randomization [13,14].
Here, an important difference is that masking must be performed before loop
operation begins. The experimental results show that this can eliminate HW
leakage according to the secret value, see Fig. 13. Similar to the previous results,
the success rate is approximately 50%, which is similar to randomly guessing the
key bits with a probability of 1/2.
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Fig. 12. Countermeasure: Masking with random bit

(a) Software case study 1 (b) Software case study 2

Fig. 13. Classification according to hamming weight of ki

6 Conclusion

In this paper, we described attacks on the key bit check phase and demonstrated
that such attacks can be applied to a single trace without profiling. This repre-
sents a significant advantage over previous attacks, which have typically required
sophisticated pre-processing and multi-traces. We have shown that it is possi-
ble to extract the entire private key through SPA based on Properties 3 and 4.
Moreover, even if error bits exist, the attacks are sufficient to recover the private
key based on Properties 1 and 2. This leads to a very strong attack model, with
which it is possible to defeat existing countermeasures. Note that, although this
paper focused on ECC scalar multiplications, our attacks are also applicable
to RSA modular exponentiation algorithms. Accordingly, we proposed possible
countermeasures and confirmed that the attacks were not applicable.

However, we did not consider attacks on various encoding methods, such as
k-ary, sliding window, and NAF. Thus, many open problems remain, and these
pose interesting challenges. We plan to address such challenges in future.

Acknowledgments. This work was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the Korea government(MSIT)
(No.20170005200011001, Development of SCR-Friendly Symmetric Key Cryptosystem
and Its Application Modes)
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A Target Algorithm 1

The loop steps 4 to 13 of Algorithm 1 perform except for the most significant
bit. Since steps 7 to 9 (step 10 to 11) consist of six finite field multiplications,
and each loop consists of six multiplication patterns.

Algorithm 1. ECC Scalar Multiplication: Montgomery-López-Dahab Ladder
Input : PPP = (x, y) a point on elliptic curve EEE, an n-bit scalar k = (kn−1, · · · , k0)2
Output : QQQ = kPPP

1: if k = 0 or x = 0 then output (0, 0) and stop
2: end if
3: X1 ← x, Z1 ← 1, X2 ← x2 + b, Z2 ← x2

4: for i := n − 2 down to 0 do
5: Z3 ← (X1Z2 + X2Z1)

2

6: if ki = 1 then
7: X1 ← xZ3 + (X1Z2) (X2Z1) , Z1 ← Z3

8: X2 ← X4
2 + bZ4

2 , Z2 ← X2
2Z

2
2

9: else
10: X2 ← xZ3 + (X1Z2) (X2Z1) , Z2 ← Z3

11: X1 ← X4
1 + bZ4

1 , Z1 ← X2
1Z

2
1

12: end if
13: end for
14: A ← Z1Z2, B ← xZ2, C ← (xA)−1

15: D ← ((
x2 + y

)
A + (B + X2) (xZ1 + X1)

)
C

16: x0 ← BX1C, y0 ← (x + x0) + y
17: Return kP = (x0, y0)

B OpenSSL Key Bit Check Function Experimental
Results

The points where the key bit check function is called comprise the first PoIs,
which satisfied Property 2. The points where HW leakage of the referred register
address occurs comprise the second PoIs; thus, we can validate Property 4. (a)
As shown in Fig. 17(a), the distribution of power consumption overlaps; so we
classify into two sets using a k-means algorithm. Consequently, there are bits
misclassified, the success rate is approximately 96.25%. Since the number of error
bits is sufficiently small, a brute-force attack may still be feasible to recover the
entire key. (b) It is possible to distinguish two groups through SPA. Here, the
classification success rate is 100%, and we can recover the entire key. This shows
that referenced register address according to private key bits has greater effect
than the key bits, which is similar to the results in Sect. 4.1. The attack was
repeated over 1000 power consumption traces.
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Fig. 14. The key bit check fucntion of OpenSSL (Software Implementation)

Fig. 15. Trace acquisition range

Fig. 16. Software implementation (OpenSSL): one of sub-traces (top) and SOST
between two groups of sub-traces (bottom)
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(a) Software case study 1 (b) Software case study 2

Fig. 17. Classification according to hamming weight of ki (openSSL)

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2007)

2. Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve
cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS,
vol. 2836, pp. 348–359. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39927-8 32

3. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
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Abstract. We consider user conditional privacy preservation in the con-
text of public key encryption. Unlike the full privacy preservation, our
conditional one ensures that the message sender’s as well as the intended
receiver’s privacy are well preserved while their legitimation can still be
verified; besides, the actual sender of an encrypted message can only be
identified by the intended receiver. Furthermore, considering the prac-
tical scenario where the communication channels between some senders
and receivers are controlled with a blacklist (BL), we address the issue
how a message sender proves the legitimation of the communication
channel with its intended communicator according to the BL. Previ-
ous works only partially solve the former problem and there exists no
solution addressing the two aforementioned problems simultaneously. In
this paper, we present an encryption scheme which keeps not only the
transmitted message confidential but also the user’s conditional privacy
preserved. Besides, given the BL, our scheme also empowers the message
sender the capability to give a proof of the legitimation of the commu-
nication channel with its communication partner without leaking their
identities. In other words, only message senders form unblocked com-
munication channels are able to produce such a proof. We provide the
security models for our scheme and prove its security under the random
oracle model.

Keywords: Public key encryption · Blacklist checking
Conditional privacy preservation · Source-destination verifiability

1 Introduction

Background. The security concerns of the public key encryption are mainly
on the secrecy of the encrypted data. Some well studied security models, such
as indistinguishably and non-malleability [8,13,20], are examples catering for
different security requirements of the encrypted data. However, since encryption
schemes are deployed in various hostile environments, the user privacy preser-
vation problem should also be considered seriously since the attackers may be
more interested in the exact parties participated in the communication.
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In fact, the user privacy preservation problems have been the subject of for-
mal studies in cryptographic literature, for example, the primitives ring signature
[21] and group signature [6] are popular tools protecting a message sender’s pri-
vacy while still keeping the user authenticated. In the area of public key encryp-
tion (PKE), since the sender privacy preservation is considered to be an inher-
ent property, literature related to user privacy preservation are mainly about
key-privacy [4], or anonymity, which are security notions for receiver privacy
preservation. In this paper, we are particularly interested in the user conditional
privacy preservation property in PKE, which is different from the conventional
one. The conditional privacy preservation notion keeps not only the privacy of
the message sender as well as its communicator well preserved but also their
legitimation publicly verifiable; besides, it also requires that, given a ciphertext,
its actual sender can only be discovered by its intended receiver.

Apart from that, we take one step further by considering a more complex
but practical scenario (e.g., in e-mail or other network communication systems),
where an authority (or gateway) is able to forbid communications between spe-
cific message senders and receivers by blocking their communication channels,
and those blocked channels are published as a blacklist by the authority. Under
such condition, the message sender should be empowered with the capability to
prove the legitimation of the communication channel between itself and its com-
municator; meanwhile, message senders from the blacklist should never be able
to forge such a proof. In addition, the proof should not leak any privacy-related
information of either the message sender or its communication partner.

There exists a primitive which solves our former problem partially. An exam-
ple is the ring signcryption [16] which keeps the transmitted message confiden-
tial and the legitimation of the message sender publicly verifiable, but it cannot
maintain the privacy preservation property of the message receiver. To the best
of our knowledge, there is no solution tackling the two aforementioned problem
at the same time properly.

Our Contribution. In this paper, we first present a group-based source-
destination verifiable encryption scheme with blacklist checking. Our solution uti-
lizes the zero-knowledge proof of membership and also zero-knowledge of inequal-
ity technique to handle the two previously mentioned problems, respectively.

Considering the security requirements of our scheme, we define four security
models, which capture the message confidentiality, the sender and receiver pri-
vacy preservation, and the soundness of the legitimation proof. We then give
security proofs under our predefined models with the help of the random oracle.

Related Work. Among all the existed primitives, the most promising one
related to our problems is the ring signcryption, which was first proposed by
Huang et al. [16]. As it inherits properties from both the ring signature [21]
and public key encryption, this primitive provides anonymity, authenticity of
the sender along with the message confidentiality. Following the work in [9], this
primitive also considers protecting the receiver’s privacy in the multi-recipient
setting. Although some ring signcryption schemes have been proven to be inse-
cure, this primitive remains to be a potential candidate when dealing with
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problems about maintaining message confidentiality and user privacy simultane-
ously. However, because of the inherent property of the ring-based construction,
this primitive always considers the complete anonymous of the message sender
rather than the user conditional privacy preservation.

The user conditional privacy preservation is a more practical and attractive
research problem comparing to the complete privacy preservation. Many existing
works have considered it. The work in [18] addresses the issue about anonymous
authentication of messages with traceability between the on-board-units (OBUs)
and roadside units (RSUs) in vehicular ad hoc networks (VANETs), this con-
ditional privacy preservation protocol relies on the authority to trace the origin
of the authenticated messages. Another similar authentication with conditional
privacy example can be found in [15], where it considers not only user conditional
privacy but forward user revocation in wireless networks. The work in [10] uses
pseudonym techniques to construct conditional privacy preservation methods
and to protect the privacy of users in the NFC electronic payment environment.

The receiver privacy preservation, or key-privacy, problem was first formal-
ized by Bellare et al. in [4] and later extended in [1], according to their paper,
the receiver’s privacy means that an eavesdropper, even in possession of a given
ciphertext and a list of public keys, can not tell which specific key is the one
used to generate the given ciphertext. This is the reason why they call this
property key-privacy or anonymity. The paper defines practical security mod-
els about the key-privacy. Although some classical encryption schemes, such as
the El Gamal scheme [12] and the Cramer-Shoup scheme [7], have already pro-
vided such key-privacy property, encryption schemes with careless construction,
such as the broadcast encryption [11], still cannot hold this requirement. In
[19], Mohassel discusses the key-privacy problem in hybrid encryption scenario,
it shows that the combination of an anonymous key encapsulation mechanism
(KEM) and an anonymous data encapsulation mechanism (DEM) cannot make
the resulted hybrid encryption still anonymous unless the KEM is also weakly
robust [2]. After considering the relation between the robustness and collision-
freeness [2] properties of the KEM, this paper finally gives non-keyed transfor-
mation to transfer a collision-free PKE into a robust PKE. Key-privacy require-
ment is always considered in multi-receiver settings where multiple intended
receivers are conventionally included in the generated ciphertext for the benefit
that they can be easily identified by the message receiver. The work [14,22] dis-
cuss key-privacy in multi-receiver encryption scheme and use extended receiver
sets including users who are not the intended receivers to hide the real receiver
set. The anonymous broadcast encryption in [3] is the first work considering
receiver’s privacy in broadcast encryption schemes, in that paper, a broadcast
encryption scheme is constructed achieving anonymity and IND-CCA security
against static adversaries from a key-private, IND-CCA secure PKE scheme,
however, the technique in [3] is only analyzed in Random Oracle Model. Later,
Libert et al. in [17] proposed an anonymous broadcast encryption scheme with
adaptive security in the Standard Model.
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Paper Organization. The rest of our paper is organized as follows: Sect. 2
presents some notations and preliminaries. In Sect. 3, we give the formal defi-
nition of our group-based source-destination verifiable encryption scheme with
blacklist checking and also define four security models in this section for the
purpose of proving the security of our scheme. Our concrete construction of the
scheme is presented in detail in Sect. 4. In Sect. 5, we prove the security of our
scheme under the previously defined models respectively. In Sect. 6, we give the
conclusion of our paper.

2 Notations and Preliminaries

Notations. We give notations which are used through the whole paper. Let 1k

be a binary string with length k while k is also called the security parameter.
Let {ri} denote a set while ri is one of its elements. When PK represents a set,
then |PK| denotes the number of elements in this set, however, if a is an integer,
then |a| denotes the length of the binary representation of that integer. Let G

be a multiplicative group of prime order q, then x
R←−− G means the element

x is randomly chosen from G, while X ∈ G
l denotes that X is a tuple with l

elements while each of them is chosen from G. We use ∧ to represent “AND”
logic and ∨ to represent “OR” logic.

Decisional Diffie–Hellman Assumption (DDH). Let G1 be a multiplicative
group of large prime order q with generator g. The DDH assumption for G1

holds if for any probabilistic polynomial time (PPT) adversary A, the following
probability is negligibly close to 1

2 .

Pr[a, b ← Zp;C0 = gab;C1 ← G1; d ← {0, 1} : A(ga, gb, Cd) = d]

Discrete Log Problem (DLP). The DLP in G1 is defined as follows: given
a generator g of G1, a random element C ∈ G1 as input, output a x ∈ Zp such
that gx = C. The DLP assumption holds in G1 if for any PPT adversary A, the
following probability is negligible.

Pr[C ← G1; gx = C : A(g, C) = x]

3 Definitions and Security Models

3.1 Definition of the GSVEBC

There are three parties, the message sender, verifier and receiver respectively,
involved in a group-based source-destination verifiable encryption scheme with
blacklist checking (GSVEBC). In this scheme, the authority can publicly publish
a set of sender receiver pairs as the blacklist denoted by BL, and each item of
the BL is a block rule to forbid the communication between the sender and
receiver specified in that item. The message sender creates and sends encrypted
messages called GSVEBC ciphertexts to the receiver. It is the verifier which
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verifies whether a given GSVEBC ciphertext comes from a given legitimated
sender set and goes to a given legitimated receiver set without knowing the exact
sender and receiver of that ciphertext. Besides, according to the blacklist BL, the
verifier can also check whether the communication channel between the sender
and receiver of a given GSVEBC ciphertext is blocked without learning any
privacy information about them. The intended receiver of a GSVEBC ciphertext
is the only party who recovers the original message as well the actual sender of
that ciphertext. We give a definition of our GSVEBC scheme as follows;

Definition 1 (GSVEBC). A group-based source-destination verifiable encryp-
tion scheme with blacklist checking (GSVEBC) scheme consists of the following
polynomial time algorithms.

– Setup(1k): Taking 1k as input, this algorithm outputs the public parameter pp.
For the ease of description, we assume the BL is included in pp, and each time
when BL is changed by the authority, the pp should be changed accordingly.

– KeyGen(pp): For each user, this algorithm, on input pp, outputs a public key
pair (pk, sk). In order to make the notation more clear, let (pks, sks) denote
a sender’s key pair and (pkr, skr) be a receiver’s key pair.

– Enc(pp,m, sks, pkr,PKS ,PKR): This PPT algorithm can be executed by every
message sender. Given a message m, the public parameter pp, two users’ pub-
lic key sets PKS ,PKR, the message sender’s private key sks and the receiver’s
public key pkr, this algorithm outputs a GSVEBC ciphertext C.

– Ver(pp,C): The verification algorithm is deterministic. Taking pp and a given
GSVEBC ciphertext C as inputs, that algorithm would first check whether the
ciphertext comes from a given legitimated sender set and is sent to a given
legitimated receiver set. Note that the given legitimated sender and receiver
set should be included in the ciphertext C. After that, this algorithm can also
check whether the communication between the sender and receiver of that
given ciphertext C is permitted according to the blacklist BL included in pp.
This algorithm returns a symbol of true if and only if all the above checks
are successfully complete, otherwise, it returns a symbol of false. For privacy
consideration, this algorithm is executed without the knowledge of the exact
sender and receiver of the ciphertext C.

– Dec(pp,C, skr): The decryption algorithm Dec is deterministic and executed
by the intended receiver. When a receiver gets C, he would first execute the
previous verification algorithm Ver, if Ver returns a symbol of false, he just
drops this message. Otherwise, the receiver executes Dec, which takes pp,C
and the receiver’s private key skR as inputs, and recovers the original message
m as well the actual sender of C.

Definition 2 (Security Model towards Message Confidentiality). Set-
ting the security parameter as k, then given our scheme GSVEBC = (Setup, Key-
Gen, Enc, Ver, Dec), a polynomial n(·), a PPT (polynomial probabilistic time)
adversary A and a simulator S, we consider the following game between a sim-
ulator S and an adversary A capturing the message confidentiality property of
our scheme:
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– Setup phase: At the setup phase, the Setup algorithm of the scheme, which
takes 1k as input, is first run by S to produce the system parameter pp. Given
a polynomial n(·), S runs KeyGen, with pp as input, n(k) times. After all
executions are properly finished, S gets a public key set PK, a private key set
SK, where |PK| = |SK| = n(k). The adversary A is given pp and PK.

– Corruption phase: In order to enable A to do encryption itself, A is permitted
to corrupt users with public keys from the set PK. Namely, A can get the
secret key of a user after submitting the corresponding public key to S as the
query message in this phase. Let UPK denote the collection of all uncorrupted
users.

– Decryption phase 1: A can also ask decryption queries adaptively to S. That
is, when A provides S a valid ciphertext, S needs to return the corresponding
plaintext of that ciphertext to A.

– Challenge phase: A chooses two messages m0,m1 from M, two public keys
pks, pkr from UPK as the sender and receiver’s public key respectively, two
subsets PKS ,PKR from UPK such that pks ∈ PKS , pkr ∈ PKR, |PKS | ≥
2, |PKR| ≥ 2, and then sends them to the simulator. Upon receiving those
information, S randomly chooses a bit b from {0, 1} and encrypts mb using
the encryption algorithm of our scheme, which takes mb, sks, pkr,PKS ,PKR

and pp as inputs. After that, the generated ciphertext is given to A as the
challenge ciphertext.

– Decryption phase 2: After receiving the challenge ciphertext, A can still query
the decryption oracle adaptively with the only restriction that the queried
ciphertext must be different from the challenge one.

– Guess phase: At the end of the game, A outputs the guess b
′
from {0, 1} about

b. If b
′
= b, then A succeeds in the game, otherwise A fails.

Remark: A is allowed to ask hash queries under the random oracle model.
According to the defined model, let AdvA

IND-CCA denote the probability that A
wins the above game over random guess, then AdvA

IND-CCA =
∣
∣Pr [b′ = b] − 1

2

∣
∣.

Definition 3 (Security Model towards Sender Privacy Preservation).
Setting the security parameter as k, then given our scheme GSVEBC = (Setup,
KeyGen, Enc, Ver, Dec), a polynomial n(·), a PPT (polynomial probabilistic time)
adversary A and a simulator S, let’s consider the following game, which captures
the sender privacy property, played by A and S:

– Setup phase: At the setup phase, the Setup algorithm of the scheme, which
takes 1k as input, is first run by S to produce the system public parameter pp.
Given a polynomial n(·), the simulator runs KeyGen, with pp as input, n(k)
times. After all executions are properly finished, S gets a public key set PK,
a private key set SK, where |PK| = |SK| = n(k). The adversary A is given
pp and PK.

– Corruption phase: In order to enable A to do encryption itself, A is permitted
to corrupt users with public keys from the set PK. Namely, A can get the
secret key of a user after submitting the corresponding public key to S as the
query message in this phase. Let UPK denote the collection of all uncorrupted
users.
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– Sender extraction phase 1: When A makes such kind of query, he submits a
ciphertext to S, then he gets the public key of the original encryptor of that
ciphertext from S when it is valid, otherwise, he gets nothing.

– Challenge phase: A chooses one message m from M, pkr from UPK as the
receiver’s public key and two subsets PKS ,PKR from UPK such that pkr ∈
PKR, |PKS | ≥ 2, |PKR| ≥ 2, then sends them to S. S randomly chooses a
public key pks from the chosen subset PKS, and encrypts m by taking pks,
sks, pkr,PKS ,PKR and pp as inputs. The corresponding ciphertext is given
to A as challenge ciphertext.

– Sender extraction phase 2: After receiving the challenge ciphertext, A can still
ask sender extraction queries with the only constraint that the queried cipher-
text must not be identical to the challenge one. The simulator behaves the
same as in the sender extraction phase 1 in this phase.

– Guess phase: At the end of the game, A outputs his guess pk′
s about the public

key of the actual sender of the challenge ciphertext from the chosen subset
PKS. If pk′

s = pks, then A succeeds in the game, otherwise A fails.

Remark: Under the random oracle model, A is allowed to ask hash queries.
According to the defined model, let AdvA

Sender-Anonymity denote the probability
that A wins the above game over random guess, then AdvA

Sender-Anonymity =
∣
∣
∣Pr [pk′

s = pks] − 1
|PKS |

∣
∣
∣, where |PKS | represents the size of the subset PKS .

Definition 4 (Security Model towards Receiver Privacy Preservation).
Setting the security parameter as k, then given our scheme GSVEBC = (Setup,
KeyGen, Enc, Ver, Dec), a polynomial n(·), a PPT (polynomial probabilistic time)
adversary A and a PPT simulator S, let’s consider the following game, which
captures the receiver privacy property, played by A and S:

– Setup phase: At the setup phase, the Setup algorithm of the scheme, which
takes 1k as input, is first run by S to produce the public parameter pp. Given
a polynomial n(·), the simulator runs KeyGen, with pp as input, n(k) times.
After all executions are properly finished, S gets a public key set PK, a private
key set SK, where |PK| = |SK| = n(k). The adversary A is given pp and PK.

– Corruption phase: In order to enable A to do encryption itself, A is permitted
to corrupt users with public keys from the set PK. Namely, A can get the
secret key of a user after submitting the corresponding public key to S as the
query message in this phase. Let UPK denote the collection of all uncorrupted
users.

– Receiver extraction phase 1: In this phase, when A submits a ciphertext to S,
S needs to send back the public key of the actual receiver of that ciphertext to
A as response when it is valid. Otherwise, A gets nothing.

– Challenge Phase: In the phase, A randomly chooses a message m from M,
pks from UPK as the sender’s public key, two public key pk0, pk1 and two
public key sets PKS, PKR from UPK such that pks ∈ PKS , pk0, pk1 ∈
PKR, |PKS | ≥ 2, |PKR| ≥ 2. A then sends those information to S. S ran-
domly chooses pkc ∈ {pk0, pk1} as the receiver’s public key and encrypts mes-
sage m using algorithm Enc, which takes m, sks, pks, pkc,PKS ,PKR and pp
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as inputs. S sends the generated ciphertext as response and challenge cipher-
text to A.

– Receiver extraction phase 2: After the challenge phase, A can still ask S to
extract the public key of the receiver of a valid ciphertext for him adaptively,
the only restriction is that A cannot use the challenge ciphertext as a queried
message in this phase.

– Guess phase: At the end of the game, A would make a guess c′ about the public
key pkc of the receiver of the challenge ciphertext from the subset PKR. If
c′ = c, then A succeeds in the game, otherwise A fails.

Remark: A is allowed to ask hash queries under the random oracle model.
According to the defined model, let AdvA

Receiver-Anonymity denote the probability
that A wins the above game over random guess, then AdvA

Receiver-Anonymity =
∣
∣Pr [c = c′] − 1

2

∣
∣.

Definition 5 (Security Model towards Soundness of Legitimation
Proof). Setting the security parameter as k, then given our scheme GSVEBC
= (Setup, KeyGen, Enc, Ver, Dec), a polynomial n(·), a PPT (polynomial prob-
abilistic time) adversary A and a PPT simulator S, let’s consider the following
game, which captures the user impersonation resistance property, played by A
and S:

– Setup phase: At the setup phase, the Setup algorithm of the scheme, which
takes 1k as input, is first run by S to produce the public parameter pp, here
the blacklist BL is also generated by S and included in pp. Given a polyno-
mial n(·), the simulator runs KeyGen, with pp as input, n(k) times. After all
executions are properly finished, S gets a public key set PK, a private key set
SK, where |PK| = |SK| = n(k). The adversary A is given pp and PK.

– Corruption phase: In order to enable A to do encryption itself, A is permitted
to corrupt users with public keys from the set PK. Namely, A can get the
secret key of a user after submitting the corresponding public key to S as the
query message in this phase. Let UPK denote the collection of all uncorrupted
users.

– Decryption phase: A can also ask decryption queries adaptively to S. That is,
when A provides S a valid ciphertext, S needs to return the corresponding
plaintext of that ciphertext to A.

– Forge phase: In this phase, A chooses a message m ∈ M, one sender-receiver
pair gSi , gRj from BL randomly as the message sender and intended receiver’s
public key respectively, two user sets PKS ,PKR ∈ UPK as its corresponding
message sender and receiver set. After that, A tries to produce a valid cipher-
text CT . A sends (m, gSi , gRj ,PKS ,PKR, CT ) to S. S outputs 1 if and only
if Dec(Rj , CT ) = (gSi ,m)

∧
Ver(pp,CT ) = 1. Otherwise, S outputs 0.

Remark: A is allowed to ask hash queries under the random oracle model.
According to the defined model, let AdvA

Soundness denote the probability that
A wins the above game, then AdvA

Soundness =
∣
∣ Pr[Dec(Rj , CT ) = (gSi ,m)

∧

Ver(pp,CT ) = 1]
∣
∣.
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4 Our Concrete Construction

For the ease of description, we first give a group-based source-destination ver-
ifiable encryption scheme without blacklist checking capability, then we extend
this scheme to the one with full functionalities.

4.1 A Simple Construction Without Blacklist Checking

Setting the security parameter as k, our scheme works as follows;

– Setup(1k): On input 1k, it produces a cyclic group G of large prime order q
with generator g, where G is a subgroup of Z

∗
p and q|p−1. This algorithm also

outputs a description of the message space M = {0, 1}q and a ciphertext space
C. G, q, g,M, C are considered as the system parameter pp and default inputs
to all the following algorithms. pp also includes three collision resistance hash
functions: H1 : {0, 1}q × G

3 → Zq,H2 : G → {0, 1}q,H3 : {0, 1}∗ → Zq.
– KeyGen(·): For one user, Ui for example, he randomly chooses xi ∈ Zq as

his private key and computes yi = gxi ∈ G as his corresponding public key.
Assuming the public key set PK = {. . . , yi, . . . } contains all users’ public key
and is also published publicly.

– Enc(m, sks, pkr,PKS ,PKR): When a sender, Ui, wants to send a message
to a receiver, Uj , for the purpose of illustrating our scheme more clear, let
Si, Ri denote the sender Ui and receiver Uj ’s secret key sks, skr respectively,
accordingly, the sender and receiver’s public key should be pks = gSi and
pkr = gRj . Given a message m ∈ M, the sender encrypts m as follows;

r1
R← Zq, C1 = gr1 , C2 = gSir1 , C3 = gRjr1 ,

r2 = H1(m, gSi , gRj , gSiRjr1),
C4 = gSir2 , C5 = gSigSiRjr2 , C6 = m ⊕ H2(gSiRj ·(r1+r2)).

After that, the sender chooses a subgroup PKS ⊂ PK, which includes the
sender’s public key gSi , and then proves its legitimation in that group. Here,
we utilize the zero-knowledge proof technique to deal with the group mem-
bership issue. That is, the sender needs to give a proof like:

pf(Si : logg gSi = logC1
C2 = loggr1 (gSi)r1 ∧ gSi ∈ PKS).

To do such a proof, the sender does as follows;
• For each public key gxl ∈ PKS except gSi , the sender chooses challenge

and response cl, zl randomly from Zq respectively, then it computes two
commitments

αl = gzl(gxl)cl , βl = (C1)zl(C2)cl .

• For the sender’s own pubic key gSi , it chooses wi ∈ Zq and sets the
commitments as

αi = gwi , βi = (C1)wi .
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Let {α} denote commitments set {. . . αl . . . αi . . . } and {β} commitments
set {. . . βl . . . βi . . . }, where |α| = |β| = |PKS |. The sender computes its
challenge and response as:

h = H3({α}, {β}, C1, C2, C3, C4, C5, C6),

ci = h −
∑

gxl∈PKS

cl, zi = wi − ciSi.

• The sender sets the challenges set as {c} = {. . . ci . . . cl . . . } the responses
set as {z} = {. . . zi . . . zl . . . }, and value this two sets {c}, {z} as the proof
value.

The sender needs still to prove to the verifier that the generated ciphertext is
sent to a legitimated receiver. To do this, the sender chooses a receiver subset
PKR ⊂ PK, which includes the receiver’s public key, and gives a proof like:

pf(r1 : logg C1 = loggRj C3 ∧ gRj ∈ PKR),

the sender generates the proof as follows;
• For each public key gxt ∈ PKR except the intended receiver’s public key

gRj , the sender chooses challenge and response ĉt, ẑt randomly from Zq

respectively, then it computes the commitments

α̂t = gẑt(C1)ĉt , β̂t = (gxt)ẑt(C3)ĉt .

• For the intended receiver’s pubic key gRj , it chooses ŵj ∈ Zq and sets the
commitments as

α̂j = gŵj , β̂j = (gRj )ŵj .

Let {̂α} denote commitments set {. . . α̂t . . . α̂j . . . } and
{̂β} {. . . β̂t . . . β̂j . . . } respectively, where |{̂α}| = |{̂β}| = |PKR|. The
sender computes its challenge and response as:

ĥ = H3({̂α}, {̂β}, C1, C2, C3, C4, C5, C6),

ĉj = ĥ −
∑

gxt∈PKR

ĉt, ẑj = ŵj − ĉjr1

• The sender sets the challenges set as {̂c} = {. . . ĉj . . . ĉt . . . } the responses
set as {̂z} = {. . . ẑj . . . ẑt . . . }, and value this two sets {̂c}, {̂z} as the proof
value.

After the two proofs are generated, the final ciphertext should be CT =
(C1, C2, C3, C4, C5, C6,PKS , {c}, {z},PKR, {̂c}, {̂z}).

– Ver(CT ): Every user can act as the verifier. Upon receiving a given cipher-
text like the above format CT = (C1, C2, C3, C4, C5, C6,PKS , {c}, {z},
PKR, {ĉ}, {ẑ}), a verifier does the following steps to verify the validity of
the ciphertext:
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• For the ciphertext components (C1, C2, C3, C4, C5, C6,PKS , {c}, {z}), the
verifier recomputes

α
′
l = gzl(gxl)cl , β

′
l = (C1)zl(C2)cl for each gxl ∈ PKS

and gets two sets {α
′} = {. . . α

′
l . . . }, {β

′} = {. . . β
′
l . . . }, then it checks

whether the equation

H3({α
′}, {β

′}, C1, C2, C3, C4, C5, C6) =
∑

cl∈{c}
cl

holds. If no, it returns a symbol of false and drops this ciphertext, other-
wise it continues to the next step.

• For the ciphertext components (C1, C2, C3, C4, C5, C6,PKR, {̂c}, {̂z}), the
verifier further computes

α̂′
t = gẑt(C1)ĉt , β̂′

t = (gxt)ẑt(C3)ĉt for each gxt ∈ PKR.

Then it gets two sets {̂α′} = {. . . α̂′
t . . . α̂′

j . . . }, {̂β′} = {. . . β̂′
t . . .

β̂′
j . . . }. The verifier finally checks whether the equation

H3( ̂{α′}, ̂{β′}, C1, C2, C3, C4, C5, C6) =
∑

ĉt∈̂{c}
ĉt

holds. If no, the verifier returns a symbol of false and drops this ciphertext,
otherwise it returns a symbol of true and then relays this ciphertext to
the receiver set.

– Dec(CT,Rx): This decryption algorithm are executed by all the possible
receivers of a given ciphertext. When given a copy of the ciphertext CT =
(C1, C2, C3, C4, C5, C6,PKS , {c}, {z},PKR, {̂c}, {̂z}), all possible receivers in
set PKR do as following:

• They would first execute the verification algorithm Ver of our scheme as
a subroutine. If Ver returns false, they drop CT and return a symbol of
failure, otherwise they continue to the next step.

• Each user Ux in PKR uses its secret key Rx to check whether equation
CRx

1 = C3 holds. If not, it drops CT and returns a symbol of failure,
otherwise, this user goes to the next step.

• For each of the users whose secret key satisfying the above equation, it
first gets the possible public key, which is denoted by gs′

, of the original
sender of the given CT by computing

gs′
=

C5

C4
Rx

,

then it recover the encrypted message, denoted by m′, as

m′ = C6 ⊕ H2((C2C4)Rx).
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After getting gs′
and m′, it would check whether the equation

C4 = gs′H1(m
′,gs′

,gRx ,C2
Rx )

holds, if yes, this user outputs gs′
as the public key of the actual message

sender and m′ as the original message. Otherwise, this user drops CT and
returns a symbol of failure.

4.2 Our Concrete Construction with Blacklist Checking

Basing on the former scheme, We give another construction to empower our
scheme with blacklist checking capability. Here, for simplicity, we assume the
blacklist BL is publicly produced by the system authority. It contains numbers
of block rule and each of which can be expressed as < pks, pkr >, where the
former is one specific sender’s and the other is one specific receiver’s public
key respectively, such block rule is used to disable the communication from one
message sender to one receiver. Our scheme assures that a verifier can check
whether a given ciphertext should be rejected according to the BL.

By applying the technique of zero-knowledge proof of inequality of two dis-
crete logarithms, which was proposed in [5], we find a way to extend our original
scheme to a scheme with blacklist checking, which only add a set of proof values
to the original one. Because those two schemes are pretty similar, we only give
explicit description of the most different part between them.

Our public key encryption scheme with source-destination verifiability and
block rules checking consists of the following polynomial time algorithms.

– Setup(1k): This algorithm is similar to the previous scheme except that the
public parameter pp should include the blacklist BL. Notice that pp is also
considered as default input to all the following algorithms.

– KeyGen( · ): This algorithm is also identical to the aforementioned one.
– Enc(m, sks, pkr,PKS ,PKR): Apart from the encryption process of the

encryption scheme of the previous scheme, here the sender also needs to gen-
erate a proof to convince the verifier that the generated ciphertext should not
be blocked according to the blacklist. Assuming there is a blacklist in pp like
follows;

< . , . >

< gS , gR >

< . , . >

Assuming there is one message sender with identity gSi , one ciphertext

CT = (C1, C2, C3, C4, C5, C6,PKS , {c}, {z},PKR, {ĉ}, {ẑ})

which is generated by that sender and sent to a receiver with identity gRj , for
each block rule, < gS , gR > for example, in the blacklist, the message sender
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needs to prove that CT does not come form a user with identity gS or goes to
a user with identity gR. That is, according to our scheme, the message sender
should produce a proof like

pf((Si ∨ r1) : logC1
C2 
= logg gS ∨ logg C1 
= loggR C3)

for this rule.
According to the technique given in [5], the message sender produces such
a proof pf for that ciphertext basing on the following different conditions
of CT ;

• When logC1
C2 = logg gS and logg C1 
= loggR C3, that is gSi = gS and

gRj 
= gR:
* For the case gSi = gS , the message sender needs to simulate a proof like

pf((γ = Si · δ, δ) : St0 = gγ/(gS)δ 
= 1 ∨ St1 = (gr1)γ/(gSir1)δ = 1),
where δ ∈R Zq.
That is, the message sender first chooses two statements St0 ∈
G and St1 = 1 ∈ G, a challenge CH ∈ Zq and two responses
e0, e1 ∈ Zq respectively, and sets the two commitments

COM0 = St0
CH(g)e0/(gS)e1 ,

COM1 = St1
CH(gr1)e0/(gSir1)e1

* For the case gRj 
= gR, the message sender gives a real proof like
pf((γ̂ = r1 · δ̂, δ̂) : Ŝt0 = (gR)γ̂/(gRjr1)̂δ 
= 1∨ Ŝt1 = (g)γ̂/(gr1)̂δ = 1),
where δ̂ ∈R Zq.
That is, the message sender first chooses two elements ŵ0, ŵ1 ∈ Zq

and computes the two commitments

ĈOM0 = (gR)ŵ0/(gRjr1)ŵ1 , ĈOM1 = (g)ŵ0/(gr1)ŵ1 .

The sender then computes a hash value

X = H3(COM0, COM1, ĈOM0, ĈOM1)

and sets the challenge of this proof as ĈH = X − CH, the two
responses should be

ê0 = ŵ0 − ĈH · γ̂, ê1 = ŵ1 − ĈH · δ̂

respectively.
* After all the required values are properly computed, let pf denote the

proof values for that block rule, then

pf = (St0, St1, CH, e0, e1, Ŝt0, Ŝt1, ĈH, ê0, ê1).

• If logC1
C2 
= logg gS and logg C1 = loggR C3, that is gSi 
= gS and

gRj = gR:
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* For the case gRj = gR, the message sender needs to simulate a proof like
pf(γ̂ = r1 · δ̂, δ̂) : Ŝt0 = (gR)γ̂/(gRjr1)̂δ 
= 1 ∨ Ŝt1 = (g)γ̂/(gr1)̂δ = 1),
where δ̂ ∈R Zq.

That is, the message sender chooses two statements Ŝt0 ∈
G and Ŝt1 = 1 ∈ G, a challenge ĈH ∈ Zq and two responses
ê0, ê1 ∈ Zq respectively, and sets the two commitments

ĈOM0 = Ŝt0
̂CH

(gR)ê0/(gRjr1)ê1 ,

ĈOM1 = Ŝt1
̂CH

(g)ê0/(gr1)ê1 .

* For the case gSi 
= gS , the message sender gives a real proof like pf((γ =
Si · δ, δ) : St0 = (g)γ/(gS)δ 
= 1 ∨ St1 = (gr1)γ/(gSir1)δ = 1), where
δ ∈R Zq.
That is, the message sender first chooses two elements w0, w1 ∈ Zq

and computes the two commitments

COM0 = (g)w0/(gS)w1 , COM1 = (gr1)w0/(gSir1)w1 .

The sender then computes a hash value

X = H3(COM0, COM1, ĈOM0, ĈOM1)

and sets the challenge of this proof as CH = X − ĈH, the two
responses should be

e0 = w0 − CH · γ, e1 = w1 − CH · δ

respectively.
* After all the required values are properly computed, let pf denote the

proof values for that block rule, then

pf = (St0, St1, CH, e0, e1, Ŝt0, Ŝt1, ĈH, ê0, ê1)

• If logC1
C2 
= logg gS and logg C1 
= loggR C3, that is gSi 
= gS and gRj 
=

gR:
* For the case gSi 
= gS , the message sender gives a real proof like pf((γ =

Si · δ, δ) : St0 = (g)γ/(gS)δ 
= 1 ∨ St1 = (gr1)γ/(gSir1)δ = 1), where
δ ∈R Zq.
That is, the message sender first chooses two elements w0, w1 ∈ Zq

and computes the two commitments

COM0 = (g)w0/(gS)w1 , COM1 = (gr1)w0/(gSir1)w1 .

The sender then chooses a challenge of this proof CH ∈ Zq, the two
responses should be

e0 = w0 − CH · γ, e1 = w1 − CH · δ

respectively.
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* For the case gRj 
= gR, The message sender gives a real proof like
pf((γ̂ = r1 · δ̂, δ̂) : Ŝt0 = (gR)γ̂/(gRjr1)̂δ 
= 1∨ Ŝt1 = (g)γ̂/(gr1)̂δ = 1),
δ̂ ∈R Zq.
That is, the message sender first chooses two elements ŵ0, ŵ1 ∈ Zq

and computes the two commitments

ĈOM0 = (gR)ŵ0/(gRjr1)ŵ1 , ĈOM1 = (g)ŵ0/(gr1)ŵ1 .

The sender then computes a hash value

X = H3(COM0, COM1, ĈOM0, ĈOM1)

and sets the challenge of this proof as ĈH = X − CH, the two
responses should be

ê0 = ŵ0 − ĈH · γ̂, ê1 = ŵ1 − ĈH · δ̂

respectively.
* After all the required values are properly computed, let pf denote the

proof values for that block rule, then

pf = (St0, St1, CH, e0, e1, Ŝt0, Ŝt1, ĈH, ê0, ê1).

Assuming there are n rules in BL, the message sender needs to generate n
proofs accordingly. Let {pf } denote all those proofs, then the full ciphertext
CT should be (C1, C2, C3, C4, C5, C6,PKS , {c}, {z},PKR, {̂c}, {̂z}, {pf }).

– Ver(CT ): During the execution of this algorithm, a verifier would
first do the same as what in the verification algorithm of the previ-
ous scheme. Besides, to check the block rules in BL, for each proof
(St0, St1, CH, e0, e1, Ŝt0, Ŝt1, ĈH, ê0, ê1) in {pf } and its corresponding rule
< gS , gR >, the verifier computes

COM ′
0 = St0

CH(g)e0/(gS)e1 , COM ′
1 = St1

CH(gr1)e0/(gSir1)e1 ,

ĈOM
′
0 = Ŝt0

̂CH
(gR)ê0/(gRjr1)ê1 , ĈOM

′
1 = Ŝt1

̂CH
(g)ê0/(gr1)ê1)

and then checks whether the equation

CH + ĈH = H3(COM ′
0 + COM ′

1 + ĈOM
′
0 + ĈOM

′
1)

holds. If yes, the verifier turns to the next proof in the list {pf }, otherwise it
drops this ciphertext. The verifier would relay the ciphertext if all the proofs
in {pf } and rules in BL are successfully checked.

– Dec(CT,Rj): This algorithm shares no difference from that in the previous
scheme.
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5 Security Proofs

Theorem 1. Our scheme maintains message confidentiality under the previ-
ously defined message confidentiality model assuming the DDH problem is hard
in G when hash functions H1,H2,H3 are modeled as random oracles. Concretely,
if there is an adversary A which can break our scheme with non-negligible proba-
bility ε, supposing A makes at most qH1 , qH2 , qH3 queries to the H1,H2,H3 hash
oracles respectively, and qD queries to the decryption oracle, then we can con-
struct another algorithm B that solves the DDH problem in G with advantage at
least 1

n2 (1 − qD
2k

)ε, where k is the security parameter and n is a constant.

Theorem 2. Our proposed scheme holds sender privacy under the previously
defined model assuming the DDH problem is hard in G where hash functions
H1,H2,H3 are modeled as random oracles. Concretely, if there exists such an
adversary A which can break our scheme with non-negligible probability ε, sup-
posing A makes at most qH1 , qH2 , qH3 queries to the H1,H2,H3 hash oracles
respectively, and qse sender extraction queries, then we can construct another
algorithm that solves the DDH problem in G with probability at least 1

n (1− qse
2k

)ε.

Theorem 3. Our scheme holds receiver privacy under the predefined security
model assuming the DDH problem is hard in G when hash functions H1,H2,H3

are modeled as random oracles. That is, if there is an adversary A which can
break our scheme with non-negligible probability ε, assuming A asks qH1 , qH2 , qH3

queries to H1,H2,H3 respectively and qre receiver extraction queries during the
game, then we can construct another algorithm B which breaks the DDH problem
with probability at least 1

2 · ε − 1
2k−1 , where k is the security parameter.

Because of the page limitation, here we only give the theorem. People can find
the formal proof in the full version of this paper.

6 Conclusion

We considered the user conditional privacy preservation problem. With the
blacklist scenario, we explained how a message sender proves the legitimation of
the communication channel with its communication partner. To solve the afore-
mentioned two problems, we proposed a group-based source-destination verifi-
able encryption scheme with blacklist checking. In order to discuss the security
of our scheme, we further defined three security models to capture the mes-
sage confidentiality, sender privacy preservation and receiver privacy preserva-
tion accordingly, and then gave three formal proofs under the predefined models
with the help of the random oracle.
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Abstract. This paper presents an attribute-based encryption (ABE)
construction for monotone span programs achieving the shortest known
ciphertext size under well-studied static complexity assumptions. Our
ABE construction is built in composite order bilinear group setting and
involves only 2 group elements in the ciphertexts. For proving selec-
tive security of the proposed ABE scheme under the Subgroup Decision
assumptions, the most standard static assumptions in composite order
bilinear group setting, we apply the extended version of the elegant Déjà
Q framework, which was originally proposed as a general technique for
reducing the q-type complexity assumptions to their static counter parts.
Our work thus demonstrates the power of this framework in overcoming
the need of q-type assumptions, which are vulnerable to serious practi-
cal attacks, for deriving security of highly expressive ABE systems with
compact parameters. We further introduce the concept of online-offline
multi-input functional encryption (OO-MIFE), which is a crucial advance-
ment towards realizing this highly promising but computationally inten-
sive cryptographic primitive in resource bounded and power constrained
devices. We also instantiate our notion of OO-MIFE by constructing such
a scheme for the multi-input analog of the inner product functionality,
which has a wide range of application in practice. Our OO-MIFE scheme
for multi-input inner products is built in asymmetric bilinear groups
of prime order and is proven selectively secure under the well-studied
k-Linear assumption.

Keywords: Attribute-based encryption · Déjà Q
Online-offline multi-input functional encryption

1 Introduction

FE: Functional encryption (FE) is a new vision of modern cryptography that
aims to overcome the potential limitation of the traditional encryption schemes,
namely, the all or nothing control over decryption capabilities. FE supports
restricted decryption keys which enable a decrypter to learn specific functions
c© Springer International Publishing AG 2017
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of encrypted messages, and nothing more. More precisely, an FE scheme for a
function family F involves a setup authority which holds a master secret key
and publishes public system parameters. An encrypter uses the public parame-
ters (along with a secret encryption key provided by the setup authority in case
of a private key scheme) to encrypt its message M belonging to some supported
message space M creating a ciphertext ct(M ). A decrypter may obtain a private
decryption key sk(F ) corresponding to some F ∈ F from the setup authority
provided that the authority deems that the decrypter is entitled for that key.
Such a decryption key sk(F ) can be used to decrypt ct(M ) to recover F (M ).
The standard security notion for FE is collusion resistance, i.e., an arbitrary
number of decrypters cannot jointly retrieve any more information about an
encrypted message beyond the union of what they each can learn individually.

PE: An important subclass of FE is predicate encryption (PE) with public index.
Consider a predicate family P = {PY : X → {0, 1} | Y ∈ Y}, where X and
Y are index sets. In a PE scheme for the predicate family P, the associated
message space M is of the form X × W, where W contains the actual pay-
loads. The functionality FPY

associated with a predicate PY ∈ P is defined
as FPY

(X ,W ) = W , if PY (X ) = 1, and the empty string ⊥, otherwise, for
all (X ,W ) ∈ M = X × W. In the public index setting, a PE ciphertext ct(M )
encrypting some message M = (X ,W ) includes the index X in the clear.

ABE: A highly expressive form of public-index PE is attribute-based encryption
(ABE). The recent advances in cloud technology has triggered an emerging trend
among individuals and organizations to outsource potentially sensitive private
informations to external untrusted servers and later share various segments of the
outsourced data with legitimate entities. ABE is an indispensable cryptographic
tool for preserving data confidentiality in such cloud computing platforms. ABE
comes in two flavors, namely, key-policy and ciphertext-policy. In a key-policy
ABE system over an attribute universe U, the index set X consists of all non-
empty subsets of U and the index set Y is comprised of certain access structures
over U. A predicate PA : X → {0, 1} associated with some access structure
A ∈ Y is defined for all attribute sets Γ ∈ X as PA (Γ ) = 1, if the access
structure A accepts the attribute set Γ , and 0, otherwise. The ciphertext-policy
variant interchanges the roles of attribute sets and access structures. In this
work, we concentrate on key-policy ABE.

The notion of ABE was introduced by Sahai and Waters [12] for threshold
access structures. Over time the class of access structures realizable by ABE sys-
tems has been gradually expanded by several researchers culminating into the
recent state of the art constructions which can now support access structures
represented by arbitrary polynomial-size circuits and even Turing machines.
However, in view of the current progress in computing technology, it appears that
the most expressive form of access structures supported by computationally prac-
tical ABE systems are span programs. Besides the expressiveness of supported
access structures, succinctness of ciphertext headers has been an important con-
cern towards practicality of ABE schemes.

Attrapadung et al. [5] were the first to develop a selectively secure key-policy
ABE construction supporting non-monotone span programs in prime order
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bilinear groups featuring 3 group elements in the ciphertext headers based on
a q-type assumption, namely, the Decisional Bilinear Diffie-Hellman (DBDHE)
assumption parameterized by �, where � is the maximum number of attributes
per ciphertext. Later, Yamada et al. [15] designed another selectively secure
key-policy ABE scheme for non-monotone span programs in prime order bilinear
group setting that further reduced the number of ciphertext header components
by 1 group element. As per our knowledge, this construction involves the least
number of ciphertext header components among the computationally practical
key-policy ABE systems currently available in the literature. However, the under-
lying complexity assumption of this construction is again DBDHE parameterized
by �. Attrapadung [3,4] subsequently built adaptively secure key-policy ABE
schemes for monotone span programs with constant number of group elements
in the ciphertext headers. The construction of [3] is developed in composite order
bilinear groups and it has 6 group elements in the ciphertext headers, whereas,
the scheme of [4] is constructed in prime order bilinear groups and its ciphertext
headers include 18 group elements. These constructions are also based on certain
q-type assumptions which are even stronger than the DBDHE assumption.

However, as demonstrated by Cheon [8], the q-type complexity assumptions
and thus the cryptosystems built on them are vulnerable to a serious attack.
Specifically, Cheon developed an algorithm which recovers the secret involved in
a q-type assumption in time inversely proportional to q. Later, Sakeme et al. [13]
showed that the attack of Cheon can be a real threat to cryptosystems based on
q-type assumptions by executing a successful experiment. Hence, it is clear that
the parameters of q-type-assumption-based cryptographic constructions must
scale with q in order to maintain a constant security level. Consequently, the
principal downside of all the four ABE constructions [3–5,15] is that they suffer
from Cheon’s attack [8] and require parameters that scale with the number of
attributes per ciphertext or in the attribute universe for preserving a fixed secu-
rity level. This bottleneck of using q-type complexity assumptions for building
key-policy ABE systems with constant number of ciphertext header components
was first mitigated by Chen and Wee [7], who designed a key-policy ABE scheme
for monotone span programs in composite order bilinear group setting based
on static assumptions featuring the least number (only 2) of group elements in
the ciphertext headers among existing similar constructions. However, the static
assumptions used in [7] are rather non-standard. In all the ABE constructions
discussed above, the number of group elements constituting the decryption keys
and the public parameters are O(m�) and O(�) respectively, where m is the
maximum number of rows of the matrix representing the span program.

Online-Offline MIFE: Multi-input functional encryption (MIFE), introduced by
Goldwasser et al. [9], is a generalization of FE to the setting of multi-input func-
tions. In an MIFE scheme for a family Fm of m-ary functions, a decryption key
sk(F ) corresponding to some function F ∈ Fm can be used to decrypt m cipher-
texts ct(1)(M (1)), . . . ,ct(m)(M (m)), encrypting the messages M (1), . . . ,M (m)

for the input slots 1, . . . ,m respectively, to retrieve F (M (1), . . . , M (m)).
In such systems, other than generating the public system parameters and
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master secret key, the setup authority also creates m encryption keys enk(1), . . . ,
enk(m) which are necessary for encrypting messages for the input slots 1, . . . ,m
respectively. MIFE has a wide range of practical applications such as running SQL
(structured query language) queries on encrypted databases, non-interactive dif-
ferentially private data release, delegation of expensive computations to external
servers and many more.

The bounded-norm multi-input inner product functionality, which we con-
sider in this paper, is an extension of the usual single-input inner product
function and has been explicitly defined by Abdalla et al. [1]. A multi-input
inner product function F→

y
(1)

,...,
→
y
(m) over Zn is specified by an m-tuple of vec-

tors (
→
y
(1)

, . . . ,
→
y
(m)

), where for each j ∈ [m],
→
y
(j)

is a vector of length � over
Zn, for some m,n, � ∈ N. The function F→

y
(1)

,...,
→
y
(m) takes as input m vectors

→
x
(1)

, . . . ,
→
x
(m)

, where for each j ∈ [m],
→
x
(j)

is again a vector of length � over Zn,
and outputs the sum of inner product values

∑

j∈[m]

〈→
x
(j)

,
→
y
(j)〉. In the bounded

norm setting, it is required that the norm of each component inner product
〈→
x
(j)

,
→
y
(j)〉 be bounded by some fixed B ∈ N. Inner product and hence its multi-

input variant is an extremely useful functionality in the context of descriptive
statistics, e.g., for computing the weighted mean of a collection of values. It also
enables the computations of conjunctions, disjunctions, and polynomial expres-
sions, as well as determination of exact thresholds.

In recent years, as computation is moving on to resource bounded and power
constrained devices like mobile phones, there has been a growing demand for
online-offline cryptography. The basic idea of the online-offline model is to pro-
vision for an expensive preparation or offline phase, where the majority of com-
putation is performed before the actual data become available. This is followed
by an efficient online phase, which is run when the data become known.

One vital limitation of FE is that the rich functionalities often come at
the expense of a serious computational load compared to traditional encryp-
tion schemes. Specifically, the decryption key generation time depends on the
complexity of the functions, while the encryption time scales with the length
of the message and sometime even with the complexity of the function family.
The situation is evidently more severe in the context of MIFE as multi-input
functionalities have much larger complexity compared to the single input ones.
In fact, an exacerbating issue is that the cost for operations may vary widely
between each ciphertext and decryption key, thus forcing a system to provi-
sion for a load that matches a worst case scenario. In the field of single-input
FE, online-offline versions have already been considered for ABE [10] and very
recently for general purpose FE supporting arbitrary polynomial-size circuits in
the bounded collusion setting [2]. However, MIFE is not yet investigated in the
online-offline model.

Our Contributions: Our goal in this work is to develop ABE scheme with best-
known parameters under well-studied static complexity assumptions. Specifically,
we present a selectively secure key-policy ABE scheme supporting monotone span
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programs in composite order bilinear groups with only 2 group elements in the
ciphertexts. The security is proven under the Subgroup decision assumptions,
which are the most standard static assumptions in composite order bilinear group
settings. Our ABE decryption keys and public parameters involve respectively
O(m�) and O(�) group elements which are the same as all previously known
key-policy ABE construction with short ciphertexts. Here, m and � respectively
denotes the maximum number of rows in the matrix representing the supported
span programs and the maximum number of attributes per ciphertext.

We work in the key encapsulation setting, where the ABE ciphertexts hide a
symmetric session key that can be used to symmetrically encrypt the actual pay-
load of arbitrary length. For proving security of our ABE construction, we employ
the recent extended Déjà Q framework presented by Wee [14]. The Déjà Q frame-
work was originally proposed by Chase et al. [6]. It is a general framework for
reducing various q-type complexity assumptions or their generalization, namely,
the family of uber assumptions to their static counter parts in composite order
bilinear group setting making use of the classic dual system methodology [11].

The other contribution of this paper is to introduce the notion of online-
offline multi-input functional encryption (OO-MIFE) and to develop the first
OO-MIFE construction for the multi-input analog of the inner product function-
ality. Our construction is proven secure under the well-studied k-Linear assump-
tion. Our online operations are quite fast. Our online decryption key generation
algorithm costs only m�(k + 1) modular multiplications, where m, �, and k are
respectively the arity of the multi-input inner product function, the length of the
vectors, and the parameter of the underlying complexity assumption. Thus, for
instance, if we base the security of our construction on the Symmetric External
Diffie-Hellman (SXDH) assumption, then k = 1, so that our online decryption
key generation algorithm would involve just 2m� modular multiplications. Our
online encryption algorithm is even more efficient as it incurs only modular
additions which is the fastest operation in bilinear group setting. Regarding
communication and storage requirements, both our offline and online decryp-
tion keys contain m(k + 1) additional Zn-component over those of the MIPE
scheme of [1], while our offline and online ciphertexts both include only � addi-
tional Zn-components over those of the MIPE construction of [1]. The increase
in the ciphertext and decryption key sizes is reminiscent with those of the earlier
online-offline single-input FE construction [10]. Moreover, the sizes of our pub-
lic parameters and encryption keys are exactly the same as those of the MIPE
construction of [1].

2 Notations

Let λ ∈ N denotes the security parameter and 1λ be its unary representation.
Throughout this paper we will follow notations presented in Fig. 1.
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Fig. 1. Notations

3 Our Attribute-Based Encryption Scheme

In this section, we present our ABE scheme for monotone span programs. The
necessary backgrounds on monotone access structures (MAS) and linear secret-
sharing (LSS) schemes can be found in the full version.

ABE.Setup(1λ,U) → (mpk,msk): The setup authority takes as input the
unary encoded security parameter 1λ along with an attribute universe U =
{1, . . . , �}. It proceeds as follows:

1. It first generates (n = p1p2p3,G,GT , e) $←− G(1λ, symmetric, composite).

2. Next, it selects μ, α, γ
$←− Zn, g

$←− Gp1 , and ğ, r̆0, r̆1, . . . , r̆�+1
$←− Gp3 .

3. Then, it computes h0 = gγ r̆0, u = gμ, ũι′ = uαι′
r̆ι′ , for ι′ ∈ [� + 1], and

e(g, ũ�+1).
4. After that, it uniformly samples H : GT → {0, 1}λ from a pairwise inde-

pendent hash family H2.
5. It publishes the public parameters mpk = ((n,G,GT , e), g, ğ, h0,{ũι′}ι′∈U,

e(g, ũ�+1),H), while keeps the master secret key msk = (p1p2p3, μ, α, γ).
ABE.KeyGen(mpk,msk,A ) → sk(A ): On input the public parameters mpk =

((n,G,GT , e), g, ğ, h0, {ũι′}ι′∈U, e(g, ũ�+1),H), the master secret key msk =
(p1p2p3, μ, α, γ), and an MAS A = (M , ρ) belonging to the family A of MAS’s
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over U, where M ∈ Z
m×m′
n and ρ : [m] → U is the labeling of the rows of M

with attributes in U, the setup authority executes the following steps:
1. It first computes m shares {κι}ι∈[m]

$←− LSS.Distribute(A = (M , ρ), ς =
μα�+1) of the secret ς = μα�+1.

2. For ι ∈ [m], it performs the following:

(a) It picks ℘ι
$←− Zn, r̆′

ι, r̆
′
ι,ι′

$←− Gp3 , for ι′ ∈ U\{ρ(ι)}.

(b) It computes kι = gκιg(γ+μαρ(ι))℘ι r̆′
ι, k′

ι = g℘ι , k′′
ι,ι′ = gμαι′

℘ι r̆′
ι,ι′ , for

ι′ ∈ U\{ρ(ι)}.
3. It provides the decryption key sk(A ) = (A , {kι, k

′
ι, {k′′

ι,ι′}ι′∈U\{ρ(ι)}}
ι∈[m]) to a legitimate decrypter.

ABE.Encrypt(mpk, Γ ) → (ct(Γ ),ek): On input the public parameters mpk =
((n,G,GT , e), g, ğ, h0, {ũι′}ι′∈U, e(g, ũ�+1),H) along with an attribute set Γ ⊆
U, an encrypter operates as follows:
1. It picks θ, ν̆Γ

$←− Zn, and sets r̆Γ = ğν̆Γ .

2. It sets c1 = gθ, c2 = (h0

∏

ι′∈Γ

ũι′)θ r̆Γ = g
(γ+μ

∑

ι′∈Γ

αι′
)θ

(r̆0
∏

ι′∈Γ

r̆ι′)θ r̆Γ , and

T = e(g, ũ�+1)θ.
3. It outputs the ciphertext ct(Γ ) = (Γ, c1, c2) and the session key ek =

H(T ).
ABE.Decrypt(mpk, sk(A ),ct(Γ )) → ek′ or ⊥: A decrypter takes as input the

public parameters mpk = ((n,G,GT , e), g, ğ, h0, {ũι′}ι′∈U, e(g, ũ�+1),H), its
decryption key sk(A ) = (A , {kι, k

′
ι, {k′′

ι,ι′}ι′∈U\{ρ(ι)}}ι∈[m]) corresponding to
its legitimate MAS A = (M , ρ) ∈ A, where M ∈ Z

m×m′
n and ρ : [m] → U is

a labeling of the rows of M with attributes in U, together with a ciphertext
ct(Γ ) = (Γ, c1, c2) prepared for some attribute set Γ ⊆ U. If A does not
accept Γ , then it outputs ⊥. Otherwise, it executes the following steps:
1. It first determines (IΓ , {ηι}ι∈IΓ ) $←− LSS.Reconstruct(A = (M , ρ), Γ )).
2. Next, it computes b1 =

∏

ι∈IΓ

(kι

∏

ι′∈Γ\{ρ(ι)}
k′′

ι,ι′)ηι , b2 =
∏

ι∈IΓ

(k′
ι)

ηι , and

T ′ =
e(c1, b1)
e(c2, b2)

.

3. It retrieves the session key as ek′ = H(T ′).

Theorem 3.1 (Security of Our ABE Scheme). The proposed ABE scheme
is selectively secure under the Subgroup Decision assumptions.

The proof of Theorem3.1 is provided in the full version.

4 Our Online-Offline Multi-input Inner Product
Encryption Scheme

Definition 4.1 (Multi-Input Bounded-Norm Inner Product Function-
ality [1]). A multi-input bounded-norm inner product function family F�,B

m over
Zn, for some n, �,m, B ∈ N with n 	 mB, consists of functions F→

y
(1)

,...,
→
y
(m) :
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(Z�
n)m → Zn associated with a tuple of vectors (

→
y
(1)

, . . . ,
→
y
(m)

) ∈ (Z�
n)m, where

F→
y
(1)

,...,
→
y
(m)(

→
x
(1)

, . . . ,
→
x
(m)

) = (
∑

j∈[m]

〈→
x
(j)

,
→
y
(j)〉) mod n, for

→
x
(1)

, . . . ,
→
x
(m) ∈ Z

�
n

with the norm of component inner products, |〈→
x
(j)

,
→
y
(j)〉| ≤ B, for j ∈ [m].

In order to simplify naming conventions, we will omit “bounded-norm” for the
rest of the paper. We now present our OO-MIPE scheme.

OO-MIPE.Setup(1λ, �,m, B) → (pp, {enk(j)}j∈[m],msk): The setup authority
takes as input the unary encoded security parameter 1λ, the length � of vec-
tors, the arity m of the multi-input inner product function, and the bound B.
It proceeds as follows:
1. It first generates (n,G1,G2,GT , e) $←− G(1λ, asymmetric, prime) such that

n 	 mB.
2. Next it selects A(1), . . . ,A(m) $←− Z

(k+1)×k
n , W (1), . . . ,W (m) $←− Z

�×(k+1)
n ,

N (1), . . . ,N (m) $←− Z
k×(k+1)
n ,

→

f
(1)

, . . . ,
→

f
(m) $←− Z

k
n, for some appropriate

k ∈ N, g1
$←− G1, and g2

$←− G2.
3. Then, it computes AAA

(j)
1 = gA

(j)

1 , DDD
(j)
1 = gW

(j)A(j)

1 , F (j)
1 = gN

(j)A(j)

1 , for
j ∈ [m], and G = e(g1, g2).

4. It sets the public parameters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)
1 ,

DDD
(j)
1 , FFF

(j)
1 }j∈[m]), the encryption keys enk(j) =

→

f
(j)

, for j ∈ [m], and

master secret key msk = ({W (j),N (j)}j∈[m],
∑

j∈[m]

→

f
(j)

). It publishes pp,

provides enk(j) to the jth encrypter, for j ∈ [m], while keeps msk to
itself.

OO-MIPE.OfflineKeyGen(pp,msk) → itsk: Taking as input the public parame-
ters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)

1 ,DDD
(j)
1 ,FFF

(j)
1 }j∈[m]) and the master

secret key msk = ({W (j),N (j)}j∈[m],
∑

j∈[m]

→

f
(j)

), the setup authority executes

the following steps:
1. It first picks

→
z
(1)

, . . . ,
→
z
(m) $←− Z

k+1
n , and

→

h
$←− Z

k
n.

2. After that, it computes k̃
(1,j)

= g
→
z
(j)

+
→
hN (j)

2 , for j ∈ [m], k̃
(2)

= g
→
h
2 , and

K̃(3) = G
〈 ∑

j∈[m]

→
f
(j)

,
→
h〉

.
3. It stores the intermediate decryption key itsk = ({k̃(1,j)}j∈[m], k̃

(2)
, K̃(3),

{→
z
(j)}j∈[m]).

OO-MIPE.OnlineKeyGen(pp,msk, itsk, (
→
y
(1)

, . . . ,
→
y
(m)

)) → sk(
→
y
(1)

, . . . ,
→
y
(m)

):
On input the public parameters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)

1 ,DDD
(j)
1 ,

FFF
(j)
1 }j∈[m]), the master secret key msk = ({W (j),N (j)}j∈[m],

∑

j∈[m]

→

f
(j)

),

a fresh intermediate decryption key itsk = ({k̃(1,j)}j∈[m], k̃
(2)

,
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K̃(3), {→
z
(j)}j∈[m]) formed in the offline phase, along with an m-tuple of vectors

(
→
y
(1)

, . . . ,
→
y
(m)

) ∈ (Z�
n)m, the setup authority performs the following steps:

1. It sets k(1,j) = k̃
(1,j)

, for j ∈ [m], k(2) = k̃
(2)

, K(3) = K̃(3), and
→

k
(4,j)

=
→
y
(j)

W (j) − →
z
(j)

, for j ∈ [m].
2. It gives a legitimate decrypter with the decryption key sk(

→
y
(1)

,

. . . ,
→
y
(m)

) = ((
→
y
(1)

, . . . ,
→
y
(m)

), {k(1,j)}j∈[m],k
(2),K(3), {

→

k
(4,j)

}j∈[m]).
OO-MIPE.OfflineEncrypt(pp, j,enk(j)) → itct(j) : The jth encrypter takes as

input the public parameters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)
1 ,DDD

(j)
1 ,

FFF
(j)
1 }j∈[m]), its index j ∈ [m], along with its private encryption key enk(j) =

→

f
(j)

. It operates as follows:
1. It first selects

→
u
(j) $←− Z

�
n and

→
s
(j) $←− Z

k
n.

2. Next, it computes c̃(1,j) = g
→
u
(j)

1 (DDD(j)
1 )

→
s
(j)

= g
→
u
(j)

+
→
s
(j)

A(j)ᵀW (j)ᵀ
1 , c̃(2,j) =

g
→
f
(j)

1 (FFF (j)
1 )

→
s
(j)

= g
→
f
(j)

+
→
s
(j)

A(j)ᵀN (j)ᵀ
1 , and c̃(3,j) = (AAA(j)

1 )
→
s
(j)

= g
→
s
(j)

A(j)ᵀ
1 .

3. It stores the intermediate ciphertext itct(j) = (c̃(1,j), c̃(2,j), c̃(3,j),
→
u
(j)

).
OO-MIPE.OnlineEncrypt(pp, j, itct(j) ,

→
x
(j)

) → ct(j)(
→
x
(j)

): An encrypter upon
input the public parameters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)

1 ,DDD
(j)
1 ,

FFF
(j)
1 }j∈[m]), its own index j ∈ [m], a fresh intermediate ciphertext itct(j) =

(c̃(1,j), c̃(2,j), c̃(3,j),
→
u
(j)

) created in the offline phase, and a vector
→
x
(j) ∈ Z

�
n,

proceeds as follows:
1. It sets c(1,j) = c̃(1,j), c(2,j) = c̃(2,j), c(3,j) = c̃(3,j), and

→
c
(4,j)

=
→
x
(j) − →

u
(j)

.
2. It outputs the ciphertext ct(j)(

→
x
(j)

) = (j, c(1,j), c(2,j), c(3,j),
→
c
(4,j)

).
OO-MIPE.Decrypt(pp, sk(

→
y
(1)

, . . . ,
→
y
(m)

), {ct(j)(
→
x
(j)

)}j∈[m]) → ∑

j∈[m]

〈→
x
(j)

,
→
y
(j)〉

or ⊥: A decrypter takes as input the public parameters pp = ((n,G1,G2,GT ,

e), g1, g2, G, {AAA(j)
1 ,DDD

(j)
1 ,FFF

(j)
1 }j∈[m]), a decryption key sk(

→
y
(1)

, . . . ,
→
y
(m)

) =

((
→
y
(1)

, . . . ,
→
y
(m)

){k(1,j)}j∈[m],k
(2),K(3), {

→

k
(4,j)

}j∈[m]) corresponding to an m-

tuple of vectors (
→
y
(1)

, . . . ,
→
y
(m)

) ∈ (Z�
n)m, and m ciphertexts {ct(j)(

→
x
(j)

) =
(j, c(1,j), c(2,j), c(3,j),

→
c
(4,j)

)}j∈[m]. It executes the following:
1. It first computes

T̃ =
∏

j∈[m]

⎡

⎢
⎢
⎣

E�(c(1,j) g
→
c
(4,j)

1 , g
→
y
(j)

2 )Ek(c(2,j),k(2))

Ek+1(c(3,j),k(1,j) g
→
k
(4,j)

2 )

⎤

⎥
⎥
⎦ . (1)

2. Next, it computes T =
T̃

K(3)
.

3. Finally, it attempts to determine a value ψ ∈ Zn such that T = Gψ,
by exhaustively searching a polynomial size range of possible values and
outputs ψ, if successful. Otherwise, it outputs ⊥ indicating failure.
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Theorem 4.1 (Security of Our OO-MIPE Scheme). The proposed
OO-MIPE scheme is selectively secure under the k-Linear assumption.

The proof of Theorem 4.1 is given in the full version.
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Abstract. We explore ways to optimize online, permutation-based au-
thenticated-encryption (AE) schemes for lightweight applications. The
lightweight applications demand that AE schemes operate in resource-
constrained environments, which raise two issues: (1) implementation
costs must be low, and (2) ensuring proper use of a nonce is difficult due
to its small size and lack of randomness. Regarding the implementation
costs, recently it has been recognized that permutation-based (rather
than block-cipher-based) schemes frequently show advantages. However,
regarding the security under nonce misuse, the standard permutation-
based duplex construction cannot ensure confidentiality. There exists one
permutation-based scheme named APE which offers certain robustness
against nonce misuse. Unfortunately, the APE construction has several
drawbacks such as ciphertext expansion and bidirectional permutation
circuits. The ciphertext expansion would require more bandwidth, and
the bidirectional circuits would require a larger hardware footprint. In
this paper, we propose new constructions of online permutation-based
AE that require less bandwidth, a smaller hardware footprint and lower
computational costs. We provide security proofs for the new construc-
tions, demonstrating that they are as secure as the APE construction.

Keywords: AEAD · Permutation-based · Sponge · APE · Bandwidth
Hardware footprint · Inverse-free

1 Introduction

With the rise of Internet of Things (IoT), lightweight cryptography is drawing
more and more attentions today [9,15,18]. This is because many of the IoT
devices need to operate within tight resource constraints and hence may not be
able to accommodate conventional cryptographic algorithms. The constraints
include, for example, limited amount of storage, power and bandwidth.

The lightweight cryptography aims for essentially the same type of secu-
rity goal as the conventional cryptography, with two most important security
notions being confidentiality and integrity. The two notions can be simulta-
neously achieved by a symmetric-key primitive called authenticated encryp-
tion (AE) [4,5,11]. Hence it becomes one of the most fundamental problems in
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 217–236, 2017.
https://doi.org/10.1007/978-3-319-72359-4_13
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lightweight cryptography to come up with an AE scheme that can be efficiently
run in resource-constrained environments.

Although the type of security goal is the same, appropriate design approaches
may differ between lightweight cryptography and conventional one, due to the
low-resource conditions in the former. Of the existing AE designs, some become
more suitable for lightweight cryptography, while others remain less suitable. In
recent years, it is recognized that permutation-based (rather than block-cipher-
based) designs have comparative advantages in lightweight cryptography, owing
to their small RAM footprint [3,8,13].

Unfortunately, naively building an AE scheme from permutations would not
give us one that is workable in resource-constrained environments, because there
is a major security issue inherent in lightweight AE: the initializing vector (IV)
needs to be a nonce [20]. In general, the security of an AE scheme gets com-
promised if the same value of IV is used twice under the same key. However, in
many resource-constrained scenarios it is difficult for devices to ensure their IV
to be a nonce, as explained below.

Two typical methods to realize a nonce are counter and randomization. A
counter IV would require a secure writable memory, which also needs to be
non-volatile if the device is supplied with a weak battery or reboots frequently,
because the IV may get reset due to loss of power or rebooting. Such mem-
ory tends to be costly to be securely implemented [16], and it is unlikely that
devices with such a weak battery or unstable system would come with such rich
memory. The other type, a randomized IV, is not easily realizable in lightweight
environments, either. It is difficult for low-resource devices to ensure a source
of randomness [10], which implies that a randomized IV may have insufficient
entropy and produce collisions.

A related issue with nonce misuse is the fact that fully nonce-misuse-resistant
AE schemes [14,21] require “two-pass” or “three-pass” operations on data, which
result in a larger state size. This may make these schemes unsuitable for severely
resource-constrained environments, even if the data size is relatively small. There
is a “one-pass” permutation-based AE construction called the duplex construc-
tion [7], but it does not provide security under nonce misuse. Hence we aim at
online permutation-based AE schemes [12], that is to say, when the same nonce
is repeated, the only information leaked to adversaries is that the new message
and associated data are the same as the previous ones up to the block where
different data is processed for the first time. This onlineness provides us with a
good tradeoff between performance (still “one-pass”) and security.

There is previous work of online permutation-based AE called APE [2], but it
requires relatively high bandwidth and large hardware footprint. The large foot-
print comes from the decryption process that uses both forward and inverse per-
mutations, requiring independent circuits for the two permutation calls. More-
over, the computational costs of APE tend to be higher, because the technique
called concurrent absorption [22] or full-state absorption [19], which reduce com-
putational costs in the duplex construction, is not applicable to APE. A small
note on APE is that it is equipped with backward decryption, which can be
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problematic for high-end use involving streaming data. Fortunately this should
not be problematic in our setting, because in most lightweight applications the
data and state sizes remain small and latency is not an issue.

Contributions of This Paper. We provide online permutation-based AE
schemes with minimal bandwidth, hardware footprint and computational cost.
Our constructions improve those over APE by a few to several dozens of bytes,
which make a big difference in the resource-constrained environments. We pro-
vide three different constructions, APERI, APEOW and APECA, which can be
chosen depending on the situations.

1. The APERI scheme optimizes the hardware footprint, so that developers need
to implement only the forward permutation f for the encryption circuit and
only the inverse f−1 for the decryption circuit. Recall that APE required
implementation of both f and f−1 for decryption. The bandwidth, computa-
tional cost and security are exactly the same as APE, hence APERI simply
improves APE in the hardware footprint. The core idea is replacing the stan-
dard nonce-based AE framework of APE with the protected-IV (PIV) frame-
work formalized by Shrimpton and Terashima [23], which converts nonce N
to other value called reconstruction information (RI ) and sends RI to the
receiver instead of N .

2. The APEOW scheme further modifies APERI in order to improve bandwidth
while it inherits improved hardware footprint of APERI. The most interest-
ing feature of APEOW is that it adopts the overwrite-mode of the sponge
construction instead of the XOR-absorbing mode for processing N . Namely
after absorbing N , we replace r bits (called rate) with the first block of asso-
ciated data A. This allows the receiver to verify authenticity and privacy of
received (A,C, T ) without N . Hence, it saves bandwidth for sending N and
computational cost for processing N in decryption.

3. The APECA scheme improves bandwidth in different approach from APEOW.
APEOW improves bandwidth by not sending N . The advantage of APEOW

becomes bigger as the size of N increases. APECA improves bandwidth even
if N is small or even users choose not to use N . The idea here is avoiding the
expansion of ciphertext or tag. Namely, when the input data size to encryption
is |N | + |A| + |M |, we aim to achieve the output size of |N | + |A| + |M | + c/2
where c/2 is proven security level, i.e. |C| = |M | and tag size is c/2 bits.
This is the optimal bandwidth in the nonce based AE framework because
|C| cannot be smaller than |M | and using c/2-bit tag is inevitable to ensure
c/2-bit security. In other words, even by being based on the permutation,
APECA achieves the competitive bandwidth with standard AE schemes.

Paper Outline. Section 2 summarizes specification of APE and its disadvan-
tages. Section 3 introduces AE framework by Shrimpton and Terashima [23]
and defines security under this framework. Our three new constructions APERI,
APEOW, and APECA are proposed in Sects. 4, 5, and 6, respectively. Finally, we
compare the performance of those schemes and APE in Sect. 7.
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2 Previous Work: APE

In this section, we introduce the specification of APE in Sect. 2.1 and explains
several drawbacks of APE in Sect. 2.2.

2.1 Specification of APE

The APE scheme is the only existing permutation based AE mode which satisfies
onlineness and offers a certain level of robustness against nonce-misuse, which
is often called “up to prefix security,” i.e. even if nonce is repeated, the scheme
only leaks the information that the new message and associated data are the
same as the previous ones up to the block where different data is processed for
the first time. The mode of operation was firstly proposed at FSE 2014 [2], then
it was later submitted to CAESAR with a specific primitive [1]. In this paper,
we only focus our attention on the mode of operation.

The APE scheme adopts a b-bit permutation f as its underlying primitive.
The b-bit state is further divided into r bits called rate and c bits called capacity
like the well-known sponge or duplex constructions [6,7].

Encryption of APE. The APE scheme uses a c-bit key K. It takes an associ-
ated data A, a nonce N , a message M as input and computes the corresponding
ciphertext C and a tag T . If the user compromises security to be “up to prefix
security,” the nonce input is not necessary. In order to unify the description, it
is assumed that the nonce is a part of associated data A, thus N is not explicitly
written even if N is used. In this paper, N is an important factor to minimize
the bandwidth, thus N is often explicitly written independently of A.

The APE scheme initializes the state to r bits of zeros and c bits of K. Then
A and M are divided into r bits of A0, A1, A2, · · · and M0,M1,M2, · · · . Here,
the designers limit that A and M must be a multiple of r.

To process A, the scheme first xors A0 to rate and updates the state by
computing f . This is iterated until all the associated data blocks are processed.
In the end, the scheme xors a single bit one to capacity, which makes a border
between A and M . Then, the scheme xors M0 to rate, updates the state by
f , and outputs r bits of rate as the corresponding ciphertext block C0. This is
iterated until all the message blocks are processed. Finally, c bits of K is xored
to capacity, and the resulted c bits are output as tag T .

A typical choice of the ratio of r and c is r = c/2, which comes from c/2-bit
security of the construction. The encryption of APE for r = c/2 is illustrated in
Fig. 1.

Decryption of APE. The decryption of APE is a bit tricky, which is often
called backward decryption. By concatenating the last ciphertext block and K ⊕
T , the receiver constructs the b-bit state. Then, the receiver updates the state
by f−1, outputs the XOR of the rate and the next ciphertext block as the
last plaintext block and replaces the rate with the next ciphertext block. This
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1

Send 

Fig. 1. Encryption of APE

is iterated until the second message block M1 is recovered. The scheme then
replaces rate by C0 and updates the state by f−1, but M0 is not recovered at
this stage. Let rate and capacity of the resulted state be Sr and Sc, respectively.

Procedures to recover the first message block M0 and verification are very
different. The receiver processes A as the encryption process (in the forward
direction). Let rate and capacity of the resulted state be S′

r and S′
c. The receiver

checks the match of Sc and S′
c for verification. If they match, the scheme com-

putes M0 ← Sr ⊕ S′
r and outputs the recovered M . If they do not match, the

scheme returns the failure symbol ⊥. The decryption process of APE for r = c/2
is illustrated in Fig. 2.

Security of APE. Intuitively, both of privacy and integrity of APE are proven
to be secure up to 2c/2 queries in both of the nonce-respect and nonce-repeat
settings.

2.2 Drawbacks of APE

Requiring High Bandwidth. Although integrity of APE is secure up to 2c/2

queries, owing to its computational structure, it is necessary to output a c-bit
tag T , which increases communication cost compared to ordinary AE schemes
that produce a c/2-bit tag for c/2-bit security.
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Fig. 2. Decryption of APE

Large Hardware Footprint. As illustrated in Figs. 1 and 2, the encryption
of APE only requires to implement f , while the decryption of APE requires to
implement both f and f−1. This forces bigger hardware footprint for decryption
devices.

High Computational Cost. The number of calls of f or f−1 is (|N | + |A| +
|M |)/r, where |X| represents the size of the variable X. At a glance this seems
optimal. However, for the duplex construction, it is known that M and A can be
processed simultaneously, e.g. the concurrent absorption [22], thus the number
of permutation calls can be (|N |+ |A|+ |M |)/b. From a security reason, such an
optimization cannot be applied to APE. (Intuitively, a tag reveals some infor-
mation on the capacity value, which makes impossible to prove its security when
the direct modification of any capacity value is allowed to the adversary.)

Remarks on Backward Decryption. The backward decryption of APE
recovers the message from the last block to the first block. It is often said
that this can be a drawback when the message length is big because it can-
not be used for data streaming. In fact, APE was designed as a general-purpose
AE scheme, hence the criticism makes sense. On the other hand, we point out
that the backward decryption is not a problem at all in lightweight applica-
tions for IoT because the packet size is designed to be very short. For example,
LoRa [17], a popular standard for Low Power Wide Area (LPWA), specifies that
the maximum packet size is around 40 bytes, which is easy to store even for
resource-restricted devices.
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3 Security Definitions

In this section we first give a syntactical definition of authenticated encryption.
Then we provide a security model for online authenticated encryption scheme.

3.1 Authenticated Encryption

Put R := {0, 1}r and C := {0, 1}c, corresponding to the rate r and the capac-
ity c. We use the notation R∗ := ∪�

i=0R
i and R+ := ∪�

i=1R
i where � is the

maximum length of queries that an adversary (an oracle machine) makes to its
oracles. Here by the usual convention we regard R0 = ∅.

We adopt the generalized framework of authenticated encryption formalized
by Shrimpton and Terashima [23]. An AE scheme is a triplet (K, E ,D). The key

generation algorithm K simply draws a key K
$←− C uniformly at random. Given

a key K ← K(·), the encryption algorithm EK takes as its input a nonce N ∈
Rn for some fixed n, associate data A ∈ R+ and a message M ∈ R+ and
outputs reconstruction information RI ∈ R∗, ciphertext C ∈ R∗ and a tag
T ∈ C as (RI , C, T ) ← EK(N,A,M). Similarly, given a key K, the decryption
algorithm DK takes as its input reconstruction information RI ∈ R∗, associated
data A ∈ R+, ciphertext C ∈ R∗ and a tag T ∈ C, and outputs either the reject
symbol ⊥ or a message M ∈ R+ as M ← DK(RI , A,C, T ) where M may be
equal to ⊥. Optionally, an AE scheme may be equipped with a nonce recovery
algorithm RK which takes as its input reconstruction information RI ∈ R

∗,
associated data A ∈ R+, ciphertext C ∈ R∗ and a tag T ∈ C, and outputs a
(possibly partial) nonce N [1] ∈ R as N [1] ← RK(RI , A,C, T ), irrespective of
the verification result. In this case the AE scheme is a quadruplet (K, E ,D,R).

3.2 Security of Online AE Schemes

We prove the security of our schemes in the random-permutation model, regard-
ing the underlying permutation f : B → B as an ideal. Here B := {0, 1}r+c =
R×C. We consider the strongest adversaries possible, namely computationally
unbounded ones. Hence we limit the power of adversaries only by query com-
plexity. Let q, �, σ denote the maximum number of queries, the maximum length
of each query, and the total number of blocks of queries, respectively.

An adversary is given access to three oracles. Two of them are offline oracles
y ← f(x) and x ← f−1(y) where f is drawn uniformly at random from permu-
tations on B. They correspond to the underlying permutation. The remaining
two are an encryption oracle E(·, ·, ·) and a decryption oracle D(·, ·, ·, ·). The
goal of the adversary is to distinguish, by outputting a bit b ∈ {0, 1} after its
interaction with oracles, between two worlds. In the real game, the encryption
oracle is the real oracle (RI , C, T ) ← EK(N,A,M), and similarly the decryption
oracle is the real oracle M ← DK(RI , A,C, T ). In the ideal game, the encryp-
tion oracle $(N,A,M) is defined as follows, and the decryption oracle is simply
⊥(RI , A,C, T ) which always returns the reject symbol ⊥.
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The ideal encryption oracle (RI , C, T ) ← $(N,A,M) is defined as follows.
The value RI is computed in exactly the same way as the real world, i.e.
(RI , ·, ·, ·) ← EK(N,A,M). To describe how C and T are generated in the ideal
world, write M = M [1]M [2] · · · M [w]. We choose functions g : R+ × R∗ → R
and g′ : R+ × R+ → C uniformly at random, and define

C[i] := g(NA,M [1]M [2] · · · M [i]) for i = 1, 2, . . . , w

T := g′(NA,M).

When there is a nonce recovery algorithm N [1] ← RK(RI , A,C, T ), in the
ideal world this is replaced with a random oracle $′ which chooses an indepen-
dently random function g′′ : R × R+ × R∗ × C → R and outputs

N [1] ← g′′(RI , A,C, T ).

Now formally we define the advantage of an adversary D as

Adv(D) := Pr
[
Df,f−1,EK ,DK ,RK = 1

]
− Pr

[
Df,f−1,$,⊥,$′

= 1
]
,

where D··· = 1 denotes the event that D outputs 1 after interacting with its
oracles · · · . The probabilities are defined over random coins used by the oracles,
and those used by D if any.

We assume that adversary D does not repeat a query or make a trivial-win
query. That is, if D makes a query (RI , C, T ) ← EK(N,A,M), then D makes
neither a D-query (RI , A,C, T ) nor an R-query (RI , A,C, T ).

4 APERI: Minimizing Hardware Footprint

In this section we present our first scheme, APERI, which offers a smaller hard-
ware footprint than the original APE by its encryption algorithm making calls
only to the forward permutation f while its decryption algorithm only to the
inverse f−1. The construction follows the generalized AE framework that utilizes
reconstruction information RI . See Figs. 3 and 4 for illustration of the scheme.

The encryption algorithm of APERI is very similar to that of APE. We
assume N ∈ R. The main difference is that it additionally outputs r bits of the
internal state as RI . The user (who has performed the encryption algorithm)
does not send N but sends RI instead, together with C, T . Note that |RI | = |N |,
and hence the communication cost of APERI is exactly the same as that of APE.
Also note that the encryption of APE only calls f and not f−1, and APERI

inherits this good property. A small remark here is that the position of xoring 1
in the capacity is moved 1-block earlier in the new scheme than in APE. This is
because APERI starts outputting the rate value 1-block earlier than APE, and
in this way we can “reuse” the known results of APE for proving the security
of APERI.

A major difference between APERI and APE comes in the decryption pro-
cess. To decrypt (RI , A,C, T ), the process is exactly the same up to the recovery
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Fig. 3. Illustration of APERI encryption

Fig. 4. Illustration of APERI decryption
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of M [2]. In APERI, M [1] can be recovered in a continuous way thanks to the
presence of RI . After M is recovered, the decryption procedure continues to
backtrack the computation by using A. After finishing absorbing all blocks of A,
the capacity should match the value of K for verification. Formally, the encryp-
tion and decryption algorithms of APERI are defined in Fig. 5.

1: M [1]M [2] · · ·M [w] ← M
2: A[1]A[2] · · ·A[u] ← A
3: V ← (0r,KU ,KL)
4: V ← f(N ⊕ V r, V U , V L)
5: for i = 1 to u − 1 do
6: V ← f(A[i] ⊕ V r, V U , V L)
7: end for
8: V ← f(A[u] ⊕ V r, V U , V L ⊕ 1)
9: RI ← V r

10: for i = 1 to w do
11: V ← f(M [i] ⊕ V r, V U , V L)
12: C[i] ← V r

13: end for
14: TU ← V U ⊕ KU

15: TL ← V L ⊕ KL

16: return (RI , C, T )

17: C[1]C[2] · · ·C[w] ← C
18: A[1]A[2] · · ·A[u] ← A
19: V ← (0r, TU ⊕ KU , TL ⊕ KL)
20: for i = w to 2 do
21: V ← f−1(C[i], V U , V L)
22: M [i] ← V r ⊕ C[i − 1]
23: end for
24: V ← f−1(C[1], V U , V L)
25: M [1] ← V r ⊕ RI
26: V ← f−1(RI , V U , V L)
27: V ← f−1(A[u] ⊕ V r, V U , V L ⊕ 1)
28: for i = u − 1 to 2 do
29: V ← f−1(A[i] ⊕ V r, V U , V L)
30: end for
31: if V U‖V T = K then
32: return M
33: else
34: return ⊥
35: end if

Fig. 5. Encryption and decryption algorithms of APERI

4.1 Security of APERI

In this section we prove that APERI is as secure as the original APE as an
authenticated encryption scheme. Recall that for APERI we assume N ∈ R (i.e.
n = 1).

Theorem 1. Let Π = (K, E ,D) be APERI. Then Π is at least as secure as the
original APE scheme Π ′ = (K, E ′,D′) that uses the same underlying permutation
f and the parameters r, c. Specifically, for any adversary D attacking Π, there
exists an adversary D′ that attacks Π ′ and satisfies

AdvΠ(D) ≤ AdvΠ′(D′) +
4σ2

2r+c
+

4σ(2σ + 1)
2c

,

where σ denotes the query complexity of D and D′ makes at most twice many
queries to its oracles as D.

Proof. Consider an intermediate scheme Π̃ := (K, E ,D′). We first show that Π̃
is as secure as the original APE Π ′ = (K, E ′,D′). Given an adversary D̃ that
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attacks Π̃, we construct an adversary D′ that attacks Π ′. Simply, D′ runs D̃.
When D̃ makes queries to its f/f−1/D′ oracles, the adversary D′ forwards the
queries to its f/f−1/D′ oracles, respectively, and returns to D̃ whatever D′

gets from its oracles. When D̃ makes an E-query (N,A,M), the adversary D′

makes an E ′-query (N,A[1] · · · A[u− 1], A[u]M) and receives a reply (C, T ) from
its E ′-oracle. Then D′ returns (RI , C ′, T ) to D̃, where RI := C[1] and C ′ =
C[2] · · · C[w+1]. Eventually, the adversary D′ outputs the bit b that D̃ outputs.
We see that

AdvΠ̃(D̃) ≤ AdvΠ′(D′), (1)

where the query complexity of D′ is the same as that of D̃.
Next we consider another intermediate scheme Π+ := (K, E ,D′,R) which

is nothing but the above Π̃ now equipped with the recovery function N ←
RK(A,RI , C, T ). Given D+ that attacks Π+, we can construct an adversary D̃
that attacks Π̃ by simulating the R-oracle with a random function. The simu-
lation fails only when the recovery function RK does not behave random, and
such a probability can be bounded by σ2/2r+c+2σ(σ+1)/2c (Andreeva et al. [2,
Theorem 2]) where σ denotes the query complexity of D+. Therefore, we have

AdvΠ+(D+) ≤ AdvΠ̃(D̃) +
σ2

2r+c
+

2σ(σ + 1)
2c

, (2)

where the query complexity of D̃ is no more than that of D+.
Finally, given an adversary D that attacks Π = (K, E ,D), we construct an

adversary D+ that attacks Π+ as follows. The adversary D+ runs D as its
subroutine and forwards all f/f−1/E queries and replies. When D makes a D-
query (A,RI , C, T ), the adversary D+ first makes an R-query (A,RI , C, T ) and
receives N ← R(A,RI , C, T ). Then D+ makes a D-query (N,A,C, T ). We see
that D+ perfectly simulates the real and ideal worlds for D and hence

AdvΠ(D̃) ≤ AdvΠ+(D+), (3)

where the query complexity of D+ is at most twice that of D. Combining (1),
(2) and (3) proves the theorem. 	


5 APEOW: Lower Bandwidth via Nonce-Less Decryption

APERI introduced in the previous section could improve the hardware footprint,
while another strong drawback of APE, namely bandwidth, was untouched with
APERI. The main purpose of this section is modifying APERI to improve the
bandwidth by keeping the same hardware footprint of APERI.

The most interesting feature in this construction is using the overwrite-mode
of the sponge hash construction for processing N . During encryption, we pro-
cess N as the standard keyed sponge construction to make a b-bit state. We
then replace r-bit rate with zeros. The remaining c bits of the state inherit the
result of processing N . Intuitively, the r bits of zeros are the bit-string used
for authentication. Hence, the sender does not need to communicate N to the



228 Y. Sasaki and K. Yasuda

1: M [1]M [2] · · ·M [w] ← M
2: A[1]A[2] · · ·A[u] ← A
3: N [1]N [2] · · ·N [v] ← N
4: V ← (0r,KU ,KL)
5: for i = 1 to v do
6: V ← f(N [i] ⊕ V r, V U , V L)
7: end for
8: V ← (0r, V U , V L)
9: for i = 1 to u − 1 do
10: V ← f(A[i] ⊕ V r, V U , V L)
11: end for
12: V ← f(A[u] ⊕ V r, V U , V L ⊕ 1)
13: RI ← V r

14: for i = 1 to w do
15: V ← f(M [i] ⊕ V r, V U , V L)
16: C[i] ← V r

17: end for
18: TU ← V U ⊕ KU

19: TL ← V L ⊕ KL

20: return (RI,C, T )

21: C[1]C[2] · · ·C[w] ← C
22: A[1]A[2] · · ·A[u] ← A
23: V ← (0r, TU ⊕ KU , TL ⊕ KL)
24: for i = w to 2 do
25: V ← f−1(C[i], V U , V L)
26: M [i] ← V r ⊕ C[i − 1]
27: end for
28: V ← f−1(C[1], V U , V L)
29: M [1] ← V r ⊕ RI
30: V ← f−1(RI, V U , V L)
31: V ← f−1(A[u] ⊕ V r, V U , V L ⊕ 1)
32: for i = u − 1 to 2 do
33: V ← f−1(A[i] ⊕ V r, V U , V L)
34: end for
35: if V r ⊕ A[1] = 0 then
36: return M
37: else
38: return ⊥
39: end if

Fig. 6. Encryption and decryption algorithms of APEOW

receiver, which contributes to improve the bandwidth. In order to decrypt the
first message block without implementing f−1, we need r-bits of RI as intro-
duced in APERI. The construction is named APEOW, and the encryption and
decryption procedures of APEOW are defined in Fig. 6. Their illustrations for
r = c/2 are given in Figs. 7 and 8.

Advantages of APEOW . Advantages of APEOW can be summarized as
follows.

Requiring Low Bandwidth. The amount of communicated data is reduced
by a factor of |N | bits due to the omission of sending N , while it is increased
by a factor of r bits due to RI. Thus, the bandwidth is improved from the
original APE by a factor of |N | − r bits. Obviously, if |N | is so small that
|N | − r is negative, users should use APERI instead of APEOW. If |N | > r,
APEOW simply outperforms APERI.

Small Hardware Footprint. APEOW inherits the advantage of APERI,
namely users need to implement only f for encryption devices and only f−1

for decryption devices.
Low Computational Cost. The encryption procedure of APEOW is exactly

the same as APERI but for overwriting the rate after processing N with 0r

instead of directly xoring A. Hence the computational cost of encryption of
APEOW is the same as one for APERI and even for the original APE. Compu-
tational cost of decryption is greatly improved from APERI and APE owing to
the omission of processing N . This is another big advantage of APEOW.
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Fig. 7. Encryption of APEOW

Fig. 8. Decryption of APEOW
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Recommended Parameters of APEOW . As defined in Fig. 6, verification is
performed by matching the r-bit information, thus security for tag guessing is
up to r bits. When r = c/2, this matches the security of APE. When r > c/2,
this part is not the bottleneck and thus the security is standard c/2 bits. When
r < c/2, this part lowers the security of the entire construction. Hence, we do
not recommend using APEOW when r < c/2. Instead, we recommend another
construction, which will be explained in Sect. 6.

5.1 Security of APEOW

In this section we prove that APEOW is secure as an AE scheme. The scheme is
secure up to min{2r, 2c/2} queries, which becomes 2c/2 when r ≥ c/2.

Theorem 2. Let Π = (K, E ,D) be APEOW. Then Π is secure as an AE scheme.
Specifically, let Π ′ = (K, E ′,D′) be the original APE scheme that uses the same
underlying permutation f and the parameters r, c. Then, for any adversary D
attacking Π, there exists an adversary D′ that attacks Π ′ and satisfies

AdvΠ(D) ≤ AdvΠ′(D′) +
2σ2

2r+c
+

3σ(2σ + 1)
2c

+
σ

2r
,

where σ denotes the query complexity of D and D′ makes at most twice many
queries to its oracles as D.

Proof. We consider an intermediate scheme Π̃ = (K̃, Ẽ , D̃) which is a modifica-
tion of APERI, as follows:

1. Two independent keys K1,K2 ∈ C are used for the initialization and the
masking of tags, respectively. So we have (K1,K2) ← K̃(·).

2. The encryption algorithm Ẽ generates RI just like APERI, as (RI , C, T ) ←
ẼK1,K2(N,A,M).

3. The decryption algorithm D̃ takes as its input both the nonce N and the
reconstruction information RI , and the verification is done not by comparing
the capacity state value with K1 but by comparing the rate state value with
the first block N [1] of the nonce.

Now the security proof of the original APE by Andreeva et al. [2, Theorem 2]
also applies to Π̃, and we obtain

Adv(D̃) ≤ σ2

2r+c
+

2σ(σ + 1)
2c

+
σ

2r
(4)

for any adversary D̃ that attacks Π̃ and makes queries of complexity at most σ.
Now we consider intermediate scheme Π∗ = (K∗, E∗,D∗) which operates as

follows:

1. Choose a random function g : Rn → C. This is used for generating the
initialization key as K1 ← g(N).
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2. An independent key K2
$←− C is used for masking tags.

3. The encryption algorithm E∗ and the decryption algorithm D∗ are exactly
the same as those of Π̃, except the key K1 is generated as above.

Now let D∗ be an adversary attacking Π∗, and then by a hybrid argument we
get

Adv(D∗) ≤ σ2

2r+c
+

2σ(σ + 1)
2c

+
σ

2r
, (5)

where again σ denotes the total query complexity of the adversary.
Lastly, we compare Π and Π∗. In the former the “keys” are generated from

N and K1 through the calls of permutation f , whereas in the latter the “keys”
are generated as g(N). Hence by the same argument as the privacy proof of APE
by Andreeva et al. [2, Theorem 1], we get

Adv(D) ≤ Adv(D∗) +
σ2

2r+c
+

σ(σ + 1)
2c

, (6)

where σ denotes the total query complexity of D. From (4), (5) and (6) we see
that the theorem is proved. 	


6 APECA: Lower Bandwidth via Absorption in Capacity

The idea of improving bandwidth by APEOW is omitting the communication of
N between encryption and decryption players. In this section, we present another
construction to improve bandwidth from a different point of view. Recall that
one of the drawbacks of APE is that the tag size (c bits) is always bigger than the
security parameter (c/2 bits) owing to its decryption procedure. In this section,
our goal is minimizing the expansion of ciphertext or expansion of tag in order
to make the bandwidth to be competitive as standard AE schemes, i.e. when the
input data size to encryption is |N | + |A| + |M |, we aim to achieve the output
size of |N | + |A| + |M | + c/2 by making |C| = |M | and |T | = c/2.

The overall idea is as follows. In the original APE, verification is performed
by checking the match of c bits as illustrated in Fig. 2. The same applies to the
verification of APERI. Considering that the security of the entire construction is
c/2 bits, using a c-bit string for verification can be regarded as the waste of the
information. Hence, our idea is separating the c-bit string used for verification
of APERI (K) into two c/2-bit strings (KU and KL), and use one of them for
verification and use the other one for encrypting c/2 bits of M denoted by M c/2.
Differently from APERI, we now send N in clear, thus do not need to hide r bits
of N at the very beginning by using 0r in the initial state. Instead, we encrypt r
bits of M denoted by Mr at this position. In the end, r bits of RI in APERI can
be a ciphertext of Mr and c/2 bits of TU in APERI can be a ciphertext of M c/2,
which achieves |M | = |C|. The remaining tag size is c/2 bits, thus |T | = c/2 is
achieved.

Our idea of absorbing M both in rate and (a half of) capacity can be regarded
as a variant of the concurrent absorption [22], which absorbs M in rate and A
in capacity. We call this scheme APECA, and the encryption and decryption
algorithms are defined in Fig. 9. They are also illustrated in Figs. 10 and 11.
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1: MrMc/2M [1]M [2] · · ·M [w] ← M
2: A[1]A[2] · · ·A[u] ← A
3: V ← (0r,KU ,KL)
4: V ← f(Mr ⊕ V r,Mc/2 ⊕ V U , V L)
5: V ← f(N ⊕ V r, V U , V L)
6: for i = 1 to u − 1 do
7: V ← f(A[i] ⊕ V r, V U , V L)
8: end for
9: V ← (A[u] ⊕ V r, V U , V L ⊕ 1)
10: Cr ← V r

11: for i = 1 to w do
12: V ← f(M [i] ⊕ V r, V U , V L)
13: C[i] ← V r

14: end for
15: Cc/2 ← V U ⊕ KU

16: T ← V L ⊕ KL

17: C ← CrCc/2C[1]C[2] · · ·C[w]
18: return (C, T )

19: CrCc/2C[1]C[2] · · ·C[w] ← C
20: A[1]A[2] · · ·A[u] ← A
21: V ← (0r,KU ⊕ Cc/2,KL ⊕ T )
22: for i = w to 2 do
23: V ← f−1(C[i], V U , V L)
24: M [i] ← V r ⊕ C[i − 1]
25: end for
26: V ← f−1(C[1], V U , V L)
27: M [1] ← V r ⊕ Cr

28: V ← f−1(Cr, V U , V L)
29: V ← f−1(A[u] ⊕ V r, V U , V L ⊕ 1)
30: for i = u − 1 to 1 do
31: V ← f−1(A[i] ⊕ V r, V U , V L)
32: end for
33: V ← f−1(N ⊕ V r, V U , V L)
34: if V L = KL then
35: Mr ← V r

36: Mc/2 ← V U ⊕ KU

37: M ← MrMc/2M [1]M [2] · · ·M [w]
38: return M
39: else
40: return ⊥
41: end if

Fig. 9. Encryption and decryption algorithms of APECA

Fig. 10. Encryption of APECA
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Fig. 11. Decryption of APECA

Advantages of APECA. Advantages of APECA can be summarized as follows.

Requiring Low Bandwidth. The amount of communicated data is reduced
by a factor of r + c/2 bits due to the omission of sending Mr and M c/2,
while it is increased by a factor of r bits due to Cr. Thus, the bandwidth is
improved from the original APE or APERI by a factor of c/2 bits.

Small Hardware Footprint. APEOW inherits the advantage of APERI,
namely users need to implement only f for encryption devices and only f−1

for decryption devices.
Low Computational Cost. At the very beginning, r + c/2 bits of M are

absorbed accordingly to the line of concurrent absorption. When r = c/2,
this corresponds to reducing the number of f or f−1 calls by 1. Differently
from APEOW, improvement of the computational cost can be exploited both
in encryption and decryption algorithms.

7 Comparisons of Proposed Schemes

In this section, we compare the performance of APE, APERI, APEOW, and
APECA. Let |N |, |A| and |M | be nonce size, associated data size, and message
size, respectively. We then compare the bandwidth and computational cost for
encrypting this message and for decrypting its ciphertext. Hardware footprint is
simply measured by the types of permutations to be implemented. The compar-
ison is given in Table 1.

When the message length is |M | and security level is c/2 bits, the bandwidth
should ideally be |N |+ |A|+ |M |+c/2, while APE requires |N |+ |A|+ |M |+c for
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Table 1. Performance comparison of our AE schemes. We put X := |N | + |A| + |M |.

Scheme Bandwidth Hardware footprint Computational cost Security

Enc Dec Enc Dec

APE X + c f f, f−1 X/r X/r c/2

APERI X + c f f−1 X/r X/r c/2

APEOW X − |N | + r + c f f−1 X/r (X − |N |)/r min{r, c/2}
APECA X + c/2 f f−1 (X − c)/r (X − c)/r c/2

the expanded tag. APE requires both f and f−1 for decryption, and the compu-
tational cost is standard (|N |+ |A|+ |M |)/r in both encryption and decryption.

APERI simply improves APE by removing the necessity of f in decryption.
APEOW omits sharing N between the sender and the receiver. It should be
stressed that security of APEOW also depends on b. The condition to ensure the
standard c/2-bit security is r ≥ c/2. In APEOW, the bandwidth is reduced from
APE when |N | ≥ r. For example, when the permutation size is 256 bits and
r = 96, c = 160 for 80-bit security, APEOW has better bandwidth than APE to
process the nonce which is longer than or equal to 96 bits. Another advantage
of APEOW is that N does not have to be processed during decryption. APECA

always outperforms APE with respect to all of bandwidth, hardware footprint,
computational cost.

The better choice between APEOW and APECA depends on the nonce length
and the choice of the rate and capacity sizes. Considering that communication
speed is slower than computation speed, minimizing the bandwidth is likely to
be the most important issue.

Condition 1: To ensure c/2-bit security, APECA should be chosen when r < c/2.
Condition 2a: If r ≥ c/2, compare the size of r + c/2 and N . If N < r + c/2,

APECA offers better bandwidth than APEOW.
Condition 2b: Otherwise, APEOW offers better bandwidth than APECA.

For example, when the ratio of a rate size to a capacity size is one to two,
|N | < c is the border to choose APEOW or APECA. Considering the practical
parameters, APEOW should be chosen when |N | = 64 for a 80-bit permutation,
or |N | = 48 for a 64-bit permutation.
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1 Introduction

With the development of network techniques, information security has been
increasingly important. Due to the restrictions in constrained environments like
RFID tags, many lightweight block ciphers have been designed to protect data
confidentiality in those devices, such as PRESENT [1], LED [2], LBlock [3],
PICCOLO [4], PRINCE [5].

In 2013, SIMON [6] was designed by National Security Agency (NSA) as a
lightweight block cipher. It uses only simple operations such as XOR, bitwise
AND and bit rotation to improve its implementation performance. After it was
published, a large number of cryptanalysis on SIMON were proposed [7–16].

To investigate the design principle of the rotation number selection of
SIMON, some cryptanalysts focused on SIMON-like ciphers that only differ at
the rotation number. At CRYPTO 2015, Kölbl et al. [22] studied the differential
and linear properties of SIMON-like ciphers with block sizes no more than 64-bit.
They recommended three parameters (12,5,3), (1,0,2) and (7,0,2). Among them,
SIMON-like ciphers with parameters (12,5,3) and (1,0,2) have better differential
and linear properties than those of the original SIMON. Moreover, the parame-
ter (7,0,2) cipher has the best diffusion when it is restricted to b = 0 for all
possible choices. At ACNS 2016, Kondo et al. [20] constructed some impossible
differential and integral distinguishers of SIMON-like ciphers whose block sizes
are only restricted to 32-bit. They found the parameter (12,5,3) may be a good
alternative parameter to the original one against differential, linear, impossible
differential as well as integral attacks. Recently, Zhang et al. [21] presented a
security evaluation for SIMON-like ciphers against integral attack and showed
that among all possible choices of the rotation numbers, there exist 120 para-
meters that are equal or superior to the original one with respect to the length
of integral distinguishers.

As far as we know, for SIMON-like ciphers with arbitrary rotation number
and all block sizes, there is no literature on impossible differentials and zero
correlation linear hulls. We mainly focus on these two kinds of distinguishers in
this paper. Impossible differential cryptanalysis was independently proposed by
Knudsen [23] and Biham et al. [24]. The most popular impossible differential
is the so-called truncated impossible differential, which is independent of the
choices of S-boxes. Several approaches have been proposed to derive truncated
impossible differentials of a block cipher effectively such as U-method [25], UID-
method [26] and the extended tool of the former two methods generalized by
Wu and Wang [27]. To search impossible differential distinguishers we mainly
use the miss-in-the-middle method, by which the contradictions are obtained
in the middle matching from the encryption and decryption directions. Zero
correlation linear cryptanalysis was firstly proposed by Bogdanov and Rijmen
[28]. The main idea is to construct some linear characteristics with correlation
exactly zero, which is similar to impossible differential cryptanalysis.

At CRYPTO 2015, Sun et al. proposed the concept of “structure”, which
contains all ciphers that only differ at the nonlinear parts, to characterize those
cryptanalytic methods that are independent of the details of the S-boxes [29].
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Furthermore, with the help of “dual structure”, they built a link between impos-
sible differential and zero correlation linear cryptanalysis, e.g., an impossible
differential of a structure always implies a zero correlation linear hull of the
corresponding dual structure. However, the nonlinear component of SIMON-like
ciphers is made up of XOR, bit-wise AND and rotation, which often have a weak
confusion and diffusion. When applying the concept of “structure” to SIMON-
like ciphers, we can only get 4-round impossible differentials and 4-round zero
correlation linear hulls, respectively, which are far less than the known results.
Therefore, the concept of “structure” can not be directly applied to get an accu-
rate security margin for SIMON-like ciphers and the link built by Sun et al.
can not be applied to SIMON-like ciphers. Thus, it motives us to study how to
get a relatively tight security evaluation and build the link between impossible
differentials and zero correlation linear hulls of SIMON-like ciphers in a new way.

For most ciphers which adopt S-boxes, the contradiction is found when the
difference/mask is zero from encryption/decryption direction and non-zero from
the other direction. However, for SIMON-like ciphers, the contradiction some-
times could be built at the bit level, e.g., we could compute the exact values of
some bits of the difference/mask from both the encryption and decryption direc-
tions. To the best of our knowledge, all impossible differentials and zero correla-
tion linear hulls of SIMON-like ciphers found so far are constructed based on the
bit-level contradictions. Therefore, we are going to investigate the properties of
impossible differential and zero correlation linear distinguishers for SIMON-like
ciphers based on bit-level contradictions.

Our Contribution. In this paper, we use SIMON to denote the family of
SIMON-like ciphers with the rotation number (a, b, c). Furthermore, with the
diffusion matrix defined in our paper, we build some links between impossible
differentials and zero correlation linear hulls for SIMON and Dual-SIMON (see
Definition 1 in Sect. 2.2) based on bit-level contradictions in Fig. 1.

Fig. 1. Links between impossible differentials (ID) and zero correlation linear hulls
(ZC) for SIMON and Dual-SIMON

(1) With the diffusion matrix, for SIMON, we prove that there is a one-to-one
correspondence between impossible differentials and zero correlation linear
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hulls. Meanwhile, for SIMON and Dual-SIMON, we show that there is also
a one-to-one correspondence between impossible differentials of one cipher
and zero correlation linear hulls of the dual one, which extends the link built
by Sun et al. at CRYPTO 2015 for Sbox-based ciphers.

(2) With our method, we can construct impossible differentials and zero corre-
lation linear hulls of SIMON based on bit-level contradictions. Furthermore,
when applying our method to SIMON with some specific parameters, some
results are obtained.
• We show that SIMON with parameter (12,5,3) may not be a good alter-

native to the original SIMON against impossible differential and zero
correlation linear attack when the block size is larger than 32-bit.

• We present that SIMON with parameter (1,0,2) is worse than the original
SIMON with respect to the resistance against impossible differential and
zero correlation linear attacks.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we give some notations and concepts that will be used in this paper. Moreover,
we also present the brief description of SIMON-like ciphers. Then, we introduce
the definition of the diffusion matrix and give some properties about it in Sect. 3.
After that, some links between impossible differentials and zero correlation linear
hulls of SIMON-like ciphers are presented in Sect. 4. In Sect. 5, we apply our
matrix-based method to SIMON with some parameters. Finally, Sect. 6 concludes
this paper.

2 Preliminary

2.1 Notations and Concepts

In this subsection, we give some notations in Table 1, which will be used in the
rest of this paper. Note that all vectors used in our paper are row vectors and
X0 is the least significant bit for a vector X = (Xn−1,Xn−2, · · · ,X1,X0).

Table 1. Notations used in this paper

⊕ XOR operation

≪ l, ≫ l Left and right rotation for l bits, respectively

& Bitwise AND operation

Xi The i-th round state

Xi
j The j-th bit of Xi

Xj The j-th bit of vector X

Ki The i-th round subkey

Y T Transpose of vector Y

MT Transpose of matrix M

ε{i1,i2,··· ,it} The {i1, i2, · · · , it}-th bits of vector ε are 1 and the others are 0
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We recall the concepts of impossible differential and zero correlation linear
hull of a vectorial function.

Given a function G: F
n
2 → F

k
2 , let δ ∈ F

n
2 and Δ ∈ F

k
2 . The differential

probability δ → Δ is defined as

p(δ G−→ Δ) �
#{X ∈ F

n
2 |G(X) ⊕ G(X ⊕ δ) = Δ}

2n
.

If p(δ G−→ Δ) = 0, then δ → Δ is called an impossible differential of G [23,24].
Let ΓX = (ΓXn−1, ΓXn−2, · · · , ΓX1, ΓX0) ∈ F

n
2 ,X ∈ F

n
2 . Then

ΓX · X � ⊕
i,ΓXi=1

Xi

denotes the inner product of ΓX and X. It is notable that the inner product
of ΓX and X can be written as (ΓX)XT where the multiplication is defined as
matrix multiplication.

For a function G: Fn
2 → F

k
2 , the correlation of the linear approximation for

an n-bit input mask ΓX and a k-bit output mask ΓY is defined by

c(ΓX · X ⊕ ΓY · G(X)) �
1
2n

∑

X∈Fn
2

(−1)ΓX·X⊕ΓY ·G(X).

If c(ΓX · X ⊕ ΓY · G(X)) = 0, then ΓX → ΓY is called an zero correlation
linear hull of G [28].

2.2 Brief Description of SIMON-Like Ciphers

SIMON-like ciphers are based on Feistel structures. Let Xi = (Xi
L||Xi

R) =
(Xi

2n−1,X
i
2n−2, . . . , X

i
n||Xi

n−1,X
i
n−2, . . . , X

i
0), where 2n denotes the block size

and 2n ∈ {32, 48, 64, 96, 128}.

Fig. 2. The round function of SIMON-like ciphers
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According to the Feistel structure described in Fig. 2, the round function is
given below

{
Xi+1

L = f(Xi
L) ⊕ Xi

R ⊕ Ki,

Xi+1
R = Xi

L,

where the f -function is defined by

f(X) = (X≪a&X≪b) ⊕ X≪c, 0 ≤ a, b, c ≤ n − 1.

Note that when (a, b, c) = (1, 8, 2), it is the original SIMON.
In this paper, we are going to investigate impossible differentials and zero

correlation linear hulls of SIMON-like ciphers which are often independent of
the details of the key schedule. We refer to [6] for the details of the key schedule.
Moreover, we give the following definition to study the links between impossible
differentials and zero correlation linear hulls of SIMON-like ciphers.

Definition 1. For any specific instance of the SIMON-like ciphers with rotation
number (a, b, c), the dual cipher is defined as the one with rotation number (n −
a, n−b, n−c). If n and (a, b, c) are clear from the context, we simply use SIMON
and Dual-SIMON as the specific instance SIMON-like cipher and its dual cipher.

3 Diffusion Matrix and Its Properties

For a vectorial boolean function F : Fn
2 → F

n
2 , we can always associate F with

a graph G which has 2n vertices, denoted by X0, . . . , Xn−1, Y0, . . . , Yn−1. There
are 3 types of edges eij in G:

eij = 0 means that Yj is not inverted when the value of Xi is changed;
eij = 1 means that Yj is always inverted when the value of Xi is changed;
eij = λ means that Yj is sometimes inverted and sometimes not inverted
when the value of Xi is changed.

If we do not investigate the exact value of F but only focus on the 3 types
of relations between Xi and Yj , we can get that
⎛

⎜⎜⎜⎝

Yn−1

Yn−2

...
Y0

⎞

⎟⎟⎟⎠ �

⎛

⎜⎜⎜⎝

e(n−1)(n−1) e(n−2)(n−1) · · · e0(n−1)

e(n−1)(n−2) e(n−2)(n−2) · · · e0(n−2)

...
... · · · ...

e(n−1)0 e(n−2)0 · · · e00

⎞

⎟⎟⎟⎠

n×n

⎛

⎜⎜⎜⎝

Xn−1

Xn−2

...
X0

⎞

⎟⎟⎟⎠ = E

⎛

⎜⎜⎜⎝

Xn−1

Xn−2

...
X0

⎞

⎟⎟⎟⎠ .

Note that all vectors used in our paper are row vectors. The above equa-
tion could be written as Y T = EXT , where X = (Xn−1,Xn−2, · · · ,X0), Y =
(Yn−1, Yn−2, · · · , Y0). The matrix E is used to characterize the bit pattern prop-
agation from the bit pattern of X to the bit pattern of Y . We give the following
example to describe the matrix E.
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Example 1. Let F : F3
2 → F

3
2 be a boolean function which is presented below

⎧
⎪⎨

⎪⎩

Y2 = X2 ⊕ X1X0,

Y1 = X2X1,

Y0 = X2X0 ⊕ X1 ⊕ X0.

Then,

E =

⎛

⎝
e22 e12 e02
e21 e11 e01
e20 e10 e00

⎞

⎠ =

⎛

⎝
1 λ λ
λ λ 0
λ 1 λ

⎞

⎠ .

For the matrix E, it is called the diffusion matrix of F as follows.

Definition 2 (Diffusion matrix of F ). For a vectorial boolean function F :
F

n
2 → F

n
2 , the diffusion matrix of F is defined as

E = (aij)n×n, aij = e(n−1−j)(n−1−i), 0 ≤ i, j ≤ (n − 1).

There are 3 kinds of elements {0, 1, λ} in the diffusion matrix E, and addition
and multiplication tables are shown in Tables 2 and 3, respectively.

Table 2. Addition table

+ 0 1 λ

0 0 1 λ

1 1 0 λ

λ λ λ λ

Table 3. Multiplication table

× 0 1 λ

0 0 0 0

1 0 1 λ

λ 0 λ λ

Many block ciphers adopt S-boxes as their nonlinear components, which could
be also regarded as the vectorial boolean functions. Due to the principle of
designing S-boxes, there should not be 1 or 0 in the diffusion matrix of S-boxes.
However, for lower diffusion block ciphers, such as SIMON-like ciphers, there are
many entries of 1 and 0 in the diffusion matrices.

For each component boolean function of the f -function used in the SIMON-
like ciphers, say Yj = (Xi1&Xi2) ⊕ Xi3 , it is obvious for eij that

eij =

⎧
⎪⎨

⎪⎩

λ i = i1, i2;
1 i = i3;
0 i �= i1, i2, i3.

We recall the definition of circ[x0x1 · · · xn−1], which is defined as

circ[x0x1 · · · xn−1] �

⎛

⎜⎜⎜⎝

x0 x1 · · · xn−1

xn−1 x0 · · · xn−2

...
...

. . .
...

x1 x2 · · · x0

⎞

⎟⎟⎟⎠ .
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For SIMON, we define L[n,a,b,c] = circ[x0x1 · · · xn−1], where

xj =

⎧
⎪⎨

⎪⎩

λ j = a, b;
1 j = c;
0 j �= a, b, c.

In the following theorem, we show that L[n,a,b,c] could be used to characterize
the diffusion matrix of the f -function.

Theorem 1. For SIMON, we use Ef to denote the diffusion matrix of the f-
function. Then,

Ef = L[n,a,b,c].

Example 2. For SIMON with parameter (0,1,2) and 8-bit block size, the f -
function is defined by

f(X) = (X&X≪1) ⊕ X≪2.

Then,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y3 = X3X2 ⊕ X1,

Y2 = X2X1 ⊕ X0,

Y1 = X1X0 ⊕ X3,

Y0 = X0X3 ⊕ X2.

Thus,

Ef = L[4,0,1,2] = circ[λλ10] =

⎛

⎜⎜⎝

λ λ 1 0
0 λ λ 1
1 0 λ λ
λ 1 0 λ

⎞

⎟⎟⎠

Remark 1. Let ΔX and ΔY be the input and output differences of the f -
function, respectively. Obviously, we have ΔY T = EfΔXT = L[n,a,b,c]ΔXT

with the definition of Ef and Theorem 1.

Remark 2. The method illustrated above could be extended to linear cases: Let
ΓX and ΓY be the input and output masks of the f -function, respectively. Since
Y T = EfXT = L[n,a,b,c]X

T , we have (ΓX)XT = (ΓY )Y T = ΓY (L[n,a,b,c]X
T ).

Thus, ΓX = ΓY L[n,a,b,c].

Corollary 1. For SIMON, we use D[2n,a,b,c] to denote the diffusion matrix of
the round function. Then,

D[2n,a,b,c] =
(

L[n,a,b,c] In×n

In×n On×n

)
,

where In×n is the n × n identity matrix and On×n is the n × n zero matrix.
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According to the definition of D[2n,a,b,c], we have
(
Xs+1

)T = D[2n,a,b,c]

(Xs)T , which is similar to Y T = L[n,a,b,c]X
T . Furthermore, (Xs+t)T =

Dt
[2n,a,b,c] (X

s)T
.

Let Dt
[2n,a,b,c] =

(
d
(t)
ij

)
, where d

(t)
ij stands for the i-th row and j-th column

element of Dt
[2n,a,b,c]. There are 3 kinds of values for d

(t)
ij and their meanings are

similar to those of 3 types of edges eij .

d
(t)
ij = 0 means that Xs+t

j is not inverted when the value of Xs
i is changed;

d
(t)
ij = 1 means that Xs+t

j is always inverted when the value of Xs
i is changed;

d
(t)
ij = λ means that Xs+t

j is sometimes inverted and sometimes not inverted
when the value of Xs

i is changed.

Remark 3. Let ΔXs and ΔXs+t be the input difference of the s-th and (s+t)-th
round, respectively. We have (ΔXs+t)T = Dt

[2n,a,b,c] (ΔXs)T . Furthermore, this
method could also be applied to characterize linear trails.

For Dt
[2n,a,b,c], we give the following proposition.

Proposition 1. Let

Dt
[2n,a,b,c] =

(
D

(t)
11 D

(t)
12

D
(t)
21 D

(t)
22

)
, t ≥ 1.

Then all D
(t)
11 ,D

(t)
12 ,D

(t)
21 ,D

(t)
22 are n × n circulant sub-matrices and

D
(t+2)
22 = D

(t+1)
12 = D

(t+1)
21 = D

(t)
11 .

Proposition 1 can be directly obtained by calculating the power of D[2n,a,b,c].
It indicates that we only need to consider D

(t)
22 to characterize the maximum

round number r that contains 1 or 0 in Dt
[2n,a,b,c]. In other words, there does not

exist 0 or 1 in Dt
[2n,a,b,c] when t ≥ r+1. Furthermore, we use r1 and r0 to denote

the maximum round number that contains 1 and 0 in Dt
[2n,a,b,c], respectively.

And r1 and r0 are defined as

r1 = max{t|∃{i, j1, j2, · · · , jk}, ⊕
j1,j2,··· ,jk

dij
(t) = 1};

r0 = max{t|∃{i, j1, j2, · · · , jk}, ⊕
j1,j2,··· ,jk

dij
(t) = 0},

where ⊕
j1,j2,··· ,jk

dij
(t) is denoted as the XOR sum of d

(t)
ij1

, d
(t)
ij2

, · · · , d
(t)
ijk

and d
(t)
ij ∈

{0, 1}, j = j1, j2, · · · , jk, 1 ≤ k < n.
According to the Feistel structure, when a bit of the output difference after

r1 rounds from the encryption direction is 1 and the same bit of the output
difference after (r0−1) rounds from the decryption direction is 0, an (r1+r0−1)-
round impossible differential of SIMON could be constructed based on bit-level
contradictions. Therefore, we give the following proposition.
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Proposition 2. For SIMON, there exist (r1 + r0 − 1)-round impossible differ-
ential distinguishers.

With the definition of r1 and r0, we know that the longest impossible differ-
ential distinguishers based on bit-level contradictions are bounded by r1+r0−1.
Since r1 and r0 are determined by D[2n,a,b,c] which is only related to the block
size 2n and the rotation number (a, b, c), the longest impossible differentials
of SIMON based on bit-level contradictions are only determined by the four
parameters (n, a, b, c). Moreover, all impossible differentials based on bit-level
contradictions could be constructed by the matrix-based approach.

Example 3. For SIMON with parameter (0,1,2) and 8-bit block size, which has
been given in Example 2, we have

D[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ 1 0 1 0 0 0
0 λ λ 1 0 1 0 0
1 0 λ λ 0 0 1 0
λ 1 0 λ 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D2
[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ λ λ λ λ 1 0
λ λ λ λ 0 λ λ 1
λ λ λ λ 1 0 λ λ
λ λ λ λ λ 1 0 λ
λ λ 1 0 1 0 0 0
0 λ λ 1 0 1 0 0
1 0 λ λ 0 0 1 0
λ 1 0 λ 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D3
[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ 1 0
λ λ λ λ 0 λ λ 1
λ λ λ λ 1 0 λ λ
λ λ λ λ λ 1 0 λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D4
[8,0,1,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, r0 = r1 = 3 and a 5-round impossible differential (0, ε0) → (ε3, 0)
is constructed as follows:

(0000, 0001)
D[8,0,1,2]−−−−−−→ (0001, 0000)

D[8,0,1,2]−−−−−−→ (01λλ, 0001)
D[8,0,1,2]−−−−−−→ (λλλλ, 01λλ)

(1000, λ01λ)
D[8,0,1,2]←−−−−−− (0000, 1000)

D[8,0,1,2]←−−−−−− (1000, 0000).

It should be pointed out that the differentials from decryption direction of the
above 5-round impossible differential are interchanged the left and right branch
differentials before working by D[8,0,1,2] as well as after working by D[8,0,1,2].

4 Links Between Impossible Differentials and Zero
Correlation Linear Hulls of SIMON-Like Ciphers

In this section, we mainly study the links between impossible differentials and
zero correlation linear hulls of SIMON-like ciphers. To prove our results, we give
the definition of the index permutation P and present a proposition about it.
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We use P to denote the index permutation mapping the index i to (n − i)
(mod n). It can be expressed as Pv = P (vn−1vn−2 · · · v1v0) = (v1v2 · · · vn−1v0)
and we define Pv = v × M , where M is the corresponding index permutation
matrix

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

...
. . .

...
...

...
0 1 · · · 0 0 0
1 0 · · · 0 0 0
0 0 · · · 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

Obviously, the index permutation matrix M is symmetric, i.e., M = MT .
Since v = P 2v = P (vM) = vM2, M2 = In×n. Therefore, M is involutional.
Thus, M = M−1 = MT . Furthermore, we present the relations among LT

[n,a,b,c],
L[n,n−a,n−b,n−c] and L[n,a,b,c] in the following proposition:

Proposition 3. Let M be the index permutation matrix and L[n,a,b,c] be the
diffusion matrix of the f-function. Then,

LT
[n,a,b,c] = L[n,n−a,n−b,n−c] = M−1L[n,a,b,c]M.

Proposition 3 can be directly verified. With the definition of the index per-
mutation P and Proposition 3, we give the following theorem to show the link
between impossible differentials of SIMON and zero correlation linear hulls of
SIMON based on bit-level contradictions.

Theorem 2. Based on bit-level contradictions, (δ1, δ0) → (δr+1, δr) is an
impossible differential of SIMON if and only if (Pδ0, P δ1) → (Pδr, P δr+1) is
a zero correlation linear hull of SIMON, where P is the index permutation.

Sketch of the proof. After studying the link between one round differential
characteristic and one round linear trail, we prove that there exists a one-to-
one correspondence between them. Then, the relationship could be extended to
iterated rounds. Finally, with the help of miss-in-the-middle method, Theorem 2
can be proved based on bit-level contradictions. The details of the proof are
presented in AppendixA.

The above approach could be also exploited to build the link between impos-
sible differentials and zero correlation linear hulls of SIMON and Dual-SIMON.
We only need to note LT

[n,a,b,c] = L[n,n−a,n−b,n−c] shown in Proposition 3. Then,
the corollary is given below.

Corollary 2. Based on bit-level contradictions, (δ1, δ0) → (δr+1, δr) is an
impossible differential of SIMON if and only if (δ0, δ1) → (δr, δr+1) is a zero
correlation linear hull of Dual-SIMON.
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Fig. 3. Links between impossible differentials (ID) and zero correlation linear hulls
(ZC) for SIMON and Dual-SIMON

Combining Theorem 2 and Corollary 2, we establish the links between impos-
sible differentials and zero correlation linear hulls for SIMON and Dual-SIMON
depicted in Fig. 3.

Especially, when a + b = n, c =
n

2
, SIMON is the same as Dual-SIMON.

Thus, with Theorem 2 and Corollary 2, we get that if (δ1, δ0) → (δr+1, δr)
is an impossible differential/zero correlation linear hull of SIMON, both
(Pδ0, P δ1) → (Pδr, P δr+1) and (δ0, δ1) → (δr, δr+1) are zero correlation lin-
ear hulls/impossible differentials of SIMON.

Corollary 3. For SIMON and Dual-SIMON, there exist (r1 + r0 − 1)-round
impossible differentials and zero correlation linear hulls.

Proof. With the links built in Fig. 3, for SIMON and Dual-SIMON, we get that
they are the same for the length of impossible differentials and zero correlation
linear hulls based on bit-level contradictions. Moreover, with Proposition 2, there
are (r1 + r0 − 1)-round impossible differentials of SIMON. Therefore, there exist
(r1 + r0 − 1)-round impossible differentials and zero correlation linear hulls for
SIMON and Dual-SIMON.

With the definitions of r1 and r0, for SIMON and Dual-SIMON, the length
of impossible differentials and zero correlation linear hulls based on bit-level
contradictions could be bounded by r1 + r0 −1, which is only determined by the
block size 2n and the rotation number (a, b, c).

Example 4. For the original SIMON with 32-bit block size, we have

D[32,1,8,2] =
(

L[16,1,8,2] I16×16

I16×16 O16×16

)
.

By calculating the power of the matrix D[32,1,8,2], we get that r1 = r0 = 6.
According to Corollary 3, there are 11-round impossible differential and zero
correlation linear hull distinguishers. In [13], the authors presented the impossi-
ble differential (0, ε0)

11−→ (ε9, 0) and the zero correlation linear hull (ε0, 0) 11−→
(0, ε7), which are consistent with our result.
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5 Applications

At CRYPTO 2015, Kölbl et al. recommended the three parameters (12,5,3),
(7,0,2) and (1,0,2). SIMON with these three parameters are regarded to be
promising when compared with the original SIMON for the differential and lin-
ear properties. Meanwhile, SIMECK [17–19] is a family of lightweight block
ciphers proposed at CHES 2015, which could be viewed as SIMON with para-
meter (5,0,1).

In this section, we study SIMON with these parameters on impossible differ-
ential and zero correlation linear distinguishers. SIMON with parameter (a, b, c)
is called SIMON[a, b, c] for short. With our matrix-based method, we present the
length of impossible differential and zero correlation linear distinguishers of the
original SIMON with all block sizes in Table 4. The results are consistent with
previous results.

Table 4. The length of the distinguishers for SIMON

Block size r1 r0 ID/ZC

32 6 6 11

48 6 7 12

64 6 8 13

96 7 10 16

128 8 12 19

The length of impossible differentials and zero correlation linear hulls of
SIMECK with all block sizes are shown in Table 5. 11/13/15-round zero cor-
relation linear distinguishers of SIMECK32/48/64 have been presented in [30].
According to Theorem2, we can directly prove without any search that there are
also 11/13/15-round impossible differential distinguishers for SIMECK32/48/64,
respectively. The results are also given in [31] where 11/13/15-round impossible
differential distinguishers for SIMECK32/48/64 are searched with the help of
computer search.

Table 5. The length of the distinguishers for SIMECK

Block size r1 r0 ID/ZC

32 5 7 11

48 6 8 13

64 6 10 15

For SIMON with the three parameters recommended in [22], they have
good performance on the differential and linear properties. However, in Table 6,
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the length of ID/ZC distinguishers of SIMON with the three parameters are
no shorter than those of the original SIMON (SIMON[1, 8, 2]). Especially, for
SIMON[1, 0, 2], the length of the distinguishers are much longer than those of
the original SIMON. From this point, SIMON[1, 0, 2] is worse than the original
SIMON and it is necessary to evaluate the security again. We present a 17-
round impossible differential distinguisher as an example in AppendixB. For
SIMON[12, 5, 3], it is considered as a good alternative to the original SIMON
for differential, linear, impossible differential and integral attacks in [20]. How-
ever, the block size considered in [20] is only 32-bit. Compared with the orig-
inal SIMON for various block sizes, the length of ID/ZC distinguishers of
SIMON[12, 5, 3] have 1 round more than those of the original SIMON when the
block size takes 48-bit and 96-bit in Table 6. Therefore, SIMON[12, 5, 3] needs to
be further evaluated with all block sizes against impossible differential and zero
correlation linear attacks.

Table 6. The length of the distinguishers for SIMON with different parameters

ID/ZC 32-bit 48-bit 64-bit 96-bit 128-bit

(1,8,2) 11 12 13 16 19

(12,5,3) 11 13 13 17 19

(7,0,2) 13 15 17 19 21

(1,0,2) 17 25 33 49 65

6 Conclusion

In this paper, we investigated impossible differentials and zero correlation linear
hulls of SIMON. By introducing the diffusion matrix, we established some links
between impossible differentials and zero correlation linear hulls for SIMON and
Dual-SIMON based on bit-level contradictions. Furthermore, when applying our
matrix-based method to SIMON with some specific parameters, SIMON with
parameter (1,0,2) is worse than the original SIMON with respect to security
against impossible differential and zero correlation linear attacks. Thus, it is
necessary to evaluate the security again. In brief, our results can provide more
generic security evaluation against impossible differentials and zero correlation
linear hulls of SIMON-like ciphers.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their useful comments, and Yunwen Liu, Yi Zhang for fruitful discussions.

Appendix A. Proof of Theorem2

Proof. The differential and linear propagations of SIMON are shown in Fig. 4.
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Fig. 4. Differential (left) and linear (right) propagations of SIMON

For the round function of SIMON, we prove that there is a one-to-one cor-
respondence between the differential propagation (δi, δi−1) → (δi+1, δi) and the
linear propagation (Pδi−1, P δi) → (Pδi, P δi+1).

According to the definition of the diffusion matrix, we know that the dif-
ferential propagation of the f -function is

(
βi

)T = L[n,a,b,c]

(
δi

)T . Meanwhile,
the linear propagation of the f -function is Pβi =

(
Pδi

)
L[n,a,b,c]. Since δi+1 =

δi−1⊕βi ⇔ Pδi+1 = Pδi−1⊕Pβi, we could prove the one-to-one correspondence
between one round differential propagation and one round linear propagation of
SIMON if (

βi
)T

= L[n,a,b,c]

(
δi

)T ⇔ Pβi = PδiL[n,a,b,c].

With Proposition 3, LT
[n,a,b,c] = M−1L[n,a,b,c]M . Therefore,

(
βi

)T
= L[n,a,b,c]

(
δi

)T ⇔ βi = δiLT
[n,a,b,c],

⇔ βi = δiM−1L[n,a,b,c]M,

⇔ βiM−1 = δiM−1L[n,a,b,c].

Since M−1 = M ,
(
βi

)T
= L[n,a,b,c]

(
δi

)T ⇔ βiM = δiML[n,a,b,c].

According to the definition of P , Pβi = βiM,Pδi = δiM . Then,
(
βi

)T
= L[n,a,b,c]

(
δi

)T ⇔ Pβi = PδiL[n,a,b,c].

Therefore, we have proved that there is a one-to-one correspondence between
the differential propagation (δi, δi−1) → (δi+1, δi) and the linear propagation
(Pδi−1, P δi) → (Pδi, P δi+1).

Naturally, considering i-round differential and linear propagations, we get
that there is a one-to-one correspondence between the differential characteristic

(
δ1, δ0

) → (
δ2, δ1

) → · · · → (
δi+1, δi

)
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and the linear trail
(
Pδ0, P δ1

) → (
Pδ1, P δ2

) → · · · → (
Pδi, P δi+1

)
.

Since constructing impossible differentials and zero correlation linear hulls of
SIMON are based on bit-level contractions in this paper, (δ1, δ0) → (δr+1, δr)
is an impossible differential if and only if (Pδ0, P δ1) → (Pδr, P δr+1) is a zero
correlation linear hull.

Appendix B. An Impossible Differential

See Table 7.

Table 7. A 17-round impossible differential of SIMON[1, 0, 2] with 32-bit block size

Round Left Right

0 0000000000000000 0000000000000001

1 0000000000000001 0000000000000000

2 00000000000001λλ 0000000000000001

3 000000000001λλλλ 00000000000001λλ

4 0000000001λλλλλλ 000000000001λλλλ

5 00000001λλλλλλλλ 0000000001λλλλλλ

6 000001λλλλλλλλλλ 00000001λλλλλλλλ

7 0001λλλλλλλλλλλλ 000001λλλλλλλλλλ

8 01λλλλλλλλλλλλλλ 0001λλλλλλλλλλλλ

9 λλλλλλλλλλλλλλλλ 01λλλλλλλλλλλλλλ

8 λ0001λλλλλλλλλλλ λ01λλλλλλλλλλλλλ

7 λ000001λλλλλλλλλ λ0001λλλλλλλλλλλ

6 λ00000001λλλλλλλ λ000001λλλλλλλλλ

5 λ0000000001λλλλλ λ00000001λλλλλλλ

4 λ000000000001λλλ λ0000000001λλλλλ

3 λ00000000000001λ λ000000000001λλλ

2 1000000000000000 λ00000000000001λ

1 0000000000000000 1000000000000000

0 1000000000000000 0000000000000000
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Abstract. Format-preserving encryption (FPE), a kind of symmetric
encryption, has caught a great deal of attention of late years. FPE, as the
name suggests, does not change the format of inputs which may include
the length of inputs, coding of characters or data size of inputs. It is very
useful to encrypt or generate some data with fixed format such as credit
card numbers (CCN), social security numbers (SSN) or even address.
With this encryption, we can add encryption to existing applications
without changing structures including input-output format or decreasing
those performance. In this work we develop and discuss block cipher
modes of operation for FPE which are applicable for messages consisting
of multibyte characters and their securities. This paper also gives a way
to implement these modes for the format consisting of characters encoded
by EUC or UTF-8 and its performance. Formats consisting of multibyte
characters – we call those “heterogeneous formats” – are very important
in many countries including Japan where “Kanji” or other multibyte
characters are used. In addition, this paper gives an efficient way to
encrypt messages of such formats and modes of operations to realize a
high performance encryption algorithm.

Keywords: Block ciphers · Format-preserving encryption
Heterogeneous format · Modes of operation · Symmetric encryption
Provable security

1 Introduction

In recent years, a kind of block ciphers called format-preserving encryption
(FPE) has attracted a lot of attention and has been developed. FPE, as the
name suggests, preserves the format of the message after encrypting. With this
encryption, we don’t have to change the data scheme or interfaces of inputs
or outputs if the messages are encrypted. There are many applications with
fixed input-output format in the world. We can add encryption to such existing
applications without changing those structures or decreasing those performances.
Therefore it is very useful when we treat some data with fixed format like CCN
(Credit Card Number), date or address.
c© Springer International Publishing AG 2017
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Related Works. There are some previous works for FPE. Brightwell and Smith
[7] give an encryption scheme which preserves the datatype of the plaintext such
as four alphabets or twelve digits. This scheme uses indexing of characters con-
stituting messages, modulo operations and usual streaming encryption scheme.
Bellare and Rogaway [3] developed cipher schemes on arbitrary finite domains
including ZN = {0, 1, ..., N − 1}, finite fields and groups of rational points of
elliptic curves over finite fields. They gave three ways to treat finite domains,
namely prefix cipher, cycle-walking cipher and Feistel cipher which is widely
used for current FPEs. Spies [12] proposed practical constructions for encrypt-
ing CCNs or SSNs (Social Security Numbers) extending the construction in [3].
In [13], he also gives a way called FFSEM to encrypt finite set using Feistel
structure. The paper [4] gives a way to formulate FPE scheme. Some encryp-
tion algorithms including one with Feistel structure are also discussed in this
paper where the securities are carefully considered. Moreover, in [5], the FPE
algorithm called FFX is developed based on algorithms in [4] which enables us
to encrypt messages consisting of a single kind of character like n decimal digits,
n bits or n alphabets. The standardizations of FPE called FF1 and FF3 based
on FFX are proposed to NIST in [10] for which we can use any 128-bit block
cipher. The security of Feistel structure used for these schemes in common for
small domains is analyzed in [8]. Another example of construction of FFX called
VAES3 or FF2 using AES is given in [14,15]. An evaluation of the performance
of these schemes FF1, FF2 and FF3 is studied in [1] with respect to entropy and
operational latency. The block cipher modes of operation are also developed.
For example, in [6], a block cipher mode of operation for FPE following the
usual CBC mode is studied assuming that there are FPE schemes like FFX for
short messages. Many FPE constructions including those mentioned above are
described and studied in [11].

Discussion. However, many algorithms mentioned above including FFX give us
only encryptions for “homogeneous” strings as its inputs. That is, they can only
be applicable for messages consisting of a single kind of character, fixed length or
specific formats. Still, there are many data or strings the formats of which are not
homogeneous. In Japan or other many Asian countries, for example, addresses
consist of concatenation of numbers as postal code and “Kanji” as details. The
day and month of Japanese is also one of those formats. In addition to these
dependent on languages, formats used for databases like XML data which have
tags or CSV data which have commas cannot be treated as homogeneous mes-
sages. To make matters worse, there are a lot of data consisting of a nest of
many formats. Of course, it is one solution to use some encodes such as base64
to reduce such formats to homogeneous case. But, in general, the data size using
base64 encoding will get 33.3% bigger and the data format as cipher data will be
different from that of plain data. Namely, it is very important to develop FPE
schemes which can treat messages of “heterogeneous” formats.

Of course, there are works of FPE schemes for general formats. In [16], a
generalized FPE scheme is suggested to encrypt messages consisting of many
given formats like finite integral domains, CCNs, SSNs or dates. They describe
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general formats as a concatenation of some primitive formats, and then encrypt.
Moreover, a general FPE scheme called C-FFX following FFX for general formats
is considered in [9]. They also use Feistel structure and enables us to encrypt
messages consisting of “heterogeneous” characters including 1-byte character,
2-byte character or any other kind of characters.

In these works, FPEs for heterogeneous formats were carefully developed,
but modes of operation were not considered. In homogeneous cases, modes of
operations have been developed [6]. For encrypting long and various size of mes-
sages by using block ciphers, block cipher modes of operation are necessary.
The core encryption algorithms of block ciphers like AES are only applicable
to small fixed domains like 128-bit strings, and modes of operation give us to
encrypt strings of any length securely and efficiently. Similarly, it’s not practical
to use (heterogeneous) FPE without modes of operation for any data from the
view point of performance as the processing efficiency decreases if the block size
becomes bigger. As mentioned above, there are a lot of heterogeneous strings
of a large size such as XML data, strings consisting of multibyte characters or
even unknown size like streaming data. Many applications including legacy ones
may have fixed input-output format with heterogeneous characters and unknown
(streaming) data size. It is necessary to develop modes of operation for hetero-
geneous FPEs in order to encrypt such data efficiently. As the size of characters
in a message with a heterogeneous format may be different from each other,
the usual way of dividing a message into blocks based on fixed block size is not
applicable, which makes difficult to construct modes of operation and to prove
those securities.

Our Contributions. In this paper, we develop block cipher modes of operation of
FPEs for heterogeneous characters and give some usual security evaluations. We
introduce two modes of operation following CBC mode and CTR mode respec-
tively as these modes are frequently and widely used among a lot of modes.
Security proofs of these two modes for left-or-right chosen-plaintext-attack are
also carefully considered. At first glance, security proofs are drawn from the
proofs for ordinary modes of operation. However, in constructing modes of oper-
ation for heterogeneous FPE, we have to divide a string into blocks the size
of which may vary in order not to destroy the structure of the format. There-
fore, we cannot use a fixed block size parameter such as 128-bit and have to treat
such dynamic parameters for security proofs. We carefully treat such parameters,
use probability calculation over different-sized sets and give security evaluations
based on given security parameters and the size of character consisting mes-
sages. Moreover, we discuss its implementation using AES for its core algorithm
and performance for some concrete characters. We also give real performance
(19 Mbps on our regular machine) of our proposed modes. With this implemen-
tation, we can easily encrypt messages of any length including “Kanji” or other
multibyte characters encoded by EUC or UTF-8. We also introduce a permuta-
tion function to reduce the semantic risks which are essentially hidden in format
itself.
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Contents. Our contents are just as follows. In Sect. 2, we fix some notations
for FPE and summarize the FPE algorithms in previous works. The developed
modes and its algorithms are described in Sect. 3 and the details of securities
are written in Sect. 4. Implementations, including the machine spec, configura-
tions for definitions of characters and security parameters, are discussed and
mentioned in Sect. 5.

2 Preliminary

In this section, we fix some notations to introduce format preserving encryptions
or block cipher modes of operation. And then we introduce some previous works
for FPE and those algorithms following the fixed notations. The works also
include the securities of its scheme including CCA security and meet-in-the-
middle (MITM) attack security.

2.1 Notation

We assume that every character belongs to one finite non-empty set. Let us
denote such a set by Ch(c) for a character c. For each such a set Ch(c), we need
a bijection called the rank function between Ch(c) and Z|Ch(c)|, where Z|Ch(c)| is
the set of non-negative integers smaller than |Ch(c)| (cardinality of Ch(c)). The
inverse function of a rank function is called the chara function. We shall identify
a character as an integer by rank function and we use this identification without
notice in this paper. A format Ω is defined as a finite product of character sets
C1 := Ch(c1), . . . , Cn := Ch(cn), i.e. Ω =

∏n
i=1 Ci and an element of Ω is called

a string of length n. Conversely, given a string x, we shall use Form(x) as the
format of x and len(x) as the length of x. Its entropy S(x) is defined as the bit size
of the format of x, that is S(x) := log2(|Form(x)|). For a string x = x[1] . . . x[n],
we denote x by (x[i])n

i=1 or more simply by (x[i])i.
For each format Ω, we can construct a bijection NUMΩ : Ω → Z|Ω| by dictio-

nary order using rank functions of characters. To be more specific, NUM function
is recursively defined as follows;

NUMΩ((x[i])n
i=1) = NUMΩ′((x[i])n−1

i=1 )|Cn| + x[n],

Ω′ =
n−1∏

i=1

Ci, NUM(x[1]) = x[1]

Let us denote the inverse function of NUMΩ by STRΩ . The function STRΩ is
easily extended to the function on the whole positive integer by STRΩ(M) =
STRΩ(M mod |Ω|). A format Ω =

∏n
i=1 Ci is called homogeneous if Ci = Cj

for all i, j ∈ {1, . . . , n}. Otherwise the format is called heterogeneous.

2.2 Previous Works

Homogeneous FPE. We summarize the core algorithm of homogeneous format
preserving encryption in [5], used for both FF1 and FF3. First of all, fix following
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parameters; a key K, a 128-bit block cipher CIPHK , a tweak T , the round
number r and the set of characters defining the input space. The encryption
algorithm using Feistel structure for a string x = x1x2 . . . xn is as follows;

1. Set CTR = 0 which means the round number in the Feistel network.
2. Divide x into two strings u || v and let A = u and B = v.
3. Let S be a big byte string (the size depends on the security parameters)

determined by CIPHK with NUM(B), T,CTR as its inputs.
4. Set C = STRForm(m)(NUM(A) + NUM(S) mod|Form(m)|), where m = v if

CTR is an odd number and m = u if even number.
5. If CTR < r, set A = B,B = C,CTR = CTR + 1 and go back to the step 3.

Otherwise output B || C.

The NUM function used in this algorithm is uniquely determined by the set of
characters for inputs.

Heterogeneous FPE. In [9], the above algorithm is extended to that for hetero-
geneous formats called C-FFX by assuming that there exists a random function
FT

K with tweak T and key K from all strings of length l to those of length n − l.
The construction of this function depends on the format of the block and it is
a little difficult to construct such functions together. If we can construct, FT

K

performs a function as CIPHK in the homogeneous case, and then step 4 in the
above algorithm is realized as integer addition of strings having the same for-
mat. Specifically, the encryption ET

K is described in Algorithm 1. Note that this
encryption preserves the whole format of a message. That is, it preserves not
only the total data size of an input message but also the order of characters
appeared in the message.

Algorithm 1. Calculate ET
K(X)

Input: X, K, T, F T
K , l

Output: Y = ET
K(X)

CTR ← 0
n ← len(X)
L ← X[0]X[1] . . . X[l − 1]
R ← X[l]X[l + 1] . . . X[n − 1]
while CTR < r do

L′ ← ((R[i] + F T
K(L)[i]) mod |Ch(R[i])|)n−l−1

i=0

R′ ← L
Y = L′||R′

L ← Y [0]Y [1] . . . Y [l − 1]
R ← Y [l]Y [l + 1] . . . Y [n − 1]
CTR ← CTR + 1

end while
return Y
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3 Block Cipher Mode of FPE

We give two modes of operation called Mode 1 and Mode 2 following the usual
CBC mode and CTR mode, respectively. Both modes need the same new block
partition algorithm which is essentially different from that used in typical block
cipher modes like CBC. If we divide a string (regarded as a bit sequence) into
blocks by the usual way using a security parameter like 128-bit, we may destroy
not only the structure of the format of the string but also the character itself.
So we need a good partition algorithm which preserves the data structure of
messages.

Overview of Algorithms. We roughly summarize our proposed algorithms. Given
a string X, first, all characters in X are assigned integers using rank functions
to map the sparse spaces of character sets to dense sets. Then, we divide X into
blocks by calculating entropies of characters and using the security parameter.
For each block, we use Heterogeneous FPE to encrypt. Note that we can interpret
the input space of each block as consecutive integers using NUM functions.
Finally, we follow the classical modes to stir the next block. Note that, as input
spaces of each block are mapped to consecutive integers, we can interpret block
messages as integers, and we can use integer modulo operation to mix two blocks.

3.1 Algorithm

Block Partition. To describe the block partition algorithm, let us fix a security
parameter1 s ∈ N. This parameter determines the minimum size of blocks and
depends on the security of the format preserving encryption algorithm or pseudo
random functions used for these modes. The detail of the block partition algo-
rithm is described in Algorithm 2. Roughly speaking, this algorithm calculates
the entropy of a given string character by character, and divides it into blocks
with their entropies bigger than s. Note that the partitioned blocks may have
different sizes, but the entropies of blocks are bigger than s and smaller than 2s
except the last block2. In the following, we describe the details of the algorithms
of Mode 1 and Mode 2 for encrypting the block messages.

Mode 1. In this paragraph, we describe the encryption algorithm Mode 1 for each
block generated in the previous paragraph. Let us fix the format preserving encryp-
tion (ET,Ω

K ,DT,Ω
K ) defined by a key K and a tweak T , where ET,Ω

K and DT,Ω
K mean

the encryption and the decryption, respectively, and these two functions are both
bijections on Ω. In addition, we need to give an initial vector IV. The initial vec-
tor can be chosen from any space we desire like 128-bit strings or strings of a fixed
format. In the following, we fix a natural number l and the IV vector will be cho-
sen from Z2l . Denote the m-th plain block by Pm, its format by Ωm = Form(Pm),

1 We assume that the maximum entropy described in Sect. 2.1 of characters in plain-
texts is smaller than s.

2 The entropy of the last block may be a little bigger than 2s with a little possibility.
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Algorithm 2. Calculate blocks of X = X[1]...X[n]
Input: X and security parameter s
Output: the block number m and the set of blocks B1, . . . , Bm

if S(X) < s then
B1 ← X
return 1, (B1)

end if
i ← 0
while S(X) ≥ s do

if i �= 0 then
Bi ← C

end if
find j such that (S(X[1]...X[j − 1]) < s) ∧ (S(X[1]...X[j]) ≥ s)
C ← X[1]...X[j]
X ← X[j + 1]...X[len(X)]
i ← i + 1

end while
Bi ← C || X
m ← i
return m, (B1, ..., Bm)

(m − 1)-th cipher block by Cm−1 and its format by Ωm−1 = Form(Pm−1). For
i = 1, . . . , len(Pm), let Im[i] be the character defined by

Im[i] := Pm[i] + STRΩm
(NUMΩm−1(Cm−1))[i] mod |Ch(Pm[i])|

Then the m-th cipher block can be computed as follows;

Cm = ET,Ωm

K (Im[1]|| · · · ||Im[len(Pm)]).

However, for the first block, we use IV instead of NUMΩm−1(Cm−1). The decryp-
tion algorithm is easily given by the following equation for all i = 1, . . . , len(Cm);

Pm[i] = DT,Ωm

K (Cm)[i] − STRΩm
(NUMΩm−1(Cm−1))[i] mod |Ch(Cm[i])|

Here we also use IV for the first block. Figure 1 shows schematic views of these
algorithms.

Mode 2. Again, we fix a key K, tweak T , pseudo random generator FT
K the

output bit size of which is s, the initial vector IV and the variable CTR which
stands for the block number. Then the computation of the i-th character of the
ciphertext block for all i = 1, . . . , len(Pm) is as follows;

Cm[i] = Pm[i] + STRΩm
(FT

K(IV + CTR))[i] mod |Ch(Pm[i])|

If we have an ideal random function from Z2l to Ωm, we may use that function
instead of STRΩm

◦FT
K . More generally, we simply refer to these sets of PRF
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Fig. 1. Overview of mode 1 (CBC-like mode)

functions associated to the format appeared in blocks as the family of Mode 2.
We call the family consisting of ideal random functions the random family of
Mode 2. This family is used in Sect. 4.

The decryption is easily given in a similar way. The view of these algorithms
is showed in Fig. 2.

Fig. 2. Overview of mode 2 (CTR-like mode)

3.2 Permutation

In some formats including Japanese encoding, format itself may have the infor-
mation about strings. For example, if a string x of length 6 consists of two
1-byte characters, one 2-byte character, two 1-byte characters and one 2-byte
character, then one might guess that string expresses the day and month in
Japanese language. To reduce such a semantic risk, we suggest the permutation
algorithm for these modes of operation, which can be realized as a streaming
process on a block-by-block basis. We can use block-then-encipher algorithm in
[3] for implementation of permutation functions on small domains.

Fix a key K and we need a pseudo random permutation PermK,M on ZM for
small M . Its inverse is denoted by Perm−1

K,M . For an integer i ∈ ZM , PermK,M (i)
is the i-th element of the permutation PermK,M . Let Cm = cm[1]cm[2] . . .
cm[nm + 1] be the m-th ciphertext block given in previous paragraphs, tm be
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the number of characters from the first block to the (m − 1)-th block, then
Perm := PermK,tm+nm

is applied to Cm except for the final character and the
resulting block is outputted as the conclusive cipher block. That is, the output
C ′

m = c′
m[1]c′

m[2] . . . c′
m[nm + 1] is defined as follows;

1. Let ord(i) be the order of Perm(i) in the set {Perm(i)}nm
i=tm+1. That is,

Perm(i) is the ord(i)-th smallest number in {Perm(i)}tm+nm
i=tm+1.

2. Then, C ′
m is defined as;

c′
m[i] =

{
cm[ord(i)] i ≤ nm

cm[nm + 1] i = nm + 1

Note that we excluded the final character. As we use entropy for dividing mes-
sages into blocks, we can preserve the character acting as the block separator by
this exclusion.

4 Security Evaluation

In this section, we give some security proofs of these two modes and the core
FPE algorithm. As the block sizes of a message may vary, the security proofs
are not so trivial. Let us fix some usual notations based on game-playing proofs
for security evaluation from [2]. The notation a

R←− A denotes the operation
of selecting a random element a uniformly from a set A. Let Rand(A,B) and
Perm(A) be the set of all maps from A to B and all bijections on A, respectively.

4.1 LoR-CPA Security

We define the LoR-CPA security based on that in [2]. Conventionally, we use
(K, E ,D) for symmetric encryption scheme, where K, E ,D means the key space,
encryption functions and decryption functions, respectively. If we fix a key K ∈
K, we define the left-or-right oracle EK(LR(·, ·, b)) as an oracle which does the
following; it takes (x0, x1) for its input and returns EK(x0) if b = 0, EK(x1) if
b = 1. Then, for an adversary A which has access to the left-or-right oracle, we
consider the following experiment of A;

1. K
R←− K

2. d ← AEK(LR(·,·,b))

3. Return d

Note that we require that the two messages queried of EK(LR(·, ·, b)) always
have equal format. We may also define the advantage of A as follows;

AdvLoR-CPA
A = Pr[ExpLoR-CPA-1

A = 1] − Pr[ExpLoR-CPA-0
A = 1]

The maximum advantage for time complexity t, number of queries q and total
bits μ is defined as the maximum advantage over all advantages with such con-
ditions.
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Mode 2. We now prove the general security bound for Mode 2 operation.

Lemma 1. Suppose that the random family for Mode 2 is used. Then, for any
t, q, μ,

AdvLoR-CPA
mode2 (t, q, μ) ≤ μ(q − 1)

2s+l

where l is the input length of the random family and s is the security parameter
mentioned above, respectively.

Proof. In the following, we may regard all messages as integers using NUM
functions as usual. This proof is very influenced by that of Lemma 10 in [2]. Let
(M1, N1), ..., (Mq, Nq) be the oracle queries of the adversary A, each consisting
of a pair of equal formats, and ri ∈ Z2l be the associated nonce. Let ni be the
number of blocks in the i-th query. Denote the formats of blocks in i-th query
by Ωi,1, ..., Ωi,ni

.
As usual, let D be the following event, defined for either game: ri + k �=

rj + k′ whenever (i, k) �= (j, k′) for all i, j, k, k′. D means that there are no
collisions in the inputs of random family among all of the queries. We call strings
ri + 1, . . . , ri + ni the i-th sequence, and ri + k the k-th point in i-th sequence.
If we define Pri[·] to be the probability of an event in game i, we may prove
Pr0[D] = Pr1[D] as D for either game depends only on the nonces which are
chosen randomly and independent of the game. We may also prove Pr0[A =
1|D] = Pr1[A = 1|D]. This is because, we use the random family for Mode 2
and, given the event D, the random functions are evaluated at new points each
time they are invoked, and therefore the outputs are randomly and uniformly
distributed over their format space. Thus each cipher block is a message block
added by a random value and we get the equality.

Now, we can give an upper bound of the advantage as follows;

AdvLoR-CPA(·) = Pr1[A = 1] − Pr0[A = 1]

= Pr1[A = 1|D] · Pr1[D] + Pr1[A = 1|D] · Pr1[D]

− Pr0[A = 1|D] · Pr0[D] − Pr0[A = 1|D] · Pr0[D].

Then we have,

AdvLoR-CPA(·) ≤ Pr1[D] = Pr0[D].

Let pi be the probability of the i-th sequence colliding with any of the previous
sequences. Obviously, we can show that Pri[D] ≤ ∑q

i=1 pi We also have,

pi ≤
∑i−1

j=1(nj + ni − 1)
2l

=
(i − 1)(ni − 1) +

∑i−1
j=1 nj

2l
.

Putting everything together and by the assumption that the entropy of Ωi,j is
larger than s for all i, j, we have,

AdvLoR-CPA(·) ≤ (q − 1)
∑q

i=1 ni − q(q−1)
2

2l
≤ μ(q − 1)

2s+l
.

�	
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We may also prove the following real security.

Theorem 1. Suppose that the family (Fi) of Mode 2 consists of a PRF families
with input space Zl and output space Ωi. Then, for any t, q and μ = q′2s,

AdvLoR-CPA
mode2 (t, q, μ) ≤ 2AdvPRF

(Fi) (t, q′) +
μ(q − 1)

2s+l

where s is the security parameter.

Proof. The proof is a simple contradiction argument. That is, if we have an
adversary attacking Mode 2 in the LoR-CPA sense, we may build a distinguisher
which have an advantage better than AdvPRF

(Fi) for some reasonable queries. The
distinguisher simply runs the adversary who has an advantage greater than
AdvPRF

(Fi) (t, q′) and checks whether he breaks the encryption scheme or not. All
we must be careful is that the total number of oracle queries made by distin-
guisher is at most μ/2s and the proof is omitted. �	

Mode 1. We can also prove the security bound for Mode 1 operation. This proof
is based on the proof of securities for CBC in [2].

Lemma 2. Suppose the family (ET,Ω
K )Ω is (Perm(Ω))Ω. Let ε be the max

entropy of character used in queries. Then, for any t, q, μ, we have

AdvLoR-CPA
mode1 (t, q, μ) ≤

(
μ2

s2
− μ

s

)

· ε

2s

where s is the security parameter mentioned above, respectively.

Proof. Again, note that we may regard all messages as integers using NUM
functions in the following. We use the same notations as above, i.e. (M1,M

′
1), ...,

(Mq,M
′
q) for the oracle queries of the adversary A, each consisting of a pair of

equal formats, ni for the number of blocks in the i-th query and Ωi,1, ..., Ωi,ni

for the formats of blocks in the i-th query. We let Mi,j and M ′
i,j denote the j-th

blocks of i-th queries, so that Mi = Mi,1 . . . Mi,ni
and M ′

i = M ′
i,1 . . . M ′

i,ni
. Let

Ci = Ci,0 . . . Ci,ni
be the random variable which is the response of oracle to the

i-th query.
Similar to the way in [2], we can define the block-based event called distinct

which tells us all we want to know about the advantage of the adversary. First,
for a pair (i, j) and (i′, j′) which are indexes of message blocks, we define the
event Col(j,k),(j′,k′) called collision to be true if either (Cj,k−1+Mj,k ≡ Cj′,k′−1+
Mj′,k′ mod |Ωj,k| and Ωj,k = Ωj′,k′) or (Cj,k−1 + M ′

j,k ≡ Cj′,k′−1 + M ′
j′,k′ mod

|Ωj,k| and Ωj,k = Ωj′,k′) holds. Then we can define the event called distinct
which is true if there are no collisions before a fixed index. Namely, the event
Di,u is defined to be false if there exists a pair (j, k), (j′, k′) such that
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Col(j,k),(j′,k′) holds and
j−1∑

t=1

(nt + 2) + k <

j′−1∑

t=1

(nt + 2) + k′ and

j′−1∑

t=1

(nt + 2) + k′ ≤
i−1∑

t=1

(nt + 2) + u.

Finally, set D := Dq,nq
. Then, using the fact that we use the random permu-

tation family for block ciphers, we may prove that the adversary never have an
advantage as long as D holds.

Next, for a fixed index (i, u), we have to compute the probability of Ci,u−1

which may cause a collision Di,u under Di,u−1. We define two sets as follows;

MVi,u := {Cj,k−1 + Mj,k − Mi,u mod |Ωi,u| for all (j, k) such that

Ωj,k = Ωi,u and
j−1∑

t=1

(nt + 2) + k <
i−1∑

t=1

(nt + 2) + u},

MV ′
i,u := {Cj,k−1 + M ′

j,k − M ′
i,u mod |Ωi,u| for all (j, k) such that

Ωj,k = Ωi,u and
j−1∑

t=1

(nt + 2) + k <

i−1∑

t=1

(nt + 2) + u}.

Then, the collision occurs when Ci,u−1 falls in a set MV ∪ MV ′. Note that
|MVi,u ∪ MV ′

i,u| ≤ 2(n1 + · · · + ni−1 + u − 1).
There are two cases. The easy one is |Ωi,u−1| ≤ |Ωi,u|. In this case, we can

check that the probability is bounded by 2(n1+· · ·+ni−1+u−1)/|Ωi,u−1|. Next,
we deal with the case with |Ωi,u−1| > |Ωi,u|. Then there is some modulo bias and
we have to compute it. Let Q,R be integers defined by |Ωi,u−1| = |Ωi,u| · Q +R.
Then, the probability is bounded by 2(n1 + · · ·+ni−1 +u−1) · (Q+1)/|Ωi,u−1|.
By construction, Q is bounded by ε and the denominator is bounded by the
security parameter. Namely, we have the bound 2(n1 + · · · +ni−1 +u− 1) · ε/2s.
Then, computing the sum, the probability of D is bounded by

q∑

i=1

ni∑

u=1

Pr[Di,u| Di,u−1] ≤
q∑

i=1

ni∑

u=1

2ε(n1 + · · · + ni−1 + u − 1)
2s

≤ ε

2s

(
μ2

s2
− μ

s

)

.
�	

The following theorem tells the real security of Mode 1.

Theorem 2. Suppose the family (Fi) = (ET,Ωi

K ) is a family of PRP families.
Then, for any t, q, μ,

AdvLoR-CPA
mode1 (t, q, μ) ≤ 2AdvPRP

(Fi) (t, 1) + q22−s−1 +
(

μ2

s2
− μ

s

)

· 1
2s

where s is the security parameter mentioned above, respectively.



268 T. Shimizu and T. Shimoyama

Proof. The proof is very similar to the one given for Theorem1. All we must be
careful is that we use PRP families instead of PRF families in Theorem 1. But
the difference of these two families can be computed by the following well-known
inequality;

AdvPRF(t, q) ≤ AdvPRP(t, q) + q22−l−1.

between Perm(Z2l) and Rand(Z2l ,Z2l). �	

4.2 MITM Security for Implementation

In this subsection, we discuss concrete round number for implementation of the
core heterogeneous FPE algorithm. This is already discussed and computed in
[9], but we give a more precise evaluation which can be used for its implementa-
tion. This evaluation only depends on the size of the entropy of the plain text.
Namely, that is independent of a division of message for Feistel structure or
entropies of characters appeared in the plain text.

Theorem 3. Suppose that heterogeneous FPE described in Sect. 2 is an r round
Feistel on a format Ω. Let E := |Ω| and r′ := �r/4. Then the time cost of the
MITM attack as a PRP one is bounded by below as follows;

t ≥ (E/2)r′ ·
√

E.

Note that this is a very rough evaluation but enough for implementations. For
instance, if we let the block size be 128-bit and the round of Feistel be 8, the
time for MITM attack is at least 2318.

Proof. First of all, let us begin with describing the whole table of the adversary
queries. Fix a splitting of the Feistel structure, namely the left side format Ω1

with its entropy E1 and the right side format Ω2 with its entropy E2. Then a
round function for the i-th round is regarded as a map f : Ω2 → Ω1 if i is even and
f : Ω1 → Ω2 if i is odd. Adversary queries make two tables which consist of values
applied round functions and inverse functions of round functions, respectively.
The size of the first table is E

E1·�r/4�
2 · EE2·r′

1 and then, neglecting the second
table, the time to make the first is at least t = (EE1

2 · EE2
1 )r′ · (E1 + E2). Define

a function f on [1, E] as f(x) = (xE/x · (E/x)x)r′ · (x + E/x). As E1 and E2 are
the splitting of E, the equations t = f(E1) = f(E2) hold.

Let us bound f by below. The inequality of arithmetic and geometric means
easily tells us that f(x) ≥ (xE/x · (E/x)x)r′ ·√E. Now, all we need is to evaluate
xE/x · (E/x)x. But this is obviously larger than E/2 on [1, 2] and 2

√
E · E on

[2,
√

E]. As f(x) = f(E/x), we just have the evaluation to prove. �	

5 Implementation

In this section, we discuss an implementation of our modes including its core
FPE algorithm. The characters we used for this implementation are EUC-JP and
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some of UTF-8. As core algorithms are independent of the kind of characters
in messages, if we define rank functions for characters as configurations, our
implementation is easily applicable for another characters. Our machine spec
and the language of the implementation are showed in Table 1.

Table 1. Specification of our machine

OS Windows 7

Processor Intel Core i7-6700, 3.40 Ghz

Memory 16.0 GB

Language go 1.6.2

5.1 Parameter Setting and Performance

The security parameter s is set to be 128 following the usual block cipher. For
the core block cipher used in FPE which encrypts blocks of messages, we use
AES with 128-bit keys. The round number of FPE is 8, which is enough secure
as mentioned in Sect. 4.

We encrypted 100-Kb random data 2000 times and take the average. As a
result, eliminating system functions like garbage collection or sleep, our cipher
encrypts messages by 19 Mbps. Note that we use a lot of arithmetic functions
for this algorithm and AES only 32 times every block as showed in the next
subsection. AES used in our golang is AES-NI and has about 50 clocks/block
performance in the environment. Therefore, analyzing the profile, about 6% of
the execution time is occupied by AES. Remaining parts of the execution are
expended by arithmetic functions such as addition, subtraction, multiplication,
division, rank functions or NUM functions.

5.2 Example

In this subsection, we discuss the concrete implementation for EUC coding which
is heavily used by Japanese Unix operating systems. Using EUC coding, strings
may have two kind of characters which are characters expressed by 1-byte and
those by 2-byte. A sample encrypted data is described in AppendixA. The imple-
mentation for UTF-8 which is the dominant character encoding for the web is
discussed in AppendixB. First of all, we construct the block cipher used in modes
of operation using AES and following the construction of FFX in [10]. Fix a for-
mat Ω of inputs, number of characters u determining the splitting of block, a
key K for AES, a pseudo random function PRF based on K with 128-bit output.
For example, we use the following algorithm as the implementation of PRF(X)
based on AES.

1. Apply bit padding to X, if necessary.
2. Let X1, . . . , Xm be the blocks for which X = X1|| . . . ||Xm.
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Table 2. EUC-JP 2-byte codes

index ci,1 num prefix: pi
C1 0xa1a1 94 0
C2 0xa2a1 14 94
C3 0xa2ba 8 108
C4 0xa2ca 7 116
C5 0xa2dc 15 123
C6 0xa2f2 8 138
C7 0xa2fe 1 146
C8 0xa3b0 10 147
C9 0xa3c1 26 157
C10 0xa3e1 26 183
C11 0xa4a1 83 209
C12 0xa5a1 86 292
C13 0xa6a1 24 378

index ci,1 num prefix: pi
C14 0xa6c1 24 402
C15 0xa7a1 33 426
C16 0xa3e1 33 459
C17 0xa8a1 32 492
C18 0xb0a1 94 524
...

...
...

...
C48 0xcea1 94 3344
C49 0xcfa1 51 3438
C50 0xd0a1 94 3489
...

...
...

...
C85 0xf3a1 94 6779
C86 0xf4a1 6 6873

3. Let Y0 = 0128, amd for j from 1 to m define Yj = AES(Yj−1 ⊕ Xj)
4. Return Ym.

Let ΩL, ΩR be the left side format of the block and the right side format,
respectively. For a natural number n, we denote the l-byte string representation
of n by [n]l. Then, the algorithm with security parameter 128 is constructed as
showed in Algorithm 3.

Now, all we have to do is to construct the rank function and chara function.
We describe a sample implementation of these functions for EUC. We define two
sets Ceuc,1, Ceuc,2 consisting of 1-byte characters and 2-byte characters, respec-
tively, the sizes of which are 95 and 6879. As the first 31 characters in 1-byte
code are control characters, the functions rankeuc,1 : Ceuc,1 → Z95 and charaeuc,1
are simply constructed as follows;

rankeuc,1(c) = c − 32, charaeuc,1(n) = n + 32

As the addresses of two byte characters are not continuous and there are a
lot of unused byte code, the construction of the functions for Ceuc,2 is a little
complicated. To define the functions, we use the Table 2 which classifies the 2-
byte characters into some blocks. In Table 2, num and prefix of Ci means the
number of characters in Ci, the number of characters in

⋃i−1
j=1 Cj , respectively.

Let ci,1 be the byte code of the first character of Ci. Then, we can define the
rank and chara functions described in Algorithms 4 and 5.
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Algorithm 3. Algorithm of block cipher
Input: X, K, T
Output: the cipher text Y

1. Let A = X[1 . . . u], B = X[u + 1 . . . n]
2. Let b = ��log2 |ΩR|�/8�
3. Let d = 4�b/4� + 4
4. Let P = [1]1||[2]1||[1]1||[|ΩL| mod 28]1||[|ΩR| mod 216]2||[8]1||[u]1||[n]8

for i from 0 to 7 do
5.1. Let Q = [0](−b−1) mod 16||[i]1||[NUM(B)]b

5.2. Let R = PRF(P ||Q||T )
5.3. Let s be the first d bytes integer of the following string (*):

R||AESK(R ⊕ [1]16)||AESK(R ⊕ [2]16) . . . AESK(R ⊕ [�d/16� − 1]16)
5.4. If i is even, let Φ = ΩL; else, let Φ = ΩR

5.5. Let c = (NUM(A) + s) mod |Φ|
5.6. Let C = STRΦ(c)
5.7. Let A = B, B = C

end for
Y ← A || B
return Y
(*): interpret byte string as integer using BigEndian

Algorithm 4. Calculate rankeuc,2(c)
Input: c and Ci, ci,1 for i = 1, . . . , 86
Output: rankeuc,2(c)

i ← 0
while c not in Ci do

i ← i + 1
end while
return (c − ci,1) + pi

Algorithm 5. Calculate charaeuc,2(n)
Input: n and Ci, ci,1 for i = 1, . . . , 86
Output: charaeuc,2(n)

i ← 0
while n < pi do

i ← i + 1
end while
return ci,1 + (n − pi)

6 Conclusion

In this work, we constructed CBC-like, CTR-like block cipher modes of operation
for heterogeneous FPEs for dealing with any length of messages, and gave the
security proofs and some concrete implementation. With these algorithms, we
can get practical implementations for arbitrary formats only by defining rank
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and chara functions for characters. In addition, we don’t have to fix a base
character of messages or care about the size of messages.

However there are still some problems to consider. One problem for these
algorithms (or implementations) is the amount of operations. It’s not so big
problem in the aspect of the number of AES which is less than or equal to 16
for block ciphers in our implementation with 128-bit security parameter of any
formats. But, if we consider in terms of other operations like multiplication or
division, we use a lot of operations to compute NUM or STR. There is a room for
argument about decreasing the number of such operations or replacing those by
higher performance operations like bitwise operations. We think that we can use
a character hex or bit code itself instead of its rank, NUM and other functions for
one-way functions like PRFs in these algorithms. The block partition algorithm
must also be considered more. With the algorithm suggested in this paper, a
block may be decided not only by its size but with that of the next one. This
gives us sufficiently secure modes and the common structure between encryption
and decryption schemes even if we use permutation option, but clearly decreases
the performance.

A Example of Encryption

Here, we give an example of an encryption data with EUC coding. Parameter
settings are just as mentioned in Sect. 5 and the mode is 2. The key K, initial
vector IV, tweak T , plaintext and ciphertext are as follows;

Note that we didn’t use the permutation option for this encryption.

B Implementation for UTF-8

We give a way to construct an FPE algorithm for UTF-8 encoding. As mentioned
in Sect. 5, all we have to do is to define rank functions and chara functions for
UTF-8. Other algorithms do not depend on the character codes once we define
such functions. Here we give an example of such constructions.

We use only 1-byte characters, 2-byte characters and 3-byte characters for
simplification. Accordingly, we define three sets Cutf8,1, Cutf8,2, Cutf8,3 consist-
ing of 1-byte, 2-byte and 3-byte characters, respectively, the sizes of which are
95, 127 and 27880.
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Table 3. UTF-8 2- byte codes Table 4. UTF-8 3 byte “Kanji” codes

index cutf8,3.2i,1 num prefix: pi
Cutf8,3.2

1 0xe39080 64 0
Cutf8,3.2

2 0xe39180 64 64
Cutf8,3.2

3 0xe39280 64 128
...

...
...

...
...

Cutf8,3.2
48 0xe3bf80 64 3008

Cutf8,3.2
49 0xe48080 64 3072

Cutf8,3.2
50 0xe48180 64 3136
...

...
...

...
...

Cutf8,3.2
102 0xe4b580 64 6464

Cutf8,3.2
103 0xe4b680 54 6528

Cutf8,3.2
104 0xe4b880 64 6582

Cutf8,3.2
105 0xe4b980 64 6646
...

...
...

...
...

Cutf8,3.2
429 0xe9bd80 64 27382

Cutf8,3.2
430 0xe9be80 38 27446

1-Byte. Rank and chara functions for Cutf8,1 are constructed in the exactly
similar way as those for EUC-JP.

2-Byte. To avoid the use of platform dependent characters, we use only char-
acters appeared in 2-byte characters in EUC-JP. Then we can give a table for
defining the rank and chara functions for Cutf8,2. The algorithm for these func-
tions is the same as shown in Algorithms 4 and 5. An example of table is given
in Table 3

3-Byte. It is a little more complicated to define a table for 3-byte characters.
We define two subsets Cutf8,3.1, Cutf8,3.2 of Cutf8,3 which are a set containing
no “Kanji” and set containing only “Kanji”. For simplification, we use only
characters appeared in 2-byte characters in EUC-JP for Cutf8,3.1. The table for
this set is given in Table 5. We also use only CJK “Kanji” and CJK “Kanji” A
appeared in Unicode 1.1 for simplification. The table for this set is showed in
Table 4. The rank and chara functions are easily constructed from these tables.



274 T. Shimizu and T. Shimoyama

Table 5. UTF-8 3-byte codes

index cutf8,3.1i,1 num prefix: putf8,3.1i

Cutf8,3.1
1 0xe28090 1 0

Cutf8,3.1
2 0xe28095 1 1

Cutf8,3.1
3 0xe28098 2 2

Cutf8,3.1
4 0xe2809c 2 4

Cutf8,3.1
5 0xe280a0 2 6

Cutf8,3.1
6 0xe280a5 2 8

Cutf8,3,1
7 0xe280b0 1 10

Cutf8,3.1
8 0xe280b2 2 11

Cutf8,3.1
9 0xe280bb 1 13

Cutf8,3.1
10 0xe28483 1 14

Cutf8,3.1
11 0xe284ab 1 15

Cutf8,3.1
12 0xe28690 4 16

Cutf8,3.1
13 0xe28792 1 20

Cutf8,3.1
14 0xe28794 1 21

Cutf8,3.1
15 0xe28880 1 22

Cutf8,3.1
16 0xe28882 2 23

Cutf8,3,1
17 0xe28887 2 25

Cutf8,3.1
18 0xe2888b 1 27

Cutf8,3.1
19 0xe28892 1 28

Cutf8,3.1
20 0xe2889a 1 29

Cutf8,3.1
21 0xe2889d 2 30

Cutf8,3.1
22 0xe288a0 1 32

Cutf8,3.1
23 0xe288a5 1 33

Cutf8,3.1
24 0xe288a7 6 34

Cutf8,3.1
25 0xe288b4 2 40

Cutf8,3.1
26 0xe288bd 1 42

Cutf8,3.1
27 0xe28992 1 43

Cutf8,3,1
28 0xe289a0 2 44

Cutf8,3.1
29 0xe289a6 2 46

Cutf8,3.1
30 0xe289aa 2 48

Cutf8,3.1
31 0xe28a82 2 50

Cutf8,3.1
32 0xe28a86 2 52

Cutf8,3.1
33 0xe28aa5 1 54

Cutf8,3.1
34 0xe28c92 1 55

Cutf8,3.1
35 0xe29480 4 56

Cutf8,3.1
36 0xe2948c 1 60

Cutf8,3.1
37 0xe2948f 2 61

Cutf8,3,1
38 0xe29493 2 63

Cutf8,3.1
39 0xe29497 2 65

Cutf8,3.1
40 0xe2949b 3 67

index cutf8,3.1i,1 num prefix: putf8,3.1i

Cutf8,3.1
41 0xe294a0 1 70

Cutf8,3.1
42 0xe294a3 3 71

Cutf8,3.1
43 0xe294a8 1 74

Cutf8,3.1
44 0xe294ab 2 75

Cutf8,3.1
45 0xe294af 2 77

Cutf8,3.1
46 0xe294b3 2 79

Cutf8,3.1
47 0xe294b7 2 81

Cutf8,3,1
48 0xe294bb 2 83

Cutf8,3.1
49 0xe294bf 1 85

Cutf8,3.1
50 0xe29582 1 86

Cutf8,3.1
51 0xe2958b 1 87

Cutf8,3.1
52 0xe296a0 2 88

Cutf8,3.1
53 0xe296b2 2 90

Cutf8,3.1
54 0xe296bc 2 92

Cutf8,3.1
55 0xe29786 2 94

Cutf8,3.1
56 0xe2978b 1 96

Cutf8,3.1
57 0xe2978e 2 97

Cutf8,3,1
58 0xe297af 1 99

Cutf8,3.1
59 0xe29885 2 100

Cutf8,3.1
60 0xe29980 1 102

Cutf8,3.1
61 0xe29982 1 103

Cutf8,3.1
62 0xe299aa 1 104

Cutf8,3.1
63 0xe299ad 1 105

Cutf8,3.1
64 0xe299af 1 106

Cutf8,3.1
65 0xe38080 4 107

Cutf8,3.1
65 0xe38085 15 111

Cutf8,3.1
67 0xe38181 63 126

Cutf8,3.1
68 0xe38280 20 189

Cutf8,3,1
69 0xe3829b 4 209

Cutf8,3.1
70 0xe382a1 31 213

Cutf8,3.1
71 0xe38380 55 244

Cutf8,3.1
72 0xe383bb 4 299

Cutf8,3.1
73 0xefbc81 1 303

Cutf8,3.1
74 0xefbc83 4 304

Cutf8,3.1
75 0xefbc88 5 308

Cutf8,3.1
76 0xefbc8e 50 313

Cutf8,3.1
77 0xefbd80 31 363

Cutf8,3.1
78 0xefbfa3 1 394

Cutf8,3,1
79 0xefbfa5 1 395
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Abstract. Lossy trapdoor functions (LTDF) and all-but-one trapdoor
functions (ABO-TDF) are fundamental cryptographic primitives. And
given the recent advances in quantum computing, it would be much
desirable to develop new and improved lattice-based LTDF and ABO-
TDF. In this work, we provide more compact constructions of LTDF and
ABO-TDF based on the learning with errors (LWE) problem. In addi-
tion, our LWE-based ABO-TDF can allow smaller system parameters to
support super-polynomially many injective branches in the construction
of CCA secure public key encryption. As a core building tool, we pro-
vide a more compact homomorphic symmetric encryption schemes based
on LWE, which might be of independent interest. To further optimize
the ABO-TDF construction, we employ the full rank difference encod-
ing technique. As a consequence, the results presented in this work can
substantially improve the performance of all the previous LWE-based
cryptographic constructions based upon LTDF and ABO-TDF.

Keywords: Lossy trapdoor functions · All-but-one trapdoor functions
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1 Introduction

Injective one-way trapdoor function (TDF) F specifies, for each public key pk,
a deterministic map Fpk that can be inverted given an associated trapdoor. It
was one of the first abstract cryptographic primitives, allowing us to go back to
the seminal paper of Diffie and Hellman [5]. TDFs had been realized only from
problems related to factoring [13,18,21] prior to the seminal work [16].

The notion of lossy trapdoor functions (LTDF) was proposed by Peikert and
Waters at STOC 2008 [16], which can be viewed as a strictly stronger power-
ful primitive than TDF. Informally speaking, a family of lossy trapdoor func-
tions contains two computationally indistinguishable types of functions: injective
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functions with a trapdoor, and lossy functions that statistically lose informa-
tion about their input. Furthermore, Lossiness implies one-wayness [16]. They
imply many cryptographic primitives such as one-way trapdoor function [5], col-
lision resistant hash function [8], oblivious transfer protocol [9], chosen cipher-
text secure public key encryption scheme [6,12,16,19], deterministic public key
encryption scheme [3], OAEP based public key encryption scheme [11], and selec-
tive opening secure public key encryption scheme [10]. LTDF can be constructed
based on many assumptions [7,11,16,22,23] and, in particular, lattice-based
assumption (specifically, the LWE assumption) [16]. Lattice-based constructions
are especially desirable in the post-quantum era, since lattice-based cryptosys-
tems are commonly believed to be resistant to quantum attacks.

In order to construct CCA-secure cryptosystem from LTDF, it is more conve-
nient to consider a new notion called all-but-one trapdoor functions (ABO-TDF)
[16]. In an ABO-TDF collection, each function has a lot of branches: only a single
branch is lossy, while super-polynomially many branches are injective trapdoor
functions owning the same trapdoor. In the construction of CCA-secure cryp-
tosystems from ABO-TDF [16], an injective branch of ABO-TDF corresponds
to the verification key of a one-time signature that is, in turn, used in form-
ing the ciphertext. As a consequence, we expect to allow smaller parameters to
support enough branches since super-polynomially many branches are needed in
construction of CCA secure PKE. The basic relation between the two notions is
revealed in [16]: lossy and ABO trapdoor functions are equivalent on appropri-
ately chosen parameters. In this work, following the general paradigm proposed
in [16] we provide improved and more compact constructions of LTDF and ABO-
TDF based on the LWE problem. As a core building tool we provide a more com-
pact homomorphic symmetric encryption schemes based on LWE, which might
be of independent interest. To further reduce the size of the encrypted matrix
of function indices of ABO-TDF, we make use of the full rank difference encod-
ing (FRD) proposed in [4] (instead of the pairwise independent hash function
originally used in [16]); The FRD technique not only reduces the matrix size,
but also can allow smaller system parameters to support super-polynomially
many injective branches in the construction of CCA secure public key encryp-
tion, which further optimize the construction of ABO-TDF. As a consequence,
the results presented in this work can substantially improve the performance of
all the previous LWE-based cryptographic constructions based upon LTDF and
ABO-TDF.

2 Preliminaries

For a vector x, x[i] denotes its i-th coordinate. For x ∈ R, let �x� denote the
smallest integer greater than or equal to x, let �x� denote the largest integer less
than or equal to x, let �x� = �x+ 1/2� denotes the nearest integer to x. For any
x, y ∈ R with y > 0 we define x mod y to be x − �x/y�y.

The (i, j)-th entry of a 2 dimensional matrix M is denoted by mi,j . For any
i, j ∈ Z such that i < j, denote by [i, j] the set of integers {i, i + 1, · · · j − 1, j}.
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For any positive integer a, denote by [a] the set of integers {1, · · · , a}, let Za

denote Z/aZ, the elements of which are represented, by default, as [0, a− 1]. We
define T = R/Z, i.e., the group of reals [0, 1) with modulo 1 addition.

If S is a finite set then |S| is its cardinality, and x ← S is the operation
of choosing an element randomly from S. For any random variable X over R,
denote supp(X) = {x ∈ R|Pr[X = x] > 0}. We use standard notations and
conventions below for writing probabilistic algorithms and experiments. For a
probability distribution D, x ← D denotes the operation of choosing an element
according to D.

We use standard asymptotic (O, o,Ω, ω) notation to denote the growth of
positive functions. We say that f(n) = Õ(g(n)) if f(n) = O(g(n) logc n) for some
constant c. Let λ denote the security parameter (for constructions and analyses
of LWE-based scheme, we also use the dimension, denoted l, of the underlying
matrix as the security parameter). We say that a function f(λ) is negligible, if
for every c > 0, there exists a λc, such that f(λ) < 1/λc for all λ > λc. For two
distribution ensembles {X(λ, z)}λ∈N,z∈{0,1}∗ and {Y (λ, z)}λ∈N,z∈{0,1}∗ , we say

that they are computationally indistinguishable, denoted {X(λ, z)} c≈ {Y (λ, z)},
if for any probabilistic polynomial-time (PPT) algorithm D, and for sufficiently
large λ and any z ∈ {0, 1}∗, it holds |Pr [D(λ, z,X)] = 1 − Pr [D(λ, z, Y )] = 1|
is negligible in λ.

2.1 Definitions of LTDF and ABO-TDF

Here we describe the notions of lossy trapdoor functions (LTDF), and all-but-one
trapdoor functions (ABO-TDF).

Let n(λ) = poly(λ) denote the input length of the function, and let k(λ) ≤
n(λ) denote the lossiness of the collection. For presentation simplicity, we usually
omit the dependence on λ for convenience.

Definition 1. A collection of (n, k)-lossy trapdoor functions is described by
tuple of (possibly probabilistic) polynomial-time algorithms (Sltdf , Fltdf , F

−1
ltdf),

having the properties below.

1. Easy to sample an injective function with trapdoor: Sinj(1λ) outputs (s, t)
where s is a function index and t is its trapdoor, Fltdf(s, ·) computes a (deter-
ministic) injective function fs(·) over the domain {0, 1}n, and F−1

ltdf(t, ·) com-
putes f−1

s (·). If a value y is not in the image fs({0, 1}n), i.e., if f−1
s (y) does

not exist, then the behavior of F−1
ltdf(t, y) is unspecified. Note that some appli-

cations may need to check the output of F−1
ltdf for correctness.

2. Easy to sample a lossy function: Sloss(1λ) outputs (s,⊥) where s is a func-
tion index, and Fltdf(s, ·) computes a (deterministic) function fs(·) over the
domain {0, 1}n whose image has size at most 2n−k.

3. Hard to distinguish injective from lossy: the first outputs of Sinj(1λ) and
Sloss(1λ) are computational indistinguishable. More formally, letting Xλ

denote the distribution of s from Sinj(1λ), and letting Yλ denote the distribu-
tion of s from Sloss(1λ), then {Xλ} c≈ {Yλ}.
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As shown in [16], for constructing lattice-based of LTDF a slightly relaxed
definition of lossy TDF is considered, which is called almost-always lossy TDF.
That is, the output of Sinj describes an injective function fs that F−1

ltdf inverts
correctly on all values in the image of fs with overwhelming probability. Namely,
the probability (over the choice of s) that fs is not injective or that F−1

ltdf(t, ·)
computes f−1

s (·) on some input incorrectly is negligible. Moreover, the image size
of the lossy function fs generated by Sloss is required to be, with overwhelming
probability, at most 2n−k. In general, the function sampler cannot check these
conditions (i.e., whether fs(·) is injective, or whether F−1

ltdf(t, ·) correctly com-
putes f−1

s (·) for all input), because they are associated with global probabilities
of the generated function. Since the generation of trapdoor/lossy functions does
not under the control of the adversary, we may make use of almost-always lossy
TDF without affecting security of all the applications (e.g., CCA-secure encryp-
tion). Therefore the potential advantage of the adversary due to sampling an
improper function is bounded by a negligible quantity.

The combination of the lossiness and indistinguishability properties implies
that the injective function is one-wayness, as shown in the following lemma given
in [16].

Lemma 1. Let (Sltdf , Fltdf , F
−1
ltdf) give a collection of (n, k)-LTDF with k =

ω(log λ). Then (Sinj, Fltdf , F
−1
ltdf) gives a collection of injective trapdoor function.

(The analogous result applies for almost-always collections.)

In order to construct CCA-secure cryptosystem from LTDF, it is more con-
venient to consider a new notion called all-but-one trapdoor function (ABO-
TDF) [16]. In an ABO-TDF collection, each function has multiple branches.
One branch is lossy, while (super-polynomially) many others are injective trap-
door functions owning the same trapdoor.

Definition 2. Let B = {Bλ}λ∈N denote a collection of sets whose elements
represent the branches. A collection of (n, k)-all-but-one trapdoor functions with
branch collection B is described by a tuple of (possible probabilistic) polynomial-
time algorithms (Sabo, Gabo, G

−1
abo), having the following properties:

1. Sampling a trapdoor function with given lossy branch: for any b∗ ∈ Bλ,
Sabo(1λ, b∗) outputs (s, t), where s is a function index and t is its trapdoor.
For any b ∈ Bλ distinct from b∗, Gabo(s, b, ·) computes a (deterministic)
injective function gs,b(·) over the domain {0, 1}n, and G−1

abo(t, b, ·) computes
g−1

s,b (·). As above, the behavior of G−1
abo(t, b, y) is unspecified if g−1

s,b (y) does not
exist.
Additionally, Gabo(s, b∗, ·) computes a function gs,b∗(·) on the domain {0, 1}n

whose image has size at most 2n−k.
2. Hidden lossy branch: for any b∗

0, b
∗
1 ∈ Bλ, the first output s0 of Sabo(1λ, b∗

0)
and the first output s1 of Sabo(1λ, b∗

1) are computationally indistinguishable.

Similar to LTDF, for lattice-based constructions we consider almost-always
ABO-TDF [16], i.e., the injective, invertible, and lossy properties are required to
hold only with overwhelming probability over the choice of the function index s.
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Remark 1. The basic relation between the two notions is revealed in [16]:
lossy and ABO trapdoor functions are equivalent if we choose parameters
appropriately. The reader is referred to [16] for more details.

2.2 Probability Distributions

We present the notions of normal distribution overR, the discrete distribution over
Zq, and a standard tail inequality. Given a positive real number σ > 0, the normal
distribution with mean 0 and variance σ2 (or standard deviation σ) is the distri-
bution having density function ρσ(x) = exp(−x2/2σ2)/

√
2πσ2 for x ∈ R. In fact,

the sum of two independent normal variables with mean 0 and variances σ2
1 and

σ2
2 , respectively, is a normal variable with mean 0 and variance σ2

1 + σ2
2 .

For a positive real number α > 0, we define Ψα to be the distribution on
T of a normal variable with mean 0 and standard deviation α/

√
2π, reduced

modulo 1. For any probability distribution φ : T → R>0 and a positive integer
q > 0, we define its discretization φ̄ : Zq → R>0 to be the discrete distribution
over Zq of the random variable �q · Xφ� mod q, where Xφ has distribution φ.

For a positive real number σ > 0 and t > 0, let X be a normal variable
with variance σ2, a standard tail inequality tells that Pr[ |X| ≤ tσ ] = 1 −
exp(−t2/2)/t.

2.3 The Learning with Errors Problem

The learning with errors (LWE) problem is a classic hard lattice problem pro-
posed in [20]. The LWE problem can be viewed as an average-case “unique
encoding” on a certain family of random lattices under a natural error distribu-
tion, and is believed to be hard on the average even against quantum computer.
The following is almost verbatim from [16,20].

On input security parameter λ, for positive integers l and q, a vector s ∈
Z

l
q and some probability distribution χ on Zq, let Aq,s,χ be the distribution

over Z
l
q × Zq, obtained by choosing a ∈ Z

l
q uniformly at random as well as

e ← χ independently, outputting the pair (a, 〈a, s〉 + e), where all the above are
operated in Zq. The error distribution χ is taken to be the discrete distribution
as specified in Sect. 2.2.

The goal of the (decisional) learning with errors problem LWEq,χ in dimen-
sion l is to distinguish the distribution Aq,s,χ for some secret random s ← Z

l
q

from the uniform distribution over Zl
q ×Zq with non-negligible probability, even

if the adversary sees polynomially many samples and even if the secret vector s
is drawn randomly from χl [2].

The dimension l is the main parameter for the hardness of LWE. In the rest of
this paper, for the constructions and analysis of LWE-based schemes we simply
let l instead of λ be the security parameter, and let other parameters like q, α, n,
etc., be function of l. When αq ≥ 2

√
l, this decision problem is at least as hard

as approximating several problems on l-dimensional lattices in the worst-case to
within ˜O(l/α) factors with a quantum algorithm [20], or via a classical algorithm
for a subset of these problems [15]. We state a fact from [20] below:
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Proposition 1. Let α = α(l) ∈ (0, 1) and let q = q(l) be a prime such that
α · q > 2

√
l. If there exists an efficient (possibly quantum) algorithm such that

solves LWEq,Ψ̄α
, then there exists an efficient quantum algorithm for solving the

following worst-case lattice problems:

• SIVP: In any lattice Λ of dimension l, find a set of l linearly independent
lattice vectors of length within at most Õ(l/α) of optimal.

• GapSVP: In any lattice Λ of dimension l, approximate the length of a shortest
nonzero lattice vector to within a Õ(l/α) factor.

In fact, there is no efficient or even subexponential-time quantum algorithms
known for the above worst-case lattice problems. Moreover, for lattice problem
in any 
p norm, p > 2, the proposition still holds for substantially the same
Õ(l/α) approximation factors [14].

In the following, we construct our compact lossy trapdoor functions in terms
of LWE problem, without considering the connection to lattices or the restric-
tions of the parameters. Later in Sect. 6, we will instantiate the parameters
properly to invoke Proposition 1 to guarantee security, assuming the quantum
worst-case hardness of lattice problems.

3 Compact (Homomorphic) Symmetric Encryption
Scheme Based on LWE

We now construct compact symmetric encryption scheme based on the hardness
of the LWE problem. This basic scheme has certain limited homomorphic prop-
erties over a small message space, which is enough for the purpose of constructing
LTDF.

3.1 Encrypting Elements

The message space is Zp for some p ≥ 2. For every message m ∈ Zp, define
cm = m

p ∈ T. Let q > p and g ≥ 2 be integers, and let χ denote an unspecified
error distribution that we will instantiate later. The scheme is as follows:

• Gen(1l): The secret key is a uniform s ← Z
l
q.

• Enc(m ∈ Zp): It chooses uniform a ← Z
l
q and an error term e ← χ. Denote

ĉm = 〈a, s〉+ e+ �qcm� mod q ∈ Zq. Define the rounding errors: u = �qcm�−
qcm ∈ [−1/2, 1/2] and u′ = �gĉm/q�− gĉm/q ∈ [−1/2, 1/2]. The ciphertext is

Es(m,u, u′;a, e) := (a, g(〈a, s〉 + e + qcm + u)/q + u′) ∈ Z
l
q × Zg. (1)

The reason that we treat u and u′ as explicit input to the encryption algo-
rithm, even though they are usually determined by m, is that we can treat
Es(m,u, u′;a, e) as a well-defined expression even for either u /∈ [−1/2, 1/2]
or u′ /∈ [−1/2, 1/2]. We can also omit them and denote the ciphertext as

Es(m;a, e) := (a, �g(〈a, s〉 + e + �qcm�)/q�). (2)
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• Dec(s, c): For c = (a, c′), compute

m′ = �p(c′/g − 〈a, s〉/q)� mod p. (3)

Proposition 2. The above encryption scheme is correct.

Proof. For any ciphertext c = Es(m,u, u′;a, e), we have

m′ = �p(c′/g − 〈a, s〉/q)� mod p (4)

=
⌊

m +
p

q
(〈a, s〉 + e − 〈a, s〉) +

p

q
u +

p

g
u′

⌉

mod p (5)

=
⌊

m +
p

q
e +

p

q
u +

p

g
u′

⌉

mod p. (6)

As long as the absolute |pe/q + pu/q + pu′/g| ≤ p|e|/q + p/2q + p/2g < 1/2, i.e.,
(2|e| + 1)p < q(1 − p

g ), the decryption Dec(c, s) is correct. ��
Proposition 3. The above scheme is homomorphic.

Proof. By a simple calculation, we have

Es(m1, u1, u
′
1;a1, e1) + Es(m2, u2, u

′
2;a2, e2) (7)

=Es(m1 + m2, u1 + u2, u
′
1 + u′

2;a1 + a2, e1 + e2). (8)

Furthermore, even without knowing the secret key under which a ciphertext
was created, one can add any scalar value v ∈ Zp to its plaintext. Let c =
(a, c′) = Es(m,u, u′;a, e), define u′′ = �qcv� − qcv ∈ [−1/2, 1/2] and u′′′ =
�g�qcv�/q� − g�qcv�/q ∈ [−1/2, 1/2], then

c � v := (a, c′ + �g�qcv�/q�) = Es(m + v, u + u′′, u′ + u′′′;a, e). (9)

��

3.2 Encrypting Matrices

The message space is Z
h×w
p for arbitrary positive integers h and w. For every

message M = (mi,j) ∈ Z
h×w
p , we describe an extension of the symmetric encryp-

tion scheme from encrypting elements to encrypting matrices.

• Gen(1l): For every column j ∈ [w], choose independently sj ∈ Z
l
q. The secret

key is the tuple S = (s1, · · · , sw).
• Enc(M ∈ Z

h×w
p ): For every row i ∈ [h], choose independently ai ← Z

l
q,

forming a matrix A ∈ Z
h×l
q whose i-th row is ai. For every i ∈ [h] and every

j ∈ [w], choose independently error terms ei,j ← χ, forming an error matrix
E = (ei,j) ∈ Z

h×w
q . Denote ĉmi,j

= 〈ai, sj〉+ei,j +�qcmi,j
� mod q ∈ Zq. Define

U = (ui,j) and U′ = (u′
i,j) to be matrices of rounding errors, where ui,j =
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�qcmi,j
�− qcmi,j

∈ [−1/2, 1/2] and u′
i,j = �gĉmi,j

/q�−gĉmi,j
/q ∈ [−1/2, 1/2].

The encryption of M is

C = ES(M,U,U′;A,E), (10)

where ci,j = Esj
(mi,j , ui,j , u

′
i,j ;ai, ei,j). Note that the i-th row shares the

same randomness ai, while the j-th column shares the same secret key sj .
The ciphertext can be expressed as (A,C′), where c′

i,j = g(〈ai, sj〉 + ei,j +
qcmi,j

+ ui,j)/q + u′
i,j .

• Dec(S,C): For C = (ci,j), the decrypted matrix is M = (mi,j) ∈ Z
h×w
p ,

where mi,j = Dec(sj , ci,j).

Correctness: The correctness is direct from that of the basic scheme for
encrypting elements.

Homomorphism: All linear operations, including addition of ciphertexts, mul-
tiplication and addition by scalars, can be extended to encrypted matrices based
on the homomorphism of the underlying symmetric encryption scheme of ele-
ments.

In particular, for any x ∈ Z
h
p , for an encryption C = ES(M,U,U′;A,E) of

some M ∈ Z
h×w
p , we have

xC = ES(xM,xU,xU′;xA,xE). (11)

Furthermore, for any matrix of scalars V ∈ Z
h×w
p inducing two matrices of

rounding errors U′′ and U′′′, we have

C � V = ES(M + V,U + U′′,U′ + U′′′;A,E). (12)

Lemma 2. For any height and width h,w = poly(l), the matrix encryption
scheme described above produces indistinguishable ciphertexts under the assump-
tion that LWEq,χ is hard.

Proof. The proof is almost the same as Lemma 6.2 in [16], and we omit details
here. ��
Lemma 3. For some positive integer r and α, let E = (ei,j) ∈ Z

n×w
q be an

error matrix generated by choosing independent error terms ei,j ← Ψ̄α. Then
except with probability at most w · 2−r over the choice of E, every entry of xE
has absolute value less than 2q(n + r)α + n/2 for all x ∈ {0, 1}n.

Proof. The proof is almost the same as Lemma 6.3 in [16], so we omit it. ��
Remark 2. With our compact encryption scheme, when encrypting an element m
the resulting ciphertext is Es(m;a, e) = (a, �g(〈a, s〉+e+�qcm�)/q�)) ∈ Z

l
q ×Zg,

while the ciphertext is Es(m;a, e) = (a, 〈a, s〉+e+�qcm�) ∈ Z
l
q×Zq in [16], where
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q ≈ gO(nc), c > 0 is a constant. The length of our compact LTDF ciphertext is
log q − log g bits shorter than that of the scheme given in [16].

Similarly, when encrypting an matrix M ∈ Z
n×m
p , the ciphertext in this paper

is ES(M;A,E) ∈ Z
n×l
q ×Z

n×m
g , which reduces nm log(q/g)-bit length than that

of ES(M;A,E) ∈ Z
n×l
q × Z

n×m
q in [16], where q ≈ gO(nc), c > 0 is a constant

and m = n/�log p�.

4 Compact LTDF Based on LWE

Let a = �lg p�, assume without loss of generality that n is divisible by a, and
let m = n/a. Define a matrix G ∈ Z

n×m
p as follows: in column j ∈ [m], the

((j − 1)a + k)th entry is 2k−1 ∈ [1, p] for k ∈ [a]. All other entries are zero.
Formally, G is the tensor product Im ⊗ g, where Im is the identity matrix and
g = (1, 2, · · · , 2a−1)T ∈ Z

a×1
p (we can also use other integer base b ≥ 2).

For any input vector x ∈ {0, 1}n, we may correspond x to an unique vector
v = (v1, · · · , vm) ∈ Z

m
p using the matrix G; That is, xG = v, and vice versa.

Evaluating the function on x ∈ {0, 1}n involves homomorphically computing
an encrypted linear product xM, where M is some matrix being encrypted in the
sampling algorithm. In the injective case, let M = G, then xG = v, which allows
us to recover the entire input by decrypting v and producing the corresponding
x. In the lossy case, we have M = 0, then xM = 0 ∈ Z

m
p , which means the

output contains only m = n/a ciphertexts, i.e., less information is leaked via the
error terms.

In order to obtain a lossy TDF, we need to ensure that each decrypted
plaintext contains more information than what might be carried by the error
terms of the corresponding ciphertext. In the following, we describe our lossy
TDF generation, evaluation, and inversion algorithms formally.

• Sampling an injective/lossy function. The generator of injective function
Sinj(1l) outputs a matrix encryption

C = ES(G,U,U′;A,E), (13)

where S, U, U′, A, E are chosen as described in Sect. 3.2. The function index
s is the encryption C, and the trapdoor information t consists of the tuple of
secret keys S = (s1, · · · , sm).
The generator of lossy function Sloss(1l) generates a matrix encryption

C = ES(0,U,U′;A,E), (14)

which is the encryption of the all-zeros matrix 0 ∈ Z
n×m
p . The function index

s is C, and there is no trapdoor output.
• Evaluation algorithm. On input (C,x) where C is the function index (an

encryption of either M = G or M = 0) and x ∈ {0, 1}n is an n-bit input
interpreted as a vector, the evaluation function Fltdf outputs the vector of
ciphertexts y = xC.
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By the properties of homomorphism, the output y is

y = ES(xM,xU,xU′;xA,xE), (15)

where every ciphertext yj is of the form (xA, y′
j) ∈ Z

l
q × Zg.

• Inversion algorithm. On input (S,y) where S is the trapdoor, the inversion
function F−1

ltdf computes v = Dec(S,y) ∈ Z
m
p , and outputs the unique x ∈

{0, 1}n such that xG = v.

Similar to [16], we now instantiate the parameters of the above scheme to
prove that, conditioned on the assumption LWEq,χ is hard, our construction
describe a collection of almost-always (n, k)-lossy TDF.

Theorem 1. Let n = lc3 for some constant c3 > 1, and let p = nc1 for some
constant c1. Let q ∈ [4pn,O(pnc2)] for some constant c2 where 1 < c2 < c1 and
let m = n/�lg p�. Let g ∈ [4pn, q], and let χ = Ψ̄α where α ≤ 1/(32pn).

Then the algorithms described above give a collection of almost-always (n,k)-
lossy TDF under the assumption that LWEq,χ is hard, where the residual leakage
n − k is

n − k ≤
(

c2

c1
+ o(1)

)

· n. (16)

Proof. First we claim that the inversion algorithm F−1
ltdf satisfies, with over-

whelming probability over the choice of C by Sinj, the correctness requirement
on all inputs y = Fltdf(C,x). We note that

y = ES(xM,xU,xU′;xA,xE), (17)

by the homomorphic properties.
Letting r = n in Lemma 3, we have |(xE)j | < 2q(n + r)α + n/2 ≤ q/4p for

every x and j ∈ [m], except with probability at most m · 2n = negl(l) over the
choice of E. Moreover, note that |(xU)j | ≤ n/2 ≤ q/8p and |(xU′)j | ≤ n/2 ≤
q/8p for all j ∈ [m] by the size of U’s and U′’s entries. Therefore we have

|p
q
(xE)j +

p

q
(xU)j +

p

g
(xU′)j | <

p

q
· q

4p
+

p

q
· q

8p
+

p

g
· n

2
≤ 1

4
+

1
8

+
1
8

=
1
2
. (18)

The correctness requirement is satisfied.
We now analyze the lossiness of a lossy function. For any input x ∈ {0, 1}n,

we have
y = ES(0 = x0,xU,xU′;xA,xE). (19)

For every j ∈ [m], yj is a ciphertext (xA, y′
j) ∈ Z

l
q × Zg, where xA is the same

randomness for all j and y′
j = g(〈xA, sj〉 + (xE)j + 0 + 0)/q + (xU′)j). Fixing

A, x and j ∈ [m], we have

|g
q
(xE)j + (xU′)j | <

g

q
· q

4p
+

n

2
≤ q

4p
+

q

8p
=

q

2p
. (20)
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Obviously, the total number of outputs of the lossy function is at most
ql(q/p)m, the logarithm of which gives an upper bound on the residual leak-
age n − k:

n − k ≤ l · lg q + m · lg O(nc2) (21)

≤ O(n1/c3 lg n) + m · (O(1) + c2 lg n) (22)

≤ o(n) + n · O(1) + c2 lg n

�c1 lg n� (23)

≤ n ·
(

c2

c1
+ o(1)

)

, (24)

where the third inequality is because of the fact that m = n/�lg p� = n/�c1 lg n�.
Finally, note that C = ES(G,U,U′;A,E) is indistinguishable from C =

ES(0,U,U′;A,E) by Lemma 2 on the security of matrix encryption; That is,
we can not distinguish lossy function from injective one. ��

5 Compact ABO-TDF

In order to yield enough branches, the construction of ABO-TDF in [16] makes
use of a family of pairwise independent hash functions H = {h : Zl

p → Z
m×w
p },

where w = m + 2l, to generate the matrix M = −h(b∗) ⊗ g for the desired
branch b∗. The properties of the pairwise independent function h ensure that
H = h(b) − h(b∗) have full row rank for any b �= b∗, which suffices for recovering
v from the product vH. The branch set is B = Bl = Z

l
p. Note that, with

this approach, the encrypted matrix of function indices of ABO-TDF is larger
than that of LTDF in [16]. We are wondering whether we can further reduce it?
The answer is yes. To solve this problem, we make use of the full rank difference
(FRD) encoding [4] (instead of the pairwise independent hash function originally
used in [16]), which not only reduces the matrix size in our ABO-TDF to get
equal to that of our compact LTDF, but also can allow smaller system parameters
to support super-polynomially many injective branches in the construction of
CCA secure public key encryption. We first briefly review the full rank difference
encoding technique proposed in [4].

5.1 Full Rank Difference Encoding GFRD of Z
m
p to Z

m×m
p

In fact, Cramer and Damg̊ard [4] introduced an encoding function maps a
superpolynomially-sized domain F

m to matrices in F
m×m with some strongly

injective properties. This encoding notion has then been updated by [1] to the
name “Full-Rank Difference Encoding”. We uses FRD in a similar way to [17].

Definition 3. Let p be a prime and m a positive integer. We say that a function
GFRD : Zm

p → Z
m×m
p is an encoding with full-rank difference (FRD) if:

1. for all distinct x,y ∈ Z
m
p , the matrix GFRD(x) − GFRD(y) is full rank.

2. GFRD is computable in polynomial time.
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The goal in designing GFRD is to construct an additive subgroup G of Zm×m
p

of size pm with all non-zero matrices in G of full rank. Since for all distinct
A,B ∈ G, the difference A-B is also in G, it follows that A-B is full rank.

For a polynomial g ∈ Zp[X] of degree at most m − 1, let coeff(g) ∈ Z
1×m
p be

the m-row of the coefficient of g. If g is of degree less than m − 1 we pad the
coefficients vector with zeroes on the right to make it a m-vector. Let f be some
polynomial of degree m, irreducible in Zp[X]. Note that for a polynomial g ∈
Zp[X], the polynomial (g mod f) has degree less than m, thus coeff(g mod f) ∈
Z

m
p .

For any integer m ≥ 2, any input h = (h0, · · · , hm−1) ∈ Z
m
p , define gh(X) =

∑m−1
i=0 hix

i ∈ Zp[X], then define GFRD(h) as

GFRD(h) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

coeff(gh mod f)
coeff(X · gh mod f)
coeff(X2 · gh mod f)

...
coeff(X(m−1) · gh mod f)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ Z
m×m
p . (25)

The following theorem in [4] proves that the above function GFRD is an FRD.

Theorem 2. Let F be a field and f a polynomial in F[X]. If f is irreducible
in F[X] then the function GFRD defined above is an encoding with full-rank
differences.

Moreover, the function GFRD has the following properties:

1. (GFRD is linear) GFRD(ah1 + bh2) = a · GFRD(h1) + b · GFRD(h2) for any
a, b ∈ Zp,h1,h2 ∈ Z

m
p .

2. (The image of GFRD is invertible or zero) For any vector h �= 0, GFRD(h) is
invertible, and GFRD(0) = 0.

5.2 Construction and Analysis of Compact ABO-TDF

As above, let a = �lg p�, assume without loss of generality that n is divisible by
a, and let m = n/a. Define a matrix G := Im⊗g, where Im is the identity matrix
and g = (1, 2, · · · , 2a−1)T ∈ Z

a×1
p (we can also use other integer base b ≥ 2).

Using matrix G allows us to correspond each the input vector x ∈ {0, 1}n to a
unique vector v = (v1, · · · , vm) ∈ Z

m
p by xG = v.

In our construction, instead of using the family of pairwise independent hash
functions, we consider the full rank difference encoding function GFRD described
in Sect. 5.1, to generate the matrix M = −GFRD(b∗)⊗g for the desired branch b∗.
The properties of the FRD function guarantees that H = GFRD(b) − GFRD(b∗)
is invertible for all b∗ �= b, which is enough for the purpose of recovering v
from vH. It turns out to be a larger branch set B = Z

m
p if we fix parameter p,

where m = n/�lg p� > l, according to the following instantiated parameters. This
means that we can choose smaller p in order to support super-polynomially many
injective branches in the construction of CCA secure public key encryption.
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Evaluating the ABO function on an input x ∈ {0, 1}n involves computing an
encrypted linear product vM, where M is some matrix deciding by the branch
b∗ of the function being evaluated. The explicit fact that x(M⊗g) = vM for any
M ∈ Z

m×m
p plays an important role in our construction of ABO-TDF. Let M =

−GFRD(b∗) ⊗ g, then x((GFRD(b) − GFRD(b∗)) ⊗ g) = v(GFRD(b) − GFRD(b∗)),
which allows us to recover the entire input by decrypting v(GFRD(b)−GFRD(b∗))
and recovering v, then producing the corresponding x.

Let the branch set B = Z
m
p . Let GFRD denote a full rank difference encoding

from B = Z
m
p to Z

m×m
p as introduced in Sect. 5.1. In the following, we describe

our ABO-TDF generation, evaluation, and inversion algorithms formally.

• Sampling an ABO function. The function generator Sabo(1l, b∗ ∈ B) outputs
a matrix encryption

C = ES(−GFRD(b∗) ⊗ g,U,U′;A,E), (26)

where S, U, U′, A, E are chosen as described in Sect. 3.2. The function index
s is the encryption C, and the trapdoor information t consists of the tuple of
secret keys S = (s1, · · · , sm) and the lossy branch value b∗.

• Evaluation algorithm. On input (C, b,x) where C is the function index,
b ∈ B is the desired branch, and x ∈ {0, 1}n is an n-bit input interpreted as
a vector, the evaluation function Gabo outputs the vector of ciphertexts

y = x(C � (GFRD(b) ⊗ g)). (27)

Let H = GFRD(b)−GFRD(b∗). Then by the properties of homomorphism, the
output y is

y = ES(vH = x(H ⊗ g),x(U + U′′),x(U′ + U′′′);xA,xE), (28)

where U′′ and U′′′ are the matrices of rounding errors induced by the scalar
matrix.

• Inversion algorithm. The function G−1
abo takes as input ((S, b∗), b,y), where

(S, b∗) is the trapdoor information, b is the evaluated branch, and y is the
function output. It first computes m = Dec(S,y) ∈ Z

m
p . It then computes

H = GFRD(b)−GFRD(b∗), if H is invertible, it computes v = mH−1. Finally,
it outputs the unique x ∈ {0, 1}n such that xG = v.

Theorem 3. Let n = lc3 for some constant c3 > 1 and let p ∈ [nc1 , (n + 1)c1 ]
be a prime for some constant c1. Let q ∈ [20pn/3, O(pnc2)] for some constant c2

where 1 < c2 < c1 and let m = n/�lg p�. Let g ∈ [20pn/3, q], and let χ = Ψ̄α

where α ≤ 1/(32pn).
Then the algorithms described above give a collection of almost-always (n,k)-

ABO-TDF with branch set Zm
p , under the assumption that LWEq,χ is hard, where

the residual leakage n − k is

n − k ≤
(

c2

c1
+ o(1)

)

· n. (29)
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Proof. The proof is similar to that of Theorem 1. First we claim that the inver-
sion algorithm G−1

abo satisfies, with overwhelming probability over the choice of
C by Sabo(1l, b∗), the correctness requirement for all branches b �= b∗ and on all
inputs y = Gabo(C, b,x). We note that

y = ES(vH = x(H ⊗ g),x(U + U′′),x(U′ + U′′′);xA,xE), (30)

by the homomorphic properties. For every j ∈ [m], yj is a ciphertext (xA, y′
j) ∈

Z
l
q × Zg, where xA is the same randomness for all j and y′

j = g(〈xA, sj〉 +
(xE)j + q(vH)j/p + (xU)j + (xU′′)j)/q + (xU′)j + (xU′′′)j .

Letting r = n in Lemma 3, we have |(xE)j | < 2q(n + r)α + n/2 ≤ q/5p
for every x and j ∈ [m], except with probability at most m · 2n = negl(l)
over the choice of E. Moreover, note that |(xU)j | ≤ n/2 ≤ 3q/40p and so do
|(xU′)j |,|(xU′′)j |,|(xU′′′)j |, for all j ∈ [m] by the size of their entries. Therefore
we have

|p
q
(xE)j +

p

q
((xU)j + (xU′′)j) +

p

g
((xU′)j + (xU′′′)j)| (31)

<
p

q
· q

5p
+

p

q
· (

3q

40p
+

3q

40p
) +

p

g
· (

n

2
+

n

2
) (32)

≤1
5

+
3
20

+
3
20

=
1
2
. (33)

Hence the decryption Dec(S,y) outputs m = vH. We have v = mH−1, since
H = GFRD(b)−GFRD(b∗) is invertible for all b �= b∗. The input vector x ∈ {0, 1}n

can be recover correctly from the vector v.
We now analyze the lossiness. For any input x ∈ {0, 1}n, we have

y = ES(0 = x(0 ⊗ g),x(U + U′′),x(U′ + U′′′);xA,xE). (34)

For every j ∈ [m], yj is a ciphertext (xA, y′
j) ∈ Z

l
q × Zg, where xA is the same

randomness for all j and y′
j = g(〈xA, sj〉+(xE)j +0+0)/q+(xU′)j +(xU′′′)j).

Fixing A, x and j ∈ [m], we have

|g
q
(xE)j + (xU′)j + (xU′′′)j | <

g

q
· q

5p
+ n ≤ q

5p
+

3q

20p
<

q

2p
. (35)

Obviously, the total number of outputs of the lossy function is at most
ql(q/p)m, the logarithm of which gives an upper bound on the residual leak-
age n − k ≤ n ·

(

c2
c1

+ o(1)
)

as Theorem 1 does.
Finally, note that the hidden lossy branch property follows from Lemma 2

on the security of matrix encryption. ��

6 Parameter Instantiation and Worst-Case Connection

We now associate the security of our constructions with the worst-case quantum
hardness of lattice problems, by properly instantiating all the parameters n, p,
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q, etc., and by invoking Proposition 1. The relationship between any desired
constant lossiness rate K ∈ (0, 1), where larger K means more information is
lost, and the corresponding approximation factor of the lattice problems is what
we are interested in.

The following theorem is similar to the one in [16], except that the parameters
we choose might not be the same as that of [16]. For completeness, the proof is
presented here.

Theorem 4. For any constant K ∈ (0, 1), the construction of Sect. 4 with prime
q gives a family of almost-always (n,Kn)-lossy TDF for all sufficiently large n,
assuming that SIVP and GapSVP are hard for quantum algorithms to approxi-
mate to within Õ(lc) factors, where c = 2 + 3

2(1−K) + δ for any desired δ > 0.
The same applies for the construction in Sect. 5.2, with prime q and p, of

almost-always (n,Kn)-all-but-one TDF.

Proof. Using the notation from Theorem 1 (likewise Theorem 3), we let p =
nc1(p ∈ [nc1 , (n + 1)c1 ] is a prime) and let n = lc3 for some constant c1 > 1,
c3 > 1 respectively that we will be set later, and let r = n, α = 1/(32pn). In
order to invoke Proposition 1 (connecting LWE to lattice problems), we need to
use some

q > 2
√

l/α = 64pn
√

l = 64pn1+1/(2c3). (36)

Therefore we set c2 = 1 + 1/(2c3), so we may take q = O(pnc2).
Now invoking Theorem 1 (likewise Theorem 3), we get that the lossy function

has n − k at most

n ·
(

c2

c1
+ ε

)

= n ·
(

1 + 2c3

2c1c3
+ ε

)

, (37)

for any ε > 0 and sufficiently large n. By Proposition 1, LWE is hard for our
choice of parameters, assuming the lattice problems are hard to approximate
within Õ(l/α) = Õ(l1+c3(c1+1)) factors for quantum algorithms. With the con-
straint on the residual leakage as 1+2c3

2c1c3
< 1−K, we get that c1 > 1+2c3

2c3(1−K) . This
implies that the exponent in the lattice approximation factor may be brought
arbitrarily close to 1 + c3 + 1+2c3

2(1−K) . Then under the constraint that c3 > 1, the
exponent may be brought arbitrarily close to 2 + 3

2(1−K) . ��

7 Comparison

Let the parameters n, p, q, g, r, α be chosen as above. Compared to the LWE-
based LTDF and ABO-TDF proposed in [16], our compact LTDF and ABO-TDF
constructions reduce both the size of public key (i.e. the function index matrices)
and that the vector of ciphertexts. Furthermore, the number of branches in our
ABO-TDF is larger that of [16] if we fix p, which means that we can choose
smaller p in order to support super-polynomially many injective branches in the
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Table 1. Comparison between LTDF/ABO-TDF in [PW08] and those in this paper.

[PW08] This paper D-value

Size of pk (LTDF) (nl + nm) log q nl log q + nm log g nm log(q/g)

Size of pk (ABO-TDF) (nl + nw) log q nl log q + nm log g 2nl log q + nm log(q/g)

Size of ciphertexts (LTDF) m(l + 1) log q m(l log q + log g) m log(q/g)

Size of ciphertexts (ABO-TDF) w(l + 1) log q m(l log q + log g) (2l2 + 2l) log q + m log(q/g)

Number of branches (ABO-TDF) pl pm pm − pl

construction of CCA secure public key encryption. The comparison is summa-
rized in Table 1, where D-value stands for the corresponding difference value.

In [16], the construction of LWE-based LTDF yields public key C ∈ Z
n×l
q ×

Z
n×m
q and m-dimension vector of ciphertexts y where yj ∈ Z

l
q × Zq. While the

construction of LWE-based ABO-TDF in [16] yields public key C ∈ Z
n×l
q ×Z

n×w
q ,

where w = m+2l, and w-dimension vector of ciphertexts y where yj ∈ Z
l
q ×Zq.

The branch set is B = Z
l
p.

In this paper, the construction of LTDF yields public key C ∈ Z
n×l
q ×Z

n×m
g

and m-dimension vector of ciphertexts y = xC where yj ∈ Z
l
q × Zg. While the

construction of ABO-TDF yields public key C ∈ Z
n×l
q ×Z

n×m
g and m-dimension

vector of ciphertexts y where yj ∈ Z
l
q × Zg. The branch set is B = Z

m
p .

Take the size of public key as example, the difference value (D-value) between
[PW08] and this paper is nm log(q/g) bits. When p = nc1 , q = O(pnc2), g = 4pn
and m = n/�lg p�, we have nm log(q/g) > n log O(nc2−1), which can substan-
tially improve the performance. As for the number of branches, under the same
choice of p, the difference value between ABO-TDF in [16] and that in this paper
is pm − pl. When prime p ∈ [nc1 , (n + 1)c1 ], n = lc3 for some constants c1 > 1
and c3 > 1, we have m = n

�log p� ≈ lc3

c3c1 log l = l · lc3−1

c3c1 log l > l, which means
more branches under the same p. Alternatively, we only need smaller p (in turn
smaller l since p ∈ [lc3c1 , (lc3 + 1)c1 ]) to support enough branches.
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Abstract. We propose a two-factor authentication protocol that uses a
cryptographic authentication factor (secret key) to add biometric tem-
plate privacy security against server exposure attack, to any given (non-
private, one-factor) biometric authentication scheme based on Hamming-
Distance (HD) comparison of stored and queried binary biometric tem-
plates. Our protocol provides provable privacy under the hardness of a
standard cryptographic lattice problem (Ring-LWE), and provable two-
factor impersonation security under malicious client model.

1 Introduction

1.1 Background

User authentication is the process of verifying the claimed identity of a user,
which is an important aspect in the big picture of information and network
security. Generally, there are three factors that can be used for this purpose:
Something You Know, such as password; Something You Have, such as smartcard
and Something You Are, such as iris or fingerprint. The last factor, also known as
biometrics, can be considered the most usable factor as one does not have to carry
or remember anything during authentication. In this approach, generally a user
first enrols his biometric template with a server, later he can use a query template
to authenticate: The server compares the distance between the stored and query
templates with some pre-defined threshold value to decide the authentication
result. Biometric authentication is lately deployed widely in many platforms
thanks to the reduced cost of hardware. However, the main drawback of this
method is lack of biometric privacy against server exposure. If biometric data is
ever revealed or stolen, the victims may be vulnerable to impersonation attacks
for the rest of their life, as it is nearly impossible to change one’s fingerprints or
iris, unlike password or smartcard approaches. Hence there is a strong motivation
to develop authentication systems that protect the privacy of biometric data.
Designing such a system is challenging due to following desirable requirements:

Privacy against server exposure. The biometric data should be securely
encrypted prior to uploading to the server, using a key stored only to the
biometric owner. This is important to avoid similar incident to [37], where

c© Springer International Publishing AG 2017
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millions of plaintext fingerprint data was leaked. Ideally, the server storing
the encrypted biometric should not be able to comprehend the data, in other
words, it does not have the encryption key.

Quantum resistant privacy. Considering quantum computing is develop-
ing fast and the biometric data will persist over the lifetime of a user, the
encrypted biometric data should have long term security against quantum
computing attacks.

No reliance on trusted third parties. With the wide exposure of cloud
computing to potential attacks, the protocol should not rely on one or more
cloud-based trusted third parties to help with the authentication process.

Security against malicious client. An attacker attempting to impersonate
the real client to the server should not be able to authenticate without a
genuine biometric, even if the attacker is malicious and does not follow the
authentication protocol, i.e. the impersonation attacker cannot be assumed
to be ‘honest but curious’ (HBC).

Two factor security. If the client is responsible for decrypting biometric-
related data, the protocol should be multi-factor secure: an attacker with
a compromised key should not be able to authenticate without a genuine
biometric.

Practical performance. The computation time and communication size of the
whole protocol should be within practical time frame.

Previous protocols in the literature do not meet one or more of our require-
ments. In particular, many previous protocols [8,12,34] assume honest-but-
curious clients and are insecure in the authentication context that involves
malicious clients. The few protocols involving malicious clients [43,44] are not
quantum-resistant. Previous practical quantum-resistant protocols [31,52] are
not secure against malicious client and involve the use of a trusted third-party
verification server and therefore client privacy is not completely achieved.

1.2 Contribution

We propose a protocol to support all of the above features. Our technique
combines state-of-the-art cryptographic tools such as Homomorphic Encryption
(HE) and Zero-Knowledge-Proof (ZKP) to balance security and usability of the
system. The techniques are all lattice-based, which is currently the best candi-
date for long term security against quantum attacks. Our protocol also achieves
privacy against server exposure without relying on a trusted third party. The
contributions include:

– A quantum resistant and provable-secure biometric authentication protocol
that does not rely on trusted third-parties (Sect. 3). The server stores the
encrypted data and does homomorphic operations to compute the distance
(HD) to decide the authentication result. It does not need a third party to
decrypt the encrypted HD but sending it to the client for decryption. The
client uses ZKP to convince the server that the ciphertext was decrypted
correctly.
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– The protocol provides security under malicious client model, this is done by
a new ZKP technique that we design specifically for the ciphertext packing
method of [52] (Sect. 4.1). It is also applicable to do proof of plaintext knowl-
edge for the BV Homomorphic Encryption scheme [7] that we adapted, the
ZKP technique is based on [48].

– Due to the noise inherent inside lattice-based homomorphic encryption and
its correlation with the evaluated ciphertext, we observe that there can be
information leakage about the original plaintexts used in the homomorphic
computations to a two-factor attacker that exposed the client’s secret key.
We propose an approach to cover such leakage without significantly reducing
the efficiency of the protocol: the approach is a new application of Renyi
Divergence (RD) based analysis to show the security of the protocol with a
small ‘imperfect’ one-time pad (Sect. 4.2). This correlation of Homomorphic
Encryption noise with the original plaintext before homomorphic evaluation
was observed as a problem of “circuit privacy” in theoretical HE literature
[21,41], but the proposed solutions [15,16,35] involves ‘smudging’ (imperfect
masking) with an exponentially large noise or bootstrapping techniques (in
the security parameter) that reduces efficiency. In contrast, our Renyi-based
method can use much smaller imperfect masks leading to better efficiency.
This is the first application of Renyi divergence techniques to circuit privacy
of HE to our knowledge.

2 Preliminaries

2.1 Notations

We use R and r to denote a ring and its element (e.g., r ∈ R). Specific rings
R used in this work include ring of integers Z and ring of polynomials Rq =
Zq[x]/(xn + 1) for n a power of 2 and Zq to be the ring of integers modulo q.
We write elements of polynomial rings in boldface (e.g. x ∈ Rq), a polynomial
ring element can be represented interchangeably by a vector of integers (e.g.−→x = x = (x1, x2, . . . , xn)). Standard vector notation is used in different rings
(e.g. −→v ∈ Z

n
q or −→v ∈ Rn

q ). Ring operations are denoted as (+, ·), inner product

of vector is denoted as 〈−→a ,
−→
b 〉. The output of an algorithm is denoted as x ← A,

a uniform random sample from a distribution is written as u
r←↩ D. Did is used

to denote the distribution of templates sampled from one specific user Uid and
Dbio is the collection of many Dids over the biometric population. We denote
HDx,y to be the Hamming Distance of two bitstring x and y.

2.2 Homomorphic Encryption

Homomorphic Encryption (HE) is a family of cryptosystems that allows opera-
tions on encrypted data. The idea was introduced since late 1970s [40] and has
been actively researched lately ([17,45,46,51], etc.) since the break through work
of Gentry [15]. Although the idea of Fully Homomorphic Encryption (arbitrary
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number of operations) is feasible, its performance has not been considered prac-
tical enough. We only present a Somewhat Homomorphic Encryption system,
the BV system by [7], it allows additions and some levels of multiplications on
the ciphertexts, and it serves well our purpose. The security of this cryptosystem
is based on the hardness of the Ring-Learning With Error (RLWE) problem [30],
we present the polynomial variant (PLWE) of RLWE [47].

The Ring Learning with Errors Problem

Definition 1 (RWLE). Given parameters q, n define the ring Rq = Zq[x]
xn+1 and

a distribution χαq defines a small noise distribution, the RWLEq,n,χαq
prob-

lem asks to distinguish two distributions. In the first distribution, one sam-
ples uniformly (ai,bi) from R2

q. In the second distribution, one first samples

s
r←↩ Rq, ei

r←↩ χαq and generates (ai,bi) by sampling ai
r←↩ Rq and compute

bi = ai · s + ei.

SHE Scheme construction. The BV cryptosystem is as follows.
Setup. Initiate (n,m, q, t, χ) to define the ciphertext space Rq, the plaintext

space Rt = Zt[x]
xn+1 , and the error distribution, note that t << q.

KeyGen. The secret key sk can be chosen by select a small element s ∈ Rq,
one can sample s

r←↩ χn. The public key pk is a pair of ring element
(p0,p1) where p1

r←↩ Rq and p0 = −(p1s + te) with e
r←↩ χn.

Encryption. Given a plaintext m ∈ Rt and a public key pk = (p0,p1), the
encryption first samples u, f ,g

r←↩ χ and compute a fresh ciphertext by

Encpk(m) = (c0, c1) = (p0u + tg + m,p1u + tf)

Conventionally, we use [[P ]] to denote the encryption of a plaintext P
under BV scheme with the public key and we do not take into account
the randomness. When we want to specify also the noise used in the
encryption, we write [[(P, e)]], where e is the noise.

Decryption. Although the above encryption generates ciphertexts of 2
elements only in Rq, the homomorphic operations (discussed next) will
make the ciphertext longer. We can write the decryption for ciphertext
c = (c0, c1, . . . , cL) with the extended secret key sk = (1, s, s2, . . . , sL) as
Dec(c, sk) =

[
[〈c, sk〉]Q

]
t
.

Homomorphic Operations. Given 2 ciphertext c = (c0, c1, . . . , cL) and
c′ = (c′

0, c′
1, . . . , c′

L). The homomorphic addition add(c, c′) is computed
by component wise addition add(c, c′) = (c0 + c′

0, . . . , cL + c′
L). The

homomorphic multiplication mult(c, c′) is computed by mult(c, c′) =
(ĉ0, ĉ1, . . . , ĉ2L−2) with

∑2L−2
i=0 ĉiz

i =
∑L−1

i=0 ciz
i × ∑L−1

j=0 c′
jz

j , where
z denotes a symbolic variable.

2.3 Ciphertext Packing

Given a bit string plaintext m ∈ {0, 1}∗, there are several ways that one can
encode it to a polynomial, or a ring element m ∈ Rt before encryption. A recent
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popular approach for BV cryptosystem is called CRT packing method, which is
based on Chinese Remainder Theorem [45]. The method allows Single Instruc-
tion, Multiple Data (SIMD) operations on encrypted data. However, we do not
use this packing technique as there is not yet known efficient method to compute
HD based on it. We instead apply the method from [52], which is an extension
of [27], the technique allow HD computation in just one level of multiplication.
The definition follows.

Definition 2. For T = (t0, . . . , tn−1) and Q = (q0, . . . , qn−1), we define two
types of polynomials in the ring RQ of the SHE scheme: pm1(T) =

∑n−1
i=0 tix

i

and pm2(Q) = −∑n−1
j=0 qjx

n−j. The two types of packed ciphertexts are defined
as [[pm1(T)]] and [[pm2(Q)]].

In the ring RQ we have xn = −1, then when we do multiplication between
pm1(T) and pm2(Q), the constant term of the result would be the inner product
〈T,Q〉. We can also do homomorphic multiplication on the ciphertexts and get
the ciphertext of the inner product similarly. Furthermore, we can use this result
to compute HD as follows, this operation costs one level of multiplication with
3 additions and 3 multiplications on ciphertexts.

Theorem 1 ([52]). Let C1 = −∑n−1
i=0 xn−i and C2 = 2 − C1 =

∑n−1
i=0 xi. Let

Enc(HD) be a ciphertext given by

[[pm1(T)]] ∗ [[C1]] + [[pm2(Q)]] ∗ [[C2]] − 2 ∗ [[pm1(T)]] ∗ [[pm2(Q)]]

Then, the constant term of Dec(Enc(HD)) gives the Hamming Distance of T
and Q.

2.4 Zero Knowledge Proofs and ISIS Problem

Zero Knowledge Proofs (ZKP), first introduced in [18], is a strong cryptographic
tool, a beautiful notion that goes beyond the limits of traditional proofs: In a
ZKP system, a Prover P convinces a V erifier P that some statement is true
without leaking any thing but the validity of the assertion. There are several
types of ZKP, which are the building blocks in many cryptographic protocols
(anonymous credential systems, identification schemes, group signatures, etc.).
In this work, we focus on ZKP of knowledge (ZKPoK) [5,18], where P needs to
also convince V that he knows a “witness” for the given statement, we then apply
such proof to enforce the user to follow the authentication protocol transcript
and therefore claim that the protocol is secure against malicious clients. ZKPoK
has been actively studied in the last 30 years [13,28,32,38], we focus our work on
techniques to do ZKPoK for an important hard-on-average problem in lattice-
based cryptography: the Inhomogeneous Small Integer Solution (ISIS) problem.
The proof relation is

RISISn,m,Q,β = {((A, y); x ) ∈ Z
n×m
Q × Z

n
Q × Z

m : (‖x‖∞ ≤ β) ∧ (Ax = y mod Q)}
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The secret witness of P is x and the public parameters for V are (A,y).
One of the main research directions was initiated by Stern [48], he proposed the
protocol for a simpler relation (Syndrome Decoding Problem). Ling et al. [28]
developed a scheme to fully support ISIS proofs. The proof is a 3-move interactive
protocol: P starts the protocol by computing and sends to V three commitments;
V then sends to P a random challenge; P reveals two of the three commitments
according to the challenge. The Prover’s witness is the secret vector x , the
public inputs are A and y . The protocol is detailed in [28]. We refer readers to
the original paper for correctness and statistical zero-knowledge proofs. We note
that from their result, each round of communication costs log βÕ(n log Q) bits
and we denote SternExt(A,x,y) for the whole run.

3 The Protocol

3.1 The Syntax and Security Model

We first describe the protocol and its security model in generic form. We then
can use them as a framework to apply and analyze in our specific proposal.

The Generic Two-Party Model

Entities: There can be 2 or 3 typical entities involved in a secure biometric
authentication system. The user U , an authentication server S, and a decryp-
tor, who is a third party trusted by both of the users and the server. The
decryptor presents in some systems [19,20,31], with the assumption that there
is no collusion between this entity and U or S. In our work, we aim to avoid
the assumption of trusted decryptor party, so we only have two parties, U
and S.

Biometrics Features in non-private setting. In biometric authentication
systems (e.g., fingerprint authentication system), a user U first enrolls his fin-
gerprint template X with the server S. U later authenticates with S using the
same finger with a template Y , S uses an algorithm V erify(X,Y ) to obtain
the result of the authentication: Accept or Reject. Different fingerprint sys-
tem might use different features of fingers such as minutia or fingercode to
compute this distance Δ between X and Y in the algorithm V erify. The dis-
tance Δ is compared to some predefined threshold value τ to determine the
result of the authentication. We refer the reader to [22] for biometric feature
extraction and comparison techniques. Our protocol assumes that Hamming
Distance is used in V erify(x, y).

Unlike password based system where U always uses one same query for many
authentication, all biometric systems have the concept of False Acceptance
Rate (FAR), where the system Accept an incorrect template; and False
Rejection Rate (FRR), where the system Reject a genuine one. Balancing
these 2 rates while keeping good performance is one of the main challenges
that fingerprint verification algorithms [14] are trying to solve. We also reflect
these two rates in our models.
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Algorithms and Procedures in privacy-preserving setting: We describe
the high level constructions of the protocol as follows
Enroll: This procedure inserts records into the server’s database.

– Input: Client: identity k, a registered template Xk; Server: Param-
eters of the cryptographic tools used.
– Output: A public-private key pair (skk, pkk) for the user Uk. The
server learns the protected template of Tk of Xk.

Auth: This procedure allows a user to authenticate with the system.
– Input: Client: identity k, a query template Yk and the secret key
skk; Server: record (k, Tk, pkk)
– Output: The server learns the authentication result res =
{Accept,Reject}

Correctness Requirement: A genuine user Uk runs (skk, Tk) ←
Enroll(k,Xk) using a Xk ∈ Supp(Dk) and later uses his biometric tem-
plate Yk

r←↩ Dk to do res ← Auth((k, Yk, skk), (k, Tk, pkk)) The privacy-
preserving protocol works correctly if FRR under this system is exactly
equal to FRR of the non-privacy preserving system:

Pr[res = V erify(Xk, Yk)] = 1

The Security Model

Privacy against an Honest But Curious server: The security model is
defined in terms of following security games.

The real game RealA(Dk,Xk): This is the game for a privacy attack against
the privacy-preserving protocol for the underlying biometric system, between
an attacker A and a challenger C. The input to the game is an attacked Uk

with biometric distribution Dk ∈ Dbio and a user template Xk ∈ Supp(Dk).
1. C runs (Tk, skk) ← Enrol(k,Xk) and sends Tk to A.
2. For i = 1 . . . q:

– C samples Yi
r←↩ Dk

– C simulates the Auth protocol, playing the roles of both the client
and the server: res ← Authi((k, Yi, skk), (k, Tk, pkk))

– Let Vi denotes the ith view of S when C runs Authi. C sends the view
Vi to A.

3. A outputs a bit β, representing some information that A has learned
about (Dk,Xk). The game output is RealA(Dk,Xk) = β.

The ideal game IdealA′(Dk,Xk): This is the game for a privacy attack against
an ideal privacy scenario for the underlying biometric authentication system,
where the attacker A′ interacts with a challenger C′. The input to the game
is an attacked Uk with biometric distribution Dk ∈ Dbio and a user template
Xk ∈ Supp(Dk). In this ideal game, the information A′ can learn about
(Dk,Xk) is the value of HDXk,Yk

which implies the bit V erify(Xk, Yi).
1. For i = 1 . . . q:

– C′ samples query template Yi
r←↩ Dk.

– C′ sends HDX,Yi
to A′.
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2. A′ output a bit β′, representing some information that A′ has learned
about (Dk,Xk). The game output is IdealA′(Dk,Xk) = β′.

Definition 3 (Privacy Security against Server). We say that a biometric
authentication protocol is q-private in the sense of biometric template privacy
against an honest but curious server S if for every efficient real-game attacker
A, there exists an efficient ideal-game attacker A′ such that, for all (Dk,Xk) we
have:

|Pr[RealA(Dk,Xk) = 1] − Pr[IdealA′(Dk,Xk) = 1]| ≤ negl(λ).

Security against the malicious client: In this work, we aim for security
against active client, where an attacker A is assumed not to follow the protocol
transcript.
Biometric Impersonation: FAR is the usual biometric impersonation

probability, it is inherent to the biometrics themselves without any cryp-
tographic protocols. We first discuss this security game (which will be
referred to as biometric impersonation).
Setup: C samples Xk

r←↩ Dk from a random Uk (Dk
r←↩ Dbio).

Query: A is given access to the authentication oracle V erify(Xk, Y )
that returns the authentication result of Uk with a query template Y .
A has q attempts to make queries, in each attempt, A chooses a Yq

by himself and does V erify(Xk, Yq).
Guess: A outputs Yq′ such that V erify(Xk, Yq′) = Accept.

The advantage of A in the game is defined as

Advbio
A (λ) = Pr[V erify(Xk, Yq′) = Accept]

In this basic model, when q = 1, the advantage of A is FAR. Therefore,
we can say the advantage of A for q queries is Advbio

A (λ) ≤ q × FAR.
Privacy-Preserving Protocol: This model extend the above protocol and

captures the client side attacks.
Setup: The setup phase includes 2 steps:

– C samples Xk
r←↩ Dk from a random Uk (Dk

r←↩ Dbio).
– C runs Enroll(k,Xk) that returns (skk, Tk).

Query: In the query phase:
– A is given access to the authentication oracle Auth(Y ) that

returns the authentication result of Uk with a query template Y .
– A chooses the attack type t ∈ {I, II} which specifies the scenario

of key exposed or template exposed.
– C gives skk if t = I or Tk if t = II to A. Note that, this model

reflects the 2-factors authentication (the secret key and the bio-
metric template), if A requests both factors, he loses the game.

– C and A runs Auth() q times, For the ith run, A plays the client’s
role that chooses and sends Yi to C, C plays the server’s role that
replies with resi = Auth(Yi).
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Guess: A wins the game if it outputs Y such that Auth(Y ) =
Accepted.

The advantage of A in this game is defined as

AdvImp
A (λ) = Pr[A wins]

We would want this advantage value not to be too large compared to
the non-privacy-preserving biometric impersonation model’s advantage
Advbio

A (λ), which was bounded by q × FAR.

Definition 4 (Impersonation Security). We say that a biometric authenti-
cation protocol is c-secure in the sense of template protection against the mali-
cious user U if AdvImp

A (λ) is not greater than Advbio
A (λ) in some factor c

(if c = 1 we would have perfectly the same security level as the non-privacy-
preserving system):

AdvImp
A (λ) ≤ c × Advbio

A (λ)

3.2 Our Protocol

We denote U to be the client and S to be the server. There are 3 main submodules
in the protocol: Setup, Enrol, and Authenticate

Setup. U and S initialize the parameters, there are several categories:
Biometric Authentication System Parameters. These parameters are

standard ones used by non privacy preserving biometric authentication
systems:

– False Acceptance Rate (FAR) and False Rejection Rate (FRR)
– τ : Threshold for comparing the Hamming Distance to decide the

authentication result.
– n′: The bit-length of the encoded biometric data.

Ring-LWE based techniques parameters. These parameters are used in
the lattice-based cryptosystem which provide client privacy against long
term quantum attacks.

– λ: General security parameter of the cryptosystem
– n: Integer n defining the plaintext and ciphertext spaces rings.
– t: Integer t defining the plaintext space ring Rt = Zt[x]/xn + 1.
– q: Integer q defining the ciphertext space ring Rq = Zq[x]/xn + 1
– χαq: A distribution which is used to sample noises for LWE-based

techniques. We choose χαq to be a discrete Gaussian distribution with
standard deviation αq.

– δ: Renyi Divergence parameter for the security of noise masking.
(Section 4.2)

Keygen. Keys are generated for U :
– Secret key: s

r←↩ χn
αq

– Public key: pk = (p0,p1), where p0 = −p1s − te with p1
r←↩ Rq and

e
r←↩ χn

αq.
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Enrolment. U extracts the biometric template x ∈ {0, 1}t, note that the bit
string x can be represented as a ring element of Rt. The encryption is done
by [[x]] = (c0, c1) and sends to S.

Authentication. This is done in following steps:
1. U extracts his biometric again y to use as the query. U sends [[y]] =

(c′
0, c′

1) to S.
2. ZKP for the first relation: U has to prove that [[y, ẽy]] is a valid encryption,

that is, it encrypts a bit string under the BV cryptosystem using the
corresponding secret key. This is done by module SternBV(A, y, x)

described in Sect. 4.1, where A =
[
c′

0, t, 0, 1
p0, 0, t, 0

]
, X = [s, ẽy, e , y]T and

Y = [c′
1,p1]T .

3. HD Computation: S computes [[HDx,y]] using procedure in Sect. 2.3 where
the constant coefficient of HD is the Hamming Distance HDX,Y . We
note that this noise term eHD of [[HD, eHD]] can leak information about
x when HD is decrypted. Therefore, we need to do an extra step to secure
this operation.

– Sample er
r←↩ χn

σ such that σ is big enough compared to ‖eHD‖∞
(Sect. 4.2).

– Sample r = {r1, ..., rn} r←↩ Zn
q and compute [[r, er]] and do one homo-

morphic addition operation to mask both the values of HD and the
noise eHD: [[HD′, e′

HD]] = [[HD, eHD]] + [[r, er]]
The result [[HD′]] is then sent to U .

4. U decrypts [[HD′]] and derive the actual value HD′ from the first coeffi-
cient of the plaintext:dec [[HD′]] = (HD′, r′

1, r2, . . . , r
′
n−1) for some r′

i. U
sends HD′ to S.

5. U proves that it computes the decryption honestly, this is done similarly
to step 2.

6. S unmasks HD′ by computing HD = HD′ − r1 and output the authen-
tication result Accept if HD < τ and Reject else.

Correctness. We start with the noise sampled during key generation: e0
r←↩ χαq

where χαq is a Gaussian distribution with standard deviation αq. When sampling
the noise, we can tail-cut the coefficients of the noise vector at 3αq and set the
noise vector infinity norm bound when doing key generation to be Bχ ≤ 3αq.
Denote B0 to be the noise bound of the first level ciphertext c = (c0, c1). We
have

[〈c, s〉]q = m + t(g + fs − e0u)

So we can bound B0 ≤ t(1 + Bχ + 2nB2
χ). From Theorem 1, we can derive the

noise of the HD ciphertext (unmask) BHD ≤ 2nB0 +nB2
0 . The noise of the final

masked ciphertext is

BHDMasked ≤ (4πkn + 1)n(B2
0 + 2B0)
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where k = 1 +
√

1
π log 4nFAR−1 (Sect. 4.2). For correct decryption, we want this

noise to be less than q/2t, the final correctness condition is: q > 4πn2t(B2
0+2B0).

Lemma 1 (Condition for Correct Decryption of HD). For the BV encry-
pted Hamming Distance [[HD]], the decryption recovers the correct result if
〈[[HD]], s〉 does not wrap around mod q, namely, if q > 4πn2t(B2

0 + 2B0).

Security. The proposed scheme satisfies the security notions defined in Sect. 3.1,
proofs are provided in the full version of the paper.

Theorem 2 (Server side security). Under the IND-CPA security of BV
cryptosystem, and the zero-knowledge property of the Stern protocol, the proposed
scheme satisfies (Honest But Curious) Server Privacy Security.

Theorem 3 (Client side security). Under the IND-CPA security of BV
cryptosystem and the soundness property of the underlying Stern protocol, the
proposed scheme satisfies Impersonation Security. Concretely, for δ > 0, the
protocol is (q, c)-secure against impersonation with c ≤ c(δ)+3 ·c1, assuming the
underlying non-private biometric protocol has impersonation probability εbio and
the underlying Stern ZK protocols have knowledge error εZK1, εZK2 such that
q(εZK1 + εZK2) + δ ≤ c1 · εbio, c(δ) = 2e1+2δ, and the condition σ/r0 ≥ 4πknq
holds, with k = 1 +

√
1/π ln(2nq/δ) and r0 an upper bound on the size of the

noise in CHD.

4 Zero Knowledge Proofs and Noise Masking Analysis

Our main technical contributions in this work include a variant of the Stern-
based Zero Knowledge Proof technique and a security improvement by applying
Renyi Divergence (RD) to mask the noise of result ciphertexts. We discuss these
techniques in this section.

4.1 Stern-Based ZKP

Recall that we need to construct a proof for the ISIS relation:

RISISn,mq,β
= {((A,y);x ) ∈ Z

n×m
q ×Z

n
q ×Z

m : (‖x‖∞ ≤ β)∧(Ax = y mod q)}
There are several approaches to construct such proof (e.g. [29,32,48]). We

discuss an approach based on [48] in this work. We refer our readers to the origi-
nal paper for the detailed steps of the protocol and we denote SternA,x,y for the
whole proof. Provided such a proof, it can be applied to do a Zero Knowledge
Proof of Plaintext Knowledge (ZKPoPK) for latticed-based cryptosystems. For
example, in the work of [28] with an extension (denoted by SternExt), plain-
text knowledge proof was done by proving the encryption relation of Regev’s
cryptosystem [39]:

Rq,m,n,t,χ
Regev = {((p0, p1), (c0, c1); r ||M) ∈ (Zm×n

q × Z
m
q ) × (Zn

q × Zq) × Z
n+1
q :

(c0 = p0r) ∧ (c1 = p1r + M)}
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The proof worked by letting A′ =
[
p1, 1
p0, 0

]
and y =

[
c1
c0

]
being the public

parameters and let x =
[
r
M

]
be the Prover ’s witness. We observe that A′x = y

mod q, that is, x is a solution to the ISIS problem, provided that ‖r‖∞ ≈ |M |
AND the Prover must know r . This solution only works in the symmetric key
setting, in many other contexts, the client does not know r as encryption is
done by other parties using public key. For such situation, we can look at the
decryption equation:

c1 − c0s = tẽ + M

Therefore, we can write the decryption relation as:

R
q,m,n,tχ
Regev,dec = {((p0, p1), (c0, c1), s, e, ẽ, M) ∈ (Z

m×n
q × Z

m
q ) × (Z

n
q × Zq) × χ

n × χ
n × χ × Zq :

(p1 = p0s + te) ∧ (c1 = c0s + tẽ + M)}

Similarly, we can let AStern =
[
c0, t, 0, 1
p0, 0, t, 0

]
to be the public parameters and

XStern = [s, ẽ, e ,M ]T and try applying SternExt to obtain the ZKPoPK. How-
ever, it will not work because the original protocol proves that ‖XStern‖∞ < β.
In this situation, we want to prove the bound of separate components differently:
in our above example, ‖ẽ‖∞ > ‖e‖∞. In Regev cryptosystem, the problem might
not be clear enough as the norm of each vector in XStern is quite close to each
other but for other latticed-based system, we can see a big difference. For exam-
ple, if we look at the BV system’s decryption relation:

R
q,n,t,χ
BV = {((c0, c1), (p0,p1), s, e

′
, e,m ∈ (Rq × Rq) × (Rq × Rq) × χ

n × χ
n × χ

n × Rt :

(p1s + te = −p0) ∧ (c1s − te
′ − m = −c0)}

Our Prover ’s witness in this situation is XStern = [s, e′, e,m]T with
‖m‖∞ << ‖s‖∞ ≈ ‖e‖∞ < ‖e′‖∞. Therefore, instead of proving ‖XStern‖∞
< β, we need a proof with different constraints on the witness’s components.
We present a solution for this problem.

Our construction

The idea. Our first observation is, instead of proving ‖xi‖∞ < βi, or all the
coefficients xi of x is in the range {−βi, . . . , βi}, we can also prove xi+βi.f(x)
is in the range {0, . . . , 2βi}, where f(x) = 1 + x + x2 + · · · + xn−1. Secondly,
if we decompose xi + βi.f(x) to their binary representation and applying the
Stern’s variant of [25] to prove the relation

RKTX = {((A,y),x) ∈ Zn×m
q × Zn

q × {0, 1}m : wt(x) ∧ A.x = y mod q}

Then we can obtain the prove for the original relation Rq,n,t,χ
BV . Note that at

this point the Prover’s witness is a binary vector, that is, if we need to prove



A Lattice-Based Approach to Privacy-Preserving Biometric Authentication 309

some part of the message is binary, we obtain that goal at this point as well.
It is important if we use such proof for latticed-based cryptosystem where the
message space is R2: a proof for ISIS relation is not useful in this situation
because it only proves that the infinity norm of the whole witness is less than
some β > 2.

Protocol description. The protocol SternBV(A,y,x) works as follows. Let
A be a matrix of m × l ring element (A ∈ Rm×l

q ), x be a vector of l ring
elements x = {x1,x2, . . . ,xl} and similarly y = {y1, . . . ,ym}. The protocol
includes the following steps.

Step 1. Normalizing the bound of each component xi of x from {−βi, . . . , βi}
to {0, . . . , 2li}, where li is the smallest integer satisfying 2li > (2βi − 1). This
step is done by one ring multiplication for each xi, let x′

i = xi+βi.f(x), where
f(x) = 1+x+x2+· · ·+xn−1. After this normalization step, instead of proving
the relation aixi = yi with ‖xi‖∞ ∈ {−βi, . . . , βi}, we prove aix′

i = y′
i with

‖x′
i‖∞ ∈ {

0, . . . , 2li
}
, where y′

i = yi + aiβif(x).

Step 2. Decompose x′
i = xi + βi into their binary representation

x′′
i =

li−1∑
j=0

2jbj

Let x′′ be the result ring element that concatenates all x′′
i and has L =

∑
li

coefficients. In this step we need to hide the Hamming Weight of the secret
vector x′

i. This hiding task is done by padding:

1. Let ζ0 and ζ1 be the number of coefficients of x′′ that equal to 0 or 1,
respectively.

2. Sample a random vector ζ ∈ {0, 1}L that has (L − ζ0) coefficients 0 and
(L − ζ1) coefficients 1.

3. Output xStern = x′′||ζ.
The result binary vector xStern has length 2L and the total number of 0s and
1s in the xStern are the same.

Step 3. We denote rot(c) ∈ Z
n×n
Q to be an anti-circulant square matrix, whose

first column is c and the other columns are the cyclic rotations of c with the
cycled entries negated

rot(c) =

⎡
⎢⎢⎣

c0 −cn−1 −cn−2 . . .
c1 c0 −cn−1 . . .
. . . . . . . . . . . .

cn−1 cn−2 cn−3 . . .

⎤
⎥⎥⎦

and reconstruct the matrix A with the rot matrices:

∀ai,j ∈ A : a′
i,j = rot(ai,j)

The result expanded matrix is denoted A′. We also need to pad the resulting
matrix with corresponding number of 0s to make sure A′ complying with all
x′

i. Let AStern be the padded result.
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Step 4. Modify yi: Let y′
i = yi + aiβif(x) and let yStern be the concatenation

of all y′
i.

Step 5. Run the Stern protocol as in [28] for the proof of ASternxStern = yStern.
Result. Our protocol has the following properties:

– The knowledge extractor produces different xi with ‖xi‖∞ ≤ βi. Inherit-
ing from the original Stern protocol, the extraction gap is γ = 1.

– The communication cost is 2(n log q)
∑

li + commitmentSize for each
round.

– In the full version of the paper, we also show a variant of this ZKP that
allows relations where some coefficients of the witness are unbounded.
This is used in the last step of the protocol where we need to prove only
the first coefficient of the authentication result.

4.2 Renyi Divergence and Its Application in Noise Masking

Consider the a product ciphertexts result in BV cryptosystem (Sect. 2.2).

mult(c, c′) = (c0c′
0, c0c

′
1 + c1c′

0, c1c
′
1)

The noise term of this result ciphertext correlates to both s and m. In many
contexts, this leakage might be fine for a genuine user with a secret key because
s/he is supposed to know the key and decrypt the message. However, in many
other contexts, especially in multi-factor authentication scenarios, this is not the
case. For instance, in our system, we do not want the client to know the Hamming
Distance result, so that an attacker with a stolen device and a secret key cannot
derive information about the data stored in the server. We propose to mask
this leakage by homomorphically adding the ciphertext Enc(HD) with Enc(r)
to refresh the noise terms, together with masking the Hamming Distance. The
question is how much we need to shift the original noise distribution to preserve
correctness while providing the new security measure. We use Renyi Divergence
analysis to answer the question.

Let D1 and D2 be the probability distributions of the original noise in the
ciphertext Enc(HD) and the new shifted noise of Enc(HD+r). We observe that
the 2 distributions are identical Gaussian distribution with the same standard
deviation σ and different means. Let r0 be the shifted in means of D1 and
D2. Our goal is to set up parameter r0 such that D1 and D2 are statistically
indistinguishable while keeping other parameters of the cryptosystem within
practical performance thresholds. Statistical Distance (SD) is normally used to
measure the difference of distributions and is generally bounded by

SD(D1,D2) =
1
2

∑
x∈X

|D1(x) − D2(x)| ≤ K × r0
σ

where K is a constant. We quickly see that in order for SD to be indistinguishable
(SD < ε ≈ 1

2λ , where λ is the security parameter), the standard deviation of the
initial noise needs to be really large, which is σ ≥ Kr02λ.
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In the work of [3], the authors proposed Renyi Divergence (RD) as an alter-
native to measure distributions closeness and its applications to security proofs.
Ra(D1‖D2) of order a between D1 and D2 is defined as the expected value of
(D1(x)/D2(x))a−1 over the randomness of x sampled from D1.

Ra(D1‖D2) =

( ∑
x∈D1

D1(x)a

D2(x)a−1

) 1
a−1

Similar to SD, RD is useful in our context with its Probability Preservation
property (we refer readers to [3] for detailed formal descriptions): Given D1 and
D2 as described, for any event E, for instance, we want to look at D2(E) is the
winning probability of the attacker in the distinguishing game, the probability
of the event with respect to D2 is bounded by

D2(E) ≥ D1(E)
a

a−1 /RDa(D1‖D2) (1)

Particularly, if we look at the second order (a = 2) of RD like previous
work [26], we would have D2(E) ≥ D1(E)2/RD2(D1‖D2). Provided that the
distribution functions of D1 and D2 are discrete Gaussian on lattices, which are

of the form ρσ(x) = 1
σ e−π x2

σ2 , we have RD2(D1‖D2) = e2π
r20
σ2 ≈ e2π, when r0 is

much smaller than σ. That means when switching from D1 to D2, the success
probability of E will be at least the old probability to the power of 2 divided
by some constant. This squaring factor brings a big trade-off, for example, in
our protocol, we would need to use FAR = 2−20 in the non-privacy biometric
settings to get FAR = 2−10 in our scheme.

We aim at a solution to remove this factor. The idea is to look at RD∞ in
stead of RD2: from Eq. (1), we can see that when a is large, a

a−1 becomes 1.
However, for usual Gaussian distributions, RD∞ is also infinity (not a constant
e2π like in RD2 when a = 2). This is due to the ratios D1(x)

D2(x)
becoming large when

samplings are in the extreme tails of the distributions. Our idea is to truncate
the distribution when doing noise sampling: if we get a noise value that is too far
in the tail, we reject and sample again. As a result, the truncated distribution
grows slightly, that means, the small noises have a bit higher probability when
sampling, which does not have a big impact in security.

For the following analysis, let D1 to be a discrete Gaussian on Z with devia-
tion parameter σ shifted by the constant r0 ∈ Z, while D2 is a discrete Gaussian
on Z with dev. par. σ centered on zero, i.e. D1 = DZ,σ+r0 and D2 = DZ,σ, where
DZ,σ(x) = e−π·x2/σ2

/
∑

z∈Z
e−π·z2/σ2

for x ∈ Z. To allow us to use RD∞ we use
tail-cut variants D

(cut)
1 and D

(cut)
2 of D1 and D2, respectively with parameter k.

The parameter k defines where D1 and D2 are cut at, for example, we can set
k = 3 to cut the distributions at 3 deviation parameters from the mean. So, we let
D

(cut)
Z,σ denote distribution DZ,σ tail-cutted to the interval [−k·σ, k·σ] by rejection

sampling. We let D
(cut)
1 = D

(cut)
Z,σ + r0 and D

(cut)
2 = D

(cut)
Z,σ . Notice that the sup-

ports of D
(cut)
1 and D

(cut)
2 are different, namely Supp(D(cut)

1 ) = [−kσ+r0, kσ+r0]
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while Supp(D(cut)
2 ) = [−kσ, kσ]. We assume, without loss of generality, that

r0 > 0. We would like to switch from distribution D
(cut)
1 to D

(cut)
2 , but unfor-

tunately R∞(D
(cut)

1 ‖D
(cut)
2 ) is not finite since Supp(D(cut)

1 ) is not a subset of

Supp(D(cut)
2 ). To satisfy the latter condition, we first switch from D

(cut)
1 to D

(cut)

1

by further cutting (by rejection sampling) the positive tail of D
(cut)
1 to ensure

it does not go beyond the kσ upper bound on tail of D
(cut)
2 , and use a (mild

condition) statistical distance step to lower bound D
(cut)

1 (E). Then, in a second
step using Supp(D

(cut)

1 ) = [−kσ +r0, kσ] ⊆ [−kσ, kσ] = Supp(D(cut)
2 ), we derive

a finite upper bound on R∞(D
(cut)

1 ‖D
(cut)
2 ) to lower bound D

(cut)
2 (E). Details

follow.

First SD Step. Since Supp(D(cut)
1 ) is transformed into D

(cut)

1 by rejection
and resampling if a sample of Supp(D(cut)

1 ) falls in (kσ, kσ + r0], we have

SD(D(cut)
1 ,D

(cut)

1 ) ≤ D
(cut)
1 ((kσ, kσ + r0]) = D

(cut)
2 ((kσ − r0, kσ]) = DZ,σ((kσ −

r0, kσ])/C2, where C2 = DZ,σ([−kσ, kσ]). Now, we have

Δ
def=

DZ,σ((kσ − r0, kσ])
C2

=

∑
z∈(kσ−r0,kσ]) e−πz2/σ2

∑
z∈[−kσ,kσ]) e−πz2/σ2 .

For the numerator, we have an upper bound
∑

z∈(kσ−r0,kσ]) e−πz2/σ2 ≤∫ ∞
kσ−r0

e−πz2/σ2
dz ≤ σ · e−π(kσ−r0)

2/σ2
, using the standard normal distribution

upper bound
∫ ∞

γ
1√
2πσ

· e−z2/σ2
dz ≤ e−γ2/(2σ2) for γ ≥ 0. For the denomina-

tor, we have a lower bound
∑

z∈[−kσ,kσ] e
−πz2/σ2 ≥ 2 · ∑

z∈[0,kσ]) e−πz2/σ2 ≥
2 · (

∫ ∞
0

e−πz2/σ2
dz − ∫ ∞

kσ
e−πz2/σ2

dz) ≥ σ · (1 − 2 · e−π(kσ−r0)
2/σ2

). There-

fore, SD(D(cut)
1 ,D

(cut)

1 ) ≤ Δ ≤ δ′/(1 − 2δ′) ≤ 2δ′ if δ′ ≤ 1/4, where
δ′ = e−π(kσ−r0)

2/σ2
. Defining δ = 2δ′, we have Δ ≤ δ if δ ≤ 1/8 and the

conditions r0 ≤ σ and k ≥ 1 +
√

1/π · ln(2/δ) hold. Therefore, for any event E

we have D
(cut)

1 (E) ≥ D
(cut)
1 (E) − δ.

Second RD step. The desired RD of order ∞ is defined by

R∞(D
(cut)

1 ‖D
(cut)
2 )) = max

x∈[−kσ+r0,kσ]

D
(cut)

1

D
(cut)
2 (x)

.

Observe that, for each x ∈ [−kσ + r0, kσ], we have D
(cut)

1 (x) = C ·
D

(cut)
1 (x), where the normalization constant C = 1

1−D
(cut)
1 ((kσ,kσ+r0])

=
1

1−D
(cut)
2 ((−kσ+r0,kσ])

= 1
1−Δ , where Δ is defined and upper bounded by δ above

under the assumed conditions on k and δ. Since the D
(cut)
1 (x) and D

(cut)
2 (x)

are shifts of each other, they have the same rejection sampling normaliza-
tion constant with respect to D1 (resp. D2). Therefore, D

(cut)
1 (x)/D

(cut)
2 (x) =
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D1(x)/D2(x) for each x in the support of both D
(cut)
1 and D

(cut)
2 , and we have

R∞(D
(cut)

1 ‖D
(cut)
2 ) ≤ 1

1 − δ
· max

x∈[−kσ+r0,kσ]

D1(x)
D2(x)

= max
x∈[−kσ,kσ]

e
−π(x−r0)2

σ2

e−π x2

σ2

= eπ·r2
0/σ2 · max

x∈[−kσ+r0,kσ]
e

2πr0
σ2 x

This is an exponential function and we get the max value at x = kσ:

R∞(D
(cut)

1 ‖D
(cut)
2 ) = e1/(1−δ) · eπ·r2

0/σ2+2πk·r0/σ.

Since 0 < δ ≤ 1/8, the first factor above is ≤ 1 + 2δ ≤ e2δ. Also, a simple
computation shows that the second factor is ≤ e if the condition σ/r0 ≥ 4π · k
is satisfied using k ≥ 1. We conclude, under the assumed parameter conditions
that R∞(D

(cut)

1 ‖D
(cut)
2 )) ≤ e1+2δ = c′(δ) is constant for constant δ > 0, so that,

by the RD probability preservation property D
(cut)
2 (E) ≥ 1

c(δ) · D
(cut)

1 (E) ≥
1

c(δ) · (D(cut)
1 (E) − δ). Note that if D

(cut)
1 (E) = ε, then by choosing δ = ε/2, we

get D
(cut)
2 (E) ≥ 1

2c(δ) · ε, and we only need k ≥ 1 +
√

1/π · ln(2/δ) and σ/r0
logarithmic in 1/δ, much smaller than σ/r0 linear in 1/δ, which we would need
if we were to use the ‘SD only’ analysis approach.

The above discussion immediately generalizes from the one-dimensional case
of discrete Gaussian samples over Z to the m-dimensional case of discrete Gaus-
sian samples over Z

m due to the independence of the m coordinates. The only
changes to the above argument is that the statistical distance in the ‘SD step’
can multiply by at most a factor m, whereas the RD in the ‘RD step’ above gets
raised to the m’th power, where we replace r0 by ‖r0‖∞. We compensate for
this by replacing the bound δ on Δ in the above analysis by the bound δ/m.
We have therefore proved the following result used in our impersonation security
proof, which improved upon the R2-based analogue result for shifted Gaussians
stated in [26].

Lemma 2. For integer m ≥ 1, real σ > 0,k ≥ 1, real 0 < δ ≤ 1/8 and vector
r0 ∈ Z

m, let D
(cut)
1 = D

(cut)
Zm,σ + r0 and D

(cut)
2 = D

(cut)
Zm,σ be relatively shifted

tail-cut discrete Gaussian distributions, where D
(cut)
Zm,σ is the discrete Gaussian

DZm,σ with its tails cut to the support [−kσ, kσ]m by rejection sampling. If the
conditions k ≥ 1 +

√
1/π · ln(2m/δ) and σ/‖r0‖∞ ≥ 4π · k · m hold, then, for

any event E defined over the support of D
(cut)
1 we have

D
(cut)
2 (E) ≥ 1

2e1+2δ
·
(
D

(cut)
1 (E) − δ

)
.
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5 Result Evaluation

5.1 Parameters

We consider how to set concrete parameters. According to the best known lat-
tice attack [2] and the result of Lemma 1, we can choose (αq = 3, t = 4096, n =
4096, q ≈ 271) to have security level λ ≈ 156 for classical attack and λ ≈ 142
for quantum attack. The plaintext space ring Rt should cover enough biometrics
data upto 4096 bits. The proposed scheme works with only 1 level of homomor-
phic multiplication, computation time is approximately 0.01 s and communica-
tion size is approximately 12 MB. The experiments ran on an Intel core i7 at
3.1 GHz with 16 GB memory, the computations in the ring Rq were done with
Sagemath.

5.2 Limitations and Open Problems

We expose the HD to the server in the last step of the protocol and let the server
do the threshold comparison operation in the plaintext domain. We assume that
given such value, the server should not be able to learn any information about
the original bit strings template. This assumption may hold in practice if HD
between registered and queried templates corresponds to biometric measurement
noise with a probability distribution that is independent of the templates them-
selves, but needs further investigation for specific biometric systems. Doing the
comparison of HD with threshold homomorphically is much less efficient and
removing this assumption is left as an open problem.

Also, we assume honest but curious server, that is reasonable against passive
exposure attacks. Active attacks are harder to do undetected and slower provided
that the server can be audited regularly. We emphasize that previous quantum
resistant protocols also made this assumption, and did not even defend against
passive honest but curious trusted party. Defending against malicious server
privacy is left as an open problem.

Finally, the communication size of Stern-based ZKP protocol is large due to
the round soundness error 2/3 (many communication rounds will be needed for
security). We leave the problem of how to reduce such overhead for future works.

6 Related Work

In a biometric authentication system, a user U first enrols his fingerprint tem-
plate X with the server S. U later authenticates with S using the same finger
with a template Y , S uses an algorithm V erify(X,Y ) to obtain the result of
the authentication: Accept or Reject. Different biometric system might use
different methods to compute the distance Δ between X and Y in the algorithm
V erify. The distance Δ is compared to some predifined threshold value τ to
determine the result of the authentication. We refer the reader to [22] for bio-
metric feature extraction and comparison techniques. In this work, we consider
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the biometric data are represented as binary codes and HD is used to measure the
similarity between two of them. We refer the readers to [11] or [1] for examples
of 2048-bit iris codes generation and HD comparison.

There are three main approaches for privacy-preserving biometric authentica-
tion [4,23,24]. In the Feature transformation approach (cancelable biometrics or
biohashing, such as [9,49]), the template data are encrypted using a client’s key,
it is single factor and not secure if the key is leaked. The Biometric cryptosys-
tem approach (fuzzy vault and fuzzy commitment, [33,50]) is based on error
correcting codes and it is not well understood the tradeoff between biometric
accuracy and security. We focus our work on the last approach, Homomorphic
Encryption, which seems to be the best candidate to provide all of the system
design requirements mentioned.

The idea was first proposed in 2006 ([42]) using addictive homomorphic sys-
tem Paillier [36]. In 2010, Osadchy et al. [34] providing privacy-preserving feature
by combining Paillier system with oblivious transfer protocol. SCiFI uses 900-bit
vector to represent face image data and Hamming Distance (HD) to compare
two vectors. [6] developed a similar system for iris and fingerprints but using
DGK cryptosystem [10] and garble circuit technique instead, they represented
biometric data as 2048-bit vectors and also used HD for threshold comparison.
[52] proposed an approach based on Somewhat Homomorphic Encryption (SHE)
[7], they introduced a ciphertext packing technique to speed up the HD computa-
tion operation. There have been variations and improvements over time ([31,44],
etc.). However, most of the protocols are only secure against a semi-honest client,
many relied on one or more trusted third parties with the client’s secret key to
decrypt the HD.

7 Conclusion

We defined the formal model of secure biometric authentication and proposed
a protocol that satisfies such definition. Our scheme does not rely on a trusted
third party to do the verification but does both of distance computation and
comparison homomorphically on ciphertexts of templates. Such setting require
stronger security requirements, especially on the client-side of the protocol. The
application of ZKP techniques let the system work in malicious client, HBC
server model with the assumption that the server can be audited periodically.
We also introduced Renyi Divergence in the security analysis to allow practical
settings for the scheme. Future works include optimizing the algorithms, parame-
ters, and implementation for practical applications and security levels, extending
the method to other low-FRR biometric verification algorithms or applying the
homomorphic and ZKP techniques to provide malicious client model for lattice-
based protocols.



316 T. Dinh et al.

References

1. Fujitsu develops world’s first slide-style vein authentication technology based
on palm veins - Fujitsu global. http://www.fujitsu.com/global/about/resources/
news/press-releases/2017/0110-01.html. Accessed 23 Jan 2017
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28. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

29. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

31. Mandal, A., Roy, A., Yasuda, M.: Comprehensive and improved secure biometric
system using homomorphic encryption. In: Garcia-Alfaro, J., Navarro-Arribas, G.,
Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS, vol. 9481, pp.
183–198. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29883-2 12

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-31301-6_3
https://doi.org/10.1007/978-3-319-31301-6_3
https://doi.org/10.1007/978-3-642-41383-4_12
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
http://eprint.iacr.org/2011/405
http://eprint.iacr.org/2011/405
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-29883-2_12


318 T. Dinh et al.

32. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4 17

33. Nagar, A., Nandakumar, K., Jain, A.K.: A hybrid biometric cryptosystem for secur-
ing fingerprint minutiae templates. Pattern Recogn. Lett. 31(8), 733–741 (2010)

34. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI-a system for secure
face identification. In: 2010 IEEE Symposium on Security and Privacy (SP), pp.
239–254. IEEE (2010)

35. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 30

36. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

37. Peterson, A.: OPM says 5.6 million fingerprints stolen in cyberattack, five times
as many as previously thought. The Washington Post, 23 September 2015

38. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

40. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

41. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC/SUP
1. In: 40th Annual Symposium on Foundations of Computer Science, pp. 554–566.
IEEE (1999)

42. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted val-
ues. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 31
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Abstract. Homomorphic encryption allows to perform various calcu-
lations on encrypted data without decryption. In this paper, we pro-
pose an efficient method for secure multiple matrix multiplications over
the somewhat homomorphic encryption scheme proposed by Brakerski
and Vaikuntanathan. Our method is a generalization of Duong et al.’s
method, which computes only one multiplication between two matri-
ces. In order to minimize both the ciphertext size and the computation
cost, our method packs every matrix into a single ciphertext so that
it enables efficient matrix multiplications over the packed ciphertexts.
We also propose several modifications to obtain practical performance of
secure multiplications among matrices with larger size and entries. We
show implementation results of our packing method with modifications
for secure multiplications among two and three matrices with 32 × 32
and 64 × 64 sizes and entries from 16-bit to 64-bit.

Keywords: Ring-based somewhat homomorphic encryption
Secure matrix multiplications · Packing methods · CRT method

1 Introduction

The development of cloud computing in recent years allows users to outsource
their data in the cloud. However, security and privacy concerns for both con-
sumers and businesses have risen at the same time. An excellent way to address
such issues is to store all the data in encrypted format and perform computa-
tions on the encrypted data. Homomorphic encryption can support meaningful
operations on encrypted data, and it has been expected to give a powerful tool in
cloud computing. The concept of homomorphic encryption was first introduced
by Rivest et al. in 1978 [17]. The first scheme of fully homomorphic encryption
(FHE) that supports arbitrary operations on encrypted data was constructed
by Gentry in 2009 [8]. After Gentry’s breakthrough, a number of FHE schemes
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 320–330, 2017.
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have been proposed and improved. However, currently known FHE schemes are
yet impractical (e.g., the state-of-the-art bootstrapping [5] takes less than 0.1 s
to refresh the error of a ciphertext for arbitrary operations). On the other hand,
the Paillier scheme [14] and the BGN scheme [1] are practical but their func-
tionality is very limited. Actually, the Paillier scheme (resp., the BGN scheme)
can support only additions (resp., additions and one-depth multiplications). In
contrast, somewhat homomorphic encryption (SHE) schemes, initially used as
building blocks for FHE construction, have recently attracted a lot of attention
from various communities. Compared to FHE, such SHE schemes can support
only a limited number of additions and multiplications, but they are applicable
in various scenarios with reasonable performance.

Costache and Smart [6] compared several features of ring-based SHE schemes
such as the BGV [3], FV [10], YASHE [2], and NTRU [13] schemes (see also [12]
for a comparison of FV and YASHE). They showed that the BGV scheme is
more efficient for large plaintext space than other schemes. In this paper, we
choose to use the BV scheme proposed by Brakerski and Vaikuntanathan [4] as
an alternative of the BGV scheme for secure multiplications among matrices with
large entries, since both schemes have similar structure and the BV scheme is
much easier to understand and implement. The security of the BV scheme relies
on a simplified version of ring-LWE (Learning with Errors) assumption. Over the
BV scheme, Lauter et al. [11] proposed a method to pack an integer of large size
into a single ciphertext so that it enables to efficiently compute secure sums and
products over the integers. After that, Yasuda et al. [18] proposed a new packing
method for secure multiple inner products, and it is efficient only for very small
entries so they modified their method for large size entries [19]. Later, Duong
et al. [7] proposed several packing methods for secure matrix multiplication,
using the idea of Yasuda et al.’s methods [18,19]. (A very similar method to [7]
is presented in [15, Sect. 6], but no implementation result is reported.)

Our Contributions. While the method of [7] enables secure multiplication
between two matrices only, we generalize the method for secure multiple matrix
multiplications. The BV scheme uses R = Z[x]/(xn + 1) as the base ring and
Rt = R/tR as the plaintext space for two parameters n and t. For a secure mul-
tiplication between two matrices A and B, a main ingredient of [7] is to pack A
and B into two types of polynomial over R, and then encrypt the polynomials.
Homomorphic property of the BV scheme enables to compute all the entries of
A×B over packed ciphertexts. Our basic strategy for multiple matrix multipli-
cations A1 × · · · × A� is to adopt the two types of polynomial transformation
of [7] for A1 × · · · × A�−1 and A�. More specifically, we pack A1 by the first
transformation of [7], and flip the columns of A2, . . . ,A�−1 and pack them using
a method similar to A1 to obtain the entries of A1 × · · · × A�−1 in polynomial
format. In contrast, we make use of the second transformation of [7] for A�. But
we take an appropriate jump for exponents of the variable x greater than the
total degree of polynomials over R corresponding to the matrices A1, . . . ,A�−1,
in order to avoid overlapping the coefficients of the decryption polynomial which
are equal to the entries of our desired result A1 × · · · × A�.
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The method of [7] has another obstacle that it requires large t and n for
matrices with large size and entries, which makes the BV scheme very slow.
To address the obstacle, we give several modifications for efficiency. In partic-
ular, for large entries, we split the plaintext parameter t as t =

∏k
i=1 ti with

small ti for some k. Then we encrypt a message modulo every ti so that after
decryption we can recover the original message from every message modulo ti
using CRT (Chinese Remainder Theorem) over the integers. Different from the
double-CRT representation in [9] for SIMD (single instruction multiple data), our
CRT method just splits the plaintext space Rt into small spaces Rti . However,
this method requires k ciphertexts for encrypting a message. Our modifications
enable us to flexibly select parameters of the BV scheme for both enough secu-
rity and efficiency. For example, while the method of [7] took about 7.27 s for
secure multiplication between two matrices with 16 × 16 size and 10-bit entries,
it took only about 0.50 (resp., 0.75 and 1.70) seconds due to our modifications
for 32×32 size with 16-bit (resp., 32-bit and 64-bit) entries (our implementation
level and security level of chosen parameters seem almost same as in [7]).

Notation. The symbols Z and Zt denote the ring of integers and the ring of
integers modulo a positive integer t, respectively. For two integers z and d, let
[z]d denote the reduction of z modulo d included in the interval [−d/2, d/2). Let
Ai (resp., AT

i ) denote the i-th row (resp., column) of a matrix A. Let 〈A,B〉 be
the inner product between two vectors A and B. Let lg(a) denote the logarithm
value of an integer a with base 2.

2 Preliminaries

In this section, we briefly review the construction of the SHE scheme proposed
by Brakerski and Vaikuntanathan [4], simply called the BV scheme. We also
review previous methods for secure matrix multiplication over the BV scheme.

2.1 Construction of BV Scheme

The BV scheme requires the following four parameters:

– n: an integer of 2-power defining the base ring R = Z[x]/(f(x)) with the
cyclotomic polynomial f(x) = xn + 1 of degree n.

– q: a prime number with q ≡ 1 mod 2n defining the ciphertext space Rq =
R/qR = Zq[x]/(xn + 1).

– t: a positive integer with t < q defining the plaintext space Rt = R/tR =
Zt[x]/(xn + 1).

– σ: the parameter defining a discrete Gaussian error distribution χ = DZn,σ

over Z
n with mean 0 and standard deviation σ > 0.

We identify elements of Zn as elements of R by (a0, . . . , an−1) �→ ∑n−1
i=0 aix

i.
In the below, we present the construction of the BV scheme from [11, Sect. 3.2]:
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– KeyGen: Choose s ← χ, sample p1 ∈ Rq (uniformly) and an error e ← χ.
Set a public key pk = (p0, p1) with p0 = −(p1s + te) and a secret key sk = s.

– Encryption: For a message m ∈ Rt, sample u, f, g ← χ and compute

Enc(m,pk) = (c0, c1) = (p0u + tg + m, p1u + tf) ∈ (Rq)2

as a fresh ciphertext, where m is considered as an element of Rq since t < q.
– Decryption: For a ciphertext ct = (c0, c1, . . . , cξ), the decryption is com-

puted by Dec(ct, sk) = [m̃]q mod t, where m̃ =
∑ξ

i=0 cis
i ∈ R.

– Homomorphic operations: Let ct = (c0, . . . , cξ) and ct′ = (c′
0, . . . , c

′
η) be

two ciphertexts. The homomorphic addition “�” is computed by component-
wise addition (we pad with zeros if ξ 	= η)

ct � ct′ = (c0 + c′
0, . . . , cmax(ξ,η) + c′

max(ξ,η)) ∈ Rmax(ξ,η)+1
q .

The homomorphic multiplication “∗” is defined as ct ∗ ct′ = (c̃0, . . . , c̃ξ+η)
with (here z denotes just a symbolic variable)

ξ+η∑

i=0

c̃iz
i =

(
ξ∑

i=0

ciz
i

)⎛

⎝
η∑

j=0

c′
jz

j

⎞

⎠ ∈ Rq[z].

The next lemma gives a condition for the homomorphic correctness (see [4]
for details). It enables to choose parameters to avoid decryption failure.

Lemma 1. For a ciphertext ct, the decryption Dec(ct, sk) recovers the correct
plaintext if it satisfies ‖〈ct, s〉‖∞ < q

2 . Here for a =
∑n−1

i=0 aix
i ∈ R let ‖a‖∞ =

max |ai| denote the ∞-norm of its coefficient representation.

2.2 Previous Methods for Secure Matrix Multiplication

By using packing methods of Yasuda et al. [18,19], one needs m2 secure inner
product computations (i.e., m2 homomorphic multiplications) to compute a
matrix multiplication between two m × m matrices. Here we introduce Duong
et al.’s methods [7], generalizing the methods of Yasuda et al. [18,19] for
secure matrix multiplication. The methods of [7] require only one homomorphic
multiplication.

First Packing Method. Let A and B be two matrices of size m × m whose
entries are positive integers. We pack each row Ai = (ai1, . . . , aim) and column
BT

j = (b1j , . . . , bmj) of matrices A and B, respectively, as follows:

pm(1)(Ai) :=
m−1∑

u=1

aiuxu−1, pm(2)(BT
j ) := −

m∑

v=1

bvjx
n−v+1.
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Define the following two types of polynomial in R = Z[x]/(xn + 1) associated to
two matrices A and B:

Pol(1)(A) :=
m∑

i=1

pm(1)(Ai)x(i−1)m, Pol(2)(B) :=
m∑

j=1

pm(2)(BT
j )x(j−1)m2

.

Define two types of packed ciphertext for a matrix A as

ct(i)(A) := Enc
(
Pol(i)(A),pk

)
for i = 1, 2. (1)

Theorem 1 (Theorem 7 in [7]). Assume n ≥ m3. Let

ct = ct(1)(A) ∗ ct(2)(B)

and let Dec(ct, sk) ∈ Rt denote its decryption result. Then under the condition
of Lemma 1 for the ciphertext ct, for each i, j ∈ {1, . . . , m}, the inner product
〈
Ai, B

T
j

〉
is the coefficient of x(j−1)m2+(i−1)m in Dec(ct, sk).

This method is efficient only for small entries. For large entries, it forces
to take very large size of the plaintext parameter t. Assume that all entries
of Ai and BT

j are p-bit. In order to obtain the correct result after decryption,
one should take t >

〈
Ai, B

T
j

〉
=

∑m
k=1 aikbkj so that the decryption result can

not wrap around (mod t)-operation. Therefore one should set t > m22p, which
becomes very large for large p. Such large t also forces to take huge q in order to
avoid decryption failure. To resolve this issue, Duong et al. [7, Sect. 4.2] adopted
Yasuda et al.’s [19] modification for large entries as follows.

Second Packing Method. Let A and B be two m×m matrices whose entries
are positive integers of less than p-bit. We pack each row Ai = (ai1, . . . , aim)
and BT

j = (b1j , . . . , bmj) of matrices A and B, respectively. For a chosen integer
r > 0, write each integral entry aik in the base-r representation, namely aik =∑d

u=1 aikuru−1 with aiku ∈ {0, 1, . . . , r − 1}, where d = �logr 2p� (in particular,
we have d = p when r = 2). Pack each aik as

aik(x) :=
d∑

u=1

aikuxu−1 ∈ R = Z[x]/(xn + 1).

In the same manner, we pack each b�j as b�j(x) ∈ R. Associate each row Ai and
BT

j of A and B respectively to the following polynomials in the ring R:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pm(1)
m,p,r(Ai) :=

m∑

k=1

aik(x)x2(k−1)d,

pm(2)
m,p,r

(
BT

j

)
:= −

m∑

�=1

b�j(x)xn−2(�−1)d.

(2)
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Define the following polynomials in R associated to A and B:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pol(1)(A) :=
m∑

i=1

pm(1)
m,p,r(Ai)x(i−1)2md,

Pol(2)(B) :=
m∑

j=1

pm(2)
m,p,r

(
BT

j

)
x(j−1)2m2d.

Define two types of packed ciphertext for a matrix A in the same manner as (1).

Theorem 2 (Theorem 10 in [7]). Assume n ≥ 2m3d + 2md + 2d. Let

ct = ct(1)(A) ∗ ct(2)(B)

and let Dec(ct, sk) ∈ Rt denote its decryption result. Then under the condition
of Lemma 1 for ct, for each i, j ∈ {1, . . . ,m}, the inner product

〈
Ai, B

T
j

〉
is the

sum of the terms of degree greater than or equal to (i − 1)2md + (j − 1)2m2d
and less than (i − 1)2md + (j − 1)2m2d + 2d in Dec(ct, sk) evaluated at x = r.

From the construction (2), we have

pm(1)
m,p,r(Ai) × pm(2)

m,p,r

(
BT

j

)
=

m∑

k=1

aik(x)bkj(x) + terms of degree ≥ 2d,

which is equal to the decryption result of ct. The polynomial
∑m

k=1 aik(x)bkj(x)
has degree at most 2(d − 1), and by substituting r for the variable x, we have

m∑

k=1

aik(r)bkj(r) =
m∑

k=1

(
d∑

u=1

aikuru−1

) (
d∑

v=1

bkjvr
v−1

)

=
〈
Ai, B

T
j

〉
.

Every coefficient of
∑m

k=1 aik(x)bkj(x) is up to m(r − 1)2d by the base-r rep-
resentation. In order to obtain the correct inner product between Ai and BT

j ,
it requires t ≥ m(r − 1)2d. In particular, when r = 2, it requires t ≥ mp since
d = �logr 2p� whereas the first packing method requires t ≥ m22p.

3 Our Improvements

Methods proposed by Duong et al. [7] (described in Subsect. 2.2) are only for
one time secure multiplication between two matrices. Moreover, their methods
enforce to take very large size of t or n for large entries (see [7, Table 2]). In this
section, we extend their methods from just one matrix multiplication to multiple
matrix multiplications, and then give some modifications for efficiency.
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3.1 Extension for Secure Multiple Matrix Multiplications

In this subsection, we present a packing method for secure multiple matrix mul-
tiplications. Specifically, we generalize methods of [7] to secure multiplications
among matrices. Due to space restriction, we only consider the case of three
matrices without a proof. (The proof will be presented in the full version paper,
and a general case of secure matrix multiplications will be also discussed in the
paper.) Let A be a matrix with size m×m whose entries are positive entries. As
in the previous section, we give two types of polynomial in R = Z[x]/(xn + 1)
for each row Ai = (ai1, . . . , aim) of A as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pm(1)
m,3(Ai) :=

m∑

u=1

aiuxu−1,

pm(2)
m,3(Ai) := −

m∑

u=1

aiuxn−(u−1)m2−m+1,

where the indices “m, 3” represent the size of matrix and the number of matrices
being multiplied, respectively. Note that the first polynomial transformation
pm(1)

m,3(Ai) is same as that in the method of [7]. Now we define three types of
polynomial in R associated with three matrices A,B and C as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pol(1)m,3(A) :=
m∑

i=1

pm(1)
m,3 (Ai) x(i−1)m,

Pol(2)m,3(B) :=
m∑

j=1

pm(1)
m,3

(
B

T

j

)
x(j−1)m2

,

Pol(3)m,3(C) :=
m∑

k=1

pm(2)
m,3

(
CT

k

)
x(k−1)m3

,

where BT
j = (b1j , . . . , bmj) and CT

k are the jth and the kth columns of B and

C respectively, and B
T

j = (bmj , . . . , b1j) (i.e., flipping the column BT
j ). Define

three types of packed ciphertext for a matrix A to be

ct(i)(A) := Enc
(
Pol(i)m,3(A),pk

)
for i = 1, 2, 3.

Theorem 3. Assume n ≥ m4. Let

ct = ct(1)(A) ∗ ct(2)(B) ∗ ct(3)(C),

and let Dec(ct, sk) ∈ Rt denote its decryption result. Then under the condition
of Lemma 1 for the ciphertext ct, for each i, k ∈ {1, . . . , m}, the (i, k)th entry of
the matrix A × B × C is the coefficient of x(i−1)m+(k−1)m3

in Dec(ct, sk).
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3.2 Other Modifications

For matrices with large entries, the packing method in Subsect. 2.2 needs very
large t and hence huge q for successful decryption. Such parameter setting makes
the BV scheme very slow. On the other hand, the packing method in Subsect. 2.2
enables to take small t. However, it forces to set very large n since it requires
n ≥ 2m3p + 2mp + 2p from Theorem 2 (in which d = p when r = 2) for matrices
with p-bit entries. In the below, we give two modifications to get rid of these two
problems:

CRT Method. To solve the problem with the packing method in Subsect. 2.2,
we split the parameter t as t =

∏k
i=1 ti with small ti’s (assume that GCD(ti, tj) =

1 for i 	= j). Given a message modulo t, we encrypt the message modulo every
ti. After decryption modulo every ti, we can recover the original message by
the CRT method. This enables us to use Zti [x]/(xn + 1) with small ti as the
plaintext space. However, it requires k ciphertexts for encrypting a message.

Block-Matrix Method. Let A be a matrix of size M × M . For a block size
m, assume M = bm for some b ∈ Z for simplicity. Consider A as a matrix
with b2 sub-matrices Aij with size m × m for i, j = 1, . . . , b. In this method,
we pack each sub-matrix Aij into a single polynomial by our packing method,
and encrypt the polynomial. This enables us to take small n for packing every
m × m sub-matrix Aij , instead of the whole matrix A. However, it requires
more homomorphic operations for secure matrix multiplications. For example, it
requires b3 homomorphic multiplications and b2(b − 1) homomorphic additions
for secure matrix multiplication between two matrices.

4 Implementation Results

In this section, we show performance of our packing method with modifications
for secure multiplications among two and three matrices with size M × M and
p-bit entries for M = 32, 64 and p = 16, 32, 64. Note that our packing method
for two matrices is the same as Duong et al.’s method [7]. Our experiments ran
on an Intel Core i7-4790 CPU with 3.60 GHz and 8.00 GB RAM, using PARI
library [16] (version 2.9.2) in C programs. In Tables 1 and 2, we show our chosen
parameters of the BV scheme and running time for secure matrix multiplications.
In the tables, let δ denote the root Hermite factor for the distinguishing attack
against LWE, and we choose parameters (n, q, t, σ) of the BV scheme so that δ
is less than 1.006 for 80-bit security level with an enough margin.

For two matrices with 16×16 size and 10-bit entries, Duong et al. [7] adopted
the second packing method in Subsect. 2.2. They needed to set n = 131072 from
Theorem 2, and it took about 7.27 s from [7, Table 2]. In contrast, we adopted
the first packing method in Subsect. 2.2 for secure multiplication between two
matrices with M ×M size for M = 32 and 64. We divided every matrix into sub-
matrices with size 16 × 16 by our block-matrix method, and then set n = 4096
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Table 1. Performance (seconds) of secure multiplication between two matrices A and
B with size M × M and p-bit entries (We divide every matrix into sub-matrices with
size 16 × 16, and take n = 4096 for our packing method. We split t as t =

∏k
i=1 ti with

t1 ≈ · · · ≈ tk by our CRT method, and we use a prime q for all ti’s)

p k (lg(q), lg(ti), δ) Encryption Sec Matrix Mul. Decryption Total time

M = 32 16 1 (115, 37, 1.0048) 0.1109 0.2970 0.0940 0.5019

32 3 (85, 23, 1.0035) 0.1726 0.4210 0.1570 0.7506

64 3 (135, 45, 1.0056) 0.3430 1.0490 0.3280 1.7020

M = 64 16 1 (115, 37, 1.0048) 0.3900 2.3910 0.3740 3.1550

32 3 (85, 23, 1.0035) 0.7502 3.8600 0.8280 5.4382

64 3 (135, 45, 1.0056) 1.8440 8.8590 1.4530 12.1560

Table 2. Performance (seconds) of secure multiplications among three matrices A, B
and C with size M × M and p-bit entries (As in Table 1, we divide every matrix into
sub-matrices with size 16 × 16, and take n = 65536 for our packing method. But we
did not use our CRT method due to such large n)

p (lg(q), lg(t), δ) Encryption Sec Matrix Mul. Decryption Total time

M = 32 16 (250, 58, 1.0006) 3.5780 32.9690 9.2960 45.8430

32 (400, 106, 1.0010) 4.4380 42.4990 11.7820 58.7190

64 (700, 202, 1.0018) 7.4384 74.7500 19.6090 101.7974

M = 64 16 (250, 60, 1.0006) 13.1570 240.4850 31.4690 285.1110

32 (400, 108, 1.0010) 17.8750 397.6090 46.9370 462.4210

64 (700, 204, 1.0018) 29.7500 799.6880 104.7810 934.2190

from Theorem 1. From Table 1, our method took only about 0.50 (resp., 0.75
and 1.70) seconds for M = 32 and p-bit entries for p = 16 (resp., p = 32
and 64). Our method is much faster than [7] due to taking smaller n, and our
method for large p does not reduce the performance due to our CRT method.
Actually, our CRT method enables to take small size of plaintext space and
then we can take practical q for large p (however, it requires more ciphertexts
and additional homomorphic operations). Comparing Table 1 with Table 2, our
method for three matrices is about 80 ∼ 100 times slower than two matrices case.
For three matrices, we took n = 65536 and it is unnecessary to use our CRT
method for such large n. We expect that as the number of matrices increases,
the running time would be at least about 80 times slower. (We will discuss such
a magnitude about the running time in a full version paper.)

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR14D6, Japan. This work was also supported by JSPS KAKENHI Grant Num-
bers 16K17644 and 16H02830.



Enhancement for Secure Multiple Matrix Multiplications 329

References

1. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

2. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3)
(2014). Article No. 13, Special issue on innovations in theoretical computer science
2012-Part II

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

6. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 19

7. Duong, D.H., Mishra, P.K., Yasuda, M.: Efficient secure matrix multiplication over
LWE-based homomorphic encryption. Tatra Mountains Math. Publ. 67(1), 69–83
(2016)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on
Theory of Computing-STOC 2009, pp. 169–178. ACM (2009)

9. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

10. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint 2012/144 (2014). https://eprint.iacr.org/2012/144

11. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: ACM Workshop on Cloud Computing Security Workshop-CCSW
2011, pp. 113–124. ACM (2011)

12. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 20
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Abstract. With the popularity of cloud computing technology, the
clients usually store a mass of data in the cloud server. Because of the
untrusted cloud servers, the massive data query raises privacy concerns.
To prevent sensitive data on the cloud from hostile attacking, and obtain
the query result timely, users usually use the searchable encryption tech-
nology to store encrypted data on the cloud. In the prior work, there are
many privacy-preserving schemes for cloud computing, but the verifica-
tion of these schemes cannot be ensured. Due to software errors, commu-
nication transmission failure or the dishonest features of the public cloud
servers, only part of the data set was searched. So the integrity is also
an urgent problem to be solved. In this paper, we propose a verifiable
range query processing scheme with the ability to verify the correctness
of query result. The key idea of this paper is to add additional infor-
mation to a complete binary tree, which is used to organize indexing
elements. The result returned by the cloud server will be accompanied
by validation information so that the user can verify whether the result
is complete. Finally, we confirm that the storage overhead of the veri-
fiable scheme is O(n logn), where n is the total number of data items,
and implement our scheme to testify to its practicability.

Keywords: Cloud computing · Range query · Verification

1 Introduction

1.1 Background

In recent years, as the Internet developed at a high rate of speed, our life and
work affected by the Internet have become more convenient. Following the preva-
lent, the cloud computing is being integrated into our life and work. Instead of
storing data in the hardware devices, increasing popularity, data and computing
are outsourced to clouds for many factors. First, it does not require spending
money on purchasing equipment, and it is wise to delegate the heavy computa-
tion workloads into the powerful servers. Obviously, outsourcing can reduce the
cost effectively. Additionally, since the most resources that may be used in our
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 333–349, 2017.
https://doi.org/10.1007/978-3-319-72359-4_19
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work are existing in the cloud, we can transfer what we need from the cloud.
It greatly improves the efficiency of our work. Because of these advantages, the
cloud servers are favored by many businesses. At present, there are many com-
panies with outsourcing computation, such as Google App Engine [10], IBM
Blue Cloud Computing Platform [15], Amazon Web Services [1], and Microsoft
Azure [19]. These service providers bring convenience to the cloud users.

Meanwhile, there is an obvious weakness for outsourcing computation [8].
In some special scenarios, secure outsourcing computation is significant. Yet,
the data on the public cloud takes a high risk due to many causes. For instance,
provided that data users try to request our data in the cloud, and our information
would be leaked. Of course, that is not what we are willing to face. For example,
last year, Apples iCloud leaked private photos uploaded by users, this issue given
rise to people to consider whether the cloud storage is secure, especially for the
confidential institutions, such as the national governments, securities traders,
investment banks and others. Privacy becomes an urgent issue to be solved [20].
Beyond that, it is possible that the cloud may intercept data between users’
transaction or return erroneous results to users. Therefore, we should strengthen
data privacy protection at the same time to enhance the verification of computing
and other security technology.

1.2 Motivation

Cloud server becomes more popular for people to store data, one person’s data
may be used by others. So, in this paper, we adopt a model as following: a
data owner stores data on the cloud, and multiple data users could query the
interested data on the cloud. For the most simple example, a data user stores
his own data on the cloud and queries what he is interested from these data in
the cloud. Figure 1 shows the three parties in our model: a data owner, multiple
data users and a cloud. Data users usually protect sensitive data by encryption.
Before uploading data on the cloud, the data owner encrypts data in order to data
security. This operation ensures the confidentiality of the data, but all of these
come at a price. For example, it becomes hard to query data on the ciphertext.
When user queries data, first, he should download all data he stored on the
cloud, decrypt these data, after that search out the required data. Obviously, it
is infeasible when the data size is extremely large. Our motivation is to achieve
verification of the query results in the case of ensuring data security.

1.3 Related Work

Prior works have made many contributions to data security. Here we just
talk about the security for range query. The existing privacy-preserving query
schemes are divided into two categories according to their query types: range
queries [13] and key-word queries [5,7]. Rang queries which query all data items
that fall into the given range, can also be called range searchable symmet-
ric encryption schemes. Prior range searchable symmetric encryption schemes
can be divided into two kinds: bucketing schemes [12–14] and order-preserving
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Fig. 1. Storing computing model

schemes [3,4,17]. In bucketing schemes, data owner partitions the data domain
into various sizes. For example, the range [0, 150] represents the age of human, we
divide it into many ranges like that [0, 12], [13, 22], [23, 60], [61, 150]. Data owner
constructs index by the ID of a bucket and all encrypted data items in this field.
The trapdoor of a range query consists of the IDs of the buckets that overlap a
query range. For instance, for query range [10, 20], the corresponding trapdoor
consists of ID1 and ID2. All data items in the buckets will be returned to data
user on condition that the buckets overlap the query ranges. In this example,
the cloud will return ranges [0, 12], [13, 22] to the data user. From the above, we
can get a conclusion that the prior encryption schemes still have many short-
comings. The weakness of private-preserving is the most significant. The Cloud
could estimate the actual values according to historical query results. In addition
to this, the communication cost of this scheme is very high, as there are many
data items which are not gratified the query. Reducing the size of every bucket
leads to lower cost, but weakens privacy at the same time. Because, in this case,
the number of buckets approximates to the number of data items. It is easy to
estimate the size of our data set.

In order-preserving schemes, data order keeps consistent after encryption. For
example, for any two data items a and b, as well as a function f which is used
to keep the order unchanged, called order-preserving encryption function. a < b
if and only if f(a) < f(b). In order-preserving schemes, the index for data items
d1, . . . , dn is f(d1), . . . , f(dn), and the trapdoor of range [a, b] is [f(a), f(b)]. It is
obvious that order-preserving is also weak for privacy, since they allow the cloud
to estimate the actual values of the data items and the query in a statistical way.

The above mentioned schemes prove that the fundamental cause of the weak
privacy preserving is that these data have different distributions when they have
the same number of encrypted data items, in other words, they have index
distinguished. In bucketing schemes, for different numbers of data items, different
distributions in the data values will result in the regions to have different size
distributions as to they require the number of data items in the equilibrium
area. In order-preserving schemes, in the case of the same number of data items,
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the different distributions in the data values will lead to the ciphertexts to have
different distributions in the space. Using the domain knowledge about the data
distribution, the bucketing schemes and the order-preserving schemes can be
used by the cloud to statistically estimate the values of the data and queries.

In view of the weak privacy protection caused by index distinguished, Li
et al. [18] proposed a range query processing scheme that achieves index indistin-
guishability under the indistinguishability against chosen keyword attack (IND-
CKA). They achieve index indistinguishability by complete binary tree, that is
to say, when the number of data items is equal, they have the same data structure
that can not be distinguished. And the nodes are indistinguishable, thanks to the
randomness. They proved their scheme is privacy preserving under the widely
adopted IND-CKA security model, but there are also existing many uncertain
factors. Because the cloud is not credible, it may not try its best to query what
the users interested, the results returned by the cloud may be wrong or incom-
plete. Nevertheless, for users, they can not judge what they have got is good or
bad. Thus it needs operation operated by data users to verify the correctness of
the results.

1.4 Our Contribution

At present, according to the study of the searchable encryption scheme, they are
not exceedingly convenient for range query. For instance, users can not verify
the integrality of the returned results in range query. Unreliable server may
take incomplete data to users, and this problem would bring annoyance to the
following work. To solve this question is an urgent issue for us.

In this paper, we proposed a leveled verifiable range queries scheme based
on a private-preserving scheme which is proposed by Li et al. in [18]. We reserve
the security and high efficiency of the original scheme, and obtain verification
by storing additional information in the leaf nodes. Our main works as follows:
firstly, analyzing [18], pointing out deficiency in the original scheme, its main
defect is that users can not verify the correct and integrity of the results. This
paper proposed a modified scheme aiming at these shortcomings. Not only do
we analyze the security of our scheme, but we have done a comparison with the
original scheme, and shown the advantage of our scheme by theoretical analysis
and experiments. In our scheme, we need space is O(n log n) as before, but it
has verification at the same time.

Next, we give a brief overview of the searchable encryption technology, hash
function and Bloom filter that we utilize in Sects. 2 and 3, we describe our
verifiable scheme in detail; In Sects. 4 and 5, we analyse security of our scheme
and implement it respectively.

2 Preliminaries

2.1 Searchable Encryption Technology

Searchable encryption technology allows the client to store, on an untrusted
server, message encrypted by a private or public key. The client could query
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related information from the untrusted server by a trapdoor, which is constructed
by some key words, while the trapdoor does not reveal keywords or ciphertexts
anymore. Searchable encryption technology is divided into two categories: sym-
metric searchable encryption [22] and asymmetric searchable encryption [5]. The
searchable encryption technology can be divided into four steps:

(1) Encryption: A user encrypts messages with the private key, afterward
uploads the ciphertext on an external server.

(2) Trapdoor Construction: Users with search permission construct trapdoor by
encrypting query keywords, while the trapdoor does not leak any information
about the keywords.

(3) Query: External server queries according to the trapdoor, after that returns
the result to the data user. While the server only knows whether the files
contain these keywords, but does not know other additional information.

(4) Decryption: The user receives the query results returned by the server, then
decrypts ciphertext with private key to obtain related information.

2.2 Hash Function

Hash functions, also called compression functions, have many applications in
cryptography and computer security. In general, hash functions are just functions
that take arbitrary-length strings and compress them into shorter strings. Hash
functions have many useful properties. Hash functions have security, since the
rival can not restore the original data according to the output value in any
polynomial time, namely, unipolarity. For example, the rival knows H(x), but it
is unlikely for the rival to compute x in any polynomial time. Besides that the
adversary can not find two different input values and the output values are the
same in any polynomial time. For instance, there is a pair of values x and x′,
and no polynomial-time adversary can compute H(x) = H(x′), that is to say
that hash functions have Collision-Resistant. Typical hash functions are such as
CR32, MD5, SHA1 [21] and so on. The hash functions exert a great influence
on integrity and digital signatures.

2.3 Bloom Filter

Bloom filters are usually used to retrieve whether an element is in a collection
[2]. It is actually a very long binary vector (each bit is set to be 0) and a series of
random mapping functions. We compute every data item using hash functions to
get the corresponding position in the hash table, secondarily we set this position
to be 1. When judging one element whether in the collection, we just need to
compute the hash functions, and find the corresponding position in the hash
table, and check the value in the position. If the value is 1, it reveals that the
element is in the collection, else we get the opposite consequence. We can affirm
that the element is included by the collection while the corresponding positions
are all set to be 1.
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Comparing with other data structure, Bloom filter has a huge advantage in
space and time. The most prominent advantage is that storage space and insert
query time are all constant. Beyond that, hash function is independent, and
it brings convenience to hardware to achieve parallel processing. Bloom filter
does not store data items, hence it has great advantages in the occasion that
has confidentiality requirements. Meanwhile, the shortcomings of Bloom filter
are apparent as its advantages. False positive is one of them. As the number
of deposited elements increases, the rate of false positive increases. When the
number of data items more than a certain number, the element that is not
included in set will obtain the same result as it is in the collection. The solution
to the false positive is to create a small list which is called white lists that store
elements that may be misjudged. In addition, it is unable to delete elements in
Bloom filter, for the reason that it must ensure that the deleted element is indeed
inside the Bloom filer, but it is not easily guaranteed. Bloom filter is generally
used to query and filter spam.

2.4 Adversary Model

In this paper, we assume that the cloud is semi-honest (also called honest-but-
curious) [6] as original scheme. That is to say that the cloud could execute
our protocol and compute algorithm correctly to help us obtain the result. But
at the same time, the cloud may try to analysis information obtained by the
distribution or result before acquiring many useful messages. For example, in
bucketing schemes, the cloud may according to the number of buckets to evaluate
the number of data items when reducing communication. For the data owners
and users, we assume that they are all trusted.

3 Verifiable Scheme

3.1 Prefix Encoding

As proposed in [18], we should first encode prefix as described in [5]. Through
prefix encoding, we could check whether the data sets have the same elements
instead of judging whether a data belong to a range. Next, we explain how to
encode the data properly to submit it to the server. Given a number x, let
the binary representation of x is x1x2 . . . xw, where xw is the least significant
bit. Each number corresponds to a prefix family, denoted as F (x), including
w+1 prefixes: {x1x2 . . . xw, x1x2 . . . xw−1∗, . . . , x1 ∗ . . . ∗, ∗∗ . . . ∗}, where the ith
prefix is x1x2 . . . xw−i+1 ∗ . . . ∗. For example, the prefix set of number 6 of 5 bits
is F (6) = F (00110) = {00110, 0011∗, 001 ∗ ∗, 00 ∗ ∗∗, 0 ∗ ∗ ∗ ∗, ∗ ∗ ∗ ∗ ∗}. Given a
range [a, b], firstly, we transfer it into a smallest prefix encoding set, represented
as S([a, b]). In this way, the range represented by prefix encoding is same as range
[a, b]. For example, S([0, 8]) = {00 ∗ ∗∗, 01000}. In the given range [a, b], a and b
are two numbers of w bits, respectively, so the number of prefixes in S([a, b]) is
at most 2w −2 [11]. For any x and range [a, b], when x ∈ [a, b], x ∈ p if and only
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if the prefix p ∈ S([a, b]). For any x and prefix p, x ∈ p is same as p ∈ F (x). So,
for any x and range [a, b], x ∈ [a, b] if and only if F (x) ∈ S([a, b]). According to
the example above, 6 ∈ [0, 8] and F (6) ∩ S([0, 8]) = {00 ∗ ∗∗}. In this paper, for
n data d1, d2, . . . , dn, the data owner computes prefix families F (d1), . . . , F (dn),
and the data user can compute prefix family S([a, b]) of range [a, b].

Before uploading data to the cloud server, the user should sort the data and
record the values before and after the data. For example, if the uploaded data
set is S = {1, 9, 4, 8, 14, 11, 16, 21, 26, 10}. After sorting, the set S is transferred
into S′ = {1, 4, 8, 9, 10, 11, 14, 16, 21, 26}. We denote P (x) as the value x and the
values of its before and after. For example, P (4) = {1, 4, 8}. When the value
is the head or tail of the sequential queue, we denote as ∞ or −∞, such as
P (1) = {−∞, 1, 4}, P (26) = {21, 26,∞}.

3.2 PBtree Construction

In order to achieve the efficient query, we store F (d1) . . . F (dn) in a complete
binary tree, called PBtree. Here, “P” means privacy and “B” means Bloom filter.
We do not use existing database indexing structures (such as b+ tree) for two
reasons as follows: when the two numbers are relatively large, query in the b+
tree also need do some testing work; b+ tree storing different data items has
different structures, even they have the same number of data items. While two
different data sets that have equal size are stored on the PBtree respectively,
then two PBtree have same data structures, that is to say the two PBtrees are
indistinguishable.

Definition 1 (PBtree). The PBtree used to store n data items is a full binary
tree, which has n terminal nodes and n − 1 non-terminal nodes. In PBtree, n
terminal nodes form a linked list from left to right, and every node is represented
by a Bloom filter. Each leaf node stores a data item, and each non-terminal node
stores the union set of its left and right subtrees. For any non-terminal node, the
number of data items in its left subtree either equals that of its right subtree or
exceeds only by one.

According to this definition, we can easily know that PBtree is a highly bal-
anced binary research tree. The height of the PBtree storing n data items is
�log n�+1. We construct a PBtree adopting a top-down fashion. Firstly, we con-
struct the root node. The root node contains the set of prefix {F (d1), . . . , F (dn)}.
Then, we divide the prefix set {F (d1), . . . , F (dn)} into two subsets Sleft and
Sright. If n is even, |Sleft| = |Sright|, else |Sleft| = |Sright|−1. The two subsets are
the root nodes of the left and right childtree respectively. For any left subtree and
right subtree, we recursively apply the above steps until the terminal node. Each
terminal node contains prefix set of one data item. Figure 2 shows the PBtree for
prefix set S = {F (d1), F (d2), F (d3), F (d4), F (d5), F (d6), F (d7), F (d8), F (d9)}.

In Theorem 1, the key properties of PBtree are simply described according
to their construction algorithm. Constraint 0 ≤ |Sleft| − |Sright| ≤ 1 makes the
structure of PBtree completely dependent on the number of data contained.
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Theorem 1 (Structure indistinguishable). For any two data sets S1 and
S2, they have the same constructions of PBtrees if and only if |S1| = |S2|.

Fig. 2. PBtree example

3.3 Data Encryption

In this paper, we have two parts to be encrypted, data items and prefixes.
For data items, we adopt asymmetric encryption. Here our encryption is

based on a n bit RSA modulus. The encryption process as follows.

(1) Generate a n bit RSA modulus n = pq for primes p, q;
(2) Choose an integer e satisfying gcd(g(n), e) = 1 and 1 < e < g(n), where

g(n) = (p − 1)(q − 1);
(3) Compute d ≡ e−1mod g(n);
(4) The public key is now pk = (e, n), and the secret key is sk = (d, n). For all

ordered data items d1, . . . , dn, the encryption term of the ith data item di
is Ci = (di−1||di||di+1)e(mod n).

The encryption of prefixes is still implemented by secure hash function and
Bloom filter. For each node v, the prefix family of node v is stored by Bloom filter,
represented as v.B. Assuming r secret keys k1, . . . , kr have been shared between
the data owner and the data user. L(v) is a label of node v, which contains
prefix sets. U(v) represents a union set of prefix sets in L(v). For example, if
the two prefix families F (x) and F (x′) are in the node v, then the set L(v) =
{F (x), F (x′)}, and the set U(v) = {F (x) ∪ F (x′)}. Each data is a w-bits binary
data.

For prefix pi, we compute pi with r keys using hash functions:
HMAC(k1, pi), . . . , HMAC(kr, pi). This step is to achieve one-wayness. That
is to say that we can easily compute HMAC(kj , pi) with r keys and pi, but
it is hard to obtain pi and r keys even the adversary knows HMAC(kj , pi),
where 1 ≤ j ≤ r. For any node v, generating a random number v.R which
has the same size with keys. Then using v.R to compute r hash functions:
HMAC(v.R,HMAC(k1, pi)), . . . , HMAC(v.R,HMAC(kr, pi)). For each pre-
fix pi and for each key kj , we set v.B[HMAC(v.R,HMAC(kj , pi)) mod M ] := 1,
where M is the length of the Bloom filter.
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So far, the PBtree has been constructed by the data owner, then the data
owner sends encrypted data and PBtree to the cloud server.

3.4 Trapdoor Computation

Before querying data from the cloud server, it is necessary for the data user to
computing trapdoor. Given a range [a, b] that used to be queried. Suppose S[a, b]
contains z prefixes p1, . . . , pz. For any prefix, the data user computes r results
of hash functions HMAC(k1, pi), . . . , HMAC(kr, pi). The trapdoor of the range
[a, b] is represented as a matrix M[a,b] that is consist of z ∗ r hashes.

⎛
⎜⎝

HMAC(k1, p1) · · · HMAC(kr, p1)

· · · . . . · · ·
HMAC(k1, pz) · · · HMAC(kr, pz)

⎞
⎟⎠

The ith prefix pi corresponds to the ith row of the matrix of the trapdoor. Then
data user sends the matrix M[a,b] to the cloud server (Fig. 3).

Fig. 3. Bloom filter

3.5 Query Processing

After receiving the trapdoor sent by the data user, the cloud server uses
the trapdoor to search on the PBtree. Firstly, the cloud checks whether
v.B[HMAC(v.R,HMAC(kj , pi)) mod M ] := 1 for every j (1 ≤ j ≤ r)
in ith row in the matrix M[a,b]. If there exists a row i (1 ≤ i ≤ z) in
M[a,b] satisfying v.B[HMAC(v.R,HMAC(kj , pi)) mod M ] := 1, then it indi-
cates that there may exists pi in the PBtree. If there has at least one equa-
tion as v.B[HMAC(v.R,HMAC(kj , pi)) mod M ] := 0, then we can infer that
U(v) ∩ pi = φ. For any subtree node v′ of node v, there exists U(v′) ∩ pi = φ,
because U(v′) ⊂ U(v). Then we can remove ith row of the matrix M[a,b] from
M[a,b]. We take new matrix to search on the PBtree. We continue that operation
on the PBtree, until the matrix M[a,b] becomes empty or we finish searching
terminal nodes.

Now, we analyze the time complexity of this algorithm. The number of PBtree
index items is n, the query range is [a, b], and the number of query result is R.
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The average runtime of query algorithm depends on the size of query result |R|,
if |R| = 0, then it will only need check the root node of PBtree, so the time
complex is O(1) in this case. While n is usually much larger than |R| in the real
word. So as to querying every item in the result set R, we need to traverse at
least 2(log n) − 1 nodes. Therefore, the time complex of this algorithm above is
O(|R| log n) generally (Fig. 4).

Fig. 4. Query for cloud server

3.6 Decryption

If the finishing condition is searching on terminal node, there exists ith row of
M[a,b] for every pi satisfying v.B[HMAC(v.R,HMAC(kj , pi)) mod M ] := 1. It
shows that the number in this terminal node falls into the range [a, b] that
the data user queries. The ciphertext of this number in the terminal node
is Ci = (di−1, di, di+1)e(mod n). Here, the secret key is sk = (d, n). The
data user computes Ci with secret key sk to obtain plaintext, the plaintext
is (di−1, di, di+1) = Cd

i (mod n). Then, the data user obtains interested number
di. So far, the query operation is implemented.

3.7 Verification

Prior work is completed at the end of the query, they can not ensure the integrity
of the query results. But, in our scheme, we have added additional information
into PBtree. The data user gets the result which not only contains what the data
user wants, but adjacent data items, which would be used to verify whether the
result is really integrated or not.

If the cloud server did not query the matching results, it will return the whole
PBtree to the data user for verification. On the other hand, if the cloud server
has got the related data set, it will return the result to the data user. Supposing
that the range of data user queried is [a, b], after querying in the cloud server, the
result is {di, dj , dk}. But the data set returned to the data user includes other
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adjacent data items, it is {di−1, di, di+1, dj−1, dj , dj+1, dk−1, dk, dk+1}. The data
user could use these additional data items to judge whether the result returned
by the cloud server is complete.

3.8 False Positive Analysis

Because of the property of the Bloom filter, there always exists false positive
when we use Bloom filter to judge whether a prefix is concluded in a set. In
order to improve the accuracy of the query results, we need to estimate the rate
of false positive to make the query optimal. We always set the number of hash
functions is (m/n) × ln 2, and it will minimize the false positive rate on this
condition. As analysed in [18], we can easily get the relationship between a and
Ma as follows:

Ma = af × 1 − (2f)h−�log a�

1 − 2f
+ (2�log a� − a)f(2f)h−�log a�

where a is the size of all possible query result sets and Ma is denoted as the
maximum expected number of false positives. When f = 0.05 and h = 13, the
relationship between Ma and a is as shown in Fig. 5.

Fig. 5. Relationship of Ma and a

4 Security Analysis

4.1 Security Model

PBtree achieves IND-CKA security by pseudo-random function. There is no
unavoidable advantage to distinguish it from the random function [16]. This
pseudo-random function is: g : {0, 1}n × {0, 1}s → {0, 1}m. It means that
inputting a string of n bit and a string of s bit maps a m bit string. And
the random function is G : {0, 1}n → {0, 1}m. This function is used to map a n
bit string to a m bit string. For the pseudo-random function g, selecting a fixed
scalar k ∈ {0, 1}s, and it can efficiently compute g(x, k) for any x ∈ {0, 1}n. In
polynomial time, the rival has no negligible probability to distinguish g{x, k} and
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the output of the random function G. We use HMAC() as the pseudo-random
function. When the adversary does not have negligible probability in polynomial
time to distinguish between the actual index generated using the pseudo-random
function and the simulated index generated by the random function, then it
demonstrates that this symmetric searchable encryption scheme is secure.

4.2 Security Proof

We treat PBtree as a series of Bloom filters, each of them storing a set of different
prefixes that respond to user queries. Therefore, it can be observed that the
safety proof of PBtree can be equivalent to proving that the Bloom filter is
compliant with IND-CKA and satisfies the following conditions: (1) It can not
be leaked any information about data items stored in Bloom filters; (2) the
adversaries can not distinguish two Bloom filters storing different size of data
sets. We consider a non-adaptive adversary who has finite original query results,
including a set of security trapdoors and their corresponding query results. To
help proving, we assume a probabilistic polynomial time simulator S, it can
simulate the creation of a security index, which retains only a small number of
history search query traces. The rival using S as using a real index to query, the
challenge of the adversary is whether there is a negligible probability to make a
distinction between the results returned by two different indexes. In the following
definition, let the security parameter s be the length of the secret key.

Records of historical query Hq. The set D = {D1,D2, . . . , Dn} represents a set of
data, and Di is the ith data item. The set R1:q = {R1, R2, . . . , Rq} represents the
range query for q times, and the format of each query is Ri = {ai, bi}(ai, bi, q ∈
N). Historical records is defined as Hq = {D,R1:q}, where D contains at least
one query that satisfies R1:q. In order to limit the adversary to be solvable in
the polynomial time, q must be a polynomial of the safe parameter s.

Advantage of the adversary Av. For each range query Ri = {ai, bi}, there will be
a generation of ri trapdoors Ti = {ti,1, ti,2, . . . , ti,ri}, then we encrypt them with
secret key K. The advantages of the adversary include the trapdoor that satisfies
the range query, security index I of the data set D, and the set of encrypted data
items EncK(D) = {EncK(D1), EncK(D2), . . . , EncK(Dn)}. Here, Av(Hq) =
{T ; I;EncK(D)}. In addition, the adversary may also know the approximate
amount of encrypted data.

Trace of the query. Defined as an adversary to match in index I after using
T access and search model. The data items matching the access pattern are
M(T ) = {m(t1),m(t2), . . . ,m(tq)}. m(ti) represents the data item that matches
the trapdoor ti. Search model is an asymmetric binary matrix

∏
T defined on

T , and when tp = tq,
∏

T [p, q] = 1. The trace M(Hq) = {M(R1:q),
∏

T [p, q]} is
defined on Hq. In the two modes, the adversary obtains only one set of match-
ing data for each trap. Thus, each Bloom filter can be treated as a different
match(which may be the same in PBtree). Each range query can not match to
multiple different trapdoors.
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Theorem 2. PBtree scheme is IND-CKA security base on the pseudo-random
function f and the encryption algorithm Enc.

Proof. The adversary can construct a polynomial time simulator S = {S0, Sq}
with the advantage Av(Hq) and a real result query trace MHq. A∗

va(Hq) denotes
the advantage of rival simulation, I∗ denotes the index of the simulation,
EncK(D∗) denotes the simulated encrypted data, and T ∗ denotes the trapdoor.
According to definition, each Bloom filter matches a different trapdoor, and the
query results are visible. IDj represents a unique identifier for a Bloom filter.
The final output of the simulator is a trapdoor created by the historical traces
of the query range that the adversary selected, assuming that the adversary can
not know the index and the trapdoor before selecting range.

First: simulate index. It is known that the length and number of Bloom filters
are related to I, and generate a string B∗ with the same length as I∗to simulate
the index I∗, set to 1 in the random bit, and ensure that the number of position
set to 1 is similar in each Bloom filter of each layer. Then, we generate random
EncK(D∗), each of which has the same length as the original encrypted data
EncK(D), |EncK(D∗)| = |EncK(D)|.

In the index I∗, we store the entire set of EncK(D∗) in the first Bloom
filter representing the PBtree root node. In the next two Bloom filters store two
subsets of EncK(D∗), and for each data, it is assigned to one of the Bloom filters
through throwing coins. We take this operation in turn, so that the number of
data for each subset is differ by no more than one.

Second: Simulator state S0. In hq, when q = 0, it represents that the
simulator state is S0. We define the adversary’s advantage is A∗

v(H0) =
{T ∗; I∗;EncK(D∗)}. In the trapdoor set T ∗, each data item in EncK(D∗) cor-
responds to a matching trapdoor. The length of each trapdoor is calculated by
the random function g, and the maximum length of the trapdoor may depend
on the length of the data in the prefix set(when the length of data is n, the
length of the trapdoor is n + 1). Therefore, we generate (n + 1) ∗ |EncK(D∗)|
trapdoors with the length of |g(.)|, and each data in EncK(D∗) is associated
with no more than n + 1 trapdoors. The distribution of each trapdoor in index
I∗ is the same as in the original index I, and the structure of the index generated
by the simulation is exactly as same as the index structure generated in PBtree.
Since g is a random function and the distribution probability of the trapdoor
is uniform, this distribution is indistinguishable for the adversary in probability
polynomial time.

Third: simulator state Sq. In hq, when q ≥ 1, it represents that the sim-
ulator state is Sq. We define the advantage of the adversary is A∗

v(Hq) =
{T ∗;Tq;EncK(D∗)}. Tq is the historical query of the corresponding trapdoor.
Considering that data set in each trapdoor is M(T ) = m(t1),m(t2), . . . ,m(tq),
M(R1:q) contains p unique data. In each data EncK(Dp), simulator combines
the trapdoors and the corresponding data items of M(Ti). Because of p < |D|,
simulator generates i random strings(1 ≤ i ≤ |D| − q + 1). And we associate
Enc∗

K(Di) with n+ 1 trapdoors as the second step to ensure that the strings do
not match the strings in M(Ti). The simulator state STq records trapdoors
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and the matching data. For the first Bloom filter, we map identifiers of all
data: EncK(D∗) = M(R1:q) ∪ Enc∗

K(Di), the Bloom filter of child node are
operated in the way that we have described above. The output of simulator is
{T ∗;Tq;EncK(D∗)}. All steps are made by the simulator in polynomial time.

If data queried by the adversary is matched with the set M(R1:q) in the
probability polynomial time, the simulator will provide the correct trap. For
other data, because of the random function g, the trapdoors provided by the
simulator are indistinguishable. Since each Bloom filter contains random bits
that are set to 1, our scheme is proved safe under the IND-CKA model.

5 Experiment Evaluation

5.1 Experiment

In this section, we implement our verifiable scheme, and evaluate it in terms
of computational cost, query cost, security and verification. Specifically, in our
experiments, we develop our scheme on Ubuntu 16.04 with 8 GB memory and an
intel core i7-6700 processor. We use HAMC-SHAI as the pseudo-random function
in the Bloom filter. For the Bloom filter, its length m and the stored data amount
n satisfy such a relationship: m/n = 10. We use the virtual machine to simulate
the operation of the server. The data used for presentation and performance test
are randomly generated by the random() function.

First, data owner transfers the data to cloud server by a client. The client
reads and orders these data, then records every data item as a triplet. Its duties
also include encryption, and it encrypts data items and prefixes with AES algo-
rithm. After constructing PBtree, the client sends encrypted data and PBtree
to the cloud server. We chose random datasets which consist of 10000 to 100000
records. Next, when someone wants to query data from the server, he should
input the query range to the client, then the trapdoor will be computed and
sent to server by the client. Last, when the server receives the trapdoor, it will
use the method we mentioned before to match the data on the server. When the
matching is success, the server returns the result data set, and when it fails to
match the corresponding data, the server returns all the data stored on PBtree
to the client for users verifying.

5.2 Evaluation

To evaluate our work, we compared our work with existing range query scheme
on ciphertext including the private-preserving range query scheme, bucketing
schemes and order-preserving schemes. In evaluation of the performance of our
scheme, we consider five factors: local computing overhead, server query com-
puting overhead, server storing overhead, security and verification. The table
shows the result. In this comparing work, we set the data size is n, and the
query size is R.

According to the table, our scheme increases a little computing and storing
overhead, but compared to the paper [5,9], it has better private-preserving.
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Besides, our scheme not only has the same algorithm complexity as the original
project, but also has the significate property of verification (Table 1).

Table 1. Performance comparison

Schemes Local computation Query computation Storage Security Verification

Rang query O(n logn) O(|R| logn) O(n logn) Strong No

Bucketing O(n2) O(|R| · n) O(n) Weak No

Order-preserving O(n logn) O(n) O(n) Weak No

Our scheme O(n logn) O(|R| logn) O(n logn) Strong Yes

In this section, we answer the running time of our verifiable scheme. For the
time of the assessment, we mainly take into account two phases: a construction
phase and a query phase.

In the construction phase, this process includes three interactive steps, which
are data ordering, prefix encoding and PBtree construction. The results are as
Fig. 6(a).

In the second phase, query process consists of generating and transmitting
the trapdoor, matching the prefix, and decrypting the data. The results of this
phase are shown in Fig. 6(b).

(a) Construction time (b) Query processing time

Fig. 6. Performance evaluation

6 Conclusion

In this paper, we present that although the private-preserving range query
scheme proposed by Li et al. is security under the IND-CKA model, but it is not
satisfied verification. Data users receive the result that the cloud server returns,
but it is trouble for data users that they cannot be sure whether the query result
is completely correct. Our scheme is based on the private-preserving range query
scheme, and achieves the property of verification by adding additional informa-
tion into the query result, and data users utilize additional information to verify
the query result.
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Abstract. Searchable symmetric encryption allows searching over the
encrypted data directly without decryption, which is particularly useful in
cloud computing as users can outsource the data to cloud servers without
privacy leakage while retaining the ability to search. To meet users’ spe-
cific needs, searching supporting conjunctive queries and ranking is con-
sidered. Based on the searchable symmetric encryption protocol OXT of
Cash et al., we propose a ranked searchable symmetric encryption scheme
by integrating order preserving encryption, so that the matching docu-
ments returned to the client are ordered by keyword occurrences. It retains
OXT’s efficiency and supports ranked search. The security analysis shows
that the proposed scheme is secure against chosen plaintext attacks.

Keywords: Searchable symmetric encryption · Conjunctive queries
Order preserving encryption · Ranked search

1 Introduction

With data boosting in modern businesses and trending cloud database solutions,
data specialists are constantly facing advanced requirements from aspects includ-
ing but not limited to data availability and integrity, query processing efficiency,
and especially impending security concerns when businesses consider transferring
databases and data warehouses from an on-premise server to an untrusted exter-
nal online server, in other words, outsourcing data storage. Therefore, encryption
techniques have never been as challenged as before so as to protect confiden-
tial sensitive data from being compromised by malicious or honest-but-curious
adversaries.

As an efficient and dominant security technique, data encryption, which
encodes data from plaintext into ciphertext that only authorised people with
a secret key can read, on the one hand enables parties to communicate messages
over a security bridge; however, on the other hand, sacrifices query performance
to some extend for security robustness because data has to be decrypted first
for further processing.
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 350–360, 2017.
https://doi.org/10.1007/978-3-319-72359-4_20
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In order to improve capabilities such like searching or computing over cipher-
text to fulfil fundamental business needs, new methods and approaches are pro-
posed to address both data efficiency and security, as a result of which, searchable
symmetric encryption (SSE) schemes, firstly introduced by Song et al. [1], have
been continuously revised and extended (e.g., [2–5]) to strike a balance between
privacy and performance from a technical viewpoint. Meanwhile, with respect to
business scenarios, directions for flexible keyword search that supports Boolean
queries (both conjunctive and disjunctive), sorting and range queries have been
proposed (e.g., [6–10]) to enhance real-world utilisation.

1.1 Our Contributions

In this paper, we follow a searchable symmetric encryption scheme called Obliv-
ious Cross-Tags (OXT) protocol developed by Cash et al. in 2013 [5], and inte-
grate an order preserving encryption scheme into the OXT protocol. As a result,
an order preserving searchable encryption scheme in the symmetric key setting
is put forward, which allows conjunctive queries over multiple keywords. The
proposed scheme returns matching documents ordered by keyword occurrences.
In other words, the document with the largest number of occurrences that all
keywords appear together is returned first.

As a rigorous extension of Cash et al.’s OXT protocols [5], this proposed
scheme retains OXT’s performance efficiency, to be precise, optimal server com-
putation and storage as well single round of communication; on the basis of
which, it also improves OXT by supporting ranked search to offer a more satis-
factory result set.

1.2 The Related Work

In this section, the related studies about searchable symmetric encryption, con-
junctive and Boolean queries, and order preserving encryption will be introduced.

Searchable symmetric encryption. Song et al. constructed an SSE solution
in 2000 [1] at a price of weakened security guarantee, after which, Goh in 2003 [2]
and Chang and Mitzenmacheret in 2005 [3] proposed secure indexes to tackle the
above security limitations, whose computation complexity is linear to the number
of documents. In 2011, Curtmola et al. [4] provided two solutions whose server
computation is linear in the number of documents containing the keyword hence
optimal, which was then most secure and efficient and the first sublinear SSE
scheme. In addition, they also proposed SSE in the multi-user setting. However,
all the above SSE schemes focus on single-keyword search, which results in a large
number of matching documents, and a naive solution of conjunctive queries is
to run a single-keyword SSE scheme for each keyword thus is not efficient.

Conjunctive and Boolean queries. An SSE solution with supporting for con-
junctive and Boolean queries is of practical essence, at least the scheme should
be able to support conjunctive searches that return matching documents con-
taining all queried keywords (e.g.,“female” and “master degree”). Conjunctive
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searches in the symmetric key setting was first considered by Golle, Staddon
and Waters in 2004 [6], which is suited for structured data only and leaks the
attributes searched, whose complexity is linear in the number of all documents
in the database. Ballard et al. in 2005 [7] and Byun et al. in 2006 [8] furthered
efficient conjunctive keyword searches, both of which as before apply to struc-
tured data only and are linear in the size of the database. Besides, none of the
solutions supports disjunctive Boolean queries.

The OXT protocol built by Cash et al. [5] extends to general Boolean queries
not only supporting conjunctions but also disjunctions, negations, and more. It
also addresses limitations of previous SSE schemes by applying to arbitrarily-
structured data, including both attribute-value data and free text. Furthermore,
this solution has significant advantages over previous SSE schemes because it
scales to large database at a realistic price of allowing leakage of access patterns
(but never searched attributes) that is explicitly and precisely defined, whose
complexity is linear in the number of documents that contain the least frequent
keyword in the query. This protocol can also be extended to support range
queries (e.g., “age < 30”) and the multi-user setting.

Order preserving encryption (OPE). OPE was first introduced by Agrawal
et al. in 2004 [11], which was formally performed and analysed by Boldyreva
et al. in 2009 [12] for the first time. Several other OPE schemes were proposed
(e.g., [13–15]) but provided no or little security guarantees while leaking most of
the plaintext until Popa et al. [16] proposed an ideal-security OPE scheme that
satisfies the minimum security requirement, which is to reveal nothing about
the plaintext values other than their relative order. OPE enhances searchable
encryption to support range queries containing operators such like greater than
(>) or less than (<) in addition to equal to (=), meanwhile enables ranked
search over encrypted data. Wang et al. [10,17] proposed ranked searchable
symmetric encryption schemes adapted from [12], which supports single-keyword
search only. Cao et al. [18] defined a multi-keyword ranked search encryption
scheme using “coordinate matching” that ranks documents by as many keyword
matches as possible which is not ideal considering varied presence frequency and
significance of different keywords. Other feasible multi-keyword ranked search
encryption schemes (e.g., [19–21]) have been proposed recently using vector space
model.

1.3 Organisation

The rest of this paper is organised as follows. Section 2 introduces the prelimi-
naries, including notations, the OXT protocol, and order preserving encryption.
Next, our order preserving SSE is defined and proposed in Sect. 3, after which
we analyse the security of the proposed algorithm in Sect. 4. At last, this paper
is concluded in Sect. 5.
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2 Preliminaries

2.1 Notations

In the rest of the sections, some notations are continuously quoted and are
essential denoting concepts and terminologies. Following is a list of fundamental
notations involved in this paper.

– [c]: a set from 1 to c, which is the same as {1, 2, ..., c}
– |t|: the size or length of t
– t[i]: the i-th elements of t
– d: the number of documents in a database DB
– indi: the identifier of the i-th document
– Wi: a set of keywords in the i-th document
– W = ∪d

i=1Wi: the keyword set of the entire database
– DB = (indi,Wi)d

i=1: a database is parsed as a list of key (document identifier
indi) - value (corresponding keyword set Wi) pairs

– DB(w): a set of identifiers of documents that contain the keyword w
– sterm: a term (or keyword) estimated to have the least frequency, which is

denoted by w1 for simplicity, that will return a smallest |DB(w1)|
– xterm: other terms (or keywords) that are queried, where x stands for cross.
– TSet: a tuple set that presents a list of equal-length data tuples with each

keyword in the database
– XSet: a set data structure that contains elements computed from each keyword

- document pair

2.2 The OXT Protocol

The Oblivious Cross-Tags (OXT) protocol is proposed in the highly-scalable SSE
scheme by Cash et al. [5], which consists of an EDB Setup algorithm and a Search
protocol. The output from the protocol are encrypted identifiers, which are used
by the client to retrieve encrypted documents. The OXT protocol can support
Boolean queries of multiple keywords, achieve better security performance by
preventing the server from knowing the identifiers of queried sterm (the term or
keyword that is evaluated to have the least frequency), and reduce the communi-
cation between the client and the server to a single round. In order to present our
order preserving SSE in an approachable manner, the syntax of OXT is depicted
as follows.

In the EDB Setup algorithm described in the following Algorithm1, function
EDBSetup works by taking DB as input and outputting secret keys K along
with EDB. K is given to the client, while EDB is given to the server. At this
stage, for each keyword in the database, a list of encrypted document pointers
is generated, which is then added to an array T indexed by all keywords of W.
During EDBSetup, TSet is initialised taking T as an output, assembling EDB
together with XSet.
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Algorithm 1. Cash - EDB Setup Algorithm
Input: DB
Output: EDB, K

function EDBSetup(DB)
Select key KS for PRF F . Select keys KX , KI , KZ for PRF Fp with range Z

∗
p.

DB = (indi, Wi)
d
i=1

Initialise T ← {} indexed by w ∈ W.
Set XSet ← ∅
for w ∈ W do

Initialise t ← {}.
Set Ke ← F (KS , w).
for ind ∈ DB(w) do

Set a counter c ← 0
e ← Enc(Ke, ind).

Compute xind ← Fp(KI , ind), z ← Fp(KZ , w||c), and y ← xindz−1.
Append (e, y) to t.

Set xtag ← gFp(KX,w)·xind and XSet ← XSet ∪ {xtag}
Let c ← c + 1.

end for
T[w] ← t

end for
Set (TSet, KT ) ← TSetSetup(T).
return EDB = (TSet, XSet), K = (KS , KX , KI , KZ , KT )

end function

For ease of understanding, the Search protocol running between the client
and the server is split into two parts: Token Generation algorithm and Search
algorithm. The Token Generation algorithm described in Algorithm 2 computes
and outputs a tag of sterm as well as a set of tokens of xterms using K and
w1 at the client, and then the Search algorithm described in Algorithm 3 checks
existence of xterms in the XSet of sterms at the server. In other words, the
client takes responsibility to choose sterm which is basically the least frequent
keyword that exists in the smallest number of satisfied documents, and the server
returns encrypted identifiers of all satisfied documents to the client, which is
then decrypted at the client to retrieve documents, and then stops the client
from sending tokens.

Algorithm 2. Cash - Token Generation Algorithm
Input: w̄ = (w1 ∧ · · · ∧ wn), K
Output: stag, xtoken

function TokenGeneration(w̄, K)
Computes stag ← TSetGetTag(KT , w1).
for c = 1, 2, . . . until stopped by the server do

for i = 2, . . . , n do
xtoken[c, i] ← gFp(KZ,w1||c)·Fp(KX,wi)

end for
xtoken[c] ← (xtoken[c, 2], . . . , xtoken[c, n])

end for
return stag, xtoken

end function
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Algorithm 3. Cash - Search Algorithm
Input: stag, xtoken, EDB
Output: e

function Search(stag, xtoken, EDB)
Set t ← TSetRetrieve(TSet, stag)
for c = 1, . . . , |t| do

Retrieve (e, y) from the c-th tuple in t
if ∀i = 2, . . . , n : xtoken[c, i]y ∈ XSet then

Send e to the client until the last tuple in t then sends stop
end if

end for
end function

Please refer to [5] to obtain more details about the used parameters and T-set
implementation Σ = {TSetSetup,TSetGetTag,TSetRetrieve}.

2.3 Order Preserving Encryption

The order preserving encryption scheme Π = {KeyGen,Enc,Dec} is a deter-
ministic symmetric-key encryption scheme that maintains order relations of
plaintexts. A detailed description of each algorithm follows.

KeyGen(λ) → s. This algorithm inputs the security parameter λ and gener-
ates a secret key s.

Enc(s, x) → y. This algorithm computes a ciphertext y for plaintext x based
on the secret key s.

Dec(s, y) → x. This algorithm computes the plaintext x for ciphertext y
based on the secret key s.

We say the scheme Π is correct if Π.Dec(s,Π.Enc(s, x)) = x for any valid s
and x. We say it is order preserving if for any valid s, x < x′ =⇒ Π.Enc(s, x) <
Π.Enc(s.x′).

So far, the strongest definition of security of order-preserving encryption is
indistinguishability under ordered chosen plaintext attack (IND-OCPA), which
is achieved by the encryption schemes of [22].

3 Order Preserving SSE Supporting Conjunctive Queries

In this section, the order preserving extension of SSE, which searches the
encrypted database based on a conjunctive query and returns satisfied docu-
ments ordered by the number of occurrences of all keywords, will be presented
and elaborated in detail. This scheme comprises four algorithms as follows, three
of which are altered to introduce keyword(s) occurrences.

EDB Setup Algorithm. As described in Algorithm 4, it takes the database
DB as an input and outputs the encrypted database EDB along with keys K by
the data owner. For each keyword w of interest, an encrypted identifier e of each
of all mapped documents, an order preserving encryption result e, of keyword
occurrence o in each mapped document, as well as a word-document pointer y
that is a function result of the keyword w, each counter c (which is the number
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of mapped documents), and the corresponding document identifier ind are all
stored in T[w]. The array T indexed by all keywords is then used by TSetSetup
as an input to initialise TSet and outputs KT . Meanwhile, the function result of
each keyword w and associated identifiers ind are stored in XSet. The encrypted
database EDB = (TSet, XSet) is given to the server, and all keys K are given to
the data owner.

Algorithm 4. EDB Setup Algorithm
Input: DB
Output: EDB, K

function EDBSetup(DB)
• Select key KS for PRF F and Ke′ for OPE scheme Π. Select keys KX , KI , KZ for PRF

Fp (with range Z
∗
p).• Initialise T to an empty array indexed by keywords from W.

• Initialise XSet ← {}.
for w ∈ W do

Initialise t ← {}; and let Ke ← F (KS , w).
for ind ∈ DB(w) do

Initialise a counter c ← 0.
Set xind ← Fp(KI , ind), z ← Fp(KZ , w||c), y ← xind · z−1.
Compute e ← Enc(Ke, ind).
Compute e′ ← Π.Enc(Ke′ , o).
Append (y, e, e′) to t.

Set xtag ← gFp(KX,w)·xind and append (xtag, e′) to XSet.
c ← c + 1.

end for
T[w] ← t

end for
• (TSet, KT ) ← TSetSetup(T).
• return EDB = (Tset, XSet), K = (KS , Ke′ , KX , KI , KZ , KT )

end function

Token Generation Algorithm. This algorithm runs at the client side by
generating stag and xtoken, using keywords w̄ from a query and keys K from
the data owner. stag is computed against keyword w1 that is assumed to result in
a relatively small number of mapped documents among all keywords in the query,
and xtoken is the function result of w1, counter c, and each other keyword wi.
stag and xtoken are sent to the server. The details are described in the following
Algorithm 5.

Algorithm 5. Token Generation Algorithm
Input: K, w̄ = (w1 ∧ · · · ∧ wn)
Output: stag, xtoken

function TokenGeneration(K, w̄)
• Computes stag ← TSetGetTag(KT , w1).
for c = 1, 2, . . . until the server stops do

for i = 2, . . . , n do

xtoken[c, i] ← gFp(KZ,w1||c)·Fp(KX,wi)

end for
Set xtoken[c] ← (xtoken[c, 2], . . . , xtoken[c, n])

end for
• return stag, xtoken

end function



Ranked Searchable Symmetric Encryption Supporting Conjunctive Queries 357

Search Algorithm. This algorithm described in Algorithm6 runs at the server,
which first retrieves T[w1] using stag from the client and TSet from the data
owner, further retrieves the encrypted identifier e of each document that contains
w1 and the corresponding number of occurrences e′

1. It then uses xtoken to verify
whether other keywords exist in XSet for each satisfying document and get their
encrypted number of occurrences e′

i accordingly. Following that, the smallest of
e′ denoted as e′

min is chosen to be the overall number of occurrences that all
keywords appear together. In the end, encrypted identifiers e of all satisfying
documents along with their number of occurrences e′

min are sent to the client
sorted by e′

min.

Algorithm 6. Search Algorithm
Input: stag, xtoken, EDB
Output: ERS

function Search(TSet, XSet, stag, xtoken)
• Initialise ERS ← {}
• Set t = T[w1] ← TSetRetrieve(TSet, stag)
for c = 1, . . . , |t| do

Retrieve (y, e, e′
1) from the c-th tuple in t

if ∀i = 2, . . . , n : xtoken[c, i]y ∈ XSet then
Retrieve e′

2, . . . , e′
n.

e′
min ← min(e′

1, e′
2, . . . , e′

n) and append (e, e′
min) to ERS

end if
end for
• ∀e in ERS, order e by e′

min.• return ERS
end function

Retrieve Algorithm. This algorithm described in Algorithm7 runs at the
client side after receiving ERS from the server, which is decrypted using keys KS

and Ke′ to get document identifiers and corresponding number of occurrences
accordingly. Encrypted documents are retrieved and returned in order (i.e., the
document with largest keyword occurrences is returned first).

Algorithm 7. Retrieve Algorithm
Input: K, ERS
Output: ind, o

function Retrieve(ERS)
• Ke ← F (KS , w1)
for (e, e′

min) ∈ ERS do
Compute ind ← Dec(Ke, e), o ← Π.Dec(Ke′ , e′

min)
end for
• return (ind, o) sorted by o.

end function

4 Security Analyses

In this section we describe the scheme leakage profile L and analyse its security.
We use the definition of semantic security for SSE as Cash et al.
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Definition. Let Υ= {EDBSetup,TokenGeneration,Search,Retrieve} be an
SSE scheme and let L be an algorithm. For efficient algorithms A and S, we
define experiments RealΥA(λ) and IdealΥA,S(λ) as follows.

RealΥA(λ): Chooses DB and a list of queries q. The experiment then runs
(EDB,K) ← EDBSetup(DB). For each i ∈ |q|, it runs TokenGeneration(K, q[i])
by the client and Search(EDB, stag, xtoken) by the server. Finally the game gives
EDB and t to A, which returns a bit that the game uses as its own output.

IdealΥA,S(λ): Chooses DB and a list of queries q. The experiment runs
S(L(DB, q)) and gives its output to A, which returns a bit that the game used
as its own output.

We say that is L-semantically-secure against non-adaptive attacks if for all effi-
cient adversaries A there exists an algorithm S such that Pr[RealΥA(λ) = 1] −
Pr[IdealΥA,S(λ)] ≤ neg(λ).

Theorem. Υ is L-semantically-secure against non-adaptive attacks where L is
defined as above, assuming that the DDH assumption holds in G, that F and Fp

are secure PRFs, that (Enc,Dec) is an IND-CPA secure symmetric encryption
scheme, that Σ is a L-secure and computationally correct T-set implementation,
and that Π is an IND-OCPA secure order preserving encryption scheme.

Proof. This proof is same with the one in [5] except a new game GN is added
after all games GCash.

Game GN . During Initialize mentioned in [5], the ciphertext e′ is generated
with an encryption of keyword occurrence o. We define there exists an efficient
adversary BN such that

Pr[GN = 1] − Pr[GCash = 1] ≤ AdvIND−OCPA
Π,BN

(λ)
So we say the proposed Υ is L-semantically-secure against non-adaptive

attacks.

5 Conclusion

Based on the work in [5], by setting keyword-occurrence parameters and inte-
grating an order preserving encryption scheme, an order preserving searchable
symmetric encryption supporting conjunctive queries is proposed. Not only all
matching documents with keywords are returned to clients, the documents are
also ordered by keyword occurrences where the document with the largest num-
ber of occurrences is returned first, which may be the most desirable answer
for users. The security analysis indicates that the proposed scheme is IND-CPA
secure based on the DDH assumptions, secure PRFs, secure symmetric encryp-
tion scheme, secure T-set implementation, and secure order preserving encryp-
tion scheme.

There are several directions of improvement we can make in the future fol-
lowing the current work. The most promising one is to extend the solution to
support Boolean queries, which not only supports conjunctive keyword search
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but also disjunctions, negations, and more. However, the current relevance score
of a matching document is defined as the number of occurrences of the least
frequently occurring keyword of all queried keywords contained, which needs
further investigation to cooperate with more general Boolean search.
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Shenzhen, China (JCYJ20160307150216309, JCYJ20170302151321095), and Tencent
Rhinoceros Birds - Scientific Research Foundation for Young Teachers of Shenzhen
University, China.

References

1. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security & Privacy, pp. 44–55 (2000)

2. Goh, E.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
http://eprint.iacr.org/2003/216

3. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

4. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

6. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24852-1 3

7. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
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Abstract. Functional encryption, which emerges in the community
recently, is a generalized concept of traditional encryption (e.g. RSA and
AES). In traditional encryption scheme, decrypting a ciphertext with a
correct decryption key will output the original plaintext associated to
the ciphertext. In contrast, in functional encryption scheme, decrypting a
ciphertext with a correct decryption key will output a value that is derived
from both the plaintext and the decryption key, and the decryption out-
put would change when different correct decryption key is used to decrypt
the same ciphertext. We propose a new functional encryption scheme for
multidimensional range query. Given a ciphertext that is the encryption of
some secret plaintext under a public attribute (a multidimensional point),
and a decryption key corresponding to a query range and a function key.
If the public attribute point is within the query range, a user is able to
decrypt the ciphertext with the decryption key to obtain a value, which is
the output of a pre-defined one-way function with the secret plaintext and
the function key as input. In comparison, in previous functional encryp-
tion for range query, a decryption will simply output the original secret
plaintext when the attribute point is within the query range.

Keywords: Functional encryption · Multidimensional range query
Polymorphic property

1 Introduction

The concept of functional encryption emerges recently, as a generalization of
traditional encryption. Informally, in traditional encryption scheme (e.g. public
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key cipher like RSA and private key cipher like AES), decrypting a ciphertext
CT of a secret plaintext Msg with correct decryption key will output the original
plaintext Msg. In a functional encryption scheme, decrypting a ciphertext CT
with “correct decryption key” SKk will obtain only a function value f(k,Msg)
of the plaintext Msg and the function key k, and nothing more. It will be more
interesting when the function f is one-way, such that the original plaintext Msg
remains secret after several function values f(kj ,Msg)’s for different function
keys kj are revealed.

To the best of our knowledge, almost all previous instances of func-
tional encryption schemes (for example, attribute-based encryption or predicate
encryption) implements a functionality F of the following type:

F (k, (x,Msg)) =
{
Msg (if Predicate(x, k) = True);
⊥ (otherwise) (1)

where Predicate is pre-defined. In this paper, we are interested in a more
general functionality:

F (k, (x,Msg)) =
{

f(k,Msg) (if Predicate(x, k) = True);
⊥ (otherwise) (2)

where f is some one-way function. Few works have been devoted to the latter
type of functionality (Eq. (2)). Very recently, Gorbunov et al. [1] proposed a
function encryption method for any multi-variable polynomial function, using
Secure Multi-party Computation. The supported functionality belongs to the
latter style (Eq. (2)). In this paper, we will propose a more efficient functional
encryption scheme which implements functionality in Eq. (2) for a particular one-
way function f (defined later) with Predicate replaced by multidimensional
range query, using a novel technique.

1.1 Overview of Our Technique

We observe that some (HIBE) encryption scheme (KeyGen,Enc,Dec), e.g. BBG
HIBE scheme [2], satisfies a polymorphic property : From a pair of keys (pk, sk) ∈
KeyGen(1κ), a plaintext M , an identity id, and a random coin r, one can effi-
ciently find multiple tuples (pkj , skj ,Mj , rj), 1 ≤ j ≤ n, such that for any
1 ≤ j ≤ n, (pkj , skj) ∈ KeyGen(1κ) is a valid key pair and

Encpk(id,M ; r) = CT = Encpkj
(id,Mj ; rj).

From the opposite point of view, a ciphertext CT can be decrypted into value Mj

using the decryption key skj , 1 ≤ j ≤ n. We can view these decrypted values Mj ’s
as a function of the original plaintext M which is used to produce the ciphertext
CT, i.e. decrypting CT using decryption key skj will generate the function value
f(j,M) := Mj of the plaintext M . Hence, such polymorphic property may lead
to a new way to construct functional encryption schemes [3–6].
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1.2 Application

Besides the theoretical merit as an example of a new kind of functional encryp-
tion paradigm, our proposed scheme can also be used to authenticate multidi-
mensional range queries. Here we give a brief description in a nutshell: A data
owner encrypts his multidimensional data points (Msg,x) (e.g. netflow, log, or
sensor data in a cyber-physical system) using our functional encryption scheme,
and outsources all ciphertexts to a cloud. Later, the data owner could choose
a multidimensional query range R and a nonce1 ρ, and sends a delegation key
w.r.t. (R, ρ) to the cloud. Then the cloud tries to decrypt each ciphertext using
this delegation key. If the corresponding point x is within the query range R,
then decryption will succeed and the cloud is able to obtain a one-way func-
tion value f(ρ,Msg), which could serve as a proof that x ∈ R. The cloud could
find and count all ciphertexts of data points within the query range, and sends
corresponding proofs to the data owner. This is the basic idea how our pro-
posed scheme can be used to authenticate multidimensional count queries. How
to aggregate all individual proofs to reduce total proof size using some homo-
morphism, and how to prevent miss-counting or double counting, requires other
non-trivial techniques. More details are provided in the full version [7,8].

1.3 Contribution

– We propose a functional encryption scheme, by exploiting a special prop-
erty (we call it “polymorphic property”) of the BBG HIBE scheme [2]. Under
this functional encryption scheme, given a secret message Msg and a public
identity x, which is a d-dimensional point in domain [1,Z]d where system
parameter Z is an integer, a ciphertext can be generated using the private2

key. A decryption key w.r.t. a d-dimensional rectangular range R and a ran-
dom nonce ρ can also be derived from the private key. With this decryption
key and the ciphertext for message Msg under identity x, the decryption algo-
rithm will output Ωρ·Msg iff x ∈ R, where Ω is a part of key of the functional
encryption scheme. The size3 of a public/private key is in O(1), the size of a
ciphertext is in O(d), and the size of a decryption key is in O(d log2 Z).

– We define weak-IND-sID-CPA security following the IND-sID-CPA security for-
mulation given by Boneh et al. [2]. We prove that the proposed functional
encryption scheme is weak-IND-sID-CPA secure (as defined in Sect. 3.3), if
BBG HIBE scheme [2] is IND-sID-CPA secure (See Theorem 2).

1 Here the nonce ρ is crucial to prevent cloud from abusing delegation keys across
different queries.

2 Unlike [3,4], our functional encryption scheme is a symmetric key encryption system.
3 Since the private key contains O(d) random elements from Z

∗
p and O(�) random

elements from ˜G, its size can be reduced from O(� + d) to O(1) (precisely, O(1)
number of secret seeds, and each seed with length equal to the security parameter
κ), using a pseudorandom function.
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1.4 Organization

The rest of this paper is organized as below. Section 2 reviews related works.
Section 3 constructs a new functional encryption scheme for multidimensional
range query, and Sect. 4 presents the security formulation and analyzes the cor-
rectness and security of the proposed scheme. At the end, Sect. 5 concludes this
paper.

2 Related Works

Functional encryption [1,3–6,9–12] is a new and more general notion to cap-
ture all of previous public encryption (e.g. RSA), private encryption (e.g. AES),
identity based encryption (e.g. [13]), attribute-based encryption (e.g. [14]), and
predicate encryption (e.g. [15]). Some works [3,4,10] aimed to formulate the
security of generic functional encryption, some [1,9,12] constructed functional
encryption for a somewhat generic class of functionalities, and some [11] analyzed
the lower bound of functional encryption scheme.

In particular to functional encryption supporting multidimensional range
query, Shi et al. [16] proposed a predicate encryption scheme called MRQED
(Multi-dimensional Range Query over Encrypted Data). Under their scheme,
given a message and an identity, which is a d-dimensional point, a ciphertext
can be generated. A short decryption key for a d-dimensional rectangular range
can be generated from the master secret key. From this decryption key and the
ciphertext, the original message can be decrypted, iff the identity point associ-
ated with the ciphertext is within the query range. There is a subtle but cru-
cial difference between MRQED scheme and our implementation of functional
encryption scheme: After a successful decryption, MRQED scheme reveals the
message, whereas our functional encryption scheme reveals only a function value
of the message. Precisely, the functionalities supported by MRQED [16] and this
paper are given in Eqs. (3) and (4), respectively.

MRQED: F (k = (R), (x,Msg)) =
{
Msg (if x ∈ R);
⊥ (otherwise) (3)

This paper: F (k = (ρ,R), (x,Msg)) =
{

f(ρ,Msg) (if x ∈ R);
⊥ (otherwise) (4)

where f is some one-way function and will be defined later.
On the other hand, MRQED has its own advantages over our proposed func-

tional encryption scheme—MRQED [16] is a public key encryption scheme and
has a stronger security model.

Other recent works in functional encryption include [17–21].

3 Construction of a New Functional Encryption Scheme

3.1 Polymorphic Property of BBG HIBE Scheme

We observe that the BBG HIBE scheme [2] satisfies the polymorphic property:
An encryption of a message M can be viewed as the encryption of another
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message M̂ under different key. Precisely, let CT and ĈT be defined as follows,
we have CT = ĈT:

CT = Encrypt(params, id, M ; s) =
(
Ωs · M, gs,

(
hI1
1 · · ·hIk

k · g3
)s)

under key: params = (g, g1, g2, g3, h1, . . . , h�, Ω = e(g1, g2)), master-key = gα
2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(
Ωsz · M̂, ĝsz ,

(
ĥI1
1 · · · ĥIk

k · ĝ3
)sz)

,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ�, Ω = e(g1, g2)), ̂master-key = gαz
2 (5)

where � is the maximum depth of the HIBE scheme, k ≤ � is the length of
identity id, M̂ = MΩs(1−z), ĝ = gz−1 mod p, ĝ3 = gz−1 mod p

3 , ĥi = hz−1 mod p
i

for 1 ≤ i ≤ � and identity id = (I1, . . . , Ik) ∈ (
Z

∗
p

)k. One can verify the above
equality easily.

3.2 Define Identities Based on Binary Interval Tree

An identity is a sequence of elements from Z
∗
p. To apply HIBE scheme, we intend

to construct two mappings, named ID and IdSet, to associate identities to integers
or integer intervals:

– ID(·) maps an integer x ∈ [Z] into an identity ID(x) ∈ (
Z

∗
p

)�, where � =
�log Z� is the height of identity hierarchy tree of the BBG HIBE scheme.

– IdSet(·) maps an integer interval [a, b] ⊆ [Z] into a set of O(�) identities,
where each identity is a sequence of at most � elements from Z

∗
p.

The two mappings ID and IdSet are required to satisfy this property: For any
x ∈ [a, b] ⊆ [Z], there is a unique identity id in the set IdSet([a, b]), such that
identity id is a prefix of identity ID(x). If x �∈ [a, b], then there is no such identity
id in IdSet([a, b]). For each dimension ι ∈ [d], we will construct such mappings
IDι and IdSetι using a binary interval tree [16]. The resulting mappings are made
public.

Binary Interval Tree. The binary interval tree is constructed as below: First, we
build a complete ordered binary tree with 2� leaf nodes. Next, we associate an
integer interval to each tree node in a bottom-up manner: (1) Counting from the
leftmost leaf, the j-th leaf is associated with interval [j, j]; (2) For any internal
node, the associated interval is the union of the two intervals associated to its
left and right children respectively. As a result, the interval associated to the
root node is [1, 2�]. An example of binary interval tree with size 8 is showed in
Fig. 1.

Constructions of Mappings IDι and IdSetι for dimension ι. Let H : Z2�+1 ×
Z2�+1 × [d] → Z

∗
p be a collision resistant hash function. Let (v1, v2, . . . , vm) be

the path from the root node v1 to the node vm in the binary interval tree. We
associate to node vm the identity (H(a1, b1, ι), . . . ,H(am, bm, ι)) ∈ (

Z
∗
p

)m, where
[aj , bj ] is the interval associated to node vj , 1 ≤ j ≤ m.

For any x ∈ [Z], we define IDι(x) as the identity associated to the x-
th leaf node (counting from the left). For any interval [a, b] ⊆ [Z], we find
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the minimum covering set MCSa,b, which is a set {vj : vj is a tree node, 1 ≤
j ≤ n} with minimal size such that the intervals associated to vj ’s
form a partition of the interval [a, b], and define IdSetι([a, b]) := {idj :
idj is the identity associated to nodevj , vj ∈ MCSa,b}. One can verify that the
newly constructed mappings IDι and IdSetι satisfy the property mentioned in the
beginning of Sect. 3.2. Furthermore, the set IdSetι([a, b]) contains O(�) identities
and each identity is a sequence of at most � elements from Z

∗
p.

[1,1] [2,2]

[3,4]

[3,3] [4,4] [5,5] [6,6] [7,7] [8,8]

[5,6] [7,8][1,2]

[5,8][1,4]

[1,8]

Fig. 1. Binary interval tree with 8 leaf nodes.

3.3 Construction of Functional Encryption Scheme

Let (Setup, KeyGen, Encrypt, Decrypt) be the BBG Hierarchical Identity Based
Encryption (HIBE) scheme proposed by Boneh, Boyen and Goh [2] (the
description of this scheme is in the appendix of the full version [7,8]). Based
on this HIBE scheme, we construct a functional encryption scheme FE =
(f Setup, f Enc, f KeyGen, fDec) as below.

f Setup(1λ, d,Z) : security parameter λ, dimension d, maximum integer Z;

the domain of points is [Z]d

1. Let � = �log Z�. Run algorithm Setup(�, λ) to obtain bilinear groups
(p, G, G̃, e), public parameter params = (g, g1, g2, g3, h1, . . . , h�, Ω = e(g1, g2))
and master private key master-key = gα

2 , such that p is a λ bits prime, G, G̃

are cyclic multiplicative groups of order p, e : G × G → G̃ is a bilinear map,
g is a generator of G, α ∈ Zp, g1 = gα ∈ G, and g2, g3, h1, . . . , h� ∈ G.

2. Let IDι and IdSetι, ι ∈ [d], be the mappings as in Sect. 3.2.
3. Choose d random elements τ1, . . . , τd from Z

∗
p and let τ = (τ1, . . . , τd).

4. Let pk = (p, G, G̃, e, Ω) and sk = (pk, params, master-key, τ ). Make IDι’s
and IdSetι’s public and output (pk, sk).

f Enc(Msg,x, sk) : message Msg ∈ Z
∗
p, d-dimensional point x

1. Treat the d-dimensional point x as (x1, . . . , xd) ∈ [Z]d; recall that the private
key sk is (pk, params,master-key, τ ), where τ = (τ1, . . . , τd).
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2. Choose d random elements s1, . . . , sd from Zp with constraint Msg =
−∑d

j=1 sj · τj (mod p).

3. Choose d random elements σ1, . . . , σd from G̃ with constraint
∏d

j=1 σj =

Ω− ∑d
j=1 sj .

4. For each j ∈ [d], encrypt σj under identity IDj(xj) with random coin sj to
obtain ciphertext cj as follows

cj ← Encrypt(params, IDj(xj), σj ; sj). (6)

5. Output ciphertext CT = (c1, . . . , cd).

f KeyGen(R, ρ, sk) : d-dimensional rectangular range R, function key ρ ∈ Z
∗
p

1. Treat the d-dimensional rectangular range R ⊆ [Z]d as Cartesian product
A1 ×A2 . . .×Ad, where Aj ⊆ [Z] for each j ∈ [d]; recall that the private key
sk is (pk, params,master-key, τ ), where τ = (τ1, . . . , τd).

2. For each dimension j ∈ [d], generate a set δj in this way:
(a) For each identity id ∈ IdSetj(Aj), generate the private key did, using

algorithm KeyGen and taking the value master-keyρτj as the master key.
(b) Set δj ← {did : id ∈ IdSetj(Aj)}.

3. Output delegation key δ = (δ1, δ2, . . . , δd).

fDec(CT,x,R, δ, pk) : ciphertext CT, d-dimensional point x , d-dimensional

rectangular range R, delegation key δ

1. Treat the d-dimensional rectangular range R ⊆ [Z]d as Cartesian product
A1×A2 . . .×Ad, where Aj ⊆ [Z] for each j ∈ [d]. Let us write the ciphertext
CT as (c1, . . . , cd), and the d-dimensional point x as (x1, . . . , xd).

2. For each dimension j ∈ [d], generate t̃j in this way: If xj �∈ Aj , then output
⊥ and abort. Otherwise, do the followings:
(a) Find the unique identity id∗ ∈ IdSetj(Aj) such that id∗ is a prefix of

identity IDj(xj).
(b) Parse δ as (δ1, . . . , δd) and find the private key did∗ ∈ δj = {did : id ∈

IdSetj(Aj)} for identity id∗.
(c) Generate the private key dj for the identity IDj(xj) from private key did∗ ,

using algorithm KeyGen.
(d) Decrypt cj using algorithm Decrypt with decryption key dj , and denote

the decrypted message as t̃j .
3. Output t̃ =

∏
1≤j≤d t̃j ∈ G̃.

4 The Constructed Functional Encryption Scheme
Is Correct and Secure

In this section, we analyze the correctness and security of the newly constructed
functional encryption scheme.
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4.1 Correctness

Let us define a key-ed function family {fρ : Z
∗
p → G̃}ρ∈Z∗

p
as below: Let Ω ∈ G̃

be as in f Setup of Sect. 3.3.

f1(Msg) = ΩMsg; ∀ρ ∈ Z
∗
p, fρ(Msg) = f1(Msg)ρ ∈ G̃. (7)

Lemma 1 (FE is correct). The functional encryption scheme FE described
in Sect. 3.3 satisfies this property: For any public-private key pair (pk, sk) ←
f Setup(1λ, d,Z), for any message Msg ∈ Z

∗
p, for any point x ∈ [Z]d, for any

rectangular range R ⊆ [Z]d, for any ρ ∈ Z
∗
p, if CT ← f Enc(Msg,x, sk) and

δ ← f KeyGen(R, ρ, sk), then

fDec(CT, x, R, δ, pk) =
{

fρ(Msg) (ifx ∈ R)
⊥ (otherwise) (8)

Most of previous functional encryption schemes [5] (e.g. attribute-based
encryption [14], and predicate encryption [15]), if not all, allow the decryptor
to obtain the original plaintext Msg from a ciphertext of Msg in “good” case
(e.g. if the attribute of plaintext and/or the decryption key satisfy the desig-
nated predicate), and nothing otherwise. In contrast, our functional encryption
scheme FE only allows the decryptor to obtain f1(Msg)ρ in “good” case, from a
ciphertext of Msg, where f1 is a one-way function. Unlike [3,4], our functional
encryption scheme is a symmetric key system. Our security formulation is weaker
than previous works (e.g. [3,4]).

4.2 Proof of Correctness

Proof (of Lemma 1). We observe that the BBG HIBE scheme [2] satisfies the
polymorphic property: An encryption of a message M can be viewed as the
encryption of another message M̂ under different key. Precisely, let CT and ĈT

be defined as follows, we have CT = ĈT:

CT = Encrypt(params, id, M ; s) =
(
Ωs · M, gs,

(
hI1
1 · · ·hIk

k · g3
)s )

under key: params = (g, g1, g2, g3, h1, . . . , h�, Ω = e(g1, g2)), master-key = gα
2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(
Ωsz · M̂, ĝsz ,

(
ĥI1
1 · · · ĥIk

k · ĝ3
)sz )

,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ�, Ω = e(g1, g2)), ̂master-key = gαz
2 (9)

where identity id = (I1, . . . , Ik) ∈ (
Z

∗
p

)k, M̂ = MΩs(1−z), ĝ = gz−1 mod p,

ĝ3 = gz−1 mod p
3 and ĥi = hz−1 mod p

i for 1 ≤ i ≤ �. One can verify the above
equality easily.

Let (pk, sk) ← f Setup(1λ), message Msg ∈ Z
∗
p, point x ∈ [Z]d, R be a d-

dimensional rectangular range, and ρ ∈ Z
∗
p. Let CT ← f Enc(Msg,x, sk), δ ←

f KeyGen(R, ρ, sk), and y ∈ G̃.
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We consider dimension j ∈ [d] and apply the polymorphic property of BBG

scheme (Eq. (9)): Take M = σj , s = sj and z = ρτj . Then M̂ = MΩs(1−z) =
σjΩ

sj(1−τjρ).

In case x ∈ R. If x ∈ R, then the HIBE decryption will succeed in the process of
fDec (Sect. 3.3). Note that during decryption for dimension j, we use decryption
key derived from master-keyρτj . Let t̃j be as in Step 2(d) of fDec for decrypting
ciphertext CT. We have

t̃j = M̂ = σjΩ
sj(1−τjρ), j ∈ [d]. (10)

Combining all d dimensions, and applying the two equalities (see algorithm
f Enc in Sect. 3.3) Msg = −∑d

j=1 sjτj mod p and
∏d

j=1 σj = Ω− ∑d
j=1 sj we

have,

fDec(CT, x, R, δ, pk) = t̃ =
d∏

j=1

t̃j =
d∏

j=1

(
σjΩ

sj(1−τjρ)
)

=
d∏

j=1

σj ·
d∏

j=1

Ωsj ·
⎛
⎝ d∏

j=1

Ω−sjτj

⎞
⎠

ρ

= Ω− ∑d
j=1 sj ·

d∏
j=1

Ωsj · (
ΩMsg

)ρ

= ΩρMsg = fρ(Msg).

In case x �∈ R. Let R = A1 × A2 . . . × Ad as in Step 1 of fDec. If x �∈ R, then
for some dimension j ∈ [d], x[j] �∈ Aj , and fDec will output ⊥ (Step 2 of fDec
in Sect. 3.3).

4.3 Security

We formulize the security requirement of our functional encryption scheme by
modifying the IND-sID-CPA security game [2]. The resulting weak-IND-sID-CPA
security game between an adversary A and a challenger C is defined as below:

Commit: The adversary A chooses the target point x∗ from the space [Z]d and
sends it to the challenger C.

Setup: The challenger C runs the setup algorithm f Setup and gives A the result-
ing system parameters pk, keeping the secret key sk to itself.

Challenge: The challenger C chooses two plaintexts Msg0,Msg1 at random from
the message space Z

∗
p, and chooses a random bit b ∈ {0, 1}. C sets the challenge

ciphertext to CT = f Enc(Msgb, x∗, sk), and sends (CT, f1(Msg0), f1(Msg1)) to
the adversary A.

Learning Phase: The adversary A adaptively issues queries to the challenger
C, where each query is one of the following:
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– Delegation key query (R, ρ), where x∗ �∈ R: In response to this query, C runs
algorithm f KeyGen(R, ρ, sk) to generate the delegation key δ, and sends δ to
A.

– Anonymous delegation key query (R): In response to this query, C chooses
ρ at random from the space Z

∗
p and runs algorithm f KeyGen(R, ρ, sk) to

generate the delegation key δ, and sends δ to A.
– Encryption query (Msg,x): In response to this query, C runs f Enc(Msg,x, sk)

to obtain a ciphertext, and sends the ciphertext to A.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins if b = b′.
We refer to the above adversary A as a weak-IND-sID-CPA adversary. We

define the advantage of the adversary A in attacking the scheme FE as

Advweak-IND-sID-CPA
FE,A =

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ .

We will show in the following theorem that: if the BBG HIBE scheme is IND-
sID-CPA secure (as defined in [2]), then the functional encryption scheme FE con-
structed in Sect. 3.3 is weak-IND-sID-CPA secure. Note that the above security
definition is weak in the sense that the two challenged messages Msg0 and Msg1
are chosen randomly instead of adversarially. Compared to Gorbunov et al. [1]
which only allows a pre-defined number of delegation queries (they called
“q-Collusions”), the above security definition allows practically unlimited num-
ber of delegation key queries.

Theorem 2. Suppose there exists a weak-IND-sID-CPA adversary AFE, which
runs in time tFE and has non-negligible advantage ε against the functional
encryption scheme FE (constructed in Sect. 3.3) with one chosen delegation
key query and Naq chosen anonymous delegation key queries and Nenc cho-
sen encryption queries. Then there exists an IND-sID-CPA adversary ABBG,
which has advantage ε

2d against the BBG HIBE scheme [2] with O(d�) cho-
sen private key queries and zero chosen decryption query, and runs in time
tFE +O(d� · tmax · (Naq +Nenc)), where tmax is the maximum time for a random
sampling (within a space of size at most p), a BBG encryption Encrypt, or a
BBG key generation KeyGen. (The proof of security is in the full version [7,8].

5 Conclusion

In this paper, we constructed a new functional encryption scheme for multidi-
mensional range query, using a new technique. The proposed functional encryp-
tion scheme allows a user with a valid ciphertext and a correct decryption key
to obtain only a one-way function value of the plaintext, where the plaintext
remains secure, assuming that the multidimensional point associated to the
ciphertext is within the query range associated to the decryption key. Our func-
tional encryption scheme is designed by exploiting the polymorphic property of
existing BBG HIBE scheme: encryption of a message can be viewed as encryption
of another message under a different key.
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Abstract. As a kind of homomorphic signatures, linearly homomorphic
signatures allow any entity to linearly combine the signed data and pro-
duce a valid signature of the new data. Motivated by the open problem
given by Rivest in 2000, we introduce the notion of linearly homomorphic
signatures with designated entities (LHSDE). In the new notion, only one
entity (designated combiner) can perform the homomorphic operations,
and only one entity (designated verifier) can be convinced by the validity
of the signature. We initiate a foundational study on LHSDE including
definitions and security requirements, namely, unforgeability against the
designated combiner, unforgeability against the designated verifier and
indistinguishability. In addition, we present a specific design of LHSDE
with provable security in the random oracle model.

Keywords: Linearly homomorphic signatures · Designated combiner
Designated verifier · Random oracle model

1 Introduction

The notion of digital signatures, put forth by Diffie and Hellman in 1976 [11],
aims at providing integrity, authenticity and non-repudiation of the signed mes-
sages. In order to achieve the properties mentioned above, digital signatures
should satisfy certain security requirements. The traditional security of a digi-
tal signature scheme requires that it should be existentially unforgeable under
adaptively chosen message attacks. In such attacks, an adversary is allowed to
request the signer for signatures of some messages. These messages depend on
not only the signer’s public key but also the signatures that the adversary has
obtained. A signature scheme is called existentially unforgeable if no adversary
succeeds in forging a signature for a message which was not previously signed
by the signer. Although this security requirement of digital signatures (i.e., exis-
tential unforgeability) is widely used, it would be too strong in some scenarios
such as network coding.

In traditional routing, each node can only store and forward incoming pack-
ets, and an output (input) link only forwards (receives) one packet every time.
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 375–390, 2017.
https://doi.org/10.1007/978-3-319-72359-4_22
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Network coding as a new routing mechanism [1,17], in contrary, allows the inter-
mediate node to produce a new packet by combining incoming packets in order
to increases throughput. However, a major concern on network coding is that
malicious nodes can execute pollution attacks by introducing error packets. Even
one error packet can propagate and rapidly pollute a large amount of packets,
and eventually the destination node cannot recover original packets. Although
ordinary existentially unforgeable signature schemes can provide integrity ver-
ification, it would be impossible to produce a valid signature for a new valid
packet (i.e., a packet obtained by combining the valid incoming packets). In sit-
uations such as the network coding, existential unforgeability is too strong and
computations on authenticated data is necessary. This feature is provided by
homomorphic signatures.

The notion of homomorphic signatures is firstly introduced by Rivest in
2000 [19] and then redefined by Johnson et al. in 2002 [16]. In the talk [19], Rivest
presented two instances of homomorphic signatures: prefix aggregation signa-
tures and transitive signatures. Prefix aggregation signatures allow any entity,
without the knowledge of the signer’s private key, to compute the signature σ(x)
from signatures σ(x ‖ 0) and σ(x ‖ 1). Transitive signatures allow any entity,
without the knowledge of the signer’s private key, to compute the edge signa-
ture σ(A,C) from edge signatures σ(A,B) and σ(B,C). Johnson et al. [16] gave
the formal definition of secure homomorphic signatures, and then constructed a
homomorphic signature scheme which allows any entity, without the knowledge
of the signer’s private key, to compute the signature σ(w) on any subset w of x
from the signature σ(x).

There are various types of homomorphic signatures with different homomor-
phic operations. Among them, linearly homomorphic signatures allow any entity
to linearly combine authenticated data and obtain a valid signature of the new
data without the signer private key. Boneh et al. [6] designed a linearly homo-
morphic signature scheme to improve the security of the network coding. In their
scheme [6], data packs are viewed as a linear vector space over a prime field, and
a modification of the received vectors is viewed as a linear combination of vectors
with some integer coefficients. Besides, each node can verify the authenticity of
the packets and create a valid signature for a new valid packet. Boneh et al.
proved that their scheme is secure based on the co-CDH assumption in the ran-
dom oracle model. In the years that followed, linearly homomorphic signature
schemes with various properties were proposed.

In the random oracle model, Gennaro et al. [15] put forth a homomorphic
network coding signature scheme over the integers, and proved its security under
the RSA assumption. In addition, they pointed out that intermediate nodes can
choose small coefficients to implement linear combination, and therefore greatly
reduces the computational overhead.

The first linearly homomorphic signature scheme with provable security in the
standard model is put forth by Attrapadung and Libert in 2011 [2]. Their scheme
is defined over the bilinear group of composite order N , and the coefficient
of linear combination and the coordinate of vectors belong to ZN . In 2012,



Linearly Homomorphic Signatures with Designated Entities 377

Catalano et al. [8] presented two linearly homomorphic signature schemes to
further improve the efficiency of linearly homomorphic signatures in the standard
model. Their first scheme works over the group of composite order and the
security is based on the strong-RSA assumption. Their second scheme works
over a bilinear group of prime order and the security is based on the q-SDH
assumption.

Boneh and Freeman [5] proposed the first linearly homomorphic signature
scheme from complexity assumptions on lattices. They formulate a new com-
plexity problem called k-SIS problem which is also used in other cryptographic
schemes. Furthermore, Boneh and Freeman [4] constructed a polynomial homo-
morphic signature scheme based on ideal lattice. Both of these schemes are
proven secure in the random oracle model. There are no lattice-based linearly
homomorphic signature scheme in the standard model, until Chen et al. [9] pro-
posed the first design that authenticates vectors over small field. Other designs
of linearly homomorphic signatures include the schemes in [3,10,12,14,18].

1.1 Motivation and Contributions

The motivation of this paper is to design a homomorphic signature scheme with
designated entities, only who is able to perform the homomorphic operations.
This is first raised by Rivest in [19], namely, how to design a transitive sig-
nature scheme (a specific kind of homomorphic signatures) such that only one
entity can create the edge signature σ(A,C) from edge signatures σ(A,B) and
σ(B,C). We investigate a similar problem in the setting of linearly homomor-
phic signatures. Our goal is to design a linearly homomorphic signature scheme
such that only one entity can combine signatures from the existing ones. As a
result, homomorphic signatures are no longer publicly known and a designated
verifier is introduced. To the best of our knowledge, this is the first formal study
on linearly homomorphic signatures with designated entities (LHSDE).

In order to satisfy the goal of LHSDE, we revise the Sign, Verify and Com-
bine algorithms in an ordinary linearly homomorphic signature scheme, and
introduce two new algorithms DVerify and Simulation. The newly defined
Sign (resp. Verify) takes the public key (resp. private key) of the designated
combiner as an additional input, and the revised Combine needs the private key
of the designated combiner and the public key of the designated verifier. DVer-
ify is used to convince the designated verifier about the validity of the signature.
With Simulation, one can generate a signature designated to himself/herself.

Accordingly, we define three essential security requirements of LHSDE. First,
the scheme must be existentially unforgeable against the malicious designated
combiner. Second, no entity can serve as the role of the designated combiner.
Last, only the designated verifier can be convinced by the signatures generated by
the honest combiner. Then we show a construction meeting these requirements,
and the security is proved in the random oracle model under the co-Bilinear
Diffie-Hellman assumption and the Gap Bilinear Diffie-Hellman assumption.

Organization of the Paper. Section 2 presents the definition and the security
model of LHSDE. In Sect. 3.1, we introduce the complexity assumptions which
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are needed in our scheme. We construct a concrete LHSDE scheme in Sect. 3.2
and prove its security in the random oracle model in Sect. 3.3. Section 4 concludes
this paper.

2 Definitions and Preliminaries

We regard a document as an ordered sequence of n-dimensional vectors
v1, . . . ,vm ∈ F

n
p where p is a prime. At the beginning, the signer transforms

these n-dimensional vectors into the properly augmented basis vectors of the
subspace V ⊂ F

N
p such that:

vi = (−vi−,

m
︷ ︸︸ ︷

0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ F
N
p ,

where N = n+m and m is the dimension of subspace V . Intuitively, every vector
vi is equal to vector vi appended with a m-dimensional unit vector which only
has a single 1 at the i’th position and other m − 1 positions are 0.

2.1 Syntax of LHSDE

This subsection focuses on the definition and the security model of linearly homo-
morphic signatures with designated entities (LHSDE).

We assume that every document is associated with an identifier id (the iden-
tifier can be viewed as the document’s name) that is chosen by the signer. Every
entity uses identifiers to recognise packets of the same document.

Before presenting the definition of LHSDE, we denote the signer as Alice,
the designated combiner as Bob (combining the signatures produced by Alice)
and the designated verifier as Cindy (the receiver whom Bob want to convince
that he has a valid signature). Below is the definition of LHSDE.

Definition 1. A linearly homomorphic signature scheme with designated enti-
ties consists of the following probabilistically polynomial-time (PPT) algorithms
S = (Setup, KeyGen, Sign, Verify, Combine, DVerify, Simulation).

– Setup(1k, N). This algorithm takes as input a security parameter k and a
positive integer N , where N is the dimension of a vector to be signed. It
outputs the public parameter cp.

– KeyGen(cp). The signer Alice runs this algorithm to generate a public key
PKA and a private key SKA. Bob, the combiner designated by Alice, runs this
algorithm to generate his key pair (PKB , SKB). Cindy, the verifier designated
by Bob, also runs this algorithm to generate her key pair (PKC , SKC).

– Sign(SKA, PKB , id,m,v). This algorithm takes as input a private key SKA,
a public key PKB (of the designated combiner), a document identifier id
which is randomly chosen from a samplable set I = {0, 1}k, a positive integer
m < N representing the vector subspace’s dimension, and a vector v∈ F

N
p . It

outputs a signature σ of the vector v.
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– Verify(PKA, SKB , id,m,v, σ). This algorithm takes as input a public key
PKA, a private key SKB , a document identifier id, a positive integer m <
N representing the vector subspace’s dimension, a vector v ∈ F

N
p , and a

signature σ. It outputs 1 (accept) or 0 (reject).
– Combine(PKA, PKC , SKB , id, {(vk, σk)}l

k=1). This algorithm takes as
input two public keys PKA and PKC (of the designated verifier), a private
key SKB, a document identifier id, and l pairs of {(vk, σk)}l

k=1 where σk is
a signature of the vector vk ∈ F

N
p . It outputs a new signature σ and a new

vector v.
– DVerify(PKA, SKC , id,m,v, σ). This algorithm takes as input a public key

PKA, a private key SKC , a document identifier id, a positive integer m <
N representing the vector subspace’s dimension, a vector v ∈ F

N
p , and a

signature σ. It outputs 1 (accept) or 0 (reject).
– Simulation(PKA, SKC , id,m,v). This algorithm takes as input a public key

PKA, a private key SKC , a document identifier id, a positive integer m < N
representing the vector subspace’s dimension, and a vector v. It outputs a
signature σ̂ of the vector v.

In addition to the above seven algorithms, we require other obvious properties
of LHSDE.

– Correctness of the Sign algorithm. For any identifier id ∈ I and vector
v ∈ F

N
p , if σ ← Sign(SKA, PKB , id, m, v), then

Verify(PKA, SKB , id,m,v, σ) = 1.

– Correctness of the Combine algorithm. For any identifier id ∈ I and
the set of pairs {(vk, σk)}l

k=1, if Verify(PKA, SKB, id, m, vk, σk) = 1 for
k = 1, . . . , l, then

DVerify(PKA, SKC , id,m,v, σ) = 1,

where (σ,v) ← Combine(PKA, PKC , SKB , id, {(vk, σk)}l
k=1).

– Correctness of the Simulation algorithm. For any identifier id ∈ I and
vector v ∈ F

N
p , if σ̂ ← Simulation(PKA, SKC , id,m,v), then

DVerify(PKA, SKC , id,m,v, σ̂) = 1.

2.2 Security

An adversary can break an LHSDE scheme from two aspects. First, he can create
a valid signature on a non-zero vector which dose not belong to any vector space
signed by Alice. Second, he can replace the designated combiner to combine
signatures and convince other entities. As a result, we introduce two types of
unforgeability for LHSDE.
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UF1: Type 1 Unforgeability

The first type (UF1) requires no efficient adversary can forge a non-zero new
vector which does not appear previously. Obviously, the designated combiner has
more knowledge than other entities. Thus we only need to define UF1 against the
malicious designated combiner. This is defined using the following game between
an adversary A and a challenger C.

Definition 2 (UF1). A linearly homomorphic signature scheme with designated
entities S satisfies UF1 if the success probability of any PPT adversary A in the
following game is negligible with the security parameter k:

– Setup1. C chooses a positive integer N and runs Setup(1k, N) to obtain cp,
and then runs KeyGen(cp) to obtain the signer’s key pair (SKA, PKA) and
the designated verifier’s key pair (SKC , PKC). The tuple (cp, PKA, PKC) is
sent to A. As response, A sends a public key PKB to C.

– Query1. Proceeding adaptively, A submits a vector subspace Vi ⊂ F
N
p (Vi can

be described by the properly augmented basis vectors vi1, . . ., vim ∈ F
N
p ) to

C. C then selects an identifier idi
R←− I and runs Sign(SKA, PKB , idi,m,vij)

to generate signature σij for j = 1, . . ., m. Finally, C sends (idi, σi) to
the adversary A, where σi = (σi1, . . ., σim) is the signature of the vector
subspace Vi.

– Output1. A outputs an identifier id∗, a vector v∗∈ F
N
p , and a signature σ∗.

The adversary A wins the above game if DVerify(PKA, SKC , id∗, m, v∗,
σ∗) = 1, and satisfies one of the following requirements.

1. Type 1.1 forgery: id∗ �= idi for any i and v∗ �= 0 (which means that A can
produce a valid signature on the vector v∗ of a new vector space).

2. Type 1.2 forgery: id∗ = idi for some i and v∗ /∈ Vi (which means that A can
inject malicious vector into a signed vector space).

We define SuccUF1
A,S as the probability of A wins the above game.

UF2: Type 2 Unforgeability

The second type (UF2) requires that no entity except the signer can serve as
the role of the designated combiner. Obviously, the designated verifier has more
knowledge than other entities except the signer and the combiner. We only need
to show that the designated verifier Cindy cannot produce even one signature to
convince the challenging entity David (we assume his private/public key pair is
(SKD, PKD)), even if Cindy has received a number of pairs {(vk, σk)}l

k=1 from
the designated combiner.

Note that Cindy can convince David means that she eventually produces a
pair of vector/signature (v, σ) such that DVerify(PKA, SKD, id, m, v, σ) = 1.
This type of unforgeability aims at convincing the designated combiner that only
he can perform the Combine algorithm. This is defined using the following game
between an adversary A and a challenger C.
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Definition 3 (UF2). A linearly homomorphic signature scheme with designated
entities S satisfies UF2 if the success probability of any PPT adversary A in the
following game is negligible with the security parameter k:

– Setup2. C chooses a positive integer N and runs Setup(1k, N) to obtain cp,
and then runs KeyGen(cp) to generate the signer’s key pair (SKA, PKA),
the designated combiner’s key pair (SKB , PKB) and the challenging key pair
(SKD, PKD). The tuple (cp, PKA, PKB, PKD) is sent to A. As response,
A sends a public key PKC to C.

– Sign Query2. Proceeding adaptively, A sends C a vector subspace Vi ⊂
F

N
p (Vi can be described by the properly augmented basis vectors

vi1, . . . ,vim ∈ F
N
p ). C then selects an identifier idi

R←− I, and runs
Sign(SKA, PKB , idi,m,vij) to generate signature σij for j = 1, . . ., m.
Finally, C sends (idi, σi) to A, where σi = (σi1, . . . , σim) is the signature
of the vector subspace Vi.

– Combine Query2. Proceeding adaptively, A sends C (idi, {(vik, σik,
βk)}l

k=1). C runs Combine(PKA, PKC , SKB , idi, {(vik, σik)}l
k=1) to gen-

erate a vector/signature pair (v, σ), where the combination coefficients are
β1, . . . , βl in order. The pair (v, σ) is sent to A.

– Output2. The adversary A outputs an identifier id∗, a vector v∗ ∈ F
N
p , and

a signature σ∗.

The adversary wins the above game if DVerify(PKA, SKD, id∗, m, v∗, σ∗) = 1,
where id∗ = idi for some i and 0 �= v∗ ∈ Vi (Type 2 forgery).

We define SuccUF2
A,S as the probability of the adversary A wins the above

game.

Definition 4. A linearly homomorphic signature scheme with designated enti-
ties S is unforgeable against adaptively chosen message attacks if both SuccUF1

A,S
and SuccUF2

A,S are negligible with the security parameter k.

Indistinguishability

In addition to unforgeability, another goal of our scheme is that only the des-
ignated verifier can be convinced by the signautures. So we require that the
verifier must be unable to show that he has a valid signature of Alice to any
other entity, even sharing his private key among others. In order to achieve this
requirement, we need to show that the outputs of the Simulation algorithm are
indistinguishable from those of the Combine algorithm. This notion is defined
using the following game between a distinguisher D and a challenger C.

Definition 5 (IND). A linearly homomorphic signature scheme with desig-
nated entities S satisfies IND if the advantage of any PPT distinguisher D in
the following game is negligible with the security parameter k:

– Setup. C chooses a positive integer N and runs Setup(1k, N) to
obtain cp, and then runs KeyGen(cp) to generate the signer’s key pair
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(SKA, PKA), and the designated combiner’s key pair (SKB , PKB). The tuple
(cp, PKA, PKB) is sent to the distinguisher D. As response, D sends the des-
ignated verifier’s public key PKC to C.

– Sign Query. Proceeding adaptively, D submits a vector space Vi ⊂
F

N
p (Vi can be described by the properly augmented basis vectors

vi1, . . . ,vim ∈ F
N
p ) to C. C then selects an identifier idi

R←− I, and runs
Sign(SKA, PKB , idi,m,vij) to generate signature σij for j = 1, . . ., m.
Finally, C sends (idi, σi) to D, where σi := (σi1, . . . , σim) is the signature
of the vector subspace Vi.

– Combine Query. Proceeding adaptively, D sends C (idi, {(vik, σik,
βk)}l

k=1). C runs Combine(PKA, PKC , SKB , idi, {(vik, σik)}l
k=1) to gen-

erate a vector/signature pair (v, σ), where the combination coefficients are
β1, . . . , βl in order. The pair (v, σ) is sent to D.

– Challenge. D chooses (idi, {(vik, σik, βk)}l
k=1) (which does not appear in

the combine query and idi is chosen in the sign queries) and then sends this
tuple to C. C computes v =

∑l
k=1 βkvik and chooses a random bit b from

{0, 1}. If b = 0, C runs (σ, v) ← Combine(PKA, PKC , SKB, idi, {(vik,
σik)}l

k=1); otherwise, runs σ ← Simulation(PKA, SKC , idi, m, v). The
signature σ is given to D as the challenge.

– Output. D outputs a bit b′ from {0, 1} and wins the game if b′ = b.

We define the advantage of D in the above game as AdvIND
A,S = |Pr[b′ = b] − 1

2 |.

3 Our Design of LHSDE

In this section, we describe a specific and secure LHSDE scheme based on the
network coding signature scheme proposed by Boneh et al. [6].

3.1 Bilinear Groups and Complexity Assumptions

We briefly describe the group with efficiently computable bilinear maps and the
complexity assumptions of our scheme.

Definition 6. Let G1, G2 and GT be three cyclically multiplicative groups of
the same prime order p, and let e : G1 × G2 → GT be a bilinear map. Then
we define a tuple of (G1,G2,GT , e, ϕ) as a bilinear group tuple which has the
following properties:

1. Computability: For any g ∈ G1, h ∈ G2, we can efficiently compute e(g, h).
2. Bilinearity: For any a, b ∈ Zp, g ∈ G1, and h ∈ G2, e(ga, hb) = e(g, h)ab =

e(gb, ha).
3. Non-degeneracy: If g is a generator of G1, and h is a generator of G2, then

e(g, h) is a generator of GT , i.e., e(g, h) �= 1GT
.

4. ϕ : G2 → G1 is an efficient, computable isomorphism.
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Definition 7 (co-BDH Problem). Given a randomly chosen element g1 ∈
G1, as well as g2 ∈ G2, ga

2 and gb
2 for some unknown a, b ∈ Zp, compute

e(g1, g2)ab ∈ GT .

The probability that a PPT adversary A solves the co-BDH problem is
Pr[e(g1, g2)ab ← A(g1, g2, ga

2 , gb
2)], which is defined as Advco−BDH

A,(G1,G2)
.

Definition 8 (co-BDH Assumption). We say that the co-BDH problem is
hard in (G1, G2, GT ) if for any PPT adversary the probability Advco−BDH

A,(G1,G2)
is

negligible.

Definition 9 (Decisional Bilinear Diffie-Hellman (DBDH) Problem).
Given a randomly chosen element g1 ∈ G1, as well as g2 ∈ G2, w ∈ GT , ga

2 and
gb
2 for some unknown a, b ∈ Zp, decide whether w

?= e(g1, g2)ab.

A DBDH oracle ODBDH is that takes as input g1 ∈ G1, g2 ∈ G2, ga
2 , gb

2 and
w ∈ GT , outputs 1 if w = e(g1, g2)ab and 0 otherwise.

Definition 10 (Gap Bilinear Diffie-Hellman (GBDH) Problem). Given
a randomly chosen element g1 ∈ G1, as well as g2 ∈ G2, ga

2 and gb
2 for some

unknown a, b ∈ Zp, compute e(g1, g2)ab ∈ GT with the help of ODBDH .

The probability that an adversary A solves the GBDH problem is Pr[e(g1, g2)ab ←
A(g1, g2, ga

2 , gb
2, ODBDH)], which is defined as AdvGBDH

A,(G1,G2)
.

Definition 11 (GBDH Assumption). We say that the GBDH problem is
hard in (G1,G2,GT ) if for any PPT adversary the probability AdvGBDH

A,(G1,G2)
is

negligible.

3.2 Our LHSDE Scheme

Our LHSDE scheme has two goals. First, only the combiner Bob, designated by
the signer Alice, can combine signatures. Second, Bob uses the combined signa-
ture to convince the verifier Cindy (Bob can specify any entity in the system as
the verifier), and only Cindy can believe the authenticity of the combined signa-
ture. However, no other third party can believe it because the designated verifier
can use her private key to create a valid signature, which is indistinguishable from
the one created by the designated combiner. Therefore, one cannot distinguish
whether the signature is created by the designated combiner or by the designated
verifier. The details of our design are given below.

– Setup(1k, N). On input a security parameter k and an integer N > 0:
1. Generate G = (G1,G2,GT , e, ϕ) such that G1, G2, and GT have the same

prime order p > 2k, e : G1 × G2 → GT is an efficient bilinear map, and
ϕ : G2 → G1 is an efficiently computable isomorphism.

2. Choose a generator h
R←− G2 \ {1}.

3. Choose generators g1, g2, . . . , gN
R←− G1 \ {1}.
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4. Choose three hash functions H1 : {0, 1}∗ → G1, H2 : F
N
p → G1 and

H3 : GT → G1.
5. Output the common parameter cp = (G, p,H1,H2,H3, h, g1, g2, . . ., gN ).

– KeyGen(cp). The signer Alice generates his private/public key as following:

1. Chooses αA
R←− Fp, and sets uA = hαA .

2. Outputs the signer’s public key PKA = uA and private key SKA = αA.
Accordingly, the combiner Bob (the receiver Cindy) generates his pri-
vate/pubic key as following:

1. Chooses αB
R←− Fp (αC

R←− Fp), and sets uB = hαB (uC = hαC ).
2. Outputs Bob’s (Cindy’s) public key PKB = uB (PKC = uC) and private

key SKB = αB (SKC = αC).
– Sign(SKA, PKB , id,m,v). This algorithm takes as input a private key SKA,

a public key PKB, an identifier id ∈ {0, 1}k, a positive integer m < N , and
a vector v ∈ F

N
p . It outputs the signature

σ =
( m

∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j

)αA

H3(e(H2(v), uB)αA).

– Verify(PAA, SKB , id,m, σ,v). This algorithm takes as input a public key
PKA, a private key SKB, an identifier id, a positive integer m < N , a signa-
ture σ and a vector v, and then define γ1(PKA, σ) def= e(σ, h) and γ2(SKB ,
PAA, id, m, v) def= e(

∏m
i=1 H1(id, i)vn+i

∏n
j=1 g

vj

j , uA)e(H3(e(H2(v), uA)αB ),
h). It outputs 1 (accept) if γ1(PKA, σ) = γ2(SKB , PAA, id, m, v); Other-
wise, outputs 0 (reject).

– Combine(PKA, PKC , SKB , id, {(vk, σk)}l
k=1). This algorithm takes as

input two public keys PKA and PKC , a private key SKB , an identifier id, and
l pairs of {(vk, σk)}l

k=1 where vi ∈ F
N
p is a vector and σi is a signature. It out-

puts a vector v =
∑l

k=1 βkvk and a signature σ = e(
∏l

k=1(σk · [H3(e(H2(vk),
uA)αB )]−1)βk , uC), where β1, . . . , βl ∈ Fp are chosen by the combiner.

– DVerify(PKA, SKC , id,m,v, σ). This algorithm takes as input a public key
PKA, a private key SKC , an identifier id, a positive integer m < N , a vec-
tor v ∈ F

N
p , and a signature σ. It outputs 1 (accept) if σ = e(

∏m
i=1 H1(id,

i)vn+i
∏n

j=1 g
vj

j , uA)αC ; Otherwise, output 0 (reject).
– Simulation(PKA, SKC , id,m,v). This algorithm takes as input a public key

PKA, a private key SKC , a document identifier id, a positive integer m < N ,
and a vector v. It outputs a signature

σ̂ = e

( m
∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j , uA

)αC

.

We will now demonstrate the correctness of our scheme.
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– Correctness of the Sign Algorithm. We assume that (v, σ) is a valid pair
of vector/signature signed by the signer. Then we have

γ1(PKA, σ)
= e(σ, h)

= e

(( m
∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j

)αA

H3 (e(H2(v), uB)αA) , h

)

= e

( m
∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j , uA

)

e(H3(e(H2(v), uA)αB ), h)

= γ2(SKB , PAA, id,m,v).

– Correctness of the Combine Algorithm. We assume that {(vk, σk)}l
k=1

are l pairs of vector/signature with the same identifier such that γ1(PKA,
σk)=γ2(SKB , PAA, id, m, vk) for all k ∈ {1, . . ., l}. v =

∑l
k=1 βkvk and σ =

e(
∏l

k=1(σk · [H3(e(H2(vk), uA)αB )]−1)βk , uC) are output by the Combine
algorithm. Then we have

σ = e

( l
∏

k=1

(σk · [H3(e(H2(vk), uA)αB )]−1)βk , uC

)

= e

( l
∏

k=1

( m
∏

i=1

H1(id, i)vk,n+i

n
∏

j=1

g
vk,j

j

)βk

, uA

)αC

= e

( m
∏

i=1

H1(id, i)
∑l

k=1 βkvk,n+i

n
∏

j=1

g
∑l

k=1 βkvk,j

j , uA

)αC

= e

( m
∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j , uA

)αC

.

– Correctness of the Simulation Algorithm. We assume that σ̂ ←
Simulation(PKA, SKC , id, m,v). Then we have

σ̂ = e

( m
∏

i=1

H1(id, i)vn+i

n
∏

j=1

g
vj

j , uA

)αC

,

which means that DVerify(PKA, SKC , id,m,v, σ̂) = 1.

Efficiency. The computation overhead of the signer consists of three map-to-
point operations, one multi-exponentiation in G1 and one pairing. The desig-
nated combiner’s computation overhead of verifying a vector consists of m + 2
map-to-point operations, one multi-exponentiation in G1 and four pairings,
whereas other entity needs m map-to-point operations, one multi-exponentiation
in G1 and one pairing to verify a signature.
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3.3 Security Proof

Now we prove that our design satisfies the definitions of unforgeability and indis-
tinguishability.

Theorem 1. Our LHSDE scheme satisfies UF1 in the random oracle model if
co-BDH assumption holds in (G1,G2,GT ). If there exists a PPT adversary A
with success probability SuccUF1

A,S , then there exists a PPT algorithm B that solves
co-BDH problem in (G1,G2,GT ) with success probability

Advco−BDH
B,(G1,G2)

≥ SuccUF1
A,S − qs(qs + qh1) + 1

2k
,

where qs and qh1 are the numbers of signature and hash H1 queries, respectively,
made by A.

Proof. The proof is similar to Theorem 6 in [6], so we omit it. 	

Theorem 2. Our LHSDE scheme satisfies IND.

Proof. For any vector v, the corresponding signature output by the Combine
algorithm is exactly the same as that of the Simulation algorithm. So our
LHSDE scheme satisfies IND. 	

Theorem 3. Our LHSDE scheme satisfies UF2 in the random oracle model if
GBDH assumption holds in (G1,G2,GT ). If there exists a PPT adversary A
with the probability SuccUF2

A,S , then there exists a PPT algorithm B that solves
GBDH in (G1,G2,GT ) with the success probability

AdvGBDH
B,(G1,G2)

≥ SuccUF2
A,S − 1

2k
.

Proof. We assume that A is a successful adversary that breaks the UF2 of our
scheme, and our goal is to construct an algorithm B that solves GBDH problem
in (G1,G2,GT ): given g ∈ G1 and h,w1, w2 ∈ G2 with w1 = hαA , w2 = hαB

for some unknown αA, αB ∈ F
∗
p, outputs an element e(g, h)αAαB ∈ GT with the

help of the oracle ODBDH .
First of all, B maintains four lists H1-List, H2-List, H3-List and σ-List which

are used to record H1 queries, H2 queries, H3 queries and signature queries,
respectively. H1-List consists of tuples (id, i,H1(id, i)). H2-List consists of pairs
(v,H2(v)), where v is the signed data. H3-List consists of tuples (E,v,H3(E)),
where E is the input of H3 (whether Es−1 ?= e(g, h)αAαBab is determined by
the DBDH oracle, and the values of s, a and b will be introduced later). σ-
List consists of tuples (V, id, σ), where σ is the signature of V ⊂ F

N
p , id is the

identifier of vector subspace V .

Setup. B chooses a positive integer N , then

1. Chooses k1, . . . , kN
R←− Fp, and sets gj := ϕ(h)kj for j = 1, . . . , N .
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2. Sets the common parameter cp := (G, p, h, g1, . . ., gN ).
3. Chooses a

R←− F
∗
p and sets uA := wa

1 as the signer’s public key.

4. Chooses b
R←− F

∗
p and sets uB := wb

2 as the designated combiner’s public key.

5. Chooses d
R←− F

∗
p and sets uD := wd

2 as the challenging public key.
6. Sends (cp, PKA, PKB , PKD) to the adversary A.

Then, A sends the verifier’s public key PKC = uC (uC := hαC ) to the challenger C.

H1 Query. Upon receiving a request of the value of H1(id, i) from A, B chooses
random li ∈ F

∗
p and sets H1(id, i) := gli . Then, the tuple (id, i,H1(id, i)) is

added into H1-List.

H2 Query. Upon receiving a request of the value of H2(v) from A, B:

1. If there exists a pair (v,H2(v)) in the H2-List, returns h2 to A.
2. Otherwise, chooses s

R←− F
∗
p and computes H2(v) := gs. Then, B adds

(v,H2(v)) into the H2-List and sends H2(v) to A.

H3 Query. Upon receiving a request of (E,v) from A, B checks whether there
exists a pair (v,H2(v)) in the H2-List. If not, let the simulation of H2(v) be
the same as the H2 query. Then, B submits the tuple (g, uA, uB , Es−1

) to the
DBDH oracle. The DBDH oracle will tell B whether Es−1

= e(g, h)αAαBab.

1. If Es−1
= e(g, h)αAαBab, B computes Es−1a−1b−1

:= e(g, h)αAαB which means
that B can solve the given instance of the GBDH problem.

2. If Es−1 �= e(g, h)αAαBab, B chooses h3
R←− G1 such that there is no tuple

(·, ·, h3) in the H3-List. Then, B adds (E,⊥, h3) (⊥ means that B does not
know this value) into the H3-List and returns h3 to A.

Sign. Upon receiving a request of a signature on a vector space V ⊂ F
N
p

(v1, . . . ,vm ∈ F
N
p are the properly augmented basis vectors of V ) from A, B:

1. Chooses id
R←− {0, 1}k as V ’s identifier.

2. Computes H1(id, i) for i = 1, . . . , m as in the H1 query.
3. For i = 1, . . . , m, chooses σi

R←− G1.
4. Sets σ = (σ1, . . . , σm), and records tuple (V, id, σ) into σ-List.
5. Sends id and σ to A.

Combine. Theorem 2 shows that A can implement the Simulation algorithm
that outputs the identical values as the Combine algorithm. So, there is no
need to simulate the Combine algorithm.

Output. A eventually outputs an identifier id∗ (there exists an idi in the signa-
ture queries satisfies id∗ = idi), a nonzero vector v∗ ∈ Vi, and a signature σ∗ (a
type 2 forgery) such that DVerify(PKA, SKD, id∗, m, v∗, σ∗) = 1. We have
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σ∗ = e

⎛

⎝

m
∏

i=1

H1(id∗, i)v∗
n+i

n
∏

j=1

g
v∗
j

j , h

⎞

⎠

adαAαB

= e

⎛

⎝

m
∏

i=1

gliv
∗
n+i

n
∏

j=1

ϕ(h)kjv∗
j , h

⎞

⎠

adαAαB

= e
(

g
∑m

i=1 liv
∗
n+i , h

)adαAαB

e
(

ϕ(h)
∑n

j=1 kjv∗
j , h

)adαAαB

= e
(

g
∑m

i=1 liv
∗
n+i , h

)adαAαB

e
(

ϕ(uA)
∑n

j=1 kjv∗
j , uD

)

.

If
∑m

i=1 liv
∗
n+i �= 0, B can further compute

e(g, h)αAαB =
σ∗

e
(

ϕ(uA)
∑n

j=1 kjv∗
j , uD

)

(
∑m

i=1 liv
∗
n+i)

−1a−1d−1

.

As we can see, the values of l1, . . . , lm are independent of A’s view, and v∗ ∈ Vi

is a non-zero vector. So the probability of
∑m

i=1 liv
∗
n+i = 0 is 1/p which is at

most 1/2k.
Therefore, B successfully solves an instance of the GBDH problem with suc-

cess probability

AdvGBDH
B,(G1,G2)

≥ SuccUF2
A,S − 1

2k
.

This completes the proof of Theorem 3. 	


4 Conclusion

In this paper, we introduce designated entities into linearly homomorphic sig-
natures. Only the designated combiner is able to produce signatures of linearly-
combined signed data, and only the designated verifier can be convinced about
the validity of those signatures. We formally define the new notion “linearly
homomorphic signatures with designated entities” and the relevant security
requirements. A specific and secure design is given to show that our defini-
tions are achievable. Our scheme is motivated by the open problem given by
Rivest in the setting of transitive signatures (a specific kind of homomorphic
signatures). It is our future work to study designated entities in other variants
of homomorphic signatures.
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Abstract. The certificate-based cryptography is proposed to eliminate
the key escrow problem of ID-based public key cryptography and simplify
certificate management procedures of traditional public key infrastruc-
ture (PKI) in the same time. Since its invention, many certificate-based
signature have been proposed. However, the existing schemes either only
support partial aggregateability, or require a pre-negotiated one-time-use
nonce. To solve this problem, in this paper, we propose a new certificate-
based signature scheme where signatures on the same message signed
by different users can be aggregated into a single signature without the
pre-negotiated one-time-use nonce. Furthermore, verification in our pro-
posal only involves four pairing operations. Our proposed certificate-
based (aggregate) signature scheme can be considered as the combina-
tion of Gentry-Ramzan identity-based aggregate signature scheme and
Boneh-Lynn-Shacham short signature scheme. Similar to their schemes,
our proposal can be also proven secure in the random oracle model based
on the computational Diffie-Hellman assumption.

1 Introduction

In traditional public key infrastructure (PKI), the user’s public key is usually
a random string that is unrelated to the user’s identity information. Hence,
the public key should be authenticated before its use. To solve this problem,
PKI introduces a trusted third party, named certificate authority (CA), whose
responsibility is to issue certificates. The certificate can provide an unforgeable
and trusted link between the public key and the user’s identity information.
However, this solution has a side effect: bring a heavy certificate management
duty to the CA.

To simplify certificate management in PKI, Shamir [29] proposed the concept
of ID-based cryptography (IBC) in 1984. The main idea is to use the user’s
identity information as the public key, and a trusted third party, named private
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 391–408, 2017.
https://doi.org/10.1007/978-3-319-72359-4_23
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key generator (PKG), who can generate the user’s private key corresponding to
the user’s identity information. Nevertheless, this solution still has its side effect:
key escrow. It is easy to see that the PKG knows all the private keys of all the
users; hence, it can impersonate anyone in the system.

To efficiently overcome the complexity and costs of the certificate manage-
ment in PKI and the key escrow issue in IBC, Al-Riyami and Paterson [1] pro-
posed a new kind of cryptographic technique called certificateless cryptography
(CLC) at Asiacrypt 2003. In CLC, there also exists a trusted third party that
is called key generator center (KGC) like IBC. However, KGC in this system
can only generate the partial private key for users. The full private key is com-
puted by combining the partial private key and a secret key that is only known
to the user. Hence, CL-PKC avoid the key escrow problem in ID-PKC, and no
certificate exists in this system.

Another kind of cryptographic technique, similar to CLC named certificate-
based encryption (CBE), is proposed by Gentry [10] at Eurocrypt 2003. CBE
aims to import the advantages of IBE into conventional PKI. Generally speak-
ing, a CBE scheme mixes a PKI scheme with an IBE scheme. In particular,
the trusted third party (called the certifier) in the CBE system generates the
certificate as in a conventional PKI system. This certificate not only has all the
functionalities of a conventional PKI certificate but also has an additional func-
tionality that acts as a part of decryption key. The private key of the user in CBE
is composed of the certificate and a secret key chosen by the user. In parallel to
CBE, Kang et al. [15] proposed the notion of certificate-based signature (CBS)
following the idea of CBE in 2004. Since then, many certificate-based signatures
have been proposed. However, the existing schemes either only support partial
aggregateability, (i.e., only a part of signature can be aggregated), or are lack of
efficient verification (i.e., tons of pairing operations are required).

However, the full aggregateability and efficient verification are quite desired
in resource constraint environments, like Internet of Things [9]. As we know,
the IoT network is composed by lots of resource-limited network nodes that are
restricted in electric power, communication bandwidth, and storage. When we
request service from this network, each node should return the newest informa-
tion, and each message has to be signed to immune forgery or other attacks.
However, the regular signatures need to be saved and verified individually. Tons
of messages and signatures would transmitted and verified over in this resource-
limited network, which significantly decrease the efficiency of this network. This
situation asks for the efficient signature with full aggregateability to save band-
width and computational cost.

1.1 Related Work

In this part, we will review the work that related to our proposal.

Certificate-Based Signature. In 2004, Kang et al. [15] proposed the defini-
tion of certificate-based signature (CBS) and gave the first two certificate-based



Efficient Certificate-Based Signature and Its Aggregation 393

signature schemes. However, Li et al. [17] pointed out that the scheme in [15]
which used the idea of the multisignature was insecure against key replacement
attack. To overcome this attack, Li et al. firstly gave an improved security model,
and then proposed a new certificate-based signature scheme secure in their new
security model by using random oracles method. Later, a new scheme secure in
the standard model given in [18]. However, the latter one broken by Yang and
Li [25]. To improve the efficiency and security of certificate-based signature, Liu
et al. [22] proposed two new certificate-based signature schemes. One is pair-free,
the other is secure in the standard model. However, they broken by Zhang [40]
and Yang and Li [25], respectively. Later, in 2009, Wu et al. [35,36] proposed
new security model to model the key replacement attack. In their new security
model, there exist three types of adversaries: normal adversary, strong adversary
and super adversary. A generic construction of certificate-based signature from
certificateless signature along with the security proof in the random oracle were
also given by Wu et al. [35,36]. To obtain more efficient scheme, Ming and Wang
[38] proposed a new pairing-free scheme, and its improvement was given by Li
et al. [20]. Later on, Li et al. [19] and Liu [24] independently proposed short
certificate-based signature schemes where the signature only contains one ele-
ment. Unfortunately, their schemes suffers from the attacks proposed by Cheng
[6]. In 2013, Feng and Li [7,8] proposed a new certificate-based signature schemes.
Most recently, Gao et al. [34] proposed a generic construction of certificate-based
signature from certificateless signature as well as its security proof in the stan-
dard model. To the best of our knowledge, the above schemes can only support
partial aggregateability at most.

Certificate-Based Aggregate Signature. To reduce the bandwidth cost
by many certificate-based signatures, the concept of certificate-based aggre-
gate signature is proposed. However, there are only two papers dealing with
the certificate-based aggregate signature [4,23]. However, none of them can effi-
ciently provide full aggregateability and efficient verification at the same time.

To make this part complete, we further review certificateless aggregate sig-
nature in the below. As mentioned above certificateless aggregate cryptography
is quite similar with certificate-based aggregate cryptography.

By using bilinear pairings, Gong et al. [12] proposed the first two certificate-
less aggregate signature schemes secure in random oracle model. However, the
first one can only provide partial aggregateability, where only a part of signa-
ture can be aggregated. The second one requires the pre-negotiated one-time-use
nonce and has an inefficient verification. To improve the efficiency in verification,
Zhang and Zhang [42] proposed a new certificateless aggregate signature scheme.
However, it suffers from the coalition attacks [32]. New certificateless aggregate
signature scheme with constant pairing computation was proposed by Zhang
et al. [16]. However, their scheme still requires the pre-negotiated one-time-use
nonce. Later on, Xiong et al. [37] proposed a new certificateless aggregate signa-
ture scheme with efficient verification. Nevertheless, He et al. [13] showed that
their scheme was not secure. An improvement was proposed later in [33], but the
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resulting scheme only supports partial aggregateability. In 2014, Liu et al. [21]
proposed another new certificateless aggregate signature scheme with efficient
verification. Unfortunately, it was broken by Chen et al. [5] and Shen et al. [30].
An improved certificateless aggregate signature scheme was also proposed by
Chen et al. [5]. However, it has been shown to be insecure in [31,39,41]. In 2015,
Malhi and Batra [26] proposed an efficient certificateless aggregate signature
scheme for vehicular ad-hoc networks. However, it only supports partial aggre-
gateability. In 2016, Nie et al. [27] proposed an efficient certificateless aggregate
signature scheme, but it is not secure [28]. Recently, Kang et al. [14] proposed
another certificateless aggregate signature scheme. However, their scheme only
supports partial aggregateability like the scheme in [42].

1.2 Our Contribution

In this paper, we propose a new certificate-based signature based on the identity-
based aggregate signature in [11] and short signature in [3]. Our proposal allows
anyone to aggregate signatures on the same message by different signers into a
single signature, while it does not require the pre-negotiated one-use-time nonce.
Furthermore, the verification in our proposal only needs four pairing operations.
Our proposal can significantly reduce the bandwidth and verification cost by
large number of CBS signatures, and widen the spectrum of the applications of
CBS. The security proofs of our proposed CBS scheme and its aggregate version
are also given in the random oracle based on the computational Diffie-Hellman
assumption.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2, we give the definitions
of certificate-based signature (CBS), and certificate-based aggregate signature
(CBAS) as well as their security models and some preliminaries on which our
scheme relies. In Sect. 3, we construct a new certificate-based signature scheme
and give its security analysis. Next, we propose a concrete CBAS Scheme based
on our CBS scheme above together with its security proof in Sect. 4.2. At last,
we give conclusion and outlook in Sect. 5.

2 Preliminaries

In this section, we will give the definitions related to certificate-based signa-
ture (CBS), and certificate-based aggregate signature (CBAS) and their secu-
rity models. Furthermore, in this section we will also give the definitions related
to the computational Diffie-Hellman (CDH) assumption that we will use in the
security proofs of our proposals.
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2.1 Definitions of Certificate-Based Signature (CBS)

The Concept of CBS. In a certificate-based signature scheme, there exist the
following five algorithms.

– Setup(1λ) → (msk,mpk): In this algorithm, the certifier takes the security
parameter 1λ as input, and outputs the corresponding master secret key msk
and master public key mpk. The master public key mpk is published and
implicitly involved in the following algorithms, while the master secret key
msk is kept secret by the certifier.

– UKeyGen(1λ) → (sk, pk): This algorithm takes the security parameter 1λ as
input, and outputs the corresponding secret key sk and public key pk. The
public key pk is published, while the secret key sk is kept secret by the user.

– Certify(msk, pkID, ID) → dID: In this algorithm, upon receiving the identity
information ID and its public key pkID, the certifier uses its master secret key
msk to generate the corresponding certificate dID of the signer ID.

– Sign(m, dID, skID) → σID,pk: By using its private key skID and certificate dID,
the signer ID can generate the signature σ on message m from the message
space.

– Verify(m,σID,pk, pk, ID) → 1 or 0: Given a signature σID corresponding to
identity ID and public key pk, and the underlying message m, the algorithm
outputs 1 if it is valid, or 0 otherwise.

Correctness. We say a CBS scheme is correct if for (msk,mpk) ← Setup(1λ),
(skID, pkID) ← Setup(1λ), and dID ← Certify(msk, pkID, ID), we have that

Verify(m, Sign(m, dID, skID), pkID, ID) = 1.

Existential Unforgeability of CBS. The security of CBS is defined by two
different games and the adversary should decide which game to play before start.
Game 1 models the attack where the adversary can obtain the user’s private key
but not the corresponding certificate, while Game 2 models the attack where
the adversary can obtain all certificates (by holding the master secret key of the
certifier) but not the private key of the targeted user.

Game 1.

Setup In this phase, C runs algorithm Setup(1λ) to generate (msk,mpk), and
sends mpk to A, while keeping msk secret.

Find In this phase, A can issue a number of different queries to A adaptively.
Each query can be one of the followings.
– Key generation oracle Opk: On receiving an identity ID from A, C first

checks whether (ID, skID, pkID) exists in List Lk. If it does exist, C returns
pkID. If it does not exist, C runs algorithm UKeyGen(1λ) to get the cor-
responding key pair (skID, pkID), and sends pkID to A. At last, C records
(ID, skID, pkID) in List Lk.
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– Secret key oracle Osk: On receiving an identity ID from A, C first checks
whether (ID, skID, pkID) exists in List Lk. If it does exist, C returns skID. If
it does not exist, C returns ⊥.

– Certificate oracle Oc: On receiving an identity ID and a public key pkID
from A, C responds with A with the corresponding certificate dID. Note
that pkID should exist in List Lk.

– Key-replace oracle Or: On receiving an identity ID and a key pair (sk′
ID, pk′

ID)
from A, C checks whether (ID, skID, pkID) exists in List Lk and whether
(sk′

ID, pk′
ID) is a valid key pair. If both are yes, C updates (ID, skID, pkID) with

(ID, sk′
ID, pk′

ID) in List Lk; otherwise, C responds with ⊥.
– Signing oracle Os: On receiving a message m, an identity ID and its cor-

responding public key pkID, C checks whether (ID, skID, pkID) exists in List
Lk. If it exists, C returns the corresponding signature by running algorithm
Sign.

Output Finally, A decides to finish Find phase, and outputs a forgery σ∗ on
message m∗ under identity ID∗ and public key pk∗. We say A wins if the
following requirements are satisfied.
– σ∗ is a valid signature.
– (ID∗, pk∗, �) exists in List Lk.
– ID∗ has never been queried to the certification oracle.
– (m∗, ID∗, pk∗) has never been queried to the signing oracle.

Definition 1. We say a CBS scheme is existentially unforgeable against in
Game 1 of CBS if there is no probabilistic polynomial-time adversary A that
can win Game 1 of CBS with a non-negligible probability.

Game 2.

Setup. In this phase, C runs algorithm Setup(1λ) to generate (msk,mpk), and
sends mpk to A. A can also ask C to sends msk to it.

Find. In this phase, A can issue a number of different queries to A adaptively.
Each query can be one of the followings.
– Key generation oracle Opk: Identical to that in Game 1.
– Secret key oracle Osk: Identical to that in Game 1.
– Certificate oracle Oc: Identical to that in Game 1.
– Signing oracle Os: Identical to that in Game 1.

Output. Finally, A decides to finish Find phase, and outputs a forgery σ∗ on
message m∗ under identity ID∗ and public key pk∗. We say A wins if the
following requirements are satisfied.
– σ∗ is a valid signature.
– pk∗ exists in List Lk.
– pk∗ has never been queried to the secret key oracle.
– (m∗, ID∗, pk∗) has never been queried to the signing oracle.

Definition 2. We say a CBS scheme is existentially unforgeable against in
Game 2 if there is no probabilistic polynomial-time adversary A that can win
Game 2 with a non-negligible probability.
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2.2 Definitions of Certificate-Based Aggregate Signature (CBAS)

The Concept of CBAS. In a certificate-based aggregate signature scheme,
there exist the following six algorithms.

– Setup(1λ) → (msk,mpk): Identical to that in CBS.
– UKeyGen(1λ) → (sk, pk): Identical to that in CBS.
– Certify(msk, pkID, ID) → dID: Identical to that in CBS.
– Sign(m, dID, skID) → σID,pk: Identical to that in CBS.
– Aggr

({m0i, ID0i, pk0i}ni
i=1, σ0), ({m1j , ID1j , pk1j}nj

j=1, σ1)
) → σ: This algo-

rithm takes two (message set, identity/public key set, signature) pairs as
input, the aggregator can aggregate these two signatures into an aggregated
signature σ corresponding to

{{m0i, ID0i, pk0i}ni
i=1, {m1j , ID1j , pk1j}nj

j=1

}
if

both of these signatures are valid by running Verify. Otherwise, the aggre-
gator outputs ⊥. Note that ni and nj are integers greater than 0, and anyone
can be the aggregator.

– Verify({mi, pki, IDi}n
i=1, σ) → 1 or 0: Given a signature σ corresponding to

{mi, pki, IDi}n
i=1, the algorithm outputs 1 if it is valid, or 0 otherwise. Note

that n is an integer greater than 0.

Correctness. Besides the correctness of CBS, CBAS needs the following require-
ment.

For (msk,mpk) ← Setup(1λ), (ski, pki) ← Setup(1λ), dIDi ← Certify(msk,
pki, IDi), and σ ← Aggr

(
({m0i, ID0i, pk0i}ni

i=1, σ0), ({m1j , ID1j , pk1j}nj

j=1, σ1)
)
,

we have that

Verify
({{m0i, ID0i, pk0i}ni

i=1, {m1j , ID1j , pk1j}nj

j=1

}
, σ

)
= 1.

Remark 1. Our proposal only supports aggregateability on signatures on the
same message. But the whole signature in our proposal can be aggregated, and
the verification in our proposal is quite efficient. See the details in Sect. 4.2.

Existential Unforgeability of CBAS. Like CBS, the security of CBAS is
also defined by two different games.

Game 1.

Setup Identical to that in the CBS case.
Find Identical to that in the CBS case.
Output Finally, A decides to finish Find phase, and outputs a forgery σ∗ on

message set {m∗
i }n

i=1 under a set of pairs {ID∗
i , pk∗

i }n
i=1. We say A wins if the

following requirements are satisfied.
– σ∗ is a valid signature.
– All pk∗

i exist in List Lk.
– Not all ID∗

i have been queried to the certification oracle.
– σ∗ cannot be aggregated or directly from the responses of the queries that

have been queried to the signing oracle.
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Definition 3. We say a CBAS scheme is existentially unforgeable against in
Game 1 of CBAS if there is no probabilistic polynomial-time adversary A that
can win Game 1 of CBAS with a non-negligible probability.

Game 2.

Setup Identical to that in Game 1 of CBAS.
Find In this phase, A can issue a number of different queries to A adaptively.

Each query can be one of the followings.
– Key generation oracle Opk: Identical to that in Game 2.
– Secret key oracle Osk: Identical to that in Game 2.
– Certificate oracle Oc: Identical to that in Game 2.
– Signing oracle Os: Identical to that in Game 2.

Output Finally, A decides to finish Find phase, and outputs a forgery σ∗ on
message set {m∗

i }n
i=1 under a set of pairs {ID∗

i , pk∗
i }n

i=1. We say A wins if the
following requirements are satisfied.
– σ∗ is a valid signature.
– Not all pk∗

i have been queried to the secret key oracle. Among the public
key pk∗

i not queried to the secret key oracle, there exists at least one public
key in List Lk.
– σ∗ cannot be aggregated or directly from the responses of the queries that
have been queried to the signing oracle.

Definition 4. We say a CBAS scheme is existentially unforgeable against in
Game 2 of CBAS if there is no probabilistic polynomial-time adversary A that
can win Game 2 of CBAS with a non-negligible probability.

2.3 Complexity Assumption

Bilinear Maps. Let G and GT be two (multiplicative) cyclic groups of prime
order q, and g be a generator of G. We call a bilinear map e : G × G → GT as
an admissible bilinear map, if it satisfies the following properties.

– Bilinearity: e(ga, gb) = e(g, g)ab for any a, b ∈ Z
∗
q .

– Non-degeneracy: e(g, g) is a generator of group GT .
– Computability: e can be computed efficiently.

For simplicity, we denote BSetup as an algorithm that takes as input the security
parameter 1λ and outputs the parameters for an admissible bilinear map as
(q, g,G,GT , e).

Computational Diffie-Hellman Assumption. Let e : G × G → GT be a bilinear
map, both G and GT are cyclic groups of prime order q. Choose a random
generator g of G and random a, b from Z

∗
q . The computational Diffie-Hellman

(CDH) problem is to compute gab, given (g, ga, gb). The CDH assumption is that
for any efficient A, the probability Pr[A(g, ga, gb) → gab] is negligible.
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3 The Proposed Certificate-Based Signature

3.1 The Description of Our CBS Scheme

In this section, we will give the description of our CBS scheme that is based on
the identity-based aggregate signature in [11]. The details are as follows.

– Setup: Given the security parameter 1λ, the certifier firstly runs BSetup(1λ)
to obtain (q, g,G,GT , e), and then selects a random x from Z

∗
q as the mas-

ter secret key msk, and sets y = gx. The certifier also chooses crypto-
graphically secure hash functions: Hi : {0, 1}∗ → G, (i = 1, 2, 3, 4), and
Hj : {0, 1}∗ → Z

∗
q , j = 5, 6. At last, the certifier publishes the master public

key (q, g, y,G,GT , e,Hi(·), i = 1, 2, 3, 4, 5, 6), while keeping msk secret.
– UKeyGen: The users choose a random sk from Z

∗
q and computes pk = gsk.

– Certify: Given an identity ID and a public key pk, the certifier uses the mas-
ter secret key msk to compute the corresponding certificate dID = (d1,ID, d2,ID)
by the following equation

d1,ID = H1(ID||pk)msk, d2,ID = H2(ID||pk)msk

– Sign: Given a message m, the secret key sk and the corresponding certificate
dID = (d1,ID, d2,ID), the signer ID computes the signature σ = (S, T ) by the
following equation

S = H3(m)rH4(m)sk · d1,ID · d
H5(ID||pk||m)
2,ID , T = gr,

where r = H6(ID||pk||m||d1,ID||d2,ID||sk). It is easy to see that for the same
message under the same signer, the signature is always the same. In other
words, the signing algorithm is deterministic.

– Verify: Given a signature σ = (S, T ) under identity ID and public key pk,
the algorithm outputs 1 if the following equality holds, or 0 otherwise.

e(S, g) = e (H3(m), T ) · e(H4(m), pk) · e
(
H1(ID||pk) · H2(ID||pk)H5(ID||pk||m), y

)
.

Correctness. We can have the correctness of our proposed CBS scheme by the
following equations.

e(S, g) = e
(
H3(m)rH4(m)sk · d1,ID · d

H5(ID||pk||m)
2,ID , g

)

= e (H3(m)r, g) · e(H4(m)sk, g) · e
(
d1,ID · d

H5(ID||pk||m)
2,ID , g

)

= e (H3(m), T ) · e(H4(m), pk) · e
(
H1(ID||pk) · H2(ID||pk)H5(ID||pk||m), y

)
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3.2 Security Analysis of Proposed CBS Scheme

Theorem 1. The proposed CBS scheme is existentially unforgeable in Game 1
of CBS if the CDH assumption holds in G.

Proof. Assume we have an adversary A that can break our proposal in Game
1 of CBS, then we can build an algorithm B that can solve the CDH problem
(given (g, ga, gb), to compute gab) by interacting with A as follows.

Setup B sets y = ga, and chooses cryptographically secure hash functions Hi,
(i = 1, 2, 3, 4, 5, 6) that will be treated as random oracles later. B also initial-
izes lists Lk, LH1,2 , LH3 , LH4 , LH5 and LH6 .

Find B builds the following oracles for A.
– OH1 and OH2 : Given an identity IDi and a public key pki, B first

checks whether (IDi, pki, coinID,i, α1,i, α
′
1,i, α2,i, α

′
2,i, R1,i, R2,i) exists in

List LH1,2 . If it does exist, B returns R1,i and R2,i to A. Otherwise, B
does the following steps.

• B chooses random α1,i, α′
1,i, α2,i and α′

2,i from Z
∗
q .

• B decides the value of coinID,i ∈ {0, 1} that satisfies Pr[coinID,i = 0] =
δID.

• If coinID,i = 1, B responds with R1,i = (gb)α1,i · gα′
1,i and R2,i =

(gb)α2,i ·gα′
2,i . Otherwise, B responds with R1,i = gα1,i and R2,i = gα2,i .

• B records (IDi, pki, coinID,i, α1,i, α2,i, α
′
1,i, α

′
2,i, R1,i, R2,i) in List LH1,2 .

– OH3 : Given a message mi, B first checks whether (mi, α3,i, R3,i) exists in
List LH3 . If it does exist, B returns R3,i to A. Otherwise, B chooses a
random α3,i from Z

∗
q and returns R3,i = gα3,i to A. At last, B records

(mi, α3,i, R3,i) in List LH3 .
– OH4 : Given a string mi, B first checks whether (mi, R4,i) exists in List LH4 .

If it does exist, B returns R4,i to A. Otherwise, B chooses a random R4,i

from G and returns it to A. At last, B records (m,R4,i) in List LH4 .
– OH5 : Given an identity IDi, a public key pki, and a message mi, B first

checks whether (IDi, pki,mi, coinm,i, α5,i) exists in List LH5 . If it does
exist, B returns α5,i to A. Otherwise, B does the following steps.

• B queries OH1 or OH2 with (IDi, pki), and obtains coinID,i, α1,i and
α2,i.

• B decides the value of coinm,i ∈ {0, 1} that satisfies Pr[coinm,i = 0] =
δm.

• If coinm,i = 0 and coinID,i = 1, then B sets α5,i = −α1,i/α2,i. Otherwise,
B chooses a random α5,i from Z

∗
q .

• B returns α5,i to A.
• B records (IDi, pki,mi, coinm,i, α5,i) in List LH5 .

– OH6 : Given the string IDi||pki||mi||d1,IDi ||d2,IDi ||ski, B firstly checks
whether (IDi||pki||mi||d1,IDi ||d2,IDi ||ski, α6,i) exists in List LH6 . If it does
exist, B returns α6,i to A. Otherwise, B checks whether pki = gski ,
e(d1,IDi , g) = e(H1(IDi||pki), y), e(d2,IDi , g) = e(H2(IDi||pki), y) and
coinID,i = 1 hold. If not all hold, B chooses a random α6,i from Z

∗
q , and
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returns it to A. Furthermore, B records (IDi||pki||mi||d1,IDi ||d2,IDi ||ski, α6,i)
in List LH6 . If all hold, then B can get gab from d1,IDi by using α1,i corre-
sponding to (IDi, pki).

– Opk: Given an identity IDi, B checks whether (IDi, pki, �) exists in List Lk.
If it exists, B returns pki. Otherwise, B chooses a random ski from Z

∗
q , and

sets pki = gski . At last, B records (IDi, pki, ski) into List Lk and returns
pki to A.

– Osk: Given an identity IDi, B checks whether (IDi, pki, ski) exists in List
Lk. If it does not exist, B returns ⊥. Otherwise, B returns ski to A.

– Oc: Given an identity IDi and a public key pki, B checks whether
(IDi, pki, �) exists in List Lk. If it does not exist, B returns ⊥. Otherwise,
B does the following steps.

• B queries OH1 and OH2 with (IDi, pki) to obtain coinID,i, α1,i and α2,i.
• If coinIDi = 0, B returns ((ga)α1,i , (ga)α2,i) to A.
• If coinIDi = 1, B reports fail and aborts.

– Or: Given (IDi, pk′
i, sk

′
i), B updates (IDi, pki, ski) with (IDi, pk′

i, sk
′
i) in List

Lk if (pk′
i, sk

′
i) is a valid key pair.

– Os: Given an identity IDi, public key pki and a message mi, B queries OH1 ,
OH5 as well as Osk with (IDi, pki), (IDi, pki,mi) and (IDi, pki), respectively.
After that, B can obtain coinID,i, coinm,i, α1,i, α′

1,i, α2,i, α′
2,i, α5,i and

ski. B also chooses a random r from Z
∗
q .

• If coinID,i = 0, B returns the signature as follows.

S = H3(mi)r · H4(mi)r · (ga)α1,i · (ga)α2,i·H5(IDi||pki||mi), T = gr.

Note that r is the hash value from OH6 , and we have H1(IDi||pki) = gα1,i ,
H2(IDi||pki) = gα2,i and pki = gski ; hence, the signature σ = (S, T ) is
valid.
• If coinID,i = 1 and coinm,i = 0, B returns the signature as follows.

S = H3(mi)r · H4(mi)ski(ga)α′
1,i · (ga)−α′

2,i·αm,i , T = gr.

Note that we have that

σ = H3(mi)
r · H4(mi)

sk · (ga)α′
1,i · (ga)−α′

2,i·αm,i

= H3(mi)
r · H4(mi)

sk · ga·b·α1,i(ga)α′
1,i · g−a·b·α1,i(ga)−α′

2,i·α1,i/α2,i

= H3(mi)
r · H4(mi)

sk · ((gb)α1,i · gα′
1,i)a · ((gb)α2,i · gα′

2,i)−a·α1,i/α2,i

= H3(mi)
r · H4(mi)

sk · H1(IDi||pki)
msk · H2(IDi||pki)

−msk·H5(IDi||pki||mi)

= H3(mi)
r · H4(mi)

sk · d1,ID · dH5(IDi||pki||mi)
2,ID

Hence, σ = (S, T ) is a valid signature.
• If coinID,i = coinm,i = 1, B reports fail and aborts.

Output At last, A outputs a forgery σ∗ = (w∗, S∗, T ∗) on message m∗ under
identity ID∗ and public key pk∗. If coinID∗ = coinm∗ = 0 , B reports fail
and aborts. Otherwise, we have that

S∗ = (gα∗
3,i)r∗ · Rsk∗

4,i (gab)α∗
1,i+α∗

2,i·α∗
5,i · (ga)α′

1,i
∗+α′

2,i
∗·α∗

5,i , T = gr∗
.
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It is easy to see that B can obtain gab from σ∗. Note that α∗
1,i, α∗

2,i, α′
1,i

∗,
α′
2,i

∗, α∗
3,i, R∗

4,i, α∗
5,i and sk∗ are the values corresponding to (ID∗, pk∗), m∗,

m∗, (ID∗, pk∗,m∗), and (ID∗, pk∗) in lists LH1,2 , LH3 , LH4 , LH5 and Lk,
respectively.

By using the similar method in [11], we have that B can succeed in the above
game with a non-negligible probability. ��
Theorem 2. The proposed CBS scheme is existentially unforgeable in Game 2
of CBS if the CDH assumption holds in G.

Proof. Assume we have an adversary A that can break our proposal in Game
2 of CBS, then we can build an algorithm B that can solve the CDH problem
(given (g, ga, gb), to compute gab) by interacting with A as follows.

Setup B chooses random u from Z∗
q , sets y = gu, and chooses cryptographically

secure hash functions Hi, (i = 1, 2, 3, 4, 5, 6) that will be treated as random
oracles later. B also initializes lists Lk, LH1,2 , LH3 , LH4 , LH5 and LH6 .

Find B builds the following oracles for A.
– OH1 : Given an identity IDi and a public key pki, B first checks whether

(IDi, pki, R1,i) exists in List LH1 .
• If it does exist, B returns R1,i.
• If it does not exist, B chooses a random R1,i from G, and responds with
R1,i. At last, B records (IDi, pki, R1,i) into List LH1 .

– OH2 : Given an identity IDi and a public key pki, B first checks whether
(IDi, pki, R2,i) exists in List LH2 .

• If it does exist, B returns R2,i.
• If it does not exist, B chooses a random R2,i from G, and responds with
R2,i. At last, B records (IDi, pki, R2,i) into List LH2 .

– OH3 : Given a string mi, B first checks whether (mi, α3,i, R3,i) exists in List
LH3 . If it does exist, B returns R3,i to A. Otherwise, B chooses a random
α3,i from Z

∗
q and returns R3,i = gα3,i to A. At last, B records (mi, α3,i, R3,i)

in List LH3 .
– OH4 : Given a message mi, B first checks whether (mi, coinm,i, α4,i, R4,i)

exists in List LH4 . If it does exist, B returns R4,i to A. Otherwise, B chooses
a random α4,i from Z

∗
q and decides the value of R4,i = coinm,i ∈ {0, 1}

with Pr[coinm,i = 0] = δm. B returns R4,i = gα4,i if coinm,i = 0, or
R4,i = (gb)α4,i otherwise. At last, B records (mi, coinm,i, α4,i, R4,i) in List
LH4 .

– OH5 : Given an identity IDi, a public key pki, a message mi, B first checks
whether (mi, α5,i) exists in List LH5 . If it does exist, B returns α5,i to A.
Otherwise, B chooses a random α5,i from Z

∗
q and returns it A. At last, B

records (mi, α5,i) in List LH5 .
– OH6 : Given the string IDi||pki||mi||d1,IDi ||d2,IDi ||ski, B firstly checks

whether (IDi||pki||mi||d1,IDi ||d2,IDi ||ski, α6,i) exists in List LH6 . If it does
exist, B returns α6,i to A. Otherwise, B checks whether pki = gski ,
e(d1,IDi , g) = e(H1(IDi||pki), y) , e(d2,IDi , g) = e(H2(IDi||pki), y) and
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coinID,i = 1 hold. If not all hold, B chooses a random α6,i from Z
∗
q , and

returns it to A. Furthermore, B records (IDi||pki||mi||d1,IDi ||d2,IDi ||ski, α6,i)
in List LH6 . If all hold, then B can get a from ski by using wi corresponding
to pki.

– Opk: Given an identity IDi, B checks whether (IDi, pki, �) exists in List Lk.
If it exists, B returns pki. Otherwise, B does the following steps.

• B decides the value of coinpk,i ∈ {0, 1} that satisfies Pr[coinpk,i = 0] =
δpk.

• B chooses a random wi from Z
∗
q .

• If coinpk,i = 0, B sets pki = gwi ; otherwise, B sets pki = (ga)wi .
• At last, B records (IDi, pki, coinpk,i, wi) into List Lk, respectively.

– Osk: Given an identity IDi, B checks whether (IDi, pki, coinpk,i, wi) exists
in List Lk. If it does not exist, B returns ⊥. Otherwise, B does the following
steps. If coinpk,i = 0, B returns wi. If coinpk,i = 1, B reports fail and
aborts.

– Oc: Given an identity IDi and a public key pki, B returns H1(IDi||pki)u.
– Os: Given an identity IDi, public key pki and a message mi, B queries OH4

as well as Osk with mi and (IDi, pki), respectively. After that, B can obtain
coinm,i, α4,i, coinpk,i and wi.

• If coinpk,i = 0, B returns the signature as follows.

S = H3(m)r · H4(m)wi · H1(IDi||pki)
u · H2(IDi||pki)

uH5(IDi||pki||mi), T = gr.

Note that r is the hash value from OH6 , y = gu and pki = gwi ; hence,
the signature σ = (S, T ) is valid.
• If coinpk,i = 1 and coinm,i = 0, B returns the signature as follows.

S = H3(m)r · (ga)α4,i·wi ·H1(IDi||pki)
u ·H2(IDi||pki)

uH5(IDi||pki||mi), T = gr.

Note that we have that

σ = H3(m)r · (ga)α4,i·wi · H1(IDi||pki)u · H2(IDi||pki)uH5(IDi||pki||mi)

= H3(m)r · H4(m)ski · H1(IDi||pki)u · H2(IDi||pki)uH5(IDi||pki||mi)

Note that, r is the hash value from OH6 , y = gu and pki = gawi

Hence, σ = (S, T ) is a valid signature.
• If coinpk,i = coinm,i = 1, B reports fail and aborts.

Output At last, A outputs a forgery σ∗ = (S∗, T ∗) on message m∗ under
identity ID∗ and public key pk∗. If coinpk∗ = coinm∗ = 0, B reports fail
and aborts. Otherwise, we have that

S∗ = (gα∗
3,i)r∗ · (gab)α∗

4,i·w∗ · H1(IDi||pki)u · H2(IDi||pki)uH5(IDi||pki||mi)

and
T ∗ = gr∗

.

It is easy to see that B can obtain gab from σ∗. Note that α∗
3,i,α

∗
4,i and w∗

are the values corresponding to m∗, m∗ and (ID∗, pk∗) in lists LH3 ,LH4 and
Lk, respectively.
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By using the similar method in [2], we have that B can succeed in the above
game with a non-negligible probability. ��

4 The Proposed CBAS Scheme

4.1 The Description of Proposed CBAS Scheme

In this section, we will give our CBAS scheme that is directly from our CBS
scheme. Compared to our CBS scheme, our CBAS additionally has algorithm
Aggr, and algorithm Verify is changed accordingly.

– Aggr: Given two signatures (m, {ID0i, pk0i}ni
i=1, (S0, T0)), and

(m, {ID1j , pk1j}nj

j=1, (S1, T1)), where

S0 =

ni∏
i=1

H3(m)r0i ·H4(m)sk0iH1(ID0i||pk0i)
msk ·(H2(ID0i||pk0i)

msk)H5(ID0i||pk0i||m),

T0 =
ni∏

i=1

gr0i

and

S1 =

nj∏

j=1

H3(m)r0j ·H4(m)sk0jH1(ID0j ||pk0j)
msk · (H2(ID0j ||pk0j)

msk)H5(ID0j ||pk0j ||m),

T1 =
nj∏

j=1

gr0j

the aggregator first runs Verify to check the validity of the two signatures.
If both of them are valid, the aggregator outputs the aggregated signature
σ = (S, T ).

S = S0 · S1, T = T0 · T1.

– Verify: Given a signature (m, {IDi, pki}n
i=1, (S, T )), the verify checks its

validity by using the following equality.

e(S, g) = e (H3(m), T ) · e

(
H4(m),

n∏
i=1

pki

)
e

(
n∏

i=1

H1(IDi||pki) · H2(IDi||pki)
H5(IDi||pki||mi), y

)
.

Correctness. The correctness can be easily obtained by the followings.

e(S, g)

= e

⎛
⎝ n∏

i=1
H3(m)ri · H4(m)ski · H1(IDi||pki)

msk · (H2(IDi||pki)
msk)H5(IDi||pki||m)

, g

⎞
⎠

= e

⎛
⎝ n∏

i=1
H3(m)ri , g

⎞
⎠ · e

⎛
⎝ n∏

i=1
H4(m)ski , g

⎞
⎠ · e

⎛
⎝ n∏

i=1
H1(IDi||pki)

msk · (H2(IDi||pki)
msk)H5(IDi||pki||m)

, g

⎞
⎠

= e

⎛
⎝H3(m),

n∏
i=1

g
ri

⎞
⎠ · e

⎛
⎝H4(m),

n∏
i=1

g
ski

⎞
⎠ · e

⎛
⎝ n∏

i=1
H1(IDi||pki) · (H2(IDi||pki))

H5(IDi||pki||m)
, g

msk

⎞
⎠

= e (H3(m), T ) · e

⎛
⎝H4(m),

n∏
i=1

pki

⎞
⎠ e

⎛
⎝ n∏

i=1
H1(IDi||pki) · H2(IDi||pki)

H5(IDi||pki||mi), y

⎞
⎠
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4.2 Security Analysis of Proposed CBAS Scheme

Theorem 3. The proposed CBAS scheme is existentially unforgeable in Game
1 of CBAS if the CDH assumption holds in G.

Proof. It is almost the same as that in the proof of Theorem 1, except the
followings.

Output. At last, A outputs a forgery σ∗ = (S∗, T ∗) corresponding to
{m∗, ID∗

i , pk∗
i }n

i=1. If coin∗
m = 0 or coin∗

ID,i = 0 (i = 1, · · · , n), B reports
fail and aborts. Otherwise, B does the followings.
– Let Su be the set of indices for {ID∗

j , pk∗
j ,m∗} where coin∗

ID,j = 0 and
j ∈ {1, · · · , n}. Accordingly, let Sh = {1, · · · , n}/Su.

– B can obtain {H4(m∗)sk∗
j ·d1,ID∗

j
·dH5(ID

∗
j ||pk∗

j ||m∗)
2,ID∗

j
}j∈Su

by using the method
in Os.

– B computes Ŝ∗ = S∗/
∏

j∈Su
H4(m∗)sk∗

j · d1,ID∗
j

· d
H5(ID

∗
j ||pk∗

j ||m∗)
2,ID∗

j
.

– B can compute gab from σ∗. Note that

S∗ =
∏

j∈Sh

(gα∗
3,j )r∗ · R

sk∗
j

4,i · (gab)α∗
1,j+α∗

2,j ·α∗
4,j · (ga)α′

1,j
∗+α′

2,j
∗·α∗

4,j

and
T ∗ =

∏

j∈Sh

gr∗

where {α1,j , α
′
1,j , α2,j , α

′
2,j , sk

∗
j , R4,j , α

∗
3,j , α

∗
5,j}j∈Sh

, are the values corre-
sponding to {ID∗

j , pk∗
j }j∈Sh

, {ID∗
j , pk∗

j }j∈Sh
, m∗ ,{ID∗

j , pk∗
j ,m∗

j}j∈Sh
in list

LH1,2 , Lk, LH4 and LH3 , LH5respectively.

By using the similar method in [2], we have that B can succeed in the above
game with a non-negligible probability. ��
Theorem 4. The proposed CBAS scheme is existentially unforgeable in Game
2 of CBAS if the CDH assumption holds in G.

Proof. It is almost the same as that in the proof of Theorem 1, except the
followings.

Output. At last, A outputs a forgery σ∗ = (S∗, T ∗) corresponding to
{m∗, ID∗

i , pk∗
i }n

i=1. If coin∗
m = 0 or coin∗

pk,i = 0 (i = 1, · · · , n), B reports
fail and aborts. Otherwise, B does the followings.
– Let Su be the set of indices for {ID∗

j , pk∗
j ,m∗} where coin∗

ID,j = 0 and
j ∈ {1, · · · , n}. Accordingly, let Sh = {1, · · · , n}/Su.

– B can obtain {H4(m∗)sk∗
j ·d1,ID∗

j
·dH5(ID

∗
j ||pk∗

j ||m∗)
2,ID∗

j
}j∈Su

by using the method
in Os.
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– B computes Ŝ∗ = S∗/
∏

j∈Su
H4(m∗)sk∗

j · d1,ID∗
j

· d
H5(ID

∗
j ||pk∗

j ||m∗)
2,ID∗

j
.

– B computes gab from σ∗. Note that

S∗ =
∏

j∈Sh

(gα∗
3,j )r∗

(gab)α∗
4,j ·w∗

j ·H1(ID∗
j ||pk∗

j )u·(H2(ID∗
j ||pk∗

j )u)H5(ID
∗
j ||pk∗

j ||m∗)

and
T ∗ =

∏

j∈Sh

gr∗

where {α∗
3,j , α

∗
4,j , w

∗
j }j∈Sh

, are the values corresponding to m∗,{ID∗
j ,

pk∗
j }j∈Sh

in list LH3 and LH4 , Lk respectively.

By using the similar method in [2], we have that B can succeed in the above
game with a non-negligible probability. ��

5 Conclusion and Outlook

In this paper, we propose a new certificate-based signature scheme where signa-
tures on the message signed by different users can be aggregated into a single
signature without a pre-negotiated one-time-use nonce. Furthermore, only four
pairing operations are required in the verification. These properties make our
proposal useful in bandwidth and computation constraint environments.
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Abstract. In biometrics, template protection aims to protect the con-
fidentiality of templates (i.e., enrolled biometric data) by certain con-
version. At ACNS 2015, as a new approach of template protection,
Takahashi et al. proposed a new concept of digital signature, called “fuzzy
signature”, that uses biometric data as a private key for securely gener-
ating a signature. After that, at ACNS 2016, Matsuda et al. modified the
original scheme with several relaxing requirements. A main ingredient of
fuzzy signature is “linear sketch”, which incorporates a kind of linear
encoding and error correction process to securely output only the differ-
ence of signing keys without revealing any biometric data. In this paper,
we give recovering attacks against the linear sketch schemes proposed at
ACNS 2015 and 2016. Specifically, given encoded data by linear sketch
(called a “sketch”), our attacks can directly recover both the signing key
and the biometric data embedded in the sketch. Our attacks make use of
the special structure that a sketch has the form of a sum of an integral
part and a decimal part, and biometric data is embedded in the decimal
part. On the other hand, we give a simple countermeasure against our
attacks and discuss the effect in both theory and practice.

Keywords: Template protection · Fuzzy signature · Linear sketch

1 Introduction

Biometric authentication (or biometrics) is authentication of users by using their
physiological (e.g., fingerprint, iris, face and vein) or behavioral characteristics
(e.g., signature, keystroke dynamics, and gait). Compared to the commonly used
ID/password authentication, it does not require users to remember long and
complex passwords, and hence it is now expanding in various applications rang-
ing from international border crossings to securing information in databases.
c© Springer International Publishing AG 2017
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With widespread development of biometric authentication, concerns about the
security and the privacy have been rapidly increasing.

Template Protection. In biometrics, it is the most important to protect tem-
plates which are enrollment biometric features, since once leaked templates can
be neither revoked nor replaced. During rapid expansion of biometrics, tem-
plate protection technology has been intensively investigated (e.g., see [1,3]),
and its basic method is to store biometric features transformed by certain con-
version, instead of storing raw ones. According to [3, Sect. 3], an ideal biometric
template protection scheme should satisfy the following four requirements (see
also [6]); (1) Diversity : secure templates (i.e., transformed templates) must not
allow cross-matching across databases. (2) Revocability : it should be straight-
forward to revoke a compromised template and reissue a new secure template
based on the same biometric data. (3) Security : it must be computationally
hard to obtain the original biometric template from a secure template. (4) Per-
formance: the scheme should not degrade the recognition performance (e.g.,
FAR = False Acceptance Rate and FRR = False Rejection Rate). At present,
there are four main approaches for template protection [3, Sect. 3]; (i) salting
(e.g., biohashing [11]), (ii) non-invertible transform (e.g., robust hashing [9]),
(iii) key-binding (e.g., fuzzy vault [4] and fuzzy commitment [5]), and finally
(iv) key-generation (e.g., secure sketch-fuzzy extractor [2]). Homomorphic
encryption is often regarded as yet another approach. Each approach has both
advantages and limitations, and no approach can achieve an ideal scheme.

Fuzzy Signature Schemes [7,10]. As a new approach for template protection, a
new concept of digital signature, called fuzzy signature, was first introduced in
2015 by Takahashi et al. [10]. It is a signature scheme that uses fuzzy data (such
as biometric data) as a private key for securely generating a signature. Different
from the context of fuzzy-extractor-based digital signature, it does not require
auxiliary data (see [10, Fig. 1] for a comparison), and hence it is expected to be
applied to various applications. As a typical application, the authors of [10] dis-
cussed how fuzzy signature can be used to realize a biometric-based public key
infrastructure (PKI), called the public biometric infrastructure (PBI), in which
biometric data of each user is used as his or her specific cryptographic key. In
2016, Matsuda et al. [7] modified the fuzzy signature scheme of [10] with relaxing
requirements of building blocks of the scheme. One of the main ingredients of
fuzzy signature is linear sketch, which incorporates a kind of linear encoding and
error correction process. More specifically, linear sketch is a one-way encoding
c = Sketch(s,x) of a secret key s by fuzzy data x (the encoded data c is called a
sketch). Given two sketches c = Sketch(s,x) and c̃ = Sketch(s̃, x̃), it enables to
securely reconstruct the exact difference s − s̃ of secret keys (without revealing
x and x̃) if two fuzzy data x and x̃ are sufficiently close with respect to cer-
tain distance. These properties are useful to combine with certain cryptographic
signature schemes in order to construct a fuzzy signature scheme.

Our Contributions. Concrete linear sketch schemes were presented in [10, Sect. 5]
and [7, Sect. 5.2] to construct concrete fuzzy signature schemes. In this paper,
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we give recovering attacks against the linear sketch schemes of [7,10]. More
specifically, from a sketch c = Sketch(s,x), our attacks can recover both the
secret key s and the fuzzy data x exactly. In both schemes of [7,10], fuzzy data
are represented by vectors x ∈ [0, 1)n. In order to tolerate the fuzziness of x,
given secret data s ∈ Z

n, a sketch c basically has the form s + E(x) mod q
for some positive integer q and scaler function E (e.g., E(x) = Tx for some
T > 0). For y := s + E(x) = (y1, . . . , yn) ∈ R

n, each component of y mod q is
represented as a sum of the “integral part” modulo q and the “decimal part”
of yi ∈ R. The basic strategy of our attacks is to multiply the sketch c by
a factor f > 0 so that fc ∈ Z

n. After that, we make use of several modulo
operations for fc ∈ Z

n and the linearity of E to recover either s or x exactly.
Once either s or x is obtained, it is straightforward to recover the other data
from the sketch c. The linear sketch schemes of [7,10] are vulnerable against our
recovering attacks. The security proof of each fuzzy signature scheme is given
in [7,10] under the assumption that fuzzy data x are uniform real numbers.
Despite the security proof, our attacks can recover both s and x embedded in
any sketch c with known denominator of x, and our attacks are independent of
the uniform assumption on x. (Security requirement of indistinguishability for
linear sketch are given in [10, Definition 5 in Sect. 4.1]. However, in the security
proof of [7,10], there is no careful discussion about whether specific linear sketch
schemes satisfy the security requirement or not.)

As another work, we propose a countermeasure against our recovering
attacks. Our countermeasure is very simple, and it just adds noisy data ε to
a sketch c = Sketch(s,x). For the sketch cε = c+ ε with noise, our attacks can
recover fuzzy data x′ close enough to the original fuzzy data x in theory. But in
practice, this countermeasure might often prevent from recovering x′ due to lack
of the accuracy of floating point numbers. In this paper, we discuss the effect of
our simple countermeasure.

Notation. The symbols Z, Q and R denote the ring of integers, the field of
rational numbers, and the field of real numbers, respectively. For a positive
integer q, we always represent representatives of integers modulo q by elements
in the set {0, 1, 2, . . . , q−1}. For a ∈ R, let �a� denote its nearest integer, and �a�
its round-off integer. This notation can be naturally extended to vectors. The
∞-norm of a vector x = (x1, . . . , xn) ∈ R

n is defined as ‖x‖∞ := max1≤i≤n |xi|.

2 Overview of Fuzzy Signature

In this section, we give an overview of fuzzy signature [7,10]. Specifically, we
present building blocks and a generic construction of a fuzzy signature scheme.
From the construction, we see what role linear sketch plays in fuzzy signature.

2.1 Building Blocks

A fuzzy signature scheme F = (Σ,S) basically consists of a cryptographic sig-
nature scheme Σ and a linear sketch scheme S as follows:
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– Σ = (Setup, KG, Sign, Ver): It is a cryptographic signature scheme consisting
of a setup algorithm Setup, a key generation algorithm KG, a signing algorithm
Sign, and a verification algorithm Ver.
• pp ← Setup(1k): It takes 1k as input (k is determined by a threshold t of

a fuzzy signature scheme), and outputs a public parameter pp.
• vk ← KG(pp, sk): It takes as input pp and a signing key sk, and outputs a

verification key vk.
• σ ← Sign(pp, sk,m): It takes as input pp, sk and a message m, and outputs

a signature σ.
• 	 or ⊥← Ver(pp, vk,m, σ): It takes as input pp, vk, m and σ, and outputs

either 	 (“valid”) or ⊥ (“invalid”).
Certain homomorphic property (formally described in [10, Definition 3]) is
required for Σ to construct the fuzzy signature scheme F . As concrete schemes
for Σ, a variant of the Waters signature scheme [12] and the Schnorr signature
scheme [8] are adopted in [7,10], respectively.

– S = (Sketch, DiffRec): It is a linear sketch scheme consisting of a “sketching”
algorithm Sketch and a “difference reconstruction” algorithm DiffRec.
• c ← Sketch(s,x): It takes as input a secret key s (e.g., a signing key sk of

Σ) and fuzzy data x (e.g., biometric data), and outputs a sketch c. Note
that the sketch c is a kind of encoded data, but it does not require to
decrypt c to recover the secret key s in fuzzy signature.

• Δ ← DiffRec(c, c̃): It takes as input two sketches c = Sketch(s,x) and
c̃ = Sketch(s̃, x̃), and outputs the “difference” Δ. In particular, the dif-
ference Δ is equal to s − s̃ if certain distance dist(x, x̃) between two fuzzy
data x and x̃ is less than the threshold t of F .

See [10, Definition 5] for the formal definition of a linear sketch scheme S.
Compared to the formal definition, we omit the information of the base
abelian group for secret keys s and s̃. For the sake of simplicity, we here
assume that we can subtract s̃ from s. In Sect. 3 below, we shall present con-
crete constructions of linear sketch schemes S, described in [10, Sect. 5] and
[7, Sect. 5.2].

2.2 Generic Construction

In Fig. 1, we show an overview of a generic construction of a fuzzy signature
scheme F = (Σ,S) in case of biometric authentication between a user U and
an authentication server A (see also [10, Sects. 1.3 and 4] for an overview). The
authentication server A first prepares a public parameter pp ← Setup(1k). Then
the following two phases are performed for biometric authentication:

Enrollment Phase

1. The user U randomly generates a signing key sk, and computes the corre-
sponding verification key vk ← KG(pp, sk).

2. The user U extracts fuzzy data x from his or her biometric image (e.g.,
fingerprint and vein), and computes a sketch c ← Sketch(sk,x).
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Fig. 1. An overview of a generic construction of a fuzzy signature scheme for biometric
authentication (sk, s̃k: signing keys, vk, ṽk: verification keys, x, x̃: fuzzy data extracted
from biometric images, c = Sketch(sk,x), c̃ = Sketch(s̃k, x̃): sketches, m: message,
σ̃: signature)

3. Then U sends V K = (vk, c) as a verification key of the fuzzy signature scheme
F to the authentication server A.

Authentication Phase

1. As in the registration phase, the user U randomly generates a new signing
key s̃k, and computes ṽk ← KG(pp, s̃k).

2. For authentication, the user U extracts fuzzy data x̃ from his or her biometric
image, and computes a sketch c̃ ← Sketch(s̃k, x̃).

3. Given a message m, the user U computes a signature σ̃ ← Sign(pp, s̃k,m).
Then U sends σ = (ṽk, σ̃, c̃) and m as a signature of F to A.

4. The authentication server A verifies the signature σ = (ṽk, σ̃, c̃) with m by
using the verification key V K = (vk, c) of F as follows:
(a) Check the validity of σ̃ under ṽk by computing Ver(pp, ṽk,m, σ̃).
(b) Compute Δ ← DiffRec(c, c̃), and recover Δ = sk − s̃k if dist(x, x̃) < t.
(c) Finally check whether the difference vk and ṽk corresponds to Δ = sk −

s̃k. This can be done by the homomorphic property of Σ.

Features of Fuzzy Signature. In Fig. 1, neither x nor x̃ is revealed in the
authentication server A. Different from the key-generation approach (e.g., secure-
sketch fuzzy extractor [2]), a main feature of fuzzy signature is that it does
not require to extract the signing key sk from the sketch c = Sketch(sk,x)
and the fuzzy data x̃ close to x. Alternatively, it requires another sketch c̃ =
Sketch(s̃k, x̃) to securely reconstruct the difference Δ = sk− s̃k in A only when
two fuzzy data x and x̃ are sufficiently close.
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3 Constructions of Linear Sketch Schemes

As seen from the previous section, linear sketch plays an important role in fuzzy
signature to securely reconstruct the difference between secret keys. Concrete
constructions of linear sketch schemes S = (Sketch, DiffRec) are shown in
[10, Sect. 5] and [7, Sect. 5.2]. In this section, we present the constructions of
linear sketch schemes, and give a toy example for each construction.

3.1 Linear Sketch Scheme of [10]

Here we present the construction of the linear sketch scheme of [10].

Mathematical Background. Fix two parameters n ∈ N and t ∈ R. (In a
fuzzy signature scheme, n is the dimension of fuzzy data space, and t is a thresh-
old.) Let w1, . . . , wn ∈ N be n positive integers with the same bit length (i.e.,
�log2 w1� = · · · = �log2 wn�), such that

wi ≤ 1
2t

(1 ≤ ∀i ≤ n) and GCD(wi, wj) = 1 (∀i �= ∀j). (1)

Set w = (w1, . . . , wn) ∈ N
n, and define two spaces by

Z
n
w :=

n∏

i=1

Z/wiZ and R
n
w := Z

n
w ⊗Z R.

In particular, the space R
n
w can be represented as the quotient set R

n/ ∼ of Rn

by the equivalence relation ‘∼’, where for y = (yi), z = (zi) ∈ R
n we define

y ∼ z ⇐⇒ yi = niwi + zi for some ni ∈ Z (∀1 ≤ i ≤ n).

Therefore each component yi of any element y = (yi) ∈ R
n
w can be uniquely

represented as yi = pi + qi for some pi ∈ Z and qi ∈ R with 0 ≤ pi < wi and
0 ≤ qi < 1 (pi is the integral part modulo wi, and qi the decimal part). Now
define two functions:

{
Ew : Rn −→ R

n
w, x = (xi) �→ (w1x1, . . . , wnxn) ∈ R

n
w,

Cw : Rn
w −→ Z

n
w, y = (yi) �→ (�y1 + 0.5�, . . . , �yn + 0.5�) ∈ Z

n
w.

Since Ew(x + e) = Ew(x) + Ew(e) mod w for any x, e ∈ R
n, the function Ew

can be regarded as a kind of linear coding. In contrast, the round-off operation
�yi + 0.5� in Cw can be regarded as a kind of error correction. Actually, for
x, x̃ ∈ R

n with ‖x − x̃‖∞ < t, we have

‖Ew(x) − Ew(x̃)‖∞ < t · max
1≤i≤n

|wi| ≤ 0.5.

by condition (1). Therefore, for such x, x̃, it holds that

Cw (Ew(x) − Ew(x̃)) = 0. (2)

Furthermore, for any x ∈ R
n and s ∈ Z

n
w, we clearly have

Cw(x + s) = Cw(x) + s mod w. (3)
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Scheme Construction. Now we are ready to present the linear sketch scheme
S = (Sketch, DiffRec) of [10]. Given s ∈ Z

n
w and x ∈ [0, 1)n, we define

c = Sketch(s,x) := s + Ew(x) mod w ∈ R
n
w.

On the other hand, for two sketches c, c̃ ∈ R
n
w, we define

Δ = DiffRec(c, c̃) := Cw(c − c̃) ∈ Z
n
w.

Write c = Sketch(s,x) and c̃ = Sketch(s̃, x̃). By Eq. (3) and the linearity of
Ew, we clearly have

⎧
⎪⎨

⎪⎩

c − c̃ = (s − s̃) + Ew(x − x̃) mod w,

Δ =Cw(c − c̃)
= (s − s̃) + Cw(Ew(x) − Ew(x̃)) mod w.

Furthermore, if ‖x − x̃‖∞ < t, we have Δ = s − s̃ mod w by Eq. (2). This error
correction property plays a central role to combine with certain cryptographic
signature scheme in fuzzy signature.

Example 1. As a toy example, we fix n = 3 and t = 0.005. We also choose
w1 = 97, w2 = 89, w3 = 91 such that wi ≤ 1

2t = 100 for i = 1, 2, 3. Set
w = (97, 89, 91) ∈ Z

3. Given fuzzy data x = (0.11, 0.63, 0.71) ∈ [0, 1)3, we
compute Ew(x) = (w1x1, w2x2, w3x3) = (10.67, 56.07, 64.61) ∈ R

3. Set s =
(11, 45, 41) ∈ Z

3 as a secret key. Then a sketch c ∈ R
3
w is obtained as

c = Sketch(s,x) = (21.67, 101.07, 105.61) mod w

= (21.67, 12.07, 14.61).

Note that the decimal part of each component of c is equal to that of Ew(x).
Since w is a public information in fuzzy signature, some information of the fuzzy
data x (e.g., biometric data) can be leaked from c. This is remarked in [10,
Sect. 5.3], and it states that it does not affect the security (the EUF-CMA-security,
defined in [10, Definition 4]) of the fuzzy signature scheme of [10].

3.2 Construction of [7]

In this subsection, we present the construction of the linear sketch scheme of [7].
Compared to the construction of [10], this construction is very simple (here
we give a simpler construction of the linear sketch scheme than the original
construction presented in [7, Sect. 5.2]). Given a threshold t ∈ R of the fuzzy
signature scheme, set T = 1

2t ∈ N and choose a prime number p with p ≥ T .
Given s ∈ F

n
p and x ∈ [0, 1)n, we define

c = Sketch(s,x) := s + Tx mod p ∈ R
n
p ,

where let R
n
p = F

n
p ⊗Z R. Similar to the space Z

n
w in the previous subsection,

each component yi of any element of Rn
p is uniquely represented as a sum of the
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integral part modulo p and the decimal part of yi. On the other hand, for two
sketches c = Sketch(s,x) and c̃ = Sketch(s̃, x̃), we define

Δ = DiffRec(c, c̃) := �c − c̃� mod p ∈ F
n
p .

In particular, if ‖x − x̃‖∞ < t, we have Δ = s − s̃ mod p ∈ F
n
p since c − c̃ =

(s − s̃) + T (x − x̃) and T (x − x̃) ∈ (− 1
2 , 1

2

)n by the setting of T . This error
correction property is useful to combine with the Schnorr signature scheme [8].

Example 2. In this example, we fix n = 3, T = 203 and p = 211 (conversely, we
have t = 1

406 ). Choose s = (153, 43, 198) ∈ F
3
p as a secret key. Given fuzzy data

x = (0.11, 0.63, 0.71) ∈ [0, 1)3, a sketch c ∈ R
n
p is obtained as

c = Sketch(s,x) = (175.33, 170.89, 342.13) mod p

= (175.33, 170.89, 131.13).

4 Recovering Attacks Against Linear Sketch Schemes

In this section, we give recovering attacks against linear sketch schemes of [7,10].
Specifically, from a sketch c = Sketch(s,x) and public information, our attacks
enable us to directly recover both the secret key s and the fuzzy data x.

4.1 Attack Against Linear Sketch Scheme of [10]

Here we give our recovering attack against the linear sketch scheme of [10]. We
use the same notation as in Subsect. 3.1. Given a sketch c = Sketch(s,x) =
s + Ew(x) mod w ∈ R

n
w and a public information w = (w1, . . . , wn) ∈ Z

n (but
s ∈ Z

n
w and x ∈ [0, 1)n are unknown). Here we assume x ∈ Q

n for simplicity (this
assumption is required for practical implementation). Under this assumption, we
show a method how to recover both the secret key s and the fuzzy data x as
follows: Take f ∈ Z such that fc ∈ Z

n. Then we clearly have Ew(fx) mod w = 0
since fx ∈ Z

n. From the construction of the sketch c, we also have

fc = fs + Ew(fx) mod w = fs mod w ∈ Z
n
w,

in which we make use of the linearity of the scaling function Ew so that fEw(x) ≡
Ew(fx) mod w. Then we can recover the secret key s ∈ Z

n
w as

s = f−1(fc) mod w,

where we denote f−1 mod w = (f−1 mod w1, . . . , f
−1 mod wn). We also obtain

Ew(x) = c − s mod w. Since the i-th component wixi of Ew(x) is included in
the range [0, wi) for every 1 ≤ i ≤ n, we can recover the exact Ew(x) ∈ R

n

(without modulo w). Then we can also recover the fuzzy data x ∈ [0, 1)n by
dividing each component wixi of Ew(x) by wi for every 1 ≤ i ≤ n.
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Example 3. In this example, we apply our recovering attack against the sketch
c = (21.67, 12.07, 14.61) ∈ Z

3
w with w = (97, 89, 91), generated in Example 1.

Here take f = 100, then we have

fc = (2167, 1207, 1461) mod w = (33, 50, 5).

Then we can recover

s = f−1(fc) mod w = (11, 45, 41).

This is the same secret key as in Example 1. Moreover, we compute

Ew(x) = c − s mod w = (21.67, 12.07, 14.61) − (11, 45, 41) mod w

= (10.67,−32.93,−26.39) mod w

= (10.67, 56.07, 64.61).

Therefore we can recover the same fuzzy data x as in Example 1:

x =
(

10.67
w1

,
56.07
w2

,
64.61
w3

)
= (0.11, 0.63, 0.71).

4.2 Attack Against Linear Sketch Scheme of [7]

Here we give our recovering attack against the linear sketch scheme of [7]. We
use the same notation as in Subsect. 3.2. Given a sketch c = Sketch(s,x) =
s + Tx mod p ∈ R

n
p and public information p and T with p ≥ T (but s ∈ F

n
p

and x ∈ [0, 1)n are unknown). For the fuzzy data x = (x1, . . . , xn) ∈ [0, 1)n, we
assume that each component xi is represented as

xi =
x
(1)
i

10
+

x
(2)
i

102
+ · · · +

x
(r)
i

10r
with 0 ≤ x

(j)
i ≤ 9

for some fixed r ≥ 1 (length r is independent of 1 ≤ i ≤ n). This assumption
is reasonable since each component of x ∈ [0, 1)n should be represented as a
floating point number in practical implementation. Under this assumption, we
show a method how to recover both the fuzzy data x = (x1, . . . , xn) ∈ [0, 1)n and
the secret data s from the sketch c as follows: Set x(j) = (x(j)

1 , . . . , x
(j)
n ) ∈ Z

n

for 1 ≤ j ≤ r, and then we can simply represent

x =
x(1)

10
+

x(2)

102
+ · · · +

x(r)

10r
. (4)

For the sketch c, we can also write c = s + Tx + pz for some z ∈ Z
n. Now

consider

10rc = 10r (s + pz) + T
(
10r−1x(1) + 10r−2x(2) + · · · + x(r)

)
. (5)

By performing modulo 10 for 10rc ∈ Z
n, we can recovery x(r) as

x(r) = T−1 (10rc) mod 10
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if GCD(10, T ) = 1 (even in the case GCD(10, T ) �= 1, we can easily modify
Eq. (5) to obtain x(r)). Next we consider

10rc − Tx(r)

10
= 10r−1 (s + pz) + T

(
10r−2x(1) + 10r−3x(2) + · · · + x(r−1)

)
.

In the same manner as above, we can recover x(r−1). By performing the same
procedure recursively, we can recover all x(j) and hence x ∈ [0, 1)n. More specif-
ically, from j = r − 1 down to j = 1, we perform

x(j) = T−1

(
10rc − T

(
x(r) + 10x(r−1) + · · · + 10r−j−1x(j+1)

)

10r−j

)
mod 10

in order to recover x(j). Once the exact fuzzy data x ∈ [0, 1)n is obtained, we
can also recover s ∈ Fp by computing c − Tx mod p.

Example 4. In this example, we apply our recovering attack against the sketch
c = (175.33, 170.89, 131.13) with public information T = 203 and p = 211,

generated in Example 2. For this example, write x =
x(1)

10
+

x(2)

102
. Then our

recovering attack against c perform the following:
⎧
⎪⎨

⎪⎩

x(2) = T−1(102c) mod 10 = (1, 3, 1),

x(1) = T−1

(
102c − Tx(2)

10

)
mod 10 = (1, 6, 7).

From this, we can recover x = (0.11, 0.63, 0.71) ∈ [0, 1)3, which is the same as
in Example 2. Furthermore, we can also recover the secret key correctly as

s = c − Tx mod p = (153, 43,−13) mod p = (153, 43, 198).

5 Discussion on Simple Countermeasure

A simple countermeasure against our recovering attacks is to add noisy data ε to
a sketch c = Sketch(s,x) to prevent from recovering the secret data s and the
fuzzy data x. On the other hand, small ε is only acceptable for error tolerance
of fuzzy data. In this section, we consider the effect of this countermeasure.

Here we consider the case of the linear sketch scheme of [7]. We use the same
notation in Subsects. 3.2 and 4.2. Let c = Sketch(s,x) = s + Tx mod p be a
sketch with public information p and T satisfying p ≥ T . Consider to add small
noisy data ε = (ε1, . . . , εn) ∈ [0, 1)n to the sketch c as cε := c+ ε ∈ R

n
p . For the

sketch cε with noise ε, we cannot recover the original x ∈ [0, 1)n by our recovery
attack presented in Subsect. 4.2. However, as described in Subsect. 4.2, for some
z ∈ Z

n, we now have

cε = s + Tx + pz + ε = (s + pz) + T
(
x +

ε

T

)
.
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By performing our recovering attack against cε, we can recover

xε := x +
ε

T

in theory and hence s ∈ Fp. As mentioned in the first paragraph of this section,
small ε is only acceptable, and hence we might obtain the fuzzy data xε close
enough to the original data x. However, as the below example shows, our recover-
ing attack against cε might fail in practice due to lack of the accuracy of floating
point numbers:

Example 5. As an example of the above discussion, we consider the sketch c =
(175.33, 170.89, 131.13) with public information T = 203 and p = 211, generated
in Example 2. We take ε = (0.021, 0.009, 0.017) as a noisy data. Consider cε =
c + ε = (175.351, 170.899, 131.147). Write

xε =
x(1)

ε

10
+

x(2)
ε

102
+

x(3)
ε

103

as in Example 4. Now we apply our recovering attack against cε:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(3)
ε = T−1

(
103cε

)
mod 10 = (7, 3, 9),

x(2)
ε = T−1

(
103cε − Tx(3)

ε

10

)
mod 10 = (1, 3, 4),

x(1)
ε = T−1

⎛

⎝
103cε − T

(
x(3)

ε + 10x(2)
ε

)

102

⎞

⎠ mod 10 = (3, 4, 4).

Then we have xε = (0.317, 0.433, 0.449) from the above computation. But this
xε is neither equal nor close to the correct vector

x +
ε

T
= (0.11, 0.63, 0.71) +

1
T

(0.021, 0.009, 0.017)

= (0.1101034482 · · · , 0.6300443349 · · · , 0.7100837438 · · · ).
This failure is due to lack of the accuracy of floating point numbers.

Remark 1. Note that our recovering attack works correctly against the sketch
cε with noise ε as long as the fuzzy data xε = x +

ε

T
can be represented as

xε =
x(1)

ε

10
+

x(2)
ε

102
+ · · · +

x(r)
ε

10r

for some length r > 0 and x(j)
ε = (y(j)

1 , . . . , y
(j)
n ) ∈ Z

n with 0 ≤ y
(j)
i ≤ 9. More

generally, if the fuzzy data xε can be represented as

xε =
z(1)

q
+

z(2)

q2
+ · · · +

z(s)

qs
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for some positive integer q (e.g., q = T ), length s > 0 and z(j) = (z(j)1 , . . . , z
(j)
n ) ∈

Z
n with 0 ≤ z

(j)
i < q, our recovering attack with modulus q (instead of modulus

10) can recover xε. However, it seems difficult to find such q only from cε.

Remark 2. Given a sketch c = (c1, . . . , cn), we can consider c′ = (c′
1, . . . c

′
n) as a

new sketch with noise, where set

c′
i =

�θci + 0.5�
θ

for 1 ≤ i ≤ n

for a pre-defined threshold t = 10−r with θ = 1/t = 10r (i.e., it is just the
rounding off operation at 1/10r). We expect that this procedure would not affect
the authentication accuracy for large r. For example, when we set r = 10 and n =
103, we estimate that the probability to affect the authentication performance
is about 10−10 · 103 = 1/107.

6 Conclusion

In this paper, we gave a recovering attack against each construction of the linear
sketch schemes of [7,10]. Our attacks are critical against fuzzy signature schemes
of [7,10]. Actually, in Fig. 1, our attacks enable us to directly recover both the
signing key sk and biometric data x from a sketch c = Sketch(sk,x). The
security of fuzzy signature schemes is proved in [7,10] under the assumption that
biometric data x are uniform over [0, 1)n. Despite the security proof, our attacks
can easily recover both sk and x embedded in any sketch c = Sketch(sk,x)
with known denominator of x, and our attacks are independent of the uniform
assumption for x. Furthermore, the denominator of biometric data x ∈ [0, 1)n

should be known in practical implementation, and hence our attacks give a
practical threat against fuzzy signature schemes of [7,10].

On the other hand, we might avoid our attacks in practice by just adding
noisy data ε to a sketch c. Since the failure of our attacks depends on the accuracy
of floating point numbers, there must exist a trade-off between the size (or the
form) of ε for failure of our attacks and the error tolerance of biometric fuzzy
data for authentication. Such trade-off is an open problem, and it should be
carefully discussed for practical use of fuzzy signature schemes with our simple
countermeasure.
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Abstract. Indistinguishability obfuscation (iO) is a powerful crypto-
graphic tool often employed to construct a variety of core cryptographic
primitives such as public key encryption and signatures. In this paper, we
focus on the employment of iO in order to construct short signatures with
strong security guarantees (i.e., adaptive security) that provide a very effi-
cient signing process for resource-constrained devices. Sahai and Waters
(SW) (STOC 2014) initially explored the construction of iO-based short
signature schemes but their proposal provides selective security. Ramchen
and Waters (RW) (CCS 2014) attempted to provide stronger security
guarantees (i.e., adaptive security) but their proposal is much more com-
putationally expensive than the SW proposal.

In this work, we propose an iO-based short signature scheme that pro-
vides adaptive security, fast signing for resource-constrained devices and
is much more cost-efficient than the RW signature scheme. More pre-
cisely, we employ a puncturable PRF with a fixed length input to get a
fast and adaptively secure signature scheme without any additional hard-
ness assumption as in the SW signature scheme. To achieve this goal, we
employ the technique of Hofheinz et al. called “delayed backdoor program-
ming” using a random oracle, which allows to embed an execution thread
that will only be invoked by special inputs generated using secret key
information. Furthermore, we compare the cost of our signature scheme
in terms of the cost of the underlying PRG used by the puncturable PRF.
Our scheme has a much lower cost than the RW scheme, while providing
strong security guarantees (i.e., adaptive security).

Keywords: Signature scheme · Indistinguishability obfuscation
Puncturable pseudo-random functions

1 Introduction

The notion of indistinguishability obfuscation (iO), initially introduced by Barak
et al. [1], requires that the obfuscation of any two distinct (equal-size) pro-
grams that implement identical functionalities, renders them computationally
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 422–431, 2017.
https://doi.org/10.1007/978-3-319-72359-4_25
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indistinguishable from each other. However, the problem of whether or not
indistinguishability obfuscation exists and how useful it is, has been unclear
until the breakthrough result of Garg et al. [2] when they proposed the first
candidate construction of an efficient indistinguishability obfuscator for general
programs [3]. This initial breakthrough by Garg et al. has motivated a new line
of research focusing on re-exploring the construction of existing cryptographic
primitives through the lens of obfuscation. For instance, Sahai and Waters [9]
performed a systematic study of employing indistinguishability obfuscation to
public-key encryption, short signatures, non-interactive zero-knowledge proofs,
injective trapdoor functions, and oblivious transfer. This line of research is of
great importance since it may lead to unexpected results and qualitatively dif-
ferent ways of settling cryptographic problems.

In this paper, we explore the employment of iO to build new signature
schemes with two main properties: (i) they are short signatures with strong
security guarantees (i.e., adaptive security), and (ii) they provide a fast signing
process suitable for resource-constrained devices (e.g., sensors). The latter objec-
tive naturally leads to an imbalanced scheme, where the signing process is fast,
while the verification process is longer; this guarantees that resource-constrained
devices can sign, while computationally powerful devices will be employed for
the verification. Such imbalanced schemes have been explored before e.g., the
research area of delegation of computation schemes focus on saving resources in
computationally weak devices.

Although current obfuscation candidates may lead to very slow verification
process, current work on obfuscation techniques (esp. on implementing specific
functionalities) is under development, rendering plausible the realisation of sys-
tems with reasonable performance in the near future.

SW short signature. We begin by reviewing the selectively-secure signature
scheme of Sahai-Waters (SW) based on iO and puncturable pseudorandom func-
tions (PRFs) as well as one-way functions [9]. In this approach, the secret signing
key is simply a key k for a puncturable PRF Fk(·), and a message m is signed by
simply evaluating σ = Fk(m). The public verification key is an indistinguishabil-
ity obfuscation Ĉ ← iO(Ck) of a circuit Ck that on input a message/signature
pair (m,σ), verifies that the value f(σ) is equal to the value f(Fk(m)). Verifying
any σ for m is simply done by executing the program Ĉ on input (m,σ). One
significant limitation of this scheme is that it only satisfies unforgeability against
a selective attacker. In this notion of security, the attacker is forced to preselect
the message m∗, he will attempt to forge, before seeing the verification key and
before querying for signatures on other messages.

RW short signature. In CCS’14, Ramchen and Waters (RW) [8] explored
methods for achieving adaptively secure obfuscation-derived signatures in the
standard model. More precisely, they employed the prefix-guessing technique of
Hohenberger-Waters [6]. Their signature scheme consists of two main pieces. The
first piece is a one-time signature for a tag t, which is the value of a puncturable
PRF on the tag t. The second signature piece is the ability to sign the tag t
according to the prefix-guessing technique [6]. A signature on the message is
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the tag along with the xor of these two parts. To generate the first piece, they
choose a tag t of λ bits and compute s1 = ⊕�

i=1F1(K1, t‖i‖m(i)), where F1(K1, ·)
is a puncturable PRF with appropriate input length and m(i) is the i-th bit of
an �-bit message m. To generate the second piece they choose λ puncturable
PRFs F2,i(K2,i, ·) for i ∈ [1, λ] which takes inputs of i bits, and they compute
s2 = ⊕λ

i=1F2,i(K2,i, t
(i)) where t(i) denotes the first i bits of t. A signature for

the message m is (t, s = s1 ⊕ s2).
To improve the signing process (i.e., fast sign) of their scheme, they also give

a slightly modified second construction. The primary change is that instead of
using λ different punctured PRF systems, each with a different domain size, a
punctured PRF with a variable length domain is used in the second piece of the
signature. Ramchen and Waters [8] have shown that the variable-input-length
punctured PRF can be created by a length tripling PRG. We note that in the
generation of the first piece of the signature, � values of one fixed-input-length
punctured PRF must be evaluated, and in the generation of the second piece of
signature, either values of λ different fixed-input-length punctured PRFs or λ
values of one variable-input-length punctured PRF must be evaluated. All these
require many more computations than the SW signature scheme.

Our contribution. This state of affairs has motivated us to explore the follow-
ing ambitious question: Is it possible to construct an efficient (i.e., fast signing)
and adaptively secure short signature scheme, in which the signature for a mes-
sage m is a value of a puncturable PRF on m? More precisely, in this paper we
consider the problem of modifying the SW signature scheme [9] to accommodate
adaptive security, where the attacker can adaptively choose which message he will
forge on, and provide a positive answer to the above question. Instead of resort-
ing to the tag-based technique of the RW scheme, which requires using either λ
different fixed-input-length punctured PRFs or one variable-input-length punc-
tured PRF, we explore to simply use one puncturable PRF with a fixed length
input to get a fast signature as the SW signature scheme does, while at the
same time providing strong security guarantees1. In particular, we present a fast
signing, short signature scheme that is adaptively secure in the random oracle
model relying on iO, puncturable pseudorandom functions (PRFs) and one-way
functions.

In the random oracle (RO) model, a trivial generic way to transform the
selective security of the SW signature scheme to adaptive security is by hashing
the message prior to signing. That is the signature for a message m is the value
σ = Fk(H(m)). Now the public verification key is an indistinguishability obfus-
cation of a new circuit C ′

k that on input a hash-value/signature pair (H(m), σ),
verifies that f(σ) = f(Fk(H(m))). Let qH be the number of hash queries during
the game. Since with probability 1/qH the simulator correctly guesses the i-th
hash query i.e., the query for m∗, it can then use the punctured key k{h∗} to
answer the signing queries (let h∗ is the value of i-th hash query).

One could consider that the above hash-then-sign method is very trivial by
employing the hash function on the message to obtain a value h = H(m) with
1 Contrary to our scheme the SW signature scheme provides weaker security guaran-

tees (i.e., selective security).
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uniform distribution, thus resulting in the pseudorandomness of PRF σ = Fk(h).
However, we are motivated to seek another non-trivial method that can lead to
the pseudorandomness of σ in the SW signature scheme in the random oracle
model. Namely, we are taking advantage of a hash function in order to produce a
new PRF key k′ and thus to obtain the signature σ = Fk′(m) on the message m.
To achieve this goal, we employ Hofheinz et al.’s technique [5], called “delayed
backdoor programming” using a programmable random oracle.

At a high level, in our construction the secret signing key is still a key K̃
for a puncturable PRF FK̃ , where K̃ is computed by a puncturable PRF FK on
input w = H(m) and the signature σ on the message m is still σ = FK̃(m). The
public verification key V K consists of an obfuscated program as well as a hash
function H modelled as a random oracle. Let us see how to create a program
Verify, that will be obfuscated to create V K. The program will actually follow
a similar structure as the program of Hofheinz et al.’s [5] universal parameters
scheme, which allows to embed an execution thread that will only be invoked by
special inputs generated by using secret key information. Informally speaking,
the program Verify takes as input a random string w and consists of two main
stages. In the first stage, it checks to see if the random string is an encoding,
which is produced by a “hidden trigger” using secret key information. This step
will either output a string α ∈ {0, 1}n or it will output ⊥ to indicate failure. For
a uniformly randomly chosen string w, this step will output ⊥ with very high
probability, since the trigger values are encoded sparsely. Moreover, without
the secret information it should be difficult to distinguish an encoding from a
uniformly sampled string. If the first step fails, it will move into its second stage.
At this point the program will compute the signing key K̃ = FK(w) from a
puncturable PRF FK . Now instead of directly comparing the value of f(σ) with
the value f(FK̃(m)), we add a level of indirection as Hofheinz et al. does. The
program Verify will output the obfuscated program of the CK̃ as in the SW
signature scheme.

Our proof of adaptive security proceeds by a sequence of hybrids. Let any
PPT adversary A make at most a polynomial number Q = Q(λ) (unique) queries
m1, . . . , mQ to the RO with outputs w1, . . . , wQ. We will perform a hybrid of
Q outer steps, where at outer step i, we move from using the puncturable
PRF key K to output the obfuscated program iO(CK̃i

) (which is the output
of the program Verify on input wi), to having iO(CK̃i

) being encoded in wi

itself for K̃i = FK(wi). More precisely, following the pseudorandomness of the
puncturable PRF FK , we can let a program g to be iO(CK̃i

), where K̃i is
chosen independently and then set wi to be a “hidden trigger” encoding of g.
Next, we use punctured programming techniques to replace the normal compu-
tation of the program CK̃i

with a hardwired and randomly sampled value for
p̂i = f(FK̃i

(mi)). At this point on computing iO(Verify)(wi) the output will be
the program g = iO(CK̃i,p̂i,mi

). In the final hybrid any poly-time attacker A
that succeeds in outputting a forgery (m∗, σ∗) with non-negligible probability
can be used to find a preimage of p̂i for the one-way function f–that is σ∗, which
breaks the security of one way functions.
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Comparison of Cost. We compare the cost of the SW [9], the RW [8] schemes
and our proposed signature in terms of the cost of the underlying PRG used by
the puncturable PRF and the provided security.

Table 1. Comparison of our short signature scheme to the SW and RW schemes.

Scheme Security Model Employed primitives Cost

SW14 [9] Selective Standard iO & fixed-length input PRF gD · �
RW14 [8] Adaptive Standard iO & fixed-length input PRF

variable-length input PRF
gD ·(λ+ 2�− 1) + gT ·λ

Ours Adaptive Random oracle iO & fixed-length input PRF Less than gD · (2�)

We note (as seen in Table 1) that although the RW scheme is proven to be
adaptively secure in the standard model, their proposal is quite heavy compu-
tationally. We have chosen to provide a more efficient (fast signing), adaptively
secure solution suitable for resource-constrained devices at the cost of employing
the random oracle model.

2 Preliminaries

2.1 Signature Schemes

Definition 1. A signature scheme with message space M(λ), signature key
space SK(λ) and verification key space VK(λ) consists of the PPT algorithms
SIG = (SIG.Setup,SIG.Sign,SIG.Verify):

– Key generation. SIG.Setup is a randomized algorithm that takes as input the
security parameter 1λ and outputs the signing key sk ∈ SK and the verification
key vk ∈ VK.

– Signature generation. SIG.Sign takes as input the signing key sk ∈ SK and
a message m ∈ M and outputs a signature σ.

– Verification. SIG.Verify takes as input a verification key vk ∈ VK, a message
m ∈ M and a signature σ and outputs either 0 or 1.

Correctness. For all λ ∈ N, (vk, sk) ← SIG.Setup(1λ), messages m ∈ M(λ),
we require that SIG.Verify(vk,m,SIG.Sign(sk,m)) = 1.
We say that a signature scheme SIG = (SIG.Setup,SIG.Sign,SIG.Verify) is exis-
tentially unforgeable under adaptively chosen message attacks if

Pr[Expuf-cma
SIG,A (λ) = 1] ≤ negl(λ)

for some negligible function negl and for all PPT attackers A, where Expuf-cma
SIG,A (λ)

is the following experiment with the scheme SIG and an attacker A:

1. (vk, sk) ← SIG.Setup(1λ).
2. (m∗, σ∗) ← ASign(sk,·)(1λ, vk).

If SIG.Verify(vk,m∗, σ∗) = 1 and m∗ was not queried to the Sign(sk, ·) oracle,
then return 1, else return 0.
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2.2 Indistinguishability Obfuscation

Definition 2 (Indistinguishability obfuscation [2]). A probabilistic polyno-
mial time (PPT) algorithm iO is said to be an indistinguishability obfuscator for
a circuits class {Cλ}, if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT adversaries (Samp,D), there exists
a negligible function negl(·) such that the following holds: if Pr[∀x,C0(x) =
C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − negl(λ), then we have:

∣
∣Pr[D(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← Samp(1λ)]

− Pr[D(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← Samp(1λ)]
∣
∣ ≤ negl(λ).

2.3 Puncturable PRFs

Definition 3. A puncturable family of PRFs F mapping is given by a triple of
Turing Machines (KeyF , PunctureF , EvalF ), and a pair of computable functions
τ1(·) and τ2(·), satisfying the following conditions:

– [Functionality preserved under puncturing]. For every PPT adversary
A such that A(1λ) outputs a point x∗ ∈ {0, 1}τ1(λ), then for all x ∈ {0, 1}τ1(λ)

where x 	= x∗, we have that:

Pr[EvalF (K,x) = EvalF (Kx∗ , x) :

K ← KeyF (1λ),Kx∗ ← PunctureF (K,x∗)] = 1.

– [Pseudorandom at punctured point]. For every PPT adversary (A1,A2)
such that A1(1λ) outputs a point x∗ ∈ {0, 1}τ1(λ) and a state σ, consider an
experiment where K ← KeyF (1λ) and Kx∗ ← PunctureF (K,x∗). Then, we
have:

∣
∣Pr[A2(σ,Kx∗ , x∗,EvalF (K,x∗)) = 1]

−Pr[A2(σ,Kx∗ , x∗, Uτ2(λ)) = 1]
∣
∣ = negl(λ),

where negl(·) is a negligible function and Uτ2(λ) denotes the uniform distribution
over τ2(λ) bits.

Theorem 1 [9]. If one-way functions exist, then for all efficiently computable
functions τ1(λ) and τ2(λ), there exists a puncturable family of PRFs that maps
τ1(λ) bits to τ2(λ) bits.
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3 Adaptively Secure Short Signatures in the RO Model

The proposed construction is parameterized over a security parameter λ and has
message space M = M(λ) = {0, 1}�(λ) for some polynomial function �(·). We
use a random oracle H : {0, 1}� → {0, 1}n2+n, a PRG mapping n-bit inputs to
2n-bit outputs, a one way function f(·) mapping �′-bit inputs to �̂-bit outputs,
and a hash function H : {0, 1}� → {0, 1}n2+n. We also make use of four different
puncturable PRFs in our construction:

– F
(n)
1 is a sequence of 2n puncturable PRFs {F 1,0

1 , F 1,1
1 , . . . , Fn,0

1 , Fn,1
1 } that

each maps n-bit inputs to n-bit outputs. The corresponding key sequence is
denoted by K

(n)
1 = {K1,0

1 ,K1,1
1 , . . . , Kn,0

1 ,Kn,1
1 }. Then, on an n-bit input v,

the output of the function F
(n)
1 is denoted by F

(n)
1 (K(n)

1 , v).
– F2(K2, ·) is a puncturable PRF mapping (n2+n)-bit inputs to n1-bit outputs,

where n1 is the size of K3 for the puncturable PRF F3(K3, ·).
– F ′

2(K
′
2, ·) is a puncturable PRF mapping (n2+n)-bit inputs to n2-bit outputs,

where n2 is the size of the randomness r used by the iO.
– F3(K3, ·) is a puncturable PRF mapping �-bit inputs to �′-bit outputs.

Setup(1λ): On input 1λ, the Setup algorithm firstly samples the PRF keys
K

(n)
1 ,K2, K ′

2. Next, it creates an obfuscation of the program Verify as depicted
in Fig. 1(a). The size of the program is padded to be the maximum of the size
of itself and the corresponding programs Verify in the various hybrid games,
as described in the full version of our article [7]. The verification key, V K, is
the obfuscated program iO([Verify]). The secret key SK is (K(n)

1 ,K2,K
′
2).

Sign(SK,m ∈ M): To sign a message m, the Sign algorithm queries the random
oracle H to obtain H(m) = u‖v and computes K3 = F2(K2, u‖v). It outputs
σ = F3(K3,m).

Verify(V K,m, σ): To verify a signature σ on message m, the Verify algorithm
queries the random oracle H to get H(m) = u‖v and then evaluates the
obfuscated program iO(Verify) with inputs H(m) = u‖v to obtain the obfus-
cated program iO(PK3 ; r

′). Then, it runs the program iO(PK3 ; r
′) on inputs

(m,σ) and returns its output.

Theorem 2. If iO is a secure indistinguishability obfuscator, F
(n)
1 , F2, F ′

2, F3

are secure puncturable PRFs, f(·) is a one way function, and PRG is a secure
pseudo-random generator, then our signature scheme given above is existentially
unforgeable under chosen message attacks in the random oracle model.

Our proof of adaptive security proceeds by a sequence of hybrids. Let any PPT
adversary A make at most a polynomial number Q = Q(λ) (unique) queries
m1, . . . , mQ to the RO with outputs w1, . . . , wQ. We will perform a hybrid
of Q outer steps, where at outer step i, we move from using the puncturable
PRF key K to output the obfuscated program iO(CK̃i

) (which is the output
of the program Verify on input wi), to having iO(CK̃i

) being encoded in wi

itself for K̃i = FK(wi). More precisely, following the pseudorandomness of the
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Fig. 1. The description of the programs Verify and PK3

puncturable PRF FK , we can let a program g to be iO(CK̃i
), where K̃i is

chosen independently and then set wi to be a “hidden trigger” encoding of g.
Next, we use punctured programming techniques to replace the normal compu-
tation of the program CK̃i

with a hardwired and randomly sampled value for
p̂i = f(FK̃i

(mi)). At this point on computing iO(Verify)(wi) the output will be
the program g = iO(CK̃i,p̂i,mi

). In the final hybrid any poly-time attacker A
that succeeds in outputting a forgery (m∗, σ∗) with non-negligible probability
can be used to find a preimage of p̂i for the one-way function f–that is σ∗, which
breaks the security of one way functions. The complete proof is provided in the
full version of this article [7].

4 Analysis of Costs

In this section, we evaluate the cost of the Sahai-Waters signature [9] (selectively
secure), Ramchen and Waters signature [8] (adaptively secure in the standard
model) and our proposed signature (adaptively secure in the random oracle
model) in terms of the computation of the puncturable PRFs involved in the
signing algorithm, which can be constructed by a pseudorandom generator based
on GGM [4] trees. We express the cost of the computation of puncturable PRFs
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involved in the signing algorithm of each scheme in terms of the underlying
length-doubling and length-tripling PRGs.

Let gD be the cost of the length-doubling PRG and gT be the cost of the
length-tripling PRG. We assume that the messages to be signed are �-bits and
the size of the image range of the hash function is |H(·)|.
Sahai-Waters signature [9]. This scheme makes a single call to the fixed-input-
length puncturable PRF on an �-bit message. This call traverses the GGM tree
according to the message bits, requiring � invocations of the length-doubling
PRG. The cost is therefore gD · �.

Ramchen and Waters signature [8]. This scheme calls the fixed-length punc-
turable PRF once on each of λ + lg � + 1 inputs. Since each input has the
same λ-bit suffix, the GGM tree can be first traversed to a depth of λ, and
then a depth-first search is performed to an additional lg � + 1 depth. Thus,
λ + 2(2lg � − 1) + 1 = λ + 2� − 1 calls are made to the length-doubling PRG.
In addition the scheme evaluates the variable-length puncturable PRF once on
an λ-bit input, which requires λ calls to the length-tripling PRG. Therefore the
total cost is gD · (λ + 2� − 1) + gT · λ.

Our signature scheme. Our adaptively secure scheme makes a call to the
puncturable PRF on an |H(·)|-bits input and a call to the puncturable PRF on
an �-bit message. This call traverses the GGM tree according to the message bits,
requiring |H(·)| invocations of the length-doubling PRG. The cost is therefore
gD · (|H(·)|+ �). Since the hash function is a one-way compression function, then
it holds that |H(·)| < �. Therefore, the total cost of our scheme is less than
gD · (2�), which is slightly more than the cost of the SW scheme and a lot less
than the cost of RW scheme.

Table 1 (Sect. 1) summarises the comparison between our proposed scheme
and the SW and RW schemes. We note that although the RW scheme is proven to
be adaptively secure in the standard model, their proposal is quite heavy compu-
tationally. We have chosen to provide a more efficient (fast signing), adaptively
secure solution suitable for resource-constrained devices at the cost of employing
the random oracle model.

We note that, although the RW scheme is proven to be adaptively secure
in the standard model, while our scheme is secure in the random oracle, the
efficiency gain made by our scheme is outweighed by the loss in security.

5 Conclusion

In this paper, we explore the methods for achieving adaptively secure
obfuscation-derived signatures. In particular, relying on iO and puncturable
pseudorandom functions (PRFs) as well as one-way functions we present a sig-
nature scheme that is adaptively secure in the random oracle model.
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Abstract. With ubiquitous use of electronic devices where personal
information is often stored, secure authentication is greatly underscored.
As conventional password entry approaches are vulnerable to shoulder-
surfing, gaze-based authentication approaches have been developed, but
most of them require extra eye trackers which usually rely on special
hardware and are too expensive for ordinary people. Aimed at both
shoulder-surfing resistance and practicality, we present EyeSec, a gaze-
based authentication system which exploits state-of-art gaze tracking
technology without requirement for additional hardware except for a
webcam. EyeSec offers three kinds of authentications, i.e., gaze-based
PIN, gaze-based pattern and gaze-based captcha. According to the
results of experiment, the best-performing participants, aged between 21
and 35, achieve average 76.2%, 90.0%, 100.0% success rate for passing
the three kinds of authentications, respectively, which makes gaze-based
authentication from theory to practice.

Keywords: Gaze-based authentication · Gaze tracking
Shoulder-surfing · Usable security · Gaze-based captcha

1 Introduction

With the ubiquitous utilization of electronic devices such as PC, smartphone
and tablet, personal data and important information are often stored in these
devices to make electronic access easier. There are usually solely vulnerable
log-in passwords to keep others outdoor, which underscores the security of the
passwords. Conventional password entry methods, especially those based on key-
board or touchscreen, are susceptible to shoulder-surfing attacks, i.e., attackers
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 435–453, 2017.
https://doi.org/10.1007/978-3-319-72359-4_26
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may obtain users’ passwords by observing the input process through a camera
or binoculars or just watching through users’ shoulders.

In spite of the ease-of-use to log in the systems with PINs or graphical pat-
tern passwords in daily life, shoulder-surfing attacks against user passwords is a
tricky problem. A lot of information about the passwords is exposed via finger
movements and can be easily acquired by attackers when users input passwords
by typing or mouse-clicking. As one may notice, the finger positions on the key-
board or the feedback on the interactive screen reveal the input content and
cause information leakage when users type text or click objects. In contrast, eye
movements are much more inconspicuous when applying gaze interaction. With
proper design for feedback, gaze-based password entry can effectively reduce
shoulder-surfing.

Several gaze-based authentication schemes have been proposed to mitigate
shoulder-surfing, where the key idea is to substitute the traditional password
entry by gaze-based password entry [3,7,13,17,21]. Nevertheless, most previous
research remains at theoretical level due to the requirement for highly accurate
eye trackers when implementing the schemes. Commercial eye trackers which
provide high precision usually rely on tailored hardware and are not affordable
to ordinary people. The high expense of commercial eye trackers might not
come from the production cost of special hardware but be paid for the scientific
research investment, which exactly indicates the prospect demanding for research
about low-cost as well as precise gaze tracking technologies.

In recent years, gaze tracking technologies have been developed due to the
dramatic advance in computer science and the growing attention attracted to
the emerging gaze interaction [12,14,15,18,19]. As mentioned above, the most
promising work is to devise gaze tracking methods which are non-invasive, accu-
rate, low-cost, easy-to-use, calibration-free and head-free. Unfortunately, until
now there have been no existing applications or systems meeting all the requests
for accuracy, cost and user experience simultaneously. Although a number of
pervasive low-cost gaze tracking methods eliminate tailored hardware and can
be implemented on universal electronic devices, like PC and smartphone, lack of
precision is a formidable obstacle for widespread, which make sense that preci-
sion becomes the most vital factor to assess the quality of them [22,24,25].

Fortunately, compared to some accurate human-computer interactive appli-
cations, gaze-based authentication like gaze-based PIN and gaze-based graphical
pattern password usually have less and larger interactive objects displayed on
the screen which compensates for the lack of precision of the underlying gaze
tracking technologies.

In this paper, we present EyeSec, a practical versatile shoulder-surfing resis-
tant gaze-based authentication system that provides gaze-based PIN, gaze-
based pattern and gaze-based captcha authentication schemes. The underlying
gaze tracking technology requires no special hardware and can be easily imple-
mented in common electronic devices. Moreover, with password authentication
retained, the approach proposed can be incorporated in multi-factor authenti-
cation schemes [9,10]. Multi-threshold deciding mechanism is also proposed to
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tackle Midas Touch problem [11] in gaze interaction. A 2-phase experiment is
conducted to evaluate the usability and security of EyeSec where the PHASE 1
contains overall analysis and human factors estimation and the PHASE 2 assesses
the capability in shoulder-surfing reduction of gaze-based PIN and gaze-based
pattern through a guessing-password study.

2 Related Work

Passwords have been indispensable in daily human-computer interaction. Pass-
word owners are likely to get into big trouble when encountering important
passwords stealing. However, conventional password input approaches, especially
keyboard-based and touchscreen-based, can be vulnerable to shoulder-surfing
attacks. According to research of [5], the lowest average success rate of smart-
phone unlocking shoulder-surfing attacks is 10.9% with 6-digit PIN in the sin-
gle view treatment which is fairly high for password security. And the success
rate with respect to smartphone 4-length pattern with lines authentication is
94.67% in the in-person study. That means the conventional pattern passwords
nearly have no capability to be a secure shield in front of skilled shoulder-surfing
attackers.

The first line of research addresses such security issues by applying gaze-
based authentication approaches. While amounts of shoulder-surfing resistant
gaze-based authentication schemes are proposed, few of them provide practical
systems owing to the reliance on commercial eye trackers. Manu Kumar et al.
present EyePassword, a novel gaze-based password entry approach implemented
with Tobii 1750 eye tracker [13]. EyeDent adopts another password entry scheme
in which user’s selections are determined through automatic clustering of gaze
points, but it still depends on the EyeTech Digital Systems TM3 eye tracker [21].
Gaze-based cued-recall graphical passwords are presented and improved in [3,7]
to mitigate shoulder-surfing while Tobii eye trackers are utilized to estimate gaze.
Commercial eye trackers with high accuracy require special hardware, such as
glasses, head-mounted devices, or remote control bar, and are too expensive,
so they are usually used in laboratory research and market investigation. In
consequence, gaze-based password entry remains novel because there are no low-
cost gaze tracking technologies require no special hardware and provide as high
precision as commercial eye trackers do.

Another category of related work can be incorporated into the research of
reliable, economical and easy-to-use eye tracking technologies. Gaze tracking
algorithms are basically divided into model-based approaches and appearance-
based approaches [8]. The best-performing systems including commercial eye
trackers are mostly model-based [12,18,22]. However, model-based approaches
usually rely on special equipment like light sources, infrared camera or multi-
ple cameras to achieve sufficient data. Despite quantities of research in building
versatile model-based eye trackers attempting to remove the special equipment,
they lost the advantage in reliable gaze estimation. In contrast, appearance-
based approaches concern the whole pixels and estimate gaze direction or gaze
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position without explicitly reconstructing 3D facial model [14,15,19,24,25]. Two
remarkable works in gaze tracking are OpenFace [2] and Webgazer [16]. Open-
Face is an open-source toolkit for detecting facial landmarks, head pose and eye
gaze in images or videos as well as through a webcam, where the main tech-
nologies are based on state-of-the-art facial detection algorithm [1]. Webgazer
is an online eye tracking library which performs real-time eye tracking through
continuous self-calibration. Compared to commercial eye trackers, those freely
available tools are far more inexpensive, and therefore can be affordable for most
ordinary users although they exhibit lower accuracy in gaze estimation.

3 The Proposed EyeSec

We introduce EyeSec, a shoulder-surfing resistant gaze-based authentication
system with only a single webcam or a common USB camera needed. With-
out requirement for special hardware like infrared lights, special glasses, head-
mounted devices and so on, the system can be deployed on universal elec-
tronic devices. For instance, such system can be redesigned for vehicle drivers to
securely communicate with each other even when they are driving and certainly
a secure vehicle network is required [23]. Moreover, taking advantage of pub-
licity of research in related realm, the cost for gaze-based authentication might
be cut down to almost zero. EyeSec might be the first step towards affordable
widespread gaze-based authentication system.

3.1 System Model

EyeSec consists of a gaze tracking module and an user authentication module (see
Fig. 1). The user authentication module is further composed of three independent
sub-modules each of which provides an authentication scheme corresponding
to a certain usage scenario. Gaze-based PIN and gaze-based pattern password
simulate the prevalent simple password input schemes to reduce shoulder-surfing
as well as retain the ease-of-use of the PIN and the pattern password. Gaze-based
captcha is devised to perform separation between human and machine and can
be a candidate for next generation of captcha.

3.2 Real-Time Gaze Estimation

The main idea of gaze-based authentication is exploiting users’ gazes for pass-
word entry to get rid of finger movements in conventional password entry meth-
ods. Traditional human-computer interaction comprises two categories of activ-
ities, localization and activation. Localization is implemented by moving eye
fixations on the screen while activation usually achieved through a period of
dwelling. A look & shoot gaze-interactive method is presented in [6], where
users fixate at an interactive object for localization and hit an additional button
to activate interaction. We conceive that extra buttons for activation is inconve-
nient and unnecessary considering that it is easier for users to fixate on a point
for a moment after they find it than to distract their attention to buttons.
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Fig. 1. The global structure and workflow of EyeSec. EyeSec comprises a Gaze Track-
ing Module performing gaze estimation and an User Authentication Module check-
ing if the users pass the authentication. The Link part creates an information bridge
connecting two modules. The User Authentication Module provides three gaze-based
authentication schemes with different functions and passing rules. In terms of gaze-
based PIN and gaze-based pattern, users pass the authentication through password
match, whereas gaze-based captcha requires correct squares selection certain times.

The underlying gaze estimation technology of EyeSec resembles Webgazer
which predicts real-time gaze positions on the screen based on the continuously
collected interactive data. The self-calibration method presented in Webgazer
is not suitable for our case since the mouse is forbidden during the period of
password entry. We redesign the training and prediction process of the model to
rearrange a preliminary model training procedure for the calibration stage and a
following gaze prediction procedure for the input stage. Specifically, users fixate
their gazes on predefined points and mouse-click the points for calibration where
the point positions and users’ data are collected for training, and users input
passwords solely using their eyes since all mouse-related events are eliminated
and no training data are added to the model.

3.3 Gaze-Based PIN

PIN is widely used for authentication through keyboard typing, mouse clicking
and screen touching. Nevertheless, since finger movements that occur during
password input stage are noticeable and thus easily to be recognized by observers,
all those input approaches are vulnerable to should-surfing attacks. Gaze-based
PIN is presented to be an alternative to traditional PIN while gaze interaction
is more unobtrusive and remains simplicity and ease of use.

The interface of gaze-based PIN consists of 9 interactive keys with a 3 × 3 style
that are evenly arranged horizontally and vertically. To help users focusing as close
as possible to the center point of the key, the size of the key drawn on the screen
is designed to be much smaller than the actual available area for interaction. To
mitigate the impact caused by lack of precision of the gaze tracking technology,
we maximize the interactive space through the following ways:
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1. No buttons, dialogue boxes or information bars except for 9 keys are displayed
on the interactive area.

2. The digit number 0 is excluded from the password set and the rest numbers
1–9 are attached on the keys.

Note that this is not negligible because the area size of the interactive key has
significant influence on system’s correct recognition for key selection.

In addition to common PIN keyboard layout in which the numbers are usu-
ally arranged from the smallest to the biggest, we provide an optional random
keyboard where the numbers are randomly arranged. Figure 2 shows 2 exam-
ple interfaces of gaze-based PIN with conventional and random keyboard. Users
have choices to select one type of keyboard for password entry. Although there
is no strict security proof that the random keyboard is more secure than the
common keyboard, we recommend the former. The random keyboard updates
the arrangement of the numbers in pseudorandom order each time users input
the entire password rather than users input a number. That is, the random key-
board updates before users input password and keeps no change until the end.
By this way, an adversary needs to observe both users’ eye movements and the
keyboard layout to commit a shoulder-surfing attack, if the adversary can infer
gaze positions from eye movements.

In the input stage, right after the on-screen keyboard shows up, users get an
alert saying that the gaze entry begins and the interaction is triggered at the
very moment. Users fixate their gaze on the key for a so-called dwell time to
select a number. The selected key will change its color to inform users that one
key is successfully activated which means that one number has been selected
and appended to the pre-entered number sequence. When users complete gaze
entry, all the numbers are concatenated together to form a number sequence
which is exactly the password for gaze-based PIN authentication. In practice,
the feedback can be redesigned as a whole-screen color conversion to suggest that
a number is successfully selected instead of changing the form of the selected
number while keeping the others fixed. This approach will not reveal any details
about the exact selected number. Since users know exactly which number they
are looking at, they only need to be notified when the number is triggered so
that they can step forward.

3.4 Gaze-Based Pattern Password

Compared to PIN, pattern password is easier to remember and normally used
in smartphone and tablet. A pattern password is fully determined by the dot
sequences without the lines and can be represented with a number code once all
the dots are labeled by digital numbers. Differing from conventional touchscreen-
based pattern where users touch the screen and move fingers to select dots while
maintain physical contact with the screen throughout the input, gaze-based pat-
tern does not require users to draw the lines with so-called gaze smooth-pursuit,
i.e., eye movement along specified continuous traces on the screen. Therefore



EyeSec: A Practical Shoulder-Surfing Resistant 441

(a) An example interface of gaze-based
PIN with conventional keyboard.

(b) An example interface of gaze-based
PIN with random keyboard.

Fig. 2. Two example interfaces of gaze-based PIN. The right part of the screen is inter-
active area available for gaze-based PIN entry. The small orange dot on the interface is
located based on current predicted gaze position. The left part is a data-display panel
for monitoring present situation of the system, where real-time frames captured by
camera, occurring frequency of each key, current gaze position on the screen, number
of frames per second and the preset password are displayed from top to bottom. (Color
figure online)

gaze-based pattern resembles gaze-based PIN in regard with alleviating shoulder-
surfing since no more eye-related actions added.

As Fig. 3 shows, the interface of gazed-based pattern has the identical layout
to gaze-based PIN as 9 keys replaced by 9 dots. Users input pattern password by
draw a pattern composed of a series of dots with their eyes. Each dot is selected
through dwelling and the dot sequence forms a pattern password. Slightly dif-
ferent from gaze-based PIN, gaze-based pattern requires no-repeat key selection
and supports variable lengths of password. The system does not always accept a
successfully activated dot unless it differs from all the previously selected dots.

Fig. 3. An example interface of gaze-
based pattern. The right part of the
screen is interactive area available
for gaze-based pattern password entry.
The left part is the same data-display
panel as in gaze-based PIN interface.

Fig. 4. An example interface of gaze-
based captcha. The right part of the
screen is interactive area available for
gaze-based captcha entry. The left part
is the same data-display panel as in gaze-
based PIN interface (Color figure online)
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3.5 Gaze-Based Captcha

Captcha [20] is a test to tell human beings and machines apart. Contempo-
rary visual-perception captcha is software that automatically produces distorted
images for humans to recognize the objects or text contents. However, due to the
contribution of machine learning technologies in promoting image understand-
ing, it is more and more hard to defend computer attacks against captcha system.
Consequently, the images employed in captcha become more and more twisted,
vague and obscure, sometimes even difficult for humans to recognize. What’s
worse, the visual-perception captcha might either lost its capability to separate
humans and computers or take users a very long time to pass the authentication.

A typical captcha system usually works following a 3-step routine that first
the system produces images for users to recognize, then users type characters
or click some objects to submit the answer, and finally the system receives
and checks the answer. When analyzing the entire procedure, we can see that
visual-perception captcha relies on the difficulty for computers to produce cor-
rect answers. But the barriers can be erected in different place. We propose
gaze-based captcha that only accepts from users the frame streams captured
by camera rather than electrical pulses produced by mouse or touch screen in
traditional visual-perception captcha system. That means, even if a computer
knows the answer, it cannot correctly submit the answer to the system. By this
way, the gaze-based captcha sets a task that is easy for humans but difficult for
computers to fulfill. The data transferred to captcha system from users com-
pletely changes although what users feel is no more than alternating clicking or
touching with eye fixating.

As showed in Fig. 4, the gaze-based captcha interface comprises 9 squares
with a 3× 3 matrix format one of which is green and the others are gray. The
green square is denoted as T-square that is for selection and the other gray
squares are denoted as F-squares which are distractors to T-square. Users are
given 10 chances each round to pick up the T-square 3 times (interruption is
permitted) with the dwell method. Each time users select one square, no matter
T-square or F-square, the system rearranges the squares in pseudorandom order
till users pass the captcha authentication or chances run out.

To analyze the security of gaze-based captcha, we presume that the com-
munication throughout the captcha system is secure, i.e., an adversary cannot
hack into the system and is only allowed to convey information through inter-
face. There are usually two ways to attack the gaze-based captcha. One is called
video-based attack and the other is called simulation-based attack. Video-based
attack is that the adversary exploits previously recorded videos to interact with
the system and tries to deceive it. Simulation-based attack is that the adversary
intercepts the frame streams from camera and swap out them with real-time sim-
ulated frames which generate corresponding human facial pictures based on the
present instructions. Since the system updates the arrangement of the squares
each time users choose one square, pre-recorded video is impossible to match
all the gaze positions correctly to the randomly generated T-squares, and thus
video-based attack fails. If a malicious software wants to pass the gaze-based
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captcha authentication, it is supposed to be constructed in this way: produce
a real-time video containing a human face and alter the gazes to obey orders
sent by the system. Since simulation of human faces including gaze change in
real time remains to be laborious for contemporary computers, simulation-based
attack fails. To sum up, gaze-based captcha does have the capability to tell
humans and computers apart.

3.6 Multi-threshold Deciding Mecanism

The underlying gaze tracking technology of EyeSec produces gaze positions on
the screen at pixel level that can be represented with screen coordinates. Since
gaze estimation is performed by the trained regression model predicting current
gaze positions on the screen, the estimated gaze positions not always coincide
with users’ real fixation points but are located around them with some displace-
ments. We divide uniformly the whole interactive screen into 9 areas for 9 keys
and the key that will be triggered is determined by the statistical data of gaze
positions in each area. It is obvious that the larger the area is the more pos-
sible the corresponding key can be correctly identified. However, although the
statistical method compensates the lack of precision of gaze estimation, there is
still an unsettled problem called Midas Touch effect influencing the correctness
of key selection, that is, you cannot tell which gazes are attentive fixation and
which gazes are perceptive saccades. Since there is no mouse or button or gaze
gesture etc. to control the interactive duration, the input process might contain
effective gazes corresponding to interactive dwelling and unwanted gazes corre-
sponding to information-acquiring scanning or just useless glancing, and both
will participate in determining the selected key.

Some gaze-based interactive schemes deal with the Midas Touch effect by
setting a dwell time and users are supposed to interact with the systems among
this session. However, these methods usually suffer from uncertainty of interac-
tive time and inflexibility for different users. Instead of using a timer, we prefer
counting the number of frames to determine the duration for interaction. While
the processing speed and frame rate might vary greatly among different devices,
exploiting the number of frames as the timing reference guarantees the constancy
of information.

Concerning the gaze-based interaction in EyeSec, these unwanted gazes usu-
ally occur when users look for the correct key or T-square within the entire
screen, namely, after users successfully select a key or a square and before users
fixate on next key or square. To tackle this problem, we devise a multi-threshold
deciding mechanism (MTDM) that excludes as many unwanted gazes as possible
to enhance the system performance. The MTDM contains 5 key parameters to
jointly determine the situation of current gazes. They are effective-frame counter,
ineffective-frame counter, effective-frame threshold, ineffective-frame threshold,
occurring-ratio threshold and are denoted as cEF , cIF , tEF , tIF , tOR, respec-
tively. EyeSec constantly receives and processes frames from camera following
the same procure, and it can be comprehended as a periodic process. Detailed
description in one cycle with MTDM deployed is provided below.
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MTDM consists of the following five steps.

– Step 0: Initialize tEF , tIF both to be 0.
– Step 1: Receive a frame from camera and cIF adds 1.
– Step 2: Check if cIF is equal to tIF . If yes, reset cIF to be 0 and go to Step

3, otherwise go back to Step 1.
– Step 3: Receive a frame from camera and estimates current gaze position

based on the frame, meanwhile cEF adds 1.
– Step 4: Check if cEF is equal to tEF . If yes, go to Step 5, otherwise go back

to Step 3.
– Step 5: Calculate the occurring frequencies of all the keys or squares and

check if the maximum frequency is equal to tOR. If yes, decide the key or
square corresponding to the maximum frequency as the selected one and
then reset cEF to 0, otherwise go back to Step 3.

Here cIF and tIF are used to define the situation where users are searching
a key or a square on the screen. Note that when cIF is smaller than tIF , the
frames are regarded as useless and are thrown away without gaze estimation.
cEF and tEF are used to control the total amount of data from users in each
key-selecting cycle where the value of tEF is the minimum number of frames
to decide a key. tIF is appropriately set to fit general interactive time, but
unwanted gazes might still arise and likely not be clearly excluded since tIF
is fixed and cannot adjust automatically to occasional conditions. Thus, tOR is
the second way to eliminate impact of unwanted gazes, i.e., though unwanted
gazes exist, the occurring frequency of the key on which users fixate increases
as time pass by until the predominant frequency reaches tOR. Through properly
threshold setting, the multi-threshold deciding mechanism permits the system
to differentiate between effective gazes and unwanted gazes and considerably
increases the correctness of key selection.

4 Implementation

4.1 Hardware

EyeSec is a software that only requires single ordinary USB camera or webcam.
Since webcam is presently on almost all the laptops, users don’t need any addi-
tional equipment to execute our system. We implement EyeSec on a PC with
an i7-6500U 8G CPU, a 13-inch monitor with a resolution of 1920× 1080 pixels,
and an embedded 1280 × 720 p/30 fps webcam on the top center of the monitor.
No extra device is needed.

4.2 Calibration

EyeSec requires a preliminary calibration stage to provide training data for
subsequent gaze prediction since users ought not to use a mouse during pass-
word input. But mouse-click is required during the calibration stage. Since the
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accuracy of gaze estimation in EyeSec essentially relies on model training, suffi-
cient training data are required to produce more reliable gaze prediction.

On the Calibration interface, 4× 3, totally 12 small icons are placed uniformly
on the screen and take turns to show up for users to fixate on. When calibrating,
users are required to move the mouse slowly to the small icon that displayed
on the screen while keeping their gazes focused on the mouse pointer. When
the mouse pointer arrives at the icon, users are supposed to click the icon with
the mouse after approximately 0.5 s delay. At this moment, the system collects
current frames and corresponding mouse-click positions to enrich the training
dataset. Then the clicked icon disappears while another icon shows up and users
repeat above activities until all the icons are clicked. Throughout the calibration
stage, the system updates its parameters hence optimizes the model whenever
new data added.

Though lots of efforts devoted to the removal of calibration stage, calibration
remains inevitable because that is the very source of training data for regression
models. And 12 calibration points turns out to be the least amount to guarantee
accuracy for subsequent gaze prediction.

4.3 Input and Authentication

Once the calibration completed, users are free to interact with computers using
solely their eyes. In general, users choose a key or square by fixate on it for a dwell
time and the system will decide which key to activate based on the statistical data
of gaze position. The gaze tracking module provides gaze positions on the screen
at pixel level, so we map gaze positions to keys by simply dividing the interactive
screen into 9 uniform areas each of which contains a key in the center. On the
1920 × 1080 pixels monitor, the 1080 × 1080 pixels area on the right screen is
used for interaction and thus the area encompassing 1–270 pixels horizontally
and 1–270 pixels vertically is interactive filed for the first key, and so on. The
gaze-based PIN and gaze-based pattern have nearly identical interfaces and the
only difference is that the gaze-based PIN has numbers attached on the keys
whereas the keys of gaze-based pattern only contain a dot in the center. Based
on the gaze-based pattern, the gaze-based captcha substitutes squares for the
keys and keeps the same configurations.

For convenience, EyeSec supports 4-digit PIN and arbitrary length of pattern
password. Gaze-based PIN can be easily extended to 6-digit or arbitrary length
with slight alteration. Users are required to preset passwords through mouse
clicking or keyboard typing ahead of gaze-based authentication. We attach the
numerical labels 1–9 sequentially to the dots in gaze-based pattern so that a
pattern password can be represented with a no-repeat number code. With the
knowledge of the preset password, input behavior stops on the condition where
the length of the entered password is equal to the preset password. Then the
system compares the entered password to the preset password and gives the
authentication result. In terms of gaze-based captcha, the authentication result
is provided when users pass the authentication or run out all 10 chances.
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5 Experiment Design

The experiment was conducted in two phases. The goal of PHASE 1 was to
evaluate the usability of EyeSec, specifically, interaction time and success rate of
authentication. PHASE 2 assessed the security of gaze-based PIN and gaze-based
pattern against shoulder-surfing attacks through a guessing-password study.

While some usability-assessing experiments were conducted in laboratorial
environment and the subjects were usually well educated college students and
staffs who were proficient at computer, the experimental results might lack of
universality among ordinary people. Instead, we recruited from society partici-
pants that vary in age, occupation, educational level and computer skill. Addi-
tionally, the experimental places were not strictly constrained, so they could use
EyeSec in non-laboratory places such as home, library, classroom, office etc. But
quiet and neat environment was recommended so that participants might be
more concentrated on the experiment. After contacting with some participants,
we took the equipment of EyeSec to visit them and carried out experiment at
agreed places. It turned out that the participants preferred to choose indoor
personal places for the experiment.

PHASE 1: 16 participants (8 females, 8 males, 3 with glasses, 13 without
glasses), aged between 13 and 51 years (mean = 25.3, sd = 11.1), were asked to
use three gaze-based authentication schemes provided by EyeSec. Since almost
all the participants had no idea about EyeSec or gaze-based authentication,
we first explained the main functions and the purpose of experiment and then
instructed them in EyeSec manipulation and permitted them to try the system
again and again until they were ready for the experiment.

During experiment, participants could place their heads in convenient space
within the system’s working domain, about 25–45 cm distant from the screen.
Each of them was allowed to use each authentication scheme as many times as
they wanted. Their personal information such as gender, age, vision condition,
educational level and computer skill was recorded for exploring human factors in
EyeSec. For gaze-based PIN and gaze-based pattern authentication, calibration
time, input time, preset passwords, entered passwords and the authentication
results were measured and recorded. And for gaze-based captcha, calibration
time, input time, number of consumed chances and authentication results were
measured and recorded.

PHASE 2: While gaze-based authentication aimed at reducing shoulder-surfing,
we designed a guessing-password study to evaluate the security of EyeSec. In
our case, as mentioned at Sect. 3.4, gaze-based PIN and gaze-based pattern had
similar qualities in shoulder-surfing mitigation, thus we evaluated the security of
gaze-based PIN and extended the conclusion to the gaze-based pattern. Among
all shoulder-surfing attacks with variable view angles, a frontal-face attack is the
worst case, i.e., the attackers obtained some frontal-face videos demonstrating
users’ eye movements during the interactive process. To simulate this attack,
we placed a video camera close to embedded webcam on the monitor to record
gaze-based PIN authentication process. The recorded videos contained users’
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fontal faces and pretty approximated the interactive videos. Figure 5 showed
synchronal snaps of a recorded video and an interactive video.

According to the results in Sect. 6.2, college students generally had higher
success rate in authentication which implied their capability of controlling Eye-
Sec. So we recruited 2 college students who were skilled in computer to play a role
as attackers to guess passwords from the recorded videos. They were not only
well educated but also received sufficient detailed instruction in shoulder-surfing
attacks. They either spectated or participated in PHASE 1 so they were familiar
with EyeSec both in principle and in practice. The impersonated attackers both
had the recorded video and the corresponding keyboard arrangement informa-
tion. They could play the videos unlimited times to analyze the eye movements
and further exact passwords from them. Then they were asked to write down
and submit the guessed passwords.

(a) Snaps of a sample interactive video. (b) Snaps of a sample recorded video.

Fig. 5. The synchronal snaps of the interactive videos and the recorded videos. Two
pictures from (a) and (b) with the same position were captured at the same moment
and exhibited similarity in view angle to each other.

6 Experimental Analysis

For simplicity, we will use the following abbreviations when referring to the
authentication schemes: gaze-based PIN (G-PIN), gaze-based pattern (G-PAT),
gaze-based captcha (G-CAP). Totally 85 authentication instances (40 G-PIN, 31
G-PAT, 14 G-CAP) are collected where the maximum and the minimum number
of instances per authentication scheme per participant were 6, 0, respectively.

6.1 Overall Analysis

Figure 6 shows the comparison of the number of success and failure instances as
well as success rate among three authentication schemes. G-PIN has the lowest
success rate (52.5%) while G-CAP has the highest success rate (85.7%), and the
variance between them is 33.2%. This might result from the difference of require-
ment for passing the authentication, i.e., G-PIN requires users correctly input all
the numbers whereas G-CAP gives users 10 chances to input correctly 3 times.
To sum up, tolerance for input error raises the success rate of authentication.
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Fig. 6. Number of instances and overall success rate in passing three authentication
schemes respectively.

Figure 7 shows the distribution of consumed time in calibration stage and in
input stage. The average consumed time are 20.41 s, 14.36 s, 16.63 s, 19.67 s for
calibration, G-PIN, G-PAT, G-CAP, respectively. Since the calibration is done
through looking and clicking, the consumed time is completely controlled by
users whereas the consumed time in input stage chiefly depends on MDTM (see
Sect. 3.6). This explains the scattered distribution of consumed time in calibra-
tion stage as illustrated in Fig. 7. According to the reported results in [4], image
captchas takes around 7–13 s while audio captchas takes 12–25 s. Average 19.67s
consumed by gaze-based captcha is acceptable.

To get insight into the accuracy of EyeSec, we introduce displacement
error (derror) to measure the average Euclidean displacement of the recognized
password from the preset password. Each element in a password is represented by
a discrete coordinate (x, y), x, y ∈ {1, 2, 3}, based on its position on the screen.
And displacement error is calculated by

derror =
1
m

Σ
√

(xp − xr)2 + (yp − yr)2 (1)

where (xp, yp) and (xr, yr) are the coordinates of the preset password and the
recognized password, respectively. m is the number of instances.

Entry confidence (confidence) is derived as

confidence = 1 − derror/daverage (2)

where daverage is the average distance between two keys on the screen.
Figure 8 presents the data distribution of displacement between the recog-

nized password and the preset password. Displacement error and confidence with
respect to three authentication schemes are listed in Table 1.
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Fig. 7. Distributions of consumed time
in calibration and three gaze-based
entry process.

Fig. 8. Distributions of displacement
between recognized password and preset
password in G-PIN and G-PAT.

In PHASE 2, as showed in Table 2, the success rate of guessing password are
both 0.0% for 2 attackers. To inspect the relationship between guessed password
and real password, derror and confidence are calculated and the results are listed
in Table 2. Although the attackers have frontal-face videos recording gaze-based
authentication process and keyboard arrangement information, no one password
is correctly guessed. This inspiring result might benefit from the dwell method
for gaze interaction. That is, since no extra buttons or eye gestures are used
to determine the gaze interaction period, it is difficult for attackers to correctly
recognize all the key-selection process. Furthermore, the relatively lower overall
confidence in guessing password (23.7%) compared to that in G-PIN password
entry (89.2% for the best) also demonstrates the security of gaze-based password
entry in shoulder-surfing resistance.

Table 1. Displacement error between
preset password and recognized pass-
word; Confidence of password entry
in G-PIN and G-PAT authentica-
tion schemes. Note that users always
attempt to pass the authentication by
inputting the preset password but the
system might incorrectly recognize the
input due to technical issues, which
causes the difference between the pre-
set password and recognized password.

derror Confidence

G-PIN 0.304 89.2%

G-PAT 0.337 88.0%

Table 2. Success rate for guessing pass-
word from frontal-face videos recorded in
G-PIN authentication process; Displace-
ment error between guessed password and
real password; Confidence of guessing pass-
word. These results can be extended to G-
PAT since G-PAT has similar quality in
shoulder-surfing mitigation with G-PIN.

Success rate derror Confidence

Guess 1 0.0% 1.087 32.9%

Guess 2 0.0% 1.387 14.4%

Overall 0.0% 1.237 23.7%
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6.2 Human Factors Estimation

Through observation, we find that participants within different age ranges
exhibit significant differences in performance during the experiment. In general,
youths do better either in comprehending instructions or in manipulating EyeSec
than teenagers and the middle-aged. However, age does not directly bring vari-
ance in performance, it reflects participants’ proficiency in computer and learning
ability for new things and that is the real reason. To explore human factors in
EyeSec, we divided data into three groups according to participants’ age and
estimate success rate over these groups separately. The results are suggested
in Fig. 9. Predictably, users aged between 21 and 35, mainly college students
and graduated students, achieve significantly higher success rate in authentica-
tion (76.2% in G-PIN, 90.0% in G-PAT, 100.0% in G-CAP) compared to the
others.

Moreover, the participants’ behavior in the experiment reveals some interest-
ing findings. In the beginning, users who are inexperienced with computers spend
much more time in calibration compared to these proficient, but after several
trails, they speed up until reaching a steady level. Therefore, calibration time
is record for 3 times for each participant. Figure 10 demonstrates the declining
trend of consumed time in calibration stage, especially obvious for users aged
from 36 to 55. In contrast, the other 2 groups have nearly constant consumed
time with slight decrease. Consistent with the performance in authentication, the
consumed time for calibration indicates, at some degree, the capability of pass-
ing authentication. However, due to the limitation in time, no more calibration
time is collected, but it can be inferred that users within other age groups might
spend less time in calibration and achieve higher success rate in authentication
through enough training and practice.

Fig. 9. Success rate in passing three
authentication schemes over three age
groups.

Fig. 10. Average consumed time over 3
age groups for calibration. Calibration
time is recorded 3 times per participant.

7 Conclusion

EyeSec offers a practical gaze-based authentication system both aimed at
shoulder-surfing resistance and versatility and becomes the first-of-its-kind to
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apply state-of-art gaze tracking technology in gaze-based authentication. Eye-
Sec provides 3 authentication schemes, of which gaze-based PIN and gaze-based
pattern are designed to be shoulder-surfing resistant alternatives to conventional
keyboard-based, mouse-based or touchscreen-based password entry schemes, and
gaze-based captcha exploits the difficulty for computers in simulating real-time
human faces and gazes to tell human and computer apart.

In the usability-estimating experimental phase, 16 participants, recruited
from society, varying in age, occupation, educational level and computer skill,
achieve overall 52.5%, 61.3%, 85.7% success rate for passing gaze-based PIN,
gaze-based pattern, gaze-based captcha, respectively. The average consumed
time are 20.41 s, 14.36 s, 16.63 s, 19.67 s for calibration, G-PIN entry, G-PAT
entry, G-CAP entry, respectively.

In human-factors study, the results demonstrate strong correlation between
the performance of EyeSec and the age of participants. Participants aged between
21 to 35, achieve average 76.2%, 90.0%, 100.0% in success rate for gaze-based PIN,
gaze-based pattern, gaze-based captcha, respectively. Since the calibration proce-
dure is mainly controlled by participants themselves, we notice that the consumed
time in calibration stage have a negative correlation with proficiency of partici-
pants in computer. Moreover, for participants aged between 36 and 45, the con-
sumed time shows downward trend in successive calibration process, which implies
increasing proficiency in computer and familiarity of EyeSec. Therefore, we pre-
dict that these participants would achieve higher success rate in authentication
with sufficient training and practice. Unfortunately, with time limited, no more
data is collected. Hope this prediction can be verified in further work.

In the guessing-password study, the worst case of shoulder-surfing attack
is simulated—skillful shoulder-surfing attackers obtaining frontal-face videos
recorded during authentication process along with keyboard arrangement infor-
mation. The success rate of guessing password is 0.0% and the confidence is
23.7% which suggests high security of EyeSec when encountering shoulder-
surfing attacks. Plus, without information of keyboard arrangement, attackers
are unable to do anything about guessing password in the random-keyboard
gaze-based PIN scheme.

To sum up, EyeSec is the first implementation of gaze-based authentica-
tion system without requirement for extra eye trackers or special hardware.
Through usability evaluation among different people, the system’s usability,
especially suggested by the college students, is potentially acceptable. Moreover,
the gaze-based captcha realized through gaze interaction, with average 19.67 s
consumed time, might be an alternative to contemporary visual-perception
captcha schemes.
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Abstract. Cryptographic scheme is the safeguard for achieving secure
communication in networks and distributed systems. Smart card-based
password authentication has become a common authentication method
to enhance the security of a system. So far, many schemes about smart
card-based password authentication have been proposed for preventing
various kinds of attacks. In this paper, we first analyze Sun et al.’s
scheme and find out that it may be vulnerable to malicious server attack,
password guessing attack, user impersonation attack. And then, we pro-
pose an enhanced remote password-authenticated key agreement scheme
based on smart card to thwart the above security threats. Through the
security analysis and performance comparison, our enhanced scheme is
proved to be secure and efficient.

Keywords: Cryptography · Authentication · Key agreement
Relay attack · Smart card

1 Introduction

With computer and network technologies developing rapidly, users can share
various resources and convenient services to remote sever via the network, which
makes our life more intelligent and convenient. Although remote service and
communication bring many benefits to us, many important and urgent secu-
rity issues are raised. Data stored in the computer needs to be protected and
messages transmitted in network are necessary to be encrypted for defending
against attacking and eavesdropping [15,23,24,26]. Many schemes and protocols
[12,17,18,22] have been proposed to make systems or networks more secure.
Lamport first introduces a remote user authentication scheme in 1981 [1]. Then
a great many authentication schemes [2–11,13,14,16,19,21,25,27–29] have been
proposed for enhancing the security of the system.
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 454–467, 2017.
https://doi.org/10.1007/978-3-319-72359-4_27
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Smart card-based password authentication key agreement is an effective
authentication mechanism for enhancing the security of the system. Note that a
secure authentication can guarantee a smart card-based password-authenticated
key agreement. Usually, there are two entities involved in a smart card pass-
word authentication scheme: a user and a server. And the scheme includes three
phases: the registration phase, the login phase and the password changing phase.
In the first phase, the server sends a smart card containing some information
to the user. Once the user completes the registration, he/she is able to login
the server by using the smart card. If the faulty information exists or attackers
obtain message successfully, the authentication process will be terminated. In the
last phase, the user can change his password freely. Note that, in this paper, the
proposed scheme includes four phases: the registration phase, the login phase,
the authentication phase and the password changing phase. In particular, the
authentication phase plays a very important role in key agreement in the scheme.

It is necessary for us to take all possible attacks into account with regard
to an improved security model when we design a smart card-based password
authenticated scheme. In this paper, we find that Sun et al.’s scheme [11] may
be vulnerable to password guessing attack [20], and user impersonation attack.
Moreover, the initial password installed by a server may be attacked by a mali-
cious server. Hence, we propose an enhanced scheme to resist the security issues
and enhance the security of the system.

1.1 Our Contributions

In this paper, we first review Sun et al.’s scheme and present the security analysis.
Then, we propose an enhanced scheme which has the following enhancements:

• The initial password is installed by a user, which can resist malicious server
attack.

If the server is malicious in a system, the initial password installed by the
server may be leaked by the malicious server. Then, attackers may obtain the
password and damage the security of the system. Hence, installing the initial
password by a user can improve the security of the system.

• The enhanced scheme can resist the attacker with different private data stored
in the smart card at different times [20].

An attacker with the smart card may obtain the different data stored in
the smart card at time T1 and time T2, then it can do the special operation
with the obtained data. The output is only related to the password and
the attacker is able to guess the password in the password dictionary. The
enhanced scheme adds the user’s secret information to the data stored in the
smart card. The output is related to the password and the secret information.
Then the attacker cannot guess the password.

• Wrong password can be detected by a smart card in the beginning of login
phase.

In the registration phase, a user provides his password and biometric infor-
mation. Then the password and biometric information will be encrypted by
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the special device. Then, the user sends the encrypted data to the server.
The server stores the encrypted data in the smart card and sends the smart
card to the user. When the user wants to login to the server by inputting
his password and biometric information, the smart card will do correspond-
ing computation to verify the password. If the password is wrong, the login
phase will be terminated before the smart card being sent to the server, which
can reduce the unnecessary communication cost and computational cost dur-
ing the login and authentication phases. Moreover, it can avoid more attacks
with the smart card in communication channels.

1.2 Related Works

Many smart card-based password authentication schemes have been put forward
for improving the security of systems. However, due to the different of the secu-
rity model and the system model, the most perfect secure scheme is not trivial
to design. In 1981, a remote password authentication scheme [1] was proposed
by Lamport, which employs a one-way hash chain and Haller later used the hash
chain to design the well-known S/KEY one-time password system [2]. The weak-
ness of Haller’s scheme is that the remote server need have a verification table for
validating that whether the registered users are legal. If the server is destroyed
by an adversary, the table may be easily modified or damaged [3]. After that,
an efficient mutual authentication scheme [4] using smart cards was proposed
by Chien et al. The scheme realizes the mutual authentication to strength the
privacy, but the limitation is the high computation cost. In addition, it can-
not resist the parallel session attack, which was proposed by Hsu [6]. Lee et al.
[7] improved Chien et al.’s scheme and proposed a scheme that can resist the
parallel session attack. However, their scheme was destroyed by the attackers
with the smart card [8]. Then, a robust and efficient user authentication and
key agreement scheme using smart card [10] was proposed by Juang et al. The
scheme has some properties such as no password table, server authentication. In
Juang et al.’s scheme, the pre-computation phase is added to reduce the cost of
computation. But the crucial data for the session key stored in the smart card is
exposed to the attackers. The pre-computation phase was removed by Sun et al.
[11] and their scheme could resist attacks with the smart card in their assumed
security model. Moreover, Huang et al. [20] reviewed Juang et al.’s scheme [10]
and Sun et al.’s scheme [11]. Two new types of security threats [20] were proposed
in their paper: pre-computed data may be attacked by attackers, and different
data (at different time slots) may be attacked by attackers. They proposed some
countermeasures to resist the security issues and enhance the security of the sys-
tem. In this paper, we make some enhancements on Sun et al.’s scheme [11] and
we propose an enhanced scheme which can also resist password guessing attack
mentioned in Huang et al.’s scheme [20].
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1.3 Organization

The remaining of this paper is organized as follows. Preliminary works are pre-
sented in Sect. 2. After that, the adversary model and security model are briefly
illustrated in Sect. 3. In Sect. 4, the review and security analysis of Sun et al.’s
scheme [11] are shortly described. The proposed scheme is depicted in detail in
Sect. 5 and the security analysis and comparison are described in Sect. 6. Finally,
the conclusion is covered in Sect. 7.

2 Preliminaries

2.1 One-Way Hash Function

One-way hash function transforms an arbitrarily long input message string into
a fixed length output string and it is difficult to obtain an input string according
to the output string. Hash function is mainly used for integrity checking and
improving the validity of digital signature. Among common hashing algorithms,
SHA is a relatively new hashing algorithm that generates a 160-bit value for any
length of data operation and MAC is a one-way function using keys that can be
used to validate files or messages between systems and users.

2.2 Symmetric Cryptography

Symmetric cryptography uses the same secret key to encrypt and decrypt mes-
sages. The sender will make special operations with the data and secret key.
Then the encrypted data will be sent to the recipient. The recipient needs to
decrypt the received data with the same secret key. The algorithm has small
amount of calculation, fast encryption speed and high encryption efficiency.

2.3 Elliptic Curve Cryptography

ECC (Elliptic Curve Cryptography) is a public key encryption technology based
on elliptic curve theory. It makes use of the intractability of Abel group dis-
crete logarithm formed by the points of elliptic curve in finite field to realize
encryption, decryption and digital signature. Corresponding the adding opera-
tion of elliptic curve to the modular multiplication in discrete logarithm, then
the cryptography system based on elliptic curve can be established.

2.4 Timestamp

Timestamp refers to the identification of text added to a series of data, such as
time or date, to ensure that the update sequence of the local data is consistent
with the remote server. A secret document is consisted of three ingredients: a
summary of a document with timestamp, the data and the time of the destination
receiving the document, and the destination’s digital signature. The user will first
need to encode the file with hash function and the file needs to be added the
time stamp to form the digest. Then the digest is sent to the destination. The
destination encrypts the file after he receives the file that contains the digest’s
date and time. And then the file will be sent back to the user.
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3 Adversary Model and Security Model

3.1 Adversary Model

Attackers are divided into two categories on the basis of the password and the
smart card. They are attackers with the password and attackers with the smart
card. The former attackers are such attackers that they have the password of
the user but cannot access the smart card. Attackers with smart card can obtain
the data in the smart card. Such attackers may steal the smart card of the user
and then extract the private data in the smart card, which may help attackers
guess the password. It is obvious that attackers can launch a login request or
send messages to the user with the identity of the server when the smart card
and password were stolen in the meantime.

To analyze the security of Sun et al.’s scheme and our enhanced scheme, we
give the following adversary model.

• An attacker may guess the password by using the password dictionary.
• An attacker may steal a user’s smart card and then extract the secret values

stored in the smart card more than once, but it cannot obtain the password
at the same time. Moreover, the attacker can launch a login request instead
of the user, or send messages to the user with the identity of the server and
make mutual authentication with the server using the password and the smart
card.

• An attacker cannot obtain the user’s the biometric information [18].
• An attacker can extract the secret values stored in the smart card, but it

cannot modify the secret values and store new data in the smart card.

3.2 Security Model

The special security requirements of password-authenticated key agreement
scheme using smart cards are defined as follows.

In our password-authenticated key agreement scheme, each participant is
either a user or a server. The server keeps a master secret key K, and each user
holds the password PW and the biometric information BIO. PW is chosen from
the small dictionary and BIO will not be available for attackers. The server in
the system is secure. Additionally, we assume channels in the registration phase
are secure.

4 Review of Sun et al.’s Scheme

This section briefly reviews Sun et al.’s scheme and makes the security analysis.

4.1 Sun et al.’s Scheme

The scheme is composed of three phases: the registration phase, the authentica-
tion phase, and the password changing phase.
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Registration Phase. When a user wants to register to the remote server, the
registration phase will be started. The user selects the sub-identifier IDU that
is defined specially in [11]. The user sends {IDU} to the server, if IDU is valid,
the server selects the sub-identifier IDS and generates ID = IDU ||IDS for the
server. Then, the server sends PW , smart card to the user and the smart card
= {D,M}, where D = h (ID||K) ⊕ h (PW ), M = EK (ID||r), and PW is the
initial password chosen by the server.

Authentication Phase. The user is able to login the server with the help of his
password and smart card when the registration is completed. At first, the smart
card sends {M,GC} to the server, where GC = rc · G, rc is a random number
chosen by the smart card. Then the user decrypts M and checks the output.
The session will be terminated if the verification is wrong. Otherwise it will
continue. Then, the server sends

{
GS,MS

}
to the user, where GS = rs ·G, MS =

h (KSU ||GC ||GS), and KSU = h(h(ID||K)||(rs ·GC)). The smart card computes
D′ = D ⊕ h (PW ) and KSU = h(D′|| (rc · GS)). The process will be ended if
MS �= h (KSU ||GC ||GS). Otherwise, the smart card sends {MU = h (KSU ||GS)}
to the server. Finally, the server checks that whether MU = h (KSU ||GS), if
positive, the authentication is successful. KSU is the session key.

Password Changing Phase. The user should enter the old password PW
and a new password PW ′ when he/she wants to change his password. Then the
smart card will compute D′′ = D ⊕ h (PW ) ⊕ h(PW ′) = h(ID||K) ⊕ h(PW ′).

4.2 Security Analysis of Sun et al.’s Scheme

In this section, we analyze the security weaknesses of Sun et al.’s scheme [11].
We assume that an attacker could get the different private data stored in the
smart card at different times.

Password Guessing Attack. Sun et al. [11] pointed that an adversary can not
corrupt the user’s authentication session only using D = h (ID||K) ⊕ h (PW ) .
Because the adversary has no access to the server’s secret key K. However,
Huang et al. [20] makes the security analysis and proposes that the adversary
can guess the password with more than one D generated at different times.
The user changes the password at the different time and the message stored in
the smart card also changes. The attacker with the smart card can obtain the
different data stored in the smart card. Then it can do the special operation with
the obtained data. The output is only related to the password and the attacker
is able to guess the password in the password dictionary.

User Impersonation Attack. With the guessed password and the secret data
fetched in the user’s smart card in an illegal way, the attacker is able to login to
the server with the user’s identity. The attacker can launch a login request instead
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of the user and make mutual authentication with the server using the password
and the smart card, which may destroy the authentication session.

Malicious Server Attack. In Sun et al.’s scheme, the initial password is chosen
by the server. If the server in the system is malicious, the password will be
leaked. Then the leaked password may be obtained by attackers and attackers
can damage the security of the system with the password.

5 Our Enhanced Scheme

Our scheme is presented in this section in detail, which consists of four phases: the
registration phase, the login phase, the authentication phase and the password
changing phase. The description of the four phases are depicted in Fig. 1. At the
beginning of the scheme, the server first chooses an elliptic curve E over a finite
field Fp such that the discrete logarithm problem is hard in E(Fp). The set of all
the points on E is denoted by E(Fp). The server also chooses a point G ∈ E (Fp)
such that the subgroup generated by G has a large order q. The server produces
the parameters (p, q, E, G, h) but keeps his private key K ∈ Zq

∗ secret. Here,
p and q are two prime numbers, and h is a hash function. The notations used in
the proposed scheme are shown in Table 1.

Fig. 1. The process of our enhanced scheme
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Table 1. Notations

Symbol Description

h () A public one-way hash function

|| String concatenation operator

K The secret key of the server

EK () A secure symmetric encryption algorithm with the secret k

DK () A secure symmetric decryption algorithm with the secret k

G A generator of a group on an elliptic curve generated by the server

KSU The session key

rc A random number chosen by the smart card

r A random number chosen by the server

rs A random number chosen by the server

x A random number chosen by the user

BIO The biometric information of the user

PW The password of the user

ID The identity of the user

IDS The identity of the server

5.1 Registration Phase

When a user needs to register to the remote server, the registration phase will
be started. We use the biometric information BIO applied in [18] to construct
our scheme.

• The user computes A = h(PW ⊕ X ⊕ BIO) and submits ID, A, h(BIO) to
the server via a secure channel, where ID is the user’s identity, PW is the
password chosen by the user, X ∈ Zq

∗ is the random number chosen by the
user and BIO is the biometric information of the user.

• The server receives the message and computes D = h (ID||K) ⊕ A, M =
EK (ID ||IDS || r). Then, the server sends the smart card that contains A, D
and M to the user via a secure channel. Here, r ∈ Zq

∗ is a random number
chosen by the server, K is the secret key of the server and IDS is the server’s
identity.

• Then, the user stores X in the smart card.

5.2 Login Phase

When the user wants to login to the remote server, the login phase will be started.
The server inputs his PW and inserts his smart card. Also, the user inputs his
BIO on the specific device. In this phase, we use explicit verification of the user’s
input password. Note that, another technique of fuzzy verification can well deal
with the “security-usability” dilemma, which was proposed in some previous
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studies [30–33]. In the future work, we will try to use the fuzzy-verifier technique
instead of explicit verification. In this paper, the login phase will perform the
following steps.

• The smart card first computes A∗ = h(PW ⊕ X ⊕ BIO). If the computed
value A∗ is equal to A stored in the smart card, the following steps of the
login phase will continue. Otherwise, the session will be ended.

• The smart card then sends {M,GC , Ti} to the server, where rc ∈ Zq
∗ is

randomly chosen by the smart card, GC (GC = rc · G) is a point on the elliptic
curve and Ti is the current timestamp.

5.3 Authentication Phase

Upon receiving the message from the user, the server performs the following
steps after the server receives the user’s login request message.

• The server checks Ti. If it is valid, the server obtains ID∗ and ID∗
S by the

decryption of the EK (M) with K. If ID∗ is equal to ID and IDS is equal
to ID∗

S , going on the next step. Otherwise, the process is terminated.
• The server sends {GS ,MS , TS} to the smart card, where rs ∈ Zq

∗ is randomly
chosen by the server, GS (GS = rs · G) is a point on the elliptic curve and TS

is the current timestamp.

MS = h (KSU ||GC ||GS ||TS) (1)

KSU = h(h(ID||K) ⊕ h (BIO) ||(rs · GC)) (2)

• The smart card checks TS . If it is valid, the smart card calculates the following
equations, then the smart card checks if M∗

S is equal to MS . If the output is
correct, going on the next step. Otherwise, the process is terminated.

D′ = D ⊕ A ⊕ h (BIO) = h (ID||K) ⊕ h (BIO) (3)

KSU
∗ = h(D′||(rc · GS)) = h(h (ID||K) ⊕ h (BIO) ||(rc · GS)) (4)

MS
∗ = h (KSU

∗ ||GC ||GS ||TS) (5)

MS
∗? = MS (6)

• The smart card sends {MU,Tt} to the server, where MU =
h (KSU

∗ ||GS ||Tt), Tt is the current timestamp.
• The server checks Tt. If it is valid, the server calculates the following equa-

tion and checks whether M∗
U is equal to MU . If the output is correct, the

authentication phase is completed successfully and the KSU is the session
key. Otherwise, the process is terminated.

MU
∗ = h (KSU ||GS ||Tt) (7)

MU
∗? = MU (8)
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5.4 Password Changing Phase

When the user needs to change the password, he should input his old password
PW , BIO and new password PW ∗. Then, the smart card replaces D with D∗

and A∗ with A.
A = h(PW ⊕ X ⊕ BIO) (9)

A∗ = h(PW ∗ ⊕ X ⊕ BIO) (10)

D∗ = D ⊕ A ⊕ A∗ = h(ID||K) ⊕ A ⊕ A ⊕ A∗ = h(ID||K) ⊕ A∗ (11)

6 Security Analysis and Comparison

In this section, we present the security analysis of the enhanced scheme, and
we compare it with other schemes in terms of the security. The comparison is
shown in Table 2. The result shows that the enhanced scheme is more secure and
efficient than other related schemes.

6.1 Correctness Analysis

There are two main verification processes in our scheme. The correctness of
Eq. (6) is elaborated as follow.

MS
∗

= h(KSU
∗||GC ||GS ||TS)

= h(h(D||(rc · GS))||GC ||GS ||TS)= h(h(D||(rc · GS)) ||GC ||GS ||TS)
= h(h(h (ID||K) ⊕ h (BIO) ||(rc · GS)) ||GC ||GS ||TS)
= h(h(h (ID||K) ⊕ h (BIO) ||(rc · rs · G)) ||GC ||GS ||TS)
= h(h(h (ID||K) ⊕ h (BIO) ||(rs · GC)) ||GC ||GS ||TS)
= h (KSU ||GC ||GS ||TS)
= MS

The correctness of Eq. (8) is elaborated as follow.

MU
∗

= h (KSU ||GS ||Tt)
= h(h(h(ID||K) ⊕ h (BIO) ||(rs · GC)) ||GS ||Tt)
= h(h(h(ID||K) ⊕ h (BIO) ||(rs · rc · G)) ||GS ||Tt)
= h(h(h(ID||K) ⊕ h (BIO) ||(rc · GS)) ||GS ||Tt)
= h (KSU

∗ ||GS ||Tt)
= MU
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6.2 Security Analysis

Prompt Detection of Wrong Password. In the enhanced scheme, the user’s
password can be verified quickly in the beginning of the login phase. In the login
phase, the user inputs his BIO, PW and inserts his smart card. Then, the smart
card computes A∗ = h(PW ⊕X ⊕BIO). If A∗ is equal to A stored in the smart
card, the following steps of the login phase will continue. Otherwise, the smart
card terminates the session because the user inputs a wrong password.

Detecting the wrong password promptly can terminate the authentication
session before the smart card being sent to the server, which can resist more
attacks with the smart card in communication channels. In addition, it can
diminish the unnecessary communication cost and computational cost during
the login and authentication phases.

Password Guessing Attack. The enhanced scheme can also resist the attacker
with different data stored in the smart card at different times, which is demon-
strated by Huang et al. in [20]. Huang et al. proposed some efficient counter-
measures to resist such attack. They change D = h (ID||K) ⊕ h (PW ) into
D = h (ID ||K||PW )⊕h (PW ) . The attacker with the card can get the private
values from the smart card at time T1 and T2. The attacker can do the following
computation.

D1 ⊕ D2 = h(ID ||K||PW1) ⊕ h (PW1) ⊕ h(ID ||K||PW2) ⊕ h (PW2) (12)

Obviously, the attacker can not guess the password without K. The enhanced
scheme can also resist such attack. We also assume that the attacker with the
card can get the private values from the smart card at time T1 and T2. The
attacker can compute the value of D1 ⊕ D2, but it can not obtain PW1 and
PW2 without X and BIO. Although the attack may steal X from the smart
card, it has no access to the user’s BIO, which we have assumed in our security
model.

D1 = h(ID||K) ⊕ h(PW1 ⊕ X ⊕ BIO) (13)

D2 = h(ID||K) ⊕ h(PW2 ⊕ X ⊕ BIO) (14)

D1 ⊕ D2 = h(PW1 ⊕ X ⊕ BIO) ⊕ h(PW2 ⊕ X ⊕ BIO) (15)

Moreover, with extracted secret values A in the user’s smart card, the
attacker may attempt to acquire the user’s password in the way of comput-
ing A = h(PW ⊕X ⊕BIO). But the attacker cannot succeed because it has no
access to the user’s BIO.

Malicious Server Attack. In the enhanced scheme, the initial password is
chosen by the user. On the contrary, if the initial password is chosen by the
server when the server is malicious, the password may be leaked by the malicious
server. Then the leaked password may be obtained by attackers and attackers
can damage the security of the system with the password.
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User Impersonation Attack. When the attacker wants to login to the server,
he needs to forge the message {M,GC , Ti}. But the attacker is unable to success
due to the attacker cannot obtain M , GC without the server’s secret key and the
random number chosen by the smart card. Although the attacker may extract
M and GC from the smart card and make a login request message {M,GC , Ti},
the authentication will fail because the BIO is not available to the attacker.

Relay Attack. The attacker may retransmit the previous login request mes-
sages and mutual authentication messages to the server and user. In the enhanced
scheme, we add the current timestamp to messages. The retransmitted messages
can be detected quickly by checking the timestamp. The session will be termi-
nated by the server or the smart card if the verification fails.

6.3 Security Comparison

The comparison of our enhanced scheme with the related schemes is summarized
in Table 2. The enhanced scheme can withstand parallel session attack, relay
attack, password guessing attack, user impersonation attack and attack with
session key. Additionally, the enhanced scheme provides mutual authentication
and session key agreement, which is relatively more secure than the related
schemes.

Table 2. Security comparison with the related schemes

Securities Scheme [4] Scheme [10] Scheme [11] Scheme [18] Our enhanced
scheme

Quickly detect wrong
password

No No No Yes Yes

Password guessing
attack

Possible Possible Possible Possible Impossible

User impersonation
attack

Possible Possible Possible Possible Impossible

Parallel session attack Possible Possible Impossible Possible Impossible

Relay attack Impossible Possible Impossible Impossible Impossible

Mutual authentication No Yes Yes Yes Yes

Session key agreement No Yes Yes Yes Yes

7 Conclusion

In this paper, we propose an enhanced remote password authentication key
agreement scheme based on smart card. In the enhanced scheme, password ver-
ification is added in the beginning of the login phase. In addition, the commu-
nication cost and computational cost can be reduced in the login and authenti-
cation phases due to the use of the password verification. The initial password
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is installed by the user rather than the server, which can prevent the malicious
server from leaking the password. In addition, attackers with the smart card can-
not guess the password by obtaining the different private data from the smart
card at different times. Moreover, the enhanced scheme can also resist relay
attack.
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Abstract. Authentication protocols with anonymity attract wide atten-
tion in recent years since they could protect users’ privacy. Anonymous
web browsing refers to utilization of the World Wide Web that hides a
user’s personally identifiable information from the websites visited. Even
if a user can hide the IP address and other physical information with
anonymity programs such as Tor, the web server can always monitor the
user on the basis of the identity. In this paper, we propose a practical
authentication protocol for anonymous web browsing. In the proposed
protocol, we take the advantages of a pseudo identity mechanism and
an identity-based elliptic curve cryptography algorithm to achieve the
user anonymity, robust security as well as high efficiency. The results of
security analysis and performance evaluation indicate the feasibility and
practicality of our proposed anonymous authentication protocol.

Keywords: Authentication · Anonymous web browsing · Privacy
Security · Efficiency

1 Introduction

When a user opens a web page, his or her IP address and other computer infor-
mation (e.g. device fingerprint) become visible to the target web page’s server.
This information can be used to track the user. Anonymous web browsing refers
to the utilization of the World Wide Web that hides a user’s personally identi-
fiable information from the websites visited. Anonymous web browsing can be
achieved via proxy servers, virtual private networks and other anonymity pro-
grams such as Tor [3].

These programs work by sending information through a series of routers in
order to hide the source and destination. For example, Tor directs the Internet
traffics through a free, worldwide, volunteer network consisting of more than
seven thousand relays to conceal a user’s location and usage from anyone con-
ducting network surveillance or traffic analysis. Using Tor makes it more difficult
for Internet activities to be traced back to the user: this includes visits to Web
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 468–482, 2017.
https://doi.org/10.1007/978-3-319-72359-4_28
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sites, online posts, instant messages, and other communication forms. Tor’s use
is intended to protect the personal privacy of users, as well as their freedom and
ability to conduct confidential communication by keeping their Internet activities
from being monitored.

Before a user can get access to some web services, he or she usually needs to
register to a web server at first and is provided with a username and a password,
with which the user is allowed to surf the web sites. Consider, for example, the
Forrester Research or IBM patent server web sites. These sites are heavily used
by many companies. Once you become a registered user, you gain access to a
large volume of information. On the flip side, it is feasible for Forrester Research
and IBM to determine who you are. And even worse, by examining your reading
habits, they may be able to infer your company’s corporate strategy and the
new markets you are considering. Imagine if this information found its way
to your competitors. Such a user tracking can also occur when subscribing to
newspapers, magazines, stock databases, pay per view movies, and many other
resources. The behavior of users might be aggregated and used in a potentially
malicious manner.

Even if the user can hide his or her IP address and other computer informa-
tion with anonymity programs such as Tor, the web server can always monitor
the user on the basis of the username. Therefore, in order to protect the user pri-
vacy in this kind of applications, an anonymous web authentication mechanism
is required.

In this paper, we consider a scenario where there exist some mobile users
(MUs), an authentication server (AS) and several websites (WSs), where MUs
include personal computers, smart phones, personal digital assistants and so on.
A mobile user needs to register to the authentication server to access web ser-
vices. Once the user becomes a registered user, he or she can get access to several
websites via an anonymous channel implemented with anonymous programs such
as Tor. The scenario in Fig. 1 can be illustrated as follows.

In order to provide a secure anonymous authentication scenario for mobile
users, there are some key requirements that need to be taken into account.
Anonymity is an important property of authentication. A privacy information
leakage of mobile user could cause great inconvenience and the information could
be utilized by an attacker in the future computer crimes. Apart from anonymity,
efficiency and security of the authentication protocol are also of great impor-
tance. The computation and communication complexity of authentication pro-
tocol should be low and the protocol should stand against various attacks.

The early methods [4,10,12] in providing a mutual authentication between
the user and the server are based on public-key cryptosystems (PKC), such as
RSA and ElGamal. However, PKC needs to compute the time-consuming mod-
ular exponential operations and an extra key management system for certificate
control [13]. Therefore, the traditional PKC-based authentication protocols are
not suitable to mobile users with constrained capability.

Compared with traditional PKC-based authentication protocols, ID-based
cryptography (IBC) authentication protocols show great advantages for mobile
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MU

AS

WS1 WS2 WSn

...

Fig. 1. A formal web authentication scenario

application scenarios. He et al. [5] present a secure and efficient anonymous
authentication protocol based on bilinear pairing functions. However, He et al. [6]
point out that [5] is not secure at all since it can not resist compromised key
attack. Though they also propose an improved scheme, Yeo et al. [16] point
out that He et al.’ protocol [6] still suffers from the compromised key problem.
Due to the complexity and inefficiency of the bilinear pairing operations, it is
attractive to design authentication protocols without utilizing bilinear pairing.

In order to improve the efficiency, some anonymous authentication proto-
cols [8,9,11,14,15] have been proposed based on Elliptic Curve Cryptography
(ECC). Both Yang et al. [15] and Islam et al. [9] proposes an identity based
scheme for MU authentication based on ECC. Unfortunately, their protocols suf-
fer from a number of issues such as security attack and lack of user anonymity.
To enhance the security, Hsieh et al. [8] also propose an improved anonymous
authentication protocol based on ECC. However, He et al. [7] reveal that their
protocol could easily obtain other users’ identities, which means Hsieh et al.’s
protocol [8] cannot preserve the user anonymity. Also, Li et al. [11] design an
efficient privacy-aware roaming authentication protocol using ECC. However,
Xie et al. [14] point out that Li et al.’s protocol is vulnerable to the imperson-
ation attack and propose an improved protocol to enhance the security. Though
the improvement on the security can resist impersonation attack, the original
deficiency in [11] is not completely eliminated so that an attacker can still send
a forged message and will be authenticated by an access point.
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Taking into account the weaknesses in recent authentication protocols, in
this paper, we take the advantage of identity-based elliptic curve algorithm [2]
and propose a practical efficient authentication protocol for web browsing. In a
nutshell, our main contributions can be summarized as follows.

(1) Our protocol is able to provide the user anonymity when a mobile user
requires an authentication with the web server. The user anonymity is
achieved using the pseudo identity mechanism. Any mobile user can be eas-
ily revoked by the system if it wishes to be revoked from the system or its
secret key has been compromised.

(2) Except the mobile user and the web server, there is no need of an additional
third party during the process of web authentication. And there are only
two messages exchanged between the mobile user and the web server in the
web authentication phase.

(3) By utilizing an elliptic curve cryptography algorithm, our authentication
protocol achieves a higher efficiency and a robust security. Through the sim-
ulation analysis and comparison with other protocols, it shows that our pro-
tocol has a good performance in terms of computation and communication
costs.

The remainder of this paper is organized as follows. Section 2 discusses some
preliminaries, including the elliptic curve group, mathematical problems and the
security requirements. In Sect. 3, we present a new web authentication protocol.
Sections 4 and 5 provide the security analysis and performance evaluation of
our protocol, respectively. At last, we conclude the paper in Sect. 6.

2 Preliminaries

In this section, we briefly introduce the elliptic curve cryptography, the corre-
sponding mathematical problems over it, and the security requirements for an
authentication protocol.

2.1 Elliptic Curve Cryptography

Let Fq be a prime finite field, E/Fq : y2 = x3+a ·x+b is an elliptic curve defined
over Fq, where a, b ∈ Fq and Δ = 4a3 + 27b2 �= 0 mod q. Let P be an element of
a large prime order q in E/Fq. The points on E/Fq together with an extra point
Θ, called the point at infinity, form a group G = {(x, y) : x, y ∈ Fq; (x, y) ∈
E/Fq}∪{Θ}. G is a cyclic additive group of composite order q. Besides, a scalar
multiplication over E/Fq can be computed as follows: tP = P + P + · · · + P

︸ ︷︷ ︸

t times

,

where t is an integer.
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2.2 Mathematical Problems

There exist the following problems over the elliptic curve group which have been
widely used in the design of authentication protocols.

Discrete Logarithm (DL) Problem: For a random chosen value a ∈ Z
∗
q and

the generator P of G, given aP , it is computationally intractable to compute
the value a.

Computational Diffie-Hellman (CDH) Problem: For random chosen val-
ues a, b ∈ Z

∗
q and the generator P of G, given aP and bP , it is computationally

intractable to compute the value abP .

2.3 Security Requirements

To guarantee a secure communication, the design of an authentication protocol
should satisfy the following requirements:

(1) Mutual authentication: In order to ensure that only the legitimate users
can access into the web service, the authentication protocol should provide
a mutual authentication between MU and WS.

(2) User anonymity: To protect users’ privacy, the legitimate users should be
anonymous to any WS in a process of web authentication. Any adversary or
curious WS should not be able to extract MU’s real identity or trace MU’s
activities.

(3) Conditional privacy preserving: If there exists some users’ actions that
cause harm to the system, then the AS should be able to extract the real
identity of MU via the messages exchanged in the process of web authenti-
cation.

(4) Forward secrecy: The session key shared between MU and WS may be
known by an adversary through a compromised MU or WS. To address the
potential threat of this compromised session key, the process of an authenti-
cation should be able to provide the forward secrecy to prevent an adversary
from extracting the previous session keys.

(5) Attack resistance: Under various types of attacks (e.g., replay, imperson-
ation, modification, man-in-the-middle, etc.), the security of the web authen-
tication protocol should be able to withstand those aforementioned attacks
so that it has a practical application value.

3 Proposed Protocol

In this section, we propose a new anonymous web browsing authentication pro-
tocol. Our protocol consists of four phases: system initialization phase, key pre-
distribution phase, anonymous web authentication phase and user revocation
phase. To facilitate the presentation, we list some related notations in Table 1.
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Table 1. Notations in the protocol

Notation Description

q A k-bit prime
Fq A prime finite field
E/Fq An elliptic curve E over Fq

G A cyclic additive group, G = {(x, y) : x, y ∈ E/Fq} ∪ {Θ}
P Generator for the group G

IDx Identity of entity x

ts A time stamp
H1() A secure hash function H1 : {0, 1}∗ × G → Z∗

q

H2() A secure hash function H2 : {0, 1}∗ × {0, 1}∗ × G → {0, 1}k
H3() A secure hash function H3 : {0, 1}k × G → {0, 1}k
H4() A secure hash function H4 : {0, 1}k × G × G → Z∗

q

PK Public key
Sx Entity x’s private key
V erx A verification value generated by entity x

3.1 System Initialization Phase

Here we assume that the AS is a trusted third party and it performs the process
of system initialization to generate the system parameters. The AS executes the
following operations:

(1) Properly chooses a k-bit prime q and determines the tuple {Fq, E/Fq, G, P}.
(2) Chooses random number s ∈ Z∗

q as the master key, and compute the system
public keys PK = s · P .

(3) Chooses four secure hash functions H1,H2,H3 and H4.
(4) Publishes {Fq, E/Fq, G, P, PK,H1,H2,H3,H4} as system parameters and

keeps the master key secret.

3.2 Key Pre-distribution Phase

As is shown in Fig. 2, in this phase, both MU and WS send their identities to AS,
then the AS responds with long-term secret key tuples for each MU and WS.

(1) When receiving IDWS from a WS, the AS first checks the validity of this
identity. If valid, the AS selects random numbers rWS ∈ Z∗

q , then computes
RWS = rWS · P and the private key SWS = rWS + H1(IDWS‖RWS) · s.
Finally, it sends a long-term secret key tuple (IDWS , RWS , SWS) to the WS
using a secure transmission protocol (e.g., a wired transport layer security
protocol). Upon receiving the private key SWS , the WS can validate the
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MU
request (IDMU)

respond (PIDMU, RMU, SMU)

request (IDWS)

respond (IDWS, RWS, SWS)

WSAS

Fig. 2. Key pre-distribution phase

received private key by checking whether PKWS = SWS · P = RWS +
H1(IDWS‖RWS) · PK holds or not.

(2) Similarly, when an MU sends the request message to the AS with its real
identity IDMU , the AS first checks the validity. If the MU is valid, the
AS selects random numbers rMU ∈ Z∗

q , and then computes a pseudo-
ID PIDMU = IDMU ⊕ H3(rMU‖PK). For this pseudo-ID, the AS
computes RMU = rMU · P and a corresponding private key SMU =
rMU + H1(PIDMU‖RMU ) · s. At last, the AS securely sends the tuple
(PIDMU , RMU , SMU ) back to the MU. Upon receiving the tuples, the
MU can check the received private key by PKMU = SMU · P = RMU +
H1(PIDMU‖RMU ) · PK. By doing this, an MU can constantly change its
pseudo-ID to achieve the user anonymity in the web authentication phase.

3.3 Anonymous Web Authentication Phase

In order to access wireless networks for web browsing, an MU needs to execute
a web authentication process when it accesses a new WS. As shown in Fig. 3, a
mutual authentication between the MU and the new WS shall be accomplished
in this phase. The session key should be directly established between them during
the web authentication phase. Here are the messages to be exchanged in the web
authentication phase.

MU Ppid, R’MU , A, ts, VerMU

IDWS, RWS, B, VerWS

WS

Fig. 3. Web authentication phase
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(1) MU → WS : Ppid, R
′
MU , A, ts, V erMU

The MU first chooses the random values a, c ∈ Z∗
q , and computes A = a · P ,

Ppid = c ·H1(PIDMU‖RMU ), R′
MU = c ·RMU and S′

MU = c ·SMU . Besides,
let HMU = H4(Ppid‖ts‖R′

MU‖A), where a time stamp ts is added by the MU
to resist replay attacks (we assume that all network entities keep loose time
synchronization via some existing time synchronization mechanisms). Then,
the MU computes a verification value V erMU = a + S′

MU · HMU . After the
executions, the MU sends the request message {Ppid, R

′
MU , A, ts, V erMU}

to the WS.
(2) WS → MU : IDWS , RWS , B, V erWS

Upon receiving the message, the WS first checks the time stamp ts
to prevent the replay attack. If this time stamp ts is beyond the ser-
vice expiration time, the WS drops this message. Otherwise, it computes
PKMU = R′

MU + Ppid · PK and HMU = H4(Ppid‖ts‖R′
MU‖A). In order

to verify the correctness of V erMU , the WS checks whether the equation
V erMU · P = A + PKMU · HMU holds. If it does not hold, WS drops this
message. Otherwise, the MU will be authenticated by the WS. Then the
WS chooses a random value b ∈ Z∗

q to compute B = b · P and it also
calculates a key KWS−MU = SWS · A + b · PKMU in order to generate
the session key SKWS−MU = H2(Ppid‖IDWS‖KWS−MU ). Similarly, for the
purpose of being authenticated by the MU, the WS also generates a verifi-
cation value V erWS = H1(SKWS−MU‖A) and sends the response message
{IDWS , RWS , B, V erWS} to the MU.

(3) MU
When the MU receives the message sent back from the WS, it will cal-
culate a key KMU−WS = S′

MU · B + a · PKWS and generate the ses-
sion key SKMU−WS = H2(Ppid‖IDWS‖KMU−WS). Then it checks whether
H1(SKMU−WS‖A) is equal to the received V erWS . The WS is successfully
authenticated by the MU only if the confirmation value is correct. Other-
wise, it terminates this authentication process. At the end of executions, the
session key SKMU−WS (SKWS−MU ) is established between the MU and
the WS. This completes the mutual web authentication.

Key agreement: The session key shares between the MU and the WS can be
checked by the following equations.

KWS−MU = SWS · A + b · PKMU

= SWS · a · P + b · (Ppid · PK + R′
MU )

= a · PKWS + b · (c · H(PIDMU‖RMU ) · s · P + c · rMU · P )
= a · PKWS + (c · (H(PIDMU‖RMU ) · s + rMU )) · b · P

= a · PKWS + (c · SMU ) · B

= a · PKWS + S′
MU · B

= KMU−WS
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SKWS−MU = H(Ppid‖IDWS‖KWS−MU )
= H(Ppid‖IDWS‖KMU−WS)
= SKMU−WS

Due to the random number a, b, c and the private key SMU , SWS are secret
information, and the calculation of session key is based on CDH problem, only
the legitimate MU and WS can generate the valid secret key to achieve the
mutual authentication and establish the secret session key.

3.4 User Revocation Phase

If an MU wishes to revoke itself from the system or the secret key has been
compromised, the AS will check it and revoke the MU from the system. The
AS publishes a revocation list (RL) of all revoked users’ identities and this
RL can be updated periodically. The contents in this RL are listed as follows:
{{PIDMU1 , RMU1}, {PIDMU2 , RMU2}, . . . , {PIDMUi

, RMUi
}, . . .}.

When a WS receives the first message from MU, which includes its pseudo
identity Ppid and the parameter R′

MU , the WS will first verify the verification
value. If this message is valid, then the WS will check the identity on the RL
by repeatedly checking whether Ppid · H1(PIDMUi

‖RMUi
)−1 · RMU is equal to

R′
MU . Due to Ppid = c · H1(PIDMUj

‖RMUj
) and R′

MU = c · RMUj
, it is easy

to match the equation Ppid · RMU = H1(PIDMUi
‖RMUi

) · R′
MU if i = j. If this

equation matches, it means the corresponding {PIDMUj
, RMUj

} is revoked and
the tuple {Ppid, R

′
MU} is invalid now. Otherwise, this MU is a legitimate user

and has not been revoked.

4 Security Analysis

In this section, we discuss the security of our proposed protocol.

Mutual authentication: Here we only discuss the mutual authentication
between the MU and the WS in the proposed protocol. The mutual authen-
tication can be divided into two aspects, one is MU-to-WS authentication and
another is WS-to-MU authentication.

• MU-to-WS authentication:
When a WS receives the message {Ppid, R

′
MU , A, ts, V erMU} from an MU, the

WS can authenticate this MU by verifying the key information in the message,
which is the verification value V erMU . So we assume that an attacker A can
forge a valid verification value V er′

MU which can be successfully verified by
the WS with a non-negligible advantage. The forged message of A should be
like {Ppid, R

′
MU , A, ts′, V er′

MU} to satisfy the equation V er′
MU ·P = A+S′

MU ·
H ′

MU ·P . Because the real verification value satisfies V erMU ·P = A+S′
MU ·

HMU ·P , we can get (V er′
MU −V erMU ) ·P = (H ′

MU −HMU ) ·S′
MU ·P . Thus

the attacker A can get the value (V er′
MU −V erMU ) · (H ′

MU −HMU )−1mod q
as the answer of the given DL problem. However, it contradicts with the
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assumption of the DL problem. That is, an attacker A can not be successfully
authenticated by the WS. Therefore, our proposed protocol can provide the
MU-to-WS authentication.

• WS-to-MU authentication:
When an MU gets the response message {IDWS , RWS , B, V erWS} from a
WS, the MU can authenticate this WS by generating the valid session key
to check the verification value V erWS . The key information to complete WS-
to-MU authentication is the secret key KWS−MU = SWS · A + b · PKMU . So
the security analysis of WS-to-MU authentication is actually similar to that
of key agreement. We assume that an attacker A can forge a valid secret key
K ′

WS−MU = V + b′ · PKMU to generate the verification value and then can
be successfully verified by the MU with a non-negligible advantage. That is,
A can use PKWS = SWS · P and A = a · P to obtain the value of V which
is equal to SWS · a · P . However, it contradicts with the assumption of the
CDH problem. Therefore, an attacker A can not be successfully authenti-
cated by the MU. Our proposed protocol can provide the secure WS-to-MU
authentication.

User anonymity and conditional privacy preserving: In our protocol, the
MU gets a pseudo identity PIDMU and the corresponding parameter RMU from
the AS. Before the process of web authentication, the MU generates a new pseudo
identity Ppid and the corresponding R′

MU with a random number c. Therefore,
the MU can ensure every pseudo identity Ppid and the corresponding R′

MU are
just used once. The attacker can not identify the real identity of MU or track
this MU by two different pseudo identities. Furthermore, if there is an MU in the
system who has been compromised or just broken the rules, the AS can track
this MU by collecting its pseudo identity Ppid and the corresponding R′

MU .
The AS can extract the user’s initial identity PIDMU and the corresponding
RMU from the stored user list. Then it can do a cycle verification on computing
c′ = Ppid · H1(PIDMU‖RMU )−1 and checking whether c′ · RMU is equal to
R′

MU . If equal, then the AS can extract the real identity IDMU of the MU from
the stored user list. Therefore, our authentication protocol can provide the user
anonymity and achieve the conditional privacy preserving.

Forward secrecy: The session key in our protocol is generated by a hash func-
tion SKWS−MU = H2(Ppid‖IDWS‖KWS−MU ) → {0, 1}k, so this session key has
no relation with other session keys. Therefore, even if an attacker can obtain a
session key, it does not impact the security of the process of web authentication.

Attack resistance: Our scheme can resist the following attacks.

• Replay attack: A replay attack is infeasible in our scheme because we use a
time stamp ts to prevent the replay attacks; that is, any replay messages does
not go beyond the service expiration time. Even if the time stamp ts can be
updated by an attacker in the replay message, the attacker can not generate
a valid verification value V erMU related to this new ts. So it is not possible
to successfully pass the verification due to the different ts.



478 X. Yang et al.

• Impersonation attack: As is analyzed in the mutual authentication, imper-
sonating an authorized MU or WS for sending or receiving information are
prevented since an impersonate attacker can not generate the valid verifica-
tion values and the session key. As a consequence, our protocol is able to
resist the impersonation attack.

• Modification attack: The verification value V erMU is calculated by the MU’s
private key and the one-way hash function. The one-way hash function in
the authentication message can ensure the data integrity. Therefore, it is
impossible to modify a valid message during authentication.

• Man-in-the-middle attack: As the key agreement in our scheme is based on
the CDH problem, both MU and WS send the packets by checking the Diffie-
Hellman public components and generate session keys via the long-term secret
keys, which makes our protocol secure against the attacker who would like to
cheat by eavesdropping in the middle to forge or replay the messages.

5 Performance Evaluation

In this section, we discuss the performance of our web authentication protocol
and compare with a most recent authentication protocol [14]. We analyze the
performance of our protocol in terms of computation and communication costs.
All tests are performed on a laptop with the following specifications: CPU: 2.2
GHz Intel Core i7, Memory: 16 GB 1600 MHz DDR3, and we also used a high
performing implementation from libgmp via the gmpy2 python module (https://
gmpy2.readthedocs.io/en/latest/).

The computation overhead represents the processing delays of the cryptog-
raphy operations at each entity. We only consider the cost of operations listed as
(TM , TA, TH), where we denote the time for one elliptic curve scalar multiplica-
tion operation as TM , the time for one elliptic curve point addition operation as
TA and the time for a hash operation as TH . According to NIST recommended
key size [1], we test the computation time and communication size in 5 rounds
based on the key sizes of ECC: 160 bits, 224 bits, 256 bits, 384 bits and 512 bits.
As is known, with the increase of the key size, the security of ECC operations
will be enhanced, but it also will result in the low efficiency of computation and
communication costs. The time cost of executing ECC operations on different
key sizes is shown in Table 2.

We also assume that the sizes of an MU’s pseudo identity, a WS’s iden-
tity, timestamp, and general hash functions output are 32 bits, 32 bits, 32 bits,
and 160 bits, respectively. Based on these facts, we analyze the computation
and communication costs of the key pre-distribution and the anonymous web
authentication phase in our protocol. Table 3 shows the computation and com-
munication consumption results of our evaluation.

In the key pre-distribution phase of our protocol, the computation costs on
both MU and WS are the same and consist of two scalar multiplication opera-
tions, one point addition operation and one hash operation, i.e., the total exe-
cution time is 2TM + TA + TH . The computation costs on AS consist of two

https://gmpy2.readthedocs.io/en/latest/
https://gmpy2.readthedocs.io/en/latest/
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Table 2. The time cost of executing ECC operations on different key sizes

Key size (bits) TM (ms) TA (ms)

160 1.541 0.009
224 4.241 0.016
256 5.461 0.018
384 19.777 0.044
512 56.963 0.088

Table 3. Computation and communication consumption

Computation cost Communication cost

Key pre-distribution MU: 2TM + TA + TH 32
WS: 2TM + TA + TH 32
AS: 2TM + 2TH 160 + 2sa

Web authentication MU: 4TM + TA + 4TH 352 + 4s

WS: 6TM + 3TA + 3TH 192 + 4s
a s denotes the key size of ECC.

scalar multiplication operations and two point addition operation, i.e., the total
execution time is 2TM + 2TA. Therefore, the total computation costs in key
pre-distribution phase are 6TM + 4TA + 2TH . Similarly, in the anonymous web
authentication phase of our protocol, the computation costs on the MU consist of
four scalar multiplication operations, one point addition operation and four hash
operations, i.e., the total execution time of MU is 4TM +TA +4TH . The compu-
tation costs on the WS consist of six scalar multiplication operations, three point
addition operations and three hash operations, i.e., the total execution time of
WS is 6TM + 3TA + 3TH . Therefore, the total computation costs in the anony-
mous web authentication phase are 10TM + 4TA + 7TH . The total computation
costs of the key pre-distribution phase and the anonymous web authentication
phase on different key sizes of ECC are shown in Fig. 4(a). Similarly, the total
communication costs of the key pre-distribution phase and the anonymous web
authentication phase on different key sizes of ECC are shown in Fig. 4(b). From
these two figures, we can find that when the key size of ECC is 160 bits, the
computation costs in both web authentication and key pre-distribution phases
are less than 20 ms, and the computation costs are less than 2000 bits. Even if
the key size of ECC is 512 bits, the computation and communication costs are
less than 600 ms and 5000 bits, respectively.

Comparison: Our protocol is compared with the most recent authentication
protocol [14]. Xie et al.’s protocol is also based on the elliptic curve cryptography.
Apart from the security problem, here we mainly evaluate the computation and
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Fig. 4. (a) Total computation costs of our protocol on different key sizes; (b) Total
communication costs of our protocol on different key sizes.

Fig. 5. (a) Comparison on the computation cost of key pre-distribution phase; (b) Com-
parison on the communication cost of key pre-distribution phase; (c) Comparison on
the computation cost of authentication phase; (d) Comparison on the communication
cost of authentication phase.
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communication costs of the protocols. We assume that an MU gets 10 pseudo-
identities in the key pre-distribution phase in [14]. The total computation costs
of the key pre-distribution phase and authentication phase in [14] are 33TM +
11TA+22TH and 11TM +5TA+8TH , respectively. Also, the total communication
costs of the key pre-distribution phase and the authentication phase in [14] are
1664 + 20s and 416 + 10s, respectively. As is shown in Fig. 5, we compare the
communication and computation costs of both key pre-distribution phase and
authentication phase based on on different key sizes of ECC.

Overall, the simulation results show that our authentication protocol only
incurs little computation and communication costs and achieves much better
performance in comparison with other proposed protocol.

6 Conclusion

In this paper, we have proposed a practical and efficient authentication protocol
based on the identity-based elliptic curve cryptography for the anonymous web
browsing. User anonymity is fulfilled in key pre-distribution phase by using the
pseudo identity mechanism. The web authentication phase is efficient with only
two messages exchanged. Besides, our protocol also provides a user revocation
mechanism for mobile users. Both the security analysis and performance eval-
uation indicate the feasibility and practicality of our proposed authentication
protocol.
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Abstract. Cloud storage services have become accessible and used by
everyone. Nevertheless, stored data are dependable on the behavior of
the cloud servers, and losses and damages often occur. One solution is
to regularly audit the cloud servers in order to check the integrity of the
stored data. The Dynamic Provable Data Possession scheme with Public
Verifiability and Data Privacy presented in ACISP’15 is a straightforward
design of such solution. However, this scheme is threatened by several
attacks. In this paper, we carefully recall the definition of this scheme as
well as explain how its security is dramatically menaced. Moreover, we
proposed two new constructions for Dynamic Provable Data Possession
scheme with Public Verifiability and Data Privacy based on the scheme
presented in ACISP’15, one using Index Hash Tables and one based
on Merkle Hash Trees. We show that the two schemes are secure and
privacy-preserving in the random oracle model.

Keywords: Provable Data Possession · Dynamicity
Public verifiability · Data privacy · Index Hash Tables
Merkle Hash Trees

1 Introduction

Storage systems allow everyone to upload his/her data on cloud servers, and
thus avoid keeping them on his/her own devices that have often limited storage
capacity and power. Nevertheless, storage services are susceptible to attacks or
failures, and lead to possible non-retrievable losses of the stored data. Indeed,
storage systems are vulnerable to internal and external attacks that harm the
data integrity even being more powerful and reliable than the data owner’s
personal computing devices. A solution is to construct a system that offers an
efficient, frequent and secure data integrity check process to the data owner such
that the frequency of data integrity verification and the percentage of audited

c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 485–505, 2017.
https://doi.org/10.1007/978-3-319-72359-4_29
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data should not be limited by computational and communication costs on both
cloud server’s and data owner’s sides.

A Provable Data Possession (PDP) enables a data owner, called the client,
to verify the integrity of his/her data stored on an untrusted cloud server, with-
out having to retrieve them. Informally, the client first divides his/her data
into blocks, generates tags on each block, and then forwards all these elements
to the server. In order to check whether the data are correctly stored by the
server, the client sends a challenge such that the server replies back by creating
a proof of data possession. If the proof is correct, then this means that the stor-
age of the data is correctly done by the server; otherwise, this means that the
server is actually cheating somehow. Natural extension features of PDP include:
(1) Dynamicity (D) that enables the client to update his/her data stored on
the server via three operations (insertion, deletion and modification); (2) Public
verifiability (PV) that allows a client to indirectly check that the server correctly
stores his/her data by enabling a Third Party Auditor (TPA) or everyone else to
do the audit; (3) Data privacy (DP) preservation that ensures that the contents
of the stored data are not leaked to neither the TPA nor anyone else. We require
that a Dynamic PDP (DPDP) with PV and DP system is secure at untrusted
server, which means that the server cannot successfully generate a proof of data
possession that is correct without actually storing all the data. In addition, a
DPDP with PV and DP system should be data privacy-preserving, which means
that the TPA should not learn anything about the client’s data even by having
access to the public information.

Gritti et al. [9] recently constructed an efficient and practical DPDP system
with PV and DP. However, we have found three attacks threatening this con-
struction: (1) The replace attack enables the server to store only one block of
a file m and still pass the data integrity verification on any number of blocks;
(2) The replay attack permits the server to keep the old version of a block mi

and the corresponding tag Tmi
, after the client asked to modify them by sending

the new version of these elements, and still pass the data integrity verification;
(3) The attack against data privacy allows the TPA to distinguish files when
proceeding the data integrity check without accessing their contents. We then
propose two solutions to overcome the adversarial issues threatening the DPDP
scheme with PV and DP in [9]. We give a first new publicly verifiable DPDP
construction based on Index Hash Tables (IHT) in the random oracle model. We
prove that such scheme is secure against replace and replay attacks as well as
is data privacy-preserving according to a model differing from the one proposed
in [9]. We present a second new publicly verifiable DPDP construction based on
Merkle Hash Trees (MHT) in the random oracle model. We demonstrate that
such scheme is not vulnerable against the three attacks mentioned above. In
particular, we use the existing model given in [9] to prove that the MHT-based
scheme is data privacy-preserving.
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1.1 Related Work

Ateniese et al. [1] introduced the notion of Provable Data Possession (PDP)
which allows a client to verify the integrity of his/her data stored at an untrusted
server without retrieving the entire file. Their scheme is designed for static data
and used homomorphic authenticators as tags based on public key encryption for
auditing the data file. Subsequently, Ateniese et al. [2] improved the efficiency of
the aforementioned PDP scheme by using symmetric keys. The resulting scheme
gets lower overhead and partially supports partial dynamic data operations.
Thereafter, various PDP constructions were proposed in the literature [10,20,23,
24]. Moreover, PDP schemes with the property of full dynamicity were suggested
in [4,18,19,25,26]. An extension of DPDP includes version control [3,6] where
all data changes are recorded into a repository and any version of the data can
be retrieved at any time. DPDP protocols with multi-update capability were
suggested in [5]. More recently, data privacy-preserving and publicly verifiable
PDP schemes were presented in [7,9,14–17].

2 Preliminaries

Let G1, G2 and GT be three multiplicative cyclic groups of prime order p ∈ Θ(2λ)
(where λ is the security parameter). Let gk be a generator of Gk for k ∈ {1, 2},
that we denote < gk >= Gk.

Bilinear Maps: Let e : G1 × G2 → GT be a bilinear map with the following
properties: (1) Bilinearity: ∀u ∈ G1,∀v ∈ G2,∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
(2) Non-degeneracy: e(g1, g2) �= 1GT

. G1 and G2 are said to be bilinear groups
if the group operation in G1 × G2 and the bilinear map e are both efficiently
computable. Let GroupGen denote an algorithm that on input the security param-
eter λ, outputs the parameters (p, G1, G2, GT , e, g1, g2).

Discrete Logarithm (DL) Assumption: Let a ∈R Zp. If A is given an instance
(g1, ga

1 ), it remains hard to extract a ∈ Zp. The DL assumption holds if no
polynomial-time adversary A has non-negligible advantage in solving the DL
problem.

Computational Diffie-Hellman (CDH) Assumption: Let a, b ∈R Zp. If A is given
an instance (g1, ga

1 , gb
1), it remains hard to compute gab

1 ∈ G1. The CDH assump-
tion holds if no polynomial-time adversary A has non-negligible advantage in
solving the CDH problem.

Decisional Diffie-Hellman Exponent (DDHE) Assumption: Let β ∈R Zp. If A is
given an instance (g1, g

β
1 , · · · , gβs+1

1 , g2, g
β
2 , Z), it remains hard to decide if either

Z = gβs+2

1 or Z is a random element in G1. The (s+1)-DDHE assumption holds
if no polynomial-time adversary A has non-negligible advantage in solving the
(s + 1)-DDHE problem.



488 C. Gritti et al.

2.1 Definition of the DPDP Scheme with PV and DP

Let m be a data file to be stored that is divided into n blocks mi, and then each
block mi is divided into s sectors mi,j ∈ Zp, where p is a large prime. A DPDP
scheme with PV and DP is made of the following algorithms:
• KeyGen(λ) → (pk, sk). On input the security parameter λ, output a pair of
public and secret keys (pk, sk).
• TagGen(pk, sk,mi) → Tmi

. TagGen is independently run for each block. There-
fore, to generate the tag Tm for a file m, TagGen is run n times. On inputs the
public key pk, the secret key sk and a file m = (m1, · · · ,mn), output a tag
Tm = (Tm1 , · · · , Tmn

) where each block mi has its own tag Tmi
. The client sets

all the blocks mi in an ordered collection F and all the corresponding tags Tmi
in

an ordered collection E. He/she sends F and E to the server and removes them
from his/her local storage.
• PerfOp(pk, F, E, info = (operation, l,ml, Tml

)) → (F′, E′, ν′). On inputs the
public key pk, the previous collection F of all the blocks, the previous collection
E of all the corresponding tags, the type of the data operation to be performed,
the rank l where the data operation is performed in F, the block ml to be
updated and the corresponding tag Tml

to be updated, output the updated
block collection F

′, the updated tag collection E
′ and an updating proof ν′. For

the operation: (1) Insertion: ml = m i1+i2
2

is inserted between the consecutive
blocks mi1 and mi2 and Tml

= Tm i1+i2
2

is inserted between the consecutive

tags Tmi1
and Tmi2

. We assume that m i1+i2
2

and Tm i1+i2
2

were provided by

the client to the server, such that Tm i1+i2
2

was correctly computed by running

TagGen. (2) Deletion: ml = mi is deleted, meaning that mi1 is followed by mi2

and Tml
= Tmi

is deleted, meaning that Tmi1
is followed by Tmi2

, such that
i1, i, i2 were three consecutive ranks. (3) Modification: ml = m′

i replaces mi and
Tml

= Tm′
i

replaces Tmi
. We assume that m′

i and Tm′
i

were provided by the
client to the server, such that Tm′

i
was correctly computed by running TagGen.

After operations, the set of ranks becomes (0, n + 1) ∩ Q.
• CheckOp(pk, ν′) → 0/1. On inputs the public key pk and the updating proof ν′

sent by the server, output 1 if ν′ is a correct updating proof; output 0 otherwise.
• GenProof(pk, F, chal,Σ) → ν. On inputs the public key pk, an ordered collec-
tion F ⊂ F of blocks, a challenge chal and an ordered collection Σ ⊂ E which
are the tags corresponding to the blocks in F , output a proof of data possession
ν for the blocks in F that are determined by chal.
• CheckProof(pk, chal, ν) → 0/1. On inputs the public key pk, the challenge
chal and the proof of data possession ν, output 1 if ν is a correct proof of data
possession for the blocks determined by chal; output 0 otherwise.

Correctness. We require that a DPDP with PV and DP is correct
if for (pk, sk) ← KeyGen(λ), Tm ← TagGen(pk, sk,m), (F′, E′, ν′) ←
PerfOp(pk, F, E, info), ν ← GenProof(pk, F, chal,Σ), then 1 ← CheckOp(pk, ν′)
and 1 ← CheckProof(pk, chal, ν).



Dynamic Provable Data Possession Protocols 489

2.2 Security and Privacy Models

Security Model Against the Server. The model follows the ones in [1,4,9].
We consider a DPDP with PV and DP as defined above. Let a data possession
game between a challenger B and an adversary A (acting as the server) be as
follows:
	 Setup. B runs (pk, sk) ← KeyGen(λ) such that pk is given to A while sk is
kept secret.
	 Adaptive Queries. First, A is given access to a tag generation oracle
OTG. A chooses blocks mi and gives them to B, for i ∈ [1, n]. B runs
TagGen(pk, sk,mi) → Tmi

and gives them to A. Then, A creates two ordered
collections F = {mi}i∈[1,n] of blocks and E = {Tmi

}i∈[1,n] of the corresponding
tags. Then, A is given access to a data operation performance oracle ODOP . For
i ∈ [1, n], A gives to B a block mi and infoi about the operation that A wants to
perform. A also submits two new ordered collections F

′ of blocks and E
′ of tags,

and the updating proof ν′. B runs CheckOp(pk, ν′) and replies the answer to A.
If the answer is 0, then B aborts; otherwise, it proceeds. The above interaction
between A and B can be repeated. Note that the set of ranks has changed after
calls to the oracle ODOP .
	 Challenge. A chooses blocks m∗

i and info∗
i , for i ∈ I ⊆ (0, n+1)∩Q. Adaptive

queries can be again made by A, such that the first info∗
i specifies a full re-

write update (this corresponds to the first time that the client sends a file to
the server). B still checks the data operations. For i ∈ I, the final version of
mi is considered such that these blocks were created regarding the operations
requested by A, and verified and accepted by B beforehand. B sets F = {mi}i∈I
of these blocks and E = {Tmi

}i∈I of the corresponding tags. It then sets two
ordered collections F = {mij

}ij∈I,j∈[1,k] ⊂ F and Σ = {Tmij
}ij∈I,j∈[1,k] ⊂ E. It

computes a resulting challenge chal for F and Σ and sends it to A.
	 Forgery. A computes a proof of data possession ν∗ on chal. Then, B runs
CheckProof(pk, chal, ν∗) and replies the answer to A. If the answer is 1 then A
wins.

The advantage of A in winning the data possession game is defined as
AdvA(λ) = Pr[A wins]. The DPDP with PV and DP is secure against the server
if there is no PPT (probabilistic polynomial-time) adversary A who can win the
above game with non-negligible advantage AdvA(λ).

Data Privacy Model Against the TPA. In a DPDP protocol, we aim to
ensure that data privacy is preserved at the verification step, meaning that data
are accessible to all but protected only via a non-cryptographic access control,
and the verification process does not leak any information on the data blocks.

First Data Privacy Model. The model is found in [17,20]. We consider a DPDP
with PV and DP as defined above. Let the first data privacy game between a
challenger B and an adversary A (acting as the TPA) be as follows:
	 Setup. B runs KeyGen(λ) to generate (pk, sk) and gives pk to A, while sk is
kept secret.
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	 Queries. A is allowed to make queries as follows. A sends a file m =
(m1, · · · ,mn) to B. B computes Tm = (Tm1 , · · · , Tmn

) and gives it back to
A. Then, two ordered collections F = {mi}i∈[1,n] of blocks and E = {Tmi

}i∈[1,n]

of tags are created.
	 Challenge. A submits a challenge chal containing k ≤ n ranks, the k corre-
sponding blocks in F and their k tags in Σ.
	 Generation of the Proof. B computes a proof of data possession ν∗ ←
GenProof(pk, F, chal,Σ) such that the blocks in F are determined by chal and
Σ contains the corresponding tags.

A succeeds in the first data privacy game if F � F and Σ � E, and
CheckProof(pk, chal, ν∗) → 1. The advantage of A in winning the first data
privacy game is defined as AdvA(λ) = Pr[A succeeds]. The DPDP with PV and
DP is data privacy-preserving if there is no PPT adversary A who can win the
above game with non-negligible advantage AdvA(λ). This implies that there is no
A who can recover the file from a given tag tuple with non-negligible probability.

Second Data Privacy Model. The model follows the ones in [7,9,24]. We consider
a DPDP with PV and DP as defined above. Let a second data privacy game
between a challenger B and an adversary A (acting as the TPA) be as follows:
	 Setup. B runs KeyGen(λ) to generate (pk, sk) and gives pk to A, while sk is
kept secret.
	 Queries. A is allowed to make queries as follows. A sends a file m to B. B
computes the corresponding Tm and gives it to A.
	 Challenge. A submits two different files m0 and m1 of equal length, such
that they have not be chosen in the phase Queries, and sends them to B. B
generates Tm0 and Tm1 by running TagGen, randomly chooses a bit b ∈R {0, 1}
and forwards Tmb

to A. Then, A sets a challenge chal and sends it to B. B
generates a proof of data possession ν∗ based on mb, Tmb

and chal, and replies
to A by giving ν∗.
	 Guess. Finally, A chooses a bit b′ ∈ {0, 1} and wins the game if b′ = b.

The advantage of A in winning the second data privacy game is defined as
AdvA(λ) = |Pr[b′ = b] − 1

2 |. The DPDP with PV and DP is data privacy-
preserving if there is no PPT adversary A who can win the above game with
non-negligible advantage AdvA(λ).

3 The Three Attacks

3.1 DPDP Construction with PV and DP in [9]

The DPDP scheme with PV and DP construction presented in [9] is as follows:
• KeyGen(λ) → (pk, sk). The client runs GroupGen(λ) → (p, G1, G2, GT , e, g1, g2)
such that on input the security parameter λ, GroupGen generates the cyclic
groups G1, G2 and GT of prime order p = p(λ) with the bilinear map e :
G1 × G2 → GT . Let < g1 >= G1 and < g2 >= G2. Then, h1, · · · , hs ∈R G1

and a ∈R Zp are randomly chosen. Finally, he/she sets the public key pk =
(p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ) and the secret key sk = a.
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• TagGen(pk, sk,mi) → Tmi
. A file m is split into n blocks mi, for i ∈ [1, n].

Each block mi is then split into s sectors mi,j ∈ Zp, for j ∈ [1, s]. Therefore,
the file m can be seen as a n × s matrix with elements denoted as mi,j . The
client computes Tmi

= (
∏s

j=1 h
mi,j

j )−sk =
∏s

j=1 h
−a·mi,j

j . Yet, he/she sets Tm =
(Tm1 , · · · , Tmn

) ∈ G
n
1 .

• PerfOp(pk, F, E, info = (operation, l,ml, Tml
)) → (F′, E′, ν′). The server first

selects at random uj ∈R Zp, for j ∈ [1, s], and computes Uj = h
uj

j . It also chooses
at random wl ∈R Zp and sets cj = ml,j ·wl +uj , Cj = h

cj

j , and d = Twl
ml

. Finally,
it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d, wl) ∈ G

2s+1
1 to the TPA. For the

operation: (1) Insertion: (l,ml, Tml
) = ( i1+i2

2 ,m i1+i2
2

, Tm i1+i2
2

); (2) Deletion:

(l,ml, Tml
) = (i, , ), meaning that ml and Tml

are not required (the server
uses mi and Tmi

that are kept on its storage to generate ν′); (3) Modification:
(l,ml, Tml

) = (i,m′
i, Tm′

i
).

• CheckOp(pk, ν′) → 0/1. The TPA has to check whether the following equation
holds:

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2)
?= e(

s∏

j=1

Cj , g2) (1)

If Eq. 1 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.
• GenProof(pk, F, chal,Σ) → ν. The TPA first chooses I ⊆ (0, n + 1) ∩ Q,
randomly chooses |I| elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . After
receiving chal, the server sets F = {mi}i∈I ⊂ F of blocks and Σ = {Tmi

}i∈I ⊂ E

which are the tags corresponding to the blocks in F . It then selects at random
rj ∈R Zp, for j ∈ [1, j], and computes Rj = h

rj

j . It also sets bj =
∑

(i,vi)∈chal mi,j ·
vi + rj , Bj = h

bj

j for j ∈ [1, s], and c =
∏

(i,vi)∈chal T
vi
mi

. Finally, it returns
ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G

2s+1
1 to the TPA.

• CheckProof(pk, chal, ν) → 0/1. The TPA has to check whether the following
equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

s∏

j=1

Bj , g2) (2)

If Eq. 2 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. Given the proof of data possession ν and the updating proof ν′, we
have:

e(c, ga2 ) · e(
s∏

j=1

Rj , g2) = e(
∏

(i,vi)
∈chal

T vi
mi

, ga2 ) · e(
s∏

j=1

h
rj

j , g2) = e(

s∏

j=1

h
bj

j , g2) = e(

s∏

j=1

Bj , g2)

e(d, ga2 ) · e(
s∏

j=1

Uj , g2) = e(Twi
mi

, ga2 ) · e(
s∏

j=1

h
uj

j , g2) = e(
s∏

j=1

h
cj

j , g2) = e(
s∏

j=1

Cj , g2)
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N.B. In the construction in [9], the definition of the tag Tmi
corresponding to

the block mi and enabling to remotely verify the data integrity is independent
of the rank i; thus, this begs for being used for an attack. Note that if mi = 0,
then Tmi

= 1 and thus, one can trivially cheat since the tag is independent of
the file.

3.2 Replace Attack

Let the server store only one block (e.g. m1) instead of n blocks as the client
believes. The TPA audits the server by sending it a challenge chal for blocks
with ranks in I ⊆ [1, n] such that |I| ≤ n. The server generates a proof of data
possession on the |I| blocks m1 (instead of the blocks defined by chal) by using
|I| times the block m1 to obtain the proof of data possession. The attack is
successful if the server manages to pass the verification process and has its proof
of data possession being accepted by the TPA.

The client computes Tm = (Tm1 , · · · , Tmn
) ∈ G

n
1 for a file m = (m1, · · · ,mn)

where Tmi
= (

∏s
j=1 h

mi,j

j )−sk = (
∏s

j=1 h
mi,j

j )−a for s public elements hj ∈
G1 and the secret key sk = a ∈ Zp. Then, the client stores all the blocks
mi in F and the tags Tmi

in E, forwards these collections to the server and
deletes them from his/her local storage. Yet, the server is asked to generate
a proof of data possession ν. We assume that it only stores m1 while it has
deleted m2, · · · ,mn and we show that it can still pass the verification process.
The TPA prepares a challenge chal by choosing a set I ⊆ [1, n] (without loss
of generality, we assume that the client has not requested the server for data
operations yet). The TPA then randomly chooses |I| elements vi ∈R Zp and sets
chal = {(i, vi)}i∈I . Second, after receiving chal, the server sets F = {m1}i∈I ⊂ F

of blocks (instead of F = {mi}i∈I) and Σ = {Tm1}i∈I ⊂ E (instead of Σ =
{Tmi

}i∈I). The server finally forwards ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G
2s+1
1

to the TPA, where Rj = h
rj

1 for rj ∈R Zp and Bj = h

∑
(i,vi)∈chal m1,j ·vi+rj

j

(instead of Bj = h

∑
(i,vi)∈chal mi,j ·vi+rj

j ) for j ∈ [1, s], and c =
∏

(i,vi)∈chal T
vi
m1

(instead of c =
∏

(i,vi)∈chal T
vi
mi

). The TPA has to check whether the following
equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

s∏

j=1

Bj , g2) (3)

If Eq. 3 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. Given the proof of data possession ν, we have:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2) = e(
∏

(i,vi)∈chal

T vi
m1

, ga
2 ) · e(

s∏

j=1

h
rj

j , g2)
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= e(
∏

(i,vi)∈chal

s∏

j=1

h
m1,j ·(−a)·vi

j , ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
s∏

j=1

h
bj

j , g2) = e(
s∏

j=1

Bj , g2)

Therefore, Eq. 3 holds, although the server is actually storing one block only.

3.3 Replay Attack

The client asks the server to replace mi with m′
i. However, the server does not

proceed and keeps mi on its storage. Then, the TPA has to check that the
operation has been correctly done and asks the server for an updating proof ν′.
The server generates it, but using mi instead of m′

i. The attack is successful if
the server manages to pass the verification process and has ν′ being accepted by
the TPA.

A client asks the server to modify the block mi by sending m′
i and Tm′

i
.

However, the server does not follow the client’s request and decides to keep
mi and Tmi

, and deletes m′
i and Tm′

i
. The server receives i, m′

i and Tm′
i

from the client but deletes them, and generates the updating proof ν′ =
(U1, · · · , Us, C1, · · · , Cs, d) ∈ G

2s+1
1 by using mi and Tmi

such that Uj = h
uj

1

where uj ∈R Zp and Cj = h
mi,j ·wi+uj

j (instead of Cj = h
m′

i,j ·wi+uj

j ) for j ∈ [1, s],
and d = Twi

mi
(instead of d = Twi

m′
i
). It gives ν′ to the TPA. The TPA has to check

whether the following equation holds:

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2)
?= e(

s∏

j=1

Cj , g2) (4)

If Eq. 4 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. Given the updating proof ν′, we have:

e(d, ga2 ) · e(
s∏

j=1

Uj , g2) = e(Twi
mi

, ga2 ) · e(
s∏

j=1

h
uj

j , g2) = e(
s∏

j=1

h
mi,j ·(−a)·wi

j , ga2 ) · e(
s∏

j=1

h
uj

j , g2)

= e(
s∏

j=1

h
cj

j , g2) = e(
s∏

j=1

Cj , g2)

Therefore, Eq. 4 holds, although the server has not updated the block m′
i and

the corresponding tag Tm′
i
.

3.4 Attack against Data Privacy

The adversarial TPA and the server play the second data privacy game. The TPA
gives two equal-length blocks m0 and m1 to the server and the latter replies by
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sending Tmb
of mb where b ∈R {0, 1} is a random bit. Then, the TPA selects a

bit b′ ∈ {0, 1}. The attack is successful if using mb′ , the TPA can discover which
block mb ∈ {m0,m1} was chosen by the server.

Let m0 = (m0,1, · · · ,m0,n) and m1 = (m1,1, · · · ,m1,n). The server computes
Tmb,i

= (
∏s

j=1 h
mb,i,j

j )−sk = (
∏s

j=1 h
mb,i,j

j )−a, for b ∈R {0, 1} and i ∈ [1, n],
and gives them to the TPA. Note that e(Tmb,i

, g2) = e((
∏s

j=1 h
mb,i,j

j )−a, g2) =
e(

∏s
j=1 h

mb,i,j

j , (ga
2 )−1). The computation of e(

∏s
j=1 h

mb,i,j

j , (ga
2 )−1) requires only

public elements. Therefore, for b′ ∈ {0, 1}, the TPA is able to generate the pairing
e(

∏s
j=1 h

mb′,i,j

j , (ga
2 )−1) given pk and the block that it gave to the server, and

e(Tmb,i
, g2) given the tag sent by the server. Finally, the TPA compares them.

If these two pairings are equal, then b′ = b; otherwise b′ �= b.

N.B. This attack is due to the public verifiability property of the scheme in [9]
based on the definition of the second data privacy game. Moreover, in the proof
for data privacy in [9], the analysis is wrong: the affirmation “The probability
Pr[b′ = b] must be equal to 1

2 since the tags Tmb,i
, for i ∈ [1, n], and the proof

ν∗ are independent of the bit b.” is incorrect since Tmb,i
and ν∗ actually depend

on b.

4 IHT-based DPDP Scheme with PV and DP

A solution to avoid the replace attack is to embed the rank i of mi into Tmi
.

When the TPA on behalf of the client checks ν generated by the server, it requires
to use all the ranks of the challenged blocks to process the verification. Such idea
was proposed for the publicly verifiable scheme in [13]. A solution to avoid the
replay attack is to embed the version number vnbi of mi into Tmi

. The first time
that the client sends mi to the server, vnbi = 1 (meaning that the first version
of the block is uploaded) and is appended to i. When the client wants to modify
mi with m′

i, he/she specifies vnbi = 2 (meaning that the second version of the
block is uploaded) and generates Tm′

i
accordingly. When the TPA on behalf of

the client checks that the block was correctly updated by the server, it has to
use both i and vnbi of mi. Moreover, we stress that the rank i of the block mi is
unique. More precisely, when a block is inserted, a new rank is created that has
not been used and when a block is modified, the rank does not change. However,
when a block is deleted, its rank does not disappear to ensure that it won’t be
used for another block and thus, to let the scheme remain secure.

4.1 IHT-based Construction

The IHT-based DPDP scheme with PV and DP construction is as follows:
• KeyGen(λ) → (pk, sk). The client runs Group- Gen(λ) → (p, G1, G2, GT ,
e, g1, g2) such that on input the security parameter λ, GroupGen generates the
cyclic groups G1, G2 and GT of prime order p = p(λ) with the bilinear map
e : G1 × G2 → GT . Let < g1 >= G1 and < g2 >= G2. Let the hash
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function H : Q × N → G1 be a random oracle. Then, h1, · · · , hs ∈R G1

and a ∈R Zp are randomly chosen. Finally, he/she sets the public key pk =
(p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ,H) and the secret key sk = a.

• TagGen(pk, sk,mi) → Tmi
. A file m is split into n blocks mi, for i ∈ [1, n].

Each block mi is then split into s sectors mi,j ∈ Zp, for j ∈ [1, s]. Therefore, the
file m can be seen as a n × s matrix with elements denoted as mi,j . The client
computes Tmi

= (H(i, vnbi)·
∏s

j=1 h
mi,j

j )−sk = H(i, vnbi)−a ·∏s
j=1 h

−a·mi,j

j . Yet,
he/she sets Tm = (Tm1 , · · · , Tmn

) ∈ G
n
1 .

• PerfOp(pk, F, E, info = (operation, l,ml, Tml
)) → (F′, E′, ν′). The server first

selects at random uj ∈R Zp, for j ∈ [1, s], and computes Uj = h
uj

j . It also chooses
at random wl ∈R Zp and sets cj = ml,j · wl + uj , Cj = h

cj

j for j ∈ [1, s], and
d = Twl

ml
. Finally, it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d, wl) ∈ G

2s+1
1 to the

TPA. For the operation: (1) Insertion: (l,ml, Tml
) = ( i1+i2

2 ,m i1+i2
2

, Tm i1+i2
2

)

and vnbl = vnb i1+i2
2

= 1; (2) Deletion: (l,ml, Tml
) = (i, , ) and vnbl = vnbi =

, meaning that ml, Tml
and vnbl are not required (the server uses mi, Tmi

and
vnbi that are kept on its storage to generate ν′); (3) Modification: (l,ml, Tml

) =
(i,m′

i, Tm′
i
) and vnbl = vnb′

i = vnbi + 1.
• CheckOp(pk, ν′) → 0/1. The TPA has to check whether the following equation
holds:

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2)
?= e(H(l, vnbl)wl , g2) · e(

s∏

j=1

Cj , g2) (5)

If Eq. 5 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.
• GenProof(pk, F, chal,Σ) → ν. The TPA first chooses I ⊆ (0, n + 1) ∩ Q,
randomly chooses |I| elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . After
receiving chal, the server sets F = {mi}i∈I ⊂ F of blocks and Σ = {Tmi

}i∈I ⊂ E

which are the tags corresponding to the blocks in F . It then selects at random
rj ∈R Zp, for j ∈ [1, s], and computes Rj = h

rj

j . It also sets bj =
∑

(i,vi)∈chal mi,j ·
vi + rj , Bj = h

bj

j for j ∈ [1, s], and c =
∏

(i,vi)∈chal T
vi
mi

. Finally, it returns
ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G

2s+1
1 to the TPA.

• CheckProof(pk, chal, ν) → 0/1. The TPA has to check whether the following
equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

∏

(i,vi)
∈chal

H(i, vnbi)vi , g2) · e(
s∏

j=1

Bj , g2) (6)

If Eq. 6 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.
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Correctness. Given the proof of data possession ν and the updating proof ν′, we
have:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2) = e(
∏

(i,vi)∈chal

T vi
mi

, ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

(H(i, vnbi) ·
s∏

j=1

h
mi,j

j )−a·vi , ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

H(i, vnbi)vi , g2) · e(
s∏

j=1

Bj , g2)

e(d, ga
2 ) · e(

s∏

j=1

Uj , g2) = e(Twl
ml

, ga
2 ) · e(

s∏

j=1

h
uj

j , g2)

= e(H(l, vnbl) ·
s∏

j=1

h
ml,j

j , ga
2 )−a·wl · e(

s∏

j=1

h
uj

j , g2)

= e(H(l, vnbl)wl , g2) · e(
s∏

j=1

Cj , g2)

N.B. The client or TPA must store the values vnb locally. However, this does
not incur more burden if we consider the values vnb as bit strings.

4.2 Security and Privacy Proofs

Security Proof Against the Server

Theorem 1. Let A be a PPT adversary that has advantage ε against the IHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH >
0 queries to H. Then, there is a challenger B that solves the Computational
Diffie-Hellman (CDH) and Discrete Logarithm (DL) problems with advantage
ε′ = O(ε).

We give the security proof in the Appendix A.

First Data Privacy Proof Against the TPA

Theorem 2. Let A be a PPT adversary that has advantage ε against the IHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH > 0
queries to H. Then, there is a challenger B that solves the CDH problem with
advantage ε′ = O(ε).

We give the first data privacy proof in the full version of this paper [8].
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4.3 Performance

We compare the IHT-based scheme with the original scheme proposed in [9].
First, the client and TPA obviously have to store more information by keeping
the IHT. Nevertheless, we stress that in any case, the client and TPA should
maintain a rank list. Indeed, they need some information about the stored data
in order to select some data blocks to be challenged. We recall that the challenge
consists of pairs of the form “(rank, random element)”. By appending an integer
and sometimes an auxiliary comment (only in case of deletions) to each rank, the
extra burden is not excessive. Therefore, such table does slightly affect the client’s
as well as TPA’s local storages. The communication between the client and TPA
rather increases since the client should send more elements to the TPA in order
to keep the table updated. Second, the client has to perform extra computation
when generating the verification metadata: for each file block mi, he/she has to
compute H(i, vnbi). However, the communication between the client and server
overhead does not increase. Third, the TPA needs to compute an extra pairing
e(H(i, vnbi), g2)wi in order to check that the server correctly performed a data
operation requested by the client. The TPA also has to compute |I| multiplica-
tions in G1 and one extra pairing when checking the proof of data possession:
for each challenge chal = {(i, vi)}i∈I , it calculates

∏
(i,vi)∈chal H(i, vnbi) as well

as the pairing e(
∏

(i,vi)∈chal H(i, vnbi)vi , g2). This gives a constant total of four
pairings in order to verify the data integrity instead of three, that is not a big
loss in term of efficiency and practicality. Finally, apart the storage of a light
table and computation of an extra pairing by the TPA for the verification of
both the updating proof and proof of data possession, the new construction for
the DPDP scheme with PV and DP is still practical by adopting asymmetric
pairings to gain efficiency and by still reducing the group exponentiation and
pairing operations. In addition, this scheme still allows the TPA on behalf of the
client to request the server for a proof of data possession on as many data blocks
as possible at no extra cost, as in the scheme given in [9].

5 MHT-based DPDP Scheme with PV and DP

A second solution to avoid the three attacks is to implement a MHT [12] for
each file. In a MHT, each internal node has always two children. For a leaf
node ndi based on the block mi, the assigned value is H ′(mi), where the hash
function H ′ : {0, 1}∗ → G1 is seen as a random oracle. Note that the hash values
are affected to the leaf nodes in the increasing order of the blocks: ndi and
ndi+1 correspond to the hash of the blocks mi and mi+1 respectively. A parent
node of ndi and ndi+1 has a value computed as H ′(H ′(mi)||H ′(mi+1)), where
|| is the concatenation sign (for an odd rank i). The Auxiliary Authentication
Information (AAI) Ωi of a leaf node ndi for mi is a set of hash values chosen
from its upper levels, so that the root rt can be computed using (mi, Ωi).
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5.1 MHT-based Construction

Let DPDP be a DPDP construction with PV and DP such as defined in Sect. 3.1
and [9]. Let SS = (Gen,Sign,Verify) be a strongly unforgeable digital signature
scheme. The MHT-based DPDP scheme with PV and DP construction is as
follows:
• MHT.KeyGen(λ) → (pk, sk). Let GroupGen(λ) → (p, G1, G2, GT , e, g1, g2)
be run as follows. On input the security parameter λ, GroupGen gener-
ates the cyclic groups G1, G2 and GT of prime order p = p(λ) with the
bilinear map e : G1 × G2 → GT . Let < g1 >= G1 and < g2 >=
G2. The client runs Gen(λ) → (pkSS, skSS) and KeyGen(λ) → (pk, sk) =
((p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ), a), where h1, · · · , hs ∈R G1 and a ∈R Zp

are randomly chosen. The client sets his/her public key pk = (pk, pkSS) and
his/her secret key sk = (sk, skSS).
• MHT.TagGen(pk, sk,mi) → Tmi

. The client runs n times TagGen(pk, sk,mi) →
T ′

mi
= (

∏s
j=1 h

mi,j

j )−sk = (
∏s

j=1 h
mi,j

j )−a for i ∈ [1, n] and obtains T ′
m =

(T ′
m1

, · · · , T ′
mn

) ∈ G
n
1 . He/she also chooses a hash function H ′ : {0, 1}∗ → G1

seen as a random oracle. Then, he/she creates the MHT regarding the file
m = (m1, · · · ,mn) as follows. He/she computes H ′(mi) and assigns it to the
i-th leaf for i ∈ [1, n]. He/she starts to construct the resulting MHT, and obtains
the root rt. Finally, the client runs Sign(skSS, rt) → σrt. Using the hash values,
he/she computes the tags as Tmi

= H ′(mi)−sk ·T ′
mi

= H ′(mi)−a ·∏s
j=1 h

−a·mi,j

j

for i ∈ [1, n]. Then, the client stores all the blocks mi in an ordered collection F

and the corresponding tags Tmi
in an ordered collection E. He/she forwards these

two collections and (H ′, σrt) to the server. Once the server receives (F, E,H ′), it
generates the MHT. It sends the resulting root rtserver to the client. Upon get-
ting the root rtserver, the client runs Verify(pkSS, σrt, rtserver) → 0/1. If 0, then
the client aborts. Otherwise, he/she proceeds, deletes (F, E, σrt) from his/her
local storage and keeps H ′ for further data operations.
• MHT.PerfOp(pk, F, E, R = (operation, i), info = (mi, Tmi

, σrt′)) → (F′, E′,
rt′server). First, the client sends a request R = (operation, i) to the server,
that contains the type and rank of the operation. Upon receiving R, the server
selects the AAI Ωi that the client needs in order to generate the root rt′ of
the updated MHT, and sends it to the client. Once the client receives Ωi,
he/she first constructs the updated MHT. He/she calculates the new root rt′

and runs Sign(skSS, rt′) → σrt′ . Then, the client sends info = (mi, Tmi
, σrt′)

(note that mi and Tmi
are not needed for a deletion). After receiving info

from the client, the server first updates the MHT, calculates the new root
rt′server and sends it to the client. Upon getting the root rt′server, the client
runs Verify(pkSS, σrt′ , rt′server) → 0/1. If 0, then the client aborts. Otherwise,
he/she proceeds and deletes (mi, Tmi

, σrt′) from his/her local storage. For the
operation: (1) Insertion: mi0 is added before mi by placing mi0 at the i-th leaf
node, and all the blocks from mi are shifted to leaf nodes by 1 to the right; (2)
Deletion: mi is removed from the i-th leaf node and all the blocks from mi+1

are shifted to leaf nodes by 1 to the left; (3) Modification: m′
i simply replaces

mi at the i-th leaf node.
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• MHT.GenProof(pk, F, chal,Σ) → (ν, rtserver, {H ′(mi), Ωi}i∈I). The TPA
chooses a subset I ⊆ [1, nmax] (nmax is the maximum number of blocks after
operations), randomly chooses |I| elements vi ∈R Zp and sets the challenge
chal = {(i, vi)}i∈I . Then, after receiving chal and given F = {mi}i∈I ⊂ F

and Σ = {Tmi
}i∈I ⊂ E, the server runs GenProof(pk, F, chal,Σ) → ν such

that ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G
2s+1
1 , where rj ∈R Zp, Rj = h

rj

1 ,
bj =

∑
(i,vi)∈chal mi,j · vi + rj ∈ Zp and Bj = h

bj

j for j ∈ [1, s], and
c =

∏
(i,vi)∈chal T

vi
mi

. Moreover, the server prepares the latest version of the
stored root’s signature σrt provided by the client, the root rtserver of the cur-
rent MHT, the H ′(mi) and AAI Ωi for the challenged blocks, such that the
current MHT has been constructed using {H ′(mi), Ωi}i∈I . Finally, it returns
(ν, σrt, rtserver, {H ′(mi), Ωi}i∈I) to the TPA.
• MHT.CheckProof(pk, chal, ν, σrt, rtserver, {H ′(mi), Ωi}i∈I) → 0/1. After
receiving {H ′(mi), Ωi}i∈I from the server, the TPA first constructs the MHT
and calculates the root rtTPA. It then checks that rtserver = rtTPA. If not, then
it aborts; otherwise, it runs Verify(pkSS, σrt, rtserver) → 0/1. If 0, then the TPA
aborts. Otherwise, it proceeds and checks whether the following equation holds:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2)
?= e(

∏

(i,vi)∈chal

H ′(mi)vi , g2) · e(
s∏

j=1

Bj , g2) (7)

If Eq. 7 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to
the client.

Correctness. We suppose that the correctness holds for DPDP and SS protocols.
Given the proof of data possession ν, we have:

e(c, ga
2 ) · e(

s∏

j=1

Rj , g2) = e(
∏

(i,vi)∈chal

T vi
mi

, ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

(H ′(mi) ·
s∏

j=1

h
mi,j

j )−a·vi , ga
2 ) · e(

s∏

j=1

h
rj

j , g2)

= e(
∏

(i,vi)∈chal

H ′(mi)vi , g2) · e(
s∏

j=1

Bj , g2)

N.B. In MHT.GenProof, since I is a subset of ranks, the server has to be given
the appropriate {Ωi}i∈I along with {H ′(mi)}i∈I to obtain the current MHT and
thus complete the proof generation. Otherwise, the TPA won’t get the proper
MHT.

5.2 Security and Privacy Proofs

We give the proofs in the full version of this paper [8].
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Security Proof Against the Server

Theorem 3. Let A be a PPT adversary that has advantage ε against the MHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH′ > 0
queries to H ′. Then, there is a challenger B that solves the CDH and DL problems
with advantage ε′ = O(ε).

Second Data Privacy Proof Against the TPA

Theorem 4. Let A be a PPT adversary that has advantage ε against the MHT-
based DPDP scheme with PV and DP. Suppose that A makes a total of qH′ > 0
queries to H ′. Then, there is a challenger B that solves the (s+1)-DDHE problem
with advantage ε′ = O(ε).

5.3 Performance and Discussion with Other Existing Works

We first compare the MHT-based scheme with the original one presented in [9].
The MHT-based construction seems less practical and efficient than the con-
struction in [9]. Communication and computation burdens appear in order to
obtain the desired security standards against the server and TPA. The com-
munication overheads increase between the client and server. The computation
overheads for the client raise also, although the client is limited in resources.
The storage space of the server should be bigger, since it has to create and pos-
sibly stores MHTs for each client. The TPA has to provide more computational
resources for each client in order to ensure valid data integrity checks. Neverthe-
less, experiments might show that the time gap between the algorithms in the
scheme proposed in [9] and the ones in the MHT-based scheme is acceptable.

The MHT is an Authenticated Data Structure (ADS) that allows the client
and TPA to check that the server correctly stores and updates the data blocks.
Erway et al. [4] proposed the first DPDP scheme. The verification of the data
updates is based on a modified ADS, called Rank-based Authentication Skip List
(RASL). This provides authentication of the data block ranks, which ensures
security in regards to data block dynamicity. However, public verifiability is
not reached. Note that such ADS with bottom-up leveling limits the insertion
operations. For instance, if the leaf nodes are at level 0, any data insertion that
creates a new level below the level 0 will bring necessary updates of all the level
hash values and the client might not be able to verify. Wang et al. [21] first
presented a DPDP with PV using MHT. However, security proofs and technical
details lacked. The authors revised the aforementioned paper [21] and proposed a
more complete paper [22] that focuses on dynamic and publicly verifiable PDP
systems based on BLS signatures. To achieve the dynamicity property, they
employed MHT. Nevertheless, because the check of the block ranks is not done,
the server can delude the client by corrupting a challenged block as follows: it is
able to compute a valid proof with other non-corrupted blocks. Thereafter, in a
subsequent work [20], Wang et al. suggested to add randomization to the above
system [22], in order to guarantee that the server cannot deduce the contents



Dynamic Provable Data Possession Protocols 501

of the data files from the proofs of data possession. Liu et al. [11] constructed
a PDP protocol based on MHT with top-down leveling. Such protocol satisfies
dynamicity and public verifiability. They opted for such design to let leaf nodes
be on different levels. Thus, the client and TPA have both to remember the total
number of data blocks and check the block ranks from two directions (leftmost
to rightmost and vice versa) to ensure that the server does not delude the client
with another node on behalf of a file block during the data integrity checking
process. In this paper, the DPDP scheme with PV and DP is based on MHT
with bottom-up leveling, such that data block ranks are authenticated. Such
tree-based construction guarantees secure dynamicity and public verifiability
processes as well as preservation of data privacy, and remains practical in real
environments.

6 Conclusion

We provided two solutions to solve the adversarial issues encountered in the
DPDP scheme with PV and DP proposed in [9]. These solutions manage to
overcome replay attacks, replace attacks and attacks against data privacy by
embedding IHT or MHT into the construction in [9]. We proved that the two
new schemes are both secure against the server and data privacy-preserving
against the TPA in the random oracle.

Acknowledgments. This work was partially supported by the TREDISEC project
(G.A. no 644412), funded by the European Union (EU) under the Information and
Communication Technologies (ICT) theme of the Horizon 2020 (H2020) research and
innovation programme.

A Security Proof Against the Server for the IHT-based
Scheme

For any PPT adversary A who wins the game, there is a challenger B that wants
to break the CDH and DL problems by interacting with A as follows:
	 KeyGen. B runs GroupGen(λ) → (p, G, GT , e, g). Then, it is given the CDH
instance tuple (g, ga, gb) where < g >= G, chooses two exponents x, y ∈ Zp and
computes g1 = gx and g2 = gy. It also sets G1 =< g1 > and G2 =< g2 >. Note
that (ga)x = ga

1 , (gb)x = gb
1, (ga)y = ga

2 and (gb)y = gb
2. B chooses βj , γj ∈R Zp

and sets hj = g
βj

1 · (gb
1)

γj for j ∈ [1, s]. Let a hash function H : Q × N → G1

be controlled by B as follows. Upon receiving a query (il′ , vnbil′ ) to H for some
l′ ∈ [1, qH ], if ((il′ , vnbil′ ), θl′ ,Wl′) exists in LH , return Wl′ ; otherwise, choose
βj , γj ∈R Zp and set hj = g

βj

1 · (gb
1)

γj for j ∈ [1, s]. For each il′ , choose θl′ ∈R Zp

at random and set Wl′ = g
θ

l′
1

g

∑s
j=1 βjmi

l′ ,j

1 (gb
1)

∑s
j=1 γjmi

l′ ,j
for a given block mil′ =

(mil′ ,1, · · · ,mil′ ,s). Put ((il′ , vnbil′ ), θl′ ,Wl′) in LH and return Wl′ . B sets the
public key pk = (p, G1, G2, GT , e, g1, g2, h1, · · · , hs, g

a
2 ,H) and forwards it to A.

B keeps ga
1 , gb

1 and gb
2 secret.



502 C. Gritti et al.

	 Adaptive Queries. A has first access to OTG as follows. It first adaptively
selects blocks mi = (mi,1, · · · ,mi,s), for i ∈ [1, n]. Then, B computes Tmi

= (W ·∏s
j=1 h

mi,j

j )−sk = (W ·∏s
j=1 h

mi,j

j )−a, such that if ((i, vnbi), θ,W ) exists in LH ,
then W is used to compute Tmi

. Otherwise, θ ∈R Zp is chosen at random, W =
gθ
1

g

∑s
j=1 βjmi,j

1 (gb
1)

∑s
j=1 γjmi,j

is computed for hj = g
βj

1 · (gb
1)

γj , ((i, vnbi), θ,W ) is put

in LH and W is used to compute Tmi
. Note that we have

∏s
j=1 h

mi,j

j ·H(i, vnbi) =

(
∏s

j=1 h
mi,j

j ) · gθ
1

g

∑s
j=1 βjmi,j

1 ·(gb
1)

∑s
j=1 γjmi,j

= g

∑s
j=1 βjmi,j

1 (gb
1)

∑s
j=1 γjmi,j ·gθ

1

g

∑s
j=1 βjmi,j

1 ·(gb
1)

∑s
j=1 γjmi,j

= gθ
1 and

so, Tmi
= (H(i, vnbi) · ∏s

j=1 h
mi,j

j )−sk = (H(i, vnbi) · ∏s
j=1 h

mi,j

j )−a = (ga
1 )−θ.

B gives the blocks and tags to A. The latter sets an ordered collection F =
{mi}i∈[1,n] of blocks and an ordered collection E = {Tmi

}i∈[1,n] which are the
tags corresponding to the blocks in F.

A has also access to ODOP as follows. Repeatedly, A selects a block ml and
the corresponding infol and forwards them to B. Here, l denotes the rank where
A wants the data operation to be performed: l is equal to i1+i2

2 for an insertion
and to i for a deletion or a modification. We recall that only the rank is needed for
a deletion and the version number vnbl increases by 1 for a modification. Then,
A outputs two new ordered collections F

′ and E
′, and a corresponding updating

proof ν′ = (U1, · · · , Us, C1, · · · , Cs, d, wl), such that wl ∈R Zp, d = Twl
ml

, and for
j ∈ [1, s], uj ∈R Zp, Uj = h

uj

j , cj = ml,j · wl + uj and Cj = h
cj

j . B runs CheckOp
on ν′ and sends the answer to A. If the answer is 0, then B aborts; otherwise, it
proceeds.
	 Challenge. A selects m∗

i and info∗
i , for i ∈ I ⊆ (0, n + 1) ∩ Q, and forwards

them to B who checks the data operations. In particular, the first info∗
i indicates

a full re-write. B chooses a subset I ⊆ I, randomly selects |I| elements vi ∈R Zp

and sets chal = {(i, vi)}i∈I . It forwards chal as a challenge to A.
	 Forgery. Upon receiving chal, the resulting proof of data possession on the
correct stored file m should be ν = (R1, · · · , Rs, B1, · · · , Bs, c) and pass the
Eq. 6. However, A generates a proof of data possession on an incorrect stored
file m̃ as ν̃ = (R̃1, · · · , R̃s, B̃1, · · · , B̃s, c̃), such that r̃j ∈R Zp, R̃j = h

r̃j

j ,

b̃j =
∑

(i,vi)∈chal m̃i,j · vi + r̃j and B̃j = h
b̃j

j , for j ∈ [1, s]. It also sets
c̃ =

∏
(i,vi)∈chal T

vi

m̃i
. Finally, it returns ν̃ to B. If ν̃ still pass the verification,

then A wins. Otherwise, it fails.

Analysis. We define Δrj = r̃j − rj , Δbj = b̃j − bj =
∑

(i,vi)∈chal(m̃i,j −mi,j)vi +
Δrj and Δμj =

∑
(i,vi)∈chal(m̃i,j − mi,j)vi, for j ∈ [1, s]. Note that rj and bj

are the elements of a honest proof of data possession ν such that rj ∈R Zp and
bj =

∑
(i,vi)∈chal mi,j · vi + rj where mi,j are the actual sectors (not the ones

that A claims to have).
We prove that if A can win the game, then solutions to the CDH and DL

problems are found, which contradicts the assumption that the CDH and DL
problems are hard in G and G1 respectively. Let assume that A wins the game.
We recall that if A wins then B can extract the actual blocks {mi}(i,vi)∈chal

in polynomially-many interactions with A. Wlog, suppose that chal = {(i, vi)},
meaning the challenge contains only one block.
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◦ First case ( c̃ �= c): According to Eq. 6, we have e( c̃
c , g2) = e

(
Tm̃i

Tmi
, g2

)vi

=

e(
∏s

j=1 h
Δμj

j , g−a
2 ) = e(

∏s
j=1(g

βj

1 · (gb
1)

γj )Δμj , g−a
2 ) and so, we get that e( c̃

c ·
(ga

1 )
∑s

j=1 βjΔμj , g2) = e(gb
1, g

−a
2 )

∑s
j=1 γjΔμj meaning that we have found the solu-

tion to the CDH problem, that is (gb
1)

a = (gx)ab = ( c̃
c · (ga

1 )
∑s

j=1 βjΔμj )
−1∑s

j=1 γjΔμj

unless evaluating the exponent causes a divide-by-zero. Nevertheless, we notice
that not all of the Δμj can be zero (indeed, if μj = mi,jvi = μ̃j = m̃i,jvi

for j ∈ [1, s], then c = c̃ which contradicts the hypothesis), and the γj

are information theoretically hidden from A (Pedersen commitments), so the
denominator is zero only with probability 1/p, which is negligible. Finally,
since B knows the exponent x such that g1 = gx, it can directly compute

(( c̃
c · (ga

1 )
∑s

j=1 βjΔμj )
−1∑s

j=1 γjΔμj )
1
x and obtains gab. Thus, if A wins the game,

then a solution to the CDH problem can be found with probability equal to
1 − 1/p.
◦ Second Case ( c̃ = c): According to Eq. 6, we have e(c̃, ga

2 ) = e(H(i, vnbi)vi , g2)·
e(

∏s
j=1 B̃j , g2)·e(

∏s
j=1 R̃j , g2)−1. Since the proof ν = (R1, · · · , Rs, B1, · · · , Bs, c)

is a correct one, we also have e(c, ga
2 ) = e(H(i, vnbi)vi , g2) · e(

∏s
j=1 Bj , g2) ·

e(
∏s

j=1 Rj , g2)−1. We recall that chal = {(i, vi)}. From the previous analysis
step, we know that c̃ = c. Therefore, we get that

∏s
j=1 B̃j · (

∏s
j=1 R̃j)−1 =

∏s
j=1 Bj · (

∏s
j=1 Rj)−1. We can re-write as

∏s
j=1 h

b̃j−r̃j

j =
∏s

j=1 h
bj−rj

j or even

as
∏s

j=1 h
Δbj−Δrj

j =
∏s

j=1 h
Δμj

j = 1. For g1, h ∈ G1, there exists ξ ∈ Zp such
that h = gξ

1 since G1 is a cyclic group. Wlog, given g1, h ∈ G1, each hj could
randomly and correctly be generated by computing hj = g

yj

1 · hzj ∈ G1 such
that yj and zj are random values in Zp. Then, we have 1 =

∏s
j=1 h

Δμj

j =
∏s

j=1(g
yj

1 · hzj )Δμj = g
∑s

j=1 yj ·Δμj

1 · h
∑s

j=1 zj ·Δμj . Clearly, we can find a solution
to the DL problem. More specifically, given g1, h = gξ

1 ∈ G1, we can compute

h = g

∑s
j=1 yj ·Δμj

∑s
j=1 zj ·Δμj

1 = gξ
1 unless the denominator is zero. However, not all of the

Δμj can be zero and the zj are information theoretically hidden from A, so the
denominator is only zero with probability 1/p, which is negligible. Thus, if A
wins the game, then a solution to the DL problem can be found with probability
equal to 1 − 1/p. Therefore, for A, it is computationally infeasible to win the
game and generate an incorrect proof of data possession which can pass the
verification.

The simulation of OTG is perfect. The simulation of ODOP is almost perfect
unless B aborts. This happens when the data operation was not correctly per-
formed. As previously, we can prove that if A can pass the updating proof, then
solutions to the CDH and DL problems are found. Following the above analysis
and according to Eq. 5, if A generates an incorrect updating proof which can
pass the verification, then solutions to the CDH and DL problems can be found
with probability equal to 1 − 1

p respectively. Therefore, for A, it is computa-
tionally infeasible to generate an incorrect updating proof which can pass the
verification. The proof is completed.
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Abstract. With the development of cloud computing, the enterprises
tend to outsource their data to the third party for saving cost and mobile
access. However, simultaneously achieving the security and the operabil-
ity of the outsourced data becomes a real challenge. Existing solutions
mainly deal with the security of the outsourced data, but cannot support
the operation of encrypted data at the same time, except for few kinds
of operations. In this paper, we propose an outsourcing encrypted Excel
file scheme, which supports most operations of the encrypted data, as if
it were not encrypted in Excel. Based on extensive experimental tests,
the system achieves the function of summing, seeking mean, searching,
indexing. The analysis shows that our scheme can provide proper security
in practice.

Keywords: Outsource data · Excel · Privacy · Operability

1 Introduction

With the popularity of the Internet and the development of cloud computing,
mobile office becomes more and more important. According to the research pub-
lished by the International Data Corporation (IDC) in 2016, the growth of mobile
office has exploded since 2015, and the entire market still exists a vast space for
development. Mobile office will keep rapid growth in the next 2–3 years [11].

In order to provide the mobile office service, the enterprises outsource their
data resources to large cloud service providers and rent partial storage resources
and related data services for their needs. This is because the modern enterprises
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 506–524, 2017.
https://doi.org/10.1007/978-3-319-72359-4_30
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have more and more data needed to store and deal with, and the technical
limitations on rebuilding cloud infrastructures and the high cost of management
and maintenance make it impossible [10] to enterprises if their main business
is not information services. Then the technology of outsourcing data has been
widely applied in the cloud computing era.

The enterprises outsource their data and receive the convenient services, but
they are still under the risk of sensitive data loss and privacy leakage. The threat
of private information exposure has become an inescapable problem, especially
for online applications [14]. Cloud service provider can snoop on enterprise’s pri-
vate data [25]; attackers with physical access to servers can access all data on
cloud storage [17]. And then a large number of scholars have researched on how
to achieve the security of outsourcing data. Many schemes (e.g., [33,34]) have
been proposed to achieve the confidentiality of outsourcing data through access
control. Some schemes employ the traitor tracing method to achieve the con-
fidentiality of outsourcing data for example [15,21]. In the meanwhile, many
papers like [22,32] studied the provable data possession (PDP for short) to
achieve the integrity of outsourcing encrypted data. However, few of them can
achieve functional operations on outsourced encrypted data except for few kinds
of operations.

With the popularization of Database as a Service (DBaaS for short),
researchers have done many studies on outsourcing encrypted database which
supports some query functions so far (e.g., [13,25]). However, to the best of
our knowledge, there has been no research on outsourcing encrypted Excel in
the public literatures. Compared with the database mainly used for storing,
Excel is a kind of spreadsheet which combines the data storage with the data
analysis within obvious advantages (e.g., strong visibility with graphical inter-
face, easy to operate, easy to get started, low entry requirement). The report
published by the market-research firm Forrester shows that not including other
Office versions, only Office 2010 can keep up to 85 percent market share [18],
that is, Microsoft Office has been a preferred productivity suite for enterprises
among similar products. Excel has innate advantages as one part of Microsoft
Office. Excel’s distiguishing market share provides the importance and necessity
of doing research on outsourcing Excel. Because Excel files may contain much
private information, such as financial data, staff information, and so on. Hence,
we have to pay attention to private information protection when outsourcing
Excel files.

1.1 Our Contribution

In this paper, we propose an outsourcing encrypted Excel scheme which simul-
taneously protects private information of the Excel file owners and supports the
most often-used data processing functions in Excel. The system contains three
entities, i.e., data users, data owners and the third proxy. The system can be
coarsely described as follows. The data owner encrypts Excel data before out-
sourcing to the third proxy. The data user submits a request in the form of
Excel plaintext formula to the data owner. Then the data owner translates the
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plaintext formula into the cipher form, which is executable directly for the third
proxy. The third proxy receives the ciphertext formula from the data owner and
performs the formula on the ciphertext Excel. Then it returns the results in
ciphertext to the data owner, who is responsible for decrypting and returning
the final result in plaintext to the data user. The third proxy can only store and
operate ciphertext, so an enterprise can outsource data securely. Data user’s
interface is just an empty table with standard architecture and necessary index
information. We provide the data user with an input box used for submitting
formula requests. In this way, we can prevent data users and the proxy from
accessing information without authorization.

We are inspired by the idea of achieving some query functions on outsourcing
encrypted database. We study the characteristics of Excel, and build conversion
module to adapt to the original structure of Excel, and eventually support partial
Excel functions in outsourced ciphertext Excel. Based on a large amount of
experiments, our outsourcing encrypted Excel system can operate eight of the
ten most popular Excel functions and some other common functions, including
calculating the summation, calculating the mean value, sifting, matching and
indexing, and so on. Experiments show that we can get more secure operation
on encrypted data at the small price of extra storage and processing time. The
secrecy of the Excel file outsourced is well protected.

1.2 Related Work

Numerous proposals have been proposed to achieve secure data outsourcing.
Existing outsourced data security schemes have well guaranteed the confidential-
ity, integrity of the outsourced data through access control and traitor tracing,
provable data possess (PDP for short).

To achieve access control, some early works adopt traditional public-key
encryption. For example, the work [26] uses digital signature with RSA algo-
rithm to achieve access control. They are complicated regarding key manage-
ment and public-key validation before encryption. To circumvent these prob-
lems, attribute-based encryption (ABE for short) has been widely applied to
design fine-grained access control system, e.g., [19,23,34]. Castiglione et al. [9]
proposed a hierarchical access control scheme. Some other proposals, e.g., [7,8]
achieve access control supporting dynamic updates.

Access control only provides a priori approach to achieve data confidentiality.
Traitor tracing gives a posteriori approach to achieve data confidentiality. For
tracing traitors who leaked decryption keys, Boneh et al. [3,4] constructed two
collusion-resistant public-key broadcast encryption schemes. For the leakage of
sensitive data in cloud computing, Chow et al. [12] proposed a dynamic secure
provenance scheme which can record the data ownership as an evidence if there
is a dispute later. Deng et al. [15] proposed an a posteriori approach for tracing
and revoking leaked credentials, which can trace, in a black-box manner, at least
one traitor who illegally distributed a credential, without any help from the cloud
service provider.
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PDP proves the integrity of data stored at untrusted servers [16]. Ateniese
et al. [1] introduced a model for PDP that allows a client that has stored data
at an untrusted server to verify that the server possesses the original data with-
out retrieving it. Erway et al. [16] presented efficient constructions for dynamic
provable data possession (DPDP), which extends the PDP model to support
provable updates to stored data. To solve the problem that existing publicly ver-
ifiable PDP schemes require the user to perform expensive computations, Wang
et al. [32] proposed an efficient online/offline PDP (OOPDP) model, which is
practical to speed-up PDP schemes.

All the aforementioned works on the secure data outsourcing consider the
security of data itself, including confidentiality and integrity. But they do not
achieve any meaningful data manipulation on encrypted data. As for data func-
tions, most works only support searchability. Boneh et al. [2] proposed the first
searchable encryption scheme using the asymmetric encryption scheme, which
only supported the single keyword search over the encrypted data. To enrich
the search functionality, some schemes (e.g., [5,6,27]) supporting multiple key-
words search have been proposed. However, none of the schemes can support
fuzzy keyword search. Li et al. [20] proposed a wildcard based fuzzy search
over encrypted data. Then Wang et al. [30] proposed a novel multikeyword
fuzzy search scheme by exploiting the locality-sensitive hashing technique. Tahir
et al. [29] presented a novel ranked searchable encryption scheme preserving the
privacy by the probabilistic trapdoor.

In this paper, we explore more versatile ways to operate outsourced data
securely. Our outsourcing encrypted Excel system supports most function manip-
ulations over encrypted data.

1.3 Paper Organization

The rest of this paper is organized as follows. In Sect. 2, we introduce the out-
sourcing encrypted Excel system model and the data flow. We state the threat
model and related security goals. Section 3 gives a detailed description of our
proposal. In Sect. 4, we compare the feasible performance and efficiency between
the plaintext Excel and the encrypted one. Besides, we conduct detailed security
analyses of the system. Section 5 concludes the paper.

2 System Description

In this section, we briefly introduce the outsourcing encrypted Excel system
model and the data flow. Then we present a description of possible attack behav-
iors. Finally we show the security goals that this system tends to achieve.

2.1 System Model

We not only outsource the data stored in Excel and the architecture
formed by spreadsheets, but also implement the processing capacity over the
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encrypted data. In the premise of supporting mobile office, remote and multi-
ple information sharing, the main design objectives of outsourcing encrypted
Excel are to minimize the cost of local storage and maintenance, to enhance
information security, and to maximize the supported outsourcing functions. Our
outsourcing encrypted Excel implementation scheme realizes the efficient combi-
nation of the three aspects. Outsourcing data to the third proxy saves the local
storage and the maintenance cost. Outsourcing encrypted Excel to the third
proxy who stores and processes encrypted data guarantees the security of sensi-
tive data. The third proxy can implement the function operation on ciphertext,
which maximizes the outsourcing function.

Fig. 1. System architecture of outsourced encrypted Excel. Dotted arrows represent
initialization process. Solid arrows indicate the sent to the third proxy and short solid
arrows represent the reply from the third proxy.

As Fig. 1 shows, the system model contains three entities, data users, data
owner and the third proxy. At the beginning of the system operation, the data
owner encrypts the data and outsources the ciphertext Excel data to the third
proxy. After the completion of initial deployment, a data user first sends clear
formula request to the data owner. Then the data owner encrypts clear data and
converts Excel built-in function into the corresponding user defined function
(UDF for short), which can be carried out by the third proxy. After receiving
the ciphertext Excel formula from the data owner, the third proxy executes it
on the ciphertext Excel, and returns the encrypted result to the data owner.
Finally, the data owner decrypts it back to the data user. In this way, the data
user makes a plain-text operation request, and successfully obtains the plain-text
result. The third proxy gives the real information, which the data user wants to
obtain, to the data user, without knowing what it is.

2.2 Data Flow

In our outsourcing encrypted Excel system, the secure outsourcing works by
directly executing various Excel-based data manipulations over encrypted data.
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The overall architecture based on the system model consists of three layers, as
shown in Fig. 2.

Fig. 2. Data flow in outsourcing encrypted Excel system. Rectangular and rounded
boxes represent processes and data, respectively. Shading indicates components added
by our outsouring encrypted Excel system. Dashed lines are used to separate the scope
of different participants, the data user, the data owner and the third proxy.

The procedure of secure outsourcing for the plaintext Excel files is shown as
follows:

1. During the pre-processing period, the data owner generates secret keys and
saves them. An encrypted Excel file is outsourced just after encryption. The
data owner preserves the original table structure and some necessary indexes,
without any copy of the plaintext data or the encrypted data.

2. The third proxy receives and stores the encrypted Excel file. Some UDFs for
ciphertext Excel are also built and optimized in advance.

The procedure of data processing on the encrypted data is offered as follows:

1. The user 1 uses his private password P1 to login the system, and submits a
plaintext formula request to the data owner.

2. According to the access control policies, the data owner checks whether the
formula request that comes from the active user 1 has been authorized. If it
is an unauthorized access, then this manipulation is refused and a security
warning is returned.

3. The data owner translates the plaintext formula request into ciphertext for-
mula with the same conversion rules, and sends them to the third proxy.

4. Appropriate ciphertext Excel UDFs are invoked by the third proxy to execute
ciphertext formula over the encrypted Excel and the encrypted results are
returned.

5. The data owner receives and decrypts the results, and returns the plaintext
results to the end user 1.
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2.3 Security Model

At present, the security of the enterprise’s data mainly confronts two threats.
(1) When the enterprise’s data is outsourced to the third proxy, the information is
likely to be disclosed to the third proxy. On the one hand, the compromised third
proxy may reveal secret data for various reasons. On the other hand, an attacker
might break the third-party storage system, and obtain data stored there.
(2) Information leakage from enterprise’s internal employees or authorized per-
sonnel. Internal employees or authorized personnel may disclose the information
they have to the attacker out of interest.

For information leakage from the third proxy, outsourcing encrypted data
prevents the third proxy from directly accessing and operating sensitive infor-
mation. If an attacker breaches the third-party storage (including obtaining the
data stored in the third-party storage through compromising the administra-
tor), he can gain the outsourced ciphertext data. Then the attacker can make
a ciphertext-only attack and conjecture its clear information on the basis of
ciphertext. In this case, the security of information depends on the length of the
secret key used for encrypting. When deploying data, the data owner needs to
balance tradeoffs between the security and the cost of space and operating time.

Our scheme also takes measures to address information leakage from enter-
prise’s internal employees or authorized personnel. In our system, the data user
can only see the frame structure of the table and necessary index information
without any substantial content, which avoids the data user knowing clear infor-
mation and disclosing it. If the users want to obtain information, the only way
is to make a formula request to the data owner. But malicious users can make
a continuous request to infer the actual internal data. In order to handle this
problem, we can set up some access control policies for the system, restricting
the user’s requests for malicious intent. In this paper, we don’t consider this kind
of security protection but leave to the future work.

3 The Proposal

In this section, we describe the encryption algorithm of our scheme, introduce
the methods for processing different types of data, and state the specific imple-
mentation of the transformation layer.

3.1 Building Block

Encryption scheme. In our scheme, we use the order preserving encryption algo-
rithm with additivity (OPEA for short) that Wang et al. [31] presents, for encryp-
tion. The OPEA encryption function E : X → Y should meet the following two
conditions:

1. Order-preservation: ∀a, b ∈ X, if a < b, then E(a) < E(b);
2. Additive order-preservation: ∀a, b, c ∈ X, if a + b < c, then E(a) + E(b) <

E(c);
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where X,Y represent the plaintext domain and the ciphertext domain of the
OPEA algorithm, respectively.

The OPEA algorithm in the paper [31] can be summarized formally as a
symmetric encryption algorithm, including the following three sub-algorithms:
the boundary generation algorithm GenBoundary, the encryption algorithm
Encrypt, and the decryption algorithm Decrypt. When the ciphertext is summed,
two extended algorithms, the extended encryption algorithm Encrypt’ and the
extended decryption algorithm Decrypt’ are also necessary. For more information
of the OPEA algorithm, please refer to the paper [31].

3.2 Data Type and Processing Method

Generally speaking, the plaintext domain of OPEA is defined as a part of positive
integers, that is X ⊆ N+. But by preprocessing, plain-text data type can be
easily extended to other types, not limited to integers. The data in different
columns are preprocessed and encrypted according to the data type and the
required operation:

Number type. Integers can be encrypted directly with the OPEA algorithm.
For a float data, a simple approach is to divide encryption according to its
data range. For floating point type data, the minimum precision of the plain-
text space can be used to divide a ciphertext-space by the least precision on
plaintext-space. Their lower and upper boundaries are recomputed on the
basis of partition distribution.

A numerical data is usually used in the process of sorting or calculating.
Since OPEA is order preserving, sorting and comparing operations can be
done in conjunction with ciphertext size and ciphertext judgment functions.
As for calculations, this scheme is mainly concerned with the linear calcula-
tion, including the addition and the multiplication with integer, which can be
seen as multiple additions. For data columns with calculated requirements,
they are encrypted into two columns with the same system keys, using the
OPEA and OPEA extension algorithms respectively. Linear calculation in
the ciphertext domain can be achieved via the ciphertext sum calculation
protocol.

Character type. Character type data is primarily used in lookup and refer-
ence functions, and text functions. Generally the operations performed on
the data of the character type are matching, including exact matching and
fuzzy matching. Compared with the literature [25] using SEARCH algorithm
to achieve full keyword fuzzy matching, in this paper, the columns that store
character-type data encrypted with the OPEA algorithm can theoretically
support all types of fuzzy matching, including wildcards and regular expres-
sions.

To support the use of lookup and reference functions and text functions in
ciphertext Excel, we need to take the following measures on character data.
The first step is converting the character data to the numeric data with the
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smallest matching unit, e.g., converting English characters to ASCII, con-
verting Chinese characters to Unicode, etc. The second step is encrypting
the numeric data in turn. For example, the string“abc” is encrypted as:

E(int(a));E(int(b));E(int(c)); v,

where E(·) represents OPEA encryption function; int(·) means the conver-
sion function of character data to ASCII; “;” denotes standard separator;
the ciphertext string ends with the tail “v”. We have to admit that this
encryption method will inevitably leak data length.

Column name hidden. Both a simple symmetric encryption algorithm and a
collision-resistant hash function can be used to hide column names. Since the
smallest unit of operation in Excel is a cell rather than a record, the column
name is not necessary for each file. We can even omit the column name, only
by the data owner to maintain a column index and column name mapping file.
This also prevents the attacker from obtaining the column name information by
attacking the symmetric encryption algorithm or the hash function.

3.3 Transformation Implementation

Next we give the design principles of the transformation layer, as well as the
conversion of specific operators and commonly used functions.

Transformation layer design. The data owner is responsible for converting the
plaintext formula request to a ciphertext formula which the third proxy can exe-
cute directly on encrypted Excel. In our scenario, the data owner completes the
conversion through the Formula-transformation module. The module is entered
as a standard plaintext Excel formula, and the goal is to output a formula that
the third party agent can execute directly on the ciphertext Excel.

Excel’s formula contains all of the following or one of them: functions, refer-
ences, operators, and constants. The general form of a formula is = SUM(A1 :
A10) or = IF (A1 > 0). For more Excel formula syntax rules, please refer to [28].
The Formula-transformation module designs conversion rules for each function
and operator. A rule matching function is defined in the module to complete the
conversion rule match. The rule matching function finds the rules converted into
the corresponding ciphertext formula according to the specific function used in
the plaintext formula, and then calls the corresponding rule conversion function
to complete the formula conversion.

For cell references, the formula-transformation module holds a mapping table
with plaintext columns to the corresponding ciphertext columns, as the mapping
is not a one-to-one mapping. For columns that need to be summed, each column
will be encrypted into two columns of ciphertext.
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Operator conversion rules. The operators in Excel are divided into four different
types: comparison, arithmetic, text, and reference. Ciphertext-based operations
require appropriate adjustments to the operator to achieve the same effect as the
plaintext-based operations. This article uses Excel user-defined function (UDF
for short) to achieve the adjustment of the required operators. In ciphertext
Excel, the concrete implementations of the four types of operators are as follows:

Comparison operator. Plaintext-based comparison operators, such as >,<,
=, ... are used to compare two values directly. A formula with the comparison
operator, such as = A1 > B1, outputs a logical value of TRUE or FALSE.
As this paper adopts the probability encryption algorithm, the size of two
ciphertexts obtained by the same plaintext encryption may not be equal.
Therefore it is necessary to adjust the comparison operator based on plaintext
to adapt to the ciphertext comparison.

We define two ciphertext comparison functions to obtain the plaintexts
size relationship by comparing the corresponding ciphertexts. The following
are detail descriptions:
Ciphertext comparison function EquCom(E(value1), E(value2), x):

Directly determine the size relationship between the two ciphertext
values.
Input The input parameters E(value1), E(value2) represent the cipher-

text values involved in the comparison or their cell references. The
input parameter x is randomly selected by the data owner with the
secret key, requiring RT < x < Sigma.

Calculate: Calculate whether |E(value1) − E(value2)| ≤ x is estab-
lished. If it is true, the plaintext value1 is equal to value2. Other-
wise the relationship between ciphertext size and plaintext size is
consistent

Output The function output is 1, indicating that the plaintext value1
is greater than value2; the function outputs 0, indicating that the
plaintext value1 is equal to value2; the function outputs -1, indicating
that the plaintext value1 is less than value2;

Here’s an example of a formula conversion that compares two values using
the comparison operator:

= A1 > B1 =⇒ = EquCom(A1, B1, x1),

where the plaintext A,B columns are mapped to the ciphertext A,B
columns, respectively. x1 is the specific value selected randomly by the
owner.

Ciphertext-Sum comparison function SumEquCom(SUM(E(ς)),SUM−
(E′(ς)), L[n], U ′[n]) : Determine the size relationship between the SUM
function value and the constant n in ciphertext.
Input: SUM(E′( varsigma)) is the sum of the dataset’s ciphertexts.

SUM(E′( varsigma)) is the sum of the dataset’s extended ciphertexts.
L[n] denotes the lower bound of the integer n, and U ′[n] denotes the
extended upper bound of the integer n. Where E′(·) represents the
extended encryption function.
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Calculate: Determine whether SUM(E(ς)) ≤ L[n] and SUM(E′(ς)) ≥
U ′[n] is true or not

Output If the result is true, the function returns 0, indicating that the
sum of the ciphertext is within the bounds of the corresponding plain-
text. Otherwise, if SUM(E′(ς)) > U ′[n], the function returns 1, indi-
cating that the sum of the ciphertexts is greater than the correspond-
ing plaintext threshold; if SUM(E(ς)) < L[n], the function returns
-1, indicating the SUM of the ciphertexts is less than corresponding
plaintext threshold.

Here’s an example of a formula conversion that compares the SUM func-
tion value to the constant using the comparison operator:

= SUM(A1 : A3) > 100
=⇒ = SumEquCom(SUM(A1 : A3),SUM′(A1 : A3), L[100], U ′[100]) = 1,

where the plaintext A column is mapped to the ciphertext A column.
Arithmetic operator. The arithmetic operators are used for basic mathemat-

ical operations (addition, subtraction, multiplication, or division), merging
numbers, and generating numerical results. Since the encryption scheme used
in this article only supports additions, we give the conversion rule for the
plaintext addition operator (+).

The data owner first converts the formula containing the + operator into
the formula of SUM function. As for the conversion rule of the SUM function,
we will introduce later.
Here’s an example of a formula conversion using the + operator:

= A1 + A2 + A3 =⇒ = SUM(A1, A2, A3),

where the plaintext A column is mapped to the ciphertext A column.
Text operator. In plaintext Excel, one can use a text operator (&) to connect

(join) one or more text strings to generate a piece of text. In the ciphertext
Excel, the direct use of the operator (&) does not conform to the cipher-
text character representation. According to the text string encryption rules,
when the connection of two plaintext strings is converted into connecting two
strings of ciphertext, one needs to delete the end of the first ciphertext.
Here’s an example of a formula conversion using the & operator:

= A1&A2 =⇒ = LEFT(A1, LEN(A1) − 1)&A2,

where the plaintext A column is mapped to the ciphertext A column.
Reference operator. The plaintext Excel uses a reference operator to merge

the cell ranges. The reference operators include the area operator (:), union
operator (,) and intersection operator (space). These three operators are
equally applicable in ciphertext Excel and do the same functionality. For
detail information, please refer to Microsoft’s official website [28]. Here we’ll
not repeat them.
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Conversion rules of commonly used functions. Microsoft official website gives
the most commonly used 10 functions in Excel [28]. All the most commonly
used functions can be achieved in the ciphertext Excel, except for the two date
functions. Next we introduce the conversion rules of the most commonly used
plaintext Excel functions.

SUM function. Converting the SUM function to the operation on the ciphertext
domain requires both the data owner and the third proxy to perform a secure
ciphertext SUM computation protocol.
Ciphertext-Sum calculation protocol: The data user submits the SUM
function request SUM(ς) to the data owner. The data owner returns the
correct plaintext result to the data user. The steps are as follows:
1. The data owner submits SUM(E(ς)) and SUM(E′(ς)) to the proxy (If

the average is required, COUNT(ς) is also needed). The third proxy
returns the result. Among them, SUM(E(ς) is the corresponding OPEA
ciphertext of the dataset ς and, SUM(E′(ς)) is the corresponding OPEA
extended ciphertext of the dataset ς.

2. The data owner calls the two decryption functions to calculate d =
Decrypt(SUM(E(ς))) and d′ = Decrypt’(SUM(E′(ς))), where Decrypt and
Decrypt’ represents OPEA’s decryption algorithm and OPEA extended
decryption algorithm.

3. The data owner perform a judgment. If d = d′, then it returns d to the
data user, that is, the correct plaintext, (If the average is calculated, the
data owner returns d/COUNT(ς)) otherwise turn to 4.

4. The data owner find out an integer i(i = 1, 2, ..., d′ − d) which meets the
equation

SumEquCom(SUM(E(ς)),SUM(E′(ς)), L[d + i], U ′[d + i]) = 0,

then returns d + i to user, that is, the correct plaintext result (If the
average is required, then d/COUNT(ς) is returned).

When the SUM function participates in the comparison operation in the for-
mula submitted by the data user, only the comparison operator is directly
converted, as described in the previous section: comparing the size relation-
ship between the SUM function and the constant.

When the data user submits the SUM function and asks the data owner
to return the specific value of the summation, the data owner and the third
proxy need to co-execute the ciphertext SUM computation protocol to get
the result.

IF function. The IF(logical test, [value if true], [value if false]) function is
one of the most commonly used functions in Excel, and it can compare the
logical values and the expected values. The IF function syntax makes reference
to [28]. Here’s an example of a simple conversion using the IF function:

= IF(C2 > B2, “Over Budget”, “Within Budget”)
=⇒ = IF(EquCom(C2, B2) = 1, E(“Over Budget”), E(“Within Budget”))
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where E(“Over Budget”) and E(“Within Budget”) represent the corre-
sponding ciphertexts of the “Over Budget” and “Within Budget”, respec-
tively; the plaintext B,C columns are mapped to the ciphertext B,C column,
respectively.

CHOOSE function. The CHOOSE(index num, value1, [value2], ...) function is
used to return the specified value in the numeric argument list. It is available
in both plaintexts and ciphertexts of the Excel. Here is an example of the
CHOOSE function conversion:

= CHOOSE(2, A1, B1, C1) =⇒ = CHOOSE(2, A1, B1, C1),

where the plaintext A,B,C columns are mapped to the ciphertext A,B,C
column, respectively.

INDEX function.The INDEX(reference, row num, [column num], [area num])
function is used to return the cell reference at the intersection of the specified
row and column. If the reference consists of a discontinuous selected area, you
can select a selected area. As the reference operator is common in the cipher-
text Excel and the plaintext Excel, the INDEX function is also available in the
ciphertext Excel.

4 Experiments and Evaluation

This chapter compares the realizations of the calculation operators in both plain-
texts and ciphertexts of the Excel. Then we count the time of the operations in
the ciphertext Excel and make a comparison in the plaintext Excel. Finally, we
analyze the security of the outsourcing encrypted Excel implementation.

4.1 Function Comparison

Calculation operators. In Excel, calculation operators are divided into four cat-
egories, each of which contains several specific operators. As showed in Table 1,
In ciphertext Excel, we can implement all operators except for subtraction, mul-
tiplication and division, which is consistent with what we have discussed earlier.
The most important reason is that our employed encryption algorithm only sup-
ports ciphertext addition.

Table 1. Realization of calculation operators in plaintext and ciphertext Excel, where
“Y” denotes that the operator can be achieved, “N” represents that the operator can
not be accomplished.

Calculation operators Arithmetic Comparison Text Reference

+ − ∗ \ = > < <> & : , Space

Plaintext Excel Y Y Y Y Y Y Y Y Y Y Y Y

Ciphertext Excel Y Y N N Y Y Y Y Y Y Y Y
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Function. Microsoft lists the ten most popular functions of Excel, and the follow-
ing table shows the comparison of the most popular functions. In the ciphertext
Excel, we can achieve the other eight most popular functions in addition to the
DATE function and the DAYS function. Besides, we can also achieve some other
functions, e.g., the LEN function, the LEFT function, the MID function (Table 2).

Table 2. The comparison of the implementation of the ten most popular functions
in plaintext Excel and ciphertext Excel, where “Y” denotes that the function can be
achieved, “N” represents that the function can not be accomplished.

Function SUM IF LOOKUP VLOOKUP MATCH CHOOSE DATE DAYS FIND INDEX

Plaintext
Excel

Y Y Y Y Y Y Y Y Y Y

Ciphertext
Excel

Y Y Y Y Y Y N N Y Y

4.2 Efficiency Comparison

The test data for this article is from TPC-H 2.17.2, a set of database benchmarks
defined by the TPC1. The operation platform is the Microsoft Excel 2016 and
the programming language is Bisual basic for Applications (VBA). As showed
in the following table, we preprocess 150,000 lines of data. When the plaintext
space is 0-150,000, we need about 0.15 s to generate keys and 0.03 s to calculate
boundaries. In the 0-150,000 plaintext space, we encrypt and decrypt 150,000
lines of integers and strings, respectively. The results are showed in the first row
of data in the table. As for the second row of data in the table, we expand the
plaintext space to 0-1200,000 and add encryption and decryption on the 150,000
lines of float numbers (Table 3).

Table 3. 150,000 lines of data encryption and decryption processing statistics, where
“–” denotes that we did not perform the corresponding operations (Unit: second).

Plaintext
space

Generate
keys

Calculate
boundaries

Encrypt
integer

Decrypt
integer

Encrypt
string

Decrypt
string

Encrypt
float

Decrypt
float

0-15w 0.15 0.03 9 9.4 17.7 19 – –

0-120w 1.2 0.25 9 9.4 17.8 19 9.2 9.7

For the operating time of specific functions, we also make comparisons
through some experiments. In the plaintext Excel, built-in functions’ implemen-
tation efficiency is very high. The time of function execution in the ciphertext
Excel is over 20 times of that in the plaintext Excel.
1 downloaded from http://www.tpc.org/tpc documents current versions/current

specifications.asp.

http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp
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Now we states some examples of a few typical functions. According to the
experiment in the ciphertext Excel, the time-consuming of the SUM function
is almost 0.07 s, as well as the AVERAGE function. However, in the plaintext
Excel, the execution time of the SUM function is close to 0 s, and the AVERAGE
function is the same.

The implementation of the MATCH function in the ciphertext Excel requires
defining the new UDF: MATCHE to complete. Because the realization of the
new function MATCHE needs to traverse the contents of each cell in the selected
region, so the function execution time is approximately proportional to the size
of the selected region. As shown in the following figure, the execution time is pro-
portional to the number of selected cells. When the number of cells is controlled
within 150,000, the execution time is less than 1.5 s (Fig. 3).

Fig. 3. The relationship between the execution time of the MatchE function and the
size of the selected cells. The blue points represent the experiment data, and the black
slash represents the trend line. (Color figure online)

As for the LEFT, MID, RIGHT and LEN functions, we also need to define
new UDFs (e.g., LEFTE, MIDE, RIGHTE, LENE) to complete the same functions.
These functions can be performed in the ciphertext Excel as efficiently as in the
plaintext Excel.

4.3 Security Analysis

In this paper, our scheme realizes the complete isolation of the third proxy from
the plaintext, in the case where the third proxy does not communicate with the
data user in private. The third proxy completes the operation on the ciphertext
data via the built-in functions, operators, and reference in the ciphertext Excel.
The input parameters of the function are ciphertext. And the third party agent
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does not perform the decryption operation throughout the operation. Therefore,
the third proxy does not touch the plaintext in the whole process, which ensures
that the data owner’s data privacy will not be leaked by the third proxy.

Our proposal achieves that not all data are fully open to the data user. On
the one hand, the data user cannot see the complete Excel data, only some
column names and necessary indexes. On the other hand, the data user can only
submit the authorized requests.

As for the security of encryption algorithm, Papa et al. [24] proved that to
achieve the optimal security definition, i.e., indistinguishability under ordered
chosen-plaintext attack (IND-OCPA for short), the existing Order Preserving
Encryption (OPE) scheme requires the ciphertext space to be at least the expo-
nential level of the plaintext space. The literature [31] proves that its scheme
based on the OPEA algorithm is indistinguishability under ordered chosen-
plaintext attack (IND-AOCPA for short). It has one more constraint to the
adversary compared to previous IND-OCPA, i.e., the plaintexts in queries are
bounded by a proportional relation. This article uses the same encryption algo-
rithm, OPEA algorithm, as the literature [31]. Assuming that the data owner
in the system safely saves the encryption key and the third proxy performs the
operation on the ciphertext as required, our scheme is also IND-AOCPA.

5 Conclusion

In this paper, we presented an outsourcing encrypted Excel scheme and imple-
ment it. We mainly use OPEA encryption algorithm and take measures to adjust
and encrypt different types of data. Eventually we made it possible to per-
form various Excel function operations on encrypted data. Data users can only
see the table structure and the vital index information, and obtain the desired
results and information by submitting the formula request. The third proxy
only accesses the outsourced ciphertext data and completes the processing of
the ciphertext data by executing the ciphertext formula. The data owner acts as
a bridge. Only the data owner has the secret key, who is in charge of encryption
and decryption and translation from plaintext formulas to ciphertext formulas.

Our scheme addresses serval critical issues in outsourcing private Excel files.
It solves the problem that the third proxy spies the company’s private informa-
tion over the outsourced data. It supports the implementation of function opera-
tions over the outsourced ciphertext data, which is conducive to the enterprise’s
outsourced data flexibly. It has a bright application prospect as our scheme is
based on the Microsoft Excel which is widely used in the world.

In the outsourcing encrypted Excel system, the third proxy can perform all
operator operations on the ciphertext in addition to subtracting, multiplying,
and dividing, and implement the most commonly used 10 built-in functions on
the ciphertext except for the two date functions. Besides, we can use UDFs to
implement the functionality of some other built-in functions.

We utilized the data provided by TPC-H to complete the experimental test
in the outsourcing encrypted Excel system. The test results show that the sys-
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tem goals proposed in this paper are reached, and the statistics of the average
operation time are given in the test, which shows that our scheme is also efficient.
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Abstract. The emerging trends in cloud computing have facilitated the
integration of existing technologies towards achieving new and innova-
tive applications for the betterment of humans. Remote health mon-
itoring, a bi-product of technology integration, assists in minimizing
human mortality through continuous health monitoring using low-cost
sensors. However, privacy and security concerns have become a bottle-
neck in this process. The secure multi-party computation (SMC)-based
privacy-preserving data mining algorithm has emerged as a solution to
this problem. However, traditional cryptography-based PPDM solutions
are too inefficient and infeasible for analysis on large-scale datasets for
data owners. Previous work on random decision trees (RDTs) shows that
it is possible to generate equivalent and accurate models at substantially
lower costs. In this paper, we focus on the outsourced privacy-preserving
random decision tree (OPPRDT) algorithm for multiple parties. We out-
source most of the protocol computation to the cloud and propose secure
sub-protocols to protect users’ data privacy. As a result, we show that
our method can achieve similar results as the original RDT algorithm
while also preserving the privacy of the data. We prove that there is a
sub-linear relationship between the computational cost of the user side
and the number of participating parties.

Keywords: Secure multi-party computation · Outsourced computing
Privacy-preserving random decision tree

1 Introduction

The emerging trends in cloud computing have facilitated the integration of
existing technologies towards achieving new and innovative applications for the
betterment of humans. Remote health monitoring, a bi-product of technology
integration, assists in minimizing human mortality through continuous health
monitoring using low-cost sensors. However, privacy and security concerns have
become a bottleneck in this process. The secure multi-party computation (SMC)-
based privacy-preserving data mining algorithm has emerged as a solution to this
c© Springer International Publishing AG 2017
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problem. Traditional SMC solutions are infeasible due to the efficiency prob-
lem facing large-scale data analytics [23]. Therefore, it is important to reduce
the computational costs of traditional SMC methods. Cloud-based outsourcing
methods provide data owners with the opportunity to allow third parties to pro-
cess the data. We can reduce the computational cost of the SMC methods for
the user’s side by outsourcing most of the computations to the cloud server [19].

The random decision tree method, developed by Fan et al. [5], can be used
for multiple data mining tasks and achieves better performance than traditional
data mining algorithms (such as ID3 and C4.5). In addition, an additional security
advantage of RDTs is that they can be very easily made differentially private [23].

1.1 Our Idea

In this paper, we develop methods to outsource the privacy-preserving random
decision tree algorithm for multiple parties over horizontally partitioned data
sets. In a horizontally distributed data set, two or more parties hold different
objects for the same set of attributes. To realize our solutions, we proposed
a secure outsourced electronic voting protocol and modified some other sub-
protocols; then, we proposed an outsourced privacy-preserving random decision
tree algorithm based on the protocols.

2 Related Work

Recently, many techniques, which can be classified into two categories accord-
ing to the existence of a cloud, have been proposed to address the SMC-based
privacy-preserving data mining problem.

(1) No-Cloud-Exists Methods: In no-cloud-exists methods, the computations are
distributed among the parties. In 2002, Lindell and Pinkas [13] proposed the
first cryptography-based approach to build a decision tree over horizontally
partitioned data among two parties. Later, similar works were conducted
to address the privacy-preserving decision tree construction problem. Zhan
et al. [10], Emekci et al. [6], Samet and Miri [20], and Xiao et al. [16] dis-
cussed the ID3 decision tree on a horizontally distributed database, whereas
Vaidya and Clifton [22] and Zhan et al. [11] addressed the same problem on
a vertically distributed database. Xiao et al. [24] discussed the C4.5 decision
tree on a horizontally distributed database, whereas Shen et al. [21] and
Gangrade et al. [8] addressed the C4.5 algorithm on a vertically distributed
database.

(2) Cloud-Exist Methods: In cloud-exist methods, the computations are out-
sourced to the cloud server. However, it is important to ensure the secu-
rity and privacy of the outsourced data. In 2005, Hohenberger et al. [9]
provided a formal security definition for securely outsourcing computa-
tions and presented a scheme securely outsourcing cryptographic compu-
tations. In 2011, Kamara et al. [12] designed a general outsourced multi-
party computation protocol for a server-aided two-party scheme. In 2013,
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Peter et al. [19] proposed an efficiently outsourced multi-party computation
construction under multiple keys that can be applied in our case. In 2014, Liu
et al. [3] applied a new encryption scheme for outsourcing privacy-preserving
k-means data mining. In this scheme, most of the computations were finished
on the cloud, thereby reducing the computational work of the data owner, but
this scheme was a one-party data mining scheme. Xiaoyan et al. [14] extended
that scheme to the two-party case.

A characteristic comparison among different schemes is described in Table 1.
In this paper, we focus on the outsourced privacy-preserving random decision
tree algorithm with a cloud-exist method. Unlike existing work, we propose the
protocol over horizontally partitioned data sets, and we extend the algorithm to
address multiple parties.

Table 1. The characteristic comparison among different schemes

Paper Algorithm Data partition Num. of parties With cloud?

[13,16,18] ID3 Horizontally 2 No

[10] ID3 Horizontally 2 No

[6,20] ID3 Horizontally n No

[22] ID3 Vertically n No

[11] ID3 Vertically n No

[24] C4.5 Horizontally 2 No

[21] C4.5 Vertically 2 No

[8] C4.5 Vertically n No

[3] K-Means Horizontally 1 Yes

[7] K-Means Horizontally 2 Yes

Our scheme RDT Horizontally n Yes

2.1 Organization

The remainder of this paper is organized as follows: In Sect. 3, the Secure Multi-
Party Computation, the Random Decision Trees, the BCP homomorphic encryp-
tions, our Outsourced Secure Electronic Voting Protocol (OSEVP) and the other
sub-protocols are presented. In Sect. 4, our outsourced privacy-preserving ran-
dom decision tree algorithm (OPPRDT) is presented. Section 5 gives the analysis
of our OPPRDT algorithm, and finally, Sect. 6 presents the conclusions of the
paper.

3 Background and Definitions

3.1 Secure Multi-party Computation

SMC [1] is mainly concerned with the problem of evaluating a function using the
private input from two or more parties. Therefore, after running the protocol,
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each party holds a share of the output with no additional information revealed.
There are two primary security models: the semi-honest model and the malicious
model.

In this study, we mainly focus on solving the SMC problem of the semi-
honest model, a model far more widely adopted than the malicious model. In
the semi-honest adversary model, even corrupted parties correctly follow proto-
col specifications. However, the adversary can acquire the internal state of all
corrupted parties (including transcripts of all messages received), which can be
misused to acquire private information of other parties. Thus, private user data
are leaked.

3.2 Random Decision Trees

The random decision tree was introduced by Fan et al. [5] and can simply ran-
domly generate a set of trees from its database. This method can randomly
choose an attribute A and set that as a current node; if A has m valid values,
it then constructs m child nodes for each attribute value ai. This algorithm
achieves a better performance than traditional decision tree algorithms (such as
ID3 and C4.5).

The random decision tree algorithm is summarized in Algorithm 1.

Algorithm 1. The random decision tree algorithm
TreeTrain(S, A, m)
Require: S is the training dataset from the participant.
Require: A = A1 ∪ A2 ∪ ... ∪ An is the set of attributes.
Require: m is the number of random trees.
for 1 ≥ i ≥ m do

if A = ∅ then
establish the node as a leaf

end
else

randomly choose an attribute Ai for set A;
set Ai as a current node;
if A has m valid values, it then constructs m child nodes for each
attribute value ai;

TreeTrain(S − SA, A − Ai, m);
end

end
Return {T1, ..., Tm}
Classify({T1, ..., Tm},x)

For tree Ti, Pi(y|x) = n[y]∑
y n[y]

, where n[y] is the count at the leaf node that x

ultimately reaches;

Return 1
m

m∑

i=1

Pi(y|x) for all class labels y;
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3.3 The BCP Homomorphic Cryptosystem

The BCP homomorphic cryptosystem [2] is an additive homomorphic cryptosys-
tem, which was introduced by Bresson, Catalano, and Pointcheval in 2003. This
system has the following property:

Encpk(m1 + m2) = Encpk(m1) � Encpk(m2) (1)

where m1 and m2 are two messages and � is an arithmetic multiplication oper-
ation in the encrypted domain under the same public key.

In contrast to traditional homomorphic cryptosystems (such as Paillier [17]
and ElGamal [4]), the BCP cryptosystem can support arithmetic operations
in the encrypted domain under multiple parties’ public keys. This can be per-
formed by the cloud server after generating a public parameter; then, every party
generates its key pairs based on the public parameter. Next, all the parties’ pub-
lic keys can be transformed into a uniform public key, and the ciphertext under
each party’s public key can be transformed into the ciphertext under the uniform
public key.

The BCP cryptosystem employs two non-colluding, semi-honest cloud servers
C and S, and the cryptosystem is constructed as follows:

Setup(λ) : Given a security parameter λ, a server S chooses N = pq of bit length
λ, where p = 2p′ +1 and q = 2q′ +1 for distinct primes p′ and q′. Then, S selects
a random element g ∈ Z

∗
N2 such that gp

′q′
mod N2 = 1+λN for λ ∈ [1, N −1].

Then, S generates the public parameter PP and the master key MK

PP = (N,λ, g) and MK = (p′, q′). (2)

KeyGen(PP) : After each party obtains PP , they select a random ai ∈ ZN2 and
generate both its public key pki and private key ski:

public key pki = gai and secret key ski = ai. (3)

Encpki
(mi) : Given a plaintext mi ∈ ZN , each party selects a random ri ∈ ZN2

and outputs the ciphertext (Ai, Bi) as

Ai = gri mod N2, Bi = gairi(1 + miN) mod N2. (4)

Decski
(Ai, Bi) : Given a ciphertext (Ai, Bi) and secret key ski = ai, each party

can output the plaintext mi as

mi =
Bi/(Aai

i ) − 1 mod N2

N
. (5)

We refer the interested reader to [2,19] for the detailed construction of the
BCP cryptosystem.

3.4 The TransDec Protocol

The task of the sub-protocol TransDec is to take the result encrypted under
Prod.pk and to transform it back into n encryptions of the same plaintext under
each party’s public key [19].
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Algorithm 2. The Sub-protocol of TransDec
1. C picks a random number ρ for the input ciphertext (A, B) under Prod.pk,
calculates (C, D) ← Add((A, B), EncProd.pk(ρ)), and sends them to S.

2. S decrypts them using the master key and obtains z ← mDec(Prod.pk,MK)

(C, D); then, S re-encrypts them with (Xi, Yi) ← Encpki(z) under each client
public key pki. In addition, S sends (Xi, Yi) back to C.

3. C calculates Encpki(−ρ) and obtains the result as
(Ā, B̄) ← Add((Xi, Yi), Encpki(−ρ))

Then, C outputs the result to each party.

3.5 Secure Addition Protocol (SAP)

Our SAP is designed for plaintext addition over encrypted data with different
keys. In other words, we suppose that there are n parties {Pi | 1 ≤ i ≤ n},
each of whom has private input xi and encrypts its data Encpki

(xi) under its

public key. The goal of the SAP protocol is to calculate EncProd.pk(
n∑

i=1

xi),

Prod.pk :=
n∏

i=1

pki mod N2, which can encrypt all the Pi data under a single

public key.
The SAP protocol can be described as follows:

Algorithm 3. Secure Addition Protocol (SAP)
Require: {Pi | 1 ≤ i ≤ n}, each of whom has a private input xi.
1. The server S chooses the BCP homomorphic encryption scheme and distributes its public
parameters PP = (N, k, g) to C and Pi.

2. After this initial setup, Pi can use the cryptosystem’s KeyGen to generate its respective
pair of public and private keys (pki, ski). It then uploads the public keys pki and the
ciphertext Encpki

(xi) to C.
3. C chooses n random numbers ri ∈ ZN for each participant and calculates

Xi = Encpki
(xi) · Encpki

(ri) = Encpki
(xi + ri),

4. C then calculates the product Prod.pk :=
n∏

i=1
pki mod N2, which can encrypt all the Pi

data under a single public key. Then, C sends Prod.pk and each Xi to S.

5. S calculates both X′
i = mDecMK(Xi) and T =

n∑

i=1
X′

i, encrypts T with Prod.pk, and

sends the encrypted data to C.

6. C calculates R =
n∑

i=1
ri, uses Prod.pk to encrypt R as EncProd.pk(R), and calculates

EncProd.pk(T ) · EncProd.pk(R)N−1 = EncProd.pk(T − R) = EncProd.pk(
n∑

i=1
xi).

7. C uses the TransDec protocol to transform it back into n encryptions of the same
plaintext under each participant’s public key pki; then, it sends the result back to each
participant.
8. Pi can decrypt all these ciphertexts received using its corresponding private key ski and
obtain the final result.
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3.6 Secure Multiplication Protocol (SMD)

Given two encrypted numbers Encpka
(x) and Encpkb

(y) under different keys pka
and pkb, respectively, the goal of SMD is to calculate EncProd.pk(x · y) under
Prod.pk [15].

Algorithm 4. Secure Multiplication Protocol (SMD)
1. C chooses a random number rx, ry, Rx, Ry ∈ ZN , calculates

X = Encpka(x) · Encpka(ra) = Encpka(x + ra),
Y = Encpkb(y) · Encpkb(rb) = Encpkb(y + rb),

S = Encpka(Rx) · [Encpka(x)]N−ry = Encpka(Rx − ry · x),
T = Encpkb(Ry) · [Encpkb(y)]N−rx = Encpkb(Ry − rx · y).

and sends X, Y , and S and T to S.
2. S calculates h = mDecMK(X) · mDecMK(Y ), S2 = mDecMK(S), and
T2 = mDecMK(T1); then, it encrypts h, S2 and T2 with Prod.pk as
H = EncProd.pk(h), S3 = EncProd.pk(S2), and T3 = EncProd.pk(T2). Then, it
sends the encrypted data to C.
3. Once the encrypted data are received, C encrypts rx, ry, Rx and Ry with
Prod.pk as S4 = EncProd.pk(rx · ry)

N−1, S5 = EncProd.pk(Rx)N−1 and
S6 = EncProd.pk(Ry)

N−1. Then, it calculates the following to recover the
encrypted x · y:

H · T3 · S3 · S4 · S5 · S6 =
EncProd.pk(h + Rx − ry · x + Ry − rx · y − rx · ry − Rx − Ry) = EncProd.pk(x · y)

3.7 Secure Sign Bit Acquisition Protocol (SSBA)

Given encrypted data EncProd.pk(x), the goal of the SSBA protocol [15] is to
obtain the encrypted sign bit EncProd.pk(t∗) whereby t∗ = 1 when x ≥ 0 and
t∗ = 0 when x < 0.

3.8 Secure Less Than Protocol (SLT)

The goal of the SLT protocol [15] is to obtain the encrypted data EncProd.pk(u∗)
to determine which of two encrypted values EncProd.pk(x) and EncProd.pk(y) is
larger, that is, x ≥ y or x < y. Liu et al. [15] proposed the SLT protocol for
encrypted data under different keys, and we simply use it for the ciphertext
under the same public key Prod.pk. We modified this protocol as follows:
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Algorithm 5. Secure Sign Bit Acquisition Protocol (SSBA)
1. C flips a coin t and chooses a random number r s.t. L(r) < L(N)/4. (L(r)
denotes the length of r in bits of the modulus n). If t = 1, C calculates
EncProd.pk(l) = ((EncProd.pk(x))2 · EncProd.pk(1))r = EncProd.pk[r(2x + 1)]

If t = 0, C calculates

EncProd.pk(l) = ((EncProd.pk(x))2 ·EncProd.pk(1))N−r = EncProd.pk[−r(2x+1)]

Then, C sends L = Encpki(l) to S.
2. S calculates mDecMK(EncProd.pk(l)) to obtain l. If L(l) < 3/8 · L(N), let
u = 1; otherwise, u = 0. Then, u is encrypted using Prod.pk and sends
EncProd.pk(u) to C.
3. If t = 1, C calculates

EncProd.pk(t
∗) = CR(EncProd.pk(u));

otherwise, it calculates
EncProd.pk(t

∗) = CR(EncProd.pk(1) · EncProd.pk(u)N−1).

Algorithm 6. Secure Less Than Protocol (SLT)
1. C calculates

EncProd.pk(l) ← SAD(EncProd.pk(x), (EncProd.pk(y))N−1).

2. C uses the SSBA protocol to obtain the encrypted sign bit EncProd.pk(t
∗).

3. C uses the TransDec protocol to transform the EncProd.pk(t
∗) into

ciphertext under each party’s public key.
4. Each party decrypts it and obtains the result.
If t∗ = 1, then x ≥ y; if t∗ = 0, then x < y.

Algorithm 7. Outsourced Secure Electronic Voting Protocol (OSEVP)
Require: {Pi | 1 ≤ i ≤ n}, each of which has a private input xi(xi = 0or1).
1. The server S chooses the BCP homomorphic encryption scheme and
distributes its public parameters PP = (N, k, g) to C and Pi.

2. Pi can use the KeyGen based on the PP to generate its key pair (pki, ski). It
then uploads public keys pki and the ciphertext Encpki(xi) to C.

3. C uses the SAD protocol to calculate EncProd.pk(
n∑

i=1

xi).

4. C uses the SLT protocol to determine whether

EncProd.pk(
n∑

i=1

xi) ≥ EncProd.pk(�n/2	 + 1).

5. C uses the TransDec protocol to transform the result under each party’s
public key and sends it to each party.

6. Each party decrypts the ciphertext and obtains the result.
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3.9 Outsourced Secure Electronic Voting Protocol (OSEVP)

We propose the OSEVP protocol based on the above sub-protocols. We assume
that there are n voters, and each action is assigned to the Authorities. At least
�n/2�+1 out of n voters perform the operation property. Then, every party can
obtain the result without disclosing their secret ballot.

4 Outsourced Privacy Preserving Random Decision Tree
Algorithm (OPPRDT)

The system model consists of n(n ≥ 2) parties and the cloud servers C and S.
Each party Pi has a private database Di, (1 ≤ i ≤ n). Each party collaborates
with the cloud servers to process the RDT algorithm and obtain the result
without losing any privacy information. We assume that the two cloud servers
S and C are semi-honest and not colluding with each other. Each party Pi is
also considered semi-honest in this paper. We assume that each Pi knows the
attribute names and sizes of the other parties’ private databases.

4.1 Horizontally Partitioned Data

When data are horizontally partitioned, parties hold different objects for the
same set of attributes. Assume that there are n parties, and each party Pi has a
database Di, (1 ≤ i ≤ n) (we denote the whole database as D, D = D1∪· · ·∪Dn).
They share the set of general attributes A = A1 ∪ A2 ∪ ... ∪ An and the class
attribute C = {c1, ..., cm}. However, the number of records in the databases |Di|
and the true record values vj ∈ Ai are unknown for the other parties.

First, if we calculate the distributed random decision tree in a non-private
setting, one party can send the other parties any information that they want
from its database. Then, each party can independently create a few random
trees based on their own datasets. The structure of the trees can be shared
with other parties or held by the party itself. Thus, there are two cases to be
considered:

(1) If the structure of the trees is known to each participant, the party owning
the instance can identify all the leaf nodes that it reaches and can obtain
the sum of the class distribution vectors.

(2) If the structure of the trees is unknown to each participant, the party owning
the instance can send the instance to other parties. Every party identifies
the leaf nodes that it reaches, sends the class distribution vectors to the
other parties, and obtains the final result.

4.2 The Structure of the Tree Is Known to Each Participant

In this case, each party first creates a set of random trees for its own databases
and then sends the structure to the other parties. However, if a party thinks
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that a tree reveals too much information, it can use our OSEVP in Sect. 3.9 to
reject that particular tree and ask for alternatives. After that, we can use the
SAP in Sect. 3.5 to calculate the class vector components together. Finally, the
cloud server uses the TransDec protocol in Sect. 3.4 to send the data to each
party, and every party decrypts the data and obtains the result.

Algorithm 8 gives the details.

Algorithm 8. Building the random trees for horizontally partitioned data
Require: {Pi | 1 ≤ i ≤ n}, each of which has a private database Di.
Require: ni, the number of random trees to be created by each
participant such that

∑
i ni = m, the total number of random trees.

1. The server S chooses the BCP homomorphic encryption scheme and
distributes its public parameters PP = (N, k, g) to C and Pi.

2. After this initial setup, Pi can use the cryptosystem’s KeyGen to
generate its respective pair of public and private keys (pki, ski). It then
sends public keys pki to C and other parties.

3. Each party creates a set of random trees from its databases.
4. Each party cooperates with C to use the OSEVP to determine if all
the parties agree to all the random trees. Then, the structure of every
tree is communicated to all the parties.

5. Each party Pi computes the class distribution vectors for each leaf node
in the random trees and then encrypts the class distribution vectors for
all leaf nodes using pki.

6. All parties cooperate with C to use the SAP to calculate the
corresponding encrypted class distribution vector elements that they
receive for each leaf node to obtain the encrypted global value for that
node.

7. C uses the TransDec protocol to transform the result into the
ciphertext under each party’s public key and then sends them to each
party.

8. Each party decrypts the ciphertext and obtains the result.

4.3 The Structure of the Trees Is Unknown to Each Participant

In this case, every party dose not communicate the structure of the random
trees to the other parties. Each party simply needs to encrypt its leaf nodes.
In addition, they calculate the encrypted class vector components together with
the other parties. We can simply use the SAP from Sect. 3.5.

4.4 Classify the New Instance

When a new instance needs to be classified, the instance is sent to each party,
and every party identifies all the leaf nodes that it reaches from its trees. Then,
each party encrypts the class distribution vectors and uses the SAP with the
cloud servers to multiply the encrypted class vector components together. After
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that, each party can decrypt the data to obtain the results. Algorithm 9 gives
the relevant steps.

Algorithm 9. Classify Instance(x)
Require: x, the new instance that needs to be classified.
Require: m, the total number of random trees.
1. for j = 1 · · · m do

Each party Pi counts the number nj [y] of the leaf node that x finally
reaches;

Then, each Pi encrypts nj [y] and sends it to the server C.
end
2. C uses the SAP to calculate the encrypted sum of EncProd.pk(

∑
y n[y])

and EncProd.pk(
∑

j n[y]).
3. C uses the TransDec protocol to transform the result and send it to
each party.

4. Each party decrypts Encpki
(
∑

y n[y]) and Encpki
(
∑

j n[y]) and divides
by m to obtain the actual statistics.

5 Analysis

5.1 Complexity and Communication Analysis

The performance of our contribution depends on the security parameter k and
the number of participants n. In the discussed OPPRDT for the horizontally
partitioned data algorithm, each party should encrypt the leaf nodes of its ran-
dom trees. If there are m attributes, there are 2m/2−1 leaf nodes. In addition, we
assume that there are n participants, and the number of class attribute values is
c. Each party generates t random trees, and there will be O(ntc2m/2−1) encryp-
tion leaf nodes. Before computing, the data owners should encrypt their own
data and transfer the data to the server to compute. Subsequently, the server
computes over the encrypted data. The Setup step performs the computation
for O(k5/ log k2). A full overview of the complexity of each protocol is given in
Table 2.

5.2 Security Analysis

In the case of the structure of the trees being known to each participant, although
the leaf class distribution vector is known to everyone, the leaf class distribution
vectors for all trees are encrypted using the BCP cryptosystem. Because seman-
tically secure homomorphic encryption is used, this reveals no information to any
of the parties or the cloud servers about the values. In addition, if a party thinks
that a tree reveals too much information, it can use the OSEVP to reject that
particular tree and ask for alternatives. The OSEVP uses the sub-protocols
based on the BCP cryptosystem and also does not reveal any information to
other parties or the cloud servers.
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Table 2. Complexity and runtime analysis of the protocol

Algorithm Time Traffic in bits

Setup O(k5/ log k2) on S 4k

SAP O(k2) on C 2k

SLT O(k2) on C
O(k2) on S

12k

SMD O(k3) on C
O(k3) on S

12k

SSBA O(k3) on client
O(nk3) on C
O(nk5/ log k2) on S

4(n + 1)k

TransDec O(nk3) on C
O(nk3) on S

4(n + 1)k

OSEVP O(k3) on client
O(tk2) on C
O(tk3) on S

6(n + 1)k

OPPRDT O(ntc2m/2−1) on client
O(nm2k2) on C
O(nmk3) on S

12(n + 1)k

In the case of the structure of the trees being unknown to each partici-
pant, each party simply uses the SAP to calculate the class vector compo-
nents together to obtain the sum of the class distribution vectors for each tree.
The SAP is also based on the BCP cryptosystem and does not reveal any infor-
mation to other parties or the cloud servers.

When a new instance needs to be classified, the parties also use the SAP to
multiply the encrypted class vector components together to obtain the encrypted
sum of the class distribution vectors for each tree. This also does not reveal any
information to other parties or the cloud servers.

6 Conclusion

In this paper, we proposed an outsourced privacy-preserving random decision
tree algorithm over horizontally partitioned databases for multiple parties. To
realize our solutions, we proposed a secure outsourced electronic voting protocol
and modified some other sub-protocols; then, we proposed an outsourced privacy-
preserving random decision tree algorithm based on the protocols. We considered
two cases: the case where the structure of the tree is known to each participant
and the case where the structure of the tree is unknown to each participant. The
proposed algorithm shows its safety in the semi-honest adversary model. In the
future, we plan to extend all three partitioned datasets in the malicious model.
We also aim to extend the OSEVP and other sub-protocols into a general multi-
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party privacy-preserving framework that is suitable for other machine learning
algorithms, for example, k-means [14] and deep learning.
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Abstract. Moving Target Defense (MTD) is an emerging security
solution based on continuously changing attack surface thus makes it
unpredictable for attackers. Cloud computing could leverage such MTD
approaches to prevent its resources and services being compromised from
an increasing number of attacks. Most of the existing MTD methods so
far have focused on devising subtle strategies for attack surface mitiga-
tion, and only a few have evaluated the effectiveness of different MTD
techniques deployed in systems. We conducted an in-depth study, based
on realistic simulations done on a cloud environment, on the effects of
security and reliability for three different MTD techniques: (i) Shuffle,
(ii) Redundancy, and (iii) the combination of Shuffle and Redundancy.
For comparisons, we use a formal scalable security model to analyse
the effectiveness of the MTD techniques. Moreover, we adopt Network
Centrality Measures to enhance the performance of security analysis to
overcome the exponential computational complexity which is often seen
in a large networked mode.
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1 Introduction

Cloud computing is an on-demand network access model and offers benefits
including scalability, resilience, availability, and cost reduction. Cloud providers
(e.g., Amazon Web Services, Windows Azure Platform, Google App Engine, etc.)
offering various services are responsible for providing security or their services.
This is because, despite cloud computing benefits, security-related issues would
affect customer’s trust on cloud. Although many security mechanisms are imple-
mented in the cloud, cyber criminals can still exploit software vulnerabilities to
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penetrate into a cloud system [9] using tools and techniques easily available on
the Internet. Moving Target Defense (MTD) is an emerging security solution
that confuses the attackers by continuously changing the attack surface [11,14].
Unlike traditional security solutions that focused on removing vulnerabilities,
MTD techniques increase the attack efforts by changing attack surfaces. How-
ever, it is difficult to assess their effectiveness in various systems, especially when
they are used in combinations. MTD techniques are mainly classified into three
main categories [6]: Shuffle, Redundancy, and Diversity. Those techniques can
be used either independently or in a combination. The latter is used to provide
an insight if it is more effective if different categories of MTD techniques used
together. In this paper, we evaluate the effectiveness of the MTD techniques and
their combinations using security and dependability metrics.

Many graphical security models (GSM) (such as Attack Trees (ATs) and
Attack Graphs (AGs)) in conjunction with security metrics, have been proposed
and used. They provide formal methods to analyse the security of a networked
system [10]. Various security metrics can be used with the GSMs (e.g., system
risk, attack costs and etc.), providing different perspectives of the system secu-
rity. Hence, incorporating MTD techniques into GSMs could allow formulating
an optimal MTD deployment solution through security analyses. Moreover, these
models can also be used to find how effective the deployed MTD techniques are by
comparing the results obtained through the models and the metrics. Analysing
security through GSMs suffers from scalability issue, especially in the enterprise
networks [4].

We address the aforementioned problem by using a scalable security model
named Hierarchical Attack Representation Model (HARM) [7]. The HARM can
evaluate the security-related effects of a particular MTD technique before deploy-
ing it. The strength of the HARM is that the security analysis is more scalable
and it also provides heuristic methods such as using Importance Measures (IMs)
[5] to overcome the exponential computational complexity issues. We further
detail the usage and application of IMs to analyse the effectiveness of MTD
techniques in combinations, which was not previously taken into account.

To the best of our knowledge, there is no prior work to evaluate and compare
the effectiveness of the combination of MTD techniques via a formal GSM. Our
main contributions are:

• Analyse and compare the effects of each MTD technique, shuffle, redundancy
and their combinations in term of both system risk and reliability.

• Investigate the use of IMs on different properties of Network Centrality Mea-
sures (NCMs) to understand the effects of such properties to assess the effec-
tiveness of MTD techniques;

• Analyse the correlation of IMs, Betweenness and Closeness, with the result
of deployed MTD techniques using an Exhaustive Search (ES) method in a
HARM to observe the mathematical relation between the metrics;

The rest of this paper is organised as follow. We define the methods and metrics
used in Sect. 2. In Sect. 3, we analyse the MTD techniques and combined them,
then further discussion and limitations are given in Sect. 4. Related work is
summarised in Sect. 5. Finally, we conclude the paper in Sect. 6.
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2 Preliminaries

Importance Measures. IMs are computed to find a set of network components
that serves a critical role in an event of an attack without exhausting all possible
attack paths. We use NCMs in the upper layer of the HARM to compute the IMs
[5], where we consider two types of NCMs; Betweenness and Closeness. However,
there are other NCMs measures which can be used (e.g., Harmonic Closeness,
PageRank etc.), which are out of scope of this paper.

System Risk Analysis. A risk of an asset (here, a VM) can be defined as a the
product of probability of an attack success of a VM and the impact of the attack
on that VM. Given above, we can define the system risk as a cumulative sum
of all the risk associated with VMs in all possible attack paths. To compute the
system risk, the HARM is first generated using the reachability and vulnerability
information. Then, we first show the probability of an attack success calculation
steps. We assume there is a set of VMs V M , an N number of VMs in the
upper layer HARM where N = |V M |, and each VM V Mi ∈ V M has up to a
|V | number of vulnerabilities for a set of vulnerabilities V . Let Vi be the set of
vulnerabilities for a VM V Mi, then there exists a vulnerability vj ∈ Vi | 0 ≤ i ≤
|N |, 0 ≤ j ≤ |V |. There are two logical gates AND and OR-gates, which connect
the vulnerabilities in the lower layer of the HARM. ANDk represents a set of
vulnerabilities and other logical gates connected by the AND-gatek, and the
ORk represents a set of vulnerabilities and other logical gates connected by the
OR-gatek. Let p(V Mi) be the probability of compromising the V Mi, and p(vj)
is the probability of attack success when exploiting the vulnerability vj . Also, we
let p(ANDk) be the probability of attack success for exploiting all vulnerabilities
grouped for that AND-gatek, and similarly for p(ORi). Then, the probability
of attack success based on ANDi or ORi can be calculated as follows.

p(ANDk) =
∏

p(vj) | vj ∈ ANDk (1)

p(ORk) = 1 −
∏(

1 − p(vj)
)

| vj ∈ ORk (2)

Using Eqs. (1) and (2), we can calculate the probability of an attack success
to compromise V Mi as shown in Eq. (3) denoted by the top-gate, TOP .

p(V Mi) = p(TOP ) | TOP ∈ {ANDj , ORk} (3)

We define the impact of an attack exploiting a vulnerability vj as Ivj
. Then,

we define the impact of an attack exploiting V Mi as denoted as IVMi
, which is

shown in Eq. (4).
IVMi

= max(Ivj
) | vj ∈ V Mi (4)
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Then, we denote the risk associated with V Mi as RVMi
, which is calculated

by the product of the probability of an attack success and the impact of an
attack to V Mi as shown in Eq. 5.

RVMi
= p(V Mi) × IVMi

, (5)

Here, we assume that each attack path is independent to other attack paths in
the system. All possible attack paths, paths, is a set of attack paths path ∈ paths
where path = (V M1, V M2, . . . , V MN ) ∈ V M ×V M × . . . × V M | path ∈ paths,
where a series of VMs that form an attack path such that V Mi is adjacent to
V Mi+1 for 1 ≤ i < |N |. Finally, the system risk, Rsystem, can be calculated as
shown in Eq. 6.

Rsystem =
∑

VMi∈path∈paths

RVMi
(6)

Reliability Analysis. We use SHARPE (Symbolic Hierarchical Automated
Reliability and Performance Evaluator) [12] to assess the reliability of the cloud.
In detail, we can compute the probability of the existence of a path from start
point to target using a reliability graph in SHARPE. We utilise this feature by
defining the upper layer of the HARM as a reliability graph. This allows us to
determine the robustness of the system over the time given attack rates. We can
compute the probability of the existence of a path from a start point (entry of
a network) to a target using the reliability graph. Reliability of the networked
system was computed assuming the attack rates follow an exponential distribu-
tion. We vary the attack rate, indicated by λ value over time t, to observe the
change in reliability of the network. Hence, estimating the probability of attack
success, p(AS) (component failure) at time t can be obtained by a cumulative
exponential distribution. Then, the reliability of each component (a VM in here)
can be defined as the probability of an attack failure under certain attack rate
and a given time, R(t) = 1 − p(AS). Finally, to expand the reliability analysis
for the whole system, we fed the reliability graph constructed through the upper
layer of HARM to SHARPE with an assumed attack rate (λ = 0.2, one attack
per five hours) and different time t to evaluate the overall reliability of system.

3 MTD Technique Analysis Through HARM

In order to evaluate the effectiveness of different MTD techniques, we simulated
a large Cloud-band model as shown in Fig. 1. This model includes two cloud-
band nodes that can hold up to 450 VMs. Only a few VMs in the Cloud-band are
connected to the Internet (i.e., front-end servers). We assume there is an attacker
outside the cloud, and the attack goal is to compromise the resource node by
compromising VMs in the attack paths. We also assume that VMs can migrate
between the Cloud-band nodes if there is an available space, which rearranges the
logical connections between the VMs. All VMs in the Cloud-bands are using the
same OS. We measure the changes in system risk and reliability to evaluate the
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effectiveness of MTD techniques. In the following sections, we show that how the
MTD techniques may affect security and reliability factors. The system risk and
reliability of the current system have been evaluated based on different number
of VMs in each cloud-band node and reported in Fig. 2 for further comparison
with the results of MTD deployment strategies.

Fig. 1. A Cloud-band model consisting up to 450 VMs in each Cloud-band nodes.

3.1 Shuffle

In this paper, we only focus on shuffling the VM through the VM live migration
(VM-LM), where we use the HARM to assess the effectiveness of deploying the
shuffle.

If we consider all possible migration scenarios and analyse the effectiveness
of each movement separately through an exhaustive search (ES) method, we
can obtain an optimal solution. However, this method is time consuming and
impractice for large sized networks. Alternatively, we use IMs for discovering the
most important nodes in the network [5]. We analyse the relation of each IMs,
betweenness and closeness, with deploying shuffle. We then compare the results
obtained from ES with those of found through a portion of IMs. The effects of
deploying shuffle on each node are investigated by both ES method and using
IMs (two NCMs are used, betweenness and closeness). Figure 2a illustrates (i)
how deploying shuffle can enhance system security, (ii) whether the best sce-
nario for deployed MTD technique can be obtained through IMs. The results
show that the best shuffle deployment scenario minimising the system risk can
be found through analysing only the top 10 percent of the most important nodes
based on betweenness, but this method does not guarantee the best reliability
value. As shown in Fig. 2a, the result of this analysis is equivalent with ES to
find the optimal shuffle deployment. However, deploying shuffle so that it min-
imises the system risk leads a mild decrement on the system reliability. Figure 2b
demonstrates the reliability values before and after deploying shuffle.
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Fig. 2. Deploying shuffle technique based on top 10% of betweenness and ES. (a)
System risk after deploying shuffle. (b) System reliability after deploying shuffle.

3.2 Redundancy

For redundancy, we replicate the number of VMs k times and connect the replicas
to the same adjacent nodes with the original VM. We denote the number of
replicated VMs as k-R. However, any other component of the network can also be
replicated (e.g., a service, server etc). In this section, (i) we perform a regression
analysis to compare system risk and reliability against the IMs. We first calculate
the values of reliability and system risk after deploying redundancy technique
(with 3-R) for each VM through the ES. The upper layer of HARM is used by
the SHARPE to obtain reliability, then perform a regression analysis to show
the correlation of each IMs with the corresponding system risk and reliability
values. Despite correlation analysis, and for evaluation of deploying redundancy,
(ii) we investigate if the optimal values for the system risk and reliability can
be found using the IMs, and (iii) to investigate how IMs can affect the system
risk and reliability when deploying redundancy.

The results of regression analysis on deploying redundancy in HARM’s nodes
are considered through comparing the correlation of system risk and reliability
against betweenness and closeness. We construct the HARM consisting of overall
50 VMs based on the Cloud-band model. Then, the behaviour of system are
monitored after passing three hours in order to calculate reliability. We deploy
three replicas (3-R) for each VM in the top layer of HARM in order to perform
regression analysis. However, other VM sizes and different replicas are tested to
compare the effects of redundancy on both system risk and reliability separately.

The results shown in Fig. 3 indicates that deploying the redundancy technique
increases the reliability. The best deployment scenario can be found through
analysing closeness. It is noticeable that the reliability obtained through this
deployment grows logarithmic while if we use betweenness, it causes an expo-
nential growth in the system risk and in the best case (using closeness) we have
linear increment in the system risk. Hence, one should deploy redundancy pre-
cisely based on the network’s size and specifications. Next, we investigate the
combinations of the shuffle and redundancy.
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Fig. 3. System risk and reliability based on IMs after deploying redundancy. (a) com-
pares deploying redundancy on the top 10% of betweenness nodes. (b) compares deploy-
ing redundancy on the top 10% of betweenness and closeness.

3.3 Combination of Shuffle and Redundancy

The shuffle technique improves the security while the redundancy improves the
reliability as shown in previous sections. Thus both aforementioned measures
would be necessary in a network, especially in large sized networks or cloud
environments. In this section, we explore the effectiveness of the combination
of Shuffle(S) and Redundancy(R), denoted as S+R technique. Based on the
experimental results obtained from the previous sections, we develop the S+R
together with IMs so that we deploy shuffle among the top 10% of VMs having
the highest betweenness values and we deploy redundancy on the most important
VM opted by on closeness measure. The obtained results of S+R are compared
with the suffle only, redundancy only, and no MTD deployed configurations of the
network. Figure 4a compares the growth trend in the system risk against different
cloud-band sizes and replicas by deploying all combinations of foregoing MTD
strategies. Furthermore, in order to analyse the effects of deploying S+R on
system reliability and compare it with other deployment scenarios, we duplicate
the most important VM in the term of closeness and find the best shuffle scenario
through betweenness (as in Sect. 3.1), see Fig. 4b).

As it can be seen in Fig. 4a, deploying shuffle-only can decrease the system
risk (compare S-Only with No-R-No-S in chart). Next, deploying redundancy-
only decreases system security. Nevertheless, deploying S+R causes a gentle
increment on the system risk which is not comparable with the same values
cased by deploying redundancy only. In Fig. 4b, comparing current system with
the results of deploying both redundancy and S+R, we obviously observe that
both of these techniques enhance the system reliability, while shuffle decreases
reliability.

Finally, we conclude that the two important security and reliability mea-
sures have a negative correlation toward MTD techniques. Although increasing
the system reliability through deploying redundancy may deteriorate security
and vice versa, one can benefit from a combination strategy to find a reliable
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Fig. 4. Combinations of MTD techniques with regard to system risk and reliability.
(a) compares the combinations of MTD techniques based on different cloud-band sizes
and replicas over the system risk. (b) compares deploying Shuffle, Redundancy (2-R),
and S+R techniques on the system reliability

threshold between those two measures based on the a particular system and
networked environment.

4 Discussion and Limitations

In this section, we discuss the main findings of the deployed methods as well as
the limitations and future work. Experimental analysis in Sect. 3 showed that
the best shuffle technique that minimised the system risk can be found using the
IMs with only the top 10% of VMs. Although deploying the shuffle decreased the
system reliability, this decrement was neglectable (especially in the larger cloud-
bands) as shown in Figs. 2a and 4b. When deploying the redundancy technique,
betweenness measure has a strong exponential correlation with the system risk. It
shows that deploying redundancy technique on the nodes with higher between-
ness values increases system risk exponentially. As the redundancy technique
aims to improve the the system reliability, we observed a trade-off between the
system risk and the reliability when using the redundancy technique. The sec-
ond finding is that, the betweenness had no correlation with the reliability ; thus,
replication of a VM with highest betweenness centrality does not guarantee the
best reliability. However, one can deploy redundancy on a VM with the high-
est closeness rate to achieve the best reliability value while system risk grows
linearly. Finally, through combination of both shuffle and redundancy and util-
ising the pros and cons of each, we can find an appropriate threshold between
those with regard to the security and performance-related requirements and the
networked environment. The observed results are valid based on our cloud-band
model and may vary on different type of networks and cloud models. Other MTD
combinations including Diversity should also be considered with more analysis
related to time and complexity of the methods. We only focused on two crite-
ria for assessing our methods, system risk and reliability, while there are many
security metrics, such as attack cost, probability, etc.
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For our future work, we will conduct experiments using a real testbed, which
we are currently working on implementing a private cloud named Unitecloud [3].
Further, we will incorporate other combinations of MTD techniques to evaluate
their effectiveness, as well as to incorporate more vulnerabilities from other layers
in the system (e.g., application vulnerabilities).

5 Related Work

Many research efforts are made to improve the MTD systems in the last decade,
including frameworks [14], strategies and techniques [1,8], and applications [2].
Jafarian et al. [8] developed a MTD technique to proactively change the IP
addresses of the hosts. Similarly, the concept of Random Route Mutation (RRM)
has been introduced by Al-Shaer [1] to find an optimal randomised path between
the source and the target. Zhang et al. [13] proposed an end-to-end defence
strategy to secure VMs in a cloud data centre at a hypervisor level. Zhang
et al. [14] proposed a MTD method to cope with the problem resulting from
co-residency in the virtualised environment.

On the other hand, there are only a few work to evaluate the effectiveness of
the MTD techniques. Peng et al. [11] investigated the effectiveness of MTD tech-
niques for securing cloud-based services with a heterogamous or dynamic attack
surface. However, they did not utilise a rational and formal security model and
analysis tool. Hong et al. [6] analysed the security changes when MTD techniques
are deployed, by introducing a formal method to model Shuffle, Redundancy, and
Diversity individually. We extended this work by combining Shuffle and Redun-
dancy measuring the system risk and reliability, as well as incorporating to use
the IMs for better scalability.

6 Conclusion

MTD techniques have been proposed to enhance the cyber security by changing
the network surface continuously, therefore making the attack surface unpre-
dictable for attackers. However, the effectiveness of deploying multiple MTD
techniques has not been evaluated. To address this problem, we first incorpo-
rated MTD techniques, namely Shuffle, Redundancy, and the combination of
both, into a scalable graphical security model named HARM, in order to evalu-
ate the effectiveness of MTD techniques by comparing the changes in the system
risk and reliability. Moreover, we used IMs to find the most effective MTD
techniques in a scalable manner. Finally, our experimental results showed the
effectiveness and the trade-off using the proposed MTD techniques in order to
maximise the reliability while minimising the system risk.

Acknowledgment. This paper was made possible by Grant NPRP 8-531-1-111 from
Qatar National Research Fund (QNRF). The statements made herein are solely the
responsibility of the authors.
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Abstract. LWE/RLWE-based cryptosystems require sampling error
term from discrete Gaussian distribution. However, some existing sam-
plers are somehow slow under certain circumstances therefore efficiency
of such schemes is restricted. In this paper, we introduce a more effi-
cient discretized Gaussian sampler based on ziggurat sampling algorithm.
We also analyze statistical quality of our sampler to prove that it can be
adopted in LWE/RLWE-based cryptosystems. Compared with ziggurat-
based sampler by Buchmann et al. related samplers by Peikert, Ducas
et al. and Knuth-Yao, our sampler achieves more than 2x speedup
when standard deviation is large. This can benefit constructions rely
on noise flooding (e.g., homomorphic encryption). We also present two
applications: First, we use our sampler to optimize the RLWE-based
authenticated key exchange (AKE) protocol by Zhang et al. We achieve
1.14x speedup on total runtime of this protocol over major parameter
choices. Second, we give practical post-quantum Transport Layer Security
(TLS) ciphersuite. Our ciphersuite inherits advantages from TLS and the
optimized AKE protocol. Performance of our proof-of-concept imple-
mentation is close to TLS v1.2 ciphersuites and one post-quantum TLS
construction.

Keywords: Post-quantum cryptography · Lattice · RLWE · Sampling
TLS

1 Introduction

1.1 Backgrounds

Various public key algorithms had been proposed and widely deployed in
real world since the ground-breaking Diffie-Hellman key exchange protocol [6].
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With the advent of quantum computers however, it is believed that most current
public key cryptographic constructions are no longer secure while lattice-based
algorithms can survive. Best known attacks on current cryptosystems are Shor’s
algorithm [20] and Grover’s algorithm [11]. Shor’s algorithm can break most
public key algorithms efficiently when practical quantum computers are avail-
able. Grovers algorithm can speedup attacks against most symmetric ciphers
and hash functions, but they are considered to be relatively secure [3]. Bennett
et al. proved that a quantum computer may provide quadratic speedup on brute-
force key search [2] and this attack can be defeated by doubling key length.
However, increasing key size while remain practical does not work for public key
cryptosystems.

During the past years, lattice-based cryptographic primitives had been rec-
ognized for their attractive properties, including resistant to quantum attacks,
strong provable security and efficiency. Currently, no public algorithms can effi-
ciently solve hard lattice problems. During the past decade, Learning With
Errors (LWE) [19] and Ring-LWE (RLWE) [15] underlie as foundation for numer-
ous modern lattice-based cryptosystems. Constructions based on these hard
problems enjoy strong provable security and high efficiency. The secret, fresh
and random error term e in LWE/RLWE makes both problems very hard to
solve when parameters are properly chosen. For common practices, e and secret
key s are sampled from discrete Gaussian distribution, therefore efficient sam-
pling algorithm is essential towards practical LWE/RLWE-based cryptographic
constructions. However, some papers have pointed out that sampling may take
up too much time in practice. Weiden et al. [21] reported that sampling time
takes up > 50% of total runtime when they implement Lyubashevskys signa-
ture scheme [14]. In the authenticated key exchange from ideal lattices protocol
proposed at EUROCRYPT 2015 [22], they report that sampling operations may
take up > 60% of total runtime. Therefore, design and implement Gaussian sam-
pler with high efficiency and nice statistical quality become a major technical
challenge.

1.2 Related Works

Buchmann et al. proposed the first ziggurat-based discrete Gaussian sampler at
SAC 2013 in [5]. This work adapts original ziggurat sampling algorithm designed
for continuous Gaussian distribution to discrete case. They claimed that when
standard deviation σ is large, their sampler outperforms several common sam-
pling methods. Peikert introduced a sampler using cumulated distribution tables
(CDT) at CRYPTO 2010 [18]. This sampler has been proven to be extremely
efficient when σ is small, but rather inefficient for large σ. Ducas et al. gave a new
sampler that has better trade-off between time and memory at CRYPTO 2013
[9]. It does not use precomputed tables and they claim that sampler is efficient
even when σ is large. Knuth-Yao algorithm [12] can sample from Gaussian distri-
bution using binary tree search technique. It is efficient but might cost too much
memory. There are various constructions (e.g., homomorphic encryption) that
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require samples from discrete Gaussian distribution with large σ. This technique
is known as noise-flooding.

A RLWE-based authenticated key exchange protocol was proposed at EURO-
CRYPT 2015 [22] (denoted as AKE15). This protocol behaves in HMQV [13]
manner and its hardness is directly based on RLWE problem. It is mutual
authenticated, proven secure under Bellare-Rogaway model [1] and forward
secure. Bos et al. proposed an implementation of RLWE key exchange proto-
col at IEEE Symposium on Security and Privacy 2015 [4] (denoted as BCNS15)
and integration into TLS. Their ciphersuites adopt RSA or ECDSA as signing
algorithm which are vulnerable to quantum computers. Moreover, their cipher-
suites cannot achieve mutual authentication.

1.3 Contributions

Our contributions are summarized as follows: First, we introduce a much faster
discretized ziggurat Gaussian sampler. We discretize original ziggurat sampling
algorithm with several improvement techniques to make it more efficient. We
prove that the statistical distance between distribution generated by our sampler
and discrete Gaussian distribution is smaller than 2−80, therefore it can be used
in lattice-based cryptosystems. Performance of our optimized implementation
shows that our sampler is more than 2x speedup over [5,9,18] when σ is large.
This could benefit constructions that using distributions with large standard
deviations to flood small noises (e.g., homomorphic encryption etc.).

Second, we optimize a RLWE-based authenticated key exchange protocol
[22]. We replace the sampler for sampling from distribution with large standard
deviation in original AKE15 with our efficient discretized Gaussian sampler. We
achieve 1.14x speedup on total runtime of this protocol over major parameter
choices.

Third, we integrate our optimized AKE implementation into TLS v1.2 as
post-quantum TLS ciphersuite. We also present proof-of-concept implementation
and benchmark. Our ciphersuite inherits advantages from both AKE15 and TLS
v1.2, including mutual authentication, resistant to quantum attacks and forward
secrecy. Performance of our ciphersuite is close to standard TLS v1.2 ciphersuites
and BCNS15.

1.4 Organization

In Sect. 2, we recall background knowledge. In Sect. 3, we present our efficient
discretized ziggurat-based Gaussian sampler, security proofs, implementation,
benchmark and comparison with related works. In Sect. 4.1, we show how our
sampler optimizes AKE15 and report benchmarks on 6 parameter choices rang-
ing from 80 to 256-bit security. Section 4.2 introduces our post-quantum TLS
ciphersuite, implementation, runtime and comparisons with related works. We
conclude the paper in Sect. 5.
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2 Preliminaries

2.1 Notation

Let ring R = Z[x]/(xn + 1) and Rq = Zq[x]/(xn + 1). Polynomial xn + 1 is
n-th cyclotomic polynomial where n is a power of 2. χ is a probability distribution
on Rq, ← χ denotes sampling according to distribution χ, ←r denotes randomly
choosing an element from a finite set. A discrete Gaussian distribution over Z with
standard deviation σ > 0 and mean c ∈ Z is denoted as DZ,σ,c. If c is 0, we denote
DZ,σ,c as DZ,σ. log denotes natural logarithm. Let L be a discrete subset of Zm.
For any vector c ∈ Rm and any positive parameter σ ∈ R > 0, let ρσ,c(x) =

e− ‖x−c‖2

2σ2 be the Gaussian function on Rm with center c and parameter σ. Denote
ρσ,c(L) =

∑
x∈L ρσ,c(x) be the discrete integral of ρσ,c over L, and DL,σ,c be the

discrete Gaussian distribution over L with center c and parameter σ. Specifically,
for all y ∈ L, we have DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) [7].

2.2 LWE and RLWE

LWE and its ring variant RLWE are hard problems when parameters are prop-
erly chosen. The core idea of these two problems is to perturb random linear
equations with small noise. Due to perturbation from error terms, it is very hard
to distinguish these equations from truly uniform ones. There are quantum [19]
and classical reduction [17] between LWE problem in average-case and worst-
case hard lattice problems. If there exists a polynomial-time algorithm to solve
LWE/RLWE problem, then there exists algorithms to solve hard lattice prob-
lems. Hardness of LWE/RLWE serves as the solid foundation to numerous cryp-
tographic schemes. In practice, RLWE-based schemes are more preferable than
LWE-based ones since LWE has an inherent quadratic overhead in computation
and communication (large matrix) and this leads to inefficiency. RLWE sample
is constructed as polynomial pair (a, b), where a ∈ Rq is uniformly random,
b = a ·s+e ∈ Rq, s is small and secret term, e is sampled from discrete Gaussian
distribution. Search-RLWE problem is to recover s given many RLWE samples.
Decision-RLWE problem is to distinguish b from uniform random. There are
similar variants for search-LWE and decision-LWE therefore we ignore details.
Cryptographic constructions based on RLWE (e.g., public key encryption, sig-
nature, key exchange, homomorphic encryption etc.) can be made truly efficient
and practical for real-world deployment.

2.3 Statistical Distance

Since discrete Gaussian distribution has infinitely long tail and high precision for
the probabilities of sampled points, it is impossible to generate a truly discrete
Gaussian distribution within finite computations. Therefore, it is required that
the statistical distance between distribution generated by sampler and discrete
Gaussian distribution to be very small.
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Statistical distance is defined as follows: If X and Y are two random variables
corresponding to given distributions on L, the statistical difference is defined as:

Δ(X,Y ) =
1
2

∑

x∈L

|Pr(X = x) − Pr(Y = x)| (1)

If the statistical distance between two distributions is very small (e.g.,
< 2−80), the difference between these two distributions is negligible.

3 Faster Discretized Gaussian Sampler

Generally, secret key s and error term e of LWE/RLWE-based schemes are sam-
pled from discrete Gaussian distribution. Sampling takes up large portion of
runtime in implementation, therefore efficiency of sampling algorithm is very
crucial. Ziggurat sampling algorithm [16] can sample from Gaussian distribution
very efficiently. However, ziggurat algorithm is designed for continuous distribu-
tion and lattice-based schemes require discretized version.

Our sampler is discretized version of [16] and we improve efficiency of our
sampler by eliminating computations in sampling operations. We prove that
our sampler has very close statistical distance to discrete Gaussian distribution,
therefore our sampler can be used in LWE/RLWE-based cryptosystems securely.
We also introduce optimized implementation. We explain the construction of
our sampler, analyze its statistical quality with proofs, present implementation
details, benchmark, discussion and comparisons with several samplers in the
following sections.

3.1 Ziggurat Gaussian Sampling Algorithm

We recall the ziggurat Gaussian sampling algorithm [16]: Area A encloses the
probability density function ρσ(x) with n rectangles. Rectangles are chosen in a
way such that they have equal area. (xi, yi) denotes the coordinate of the lower
right corner of each rectangle Ri. Rl

i lies within the area of ρσ(x) and Rr
i is partly

covered by ρσ(x). We first randomly select i ∈ [1, n] to select one rectangle, then
randomly sample x-coordinate inside Ri by choosing x′ ∈ [0, xi]. If x′ ≤ xi−1, x′

is accepted and returned, otherwise we sample a value γ ∈ [yi+1, yi]. If γ+yi+1 ≤
ρσ(x′), x′ is accepted and returned, otherwise it is rejected and start over again.
The probability of sampling a point in these rectangles are equal since they
have same size and rectangle is randomly chosen. Marsaglia also suggested an
algorithm for tail region: The following procedure is repeated until 2y > x2:
uniformly sample a ∈ (−1, 0) ∪ (0, 1) and b ∈ (0, 1), x = − 1

r log |a|, y = − log b.
If a > 0, return (r + x), else return −(r + x).

3.2 Our Fast Discretized Gaussian Sampling and Statistical Quality
Analysis

Our sampler is designed directly based on original ziggurat sampling algorithm,
which is designed for continuous Gaussian distribution. We discretize it and
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improve the efficiency of this algorithm with several optimization techniques. The
result is our sampler can get samples subjected to discrete Gaussian distribution
efficiently with high statistical quality.

We notice that the most expensive part in original ziggurat algorithm is
exponential computation since original ziggurat algorithm requires large amount
of exponential computations. This computation is directly related to certain σ,
therefore it is more inefficient when σ is large. We improve this by sampling
from normal continuous Gaussian distribution (σ = 1, instead of distribution
with certain σ), then multiply the sampled value to σ and a randomly generated
sign. Finally, we round it to nearest integer to get discretized value. Our approach
effectively avoid the inefficiency where plenty of samplers cannot handle large σ
efficiently.

We optimize our sampler even further. We use 3 precomputed tables: ytab,
ktab and wtab to reduce online computations. Computations on generating these
tables are irrelevant from both sampling computation and different standard
deviations, since it is a once-for-all computation. Value of precomputed tables are
hard-coded in implementation. We can comfortably use same tables when dealing
with different standard deviations. Precomputed tables are generated as follows:
ytab = ρ1(xi) which stores tabulated values for the height of each ziggurat.
ktab is for quick acceptance check with ktab0 = �2128 · r · ρ1(r)/v�, ktabi =
�2128 ·(xi−1/xi)�, r = x127 ≈ 3.444286476761, v is the size of each rectangle. wtab
is for quick value conversion with wtab0 = 0.5128 ·v/ρ1(r) and wtabi = 0.5128 ·xi.
We note that other samplers may need to generate precomputed tables again
when σ changes while our sampler does not.

Pseudocode of our sampler is given in Algorithm1 (urandom() refers to gen-
erate a uniformly distributed 128-bit precision random float number between 0
and 1):

Here we prove that statistical distance between distribution generated by
our sampler and discrete Gaussian distribution is very small. We approximate
statistical distance between the distribution generated by our sampler and dis-
crete Gaussian distribution to be less than 2−80 for n = 1024 samples and
σ = 869.632. We utilize a similar approach as [5] since our sampler takes n sam-
ples from discrete Gaussian on Z to get discrete Gaussian distribution samples
on Zn. Conclusion still holds for other parameter choices. We first recall two
useful lemmas from [10] for our proofs:

Lemma 1. Let σ > 0 and n ∈ N be fixed. Consider distribution DZn,σ. Let
k ∈ N and suppose c ≥ 1 is such that:

c >
√

1 + 2 log c + 2(k/n) log 2 (2)

Then:
Pr

v←DZn,σ

(‖v‖ > c
√

nσ) <
1
2k

(3)
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Algorithm 1. Fast Discretized Gaussian Sampling
Input: ytab, ktab, wtab, r, σ
Output: Integer distributed according to discrete Gaussian distribution
1: while true do
2: i ←r {0, · · · , 127}, s ←r {−1, 1}
3: r ←rurandom(), j ← r · 2128, x ← j · wtabi
4: if j < ktabi then
5: break
6: end if
7: if i < 127 then
8: y0 ← ytabi, y1 ← ytabi+1

9: y ← y1 + (y0 − u1)·urandom()
10: else
11: x ← r − log (1−urandom())/r
12: y ← e−r(x−0.5r)·urandom()
13: end if
14: if y < e−0.5x2

then
15: break
16: end if
17: end while
18: if s = 1 then
19: return �s · σ�
20: else
21: return −�s · σ�
22: end if

Next lemma gives us a way to approximate distributions in Z based on the
approximation we need for Zn:

Lemma 2. Let σ > 0, ε > 0 be given. Let k ∈ N and t > 0 be such that the tail
bound Pr(‖v‖ > tσ) as in Lemma 1 is at most 1/2k. For x ∈ Z, denote ρx as the
probability of sampling x from the distribution Dσ. Suppose one has computed
approximations 0 ≤ px ≤ Q for x ∈ Z, −tσ ≤ x ≤ tσ such that:

|px − ρx| < ε (4)

and such that
∑tσ

x=−tσ = 1. Let D′ be the distribution on [−tσ, tσ] ∩ Z corre-
sponding to the probabilities px.

Denote by D′′ the distribution on Zn corresponding to taking n independent
samples vi from D′ and forming the vector v = (v1, · · · , vn). Then:

Δ(D′′,DZn,σ) < 2−k + 2ntσε (5)

Let χβ denote the distribution generated by our sampler, DZn,β denote
the discrete Gaussian distribution on Zn. We show the approximation for our
sampler using parameters from parameter choice I in Table 3. In order to use
Lemma 2, we first need to compute the value of c for k = 81 and n = 1024 in
Lemma 1, thus we have c = 1.242617 and this gives us tail t = c

√
n ≈ 40. Note
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that this tail cut is much larger than most samplers (e.g., [5] has tail cut t = 13).
For our sampler, we have Δ(χ,DZn,β) < 2−k +2ntβε. By choosing the precision
level to be 128 for the precomputed tables, we can approximate px in the lemma,
for the tail cut to be close to discrete Gaussian in Z with the error-constant ε as
2−128, therefore we have Δ(χ,DZn,β) < 2−81+2·1024·40·869.632·2−128 < 2−80.
The efficiency of rejection procedure is estimated to be 98.78% [16] which con-
tributes to the performance of our sampler.

3.3 Implementation and Runtime

We use MPFR, GMP and NTL library implement our sampler. We set precision
to 128-bit to achieve highly accurate computations. We use 128-bit seed and
128-bit random numbers to remain secure against brute-force quantum attacks.
Each value in precomputed tables has 40 significant figures. In one execution,
a vector with 2048 samples is generated. Each sampled value mod to a 78-bit
prime p and stored in a vec ZZ p type vector. We test on a Lenovo ThinkCentre
M8500t equipped with 3.6 GHz Intel Core i7-4790 processor running Ubuntu
14.04 64-bit version with 3 GB memory. Our implementation is compiled by
g++ 4.8.4 with ‘-O3 -m64’ compilation flags and only runs on single core. We
report average runtime of 1,000 times execution of our sampler with different
standard deviations σ in Table 1:

Table 1. Performance of our sampler

σ Million
samples/s

σ Million
samples/s

σ Million
samples/s

5 2.94 106 2.95 1012 2.91

50 3.01 107 2.92 1013 2.89

102 2.99 108 2.93 1014 2.87

103 3.02 109 2.90 1015 2.88

104 2.97 1010 2.88 1016 2.85

105 2.99 1011 2.89 1017 2.84

We also use Valgrind to profile memory cost. Our implementation costs max-
imum of 11.07 MB memory to generate 2048 samples. Each precomputed table
consumes nearly 6 KB of memory. Generate three precomputed tables costs
0.173 s but they are computed offline and values are hard-coded in our imple-
mentation. In each execution, same precomputed tables are used and they are
irrelevant to different standard deviation. We report this timing for completeness.

3.4 Comparisons and Discussions

We present detailed introduction, analysis and comparison with other samplers
in [5,9,12,18]. We also test actual performance of these samplers using same test
environment, compiler and compilation flags as Sect. 3.3 with various σ.
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A ziggurat-based discrete Gaussian sampler was proposed in [5]. Their app-
roach of adapting original ziggurat algorithm to discrete case is different from
ours. Compared with their work, our sampler has following improvements and
differences:

1. We effectively avoid expensive computation caused by standard deviation.
This major contributes to efficiency of our sampler.
Bottlenecks of their sampler are:

– More than 50% of total runtime is spent on computing e−x2/2σ2
(x is also

related to σ) in constructing each rectangle.
– Computation in rejection judgement (calculate e−0.5x2

when judging y is
smaller than e−0.5x2

or not).
– Computation in tail region (y = e−r(x−0.5r)·urandom(), line 12 of

Algorithm 1).
It is clear that when σ is large, large amount of time is spent on exponential
computation. Our sampler avoids this by sampling from normal distribution
first and this is much more efficient.

2. We use 3 precomputed tables to store the values required in sampling pro-
cedure, compared to only 1 table to store xi in their implementation. Our
sampler can fetch results from these tables directly instead of online com-
putation, therefore the performance is further improved. In our implementa-
tion, multiplication, conversion and generating random numbers take up most
time. We use their implementation to test their sampler using same environ-
ment and precision with various σ. They claimed that their sampler is the
fastest when σ = 1.6 · 105. In our test environment, their sampler produces
1.34 million samples/s and 1.23 s to generate precomputed tables, while our
sampler produces 2.97 million samples/s with no additional time cost. We fail
to test σ > 108 cases since their code crashes.

3. Their implementation needs to compute precomputed tables again when σ
is different. This increases total sampling time significantly. Time spent on
generating these tables is not even counted when comparing sampling perfor-
mance in Table 2. If this part is also included, their sampler is much slower.
Our sampler can generate precomputed tables within 0.2 s. These tables are
hard-coded in implementation and irrelevant with different σ.

4. Their sampler has statistical distance < 2−100 at 106-bit precision and it is
better than ours. We are able to achieve much faster sampling at the expense
of statistical quality to some extent, but statistical quality of our sampler is
still good enough to be adopted in LWE/RLWE-based constructions.

At CRYPTO 2010, Peikert gave a very efficient Gaussian sampler (denoted
as PKT) using cumulated distribution table (CDT) [18]. We implement it and
benchmark shows that PKT is extremely efficient and much faster than all others
when σ < 106, but it can be very slow when σ is large, thus it is more preferable to
deal with distributions with smaller σ. We did not count time spent on generating
precomputed tables in Table 2 when comparing sampling speed.

Ducas et al. presented a sampling algorithm that offered better trade-off
between time and memory at CRYPTO 2013 (denoted as DDLL) [9]. It can
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sample efficiently without using precomputed tables. We implement DDLL and
it is faster than all other samplers (except ours) when σ is large, but our sampler
is twice as fast when σ > 108. We note that DDLL consumes less memory than
our sampler, thus it is more suitable in resource-constrained devices.

Knuth-Yao algorithm (denoted as KY) [12] can sample from Gaussian distri-
bution efficiently. According to [5], their KY implementation outputs nearly
5.8, 4.9, 3.2 and 1.2 million samples/s when σ = 10, 32, 1000 and 1.6 · 105

respectively. However, when σ = 1.6 ·105, KY consumes 424 times more memory
but only 4.26% faster than ziggurat sampler in [5], where their ziggurat imple-
mentation consumes 30.57 MB memory with 2048 samples by our profiling. We
use another KY implementation and test in same environment to verify their
results. When σ = 103, it outputs 7.85 million samples/s but costs more than
200 MB memory. When σ = 104, the process is terminated by operating system
because it costs too much memory.

The importance for developing efficient samplers for large standard devia-
tion is that various constructions require sampling from such distributions. For
constructions like homomorphic encryption, it is required to use noise-flooding
technique to preserve security and privacy of circuit etc. However, various cur-
rent samplers cannot deal with large standard deviation efficiently. Our efficient
sampler solve this problem. This is very important for efficiency and practicality
of such constructions.

We implement [9,18] fairly to test their performance. Implementation of [5]
we use is what they provided in the paper. We test all implementations on same
machine, compiled with same compilation flags, executes same number of times
and report average performance in Table 2. Sampling speed is given in million
samples per second. Time spent on generating precomputed tables is given in
second.

Table 2. Performance comparison between our sampler and related works

Standard
deviation

This work Discrete zigguart ([5]) PKT ([18]) DDLL([9])

Sampling
speed

Generate
CDT (s)

Sampling
speed

Generate
CDT (s)

102 2.99 1.67 1.11 10.41 0.017 4.86

103 3.02 1.61 1.12 8.36 0.166 3.29

104 2.97 1.52 1.14 6.76 1.61 2.69

105 2.99 1.46 1.09 4.95 16.07 2.22

106 2.95 1.25 1.12 2.35 163.79 1.84

107 2.92 1.17 1.22 1.33 1620.8 1.64

108 2.93 1.04 1.11 Cost too much time 1.47

We can see that our sampler is much more efficient than [5,9,18] when
standard deviation > 104. It is known that noise-flooding use much larger
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standard deviation than 104, therefore our sampler has an advantage. More-
over, our sampler and DDLL do not require additional precomputations except
sampling. Before sampling operation, [5,18] first need to compute ziggurat tables
and CDT respectively. This costs additional time and it is inefficient.

4 Applications: Optimizing RLWE Key Exchange
and Post-quantum TLS Ciphersuite

4.1 Optimizing AKE15

Bottleneck and Our Approach. AKE15 [22] is a RLWE-variant of HMQV.
It is mutual authenticated and proven secure under Bellare-Rogaway model with
enhancements to capture weak perfect forward secrecy. Communicating parties
do not need to encrypt or sign messages. One major bottleneck of this protocol is
sampling from Gaussian distribution. According to [22], sampling operation may
take up > 60% of total runtime for some parameter choices. In their implemen-
tation, generating long-term static key, polynomial c and d adopt PKT sampler.
DDLL sampler is adopted in generating ephemeral keys and computing shared
session key. As we discussed in Sect. 3.4, DDLL sampler is less efficient than our
sampler when σ is large, thus we replace DDLL sampler with ours to sample from
DZn,β to reduce total runtime. In one complete execution of key exchange, it
requires 3 online sampling operations from DZn,β : 2 in ephemeral key generation
and 1 in shared key computation, thus our sampler can improve the efficiency of
their implementation. Sampling from DZn,α and DZn,γ still uses PKT sampler
as original work. Parameter choices of the protocol remain the same and we
recall them in Table 3:

Table 3. Parameter choices of AKE15 protocol

Parameter
choice

Security
(bits)

n α γ β Bit-length
of q

I 80 1024 3.397 101.919 8.7 · 102 40

II 80 2048 3.397 161.371 4.56 · 108 78

III 128 2048 3.397 161.371 1.78 · 106 63

IV 128 4096 3.397 256.495 3.82 · 1015 125

V 192 4096 3.397 256.495 2.33 · 1011 97

VI 256 4096 3.397 256.495 9.12 · 108 81

Implementation and Performance. We report average runtime of our pre-
liminary implementation of original AKE15 and our optimized version. Our
implementation uses NTL 9.6.2, MPFR 3.1.3 and GMP 6.1.0 library with 128-
bit precision. Implementation of AKE15 is executed 1,000 times and use same
test environment as Sect. 3.3. Average runtime is reported in Table 4:
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Table 4. Sampling and runtime of original and optimized AKE15 protocol

Parameter
choice

DDLL
(ms)

This work
(ms)

Sampling
speedup

Original AKE15
runtime (ms)

Optimized AKE15
runtime (ms)

Runtime
speedup

I 0.312 0.355 0.88x 2.993 4.687 0.64x

II 1.635 0.694 2.36x 11.673 10.361 1.13x

III 1.269 0.721 1.76x 9.963 9.132 1.09x

IV 2.591 1.397 1.85x 26.741 21.964 1.22x

V 2.514 1.394 1.80x 22.865 21.457 1.07x

VI 3.349 1.394 2.40x 24.887 21.064 1.18x

By adopting our sampler, we achieve nearly 1.14x speedup of total runtime of
this protocol for last 5 parameter choices. We fail to optimize parameter choice
I since when σ is not large enough, our sampler is outperformed by DDLL and
this leads to deceleration.

4.2 Practical Post-quantum TLS Ciphersuite

Introduction. TLS is designed to ensure secure communications over adversary
controlled network, providing secrecy and data integrity between two communi-
cating parties. It is widely deployed in real world and it already comprises more
than 50% of total web traffic. It supports various algorithms for key exchange,
authentication, encryption and message integrity check. Since TLS is so impor-
tant and we are moving into the era of quantum computing, we consider TLS
should also adopt post-quantum cryptographic primitives. However, most cipher-
suites in the latest version of TLS fail to meet the demands since available key
exchange and signature algorithms can be broken by quantum computers.

Our Post-quantum TLS Ciphersuite. We integrate optimized AKE15 into
TLS v1.2 and this forms our post-quantum TLS ciphersuite. We give detailed
cryptographic primitive combination of our ciphersuite:

– Key exchange and authentication: We integrate optimized AKE15 to achieve
post-quantum key exchange and authentication. Quantum-insecure digital
signatures are no longer necessary. Parameter choices follow Table 3.

– Authenticated encryption: We choose AES-128-GCM. It provides confiden-
tiality, integrity and authenticity assurances on data.

– Hash function: We choose SHA-256. Our choice followed the principle pro-
posed by NIST of deprecating SHA-1.

Implementation and Runtime. We use mbedTLS 1.3.10, WinNTL 9.6.2,
MPFR 3.1.1 and MPIR 2.6.0 to implement our ciphersuite. Test programs sim-
ulate a TLS session between client and server. Server listens on localhost at
port 443 and client communicates with local server. We measure runtime of ses-
sion initiation and handshake. Test programs run in the following environment:
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Lenovo ThinkCentre M8500t equipped with a 3.6 GHz Intel Core i7-4790 pro-
cessor and 8 GB RAM running Windows 7 SP1 64-bit version. Test programs
are compiled by Visual Studio 2010 with optimization flags and execute 1,000
times using single core. For parameter choices aimed at 80, 128, 192 and 256-
bit security, average time cost is 24.417 ms, 51.224 ms, 123.443 ms and 98.842 ms
respectively, communication overhead for key exchange messages is 33.125 KB,
102.25 KB, 312.25 KB and 264.5 KB respectively. In our ciphersuite, most time is
spent on sending/receiving public key and key exchange messages since they are
much larger than standard TLS. This might be a bottleneck of our ciphersuite.

Comparison. We compare performance of some ciphersuites in standard TLS
and the post-quantum TLS ciphersuite proposed at IEEE S&P 2015 with our
work. Our ciphersuite is faster in some cases but slower in others.

– Standard TLS v1.2: We choose two standard TLS ciphersuites: 0x9F (1024-
bit DH+2048-bit RSA) and 0xC030 (elliptic curve secp521r1+2048-bit RSA).
Test environment and procedure remain the same as Sect. 4.2. Runtime of
these two ciphersuites are 30.959 ms and 49.742 ms respectively. For compar-
ison, our 80-bit parameter choice I is faster than ciphersuite 0x9F, 256-bit
parameter choice VI is slower than ciphersuite 0xC030.

– BCNS15: This work introduced implementation of an unauthenticated post-
quantum key exchange aimed at 128-bit security and integration in TLS pro-
tocol. We implement client/server side test programs using code in [8] and test
these ciphersuites: RLWE-RSA-AES128-GCM-SHA256 and RLWE-ECDSA-
AES128-GCM-SHA256. Test environment remain the same as Sect. 3.3. For
first ciphersuite, server adopts a self-signed 3072-bit RSA certificate and aver-
age execution time is 44.536 ms. For the second ciphersuite, server adopts a
self-signed ECDSA certificate using curve secp256k1 and average execution
time is 41.539 ms. Our post-quantum TLS ciphersuite at same 128-bit security
is slower and average runtime is 51.224 ms. Our ciphersuite has much larger
communication overhead than this work (around 10 KB). Another difference
is that our ciphersuite can achieve mutual authentication while this work only
authenticates the server. Furthermore, we use different library and operating
system to test, thus it is harder to compare directly and fairly. We believe
their ciphersuites have better performance and smaller communication cost,
but ours is more closer to a fully post-quantum TLS ciphersuite.

5 Conclusion

In this paper, we introduce a much faster discretized Gaussian sampler based
on the ziggurat sampling algorithm. We utilize several optimization techniques
to improve our sampler, so that our sampler has advantage on computation effi-
ciency. We prove that the statistical distance between distribution generated by
our sampler and discrete Gaussian distribution is very small so that our sampler
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is suitable for lattice-based cryptography. We also present optimized implemen-
tation and comparisons with several related samplers. Results show that our
sampler is very computational efficient, especially when σ is large. This can ben-
efit constructions using noise-flooding technique (e.g., homomorphic encryption).
We also give two applications: first is optimizing RLWE-based authenticated key
exchange protocol. We achieve 1.14x speedup on total runtime of this protocol
over major parameter choices. Another application is we present our practical
post-quantum TLS ciphersuite. Performance of ciphersuite is close to standard
TLS v1.2 ciphersuites and BCNS15. We believe our sampler and post-quantum
TLS ciphersuite will have further optimizations and more applications.
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Abstract. Modern cryptographic schemes have been focusing on pro-
tecting attacks from computational bounded adversaries. The various
cryptographic primitives are designed concretely following some random-
ization design strategies, so that one of the goals is to make it hard for
the attacker to distinguish between the real ciphers and the randomly
distributed ones. Recently, Google Brain team proposed the idea to build
cryptographic scheme automatically based on the neural network, and
they claim that the scheme can defeat neural network adversaries. While
it is a whole new direction, the security of the underlined scheme is
remained unknown. In this paper, we investigate their basic statistical
behavior from traditional cryptography’s point of view and extend their
original scheme to discuss how the encryption protocol behave under a
much more stronger adversary.

1 Introduction

Modern cryptography are widely deployed to protect the digital communica-
tions. Complicated cryptographic protocols are usually built from more simple
components such as block ciphers, hash functions, message authentication code
and so on. During the past 20 years, researchers have proposed a lot of concrete
algorithms, among which the block cipher AES is one of the most well known
one. Similar to other proposed cryptographic schemes, researchers also try hard
to analyze their security margin. In most of the cases, in order to make the
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 566–575, 2017.
https://doi.org/10.1007/978-3-319-72359-4_34
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scheme practical, only computational bounded adversaries are considered in the
design stage. Under this big assumption, lots of security models are proposed
such as semantic security [3], chosen plaintext attack, chosen ciphertext attack
and so on. Each cryptographic scheme are analyzed under these different models
to ensure their security.

In 2016, Google Brain team proposed the idea [2] to build cryptographic
scheme automatically without manually designing any concrete algorithms. In
this new direction, all parties joining the computation are actually neural net-
works. In order to achieve the security goal, the core idea of the paper is to
introduce an adversarial neural network, and let it compete with the legal users.
This is however not a brand new idea, which has appeared in several previous
works [4,5,9]. It shares the similarity to the well known model called generative
adversarial network (GAN), which was originally proposed to determine whether
a sample value was generated by a model or drawn from a given data distribution.
As we will see in Sect. 2 that the introducing of the adversarial neural network is
the key part to make the communication secure from the eavesdropper. Before
[2], there are several other works which took advantage of the machine learning
techniques to protect communication such as [6–8], which focused more on the
other fundamental issues such as how the secret keys can be established and
so on.

The work [2] provided a whole new insights on how to construct cryptographic
primitives in an intelligent way. The machine learning and the techniques of
neural networks have already found massive applications in the areas such as
image recognition, voice generation and so on, it seems that finally the they come
to the area of cryptography. However, a lot of questions still remain untouched
such as the security margin of the underlined scheme as well as how the model
will behave under other much more stronger adversaries. In this paper, we follow
the work of [2] by first providing some fundamental statistical analysis of the
scheme, and then we try to recognize the structure of the learned network.
Also other encryption protocols are evaluated under the different and stronger
adversarial models. We discussed the key recovery models as well as the key or
plaintext leakage models. Finally, we try to enhance the encryption scheme by
introducing two adversary models simultaneously.

This paper is organized as follows. In Sect. 2, we briefly introduce the work
[2] reproduce and improve their results, as well as a short description on the
statistical behavior and the shape of the learned cipher. In Sect. 3, other models
are discussed including the key recovery model, leakage model and the dual
adversary model. And finally we conclude our paper in Sect. 4.

2 Preliminary

Martin Abadi and David G. Andersen’s paper [2] presented a multi-agent sys-
tem, where the communication between the two parties needs to be protected.
The setting is very similar to the symmetric key encryption, where there are
two legal parties Alice and Bob who want to communicate with each other. And
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there is an adversary Eve who wants to understand the content of the communi-
cation without knowing the secret key that is shared between Alice and Bob. In
their paper, the ability of the adversary Eve is limited to knowing the ciphertext
generated by Alice only. So comparing with the adversarial model in the tradi-
tional cryptography, it is a ciphertext only attack, which is the weakest model.
Different from the traditional symmetric key model, all the participants in this
protocol are neural networks including the adversary Eve. Each neural network
has its own purpose, which is expected to be achieved after the training stage.
For example, the goal of Alice and Bob is to minimize the distance between P
and PBob, which are the input and output plaintexts by Alice and Bob respec-
tively. In order to train the model to be useful an adversarial neural network
has to be introduced, which is Eve in our setting. In the training stage, Eve’s
goal is to minimize the distance between P and PEve. As a legal party, however,
Alice and Bob would like to maximize the plaintext distance, which is obviously
against Eve’s goal. The competition mechanism introduced here borrows the
idea from the generative adversarial network (GAN) [4]. Notice that no spe-
cific algorithms are specified beforehand, so our protection goal is rather flexible
which depends on the adversarial neural network. The model is shown in Fig. 1.
By using Tensorflow [1], we rebuilt their encryption systems and the results are
shown in Fig. 2.

Fig. 1. Original model in paper [2] Fig. 2. Batch size: 1024, epochs: 80

The result we derived is similar to [2]. The x-axis denotes the training epoch
with batch size 1024. The y-axis denotes the decryption error which is a little bit
different from the work [2]. The decryption error is calculated by using the mean
of the differences in every output bit. Therefore we would expect the decryption
error of Eve to be 0.5, which indicates that she only guesses the result randomly.
On the other hand, we would like the decryption error of Bob to be as close as
possible to 0 to guarantee the correctness. As we can see from the experimental
result, as the number of training steps increases, Bob can successfully decrypt
messages. Eve has some advantages in decrypting the ciphertext at the begin-
ning, but soon Alice and Bob changed their strategies to better defeat Eve such
that she does not have any advantages in the end. Although the authors did not
put their effort in making the cipher indistinguishable from a random chosen
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one just as the design of the traditional symmetric key ciphers do, we would like
to know its statistical behavior.

Since the ciphertext generated by Alice is floating point numbers, we need
to first transfer the floating point number to integer first and then we can apply
the NIST statistical test suit. From the test result, we found that the proportion
of passing for some of the tests is very low. Especially, with 50% chance we
failed to pass the frequency test, which tests the ratio between the number of 0
and 1. We further confirmed that the ratio of 1 and 0 is a fixed number 0.942.
As long as the hyper-parameter of the neural network remains unchanged, the
ratio is not changed no matter how many times we trained the neural networks.
Thus the trained model is far from being statistically indistinguishable, which
is required by the modern cryptography. How to improve the model to close the
gap is worth further investigation.

The training process is very intelligent and we do not control what kind of
functions it will learn. Compare to the modern cryptography where concrete
algorithms are specified, we are also interested in knowing the learned function.
Xor logic is one of the most widely used operation in modern cryptography
and it is famous for its application in the one time pad. So we would like to
know whether the learned functions share some similarities with the xor logic.
In our experiment we randomly choose some message and the key to generate
the ciphertext using the stabilized neural network. We also derive the second
result by xoring the same plaintext and the key. Then the two results are xored
together to generate the test statistic. If the learned function is indeed an xor
function, then the distribution of the value 0 will show a peak while other values
will be flat. However, the distribution we derived showed a bell shape which
indicates the violation of our assumption.

3 Discussions on Various Models

We enhance the original encryption scheme by introducing different attackers
with various abilities. Since the strength of the scheme depends on the ability of
the attacker during the training stage, some of the models showed in this Section
will be more stronger and more flexible in resisting against various attacks. A
first straightforward idea is to feed the attacker the plaintext and ciphertext
pair, or the ciphertext only and to see if he or she can recover the secret key.
This model resembles the known plaintext attack and the ciphertext only attack
in the modern cryptography. In the experiment which is omitted here, we found
that the adversary Eve does not have any advantage since the beginning of the
training. As a result, the competitive model does not have any effect in improving
the quality of the encryption scheme since Alice and Bob could just exclude the
involvement of the secret key in the encryption scheme.

Sometimes we need to consider what advantage can the adversary gain when
he or she has already obtained part of the information such as the secret key or
the plaintext. Leakage resilient cryptography was proposed to investigate this
issue, and we are also interested to see how the model will behave in the neural
network setting. We exploit several models and use “Info1(L) + Info2 → Info3”
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to denote the corresponding type. Here the information on the left hand side of
→ is given to the attacker, and the information on the other side is the target
of the attacker. If “(L)” is appended after some information, it means that this
information is partially leaked to the attacker. The filters’ sizes of CNN and the
batch size remain the same as the previous models.

3.1 One-Eve Model

This section provides various models assuming that there is one type of attacker
Eve. The attacker has only one target, for example, to either recover the plaintext
or the secret key.

Key(L) + Ciphertext → Plaintext
In this model, we use two inputs. One is the ciphertext in the communication
between the Alice and Bob, the other one is part of the shared secret key. Eve’s
goal to derive the plaintext. We change the input bits of the key from 0 to 16.
The model is shown in Fig. 3. When the number of leaked key bits increases, the
loss-rate of Eve and Bob could not go convergence. As shown in the experiment,
when the amount of bits leaked to Eve is below 5, the curve can converge at
a certain point. Figure 4 shows situation that Bob finally defeats the attacker,
while Fig. 5 shows you the situation that the curve cannot be convergent even
we trained it with 500 epochs.

Fig. 3. Key(L) + Ciphertext → Plaintext

Considering that we increase the leaked key bits to Eve, Bob gradually loses
the ability decoding the ciphertext that he received. The advantage that Eve hold
can not directly help her to generate the correct plaintext from the ciphertext.
However, the advantage can help her prevent Bob from decoding the informa-
tion from the ciphertext. It is evident that Eve can successfully damage the
communication between Alice and Bob.

Key(L) + Ciphertext → Key
In this model, Eve’s goal is to recover the secret key instead of the plaintext.
This model has the same input as the previous model as shown in Fig. 6. We
show one of the experiment results in Fig. 7 and the trend between the leakage
bits and the loss rate in Fig. 8.

The loss rate of Eve in Fig. 8 is very close to the baseline which is the straight
line in the figure. The baseline shows the information about key that Eve has
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Fig. 4. Eve gets 4 bits key. Trained with
80 epochs while test with 80 epochs.

Fig. 5. Eve gets 8 bits key. We deliber-
ately train the model 500 epochs here.

Fig. 6. Key(L) + Ciphertext → Key Fig. 7. 8 bits key is leaked. Epoch is
80 for both training and testing.

Fig. 8. The trend between the leakage bit and the decryption error
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known before we trained this system. Obviously, Eve do not know more infor-
mation about the key than we told her before the training. From this result, we
can make a hypothesis that the Alice will reduce the involvement of the secret
key when Alice find that Eve’s goal is to generate the whole secret key. If Alice
do not use the key to generate the output, Eve would not find out the key for
sure. Therefore, the loss rate of Eve should be a straight line, which means the
amount of the key that we told Eve is all what she knows about key. Therefore,
we could consider using new models forcing Alice to add the key material when
generating the ciphertext. And this inspires us designing the “Two-Eve model”
that would be described later.

Also we can design the model “Key(L) + Plaintext + Ciphertext → Key”,
and in this model, Alice is smart enough to reduce the influence of the secret key
during the encryption process. Even Eve knows all the information about the
plaintext, she can not derive the key used in the communication because Alice
do not use the information of the key to derive the ciphertext in the beginning.
The experiment which is omitted here shows that the chance for Eve to derive
the key information is very small.

Key + Ciphertext + Plaintext(L) → Plaintext
In this model, we give Eve part of the plaintext and the key along with the
ciphertext output by Alice, Eve’s goal is to recover the plaintext here. Figure 9
shows the structure of the model.

Fig. 9. Key + Ciphertext + Plaintext(L) → Plaintext

The experiment shows an opposite performance compared with the previous
model. While the amount of leaked plaintext to Eve is small, both Bob and Eve
can not easily converge to a certain point as shown in Fig. 12. However when the
leaked bits is 16, Eve and Bob can get a good performance as shown in Fig. 13.
When the amount of bits leaked is larger than 9, Eve and Bob can gradually get
the convergence as shown in Figs. 10 and 11.

In this model, Alice wants to prevent Eve from recovering the correct plain-
text. However, she cannot ignore the involvement of the plaintext because Bob
needs to decrypt the ciphertext correctly. In this disadvantage circumstance,
Alice and Bob can also prevent the attack from Eve even she knows most part
of the plaintext information. Alice and Bob also pay for a price for reducing
the decoding accuracy of Bob, therefore both Bob and Eve cannot get a conver-
gence easily as shown in Fig. 12. When Eve obtains rich information about the
plaintext, then Alice and Bob cannot efficiently prevent the attack from Eve,
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Fig. 10. Leaked plaintext bits is 9.
Epoch is set to 80.

Fig. 11. Leaked plaintext bits is 10.
Epoch is set to 140.

Fig. 12. Leaked plaintext bits is 8.
Epoch is set to 600.

Fig. 13. Leaked plaintext bits is 16.
Epoch is set to 140.

and finally Alice and Bob give up protection. System will reach an agreement to
ensure that Bob can get the correct information without defeating Eve. In this
situation, both Bob and Eve can get a convergence as shown in Fig. 13.

3.2 Two-Eve Model

From the discussion in the previous models, we can see that the strength of the
encryption scheme depends largely on the ability of the adversary. Inspiring from
the fact that recovering the key or the plaintext only cannot make the encryption
protocol stronger (Alice can reduce the involvement of the key), we introduce
a two-eve adversarial model to further enhance the encryption protocol. In this
new model, we have two attackers Eve1 and Eve2 with different attacking goals.
Eve1 focuses on recovering the plaintext and Eve2’s goal is to recover the secret
key. In this model, Alice cannot simply ignore the involvement of the secret key
due to the existence of Eve1. We further divide into the following two categories.

Key(L) + Ciphertext → Plaintext(Eve1) + Key(Eve2)
In this model, Eve1 and Eve2 have two inputs, which are part of the leaked key
and the ciphertext. Eve1 outputs the plaintext and Eve2 outputs the secret key.
The other structure and parameters are same as the previous model. Figure 14
shows the model and the experiment results including the decryption error and
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Fig. 14. Key(L)+Ciphertext → Plain-
text(Eve1)+Key(Eve2)

Fig. 15. 8 bits key is leaked. Epoch is set
to 80.

Fig. 16. The trend between the leakage bit and the decryption error

the trend of the loss rate are shown in Figs. 15 and 16. 8 bits key is leaked to
Eve 8, and we train the model using 80 epochs data, and 80 for testing. The
batch size of each epoch is 256.

The curve of Eve is entirely below the baseline in the Fig. 16, which reflect
that Eve2 is helping Eve1 to gain more advantages. Eve2 forces Alice to use the
key when she generate the ciphertext, and meanwhile, Eve1 has an advantage
when she decrypt the ciphertext. Also the attack from Eve1 and Eve2 make Bob
impossible to recover the plaintext accurately when Eve1 and Eve2 have already
obtained most of the key information. In Fig. 16, after Eve1 and Eve2 gained
more than 7 bits of key, the loss-rate of Bob begins to rise. For testing, the batch
size of each epoch of data is set to 256.

Key(L) + Ciphertext + Plaintext → Plaintext(Eve1) + Key(Eve2)
In this model, Eve1 and Eve2 have three inputs, which are the plaintext, cipher-
text and part of the key. Other settings are the same as the previous models.
We give Eve 8 bits of the secret key and use 80 epochs for training the model
and 80 for testing. Eve in this model behaves very similar to the model “Key(L)
+ Ciphertext → Key”. It is reasonable to assume that Eve2 has already known
what she want, which makes the adversary too strong, thus Alice gives up fight-
ing back finally. We omit the experiment details for this model.



Automatic Encryption Schemes Based on the Neural Networks 575

4 Conclusion

In this paper, we investigate the techniques of building an automatic encryp-
tion scheme based on the neural networks. Starting from the basic symmetric
key model, we first show that learned function is not an Xor logic, and it can-
not provide random statistical behavior. Then we extend the original model by
investigating other more powerful adversaries. Except for a few models where the
attackers are too strong, most of the models can be stabilized after the training
stage. The new proposed encryption scheme is more strong and flexible in resist-
ing against various attacks. Future works include how to further optimize the
neural networks to make the legal party communication more efficient given less
training steps. Also how to choose the appropriate hyper-parameters to improve
the statistical randomness to resist against distinguishing attack is worth further
investigating.
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Abstract. Cyber threat intelligence sharing is an imperative process to
survive current and future attacks. The received information may pro-
tect stakeholders from being attacked by utilizing the course of action
to remedy on-site vulnerabilities. Automating this process has shown
to be challenging because several processes have to be synchronized and
orchestrated to achieve the goal of automated information sharing. Orga-
nizations are inundated with threat information generated on site and
received through crowd sourcing. This work presents a novel component
for automated sharing, i.e. the content relevance filter.

Keywords: Threat intelligence platform · Advanced persistent threat
Cyber threat intelligence · Threat sharing · Relevance

1 Introduction

Traditional ways of defending IT infrastructures have been insufficient, due to
daily increasing attacks which are more sophisticated than ever. For instance,
Tactics, Techniques, and Procedures (TTP), especially the detection, capture,
and sharing have become a conundrum for threat analysts. Attackers find more
elaborate and efficient ways to infiltrate IT systems. These attacks are some-
times not immediately noticed and linger in the systems for years. Daily reports
of successful security attacks have demonstrated that current defending meth-
ods, such as intrusion detection and prevention methods, are failing to address
adequate security.

In addition, even the most diverse industries accept similar importance of
improving resilience to cyber incidents and mitigating cyber threats. Underlying
these efforts is the need to acquire the best possible information about the health
of systems and networks, and the capabilities and intentions of cyber adversaries
[2,8]. It is in the knowledge acquisition where perhaps the biggest challenge lies
when identifying relevant cyber indicators for data analysis, protection, and
sharing.

This work focuses on the prototype implementation of the relevance filter
to contribute to the automated sharing of threat intelligence. Our preliminary
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 576–586, 2017.
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Fig. 1. Threat intelligence platform architecture

working prototype, relevance filter, is based on the Malware Information Sharing
Platform (MISP).

The rest of the paper is organized as follows. Section 2 introduces the rel-
evance architecture. Section 3 presents the relevance filter prototype. Section 4
analyzes existing solutions for relevance filtering. Section 5 concludes our work.

2 A Threat Sharing Architecture with Focus
on Relevance

This section provides an architectural overview of the proposed platform, namely
a novel approach to implement a relevance filter (Fig. 1).

The open-source and community driven MISP, current version 2.4.55, is used
to manage and exchange cyber threat intelligence in human and machine read-
able form [7]. The platform is installed on Oracle’s Virtual Box with Linux
Ubuntu Server version 14.04 and stores Cyber Threat Intelligence (CTI) in
the industry standard Structured Threat Information Expression (STIX) format
(XML and JSON). To develop Threat Intelligence Platform (TIP) independent
functions, the tool is developed outside the MISP environment and connects
remotely to MISP’s SQL database. This gives us the option to scale and apply
the tools to other TIP’s in the future. The Virtual Box is used for the testing
environment, organizations like a bank would install the system in a production
environment.

2.1 Content Relevance Filter

The content relevance filter automatically downloads CTI from the MISP
database1 into a temporary storage and screens through the data. Content rele-
vant information will be stored in an external knowledge base. 1,000 mock data
1 The cyber threat sharing platform connects to repositories on the cloud to exchange

intelligence. To ensure that no information pertaining to the system is revealed, the
MISP platform downloads all available information and stores it in its database.
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Fig. 2. Content relevance filter: relevant CTI is visualized pertaining to the filter set-
tings in the SQL query.

sets and 700 open source data sets from the CIRCL2 and Botvrij3 repositories
are used for database population and experimentation. The relevance filter is a
structured process to identify which CTI is relevant to the stakeholder pertain-
ing to the content. The filtering process identifies the content relevance, whether
the CTI is complete or under ongoing/initial analysis, and verifies the threat
level.

We are using SQL queries for the automated filtering process. The query
creates an inner join between the “events” and “events tags” tables of the MISP
database. The query is stored in an external properties file which allows the sys-
tem administrator to adjust the query according to the stakeholder’s preferences.
MISP’s tagging system is utilized to filter the content. For example, the filter
parameters are set to only accept CTI which is tagged as Traffic Light Protocol
(TLP)4 red and green, must have a high threat level, and must have its analysis
completed. Everything else is ignored as shown in this query:

SELECT DISTINCT e FROM Events e INNER JOIN EventTags t on e.id =
t.eventId WHERE t.tagId = (3,45) AND e.threatLevelId = 1 AND e.analysis = 2;
Some query results are shown in Fig. 2.

To make the content relevance more precise in the future, we are going to
suggest a scalable IT infrastructure taxonomy to extend the tagging system. It
will relate to operating systems, applications, databases, and hardware. Phishing
attacks and DDoS attacks qualify automatically as relevant because they are
system unspecific.

Received CTI is normally already tagged with undefined, low, medium, or
high priority. These predefined threat levels mirror the submitting stakeholder’s
or source’s views but not automatically the receivers perception of the threat
(Fig. 3).

2 Computer Incident Response Center Luxembourg (https://www.circl.lu/doc/misp/
feed-osint): A government initiative to collect, analyze, report, and respond to cyber
threats.

3 Botvrij (http://www.botvrij.eu/data/feed-osint): An open source repository for
CTI.

4 TLP is defined into four colors namely white (no restrictions), green (sharing with
peers and partners, not publicly), amber (sharing only inside own organization on
who need to know basis), and red (no sharing).

https://www.circl.lu/doc/misp/feed-osint
https://www.circl.lu/doc/misp/feed-osint
http://www.botvrij.eu/data/feed-osint
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Fig. 3. Relevance matrix: demonstrates 5 records of CTI and their relevance to our
system.

Content relevance is subjective and stakeholders have to decide which infor-
mation they consider relevant. For our model we define relevance as very high
(91% – 100%), high (81% – 90%), medium (61% – 80%), low (50% – 60%), and
very low (0% – 49%). These figures have been compiled from the following cri-
teria: Content Relevance (CR) 50% (relevant 50%, irrelevant 0%), Threat Level
(TL) 30% (high 30%, medium 15%, low 0%), Threat Analysis (TA) 20% (com-
plete 20%, ongoing 10%, initial 5%, unknown 0%). The following 2 examples
demonstrate how CTI 1 and 2 have been evaluated:

– CTI 1: Reached very high relevance (100%) because the content is relevant to
the system (50%), the threat level is high (30%), and the analysis is complete
(20%).

– CTI 2: Reached low relevance (55%) because the content was relevant (50%),
but the threat level was low (0%), and the threat analysis is initial (5%).

3 Relevance Filter: First Prototype

At present, few vendors provide security and threat information sharing plat-
forms. These platforms seek the elimination of manual processes and a rapid
detection and analysis of security threats, while helping reduce the cost of
defense. For example, NC4’s “CTX/Soltra Edge” automates sharing in the way
of peer to peer exchange using existing trust relationships and also supporting
community defense models such as inter-sector sharing (e.g. FS-ISAC) and cross-
sector sharing (e.g. with other critical entities). This solution can be accessed
through a web-browser and makes use of crowd sourcing letting the user connect
to different threat intelligence repositories. Another solution namely NECOMAt-
ter disseminates cyber intelligence in a Twitter style [3].

In [4], a threat sharing model bases such an analysis on a Bayesian game
where participants decide how much threat intelligence is shared. The research
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defines a two level status: full and no sharing and presents a monetary-free threat
sharing mechanism.

Threat intelligence platforms provide simple functions regarding relevance.
These functions include browsing and keyword search functions. Current rele-
vance filtering is insufficient to provide an organization with the information
they need. An analyst has to manually evaluate the content relevance and risk
priority. The focus has to lie on filtering out information that is irrelevant to the
stakeholder on both, mechanism and communication point of view [5]. [6] dis-
cuss that CTI sharing faces similar hurdles in data quality compared to regular
information sharing. Nevertheless, the authors also suggest that it may need a
completely new approach on how to manage data quality.

3.1 A Note on Relevance Techniques

Current TIP’s establish relevance by keyword search or browsing through specific
groups of CTI, i.e. malware, Phishing attacks, etc. Another relevance functional-
ity uses a ticking system where the user enables certain feeds. Stakeholders can
establish a more relevant approach to only receive specific information from ven-
dors. This presupposes that the environment is trusted because infrastructure
specific information is revealed. This may be a disadvantage if this information
gets into the wrong hands and may facilitate an attack. CTI has to fulfill cer-
tain attributes to be considered relevant. Relevance is a challenging endeavour
because it is inherently subjective and unique. [1] use the term quality instead
of actionable to describe CTI. One quality aspect of CTI is the relevance to the
community members.

Relevance can only be achieved if stakeholders know their IT infrastructure.
The inventory ranges from software to hardware components and their pertain-
ing versions. This has to be well maintained and continuously kept up-to date.
Current relevance filtering is conducted manually by the analyst and depends
completely on the knowledge of each individual to decide whether the informa-
tion will be considered. This approach is time consuming and may be error prone
if inexperienced analysts oversee the selective process.

3.2 System Model

This subsection describes the system model of the content relevance filter
(Fig. 4). The objective of the relevance filter is to provide system relevant intel-
ligence to the stakeholder. For instance, information that is relevant and can
be acted upon. The data input is derived from threat monitoring and detec-
tion tools. The CTI has then manually to be labeled pertaining to its group.
For example, type of operating system, software, database, or hardware. The
intelligence is then shared with other stakeholders through the MISP instance.
Received intelligence is stored in the MISP instance’s database. The relevance
filter accesses the database and screens through the data records. It utilizes the
SQL queries from an external properties file. The query searches for the following
pre-defined attributes:
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Fig. 4. Relevance filter architecture

– Analysis complete from events table where analysis equals 2
– Threat level high (id 1) from threat levels table
– TLP from tags table amber (id 44) and red (id 45)

Figure 5 shows some tags that are used to identify for which part of the
IT infrastructure the CTI is intended to. The list shows an initial set of tag-
ging attributes but is completely scalable. E.g., stakeholders can tag their CTI
according to their own IT infrastructure such as specific versions of operating
systems, databases, software, or hardware. Depending on which component is
affected by the threat.

The model scenario provides the following processes to render CTI relevant
to the stakeholder. There are 2 different directions for relevance, e.g., dispatch
and reception.

The dispatching process involves firstly, the detection of a threat that has
to be analyzed, evaluated, and then transformed into actionable CTI. Secondly,
the intelligence is stored in the local knowledge base where internal analysts can
make use of the information. Thirdly, the information is labeled according to
which asset is vulnerable to the attack. The labeled intelligence is then uploaded
to the MISP instance where it is shared with other stakeholders.

The reception process involves the following processes. Firstly, the MISP
instance receives intelligence from various sources. The relevance filter accesses
the MISP instance’s database and pulls all information into temporary storage.
Secondly, the filter screens the intelligence for the TLP, completeness, threat
level, and whether the threat information is a risk to the stakeholder’s system.
Thirdly, the filtered intelligence is then stored in the local knowledge base for
analysts to use.
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Fig. 5. Extended IT infrastructure taxonomy in MISP database: the taxonomy allows
stakeholders to receive system specific relevance by utilizing low level tags.

3.3 Preliminary Evaluation and Threat Model

The test run of the relevance filter has shown a precise output of relevant infor-
mation pertaining to the system as shown in Table 1. The SQL queries were
modified several times to ensure the flexibility of the tool. The modifications
were for example, also accepting ongoing analysis, medium threat levels, and
other tags that may be considered relevant.

Table 1. Relevance filter results

Relevance Data sets Accuracy False
negatives

Traffic light protocol 832 832 (100%) 0

Analysis complete 832 832 (100%) 0

Threat level 832 832 (100%) 0

IT infrastructure label 832 832 (100%) 0

The latency of the prototype is depicted in Fig. 6. The speed of providing
relevant information to the stakeholder was with 1,000 data set less than 2.5 s.

The requirements for content relevant information were realized by the pro-
totype. The following steps were conducted for the reception of CTI:

– The MISP instance synchronizes available CTI from several repositories.
– The Relevance filter prototype transfers all new intelligence into temporary

storage.
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Fig. 6. Latency results relevance filter

– The intelligence is scanned for the tags that describe TLP, analysis, threat
level, and the IT infrastructure.

– Relevant information is transferred and stored in the local knowledge base.
– Irrelevant intelligence stays in the MISP instance’s database for future corre-

lation which may render it relevant.

The following steps were conducted for the dispatch of CTI:

– Detected threats are analyzed and transformed into actionable CTI.
– The intelligence is stored in the local knowledge base, labeled, and uploaded

to the local MISP instance.
– The MISP instance shares the intelligence with trusted repositories.

4 Analysis of Threat Intelligence Platforms for Relevance

30 threat intelligence platforms have been analyzed and compared, to the best
of our knowledge, pertaining to relevance filtering methods (Table 2). One of
the methods used for the evaluation was direct testing where possible. We did
not have access to all platforms, therefore the second method was the analy-
sis of academic literature, white/gray literature such as technical reports, and
company websites for the evaluation. Platforms labeled with R1 are using tags
and/or search functions to improve content relevance. Platforms labeled with R2

provide stakeholders with customized information.
A number of 6 threat intelligence providers dispense their paid services to

customers. Information about an organization’s infrastructure is collected and
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Table 2. Threat intelligence platforms.

Threat intelligence platforms Relevance

Malware information

Sharing platform (MISP)1 R1

NC4 CTX/Soltra Edge1 R1

ThreatConnect1 R1

Microsoft interflow2 R1

HP threat Central2 R1

Facebook threat exchange2 R1

IBM X-Force exchange1 R1

Alien vault open

Threat exchange (OTX)1 R1

Anomali threat stream (STAXX)2 R1

LookingGlass scoutPrime (Cyveillance)2 R2

Cisco Talos2 R1

Crowd strike falcon platform2 R1

Norm shield2 R2

ServiceNow - bright point security2 R2

NECOMAtter (NECOMAtome)2 R1

Splunk1 R2

CyberConnector2 R1

Last quarter mile toolset (LQMT)2 R1

Health information trust alliance

- Cyber Threat XChange (CTX)2 R2

Defense security information exchange2 R1

Retail cyber intelligence sharing

Center (R-CISC) intelligence sharing portal2 R1

Accenture cyber intelligence platform2 R1

Anubis networks cyberfeed2 R1

Comilion2 R1

McAfee threat intelligence exchange2 R1

ThreatQuotient2 R2

ThreatTrack threatIQ2 R1

Eclectic IQ2 R1

Infoblox threat intelligence data exchange2 R1

Cyber-security information sharing

Partnership1 R1

1Denotes direct access,
2Denotes white/gray literature.
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the intelligence is then customized. Another identified process is that the ser-
vice provider bases the impact of a threat posed towards an organization and
thus ensures relevance. “LookingGlass” utilizes their Threat Intelligence Con-
fidence (TIC) score to provide threat relevancy to stakeholders. The “Norm
Shield” solution collects and analyzes information about a client to render the
CTI feed relevant. “Service Now” supports stakeholders with prioritized CTI
based on impact level. “Splunk” uses its analytical capabilities to feed relevant
information to the stakeholder and its correct teams. “Cyber Threat XChange”
is focused on vulnerabilities to the health care system in the United States.
It provides alerts for suspicious domain registrations linked to the stakeholder’s
domain, and alerts for compromised credentials. Furthermore, the premium sub-
scription provides more detailed analysis and content. “ThreatQuotient” enables
relevance by letting the customer define its parameters. The platform calculates
relevance for external and internal CTI using the provided aggregated context.
24 threat intelligence platforms yield browse/search functions to make the con-
tent relevant. Most platforms group their intelligence according to types and
predefined threat levels. The platforms provide high-level relevance filtering sys-
tems that identify general threats for stakeholders. None of the analyzed tools
provide low-level relevance in form of threat information about specific operating
systems, applications, databases, or hardware.

Our relevance tool provides an improved functionality on how to receive
relevant information by utilizing tags. Content relevance filtering is only provided
in its basic functionality such as search and browsing options in the analyzed
tools.

5 Conclusion

This paper introduced a sharing platform based on MISP with focus on rele-
vance filtering. Relevance is an important attribute to establish actionable threat
intelligence sharing. As in many other domains that suffer from an overflow of
information, threat sharing has similar hurdles to overcome. CTI is currently
filtered on a high level, e.g., such as malware, phishing, etc. This paper presents
an idea to render threat information more relevant to the stakeholder by using
various tags. Furthermore, 30 popular threat intelligence sharing platforms were
analyzed pertaining to how relevance is established.
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Abstract. Cloud platforms often take advantage of virtualization technology
and make their actual hosts virtualized. As network attack events occur fre-
quently, providing system security in a virtualized environment is the focus of
this study. We have designed and implemented a lightweight network-based
intrusion prevention system (IPS) named VMM-IPS for the virtual machine
(VM) execution environment. To ensure the system safety of VMs and the host
system at the same time, VMM-IPS is operated in the Linux kernel of the host
system and co-located with the Kernel-based Virtual Machine that turns Linux
kernel into a hypervisor. As packets enter the system, no matter destined to VMs
or passing through the host, they are detected by VMM-IPS. Unlike user-level
IPS that needs switching protection domain and copying packets to user buffer
for inspection, VMM-IPS is more efficient because of the capability to perform
in-place packet inspection. It adopts signature-based detection and is imple-
mented with the multiple-pattern search algorithm AC-BM for efficient string
matching. Besides, VMM-IPS can protect the system against attacks using
packet splitting and reassembly to evade introduction detection system (IDS).
The experimental results demonstrate VMM-IPS can achieve system safety
effectively and efficiently.

Keywords: Intrusion prevention system � Network security � Kernel level
Virtual machine monitor � Virtualization technology

1 Introduction

The intrusion detection system (IDS) is a network security monitoring system for
maintaining system and network security. By inspecting the file system audit records or
network activities, it detects attacks carried out on the system and then returns alerts to
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the administrator. The network-based IDS (NIDS) examines network packets and
analyzes network traffic to detect attacks over the network. As network traffic increases,
detection efficiency becomes very critical.

Cloud platforms often take advantage of virtualization technology and make their
actual hosts virtualized. Virtualization technology allows a physical machine to provide
multiple execution environments and run multiple operating systems concurrently, each
in its own virtual machine (VM). The virtual machine monitor (VMM) provides an
abstract layer of underlying hardware for each operating system running on it and is
responsible for managing the hardware resources of the actual machine and monitoring
the activity of each virtual machine. Since the operating system and the underlying
VMM belong to different protection domains, and the communication between the
operating system and the VMM are subject to more stringent control, the relevant
studies [1–5] indicated VMM is the most appropriate level for providing
security-related mechanisms and is less likely to become the subject of attacks.

This paper presents the design and implement of a lightweight network-based
intrusion prevention system (IPS) named VMM-IPS for virtualized environment. The
virtualization software we use is Kernel-based Virtual Machine (KVM) [6] due to its
prominent performance [7]. KVM is a virtualization infrastructure for the Linux kernel,
which turns it into a hypervisor. KVM is also adopted for VM creation in OpenStack
[8] that is popularly used for building virtualized cloud computing platforms.

The proposed VMM-IPS is a network-based IPS with signature-based detection. As
network packets received, they are intercepted and examined by VMM-IPS. Once
malicious packets are detected, they are dropped and their associated connections are
reset by VMM-IPS. Therefore, only normal packets are allowed to enter the system.
For such type of NIPS with on-line packet inspection, detection efficiency is especially
important as each network packet is examined and network traffic increases greatly.

To be efficient in packet inspection, VMM-IPS adopts kernel-level implementation
and network packets are directly examined in the kernel. Unlike the most NIPSs that
are operated at the user level, user-level intrusion detection systems need to copy
packets from the kernel buffer to the user-space buffer for packet inspection. This copy
operation and the switch of protection domains between kernel mode and user mode
degrade system performance [4]. Besides, VMM-IPS is more secure because it operates
at the kernel-level with the virtual machine monitor. If intrusion detection systems
operate at the user level, they are more susceptible to attack through various techniques
once an attacker has gained privileged access to a system [1].

To be efficient in packet inspection, using an efficient algorithm is important because
the performance of a signature-based NIDS is dominated by the string matching of
packets against many signatures. The multiple-pattern search algorithm AC-BM [9] that
takes the best characteristics of both the Boyer-Moore [10] and Aho-Corasick [11] string
search algorithms is implemented in VMM-IPS for faster string matching.

On the other hand, recently some technologies about evading intrusion detection
and prevention systems (i.e. IDS Evasion [12]) have been developed. Our system can
also perform multi-packet detection and protect the system against attacks using the
concept of packet splitting and reassembly to evade IDS [12].

To ensure system safety of the entire system, all incoming packets should be
captured and examined, no matter they are destined for VMs or the host system.
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The implementation of our VMM-IPS employs the technology of Netfilter [13] which
is a Linux kernel subsystem for packets filtering. Therefore, our VMM-IPS can detect
packets forwarded to each VM and packets passing through the host.

VMM-IPS also provides flexible responding actions. Once malicious packets are
detected, VMM-IPS can either drop them, log this event and notify the administrator,
or reset the connection, according to the configuration. Particularly, different reactions
can be set in the detection rules for different VMs and for different connections.

Through the practical implementation of VMM-IPS as a loadable Linux kernel
module that can be dynamically inserted into the Linux kernel at run time, the
experimental results demonstrate VMM-IPS can achieve system safety effectively and
efficiently. It also obtains better performance and incurs less system overhead than the
famous and popularly used open-source IPS Snort [14]. This is because VMM-IPS
does not need to switch protection domains and copy received packets to user buffer for
packet inspection, so it obtains better performance.

2 Background and Related Works

Most NIDSs are operated at the user level and use the pcap library [15] or raw socket
system calls to receive packets captured under the promiscuous mode in the kernel. To
allow NIDS to inspect network packets at the user-level, a large number of packets are
duplicated from the kernel buffer to the user-space buffer in NIDS. As NIDS obtains
these packets, it needs to analyze them to detect network attacks by comparing these
data with the signature database. However, this duplication of packets and the required
overhead for switching protection domains between kernel mode and user mode always
greatly decrease system performance. In contrast, we adopt kernel-level approach in the
implementation to escape from these overhead.

For network-based IDSs/IPSs, Snort [14] and Suricata [16] are the two major
open-source network-based IDSs/IPSs. By analyzing all packets passing through the
network, they check for malicious packets that match the detection rule sets and then
generate alerts to the administrator. Users are also allowed to add or customize their
detection rules. Because of lots of benefits, Snort has been widely deployed and utilized
as the intrusion detection engine in many researches for distributed or cloud envi-
ronments. Suricata is developed with multi-threading capabilities.

Other researches related to IDSs/IPSs in virtualized environments are introduced as
follows. Garfinkel and Rosenblum [1] discussed the methods of IDS implementation
and indicated IDS implementation in the VMM layer has the benefits of combining the
advantages of host-based IDS and NIDS. Besides, it is less likely to become the subject
of attacks. They proposed the idea of Virtual Machine Introspection (VMI), which
co-locates an IDS on the same machine as the monitored host and leverages the VMM
technology to isolate the IDS from the monitored host. The VMM they used is a
modified version VMware Workstation for Linux version 3.1. With modification to the
VMM, they implemented a prototype VMI-based IDS named Livewire that can obtain
the required information from the VMM and issue commands to the VMM for
examining VM states. The VMI-based IDS consists of the OS interface library that
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provides an OS-level view of the VM’s states and the policy engine to execute IDS
policies using the OS interface library and the VMM interface.

Azmandian et al. [2] implemented their IDS in the VMM layer to guard against
malicious attacks. The VMM they used is VirtualBox. Their IDS consists of two key
components: a front-end and a back-end. The front-end component at the VMM-level
is responsible for event extraction and feature construction. These features are then
passed on to the back-end component which performs the operations including feature
reduction, normal model creation, anomaly detection, and raising an alarm. Data
mining algorithms are utilized for model creation and anomaly detections.

Tupakula and Varadharajan [3] also implemented a VMM-based IDS named
VICTOR at the VMM level. The VICTOR contains several components including
entity validation, an intrusion detection engine, and a dynamic analyzer. Each com-
ponent is designed to deal with different types of malicious behaviors or attacks on
VMs. They indicated that an IDS implemented in the VMM can not only monitor the
activity of VMs but also examine the internal VM state. Besides, the isolation between
the VMM and VMs makes it more difficult for intruders to attack the VMM.

Jin et al. [4] developed a VMM-based IPS named VMFence in a virtualization-based
cloud computing environment. VMFence monitors network flow and file modification
operations in real time. It then prevents malicious attacks and provides file integrity
protection. The system was built on Xen. Its main process runs in the privileged VM (i.e.
Dom0) to detect all VMs’ activities because the privileged VM is able to capture all
network packets to and from other service VMs. Besides, it adopts Snort [14] as its IDS
and iptables [17] as a firewall in the implementation.

Bharadwaja et al. [5] developed a distributed intrusion detection platform named
Collabra. Collabra works in a virtualized environment based on Xen hypervisors to
maintain the security of the cloud. Collabra instances are integrated with the VMM of
each host. Collabra dynamically monitors each hyper-call from guest VMs to VMM
and then filters out malicious hyper-calls. If an intrusion is detected, it notifies all other
Collabra instances and notifies the specific VMM to be sanitized. Besides, this system
is used to detect anomaly based intrusions.

3 System Design and Implementation

3.1 The VMM-IPS Overview

VMM-IPS is a lightweight intrusion detection and prevention system for virtual
machine execution environment. It is implemented as a kernel module that can be
dynamically inserted/removed into/from the Linux kernel during system runtime. Its
implementation employs the Netfilter [13], a packet filtering framework within the
Linux kernel, to intercept all packets entering the system. Only the normal packets
destined to virtual machines or host system are then forwarded. Therefore, VMM-IPS
can protect both the host system and the VMs. In fact, VMM-IPS can be deployed in
the Linux-based networking devices, such as gateways, router, servers, etc.

In the implementation, we mainly use the Kernel-based Virtual Machine (KVM) [6]
to set up VMs for the virtualized environment. KVM is an open-source virtualization
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infrastructure for Linux and requires a processor with hardware virtualization exten-
sions. It allows users to create multiple VMs that run unmodified guest operating
systems. KVM consists of a loadable kernel module providing the core virtualization
infrastructure and a processor specific module. It runs within the Linux kernel and
needs user-mode QEMU [18] to provide full hypervisor functionality, such that each
VM running as a single Linux process has its own separate virtual address space.

Figure 1 shows the networking architecture of the VMM-IPS. The VMM-IPS is
located between the Linux Ethernet bridge and virtual NICs (TAP). As packets enter
the system before being transmitted to the virtual NICs for KVM’s processing, they are
processed by the VMM-IPS for packet inspection. It then decides to either accept or
drop the packet, or even interrupts the connection, according to the detection rules.

Netfilter [13] provides different hooks to allow kernel modules to register their
callback functions for handling packets. For each packet received by NIC, the kernel
would trigger the registered callback functions to process the packet in the flow of
packet processing. The VMM-IPS is registered and hooked at the PREROUTING
hook, so the VMM-IPS can inspect all packets entering the system or to be forwarded.

3.2 The VMM-IPS System Architecture and Components

VMM-IPS consists of four modules. The Manager module is responsible for control-
ling the operation of the entire system and the communication between each module.
The Connection Manager module is responsible for connection tracking and main-
taining information about the tracked connection. The Pattern Matching module is
responsible for packet inspection to find malicious payloads, while the Reaction
module performs the reaction according to the detection result and reaction mechanism.

The Connection Manager Module. In addition to maintaining the information for
connection tracking, the Connection Manager module is also responsible for deter-
mining whether a received packet is to be inspected under the single-packet inspection

Fig. 1. The VMM-IPS networking architecture.
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mode or multi-packet inspection mode. The implementation of multi-packet inspection
is due to attackers being able to exploit the concept of packet splitting and reassembling
to evade IDS [12], by which malicious attacks or string information are disassembled
and hidden in two or more consecutive packets. Those payload are disguised as
harmless and are not detected if an IDS supports only single-packet inspection. After
packets are reassembled and received, these seemingly harmless safe packets will
become a malicious payload and lead the system to a dangerous state.

The Connection Manager module maintains three linked lists, in which the con-
nection state linked list is used to store connection information for each connection
established through three-way handshaking. The information stored in the connection
transmission data linked list is used for determining whether a data packet should be
examined under single-packet or multi-packet inspection. The disconnection state
linked list is used to store connection information undergoing disconnection.

For implementing multi-packet inspection and being able to examine packets
received out of order, the Connection Manager stores packet information for dealing
with received out-of-ordered packets. Packets are accumulated and ordered in a circular
buffer for multi-packet inspection. As shown in Fig. 2, the Connection Manager
maintains the connection transmission data linked list. Each node stores packet
information and connection information, such as the source/destination IP addresses,
source/destination ports. If a packet enters the system out of order, it will be enqueued
in the unordered packet queue and examined under single-packet inspection. On the
contrary, it is accumulated in the circular buffer for multi-packet inspection.

The Pattern Matching Module. This module consists of the detection engine and the
rule database storing detection rules. For efficient string matching, the multiple-pattern
search algorithm AC-BM [9] is implemented. During the system startup time, the
VMM-IPS imports all the detection rules and builds a rule tree to speed up the sub-
sequent rule-matching operation as shown in Fig. 3. The rule tree includes the rule tree
node (RTN) and the pattern tree node (PTN). Each RTN stores the source/destination
IPs and source/destination ports extracted from detection rules, and it is unique.
The PTN is a tree constructed by the characteristic strings extracted from detection
rules, which stores the required information used in AC-BM algorithm.

Fig. 2. The structure of connection transmission data linked list.
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The Reaction Module. The Reaction module is responsible for performing the
reaction once a malicious packet is detected. There are four reaction methods shown in
Table 1. In the design, the reaction module can respond differently according to the
setting of each rule. Therefore, different VM systems with different IP/port can have
rules and reaction methods suitable for their own systems.

The rule database stores many detection rules and Fig. 4 shows one rule as an
example. The first column indicates which reaction method should be performed for
this detection rule. In this example, the second column “t” indicates this is a TCP

(a) The schematic diagram of the rule tree. 

(b) The rule tree structure.

Fig. 3. The rule tree for detection.

Table 1. Reaction methods.

Method Description

1. Send reset packet Send a reset packet to the client and the server to interrupt the
connection

2. Drop packet Drop the malicious packet, which is possible to cause TCP
retransmission

3 Send reset packet &
log file

Send a reset packet to the client and the server to interrupt the
connection. This event is recorded in the VMM-IPS log file

4. Drop packet & log
file

Drop the malicious packet and record this event in the VMM-IPS
log file
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packet. The “src_ip:255.255.255.255” indicates any source IP and “src_port:any”
indicates any source port. The “dst_ip:255.255.255.255” indicates any destination IP
and “dst_port:any” indicates any destination port. The “msg:CHAT ICQ access”
indicates the message “CHAT ICQ access” to be displayed. The “content:User-Agent|
3A|ICQ” indicates the characteristic string to be matched.

The Packet Inspection Flow. For each incoming packet, VMM-IPS first checks its
type. If the packet belongs to the command type, VMM-IPS performs the processing of
the connection establishment using the connection state linked list or performs dis-
connection using the disconnection state linked list. If the packet is a data packet, it
then looks up the connection transmission data linked list to find the corresponding
node that stores the packet information for this connection.

VMM-IPS then determines whether a data packet should be examined under
single-packet or multi-packet inspection. If the system is set to perform single-packet
inspection, it directly performs single-packet inspection. For performing multi-packet
inspection, VMM-IPS examines whether this packet arrives out of order by comparing
the sequence number of the packet with the expected sequence number stored in the
connection transmission data linked list. The out-of-ordered packet will be enqueued in
the unordered packet queue and examined under single-packet inspection. For
multi-packet inspection, packets are accumulated and ordered in the circular buffer for
inspection.

4 Performance Evaluation

Our experimental environment consists of a server and three client machines, as shown
in Table 2. The VMM-IPS which is a Linux kernel module operates within the host
OS, while the KVM-based VM running on top of the host OS. In contrast, the Snort is a
user-level IPS operating on top of the host OS with the KVM-based VM. In the VM,
the Apache Web server [19] is installed to provide Web services.

We measure the performance impact on the Web server when VMM-IPS or Snort is
deployed in the system. To compare the performance fairly, both VMM-IPS and Snort
should adopt the same detection rules. For this purpose, we develop a rule transfor-
mation tool to convert Snort rules to the right format for VMM-IPS. The Snort rules
(i.e. snortrules-snapshot-2982 [14]) are used and there are a total of 8217 rules. To
evaluate the performance impact when VMM-IPS or Snort is deployed, we use an
open-source tool, i.e. Apache Bench [20], to measure the performance of the Apache
Web server. The Web server is installed and runs on top of the guest OS. A large
amount of requests through different amounts of concurrent connections are sent to the
Web server to drive the stress test.

Fig. 4. An example rule.
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The following command is issued on each client machine to send one million
requests through 750 concurrent connections to the Web server: “ab -n 1000000 -c 750
http://192.168.3.15/localhost”. We also test setting different numbers of concurrent
connections, such as 250, 500, 750, and 1000. The requested Web page is 1 K bytes.
The same experiment is also performed on the system without deploying any IDS.

We found under such a large number of incoming network packets, VMM-IPS still
can effectively handle and inspect each packet. In contrast, the packet drop rate as
reported by Snort is 48.1%, which affects the ability to protect the system under heavy
network traffic load. Despite the high drop rate of Snort, Fig. 5 shows the performance
result, in which the “Base” case represents the system without deploying any IDS.
Compared with the Base case, the average number of requests processed per second of
the VMM-IPS is decreased by up to 1.8%, while that of Snort is decreased by 12–16.3%.
The average response time of VMM-IPS is increased by up to 2%, while that of Snort is
increased by 13.7–19.7%. The transfer rate of VMM-IPS is 12.3–19.4% higher than that
of Snort. Under such a large amount of requests, the number of failed requests is less
than 0.5% for each system.

The performance of Snort and VMM-IPS are lower than the Base case, mainly due
to the processing overhead such as packet inspection and performing reaction.
VMM-IPS incurs less overhead than Snort. This is because Snort is a user-level IDS, so
packets received are copied from the kernel buffer to the user buffer in Snort for packet
inspection. In contrast, VMM-IPS operates at the kernel-level and examines packets
directly, so no additional copy operation and switching protection domain are needed.
Besides, under these high network traffic loads, VMM-IPS inspects each packet,
whereas, the packet drop rate is 48% for Snort.

We also measure the performance impact when different sized Web pages are
requested. Each client machine sends one million requests to the Web server through
750 concurrent connections to drive the stress test. The file sizes are 177 bytes (i.e. the
default Web page in Apache Bench [20]), 1 K bytes, and 4 K bytes. VMM-IPS still can
effectively handle and inspect each incoming network packet. In contrast, the packet
drop rate as reported by Snort is substantially high and ranges from 45.9%–48.1%.
Compared with the Base case, the average number of requests processed per second of
VMM-IPS is decreased by 0.6–1%, while that of Snort is decreased by 14.6–18.4%.
The average response time per request of VMM-IPS is increased by 0.6–0.9%, while

Table 2. Hardware and software specification.

Server VM Client 1,2,3

CPU Intel xeon E5-2620
2.4 GHz

KVM Virtual CPU Intel i5-3470 3.2 GHz

RAM 16G 2G 4G
NIC Intel I210 KVM Virtual NIC RTL 8111/8168B
OS Ubuntu 12.04 Ubuntu 12.04 Ubuntu 12.04
Linux kernel version 3.7.9 3.13.0 3.13.0
Apache version X 2.2.22 X
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that of Snort is increased by 17.1–22.6%. The number of failed requests is less than
0.3% for each system and the transfer rate of VMM-IPS is 15.9–22.2% higher than that
of Snort.

5 Conclusions and Future Works

We have designed and implemented a lightweight network-based IPS for virtualized
environment. The virtualization software we use is the Kernel-based Virtual Machine
(KVM) that turns Linux kernel into a hypervisor. VMM-IPS is implemented as a
loadable kernel module that can be dynamically loaded into the Linux kernel during
run time. Therefore, VMM-IPS is operated at the kernel level with KVM module.
VMM-IPS employs Netfilter technology and is registered at the PREROUTING hook,
so VMM-IPS can perform in-place packet inspection and inspect all packets entering
the system. In contrast, the user-level IDS needs the overhead of coping packets to user
buffer for inspection and switching protection domain between user mode and kernel
mode for processing. The experimental results demonstrate that VMM-IPS incurs less
overhead and effectively ensures the system safety. Besides, under heavy network
traffic loads, VMM-IPS still can effectively handle and inspect packets. Whereas, the
packet drop rate as reported by Snort is substantially high.

(a) Average requests per second. (b) Average time per request.

(c) Average transfer rate. (d) Average number of failed requests.

Fig. 5. Performance under various concurrent connections.
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Currently, VMM-IPS adopts signature-based detection that inspects network
packets to find malicious patterns in known attacks. We plan to add the detection of
abnormal behaviors to make VMM-IPS more complete in protecting the system. We
also will extend VMM-IPS to become distributed IPS and explore the security issues
for clouds, such that it can be more suitable for operating in a cloud environment.
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Abstract. The unmanned aerial vehicle (UAV) network has attracted
much attention in industry and academia. However, a UAV as a vital
information carrier and data relay platform is prone to various attacks. In
this paper, we propose a secure communication scheme for UAV network.
In our scheme, each drone maintains and manages an area in which the
authorized devices can obtain a broadcast key without an online central-
ized authority. By employing the hierarchical identity-based broadcast
encryption and pseudonym mechanism, all the devices in this system can
broadcast encrypted messages anonymously and decrypt the legal cipher-
text. The analysis shows that our scheme satisfies four important security
properties of confidentiality, authentication, partial privacy-preservation
and resistance to denial of service attacks. Experiments show that our
scheme incurs a delay of only a couple of milliseconds.

Keywords: Unmanned aerial vehicle · Secure communication
Mutual authentication

1 Introduction

Unmanned aerial vehicles (UAV), also called drones, were initially used for
military purposes such as mapping, surveillance, search and target tracking.
Recently, drones, as extensions of the human body, have been used in civil appli-
cations. In 2016, Facebook’s solar-powered unmanned plane Aquila completed its
first test flight as an alternative Internet delivery platform for remote parts of the
world. The communications payload that Aquila carries uses lasers to transfer
data more than 10 times faster than existing systems [17]. Moreover, Qualcomm
Technologies, a subsidiary of Qualcomm Incorporated and AT&T, announced
that it would test Unmanned aircraft systems (UAS), or drones, on commercial
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4G LTE networks [24]. UAV networks are used today in many areas such as dis-
aster relief [2,9], public services [18], agriculture [20], and infrastructure damage
assessment [15].

Compared with an infrastructure based overlay network, using UAVs to
deploy a wireless network is beneficial to adapt the network topology efficiently
and to assigning wireless parameters dynamically. Moreover, UAVs are able to
carry hardware with sufficient computation capability to perform complex oper-
ations, while running such hardware on land-based devices is expensive and inef-
ficient due to the hardness of deployment of infrastructure in ruinate regions.
Indeed, Using UAVs to build a temporary network is far less expensive and
requires much less time than implementing an equivalent wired infrastructure in
a remote area.

Although UAV networks have so many benefits, security risks hinder their
deployment. In 2011, Iranian forces captured an American RQ-170 unmanned
aerial vehicle, which caused concern regarding drone security. The applications
of UAV networks, such as for battlefield communication and scouting forces
in the hostile environment, always encounter the risk of adversaries launching
network attacks. Furthermore, due to the openness of wireless networks, the
attackers can more easily access them, launch various attacks, e.g., intercept,
modify transmitted messages and even take over communication flows.

To address the security threats to UAV networks, Kong et al. [11] proposed
a symmetric key distribution scheme in which each device should store all its
neighbors’ public keys and symmetric session keys. But when the number of
end devices increases, the storage and communication costs begin to plan an
intolerable burden in practice. To establish secure channels between drones and
end devices more efficiently, Won et al. [25] proposed a secure communication
protocol between drone and end devices with a certificateless signcryption tag
key encapsulation mechanism. Unfortunately, the scheme cannot support group
communication among end devices. It still remains a significant challenge to con-
struct a secure communication protocol with efficiency, security, and availability.

1.1 Our Contribution

To meet the needs of wide message broadcast, end-device identity authentica-
tion, and partial device privacy-preservation, we propose a scheme that employs a
hierarchical identity-based broadcast encryption (HIBBE) technique and device
and UAVs identity based on signcryption to remove an online remote man-
agement center when a temporary communication network based on UAVs is
constructed. Our scheme improves three of the main security concerns referred
to in the security requirements as follows.

– We propose fast batch-encrypted packet transitions by using the HIBBE app-
roach. Messages for broadcast are encrypted by a broadcast key pre-assigned
by the device’s relevant UAV. Our scheme achieves complete message confi-
dentiality that uses a scale-tolerant key size and a session key delegate algo-
rithm without requiring an online remote management center.
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– We present mutual authentication using identity-based signcryption. Using
this approach, drones can verify whether an end device is authorized by veri-
fying the signature generated by the device. Similarly, an end device can verify
whether a drone is a real master or an imitation using the same techniques.

– We achieve privacy-preservation by pseudonym and ciphertext transition
mechanism. With the pseudonym mechanism, the end device cuts the link
between its real and broadcast identities. Namely, any device can generate
a temporary identity in the broadcast system such that the only ones who
know its real identity are itself and its master drone. Through the cipher-
text transition mechanism and the HIBBE characteristics, the master drone
can transmit a HIBBE ciphertext to a hierarchical identity based encryption
(HIBE) ciphertext that will take over the broadcast set information.

– We realize the resistance against denial of service (DoS) attack by prove of
work mechanism with which drones dynamic control access numbers and the
interval of time for each login.

1.2 Paper Organization

The remainder of this paper is organized as follows. We review the related work in
Sect. 1. We formalize the model of a UAV network system and the system security
requirements in Sect. 3. Section 4 discusses our proposed secure communication
system for UAV networks. We demonstrate the system’s security in Sect. 5 and
evaluate the performance of our protocols in Sect. 6. Finally, Sect. 7 provides
concluding remarks.

2 Related Work

UAV communication network has far-reaching prospects, and has attracted
increasing research attention from both academia and industry. Researchers are
working to solve technical issues and challenges in UAV network system, some
of which involve communication and networking. Gupta et al. [10] introduced
a series of communication and network requirements for UAV networks. These
requirements include characteristics such as dynamic networking, quality of wire-
less communications, flight control and so forth. More specifically, to consider the
dynamic networking requirement, in 2010, Li et al. [14] proposed a multi-source
cooperative communication system that used small UAVs to relay the source
signals to the destination nodes. To adapt UAV network in rapidly changing
environments, Li et al. [13] proposed four kinds of communication architectures.
To ensure the quality of wireless communications, there are varies achievements.
On physical layer, some studies have focused on spectrum management [3] and
signal coverage [30] problems for the UAV networks. On network layer, to ensure
the wireless link reliable, Rosati et al. [22] proposed an extension of the opti-
mized link-state routing protocol (OLSR) that efficiently computed routing in
dynamic conditions. The proposed protocol computes the routing by weighting
the expected transmission count (ETX) metric. In 2016, different from upon dis-
tributed routing protocol, Lee et al. [12] proposed a centralized routing protocol
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utilizing ground control system for efficiently network construction. To address
the lack of effective joint UAV flight control and management in multi-UAV net-
works, Vachtsevanos et al. [23] employed game theory to control multiple UAVs
and avoid UAV crashes. In 2015, Nodland et al. [19] used a neural network to
achieve optimal flight path tracking of a helicopter UAV. Xu et al. [29] pro-
posed an online finite horizon optimal flocking control and optimal co-design for
efficient UAV networks.

While UAV networks are becoming increasingly popular and have already been
applied in some fields, the increasing security risks cannot be ignored. Without
the security mechanisms, a hacker could easily capture users’ private or sensitive
personal information. In 2016, Nils Rodday performed a live hack by exploiting
a professional drone’s vulnerabilities to compromises a system and take control
of UAV system [21]. The real consequences of such intrusions are harsh. In 2009,
a terrorist organization captured an unencrypted UAV video being transmitted
from a US drone to a US military satellite using SkyGrabber [1].

The primary security mechanisms for UAV networks focuses on the privacy,
confidentiality, integrity of data via cryptography. A well-designed data protec-
tion mechanism can guarantee that an attacker can get no useful information
regardless of the attack technique used. A few studies have donated to data pro-
tection for UAV networks. Kong et al. [11] proposed a new secure communication
scheme for an MBN-UAV network that used certificate-based encryption. Bene-
fiting from the use of certificates, the proposed scheme supports UAVs by authen-
ticating the identity of end devices and supports end devices using a negotiated
session key and then transmitting messages encrypted with a symmetric key.
However, this scheme cannot support broadcasting encrypted messages because
the scheme only allows secure end-to-end communication; the involved devices
must spend considerable computational resources to establish many individual
session keys. Moreover, they also need sufficient storage space to store the certifi-
cates and session keys, which is unaffordable to resource-limited end devices. To
overcome this disadvantage, Won et al. [25] designed the efficient Certificateless
Signcryption Tag Key Encapsulation Mechanism, which is a secure communica-
tion protocol for drones and smart objects. However, this protocol still cannot
transmit large amounts of encrypted messages to receivers efficiently while pre-
serving the privacy of end devices.

Besides the above specific schemes, there are some other novel cryptographic
key management mechanisms. To assign symmetric encryption keys to a set of
classes, Arcangelo et al. [8] proposed a novel hierarchical key assignment scheme
using a symmetric encryption scheme and a perfect secret sharing scheme. In
this scheme, the system master can generate a symmetric key for a set of entities
satisfied a complicated access structure. Soon after, to reach the goal of making
dynamic updates to the hierarchy, Arcangelo et al. [7] construct a hierarchical
key assignment scheme with dynamic updates, in which each user only needs
to store a single private key. The above two scheme are symmetric encryption
schemes, so in order to reduce stress of symmetric key management, Wu et al.
[26] proposed a new cryptographic asymmetric primitive denoted asymmetric
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group key agreement. Based on this new primitive, Wu et al. [28] proposed a
new asymmetric group key agreement scheme which overcome the obstacles of
the potentially limited communication from the group to the sender with the
absence of a fulltime trusted third party and also support dynamic key update.
However, the group structure in [28] is a circuit, in order to support hierarchical
group structure, Wu et al. [27] proposed a contributory broadcast encryption in
which the degree of group is unlimited. In this scheme, some group members
can generate a corporate public key by coalescing each member’s public key
to encrypt messages and decrypt ciphertext with his private key without an
online trusted third party. Although these novel cryptographic mechanisms are
efficient and proven secure, they are always used in the group communication
where the computation capability of nodes are equal. However, in UAV networks,
the drones can carry a powerful data processing platform and extra energy,
which means that the UAV network is not a pure decentralized network. So the
traditional key management for distributed network cannot take full advantages
of the UAV network.

3 Problem Statement

3.1 System Model

The entire system mainly consists of three types of entities: a Remote man-
agement centre (RMC ), a set of subnetwork master drones, and groups of end
devices. The system architecture is depicted in Fig. 1.

Fig. 1. Network model

• RMC is a trusted third party and its task is to manage drones and end-user
devices. Besides it initializes the system parameters, and generate private
keys of end devices and drones according to their identity and then extract
the broadcast key to drones.

• A drone denoted by D is a drone equipped with wireless communication mod-
ules and high-speed processors. The drone communicates with other drones
and the subgroup members via radio. The D obtains its private key from the
RMC and uses it to show its identity legitimacy. After verifying U ’s validity,
D generates the broadcast key pair and provides the message transmit service
for users.



606 S. He et al.

• A subgroup member device denoted by U moves within the area covered by
the wireless signal of D. U gets its private key from RMC and uses it to prove
its identity to D. After getting the permission to access the network from D,
it uses the broadcast key getting from D to generate a secure channel with
other end devices.

3.2 Security Requirements

To guarantee the communication security of UAV network, the security protocol
should satisfy the following security requirements:

– Message Confidentiality. For wireless networks in complex environments,
message confidentiality is an essential security requirement. Without message
confidentiality, any adversary may obtain sensitive information by simply
intercepting the wireless channel.

– Mutual Authentication. In a drone network environment, an attacker may
act as other participants and use ingenuous device to control communication.
Thus an eligible scheme should provide mutual authentication to verify the
participants’ identities.

– Identity Anonymity. Using a long term identity may lead to privacy leak-
age. An eligible scheme should provide identity anonymity to ensure that the
attacker cannot obtain the user’s real identity from eavesdropped or captured
messages.

– Session Key Security. Once the session key leaks, attackers can easily
decrypt transmitted messages, which leads to breaking message confiden-
tiality. So session key security is the foundation of message confidentiality.
For further secure communication, an eligible scheme should ensure that the
established shared session key between some participants which will be used
to encrypt transmitted messages is secure.

– Message Integrity and Authentication. Once the secure group commu-
nication channel is established, attackers cannot get any useful information
from encrypted messages. But attackers can still affect the communication
by sending forged messages, truncate encrypted messages. Hence an eligible
scheme should ensure message integrity and authentication.

– Resistance against Denial of Service Attack. With the above security
requirements, attackers cannot get useful information from the protocol, while
they can lower the quality of wireless communication or even cut down the
communication links among end devices and drones by launching wireless
network attack such as DoS attack For the robust of the UAV network, an
eligible scheme should resist various popular network attacks.

4 Secure Communications in UAV Networks

Our system can be described with the following three protocols: system setup,
register and secure communication among entities in the entire drone network.
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During the offline phase, the RMC runs the system setup and then initializes
all the system global parameters and generates the system’s master key. All the
entities in the drone network must first register with the RMC to obtain the
necessary information. In detail, the RMC generates a long-term identity and a
corresponding private key for each end device and drone in this phase. During the
task execute period, if end devices want to access the network, the drones should
first authenticate and account for the devices before they provide services. In the
registration, we introduces an ID-based signcryption scheme to generate a secure
channel between drones and devices in such a subnetwork. To guard against
DoS attacks by malicious devices, we use the experience gained using a proven
of work mechanism. The third protocol can guarantee secure communications
among devices in different subnetworks. Using this protocol, an ordinary device
can encrypt messages intended for other subnetwork devices using those devices’
pseudonyms, which can be obtained through the subnetwork master drones. For
preventing receive devices from obtaining other receives’ identity, we proposed
a ciphertext transformation method that drones whose members are the real
receivers will transform the HIBBE ciphertext to the HIBE ciphertext which
will hide the broadcast receivers’ identities.

4.1 Computational Assumptions

Our scheme is implemented in bilinear groups widely used in modern cryptosys-
tems. A bilinear group consists of two cycle groups G1,G2, a multiplicative cycle
group GT where g1 is the generator of G1 and g2 is the generator of G2. Let
q be a large prime number. A map e : G1 × G2 → GT is called a bilinear
group if it satisfies the following properties: (1) Bilinear: e(ga

1 , gb
2) = e(g1, g2)(ab)

where g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp. (2) Non-degenerate: e(g1, g2) �= 1 for all
g1 ∈ G1, g2 ∈ G2. (3) Computable: There is an efficient algorithm to compute
this map e.

Our scheme relies on the hardness of two computational problems, which are
briefly reviewed below. Let (G1,G2,GT ) be a bilinear group where g1, g2 are the
generators of G1,G2.

q-Strong Diffie-Hellman problem (q-SDHP) [6]. For any random chosen
x ∈ Z∗

p , given a bilinear group (G1,G2,GT ) where g1, g2 are the generators of
G1,G2, respectively, and a (q + 2) instance: (g1, gx

2 , gx2

2 , . . . , gxq

2 ) ∈ G1 × G
q+1
2 ,

find a pair (c, g
1

x+c

2 ) with c ∈ Z
∗
p.

q-Bilinear Diffie-Hellman Inversion problem (q-BDHIP) [5]. For any ran-
dom chosen x ∈ Zp, given a bilinear group (G1,G2,GT ) where g1, g2 are the
generators of G1,G2 and a (q + 2) instance: (g1, gx

2 , gx2

2 , . . . , gxq

2 ) ∈ G1 × G
q+1
2 ,

computing e(g1, g2)1/x ∈ GT.

4.2 System Setup

System Initialization. The system first creates an empty list called ML and
initializes the entire system as follows.
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– Upon input of a security parameter λ, generate a cyclic additive group G and
a cyclic multiplicative group GT with the same large prime p. Consider g to
be the generator of G and gT to be the generator of GT . There is a bilinear
map e : G × G → GT . Pick two random elements g2, u

′ ∈ G
– Generate the RMC ’s master key α ∈ Z

∗
p and then compute the value gα ∈ G

– Select four hash functions: H1 : {0, 1}∗ → Z
∗
p, H2 : {0, 1}∗ × {0, 1}∗ → Z

∗
p,

H3 : GT → Z
∗
p, and H4 : Z∗

p × GT → Z
∗
p.

– Publish the system parameters: PP = {g2, u
′, e, p, g,G, gT ,H1,H2,H3,H4}

Pre-mission. We assume that (n − 1) pieces of equipment are participating in a
mission. The RMC initializes the broadcast system’s formalization BSKID0 =
(ν0, ν1, {zj}j∈[1,n]) using its own identity ID0. Then, it picks a random number

r ∈ Z
∗
p and a random element u0 ∈ G. For all j ∈ [1, n] it computes uj

R← G.
Therefore, the initial broadcast is as follows.

BSKID0 = (gr, gα
2 (u′ ·

∏

i∈φI D

u
H(ID0)
0 )r, {ur

j}j∈[1,n])

= (ν0, ν1, {zj}j∈[1,n])

Any device in this system should preload the system parameters and register
with the RMC. The RMC completes identity registration for any device with
IDu as follows.

1. The RMC first checks whether an entry exists in the ML corresponding to
the submitted identity IDu. If so, the RMC responds to the requesting user
with the existing entry; otherwise, it executes the following steps.

2. The RMC Computes the device’s private keys KIDu
= g

1
α+H1(IDu) . Next, it

sets a validity period Tu for the new identity. Then, it distributes the message
M = (Tu,Ku) to device IDu and adds the message to the ML.

Similarly, any drone with an identity IDk in this system should preload the
system parameters and register with the RMC as follows.

1. The RMC first checks whether an entry exits in the ML corresponding to
the requested identity IDk. If so, the RMC responds with the existing entry;
otherwise, it executes the following steps.

2. It computes the drone’s private keys KIDk
= g

1
α+H1(IDk) .

3. The RMC delegates the broadcast SK to the drone. First, we assume that
the ID vector in our system is in the form of (ID0, IDk, IDu) and that
the whole system has only three levels. Here, ID0 is the root of the ID vec-
tor. Thus, the broadcast key delegates to the i-th drone using the ID vector
ID = (ID0, IDk) following the steps described in [16]. First, pick a random
exponent tk ∈ Z

∗
p.
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Next, compute BSKIDk
as follows.

BSKIDk
=

(
ν0g

tk , ν1(z
H1(IDk)
k )(u′uH1(ID0)

0 u
H1(IDk)
k )tk ,

{
zju

t
j

}
j∈[1,n]\{k}

)

=
(
ak, a0,k, {aj,k}j∈[1,n]\{k}

)

By implicitly setting r′ = r + tk, it easy to transform the preceding formula
to the following form.

BrSKIDk
=

⎛

⎝gr′
, gα

2 (u′ ·
∏

i∈φf(IDk)

uIDi
i )

r′

, {ur′
j }j∈[1,n]\{k}

⎞

⎠

4. Next, the RMC sets a validity period Tk for the new identity. Then, it dis-
tributes the message M = (Tk,KDi

, BSKIDk
) to drone Di and adds the

message to the ML.

4.3 Registration

The entire phase consists of 4 phases: Req, Res, Dis, and Fin. Assume that
a device’s identity is IDu and the subnetwork it belongs to is managed by a
drone whose identity is IDk. The device’s ID vector in the broadcast system is
(ID0, IDk, IDu).

Req The drone chooses a random number γ in Z
∗
p and computes a puzzle =

H2(s0‖γ) where s0 is a short bit string. Then, it sets M0 = (IDk, puzzle, γ)
and sends (M0) to the device.

Res When the end-user device receives the message M0. It first runs the hash
function H2 several times to find a value s1 that satisfies the equation
H2(s1‖γ) = puzzle. Next, it computes the response message using an ID-
based signcryption [4] procedure as follows.
1. Device IDu picks a random number, η1, η2, η3 ∈ Z

∗
p and computes R1 =

gη3
t , M1 = (IDu‖η2‖s1‖γ + η1), T1 = M1

⊕
H3(R1).

2. It sets h2 = H2(M1, R1), computes T2 = K
(η3+h2)
IDu

and then computes
T3 = (gH1(IDk)gα)η3 .

3. Finally, the device sends (s1, T1, T2, T3) to the master drone IDk.
Ver When the master drone IDk receives the message, it first checks whether s1

is the correct answer to the puzzle. If so, it extracts the temporarily stored
message and checks whether the signature sent by IDu is available. The
drone computes rd =e(T3,KIDk

), Md =T1

⊕
H3(rd) and hd =Hd(Md, rd).

Then, it encrypts the message and recovers the random value η2 used
to generate end device’s pseudonym. Finally, it accepts the message if
rd = e(T2, g

αgH1(IDu))g−hd
t and records (IDu, η2) in its UL, which it will

exchange with other drones through a secure broadcast channel.
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Dis After the device’s identity has been verified, the drone generates a broadcast
key pair for its subnetwork device as follows.
1. IDk updates the device’s temporary ID by computing Pu = (IDu)η2 . The

new ID vector is (ID0, IDk, Pu); consequently, the broadcast private key
can be calculated in the same way as the RMC delegate broadcast private
key for IDk. The final broadcast key is formed as follows. IDk chooses a
random number tu ∈ Z

∗
p. Then, it computes

au = akgtu , a0,u = a0,k(bH1(Pu)
u )(u′uH1(ID0)

0 u
H1(IDk)
k uH1(Pu)

u )tu

{aj,u} = {bju
tu
u }j∈[1,n]\{u}, BSKPu

=
(
au, a0,u, {aj,u}j∈[1,n]\{u}

)

2. Following the procedure in [4], the drone generates a signcryption cipher-
text using the same scheme described in the rep phase.
(a) IDk picks a random number η4 ∈ Z

∗
p and computes R2 = gη4

t and
T4 = (M)

⊕
H3(R2) where M2 = (BSKPu

‖η1 + 1).
(b) It sets h2 = H2(M2, R2), computes T5 = K

(η4+h2)
IDk

and then computes
T6 = (gH1(IDu)gα)η4 .

(c) Finally. IDk sends (T4, T5, T6) to device IDu.
Fin After receiving the ciphertext, IDu checks if rf = e(T6,KIDu

) holds. If so,
it then computes Mf = T4

⊕
H3(rf ) and hf = H2(Mf , rf ). After recovering

the message, it checks qf = η1 + 1 and rf = e(T5, g
αgH1(IDk))g−hf

t . If so,
the device completes the session and obtains its broadcast key BSKPu

.

4.4 Message Broadcast

In this part we introduce two message broadcast method called basic broadcast
and broadcast with ciphertext transformation. In the former method following
the method described in [16] some one in our system can encrypt message to
any subgroup members in system and any receiver can decrypted the received
ciphertext with his own private key and a public receiver set. While sometimes
in the hostile environment senders or receivers wants to hide the receiver set. So
we propose the second method by utilizing the drones which have dual identity
of a subgroup key generator and a router to transform a HIBBE ciphertext
to a HIBE ciphertext which the receivers can decrypt the ciphtertext without
knowing the receiver set.

Basic Broadcast. When all users have completed the registration phase, they
can exchange encrypted messages with each other via a secure broadcast chan-
nel. The drones can share management messages through both identity-based
encryption and broadcast encryption. All theUL lists with the new pseudonym
identities are shared among the drones’ networks, which makes it easy for users
in different subnetworks to obtain the ID vector of the person or persons they
want to communicate with. A secure broadcast communication is established as
follows.
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– E(PP,M,V). For a receiver identity vector set V, the encryption algorithm
picks a random number ζ and computes the ciphertext as follows.

C = (c0, c1, c2) =

⎛

⎝gζ , (u′ ∏

i∈f(V)

u
H1(IDi)
i )ζ ,Me(g, g2)ζα

⎞

⎠

– D(V, C0, BSKPu
) → M . For a given ciphertext CT, any device whose ID

belongs to the receiver identity vector can use its private key to compute the
decryption key as follows.

K = a1

∏

j∈f(V\Vk)

b
H1(IDj)
j

where the message M is equal to the value of e(c1, a0)/e(K, c0).

Broadcast with Ciphertext Transformation. When a sender wants to hide
its broadcast set so that no receiver can get any information from the received
ciphertext and guess the other receivers’ identities, a ciphertext transformation
method can be used. This is a difficult task for most general ad hoc network
broadcast system structures, but it is easily achieved by our scheme. The receiver
set can easily be preserved among different users as follows.

– EN (PP,M,V). Unlike the preceding encryption phase, in this phase, the
message is encrypted using an identity set consisting of the receiver’s and its
master drone’s identitiesVD. The ciphertext is formed as follows.

C0 = (c0,0, c1,0, c2,0) = (gζ1 , u′ ·
∏

i∈VD

u
H1(IDi)
i )ζ1 ,Me(g1, g2)ζ1)

– T (CT,BSKIDk
, V ). When any drone receives the message, it checks whether

any of its members is in the receiver set. If so, for any of these members Um,
it transforms the ciphertext as follows.

X = e((bmutm
m )H1(pu)/

∏

i∈f(VD\Vk)

(biu
tm
i )

H1(IDi)
, c0,0)

where t is the random value used in the registration’s distribution phase to
generate the BSK for IDm. Let c0,1 = c0,0, c1,1 = c1,0 and c2,1 = X ·
c2,0. Finally, the new ciphertext the drone transforms for the IDm is: C1 =
(c0,1, c1,1, c2,1).

– T D(CT1, BSKPm
). Given a ciphertext, using its BSKIDm

, the receiver IDm

can obtain the message M by computing M = c2,1e(c1,1, a0)/e(a1, c0,1). The
receiver cannot acquire sufficient message content from the ciphertext to guess
the identities of the other receivers.
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5 Security Analysis

In this section, we analyse the security of the proposed protocol and show that
it satisfies the security requirements defined in Sect. 3.2.

5.1 Security Model

We define the model using the following game strategy. This game is played
between a challenger C and an adversary A who has full control over all network
communications. This means that the adversary has the ability to eavesdrop on
or even modify communicated messages. Each user can run the protocol several
times with different drones; consequently, we model this using the concept of
instances. We denote instance i for member U as Πi

U . During the Setup process,
C runs a setup in which the security parameter λ acts as the RMC. The setup
outputs the system parameter pp and then sends pp to A. During the Query
phase, according to the protocol registration process, C provides a sequence of
oracles to A, giving A the necessary information to attack the protocol. The
query oracles work as follows.

– Q1: This query will help A obtain the transmitted messages generated in the
Res or Dis phases.

– Q2: This query will help A obtain detailed messages generated in Ver phase
(this situation is possible because in the real world, a drone may be captured
and used as a decryption oracle to help the adversary win the games.)

– QHi
: This query will return the result of hash function Hi to A.

– Corrupt(IDi): A can execute the this query to obtain the long-term key pair
of some identity IDi (other than the target identity).

– Reveal(Πi
U ): A can execute the this query to obtain the session key invoked

in πi
U .

– Test(): A can execute the Test() query only once. A chooses two messages,
m0 and m1, using an identity which it has never performed the Corrupt
query before and using the same D identity. The C chooses a random bit b
and executes the protocol with πb

ub
.

Finally, A guesses bit b′ ∈ {0, 1}. If b = b′, A wins in the game. The advan-
tage for A in breaking session key secure (SKS) of registration Σ with system
parameters λ is defined by

AdvSKS
A,Σ (1λ) = |2Pr[b = b′] − 1|

Definition 1. (SKS) The registration is session key secure, if for any polyno-
mial time adversary A, we have the AdvSKS

A,Σ (1λ) is negligible.

We say that A can break the mutual authentication (MA) secure of regis-
tration Σ, if he can generate a legal res message denoted as ERes or Dis mes-
sage denoted asEDis. The advantage for A to break mutual authentication(MA)
secure of registration Σ with system parameters λ is defined as follows.

AdvMA
A,Σ(1λ) = Pr[ERes] + Pr[EDis]
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Definition 2. (MA-secure) The registration is sMA-secure, if for any polyno-
mial time adversary A, the AdvMA

A,Σ(1λ) is negligible.

5.2 Provable Security

Lemma 1. Suppose that the underlying signcryption used in the registration is
(ε′, t)-secure against existentially unforgeable signature against adaptive chosen
messages attack. The registration is (ε, t)-MA-secure provided that ε = 2ε.

Proof. It’s easy to find that the Res and Dis messages are also standard ID-
based signcryption [4] ciphertext. If A can forge a legal signature message with
probability ε′, according to the Definition 2, we can come to a conclusion easily
that A can break the MA-secure of registration with probability ε = 2ε′. ��

Theorem 1. Assume that there exists an A that makes qhi
queries for QHi

, q1
queries for Q1 and q2 queries for Q2, A can break MA-secure of the registration
with probability ε ≤ 10(q1 + 1)(q1 + qh2)/2λ. Then, there exists an algorithm B
to solve the q-SDHP [4] with probability ε

Proof. Based on the Theorem 3 given in [4] and Lemma 1 above, no polynomial
adversary can forge a legal Req message or a legal Dis message if the q-SDHP is
hard. Therefore, it concludes that the proposed registration is MA-secure. ��

Theorem 2. Assume that there exists an A that make qhi
queries for QHi

,q1
queries for Q1 and q2 queries for Q2, A can break session key secure of registra-
tion with probability 1

qh1
(1− (q1

q1+qh2
2k )(1− q2

2λ )). Then, there exists an algorithm
B to solve the q-BDHIP [4] with probability ε.

Proof. The detailed proof is given in AppendixA. ��

Our scheme also obtains confidentiality and partial identity anonymity. From
the broadcast protocol, all the transmitted messages are encrypted by the user’s
broadcast key. According to the Theorem2, a polynomial time attacker can get
no advantage to distinguish a real broadcast key from a random number, so
we can say that broadcast key encrypted by drones with end device identity
is secure. In [16], the encryption we employed has been proven secure against
chosen-plaintext attacks (CPA). Hence, our scheme can satisfy the message con-
fidentiality.

Partial identity anonymity guarantees that when an end device finishes reg-
ister to one drone, it cannot be recognized, even if an attacker can take over
all communication flows. According to the specification of our scheme, the end
device real identity IDu, only appear in res messages, T1 = (IDu‖η2‖s1‖γ +
η1)

⊕
H3(R1). To recover the real identity, the adversary should compute

R1 = e(gα+H1(IDk), g
1

α+H1(IDk) ) which means that without knowing the user’s
private key, the adversary should solve the q-BDHI problem. The confidential-
ity provided by signcryption [4] guarantees that the end device real identity
can be hidden by upon pseudonym mechanism. But the pseudonym mechanism
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is associated to the corresponding end devices, so it cannot obtain full iden-
tity anonymity. Hence, we claim that our scheme can satisfy partial identity
anonymity.

Our scheme can be resistant of network attacks. During the registration, we
introduce a prove of work mechanism by computing a target hash value. This
mechanism is similar to the proof-of-work mechanism that involves scanning for a
value that the hash begins with small integers. The average required computation
grows exponentially with the bit length of the puzzle. Different from the hardness
of scan the answer of the puzzle, verification only execute a value comparison
operator. So the drone can control the access request by adjusting the bit length
of the puzzle and fast reject the venomous request with an false answer. When
a drone is under a DoS attack, it will decrease the concurrent access request by
enhancing the length of hash value. Hence, we claim that our scheme can be
resistant to network attack.

One may also be interested in message integrity and message authentication.
Although our proposed protocol is not cover these requirements, there are gen-
eral solutions that mostly hash functions such as SHA-256, can easily obtain
message integrity and mostly signatures such as DSA, can guarantee message
authentication to reach these requirements. We do not describe these methods
to our scheme due to space limited.

6 Performance Analysis

In this section, we further evaluate the efficiency and applicability of our protocol
with broadcast encryption in a real-world environment by using the Network
Simulator-3 (NS3) simulator to show the relationship between performance, the
traffic conditions, and the number of broadcasts.

We analyse the simulation results to evaluate the efficiency and applicabil-
ity of the proposed broadcast scheme. We use NS3 to perform this simulation.
The area of this simulation is approximate 500 × 500m2. Five Ds are uniformly
distributed in the simulation area. In this section, we assume that the Ds have
a static elevation of 5 m and can move horizontally within a small range. The
users are uniformly divided into 5 subgroups that initially are randomly posi-
tioned within 2 m around their corresponding D. The motion model applied is
the random2Dwalkmodel with a constant speed of 2 m/s. The wireless proto-
col between users and Ds is IEEE 802.11a and the channel bandwidth is set
to 6 Mb/s. In addition, the packet size ranges from 64 Byte to 512 Bytes. We
use multicast to deliver messages for normal broadcast schemes and unicast to
simulate the re-encryption scheme. All the simulation times are set to 100 s. The
time interval between two broadcast messages from one user is 5 s.

We use two performance measure indexes to assess the simulation perfor-
mances: the average message loss rate Lm and the average message delay Dm.
The average message delay is the average time latency for a message to be
received by all users in the broadcast sets after it is generated. The average time
delay is defined as follows.
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Dm =
1

LD
ΣL∈D(

1
Ml→

Σ
Ml→
m=1

1
Sl

(T lm
Enc + ΣSl

k=1T
lmk
trans))

where D denotes the simple area in this simulation, LD denotes the l-th user in
this area, Ml→ is the number of broadcast messages generated by the l-th user,
Sl is the size of the broadcast set, T lm

Enc is the time when the l-th user encrypted
the m-th message, and T lmk

t rans is the transmission time at which message m
was delivered from the l-th user to the k-th user in the broadcast set.

The average message loss rate is the probability that a message cannot be
received or processed, and it is defined as follows.

Lm = 1 − 1
LD

ΣLD
l=1

M l
consumed ∗ Sl

ΣSl
s=1M

s
arrived

where M l
consumed represents the number of packets consumed by the l-th user

and Ms
arrived denotes the number of packets received by the s-th user (Fig. 2).
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Fig. 2. Performance of broadcast 1

(1) The impact of packet size. In the first simulation set, to analyze the impact
of different packet sizes from 64 Bytes to 512 Bytes we fixed the number
of the broadcast set to 25 and the user speed to 2 m/s. Figure 3 shows that
packet size has only a small impact on both the basic broadcast method and
the ciphertext transformation mechanism. In other words, the message loss
rate is not influenced by the size of packets. However, the average time delay
increases.

(2) The impact of the number of group members. As Fig. 3a shows, given a fixed
packet size, the average message delay increases as the broadcast group
size increases. In addition, the message loss rate of the normal broadcast
scheme increases as the broadcast size increases, and it tends to be Small
fluctuations when the group size grows. However, the message loss rate for
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the re-encryption scheme is exactly the opposite; when the group size is
between 40 and 45 the message loss rate reaches the bottom of the curve
and then grows as the broadcast size increases. The possible reason is that
when the broadcast size is small, the intended recipients may easily be out of
communication range, and the larger the packet is, the greater the loss rate
in this scheme. Consequently, the re-encryption scheme’s message loss rate
is smaller than the normal loss rate. But as the broadcast set size increases,
the re-encryption computation will influence the efficiency of the network
transmission and some packets will be dropped when the re-encryption nodes
are incapable of forwarding a packet in time.

Comparing the message delay curves between the regular scheme and the
scheme with re-encryption, one can see that the increase rate of the re-encryption
scheme grows faster than that of the normal scheme. This is reasonable, because
although the packet size of the normal scheme is larger than that of the re-
encryption scheme for the same message, the re-encryption computation requires
considerably more time to transform larger packets. However because using the
re-encryption can hide the identities of the members of the broadcast set, it is
beneficial for protecting user privacy.

7 Conclusion

In this paper, we proposed a secure communication system to balance security
and performance in a UAV network. We achieve security goals by combining
identity-based signcryption and hierarchical identity-based broadcast encryp-
tion. We posed the problem of finding a hash value’s preimage as a restriction in
our registration phase to control access device number. By adopting the hierar-
chical cryptosystem, a device in our protocol uses its broadcast key and its public
pseudonym identity to send and receive encoded broadcast messages to others.
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Combined with the common security group communication scheme, there is no
need to store each group’s encryption keys which is an practical benefit because of
the limited storage space in typical environments. The simulation demonstrates
that our scheme can adapt to a variety of different traffic conditions.
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A Proof of Theorem2

In each result, we assume that A makes qhi
queries to the hash function Hi for

i ∈ {0, 1}. The numbers of queries for Q1 and Q2 are denoted by q1 and q2,
respectively.

Proof. The C first obtains a q-BDHIP problem instance, (g, gα, gα2
, . . . , gαq−1

),
to generate some pairs (ci, g

1
ci+α ) to use as key pairs. Then, C proceeds as follows.

1. C first randomly picks w1, w2, . . . , wq−1 ∈ Z
∗
p and expands f(z) =

∏q−1
i=1 (z +

wi) to f(z) = Σq−1
i=0 aiw

i, where ai is the coefficient of expansion. Then, C
randomly chooses an � ∈ {1, . . . , qh1} and let Ii = I� − wi.

2. C sets g̃ = g
∏q−1

i=0 ciα
i

= gf(α) ∈ G and generates the value g̃α = g
∏q

i=1 ciα
i

.
3. For any 1 ≤ i ≤ q − 1, C defines fi(z) = f(z)/(z + wi); therefore,

g̃
1

wi+α = g
f(α) 1

wi+α = gfi(α)

And the key pair can be computed as (wi, g̃
1

α+wi ) where i ∈ {0, 1, . . . , qh1�} in
the initial phase. The system public key can be computed as g̃−α−I� . Set x =
−α−I� which is also a secret value for C. For i ∈ [0, q]\ �, we have (Ii, g̃

−1
wi+α )

= (Ii, g̃
1

Ii+x ).

Then, C prepares for A’s queries. For simplicity, we assume that the queries
for hash functions are distinct and that any queries involving an ID have been
made to the H1 in advance. The C simulates the hash function H1,H2,H3 as
follows.

– H1 query: C maintains a list L1 for this random oracle. For the ι-th query
of any user or drone(we denote this identity as IDι), C responds with Iι and
records (ID, Iι, ι) as the ι-th entity in L1.

– H2 query: C maintains a list L2 for this random oracle. For an input (M, r) ,
CH chooses a random number h2. For subsequent queries, C runs the ran-
dom oracle H3 to obtain H3(r) = h3 and stores (M, r, c = M

⊕
H3, h2, γ =

re(g, g)h2) as an entity in L2.
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– H3 query: The C maintains a list L3 for this random oracle. For an input
r ∈ GT , C chooses a random number h3 and responds. C then stores (h3, r)
in L3.

The Corrupt query for identities is simulated as follows. For a user’s identity,
C first checks whether the input IDι satisfies the condition that ι is equal �. If
so, it aborts; otherwise, it outputs Iι = H1(IDι) and g̃

1
Iι+x , as the user ID’s

long-term key pair. For a D’s identity, C checks whether the input IDι is equal
to �. If so, it aborts; otherwise, it outputs Iι = H1(IDι) and g̃

1
Iι+x as the D’s

long-term key pair.
For Q1 query, the identity is defined as (IDu), respectively, for any u ∈

[1, qh1 ]. If u �= �, C can generate the sign-encrypted messages according to the
protocol specification because C knows IDu’s private key. When u = �, C knows
the IDι’s private key g̃

1
Iι+x . C first picks two random numbers t, h ∈ Z

∗
p and

computes S = gt 1
Iι+x , T = gtα−h(Iι−α−I�).

It is easy to verify the equality

e(T, g̃
1

Ii+x ) = e(S, g̃α)e(g, g̃)−h

We should note that, in this step, the value r = e(T, g̃
1

Ii+x ) is different in the
hash function H2; consequently, C will fail if this message has been queried to
H2 previously. The ciphertext C is defined as (M

⊕
h3(r), S, T ).

We describe how to simulate the Q2 query as follows. We assume that the
ciphertext is (c, S, T ) and the identities is (IDu, IDι). If ι �= ell, then C can
decrypt the messages because it knows IDD’s private key. Then, C can generate
the response by following the response phase procedure. If ι = �, because u �= �,
C has the user’s private key and, for all valid ciphertext, h = H2(M, r) and
IDD’s public key is g̃α. Therefore, the following equation holds:

e(T, g̃
1

Iu+x ) = e(S, g̃α)e(gIu−α−I� , g̃
1

Iu+x )−h

C next computes the value γ = e(S, g̃
1

Iu+x ) and then searches the L2 to
find the entities (Mi, ri, h2,i, ci, γ) where i ∈ [1, . . . , qh2 ]. If no entity is found, C
rejects this ciphertext. Then, for any entity satisfying this condition, C checks
whether the entity satisfies the following equation:

e(T, g̃
1

Iu+x ) = e(S, g̃α)e(gIu−α−I� , g̃
1

Iu+x )
−h2,i

.

If any unique i is found, then it outputs (Mi, h2,i) and generates a response based
on the decrypted message (Mi, h2,i). We should note that the Reveal query can
be responded to with the value (Mi, h2,i).

To run a Reveal(πi
U ) query, C returns the session key to A invoked in πi

U .
To run a Test query for some instances πi

Ui
with a D identity of IDD, if

IDD �= ID�, C aborts. Otherwise, C pick a random ζ ∈ Z
∗
p, c ∈ 0, 1n, S ∈ G,

T = g−ζ and returns the ciphertext (c, S, T ). Because ζ = ρα, it is easy to see
that T = g−αρ = g(I�+x)ρ. Consequently, the r corresponding to this T satisfies
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r = e(g, g̃)ρ. The A cannot distinguish whether this ciphertext is valid unless he
can query H2 or H3 with the value r. Therefore, if A can win in the game with a
non-negligible probability, he has queried this value (probably from H2 or H3).
Therefore, C can guess the right r in H2 or H3 with probability 1/(qh2 + qh3)
and solve the q-BDHIP by computing e(g, g)

1
α = (r

1
ζ /(

∏q−1
i=1 e(g, gαi−1

)ci))
1

c0 =
(e(g, g)

f(α)
α /e(g, g

∏q−1
i=1 ciα

i−1
))

1
c0 .

In conclusion, we note that the simulation will fail under the following con-
ditions. Event1: The D’s identity for the Test query is not ID�, with probability
1−1/qh1 . Event2: The C aborts because an H2 collision occurs in a Q1 query; this
probability is q1

q1+qh2
2k . Event3: The C rejects a valid ciphertext because it can-

not simulate the corresponding private key; the probability is q2
2λ . Consequently,

the overall probability that A’s advantage will win the game is

Pr[¬Event1 : |¬Event2 : |¬Event3 :] =
1

qh1

(1 − (q1
q1 + qh2

2k
)(1 − q2

2λ
))

��
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Abstract. In-Vehicle Network (IVN) is composed of many communication nodes
and Electronic Control Units (ECUs). The complex and interactive hybrid IVN
expose more vulnerabilities of the system as it connects to the external network
environment and opens up more attacking surface. In this paper, we first show a
complete structure of the in-vehicle hybrid network. Then, we propose a three-layer
network structure model, analyze the security threats of each layer, and compare the
state-of-the-art countermeasures in detail. Finally, we identify the challenges and
future research directions for the security of the in-vehicle hybrid network.

Keywords: Automobiles � In-Vehicle Network Security
Cyber security � IDS

1 Introduction

Controller Area Network (CAN) has become the main control bus in a vehicle, which
simplifies the in-vehicle communication network with the efficient and fault-tolerant
mechanism. CAN bus keeps evolving, as more functions and services are added by
vehicle manufacturers. In modern vehicles, there are up to 70 electronic control units
(ECUs) in each car. Meanwhile, the network topology becomes more complex sup-
porting different types of communication buses.

These feature-rich networks are designed to provide users with a more comfortable
driving experience. On the other hand, it also exposes more attack surfaces to access
the CAN network which may cause serious safety issues to the targeted vehicle. As the
CAN network provides most of the vehicle control, Koscher et al. utilized CAN bus
vulnerabilities to demonstrate serious threats even when the car moves at high speed
[1]. In a modern vehicle, IVN (In-Vehicle Network) gateway connects different buses
and ECUs and supports more remote services to access the in-vehicle network.
Potentially, the structure of a hybrid network also provides multiple intrusion paths for
attackers. Once an ECU is hacked remotely, it can be exploited to attack other nodes in
the network. Miller et al. used the Jeep Cherokee WIFI open port to invade the
Uconnect system and reprogram firmware of ECU, then control the critical functions
through the CAN network intrusion [23], which resulted in a recall of 1.4 million cars.
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There are intensive researches on the security of the in-vehicle network,
The EVITA (E-Safety Vehicle Intrusion Protected Applications) project [4] focused on
solving hardware security issue. The AUTOSAR (AUTOmotive Open System
Architecture) architecture proposed Secure On-Board Communication to regulate the
secure transmission between the ECUs [5] which has been used by many vehicle
manufacturers. Some security companies had also proposed a security module that can
be integrated into the gateway directly for intrusion detection [6].

In this paper, we take a systematic approach to illustrate the state-of-the-art vul-
nerabilities in the in-vehicle hybrid network. This will become a basic for the future
work in this domain. In addition, we also analyze and compare existing countermea-
sures in the in-vehicle network. Through this study, it helps us to identify the open
security challenges as future research directions.

The rest of this paper is organized as follows: Sect. 2 introduces the in-vehicle
hybrid network topology and hierarchical structure. Section 3 analyses vulnerabilities
in different network layers. Section 4 investigates the state-of-the-art countermeasures
in different layers. Section 5 discusses the future research directions on the security of
the in-vehicle hybrid network, and Sect. 6 concludes the paper.

2 In-Vehicle Hybrid Network

In a modern vehicle, there are several kinds of vehicle communication buses, e.g. CAN,
LIN (Local Interconnect Network), CAN-FD (CAN with Flexible Data Rate), FlexRay,
Ethernet, MOST (Media Oriented System Transport) and so on. These buses are used
in different control fields of an automobile according to their communication speed and
transmission mode. Figure 1 shows a typical onboard hybrid network architecture.

Fig. 1. In-vehicle hybrid network topology
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The network in the vehicle can be divided into several domains according to the bus
feature.

Powertrain Domain
The vehicle’s powertrain domain mainly contains the engine control and chassis
control components, such as ECM (Engine Control Module), ABS (Anti-skid Brake
System), EPS (electric steering system) and so on. To ensure the real-time commu-
nication rate, it usually has high bandwidth and stable communication capabilities. It is
mainly composed of the high-speed CAN (up to 1 Mbps), CAN-FD (up to 5 Mbps),
FlexRay bus (up to 10 Mbps). CAN bus in the powertrain domain is also known as
CAN C (critical). Instead, manufacturers are turning to use a higher communication
rate and larger data load (64 bytes) bus CAN-FD. Figure 2 is the data frame structure
comparison between classical CAN and CAN-FD bus.

FlexRay is a high-speed, critical, fault tolerance bus. Its cycle time traffic includes
the static segment (periodic messages) and the dynamic segment (event message)
which ensures the critical real-time communication performance. Many premium class
vehicles are equipped with this bus.

Body Domain
The body domain is mainly composed of components that do not have high require-
ment for data rate and real-time capability. It is used for non-critical component control
and information services in the non-powertrain domain, with low-speed CAN bus or
LIN bus to achieve the corresponding function control. The speed of CAN network in
this domain ranges from 125 kbps to 250 kbps. The components mounted on this bus
usually have headlamp, electric windows and doors, seats and HVAC (Heating,
Ventilating, and Air Conditioning). Some ECUs with a wireless function connect to
this bus too, such as PKE (Passive Keyless Enter), PATS (Passive Anti-Theft System)
and so on. The LIN bus is usually combined with the CAN bus to control the electric
windows or seat and other components. LIN bus connects multiple devices through a
single line. For example, when the keyless entry ECU receives the unlock command, it
sends the CAN message to the BCM (body controller). Then the BCM controls the
door operation via the LIN bus.

Header Data Trailer

Header Data Trailer

Classical CAN

CAN-FD

SOF
Arbitration field

Control field

Data field(up to 8 bytes)
CRC field

ACK field
EOF

(IMF)

Control field
Data field(up to 64 bytes)

CRC field

Fig. 2. CAN and CAN-FD data construct
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High-Speed Information Service Domain
The domain of high-speed information service refers to the communication that has a
large stream of data transmission capability but does not have control function. It is
generally used for the transmission of the service information of corresponding features
or the collection and output of audio and video information. With the increase of
infotainment system communication equipment, the form of communication is
becoming more and more complicated. For example, the MOST bus with the highest
bandwidth up to 150 Mbps is connected through a ring transmission mode. Video
device, camera, radio equipment, handheld telephone and even GPS navigation can be
linked up by this bus [7]. Now the MOST bus integrates more intelligent communi-
cation functions, INIC (Intelligent Network Interface bandwidth Controller) is devel-
oped by Microchip, which is based on the MOST using 150 Mbps. It integrates the
MOST Ethernet Packets (MEPs) based on the Ethernet protocol and USB protocol [8].
With this function, the network nodes can be directly mount over the bus and provide
more services. Also in recent years, in-vehicle Ethernet is used to provide high
bandwidth audio and video transmission. BroadR-Reach technology based on
100BASE-T1 (1 Twisted Pair 100 Mb/s Ethernet) has been used in the automatic
driving video acquisition field [9]. To meet the real-time control requirements, the
in-vehicle Ethernet TSN (Time Sensitive Network) protocol is still under development.
It might be extended to be the backbone network in the vehicle [10]. The future trend of
this network domain will be responsible for communication with the outside world.

Table 1 shows common application functions in the different domains of the
in-vehicle hybrid network.

Communications among these different domains are through a central gateway. In
the early stage, the structure of vehicle network was not complex, the vehicle gateway
was used for CAN bus packet routing of different rate bus. In the more complex
network structure, the function of the gateway is not limited to CAN data forwarding. It
becomes a critical part of the communication system [19]. Figure 3 is a schematic
diagram of a hybrid gateway.

Table 1. Common application functions in the different domains.

Domain Powertrain domain Body domain High speed information service
domain

Bus type CAN/CAN-FD/
Flex Ray

CAN/LIN MOST/Ethernet

Data rate 1 Mbps–10 Mbps 20 kbps–250 kbps � 100 Mbps
Application Engine

Driving assistants
Steer-by-Wire
ABS
…

Door locking
Power windows
Headlamp

…

Infotainment services
Surround view system
Audio

…
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An in-vehicle gateway mainly supports the following functions:

• Communication driver: Abstract different communications bus hardware, so that
the software can directly invoke the API to get the PDU (Protocol Data Unit)
through the physical layer.

• Routing: Protocol routing layer is mainly responsible for the extraction, repack-
aging and routing of messages, which is the key function of the gateway.

• Application processing: When routing, some data needs to be extracted and
analyzed in the application.

• Network management: Ensure the stability of the entire network with a monitoring
of the wrong nodes.

The External interface in the vehicle is a part of the hybrid network. There are
physical interface and wireless interface. The typical physical surface is OBD
(On-Board Diagnostics). It connects to the CAN bus both in powertrain domain and
body domain directly or through the gateway bridge. It is used to identify and report
fault. The vehicular wireless interface is multifarious. These devices parse the external
network data into the in-vehicle network. The modern vehicle wireless communication
function mainly includes the following kinds of remote communication.

Fig. 3. A brief structure of general vehicular central gateway
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• Bluetooth: It is a common short-range communication technology with 2.4 GHz to
1 Mbps data rate in personal smart devices. Its protocol supports data transmission
and audio play. Hands-free telephone, wireless music play and mobile wireless key
are all based on Bluetooth.

• WIFI: Vehicular WIFI is usually used as wireless hotspots, so users can access the
more stable network provided by the vehicle.

• Cellular: Automotive service provider OnStar provided remote emergency service
and diagnosis information collection functions for the vehicle, through the cellular
network. Now, the higher speed LTE 4G network is also gradually applied to the
vehicle. Telematics Box (T-Box) can provide more information services and ITS
(Intelligent Transport System) functions.

• RF (Radio Frequency): RF has the advantages of stable communication perfor-
mance in short distance. It is widely used in vehicles. Some ECUs use this com-
munication mode, such as PATS (Passive Anti-Theft System), TPMS (Tire Pressure
Monitoring System) and RKE (Remote Keyless Entry/Start).

• V2X network: Intelligent transportation based on the connections of vehicles to
vehicles and vehicles to traffic equipment, and the sharing of traffic data. The main
modes of communication are DSRC and LTE-V.

To make the analysis of the hybrid network clearer, we derive a hierarchical
structure of the in-vehicle hybrid network with three layers, as shown in Fig. 4.

The top control layer is the final target for attackers, because CAN network is
responsible for most of the data acquisition and control tasks in the vehicle, so we call
this layer as the Control Layer. In the Middle Layer, there is a central gateway because
it is the essential node that connects internal nodes and it is also the bridge between the
external network and internal network. The bottom layer is External Interface Layer,
which could be accessed through the physical interface and different remote surface.
Some devices in this layer connect to control units and others connect to the gateway.

We will use this 3-layer model to discuss the vulnerabilities and countermeasures in
the in-vehicle hybrid network.

CAN/CAN-FD/FlexRay... 
Control Bus

Central Gateway

Diagnostic Interface
(OBD)

Remote Access 
Device

Wireless 
Device

Control Layer

Middle Layer

External Interface Layer

Fig. 4. In-vehicle hybrid network 3-layer model
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3 Security Analysis of In-Vehicle Hybrid Network

This section discusses security vulnerabilities of the in-vehicle hybrid network based
on our 3-layer model. Some of these vulnerabilities are verified in real vehicles while
others are theoretical.

3.1 Vulnerabilities at Control Layer

The control layer network vulnerabilities are mainly related to the CAN and CAN-FD
network. The attacks can be divided into three categories, DoS (Denial of Service)
attack, fuzzing attack, and attack based on error handling of the bus.

DoS Attack
Both CAN and CAN-FD provide multi-master capability. When the bus is idle, any
node can send messages on the bus. When several nodes access the bus at the same
time, only the frame with lower ID gains the arbitration and maintains in transmission
mode. The arbitration rule of CAN bus reduces the message conflict. However, the ID

Node B
ID:0x101

Node A
ID:0x201

Node 
Attack

ID:0x000

M
B

M
B

M
A

M
A

M M M M M M

Delayed

Node B
ID:0x101

Node A
ID:0x201

Node 
Attack

ID:0x101
M M …

(a) DoS attack

(b) Fuzzing attack

M
A

M
A

M
B

M
B

M M

Fig. 5. DoS and fuzzing attacks in CAN network
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0x000 message has the highest priority, if an attacker has access to the CAN bus or
cracks an ECU node, it is easy to flood lots of messages with ID 0x000 on the bus.
Malicious adversaries can interfere the network without understanding the contents of
the CAN bus. When sending high priority messages into the bus continuously, even-
tually leading to the high busload, it will affect the stability of the system seriously. In
Fig. 5a, the messages of Node A with an ID 0x201 and of Node B with an ID 0x101
are delayed by the continuous attacking messages with an ID 0x000. Mukherjee et al.
verified that the network can be disrupted by DoS attack [3].

Fuzzing Attack
CAN bus has the characteristics of broadcast communication. Once an attacker has
access to the bus, it is easy to sniff the CAN message and analyze the contents. After
marking the control field in a control frame, it is easy to use a reverse engineering. To
some extent, this operation is dangerous to the vehicle and driver if it attacks the key
components in the automobile. As shown in Fig. 5b the attacker successfully sniffs the
message on the CAN bus, then impersonates the message of Node B with an ID 101,
The attacker injects the malicious message in a shorter interval than the normal nodes,
which causes the receiving node to execute a dangerous operation. In the FlexRay the
attack method is similar, an attacker can inject a malicious message into the dynamic
segment to trigger an event attack.

Attack Based on the Error Handling
The error handling mechanism makes the CAN bus have a strong fault tolerance, and if
there is an error on the bus, the error frame will be sent. In the CAN bus, the following
typical situations will trigger the error frame:

• Bit error: The sending node monitors the bus status in a real time while sending
data. If it is found to be different from the transmitted data, the error is triggered.

• Stuff error: The CAN bus uses the change of bit to synchronize the clock. After
each five same state bits, there is an inversion level. If it is not shown, triggers this
error.

• ACK response error: ACK is the data sender that listens to the bus state after the
data is sent. This error is triggered if no response is detected.

• CRC error: This error is triggered if the CRC checksum of the transmitted data is
different from the calculated value of the recipient.

There are two error counters in the CAN bus protocol in which nodes could switch
among different error state when an error frame is encountered. Cho et al. showed how
attackers use a CAN node to fake error conditions based on error handling, resulting in
the bus-off [11]. As the CAN-FD retained the CAN definition of error handling
mechanism, this attack is also applicable for CAN-FD network. The malicious node in
FlexRay bus could leverage error handling during synchronisation to jam the network.

3.2 Vulnerabilities at Middle Layer

As shown in the topology above, the vehicular gateway is very important in a hybrid
network, but there are some security vulnerabilities in the current gateway.
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The gateway connects most ECUs in the vehicle and the remote access network.
When an attacker succeeds in cracking one node of a hybrid network, the attacker can
get control of the whole network through the gateway. For example, an attacker can
counterfeit an ECU using the gateway as a bridge and sends the data to implement a
dangerous operation etc.

The gateway also supports some nodes with the FOTA (Firmware update Over the
Air) function. The attacker can obtain control nodes which support download service
and crack the weak key/pass pair. By controlling the gateway node to start corre-
sponding ECU bootloader service, the attacker can intrude the node, and thus pose a
threat.

3.3 Vulnerabilities at External Interface Layer

The OBD is an external physical interface. Usually, OBD devices will access multi-line
CAN bus. Although OBD is not easy to be accessed physically by the attacker, now
there are many aftermarket products called OBD-Box which provides network service
function. It enables background system remote access the in-vehicle network through
the cellular. Foster et al. showed how to crack an OBD II device through remote
connect vulnerabilities and intrude the CAN network [24].

There are many remote devices. Table 2 shows general remote interfaces and the
attack methods of current vehicles and some accidents happen due to these vulnera-
bilities. Checkoway et al. have verified the potential security holes in the remote
surface [2].

3.4 Further Discussions

Based on the above analysis of the vulnerabilities at different layers, the most serious
problem is that the interoperability features of the hybrid network allow for a lot of
paths for attackers. It may be difficult to access the interior vehicular nodes physically,

Table 2. The external interface in the vehicle and its vulnerabilities.

Remote
access type

Attack method Example

Bluetooth Attack weak stack and crack PIN code, connect
device

BYD Qin, weak Bluetooth
pair mode

WIFI Attach through open port Jeep Cherokee, WIFI
D-bus port 6667 [23]

Cellular Intrude the backend system Nissan Connect 2016,
Mobile App attack

RF Sniff and send the fake data in the same
frequency

TPMS Packet Spoof,
University of South
Carolina [12]

V2X/V2I Attack the Ad hoc networks of the intelligent
vehicle, fake traffic information

Vehicular Ad hoc
Networks (VANETs) [13]
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but the combination of multi-layer network attacks will reduce the difficulty. Table 3 is
a combinatorial analysis. With the integration of the gateway and external access
surface, the system will become more insecure. If any of these three layers is cracked,
the attacker will be able to access and control the entire network.

4 State-of-the-Art Countermeasures

4.1 Countermeasures at Control Layer

Hardware Secure Module
The hardware encryption module can support secure communication and guarantee the
real-time control. For example, a FPGA based hardware encryption method is used in
the vehicular embedded system [14]. A fault tolerance and flexibility security mech-
anism were implemented in a novel hardware architecture to achieve a faster and lower
energy performance on FlexRay bus [28]. Several ECU manufactories adopt the Secure
Hardware Extension (SHE) such as Fujitsu etc. [21].

Authentication
Authentication method can effectively avoid the dangerous operations caused by
impersonating the data. Because classical CAN bus is used in the embedded system, it
has an efficient synchronous communication capability. However, its useful data load is
very limited, so it is unrealistic to add adequate communication authentication field or
set encryption under this condition. Some researchers proposed to authenticate the data
with truncated MAC (message authentication code) for secure transmission. They
proposed a key-chain based authentication protocol, with truncated MAC. This
approach can enable the real-time data transmission in the embedded system [15]. In

Table 3. Comparison of different attack combination.

Threat Attack object Probability of
accessController

(Control Layer)
Center
gateway

External
interface nodes

Control of single ECU or
single bus line

U Difficult

Access of entire network U Difficult
Access of privacy information
and injection

U Easy

Access and control of entire
network

U U Difficult

Remote control of some
ECUs

U U Easy

Remote access of entire
network

U U Easy

Remote access and control of
entire network

U U U Easy
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the AUTOSAR latest version 4.2 Specification of Module Secure Onboard Commu-
nication [5], it also proposed a countermeasure by using random MAC code. Because
this authentication will occupy part of the communication payload, it is more suitable
for CAN-FD network authentication, as shown in Fig. 6. Han et al. proposed an
efficient authentication for the FlexRay [26].

IDS (Intrusion Detection System)
Although the bus communication is exposed to all nodes on the bus, it also makes the
intrusion detection method possible, which can be divided into the following three
categories. Different methods have their own merits and limitations.

(1) IDS based on the key monitoring parameters. The in-vehicle network is different
from the event communication in the computer network as most of the messages
in the car is periodical. When the attacker invades the network, there are some
changes of the network signal, which could be detected through the following
ways.
(a) In CAN bus, when a node receives a remote frame, it will respond with a

message to the sending node. When an attacker sends lots of fraudulent
messages, the offset ratio of the response frame can reflect the suspicious
activity.

(b) Transmission intervals of a message among different ECUs can be detected
and compared against the established baseline. When the period is shorter
than the normal value, it will alert an abnormal state [16].

(c) Different devices have their own hardware fingerprints. Even if the interval of
cycle time messages is same, the hardware attributes may cause a small clock

ECU1 ECU2

PDU

DataID

MAC

Fresh Value

MAC Generator

Secure PDU Secure PDU

MACPDU FreshValue MACPDU FreshValue

PDU

DataID

MACFresh Value

Authenticate

Yes

CAN(FD) Bus

No

Fig. 6. Secure data transmission with MAC in CAN(FD) bus
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skew. Normally, the integration increases linearly with a constant slope. If an
attacker injects excess messages or replace the original device, the slope will
change. This method is effective at hardware substitution detection [29].

All those three methods have a low error rate. However, the last two methods need
a fast sampling frequency to get time parameter for analysis. Detecting the
intervals may not be effective for new and unknown attacks, and the parameters
might be different in different vehicle networks.

(2) IDS based on the information entropy. In a normal vehicle, the communications
among each ECU are orderly, so systematic information entropy should be rel-
atively stable. When lots of malicious messages are injected into the normal
communication, it will affect the network stability in which the information
entropy can reflect the anomaly. There are entropy-based method to detect net-
work attacks which has been tested in practice [17, 22]. This method is efficient to
detect the DoS attacks, but when the attacker only injects a small number of
malicious messages, it is hard to recognise.

(3) IDS based on the content analysis. The control network implements the corre-
sponding operations. The changes of data values must be handled with in
accordance with the relevant rules. It is a continuous change, so through some
neural network training method, the system can predict the next value. This
analyses technology usually builds the model based on the ANN (Artificial Neural
Network) or DNN (Deep Neural Network). Kang et al. used the DNN to detect the
malicious data. It can detect the bogus CAN control data from the TPMS precisely
[27]. The advantage of this technique is that detection at the application level can
reduce the attack which has a very strong intent to execute the threat instructions.
But its disadvantages are also obvious, as the decision process is offline and needs
high-performance computing resources.

4.2 Countermeasures at Middle Layer

As shown in the topology of Fig. 1, the vehicular gateway is very important in a hybrid
network. The gateway connects different types of buses in the network so that it can
monitor most data package according to certain specifications. There are several ways
to protect the network.

(1) Firewall. Setting network firewall to restrict the external interface access of
internal data and the control permission. For some controllers that implement
MAC authentication, it needs to authorize operations based on the certificate
inside the controller. Only authorized controllers can send control commands to
the control layer. Moreover, the gateway should prevent MOST, Ethernet bus
from sending direct control operation instructions.

(2) Whitelist. Setting whitelist routing table mechanism, so that a node can only
communicate with another appointed node.

(3) Separate operating system. Using an isolation operating system, such as PikeOS
with separation micro-kernel. This system can be divided into different business
services and different interface and data only exchange using their services.
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(4) IDS system. Using an IDS system which is mounted on the gateway, it can detect
abnormal network behaviours. Compared with the intrusion detection scheme in
the CAN(FD) network of control layer, this detection mechanism is more precise
with the existing hybrid network traffic scheme. Based on the description of the
network communication rules inside the CANdb database file, it can be converted
into XML files and configurated as restrictions in the gateway. When the gateway
forwards the data, it can rapidly detect the message which has an abnormal circle
or exclusive ID in the network according to the preset conditions [18].

These methods could be integrated into a cental gateway as an intrusion prevention
system (IPS). Firewall takes responsibility for the primary protection. IDS system could
give a reactive protection when a malicious message bypasses the firewall and enters
the network.

4.3 Countermeasures at External Interface Layer

An important protection for remote communication is to reduce the opening ports or the
debug ports to the outside world. For the physical interface OBD, it should connect to
the gateway through a single CAN bus and enhance the authentication property. For
Bluetooth communication, manufacturers should strengthen the authentication and
encrypt the data when transmitting the key control data, as some tools can sniff the
wireless package of Bluetooth device. For the cellular network communication, it is
necessary for the ISP (Internet Service Provider) to build a security system in the
service platform including mobile application and the background system. It must have
a strict authentication mechanism before the user sends control command. In addition,
the machine learning based detection techniques also provide some solution in
abnormal network detection. Alheeti et al. used the artificial neural network to analyze
the trace file of the wireless network to detect the anomal intention of the traffic [20].

4.4 Further Discussions

Since most of the ECUs integrated by Original Equipment Manufacturers (OEM) come
from different suppliers and have high control over production costs, it is very
important to make systematic and operational security decisions. The implementation
of the above security countermeasures has certain limitations to some extent. For
example, the hardware security encryption module needs to be deployed between the
different ECUs, which should be planned in the network design phase. Another
example is intrusion detection method based on machine learning, which requires
pretty large computational capability. In addition, if the contents need to be uploaded to
the cloud for analysis, real-time communication and secure data transmission are tough
to achieve. There is a comparison among the protection mechanisms in control layer
through multiple vectors in Table 4. Cost refers to the expenses of extra equipment and
system integration. Compatibility means the compatibility of software and hardware in
the entire network. Operability refers to the technical difficulty to implement. Low
means it`s easy to realize in practical use, while high means hard to do it.
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As can be seen from the analysis, the hardware encryption method is difficult to
realize in the whole network, but it can be used in the key parts of the system to realize
the hardware encryption of critical data. Although data authentication methods are
based on software implementation, they need to ensure that vendors develop under the
same standards. Because the intrusion detection mechanism will not affect the com-
munication among the nodes, it is very good in compatibility. However, the maneu-
verability of the more advanced IDS methods should be optimized.

To achieve a comprehensive protection in the hybrid network, the most important is
that efficient security methods of each layer are combined with their respective
advantages. It is more efficient and accurate to combine data authentication and
intrusion detection in the control layer and integrate in the central gateway.

5 Challenges and Future Work

In the near future, attackers will exploit vulnerabilities in multiple layers, to form a
more complete attack path due to the complexity of the network. Therefore, it is
necessary to combine the protection functions of multiple network layers to build a
comprehensive defense system, which is different from just protecting a single network
domain. In our analysis, the existing IDS systems are deployed separately in each layer.
It is a trend to integrate IDS into other countermeasures. How to properly design a
novel IDS to recognize the boundary of normal and malicious traffic is a challenge.

Meanwhile, with the rapid development of car networking and intelligent vehicle,
the structure of the hybrid network in the car will also change. The future trends of
communication network will be In-vehicle Ethernet based network. Thus, it will be
similar to the IoT structure and bring more threats. How to defend attacks from the
Internet, how to partition the network structure of new in-vehicle hybrid network
model, and how to implement the corresponding security strategy to solve the security
problems are still open questions.

In SAE 3061 standard [25], it advises manufacturers to define the network security
using standardized assessment rules. For hybrid networks, manufacturers should
fully evaluate and analyze all kinds of threats at the beginning of their designs.

Table 4. Comparison among different protection mechanisms a control layer.

Protection mechanisms Cost Compatibility Operability

Hardware secure module High Low Low
Authentication Low Low High
IDS based on the key monitoring
parameters

Low High Relatively
low

IDS based on the information entropy Relatively
high

High Relatively
high

IDS based on the content analysis High High High
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It recommends using attack tree model to analyze the network security vulnerabilities,
which is very important for the E/E Architecture design in the future.

In addition, under the restrictions of the vehicle system environment, the common
practice is to integrate the security solutions into the vehicle embedded system, without
affecting other functions. If it changes the message contents of transmission or requires
detecting messages in the network, it should consider the compatibility. The future
security mechanisms, such as encryption algorithms or IDS systems, need to consider
the following capabilities: accuracy, efficiency, portability, modular insertion, off-line
processing.

6 Conclusion

In this paper, we investigated the security of in-vehicle hybrid network. As such a
network in the vehicle becomes more complex and plays more critical roles, it is
important to consider the security solutions in a systematic approach. We classified the
in-vehicle hybrid network into 3 layers, discussed various vulnerabilities at each layer,
and further analyzed the state-of-the-art security solutions. Based on our investigation,
we also identified open security challenges as future work.
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Abstract. In recent years, a lot of vehicle attacks have been reported
and demonstrated by researchers and whitehat hackers indicating vehi-
cle cyber security as an important issue particularly for self-driving cars.
The reason behind this extended attack vector is the multiple external
interfaces of vehicles and minimal internal security protection. Hence, it
is totally possible for adversaries to take full control of connected cars. In
this paper, we propose an efficient Vehicular Intrusion Detection System
(IDS), named as VIDS, which consists of a lightweight domain-based
detection model for ECU devices and a comprehensive crossdomain-
based detection model for a gateway or domain controller. The former
makes use of specification periodic features of Controller Area Network
(CAN) frames, while the latter exploits stream bit value features with
deep learning techniques. With the use of real vehicular normal datasets
and synthesized abnormal datasets for experimenting, the experimental
results indicate that the proposed VIDS can achieve better detection rate
over existing IDS systems. In addition, VIDS is compatible with vehicle
internal CAN network.

Keywords: Intrusion detection system (IDS)
Automotive cyber security · Deep learning

1 Introduction

Self-driving car and the Internet of Vehicles (IoV) are emerging technologies
which are the current focus of automotive industry. Research and Markets, a
largest market research store, forecasts the global connected car market to grow
at a compound annual growth rate of 32.26% during the period of 2016 – 2017.
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 638–647, 2017.
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Vehicles with self-driving and IoV features make an open environment and con-
nect with outside world unlike traditional vehicles that constitute a closed envi-
ronment and are isolated. Vehicles in IoV are analogous to smartphones on
wheels who have connections with other vehicles, infrastructure, pedestrians,
cloud services, mobile devices etc. Meanwhile, infrastructure and mobile devices
have connections with cloud services as well.

However, in recent years, there are numerous attacks reported and demon-
strated by both industry and academia which indicate vehicle cyber security
a very important issue, particularly for self-driving cars. Similar to Internet of
Things (IoT), attackers can explore vulnerabilities in IoV system in order to
remotely monitor and control vehicles. It does not only pose safety and pri-
vacy threats to drivers but OEMs (Original Equipment Manufactures) also bear
customers loss as well as financial loss. System vulnerability may cause seri-
ous problems. For example, attacks on CAN (Controller Area Networks) bus
can make cars out of control, which may lead to safety issues. A car can be
tracked and even hacked if insecure and improperly configured telematics sys-
tem is deployed. Moreover, vulnerability in one domain can expose the whole car
system to the advanced attackers. The problems can be essentially traced back
to the fact that ECU devices have no means to verify if a received CAN mes-
sage is genuine. Internal network of vehicle consists of a large number of ECU
(Electronic Control Unit) devices, deployed over CAN bus to communicate to
each other.

In order to verify the source and the data value of received CAN mes-
sages inside internal networks, an intrusion detection system (IDS) monitor-
ing vehicle networks can automatically detect any kind of known or unknown
attacks. Generally, IDSs are divided into two main categories based on their
intrusion detection methods, i.e., signature-based IDS and anomaly-based IDS.
The former exploits known attacks behaviours to extract features from attacks
dataset and generates IDS models to match an attack to a signature. Signature-
based detection is a black listed approach since it is not capable of detection
of unknown or new attacks. The latter utilizes statistics analysis to define nor-
mal and baseline features of behaviours and events to generate IDS models.
Anomaly-based detection is a white listed approach, which focuses on measur-
ing anomalous behaviours by comparing with baseline of normal behaviour. Since
IoV is also connected with Internet, the attacks are endless and unpredictable in
nature. Hence, it is hard to define and extract features for signature-based IDS.
Anomaly-based IDS is therefore more suitable for IoV than signature-based IDS
because of its stable baseline features. Indeed, Hoppe et al. in [1] proposed that
all ECUs listen for CAN messages with their own IDs. If any ECU received a
CAN frame message with its own ID but it did not actually send the message,
the system detects it as an intrusion and sends an error CAN frame; Michael
et al. in [2] defined eight anomaly “detection sensors” and six weighted “applica-
bility criteria” with statistical modelling to detect anomalies. However, the exist-
ing IDS systems just consider partial abnormal situations only, and hence cannot
completely observe the CAN network and detect maximum possible abnormal
behaviors.
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In this paper, we propose an efficient dual layers Vehicular Intrusion Detec-
tion System, named as VIDS, belonging to our IoVShield system1. It consists
of a lightweight domain-based model and a comprehensive crossdomain-based
model. They make use of specification and value features of CAN messages,
respectively. The lightweight domain-based model is deployed at critical ECU
devices while crossdomain-based model is deployed at the Gateway device or
domain controller. In order to check CAN messages appearing at CAN bus,
domain-based model works in an easy manner to process feature (CAN proto-
col specification) so that it is suitable for resource constrained devices, such as
ECU devices having limited computation power and memory storage. On the
other hand, crossdomain-based IDS analyzes CAN message streams from dif-
ferent domains such as the chassis domain, the powertrain domain, the body
control domain and so on, in order to check that if the received CAN message
data values are legitimate. In this paper, real vehicles data are collected and
used for training and testing. Experimental results indicate that the proposed
IDS system is better in performance over existing IDS systems and is compat-
ible with vehicle internal CAN network. Our contributions of this paper are as
follows:

– Gives an attack model under an assumed vehicle architecture which has a
centre gateway or domain controller.

– Proposes the lightweight domain-based and comprehensive crossdomain-
based IDS models based on the static and dynamic features of CAN message
networks, respectively.

– Collects CAN bus data from real vehicles and generates abnormal CAN bus
data based on the attack model, then implements the proposed VIDS with
the above mixed CAN bus data.

Following is the organization of the paper: Sect. 2 introduces CAN protocol
and surveys the existing vehicle IDSs. Section 3 give our architecture and attack
model, then Sect. 4 describes proposed intrusion detection system. Section 5
explain implementation and performance comparison. Lastly, Sect. 6 draws the
conclusion of this paper.

2 Related Works

2.1 CAN

CAN protocol is a low-level protocol which does not support any security feature
in its current form. There is no encryption in standard CAN implementations,
which leaves these networks open to packet interception. The ECUs broadcast
messages to the entire network, and each ECU determines which of the broadcast
messages it handles. Every message contains the sender message ID, but there

1 IoVShield is multiple layers defense system for IoV, which consists of external net-
work security, secure gateway, and internal network security.
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is no destination message ID. Each frame is consisted of the following fields:
identifier, data, CRC, ACK and few others. The identifier field (the message ID)
is 11 or 29 bits value, and the data field is a 64-bit value, whose semantics are
for ECU and generally proprietary.

2.2 Intrusion Detection Systems for Vehicles

The existing IDS systems are categorized based on the techniques they use for
intrusion detection as the periodicity-based IDSs and deep learning-based IDSs
of vehicles.

Periodicity-based IDSs. ECUs broadcast CAN messages with their specific
frequency which are defined by manufacturers, such as 10–20 ms. Song et al. [3]
proposed a lightweight domain-based intrusion detection system for in-vehicle
network by analyzing the time intervals of CAN messages. It is a hybrid IDS
that can detect both the known attack signatures and anomalous events. When
a new CAN message appears on CAN bus, their proposed system checks the
CAN ID and checks the arrival time of the last message with same CAN ID
to see if the message came during the acceptable time interval. However, if the
threshold for calculating the anomaly is not correct, there will be high false rate.
In addition, if the attacker injects CAN messages with the original frequency by
compromising ECUs, proposed system cannot detect injected messages. Otsuka
et al. [4] designed a delayed-decision cycle detection method which does not
require any modification in ECUs. Their proposed system alerts an error only
if more than one packet with the same CAN ID are received within the max-
imum cycle time, and hence it can reduce false positive rate. Taylor et al. [7]
presented an algorithm that measures inter-packet timing over a sliding window.
The average frequency intervals are compared to historical averages to yield an
anomaly signal. A one-class support vector machine (OCSVM) uses this fre-
quency information to detect anomalies with high confidence. However, like [3],
both [4,7] also fail to detect injected messages which are sent by the attacker
with the original frequency. Cho et al. [6] proposed an anomaly-based IDS, called
clock-based IDS (CIDS). If an attack is detected, CIDS’s fingerprinting of ECUs
also facilitates a root cause analysis, identifying which ECU exactly mounted
the attack, i.e., identifying fabrication, suspension and masquerade attacks. The
experimental evaluations show that CIDS detects various types of in-vehicle net-
work intrusions with a low false-positive rate of 0.055%. However, it is based on
clock skew, a factor that might change from time to time due to external factors
like temperature.

Deep learning-based IDSs. Roland et al. [5] provided an approach together
with implementation for in-vehicle processing of event streams to identify anoma-
lous behavior with respect to sequences of events and not only a single event.
The normal behavior should be filtered out thus leaving only a small percent-
age of abnormal behavior that might be caused by malicious agents and might
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lead to safety critical actions in the actuators of the car. Only the unanticipated
behavior will be sent to the global operations center for further analysis. How-
ever, the model takes longer time in training when the number of events is high.
Moreover, the data is not taken into consideration, hence an attack with wrong
data but correct sequence is not detected. Sandeep et al. [8] used Hidden Markov
Model to detect anomalous states from real data collected from vehicles. It is not
only used for detecting attack states but also anomalous states. Furthermore,
in [9] they designed a rule based approach for context detection in vehicles.
It collects data from the CAN bus and uses it to generate SWRL rules, then
uses these rules to build vehicule context. A multi-tier mechanism to extract
context is proposed. The IoT-lite Ontology is used to model the system with
new instances added for use with vehicular system. Proposed system contains
three layers: Local context detection layer, Cross component context inferencing
engine, and Rule mining engine layer. However, similar to a specification based
approach of machine learning is not used to construct the SWRL URLs.

3 Architecture and Attack Model

3.1 Vehicle Architecture

There are more and more ECU devices in modern vehicles and these ECUs
may require different network bandwidths and transmission speeds. Meanwhile,
ECUs generally have different functions, therefore they are always organized into
specified groups based on their roles. For example, modern vehicle contains four
ECU domains, such as chassis, entertainment, body control, and power domains.
These ECU domains are connected via a central gateway or domain controller
constituting the internal vehicle network.

3.2 Attack Model

Based on the architecture mentioned in Sect. 3.1, there are several attack inter-
faces. Although previous researchers demonstrated CAN message injection from
OBD interface, it is not feasible for adversaries to directly connect an OBD
device to a targeted vehicle. Hence, we don’t consider the attacks from OBD
interface in this paper.

For self-driving vehicle, normally, there are three categories of CAN mes-
sages: Periodic, Event, and POE (Periodic and Event) at the internal network of
vehicles. Periodic messages indicate those CAN messages which are broadcasted
with a constant (periodic) as well as high frequency, such as broadcasting motor
and wheel speeds in each 10 ms period during self-driving. Events messages refer
to those CAN messages which correspond to remote control commands, such as
body control. The last POE type indicates CAN messages with low frequency,
such as broadcasting unlock/lock status to vehicle door in each 1000 ms.

Assume that ECUr, ECUs and ECUs′ are a receiver, a sender and another
ECU, respectively. Sender and receiver can be located at the same or different
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domains. In addition, sender ECUs can be normal ECU devices, TBox, Advanced
Driving Assistance System (ADAS), or Human Machine Interface (HMI), and
Immobilizer. Adversaries may launch specification (periodic and priority) and
value manipulation attacks as described below.

Fig. 1. Specification manipulation.

Specification manipulation. Specification manipulation is related to Periodic
and POE CAN messages as shown in Fig. 1. Adversary might inject false periodic
CAN messages to internal network in the following ways. Firstly, adversary com-
promises the ECUs, then ECUs sends an unspecified CAN message to ECUr.
Here, unspecified message means that attackers injects a CAN message with
original CAN ID but with different priority and periodicity. Secondly, adversary
compromises both ECUs and ECUs′ . ECUs is disabled so that it does not send
normal CAN messages, while ECUs′ generates unspecified CAN messages with
the same CAN ID but with different priority and periodicity.

Value manipulation. Value manipulation attacks can launched on any CAN
message, i.e., on Periodic, Event or POE. Similar to the above specification
manipulation, adversary can compromise ECUs and ECUs′ , and generate
spoofed and unsafe CAN messages to the target ECUr. Here, unsafe message
means that injected CAN message’s payload value is out of the range of a safety
value. For example, suddenly sending unanticipated high speed value, applying
sudden brake, or unlocking the vehicle door while driving.

4 Proposed VIDS

The proposed VIDS is consisted of two components, i.e., a lightweight domain-
based model and a comprehensive crossdomain-based model. For our proposed
VIDS, we consider both specification and data value features of CAN messages.
Before elaborating on our proposed VIDS, we first describe the IoV traffic char-
acteristics utilized by VIDS.
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IoV traffic characteristics. IDS systems are widely adopted in computer net-
works by utilizing network baseline features. However, existing IDS models for
computer networks have a high rate of false positives due to the fact that there
are various kinds of Internet protocols and network frames, and they are not
limited in strict manners. Unlike computer network traffics, characteristics of
traffic in IoV networks are much restricted. In this paper, VIDS makes use of
the following features.

– Frame periodicity of internal network frames is specified. The frequency and
relativity of messages are configured by the manufacturers in the beginning,
i.e., the time intervals of frames are fixed.

– The contents, types, and values of data of internal network are predefined,
confirmed, and stable. Every packet in a vehicle network and its possible
data contents are specified beforehand. The identifier of a CAN message,
which determines the destination(s) of a packet, also specifies which kind of
payload this message is allowed to contain in terms of signals and values. The
permitted value range, the length of every signal and the packet function are
all defined.

– Transmission mode of CAN bus protocol is broadcast. Every ECU on the bus
listens for messages with the IDs designated to it, and detects a fake message
circulating on the bus with an ID supposedly owned by the ECU itself.

4.1 Lightweight Domain-Based Model

The lightweight domain-based component of VIDS makes use of the frequency
features of periodic CAN messages. This component for critical ECU devices on
a domain in order to protect important CAN ID messages. Specifically, we utilize
Long Short-Term Memory (LSTM) model to train the system using a dataset
collected from a real car; the dataset contains the arrival time sequence of CAN
frames for one CAN ID. Steps of algorithms are as following:

– For each periodic CAN ID message, we collect CAN messages data from Tesla
Model X and obtain its arrival time.

– LSTM, a Recurrent Neural Network, takes time frequency difference between
CAN messages as input to learn the hidden logic (predicting the next time
the CAN ID going to appear in the CAN Bus message).

– The training of the neural network is done and the prediction accuracy is
calculated. The statistical measure increases the accuracy of neural network
prediction in each training iteration and a well-trained LSTM neural network
is obtained.

– The testing data is given and the prediction accuracy is calculated. The error
score is calculated for evaluation of LSTM model.

4.2 Comprehensive Crossdomain-Based Model

Comprehensive crossdomain-based model makes use of the data value features
of CAN messages, which is to be deployed on a central gateway or domain con-
troller. It detects abnormal data values utilizing Artificial Neural Network (ANN).
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Crossdomain-based model detects anomalies CAN messages based on the bit posi-
tions of the CAN data values. Steps of algorithms are as following:

– Generate value dataset for each CAN ID, including normal data and simulated
attack data.

– Artificial Neural Network consists of three hidden layers with eight neurons
and 100 iterations.

– Input 64 bits of data into ANN model and output classifier: 1-Normal; 0-
Attack.

– The testing data is given and the prediction accuracy is calculated.

5 Experimental Evaluation

In this paper, we collect CAN bus messages from Tesla Model X under normal
driving status, and implement the lightweight domain-based and comprehensive
crossdomain-based models by using Python with pandas2 and sklearn3 Python
packages.

5.1 Datasets

For each CAN ID, we create arrival time dataset for lightweight domain-based
model. Assume ti is the time at which one CAN ID is received, ti+1 is the time
when the same CAN ID is received next time on the CAN Bus network. The
dataset contains 32498 data, 60% of which is used for training while 40% is used
for testing.

For each CAN ID, we create value dataset for crossdomain-based model. In
this paper, the data used to train this model is the data pertaining to the Speed of
vehicle data belonging to one CAN ID. Every bit in the 64 bits of a CAN ID gives
some information, such as motor speed, estimation of motor torque, motor
speed active, estimated the motor torque valid bit, active discharge
state active bit, active short circuit state active bit, and so on. The total
number of dataset is 15000, normal data is 10000 and attack data is 5000. The
attack data is simulated using the following three methods [7]: (1) reversing the
entire 64 bits; (2) changing an unused bit in the CAN frame, e.g., the 49th bit
is unused in our experiments; (3) changing a correct bit to reverse its bit value,
e.g., the 33rd bit is changed in our experiments.

5.2 Experimental Results of Lightweight Domain-Based Model

We implemented lightweight domain-based model in Python. Firstly, it should
reshape the training and testing data into Numpy4 array. Secondly, it designs
2 pandas is a software library written for Python programming language for data

manipulation and analysis.
3 sklearn is a free software library for machine learning implementations for Python

programming language.
4 Numpy is a library for the Python programming language, adding support for large,

multi-dimensional arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays.
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lightweight domain-based model with four input nodes and one dense layer, and
configures the parameters loss error calculation as “Mean Squared Error”
and the optimizer as “adam” from the sklearn libraries. Lastly, the model is
fit to the training and testing data with 25 training iterations.

The training score of 0.49 indicates that only round 0.5% error while train-
ing the Neural Network with 19496 data. The Test score of 6.73 means that
only round 7% is error in prediction of next sequence value while testing with
the Neural Network with 13002 data. Hence, the model is efficient and can be
accepted to achieve a better prediction model for predicting the periodic data
when next time the CAN ID is going to appear on the CAN Bus in vehicular
network. We used a new value to verify lightweight domain-based model. The
experimental results indicate that the proposed model predicted approximately
a good value 27.384 as the expected value of the next CAN message from our
training datset is 27.388 to 27.391.

5.3 Experimental Results of Crossdomain-Based Model

Once we setup Python environment and install required Python packages, we
execute the program file (“.py”). The program firstly reads the input data set
(“.csv”) and separates them into training and testing subsets in the ratio of 70%
and 30%. Then the system prompts for the training of the model to start. With
the training model, 30% of the test data is verified and the system outputs the
accuracy scores and the accuracy rate is about 95%. At last, we furthermore
use the new test data (“new data.csv”) to test the training model. Experimental
results indicated that proposed crossdomain-based model provided very efficient
results of low false positive rate, its accuracy is about 95.207%.

5.4 Evaluation

Compared with existing IDSs, proposed VIDS considers both periodic and
value features of CAN messages. Hence, it can efficiently detect CAN messages
injection attacks described in Sect. 3.2. In addition, lightweight domain-based
and crossdomain-based models are compatibly with current vehicle architec-
ture, VIDS does not require extra hardware. Furthermore, proposed lightweight
domain-based model exploits deep learning scheme to predict next arrival time,
while most of periodic-based IDSs make use of statistic algorithms to obtain
a fixed threshold. However, since predefined threshold is fixed value, it may
be error. Hence, lightweight domain-based model is flexible and robust. Lastly,
compared with existing deep learning IDSs which had to parse data value of
each CAN message, proposed crossdomain-based model which is deployed at a
central gateway or domain controller only analyze the bits distributions. Hence
crossdomain-based model is efficient and real time.

6 Conclusion and Future Works

In this paper, we proposed an efficient Vehicular Intrusion Detection System
(IDS), named VIDS, which consists of the lightweight domain-based model over
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ECU devices and the comprehensive crossdomain-based model over a gateway
or domain controller. In order to check CAN messages appearing at CAN bus,
lightweight domain-based model makes use of simple and easy-to-process fea-
tures (CAN protocol specification) such that it is suitable for source constrained
devices, such as ECU devices having limited computation power and memory
storage. On the other hand, the comprehensive crossdomain-based model detects
abnormal CAN messages based on the bit positions of the CAN values in order
to detect that if received CAN message data value is reasonable. For experi-
ments, real vehicles data are collected and used for training and testing. The
experimental results indicate that the proposed VIDS has better performance
over existing IDS systems and is compatible with vehicle internal CAN network.

As a future work, since the comprehensive crossdomain-based model’s results
are only for a specific CAN ID, we need to test the model for other CAN IDs as
well. In addition, VIDS should consider the logical relationship among data values.
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Abstract. Domestic robots are vulnerable to hi-jacking and industrial
robots are vulnerable to cyber-attacks. This paper proposes the integra-
tion of a security component into a robots’ system to minimise security
risks. This objective is achieved through the inclusion of several moni-
tors such as functional monitor, communication monitor and behavioural
monitor, which assess the internal operations of the system at low levels
of operation. Through this approach, the paper proposes a novel frame-
work which will make it hard for robots to be hi-jacked or, at the very
least, make it more difficult for attacks on their behaviour.

Keywords: Security architecture
Secure artificially intelligent systems · Secure robots

1 Introduction

Robotics and artificial intelligence have been a dominant force for many years
within computer science. Today, robots can be any computational devices which
can assimilate information, process it, and make decisions to affect the final
outcome.

The biggest fear in mainstream adoption of robotics technology is that of
unprecedented cataclysmic failure. Due to this reason, most computer controlled
systems still mandate human input. Let us consider the example of the self-
driving car. The technology is fascinating and offers the potential to maximize
our utility of time. However, the real question, how many of us would actually
consider letting a computer drive us at over 100 kms/h without having any fail-
safe control over the vehicle? Yet we are comfortable using parking assist and
self-parking automation in newer vehicles. Do we trust and use these features
just because the risk of cataclysmic failure is small?

Modern day robots need an assurance guarantee of safe operations so as to
ensure the end user that they aren’t susceptible to false commands from external
sources which can lead to a security compromise. Complex robotic systems can
be broken down in terms of function, behavior, and communication. Many mov-
ing parts need to communicate effectively and securely. Only through effective
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 648–659, 2017.
https://doi.org/10.1007/978-3-319-72359-4_40
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communication can the overall behavior be classified as deterministic or non-
deterministic. But do most modern-day robots offer this level of confidence in
their operations? The quest for performance oriented computing has come at
a cost of security. Visiting our previous example, would you prefer a car which
emphasizes performance over security or one which can offer a higher probability
of secure operations at a reduced level of performance?

The rest of this paper is organized as follows. Section 2 outlines relevant lit-
erature and the motivation behind this research undertaking. Section 3 outlines
a high level conceptual definition of the proposed framework. Section 4 proposes
a concise theoretical evaluation with a brief discussion. Section 5 provides a con-
clusion and directions for future research.

2 Background

2.1 Reviewing Robotics and Artificially Intelligent Systems

Not much available literature actually addresses the secure operations of a
robotic system. Most existing approaches can be categorized as follows:

– Application Based: Highly specific in niche areas. Some examples include
Alemzadeh et al. [1], who applied fault tolerance to ensure that highly complex
surgical robots do not cause accidental safety violations. Laughton [2], who
applied genetic and fuzzy algorithms to secure power systems. Frank [3], who
applied algorithms for intrusion detection and prevention

– Analytic Based: Quantitative or qualitative studies within specific domains.
Some examples include Guiochet et al. [4] in the analysis of safety aspects
within advanced robots. Guiochet [5] in the impact of human interactions
with robotic operations. Lamddi [6], in decision making for complex systems
via a safety and security based domain model.

2.2 Monitors to Enhance Security

The use of monitors to ensure computer system security was first proposed by
Hansen [7]. Initially designed as mechanisms to structure the operating system
[8], defined with administrative data and hierarchically nested to allow for inter-
monitor calls. A key challenge was the result of a deadlock scenario due to
monitors at the same level within the hierarchy [9], but realizable security was
practically achievable through structured implementations [10,11].

Modern implementations include the reference monitor concept to enforce
access control lists and capability based systems [12,13], trusted computing
through the Trusted Platform Module [14–16], microkernels [17–19], a Virtual
Machine Microkernel [20], a TPM based implementation of the Bell-LaPadula
model [21], a TPM Microkernel model [22], a TPM model to enforce hard-
ware security [23], and capability based systems with multiple independent
kernels [24–26].
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2.3 Motivation

The main motivation stems from the lack of a security architecture for evaluat-
ing the operations of programmed devices which are geared towards automated
transactions. Our research takes into account that AIS need security enforced
from an architectural perspective. With automation and decision support sys-
tems, for highly complex operations, now becoming more and more mainstream,
there is a rising need to address security at a fundamental level of operation
rather than as an add-on at the application level.

With information being transacted on a global scale by automated machines,
security and privacy will soon become requirements which cannot be compro-
mised within any automated system. As such, the proposed work aims to define
security as a fundamental inclusion within the architecture of a more complex
system which is made up of several components that work together to fulfil a
higher objective. The main contributions our paper aims to make are as follows:

– A novel approach towards including security as part of the core operating pro-
cedures within modern day robots and AIS via means of structured monitors
to ensure safe and secure operations.

– A robust and scalable security architecture which can be adapted to all mod-
ern day programmed robots at the right operating level without restricting
the existing operating conditions.

– A new direction for future research to enhance security within the domain of
robotics and AIS.

3 Proposed Theory

Over the years, while robotics has made many great advancements, the underly-
ing core which defines many modern day robots still remains the same. Most, if
not all, can be broken down from a large complex system into their underlying
components as shown in Fig. 1.

Fig. 1. Components within AI robots and their interdependence
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The five main components which comprise any functional AIS include the
Hardware, Operating System, Services, Applications, and Users. In this con-
text, the users refer to any remotely operated controller which can operate or
pass operation commands to the AIS. Logically, each of these five components
can be evaluated individually as high-level components which can then be fur-
ther broken down into the same five components. This facilitates for a recursive
breakdown of any complex system into a subset of these five key elements.

With this proposed view, we can stipulate that the defined components are
essential for macro level functionality, and due to their direct or indirect interde-
pendence, vulnerabilities which affect any single subcomponent can propagate
and affect the entire operation of the AIS as a whole. The next subsection
addresses the strong need to compartmentalize all subcomponents.

3.1 Compartmentalizing Smaller Independent Systems

Component operations can only be compartmentalized and isolated, if and
only if:

– Operations can be unambiguously identified.
– Operations conform to specific rules which govern their execution within the

system.

This logic allows the disintegration of independent components based on their
underlying mode of operation. The commonality between the various functional
components within an AIS, is that all components must execute digitally com-
piled code in order to provide functionality and to fulfil their operational objec-
tives. As such, we define the following:

Definition 1. Block(s) of Code (BoC) - Is a self-contained set of low level
instructions which can be interpreted and executed, one at a time, at the proces-
sor level within a computing system. Within the proposed work, each instruction
contained within a BoC is defined as per an instruction set architecture. Collec-
tively as a unit, a BoC can accept inputs, produce outputs, and has an associated
manifest which stores an integrity signature, indication of ownership, a set of
trust levels, a set of resources which need to be accessed along with associated
permissions in order for it to complete its execution, and a set of states which
define the valid range of possible states for each instruction executed.

The requirement and importance of this definition is paramount as no pre-
vious or current literature has proposed a segmentation of executed instructions
in this manner. Some previous approaches towards partially addressing executed
instructions includes the use of ordinary procedures, functions or methods which
can form self-contained set of instructions provided all embedded function calls
have their code unrolled. Some examples include programming languages such
as Eiffel, which allows logical annotations of inputs and outputs past on pre and
post conditions; and Rust, which attaches ownership labels to data belonging
to procedures. While many of these aspects allow for signed operations at the
application level, these requirements for enforcing security are not applied to the
BoC assigned to a component within the system.
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3.2 Structuring Monitors to Compartmentalize Components

Defining Monitors.

Definition 2. Monitor: Is a self-contained, independently operating, programmed
unit with a strictly defined operation boundary specified by a set of attributes which
govern its underlying behavior.

Each monitor can be represented as a set of the following attributes.

Operational Attributes: Define operations to enforce a specific security charac-
teristic, defined as:

MOperational = {C,O,A, T, S}

– Class (C): Defines the level of operation and the degree of information sharing
allowed. Includes:
• System-Only Class (CO) - Allows operation over the entire system, but

only monitors system level code and restricts information sharing to other
CO monitors only.

• System-Wide Class (CW ) - Allows operation over the entire system and
sharing of information with other secure monitors.

• Local Class (CL) - Allows local operations only with restricted access to
system user space.

– Mode (O): Defines the operational mode to procure and store information to
facilitate decision making. Includes:
• Analysis Mode (OA) - An active observe-react-respond mode allowing for

the use of historical data to perform run time statistical analysis and make
decisions accordingly.

• Tracking Mode (OT ) - A passive observe-track-record mode only allowing
the acquisition and storing of information to facilitate statistical analysis
for later executions.

• Hybrid Mode (OH) - Defined for high level system BoC only. Facilitates
run time switching between OA and OT modes.

• User Mode (OU ) - Defined for use only in user space under any of the above
modes, but only allows sharing of information to a system level monitor
but not vice versa.

– Access Level (A): Defines the level of resource access permitted. Includes:
• System Access (AS) - Highest level, specifically for trusted system-only

operations.
• Normal Access (AN ) - Default level, for non-critical system or user oper-

ations.
• Restricted Access (AR) - Restricted level for BoC without integrity signa-

tures, or an untrustable trust level.
– Trust Level (T ): Associates the BoC ′s functional trust level to the monitor.

Includes:
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• Critical Trust (TC)
• Verifiable Trust (TV )
• Denied Trust (TD)

– Scope (S): Defines the operational visibility to other monitors or components.
Includes:
• Global Scope (SG) - Allows visibility across the entire system and facilitates

information sharing with all other monitors in appropriate classes.
• Local Scope (SL) - Allows visibility only within that component’s opera-

tions. Information sharing is allowed with other monitors defined at the
same level or via an SG monitor.

Functional Attributes: Define monitor functions and behaviors during BoC exe-
cution, defined as:

MFunctional = {H, {S∗, A∗, F, E, R}}

– Hierarchy (H): Defines the priority in the decision making process. Includes:
• System-Only Global (HOG) - Allows analysis and decision making across

the entire system, and is reserved for system monitors.
• System-Wide Global (HWG) - Allows analysis and decision making across

the entire system, but does not allow intervening in any system level
process.

• System-Wide Local (HWL) - Allows analysis and decision making locally
only. Other HWL monitor operations can only be affected through the
intervention of an HWG monitor.

• Local Local (HLL) - Allows analysis and decision making locally only, and
cannot influence the operations of any other monitor.

– Functional Metrics: Define the monitor’s behavioral functions during BoC
execution. Includes:
• Trust Level (S∗): Associates the BoC ′s transactional trust level to the

monitor to facilitate the evaluation of future executions. Includes:
∗ Transitional Trust (TT )
∗ Untrustable Trust (TU )

• Access Level (A∗): Defines the access rights to assigned resources.
• Functions (F ): Outlines the set of instructions to be performed in order to

enforce the underlying security characteristic.
• Permissions (E): Defines the rights to perform a specific action(s) within

its set of functions.
• Rules (R): Defines the specific set of conditions to be met in order to

enforce the underlying security characteristic.

Monitor Operations. Each monitor is defined to operate independently in
order to determine the degree of satisfaction of its assigned security charac-
teristic. However, each monitor is capable of accepting as input the output of
another monitor so as to facilitate part of that process. The AIS′s monitors are
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responsible for instantiating all other monitors, and for ascertaining the security
level of the BoC as a combined result of all monitors. The following lists the
basic operational characteristics for each defined monitor.

Functional Monitor (FM): Is responsible for ensuring that no errors are encoun-
tered during execution, specifically for handling all inputs and outputs. As a
given BoC is a complete set of instructions, an error state can be identified
when the execution of the BoC does not execute the identified next instruction
but defaults to another instruction within the same BoC, thereby indicating a
handled error during execution.

Behavioral Monitor (BM): Is responsible for ensuring that no unauthorized
changes in the state of operation are encountered. However, unlike the FM ,
the BM only triggers when the next instruction being executed resulting from
an error is outside of the set of instructions included within the BoC being
executed, indicating that the error state resulted from an unhandled exception.

Communication Monitor (CM): Is responsible for facilitating inter-monitor com-
munication between monitors assigned to various component BoC within the
AIS, and has three independent phases of operation, which involve:

1. Instance creation for each monitor and associating them with the underlying
BoC prior to execution along with security characteristic and enforcement
attributes.

2. Monitors the enforcement of each security characteristic during execution.
Requests inputs from the other monitors in order to ascertain the overall
level of security within the AIS.

3. Updating errors and other metrics post execution to facilitate secure future
operations.

Monitor Component Integration. To facilitate for complex system designs,
the framework proposes a specific set of system only monitors which facilitate
the creation and assignment of monitors to every other component, allowing for
distributed control and process execution, reinforcing compartmentalized isola-
tion, ensuring that any compromise within a component are not propagated to
another. Figure 2a illustrates a high-level representation of the monitor compo-
nent integration within the AIS.

Structuring Using Monitors. The proposed architecture addresses the nested
hierarchical monitor communication and the deadlock scenario in past imple-
mentations via the defined attributes assigned to each monitor. This allows for
the enforcement of each security characteristic to be independent of hierarchy
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Fig. 2. Security as a probabilistic metric

to ensure compliance and satisfaction. The scalable hierarchy based on opera-
tional attributes also allows for deadlocks to be avoided. Figure 2b illustrates
this proposed hierarchy.

Achieving Overall System Security

Definition 3. Security: Is the amalgamation of a set of independent character-
istics - Function, Communication, and Behavior, associated with the BoC ′s of
each component within the AIS.

The overall security for an AIS Ψ , for m BoC can be defined as follows:

Sec (Ψ) = {Sec (BoC1) , Sec (BoC2) , ... , Sec (BoCm)} (1)

Applying the proposed framework, the security for any specific BoCx can be
defined as follows:

Sec (BoCx) = {FM (BoCx) ∪ CM (BoCx) ∪ BM (BoCx)} (2)

Applying the premise, the overall level of security can be defined as the sum-
mation of the degree of satisfaction for each of the defined security characteristics
by each BoC being executed within the system, as follows:

Sec (Ψ) =
m⋃

i=0

{Sec (BoCi)} (3)

Sec (Ψ) =
m⋃

i=0

{FM (BoCi) ∪ CM (BoCi) ∪ BM (BoCi)} (4)
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4 Evaluation

This section presents a theoretical evaluation to analyze the architecture in terms
of the probability associated with securing the system.

4.1 Defining a Probability Space

As system security is always a direct result of the presence and exploitation of a
vulnerability, let us assume a probability space Ω → {0, 1} for all f ∈ F where
f is an event with a probability outcome of some a|0 ≤ a ≤ 1.

Fig. 3. Security as a probabilistic metric

For the sake of discussion, our evaluation model assumes three hypothetical
systems, on the defined premise of a BoC as the smallest foundational unit, as
follows:

– Minimal System - Comprises BoC containing n instructions to provide func-
tionality, but not including any additional security enforcing code as shown
in Fig. 3a.

– Commodity AIS - Comprises BoC containing n + X instructions, where
X represents the total number of possible additional instructions to enforce
some security aspects which are directly dependent on the number of actual
security characteristics accounted for, as shown in Fig. 3b

– Proposed AIS - Comprises BoC containing n + Y instructions, where Y
represents the total number of mandated additional instructions to enforce
each of the security characteristics within a BoC, as shown in Fig. 3c.

4.2 Security Evaluation

Applying a probabilistic model, we summarize our analysis of the assumed sys-
tems in Table 1.
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Table 1. Security evaluation

p (f) Commodity AI System Proposed Framework

For any AIS executing m BoC, applying the security characteristics in conjunction with
the defined probability space and the rules for probability distribution for each BoC we
can establish the overall p (systemsecurity) as the culmination of the enforcement of each
of the defined security characteristics as follows:

p (Sec (Ψ)) =
m∑

i=0

{
FM (BoCi) ∩ CM (BoCi)∩

BM (BoCi)

}
|i ∈ N

m∑

i=0

{
FM (BoCi) ∪ CM (BoCi)∪

BM (BoCi)

}
|i ∈ N

p (Sec (Ψ)) =
m∑

i=0

{
p (FM (BoCi)) ∩ p (CM (BoCi))∩

p (BM (BoCi))

}
|i ∈

N

m∑

i=0

{
p (FM (BoCi)) ∪ p (CM (BoCi))∪

p (BM (BoCi))

}
|i ∈

N

p (Sec (Ψ)) =
m∑

i=0

{αi ∗ βi ∗ γi} |i ∈ N

m∑

i=0

{(αi + βi + γi) /3} |i ∈ N

Fig. 4. Comparative analysis of p(security)

Figure 4 defines the most ideal representation of the aforementioned proba-
bilities for the two main AIS considered. We note a strong indicative difference
between the p(systemsecurity) for the considered systems, with the exception
of all criteria being equal to zero implying no security or all criteria being equal
to one implying perfect security, neither of which are practically realizable. Fur-
thermore, the indicative results obtained have considered the commodity AIS
to equally enforce each of the defined security characteristics which isn’t always
the case thereby resulting with the associated probability being far lower than
the ideal in most cases of commodity system operations.

4.3 Discussion

This section addresses two main arguments pertaining to the presented work -
Applicability and Evaluation.

– Applicability: The presented work, at this stage, is conceptual in nature. Begin
logically sound, the theory is applicable to most AIS, however, a real-world
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implementation or simulation has not been the focus of this paper, and is
planned for future work.

– Evaluation: The presented work avoids the two extremes of complete security
and no security, as these are not realizable. Additionally, the definition of
the hypothetical systems is based on the most fundamental unit of opera-
tion within an AIS - a BoC, any enforcement of secure operations must be
enforced through the inclusion of operating code. This extends to the com-
modity system in consideration, as most commodity systems may define some
security characteristics although their enforcement might be left as optional
add-ons at the user’s discretion. By contrast, the proposed theory mandates
the inclusion of code to enforce security characteristics as well as monitors to
enforce secure operations. This allows for the defined characteristics within a
BoC to be a partition set, thereby allowing each partition to be disjoint of
others.

5 Conclusion

This paper has proposed a novel conceptual framework which can be applied to
modern day robots and other AIS. Currently, these systems are becoming more
predominant, but their underlying security measures are still based on dated
mechanisms. And while these may seem secure for now, it is only a matter of
time when vulnerabilities and cyber-attacks on these systems become more and
more common. With the push towards more smart devices and more automated
transactions being made through system aided decision making, there is a strong
need for a more secure underlying architecture which can protect these systems
while taking into account their current operating environments.

Future directions and goals of our research aim to simulate our work in order
to provide some demonstrable evidence of real world applicability within modern
day robots so as to justify the validity of the underlying theory and its usefulness
when applied to secure AIS.
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Abstract. We introduce a new privacy issue on Facebook. We were
motivated by the Facebook’s search option, which exposes a user profile
with his or her phone number. Based on this search option, we devel-
oped a method to automatically collect Facebook users’ personal data
(e.g., phone number, location and birthday) by enumerating the possibly
almost entire phone number range for the target area. To show the feasi-
bility, we launched attacks for targeting the users who live in two specific
regions (United States and South Korea) by mimicking real users’ search
activities with three sybil accounts. Despite Facebook’s best efforts to
stop such attempts from crawling users’ data with several security prac-
tices, 214,705 phone numbers were successfully tested and 25,518 actual
users’ personal data were obtained within 15 days in California, United
States; 215,679 phone numbers were also tested and 56,564 actual users’
personal data were obtained in South Korea. To prevent such attacks,
we recommend several practical defense mechanisms.

Keywords: Enumeration attack · Information leakage
User profile · Privacy · Facebook

1 Introduction

Facebook (https://www.facebook.com/) is one of the most popular online social
networking service and reported more than 1.94 billion monthly active users
for March 2017 [1]. Due to its popularity, Facebook has also become an attrac-
tive target of cyber criminals (spam, phishing, and misuse of personal data).
For example, spammers have often used tools and bots for harvesting people’s
contact information (e.g., phone numbers and email addresses) in the past [8].

In this paper, we particularly focus on security concerns raised by the friend
search option with phone numbers in Facebook. Facebook offers various options
for searching registered users. An option is to use a user’s phone number. At first
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 663–677, 2017.
https://doi.org/10.1007/978-3-319-72359-4_41
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glance, this search option seems to be a proper compromise between privacy and
utility, revealing a user’s profile for his or her friends or acquaintances who only
know the user’s phone number. In this paper, however, we will show that this
feature could potentially be misused by attackers who want to harvest Facebook
users’ data such as their names, phone numbers, locations, education and even
photos at large scale; those stolen data can be exploited for conducting additional
cyber criminal activities such as sending spam/phishing messages or creating
sybil accounts. To show the security risk of the search option, we developed a
method to automatically collect Facebook users’ personal data (phone number,
friends, current city, home town, education, family, work and relationship) by
enumerating the (possibly) entire phone number range of a target area. Our
main contributions are summarized as follows:

– We present a novel enumeration attack using the search option to enumerate
entire phone number ranges to harvest Facebook users’ profile information in
an automatic manner at large scale (see Sect. 3).

– We describe how to bypass the defense mechanisms such as anomaly detec-
tion and CAPTCHAs provided by Facebook. We implemented an automated
crawling process with a few sybil accounts to mimic normal users’ activities
(see Sect. 4).

– We provide a thorough evaluation of the practicality of the enumeration
attack. Our evaluation is based on experiments on the actual Facebook ser-
vice. In our experiments, we collected 25,518 Facebook user profiles from
214,705 phone numbers within 15 days in California, United States. Also, we
collected 56,564 Facebook user profiles from 215,679 phone numbers in South
Korea (see Sect. 5).

– We suggest possible defense mechanisms to mitigate such enumeration attacks
and discuss their advantages and disadvantages (see Sect. 6).

While our evaluation is Facebook-specific, it could also offer important lessons
for other websites which use the people search feature by phone number or email
address.

2 Facebook’s Profile Search

To encourage users to find their friends and acquaintances (i.e., promotional pur-
poses), Facebook provides several options to search for people on Facebook (e.g.,
by name, email address, or phone number). For example, when a phone number
is typed into the Facebook search bar, the results from people who registered
that phone number will be displayed if the default privacy setting for the search
option was not changed. We found that for a Facebook profile the default set-
ting for the option to search for users their phone numbers is “Everyone”, which
means that anyone could use this feature to find that specific profile (see Fig. 1).
Interestingly, even if users hide their phone numbers in profile page, they can still
be searched with their phone numbers if this option is not disabled manually.
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Fig. 1. Privacy setting options in Facebook.

(a) Logged in (b) Not logged in

Fig. 2. People search results (“Logged in” vs. “Not logged in”).

We will exploit this feature to develop a method for performing enumeration
attacks on Facebook.

We also found that the user profile information (e.g., work, education, and
location) significantly changes depending on whether we are logged in or not.
Figure 2 shows the differences between logged in and not logged in. When we are
logged in and then try to search for a user, the search results for the user include
the section called About which displays the detailed information about the user
(e.g., the link to other services such as Instagram, birthday, gender, relationship
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Fig. 3. Privacy settings for relationship, current city and home town in Facebook.

with the user’s partner, family members, life events, etc.) (see Fig. 2(a)). To make
matters worse, such personal information can be exposed to the public eye by
default (see Fig. 3). In this figure, the globe icon denotes public. However, this
section is disappeared when we are not logged in (see Fig. 2(b)). Therefore, we
would perform enumeration attacks under logged in Facebook user. Each step is
described in detail in the following sections.

3 Overview of Enumeration Attack Using the People
Search with Phone Numbers

In this section, we present the overview of an enumeration attack to automat-
ically harvest user profile data using the search feature provided by Facebook.
The proposed enumeration attack involves the following three steps: (i) enu-
merating target phone numbers in a random or sequential order; (ii) checking
whether the search results (including the user profile) are successfully returned;
(iii) extracting the interesting user data from the crawled user profile web page
if valid search results were returned.

To conduct the enumeration attack using the people search with phone num-
bers, an attacker first generates a range of phone numbers in a valid format
and tries to search for people with that number. The phone numbers used for
the enumeration attack can be generated for a specific target area. For exam-
ple, the country code is 1 for United States; and the area codes are {209, 213,
279, 310, 323 · · · } for California. If the attacker wants to collect the information
about Californian users, the generated phone number format would look like
+1209XXXXXXX.
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Fig. 4. Overview of the enumeration attack using the people search with phone
numbers.

As described in Sect. 2, Facebook allows users to search for people with his
or her phone number. Our method performs the following procedure repeatedly
(see Fig. 4):

1. An attacker signs into Facebook using a sybil account. We note that a sybil
account for Facebook can simply be created by a temporary email service in
an automatic manner.

2. The attacker generates a phone number from a range of phone numbers in
a valid format (e.g., 010XXXXXXXX, +1209XXXXXXX) and tries to search for
people with that phone number on Facebook.

3. If the search results are successfully returned, the web page for user profile is
crawled; otherwise, this step is skipped.

4. After the crawled web page is parsed appropriately, the user data extracted
from that web page and the phone number used are stored as the output of
the attack.

As a result of this attack, an attacker can harvest victims’ personal data
(such as phone number, name, education level, the place user are living, etc.).

Facebook is already using several defense mechanisms to protect user data
from web crawling attempts. As an example, if an unusual or suspicious activity
is detected, Facebook displays the “Security Check” error message, and asks the
user to solve a CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart) [3] problem as shown in Fig. 5.

This policy seems effective against such enumeration attacks or web crawling.
However, we found that this anomaly detection can be bypassed by using a few
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Fig. 5. Example of CAPTCHA used in Facebook.

sybil accounts and performing attack attempts with an intentional delay. In the
next section, we will explain how defense mechanisms can effectively be bypassed.

4 Evading Anomaly Detection by Mimicking Normal
User Activities

In practice, a naive approach for the enumeration attack is not working. Our
simple attempt failed to continuously operate the attack procedure described
in Sect. 3 even when we signed in to our normal Facebook account. When the
attack procedure was repeated around 300 times, a CAPTCHA challenge was
displayed.

Unsurprisingly, the best strategy is to mimic normal user behavior by sending
only a small number of search requests to evade the anomaly detection solution
used by Facebook. In this case, however, the attack efficiency can be degraded
significantly. To overcome this drawback, our key idea is to use multiple inde-
pendent sessions to mimic multiple users’ search activities rather than a single
user alone.

To do this, we need to generate k temporary accounts before performing the
attack procedure. We launch the attack with the first account. After repeating
the user search procedure t times with the first account for as long as possible,
we switch to the second account and continue this process. We note that the first
account is used again after the kth account was used. Figure 6 illustrates this
process visually. As shown in this figure, the attacker tries to search t consecutive
phone numbers with an account (e.g., phone numbers i, i+1, · · · , i+(t−1) with
account 1) and switches to another account.

It is important to use appropriate k and t for efficiently evading the anomaly
detection used by Facebook. For example, if t is too large, the attack attempt can
still be detected; if t is too small, switching cost will be higher. Those parameter
values were determined experimentally with a small number of test samples. In
Sect. 5, we will discuss how to choose proper k and t.
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Fig. 6. Enumeration attack with k sybil accounts.

5 Experiments

We implemented a tool for performing enumeration attacks described in Sect. 3
to show the feasibility against Facebook and evaluate its attack performance in
a real-world environment.

5.1 Implementation

For the enumeration attack via phone number search in Facebook, we used a
virtual machine (VMware Workstation 12.0.0) installed on an Ubuntu 16.04 LTS
desktop computer (with two 2.7 GHz CPU and 2.4 GB RAM) and equipped with
a non-congested 100 MB WiFi connection to a LAN that was connected to the
Internet. In addition, we used the software-testing framework Selenium (http://
www.seleniumhq.org/) to automate our enumeration attack attempts.

It is important to choose optimal parameter values for k and t that maximize
the attack performance without incurring significant costs for creating k sybil
accounts and maintaining them. To practically determine the optimal thresh-
old for the enumeration attack, we used 50 Facebook accounts as the training
dataset. For each account, we counted the number of friend search requests until
a CAPTCHA challenge was displayed.

Figure 7 shows the number of requests, and the mean, median and minimum
values, which were 392.4 (with the standard deviation of 102.44), 366 and 300,
respectively. Based on this evaluation, we selected t = 300 as a more conservative
threshold value because 300 was the worst case in our test samples.

To minimize the cost of managing sybil accounts, it will be preferred to find
the smallest k that can evade the anomaly detection mechanism. To do this,
we simply tested possible k until CAPTCHA challenges were not displayed.
We found that the proposed enumeration attack can be successfully performed
without any delay when k = 3. To use fewer accounts for attack, additional
delays are required between the enumeration attacks of each account. But, this
delay can slow down the crawling speed.

http://www.seleniumhq.org/
http://www.seleniumhq.org/
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Fig. 7. Number of search requests until a CAPTCHA challenge is displayed.

We note that 300 people search operations took about 35 min on average.
Thus, each account would be reused every 70 min on average. In fact, we surmise
that Facebook might count the number of search operations within a specific time
interval (e.g., 70 min) and then try to block additional requests if the counted
number is greater than a pre-determined threshold (e.g., 300).

Fig. 8. Example of using a temporary email address for creating a sybil account on
Facebook.

In Facebook, either email verification or phone verification is required for
creating user accounts as a defense against bulk account creation. However,
we figured out that this verification process does not pose a real challenge to
attackers because account registration can be fully automated. Attackers can use
a temporary email service such as nada (https://getnada.com/). Figure 8 shows
an example of using a temporary email address for creating a sybil account on
Facebook.

Even though Facebook does not allow users to create multiple accounts by
checking their operating system and network environment and asking them to
complete a security check if the same environment is used more than twice for

https://getnada.com/
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Fig. 9. Security check alert for multiple user accounts at a single machine.

creating user accounts (see Fig. 9) this restriction can also be evaded using a
rooted Android mobile phone and a VPN connection. Whenever creating an
account on Facebook, attackers can simulate a new target device by changing
Android ID, International Mobile Equipment Identity (IMEI) and IP address in
order to disable the security Facebook’s check feature.

With this implementation, we successfully performed automated enumera-
tion attacks without any challenges from Facebook. The experiment results are
presented in the next section.

5.2 Attack Results

To show the feasibility of the enumeration attack on Facebook, we performed
enumeration attacks to collect user profile data in California, United States and
South Korea, respectively. The mean time required for extracting a user profile
was 4.78 s if the search results were successfully returned; otherwise, the mean
time to process “no search results” was 6.49 s on average. For California,
we particularly tested 214,705 phone numbers for 15 days and confirmed 25,518
(11.89%) valid user profiles from those phone numbers. For South Korea, we also
tested 215,679 phone numbers for the same time period and confirmed 56,564
(26.23%) valid user profiles from those numbers. Those results demonstrate that
the enumeration attack using phone numbers was significantly more effective
in South Korea than California, United States. We surmise that Korean users’
phone numbers were likely to be denser than California users’ phone numbers in
Facebook. Table 1 shows the statistics for the collected user profiles. We found
that several types of personal information (phone number, friends, current city,
home town, education, family, work and relationship) can be accessed easily
through user profiles collected by the enumeration attack developed here. From
the collected user profiles using phone numbers (25,518 and 56,564 user pro-
files for California and South Korea, respectively), most users did not protect
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Table 1. Summary of the collected users’ personal data.

Region Phone
number

Friends Current
city

Home
town

Education Family Work Relationship

California 25,518 18,080 12,205 11,470 9,703 7,849 7,354 7,279

South Korea 56,564 42,379 25,555 22,594 20,126 3,952 13,580 8,940

their friend list information (70.9% of the California users and 74.9% of the
Korean users, respectively). The location information (current city and home
town) was the second most publicly accessible information; 44.9%–47.8% of
the users revealed their current location and/or home town information. The
users’ education history was also frequently included in the collected user pro-
files (38.0% of the California users and 35.6% of the Korean users, respectively).
Users’ work information was often revealed via their user profiles (28.8% of
the California users and 24.0% of the Korean users, respectively). Interestingly,
California users’ profiles quite frequently include the family and relationship
information (30.8% of the California users for family and 28.5% of the Califor-
nia users for relationship, respectively) while this information was included less
frequently in the Korean user profiles (only 7.0% of the Korean users for family
and 15.8% of the Korean users for relationship, respectively). This implies that
Korean users are expected to be more concerned about their family members
and partners compared with California users. In a targeted attack scenario, such
private data might be used to design sophisticated spam, spear phishing [10], or
profile cloning attacks [5].

6 Countermeasures

In this section, we describe several defense mechanisms for preventing enumer-
ation attacks on online social networking services.

6.1 Detecting Sequential Patterns of Queried Phone Numbers

An enumeration attack tries to automatically collect user information by enu-
merating the target phone numbers. Since the proposed enumeration attacks
are performed with multiple user accounts, it might not be easy to detect suspi-
cious patterns from a user account during a session. Our strategy is to uncover
sequential patterns from enumerated phone numbers instead of focusing on user
activities because phone numbers are sequentially queried from the target phone
number range even with multiple user accounts.

However, attackers may effectively avoid this detection method without
incurring significant additional costs by using a random permutation list (with
some delay) instead of a sequential phone number order.
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6.2 Deploying Honey Phone Numbers

“Honey” is the traditional term used to indicate a “decoy” or “bait” for attackers
in the field of security. For example, a honeypot is a security resource, which is
intended to be attacked and compromised to gain more information about an
attacker [22]. Also, the technique called “honeyword” was proposed by Juels et
al. [12] to detect password theft against hashed password databases.

To mitigate enumeration attacks, we suggest a novel technique called “honey
phone numbers” to detect attacks against the people search with phone numbers.
The system generates a large set of fake users having nonexistent phone numbers
which cannot be distinguishable from real phone numbers to deceive attackers
that automatically perform enumeration attacks on those phone numbers. Prob-
ably, a normal user would not try to use such nonexistent phone numbers to
search for his or her friends while an attacker might try to enumerate phone
numbers including honey phone numbers. Therefore, if a significant number of
search requests arrive within a short period of time, this might be an unusual
event for normal users and could be an evidence of enumeration attack against
the friend search feature in Facebook.

6.3 Using Advanced Device Fingerprinting Techniques

Facebook already deployed security techniques that can make it difficult for
attackers to create sybil accounts and use them to crawl data. However, current
techniques are not sufficient to detect abusive activities used for enumeration
attacks. As discussed in Sect. 5.1, email verification can be bypassed by using
temporary email accounts; IP address can easily be changed by using VPN ser-
vices; and device identities (e.g., UUID, IMEI or MAC address) can also be
changed.

One way to overcome this limitation of existing device identification is to use
some inherent characteristics of a device or web browser, which are usually hard
to change. For example, web browsing history [20], network measurements [14],
canvas fingerprinting [2], acoustic fingerprinting [24], plugins and fonts [17]. With
some of those techniques, service providers could monitor a suspicious user (or
browser) and track his or her activities. Using such advanced device (or browser)
fingerprinting techniques would lead to significant cost increases of attackers.

However, those fingerprinting techniques may also raise privacy concerns
because all Facebook users’ activities can be tracked.

6.4 Changing the Default Privacy Settings

Even though Facebook allows users to opt-out of making their profile searchable
using phone numbers or email addresses (see Fig. 1), users rarely change their
privacy settings from the default [16]. Probably, this is an interesting feature to
increase the number of users and/or friend relationships on Facebook. However,
as we described in this paper, this feature now can be used for enumeration
attacks. Therefore, Facebook should consider making the default privacy settings
more restrictive.
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6.5 Blacklisting Service Providers for Temporary Email Services

To perform the enumeration attack described in this paper, several sybil accounts
must be created. In Sect. 5, we show that temporary email addresses are allowed
to create these sybil accounts.

To protect the service against the described attacks using sybil accounts,
Facebook needs to set more strict security policies (i.e., disallowing users to use
temporary email addresses for user account creation).

However, it is likely to degrade the usability of the user account creation
process because it allows email addresses from specific domains only. To make
matters worse, there exist professional account generators for trustworthy email
addresses (e.g., Gmail). Hence, Facebook needs to carefully blacklist email
servers to effectively block sybil accounts while minimizing negative effects on
normal users.

7 Ethical Issues

The main motivation of our experiments is not to obtain personal information
data or to use collected data for commercial or illegal purposes. Instead, we
developed a method to show the risk of enumeration attacks on Facebook and
introduced reasonable countermeasures to mitigate such attacks. Therefore, we
only checked Facebook’s responses for our enumeration attack attempts; how-
ever, actual user data were not stored.

Finally, we reported the discovered design flaws to Facebook, which acknowl-
edged them.

8 Related Work

Since a huge amount of user data is shared on social network services such as
Facebook, Twitter, Google+ and YouTube, user privacy is becoming ever more
important in using those services. Naturally, privacy concerns about user data
on social network services were often discussed. Gross et al. [9] showed that user
profiles in social network services could be misused to violate people’s privacy if
proper measures are not taken. They observed that 77.7% of users were stalked
because of the disclosure of their profiles. Zheleva and Getoor [23] showed the
risk of inferring social network users’ private information from their user profiles
in four social network services (Facebook, Flickr, Dogster and BibSonomy). Mah-
mood et al. [18] demonstrated several privacy leaks on Facebook and Twitter.
For example, they showed that users’ email addresses can be mapped to their
real names using the Facebook’s user password recovery service in Facebook.
Backstrom et al. [4] introduced deanonymization attacks against an anonymized
graph using the social graph mining where true node identities are replaced with
pseudonyms. Mislove et al. [19] also showed that certain user profile attributes
can be inferred with a high accuracy using the social network community struc-
ture. To prevent such inference attacks, Heatherly et al. [11] proposed three
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possible defense techniques and evaluated their effectiveness. Bonneau et al. [6]
demonstrated that an approximation of a social graph can be used to infer
users’ several sensitive properties on Facebook. Kim et al. [15] explored several
sampling techniques to hide the structure of original social graph against such
inference attacks.

The strategy of this attack is not new. There were several studies to design
enumeration attacks. For instant messenger applications such as WhatsApp,
Viber and Tango, Schrittwieser et al. [21] introduced an enumeration attack
to collect active phone numbers. They showed the feasibility of the attack by
collecting 21,095 valid phone numbers that are using the WhatsApp application
within less than 2.5 h. Kim et al. [13] performed an enumeration attack against
Kakaotalk by collecting 50,567 users’ personal information (e.g., users’ phone
numbers, display names and profile pictures). They also proposed three possible
defense strategies to mitigate enumeration attacks.

A similar problem related to enumeration attack was already reported in
social network services. Balduzzi et al. [5] showed the feasibility of an enumer-
ation attack that automatically queries about e-mail addresses to collect a list
of valid e-mail addresses by uploading them to the friend-finder feature of Face-
book. Based on the return value of Facebook, they were able to determine the
status of an email address. They tested about 10.4 million e-mail addresses and
identified more than 1.2 million user profiles associated with these addresses.
After they reported the discovered design flaw, Facebook fixed this problem by
limiting the number of search requests that a single user can perform. This seems
a reasonable security practice because there is no normal user who submitted a
million search queries within a short time interval. In this paper, however, we
show that enumeration attacks can still be performed on Facebook by mimicking
multiple users’ search activities with a few sybil accounts.

Bonneau et al. [7] already showed that user accounts can be created anony-
mously by using temporary email accounts and an anonymous networking tech-
nique such as Tor (https://www.torproject.org/). To prevent such user account
creation, Facebook already tried to check not only the network identity (e.g.,
IP address) but also the device identity (e.g., IMEI). In this paper, however,
we demonstrate that this procedure can be evaded easily with a rooted Android
mobile phone.

9 Conclusion

This paper analyzed a security issue in the people search functionality provided
by Facebook, which is the most popular social networking service worldwide. The
people search functionality with phone numbers could potentially be misused to
leak user’s sensitive personal data on a large scale. Based on this feature, we
developed a method to automatically collect Facebook users’ personal data by
enumerating all the valid phone numbers for a target area. To show its feasibility,
we implemented an attack for targeting users from in two specific regions (United
States and South Korea) by mimicking a real users’ search activities with three

https://www.torproject.org/
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sybil accounts. Our implementation can evade the Facebook’s defense mecha-
nisms; 215,679 South Korean phone numbers were tested and data from 56,564
user profiles was collected in within 15 days; during the same time period 214,705
US phone numbers were tested and data from 25,518 user profiles was collected.

To mitigate such automated enumeration attacks, we suggest five possible
defense mechanisms: (1) detecting sequential patterns of queried phone num-
bers; (2) identifying enumeration attacks with faked phone numbers; (3) using
advanced device fingerprinting techniques; (4) changing the default privacy set-
tings and (5) blacklisting service providers for temporary email services. As part
of future work, we plan to implement those mechanisms and evaluate their per-
formance against our attacks.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (2017R1D1A1B03030627), and the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support program
(IITP-2017-2015-0-00403) supervised by the IITP (Institute for Information & commu-
nications Technology Promotion). The financial support by the Austrian Federal Min-
istry of Science, Research and Economy and the National Foundation for Research,
Technology and Development is gratefully acknowledged. The authors would like to
thank all the anonymous reviewers for their valuable feedback.

References

1. Number of monthly active Facebook users worldwide as of 1st quarter 2017 (The
Statistics Portal, statista). https://www.statista.com/statistics/264810/number-
of-monthly-active-facebook-users-worldwide/

2. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
Web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (2014)

3. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-
9 18

4. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art Thou R3579x?: anonymized
social networks, hidden patterns, and structural steganography. In: Proceedings of
the 16th International Conference on World Wide Web (2007)

5. Balduzzi, M., Platzer, C., Holz, T., Kirda, E., Balzarotti, D., Kruegel, C.: Abusing
social networks for automated user profiling. In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 422–441. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15512-3 22

6. Bonneau, J., Anderson, J., Anderson, R., Stajano, F.: Eight friends are enough:
social graph approximation via public listings. In: Proceedings of the 2nd ACM
EuroSys Workshop on Social Network Systems (2009)

7. Bonneau, J., Anderson, J., Danezis, G.: Prying data out of a social network. In:
Proceedings of the International Conference on Advances in Social Network Anal-
ysis and Mining (2009)

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/978-3-642-15512-3_22


Hello, Facebook! Here Is the Stalkers’ Paradise! 677

8. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and char-
acterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement (2010)

9. Gross, R., Acquisti, A.: Information revelation and privacy in online social net-
works. In: Proceedings of the ACM Workshop on Privacy in the Electronic Society
(2005)

10. Halevi, T., Lewis, J., Memon, N.D.: Phishing, personality traits and Facebook.
Social Science Research Network (2015)

11. Heatherly, R., Kantarcioglu, M., Thuraisingham, B.: Preventing private informa-
tion inference attacks on social networks. IEEE Trans. Knowl. Data Eng. 25(8),
1849–1862 (2013)

12. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: Pro-
ceedings of the ACM SIGSAC Conference on Computer and Communications Secu-
rity (2013)

13. Kim, E., Park, K., Kim, H., Song, J.: Design and analysis of enumeration attacks
on finding friends with phone numbers: a case study with KakaoTalk. Comput.
Secur. 52, 267–275 (2015)

14. Kim, H., Huh, J.H.: Detecting DNS-poisoning-based phishing attacks from their
network performance characteristics. Electron. Lett. 47(11), 656–658 (2011)

15. Kim, H., Bonneau, J.: Privacy-enhanced public view for social graphs. In: Proceed-
ings of the 2nd ACM Workshop on Social Web Search and Mining (2009)

16. Krishnamurthy, B., Wills, C.E.: Characterizing privacy in online social networks.
In: Proceedings of the First Workshop on Online Social Networks (2008)

17. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: Proceedings of IEEE
Symposium on Security and Privacy (2016)

18. Mahmood, S.: New privacy threats for Facebook and Twitter users. In: Proceedings
of the 7th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (2012)

19. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proceedings of the 3rd ACM
International Conference on Web Search and Data Mining (2010)

20. Olejnik, L., Castelluccia, C., Janc, A.: Why Johnny can’t browse in peace: on the
uniqueness of web browsing history patterns. In: Proceedings of the 5th Workshop
on Hot Topics in Privacy Enhancing Technologies (2012)

21. Schrittwieser, S., Kieseberg, P., Leithner, M., Mulazzani, M., Huber, M.: Guess
who’s texting you? Evaluating the security of smartphone messaging applications.
In: Proceedings of the 19th Annual Symposium on Network and Distributed System
Security (2012)

22. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Longman Publishing
Co., Inc., Boston (2002)

23. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles. In: Proceedings of the 18th
International Conference on World Wide Web (2009)

24. Zhou, Z., Diao, W., Liu, X., Zhang, K.: Acoustic fingerprinting revisited: gener-
ate stable device ID stealthily with inaudible sound. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (2014)



Covert QR Codes: How to Hide in the Crowd

Yang-Wai Chow(B), Willy Susilo, and Joonsang Baek

Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology,
University of Wollongong, Wollongong, Australia

{caseyc,wsusilo,baek}@uow.edu.au

Abstract. This paper investigates a novel approach of distributing a
hidden message via public channels. The proposed approach employs
visual subterfuge to conceal secret information within a QR code. Using
a QR code reader, any individual can decode the public information
contained in the QR code. However, only authorized users who have the
necessary credentials will be able to obtain the secret message, which
is encoded in the form of a secret QR code. We call this a Covert QR
(CQR) code scheme. To embed the secret information, this approach
exploits the error correction mechanism inherent in the QR code struc-
ture. By using QR codes to conceal information, the proposed scheme
has the advantage of reducing the likelihood of attracting the attention
of potential adversaries. In addition, the information in QR codes can
be scanned and decoded through the visual channel. As such, the secret
information can be distributed on printed media and is not restricted to
an electronic form.

Keywords: Covert message · Data hiding · Error correction · QR code
Secret sharing

1 Introduction

Consider the scenario where the Central Intelligence Agency (CIA) needs to
communicate with their agents via public channels. The agency decides to put up
a poster in a public place, like a train station, where everybody can see the poster.
The poster has a Quick Response (QR) code, which contains innocent-looking
public information along with concealed information. To a casual observer, the
QR code will not raise any suspicion. Any individual who uses a QR code reader,
e.g., on a mobile phone, will only be able to obtain the public information.
However, CIA agents who possess the appropriate credentials will be able to
obtain the secret message by decoding the contents of a secret QR code.

This paper examines a novel approach to visual subterfuge by hiding secret
information within a QR code. This provides a means for secret communication
over public channels using QR codes. While any member of the public can use
a standard QR code reader to decode the QR code and acquire the public infor-
mation, only authorized users who have the necessary credentials will be able
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 678–693, 2017.
https://doi.org/10.1007/978-3-319-72359-4_42
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to recover the secret QR code and decode it to obtain the hidden message. In
the proposed scheme, even if an adversary realizes that the QR code contains
hidden information, the adversary will not be able to obtain the secret message
without the correct key.

The motivation behind the proposed scheme is that in cryptography, if one
were to encrypt a secret and distribute the ciphertext, the ciphertext can only
be decrypted by receivers who know the encryption key. However, if the cipher-
text itself were to be distributed using public channels, anybody who sees the
ciphertext will immediately recognize that the text has been encrypted. The
purpose of the proposed scheme is to adopt visual subterfuge to conceal this in
the form of a QR code. Furthermore, in general, ciphertext is distributed via
electronic means. The QR code approach presented in this paper allows for the
secret information to be distributed in a visual form on printed media.

Our Contribution. This paper introduces a novel method of providing a means
for secret communication via public channels, by employing visual subterfuge to
conceal secret information in a QR code. We call this a Covert QR (CQR) code
scheme. To embed secret information, the proposed scheme exploits an inherent
feature of the QR code structure, which is its error correction mechanism. This
feature allows correct decoding of a QR code even in the event that part of the
QR code is damaged. In the proposed scheme, anybody can use a standard QR
code reader to retrieve the public information contained in the QR code. Only
authorized users who possess the necessary credentials will be able to recover a
secret QR code, which is embedded within the CQR code, and decode it to obtain
the secret message. The advantage of the proposed approach is that the QR code
itself contains meaningful information, while at the same time it conceals secret
information from casual observers.

2 Related Work

2.1 Visual Secret Sharing

Secret sharing is regarded as a mechanism that can be used to transfer secret
information via public channels in cryptography [22]. A well known method of
visual secret sharing is known as visual cryptography [15]. In visual cryptogra-
phy, a secret in the form of an image is encoded into a number of shares and
distributed to a group of participants. Only when a qualified number of shares
are combined will the secret be revealed. Each share looks like a random pattern
of pixels, and as such, a visual cryptography share is obvious even to a casual
observer.

In a method known as extended visual cryptography, shares are created using
meaningful cover images [2]. Therefore, each share looks like a meaningful, albeit
noisy, image. The advantage of encoding the secret image into shares containing
‘innocent-looking’ meaningful cover images is that it reduces the likelihood of
attracting the attention of attackers [19]. A QR code visual secret sharing scheme
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was introduced by Chow et al. [7], in which each share in the scheme is a valid
cover QR code containing meaningful public information. As such, each share
can be scanned using a standard QR code reader and decoded to obtain the
meaningful information. When the secret sharing information in the cover QR
code shares are combined, a secret QR code can be recovered and decoded to
obtain the secret message. Wan et al. [18] also proposed a different visual secret
sharing scheme using QR codes.

2.2 Data Hiding Using QR Codes

The QR code is a two-dimensional code that was invented by the company
Denso Wave [9]. The use of QR codes has become ubiquitous in our everyday
life. This proliferation is in part due to the QR code’s convenience and ease of
use. Anybody with a smartphone can obtain the information contained within
a QR code. The use of QR codes has also been embraced by the information
security research community. This has resulted in a variety of practical applica-
tions ranging from authenticating visual cryptography shares [20] and e-voting
authentication [10], to digital watermarking [6,13] and secret sharing [7].

There are also a number of proposed schemes that employ QR codes for
data hiding and steganography. For example, Wu et al. [21] proposed a data
embedding approach for hiding a QR code in a digital image. Their purpose was
to camouflage the appearance of a QR code in an image so as not to degrade
the visual quality of the picture.

In a different approach, Huang et al. [11] developed a reversible data hiding
method for images using QR codes. The problem that they were examining was
that if an image contained a QR code, the QR code would obscure a portion
of the image, thus degrading its quality. The aim of their proposed scheme was
to avoid the QR code from degrading the quality of an image. Their approach
involved the use of reversible data hiding to replace a portion of the image with
a QR code and to hide the information of this portion in the rest of the image.
After the QR code has been scanned, it will be removed from the image and the
original image will be restored using the data that was previously hidden in the
rest of the image.

Chen and Wang [5] devised a nested image steganography scheme using QR
codes. In their approach, two types of secret data, in the form of text (lossless)
and image (lossy), were embedded in a cover image. The text portion of the
secret data is embedded using a QR code. A similar approach was also reported
in Chung et al. [8]. Instead of first converting a secret into a QR code before
embedding it in a cover image, Lin et al. [14] proposed a scheme for concealing
secret data in a cover QR code. To conceal secret data, their approach capitalized
on the QR code error correction redundancy property. The size of concealed
secret data depends on the QR code version and its error correction level.
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Bui et al. [4] also investigated the problem of hiding secret information in a
QR code. In their work, they state that previous approaches of embedding secret
messages in QR codes use bit embedding. They argue that this is vulnerable to
modification attacks. As such, they proposed a method of using Reed-Solomon
code and list decoding to hide a secret message in a QR code.

2.3 Others

This research is related to secret handshakes. The purpose of a secret handshake
is to allow members from a group to identify each other [3]. Non-members of
the group are not able to recognize group members and cannot perform the
secret handshake. As such, secret handshakes can be used to perform mutual
authentication between authorized parties [17]. In traditional secret handshake
schemes, even if a casual observer does not have the appropriate credentials,
the distributed ciphertext is easily recognizable. Examples of other related work
include encryption on portable devices [1,16].

3 Background

The International Organization for Standardization (ISO) has established a stan-
dard for the QR code (ISO/IEC18004) [12]. This section outlines the basic QR
code structure and error correction feature as defined by the ISO standard.1

3.1 The QR Code Structure

A QR code symbol consists of a two-dimensional array of light and dark squares,
which are referred to as modules. There are forty sizes of QR code symbol ver-
sions (i.e. version 1 to version 40). Each version comprises of a different number
of modules, and as such different QR code versions have different data capacities.
The appropriate version to use depends on the amount and the type of data (i.e.
alphanumeric, binary, Kanji or a combination of these) to be encoded as well as
the error correction level. The error correction level will be described in Sect. 3.2
to follow.

The QR code structure is made of up of encoding regions and function pat-
terns [12]. An example of this depicted in Fig. 1, which shows the encoding
regions and function patterns of a QR code version 7 symbol. The function pat-
terns do not encode data, but are mainly used for obtaining information from
the QR code. For example, there are three identical finder patterns located at
each corner of the symbol, except for the bottom right corner. These are used
by a QR code reader to recognize the QR code and to determine the rotational
orientation of the symbol.

1 For a comprehensive description of the QR code structure and error correction mech-
anism, please refer to the ISO standard (ISO/IEC18004) [12].



682 Y.-W. Chow et al.

Fig. 1. QR code version 7 structure.

3.2 Encoding and Error Correction

The encoding region contains data codewords and error correction codewords.
Message data is encoded as a bit stream that is divided into a sequence of
codewords. Codewords are 8-bits in length. The codewords are divided into a
number of error correction blocks, based on the QR code version and error
correction level, and an appropriate number of error correction codewords are
generated for each block. Error correction allows correct decoding of the message
in the event that part of the symbol is dirty or damaged. This error correction
feature has also been exploited to embed art or other information in QR code
symbols. For example, the QR code symbols in Fig. 2(a) and (b)2 can still be
decoded correctly despite the embedded text and image. It can also be seen from
Fig. 2(b) that modules do not have to be black and white squares.

(a) (b)

Fig. 2. (a) QR code where part of it is obscured. (b) Artistic QR code.

The QR code employs Reed-Solomon error control coding for error detection
and correction [12]. There are four error correction levels (i.e. L ∼ 7%, M ∼
15%, Q ∼ 25% and H ∼ 30%). Each level provides a different error correction
capacity. Higher error correction levels improve the recovery capacity, but also
increases the amount of data to be encoded. The number of data codewords,
error correction blocks and error correction codewords depend on the QR code
version and error correction level.
2 This QR code was generated from http://www.free-qr-code.net/.

http://www.free-qr-code.net/
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Table 1 shows these characteristics for QR code versions 4 and 5. In the table,
the error correction codewords for each block is given as (c, d, e), where c is the
total number of codewords, d is the number of data codewords and e is the error
correction capacity. Note that some QR code versions have blocks with different
(c, d, e) values for certain error correction levels. For example, it can be seen in
Table 1 that QR code version 5 with an error correction level of Q has a total of
4 error correction blocks. The (c, d, e) values for the first 2 blocks are (33, 15,
9) while the values for the next 2 blocks are (34, 16, 9).

The codewords from the blocks are encoded in an interleaved manner, with
the error correction codewords appended to the end of the data codeword
sequence. This is done to minimize the possibility that localized damage will
cause the QR code to become undecodable. Figure 3 shows the data codeword
and error correction codeword arrangement for QR code version 4, with an error
correction level of H.

Table 1. Error correction characteristics for QR code versions 4 and 5 [12].

Version Total
codewords

Error correction
level

Number of
blocks

Error correction codewords
per block (c, d, e)

4 100 L 1 (100, 80, 10)

M 2 (50, 32, 9)

Q 2 (50, 24, 13)

H 4 (25, 9, 8)

5 134 L 1 (134, 108, 13)

M 2 (67, 43, 12)

Q 2 (33, 15, 9)

2 (34, 16, 9)

H 2 (33, 11, 11)

2 (34, 12, 11)

4 Security Model

In this section, we define the security model of the proposed scheme. We denote
assigning the output of an algorithm A, which takes x, y, . . . as input to z by
z ← A(x, y, ...). If A is particularly randomized, we write z ←$A(x, y, ...).

∣
∣Q

∣
∣

indicates the cardinality of a set Q. For the sake of clarity, we use the following
notations to indicate possible inputs and outputs of various algorithms we will
describe shortly:

– P: Public message
– C: Original public QR code
– C∗: Covert QR code
– M: Secret message
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Fig. 3. Data and error correction codeword arrangement for QR code version 4 with
error correction level H.

– S: Original secret QR code
– S∗: Recovered secret QR code

We now formally describe a covert QR (CQR) code scheme and present its
security requirements.

Definition 1 (CQR). A covert QR scheme CQR consists of a key generation
algorithm KeyGen, a pseudorandom bit generator RandGen, a QR code encoder
QR and decoder InvQR, an embedding algorithm Emb, an extraction algorithm
Ext and a QR verification algorithm QRVrfy. The specifications of the algorithms
are given as follows:

– k ←$KeyGen(�): Taking a security parameter � as input, this algorithm gen-
erates a key k.

– k̂ ←$RandGen(k, n): This algorithm takes a key k as input, and generates an
array of pseudorandom bits k̂ ∈ {0, 1}n, where n is the length of the array.

– R ← QR(T ): Taking a message T as input, this algorithm generates a QR
code R for T . Hence, C ← QR(P) and S ← QR(M).

– T ← InvQR(R): Taking a QR code R as input, this algorithm converts R
into the message T . Hence, P ← QR(C) and M ← QR(S).

– C∗ ← Emb(k,S, C): Takes a secret key k, a secret QR code S and a public
QR code C as input, and generates a covert QR code C∗.

– S∗ ← Ext(k, C∗): This algorithm takes a secret key k and a covert QR code
C∗ as input, and outputs a recovered secret QR code S∗.

– 0/1 ← QRVrfy(R): Given any QR code R ∈ {C, C∗,S,S∗}, this algorithm
outputs 1 if R is a valid QR code, and 0 otherwise.

Definition 2 (Correctness). For a public QR code C ← QR(P) where P is a
public message and a covert QR code C∗ ← Emb(k,S, C), the following conditions
should hold:



Covert QR Codes 685

– InvQR(C) = InvQR(C∗) = P
– QRVrfy(C) = QRVrfy(C∗) = 1

Similarly, for a secret QR code S ← QR(M) where M is a private message,
and a recovered secret QR code S∗ ← Ext(k, C∗), the following conditions should
hold:

– InvQR(S) = InvQR(S∗) = M
– QRVrfy(S) = QRVrfy(S∗) = 1

Definition 3 (Security). Let A be an adversary whose running time is poly-
nomial. We say that CQR scheme is secure if there exists a negligible function ε
such that

Pr[M ← A(C∗)] ≤ ε(�),

where C∗ ← Emb(k,S, C), k ← GenKey(�), S ← QR(M), C ← QR(P) and � is
the security parameter. Note that the probability is taken over the randomness
used by A, the key generation algorithm and the pseudorandom bit generator.

5 Proposed Covert QR Code Scheme

In this section, we describe the proposed method of implementing a Covert QR
(CQR) code scheme. Figure 4 illustrates a conceptual overview of the proposed
scheme. From Fig. 4 it can be seen that first, the secret message M and the public
message P are encoded in the form of QR codes, using a QR code generator, to
produce S and C, respectively. These QR codes along with the secret key k, will
be the input of the embedding algorithm. The pseudocode for the embedding
algorithm is provided in Algorithm 1, which will be described in Sect. 5.1. The
output of the embedding algorithm will be the covert QR code C∗. This CQR
code contains both public and hidden information, and can be distributed via
public channels.

Fig. 4. Overview of the proposed CQR scheme.
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Note that both C and C∗ are valid QR codes. When scanned and decoded with
a standard QR code reader, both QR codes will produce the public message P.
The error correction mechanism in the QR code structure makes it possible to
manipulate some of the codewords in C to produce C∗, while still maintaining a
QR code symbol that can be decoded correctly.

For individuals who know the secret key k, the CQR code and the secret
key can be provided as input to the extraction algorithm, which will be able to
reconstruct a recovered secret QR code S∗. The pseudocode for the extraction
algorithm is provided in Algorithm 2, which will be discussed later. Both S
and S∗ are valid QR codes, that when scanned and decoded will result in the
secret message M. Note that even if the recovered secret QR code contains some
errors, due to scanning errors or if C∗ is slightly damage or obscured, the error
correction mechanism inherent in the QR code symbol means that S∗ can be
still be decoded correctly as long as the error correction capacity has not be
overwhelmed.

5.1 Algorithms

The embedding and extraction algorithms are described here. Pseudocode for the
embedding algorithm is provided in Algorithm 1. The purpose of the embedding
algorithm is to embed encrypted codewords from the secret QR code S into the
public QR code C, using the secret key k.

The reason why only the codewords are embedded is because the function
patterns, which are fixed patterns in QR codes, will leak information about the
pseudorandom bits k̂ and consequently the secret key k. As such, the codewords
in S must first be extracted. Then based on the number of codewords and code-
word modules (each codeword is made up of 8 modules), an array of random
bits can be generated using a pseudorandom bit generator by using k as the
seed value. Each codeword module is encrypted by performing an XOR opera-
tion with a corresponding random bit, before embedding it in C∗. The output
of the embedding algorithm is the covert QR code C∗, which contains both the
public and private information.

For the extraction algorithm, provided in Algorithm 2, the input is the secret
key k and the covert QR code C∗. To extract the embedded information, the
algorithm first decodes the CQR C∗ to obtain the public message P. With the
public message, the algorithm generates the public QR code C. The embedded
information is obtained based on the differences between C∗ and C. Once the
embedded codewords are extracted, the array of random bits can be generated
using k and the pseudorandom bit generator. Each module is the decrypted
using an XOR operation with the corresponding random bit. Thus, the secret
QR code can be reconstructed and the output of the algorithm is the recovered
secret QR code S∗.
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Algorithm 1. Pseudocode for the embedding algorithm (i.e. C∗ ← Emb(k,S, C))
function EmbedCQR(k, S, C)

/* Extract the codewords from S */
num ← numberOfCodewords(S)
codewords[num][8] ← extractCodewords(S)

/* Generate pseudorandom bits using k as the seed */
rbits[num × 8] ← randomBitGenerator(k, num × 8)

/* Encrypt each codeword module */
b = 1
C∗ = C
for i = 1 to num do

for j = 1 to 8 do
/* Each codeword consists of 8 modules, ⊕ is an XOR operation */
encyptedModules[i][j] ← codewords[i][j] ⊕ rbits[b]
b = b + 1

/* Embed each encrypted module into C to produce C∗ */
C∗ ← encryptedModules[i][j]

end for
end for

/* Output C∗ */
return C∗

end function

5.2 Practical Considerations

The proposed CQR code scheme exploits the error correction mechanism in the
QR code structure, by manipulating some of the codewords in C to produce C∗.
This will still allow the CQR code to be decoded correctly as long as the manip-
ulated codewords does not exceed the error correction capacity. Therefore, this
necessitates that the public QR code C’s size must be large enough to accom-
modate the number of codewords in the secret QR code S. In addition, based
on the security discussed in Sect. 6.2 the larger the size of S, the more difficult
for an adversary to attack the CQR code. The size of a secret message that is
governed by the data capacity of the secret QR code.

As described in Sect. 3.2, QR code symbols have different error correction
levels. Furthermore, the different QR code versions determine the size of the
QR code symbol and its data capacity. Each QR code version has different error
correction characteristics. The appropriate size of C, based on the size of S, can
be determined by referring to the QR code error correction characteristics. Refer
to Table 1 for an example of this. A suitable QR code version for C requires that
the error correction capacity per block, e, multiplied by the number of blocks
for the specific error correction level, must be greater than the total number
of codewords in S. In practice, the chosen size should have an error correction
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Algorithm 2. Pseudocode for the extraction algorithm (i.e. S∗ ← Ext(k, C∗))
function ExtractCQR(k, C∗)

/* Decode C∗ to obtain the public message P, and generate C */
C ← (P ← QR(C))

/* Get the difference between C∗ and C */
extracted[n][8] ← diff(C∗, C)
num ← computeSize(extracted)

/* Generate pseudorandom bits using k as the seed */
rbits[num × 8] ← randomBitGenerator(k, num × 8)

/* Construct S∗ */
b = 1
for i = 1 to num do

/* Each codeword consists of 8 modules, ⊕ is an XOR operation */
for j = 1 to 8 do

S∗ ← extracted[i][j] ⊕ rbits[b]
b = b + 1

end for
end for

/* Output S∗ */
return S∗

end function

capacity which is appropriately large to accommodate the modifications. This is
so that the resulting CQR code can still be decoded in the even that it is slightly
damaged or obscured.

6 Analysis and Discussion

6.1 Experiment Results

An experiment to test the scheme was performed by implementing the proposed
CQR code scheme. Figure 5 shows example results of the implementation. The
secret QR code that contains a secret message is shown in Fig. 5(a). It is a QR
code of version 2 and error correction level H. Figure 5(b) depicts the codewords
that are extracted from the QR code in Fig. 5(a). The total number of codewords
for a QR code version 2 is 44.

Figure 5(c) in turn shows the original public QR code, which contains the
public message. It is a QR code of version 6 with error correction level H. For
this version and error correction level, there are 4 encoding blocks with error
correction capacity of 14. Therefore, this QR code size is suitable for the proposed
scheme because 14 × 4 > 44. The CQR code resulting from the proposed scheme
is given in Fig. 5(d). Note that the CQR shown in Fig. 5(d) is a valid QR code



Covert QR Codes 689

that can be scanned by a standard QR code reader, and will decode to the
same public message as the original public QR code shown in Fig. 5(c). Finally,
Fig. 5(e) shows the difference between the QR codes depicted in Fig. 5(c) and
(d). Gray color indicates no difference, whereas the white and black modules are
the original colors in Fig. 5(c) that differ from those in Fig. 5(d).

(a) (b) (c)

(d) (e)

Fig. 5. Example results; (a) QR code containing a secret message (Contains the secret
message: “Secret Message”.); (b) Codewords of the QR code shown in (a); (c) Original
public QR code that contains a public message (Contains the public message: “http://
www.springer.com/gp/computer-science/lncs.”); (d) Covert QR code resulting from
the proposed scheme (Also decodes to the public message: “http://www.springer.com/
gp/computer-science/lncs.”); (e) Difference image between (c) and (d).

6.2 Security Analysis

Correctness. We first show that the proposed CQR scheme is correct in the
sense of Definition 2.

Theorem 1. The proposed covert QR code (CQR) scheme described in Sect. 5
satisfies the correctness requirement specified in Definition 2.

http://www.springer.com/gp/computer-science/lncs
http://www.springer.com/gp/computer-science/lncs
http://www.springer.com/gp/computer-science/lncs
http://www.springer.com/gp/computer-science/lncs


690 Y.-W. Chow et al.

Proof. By the construction of the proposed covert QR scheme CQR, C and C∗

are valid QR codes. Hence, we have QRVrfy(C∗) = QRVrfy(C) = 1. Also, the
inverses of the QR codes C and C∗ point to the same public message P. As a
result, we have InvQR(C∗) = InvQR(C) = P.

In addition, S and S∗ are valid QR codes. Therefore, QRVrfy(S∗) =
QRVrfy(S) = 1, and the inverses of the QR codes S and S∗ point to the same
secret message M, i.e. InvQR(S∗) = InvQR(S) = M.

Thus, the proposed covert QR scheme satisfies the correctness requirement.

Security Against Brute Force Attack. The security of the proposed scheme
is information theoretic: If an adversary suspects that a CQR code contains secret
information, the adversary can easily obtain the embedded encrypted codewords.
From this, the adversary can obtain information about the size of the secret QR
code based on the number of embedded codewords. However, without the secret
key k, the adversary cannot decrypt the encrypted codewords.

Nevertheless, since the secret QR code S must be a valid QR code, an adver-
sary can attempt to adopt a brute force strategy to infer information about M
or k̂. Let S′ denote a valid, or in other words ‘meaningful’, QR code and

∣
∣ S′ ∣

∣ be
the cardinality of all the valid QR codes of that size. The probability of success
for this attack will be bounded by 1∣

∣S′
∣
∣
. The space of

∣
∣ S′ ∣

∣ is governed by the

size of data that a QR code can contain, which is determined by the specific QR
code version used to encode the message. Hence, the larger the secret QR code,
the larger

∣
∣ S′ ∣

∣ will be, which in turn lowers the success of an attack. Let d be
the number of data codewords for a QR code. Since each codeword contains 8
modules,

∣
∣ S′ ∣

∣= 28d.
We prove this formally in the following theorem.

Theorem 2. The proposed covert QR code scheme described in Sect. 5 satisfies
the security requirement specified in Definition 3 assuming that the �-bit (seed)
secret key k is used to generate an array of pseudorandom bits k̂ ∈ {0, 1}n, where
n is the length of the array.

Proof. Note that by the construction of the embedding algorithm of the proposed
scheme, each bit in k̂ is XOR-ed with each codeword module in S, then embedded
in C∗. This means that

∣
∣ SPC∗ | =

∣
∣ SPk̂

∣
∣, where SPC∗ and SPk̂ denote the space

of the (possible) modified QR codes based on C∗ and the random bit array space,
respectively. Note that in the proposed scheme,

∣
∣ SPk̂

∣
∣= 2n. Hence,

Pr[A outputs M] = Pr[A finds correct k̂] ≤ 1
2n

,

Thus, the probability that the adversary A will obtain a right message M is
negligible for large n. This also implies that the larger the secret QR code, the
larger n will be.
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Visual Subterfuge. One of the primary advantages of the proposed scheme
stems from the fact that CQR codes are meaningful innocent-looking QR codes.
This will reduce the likelihood of attracting the attention of potential adversaries.
In addition, since modules in QR codes do not have to be black and white squares,
it would be aid in the visual subterfuge if the CQR code were to be constructed
using an artistic QR code scheme, like the example shown in Fig. 2(b). The
proposed CQR scheme will work as long as the contrast between light and dark
modules can adequately be scanned by a QR code reader.

7 Conclusion

This paper presents a novel approach for distributing a hidden message via public
channels using the proposed Covert QR (CQR) code scheme. By exploiting the
error correction mechanism inherent in the QR code structure, the proposed
scheme can embed encrypted codewords from a secret QR code into a covert
QR code. The resulting CQR code can be scanned by a standard QR code
reader to obtain the public information. However, authorized users who have
the necessary credentials will be able to use the information embedded within a
CQR code to reconstruct a secret QR code, which contains the secret message.
The purpose of the proposed scheme is to employs visual subterfuge to conceal
secret information within a QR code. In view of the fact that a CQR code
contains meaningful innocent-looking information, the aim of this is to reduce
the likelihood of attracting the attention of potential adversaries. This is unlike
traditional ciphertext that can easily be recognized even by a casual observer.
In addition, since the information in QR codes can be scanned and decoded
through the visual channel, CQR codes are not restricted to an electronic form
and can be distributed via printed media.
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Abstract. Location privacy has drawn much attention among mobile
social network users, as the geo-location information can be used by the
adversaries to launch localization attacks which focus on finding people’s
sensitive locations such as home and office place. In this paper, we pro-
pose a community based information sharing scheme to help the users to
protect their home locations. First, we study the existing home location
prediction algorithms and conclude that they are all mainly based on
the spatial and temporal features of the check-in data. Then we design
the community based information sharing scheme which aggregates the
check-ins of all community members, thus change the overall spatial and
temporal features. Finally, our simulation results validate that our pro-
posed scheme greatly reduces the home location predication accuracy
and therefore can protect the user’s privacy effectively.

Keywords: Location predication · Community · Mobile social network

1 Introduction

Location information is introduced into a variety of social network platforms to
enrich people’s interactivity and relationship [1,2]. Many people like to share
activities (check-ins), thoughts (tweets, status updates, etc.), pictures, videos,
or interesting articles with friends, family and the public. These shared posts
often come along with location data (geo-tags). Although these information can
be used to improve people’s life quality, i.e., recommending famous place of
interests to friends, they poses high privacy risks at the same time.

The geo-location information can be used by the adversaries to launch local-
ization attacks which focus on finding people’s position and time information.
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 694–704, 2017.
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A type of dangerous attack aims to find important locations such as home and
work places [3,4]. There have been a number of papers investigating the home
location identification problem, either based on the content of the posts [5] or
the geo-tags in the check-ins [6]. And the research shows that the identification
accuracy might be over 90% in many cases.

On the contrary, the research targeting on protecting sensitivity locations
has been very rare. As an effort to fill this technique gap, we propose a commu-
nity based home location protection scheme in this paper. Our idea is based on
the fact that people sometimes only need to share precise information with cer-
tain communities, such as colleagues, family members or classmates. Therefore,
when a user posts a check-in or tweets with the geo-tag, he/she can select to post
this information as a member of a community which he/she belongs to. Then
for the outside adversaries, the geo-location information becomes indistinguish-
able among the community members. We test the performance of the proposed
scheme with two existing home location prediction algorithms. In summary, the
contributions of this paper are as follows:

– We propose a community based scheme to deal with the challenge of sensitive
location protection in mobile social networks.

– The effect of the proposed scheme on the features of the geo-location infor-
mation is analyzed.

– We setup an evaluation system and validate our proposed scheme against two
existing home location prediction algorithms, on the real-life dataset.

The rest of the paper is organized as follows. Section 2 lists the related
work. Section 3 gives a detailed introduction on the preliminaries and system
model, including the assumptions and basic notations. The proposed community
based home important location prediction scheme is described and analyzed in
Sect. 4. Performance analysis and extensive numerical simulations are presented
in Sect. 5. Finally, Sect. 6 gives the conclusion about this paper.

2 Related Work

As there has been no work specifically targeting on home location protection,
we discuss the home location identification techniques in this Section. Home
Location Identification focuses on identifying home location of users in social
networks. There are two types of approaches within this scope: content based
approach and check-in based approach.

2.1 Content Based Approach

Content based approach infers home location of users by extracting location
information from texts like tweets in social networks. Cheng et al. [5] used a
classifier to identify words in tweets with a strong local geo-scope, combing with
a lattice-based neighborhood smoothing model for refining a user’s location esti-
mation. Chandra et al. [7] employed a probabilistic framework to estimate the
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city-level location of a Twitter user, based on the content of the tweets in their
dialogues. Mahumd et al. [4,8] used an ensemble of statistical and heuristic clas-
sifiers to predict Twitter users’s home locations based on their tweeting behavior
and content of tweets. Li et al. [9] combined user’s multiple microblogs and used
them to identify the location.

2.2 Check-in Based Approach

Check-in based approach infers home location of users utilizing check-in data of
users. Cho et al. [6] inferred the home location by discretizing the world into 25 by
25 Km cells and defining the home location as the average position of check-ins in
the cell with the most check-ins. Li et al. [10] identified home locations of users in
Twitter based on the model using signals observed from friends and venues identi-
fied in tweets. Pontes et al. [11] used a majority voting scheme which takes the most
popular location of a user as the home location. Liu et al. [12] obtained the esti-
mated home locations using a hierarchical clustering method to cluster checkins
at night.

Besides the content and check-in based approach, other information can also
be used in home location prediction. For example, Gu et al. [3] infer home loca-
tion in city scale by trusts between the friends.

The precision of the content based approaches is generally city-level, which is
not as good as the check-in based approaches. Because the location information
in the content is often blur. Therefore, we will use check-in based approach to
test our scheme in this paper.

3 Preliminaries and System Model

As all the check-in based home location prediction methods are based on the fea-
tures of users’ check-in data, we will first conclude the check-in behaviour of users
in mobile social networks in this section. We will also briefly describe the two
location predication algorithms which will be used to test our proposed scheme.
The adversary model and privacy metric are given as well, as the fundamental
of the rest parts of the paper.

3.1 Check-in Behavior of Users in Mobile Social Networks

Spatial Features of Check-in Data. Cho et al. [6] explored the distribution
of the check-ins numbers as a function of the distance from home and observed
that the distribution follows a power law with exponential cutoff, i.e.,

f(d) = dαeβ , (1)

where d is the check-in distance from home. α and β are the parameters vary
for different datasets.

And such a phenomenon exists in different datasets including Brightkite and
Gowalla.
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Temporal Features of Check-in Data. Besides the spatial feature, the check-
in data also have temporal feature. For example, check-ins at night (shared from
8:00 p.m. to 7:59 a.m. every day) are most likely to happen at the home location,
while check-ins during work hours (from 8:00 a.m. to 6:59 p.m. on weekdays)
have high probability to be linked to the office location.

3.2 Home Location Predication Algorithms

The above mentioned spatial and temporal features of the check-ins are used to
predict the home locations. Here we introduce two typical algorithms based on
the number of check-ins and time stamps clusterings, respectively.

Algorithm 1: Home Prediction by the Number of Check-ins. Scellato
et al. [13] defined the home location as the average position of check-ins in the
cell with the most check-ins. They first divide the whole area into cells {cell0,
cell1, ..., celli, ...}. Then the predicted home location lu,h = avg(lcellmax

) is
the average position of check-ins locations in the cell with the most number of
check-ins cellmax. Manual inspection shows that this algorithm can infer home
locations with 85% accuracy [6].

Algorithm 2: Home Prediction by Clustering Check-ins Based on Time
Stamps. Liu et al. [12] proposed a user home/office locations prediction algo-
rithm by clustering check-ins shared at night and work hours respectively. First,
the check-ins during the night time of user u are divided into clusters {clusteru,0,
clusteru,1, ..., clusteru,i, ...} by a hierarchical clustering method. Then a home
candidate ru,h,i = (g, n) is calculated from each clusteru,i, where g is the cen-
ter of all the check-in locations in clusteru,i, and n is the number of check-
ins in the cluster. Finally, the home candidates list Ru,h is formed by {ru,h,0,
ru,h,1, ..., ru,h,i, ...}, descending by the number of check-ins in each cluster. They
showed that for 98.3% of users, at least one of the first three home candidates
ru,h,i, i = 1, 2, 3 are within 2 Km of the user’s true home location.

3.3 The Adversary and Attack Models

An adversary’s aim in the location privacy ground is collecting location informa-
tion and using it to gain benefits. Based on the two key factors of the location
privacy, the adversary and his/her attack can be characterized by “how” they
obtain the information, “how” the attack is launched, “what” the information
they obtained (knowledge), and “what” is the target.

In this paper, we assume that the adversary obtain the information by col-
lecting shared or published geo-location information (i.e., check-ins with times-
tamps). And the obtained location information is precise in the sense that it is
not processed by any obfuscation schemes.
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And the attack target is people’s sensitive positions such as the home loca-
tions. The adversaries use data mining and machine learning tool (Alg. 1 and
Alg. 2) to launch the attack.

3.4 Privacy Metrics

We use the “correctness” metric [14] to measure the performance of the pro-
posed scheme. It is a distance based metrics quantifying the error or expected
distance between the true and predicted location. For a single location, it can
be computed by the posterior probability of the adversary’s estimates x based
on his observations o, while the true position is xc, i.e.,

∑

x

Pr(x|o)d(x, xc). (2)

In the context of this paper, x is the predicted home location based on the
observed check-ins o. d(x, xc) is the distance calculated by the coordinates.

4 Hiding Important Locations by Community-Community
Based Information Sharing Scheme

4.1 Community Based Geo-Location Information Sharing Scheme

In nowadays, many people use social networking apps and websites such as
facebook and tweets to share their experiences and thoughts with other people,
through posts along with geo-location data. As these location data are generally
available to the public, they might be collected by adversaries and used to predict
a user’s home location.

On the other hand, people in social networks belong to different communities,
and the communities are formed based on common features such as family mem-
bers, similar interests and classmates. Moreover, people may belong to multiple
communities at the same time. For example, one may be in a community who
graduate from the same university and another community who like to travel as
well.

In reality, people sometimes only want to share precise information within
certain communities. Based on this fact, we may enable the user to select to post
this information as an individual or as a member of a community which he/she
belongs to. The former case is the current scheme used in social networks. And
the latter case can prevent possible outside adversaries from knowing the exact
owner of the posts.

Figures 1 and 2 illustrate our idea of the community based geo-location infor-
mation sharing scheme. As shown in Fig. 1, the user “Luke Liu” posts a check-in
at a point of interest “Deakin University Library” as the member of “Deakin
Staff” community, other users in this community can see that it is posted by
“Luke Liu” (Fig. 2(a)), while public users who are not in this community only
see that it is posted by a member of the “Deakin Staff” community (Fig. 2(b)).
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Fig. 1. Illustration of the community based geo-location information sharing scheme.

Fig. 2. Example of the community based geo-location information sharing scheme.

4.2 Aggregated Check-in Behavior of Users in a Community

With this scheme, the geo-location data collected by the adversaries will be
the aggregated information of different communities. We now investigate the
aggregated check-in behavior of users and its impact on the prediction of home
location.

As discussed in Sect. 3, all the home location predication algorithms are based
on the spatial and temporal features of check-ins. The temporal feature is not
changed by our scheme. Thus we focus on the change of the spatial feature under
our proposed community based geo-location information sharing scheme.
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Assuming that for each user, the distributions of check-in numbers as a func-
tion of the distance from home follow the Eq. (1). With the community based
geo-location information sharing scheme, all check-ins from the same community
are indistinguishable for the outsiders. Therefore, we have

fc(d) =
∫

dh−h

f(|d− dh−h |) · fh−h(dh−h), (3)

where fc() is distributions of check-in numbers in a community as a function
of the distance from a certain user’s home. fh−h is the distribution of home
distances between members in the same community.

Intuitively, traditional home location algorithms are based on the precondi-
tion that each user has “one” home location. When our scheme aggregate the
check-ins in communities, it hides a single user’s home among all home locations
of the community.

5 Performance Evaluation and Discussions

5.1 Datasets and Evaluation Setup

We evaluate our scheme using the Gowalla dataset which is collected by the
authors of [15] from Gowalla which was a popular LBSN service back in 2011.
The dataset was collected from February 2009 to October 2010 and it contains
6,442,892 check-ins. Besides location information, the dataset also includes the
corresponding social data which contains around 1.9 million users and 9.5 million
edges. Due to the large data sparsity, we take the check-in data in New York as
an example, as New York is among the areas with most check-ins (138957) in
the dataset. In addition, we only focus on users who have conducted at least 100
check-ins in each city and we term these users as active users (241 in total).

As our proposed scheme is based on the community structure, community
detection is the first step. Community detection methods have been investigated
in many papers. It is closely related to the ideas of graph partitioning in graph
theory and hierarchical clustering in sociology. According to the comparative
analysis [16], among all the community detection algorithms, Infomap [17] has
the best performance on undirected and unweighted graphs. Therefore, we use
Infomap in this work.

The Gowalla dataset contains the links among users. To detect communities
of u, we first find all his/her friends as well as the links among them. Then,
we delete u and all edges linked to him and apply Infomap algorithm to the
remaining part of the graph. The average community numbers of each active
user in our simulation is 3.215 and the average community size is 14.727.

5.2 Impact on Spatial Feature of the Check-Ins

In order to validate that our proposed scheme can protect home location, we
first verify that it indeed changes the spatial features of the check-in data.
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Figures 3 and 4 compare the check-in number distributions of a single user and
a community. It can be seen that when calculated using the community’s data,
the curve becomes more flat. And when we fit the power law parameters using
maximum likelihood, the parameters change a lot as well (α = −0.064 vs −0.002,
β = −0.8 vs 2.25).

Fig. 3. Distribution of a single user’s
check-in distance from home.

Fig. 4. Distribution of a community’s
check-in distance from home.

5.3 Impact on Home Location Predication Algorithms

Now we investigate the impact on the two different home location prediction
algorithms presented in Sect. 3.

Figure 5 gives an example (user id = 1940) of the home location prediction
results using Alg. 1. It shows that our scheme introduces big perturbations to
the predicted home location.

With regard to Alg. 2, using the user’s own or the communities’ check-in data
results different clustering results, as shown in Figs. 6 and 7. Thus the accuracy
of the home location predication is reduced accordingly, as shown in Fig. 8.

Finally, we calculate the correctness of home location prediction under our
proposed community based geo-location information sharing scheme, as shown
in Figs. 9 and 10. As we do not have the true home locations of users, we use the
prediction results using only the user’s own check-ins as his/her “actual” home.
The average correctness of Alg. 1 is 1942 m and the value for Alg. 2 is 4345 m.
It validates that our proposed scheme brings great obfuscation for the location
predication algorithms. Moreover, the correctness of Alg. 1 is averagely smaller
because of the procedure of “discretizing”. The impact of the cell size on the
results will be further investigated in the future works.
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Fig. 5. Predicted home locations using
Alg. 1 (the “green” is obtain by the
user’s own check-ins, the “red” ones
obtained by the check-ins belong to the
user’s two communities). (Color figure
online)

Fig. 6. Clustering of a single user’s
check-in data during night time.

(a) Clustering results of check-ins in
community 1.

(b) Clustering results of check-ins in
community 2.

Fig. 7. Clustering of communities check-in data during night time.
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Fig. 8. Predicted home locations by
Alg. 2 (the “brone” ones are top three
home location candidates obtain by
the user’s own check-ins, the “blue”
ones are home location candidates
obtained by the check-ins belong to
the user’s two communities). (Color
figure online)

Fig. 9. Correctness of the home predic-
tion results using Alg. 1 under the commu-
nity based geo-location information sharing
scheme.

Fig. 10. Correctness of the home predic-
tion results using Alg. 2 under the commu-
nity based geo-location information sharing
scheme.

6 Conclusion

In this paper, we have studied the location privacy issue in mobile social net-
works. Specifically, we proposed a community based information sharing scheme
to prevent the user’s home location to be accurately inferred by the check-in
data.
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Abstract. We provide a formal model to achieve a fully precise dynamic
protection of the flow of execution against control flow hijacking attacks.
In more than a decade since the original Control Flow Integrity the
focus of all of the proposed work in the literature has been on practical
implementation of CFI. This however due to the restriction that the
classic CFI poses on function return has led to the solutions that relax
and bend the rules used in the proof of the original work. Some of these
solutions has been shown to be completely insecure and others are hard
to prove using formal methods. We use Propositional Dynamic Logic that
combines actions and their consequences in a formal system which allows
us to clearly express the required pre and post conditions to prevent
a class of exploitation. We prove the correctness of our scheme for an
abstract machine as a model of modern processors.

Keywords: Formal security model · Dynamic control flow integrity
Context-sensitive CFI · Malicious code execution prevention

1 Introduction

The focus of the research in preventing the execution of malicious code has been
shifted towards the exploitation aspect in the past decade. Van der Veen et al.
in [1] provide a survey of memory errors and some of the proposed protective
measures in the literature. The majority of these countermeasures such as Stack
Canaries and Address Space Layout Randomization (ASLR) are informal solu-
tions in the sense that they do not provide proof of correctness and are designed
for specific types of vulnerability [1]. These techniques are shown to be vulner-
able to different types of attack [2,3]. The introduction of non-executable data
memory and its support in modern processors is effective against code injection
in data memory as long as the adversary cannot control permissions on mem-
ory pages and is vulnerable to code reuse attacks such as return-to-libc [4] and
Return Oriented Programming (ROP) [5,6] and its variants [7–9]. Most of the
proposed detection or prevention techniques against ROP attacks use heuristics
or rely on characteristics of this type of attack [10–15]. The problem with heuris-
tic or characteristic type of solutions is that if the behaviour of the attack or its
characteristics can be changed the defensive mechanism can be bypassed [16–18].

The work of Abadi et al. [19] is among the most promising work in this area
since they provide a formal model for the proposed Control Flow Integrity (CFI)
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 707–726, 2017.
https://doi.org/10.1007/978-3-319-72359-4_44
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to assure that the execution path will follow the Control Flow Graph (CFG) of
the executable code. The enforced policy however poses restrictions on function
return specially with dynamically linked executables and function pointers [20].
Unfortunately besides the original work none of the proposed solutions in this
area follow the formal approach. The theoretical model proposed in [19] only
considered static code where the CFG of the code is known at compile time. To
address the dynamic linking problem the practical work in CFI has been forced
to use over-approximation of the rules by categorizing the valid destinations
into equivalent classes which violates the requirement of the provided proof.
The precision of these classes are used to define two broad categories of CFI
policy enforcement: Coarse-Grained (CG) and Fine-Grained (FG) [21,22]. In
CG policy the equivalent classes are divided to two or three classes to achieve
better performance at the cost of security. The CG policy is shown to be broken
due to this over-approximation [22]. The FG policy has a finer precision for
the equivalent classes which nevertheless relaxes the rules of classic CFI policy.
Various methods further divide this category to smaller scopes of forward-edge
or backward-edge protection or hardware-assisted. A recent article by Burow et
al. provides an in-depth analysis of the CFI policy enforcements with regards to
precision, security and performance [23].

Although there has been an intensive research in this area with many imple-
mentations, the rules of the solid theoretical work proposed in the classic CFI [19]
are relaxed which has led to inadequate security guarantees and are shown to be
completely insecure in some cases [22]. In this paper we provide the first sound
theoretical model that allows a fully dynamic CFI enforcement, laying the foun-
dation for practical implementations supported by security proofs. We believe
strong and provable security goals must be considered and studied in depth ahead
of implementation and efficiency considerations. Our proposed model enforces
a dynamic CFI policy that relies on compile time and run time information to
assure that the execution flow follows the intended path by the programmer.
We leave the implementation of our model and any efficiency analysis of the
potential implementation for future work. Our main goal is to provide provable
security measures and specify the limitations of a fully precise dynamic CFI
policy enforcement in preventing exploitations.

Our contributions are as follows:

– a sound theoretical model to provide provable security guarantees against con-
trol flow hijack attacks for both code injection and code reuse, that removes
the restrictions of the classic CFI

– definition of the required conditions for an ideal CFI policy enforcement
within the defined model

– an extended abstract machine to model modern processors with regards to
various types of control flow attack

– formal definition of control flow hijack using Propositional Dynamic Logic
(PDL)

Our formal approach provides the required foundation upon which implementa-
tions for various architectures, operating systems, and compilers can be realised
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and formally analysed. The structure of the paper is as follows. In Sect. 2 we
provide the background information and our definitions required to express the
principles of our approach. In Sect. 3 we present the theorems and their proof.
We discuss the related work in Sect. 4 and conclude this paper in Sect. 5.

2 Principles of an Ideal CFI

In this section we provide the necessary definitions and background information
to formally express the attacks and countermeasures. An overview of the effects
of different instructions on the flow of execution is discussed in Sect. 2.1. In
Sect. 2.2 we define our machine model followed by the attack model in Sect. 2.3
and the verification requirements in Sect. 2.4.

2.1 Instruction Types and Flow of Execution

All machine instructions influence the execution path of an executable code and
can be divided to four types: sequential, conditional branch, direct jump, and
indirect jump. For sequential instructions Program Counter (PC) is incremented
and for direct jump the destination is some address w embedded in the instruc-
tion. The change of the flow of execution for the conditional branch depends on a
condition that when true the destination would be an address w provided in the
instruction or PC+1 otherwise. For indirect jump, which includes return instruc-
tion, the destination would be an address provided as the content of a register.
Other forms of change in flow of execution in more complex architectures may
provide various versions of these types with more options, however it would fall
in one of the aforementioned categories. We provide a formal definition for the
instruction categories in Sect. 2.2, Definition 3.

Functions in high level languages have well defined boundaries, a clear entry
point, and one or more return points. The labels and direct jumps in high level
languages that define such control structures are only allowed within the bound-
ary of a defined function. Although the compilers translate the high level lan-
guage to an equivalent machine language code, the flexibility of instructions such
as indirect jumps allows paths that where not possible in the corresponding high
level program. In this sense a function call in high level language would be trans-
lated to a more permissive jump or call instruction with the memory address of
the specified function as its parameter. We say it is more permissive as in high
level language the function call is restricted to the start of a defined function
using a unique name whereas a jump can be to any address within the address
space of the program. For a program that does not rely on any external library
at the end of compilation all of the virtual addresses of the defined functions
are known and their names can be replaced with their addresses. While local
function calls could be potentially performed with direct jump instruction, calls
for dynamically linked library functions require indirect jump instructions where
the address of the called function is determined at run time.
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At run time before making the call to a function the return address must be
recorded and the corresponding return instruction restores this recorded address
to transfer the flow of execution back to the instruction after the call.

We base our formal approach on the types of the instructions and their effects
on the execution path and state the preconditions that are necessary to prevent
certain types of attack.

2.2 Machine Model

To make the propositions and the arguments easier to express we use a sim-
ple but realistic machine model that has been used previously in the literature
for similar purpose [20,24] with modifications and in the context of PDL. The
machine is comprised of a processor with a register file of 32 registers, a desig-
nated and separate register as Program Counter, and byte-addressable random
access memory. The state of the machine is considered as the content of mem-
ory, register file and PC. The definition of words, memory cells, register file and
machine states are as follows:

Word :: = {0, 1}∗

Mem :: = address → Word
Regnum :: = {0, 1, ..., 31}
Regfile :: = Regnum → Word
State :: = Mem × Regfile × Word

The machine has a load-store architecture where no direct operation is per-
formed on memory cells as operands except for load and store instructions. The
machine has six sequential instructions and one for each of direct jump, condi-
tional branch and indirect jump and one instruction for return from a function
call. The halt instruction is used to mark the end of an executable code. The
instruction set is shown in Fig. 1.

A ::= nop | add rd, rs, rt | addi rd, rs, w | movi rd, w | ld rd, rs(w) | st rd(w), rs |
bgt rs, rt, w | jd w | jmp rs | ret rs | halt

Fig. 1. Machine’s instruction set

The decoding function represents the notion of decoding an instruction in
machine language to its semantic (Fig. 1) and is defined as follows.

Definition 1. Decode(i) : {0, 1}∗ → A ∪ {illegal}
We omit the use of an instruction register in the definition of the Decode()
function as it does not contribute to the formal expressions but it can be assumed
that the Decode() function operates on an Instruction Register where the fetch
cycle of the processor transfers the instruction addressed by PC into that register.
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Table 1. Notation summary

Notation Semantic

← Assignment as target ← value

Mem(x) Content of memory at address x

Mem Memory state (no change)

Reg(rx) Content of register rx in register file

Reg The state of the register file (no change)

pc Content of the program counter

∈emb Embedded as an operand (w) within the instruction (i) as w ∈emb i

dot / . Partial element of the state e.g. s.pc: content of pc in state s

≡ Semantic equivalence

= Logical comparison

⊥ ¬�

We assume an instruction decoded as illegal results in halt. We use a byte-
addressable memory and allow variable length instructions in the abstract model
to address issues of complex architectures. The Decode function can determine
the length of an instruction and for sequential instructions pc + 1 represents the
notion of the calculated address of the next instruction based on the length of
the current instruction. Table 1 provides the summary of the notation used to
express the semantic of the machine instructions.

To construct a Label Transition System (LTS) as defined in [25], the set of
states range over the machine states comprised of the content of memory, register
file, and PC, the set P is the set of our propositions and the set A the set of
machine instructions which will form the set of labels.

Definition 2. For the set of propositions P and the set of atomic instructions
A, the LTS is the triple M ::= (S,R, V ) where:

– S : Mem × Reg × pc is the set of machine states
– Ra : {→a: (s, s′) ⊆ S × S|a ← Decode(i) ∈ A} is a set of labelled transitions

where s and s′ are the states before and after the execution of the instruction i
– V : S → P (p) is a valuation function that determines the value of a proposi-

tion in a state

Using the PDL language we formally define the instruction types as follows.

Definition 3. Instruction Types: In the defined LTS M = (S,R, V ) the following
sets can be formally defined for the atomic action a where a ← Decode(i) ∈ A:

SQ ::= {a|(s, s′) ∈ Ra ∧ [a]s′.pc = s.pc + 1}
DJ ::= {a|(s, s′) ∈ Ra ∧ [a]s′.pc = w ∈emb i}
CB ::= {a|(s, s′) ∈ Ra ∧ [a]s′.pc = w ∈emb i ∨ s′.pc = s.pc + 1}
IJ ::= {a|(s, s′) ∈ Ra ∧ [a]s′.pc = s.Reg(rs)}
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It is clear that A = SQ∪DJ ∪CB∪IJ ∪{halt} and ∅ = SQ∩DJ ∩CB∩IJ ∩
{halt} hence to reason about the properties of code execution we can verify the
validity of the arguments for the four sets that impact the execution path and
we would cover all possible transfers of the flow of execution. The three sets CB,
DJ , and IJ are specifically designed to change the flow of execution beyond the
normal sequential flow whereas the set SQ contains all the other instructions.
Calling library functions in dynamically linked executables is one of the reasons
that indirect jump instructions are required in any modern architecture as the
target destination is unknown at compile-time and needs to be calculated at
run-time.

The notion of instruction location in memory or the program as stored must
be distinguished from the program execution. Using the definition of finite com-
putation sequence of a program α as defined in [26] we can argue about possible
sequences of atomic steps in the execution of a program that would belong to
the set of all computation sequences of the program α denoted as CS(α). We use
the term memory sequence to refer to the program as stored and computation
sequence, which is by itself a program in the context of PDL, to refer to the order
of execution of instructions that are not necessarily located in contiguous mem-
ory locations. As a simple clarification of our goal here for instance a successful
code injection attack would involve a memory sequence that does not belong
to the memory sequence of the program α. Since the execution of the program
would allow the injection of the code and transfer of the flow of execution to the
injected code then the execution of the injected code also belongs to the possible
computation sequence of the program regardless of whether it was anticipated
by the programmer.

2.3 Attack Model

In order to discuss countermeasures to protect against an attack we first need
to formally define the attack. In general terms if we express a successful attack
as proposition p for the exploitable executable α and the adversary’s intended
computation sequence β then the fact that at least one execution of α results in
successful exploitation (hence exploitable) can be expressed in PDL as: 〈α;β〉p.

We intend to propose measures that would result in all executions of the
exploitable program α satisfy the proposition ¬p expressed as: [α;β]¬p.

The proposition satisfiability depends on the type of the attack and the
protective measure. We use the three types of attack described in [22] but with
some modifications. We use the term fully precise to specify that only one valid
destination is allowed for any indirect control transfer and the term dynamic to
specify that the control flow graph is context-sensitive, meaning dynamic linking
and the most recent call-sites are considered; hence a fully precise dynamic CFG
would be an ideal CFG that follows the exact flow of execution intended by the
programmer. The three types of attack are defined as follows:

1. Control Data Attack leading to control flow hijack: The adversary changes the
flow of execution to a target that violates the fully precise dynamic control
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flow graph. This type includes both code injection and code reuse. The key
point is that the execution path of the attack contains edges that have never
been part of any benign execution of the program.

2. Non-Control Data Attack leading to control flow bending: The adversary
changes the flow of execution to a target that does not violate the fully precise
dynamic control flow graph. This includes any data corruption that could
influence the decision points in flow of execution (decision parameters of the
conditional branch instruction) or change of parameters passed to a valid
function (e.g. an edge of the fully precise dynamic CFG to execve() with
corrupted parameters).

3. Information Leakage Attack : The adversary performs a non-control data
attack that does not violate the fully precise dynamic control flow graph
that leads to disclosure of sensitive information.

Our focus is the first type of attack that involves the use of an invalid edge,
where as the second and third types cannot be defended against even with ideal
CFG enforced since these types make use of the precise edge but with corrupted
input which results in either confined code execution or information disclosure
[22]. We formally define the control flow hijack attack as follows.

Definition 4. Let the exploitable program α be comprised of the memory
sequence a1; a2; . . . ; an, the adversary’s program β be the computation sequence
b1; b2; . . . ; bm, and CS(α) the set of all possible computation sequences of the
program α, given the program α is exploitable then there exists a partial compu-
tation sequence α1 that leads to the execution of the adversary’s intended program
β and α1;β ∈ CS(α). We consider the proposition p :=“successful control flow
hijack” to be true for the computation sequence 〈α1;β〉p if and only if for ak to be
the last instruction in α1 and b1 the first instruction of the adversary’s intended
computation sequence β and b1 = ax where ax ∈ α the next action under benign
execution of α. We simply express the successful control flow hijack as 〈ak; b1〉p
focusing on the transition from the benign execution to the adversary’s compu-
tation sequence.

The distinction between computation sequence and memory sequence is clear
when comparing the user program α with the adversary’s sequence β that for
instance would be scattered over a much larger memory sequence(s) in case of a
heap spray, or scattered over the code of the program α as ROP gadgets or be
an injected memory sequence on the overflown stack, crafted to be executed as
the given sequence b1; b2; . . . ; bm. The Definition 4 expresses that if a program is
exploitable then there exists a computation sequence of the program that trans-
fers the flow of execution to the intended computation sequence of the adversary.
Our focus is on the last instruction of the program where such transition occurs.

We formally define the countermeasure against the control flow hijack by
focusing on the transition of the flow of execution to the first instruction of the
adversary summarised as ak; b1 where 1 ≤ k ≤ n. To satisfy the proposition
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p :=“successful control flow hijack” in the state transition (sk, sk+1) ∈ Rak
we

will have one of the following:

1. ak ∈ SQ
2. ak ∈ DJ
3. ak ∈ CB
4. ak ∈ IJ
5. ak = halt

If the proposed protective measures are expressed as the proposition ψ as a
precondition to the execution of the exploitable program α under attack with
the adversary’s intended computation sequence β, then the notion of preventing
the successful control flow hijack attack can be expressed as ψ =⇒ [ak; b1]⊥,
that is the transition from exploitable code to the first instruction intended by
the adversary will fail in all execution of the sequence ak; b1. In the next section
we formally define the required precondition(s) ψ to satisfy the aforementioned
expression.

2.4 Verification Requirements

To protect the integrity of the flow of execution at run time it is necessary to
add the required controls that assures the flow of execution follows the intended
path by the programmer. The classic CFI [19] enforces the policy as in-line and
static reference monitors preceding indirect jumps to verify inserted unique label
at the target of that indirect jump. Function call and return are both handled
with the indirect jump instruction and the policy enforcement is the same. This
however creates problems with dynamic library functions as these functions can
be called from different executable code and same function may be called from
different points making multiple paths available at return.

Forward Edge. An edge requires a starting point and an end point. In case
of a forward edge the start is the offset of the jump instruction and the end is
the called function. If the start point is omitted then the CFG will be reduced
to a list of targets where any of the targets can be a valid destination for any of
indirect jumps. To assure that both ends of an edge are verified in the current
execution context we require that the offset of the indirect jump instruction and
the destination of the call to be recorded at compile time. The function can be
a library and dynamically linked or a local function. For analysis we assume all
function calls whether local or dynamically linked are both translated to indirect
jump instruction. To simplify the notation in our definitions we refer to the called
function as fx ∈ local ∨ libj for 0 ≤ j ≤ m. At run-time the addresses will be
adjusted to physical addresses which is commonly supported in hardware. This
allows the code to be positioned independently. For reasons that are explained
later only forward edges are translated to indirect jump instruction.

To protect the forward edges, the valid destination for each forward indirect
jump instruction is uniquely specified for the executable α comprised of atomic
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instruction sequence i1; i2; . . . ; in and the called functions f1; f2; . . . ; fm in its
set of Authentic Calls (AC) as follows.

Definition 5. Set of Authentic Calls AC ::= {(κ, fx) | iκ ∈ α,Decode(ik) =
jmp rs ∧ fx ∈ (local ∨ libj)0 ≤ j ≤ z}
Since each instruction has a unique address (offset at compile time), recording
the indirect jump instruction address precisely specifies a forward edge. In other
words an indirect jump instruction can be executed if and only if it is located at
a pre-recorded address and its destination is also a registered address (ACfoo in
Fig. 2). This will be added as a precondition to the jump instruction.

As the valid destinations are paired with the address of the indirect jumps,
it can be verified whether the execution is following the defined precise edge.
The incentive here is to provide precisely one valid edge for each indirect jump
instruction however as it has been discussed in the literature [27–30] there are cir-
cumstances where multiple valid destinations exist at compile time. For instance
in the case of a function pointer. In such cases the elements of the AC set can be
defined as 3-tuples (offset, condition, target) where the second element specifies
a verifiable condition for the target to be valid. To make this point clear we can
redefine the set of Authentic Calls for the executable code α as follows:

Definition 6. Set of Authentic Calls AC ::= {(κ, cj , tj)} such that:

– iκ ∈ α,∧Decode(ik) = jmp rs
– ∧Eval(cj , tj) = T ∧ Eval(cl �=j , tl �=j) = F where Eval is the evaluate function

for condition cj

– ∧tj ∈ f1; f2; . . . ; fm

For the fixed offset κ the condition c is always true in case of normal function
calls where the destination virtual address is known at compile time. In case of
function pointer the condition c is the disjunction of conditions c1, . . . , cq for the
targets t1, . . . , tq where only one target (tj) is valid per condition (cj , j = 1 . . . q).
That is the condition c is evaluated at run-time for all possible conditions
c1, . . . , cq and all valid destinations t1, . . . , tq and only one destination tj is reach-
able. The goal is to convert a fine-grained target list to a fully precise CFG by
attaching the conditions under which each of the elements in the valid target
list can be reached. This is similar to the context condition discussed in [31] for
pointer analysis with the difference that the attached condition is evaluated at
run-time and it only involves function pointers.

From practical point of view, which is not the concern of the formal work, the
implementation can vary and be specific to the circumstance as long as it could
specify one valid destination. Nevertheless our theorems provide the security
guarantees that are as accurate as the precision of the generated list of targets.
In such cases where a precise list of multiple valid destinations exist per indirect
jump, a control flow bending attack is possible by choosing a destination from
the list. In our formal work we assume a verifiable set of disjunct conditions
that identify a unique destination for each indirect jump at run-time can be
produced.
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Backward Edge. Each function fx ∈ (local ∨ libj), starting at a defined offset
in libj or executable α, has at least one or more associated return point(s). To
record the location of each return instruction within the body of a function that
can be used to verify a backward edge we define the set of associated return
points as follows.

Definition 7. Set of all associated return points for executable α or a library
lib containing the functions: f1; f2; . . . ; fm is defined as:
RP ::= {(fj , ξ) | fj is the function logical address ∧ Decode(iξ) = ret rs∧iξ ∈ fj

is a valid return point }
The association of return point(s) for each function of executable foo and library
lib is shown as RPfoo and RPlib respectively in Fig. 2.

The set of associated return point(s) specifies the valid return instructions of
a called function which prevents executing a return opcode that appears in the
middle of other instructions in complex architectures in addition to other forms
of control flow hijack attack. The emphasis is on specifying both ends of a valid
edge.

For the forward edge it is required to check whether the tuple (instruction
address, function address) belongs to the set of authentic calls. The return how-
ever requires two checks: (i) whether this is an associated return point for this
function (to prevent execution of a return instruction that appears in the middle
of the opcode of another instruction) and (ii) whether the destination address
is authentic. These two verifications can be done by creating one run-time map-
ping, at the time of the call, that maps the tuple: (instruction address, authentic
function x) and the corresponding return tuple(s): (function x, return point(s))
into a 3-tuple: (return address, function x, associated return point(s) of func-
tion x) where function x could be a local or external function. The forward and
backward verifications are shown in Fig. 2.

The Runtime Mapping which associates the return point(s) of a function
defined in executable code α ∨ α′ (local or library) and called within the exe-
cutable code α at the time of the call (run-time) is defined as follows:

Definition 8. Runtime Mapping for executable α and set of libraries α′ ≡
∧x=1..mlibx is a per call sequence (with order and repetition):
RM ::=

∧
j=1...m RMfj

where RMfj
= {(κ + 1, fj , ξ) | (κ, fj) ∈ ACα∨α′ , and

(fj , ξ) ∈ RPα∨α′}
This sequence is dynamic and changes according to the execution context at the
time of the call and return:

– for Decode(iκ) = jmp rs

RM = RM
∧

RMfj
where (κ + 1, fj , ξ1...x) ∈ RMfj

are the latest mappings
added to the sequence

– for Decode(iy) = ret rs

RM = RM−RMfj
where (Reg(rs), fj , ξ1...x) ∈ RMfj

are the latest mappings
removed from the sequence
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Fig. 2. Set of authentic calls used in forward-edge and runtime mapping used in
backward-edge verifications

In forward jumps the verification is done before creating the mapping and in
returns the verification is done before removing the mapping. The elements of
this set, at the time of the call, represent: (the address to return to in the calling
code α pointed to by pc+1, Reg(rs) pointing to the start of the called function fj

in α∨α′, associated return point for the called function fj recorded in RPα∨α′).
For each return instruction it can be then verified, at the time of return, if there
exists a 3-tuple in the sequence RM where the target address matches the first
element, the address of this function matches the second element, and the address
of current return instruction matches the third element (Fig. 2). This mapping
entry is created per function call (steps 1 and 2 in Fig. 2) and will be removed
if a match is found at the time of the authentic corresponding return (steps 3
and 4 in Fig. 2). The mapping creates the necessary execution context which
helps achieve a fully precise dynamic (context-sensitive) and depth independent
enforcement of the CFI policy. In the literature the shadow stack is considered a
necessary condition for enforcing a fully precise CFI [22] whereas in our abstract
model the data structure used for implementation could be in any form as long
as it stores the specified elements used in verification and policy enforcement.

3 Theorems of ICFI

The theorems of our CFI policy enforcement specify the necessary and sufficient
conditions for an abstract machine to prevent the control flow hijack of a vul-
nerable program. Before we state the theorems we express our assumptions in
the following section.
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3.1 Premises

Our first assumption which is a required precondition is expressed in the liter-
ature as non-executable data or code and data memory separation. We, how-
ever, express this condition as integrity of the code of an executable which is
a stronger assumption. This condition takes into account any potential vulner-
ability that may be exploited to bypass non-executable data or code and data
memory separation which is necessary in presence of an adversary with arbitrary
memory write capability. To denote the integrity property of the executable code
α comprised of the atomic instruction sequence a1; a2; . . . ; an we use the nota-
tion Int(α) as a logical proposition with true or false values. The summary of
the premises is as follows:

– A1) The precondition Int(α) ∧j=1..m Int(libj) states that the code of the
program α and the libraries called by the program α cannot be changed by
the adversary. For clarity we express this as Int(α)∧Int(α′) where Int(α′) ≡
∧j=1..mInt(libj).

– A2) The adversary cannot directly change the content of the program
counter. This is represented as the post conditions on the actions, that is
the only ways of affecting the content of pc is shown as part of the logical
semantic of the defined atomic actions.

– A3) The attacker cannot modify the following sets and sequence belonging to
any executable code: AC, RP, and RM. The integrity of these sets for instance
could be protected with signatures or some form of secure storage, or memory
bounds. We can represent this for any executable code α as Int(RPα) ∧
Int(ACα) ∧ Int(RMα).

– A4) The end of all executable codes are marked with halt instruction.

3.2 Theorems

The first theorem states that the integrity precondition is a necessary and suf-
ficient condition to prevent control flow hijack (as defined in Sect. 2.3) for a
program that only contains sequential, direct jump and conditional branch type
of instructions. Since function calls and returns whether local or library are done
using indirect branch instruction A1 only requires Int(α) for the first theorem.

Theorem 1. For the exploitable program α with memory sequence of atomic
instructions: a1; a2; . . . ; an and with adversary’s intended computation sequence
of β of atomic actions b1; b2; . . . ; bm, a computation sequence of α that includes
the partial computation sequence ak; b1 then Int(α) =⇒ [ak; b1]⊥, where 1 ≤
k ≤ n and ak ∈ SQ ∪ DJ ∪ CB.

Proof. For computation sequence ak; b1 we have one of the following (A2):

1. ak ∈ SQ which always satisfies sk+1.pc = sk.pc + 1:
– for k < n: ak and b1 are in consecutive memory locations (SQ property)

which implies b1 = ak+1 ∈ α (violates Int(α) A1)
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– for k = n: an = halt and an /∈ SQ ∪ DJ ∪ CB ∧ [halt; b1]⊥ (A4, and
definition of halt)

2. ak ∈ DJ which always satisfies sk+1.pc = w′:
– w′ = w ∈emb ak (part of ak is overwritten with w′ to point to b1, violates

Int(α) A1)
– w′ = w hence Mem(w) = b1 = ay ∈ α (ay is overwritten with b1 violates

Int(α) A1)
3. ak ∈ CB which always satisfies sk+1.pc = w′ ∨sk+1.pc = sk.pc+1 and implies

ak+1 = b1 ∨ Mem(w) = b1:
– k < n implies ak and b1 are in consecutive memory locations and b1 =

ak+1 ∈ α (violates Int(α) A1)
– k = n, an = halt and an /∈ SQ ∪ DJ ∪ CB ∧ [halt; b1]⊥ (A4 and definition

of halt)
– Mem(w′) = b1:

• w′ = w ∈emb ak (ak is overwritten to point to b1 violates Int(α) A1)
• w′ = w hence Mem(w) = b1 = ay ∈ α (ay is overwritten with b1

violates Int(α) A1)

The second theorem states that if a program contains an indirect jump
instruction the integrity property is necessary but not sufficient to prevent a
control flow hijack attack. Additional checks must be performed to prevent such
attacks.

Theorem 2. For the exploitable program α with memory sequence of atomic
instructions: a1; a2; . . . ; an with adversary’s intended computation sequence of β
of atomic actions b1; b2; . . . ; bm, a computation sequence of α that contains the
partial sequence of ak; b1, and Int(α′) ≡ ∧x=1..mInt(libx) then:(
Int(α) ∧ Int(α′)

)
∧

(
(k, ε) ∈ AC ∨ (z, ε, ξ) ∈ RM

)
=⇒ [ak; b1]⊥, where

1 ≤ k ≤ n and ak ∈ IJ .

Proof. For computation sequence ak; b1 where ak ∈ IJ which always satisfies
sk+1.pc = sk.Reg(rs), we have one of the following (A2):

1. Decode(ak) = jmp rs then:
– Reg(rs) = fj violates (k, fj) ∈ ACα∨α′ (protected by A3)
– Reg(rs) = fj implies b1 = ay ∈ α∨α′ (ay the beginning of fj is overwritten

with b1 violates Int(α) ∧ Int(α′) A1)
Hence:

(
Int(α) ∧ Int(α′)

) ∧ (k, fj) ∈ ACα∨α′ =⇒ [jmp rs; b1]⊥.
2. Decode(ak) = ret rs then:

– (Reg(rs), fj , pc) /∈ RM which implies either
(Reg(rs), fj) /∈ ACα ∨α′ , (unauthentic call to local or library function)
or (fj , pc) /∈ RPα ∨α′ , (unregistered return from local or library function)

– (Reg(rs), fj , pc) ∈ RM implies b1 = az ∈ α ∨ α′ (az is overwritten with b1
violates Int(α) ∧ Int(α′) (A1)

Hence: A1 − A3 ∧ (z, fj , ξ) ∈ RM =⇒ [ret rs; b1]⊥.
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4 Related Work

Preventing the execution of malicious code has long been the interest of research
in computer security and the statistics of the reported vulnerabilities that could
lead to arbitrary code execution [32] shows that it is still a significant problem.
The focus of the research in this area is on two requirements of malicious code
execution: the existence of vulnerabilities and their exploitation. There is a sig-
nificant body of work regarding the detection and removal of the vulnerabilities
using formal and informal techniques as well as changing high level programming
languages or machine language aspects that are susceptible to errors.

The other trend of research focuses on preventing the exploitation. The work
of Abadi et al. [19,20], referred to as classic CFI, is a formally described counter-
measure that has clear and precise assumptions and well defined attack model.
In this technique valid destinations of indirect jump instructions comprised of
the start of functions and the instruction after a function call are preceded with
unique labels and each jump instruction is preceded with code that verifies the
label of the target. This is done by code rewriting and the association of the
labels and verification code is based on a static CFG that is generated before-
hand. The reliance on static CFG could be more permissive as it may contain
edges to multiple destinations from a common source (e.g. return from a func-
tion that is called several times). Using multiple labels, classes of equivalent
labels and code duplication are some of the discussed methods to address such
difficulties where use of equivalent classes introduces imprecision [20].

Other variations of CFI in the literature can be categorized in two broad
classes: Coarse-Grained (CG) and Fine-Grained (FG). Burow et al. provide an
in-depth analysis of proposed CFI policy enforcements in the literature and have
developed a scoring system based on various aspects such as supported direction,
precision of the static analysis for forward and backward edges, performance, and
supported control flow types [23].

4.1 Coarse-Grained CFI

In CG schemes a trade-off is made between the accuracy of the enforced CFG
and the efficiency of implementation [21,33]. In this approach the equivalent
classes are divided into two or three generic classes and a layer of indirection is
added using target tables or trampolines [34–36]. The use of limited number of
equivalent classes increases the efficiency of the implementation at the cost of
its security. The effectiveness of the implementation is generally measured by a
proposed metric called Average target or gadget Reduction (AIR) [37], where as
discussed by Carlini et al. [22], the best techniques can achieve a score around
99% leaving %1 of non-negligible potential targets. To address the inaccuracy of
AIR which does not take into account the number and size of equivalent classes,
Burow et al. propose a quantitative measure equal to the number of equivalence
classes, where the higher number signifies higher precision, multiplied by the
inverse of the size of the largest class, where the larger class shows lower preci-
sion [23]. Neither AIR nor the metric of Burow et al. can provide any measure
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of the usefulness of the reachable targets to the attacker, meaning that there
could be dangerous code among the reachable targets [22,23]. It is shown that
CG solutions could result in more permissive control flow transfer and are still
vulnerable to code reuse attacks [22,38,39]. The analysis of Burow et al. [23]
assign the same scores for the precision of the forward edge to [29,34–37,40–46]
for using ad-hoc and heuristic algorithms, context and flow insensitive analysis,
or limited equivalence classes [23].

4.2 Fine-Grained CFI

In FG methods the equivalent classes for labels more accurately follow the gener-
ated CFG compared with CG schemes. The proposed FG approaches may differ
in the techniques used in generating CFG but use similar guards as classic CFI
to protect forward edges of CFG and shadow or dual stack to protect backward
edges for return instruction [47,48]. This subclass can be further divided to for-
ward and backward edge where some of the work in the literature only focus on
either forward or backward or may provide different precision for each.

The qualitative analysis in [23] assigns a higher score than methods discussed
in Sect. 4.1, for a more precise class-hierarchy analysis for the forward edge to
[27,28,49–51]. The work in [30] receives a slightly higher score for producing a
more precise target list for forward edge classified as context- and flow-sensitive
analysis. Higher scores are assigned to [33,52–55] for context and flow sensitive
analysis in determining the valid list of destination for indirect change in flow of
execution.

Modular CFI also addresses the dynamic linking problem of classic CFI by
using ID tables that can be updated at run-time [33]. Practical Context-Sensitive
CFI performs a context-sensitive analysis to determine the valid destination for
code pointers and implements the CFI policy by monitoring Last Branch Reg-
ister (LBR) and verifying a given path using the generated CFG [56], however
is limited by hardware resources and the scope of analysis [23]. Cryptograph-
ically enforced CFI generates Message Authentication Code (MAC) for return
addresses, pointers to frames, functions, and virtual tables and exception han-
dlers when these pointers are stored and the MAC is verified when the pointer is
loaded [54]. Per-Input CFI [57] starts with a minimal active edges and adds the
edges to an Enforced CFG based on the program input and the static CFG to
reduce the set of reachable targets within the executable code, however the set
grows over time which makes more edges available than intended. This method
receives the highest score in Burow et al. qualitative analysis for the precision
of the forward edge due to the dynamic enforcement of the policy as well as the
highest quantitative security measurement [23].

The shadow stack is considered an ideal backward edge protection mechanism
in the literature [22,23]. Various methods use the shadow stack in their imple-
mentation such as [20,40,58]. A hardware-assisted mechanism called HAFIX
for backward edge protection is proposed in [50] that can improve the perfor-
mance compared to software solutions. Theodorides and Wagner in [59] study
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and discuss the vulnerabilities of HAFIX that would allow returning to an active
set of functions on the call stack.

In theory FG policy could be exploited as it introduces a level of inaccuracy
or over-approximation [22,60] by using equivalent classes for labels which put
various destinations in one group of valid addresses. The adversary needs to find
only one chain of function calls and returns using the valid addresses at each
step that satisfies the CFI policy and is suitable to launch an attack.

The proof of the classic CFI relies on the fact that all of the valid destinations
have a unique label and the verification code is embedded before all of the
indirect jump instructions. Both CG and FG methods relax this rule with use
of equivalent classes with different level of accuracy to address the efficiency
and practicality problem of the original work. This violates the very rule that
supports the proof of CFI and weakens these schemes.

5 Conclusion

The flexibility of change in flow of execution in machine language allows an
adversary to launch powerful exploitation. Imposing proper conditions on these
types of instructions in machine language will help reduce the existing gaps
between high level programming languages and the machine language which will
result in stronger security guarantees. We have developed a formal basis for a
fully precise dynamic CFI enforcement to counter control data attacks leading to
control flow hijack. We have presented the proof of this scheme in two theorems.
Any implementation that can provide the specified verification can achieve the
security assurances that our theorems provide.

The CFI method proposed by Abadi et al. [19] provides a formal treatment
for this problem however poses practical restrictions on function returns. These
difficulties in following the rules of the classic CFI has led to the relaxation and
over-approximation of the rules that were used in the proof of the formal work.
CG implementations, which trade accuracy of CFG with efficiency, are shown
to be broken [22,38,39] and FG methods although more restrictive still leave a
small but not negligible imprecision by using equivalent classes [22].

Our work addresses the difficulties of the classic CFI in a formal framework
which has been omitted in all of the works focused on implementation. The focus
of our approach has been on providing the formal work to prove the correctness
of the scheme and to express the required conditions and the scope and capability
of the provided solution.

As it has been discussed in the literature even a fully precise static CFG
cannot prevent certain types of attacks. Our method provides a fully precise
dynamic CFI enforcement which is more accurate than a fully precise static
CFG combined with shadow stack. It is worth mentioning that our approach
cannot protect against control flow bending that uses a valid edge with corrupted
data. The third defined type of attack is information leakage which cannot be
prevented in our scheme if it does not involve control flow hijack. We argue that
the last two types of attack cannot be prevented using CFI techniques if the
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rules of an ideal CFI policy is not violated and would require different protective
measures such as data integrity or confidentiality policy enforcements.

We leave the implementation of our model for the future work, however some
of the proposed approaches can be used in partial implementation of our model
provided that the rules are not relaxed.
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Abstract. Android malware vendors profit by “piggybacking” on legit-
imate applications (or simply apps) and inserting malicious code that
can steal users’ sensitive data or display unsolicited advertisements. A
piggybacked app is a repackaged legitimate app with extra code that
can perform malicious acts after installation. Many researchers have put
effort into signature schemes for malware detection and to develop obfus-
cation techniques to mitigate the effects of piggybacking. However, lit-
tle has been done to protect apps after their installation. In particu-
lar, the cache, where the app actually runs, is vulnerable to tampering.
Cache tampering allows for the same behavioral changes as piggyback-
ing. Cache loading process of Android Runtime (ART) can be exploited
by cache tampering attacks without rebooting the device. In this paper,
we introduce an approach to protect apps by maintaining the integrity
of their cache. We show that cache tampering is possible and propose a
lightweight cache protection mechanism to alert users about a cache tam-
pering attack. We describe the approach in detail and present the results
of a real implementation. Our evaluation results on Android 7 (the lat-
est version at the time of this writing) show that our cache protection
system can detect the abnormal behavior effectively and efficiently.

Keywords: Android application · ART · Anti-Tampering
Mobile security

1 Introduction

Android devices remain an attractive mobile malware target in recent years [31].
Piggybacked apps are popular in third party app markets where legitimate apps
are repackaged and leveraged to make profit for attackers [1]. Some research have
been done to get apps repackaged for policy enforcement or software analysis
[7,8], but obfuscation technology applied on original apps makes repackaging
unrealistic. Also, static signature-based detection can filter out repackaged apps
with malicious features and frustrates the attempts of piggybacking [14–17]. As
attackers become more stealthier, an app’s cache may be tampered to perform
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the same malice as a repackaged app by exploiting the vulnerabilities in Android
cache mechanism [21].

Dalvik has been replaced by ART since Android 5. ART is now the default
Android Java Virtual Machine (JVM) for Android 5 and the higher versions [23].
During an app’s installation, installd triggers dex2oat compiler to create app
cache in Optimized ART (OAT) format. installd is the process in the device
to receive commands from Android framework for apps’ installation. The com-
pilation operation is time-consuming and the time depends on the size of the
app as compilation from Dalvik bytecode to native code takes time. An OAT
format file is named base.odex in a specific folder and only the app is able to
access (except root privilege). This folder is the app’s sandbox folder. When an
app starts up next time, ART will load the app’s cache file into the memory of
its own process rather than the reinstallation of the Android Package (APK) to
reduce startup time and improve runtime performance. The cache file contains
the app’s Dalvik bytecode for runtime interpretation or native code for direct
execution.

The reliance on app cache to load an app in ART may be exploited by attack-
ers. Similar to repackaging an app by modifying its source code, an app’s cache
can be delicately crafted to achieve the same objective. A cache tampering attack
can be launched without the user’s notice and without restarting the device. The
replacement of an app’s copied APK file (base.apk in the app’s sandbox folder)
is only effective after rebooting the device and then Android framework brings
notice to its user’s attention. The attack may occur even the user is careful to
install apps from Google’s official app store. Since each installed app runs in a
sandbox, the attack should break into the app’s sandbox to modify the cache.
The attack is effective when the target app’s process restarts. Hence, when the
user taps the app’s icon next time, a malign cache designed to mimic the app’s UI
may steal the user’s account information in the background. Moreover, hardened
apps are made through packing services to make reverse engineering more dif-
ficult by applying dynamic loading. However, the app’s cache can be generated
once original Dalvik EXecutable (DEX) format file is loaded dynamically [6].
Therefore, cache protection in ART is necessary.

An OAT file is large in size, e.g., YouTube’s cache file is nearly 253MB in
the device. By simply encrypting or signing the cache file into hash signature as
a secure store, performance overhead may affect the protected app due to CPU
usage for computing, extra memory and storage space, and long app loading time
that shortens device’s battery lifespan. Also, to get a signature for the whole cache
file is not necessary as not all parts of the cache are targeted by a cache tamper-
ing attack. Furthermore, protection should be applied for the vulnerable part that
can be reached by attackers to make anti-tampering more targeted.

In this paper, we attempt to provide an anti-tampering solution for apps by
protecting app cache. If a cache tampering attack happens, the original app’s
behavior will be modified without restarting the device on which the app is
running. Cache protection is able to defeat cache tampering attacks and defend
the integrity of app behavior. Our solution can be deployed easily across different
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Android ART-based platforms with little effort. App developers are able to use
our technique to protect the integrity of their apps’ behavior. In summary, we
make the following contributions:

– We perform a systematic analysis about OAT structure, factors influencing an
app’s cache file generation, and cache loading process to explore the possibil-
ities of cache protection in ART. Our findings inspire the research of Android
cache protection.

– We propose a defense mechanism for an app’s cache protection to defend
installed apps’ behavior. We launch a cache tampering attack to exploit the
vulnerability of ART’s cache mechanism that can be leveraged to tamper the
target app’s behavior. The attack is used to assess the effectiveness of our
proposed mechanism.

– We implement a lightweight Integrity Verification (IV) shared library inte-
grated into the target app in the device running Android 7 and deploy
the time-consuming secure store generation operation in a separate power-
ful server (host). On-device IV is available to detect tampering activities and
generate alerts. We also do the performance evaluation of the proposed solu-
tion that shows its effectiveness and efficiency.

The rest of the paper is organized as follows. In Sect. 2, we discuss back-
ground information about ART cache in Android 7. Section 3 introduces a gen-
eral overview of how a cache tampering attack can circumvent ART cache check
and do malice in the device. We detail our proposed system in Sect. 4 including
the implementation in both host and device. Section 5 presents the evaluation
results. After introducing the related work in Sect. 6, we conclude in Sect. 7.

2 Background

Android introduced ART in Android 4 as an option and set it as default Android
runtime to execute Dalvik bytecode in the later releases of Android. ART aims
to improve the execution performance of Android Java apps by executing native
code from base.odex instead of interpreting Dalvik bytecode. In Android 7,
an app’s compiling mode is decided by –compiler-filter option. Three compiling
modes are introduced to save power, improve runtime performance, and reduce
installation time that is mainly occupied by native code compilation on both
Android 5 and 6. They are Ahead Of Time (AOT), Just In Time (JIT), and
interpreter for Java runtime.

AOT translates Dalvik bytecode into native code during an app’s instal-
lation by the on-device compiler dex2oat, while JIT is much more flexible to
compile Dalvik bytecode at runtime. A compilation daemon is used to compile
collected classes or methods in a profile file when the device is idle and charg-
ing [24]. The profile guided compilation will store frequently executed methods
into an app’s image file (base.art), which avoids JIT compilation again [22,25].
The interpreter interprets Dalvik byte code for execution without consuming
time for compilation.
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In this section, we provide background information about Android cache
mechanism. Section 2.1 includes base.odex and base.oat loading procedure.
OAT content varies among different Android versions. We illustrate OAT file
structure in Android 7 in Sect. 2.2. Section 2.3 describes how –compiler-filter
option for dex2oat influences the formation of OAT content.

2.1 Cache File

The cache file is a special Executable and Linkable Format (ELF) file with
OAT structure and stored in an app’s sandbox folder. For example, YouTube’s
cache is /data/app/com.google.android.youtube-1/oat/arm64/base.odex
created by dex2oat compiler. /data/app/com.google.android.youtube-1 is
the app’s sandbox folder (the app’s data folder). base.odex is actually an
OAT file with .odex extension. An image file base.art in the folder consists
of compiled frequently used methods, which improves runtime class lookup
performance.

A background thread is used to collect resolved classes and methods in ART
and store indices of them in a profile file in /data/misc/profiles permanently
when they are compiled by JIT or interpreted by interpreter and accessed fre-
quently enough to exceed a threshold. The background thread is called ART’s
ProfileSaver thread [32]. The image file (base.art) is generated to store the
compilation information of frequently used methods according to the profile by
a compilation daemon triggered by many conditions, e.g., charging, idle. The
compilation information includes locations of compiled classes and methods in
the OAT file (base.odex). The compilation daemon uses dex2oat to compile
according to the records in the profile.

Figure 1 shows how ART loads cache into memory when an app runs after
its installation. For installed apps, PathClassLoader is the class loader to load
them into memory. When cache loading is invoked from Android framework, the
path of base.apk in the app’s data folder is passed to ART that tries to load
base.odex first. If base.odex does not exist, ART will roll back to load DEX
content in the APK file. If base.odex exists, ART will check the existence of
base.art and update ClassTable to accelerate linking of methods when class
linker looks up classes. ClassTable is a sophisticated structure to record already
found classes into memory. Otherwise, ART reads DEX content from base.odex
and uses DefineClass (a representation to find a class by traversing all included
Android framework’s cache) which is slower than ClassTable searching to link
classes in terms of runtime performance.

An attacker is able to exploit the cache loading process by removing base.art
that is harder to tamper and by modifying static base.odex. The operation
may incur performance penalty as ClassTable is removed. However, it is pos-
sible to get DEX content or native code from base.odex and the performance
is better than an APK’s reinstallation. A cache tampering attack is made to
remove base.art and tamper base.odex. ART will load the modified app cache
(base.odex) into the memory of the app’s process, which may modify the target
app’s behavior.
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Fig. 1. Caching loading in ART

2.2 OAT Structure

As Dalvik is the JVM on older Android releases, app cache contains optimized
DEX content. Now ART introduces OAT structure embedded in an ELF cache
file. Figure 2 shows the OAT file format where OAT occupies two segments.
oatdata in ELF’s .rodata segment stores OAT data content while oatexec in ELF’s
.text segment is filled with platform-specific native code. The native code is
generated when an app is installed and compiled by dex2oat. ART supports seven
types of instruction architectures: Mips, Mips64, X86, X86 64, Arm, Arm64, and
Thumb2. It means that cache files produced by the same Android release on
different instruction architecture platforms are different.

Four kinds of sections reside in oatdata segment: OATHeader, OatDexFile,
DexFile, and OatClass. OATHeader contains important fields like instruction set
of the device and the number of DEX structures in the cache file that is equal
to the number of classes*.dex files in the APK file. adler32 checksum in OAT-
Header specifies the checksum of the current OATHeader and all DEX content.
image file location oat checksum, the other checksum is used to verify the
legitimacy of the cache file that will be discussed in Sect. 3. key value store
specifies command line of dex2oat to create an app’s cache. The command line
involves many options like –oat-file and –compiler-filter.

OatDexFile is a small structure mainly to specify the offsets of both Dex-
File and OatClass at oatdata segment. An OatDexFile structure also contains
a checksum field (dex file location checksum) specifying the origin of the
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corresponding DexFile structure. Multiple DEX files have been supported in
Android 5 and the higher versions [26], which means that an OAT file may
contain multiple DexFile structures and thus many OatDexFile structures. For
example, there may be many DEX files in an APK such as classes.dex and
classes2.dex. We use classes*.dex to represent DEX content in an APK.

Fig. 2. App cache layout in ART

DexFile is the optimized content of classes*.dex [27]. Optimization happens
only in the bytecode section of DexFile. Optimized DEX has the same DEX struc-
ture as an APK’s classes*.dex. The checksum in OatDexFile is the same as the
CRC32 checksum of the corresponding classes*.dex, even though DEX content
is optimized and the checksum of the optimized DEX content is supposed to be
different from the checksum of the original DEX content. A DexFile structure
contains several fields such as constant string index list and method index list.
These fields help locate methods in OatClass section. If the target app’s behavior
is expected to behave differently in a cache tampering attack, bytecode in DexFile
needs to change. Our cache protection mechanism will extract the target app’s
DexFile structures from the app’s cache as DexFile reflects an attack’s modifica-
tion. DexFile content is the vulnerable part of an app’s cache file.

OatClass contains the description of one class with method locations to locate
native code in oatexec segment. An OatClass structure describes one class in each
DexFile. type in one OatClass indicates the compilation status of the class. There
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are three compilations statuses: non-compiled, some-compiled, and all-compiled.
Non-compiled means that the method is interpreted by Dalvik bytecode inter-
preter. All-compiled means that the method is compiled by AOT. Some-compiled
means that OatClass uses a bitmap to record compiled method index to locate
native code. method pointer records the offsets of methods’ native code in oatexec
segment.

2.3 Compiler Filters

The concept of compiler filter was introduced in Android 7 and will continue to
exist in its higher versions. The idea is to compile apps or framework libraries in
different modes with regard to Android runtime performance and device hard-
ware conditions. Some scenarios have to be considered like AOT compilation
consumes too much time during an app’s installation and a mobile device may
be short of space to store large cache files with compiled native code. Hence,
many compilation options are provided to expedite apps’ startup, improve user
experience and save battery and space. An app is installed with –compiler-filter
of dex2oat set to interpret-only, which removes compilation time and reduces
app installation time for better user experience. However, it sacrifices the app’s
runtime performance since Dalvik bytecode interpretation is slower than native
code execution. The selection of compiler filter options is a trade off between
app’s runtime performance, app’s installation experience, and device conditions.

There are twelve compiler filters in Android 7, while four are officially sup-
ported in Android 8 [22]. This will be discussed in Sect. 4.2. There are two
categories in terms of compilation options in Android 7: one is for system image
configuration and the other is about app compilation. In this paper, we only
discuss app compilation category that is –compiler-filter option. For example,
speed-profile takes advantage of profile-guided compilation. interpret-only
optimizes some Dalvik instructions of DEX content to get better interpreter per-
formance. speed does AOT compilation for all methods to increase app execution
speed [22,27].

DexFile in the cache is not the exact Dalvik bytecode in classes*.dex of the
APK. Different –compiler-filter options generate different cache files. For exam-
ple, verify-profile does not have DEX optimized and the cache file contains
the exact Dalvik bytecode in the APK. interpret-only, speed and space do
DEX-to-DEX optimization differently. The differences among all compiler filter
options for DEX content optimization will not be covered in this paper.

Android uses different compiler filter options to compile apps depending on
platforms’ configuration. Therefore, how an app is compiled is uncertain across
different devices. We deploy the time consuming compilation process in the host
to generate apps’ secure data (secure stores) by applying all possible compiler
filter options.
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3 Threat Model

ART checks the legitimacy of a cache file (base.odex) to ensure that the cache is
generated by dex2oat compiler. An app’s cache can be loaded into the memory
of the app’s process when an app starts up and its process is newly created.
Figure 3 shows the cache loading check in ART.

Fig. 3. Cache loading check in ART

ART calculates CRC32 for each classes.dex in the APK (base.apk) and
compares them with the checksum in OatDexFile one by one since there may be
multiple DEX files. This makes sure that the cache file is made originally from the
APK. If the check passes, image file location oat checksum in base.odex’s
OATHeader is extracted to compare with adler32 checksum in OATHeader
of on-device boot.oat (Android framework’s cache). This operation ensures
that the cache file is generated in the device. If the check passes, base.odex is
legitimate.

In Sect. 2.3, we mention that DEX-to-DEX optimization may change DEX
content in an OAT file by dex2oat. However, checksums in base.odex’s OatDex-
Files still keep the CRC32s of the original classes*.dex in the APK.

The checking process is vulnerable as checksums can be replaced by
the right ones to satisfy the check if the attacker is proficient about OAT
structure. Sabanal [21] presents an approach to launch the attack stealthily.
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Fig. 4. Cache tampering attack operation

The attacking process is shown in Fig. 4. An attacker can do reverse engi-
neering for one APK, modify the smali code (an intermediate code repre-
sentation generated by Baksmali disassembler) as desired and repackage the
modified code into app-T.apk by APK tool. base-T.odex is generated by on-
device dex2oat to get the right adler32 checksum from boot.oat in the device.
The operation can be done in the host as long as the Android Open Source
Project (AOSP) environment is built to execute dex2oat with necessary frame-
work jars in the right Android version. If dex2oat compiler is operated in the
host, image file location oat checksum of OATHeader in the newly built
base-T.odex should be replaced by the value of adler32 checksum in OAT-
Header of the target device’s boot.oat. The next step is to modify base-T.odex
with the original base.odex’s checksum of OatDexFile. At last, base-T.odex is
put into the app’s cache folder to replace original base.odex. The attacker has
to acquire access to the app’s sandbox folder by jailbreaking the device. As a
result, when the victim app starts up with its newly created process, a cache
tampering attack can be made without the user’s notice.

4 Cache Protection Approach

As the vulnerable cache exploitation is demonstrated in Sect. 3, new technology
should be explored to defeat cache tampering attacks effectively and efficiently
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and should be deployed easily across different Android platforms. In this section,
we illustrate the design and implementation of such a technology that protects
app behavior integrity by anti-tampering the app’s cache. Section 4.1 introduces
the basic concept of our proposal. We describe the compatibility for the next ver-
sion of Android 8 in Sect. 4.2. Sections 4.3 and 4.4 elaborate our cache protection
system implemented in both host and device.

4.1 Basic Idea

We assume that if an attacker can tamper the source code or smali code of
an app after reverse engineering, classes*.dex (APK’s Dalvik bytecode) in the
tampered malicious app will be different from the ones in the original APK. The
cache generated from the malicious APK by dex2oat compiler is different from
the original cache. The difference happens in the DEX content of OAT structure.
Our design goal is to get the user aware of cache tampering by making an alert.
Our implementation is forward compatible and can be updated easily as ART
changes in each Android release. We make performance affected tasks run in the
host and do not impact an app’s runtime performance too much.

Fig. 5. App cache anti-tampering

We decide to use a secure store generated in the host which is actually a
file with DEX content signature in a presumably secure format. The file will be
attached with an app as an asset. Since ART is the default Android runtime in
Android 5 and higher, an OAT file is generated as cache for booting the app
instead of re-installing the original APK each time when the app starts up after
its initial launch. The OAT file should be protected appropriately to guarantee
the app’s behavior integrity when the app boots up. We perform a lightweight
cache IV every time the app starts up. The idea is shown in Fig. 5. The cache is
base.odex, an OAT file which contains optimized DEX content [27].

App developers may apply app hardening technology to load sources at run-
time. Packing services adopt special ClassLoader to dynamically load APK to
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assure that attackers may not take advantage of the APK file. However, ART
may generate cache file for the loadee when the protected app hardened inside
a shell is loaded [6]. Hence, cache file protection is still needed.

4.2 Compatibility

Our approach is based on the latest Android release (Android 7) at the time of
this writing. In Android 8, three cache files are expected to be in an app’s cache
folder instead of two (base.odex and base.art) in Android 7. They are .vdex,
.odex and .art, while .vdex has DEX code of the APK. The method of cache
protection will be the same. We will keep an eye out for Android’s version update
and reflect the changes appropriately in our proposed system. Furthermore, four
compiler filter options will be supported officially in Android 8 rather than twelve
in Android 7. The work of these four app compilation modes are more definite
[22]. Our protection technique may be compatible with future Android releases.

4.3 Secure Store Generation

A signing system shown in Fig. 6 is designed to generate secure stores for apps.
A secure store for an app contains DEX signatures of different compiler filter
options on all possible instruction architecture platforms. The signing system
utilizes AOSP environments to build OAT files that need Android framework
jar files to link classes and optimize Dalvik bytecode inside an OAT structure.
The idea is to deploy AOSP environments in different Android versions in the
host and generate a secure store of an app for different instruction architecture
platforms such as Mips, Mips64, X86, X86 64, Arm, Arm64, and Thumb2. On-
host dex2oat compiler generates secure stores. oat2dex is implemented to extract
DEX content from an OAT file and may be compatible with different Android
versions since OAT structure evolves gradually. The host is a server with different
AOSP building environments to build framework jar files for different platforms.

Figure 7 demonstrates DEX signing and a secure store formation working
process. The signing system runs in the host to generate DEX signatures, encrypt
or hash them, and store them in a secure store. The secure store will be attached
in the target app. The signing system uses the target app as an input. In our
experiments, we use adler32 algorithm to get one signature for each DEX file
in the target APK. dex2oat built in an AOSP environment runs in the host
to optimize original classes*.dex according to different compiler filter options.
Corresponding DEX signatures will be generated for IV operation in the device.
From the experiments, we find that DEX content are different because of –
compiler-filter options. For example, DEX content in speed-profile is different
from speed and both are different from verify-profile. How compiler filters
optimize DEX is not discussed in this paper.

A secure store is organized as a map involving instruction sets, compiler
filter options, and corresponding DEX signatures. The target app will attach
the secure store and verify the integrity of the app’s cache when the app starts
up. A signing system is implemented to gather OAT files of different compiler
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Fig. 6. Signing components in the host

Fig. 7. Secure store generation process in the host
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filter options under different instruction sets. Four bytes’ signatures is used for
each DexFile in these OAT files in our experiments.

4.4 Integrity Verification

Figure 8 illustrates an app’s cache IV process. When an app is installed, Android
installd process will trigger dex2oat to create a cache file in the app’s cache folder.
The cache file is an OAT file named base.odex. oat2dex is implemented in a
native library to analyze the OAT file and extract DEX content from it. The
compiler filter option and instruction set in the OAT file can be obtained from
OATHeader. A secure store is put in the target app’s asset folder. The target
app uses the native library to generate DEX signatures and look up the secure
store to find a match with the series of DEX signatures when it starts up. If the
cache is tampered and replaced by malicious one, IV native library will check
and send an alert.

Fig. 8. Cache file IV process in the device

For example, an app owner can submit an app into our system to get a
secure store which will be attached with the app. A native shared library will
be delivered to the app owner to be integrated into the app. Both files will not
change DEX content of the app. The app will be released with a secure store
and an IV library to perform cache IV after the app is installed.

5 Evaluation

In this section, we evaluate our cache protection approach in terms of effective-
ness in fending off a cache tampering attack and the overhead it introduces on
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the utility of an app. The signing system runs on a server as secure store gen-
eration can be done in advance and without synchronizing with the app’s IV
operation (Sect. 5.1). The efficiency is measured with respect to the impacts of
IV operation on an app’s performance (Sect. 5.2).

The device we use for the evaluation is a Google Nexus 5X phone running
Android version 7.0 with kernel version 3.10.73-g43154bf. The build number
is NRD90M. Our OAT file format version is 079. Our technique also considers
compatibility for OAT different versions. The AOSP building environment in our
signing server is Android-7.0.0 r1. Our signing server runs on Ubuntu 15.04
with 250 GB hard drive and 4 GB memory.

5.1 Effectiveness

We make a cache tampering attack in the device to demonstrate the effec-
tiveness of our cache protection mechanism. The attack targets an Android
app for the experiments to show that the app’s behavior can be changed
through cache modification. The target app is implemented to show the
results of adding two numbers. TestAdd.java and MainActivity.java are
Java source code of the target app. An IV native library and a secure
store generated in the host are put in the APK. Once the target app is
installed in the device, base.odex is generated in the app’s cache folder
/data/app/com.testadd.experiment.testadd-1/oat/arm64/. base.odex is
the app’s cache used to boot the app every time when the app’s process is cre-
ated. The following target app is designed to show “9” on the device’s window
view:

Example of the target app

TestAdd.java
public class testAdd {

public int add(int a, int b) {
int c;
c = a + b;
return c;

}
}

MainActivity.java
protected void onCreate(..) {

...
testAdd t = new testAdd();
TextView tx = new TextView(this);
tx.setText(Integer.toString(t.add(4, 5)));
...

}

(The target app for addition)
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We tamper the target app behavior to do multiplication instead of addition
by modifying the source code of the method add in class testAdd. We build the
attacking app that uses on-device dex2oat to generate the attacking base.odex.
An oatparser working in the host is implemented to change the attacking app’s
cache file with the checksum in OatDexFile structures obtained from the target
app’s cache file. The operation can pass ART cache checksum check. The check-
sum can also be acquired by calculating CRC32 from classes*.dex in base.apk
that is a copy of the target APK put into the app’s data folder by Android’s Pack-
ageManagerService after the target app’s installation. The cache of the modified
attacking app replaces the target app’s cache to be base.odex in the target app’s
cache folder. When the app starts next time (app’s process is re-created), ART
will load the tampered cache, which means that the attack will be successfully
launched. The window view of device shows “20” after cache tampering.
Simple modification of the target app

TestAdd.java
public class testAdd {

public int add(int a, int b) {
int c;
c = a * b;
return c;

}
}

(Modification to do multiplication)

Figure 9 demonstrates the experiments to show the effectiveness of cache
protection. The result shows that the target app’s behavior is changed after cache
manipulation. We put the attacking app doing multiplication into the device.
The malicious base.odex will be obtained and then changed with checksum
in OatDexFile structures of the target app’s base.odex in the host. The new
base.odex will be put into the original app’s cache folder to launch the attack.
In our experiments, we use root privilege to manipulate the target app’s cache.
The malicious cache will stay effective before system upgrade that replaces all
apps’ OAT files.

Fig. 9. Experimental cache tampering attack launching process
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Cache file tampering attack can be made successfully when the checksums
in headers are tampered carefully. ART will check two kinds of checksums.
One is the checksum in OATHeader that should be equal to Android frame-
work boot.oat’s checksum to make sure that the cache file is created in the
device. The other one is in OatDexFile structures. These checksums should
be the same as the ones calculated through corresponding classes*.dex in
/data/app/com.testadd.experiment.testadd-1/base.apk.

The IV code is in a native library of the target app and it is not easy to
reverse and modify for the safety of our protection code. We assume our cache
protection code is in a safe place. When the target app starts with the secure
store, IV will generate the signature for the tampered cache and check if there
is a match with the one in the secure store with the same compiler filter option
and instruction set. If the cache IV operation finds that there is no match in the
secure store, it will send out an alert shown on the app. Since the target app’s
cache is tampered, no match will be found in the secure store.

Our signing server and the lightweight app’s cache IV operation are able to
anti-tamper and protect cache from an app’s behavior modification by alerting
users about the attack. However, if the target app has to include Google extra
libraries like com.google.android.maps.jar or other libraries not included in
AOSP, the secure store will not match cache’s signature since AOSP environ-
ment does not contain Google extra jar files. We found that both Facebook and
Amazon need to insert Google map jar as classpath (an environment path
for reference). For a target app inserted with additional Google’s jar files, we
suggest to put the jar files into our signing server to get right cache signatures.

5.2 Efficiency

A target app puts the secure store into the asset folder and adds one native
library to do IV operation. The performance impacts lie in the size of the secure
store and the native library and the execution time of IV operation.

In our experiments, we use adler32 algorithm to sign each DEX file and get
four bytes for each. Each compiler filter option occupies one byte and there
are twelve compiler filter options for dex2oat compiler. There are seven kinds
of instruction set architectures for mobile devices. It means that the size of a
secure store for seven platforms with a specific instruction set is

7 ∗ 12 ∗ (1 + 4 ∗ n)

bytes, where n is the number of classes*.dex in the target app. For example, the
size of Facebook APK is nearly 75 MB. The APK has eleven classes*.dex files.
Our signing system would produce a secure store of 3,780 bytes. The IV native
library is 739 KB. They are trivial compared to the size of an app.

In the IV native library, the additional time consumed by IV operation is
20 ms in our experiments with respect to a baseline of the app’s startup scenario.
The time is mainly spent on DEX signature generation from an OAT cache. The
time for looking up in a secure store is trivial. The adler32 algorithm is used in
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our experiments. However, more efficient hash algorithms can be explored and
applied in our cache protection system.

6 Related Work

Finley et al. [10] presented a cache cleaner to remove apps’ cache and keep
users’ privacy from being leaked. This app cache is about sensitive data from
web browsers, network connections or emails that will not change app behavior.
This kind of app data is different from Android app cache about which we are
concerned. In our paper, an app’s cache acts as an app’s execution file once
the app is installed. An app’s cache contains an app’s Dalvik bytecode and
executable instructions.

Sabanal [21] demonstrated the possibility of replacing ART generated cache
with a modified OAT file by running dex2oat in the device manually to change
the behavior of apps and the framework. The research inspired us to defend an
app’s behavior integrity from ART cache. Reference hijacking [7] exploits the
startup process of an Android app and repackages app to load malicious system
libraries without root privilege. The attack can evade the detection of static
malware analysis technology. However, our cache protection proposal can defeat
reference hijacking attack since a repackaged app will result in the modification
of an app’s cache and breach the integrity of the original app [18].

Schulz [11] proposed obfuscation techniques to build apps that need attackers’
more effort to analyze and piggyback apps [12]. Jeong et al. [13] proposed to
encrypt an app’s essential part to prevent the app’s source code from being
attacked. It makes pirating these apps more difficult, while it cannot guarantee
the consistency of the app’s runtime behavior. Packing services adopt obfuscation
technology and dynamic loading that make static analysis more difficult, while
researchers present approaches to unpack apps to dump DEX files of the apps
and make it possible for attackers to reverse engineer, modify and repackage
apps [2,6,19]. Moreover, instead of tempting users to install malicious apps,
cache tampering attacks target installed apps by modifying target apps’ cache.
Even though an attacker cannot analyze a hardened app, cache tampering allows
to modify the app’s behavior totally by replacing the target app’s cache with a
malicious app’s OAT file. The app’s runtime behavior has been modified while
the user still think the legitimate app is running in the device.

Some recent work proposed to instrument ART for apps’ monitoring.
Costamagna et al. [5] proposed a runtime injection approach in ART to monitor
app behavior but the scope of monitoring is limited. ARTDroid diverts the exe-
cution of sensitive Android APIs for an app’s behavior monitoring by method
pointer replacement in class virtual table, while the app’s exclusive methods
are obfuscated and cannot be easily tampered. ProbeDroid achieves the same
result by using ptrace mechanism (Linux Process Trace) to inject code into a
target app’s process and change the entry point of methods in the tracked app
[30]. Dresel et al. proposed an instrumentation framework in ART to get the
locations of Java classes and methods that are helpful for an attacker to control
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methods and divert their execution. However, ARTIST [3] needs to inject code
into an app and repackage the app, which breaks the integrity of the original
app and can be detected by our cache protection technique since repackaging the
target app changes the app’s cache. Backes et al. modified dex2oat and added
compilation instrumentation for ART backend compiler, which aims to track an
app’s runtime execution footprint. ARTist [4] replaces dex2oat with the opti-
mized one and updates the instrumented app’s cache, but our cache protection
may not detect such changes since backend compiler optimization impacts native
code generation instead of DEX content. These technologies can be applied to
tamper apps’ runtime behavior. The runtime instrumentation research has influ-
enced our work to prevent runtime methods from being tampered and employ
runtime protection of methods.

We develop oat2dex for extracting DEX content from an OAT file in
Android 7. Note that Chao [28] provides DEX content extraction from an OAT
structure, but it lacks the support in OAT analysis in Android 7.

7 Conclusion

We propose to mitigate the risk of the exploitation of ART cache mechanism and
thus defend app behavior integrity. We know that an app’s cache is an executable
file loaded into memory after the app is installed. A cache tampering attack can
modify cache to change an app’s behavior when the app’s process restarts. Our
solution is able to prevent a legitimate app’s behavior from being tampered by
protecting the vulnerable part of the app’s cache. In this paper, we conduct a
systematic investigation about an app’s cache by analyzing ART cache loading
process and cache structure, and by assessing the feasibility of signing an app’s
classes*.dex in the host.

We implement a lightweight and app-level cache protection mechanism
against cache tampering. We deploy time-consuming compilation process in the
host and implement an IV native library to defend app behavior integrity in
the device. The signing host applies different compiler filter options to generate
secure stores for apps. The host has to insert extra Google libraries to make sure
that right secure stores can be generated if target apps need additional Google
libraries that do not exist in AOSP. Furthermore, our experimental results show
defense effectiveness and efficiency of our proposed approach. The cache protec-
tion system is compatible with most of the recent Android versions (5 to 8).

Our cache protection technique is able to defend by alerting users about cache
tampering attacks. However, if an attack injects malicious code into an app’s
memory to control the app’s methods in ART and diverts methods’ execution
to malicious code, malice would be done once a tampered method is invoked
without restarting the app’s process [4,5,30]. For a complete Android app anti-
tampering design, defending app runtime behavior is necessary. We will extend
the app protection mechanism to handle the tampering of methods at runtime.

Acknowledgments. This project is partially funded by Mitacs Canada and Irdeto
Corporation.
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Abstract. Machine learning is widely used in malware detection sys-
tems as a core component. However, machine learning algorithm is based
on the assumption that the underlying malware concept is stable for
training and testing. The assumption is vulnerable to well-crafted con-
cept drift attacks, such as mimicry attacks, gradient descent attacks,
poisoning attacks and so on. This paper proposes an ensemble learn-
ing system which combines vertical and horizontal correlation learning
models. The significant diversity among vertical and horizontal correla-
tion models increases the difficulty of concept drift attacks. And average
p-value assessment is applied to fortify the system to be sensitive to
hidden concept drift. The experiment results show that the hybrid sys-
tem could actively recognize the concept drift among different Miuref
variants.

Keywords: Malware detection · Machine learning · Concept drift
Vertical correlation · Horizontal correlation

1 Introduction

AV-Test [1] reports that over 390,000 new malicious programs are detected every
day. The enormous volume of new malware variants renders manual malware
analysis inefficient, time-consuming. Machine learning (ML) is widely deployed
in malware detection system as a core component [2]. However, with financial
motivation, attackers keep evolving their evasion techniques to bypass or poison
ML detection models. Nowadays, over 70% of the advanced malware uses one or
more evasion techniques to avoid detection [3].

The essential assumption of ML is that the underlying malicious data dis-
tribution is stable for training and testing datasets. The assumption is right
in speech recognition, computer vision, industrial control and automation etc.
However, such assumption does not stand for malware detection because the
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malware concept is not stable but changes with time. The well-crafted malware
concept drift attacker becomes more and more popular, such as new communi-
cation channel [4–7], mimicry attack [8,9], gradient descent attack [8,9], poison
attack [10], and so on.

To build secure and sustainable detection system against concept drift attacks
is very important. In this paper, we introduce statistical p-value to combine
diverse vertical and horizontal correlation learning models. This novel system is
sensitive to hidden concept drift attacks.

Vertical correlation model focuses on the life cycle of a single malware sam-
ple, such as BotHunter [11]; while horizontal correlation learning approach builds
detection model based on the behavior similarity among a large number of mal-
ware variants, such as BotFinder [12]. There is a significant diversity between ver-
tical and horizontal correlation learning models. Vertical correlation focuses on
a set of behaviors of just one variant, while horizontal correlation focuses on one
behavior of a set of variants. By statistical learning the prediction results given
by the two diverse models, we could obtain more insights into the hidden mal-
ware concept drift. In a nutshell, this paper makes the following contributions:

– We propose a hybrid malware detection system that based on statistical
p-values, which combines two diverse ML models: vertical life-cycle model
and horizontal traffic similarity model.

– The p-value is more fine-grained than fixed threshold, which could identify
gradual moderate concept drift earlier than threshold based detection system.

– Single learning model is vulnerable to sudden drift, because single model
only observes a particular perspective of malware characteristic. Our system
contains two diverse detection model which could help each other to mitigate
sudden drift.

The remainder of this paper is outlined as follows. In Sect. 2, we present the
related works. Section 3 presents the architecture of our hybrid malware detec-
tion system, and describes each components. Section 4 presents our experiments
performed to assess the recognition of underlying concept drift. In Sect. 5, we
discuss the limitations and future work, and in Sect. 6 we summarize our results.

2 Related Works

Arce [13] pointed out that machine learning itself could be the weakest link in
the security chain. By exploiting the knowledge of the machine learning (ML)
algorithm, many well-crafted evasion approaches have been proposed to evade
or mislead ML models [14].

Botnet attackers have begun to exploit many stealthy C&C channels, such
as social network [7], email protocol [15], SMS [4] and bluetooth [5]. Kartaltepe
et al. [16] proposed social network based botnet to abuse trusted popular web-
sites, such as twitter.com, as C&C server. Singh et al. [15] evaluate the viability
of using harmless-looking emails to delivery botnet C&C message. Social network
traffic and email traffic are beyond the data collection scope of machine learning

http://www.twitter.com
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based methods, that lack of clear mitigation strategies. What makes new protocols
interesting is the introduced trusted and popular websites or email servers. First,
trusted websites or email servers have very good reputation and usually are listed
on the white list that all traffic to such website or server will not be monitored by
botnet detection methods. Second, the trusted websites or email services are very
popular and have very heavy usage volume that the light-weight occasional C&C
traffic is unlikely to be noticed.

However, the new botnets use the centralized architecture that all bots com-
municate with C&C server directly. The central C&C server is a potential sin-
gle point of failure that if the C&C server is exposed to the defender, the bot-
net is easy to be dismantled. Mimicry attack refers to the techniques that mimic
benign behaviors to reduce the differentiation between the malicious events and
benign events. Wagner and Soto [17] demonstrated the mimicry attack against a
host-based IDS that mimicked the legitimate sequence of system calls. Srndic and
Laskov [18] presented a mimicry attack against PDFRate [19], a system to detect
malicious pdf files based on the random forest classifier.

The gradient descent is an optimization process to iteratively minimize the dis-
tance between malicious points and benign points. Šrndic and Laskov [8] applied
a gradient descent-kernel density estimation attack against the PDFRate system
that uses SVM and random forest classifier. Biggio et al. [9] demonstrated a gra-
dient descent component against the SVM classifier and a neural network.

Poisoning attacks work by introducing carefully crafted noise into the train-
ing data. Biggio et al. [10] proposed poisoning attacks to merge the benign and
malicious clusters that make learning model unusable.

Therefore, malware are not stable but change with time. For machine learning
based malware detectors, they are designed under the assumption that the train-
ing and testing data follow the same distribution. The assumption is vulnerable
to concept drift attacks that well-crafted underlying data distribution is changing
with time. One of the concept drift mitigation approach is to recognize and react
to concept changes. Biggio et al. [10] proposed an adversary-aware approach to
proactively anticipates the attackers. Deo et al. [20] presented a probabilistic pre-
dictor to assess the underlying classifier and retraining model when it recognized
concept drift. Transcend [21] is a framework to identify model aging in vivo during
deployment, before the performance starts to degrade. In this paper we introduce
statistical p-values to combine vertical and horizontal correlation models to mit-
igate model aging.

3 EnsembleMalware Detection System

Driven by financial motivation, malware authors keep evolving malware perpet-
ually using evasion techniques to avoid detection, especially to bypass or mislead
widely deployed learning-based models. Many learning-based detection models
calculate a score to a new approaching sample describing the relationship between
the known malware samples and the new one. Then detectors compare the score
with a fixed threshold to make a decision if it is malicious. The threshold usually
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fits the old training dataset very well, even overfits. However, the performance
degenerates to the new ever-changing malicious dataset with time. The matching
scores of different ML models are not comparable directly, so it is difficult to work
together with each other. In this paper, we propose a hybrid malware detection
system based on statistical p-values to combine vertical life-cycle algorithm and
horizontal traffic similarity algorithm as the underlying scoring classifiers. Our
system is robust to malware gradual and sudden concept drift attacks.

Figure 1 depicts the framework which includes five components: non-
conformity measure (NCM), conformal learning, concept drift recognition. Our
system is an open system that any machine learning model based on numerical
matching scores and fixed threshold could be integrated as a NCM. The diverse
NCMs could describe the malware concepts from different perspectives. In this
paper, we select vertical correlation based classifier BotHunter and horizontal cor-
relation based classifier BotFinder as the underlying NCMs. The conformal learn-
ing component uses p-values to carry out the further statistical analysis based on
NCM scores. The p-value is more fine-grained than threshold that can used to
observe the gradual decay of detection models. P-value is comparable between dif-
ferent models, while the NCM matching scores are not comparable among different
models. The concept drift recognition component uses the average p-value (APV)
algorithm to recognize the concept drift of malware data distribution between two
different time windows.

BotHunter

Non-conformity 
Measure

BotFinder

Conformal 
Learning

Concept Drift
Recognition Concept Drift

p-value APV
Sudden Drift

Gradual Drift

Fig. 1. The framework of hybrid detection system

3.1 Non-conformity Measure

Many machine learning algorithms are in fact scoring classifiers: when trained on
a set of observations and fed with a test object x, they could calculate a predic-
tion score s(x) called scoring function. Any scoring classifiers using a fixed and
empirical threshold can be introduced into our system as a underlying NCM. Each
NCM uses different machine learning algorithm, such as classification, clustering,
to model the malware data distribution from different perspectives. Currently, we
select BotHunter and BotFinder as the NCMs. BotHunter models the malware life
cycle from the vertical perspective, while BotFinder selects time related features
and traffic volume features to build detection model from the horizontal perspec-
tive. The diversity of selected NCM increases the complexity of the successful sud-
den concept drift attack, since attackers need to obtain knowledge of more mod-
els to construct concept drift attacks than the traditional single model detection
systems.
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The input of the NCM is a known sample set and an unknown sample, and
the output is a score that describes the similarity or dissimilarity of the unknown
sample to the known sample set. This paper hybrids two different machine learning
models: BotHunter and BotFinder.

BotHunter is a multi-dialog-based vertical correlation algorithm. First, BotH-
unter establish botnet life cycle model according to the behavior sequence pattern
of botnets; Then it maps a set of host dialogues to a pre-learned life-cycle model
and calculate a score to describe how close between the dialog and the model.
When the dialog correlation algorithm shows that a host dialog pattern maps suf-
ficiently close to the life-cycle model based on a threshold, the host is declared
infected.

BotFinder is a detection method that does not require deep packet inspec-
tion. First, BotFinder groups netflows which share the same source IP, destina-
tion IP, destination port number, and communication protocol into trace; Then, it
extracts traffic volume features, such as the average number of sent bytes, the aver-
age number of received bytes, and time related features, such as the average time
interval, the average duration, and frequency calculated by Fast Fourier Trans-
formation (FFT) algorithm. BotFinder uses the CLUES algorithm to cluster the
similar traces of a botnet family, and builds detection model for each class of this
family. This method can effectively identify the botnet network traffic similarity,
and give a prediction based on the optimal threshold.

3.2 Conformal Learning

Once NCMs are selected, conformal learning component computes a p-value pz∗ ,
which in essence for a new object z∗, represents the percentage of objects in
{x ∈ C,∀C ∈ D}, (i.e., the whole dataset) that are equally or more estranged to
C as pz∗ , and we will get a number between 0 and 1. The algorithm is shown in
Algorithm 1.

Algorithm 1. P-value calculation used in Conformal Predictor
Require: Dataset D = {z1, , zn}, sequence of objects C ⊂ D, non-conformity measure

A, and new object z∗

Ensure: p-value pz∗

1: Set provisionally C = C ∪ {z∗}
2: for i ← 1 to n do
3: α ← A(C \ zi, zi)
4: end for
5: pz∗ =

|{j:αj≥αz∗ }|
n

P-value measures the fraction of objects within D, that are at least as differ-
ent from a class C as the new object z∗. For instance, if C represents the set of
malicious activities, a high p-value pz∗ means that there are a significant part
of the objects in this set is more different than z∗ with C, on the other words,
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z∗ is more similar to these malicious activities than the objects that already
marked malicious. Therefore, the prediction result based on a high p-value shows
a high credibility. P-values are directly involved in our discussion of concept drift.

The p-values are comparable for different learning models, while the NCM
scores are not comparable among different models. The p-value is more fine-
grained than threshold that is more sensitive to concept drift attacks. The con-
cept drift recognition component uses the average p-value algorithm to recognize
hidden concept drift.

3.3 Concept Drift Recognition

We use the average p-value (APV) algorithm based on time windows to recognize
concept drift attacks. We group the malware samples into different time windows
according to their time stamps in the timeline. We calculate p-values for all mal-
ware samples in a time window, and compute the APV for each time window.
Note that, the number of APVs for each time window depends on the number of
selected NCMs. In this paper, each time window has two APVs for the vertical
and horizontal NCMs respectively.

The p-values are comparable, and the APV scores are also comparable among
different time windows and even in the same window with different underlying
NCMs. The change of APV value between different time window reflects the
change of underlying malware data distribution with time that can identify grad-
ual moderate drift. In the same time window, the difference between APVs calcu-
lated from different NCMs reflect the affection of concept drift to different learning
models which could detect the sudden drift.

If the APV of a certain detection model decreases with time, it shows that
the current concept of the malware is gradually different from the old concept
learnt from previous known malware data, and indicates that the detection model
is suffering from concept drift attack. But the decay of performance may not be
observed immediately when concept drift is found, if it is a gradual moderate drift.
Only when the variation of the underlying data distribution exceeds the boundary
of the threshold, the detection model starts make poor decisions. If the APV score
does not decrease in the new time window, it means in the current time window,
the distribution of malware data does not drift from this observing perspective.

4 Experiment

In this paper, we use the public CTU dataset for our experiment that is provided
by Malware Capture Facility project1. They capture long-live real botnet traffic
and generate labeled netflow files that is publish for malware research.

To recognize the sudden radical concept drift between different botnet fami-
lies is not the focus of this paper. We plan to recognize the hidden and gradual

1 Garcia, Sebastian. Malware Capture Facility Project. Retrieved from https://
stratosphereips.org.

https://stratosphereips.org
https://stratosphereips.org
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concept drift between different variants in the same family that is not noticed by
traditional models using fixed and empirical threshold. So we select the Miuref
family for our experiment from CTU dataset, because Miuref has 4 variants and
8 different traffic records which is more than other families in the public CTU
dataset. Miuref redirects web browser to carry out click fraud or download other
malware. According to the time order of traffic records, we use V 1, V 2, V 3 and
V 4 to denote the 4 variants of Miuref, which are listed in the Table 1.

Table 1. The network traffic of 4 variants in Miuref family

CTU file name Variant Time window

127-1 2015.06.01–2015.06.07 V 1

127-2 2015.06.09–2015.07.08 V 1

128-1 2015.06.01–2015.06.07 V 2

128-2 2015.06.09–2015.07.19 V 2

169-1 2016.08.03–2016.08.04 V 3

169-2 2016.08.04–2016.08.04 V 3

169-3 2016.08.03–2016.08.11 V 3

173-1 2016.08.04–2016.08.11 V 4

According to the time stamps of each time window, we order the variants for
the experiments of concept drifting recognize and feature assessment and active
reweighting. First, we split the 4 variants into 2 time windows that V 1 and V 2
are grouped into the first time window whose malware data is collected in 2015,
and V 3 and V 4 are grouped into the second time window whose malware data is
captured in 2016.

To assess the concept drift between different time windows and from different
perspectives, we use dimension reduction algorithm tSNE [22] and statistical p-
values to see the underlying data distribution.

The tSNE is a kind of reduced dimension visualization algorithm, which maps
the multi-dimensional features to two or three dimensions. The goal of tSNE is to
make the distance similar to the elements on the low dimension remain close to
each other.

Figure 2 shows the underlying data distribution and p-value significant lev-
els of Miuref family in two different time windows for vertical correlation model.
The Fig. 2a shows the data distribution of V 1 and V 2 in tSNE space and the p-
values for each point. The labelled colors are for the various p-values that the
dark red means the point has high p-values, while the light red means the point is
far from the Miuref V 1 and V 2 variants. The Fig. 2b shows the data distribution
and p-value significant levels of all Miuref variants in the tSNE space. We can see
that from the vertical perspective, the Miuref family has very slight concept drift
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between the two time windows in different years, because the malware data dis-
tribution and p-value significant level are almost stable without much change. In
addition, the characteristics of Miuref becomes more remarkable and centralized
after absorbing the malware data of V 3 and V 4 variants captured in 2016, because
in the middle of Fig. 2a there are some points with week p-value significant level
change to be almost zero in the Fig. 2b.

(a) V 1 and V 2 (b) V 1 and V 2 and V 3 and V 4

Fig. 2. The data distribution and p-value significant level for vertical correlation model
in the tSNE space.

Figure 4a shows the changes of APVs of 4 Miuref variants for vertical correla-
tion model. All 4 APVs are at high APV level, and the APV of V 4 is even higher
than 0.8 that is consistent with the Miuref data distribution and p-value signifi-
cant levels in tSNE space. So from the vertical observing perspective, the Miuref
family data distribution has not much concept drift, and vertical correlation model
is still effective to detect Miuref variants.

(a) V 1 and V 2 (b) V 1 and V 2

Fig. 3. The data distribution and p-value significant level for horizontal correlation
model in the tSNE space.
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(a) Vertical Correlation (b) Horizontal Correlation

Fig. 4. The changes of APVs of 4 variants.

Figure 3 shows the underlying data distribution and p-value significant levels
of Miuref family in two different time windows for horizontal correlation model.
The Fig. 3a shows the data distribution of V 1 and V 2 in tSNE space and the p-
values for each point for horizontal model. The Fig. 3b shows the data distribution
and p-value significant levels of 4 Miuref variants in the tSNE space for horizontal
model. We can see that from the horizontal perspective, the Miuref family has
significant concept drift between the two time windows in different years, because
between the two subfigures, the malware data distribution and p-value significant
level are obviously changed, especially at the upper left corner in the figure.

Figure 4b shows the changes of APVs of 4 Miuref variants for horizontal cor-
relation model. We can see that the APV drops dramatically on V 4 from 0.7
to 0.4, which means that the underlying V 4 data distribution changed signifi-
cantly observed from horizontal correlation perspective. Let us understand the
concept drift from the cumulative distribution of p-values. As shown in Fig. 5,

Fig. 5. The cumulative distribution of p-values of 4 variants for horizontal correlation
model
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most p-values of V 4 data is less than 0.4, while the p-values of V 1 and V 2 and V 3
are much higher than 0.4. It can be inferred from Figs. 3, 4b and 5 that the vari-
ant V 4 is not consistent of family characteristics and V 4 data distribution occurs
concept drift.

In conclusion, concept drift is the significant factor to cause the model aging
problem. We hybrid two diverse learning models: horizontal and vertical correla-
tion model to observe malware data from two diverse perspectives. We map under-
lying malicious data to tSNE space with p-value significant levels and APV scores,
so it will be easier for us to understand and recognize concept drift attacks.

5 Discussion

In the real world, malware concepts are not stable but change with time rapidly,
so that ML models should quickly recognize and adapt to the hidden changes in
the underlying malware data distribution. There are two types of concept drift:
sudden drift and gradual moderate drift. Sudden drift means radical changes in
the target concept. Single learning model is vulnerable to sudden drift, because
single model only observes a particular perspective of malware data distribution.

To handle sudden drift, ensemble learning is needed that hybrid a set of diverse
concept descriptions. In this paper, we maintains two much diverse learning mod-
els that observe the malware data distribution from both of vertical life-cycle per-
spective and horizontal traffic similarity perspective simultaneously. The hybrid
model is robust to single concept drift attacks. In the future, we are going to intro-
duce more learning models into our system based on statistical p-value against
more and more sophisticated concept drift attacks.

The gradual moderate drift induce less radical changes than sudden drift, but
the change is more hidden and difficult to be detected. To recognize and react
gradual moderate drift, we introduce statistical p-values to enhance fixed thresh-
old. The p-value gives us the insights of the underlying malware data distribution
that is sensitive to gradual moderate drift attacks.

6 Conclusions

For the survival and financial motivation, malware keeps evolving itself perpet-
ually to introduce more and more sophisticated evasion techniques. To build a
sustainable and secure learning model, we need to quickly detect and understand
the hidden concept drift. In this paper we proposed a hybrid botnet detection sys-
tem based on statistical p-values using vertical life-cycle algorithm and horizontal
traffic similarity algorithm as the underlying scoring classifiers. This novel system
is robust to malware sudden concept drift attacks. And average p-value assess-
ment is introduced to recognize gradual concept drift before cumulative radical
drift. The experiment results show that this system could actively get insights of
Miuref family hidden concept drift.
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Abstract. Successfully employed in the industry, hardware isolation environ-
ment enhances the access control of traditional operating systems and requires
more rigorous analysis. This paper first applies the B method to the access
control mechanism formalization and proposes an extensible formal model,
which not only specifies the access control mechanism with process state
transition in Linux, but also introduces the hardware isolation description.
Consistent with program implementations, the B specifications can be animated
and verified. The proposed B model constructs a mathematical framework for
the security analysis, providing a theoretical support for mechanism enhance-
ments. All the model components are type checked by Atelier B, with 547 proof
obligations automatically generated. The current rate of model proof is 79%.
The experimental results by ProB show that there is no invariant violation or
deadlock. In conclusion, this paper presents a feasible solution for access control
mechanism formalization and verification in the embedded system design. The
access control model can be further extended and refined, with its specifications
transformed into executable codes after proved.

Keywords: Access control � B method � Formal model

1 Introduction

The rapid development of new technology makes embedded equipment increasingly
important in human life, whereas it also complexes the operating system ecology. Once
the access control module is compromised, a system will be exposed to the permission
and privacy data disclosure risk. There are two main solutions for access control
vulnerabilities: optimization of access control strategy and combination with isolated
execution environment. Most optimizations fully depend on the software, thus there are
still large software attack surfaces. The combination with hardware isolation envi-
ronment such as TrustZone [1], however, lacks a universal architecture and a formal
model to theoretically support applications. According to previous studies [2, 3], it will
be a challenging work to formalize the system with hardware isolation and keep the
formal model amended with the system. A minimal change will largely increase the
burden of proof and testing. Compared with other formal models, the B model ensures
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the consistency between abstract model and concrete implementation. The specifica-
tions can be transformed into executable codes after proved.

In this paper, we apply the B method to formalize access control mechanisms of
Linux and ARM TrustZone, conducive to security analysis and mechanism enhance-
ment. Model components are abstracted from actual entities. The proposed B model
specifies not only the access to a specific resource, but also context switch operations.
Our model combines traditional access control strategies with isolation condition,
establishing an extensible framework. The prover and checker results show that the
model is feasible for access control mechanism formalization and verification.

This paper is organized as follows. We introduce the background in Sect. 2.
Section 3 gives three basic abstract machines. The systematic access control model is
presented in Sect. 4. Section 5 shows the model evaluation results and Sect. 6 sum-
marizes the related work, followed by the conclusion in Sect. 7.

2 Background

2.1 Process Management in Linux

Operating systems generally utilize processes to manage the execution of applications.
The process management of Linux includes process creation, state transition, etc.
Distinct states and their transitions are useful abstractions for processes.

During the process lifecycle, there are three primary execution states closely related
to a certain access of a process, including running, ready and blocked. When allocated
to all necessary resources except CPU, the process is ready and awaiting execution.
Once gains CPU, it moves into running state and performs the access operation. If a
running process cannot be executed due to the temporary lack of required resources, it
will be blocked until resources are available. Considering the process interruption and
priority, realistic Linux system recognizes another three process states [4]. Traditional
Linux uses Discretionary Access Control (DAC), and SELinux integrates Mandatory
Access Control (MAC) strategies to protect applications.

2.2 TrustZone Isolation Environment

ARM Trustzone splits all the hardware and software into two distinct areas (secure
world and normal world), granting a rigorous isolation framework for secure control
solutions. The access in the system is controlled based on the isolation domain, e.g.,
secure resources cannot be accessed by normal world components [5]. Sensitive
resources should be placed in the secure world and protected by the robust processor
core. There are two main ARM TrustZone technologies applied to Cortex-A and
Cortex-M processors, offering reliable protection at all critical points1.

TrustZone introduces a secure monitor mode to control the context switch between
two isolation worlds, which is triggered by the Secure Monitor Call (SMC) instruction
or other exceptions (such as IRQ, FIQ and external Data Abort). Typically, IRQ is used

1 This paper refers to the TrustZone technology for Cortex-A processors.
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as a normal world interrupt source, FIQ as the secure interrupt. The way to enter
monitor mode and context switch is crucial for access control security [5].

2.3 B Method

B method is a state-based formal method based on the set theory and first order logic.
B defines many structures in model construction, such as MACHINE, REFINEMENT
and IMPLEMENTATION [6]. It constructs the state characteristics and behavioral
characteristics of the target system, covering the entire system development cycle.

Writing and proving formal specifications are two vital activities in B development.
The former is to establish abstract machines, which contain all the defined requirements
and will be finally transformed into a fault-free concrete model. The specification is
composed of the data, relative invariants and operations. During the construction, the
latter activity would perform lots of type checks and theorem demonstrations to prove
the correctness of formulations and the conservation of security invariants. The model
can be coded into C or Ada language after proved [7].

3 Basic Abstract Machine with the B Language

Three elementary entities are formalized as base abstract machines, which encapsulate
primary entities and provide fundamental operations.

3.1 Process Abstract Machine

In terms of access control, each process object owns its identifier, execution state and
access status. In terms of hardware isolation, each process has its security domain and
enabling tag, as shown in Table 12. The unique identifier is represented by a distinct
element of set. Operations comprise creating a process, changing states and so on.

The set PROC contains all of processes. EXE_STATE defines four execution states:
ready, run, blocked and final. There are four access statuses in AC_STATE, i.e.,
pre-access (pre), waiting for access (wait), being in access (acing) and post-access (post).

Table 1. Process abstract machine.

MACHINE Proc
SETS PROC, AC_STATE = {pre, wait, acing, post},

EXE_STATE = {ready, run, blocked, final}
VARIABLES proc, p_ac_state, p_exe_state, p_dom, p_enable
INVARIANT proc�PROC ^ p dom 2 proc ! 0::1 ^ p enable 2 proc ! 0::1^

p ac state 2 proc ! AC STATE ^ p exe state 2 proc ! EXE STATE

OPERATIONS create_proc, delete_proc, change_state, set_allp_enable

2 The abstract machine name, constants and variables are displayed in italics in this paper.
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The security domain of every process is represented by 0 or 1, where 0means secure zone
and 1 means non-secure one. Similarly, the enabling tag inflects system mode.

3.2 Resource Abstract Machine

In resource abstract machine, an object consists of the unique identifier, security
domain, available state and buffer capacity. Operations include adding an item,
changing buffer capacity and so on.

As shown in Table 2, the set RESS contains all resources, each of them in free or
full state. A relation variable res_buf is set to record buffer capability. The res_zone is
to indicate resource location in the isolated domain, either 0 (secure world) or 1 (normal
world). A resource can be accessed by a process only if their security domains match.

3.3 Control Policy Abstract Machine

DAC and MAC strategies in Linux depend on the policy inspection. The policy model
sees the process and resource abstract machine to read variables, as shown in Table 3.

The OP set defines three simple access operations: read, write and execute. Every
control policy limits a process to perform one legal operation on a resource.

4 Access Control Model Based on TrustZone Isolation

4.1 System Analysis

Our formal model aims at describing the formal specification of process access control
with hardware isolation environment. Without considering scheduling rules and the

Table 2. Resource abstract machine.

MACHINE Res
SETS RESS, STATUS = {free, full}
VARIABLES res, res_status, res_buf, origin, res_zone
INVARIANT res�RESS ^ res status 2 res ! STATUS ^ res zone 2 res ! 0::1^

res buf 2 res ! INT ^ origin 2 res ! N1. . .

OPERATIONS add_res, sub_bf, delete_res, change_status

Table 3. Access control policy abstract machine.

MACHINE Policy
SEES Proc, Res
SETS OP = {read, write, exc}
VARIABLES policy
INVARIANT policy�PROC � RESS � OP
OPERATIONS create_policy, delete_policy
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parent-child relationship between processes, we set up process queues to record every
execution state. Some state transitions are simplified in the model, e.g., a process will
be blocked directly from ready state when its requested resource is unavailable. The
continuous access is a complete cycle of a specified one-time access.

In view of hardware isolation environment, a symbolic domain attribute and some
special exceptions should be specified in the process model. The model mainly
describes the behavior of a process that encounters a certain interrupt.

4.2 Structure and Elements

Figure 1 displays the model structure. There are major attribute variables in each entity
abstract machine.

The Proc_AC model includes three basic abstract machines, using their variables
and encapsulated operations. It also encloses numerous variables relevant to the system
management, shown in Table 4. All model variables must satisfy security invariants.
For example, the established access relation must be clearly stated in the policy file.
i.e., pro ac � proc� res ^ pro ac � domðpolicyÞ:

Proc

pid

ac_state

Res

type

domain

Policy

item(<proc,res,op>)

SEES

zone

SEES

exe_state status
buffer

Proc_AC

pro_ac...

ready_procs

sys_mode

INCLUDES

INCLUDES

INCLUDES

nw_procs

Fig. 1. Structure of the process access control model.

Table 4. Variables in Proc_AC model.

Entity code Description

proc/res/policy Existing process/resource/access control policy set in the system
ready_procs A set of processes in ready state
run_procs A set of running processes (during a certain interval of time)
block_set A set of processes in blocked state
nw_procs/sw_procs Existing normal/secure process set, defined as the subset of proc
sys_mode Current system mode (i.e., normal, secure or monitor)
pro_ac A real-time access relation between a process and a resource
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4.3 Access Control Operations

The process state transition in Proc_AC merely associates with the access to certain
resources. Access-related operations comprise Pre_Access, Wait_Access, Re_Access,
Succ_Access, Fail_Access and End_Access, each of them concerning the access or
execution state of a process. Figure 2 draws the possible state transitions scenarios.

Set the initial execution and access state of a process as ready and pre. The
migrations in Fig. 2 are described as follows:

• Case 1. A process’s access status becomes wait with its execution state unchanged,
when it requests to access resources and waits for allocations.

• Case 2. Current access condition meets control policy, but the requested resource is
unavailable. Then the process is blocked, and its access status stays the same.

• Case 3. The requested resource by a blocked process becomes available, then the
process resumes executing and requests to access again, turning to case 1.

• Case 4. After the policy check, a process gains authorized access to the available
resource. The process starts running, and its access status moves into acing.

• Case 5. A process completes its access to a certain resource. Its execution state goes
into final, and access status becomes post.

• Case 6. Once access privilege checks fail, the process cannot access to target
resources. Its execution state jumps to final, with the access status returning to pre.

4.4 Context Switch Specifications

The access control with TrustZone mostly relies on the secure context switch between
two isolated worlds. Some relevant operations are clarified in Table 5.

pre

wait

Ac_state*

(1) Pre_access

post

(5) End_Access

(6) Fail_Access

(4) Succ_Access

acing

(2) Wait_access
(3) Re_access

block
ed

block
ed

ready

run

Exe_state*

(4)

(5)

(2) (3)

(6)

final

(1)

*Exe_state  -- {ready, blocked, run, final}
Ac_state -- {pre, wait, acing, post}

Fig. 2. State transition of a process in Proc_AC model.
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The synchronization of operations can be descripted according to TrustZone white
paper [5]. For instance, the core traps to monitor mode when an FIQ exception occurs in
normal world. Then the monitor saves normal world context and restores secure world
environment. After exception is handled, secure world issues an SMC to enter monitor
mode and the context is switched again, formalized as: Nw_recv_FIQ ! Moni-
tor_switch ! Delv_sw_FIQ ! Intr_SMC ! Monitor_switch ! Return_FIQ_nw. The
synchronizations are dominated by state migrations of processes.

5 Model Evaluation

5.1 Property Analysis

The B model translates all security properties of access control mechanism into either
invariants or operation conditions. The mechanism specification contains two strate-
gies: security domain based and policy based access control. For a definite access,
system model first matches the security domain of process and resource, and then
checks the policy file to make a decision. To make sure that private resources can
always be protected from non-secure processes and unauthorized accesses, there is a
pre-condition in each access-related operation, i.e., p domðprocÞ� res zoneðresÞ.

Accordingly, an invariant statement should be defined to guarantee that the security
level of process is always higher than that of resource in the existing access table, i.e.,
pro ac ½domðpro acÞ \ p dom�1½f1g�� � res zone�1½f1g� .

5.2 Model Verification

Our model development is based on Atelier B4.3, which supports the syntax and type
check, PO (proof obligations) generation, automatic and interactive prover [8]. All
model components are type checked, with 547 POs generated automatically. Table 6
summarizes the size of abstract machines, the number of POs and the rate of proofs.

Typically, the high proof rate contributes to model implementation. The results
show that 79% lemmas (434 out of 547) are proved (which is a usual proof rate in the B
development), 9 POs of them demonstrated interactively. In terms of the first B method
based process model with hardware isolation, the verification results are promising.
Actually, Atelier B automatic prover has a limited power of resolution, and it is highly

Table 5. Some operations in Proc_AC model.

Operation code Description

Occur_ir An interrupt occurs during the process execution
Nw_recv_FIQ An FIQ exception is received in the normal world
Delv_sw_FIQ The FIQ exception is delivered to the secure world
Return_FIQ_nw Normal world context restored, the original program is continued
Monitor_switch In monitor mode, the context is switched
Intr_SMC SMC instruction executed, the system comes into monitor mode
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improved with the interactive prover which can simplify the proof task with little cost.
We are now working on demonstrating remaining POs.

Moreover, we utilize ProB to automatically animate all specifications, especially the
functional operations of which the generated POs have not proven yet. ProB can also find
the deadlock and violation in security invariants and operations [9]. If there is any violation
in the pre-condition of operation, the corresponding unproven PO must not be proved.
Load all the four abstract machines into ProB and perform the model check. Table 7
displays the number of checked states and simulated transitions in the process model.

Due to the uncertainty of abstract sets (i.e., PROC, RESS), the state spaces of our
model are infinite and the explored nodes are large-scaled. As shown in Table 7, the
state space size of Proc is greatly larger than Res, because there are more abstract sets
and more possible transitions in Proc. The results show that there is neither invariant
violation nor deadlocking node in the model. The animation results cover all the
operations and guarantee that the animated system always satisfies defined properties.
Particularly, we animate context switch specifications in various cases. Take the con-
text switch from normal world to secure word for example, Fig. 3 displays the ProB
animator interface. Figure 4 is the current state graph.

Table 6. The model proving result of process model.

Machine Code size POs Proved Unproved Proof rate

Proc 88 21 21 0 100%
Res 74 46 39 7 85%
Policy 36 7 7 0 100%
Proc_AC 335 473 367 106 78%

Table 7. The model checking result of process model.

Machine Checked states Total distant states Total transitions

Proc 6562 6562 170409
Res 362 362 1595
Policy 115 115 3419
Proc_AC 38516 38516 532421

Fig. 3. The model animator interface.
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The model checker and animator allow us to visually analyze the specifications. It
can be regarded as a debug process for model development. As shown in Fig. 3, 19
operations have been executed, including a series of access control and context switch
operations. All state properties are shown to be conflict-free during the animation, thus
all state nodes in Fig. 4 are shown to be green. In summary, the verification results
show that our model is feasible for access control mechanism formalization and con-
ductive to implement a practical module.

6 Related Work

As the theoretical foundation for engineering, formal method has been studied in
operating systems. Formal verification of UNIX security kernel was pioneered by
Walker et al. [10]. Klein et al. [2] formalized the operating system kernel L4 and first
released a verifiable embedded operating system seL4. The B method also has been
utilized in the operating system modeling and verification. Hoffmann et al. [3] for-
malized application programming interfaces of micro-kernel L4 and evaluated the
technical feasibility. Chen et al. [11] applied the B method to develop a formal
operating system model called fmC/OS, including task management, task synchro-
nization and communication functions, etc. However, these models all target at the
traditional operating system without hardware isolation environment. Our model
specifically discusses the access control mechanism.

For the embedded system based on the kernel separation, Kawamorita et al. [12]
utilized the B method to the formal design of kernel part. Separation of the kernel
structure in a single CPU creates a virtual isolation environment, so the operating
system needs to provide partition-based access control, similar to the mandatory access
control mechanism based on hardware isolation. However, the management module
only considers the access control across different partitions, and has limited description
on access objects and their relationships. Compared with the module, our formal model
not only enforces policy-based mandatory access control on relevant entities, but also

Fig. 4. The current state of TZ_AC model animation (Color figure online)
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describes the general domain-based control specification. Sequence of operations
related to context switch on TrustZone isolation environment are specified as well.

7 Conclusion

This paper proposes a formal access control model, which consists of four abstract
machines and specifies access control mechanisms in both Linux and TrustZone iso-
lation environment using the B language. The model mainly formalizes the context
switch in hardware layer and two kinds of access control schemes, including security
domain based and policy-based strategies. Every model specification is abstracted from
actual entity and accords with defined security invariants. All the model components
are type checked. 547 proof obligations are generated automatically, 434 out of them
proved yet. All model specifications are animated and there is no invariant violation or
deadlock. The model verification and checker results show that our model is
well-defined and suitable for access control mechanism formalization and verification.
We are now working on proving remaining proof obligations. Furthermore, the pro-
posed B model supports the extension and consistency evaluation, which will inspire
the development of a unified security framework for embedded system.
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Abstract. For a binary code, the function-call graph (FCG) reflects its
capability, structure and intrinsic relations. In this work, we propose a
FCG matching algorithm based on Hungarian algorithm which makes
matching between graphs of large scale possible. Also, optimizations are
proposed to improve the efficiency and accuracy of FCG matching algo-
rithm. Finally, a series of experiments are conducted to show that FCG
matching is an effective method and has huge application potentiality in
software and security analysis.

1 Introduction

Graph matching aims at finding a bijective mapping that matches nodes from
different graphs. In this paper, we mainly focus on matching function-call graphs
of binary codes. Function-call graph (FCG) as a structural representation depicts
the invocation of functions in executable files intuitively [1]. Common obfuscation
of binary codes such as instruction reordering, equivalent instruction sequence
substitution and branch inversion will not cause significant changes to FCG.
Such merit makes FCG matching widely used in software and security analysis.

So far, most of fast algorithms [2,3] for graph matching and alignment only
focus on the structural feature of graphs. Although some works have taken advan-
tage of the local description [4] or signature [5] of node, they are still limited
in the context of pattern recognition. The node in FCG has various features
including mnemonic sequence, opcode sequence, function invocation, etc. Tak-
ing advantage of these features properly could achieve better FCG matching
results.

In this paper, we mainly concentrate on the FCG matching of binary codes
and its applications. The main contributions include: (1) We propose a metric to
quantify the similarity of nodes in FCG based on instruction sequences and func-
tion invocations. (2) We propose a FCG matching algorithm based on Hungarian
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algorithm [6]. (3) Optimizations of FCG matching algorithm including node pairs
pruning and forward matching are applied to improve the efficiency and accu-
racy of FCG matching algorithm. (4) We systematically investigate applications
of FCG matching in reverse engineering and software plagiarism detection.

This paper is organized as follow: In Sect. 2, we give an overview of the related
work. Section 3 describes the FCG matching algorithm based on Hungarian algo-
rithm. The results of experiments are reported in Sect. 4. Section 5 demonstrates
the effects of optimizations mentioned in Sect. 3. Conclusions are discussed in
Sect. 6.

2 Related Work

For applications of graph matching in reverse engineering, Sartipi and Kostas
(2003) modeled the software architecture recovery problem as the graph match-
ing between query-graph and source-graph [8]. Bernardi et al. (2013) introduced
an approach to detect design patterns in object oriented systems by graph match-
ing, while the detection range is limited to the patterns specifications repository
[9]. Also, graph matching can be applied to control flow graphs for constructing
control flow mapping (Nagarajan et al. 2007) [10].

Identifying similar codes in programs based on finding similar subgraphs in
program dependence graph (PDG) is presented by Krinke (2001) [11]. Silvio and
Yang (2013) developed a online web service that identifies the similarity between
executables based on the control flow graph of each binary [12]. For Android apps,
the geometry characteristics of their control flow graphs can be used to detect
cross-market app clone on five markets within an hour (Chen et al. 2014) [13].

3 FCG Matching Algorithm

Definition 1. (Function-call graph) a directed graph G(V,E), where node n ∈
V represents the function in program and edge 〈u, v〉 ∈ E represents node (func-
tion) u calls node (function) v.

The process of FCG matching algorithm is illustrated in Fig. 1. Section 3.1
introduces the computation of node similarity. Hungarian algorithm and opti-
mizations of FCG matching algorithm are discussed in Sects. 3.2 and 3.3.

3.1 Node Similarity

Instruction Sequence Similarity. Sequence alignment technique has been
used to quantify and visualize the similarity between sequences [14]. In order
to compute the similarity of instruction sequences, mnemonic, an abbrevia-
tion for instruction operations, is extracted from every instruction to construct
mnemonic sequence.N -gramanalysis is applied to collect different subsequences of
mnemonic. Then, we project them into a small set of natural numbers by hashing.
The instruction sequence similarity of node n1 and n2 is defined as follow:
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Fig. 1. Process of FCG matching algorithm

ws(n1, n2) =
|A ∩ B|
|A ∪ B| (1)

where A, B are the hash value sets of node n1, n2.

Function Invocation Similarity. The definition of function invocation simi-
larity is based on the difference in number of calling functions and called func-
tions. Generally, the function invocation similarity of node n1, n2 is defined as
below:

wr(n1, n2) =
1
2

(
min {p1, p2}
max {p1, p2} +

min {q1, q2}
max {q1, q2}

)
(2)

where p1, p2 represent the number of calling functions of node n1, n2 and q1, q2
represent the number of called functions.

Based on the instruction sequence and function invocation similarity, node
similarity of node n1, n2 is defined as follow:

w(n1, n2) = pws(n1, n2) + qwr(n1, n2) (3)

where p, q are the weights of ws, wr and p+q = 1. By default, p = q = 0.5 in this
work, which means those two kinds of similarities are of the same importance in
computing node similarity.

3.2 Hungarian Algorithm

In the description of Hungarian algorithm, we will use a similarity matrix in
Fig. 2 which consists of the node similarity of nodes from different FCGs. The
weight of edges in weighted complete bipartite graph B, the input of Hungarian
algorithm, correspond to elements in similarity matrix. Node xi in partition
X of B is connected with every node yj in partition Y by gray dash lines in
Fig. 2 which means that these nodes are not matched yet. This completes the
preliminary preparation of algorithm.
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The algorithm initializes the labels of nodes with l0 in line 3 for do-while
loop from line 4 to line 8, shown as below.

l0(u) =

{
max
v∈Y

w(u, v) , u ∈ X

0 , u ∈ Y
(4)

The do-while loop consists of marking subgraph, finding maximum weight
matching and updating label and will not stop until all the nodes in bipartite
graph B are connected by red solid lines which represent the maximum weight
matching we are searching for.

Fig. 2. A simple example of finding FCG matching by Hungarian algorithm

3.3 Optimizations

Node Pairs Pruning. The length of instruction sequence varies from tens
to thousands in fact. If the difference of two sequences is so large that it is
improper to match the corresponding nodes, computing their node similarity
precisely becomes useless and worthless. Assigning a relative small constant as
the similarity of node pairs instead will reduce the time cost. At the same time,
pruning node pairs conservatively won’t reduce the accuracy of FCG matching.
During the process of Hungarian algorithm, the assigned constant won’t bring
node pairs with large difference into the final maximum weight matching.



774 Y. Tang et al.

Algorithm 1. FCG matching based on Hungarian algorithm
1 def Main(B):

Input: weighted complete bipartite graph B(VB , EB)
Output: maximum weight matching M of graph B

2 let X, Y the two partitions of B, initial edge 〈u, v〉 ∈ EB is gray dash line.
3 initialize label l = l0
4 repeat
5 MarkSubgraph()

6 FindMaxWeightMatch(u); /* u can be any node in subgraph */

7 UpdateLabel(l)

8 until every node is connected by red solid line;

9 def MarkSubgraph():
10 let edge set E′ = {〈u, v〉|w(u, v) == l(u) + l(v), 〈u, v〉 ∈ EB}
11 draw edge 〈u, v〉 ∈ E′ with black solid line.

12 def FindMaxWeightMatch(u):
13 if u ∈ X:
14 let node set P = {v|edge 〈u, v〉 is grey dash line, v ∈ Y }
15 find node v ∈ P which is connected by ONLY black solid line and gray

dash line.
16 if node v exists:
17 draw edge 〈u, v〉 with red dash line.
18 FindMaxWeightMatch(v)

19 elif u ∈ Y :
20 let node set Q = {v|edge 〈u, v〉 is black solid line, u ∈ X}
21 find node v ∈ Q which is connected by ONLY black solid line and gray

dash line.
22 if node v exists:
23 draw edge 〈u, v〉 with red solid line.
24 FindMaxWeightMatch(v)

25 def UpdateLabel(l):
26 find one node u ∈ X isn’t connected by red solid line.
27 let node set P = {v|path consisting of black solid lines from node u to v

exists, v ∈ VB}
28 S = P ∩ X, T = P ∩ Y
29 Δ = min

u∈S,v∈Y −T
l(u) + l(v) − w(u, v)

30 for u in S:
31 l(u) = l(u) − Δ
32 for v in T :
33 l(v) = l(v) + Δ

The optimized instruction sequence similarity w′
s of node n1, n2 can be for-

mulated as follow.

w′
s(n1, n2) =

{
ws(n1, n2) , k−1 < len(n1)/len(n2) < k

β , otherwise
(5)
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where len(n) is the length of instruction sequence in node n, k is a factor of
measuring the difference in length and β is a small constant.

Forward Matching. There are two types of nodes in FCGs: external node and
local node. Only nodes of same type are allowed to match with each other in
FCG matching. Since the function name of external node is retrieved with tools
in IDA Pro, external nodes can be matched simply by function names. For local
nodes, if the instruction sequence similarity of two nodes exceeds the threshold
δH and there is no other node more similar than them, it’s appropriate to add
this match into the final results. Generally, the predetermined matching Mp is
shown as follow.

Mp = {(u, v)|name(u) = name(v), u, v ∈ Vext}
∪ {(u, v)|ws(u, v) ≥ δH , u, v ∈ Vloc}

(6)

Remove matched nodes V ′ = {u, v|(u, v) ∈ Mp} and related edges from
complete bipartite graph B and bipartite graph B′, the input of Hungarian
algorithm, is shown as below.

B′(VB′ = VB − V ′, EB′ = EB − {〈u, v〉|u ∈ V ′ ∨ v ∈ V ′})

For Hungarian algorithm’s time complexity O(n3), the reduced bipartite
graph B′ decreases n to attain efficiency. Consequently, the time cost of
Hungarian algorithm is less than the former one.

4 Applications of FCG Matching

Before the experiments, 16 pairs of active open-source programs are collected
from their homepages. Also, the instruction sequences and FCGs are extracted
from binary codes through the usage of Python APIs provided by IDA Pro
(Interactive Disassembler Professional).

The node similarities of matched node pairs can provide us some insight into
the correctness of matching results. Node pairs with high similarities are more
likely to be correct than those with low similarities. Therefore, FCG match-
ing results are quantitatively evaluated based on following node pairs’ ratio of
different node similarities:

Definition 2. (Confirmed matching ratio) ratio of node pairs in FCG matching
result whose node similarities are greater than δH , denoted by RC .

Definition 3. (Uncertain matching ratio) ratio of node pairs in FCG matching
result whose node similarities are less than δH and greater than δL, denoted by RU .

Definition 4. (Virtual matching ratio) ratio of node pairs with virtual node,
namely the counterpart of unmatched node, in FCG matching result, denoted by
RV . δL is assigned to the node similarities of pairs with virtual node.

δH is assigned to 0.9 empirically and δL is 0.1 in this work.
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4.1 Reverse Engineering

Confirmed matching ratio can reflect the amount of workloads reduced in reverse
analysis. Higher the confirmed matching ratio is, the more function pairs can
share analysis results. The analysts of programs just need to focus on these
functions that have no counterparts in reversed programs. In this experiment, we
compared our method with simulated annealing based FCG matching algorithm
proposed in Classy system [7]. The result shows in Table 1.

Table 1. Comparison of FCG matching results based on optimized Hungarian
algorithm and simulated annealing

Program Version #Node Optimized Hungarian Simulated annealing

RC Time(s) RC Time(s)

VLC 2.0.8 2.2.1 199 78.50% 0.0036 77.10% 0.0084

Pptp 1.5.0 1.6.0 342 100% 0.0037 100% 0.0044

Pageant 0.60.0 0.64.0 465 88.06% 0.021 79.63% 0.055

Sstpc 1.0.0 1.0.2 533 69.51% 0.061 60.45% 0.093

Ophcrack 2.1.0 2.2.0 559 91.60% 0.018 89.02% 0.090

Tuxpaint 0.9.15 0.9.17 683 68.71% 0.12 57.00% 0.14

Fzsftp 3.10.0 3.14 1181 92.60% 0.23 89.80% 0.84

AkelPad 4.7.3 4.9.7 1369 85.42% 0.72 74.84% 1.31

P7zip 15.9.0 16.2.0 3704 91.94% 1.58 90.39% 18.7

Emailrelay 1.3.3 1.4.0 8265 88.72% 15.89 87.72% 110.90

Notepad++ 6.9.0 7.2.0 8619 88.67% 35.36 86.23% 114.65

DevCpp 5.9.0 5.11.0 9025 99.05% 13.32 98.52% 156.00

Audacity 2.0.2 2.1.0 16214 78.54% 1102.52 67.96% 809.43

Emule 0.45.0 0.50.0 20481 68.98% 1043.55 67.27% 1746.75

Sublime 2.2.1 3.0.0 23111 62.58% 7311.41 58.77% 2784.48

Filezilla 3.17.0 3.22.2 31215 93.91% 579.39 91.11% 2436.01

In Table 1, for confirmed matching ratio RC , our method is better than sim-
ulated annealing based FCG matching, which means more workloads can be
reduced. The reason is that simulated annealing is a random process of exchang-
ing node pairs to obtain maximum weight matching and its final result is likely
to be the local maximum, while Hungarian algorithm searches for maximum
weight matching in a global view.

In most cases, optimized Hungarian algorithm is faster than simulated
annealing, while sometimes simulated annealing is more efficient. The time cost
of Hungarian algorithm is related to not only number of nodes in FCG, but also
node similarities. The process of matching two identical FCG of ten thousands
of nodes can be finished in few minutes, while it takes much longer time for
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FCGs with less similar nodes. For instance, Sublime costs two hours to complete
FCG matching, which is 12 times slower than Filezilla with higher confirmed
matching ration and more nodes. For better reduction of analysis workloads, it
is worthwhile to spend more time on FCG matching.

4.2 Software Plagiarism Detection

The plagiarized parts of suspicious software can be revealed as function pairs
with high node similarities in FCG matching. So it is possible to judge on whether
suspicious software plagiarizes the original program or not according to ratios of
different matching that are able to depict the similarity of programs as follow.

Sim(A,B) = wcRC + wuRU + wvRV (7)

where wc, wu and wv are weights of corresponding matching ratio. In order to
normalize program similarity, wc = 1, wu = 0.5 and wv = 0 in this experiment.
We investigated the reliability of FCG matching in software plagiarism detec-
tion. Obfuscated versions PSUB , PFLA and PBCF of original binary code P are
generated by code obfuscation tool Obfuscator-llvm [15]. We compared them
with original binary code. The result shows in Table 2.

Table 2. Similarity of obfuscated and original binary codes based on different node
similarities

Program p q Sim(P, PSUB) Sim(P, PFLA) Sim(P, PBCF )

P7zip 0.00 1.00 0.9993 0.9323 0.8421

0.25 0.75 0.9922 0.9174 0.7943

0.50 0.50 0.9866 0.8743 0.7373

0.75 0.25 0.9743 0.8363 0.7120

1.00 0.00 0.9710 0.8270 0.7266

Gnuplot 0.00 1.00 1.0000 0.8063 0.7658

0.25 0.75 0.9992 0.7954 0.7571

0.50 0.50 0.9968 0.7338 0.7347

0.75 0.25 0.9928 0.6596 0.7145

1.00 0.00 0.9887 0.6476 0.7166

In Table 2, column p, q represent the weights of instruction sequence and
function invocation similarity in node similarity respectively. SUB, FLA and
BCF are the abbreviations of obfuscation techniques: instruction substitution,
control flow flattening and bogus control flow.

The program similarity of obfuscated and original binary codes decreases
as the weight of instruction sequence increases. These obfuscation techniques
mainly cause the change of instruction sequence and control flow of functions,
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so the program similarity derived from FCG matching based on function invo-
cation only (p = 0.00, q = 1.00) is higher than the one based on instruction
sequence only (p = 1.00, q = 0.00). For obfuscation techniques, SUB hardly
has no impact on the function invocation of binary code, so P ’s program sim-
ilarity based on function invocation with PSUB nearly equals to 1. FLA and
BCF change the control flow graph of certain functions and reorder sequence of
instructions at the same time, while these two techniques have limited impact on
FCG. Therefore, structural features are more stable than features on instruction-
level in plagiarism detection. In general, the obfuscated binary codes still have
high similarities derived from FCG matching with original program, so the
results indirectly demonstrate the effectiveness of FCG matching in software
plagiarism detection.

5 Evaluation of Optimizations

Let k = 6 and β = δL, the time costs of computing node similarity before and
after node pairs pruning are shown in Table 3.

Table 3. Effects of node pairs pruning and forward matching

Program Version Computing node
similarity (s)

Hungarian algorithm (s)

Before After Before After

Notepad++ 6.9.0 7.2.0 68.09 50.08 50.49 35.36

DevCpp 5.9.0 5.11.0 66.35 55.75 18.10 13.32

Audacity 2.0.2 2.1.0 176.06 112.96 3709.19 1102.52

Emule 0.45.0 0.50.0 489.48 374.05 6523.80 1043.55

Sublime 2.2.1 3.0.0 575.35 383.56 14887.10 7311.41

Filezilla 3.17.0 3.22.2 909.26 601.99 4107.71 579.39

Before the execution of Hungarian algorithm, forward matching is conducted
to decrease the scale of bipartite graph by matching node pairs with high simi-
larity. Table 3 also shows the decline in time cost of Hungarian algorithm.

6 Conclusion

In this work, we presented a novel FCG matching algorithm based on Hungarian
algorithm and demonstrated its applications, but there are several limits. First,
for mobile apps in Android and iOS, methods for extracting and matching their
FCGs are different from the one that we introduced in this paper. So the FCG
matching of mobile apps can be discussed in future work. Second, there are some
limitations caused by using IDA Pro to extract features. For example, it’s hard to
identify indirect jumps in binary codes by APIs provided by IDA Pro. Therefore,
it is necessary to find or develop new tools for better software analysis.
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Abstract. One important aspect of trust is the following: when a
trusted source reports some new information, then we are likely to believe
that the new information is true. As such, the notion of trust is closely
connected to the notion of belief change. In this paper, we demonstrate
how a formal model of trust developed in the Artificial Intelligence com-
munity can be used to model the dynamics of belief on a social network.
We use a formal model to capture the preceived areas of expertise of
each agent, and we introduce a logical operator to determine how beliefs
change following reported information. Significantly, the trust held in
another agent is not determined solely by individual expertise; the extent
to which an agent is trusted is also influenced by social relationships
between agents. We prove a number of formal properties, and demon-
strate that our approach can actually model a wide range of practical
trust problems involving social agents. This work is largely foundational,
and it connects two different research communities. In particular, this
work illustrates how fundamentally logic-based models of reasoning can
be applied to solve problems related to trust on social networks.

1 Introduction

In this paper, we are concerned with formalizing the interaction between trust,
belief and social relationships in network communication. Specifically, we are
concerned with determining when an agent should believe that another has suf-
ficient expertise in a domain to be trusted, based on their own knowledge as well
as their social relationships.

Our basic approach is to frame the problem in the context of formal belief
revision operators. In this setting, domain information is encoded in a suit-
able logic and each agent has an operator for incorporating new information.
However, prior to incorporating new information, an agent must consider the
likelihood that the source has correct information. In existing work on belief
revision, the relevant notion of trust is concerned only with the expertise of the
reporting agent. In the present paper, we move these so-called trust-sensitive
revision operators to the setting of social networks. As such, we need to consider
the relations between agents in our model of trust; one agent may actually have
gleaned some expertise from a close neighbour.

c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 783–801, 2017.
https://doi.org/10.1007/978-3-319-72359-4_49
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This paper makes several distinct constributions to the existing literature on
trust for social networks. First, to the best of our knowledge, this is the first
paper that tries to apply established research on belief revision to the problem
of social network analysis. Second, we demonstrate a basic approach that allows
us to explicitly specify how trust impacts the way information is incorporated
when it is shared on a social network. We also use this approach to give a general
basis for defining the relative trust of each agent with respect to others. Finally,
while this is primarily a foundational paper, we also consider several practical
applications for our work, including trusted third-party protocols and network
communication with hardware devices.

2 Background

2.1 Belief Revision

Belief revision operators are mathematical functions that model the way that
new information should be incorporated by a rational agent. In this tradition,
there is a fixed set F of propositional variables that represent properties of the
world. Formulas over F are defined using the usual propositional connectives
¬ (not), ∧ (and), and ∨ (or).

A state is an assignment of true-false values to the variables in F. Informally,
a state represents a particular configuration of the world. A belief state is a set
of states: those that a particular agent considers to be possible. Finally, a belief
revision operator is a function ∗ that maps a belief state to a new belief state
when new information is obtained. The most influential work on belief revision
is the so-called AGM approach, in which revision operators are constrained by
a set of rationality postulates [AGM85].

In this paper, we define a report to be a set of states. Informally, a report r
is understood to be evidence that the actual state of the world is in r. An AGM
revision operator is a function that takes a belief state K and a report r as
inputs, and returns a new belief state. It has been shown that a function ∗ is an
AGM revision operator just in case the result of revision can be determined by
finding minimal states over an underlying total pre-order [KM92]. Specifically,
for every revision operator ∗, there is an underlying total pre-order ≺ such that
K ∗ r is the set of ≺-minimal states in r.

One natural example of an AGM revision operator is the Dalal operator
[Dal88]. In this case, the ordering ≺ is given by the Hamming distance between
states. Hence, K ∗ r consists of the states in r that differ from some state in K
in the values assigned to a minimal number of propositional variables. This is
not the only AGM revision operator, nor is it necessarily the most appropriate
for all applications; but it is a representative example.

The AGM approach has been highly influential in the AI literature, with
connections to modal logics [vB07], non-monotonic reasoning [KI03], and infor-
mation security [HD07].
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2.2 Modelling Trust

The notion of trust is key to many problems in security, including the develop-
ment of reputation systems where agents are trusted based on past actions and
reports [HJS06]. Such models are not only concerned with accurately profiling
the reliability of agents, but they are often concerned with defending against
deceptive agents [SAW09]. Hence, trust is tied closely to notions of honesty in
communication.

However, the notion of trust we are concerned with in this paper is not explic-
itly related to deception. Instead, we are concerned with knowledge-based trust.
That is, we are concerned with trust relationships that are based on the perceived
expertise of other agents. This notion of trust is explored in [HB15], where a for-
mal model is used to represent the factual distinctions that another agent can be
trusted to make. For example, while an automechanic is trusted over information
related to cars, they may not be trusted with regards to financial markets.

A trust-sensitive belief revision operator is a special revision operator that
takes into account the trust one agent holds in another. Trust is defined in terms
of a trust partition Π, which is just a partition over the set of all states; so Π(s, t)
holds just in case s and t are in the same cell of the partition. We write Π[t] as
a shorthand for {s | Π(s, t)}. Each agent associates a trust partition with every
other agent: we write ΠA

B for the partiion that agent A associates with agent B.
We assume that each agent has a fixed belief revision operator ∗ for incor-

porating new information (again provided in the form of a report). Let Bel(A)
denote the belief state held by A, and suppose that A receives the report r from
B. Note that it does not make sense for A to simply calculate Bel(A)∗r, because
the agent B is not completely trusted. Instead, the new belief state for A should
be determined by the new operator ∗AB defined as follows:

Bel(A) ∗AB r := Bel(A) ∗ ΠA
B (r).

In other words, A considers the report r to be evidence for every state that B can
not distinguish from an element of r. The basic idea is shown Fig. 1, where we
can see that the report r is transformed to a different report r1 prior to revision;
intuitively, r1 captures the part of r that is trusted to be correct.

K r

r1

K ∗ r1∗

Fig. 1. Trust pre-processing

We illustrate with a simple commonsense example.
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Example 1. Suppose that Alex (A) is a car owner and he takes his car to be
inspected by a mechanic (M). After the inspection, M tells Alex two things:

– Your car needs a new engine. (E)
– You should not drink diet soda. (¬D)

Formally, the report that Alex receives is r = {s | s |= E ∧¬D}. But it would be
a mistake to revise directly by this report, because Alex has no reason to trust M
on nutritional advice. A better model for this example would use the partition
ΠA

B with two cells: {s | s |= E} and {s | s |= ¬E}. This partition indicates that
Alex trusts M to distinguish between states only based on the condition of the
car engine. In this case

Bel(A) ∗AB r

will only include states where E is true. However, this new belief state will
include states where D is true and also sates where it is false. Essentially, the
trust-sensitive revision allows Alex to ignore the part of the report where M is
not trusted.

3 Framework

3.1 Social Networks

We start with a formal definition of a social network.

Definition 1. A social network is a triple 〈A,E, ω〉, where:

– A is a finite set of agents,
– E ⊆ A × A,
– ω : E → Z+,
– ω(a, a) = 0 for all A ∈ A.

Informally, E is a relation that captures a social relationship between agents, and
the weight assigned to an edge (a1, a2) is a measure of strength of the relation-
ship. Higher weights represent weaker relationships. As a result, the strongest
weight is 0 and this is assigned to all self loops.

This definition of a social network is similar to those used in the literature
on coalition analysis, such as [SHKW14]. The main difference is our use of the
natural numbers for strengths. Our choice here has been made to maintain con-
sistency with standard work in belief revision, where natural numbers are often
used in this manner to capture strength of belief.

3.2 Trust Scenarios

In this section, we introduce the main technical tool that we use in the rest of
this paper. We assume an underlying propositional signature F. The set of states
over F is denoted by S = 2F. The set of belief states is denoted by 2S.
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Definition 2. A trust scenario T is a tuple T = 〈A, B,R, T,E, ω〉, where:

– 〈A,E, ω〉 is a social network,
– B : A → 2S,
– R maps each A ∈ A to an AGM revision operator ∗A,
– T maps each pair of agents (A,B) to a partition ΠA

B over S.

The belief function B maps each agent to a belief state, the revision function
R maps each agent to an AGM revision operator, and the trust function T maps
each pair of agents to a trust partition. Hence, a trust scenario is essentially just
a social network, along with the formal machinery needed to do trust-sensitive
revision. We will demonstrate that combining these elements actually allows
us to define more powerful forms of revision that take social relationships into
account.

M

A

B

D

Fig. 2. A simple network

3.3 Motivating Example

Before proceeding, it is instructive to look at a concrete, commonsense example.
We assume four agents. Alice (A) is the protagonist in the story; she will be trying
to incorporate some new information. The other agents are a mechanic (M), a
baker (B), and a doctor (D). We assume Alice is friends with the mechanic
and the baker. The baker and doctor are also friends. Hence, the social network
connecting all indivduals is given in Fig. 2. We assume that the weight on each
edge is 1.

Informally, we say that Alice trusts M about cars, she trusts B about bread,
and she trusts D about human health. It is straightforward to define a vocabulary
as well as trust partitions to capture these facts. For simplicity, assume the
vocabulary is just {broke, sick}. Figure 3 shows a plausible trust partition that
Alice might have for D. Note that the partition shows that D can distinguish
states where sick is true from those where it is not.

We would like to consider the distinction between two different scenarios for
Alice. Suppose that she receives some medical advice from a friend; for example,
she is told that a mark on her skin is an indication of some serious illness.
Intuitively, it seems that the way Alice incorporates this information will be
different, depending on which friend it comes from. It is well known that the
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∅{sick}

{broke}{sick, broke}

Fig. 3. A trust partition

notion of trust is not transitive, but that should not mean that trust is indendent
of social relationships. With this in mind, we consider two options.

1. M tells Alice that her skin symptom means she is sick.
2. B tells Alice that her skin symptom means she is sick.

In case (1), Alice has little reason to change her beliefs at all. The mechanic
is not trusted on issues of human health, and they have no friends with such
expertise either. Using standard trust-sensitive revision, Alice’s beliefs do not
change at all in case (1). Case (2), on the other hand, is more subtle. While B
has no expertise in human health, he does have a friendship with a doctor. This
suggests that it is at least possible that the medical advice being given comes
from a reputable source. It is therefore reasonable to suggest that a report from
B is more likely to influence Alice’s beliefs, based on the influence of the social
network.

The way that Alice’s beliefs change in case (2) is not obvious. The final
change depends in part on Alice’s initial beliefs, the exact trust that she holds
in other agents, and the strength of the relationships between all agents. In this
paper, we suggest that trust scenarios provide a flexible mechanism to address
all of these issues.

4 Social Influence and Belief Change

4.1 Motivation

Much of the work on trust in social networks is concerned with determining the
extent to which another agent can be trusted. We are not concerned with this
problem. Instead, we assume that we already have a model that indicates the
domains where another agent is trusted. We are concerned with how this model
of trust informs the belief change that occurs when information is received in a
social network.
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Trust-sensitive belief revision gives us a tool to incorporate new information
received from a source, while taking into account the domain where the source is
trusted. We want to extend this model slightly, to allow an agent to incorporate
trust not only in the source of new information but also trust in the agents that
are close to the source. Informally, our approach is the following. We introduce
an extra parameter n when we want to perform belief revision. We use n to
calculate a sort of “radius of trust” around the reporting agent. All of the agents
inside the radius of trust are understood to be close enough to the reporting
agent that they may have influence over the reported information. As such, we
must be concerned with the trust held in every agent inside the radius.

Our intitial approach is simply to add the new parameter n to define a graded
revision operator where the radius is actually explicit. We will see that this can
be helpful in many examples, we will provde some general results, and we will
demonstrate how we can use graded revision operators to compare the relative
trust held in different agents.

4.2 Graded Revision

In this section, we define a graded belief revision operator for trust scenarios. In
the following definition, we let ∗A(Π) denote the trust sensitive revision operator
for agent A, when using the trust partition Π for pre-processing. Also, for any
agents A,B,C, we let dist(A,B,C) denote the lowest sum of edge weights on a
path from B to C, not including A.

Definition 3. Let T = 〈A, B,R, T,E, ω〉. For each A,B ∈ A and each n ∈ N,
let

∗AB(n) = ∗A(Π)

where Π =
⋂

{ΠA
C | dist(A,B,C) ≤ n}.

What this definition says is the following. The graded revision operator of radius
n is obtained by finding all agents that can be reached by a path of weight n,
and then taking the intersection of all of included partitions. The intersection
of a set of partitions is the finest partition that can be formed. Informally, the
intersection of a set of partitions is the partition that can distinguish between
any pair of states that are distinguished by any of the constituent partitions.

We give a simple example to demonstrate the way that this definition actually
works in practice.

Example 2. Consider a case with 5 agents, A,B,C,D,E. Figure 4 gives a social
network on these agents, including weights on the edges. Suppose that we are
interested in determining ∗AB(2). In the figure, the square labelled as the trust
zone indicates the set of agents at a distances less than or equal to 2 (we previ-
ously called this the radius of trust). We have the following equality:

∗AB(2) = ∗A(
⋂

({ΠA
B ,ΠA

C ,ΠA
D}).
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A

B

D

C

E

2

1

2

Trust Zone n = 2

Fig. 4. Finding the trust zone

Note that the partition ΠA
E is not included here, because the distance from B to

E is 3. Informally, this means that the revision operator ∗AB(2) does not consider
E to be a “close enough” relative to have any influence on the trust held in B.

The previous example shows the simple calculation involved in determining
the trust partition to be used for a fixed radius. However, the end goal is actually
to determine a revision operator that can calcuate the result of belief revision.
We return to our motivating example from the previous section to show how this
revision is determined.

Example 3. We revisit the situation involving the mechanic, the baker and the
doctor. Assume that the propositional vocabulary is {broke, sick}. Intuitively,
broke is true if A’s car is broken and sick is true if A is ill in some way. Assume
that the initial belief state for A is ∅. In other words, A does not initially believe
that either broke or sick is true. Formally, we need to specify trust partitions for
A with respect to each of the other agents. The partition ΠA

D is given in Fig. 3.
The partition ΠA

M is the reverse of Fig. 3, where sick and broke are swapped.
The partition ΠA

B is the trivial partition consisting of one set containing all of
the states.

We have now specified all relevant parts of T , the trust scenario for this
problem. We want to determine the revision operators A uses for information
from B and M . To illustrate, we will determine the operators ∗AB(1) and ∗AM (1),
which take into account the social influence of agents in a radius of 1. We have
the following:

∗AB(1) = ∗A(
⋂

({ΠA
B ,ΠA

D}) = ∗A(ΠA
D).

This follows because ΠA
D is a refinement of ΠA

B . On the other hand, we have:

∗AM (1) = ∗A(ΠA
M )

because M is not related to any nodes other than A.
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In order to complete the example, we need to actually use these revision
operators to calculate the final beliefs of A. Recall that B(A) denotes the initial
belief state of A. It is easy to verify that

B(A) ∗AB (1)sick = {sick}

because the partition ΠA
D is refined enough to distinguish sick-states from non-

sick states. It is also easy to verify that

B(A) ∗AM (1)sick = ∅.

This holds because the partition ΠA
M can not distinguish sick-states. As such,

the revision is actually by the set of all states, which does not lead to a change
in belief.

The preceding example demonstrates that the relationship between B and D
actually changes the way that A revises their beliefs. Informally, since B is close
friends with a doctor, they are trusted on matters related to human health. This
is not necessarily plausible in all cases, of course; but it can be appropriate in
some applications. We remark also that this approach is very sensitive to changes
in the edge weights and the radius of trust. For example, if we change the weight
ω(B,D) to 2, then it no longer follows that A will trust B on matters of health
at radius 1. Nevertheless, this approach does capture the fact that we will trust
B over sick if the radius is set high enough. This seems reasonable. Setting a
high radius of trust is tantamount to relaxing the amount of trust required to
be convinced something is true. If we relax the required trust to be very weak,
then anyone that knows a doctor may be trusted as an authority.

4.3 Basic Properties

We refer to the operators ∗AB(n) as graded trust-sensitive revision operators. In
this section, we give some basic properties of graded trust-sensitive revision.
First, we consider some extreme cases.

Definition 4. A trust scenario T is splittable at A just in case the social net-
work component is a disconnected graph when the node corresponding to A is
removed.

A splittable scenario at A involves a network with 2 or more distinct sub-graphs
that are only connected by paths that include A.

Proposition 1. Let T be a trust scenario. If T is not splittable at A, then there
exists n such that, for all agents B, if m > n then:

∗AB(m) = ∗AB(n)

= ∗A(
⋂

({ΠA
C | C ∈ A, C = A}).
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This result captures the fact that all agents can be reached at some radius, and
the resulting partition will combine all partitions in the graph. We refer to the
operator produced by Proposition 1 as the maximum revision operator for T .
The value n is, in the worst case, the sum of all edges in the social network. In
this case, the revision operator is simply the union of all partitions for A with
respect to the other agents in A. It is worth remarking, however, that the fixed
point for agent A will generally not be the same as the fixed point for B. The
trust partitions that each agent holds are independent of those held by others.

Definition 5. Let T = 〈A, B,R, T,E, ω〉. Then T ′ = 〈A′, B′, R′, T ′,E′, ω′〉 is
a sub-scenario of T just in case:

– A′ ⊆ A
– B′ = B � A′

– R′ = R � A′

– T ′ = T � A′

– E′ = E � A′

– ω′ = ω � A′.

If the first inclusion is proper, then we call T ′ a proper sub-scenario.

For splittable scenarios, the networks can be broken into components.

Proposition 2. Let T be a trust scenario that is splittable at A. Then there
exist sub-scenarios T1, . . . , Tm that are disjoint, connected, and such that each
B ∈ A is in some Ti.

The following is an immediate consequence of Propositions 1 and 2.

Proposition 3. Let T be a trust scenario that is splittable at A, with sub-
scenarios T1, . . . , Tm. Then each Ti has a radius mi that defines a maximum
revision operator for Ti.

Hence, a splittable scenario defines a finite set of maximal revision operators.
The partitions are not necessarily related in any useful way; they are defined
from completely independent sets of component partitions.

The preceding results are concerned with what happens when we take large
values for the radius of trust. The other, natural extreme case occurs when we
set a radius of 0.

Proposition 4. For any trust scenario T and all agents A,B:

∗AB(0) = ∗AB .

Hence, if we set the trust radius to 0, then we just have the regular trust sensitive
revision operator. This means that social relationships are ignored.

Finally, it is worth noting that there is a connection with so-called selective
revision operators [FH99]. An operator ◦ is a selective revision operator if there
is an AGM revision * and a transformation function f such that, for every r:

K ◦ r = K ∗ f(r).
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Every revision operator defined through a trust partition is a selective revision
operator. As such, graded trust-sensitive revision operators are selective revision
operators, and a number of properties such as idempotence and extensionality
follow immediately. For an exhaustive list of such properties, we refer the reader
to [HB15].

5 Breadth of Trust

5.1 Comparing Sources

To this point, we have defined trust as a binary notion. An agent is either trusted
to be able to draw certain distinctions, or they are not trusted to draw them.
There is no formal notion of “strength” of trust at this stage. However, there is
a natural notion of “breadth” of trust. The following definition gives the basic
definition in the absence of a social network.

One important relationship between partitions is the notion of refinement.
In the case of trust partitions, refinement has a clear meaning. Specifically, if Π1

is a refinement of Π2, then Π1 makes strictly more distinctions than Π2. Hence,
if the partition for agent B is a refinement of the partition for agent C, then
B is trusted more broadly than C. We make this more precise in the following
definition.

Definition 6. Let A,B,C be agents and let T assign trust partitions to each
ordered pair in the usual way. We say that A trusts B more broadly than C if
ΠA

B is a refinement of ΠA
C .

Of course, in a trust scenario, the relevant partition also depends on some
radius parameter.

Definition 7. Let T be a trust scenario. We say that A trusts B more broadly
that C under radius n just in case ΠA

B (n) is a refinement of ΠA
C .

The following result specifies a case where one partition is guaranteed to be
a refinement of another.

Proposition 5. Let T be a trust scenario involving agents A,B,C. Then⋂
({ΠA

B ,ΠA
C }) is a refinement of ΠA

B .

This result is of course not really about trust scenarios or social networks; it is
a basic property of partitions. However, it is a useful property in reasoning about
trust scenarios. It simply states that increasing the trust radius always refines
the trust partition. This means that increasing the radius leads to revisions that
are more likely to actually change the beliefs of the agent under consideration.

Due to Proposition 1, there are some cases where the notion of breadth of
trust is not very interesting.

Proposition 6. Let T be a trust scenario that is not splittable at A. Then there
is some n such that ΠA

B (n) = ΠA
C (n) for all B,C.
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Hence, if the social network is appropriately connected, then there is some
radius at which every agent is equally trusted. Of course, with lower radii, this
is not the case. However, it is still the case that refinement is not always a useful
tool for comparison because some pairs are incompatible.

The best we can do for the moment is the following.

Definition 8. Let T be a trust scenario, and let n be the sum of all edge weights
in T . For each A and i < n, let Alg(A, i) = 〈A − A,�i〉 where �i is a binary
relation on A such that:

B �i C ⇐⇒ ΠA
C (i) is a refinment of ΠA

B (i).

The following result is immediate.

Proposition 7. If T is a trust scenario, then for each A and i, the relation �i

is a partial order.

Hence, each Alg(A, i) is a poset over the other agents. This finite sequence of
posets completely specifies which agents are most trusted at each radius. If B is
maximal in Alg(A, i), then we say that B is the most broadly trusted agent at
radius i. If there exists B such that B is maximal in each Alg(A, i), then we say
that B is the most broadly trusted agent for A. Such a B is not guaranteed to
exist.

5.2 A Broader Notion of Breadth

It is possible to define a total trust ordering on agents based simply on the
number of states that can be distinguished.

Definition 9. Let A,B,C be agents. We say that A considers B distinction-
superior to C if |ΠA

B | > |ΠA
C |. If |ΠA

B | = |ΠA
C |, we say B and C are distinction-

equal.

The notion of distinction-superiority is an ad hoc concept that is not always
useful in practice. The simple count of distinct cells is an indication of how
many distinctions an agent can be trusted to make, but they are not always
useful distinctions. Pragmatically, it is generally more useful to have agents that
can distinguish states based on small combinations of propositional variables.
Nevertheless, we will sometimes find the notion of distinction-superiority to be
useful.

Using this notion, we can define the analog of the posets Alg(A, i) from the
previous section. However, in this case, the algebras will not be posets; instead
they will be total pre-orders because everything is comparable. We say that B is
distinction maximal for A if B is maximal the total pre-order at radius i. Unlike
the refinement case, we are actually guaranteed to find such a maximal B at
each radius. There is still no guarantee of a global maximum across all radii.
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6 Extensions

6.1 Strength of Trust

While trust partitions can provide a useful way to define belief change on a social
network, there are also cases where it is necessary to have a precise notiong of
“strength of trust”. Towards this end, we follow [HB15], and introduce a distance
measure d on states. In this case, a large value for d(s, t) is interpreted to mean
that a particular agent is strongly trusted to distinguish the states s and t. A
small distance on the other hand means that the agent can not be trusted to tell
them apart. Using a distance on states allows us to represent differences in how
strongly an agent is trusted to draw certain distinctions.

Definition 10. A metric trust scenario T is a tuple T = 〈A, B,R,M,E, ω〉,
where:

– 〈A,E, ω〉 is a social network,
– B : A → 2S,
– R maps each A ∈ A to an AGM revision operator ∗A,
– M maps each pair of agents (A,B) to a pseudo ultrametric dAB over S.

The only difference here is that the partitions have been replaced by a pseudo
ultrametric. A pseudo ultrametric is a metric that satisfies the so-called strong
triangle inequality, and which allows distinct objects to have a distance 0 between
them.

In the case of metric trust scenarios, we can no longer use set union to model
social influence on trust. Given distance functions d1 and d2, we would like to
define a new distance function that can draw the strongest possible distinctions
from either d1 or d2.

Definition 11. Let d1 and d2 be real valued functions on S × S. The function
d1 � d2 is the following:

d1 � d2(s, t) = max(d1(s, t), d2(s, t)).

This is the natural generalization of the union over partitions.

Proposition 8. If d1 and d2 are pseudo ultrametrics, then d1 � d2 is a pseudo
ultrametric.

As noted in [HB15], the important feature of a pseudo ultrametric d is that,
for any fixed i, the collection of sets

Π(i) = {t | d(s, t) ≤ i for s ∈ 2F}

defines a partition over all states. This leads to the following parametrized
defintion.
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Definition 12. Let T = 〈A, B,R, T,E, ω〉 and suppose MIN ∈ N. For each
A,B ∈ A and each n ∈ N, let

∗AB(n) = ∗A(Π(MIN))

where Π =
⋂

{ΠA
C | dist(A,B,C) ≤ n}.

So, in the metric trust scenario, we essentially have a sequence of different revi-
sion operators. The exact operator depends on the minimum distance we set for
states to be trustably distinguished.

In the interest of space, we do not go further into the properties of metric
trust scenarios here. We simply remark that this extended framework allows us
to capture a precise notion of strength of trust over any particular statement.
This framework also offers more flexible options for defining social influence. For
example, it is well known that a constant product of a metric space is a new
metric space. Hence, we can introduce a discount function on the trust metrics
for connected nodes, thereby reducing the influence of friendships on trust in
individuals. We leave this extension for future work.

6.2 Further Applications

The main area of application here is intended to be social network analysis for
typical networks, such as those used for online communication apps. But it is
worth noting that our general approach can be applied to solve problems in other
network domains as well.

One issue that arises periodically in security is the use of trusted third par-
ties, particularly in cryptographic protocols. Consider the following exchange of
messages between A,B and T .

Simple Identity Exchange
1. A → T : B
2. T → A : K
3. A → B : {A}K

In the description of this protocol, we are adopting the notation used in protocol
verification, starting with [BAN90]. In this tradition, A → B : M means that A
sends the message M to the agent B. An expression of the form {M}K denotes
the message M encrypted with the key K. In the simple protocol above, T is
intended to represent a trusted third party.

Proving that this kind of protocol actually works can be difficult. There are
two trust issues at play. First, B must trust T to act on their behalf to share
keys. Second, A and B must both trust that T knows all the right names and
corresponding keys. This second form of trust can effectively be modelled with
trust scenarios.

Another application of interest involves representation and reasoning about
communication between humans, computers, and networked devices. In past
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A I

computer camera

Trust Zone n = 2

Fig. 5. A networked camera

work, we have looked at practical security flaws that can be exploited on net-
worked cameras [BH17]. One attack that has been identified is a simple man-
in-the-middle(MiTM) attack, where ARP spoofing is used to get the camera
to send its data to an attacking machine. The data can then be forwarded to
the correct address without modification, it can be blocked entirely, or it can
be manipulated. One particularly useful manipulation is to intercept the actual
camera data, while sending a static image on a loop. Figure 5 shows the basic
situation: A is a human agent, I is an intruder. The intruder has effectively
blocked the communication channel from the camera, and they are sending their
own images to A’s computer.

Looking at Fig. 5, it is clear that this can also be seen as a social network
by just adding weights to the edges. This kind of attack can therefore be seen
as a result of a trust violation. The human user should only trust the images
displayed on the computer if the trust radius applied is large enough to assume
the computer is an authority over the camera’s data. If the camera is connected
through a public network, this radius would need to be implausibly high to guar-
antee this condition. A formal analysis of this application using trust scenarios
would require a clear network model, as well as a suitable intruder model. In
this case, we could then provide some parametrized proof that the images from
the camera can not be trusted if they are transmitted over a wide area network.

7 Discussion

7.1 Related Work

The notion of trust has been studied extensively in social network analysis. How-
ever, most work in this area is related to one of the following: trust information
collection, trust evaluation, and trust dissemination [SNP13]. The present work
is actually not directly concerned with any of these areas. Instead, we start off
with a model of trust in individuals that has been successfully applied in the
Artificial Intelligence (AI) literature, and we demonstrate how it can be extended
to reason about trusted belief change in the context of social relationships.
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In order to relate our work to the existing literature, it is important to realize
that there are a variety of definitions of trust in the literature, depending on
the application. In the context of online interaction between individuals, trust
is often understood as the extent to which one individual can expect another
to behave as expected [RKK07,YCN+10]. But our work here is not related to
behaviour at all. We are focused more on knowledge-based trust, as defined in
[DGM+16]; that is, we are interested in determining the extent to which we
should believe another agent’s statements to be true. This is a critical problem
when obtaining information from web sources.

The emphasis in [DGM+16] is on the manner in which the truth of past
statements is used to determine whether or not an agent should be trusted in
the present. In a sense, Dong et al. are concerned with building something like
a trust partition; they define a mechanism that can be used to determine the
expertise level of an agent. The details of the mechanism are quite different, as
it is quantitative and predictive. But still, the emphasis is on building a model
of trust from data. By contrast, in the present work, we assume we already know
the domains in which each agent is an expert. The problem we address is how
this expertise impacts the process of belief change.

In the literature, the notions of trust propogation and trust composition have
been explored extensively [YSS04,ZHO09]. In our work, we take a very basic
approach to these topics by simply assuming agents within a particular radius
are highly influential. However, we remark that alternative models of propogation
would be easy to implement here. Our work can be seen as complementary to
past work in trust propogation and trust composition, as past models can easily
be tested in our logical framework.

In terms of existing models of trust, the present work is most similar in spirit
to those based on Bayesian inference [YGL13] or subjective logic [JHP06]. We
say that these approaches are similar “in spirit” because they share an emphasis
on the beliefs of communicating agents, and how trust impacts these beliefs.
However, existing belief models used in the trust literature are overwhelmingly
quantitative. On the other hand, in the AI community, there are distinct com-
munities studying belief change from a statistical perspective and from the per-
spective of formal logic. To the best of our knowledge, the present paper is the
first real attempt to use precise logical models of belief change to study trust in
the context of a social network.

7.2 Future Work

We have introduced a novel approach that applies concepts from belief revision
theory to understand trust on a social network. As this is a new approach, there
are many directions for future work. The most important direction for future
work is to apply the (largely theoretical) model presented here to case studies
and to real reasoning on social networks. Only by applying the framework in
practice will it be possible to fully evaluate the utility of our approach.

Another direction that we have left open is the complete development of the
distance-based model of trust. Just as trust partitions have been developed in
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the AI community, so too has the distance-based model. However, while it is a
simple generalization of the partition-based model of trust, it is clear that the
interaction between a distance function and a social network can be complex. In
future work, we will work out this aspect of the approach in more detail.

There is a need for more fundamental research comparing belief-based models
of trust in the social network community. As noted above, statistical models of
belief have a long history both in AI and in trust analysis for social network
analsyis. In the AI community there are subtle differences between the statistical
approach and the formal logic approach, with proponents on both sides. It would
be valuable to see if this situation is also apparent on the social network side.

As a final comment on future work, it is worth noting that the model of
a social network employed in this paper is very simple, as it involves just a
single relation. While this generic notion of “relatedness” is sufficient for some
problems, there are also cases where a set of orthogonal relations would be better.
It is easy to produce commonsense reasoning problems where this is clear. For
example, consider the difference between a friend and a teacher. While these
might both be trusted individuals, one could argue that the trust held in a
teacher is more likely to affect belief change related to academic matters. This
sort of distinction can be modelled in our framework by associating subsets of
states with different edges on the social network graph. We leave this extension
for future work.

7.3 Conclusion

In this paper, we set out to model trust and belief change on a social network. The
fundamental starting point is simply the fact that an agent should only believe
new information if the source of that information is trusted. Formal models of
belief change have a long history in the AI community. Hence it is natural to
try to bring the tools of AI to bear on modelling and reasoning about trust on
a social network.

In some ways, our work here is a direct application of an existing model of
trust-sensitive belief revision. However, the addition of a social element actually
requires some new machinery. In this paper, we suggest that social influence and
trust propogation can be handled by using a flexible, parametrized radius of
trust. We also take a reasonably optimisitic position in the sense that we trust
agents as much as possible, taking into account the best information they could
have from their social network.

While the framework here is important and useful, the fundamental contribu-
tion is the fact that we draw a connection between the belief revision community
and the social network analysis community. It is clear that agents on a social net-
work have dynamic beliefs that change in response to new information. This is
precisely the sort of problem for which belief revision operators were developed.
Moreover, at a high level, we argue that the logic-based setting of belief revi-
sion research is appropriate for analyzing security and trust on social networks.
Many problems in social network analysis require formal proofs of correctness
in order to ensure the safety and security of information. Just as formal logical
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methods have proved useful in cryptographic protocol verification, we argue that
logical models of belief change can play an important role in reasoning about
the security of social networks.
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Abstract. Owing to lack of authentication for client application (CA), tradi-
tional protection mechanism based on ARM TrustZone may lead to the sensitive
data leakage within trusted execution environment (TEE). Furthermore, session
resources will be occupied by malicious CA due to the design drawback for
session mechanism between CA and trusted application (TA). Therefore,
attackers can initiate a request to read the data stored in secure world or launch
DoS attack by forging malicious CA. In order to address the authentication
problems, this paper proposes a CA authentication scheme using ARM Trust-
Zone. When CA establishes a session with trusted application, a CA authenti-
cation will be executed in TEE to prevent sensitive data from being accessed by
malicious. At the same time, TA closes the session and releases occupied
resources. The proposed authentication scheme is implemented on simulation
platform built by QEMU and OP-TEE. The experimental results show that the
proposed scheme can detect the content change of CA, avoid sensitive data
leakage and prevent DoS attack.

Keywords: ARM TrustZone � Trusted execution environment
Identity authentication

1 Introduction

With the development of Internet and mobile terminal technology, smart phones and
Internet of Things have integrated into human life. However, the technologies bring
potential security threats when we enjoy the convenience of them. They provide a
wealth of functionality as well as an opportunity for information leakage and malicious.
Recent researches show that the overall trend of sensitive information leakage is
increasing year by year. The security of mobile terminals has caused widespread
concerns.

Constructing trusted execution environment based on ARM TrustZone provides an
effective way to protect sensitive data. At present, researchers have constructed several
trusted execution environment (TEE) and made a large amount of trusted applications
(TA) using TrustZone hardware and software isolation technology. The protected
objects by isolation technology can be divided into two categories. The one is to protect
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sensitive data and secure applications in secure domain. Yang [1] et al. presented a
fingerprint identification in TEE and encrypted the fingerprint data in safe area to
prevent the data theft and malicious damage. Zhang [2] et al. utilized TrustZone and
Cache-as-RAM technology to build CaSE, which can prevent software attacks and
hardware memory disclosure attacks effectively. The other is to protect the normal
kernel in unsecure domain. SPROBES [3] and TIMA [4] protected the kernel from
injecting malicious code through running an application in TEE to detect the integrity
and control flow of kernel.

However, the potential malicious attacks on CA will cause data leakage. Generally,
the security service request is initiated by client application (CA). After receiving the
service request, the processor switches to secure world and performs the relevant TA,
then it returns results and switches to normal world. TAs and data stored in secure
world are all encrypted and decrypted before execution, which can protect the integrity
and confidentiality effectively. Nevertheless, CAs are easy to be attacked. Shen [5]
found vulnerabilities that are able to execute arbitrarily code in secure world using a
CA in normal world. After reading the CA image, attackers can analyze the image by
reversing engineering and falsifying service request, then access the data in secure
world. Attackers can also launch DoS attack, so legitimate requests cannot be
responded.

In view of above security problems, this paper analyzes the implementation of
security service execution in detail, and proposes a CA identity authentication scheme
based on ARM TrustZone. The rest of the paper is organized as follows. Section 2
reviews the TrustZone technology, OP-TEE and SHA-1 algorithm. Section 3 describes
the threat model and assumptions. Design and implementation of identify authentica-
tion in secure world are shown in Sect. 4. Section 5 presents the evaluation results and
security analysis. Finally, Sect. 6 discusses related work, and Sect. 7 concludes.

The main contributions of this paper are:

• We propose a CA identity authentication schema based on ARM TrustZone to
detect the legitimacy of CA which initiates a service request.

• We design and implement the scheme, make several experiments on the simulation
platform built by QEMU and OP-TEE, and present the experimental process and
evaluation results.

2 Background

To protect the security of data and application, the researchers take a variety of security
measures on mobile terminals, such as access control, date encryption, and run-time
isolation mechanism. However, numerous attack cases and system vulnerabilities
indicate that the measures cannot completely guarantee the security of sensitive data.
Open Mobile Terminal Platform (OMTP) first defined the TEE in their standard. In
July 2010, GlobalPlatform first announced their own TEE standardization, including
client API, TEE internal API and TEE systems Architecture, which ensures integrity
and confidentiality of applications and data with an isolated execution environment.
ARM released TrustZone technology, which provided a practical way of TEE hardware
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implementation. OP-TEE is one of most active open source framework for the TEE
using ARM TrustZone technology, which is maintained by Linaro.

2.1 TrustZone Technology

TrustZone technology provides a system level security solution [6], which is used to
construct isolated execution environment preventing against software attacks and
low-level hardware attacks. TrustZone divides the software and hardware resources of
the system into two worlds (the normal world and the secure world). The architecture is
shown in Fig. 1.

As shown in Fig. 1, the secure world runs secure operating system, TAs and stores
sensitive data. The normal world runs common operating systems and CAs, such as
Android and Linux. The hardware isolation technology separates the two worlds and
makes the resources in secure world cannot be accessed by normal world components.
At the same time, ARM introduces a new processor mode (monitor mode) to switch the
states of the two worlds. The non-secure (NS) bit in security configuration register of
cp15 coprocessor indicates the world in which current processor running. When the NS
bit is clear, it means the processor runs in secure world. When the NS bit is set, the
processor runs in normal world. Once the normal world needs switch to secure world,
the processor enters the monitor mode firstly by secure monitor call (SMC) or interrupt.
Then, the code running in monitor mode saves the context of normal world and
changes the value of NS bit to switch to secure world. The secure world adopts the
similar method to enter normal world. If a CA running in normal world requires
security services, the processor will switch to secure world and perform the corre-
sponding security service, and then return the result to normal world.

Secure worldNormal world

Client
application

Client
application

Client
application

Trusted
Application

Trusted
Application

Trusted
Application

User User

Privileged Privileged

Kernel

Scheduler
TrustZone

driver

Kernel

Scheduler
Inter-world

IPC manager

Monitor

SMC

IRQ IRQFIQ FIQ

Fig. 1. The TEE architecture based on TrustZone
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2.2 OP-TEE

OP-TEE [7] is an open source architecture for TEE based on TrustZone technology,
which provides a clear opportunity to defragment the security ecosystem on
ARM-based chipsets. Ever since the Linaro Security Working Group was formed in
2013, Linaro and ST engineers [8] have worked together to revamp the code base, to
make it portable, and to remove any legacy or ST-specific code.

OP-TEE consists of three components: the normal world client APIs, a Linux
kernel TEE device driver and the Trusted OS. The TEE client APIs and TEE internal
APIs meet the standard of GlobalPlatform APIs specifications. The Trusted OS part is
under a BSD license, so that it can be modified without any obligation to disclose the
modifications. The abstraction of platform-specific parts in such a way that it should be
fairly easy to port OP-TEE in laboratory or incorporate it in products from different
vendors.

2.3 SHA-1

SHA-1 is a digital signature algorithm. For messages of which the length is less than
264 bits, SHA-1 will generate a 160-bit (20-byte) message digest. Any change in the
input messages, even only 1 bit, will produce a significant change in the hash value.
Two diffident messages cannot produce the same hash value by SHA-1. Based on the
above characteristics, SHA-1 is widely used in cryptography and data integrity veri-
fication, and it is an important component of security applications and protocols, such
as SSL, SSH and IPsec.

3 Threat Model and Assumptions

3.1 Threat Mode

In a TEE based on TrustZone, the CA sends parameters such as Universally Unique
Identifier (UUID) and commands to the secure world via SMC instruction when it
requests a security service. Threat model of data leakage is described in Fig. 2.

Secure worldNormal world

Attacker

Client
Application Trusted

Application

Client
Application

Private Date

Fig. 2. Threat model of data leakage
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As shown in Fig. 2, the operating system in secure world finds and loads the
corresponding TA, then creates a session between CA and TA. TA performs the
relevant service according to the delivered commands, and releases the session in the
end. Encrypted and stored in secure world, TA image will be verified before running.
Moreover, TA is protected by isolation provided by TrustZone at run time, so it is
difficult to attack TA.

However, CA runs in normal world, and it is stored in external memory. Attackers
can read CA image by exploiting system vulnerabilities and other attacks. As described
in Fig. 2, after reading CA image, attackers could obtain the UUID of TA through
static analysis, and construct malicious program to initiate a security service request.
When TA accepts the service request, it performs security-sensitive operation and
causes data leakage, such as reads key and personal privacy data.

In addition, attackers can also launch DoS attacks. After the security service request
finishes, the session created by the service request should be released. Malicious CA do
not release the session and take up it for a long time. Nevertheless, the session
resources of secure world are limited. If malicious CA initiates a large number of
session requests, it will affect the process scheduling of secure operating system and
exhaust session resources, which causes legitimate requests not to be answered.

3.2 Assumptions

The proposed solution is aimed to validate CA which prevents the attacker from
performing the following attack.

• Data leakage in normal world
• DoS attacks caused by malicious CA

Therefore, we assume that the current state of runtime system is security. The
device have adopted secure boot and other measures to guarantee the security of
runtime system. TA will read and modify sensitive data when security services execute.
Hence, the assumption is that TA is trusted, and there is no data leakage vulnerability.

4 Design and Implementation

4.1 Design

At present, the most of TEE based on TrustZone comply with the GlobalPlatform TEE
System Architecture specifications. The security service is initiated by CA and exe-
cuted by TA. The main processes are listed as follows (Fig. 3).

TEEC_InitializeContext TEEC_OpenSession TEEC_InvokeCommand
TEEC_CloseSession

TEEC_FinalizeContext

Fig. 3. The process of secure services
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Step 1. CA invokes the TEEC_InitializeContext function to initialize the
TEEC_Context variable. The variable is used to establish a link between CA and TEE.

Step 2. CA invokes the TEEC_OpenSession function to open a session with TA.
The session is used to transfer parameter between CA and TA. The secure operating
system finds and loads TA which is determined by UUID.

Step 3. CA executes the TEEC_InvokeCommand and instructs TA to perform the
specified operation through the session.

Step 4. CA executes the TEEC_CloseSession and TEEC_FinalizeContext to release
session and the TEEC_Context variable.

CA runs in normal world which is not secure enough. If CA authentication is
performed in normal world, the validated result will be invalid. As a result, the entire
process of authentication will be exposed to the attacker. Therefore, the authentication
process should be performed in a secure environment, and TEE satisfies the require-
ments of the environment. If CA authentication is performed within TEE, the validated
result will be valid and credible.

4.2 Implementation of Identify Authentication

The process of authentication is shown in Fig. 4.

In the process of requesting a security service, TEEC_InitializeContext and
TEEC_OpenSession are initiated by CA for establishing contacts between CA and
TEE, and transfer parameters to TA. At this time, the data interaction is unidirectional
(from CA to TA). In fact, it is no possibility of leaking data stored in secure world.
However, CA can inform TA through the TEEC_InvokeCommand to perform the
specified operation and write the result to the shared memory. On the contrary, the data
exchange is bidirectional with the possibility of data leakage. Applications running in
two worlds can access the shared memory area. If malicious CA sends an illegal
TEEC_InvokeCommand instruction to TA, TA will write secure sensitive data to the

Normal world Secure world

TEEC_InitializeContext

TEEC_OpenSession

 Identity authentication

TEEC_InvokeCommand

TA
Operation

TEEC_CloseSession
TEEC_FinalizeContext

Success

Failure

Fig. 4. The process of authentication
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shared memory. In order to avoid data leakage in secure world, CA needs to be verified
to ensure legality before TA is executed.

In general, the session resource is released after security service requested by CA. If
the malicious CA from attackers holds the session resource for a long time, it will
exhaust resources of secure world. In order to reduce the impact on the performance of
normal world, the device usually allocates a smaller memory area for secure world.
When CA requests a security service, the secure operating system loads the corre-
sponding TA. If multiple TAs are loaded in the meantime, the performance of secure
world will be affected seriously and the legal security service request will not be
responded. Once the illegal CA is detected, the resources will be released promptly.

4.3 Validation

After establishing the session between CA and TA, the TrustZone driver registers the
CA image as a shared file which can be accessed by TA. In order to verify the
legitimacy of CA, the pre-calculated hash value of CA image is stored in TEE, which is
named hash_correct. The process of authentication is divided into two steps. In the first
step, the authentication program reads CA image and makes use of SHA-1 algorithm to
calculate its hash value, which is named hash_calculated. In the second step, the
program reads hash_correct and compares it with hash_calculated. If the validation of
authentication succeeds, the session between CA and TA will continue to perform the
specified operation. If the validation of authentication fails, the session will be closed to
prevent the malicious CA from taking over the resources for a long time and affecting
other security service requests.

If a new CA is installed in the normal world, its hash will be calculated and stored
in the secure world by constructing authentication table and the corresponding update
module.

5 Evaluation

We build a simulation trusted execution environment using QEMU and OP-TEE, and
implement the identify authentication for CA. It simulates Cortex-A15 processor, has
Linux 4.9.0 kernel in normal world, and runs OP-TEE OS 2.3.0 in secure world.

5.1 Experiment Evaluation

In order to verify the feasibility and effectiveness of the authentication scheme, we design
the following experiments. According to comparing Experiment 1 with Experiment 2, it is
proved that the proposed scheme provides secure service for legitimate CA. Moreover, it
is proved that the scheme refuses the secure service requests initiated by malicious CA
through comparing Experiment 2 with Experiment 3.

Experiment 1. The test program which is divided into CA and TA parts, runs in
normal world and secure world respectively. CA establishes a session with TA through
a security service request. TA accepts the request to read the data hello world which is
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stored in secure world, and sends it to CA. Then CA prints the data in terminal. The
experimental results are shown in Figs. 5 and 6.

As shown in Figs. 5 and 6, the secure world kernel begins to find and load the
corresponding TA after receiving the request sent by CA. Then, TA accepts the
arguments transferred by TEEC_InvokeCommand to read the data hello world and
return it to CA. In this experiment, TA do not verify the legitimacy of CA. In other
words, once TA receives the request, it will read and return the data, whatever the
legitimacy of CA is. As a result, security of sensitive data is not guaranteed. If CA is
tampered, the secure service has another results.

Experiment 2. CA authentication is added in secure world based on experiment 1.
The hash value of CA is pre-calculated and stored in the security domain. The
experimental results are shown in Figs. 7 and 8.

Fig. 5. The result presentation of normal world in experiment 1

Fig. 6. The result presentation of secure world in experiment 1

Fig. 7. The result presentation of normal world in experiment 2
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As shown in Figs. 7 and 8, TA authenticates CA by calculating and comparing
hash values before reading data. After the validation of authentication succeed, TA
performs the subsequent operations.

Experiment 3. On the foundation of experiment 2, the CA image is modified to
simulate an attack. The results of experiment are shown in Figs. 9 and 10.

Due to the modified CA image, the validation of authentication fails. As shown in
Figs. 9 and 10, CA cannot read the data stored in secure world. Then TA releases
resources (e.g., session, memory) to prevent occupied session resources.

As showed in Table 1, the proposed CA authentication scheme can detect the
integrity of CA effectively. In the scheme, TA provides security services for legitimate
CA, and refuses the request initiated by malicious CA which is forged or tampered with
by attackers. Moreover, it releases the occupied resources. In consequence, the scheme
is feasible and effective.

Fig. 8. The result presentation of secure world in experiment 2

Fig. 9. The result presentation of normal world in experiment 3

Fig. 10. The result presentation of secure world in experiment 3
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5.2 Security Analysis

The proposed authentication scheme detects whether the CA image is modified by
calculating and comparing its hash value. We analyze the security of the proposed
scheme in the following three aspects.

The authentication program runs in secure world and is isolated from normal world.
It is protected by TrustZone. It means that the process of authentication is invisible for
CA, and thus malicious CA cannot access the authentication. TA determines to
maintain the session for security services or release resources according to the verifi-
cation results. Therefore, the process of authentication is secure.

In order to calculate the hash, the CA image is registered as a shared file by
TrustZone driver. The TrustZone driver runs at the privilege level of the normal world
system. Because of the effective protection by the secure kernel, the TrustZone driver is
secure. In fact, the hash of the CA image calculated by the authentication program
initiates the secure service request. As a result, the attacker will not use a legitimate CA
image to replace the malicious one when the TrustZone driver registers the shared file.

The hash value calculated by SHA-1 is unique and irreversible. Two images do not
have the same hash value. Even if the attacker modified only one bit of CA image, the
hash value will have a huge change. Because the hash value of legitimate CA image is
encrypted and stored in secure memory, malicious CA cannot read and modify it.
Therefore, the algorithm of authentication is secure.

6 Related Work

A series of trusted operating systems have been developed based on TrustZone tech-
nology, such as T6, OP-TEE, ANDIX OS [9] and so on. TrustICE [10] and other
solutions enhance the runtime security of TA. Johannes [11] et al. provided a com-
prehensive open-source software environment for experiments with ARM TrustZone,
based on the foundations of the well-known open source QEMU platform emulator.
The above works lay the foundation for the proposal.

Roland [12] et al. introduced a conceptual model for user interaction with TEE. The
model could be used to analyze the security of the interaction between the user and the
TEE. They also presented the problem of how the users could ascertain that they were

Table 1. Comparison experimental results

Experiment Description Tampered Authentication Legitimacy Result

1 Normal CA ✗ ✗ Unknown Secure
service

✓ ✗ Unknown Unknown
service

2 Normal CA
with
authentication

✗ ✓ ✓ Secure
service

3 Malicious CA ✓ ✓ ✗ Refuse
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really dealing with a trusted application on a display which was shared between trusted
and untrussed applications. In order to protect FIDO (fast identity online) from mali-
cious attack, Rob [13] introduced TrustZone which is provided the hardware isolation
to secure FIDO based authentication.

Jang [14] et al. presented a method for enhancing session security in SeCReT. They
established a secure communication channel by encrypting the message exchanged
between CA and TA, so that an attacker could not forge a security service request to
access data within secure world. However, a security service request usually involves
multiple processor state transitions and parameter passing, which can cause more
performance overhead. Zhao [15] et al. proposed a method for CA authentication. They
built an IOD module to calculate the hash value of CA in normal world and an IAM
module for validation in secure world. Their method is vulnerable to be attacked
because the security protection in normal world is less effective.

In addition, Zhao [16] et al. proposed the TSSP to solve the DoS attack caused by
malicious CA occupying session resources for a long time. They went against DoS
attacks by calculating the priority of sessions in waiting queue and the residual value of
sessions in execute queue, which ensured important sessions execution. Although their
method guaranteed high priority sessions to be executed, it did not release the session
resources occupied by malicious CA. The system would cause more performance
overhead if the resources were not released for a long time.

7 Conclusion

In this paper, we propose a CA authentication scheme based on TEE to solve the
problems of sensitive data leakage and the DoS attack caused by malicious CA. We
design and implement the scheme in a simulation experiment environment based on
QEMU and OP-TEE. The experimental results show that the identify authentication
can prevent malicious CA reading sensitive data in secure world through service
requests, and release the occupied resources after rejecting the requests. Therefore, the
proposed scheme can detect the content change of CA, avoid sensitive data leakage and
prevent DoS attack. As a result, our proposed scheme could effectively improve the
security level for using the mobile terminals and Internet of Things.
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Abstract. We first formalise a generic architecture for attribute-based
signatures (ABS). Further we expand the design to the generic framework
of an attribute-based group signature (ABGS), combining our generic
structure of ABS with the efficient generic design of group signature pro-
posed by Bellare et al. in Eurocrypt 2003. We also analyse security of the
proposed constructions following the most standard and strong proof sys-
tem, the Non-Interactive Zero Knowledge (NIZK) arguments. We empha-
sise that meanwhile in the process, we first achieve an attribute-based
instantiation of the generic group signature scheme given by Bellare et al.
and we provide a generic structure of ABGS on that block which has
applications in cloud security and other cryptographic problems.

1 Introduction

In general, digital signature is a cryptographic primitive to provide signer’s
authentication. But there may be situations where signer’s anonymity is desired
for example, in anonymous electronic transaction system [24], anonymous key
exchange protocol [39] etc. There have been constructions to achieve anonymity
of the signer directly from the signature. The well known approaches are ring
signature, group signature and blind signature. The more recent alternative
attribute-based signature (ABS) [33,34] is attracting researchers due to its func-
tionality. Their construction uses functionality of bilinear pairings but their most
practical scheme is only proven secure in the generic group model. They envi-
sion their construction to readily use in multi-authority settings. In few of the
extensions of ABS, attribute-based group signature (ABGS) is one of the most
important and useful primitives currently being studied. In this paper, we aim
to provide a generic frame to design an ABGS.

Attribute-Based Signatures. Attribute-based signature (ABS) is an extended
alternative to identity-based signatures (IBS) having a set of attributes and sat-
isfying a specific predicate.The anonymity of identity or attributes is the prelimi-
nary objective of this signature. Instead of the identity, users are associated (and
specified) with certain attributes in ABS with compare to the IBS. The impor-
tance of attributes was first realized to design attribute-based encryption (ABE)
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 814–834, 2017.
https://doi.org/10.1007/978-3-319-72359-4_51
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to provide fine-grained access control over the encrypted data. Since the intro-
duction of ABE [20], various proposals [4,7,9,11] have been formalized exploring
different properties and advantages of ABE.

Other signature schemes have been combined to achieve the advantage of
ABS with extended functionality for example attribute-based group signatures
[28] and attribute-based ring signature [31] fulfill basic objectives of the under-
lying signature protocol with properties of ABS which yield the compact signa-
ture suitable for specific application. The proof of security in standard model is
observed to be more realistic than that in random oracle. In [36] Okamoto and
Takashima have formalized security setup for an ABS in the standard model.
Attributes in their scheme are constrained to follow non-monotone predicates.
Their scheme is based on dual pairing vector spaces and they follow the func-
tional encryption proof technique of [30]. A threshold variation of the similar
concept is presented in [38]. The threshold ABS restricts the signer to maintain a
threshold number of attributes in common with the verification set of attributes.
An additional featured ABS in standard model was proposed in [18] with full
revocability. None of these submissions offer constant-sized signatures and usu-
ally, they all grow linearly in the number of attributes involved in the signing
predicate. The first contribution with constant-sized signatures was given in [23].

Group Signatures. A group signature scheme allows an authorized member of
a group to anonymously sign messages on behalf of the group. There is a group
manager who can revoke the identity of the signer in case of misuse or conflict.
The group manager is the only authority with this privilege. We also distinguish
between static group signatures and dynamic group signatures. In a static group
signature the set of members is frozen after the setup phase, whereas in the
dynamic group signature, the group members can join even after the setup phase,
and the setup is updated dynamically. Standard generic structures of group
signature are presented by Bellare et al. in [5,6]. In [5] they formalized a generic
framework of group signature addressing various properties of group signature
in more standard and well defined way. They start with the static aspect of
the group signature and initiate the idea of partially dynamic groups and fully
dynamic groups. Later they proposed the generic structure of a fully dynamic
group signature in [6]. The basic structure [6] requires a non-interactive zero
knowledge (NIZK) proof system between the prover and the verifier during the
signature protocol to address the verifier’s witness on the signer’s commitment.

The idea of group signature was introduced by Chaum and Van Heyst [15].
Ateniese et al. [3] presented an efficient and provably collision-resistant group
signature scheme. In 2003, Bellare et al. [5] identified the security requirements of
group signature and presented their, popularly known BMW (Bellare, Micciancio
and Warinschi) security model. The two well accepted security properties for
group signatures, full traceability and full anonymity were presented in this
paper. Boneh et al. [10] designed short signatures in the random oracle model,
using a variant of the security definition of BMW model. Security models of some
well structured group signatures [13,32] are also motivated by the BMW model
[5]. In these schemes, the adversary is restricted to ask queries on the tracing
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of group signatures. Another efficient group signature scheme is proposed by
Camenisch et al. [14] using bilinear maps. Later, Bellare et al. [6] escalated the
security strength to include the group members dynamically.

Various proof techniques have been followed in different proposals of group
signature. Kiayias and Yung [29] have presented a scheme which is scalable
and allows dynamic adversarial joins. Security of their scheme was proved in
random oracle model. Ateniese et al. [2] have proved security of their group
signature in standard model. Their scheme is based on interactive assumptions.
Boyen et al. [12] have followed the Groth-Ostrovsky-Sahai NIZK proof system
[22], and have achieved crucial security properties viz. anonymity. In the initial
proposals of group signature, the size of signature was directly dependent (linear
in relation) on the number of group members. In 2008, Zhang et al. [40] presented
an identity-based group signature scheme based on pairing. Size of their signature
is independent of the size of group members. The group signature construction
of Cheng et al. [16] has the advantages of concurrent join, immediate revocation,
easy tracing and short signature length.

Attribute-Based Group Signatures. Attribute-based group signature
(ABGS) is generated by a member of the group possessing certain attributes.
The verifier can easily determine the role of the signer within the group. This
approach is different than the usual group signatures because the signer needs
to prove the ownership of certain attributes or properties. The ABGS was intro-
duced in [28], though their primitive provides only the anonymity of the signer.
Also, the algorithm reveals the attributes of the signer which satisfy the predi-
cate. In a further version [27] they added the revocation property. For the prac-
tical application it is also desired to hide the attributes, used by the signer,
from the verifier to achieve full anonymity. To achieve this property an ABGS
scheme based on oblivious signature-based envelope (OSBE) protocol was pro-
posed in [37]. In [17] a dynamic ABGS scheme was presented which can avoid
the reissuing of attribute certificates and eliminates the pairing ratio increment
depending on the number of attributes. They also discussed the application of
ABGS in anonymous survey for collection of attribute statistics. Signature size
is an important issue to be considered for implementation. Ali et al. [1] have sug-
gested a constant signature sized ABGS scheme. Their scheme is independent
of the number of attributes and secured in standard model. Though, there are
a few constructions of the ABGS, but yet the existing literature does not cover
any generic structure of ABGS for dynamic entry of the signers. In this paper,
we try to put forward such a construction.

Our Contribution. We first formalize a generic architecture for ABS using the
CCA-secure key encapsulation mechanism of [6] as building blocks. Further we
expand the design to the generic framework of an ABGS, combining our generic
structure of ABS with the efficient generic design of group signature proposed
by Bellare et al. [5] in Eurocrypt 2003. Meanwhile in the process, we first achieve
an attribute-based instantiation of the generic group signature scheme [5] and
then construct the generic structure of our ABGS on that block. We emphasize
that obtaining an attribute-based instantiation of the generic group signature
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framework of [5] is itself a topic of interest since long and to the best of our
knowledge our work provides first such instantiation. Furthermore, our generic
ABGS system includes the dynamic setup of group members. Interestingly, unlike
the all elementary constructions of dynamic group signature, our approach to
dynamic ABGS does not use any access tree or credential bundle. We also analyse
security of the proposed constructions following the most standard and strong
proof system, the Non-Interactive Zero Knowledge (NIZK) protocol. Moreover,
in contrast to the Maji’s generic scheme of ABS [33,34] we achieve existential
unforgeability of our scheme.

Applications. An attribute-based group signature has the following crucial
applications which we propose in the following paragraphs:

Attribute-Based Messaging (ABM): As discussed in [34], the ABS schemes
are useful for anonymous authentication of the sender of the attribute-based
message [8]. Also, it has been described in [34] that the available classical tech-
niques of ring signature, group signature, mesh signature are not adequate for the
required security properties for such an objective. In this scenario the attribute-
based signature offers desired support.

Anonymous Credential: In certain online purchase-sale activities, the mer-
chant may want the customer to submit his/her personal details (credentials)
to an external recipient (or the issuer, maybe sometimes the government). But
at the same time it may be also desired that the content of these details should
remain hidden from the merchant (verifier). In such circumstances, the user
needs to protect his/her credentials. There have been efforts [19,25] to protect
sensitive credentials in the scenarios where attributes are prime concerns. But
such available schemes are either computationally expensive or can be used only
when the content of certificates can be estimated. Hence, such schemes cannot
be considered for the practical implementations. The attribute-based signatures
following our construction can be an efficient alternate for such an objective,
which offers the mechanism to convince the validity of the signature to the ver-
ifier without revealing the attributes of the signer.

Anonymous Survey: Anonymous survey is a well known practice in the elec-
tronic communication, for instance, authentication of an organizational server
(which involves a group of users) before granting access to a confidential or pro-
tected resource. Approaches for such anonymous survey are proposed in [26,35]
by exploiting the statistical information. For the purpose, the user sends cipher-
text, encrypted with the attribute issuer’s public key, to the verifier, but as it
has been pointed out in [17], it is difficult to manage the statistical information
for the different sets of attributes, because one attribute certificate is issued cor-
responding to an attribute type. It can be observed, with details in [17] that an
ABGS is solution for the anonymous survey without the above difficulties.

Cloud Security: The Cloud storage services are provided by the third party
hence the access to the data should be only with the legitimate user(s). Even
not to the service provider. Most popular technique to achieve access con-
trol in the cloud computing is by outsourcing encrypted data over the cloud.
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For the purpose, attribute-based encryption (ABE) technique has been highly
suggested to be used for the encryption, due to it’s functionality. But before
access to the data, an authentication of the user, by the cloud server is desired.
In case of group of users (in more regular situations), authentication of the appro-
priate user (with certain attributes) is required, specially to avoid collusion. For
such authentication, ABGS offers a perfect application.

2 Preliminaries

Attribute-Based Key Encapsulation Mechanism. An attribute-based
key encapsulation mechanism (AB-KEM) extends attribute-based encryption
(ABE), where the ciphertext encapsulates a session key which is used to encrypt
data in symmetric way.

Definition 1. An AB-KEM consists of the following four algorithms:

Setup(1λ): On input security parameter 1λ, it outputs public parameters param
and the master secret key msk.

ABKKeyGen(param, msk,A): On input public parameters param, master secret key
msk and a set of attributes A it generates a corresponding secret key skA.

ABKEncaps(param, Γ): On input the public parameters param, a predicate Γ, it
generates a key K and an encapsulation EΓ of this key.

ABKDecaps(skA, E): On input a secret key skA and encapsulation E, it outputs
either K or ⊥.

Definition 2 (ABKEM-IND-CCA Security). The security notion of
ABKEM scheme is defined for a bit b ∈ {0, 1} via the following experiment
ExpIND−CCA−b

Aind,ABKEM
:

1. (param, msk) ← Setup(1λ)
2. (Γ, state) ← AOABKKeyGen,OABKDecaps

ind (param)
3. (K1, E∗

Γ) ← ABKEncaps(param, Γ)
4. K0 ← K; b r← {0, 1}
5. b′ ← AOABKKeyGen,OABKDecaps

ind (state, Kb, E∗
Γ). If b = b′, return 1, else 0.

OABKKeyGen(A): On input an attribute set A, such that Γ(A) �= 1 the oracle
runs skA ← ABKKeyGen(param, msk,A).

OABKDecaps(EΓ,A): On input an attribute set A and the encapsulation
EΓ, the oracle checks if EΓ = E∗

Γ. If so it outputs ⊥, otherwise it
runs skA ← ABKKeyGen(param, msk,A). On input skA, it runs K ←
ABKDecaps(param, skA, EΓ). It outputs either K or ⊥.

An ABKEM scheme is indistinguishable against chosen-ciphertext attacks if
for any PPT adversary Aind the following advantage of is negligible:

AdvIND−CCA
Aind,ABKEM

(λ) =
∣
∣
∣Pr

[

ExpIND−CCA−1
Aind,ABKEM

= 1
]

− Pr
[

ExpIND−CCA−0
Aind,ABKEM

= 1
]∣
∣
∣ ≤ ε(λ)
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The ABKEM scheme has practical applications in combination with data encap-
sulation mechanism.

Definition 3. A data encapsulation mechanism (DEM) consists of the following
three algorithms DEM = (KeyGen, DEncaps, DDecaps).

DKeyGen(1λ): On input a security parameter 1λ, output the secret key K.
DEncaps(K, m): On input a key K and a message m, it generates a ciphertext CD.
DDecaps(CD, K): On input a key K, ciphertext CD, it outputs either m or ⊥.

Definition 4 (DEM-IND-CCA Security). The security notion of DEM
scheme is defined for a bit b ∈ {0, 1} via the following experiment ExpIND−CCA−b

Aind,DEM

1. K ← KeyGen(1λ)
2. (m0, m1, state) ← AODDecaps

ind (1λ)
3. b

r← {0, 1}; C∗
D ← DEncaps(K, mb)

4. b′ ← AOABKDecaps
ind (state, C∗

D). If b = b′, return 1. Else return 0.

ODDecaps(CD): On input secret key K and the ciphertext CD, the oracle checks
whether CD = C∗

D. If so it returns ⊥, otherwise it runs ABKDecaps and returns m.
A DEM scheme is indistinguishable against chosen-ciphertext attacks if for any
PPT adversary ADEM

ind the following advantage of is negligible:

AdvIND−CCA
Aind,DEM

(λ) =
∣
∣
∣Pr

[

ExpIND−CCA−1
Aind,DEM

= 1
]

− Pr
[

ExpIND−CCA−0
Aind,DEM

= 1
]∣
∣
∣ ≤ ε(λ)

3 Generic Construction of Attribute-Based Signatures

In this section we provide a generic construction of attribute-based signatures
employing attribute-based key encapsulation mechanism and attribute-based
data encapsulation mechanism. In the following paragraph we recall the defi-
nition of the attribute-based signature scheme.

Definition 5. An attribute-based signature (ABS) scheme consists of the fol-
lowing four algorithms ABS = (ABSetup, ABKeyGen, ABSign, ABVerify) given
an attribute universe A.

ABSetup(1λ, 1n): This algorithm is performed by the key generation center which
on input of security parameter 1λ and the number of attributes n generates public
parameters param and the master secret key msk.
ABKeyGen(param, msk,A): This algorithm is performed by the attribute authority
which takes as input public parameters param, master secret key msk, user’s
attribute set A and generates the user’s secret key skA corresponding to A.
ABSign(param, skA, m, Γ): On input user’s secret key skA, a message m and a
predicate Γ the user generates a signature σ.
ABVerify(param, σ, m, Γ): On input param, message m, a signature σ and predi-
cate Γ , the algorithm outputs either 1 if the signature is valid or 0 else.
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Security Definitions. In this paragraph we describe the main security defini-
tions of an Attribute-Based Scheme. The first definition handles with existential
unforgeability against adaptive CCA, which requires that any collusion of sign-
ers is not satisfiable to produce a signature forgery under a predicate which does
not satisfy any of attribute sets in the collusion of signers. The other definition
handles with privacy which guarantees that the signature does not reveal any
information on the identity of the signer and on the attributes.

Definition 6 (Existential unforgeability against adaptive chosen-
message attacks). Let Aeuf be a probabilistic polynomial time (PPT) adver-
sary against chosen-message attacks who tries to make a forgery (m∗, Γ∗, σ∗),
of a message, a predicate and a signature. Consider the following experiment
ExpEUF−CMA

Aeuf,ABS
:

1. (param, msk) ←ABSetup(1λ, 1n)
2. (m∗, Γ∗, σ∗,A∗) ← AOABKeyGen(param,msk,·),OABSign(param,sk·,·)

euf (param)
3. Return 1 if: (a). ABVerify(param, (m∗, σ∗), Γ∗) = 1,

(b). A∗ was never queried to the oracles, (c). m∗, Γ∗ was never queried to the
OABSign oracle. Else return 0.

OABKeyGen(param, msk,A): On input public parameters and master secret key,
giving an attribute set A, the oracle runs skA ← ABKeyGen(param, msk,A).
OABSign(param,A, m): On input public parameters param, an attribute set A

and a message m, the oracle generates skA′ ← ABKeyGen(param, msk,A′). Fur-
thermore upon receiving skA′ it runs σ ← ABSign(param, skA, m, Γ) on some
message m and some predicate Γ ′ such that Γ ′(A′) = 1. It outputs a signature σ.

An ABS scheme is existentially unforgeable against chosen-message attacks if
for any PPT adversary Aeuf the following advantage of is negligible:

AdvEUF−CMA
Aeuf,ABS

(λ) =
∣
∣
∣Pr

[

ExpEUF−CMA
Aeuf,ABS

(λ) = 1
]∣
∣
∣ ≤ ε(λ)

Definition 7 (Attribute Privacy). Let Apr be a PPT adversary who tries to
break the attribute privacy property of an ABS scheme. Consider the following
experiment ExpAtt−Priv

Apr,ABS
with Γ representing an attribute policy (=predicate):

1. (param, msk) ← ABSetup(1λ, 1n)
2. (A0,A1, Γ∗) ← Apr(param), where |A0| = |A1|

such that (Γ∗(A0) = Γ∗(A1) = 1) ∨ (Γ∗(A0) = Γ∗(A1) = 0)
3. skA0

← ABKeyGen(param, msk,A0), skA1
← ABKeyGen(param, msk,A1)

4. choose b ∈ {0, 1}, b′ ← AOABSign(param,skAb ,·)
pr (param, skA0

, skA1
)

5. If b = b′, and |A0| = |A1| return 1, else return 0.

OABSign(param,A): On input public parameters param and an attribute set A
the oracle runs skA ← ABKeyGen(param, msk,A). Furthermore upon receiving skA
it runs the signature algorithm σ ← ABSign(param,skA, m, Γ) on some message m
and predicate Gamma. It outputs a signature σ.

An ABS scheme is private if for any PPT adversary Apr the following advan-

tage is negligible: AdvAttr−Priv
Apr,ABS

(λ) =
∣
∣
∣Pr

[

ExpAtt−Priv
Apr,ABS

(λ) = 1
]

− 1/2
∣
∣
∣ ≤ ε(λ).
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3.1 Generic Construction of ABS Scheme

For our construction we use building blocks the attribute-based key encapsula-
tion mechanism and the data encapsulation mechanism which are secure against
chosen ciphertext attacks:

ABSetup(1λ, 1n): Given a security parameter 1λ and the input size of the
attribute set n, it runs the Setup algorithm of the underlying AB-KEM scheme
and public parameters param and master secret key msk. Furthermore it runs the
Setup(1λ) algorithm of the non-interactive proof system and outputs a common
reference string crs.
ABKeyGen(param, msk,A): On input public parameters param, a master secret
key msk and user’s attribute set A it runs skA ← ABKKeyGen(param, msk,A) and
outputs the received secret key skA.
ABSign(param, crs, skA, m, Γ): On input public parameters param, common ref-
erence string crs, user’s secret key skA, a message m, a predicate Γ , it runs
(EΓ, K) ←ABKEncaps(param,Γ) and σ ←DEncaps(m,K). It uses a NIZK proof to
prove the statement that a value K is a satisfiable output of the ABKDecaps
algorithm under input of secret key skA, i.e. it shows that skA is the correct
key for the decapsulation algorithm on input EΓ. Note that, neither K nor skA
key will be revealed to the verifier. The output is σ̂ = (σ, π).
ABVerify(param, σ̂, Γ): On input param, σ̂ = (σ, π), it runs the verification
part of NIZK proof, which proves the knowledge of K that is the output of
ABKDecaps algorithm on input a secret key skA. Afterwards the verifier runs
m ←DDecaps(K, σ). If the NIZK verification succeeds, the algorithm outputs 1,
else it outputs 0.

Description of NIZK. Let P and V be the prover and the verifier respec-
tively of our simulation sound non-interactive zero-knowledge proof as recalled
in Sect. 2. We describe the proof as follows: Our construction relies on the
NIZK proof of membership in NP languages. Let L denote a NP language
with NP-relation R denotes which is a subset of two arbitrary size bit strings
{0, 1}∗ × {0, 1}∗ such that it requires a polynomial time algorithm to decide
whether a set of a statement x and the corresponding witness w is an element of
R or not. We specify this relation as follows: (K, Γ, ABKDecaps(·, EΓ), (skA,A, R)),
where (K, Γ, ABKDecaps(·, EΓ)) is a statement of the proof and (skA,A, R) the
corresponding witness with randomness R.

4 Security Analysis of ABS Scheme

Theorem 1. Our ABS scheme is existentially UNF-CMA secure if the underly-
ing ABKEM and ABDEM schemes are IND-CCA secure in the adaptive pred-
icate model, the commitments used in the NIZK proof are binding and the NIZK
proof itself is simulation sound.

Proof. To prove the theorem, we assume there is an adversary Aeuf against
the existential UNF-CMA security of the ABS scheme. We design an adversary
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Bγ ∈ (BK,BD), where BK denotes a simulator against the IND-CCA security of
ABKEM and BD is the corresponding algorithm against IND-CCA security of
the underlying DEM scheme, respectively.

Setup: Bγ simulates Aeuf. The simulator BK runs its Setup(1λ) algorithm on
input security parameter and outputs public parameters and a master secret key
param, msk. BK forwards these values to Aeuf.

Queries to OABKeyGen(param, msk, ·): Whenever Aeuf issues key generation
queries corresponding to an attribute set A, simulator BK answers to the queries
using its own OABKKeyGen oracle on input attribute set A. The simulator gener-
ates a list Ā of all queried attribute sets A. If a certain attribute set was already
queried to the oracle, It forwards the received secret key skA to Aeuf.

Queries to OABSign(param, sk·, m, ·): Whenever Aeuf issues signature queries on
input sk·, where “·” describes some attribute set A′ and a message m, simulator
BK/D invokes BK which runs skA ← ABKKeyGen(param,msk,A). It chooses a pred-
icate Γ, such that Γ(A) = 1 and runs (EΓ, K) ← ABKEncaps(param, Γ). On input K
simulator invokes BD, which runs σ ← DEncaps(m, K) on the received message m.
The simulator generates a list M of all received messages. If the received message m
is already in the list, simulator aborts the simulation. Using the secret key skA it
runs the prover protocol of the NIZK proof and outputs σ̂ = (σ, π), where π is the
NIZK proof inspired by [21] and given by P(K, Γ, ABKDecaps(·, EΓ), (skA,A, R)).
Finally, Bγ forwards σ̂ to Aeuf.

Output: Finally, Aeuf outputs (σ∗, m∗, Γ∗) s.t. the following properties hold:

(a) ABVerify(param, m∗, σ∗) = 1. To check this equality, the simulator takes
m∗, σ∗, invokes the BK part of the simulation algorithm. BK queries its own
OABKeyGen oracle on input previously chosen attribute set A. Upon receiv-
ing the secret key skA it queries its OABKDecaps oracle on input the secret
key. The oracle outputs symmetric key K. Taking the symmetric key the sim-
ulator invokes BD part of the algorithm to firstly run σ ← DEncaps(m∗, K).
It checks whether the received signature is equal to the received challenge
signature σ∗. Furthermore it issues a query to its own ODDecaps oracle on
input K and checks the received message m is equal to the challenge message
m∗. If both are equal, the verification succeeds and either BK or BD outputs
1 to Aeuf .

(b) A
∗ was never queried to the both oracles.

(c) (m∗, Γ∗) was never queried to the OABSign oracle.

Otherwise, BK/D breaks the IND-CCA security as follows: If A∗ was queried to
the key generation oracle OABKeyGen the simulator would be able to recover the
queried attribute set from the attribute set Ā, which would break the IND-CCA
security of the underlying AB-KEM, DEM schemes. Assuming that A has been
queried to the key generation oracle OABKeyGen and output a new secret key
sk′

A
it would break the binding assumption of commitment scheme, which would

mean that it is possible to find two different opening values aka randomizers
to open the commitment to two different blinded secret keys. Since the binding
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property of our commitments used in the NIZK proof is guaranteed, we claim
that an adversary succeeds in breaking the binding property with a negligible
probability. In order to prove simulation soundness of the NIZK proof, we con-
sider the following game where an adversary Ass against simulation soundness
of NIZK is playing against a challenger (who is represented by the adversary
against our ABS scheme):

1. (param, crs, msk) ← Setup(1λ, 1n)
2. skA ← ABKKeyGen(param, msk)

End for (a). m∗, Γ∗, σ∗ ← AOABKeyGen(param,msk,·),OABSign(param,sk·,·)
euf (param, msk)

(b). (K, EΓ∗) ← ABKEncaps(param, Γ∗), (c). (CD) ← ABKEncaps(K, m∗), CD := σ∗

(d). π ← SIM(prove, crs, param, m∗, σ∗, skA, Γ∗),
Make oracle queries to OABKeyGen and OABSign. Run Verify(param, σ, π).
If Aeuf outputs a valid σ, π′, output (param, crs, σ, π′).

We say that Ass wins the experiment, if Aeuf did not query ODDecaps on (σ, π′).
Advantage of Ass is given by:

AdvSim−Sound
Ass,ABS

=
∣
∣
∣Pr

[

ExpIND−CCA−1
Aind,ABKEM

= 1
]

− Pr
[

ExpIND−CCA−0
Aind,ABKEM

= 1
]∣
∣
∣

+
∣
∣
∣Pr

[

ExpIND−CCA−1
Aind,DEM

= 1
]

− Pr
[

ExpIND−CCA−0
Aind,DEM

= 1
]∣
∣
∣

Finally we conclude that the advantage of an adversary Aeuf is given by the
following combined inequation:

AdvE−UNF
Aeuf,ABS

≤ AdvSim−Sound
Ass,ABS

+ AdvIND−CCA
Aind,ABKEM

+ AdvIND−CCA
Aind,DEM

Theorem 2. Our ABS scheme is attribute anonymous if the underlying DEM
scheme is IND-CCA secure and the underlying NIZK proof is simulation-sound
and computationally zero-knowledge provable.

Proof. Due to the page limit, we skip a detailed proof of this theorem and refer
to the full version of this paper.

5 Generic Construction of Attribute-Based
Group Signature

In this section we present a generic construction of attribute-based group sig-
nature (ABGS) scheme. We assume a scenario where the group manager is not
involved in the key generation process for a new member. Provided by the group
managers secret key, she is available to trace the malicious signer only. The key
issuing functionality is processed by another entity, the key issuing entity. The
reason for separating the roles of group manager and key issuer is to disable a
group manager to create a signature forgery or to collude with other members.
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Definition 8. An ABGS scheme consists of the following six algorithms:

Setup(1λ, 1n): On input security parameter 1λ and the size of attribute set 1n

the central authority runs this randomized algorithm to output public parameters
param and master secret key msk.
ABGKeyGen(param, msk,Ai): On input public parameters param, master secret
key msk and an attribute set Ai of user i, it generates a group public key gpk, an
issuing key ik for enrolling new group members by a certificate issuing entity
and a group master secret key gmsk for opening the signature by the group
manager to trace and identify the signers. Furthermore the algorithm generates
user’s i secret key skAi

corresponding to the user’s attribute set Ai and pki.
〈Join(param, gpk, pki, skAi)〉 , 〈Issue(param, pki, ik)〉: This is an interactive
protocol allowing new members to join the group. The protocol is run between
a user Ui and an certificate issuing entity KIE. The certificate issuing outputs
a certificate certi for user Ui and stores user’s public key pki in a registration
table.
ABGSign(param, skAi

, m, Γ): On input public parameters param, member’s secret
key skAi

, a predicate Γ and a message m it returns a signature σ.
ABGVery(param, gpk, σ, Γ): On input public parameters param, group public key
gpk, a signature σ and the predicate Γ , the deterministic algorithm verifies the
validity of the signature and outputs 1 if the signature is valid, else outputs 0.
ABGOpen(param, gmsk, σ): On input public parameters param, group master
secret key gmsk and a signature σ it outputs either the attribute set A or ⊥.

5.1 Security Definitions

In this section we provide the core security properties of an ABGS scheme. We
are focusing in this paper on the following three security notions: attribute and
user anonymity, traceability and non-frameability.

Fully anonymity of users. In general, anonymity property of an ABGS scheme
means that it is hard for an adversary apart from the group manager to recover
the identity of the signer. Similar to the construction in [6], we guarantee col-
lusion incapacity of an adversary with group members by providing the secret
keys of all group members to the adversary. Furthermore we give an adversary
access to the open oracle in order to allow him to see the results of previous
openings. In the following definition we consider an adversary Auan, who wants
to break the fully user anonymity property, and a bit b associated with the secu-
rity experiment. We assume an adversary acting in two stages where in the first
stage - the so called find stage - it takes as input the user’s secret keys skAi

and
group public key gpk and outputs two identities i0, i1 and a message m.

Definition 9 (User anonymity). An ABGS scheme preserves user anonymity
if the advantage of an adversary in winning ExpU−ANO−b

Auan,ABGS
(1λ, 1n) is negligible:

1. (param, msk) ← Setup(1λ, 1n)
2. (gpk, ik, gmsk, skAi

, ski, pki) ← ABGKeyGen(param, msk),
~usk := {skAi

, ski}i∈[n]
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3. (state, i0, i1, m, Γ) ← AOABGOpen(·)
uan (find, param, gpk, ~usk)

4. Choose b ∈ 0, 1; σ∗ ← ABGSign(param, skA,ib , m, Γ)
5. b′ ← AOABGOpen(·)

uan (guess, state, σ∗)

OABGOpen(m,σ): The adversary calls this oracle with some message m and a
signature σ. The oracle runs Open(gmsk, σ) to receive index i which allows to
trace malicious signer.

An ABGS scheme is fully anonymous if for any PPT adversary Auan the
following advantage is negligible:

AdvU−ANO
Auan,ABGS

(λ) =
∣
∣
∣Pr

[

ExpU−ANO−1
Auan,ABGS

(λ) = 1
]

− Pr
[

ExpU−ANO−0
Auan,ABGS

(λ) = 1
]∣
∣
∣ ≤ ε(λ)

Attribute anonymity. This property means that a verifier should be able to
verify a signature corresponding to a predicate without revealing the attribute
set. Attribute anonymity is especially useful if there is only one group member
with a certain attribute, which helps tracing back to the identity of the user.

Definition 10 (Attribute anonymity)
ExpAt−Ano−b

Aat−ano,ABGS
(1λ, 1n):

1. (param, msk) ← Setup(1λ, 1n)
2. (A0,A1, Γ∗) ← Aat−ano(param), where |A0| = |A1| such that ( Γ∗(A0) = Γ∗

(A1) = 1 ) ∨ (Γ∗(A0) = Γ∗(A1) = 0)
4. skA0

← ABGKeyGen(param, msk,A0), skA1
← ABGKeyGen(param, msk,A1)

5. b′ ← AOABGSign(param,skAb ,·)
at−ano (param, skA0

, skA1
)

6. If b = b′ and |A0| = |A1| return 1, else return 0.

OABGSign(param,A, ·): On input public parameters param and an attribute set
A

′ the oracle runs skA ← ABKeyGen(param, msk,A′). Furthermore upon receiving
skA′ it runs σ ← ABSign(param, skA, m) on some message m. It outputs a sig-
nature σ. An ABGS scheme is attribute-anonymous if for any PPT adversary
Aat−ano the following advantage is negligible:

AdvAt−ANO
Aat−ano,ABGS

(λ) =
∣
∣
∣Pr

[

ExpAt−ANO−1
Aat−ano,ABGS

(λ) = 1
]

− Pr
[

ExpAt−ANO−0
Aat−ano,ABGS

(λ) = 1
]∣
∣
∣.

Full-Traceability. We assume that in case of malicious behavior, signer’s iden-
tity can be revealed by the group manager using manager’s secret key. In other
words it means that no collusion of group members should enable to create
a valid signature which cannot be opened by the group manager. As mentioned
in [5], the group manager could be dishonest and accuse an user in malicious
behavior. In order to avoid this dishonest behavior of the user we can ask the
group manager to also output a proof together with the identity i, after running
the Open algorithm. The verification of the proof can take place by running an
additional algorithm - Judge - on input a signature σ, identity i ant proof π.

Definition 11 (Full-Traceability). We say that an ABGS scheme is fully
traceable if the advantage of an adversary Atr to win the following experiment
ExpFull−Trace

Af−trace,ABGS
(1λ, 1n) is negligible.
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1. (param, msk) ← Setup(1λ, 1n)
2. (gpk, ik, gmsk, skAi

, ski, pki) ← ABGKeyGen(param, msk),
~usk := {skAi

, ski}i∈[n]

3. (m, σ) ← AOABGSign(·),OABGKeyGen(·),OOpen
f−trace (gpk, gmsk)

If ABGVery(param, gpk, σ) = 0, return 0. If Open(param, gms, σ) = ⊥,
return 1.
Let C denote the list of all opened identities. If Open(param, gmsk, σ) = i and
i /∈ C, then return 1, else return 0.

OABGSign(param,A, ·): On input public parameters param and an attribute set
A the oracle runs skA′ ← ABKeyGen(param, msk,A′). Furthermore upon receiv-
ing skA it runs σ ← ABSign(param, skA, m) on some message m. It outputs a
signature σ.
OABGKeyGen(param, msk,A): On input public parameters and master secret
key, giving an attribute set A, the oracle runs (pk, skA) ← ABGKeyGen
(param, msk,A), where pk denotes all the public key of the ABGKeyGen. It outputs
a tuple consisting of public keys and secret key skA.
OOpen(param, gmsk, σ): On input param, gmsk, σ, returns i ← Open(param,
gmsk, σ)

An ABGS scheme is attribute-anonymous if for any PPT adversary Aat−ano the
following advantage is negligible:

AdvFull−Trace
Af−trace,ABGS

(λ) =
∣
∣
∣Pr

[

ExpFull−Trace
Af−trace,ABGS

(λ) = 1
]∣
∣
∣ ≤ ε(λ).

Non-frameability. This security notion means that an adversary is not able to
prove that some honest user created a valid signature. This property requires
that it is impossible for two or more colluding users to produce a signature which
would trace back to the non-colluded group member. As showed by Bellare et al.
[5], non-frameability property is considered to be a version of collusion resistance.
The two properties are the same in the sense that non-frameability prevents to
create a signature which would be opened by a group manager and trace to
a different member of the group. An ABGS scheme that is fully-traceable, is
automatically secure against framing. Bellare et al. [5] showed how to convert
an adversary against framing into an adversary against full-traceability.

5.2 Construction

Using such building blocks as attribute-based key encapsulation and data encap-
sulation mechanisms, public key encryption scheme, digital signature scheme
and strong one-time signature scheme we merge the two generic construc-
tions (of an ABS and a GS schemes) recalled and constructed in this paper
and introduce a new generic construction of an attribute-based group sig-
nature scheme. We achieve the first instantiation of the construction tech-
nique from [6] applied to the attribute-based groups signature scheme. Fur-
thermore, we use the NIZK proof from [21] which was successfully imple-
mented in the construction of Bellare’s static [5] and dynamic group [6]
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schemes. We not that for a proper implementation of the NIZK proof we
require and additional building block of a secure strong one-time group
signature (SOTS) scheme. Assume that a SOTS scheme consists of three
algorithms KeyGensots, Signsots, Verifysots with the corresponding outputs
(vksots, sksots) ← KeyGensots(1

λ); σsots ← Signsots(m, sksots);
1/0 ← Verifysots(vksots, m,σsots).

Definition 12. A generic attribute-based groups signature scheme consists of
the following six algorithms:

Setup(1λ, 1n): The algorithm is run by a key generation center. It runs the setup
algorithm of AB-KEM algorithm (param, msk) ← Setup(1λ, 1n).
ABGKeyGen(param, msk,Ai): On input public parameters param and master
secret key msk user’s attribute set Ai it runs skAi

← ABKeyGen(param, msk). Fur-
thermore it runs the key generation algorithm of the underlying digital signature
scheme and outputs a pair of secret and public key (ski, pki) ← KeyGens(1

λ)
where the secret key represents the other part of user’s secret key. The algo-
rithm sets user’s secret key equal to usk[i] = (skAi

, ski) and user’s public key
as pki. The algorithm runs the key generation algorithm of the signature scheme
for the second time to generate a secret and a public key for the certificate issu-
ing entity, (sks, pks) ← KeyGen(1λ). Lastly it runs the key generation algorithm
of the underlying public key encryption scheme (ske, pke) ← KeyGen(1λ), where
the secret key ske represents the group manager’s secret key to open the signa-
ture and to trace malicious signers. The algorithm also runs the Setup algorithm
of the underlying NIZK proofs and outputs a common reference string crs with
randomness r. Group public key is set equal to gpk = (param, crs, r, pke, pks).
Join(〈param, gpk, ik, pki,Ai〉 , 〈param, gpk, pki, usk[i]〉): This interactive pro-
tocol is initiated by the user Ui who takes its verification key pki and signs it
by running the signature algorithm of the underlying digital signature scheme,
using its secret key usk[i], s.t. σi ← Sign(usk[i],pki). This signing procedure
guarantees non-frameability against corrupt users. The user sends then her pub-
lic key pki and the signature σi to the certificate issuing entity (CIE) in order to
receive a certificate which would provide eligibility of a group member. CIE signs
the public key using its own secret key, certi ← Sign(sks, 〈i, pki〉), such that
the final signature serves as a certificate for user Ui. The issuer stores (pki, σi)
in the registration table.
ABGSign(param, usk[i], m, Γ): On input public parameters param, user’s secret
key usk[i], a message m and a predicate Γ the user runs (vksots, sksots) ←
KeyGensots(1

λ). The verification key vksots will be a part of the NIZK proof.
The user signs vksots using it’s secret key usk[i] as follows: First, it runs
(K, EΓ) ← ABKEncaps(param, Γ) of the underlying AB-KEM scheme. Taking K
and a message m it runs the encapsulation algorithm of the underlying DEM
scheme, σ̂ = DEncaps(vksots, K). Using encryption algorithm of the underly-
ing encryption scheme it outputs a ciphertext encrypting user’s certificate, and
signature σ̂, i.e. C ← Encrypt(pke, 〈i, pki, certi, σ̂, R〉), where R is a random-
ness used for the witness of NIZK proof. This encryption procedure prevents
someone to create its own public and secret key pair pk′

i, sk
′
i. The user runs
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NIZK1 proof π1 from the ABS scheme described in Sect. 3.1. to prove the state-
ment that K is a satisfiable output of ABKDecaps algorithm on input a secret
key skAi

. Furthermore, user runs NIZK2 proof π2 which proves that the cer-
tificate certi is a signature under CIE’s public key pks. Lastly, taking as
input a message m, verification key vksots, ciphertext π and the corresponding
proof ~π = (π1, π2), user runs the signature algorithm of the underlying SOTS
scheme and outputs σsots ← Sign(m, vksots, C, ~π). The final signature is equal to
~σ = (C, ~π = (π1, π2), σsots).
ABGVery(param, gpk, ~σ): On input param, gpk = (pke, pks) and ~σ = (C, ~π, σsots),
the verification is followed by the Verify algorithm of NIZK proof verifying the
SOTS signature σsots on input (m, vksots, C, ~π, σsots) as input.
ABGOpen(param, gmsk, ~σ): Parse gmsk = (λ, pke, ske, pks) and ~σ = (C, ~π,σsots).
If Verify = 0 in both of the NIZK proofs, return 0, else decrypt the ciphertext
by running Decrypt(ske, C) and receive the string 〈i, pki, certi, σ̂〉. Return i.

Description of NIZK. Since the first NIZK proof π1 is inherited from our
generic ABS construction, we present the details of the second NIZK proof π2

only. The witness relation of this proof π2 which is used in our construction, is
specified as P((pke, vksots, m, C), (skAi

,Ai,certi, σi, R)), where (pke, vksots, m, C)
is a proof statement and (skAi

,Ai, certi, σi, R) the corresponding witness with
randomness R. Simulation soundness of this proof is guaranteed due to the fol-
lowing justification: The prover who is also the signer picks random keys of SOTS
scheme (vksots, sksots), where vksots becomes a part of π2. The corresponding
SOTS signature σsots defined above becomes a part of the verifier algorithm of
π2. The common reference string of this proof contains user’s public key pki. In
the porver part a user proves that the above defined statement is an element of
NP language L or he knows the signature σi(vksots). It will be guaranteed that
an adversary cannot forge a signature on a new vksots, which means that the
creation of a valid NIZK proof fails. Since it is obvious to distinguish whether a
NIZK proof is real or simulated we need to hide the signature σ̂(vksots), defined
in the ABGSign algorithm. To achieve perfect soundness and the scenarios where
a computationally unbounded adversary would be able to forge signatures under
its public key pki, we need to provide an encryption of some random element in
CRS. For a valid NIZK proof both need to be encrypted, a signature σ̂(vksots)
and a trivial element, which encrypts to Ctriv. The encryption of the witness
(skAi

,Ai, certi, σ̂, R) guarantees zero-knowledge property.

6 Security Analysis

Theorem 3. Our generic ABGS scheme is fully-anonymous and fully traceable
if the underlying NIZK proof is simulation sound and zero-knowledge provable

Proof. In order to prove the theorem we are using the following lemmas:

Lemma 1. If the underlying AB-KEM, DEM and public key encryption systems
are IND-CCA secure and the NIZK1 and NIZK2 proofs are simulation sound and
zero-knowledge, then our ABGS scheme is fully-anonymous.
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Lemma 2. Our ABGS scheme is attribute anonymous if the underlying DEM
scheme is IND-CCA secure and the underlying NIZK proofs is simulation-sound
and computationally zero-knowledge provable.

Lemma 3. If the underlying AB-KEM, DEM systems are IND-CCA secure,
digital signature scheme is unforgeable against chosen message attacks and the
NIZK1 and NIZK2 proofs are simulation sound, then our ABGS scheme is fully-
traceable.

Proof of Lemma 1. Let Auan be an adversary against the user’s full-anonymity
in the ABGS scheme. We design an adversary Bγ ∈ (BK,BD,Bpke,BSOTS) against
the IND-CCA security of the ABKEM or IND-CCA security of the DEM
schemes, respectively, where γ indicates that the adversary is either running
against the IND-CCA security of the ABKEM scheme or against the IND-CCA
security of the DEM scheme. We show how to construct Bγ to simulate Auan.

Setup: Bγ simulates Auan. Simulator BK runs its Setup(1λ) algorithm on input
security parameter and outputs public parameters and a master secret key
param, msk. BK forwards these values to Auan. To simulate the remained pub-
lic and secret keys of user, issuer and group manager, Auan invokes an adversary
against the underlying public key encryption scheme Bpke. The detailed descrip-
tion of this adversary is given in the following experiment:

1. (vksots, sksots) ← KeyGensots(1
λ)

2. (pke, ske) ← KeyGene(1
λ)

3. (pks, sks) ← KeyGens(1
λ)

4. (crs, R) ← SIM(generate, λ)
5. Set gpk = (λ, R, pke, pks, vksots)

For all i ∈ [n] run (pki, ski) ← KeyGens(1
λ), certi ← Sign(sks, 〈i, pki〉).

Make oracle queries to OKeyGen and ODecrypt of the PKE scheme.

Queries to OABGOpen(·, ·): Whenever Auan calls its opening oracle on input a
message m and a signature σ, algorithm Bγ simulates these opening queries and
sets σ = CD of the underlying DEM scheme. BD runs its key generation algorithm
on input security parameter λ and outputs a symmetric key K ← KeyGen(1λ).
Taking the key K and the received message m, BD runs its data encapsulation
algorithm CD ← DEncaps(vksots, K). It compares whether CD = σ, if so it forwards
this query on CD to its own ODDecaps oracle and receives either m or ⊥. In case
the oracle’s output is m, it returns 1 to Auan adversary.

To simulate user’s attribute-based secret key, algorithm BK is invoked and
queries it’s own OABKKeyGen on input public parameters param and mas-
ter secret key msk. The output is skAi

← OABKKeyGen. The simulator sets
usk[i] = (ski, skAi).

Challenge: When adversary Auan outputs (state, i0, i1, m), it picks b ∈ {0, 1},
computes signature σb ← ABGSign(param, usk[ib],m, Γ), simulator invokes its
Bpke, who randomly creates two messages m. Simulator invokes BK of the key
encapsulation algorithm on input (param, Γ), i.e. (EΓ, ) ← ABKEncaps(param, Γ).
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Furthermore Auan invokes the BSOTS algorithm to simulates the keys of SOTS
scheme by running (vksots, sksots)← KeyGenSOTS. The verification key vksots will
be a part of the NIZK proof. BK signs vksots using simulated secret key usk[i],
where the secret key simulation is given by a random guess with probability
1/|K|. The guessing probability reduces B′

Ks advantage to win the game. If
the guess of the keys does not match with the real secret key, the simulation
aborts. The signature procedure continues as follows: Taking K and the verifi-
cation key vksots as a message, it runs encapsulation algorithm of the underly-
ing DEM scheme, σ̂ = DEncaps(vksots, K). Furthermore Bpke of the underlying
encryption scheme is invoked, which outputs a ciphertext encrypting user’s cer-
tificate certib , and signature σ̂, i.e. C ← Encrypt(pke, 〈ib, pkib , certib , σ̂, R〉),
where R is a randomness used in the NIZK proof. Finally taking as input a
message m, verification key vksots, ciphertext π and the corresponding proof
~π = (π1, π2), Bp runs the signature algorithm of the underlying SOTS scheme
and outputs σsots ← Sign(m, vksots, C, ~π). Furthermore, simulator runs the NIZK
proof π1 from the ABS scheme to prove the knowledge of K that is the output
of ABKDecaps algorithm on input a secret key skA. Bpke runs the NIZK proof π2

that the certificate certi is a signature under CIE’s public key pks. The final
signature is equal to ~σ = (C, ~π = (π1, π2)). We note that whenever Auan submits
a query (C, π′) to the opening oracle, simulator invokes Bpke and forwards the
query to its decryption oracle. Finally it outputs a bit b and terminates the
simulation.

Distinguisher for Zero-Knowledge. Distinguisher involved in the NIZK
proof is given in the following description of the algorithm D(choose, λ, R):

1. (vksots, sksots) ← KeyGensots(1
λ)

2. (pke, ske) ← KeyGene(1
λ)

3. (pks, sks) ← KeyGens(1
λ)

4. (crs, R) ← SIM(generate, λ)
5. Set gpk = (λ, R, pke, pks, vksots)

End for (a). (state, i0, i1, m∗, vk∗
sots, Γ

∗) ← AOABGOpen(·)
uan (param, msk, ·);

(b). b ∈ {0, 1}, R ∈ {0, 1}λ; (c). CD ← ABKEncaps(K, vk∗
sots), CD := σ̂∗;

(d). C∗ ← Encrypt(pke, 〈ib, pkib , certib , σ̂∗, R〉);
(e). σsots ← Signsots(m

∗, vk∗
sots, C

∗, ~π∗).

We note that distinguisher D can answer any queries submitted by Auan,
because it is in possession of group manager’s secret key, which can be used
to open the signatures. The output of the challenge phase is a signature gives as
(pke, pks, m, C) together with a witness. In the second stage, distinguisher takes
as input a proof ~π = (π1, π2) and creates a groups signature ~σ = (C, ~π, σsots) and
outputs it to the adversary Auan. Finally, D outputs the same value as Auan.

Soundness of NIZK proof. In order to prove simulation soundness of the
NIZK proof, we consider the following game where an adversary Ass against
simulation soundness of NIZK is playing against a challenger, who is represented
by the adversary against our ABGS scheme:
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1. (vksots, sksots) ← KeyGensots(1
λ)

2. (pke, ske) ← KeyGene(1
λ)

3. (pks, sks) ← KeyGens(1
λ)

4. (crs, R) ← SIM(generate, λ)
5. Set gpk = (λ, R, pke, pks, vksots)

End for (a). m∗, Γ∗, σ∗ ← AOABGOpen(param,gmsk,·)
uan (param, msk, ·);

(b). (K, EΓ∗) ← ABKEncaps(param, Γ∗); (c). CD ← ABKEncaps(K, vk∗
sots),

CD = σ̂∗; (d). C ← Encrypt(pke, 〈ib, pkib , certib , σb, R〉);
(e). σsots ← Signsots(m

∗, vk∗
sots, C

∗, ~π∗);
(f). π ← SIM(prove, crs, param, m∗, σ∗, skA, Γ∗).
Make oracle queries to OABKeyGen to simulate user’s attribute-based secret
key skAi

. Run Verify(param, σsots, π, C). If Auan outputs a valid σsots, π
′, C,

output (param, crs,σsots, π
′, C).

Due to the page limit we provide only the final result of adversary’s success.
For the detailed analysis of this proof, we refer to the later full version of this
paper. Finally we conclude that the advantage of an adversary Auan is given by
the following combined inequation:

AdvU−ANO
Auan,ABGS

≤AdvSim−Sound
Ass,ABGS

+ AdvIND−CCA
Aind,KEM

+ +AdvIND−CCA
Aind,DEM

+ AdvIND−CCA
AindPKE

+ AdvZKAzk,NIZK

7 Conclusion

In this paper, we first presented a generic design for Attribute-Based Signatures
(ABS). Further we have extended our construction to the generic scheme of any
Attribute-Based Group Signature (ABGS), combining our generic structure of
ABS with an existing proposal of generic group signature. We have also ana-
lyzed security of the proposed constructions following the most standard and
comparatively efficient proof system, the Non-Interactive Zero Knowledge Proof
of Knowledge approach.
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Abstract. A scale-invariant leveled fully homomorphic encryption
(FHE) scheme over the integers is proposed by Coron et al. in PKC
2014, where the ciphertext noise increases linearly after each homomor-
phic multiplication. Then based on Coron’s variant of the approximate
greatest common divisor problem, we construct a more efficient leveled
FHE scheme over the integers without the modulus switching technique,
which could resist chosen plaintext attacks. The inner product operation
in our homomorphic multiplication is eliminated by multiplying the mul-
tiplication key directly. The homomorphic multiplication in our scheme
is realized by the more simplified multiplication key, in which the number
of integers is decreased from O(Θ · η) to O(1) compared with Coron’s
scheme. Simulation results and analysis show that our scheme’s perfor-
mance of multiplication key and homomorphic multiplication is much
more efficient than that of Coron’s scheme.

Keywords: Leveled Fully Homomorphic Encryption
Approximate GCD · Homomorphic multiplication · Multiplication key

1 Introduction

Traditional public key encryption schemes are constructed based on several
mathematical problems. For example, RSA [1] is based on the large integer
factorization problem, and ElGamal [2] is constructed by the discrete logarithm
problem. However, traditional public key encryption schemes don’t support arbi-
trary operations on the ciphertext without the secret key. Homomorphic encryp-
tion (HE) allows computations on the ciphertext without decryption, which was
originated in 1978 by Rivest, Adleman and Rertouzos [3]. Because of this spe-
cial property, HE can be used in cloud computing, ciphertext search and etc.
However, HE only supports finite homomorphic multiplications or homomor-
phic additions, for example, BGN [4] supports infinite homomorphic additions
and once homomorphic multiplication. The first fully homomorphic encryption
(FHE) scheme based on ideal lattices was proposed by Gentry [5] in 2009, which
could support infinite homomorphic multiplications and homomorphic additions.
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 835–846, 2017.
https://doi.org/10.1007/978-3-319-72359-4_52
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However, the construction of the FHE scheme based on ideal lattices is com-
plicated, which induces sizes of ciphertext, public key and secret key exces-
sive long. In 2010, Dijk et al. [6] introduced a new FHE scheme over the inte-
gers (DGHV). DGHV only applies trivial operations on the integers and its
security can be reduced to the approximate greatest common divisor (GCD)
problem. The somewhat homomorphic encryption (SWHE) scheme in the ref.
[7] converted DGHV scheme’s public key into the form of quadratic, thus the
number of the integers in the public key is decreased from τ to 2

√
τ . Coron

et al. [8] decreased the public key size by using the public key compression
technique. And the modulus switching technique is applied to replace Gen-
try’s squashing decryption circuit technique. It can be noticed that FHE scheme
is complicated when the modulus switching technique [9] is applied to DGHV
scheme. Coron et al. [10] proposed a variant of DGHV scheme with the scale-
invariant property, which security is also based on the approximate GCD prob-
lem. This scheme doesn’t use the modulus switching technique, which requires
no huge storage space for public keys. The ciphertext’s noise increases linearly
after each homomorphic multiplication. Above refs. [6–8,10] discuss single-bit
FHE schemes over the integers.

The FHE scheme in the ref. [11] described a batch DGHV scheme based
on Chinese Remainder Theorem (CRT). However, these FHE schemes’ public
key size is O(λ7) and secret key size is O(λ9), which are too far for practical
application. Cheon et al. [12] also proposed a batch FHE scheme based on the
CRT over rings, which could resist the approximate GCD problem and the sparse
subset sum problem (SSSP) attack. The overhead of the SWHE scheme in the
ref. [12] is small, whose public key size is similar to that of DGHV scheme,
however it is still too large.

The security of former FHE schemes over the integers can be only reduced to
the approximate GCD problem. Meanwhile, some more efficient FHE schemes
have been constructed based on the learning with errors (LWE) assumption.
Jacob [13] improved the LWE-based FHE scheme in the ref. [14] by using sym-
metric groups and permutation matrices with fast bootstrapping speed, whose
ciphertext noise increases polynomially. Then, Ducas and Micciancio proposed a
faster bootstrapping method [15] based on the ref. [13] over ring. In 2015, Cheon
and Stehlé [16] reduced the LWE assumption to the approximate GCD problem
innovatively. It means that the approximate GCD problem is no easier than the
LWE assumption. And the LWE assumption has the advantage of resisting quan-
tum attack. Then he constructed a new FHE scheme [16] based on the improved
approximate GCD problem without Gentry’s technique of squashing decryption
circuit [5], which ciphertext size is only O(λ log λ).

1.1 Contribution

In this paper, we still use the classical approximate GCD problem to improve
the efficiency of FHE schemes over the integers. Our contributions consist of two
parts, which are shown as follows.
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On the one hand, based on the ref. [10]’s variant of the approximate GCD
problem, we present a more efficient leveled FHE scheme over the integers with-
out the modulus switching technique. To compress the size of the multiplication
key, we decrease the number of integers in the multiplication key. Then, the
homomorphic multiplication can be achieved by multiplying the multiplication
key directly without the inner product in the ref. [10].

On the other hand, we implement the homomorphic multiplication on the
personal computer, and demonstrate the efficiency of our scheme’s homomorphic
multiplication according to the detailed analysis.

1.2 Organization

The remainder of the paper is organized as follows. The preliminary is intro-
duced in Sect. 2. In Sect. 3, an improved leveled FHE scheme over the integers
is presented. The security analysis is given in Sect. 4. Section 5 shows simulation
results and analysis. The whole paper is concluded in Sect. 6.

2 Preliminary

2.1 Basic Symbols

Given the security parameter λ, let lowercase English letters denote real number
and integer, and uppercase English letters denote matrix.

For a real number z, let �z�, �z�, �z� denote the rounding of an up, down
or the nearest integer, namely, they are the integers in the half open intervals
[z, z + 1), (z − 1, z], (z − 1/2, z + 1/2] respectively.

For a real number z and an integer p, let qp(z) and rp(z) denote the remainder
of z with respect to p, namely qp(z) = [z/p] and rp(z) = z − qp(z) · p. Note that
rp(z) ∈ (−p/2, p/2]. [z]p or z mod p also denotes the remainder.

Given an m-dimensional vector a = (a0, a1, · · · , am−1), let BitDecomp(a) =
(a0,0, · · · , a0,l−1, · · · , am−1,0, · · · , am−1,l−1), where ai,j is ai’s j-th bit and
ordered from the least significant bit to the most significant bit, l = �log q�.
Let Powersof2(a) = (a0, 2a0, · · · , 2l−1a0, · · · , am−1, 2am−1, · · · , 2l−1am−1).

Lemma 1 (Simplified Leftover Hash Lemma [17]). Let H be a family of 2-
universal hash functions from X to Y . Suppose that h

R←− H and x
R←− X

are chosen uniformly and independently. Then, (h, h(x)) is
√|Y |/|X|/2-uniform

over H × Y .

2.2 Parameters

We use following five parameters (all polynomials of the security parameter λ)
will be used in this paper [10,16]:
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– η is the bit-length of the secret key. Let η ≥ ρ + O(L log λ), in order to make
the depth of the squashed decryption circuit less than that of the permitted
circuit, where L is the multiplicative depth of the circuit to be evaluated;

– ρ is the bit-length of the first noise parameter. Let ρ = η − L log λ, for reduc-
tion to the LWE assumption, where L is the multiplicative depth of the circuit
to be evaluated;

– γ is the bit-length of an approximate GCD sample. Let γ ≥ λ
log λ (η − ρ)2, to

thwart various lattice-based attacks on the approximate GCD problem;
– τ is the number of integers in the public key. Let τ ≥ γ + 2λ, in order to

apply the simplified leftover hash lemma.

To satisfy the constraints of above parameters, for convenience, we let ρ =
O(λ), η = O(λ + L), γ = O(L2λ + λ2) and τ = γ + 2λ.

2.3 Approximate GCD

Definition 1 (Approximate GCD [10]). For a random η-bit secret number p,
an integer q uniformly distributed in [0, 2γ/p2), and an error distribution χ.
The distribution AAPGCD

q,χ (p) is defined as follows: select q from Z
⋂

[0, 2γ/p2)
randomly and small error r from χ, then return x = q · p2 + r. Then, generate
samples from AAPGCD

q,χ (p) polynomially, output p.
In refs. [6,10,16], it has been proved that there is no effective attack could

solve the approximate GCD problem.

2.4 Coron’s Scale-Invariant Fully Homomorphic Encryption
Scheme over the Integers

In this section, we first recall Coron’s scale-invariant fully homomorphic encryp-
tion scheme over the integers [10]. For a random η−bit odd integer p and an
integer q0 ∈ [0, 2γ/p2). We use the following distribution:

Dρ
p,q0 = {q · p2 + r, q ∈ Z

⋂
[0, q0), r ∈ Z

⋂
(−2ρ, 2ρ)}.

Coron’s Leveled Fully Homomorphic Encryption scheme CLFHE = (KeyGen,
Encrypt, Add,Convert,Mult,Decrypt) is described as follows:

– CLFHE.KeyGen(1λ): Given the security parameter λ, generate random
η−bit secret key p and a γ−bit integer x0 = q0 · p2 + r0, where r0 ∈
(−2ρ, 2ρ)

⋂
Z and q0 ∈ [0, 2γ/p2). Randomly select the public key xi ∈ Dρ

p,q0 ,
where i = 1, 2, · · · , τ . Let y′ ∈ Dρ

p,q0 and y = y′ + (p − 1)/2. Let z denote a
vector of Θ numbers, which keeps κ = 2γ+2 bits of precision after the binary
point. Let s denote a vector such that

2η

p2
= < s,z > +ε mod 2η,

where |ε| ≤ 2−κ. Let

σ = q · p2 + r + �Powersof2(s · p

2η+1
)�,
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where elements of q are randomly generated from [0, q0)
⋂

Z. Output the
secret key sk = {p} and the public key pk = {x0, x1, · · · , xτ , y,σ,z}.

– CLFHE.Encrypt(pk,m ∈ {0, 1}): Given the public key pk and a random
subset S ⊂ 1, 2, · · · , τ , output the ciphertext as follows:

c = [m · y +
∑

i∈S
xi]x0 .

– CLFHE.Add(pk, c1, c2): Given the public key pk, ciphertexts c1 and c2, out-
put the fresh ciphertext cfresh = (c1 + c2) mod x0.

– CLFHE.Convert(pk, c): Given the public key pk and the ciphertext c, output
c′ = 2· < σ, BitDecomp(c) >, where c = (�c · zi� mod 2η)1≤i≤Θ.

– CLFHE.Mul(pk, c1, c2): Given the public key pk, ciphertexts c1 and c2, out-
put the fresh ciphertext cfresh = CLFHE.Convert(pk, 2 · c1 · c2) mod x0.

– CLFHE.Decrypt(sk, c): Given the ciphertext c and the secret key sk, output
the decryption result m = ((2c)mod p) mod 2.

3 Leveled Fully Homomorphic Encryption Scheme

3.1 The Construction

Let η′ and θ = O(λ) be two more parameters. Our Leveled Fully Homomor-
phic Encryption scheme LFHE = (KeyGen, Enc,Add,Mul,Dec) is defined
as follows:

– LFHE.KeyGen(1λ): Given the security parameter λ, generate random η-
bit secret key p. Randomly select the public key xi ∈ AAPGCD

q,χ (p), for
i = 0, 1, · · · , τ − 1, where x0 is the largest one, �x1

p2 � is an odd number.
Restart the generation of x0 and x1 if they don’t satisfy above conditions.
The multiplication key is generated as follows:

mk = [�2η′

p2
� + 2η′−1 · p2 · q]x0 ,

where q ∈ Z
⋂

[0, 2γ/p2), � 2η′

p2 � ∈ χ. Output the public key pk =
{(xi)i=0,1,··· ,τ−1, mk} and the secret key sk = p.

– LFHE.Enc(pk, S,m ∈ {0, 1}): Given the public key pk and the randomly
generated subset S ⊂ {1, 2, · · · , τ − 1} of size θ, output the ciphertext c
as follows:

c = [
∑

i∈S
xi + �x1

2
� · m]x0 .

– LFHE.Add(pk, c1, c2): Given the public key pk, ciphertexts c1 and c2, output
the fresh ciphertext cfresh = (c1 + c2) mod x0.

– LFHE.Mul(pk, c1, c2): Given the public key pk, ciphertexts c1 and c2, output
the fresh ciphertext cfresh as follows:

cfresh = (
1

2η′−1
c1 · c2 · mk) mod x0.
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– LFHE.Dec(sk, c): Given the ciphertext c and the secret key sk, output the
decryption result

m = [�2c

p2
�]2.

3.2 Correctness

Lemma 2 (Encryption noise). Let the key pair (sk, pk) generated by
LFHE. KeyGen(1λ) and the ciphertext c generated by LFHE.Enc(pk, S,m ∈
{0, 1}). Then

c′ = c(mod p2) = r + �p2

2
�m(mod p2),

where |r| ≤ (2θ + 1/2) · 2ρ + 1/2.

Proof. We can represent the public key xi as the form of xi = p2 · qi + ri, where
qi ∈ Z

⋂
[0, 2γ/p2), i = 1, 2, · · · , τ −1. Then we have �x1

2 � = p2·q1
2 + r1

2 +δ, where
|δ| ≤ 1/2. Hence,

c′ = c(mod p2)

= (
∑

i∈S

xi + �x1

2
�m − kx0)(mod p2)

= (
∑

i∈S

ri + �p2

2
�m + (

r1
2

+ δ)m − kr0)(mod p2),

where k ∈ [0, θ], |δ| ≤ 1/2. Consequently, the noise |r| ≤ (2θ + 1/2) · 2ρ + 1/2 for
c′ = c(mod p2) = r + �p2

2 �m(mod p2).

Lemma 3 (Addition noise). Let the key pair (sk, pk) generated by LFHE.
KeyGen(1λ) and the ciphertext ci generated by LFHE.Enc(pk, S,mi), where
i = 1, 2. If cadd = LFHE.Add(pk, c1, c2), then

cadd = r + �p2

2
�(m1 + m2)(mod p2),

where |r| ≤ |r1 + r2| + 2ρ + 1.

Proof. We have c′
i = ci(mod p2) = ri + �p2

2 �mi(mod p2), then

cadd = c1 + c2 − δx0(mod p2)

= r1 + r2 − δr0 + �p2

2
�(m1 + m2) + δ′(mod p2),

(1)

where |δ| ≤ 1, |δ′| ≤ 1, i = 1, 2. Hence, the noise |r| ≤ |r1 + r2| + 2ρ + 1 for
cadd = r + �p2

2 �(m1 + m2)(mod p2).
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Lemma 4 (Multiplication noise). Given the key pair (sk, pk) and the multi-
plication key mk generated by LFHE.KeyGen(1λ). The ciphertext ci satisfying
the condition that c′

i = ci(mod p2) = ri + �p2

2 �mi(mod p2), where i = 1, 2. Then

cmul = [
1

2η′−1
c1c2(�2η′

p2
� + 2η′−1 · p2q)]x0 = r + �p2

2
�(m1m2)(mod p2),

where |r| ≤ |r1| + |r2| + 2ρ · (θ2 + 2).

Proof.

cmul = [
1

2η′−1
c1c2(

2η′

p2
+ 2η′−1 · p2q)]x0 (mod p2)

=
1

2η′−1
(p2q1 + r1 + �p

2

2
�m1)(p

2q2 + r2 + �p
2

2
�m2)(

2η′

p2
+ 2η′−1p2q) − kx0(mod p2)

=
1

2η′−1
(p4q1q2 + r1p

2q2 + �p
2

2
�m1p

2q2 + p2q1r2 + r1r2 + �p
2

2
�m1r2

+ p2q1�p
2

2
�m2 + r1�p

2

2
�m2 + �p

2

2
�2m1m2)(

2η′

p2
+ 2η′−1 · p2q) − kx0(mod p2)

=
1

2η′−1
(2r1q2 · 2η′−1 + 2r2q1 · 2η′−1 +

r1r2

p2
· 2η′

+m1r2 · 2η′−1

+ r1m2 · 2η′−1 + �p
2

2
�m1m2 · 2η′−1) − kx0(mod p2)

= 2r1q2 + 2q1r2 + 2
r1r2

p2
+m1r2 + r1m2 + �p

2

2
�m1m2 − kr0(mod p2)

= r + �p
2

2
�(m1m2)(mod p2),

where r = 2r1q2 + 2q1r2 + 2 r1r2
p + m1r2 + r1m2 − kr0, k ∈ [0, θ2]. Therefore, the

multiplication noise

|r| ≤ |r1| · 2θ+γ−η+1 + |r2| · 2θ+γ−η+1 + 2ρ · 2 + |r1| + |r2| + θ2 · ρ

= (|r1| + |r2| + 2) · 2θ+γ−η+1 + 2ρ · (θ2 + 2).

Because ciphertexts c1, c2 and the multiplication key mk are all integers, the
noise r is an integer. From above Lemmas 2 and 4, it can be known that our
scheme’s noise of addition or multiplication increases linearly.

Lemma 5 (Decryption Correctness). Let the secret key p generated by
LFHE.KeyGen(1λ) and the ciphertext c generated by LFHE.Enc(pk, S,m ∈
{0, 1}). Then

LFHE.Dec(sk, c) = m, if c′ = c(mod p2) = r + �p2

2
�m(mod p2),

where |r| < p2/4.
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Proof. Because c′ = c(mod p2) = r + �p2

2 �m(mod p2), we can write as c =
r + �p2

2 �m + p2q. Then

[�2c

p2
�]2 = [�2q + m +

2r

p2
�]2

= [�m + 2(
r

p2
+ q)�]2

= m,

if |r| < p2/4.

4 Security Analysis

Claim 1 (Security). For any parameters ρ, γ, η and τ , which are polynomials
of the security parameter λ, the proposed leveled FHE scheme over the inte-
gers could resist chosen plaintext attacks (CPA), assumed that AAPGCD

q,χ (p) is
difficult.

Proof. Let A be a probabilistic polynomial time (PPT) adversary which could
distinguish the challenge ciphertext with the advantage ε. Detailed operations
are as follows.

Setup: Take as input the security parameter λ, the challenger runs LFHE.
KeyGen(1λ) to get the public key pki and the secret key ski polynomially,
where i = 1, 2, · · · , t, t is the maximum number of query. Then send pki and ski

to A, where i = 1, 2, · · · , t.

Queries 1: The challenger chooses mi ∈ {0, 1} and the subset S ⊂ {1, 2, · · · ,
τ − 1} randomly, then executes LFHE.Enc(pk, S,mi ∈ {0, 1}) and sends the
ciphertext ci to A, where i = 1, 2, · · · , t.

Challenge: After queries, A outputs two different plaintexts m′
0, m′

1 ∈ {0, 1},
which have not been queried. Then the challenger chooses a random bit k ∈
{0, 1}, and generates the challenge public key pk∗ which has not been queried.
The challenge ciphertext c∗ is obtained by running LFHE.Enc(pk∗, S,m′

k),
which is generated as follows,

c∗ = [
∑

i∈S
xi + �x1

2
�m′

k]x0 .

Queries 2: The same as Queries 1 , and the challenge public key pk∗ can’t be
queried again.

Output: A outputs a guess k′ ∈ {0, 1}. Output 1 if A guesses right, else 0.
In order to prove the security of the proposed leveled FHE scheme, we need

to construct a distinguisher D, namely

pk∗ and Unif(pk).
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D takes pk∗ and pk′ ∈ Unif(pk) as inputs, where Unif(pk) represents the
genuine public key distribution. D chooses k ∈ {0, 1} randomly, then returns the
challenge ciphertext c∗

k = [
∑

i∈S xi + �x1
2 �m′

k]x0 .
Assuming D has the advantage ε to distinguish ciphertexts c∗

0 = [
∑

i∈S xi +
�x1

2 �m′
0]x0 and c∗

1 = [
∑

i∈S xi + �x1
2 �m′

1]x0 . Because the challenge ciphertext
c∗
k(mod p2) = rk+�p2

2 �m′
k(mod p2), it can be regarded as the form of c∗

k = x∗
k+rk,

where x∗
k = p2 ·qk +�p2

2 �m′
k, D has the same advantage to distinguish x∗

0 and x∗
1.

Hence, D has the same advantage ε to distinguish pk∗ and pk′, namely D could
solve the approximate GCD problem successfully. In a word, the probability of
distinguishing the challenge ciphertext is negligible, the proposed scheme could
resist chosen plaintext attacks.

5 Simulation and Analysis

The key indicator of measuring the efficiency of a leveled FHE scheme is homo-
morphic multiplication. Because our scale-invariant leveled FHE scheme doesn’t
use the modulus switching technique, we only compare it with Coron’s scheme.
To compare the efficiency between the proposed scheme and Coron’s scheme
[10], two schemes are carried out on the same personal computer, and the exper-
imental environment is as follows: the operating system is microsoft windows
7, featuring two Intel (R) Core (TM) i5-3470 CPU processors, running at 3.20
GHz, with 8.00 GB RAM, and the virtual machines operation system is Ubuntu
12.04, featuring single Intel (R) Core (TM) i5-3470 CPU processor, with 4.00
GB RAM. Our implementation uses the GMP large number library for high
level numeric algorithms and the code is compiled on the GCC platform by the
C++ language.

The implementation time of multiplication key and homomorphic multipli-
cation between our scheme and Coron’s scheme is shown in Tables 1 and 2,
respectively. Each test has five iterations and datum shown in the tables are
averages of them. As seen from Tables 1 and 2, the runtime of our scheme’s mul-
tiplication key and homomorphic multiplication is reduced several magnitudes
compared with Coron’s scheme with the increasing of λ. Particularly, the num-
ber of integers in the multiplication key is reduced from O(Θ · η) to O(1). The
detailed analysis is described as follows.

Table 1. Implementation time of multiplication key between our scheme and Coron’s
scheme [10] (unit: microsecond).

Security parameter λ 50 70 90 110 130

Coron’s scheme 3970 29435 77359 134460 241478

Our scheme 4 13 17 24 30
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Table 2. Implementation time of homomorphic multiplication between our scheme
and Coron’s scheme [10] (unit: microsecond).

Security parameter λ 50 70 90 110 130

Coron’s scheme 302 1067 2292 4530 8308

Our scheme 9 26 51 74 107

Figures 1 and 2 show the efficiency of the proposed scheme and Coron’s
scheme. Simultaneously, two figures also indicate two schemes’ changing trends
of implementation time with the increasing of λ. As shown in Figs. 1 and 2, it
can be easily known that our scheme’s efficiency of multiplication key and homo-
morphic multiplication is much better than Coron’s scheme with the increasing
of λ. And the increasing tendency of our scheme’s time of multiplication key
and homomorphic multiplication is slower than that of Coron’s scheme with the
increasing of λ. In a word, our scheme is more efficient than Coron’s scheme.
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Fig. 1. Efficiency comparison of multiplication key in our scheme and Coron’s
scheme [10].
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Fig. 2. Efficiency comparison of homomorphic multiplication in our scheme and
Coron’s scheme [10].

6 Conclusion

In this paper, we propose an efficient leveled FHE scheme over the integers
based on Coron’s variant of the approximate GCD problem. We prove that
the proposed scheme also remains CPA secure under the approximate GCD
problem. Compared with Coron’s scheme, our scheme decreases the number of
integers in the multiplication key from O(Θ ·η) to O(1). Then, based on the more
simplified multiplication key, the homomorphic multiplication can be efficiently
achieved without the inner product. Simulation results and analysis show that
our scheme’s multiplication key and homomorphic multiplication is superior to
Coron’s scheme.
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Abstract. In PKC 2014, Dana Dachman-Soled, et al. introduced
enhanced chosen-ciphertext security (ECCA) for public key encryption.
The enhancement refers to that the decryption oracle provided to the
adversary is augmented to return not only the output of the decryption
algorithm on a queried cipher-text but also of a randomness-recovery
algorithm associated to the scheme. The authors have given the applica-
tion of ECCA-secure encryption and we believe that ECCA security will
find more application in the future. In this paper, we consider ECCA
security of the well-known hybrid encryption (Tag-KEM/DEM) which
was presented by Masayuki Abe, et al. in EUROCRYPT 2005. Mean-
while, we also consider ECCA security of hybrid encryption (KEM/Tag-
DEM). We have proved that the hybrid encryption is secure against
enhanced chosen cipher-text attack (ECCA) if both KEM part and DEM
part satisfy some assumptions.

Keywords: Hybrid encryption
Enhanced chosen cipher-text attack security (ECCA)
Chosen cipher-text attack security (CCA)

1 Introduction

Secure encryption is the most basic task in cryptography, and some significant
works have gone into defining and attaining it. In many commonly accepted def-
initions, such as chosen-plaintext attack (CPA) security and chosen-ciphertext
attack (CCA) security, CCA security means that the adversary obtains no infor-
mation about messages encrypted in other ciphertexts even she is allowed to
query a decryption oracle on specifically chosen ciphertexts, therefore the CCA
security has been accepted as the standard requirement for encryption schemes.
However, in some conditions, randomness-recovering encryption is important,
such as adaptive functions [8]and PKE with non-interactive opening [6]. ECCA
security is motivated by the concept of randomness-recovering encryption, which
was presented by Dana Dachman-Soled et al. [4]. The enhanced chosen cipher-
text attack security means that the decryption oracle provided to the adversary
not only outputs the decryption algorithm on a queried ciphertext but also
a randomness-recovery algorithm associated to the scheme [11]. Furthermore,
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 847–859, 2017.
https://doi.org/10.1007/978-3-319-72359-4_53
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the authors have given many public-key encryptions satisfying ECCA security
and the application of ECCA security. In this paper, our results mainly con-
cern the case in which the randomness-recovering algorithm is efficient. ECCA
security is of both practical and theoretical interest.

The first standard-model construction of CCA-secure randomness-recovering
PKE was achieved by Peikert and Waters [11] but public key encryption is too
slow for encrypting long messages and big data. Under such a circumstance, the
hybrid encryption method, which means encrypting a key k used for symmetric
encryption to encrypt the messages by asymmetric encryption, has been created.
In order to obtain secure ECCA hybrid encryption, we consider the ECCA secu-
rity of hybrid public key encryptions. Cramer and Shoup proved that the hybrid
encryption scheme (Tag-KEM/DEM) satisfies CCA secure if the part of KEM is CCA
secure and the part of DEM also satisfies CCA secure [13]. Masayuki Abe, et al.
presented a hybrid encryption scheme (Tag-KEM/DEM) which provided a simple
way to create threshold versions of CCA-secure hybrid encryption schemes [2].
R. Canetti, H. Krawczyk, and J. Nielsen proposed a relaxed variant of CCA
security, called Replayable CCA (RCCA) security [3]. Chen and Dong consid-
ered RCCA security for the KEM+DEM paradigm. They also considered RCCA
security for (Tag-KEM/DEM) and KEM/Tag-DEM paradigm [10]. Motivated by their
work, we consider the ECCA security of the Tag-KEM/DEM paradigm and its of
the KEM/Tag-DEM paradigm.

Organizations of the Paper. In Sect. 2, we introduce some basic notations
and definitions of the building blocks. In Sect. 3, we recall the definition of well
known hybrid encryptions, KEM/Tag-DEM and Tag-KEM/DEM. Then we prove its
ECCA security in detail. Conclusions can be found in Sect. 4.

2 Preliminaries

In this section, we will review some useful notations and definitions.

Notations. Let N be the set of natural numbers. If M is a set, then |M | denotes
its size and m

R←− M denotes the operation of picking an element m uniformly at
random from M. We denote λ as the security parameter. For notational clarity we
usually omit it as an explicit parameter. PPT denotes probabilistic polynomial
time. Let z ← A(x, y, · · · ) denote the operation of running an algorithm A with
inputs (x, y, · · · ) and output z. We say a function negl(λ) is negligible (in λ) if
λ > k0 and k0 ∈ Z, negl(λ) < λ−c for any constant c > 0.

2.1 ECCA Security Definition

A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three algo-
rithm. Gen is a probabilistic algorithm that on input the security parameter
λ, outputs public keys and privates keys (pk, sk) and pk defines the message
space M . Enc is a probabilistic algorithm that encrypts a message m ∈ M into
a ciphertext c. Dec is a deterministic algorithm that decrypts c and outputs
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either m ∈ M or a special symbol ⊥. An adversary A = (A1,A2) is a proba-
bilistic polynomial-time oracle query machine. We now describe the attack game
between a challenger and an adversary A = (A1,A2) used to define security
against adaptive Enhanced chosen ciphertext attack.

– stage 1: The adversary queries a key generation oracle. The key generation
oracle runs (pk, sk) ← Gen(λ) and responds adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary A1 submits a ciphertext c to
Dec∗. The decryption oracle responds with m ← Dec(sk, c) and the random
recovery algorithm Dec responds with r ← Rec(sk, c). We require that for all
the messages m ∈ M (M is the space of message), (pk, sk) ← Gen(1λ),

Pr[Enc(pk,m; r
′
) �= c; r R←− {0, 1}λ; c ← Enc(pk, r,mb); r

′ ← Rec(c, sk)]

is negligible. Finally, if m =⊥, responds A with ⊥, else responds A with
(m, r).

– stage 3: The adversary A1 queries (m0,m1) to an encryption oracle with
|m0| = |m1|. The challenger chooses b

R←− {0, 1}, r
R←− {0, 1}λ, computes

Enc(pk, r,mb) = c∗, and sends c∗ to adversary A1.
– stage 4: The adversary A2 continues to make calls c to the decryption oracle
Dec and the random recovery algorithm Rec, where c is subjected to the only
restriction that a submitted ciphertext c is not identical to c∗. The decryption
oracle responds with m ← Dec(pk, c) and the random recovery algorithm Dec
responds with r ← Rec(sk, c). Finally, if m =⊥, responds A2 with ⊥, else
responds A2 with (m, r).

– stage 5: The adversary A outputs a guessing bit b
′ ∈ {0, 1}.

We define AdvECCA
PKE,A(λ) to be |Pr[b = b

′
] − 1

2 | in the above attack game.
We say that PKE = (KeyGen,Enc,Dec) is secure against enhanced adaptive

chosen ciphertext attack if for all probabilistic, polynomial-time adversary A, the
function AdvECCA

PKE,A(λ) grows negligibly in λ. IND-CCA security is defined all the
same except that the decryption oracle does not return a randomness-recovery
algorithm associated to the scheme.

2.2 Key Encapsulation Mechanism and Its ECCA Security Notions

A key encapsulation mechanism KEM is a public key encryption scheme, which
consists of the three polynomial-time algorithms (KEM.Gen, KEM.Enc, KEM.Dec)
with the following interfaces:

Key Generation:
(pk, sk) ← KEM.Gen(1λ)

Encapsulation:
ψ ← KEM.Enc(pk, K, r)

Decapsulation
K (or ⊥) ← KEM.Dec(sk, c)

where r
R←− {0, 1}λ, K ← KK , KK is the key space. KDM.Dec is a determinis-

tic algorithm, (pk, sk) is a public/secret key pair and c is a ciphertext of the
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encapsulated key K under pk. We now describe the attack game between the
challenger and an adversary A = (A1,A2) used to define its security against
adaptive enhanced chosen ciphertext attack.

– stage 1: The adversary queries a key generation oracle. The key generation
oracle runs (pk, sk) ← KEM.Gen(λ) and responds adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle. For
each decryption oracle query, the adversary A1 submits a ciphertext ψ to
Dec, the decryption oracle responds with K ← Dec(sk, ψ), and the random
recovery algorithm Dec responds with r ← Rec(sk, ψ). Finally, if K =⊥,
responds A with ⊥, else responds A with (K, r).

– stage 3: The challenger chooses r
R←− {0, 1}λ and computes ψ∗ ←

KEM.Enc(pk, r,K1), chooses K0
R←− KK , σ

R←− {0, 1}. Here, KK is the key
space, |K0| = |K1| and sends (Kσ, ψ∗) to adversary A1.

– stage 4: The adversary A2 continues to make calls ψ to the decryption
oracle Dec and the random recovery algorithm Rec, where ψ is subjected to
the only restriction that a submitted ciphertext ψ is not identical to ψ∗. The
decryption oracle responds with K ← Dec(sk, ψ) and the random recovery
algorithm Dec responds with r ← Rec(sk, ψ). Finally, if K =⊥, responds A2

with ⊥, else responds A2 with (K, r).
– stage 5: The adversary A outputs a guessing bit σ

′ ∈ {0, 1}.

We define AdvECCA
KEM,A(λ) to be | Pr[σ = σ

′
] − 1

2 | in the above attack game. We
say that KEM = (KEM.Gen,KEM.Enc,KEM.Dec) is secure against enhanced adaptive
chosen ciphertext attack if for all probabilistic polynomial-time adversary A, the
function AdvECCA

KEM,A(λ) grows negligibly in λ.

2.3 Date encapsution mechanism and its one time security

A DEM = (DEM.Enc,DEM.Dec) is a symmetric encryption scheme that consists of
the two polynomial-time algorithms (DEM.Enc, DEM.Dec). DEM.ENC and DEM.Dec
are associated to a key-space KD and message space M .

Encapsulation:
χ ← DEM.Enc(K,m)

Decapsulation
m (or ⊥) ← DEM.Dec(K,χ)

DEM.Enc is an encryption algorithm that encrypts m ∈ M by using
symmetric-key K ∈ KD and outputs cipher-text χ, where K ∈ KD. DEM.Dec
is a corresponding decryption algorithm that recovers message m by using the
same symmetric-key when the input cipher-text χ. An adversary A is a proba-
bilistic polynomial-time oracle query machine. We now describe the attack game
between the challenger and an adversary A used to define one time security.
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– stage 1: The adversary A queries (m0,m1) to an encryption oracle. We
require that the output of A satisfies |m0| = |m1|. The challenger chooses
b

R←− {0, 1}, K
R←− KD, computes Enc(K,mb) = c∗ and sends c∗ to adversary

A. Here we stress that the ciphertext is made from a random key along with
the plaintext and every key has been used only once.

– stage 2: The adversary A outputs a guessing bit b
′ ∈ {0, 1}.

We define AdvOT −UF
DEM,A (λ) to be | Pr[b = b

′
] − 1

2 | in the above attack game.
We say that DEM = (DEM.Enc,DEM.Dec) is one time secure if for all probabilis-

tic polynomial-time adversary A, the function AdvOT −UF
DEM,A2

(λ) grows negligibly
in λ.

3 ECCA Security of Hybrid Scheme

3.1 Tag-KEM/DEM

Let Tag-KEM=(TKEM.Gen,TKEM.Enc,TKEM.Dec) be a public key encryption
scheme and DEM = (DEM.Enc,DEM.Dec) be a symmetric encryption scheme. Then
hybrid encryption scheme

Tag-KEM/DEM = (HybGen, HybEnc, HybDec)

can be constructed as follows.

– HybGen(1λ): Run (pk, sk) ← TKEM.Gen(1λ) and output (pk, sk).
– HybEnc(pk,m): Run (ω,K) ← TKEM.Key(pk), TKEM.Key(·) is a probabilistic

algorithm that inputs public key pk and outputs one-time key K ∈ KD along
with the internal state information ω. Here KD is the key-space of DEM. Then
choosing r

$←− {0, 1}λ and computing

χ ← DEM.EncK(m),

ψ ← TKEM.Encpk(ω, r, χ),

we get the result ciphertext (of m) c := (ψ, χ).
– HybDec(sk, c) : First, parse c as ψ||χ.

Run

K ← TKEM.Decsk(ψ, χ), and m ← DEM.DecK(χ).

Then, output the message m or “reject” symbol ⊥.

3.2 ECCA Security of Tag-KEM/DEM

Theorem 1. If the scheme Tag-KEM is IND-ECCA secure and DEM is one time
secure, then the hybrid scheme (Tag-KEM/DEM) is IND-ECCA secure. In particular,
for every probabilistic polynomial time (PPT) adversary A, there exists probabilis-
tic adversaries A1 and A2 whose running times are essentially the same as that
of A, such that for all λ ≥ 0, we have

AdvECCA
Tag-KEM/DEM,A(λ) ≤ 2AdvECCA

Tag-KEM,A1
(λ) + AdvOT −UF

DEM,A2
(λ). (1)
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Proof. Fix A and λ, A be a PPT adversary that attacks the hybrid scheme
Tag-KEM/DEM. Now, the theorem can be proved via the following games. (Denote
Ti if the adversary A wins in the i-th game).

Game0: This is an ECCA experiment on the scheme Tag-KEM/DEM played between
the challenger and an adversary A. In particular, there is:

– stage 1: The adversary queries a key generation oracle. Then the challenger
runs (pk, sk) ← TKEM.Gen(λ) and responds adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary A1 submits a ciphertext c =
(ψ, χ) to the challenger. Then the challenger runs

K ← TKEM.Decsk(ψ, χ), and m ← DEM.DecK(χ).

and runs the random recovery algorithm r ← Rec(c, sk). If m =⊥, the chal-
lenger responds A1 with ⊥, else the challenger responds A1 with (m, r).

– stage 3: The adversary A1 queries (m0,m1) to an encryption oracle, and the
challenger runs (ω,K) ← TKEM.Key(pk), K ∈ KD, where KD is the key-space
of DEM. Then the challenger chooses r

R←− {0, 1}λ and computes

DEM.EncK(m0) = χ∗, TKEM.Encpk(r, ω, χ∗) = ψ∗,

and sends c∗ = (ψ∗, χ∗) to the adversary A1.
– stage 4: The adversary A2 continues to make calls c = (ψ, χ) to the chal-

lenger, where c subjects to the only restriction that a submitted ciphertext c
is not identical to c∗. The challenger runs

K ← TKEM.Decsk(ψ, χ), and m ← DEM.DecK(χ)

and runs the random recovery algorithm r ← Rec(c, sk). If m =⊥, the chal-
lenger responds A2 with ⊥, else responds A2 with (m, r).

– stage 5: The adversary A outputs a guessing bit b
′ ∈ {0, 1}.

Naturally, it holds that

AdvECCA
Tag-KEM/DEM,A(λ) =

∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
. (2)

Game1: This game is identical to the above game except we use a completely
random symmetric key K0

R←− KD to encrypt m0 in the step-4 of Game0, so
we have

Lemma 1. There exists a probabilistic adversary A1 whose running time is
essentially the same as that of A, such that

| Pr[T1] − Pr[T0]| ≤ AdvECCA
Tag-KEM,A1

(λ). (3)
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Proof. The claim is proven by constructing the adversary A1 that attacks
Tag-KEM. The adversary A1 offers the environment for A. We describe the inter-
action as follows.

– stage 1: The adversary A1 was given (pk,Kσ), and at the same time, pk was
sent to adversary A.

– stage 2: The adversary A makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the decryption oracle responds with m ←
Dec(sk, c) and the random recovery algorithm responds with r ← Rec(sk, c).
Finally, if m =⊥, responds A with ⊥, else responds A with (m, r).

– stage 3: The adversary A queries (m0,m1) to an encryption oracle, |m0| =
|m1|. The adversary A1 computes DEM.EncSKσ

(m0) = χ∗ and outputs χ∗ as
the target tag, then it receives ψ∗ as a challenge cipher. Finally, the adversary
A1 sends c∗ = (ψ∗, χ∗) to adversary A.

– stage 4: The adversary A continues to make calls c = (ψi, χi) to decryption
oracle query, where c subjects to the only restriction that a submitted cipher-
text c is not identical to c∗. The adversary A1 runs

Ki ← TKEM.Decsk(χi, ψi), m ← DEM.DecKi
(ψi).

and runs the random recovery algorithm r ← Rec(c,sk). If m =⊥, the
adversary A1 responds A with ⊥, else responds A with (m, r).

– stage 5: A outputs a guessing bit b
′ ∈ {0, 1} and A1 outputs σ

′
= b

′
.

This completes the description of A1. By construction, it is clear that decryp-
tion for A is perfectly simulated because the correct decryption is obtained from
TKEM.Dec for every query.

– If σ = 0, we know that K0 is a random key used for computing χ and the
view of A is identical to that in Game0.

– If σ = 1, we know that K1 is the correct key embedded in ψ and the view of
A is identical to that in Game1.

we have that
| Pr[T1] − Pr[T0]| ≤ AdvECCA

Tag-KEM,A1
(λ).

The Lemma 1 is proved.
Game2: This game is identical to Game1 except that we encrypt m1 instead of
m0 in the step-4 of Game1.

Lemma 2. There exists a probabilistic adversary A2 whose running time is
essentially the same as that of A, such that

| Pr[T2] − Pr[T1]| ≤ AdvOT −UF
DEM,A2

(λ). (4)

Proof. The claim is proven by constructing the adversary A2 that attacks DEM,
the adversary A2 offers the environment for A. We describe the interaction as
follows.
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– stage 1: The adversary A2 runs the key generation oracle (pk, sk) ←
TKEM.Gen(λ) and sends pk adversary to A.

– stage 2: The adversary A makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary A submits a ciphertext c to
the decryption oracle. The decryption oracle runs m ← Dec(sk, c) and the
random recovery algorithm r ← Rec(sk,c). If m =⊥, responds A with ⊥,
else responds A with (m, r).

– stage 3: The adversary A sends (m0,m1) to A2, A2 queries (m0,m1) to
an encryption oracle and receives challenge ciphertext χ∗. The adversary A2

chooses r
R←− {0, 1}λ, runs (ω,K) ← TKEM.Key(pk), then computes

TKEM.Encpk(r, ω, χ∗) = ψ∗,

and finally sends c∗ = (ψ∗, χ∗) to adversary A.
– stage 4: The adversary A continues to make calls c = (ψi, χi) to decryption

oracle query, where c is subjected to the only restriction that a submitted
ciphertext c is not identical to c∗. The the adversary A2 runs

Ki ← TKEM.Decsk(ψi, χi), m ← DEM.DecKi
(ψi),

and runs the random recovery algorithm r ← Rec(c, sk). If m =⊥, the adver-
sary A2 responds A with ⊥, else the adversary A2 responds A with (m, r).

– stage 5: A outputs a guessing bit b
′ ∈ {0, 1} and A2 outputs σ

′
= b

′
.

This completes the description of A2. By construction, the view of A is identical
to that in Game1 and Game2, it is clear that we have

| Pr[T1] − Pr[T2]| ≤ AdvOT −UF
DEM,A2

(λ).

Game3: This game is identical to Game2 except that we use the correct key K
generated by TKEM.Key for DEM.Enc in the step-3 of Game2.

Lemma 3. There exists a probabilistic adversary A1 whose running time is
essentially the same as that of A, such that

| Pr[T2] − Pr[T1]| ≤ AdvECCA
Tag-KEM,A1

(λ). (5)

Proof. The proof is similar to Lemma 1, so we omit it here.
We know that A’s advantage in Game0

AdvECCA
Tag-KEM/DEM,A(λ) =

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
≤ 2AdvECCA

Tag-KEM,A1
(λ) + AdvOT −UF

DEM,A2
(λ)

is negligible.
Putting all the facts together, the Theorem1 is proved.
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3.3 KEM/Tag-DEM

Let KEM = (Gen,KEM.Enc,KEM.Dec) be a public key encryption scheme and
Tag-DEM = (TDEM.Enc, TDEM.Dec) be a symmetric key encryption scheme. Then
hybrid cryptosystem scheme

KEM/Tag-DEM = (HybGen,HybEnc, HybDec)

can be constructed as follows.

– HybGen(1λ) : Run (pk, sk) ← Gen(1λ) and output (pk, sk).
– HybEnc(pk,m) : Choose r

R←− {0, 1}λ, K ∈ KD. Here KD is the key-space of
DEM.
Then compute

ψ ← KEM.Encpk(r,K),

χ ← TDEM.EncK(m,ψ),

and output the ciphertext (of m) c := (ψ, χ).
– HybDec(sk, c) : First, parse c as ψ||χ.

Run
K ← KEM.Decsk(ψ), and m ← TDEM.DecK(χ, ψ).

Then, output the message m or “reject” symbol ⊥.

3.4 ECCA Security of KEM/Tag-DEM

Theorem 2. If the public key encryption scheme KEM = (Gen,KEM.Enc,KEM.Dec)
is IND-ECCA secure and symmetric key encryption Tag-DEM = (TDEM.Enc,
TDEM.Dec) is IND-CCA secure, the hybrid encryption scheme KEM/Tag-DEM is
IND-ECCA secure. In particular, for every probabilistic polynomial time (PPT)

adversary A, there exists probabilistic adversary A1 and A2 whose running times
are essentially the same as that of A, such that for all λ ≥ 0, we have

AdvECCA
KEM/Tag-DEM,A(λ) ≤ AdvECCA

KEM,A1
(λ) + AdvCCA

Tag-DEM,A2
(λ).

Proof. Fix A and λ. Let A be a PPT adversary who attacks on the hybrid scheme
KEM/Tag-DEM. Now, the theorem can be proved via the following games. (Denote
by Ti the adversary A wins in the i-th game).

Game0: This is an original ECCA experiment on the hybrid scheme
KEM/Tag-DEM played between the challenger and the adversary A. In particular,

– stage 1: The adversary queries a key generation oracle. The challenger runs
(pk, sk) ← Gen(λ) and responds the adversary A with pk.

– stage 2: The adversary makes a sequence of calls to a decryption oracle. For
each decryption oracle query, the adversary A1 submits a ciphertext c to the
challenger. The challenger then runs the decryption oracle m ← Dec(sk, c)
and the random recovery algorithm r ← Rec(sk, c). If m =⊥, the challenger
responds with ⊥, else the challenger responds with (m, r).
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– stage 3: The adversary A1 queries (m0,m1) to an encryption oracle. The
challenger chooses b

R←− {0, 1}, r
R←− {0, 1}λ,K

R←− KD, computes

KEM.EncPpk(r,K) = ψ∗, TDEM.EncSK(mb, ψ) = χ∗

and sends c∗ = (ψ∗, χ∗) to adversary A1.
– stage 4: The adversary A2 continues to make calls c = (ψ, χ) to the chal-

lenger, where c is subjected to the only restriction that a submitted ciphertext
c is not identical to c∗. The challenger runs

K ← KEM.Decsk(ψ), m ← TDEM.DecK(χ, ψ).

and the random recovery algorithm r ← Rec(c, sk). If m =⊥, the challenger
responds A2 with ⊥, else the challenger responds A2 with (m, r).

– stage 5: The adversary outputs a guessing bit b
′ ∈ {0, 1}.

Naturally, it holds that

AdvECCA
KEM/Tag-DEM,A(λ) =

∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
. (6)

Game1: This game is identical to Game1 except that we use a completely ran-
dom symmetric key K0 in place of the key K1 in both the encryption and
decryption oracles. We have

Lemma 4. There exists a probabilistic adversary A1 whose running time is
essentially the same as that of A, such that

| Pr[T0] − Pr[T1]| ≤ AdvECCA
KEM,A1

(λ). (7)

Proof. The claim is proven by constructing a probabilistic adversary A1 that
attacks KEM: A1 offers the environment for A. We describe the interaction as
follows.

– First, the adversary A1 receives pk and sends it to A.
– A1 chooses (m0,m1) and sends them to A1. Meanwhile, the adversary A1

runs the encryption of KEM.Enc, and receives (Kδ, ψ
∗). Then the adversaryA1

chooses b ∈ {0, 1} and computes TDEM.Enc(mb, ψ
∗) = χ∗. Finally, A1 sends

(ψ∗, χ∗) to A.
– A continues to submit a cipher-text c = (ψ, χ) to the decryption oracle,

where c is subjected to the only restriction that a submitted ciphertext c is
not identical to c∗.

• If ψ �= ψ∗, A1 sends ψ to its own decryption oracle K ←
KEM.Decsk(ψ),m ← TDEM.DecK(ψ, χ), r ← Rec(c, sk). If m =⊥, the A1

responds A with ⊥, else responds with (m, r).
• If ψ = ψ∗, A1 uses Kσ to decrypt (χ, ψ): m ← TDEM.DecK(ψ, χ), r ←

Rec(c, sk). If m =⊥, the A1 responds A with ⊥, else responds with (m, r).
– Finally, A outputs a guessing bit b

′ ∈ {0, 1},
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A1 outputs 1 if b = b
′

and 0 if b �= b
′
. This completes the description of A1

and it is clear that we have

| Pr[T0] − Pr[T1]| ≤ AdvECCA
KEM,A1

(λ). (8)

In game G1, we use a random symmetric key in both the encryption and
decryption oracles so the cipher-text ψ∗ cannot be decrypted. To see this, it is
noticed that in game G1 the cipher-text χ∗ is produced by using the random
symmetric encryption key K0. Meanwhile, some other cipher-texts χ = χ∗ are
being decrypted by using K0 which plays no other role in game G1. Thus, in game
G1, the adversary A essentially just carries out an adaptive chosen cipher-text
attack against Tag-DEM. So we have

Lemma 5. There exists a probabilistic adversary A2 whose running time is
essentially the same as that of A, such that

| Pr[T1] − 1
2
| ≤ AdvCCA

Tag-DEM,A2
(λ). (9)

Proof. We construct a probabilistic adversary A2 that attacks Tag-DEM and A2

offers the environment for A. We describe the interaction as follows.

– The adversary A2 runs the key generation oracle (pk, sk) ← TKEM.Gen(λ) and
sends pk adversary to A.

– The adversary A makes a sequence of calls to a decryption oracle. For each
decryption oracle query, the adversary A submits a ciphertext c to the decryp-
tion oracle and the decryption oracle runs m ← Dec(sk, c) and the random
recovery algorithm r ← Rec(sk,c). If m =⊥, responds A with ⊥, else
responds A with (m, r).

– The adversary A sends (m0,m1) to A2. A2 chooses K
R←− KD, r

R←− {0, 1}λ,
runs ψ∗ ← KEM.Encpk(r,K) and then sends (m0,m1, ψ

∗) to encryption oracle
Tag-DEM. The A2 receives ciphertext χ∗, and sends c∗ = (ψ∗, χ∗) to A. We
note that the key K∗ chosen as the encryption key of Tag-DEM as well as
embedded in ψ∗ is completely random and mutually independent with each
other.

– A continues to submit a ciphertext c = (ψ, χ) to the decryption oracle, where
c is subjected to the only restriction that a submitted ciphertext c is not
identical to c∗. A2 runs the decryption oracle by using the secret key sk.

K ← KEM.Decsk(ψ),m ← TDEM.DecK(ψ, χ),

and runs the random recovery algorithm r ← Rec(c, sk), If m =⊥, A2

responds A with ⊥, else A2 responds A with (m, r).
– Finally, A outputs a guessing bit b

′ ∈ {0, 1} and A2 also outputs b
′
.

This completes the description of A2. By construction, it is clear that the
decryption for A is perfectly simulated, and whenever A wins, so does A2. We
have that

| Pr[T1] − 1
2
| ≤ AdvCCA

Tag-DEM,A2
(λ). (10)
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we know that the A’s advantage in Game0

AdvECCA
KEM/Tag-DEM,A(λ) =

∣
∣
∣
∣
Pr[T0] − 1

2

∣
∣
∣
∣
≤ AdvECCA

KEM,A1
(λ) + AdvCCA

Tag-DEM,A2
(λ),

which is negligible.
Putting all the facts together, the Theorem 2 is proved.

4 Conclusion

In this paper, we discuss the security results for achieving ECCA secure
hybrid encryptions from the well-known hybrid paradigms, KEM/Tag-DEM and
Tag-KEM/DEM. We have proven that the hybrid encryption scheme (KEM/Tag-DEM)
can beECCA secure if the KEM part is ECCA secure and the DEM part is CCA
secure. Meanwhile, we have also proven that the hybrid encryption scheme
(Tag-KEM/DEM) can beECCA secure if the KEM part is ECCA secure and the DEM
part is one-time secure.
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Abstract. Mobile devices play an essential role in telecommunication
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computing resources. We propose a novel pseudorandom number gener-
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and a trusted centralized server. The trusted centralized server gener-
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ity of generated random bit sequences through the National Institute of
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The quality of the randomness of generated numbers is comparable to
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generators, nonce, seeds, etc. [1,9]. The application of random numbers deter-
mines which generating method is suitable. For instance, the random number
required for simulation or stochastic analysis can be generated by fast mathemat-
ical approaches while the random bit sequences required by crucial cryptographic
algorithms for securing network communication should be more qualified and
untraceable. There have been a wide variety of researches that proposed methods
for generating random numbers. Random bit sequences can be generated mathe-
matically, cryptographically, or by the physical-based approaches. The majority
of security and cryptographic protocols highly require unpredictable random bit
sequences. Lack of a truly random number may cause failure in even strong
security protocols. There are numerous hardware-software based approaches to
generate pseudo or True Random Numbers (TRNs). However, most of the exist-
ing Random Number Generator (RNG) methods need additional hardware or
complicated (i.e. distributed) methods for generating random numbers. Even
hardware-based RNGs may need an appropriate seed or source of randomness
(like a physical source). Mobile devices having a limited resource of CPU and
energy cannot afford to use sophisticated mathematical or cryptographic meth-
ods to generate random numbers. Beside the strengths of existing approaches
and methods, there are issues avoiding them to be applicable in mobile devices,
like extra hardware requirements, security weakness and battery consumption.
Most of mobile devices have limited CPU power and battery lifetime to handle
the burden of complicated computations to generate random bit sequences.

In this work, we propose a novel approach to generate random bit sequences
for mobile devices through mobile’s geographical information. To the best of our
knowledge, this is the first approach using geographical location of mobile devices
for generating random numbers. The contributions of this work are summarized
as follows:

• We propose a key management method using asymmetric cryptography for
sharing a secret key between mobile devices and the trust central server;

• Then, we propose a client-server based communication protocol for obtaining
trustable and qualified random numbers; there is no need for the client side
(like mobile devices) to perform extra cryptographic operations to produce
random bit sequences;

• We implement a trusted server using geographical location of mobile devices
as a source of randomness and a strong scrambling module to generate qual-
ified random numbers;

• We evaluate the quality of random bit sequences generated by the proposed
approach using the National Institute of Standards and Technology (NIST)
tests.

The rest of this paper is organized as follow. Related work is summarized in
Sect. 2. In Sect. 3, we define the required concepts, notations, and definitions. In
Sect. 4, a method for securing communication between mobile devices and a server
is presented. In Sect. 5, the practice of generating random numbers is given. Exper-
imental setup and results are reported and analysed in Sects. 6 and 7 respectively.
Finally, we conclude the paper in Sect. 8.
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2 Related Work

The methods and approaches of generating random numbers have been proposed
by many researches. Some studies have utilized electronic hardware to generate
random numbers [2,5,8]. In [3], authors used FPGA to produce random number
sequences. In another study conducted by [10], authors proposed a method using
Leap-Ahead LFSR architecture to produce uniform random numbers. In [13],
authors utilised a combination of pipeline ADCs architecture and chaotic circuit
to produce true and fast random numbers. Indeed, the advantage of these meth-
ods is that the process of generation numbers is fast, but they are inflexible and
need extra electronic hardware. To this point, these methods cannot be acces-
sibly applied to other devices needing random numbers (e.g., mobile devices).
Other approaches such as Pseudorandom Number Generators (PRNGs) using
cryptographic methods have been widely surveyed in the literatures since many
years ago [4,12,16]. In [7,11], authors proposed and implemented distributed
algorithms generating high quality random sequences for securing Wireless Sen-
sor Networks (WSNs) through the intrinsic random entropy of WSNs. Based on
the protocol in [11], any node in the network needing random numbers distributes
a request to other wireless sensors, and then sensors send back the requester a
sequence of truly random bits obtained by some physical measurements. Conse-
quently, the requester node generates final random bit sequences based on the
received random values and using a cryptographic module. The similar method
was proposed by [6]. In this protocol authors used a private WLAN/LAN as
the main context of generating random numbers through a distributed secure
protocol. They secured the communication between distributed nodes using a
shared symmetric key. Indeed, securing the communications for protocols using
distributed methods to generate random numbers is essential. Moreover, random
number generators are surveyed in the context of physical quantity or entropy
[17]. For instance, authors in [17] used the rotation speed of hard disk to produce
true random numbers which seems to be a pure source of randomness. Neverthe-
less, many other sources such as CPU temperature, wireless sensors measuring
wind speed, and so on have been used by literatures [12]. As stated earlier, mobile
devices cannot easily utilise the methods proposed by other literature, mainly
because of limited resources.

3 Preliminaries

3.1 Prerequisites

We assume that any mobile devices with internet connection can use the protocol
to obtain reliable random bit sequences from a secure and trusted centralized
server. Our modeler is based on client/server connection via the TCP/IP suite.
There is a secure connection between clients and server. The protocol includes
a combination of both asymmetric and symmetric cryptography, (i) a digital
signature for communication and key management, and (ii) a symmetric shared
key for securely convey the generated bit sequences (payloads). This protocol
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is proposed for mobile systems. Firstly, we suppose that the mobile devices
can obtain their geographical latitude and longitude (GLL) through a Global
Positioning System (GPS). it is noticeable that GPS may be turned on for a
small period of time and then turned off again for avoiding battery consumption.
Secondly, we assume that the servers’ public key is known for all users; this would
be the only requirement for key management and secure communication in this
paper. Before proceeding the next sections, we tabulate the required notations
and related definitions in Table 1.

Table 1. Notations used in the rest of paper

Notations Descriptions

Latitude Geographical width, north or south of the earth’s equator

Longitude Geographical length, east or west of the earth’s equator

GLL Geographical latitude, and longitude

hav() Haversine function

H() Message digestion function, in here, MD5 hash function

KP Public key (Asymmetric)

KR Private key (Asymmetric)

KP−x Public key of ‘x’

KR−x Private key of ‘x’

Ep Asymmetric encryption with a public key

ER Asymmetric encryption with a private key

EP−x Asymmetric encryption with public key of ‘x’

ER−x Asymmetric encryption with private key of ‘x’

Kshared Symmetric shared key

EK−shared Symmetric encryption by the shared key

T-DES Triple DES, symmetric encryption algorithm

� � ⊕ Bitwise operators (left shift, right shift, and eXclusive OR)

MUX Multiplexer

3.2 Source of Randomness

The protocol utilize two different factors that are out of control for adversaries.
The first factor is GLL information of the sender’s location with millimeter
accuracy. The second value is both sender and server’s clock times. The clock
values will virtually mapped to new virtual GLL locations. The process of this
transformation is given in Sect. 5.

4 Securing Mobile Devices and Server Communication

The connection between client and server is based on TCP/IP Suite. Our method
can be implemented through both UDP and TCP protocols. Clients may send
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their request from all over the word. A user should securely send its GLL informa-
tion to the server. Actually, GLL accuracy is high [15], it presents eight decimal
values that can address a location on the earth’s surface in a fraction of cen-
timeter. The overall procedure undergoes three steps including user requesting,
server services, and user receiving.

4.1 User Requesting

Indeed, the mobile users are the requesters of random numbers. Any mobile user
needing the random bit sequences should create a request message and send it to
the server. Server’s public key is known for users, so the user creates a message
including its GLL, clock time, and its own public key; and then encrypts these
values with server’s public key, as Eq. 1, and send it to the server.

Request Message = EP−Server[GLL + Clock + KP−User], PLL (1)

The server doesn’t require any authentication process to verify the user’s
identity because random bit sequences are generated for the user and returned
back to the user, so it is not crucial whether the sender is an intruder or not.
Thus, the request message is not digitally signed by the user. The clock included
into the request message plays two different roles. (i) It is used by the server’s
modules to generate random bit sequences; (ii) the eight most significant bits of
clock are considered as nonce for securing communication. The last part of the
message, PLL, indicates the payload length which the user expects to receive
from the server. The only further action required by the user side is just to
verify the message sent back by the server containing payloads. In fact, mobile
users do not use time-consuming cryptographic algorithms in their own devices
to generate random numbers.

4.2 Server Services

The server can leverage many approaches separately or in combination to pro-
duce high quality random bit sequences, such as embedded or distributed meth-
ods, hardware or software-based approaches, physical entropies, and so on. In
this protocol we use a centralized server; this server is actually the heart of the
random bit sequences generator. We introduce a very strong module in the server
which can generate high quality random bit sequences using a real GLL sent by
users together with a virtual GLL generator. Clients can send their request to
the server and securely obtain high quality random numbers. The server’s duties
are as follow, (i) generating random numbers, (ii) generating a secret key for
each user (based on users public key), (iii) encrypting the payload and digitally
sign the message and sending it back to the requester.

As state earlier, the user creates a message and sends it to the server as a
request for random values. The request message is encrypted by the public key
of server (KP−Server); thus, in the first step, the server decrypts the incoming
message using its private key (KR−Server). Note that the incoming message
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consists of two parts, the first part is encrypted and includes GLL, clock, and
the users public key (KP−User); the second part is the expected payload length
which is not encrypted. Once the server generate the random bit sequences, it
generates a symmetric shared key and creates a reply message including the
shared key (encrypted by the users public key) and payload value (encrypted by
the shared key). Then digitally signs the message using its private key and sends
it to the user. See Eq. 2.

First Reply Message = EP−User[Kshared] (2)
+ EK−shared[Payload] + ER−Server[nonce + H(all fields)]

The server uses the most significant eight bits of the users clock as a nonce in
the created message. A the key management is included in the protocol. The first
reply message consists of a shared key encrypted by users public key; however,
for the further communications it is not necessary to include key management
parts in the message, See Eq. 3.

Further Reply Message = EK−shared[Payload] (3)
+ ER−Server[nonce + H(all fields)]

4.3 User Receiving

After receiving the reply message from the server, user should verify both
integrity and authenticity of the received message as well as checking nonce.
The value of nonce initialized by the user will be increased by one unit through
communication in order to avoid reply attack. The process of authentication
can be performed by decrypting the last part of the messages signed by server
and comparing the hash value of all other parts of messages with hash value
in the signature. Having authenticated the message, the user decrypts the first
part of the message and obtains the symmetric shared key. Then, using that
key, client opens the second part of the messages including the required random
bit sequences (payload). Note that the requested payload values may be sent by
sender through more messages, and further communications are based on the
shared key.

5 Random Number Generator Module

The main physical source of randomness in this protocol is based on GLL and
clock times for both mobile users and the server. The process of generating
random bit sequences goes through three different modules explained in this
section. The main scheme of the protocol is illustrated in Fig. 1. There are two
initial blocks named Fickle GLL (FGLL) and Virtual GLL (VGLL). The FGLL
block is firstly initialized by sender GLL information from a real location, and
then, for the further rounds, the result of a normalization function will be fed
into FGLL. The VGLL block is the result of Virtual GLL Generator module
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Fig. 1. The main generator scheme.

explained in the next section. Both FGLL and VGLL will be fed into the Distance
Measurement Module (DMM) in which the exact distance between those two
points is measured based on the sphere formula. The bits generated from DMM
will be forwarded to the final bit sequence generator module, and a holding buffer
(for further uses). Actually, this complicated module is used due to (i) generating
qualified random numbers using users GLL, (ii) scrambling GLL information
sent by users, in this case, even if anyone knows the GLL information of a
mobile user, he cannot guest the result of this complicated module. Finally, the
output values of DMM will be fed into the Sequence Generator (SG) module to
obtain the final results.

5.1 Virtual GLL Generator

This periodic module uses three sources, the user’s location and clock, and
server’s clock. These values are used to simulate a virtual geographical point
in the earth’s surface. Both latitude and longitude format include three parts:
sign, integer, and fraction parts. They can address geographical points from east
to west, north to south. Hence, the sign together with integer and fraction parts
of longitude can vary between (−180,+180) degrees to show all east to west
areas. Latitude is almost the same as longitude, but it covers south to north
and varies from (−90,+90) degrees. There are two Initial Buffers (IB1 and IB2)
and two Clock Buffers, named Server Clock (SC). The values of both IB1 and
IB2 are initialized by the users clock for the first round. For the further rounds,
the 16 most significant bits of the final result determine IB1 and the 16 least
significant bits of Holding Buffer (HB) will be fed into IB2. Then, the 14 least
significant bits of initial buffers and SC together with 8 bits results of Regional
Part Simulator (RPS) will be fed into Scrambler Function (SF) for generating
the fractional part of latitude and longitude. Moreover, a combination of these
blocks will be sent to RPS to determine the sign and integer parts of latitude and
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Fig. 2. Virtual GLL generator: left latitude and right longitude blocks.

longitude (see Fig. 2). Finally, the achieved values including sign, regional, and
partial part values, denoted as virtual latitude and longitude (VGLL), will be
converted to IEEE floating point format and saved to two double variables (each
8 bytes). Then VGLL values will be fed to the distance measurement module.
Each of Scrambler functions receives 36 bits from different sources; these bits
will be digested using MD5 hash function in through different input permuta-
tions. The 28 least significant bits of the digested value make partial part values.
Table 2 describes the VGLL function through the Pseudocode.

Regional Part Simulator. There are two input buffers in this module as
shown in Fig. 3. The main task of this module is to produce a result showing the
sign and integer parts of a random latitude and longitude based on the inputs.
The 2 least significant bits of input buffer 1 selects 4 bits of input buffer 2, and
will be fed into 4 least significant bits of output. The 4 most significant bits of
the output are the result of exclusive or between the two halve of input buffer
1. Finally, the 7 least significant bits of output and all 8 bits of output represent
latitude and longitude respectively. The most significant bit of output determines
the sign, as shown in Fig. 2. However, outputs will transform to desirable domain
using modulo operation. Thus, the results domains would be from −180 to +180
for longitude, and −90 to +90 for latitude. It is noticeable that this module only
addresses integer parts of GLL, and the value of fractional part can be obtained
through the result of the 28 least significant bits of the Scrambler Function (SF)
shown in Fig. 2.
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Table 2. VGLL function pseudocode

VGLL (round i) // VGLL function
for Latitude

VGLL (round i) // VGLL function
for Longitude

SC := Server clock time SC := Server clock time

IF i= 1: IF i= 1:

IB1 := User clock time IB2 := User clock time

Otherwise Otherwise

IB1 := RN // 16 most significant
bits of final Random Number

IB1 := RN // 16 most significant
bits of final Random Number

IB2 := HB // 16 least significant IB2 := HB // 16 least significant

bits of Holding Buffer bits of Holding Buffer

Sign := RPS(SC, IB1) // 1 bit Sign := RPS(SC, IB2) // 1 bit

RPV := RPS(SC, IB1) // 7 bits RPV := RPS(SC, IB2) // 8 bits

PPV := SF (SC, IB1,RPS(IB2,SC)) PPV := SF (SC, IB2,RPS(IB1,SC))

Fig. 3. Regional parts simulator module.

5.2 Distance Measurement Module

Indeed, the final results of each generated FGLL and VGLL points out a coor-
dinate geographically distributed over the earth surface with a fraction of cen-
timeter accuracy. The main role of Distance Measurement Module (DMM) is
to measure the distance between those points. The process of distance calcula-
tion will be performed by the server. This calculation helps the random number
generator to produce better random numbers and also provides security. The
calculated distance between points are used for further procedures. In this case,
even if a GLL location of mobile user is known by an intruder, the result of this
module cannot be speculated by the adversaries. The result of DMM will be fur-
ther used by SG module for generating final bit sequences. DMM uses haversine
formula in order to calculate the distance between two coordinates on the earth.
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Haversine formula measures the shortest distance between two points on the
earth’s surface specified by both latitude and longitude points, see Eq. 4.

hav

(
d

r

)
= hav(ϕ2 − ϕ1) + cos(ϕ1) cos(ϕ2)hav(λ2 − λ1), (4)

where the haversine function is defined as Eq. 5.

hav(θ) = sin2

(
θ

2

)
, (5)

let,

a = hav

(
d

r

)
,

then,
c = 2arctan2(

√
a,

√
(a − 1)), (6)

Finally, the distance between two geographical points can be calculated as
Eq. 7.

d = r.c, (7)

where d is the distance between two points, the value of r is earth’s radius which
is equal to 6.371 km; and ϕ, λ indicate to latitude and longitude respectively.
As a result, the value of d can give us the distance between points with high
accuracy; however, this value will be transformed by IEEE standard for floating
numbers to a double variable for further uses.

5.3 Sequence Generator

This module is, the final stage of the random bit sequence generator where the
64 bits result of DMM together with HB and SC are used as an input for this
module, see Fig. 4.

The application of Random Append Block (RAB) is to randomly append the
three input blocks together (eight different permutations for block appending).
The result of digested value of RAB will be halved. The most significant half
(MSH) will be sent into Left Block (LB) after a bitwise left shift as Eq. 8.

LB = (LB � 80) + MSH (8)

Moreover, the least significant half (LSH) will be fed into Right Block (RB)
for applying a bitwise right shift, Eq. 9.

RB = (LB � 80) + LSH (9)

Finally, the result of random bits generator would be as Eq. 10.

Output = T − DES((LB ⊕ RB), (SC ⊕ RB)) (10)
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Fig. 4. Sequence Generator Module.

As explained earlier, FGLL block is firstly initialised by a real GLL location,
then the further values of FGLL buffer depends on the final generated bits.
FGLL is calculated as follow. Let define a buffer with 38 bits named Temp
Latitude (TLA); which is the result of eXclusive OR (XOR) between the 38
most significant bits of Holding Buffer (HB) and 38 least significant bits of the
final output. Then the 28 most significant bits of TLA make the fraction part of
latitude. Next, 10 most significant bits converted to an integer value demonstrate
both sign and integer part of latitude through the transform formula 11.

Longitude = (integer value + 540) mod 360 − 180 (11)

Likewise, lets define a buffer with 38 bits named Temp Longitude (TLO);
which is the result of XOR of 38 least significant bits of Holding Buffer (HB)
and 38 most significant bits of the final output. Then the 28 most significant bits
of TLO make the fraction part of longitude; and then 10 most significant bits
converted to an integer value demonstrate both sign and integer part of latitude
after transformation formula 12.

Latitude = (integer value + 270) mod 180 − 90 (12)

Finally, both the generated latitude and longitude will be transformed to
64 bits IEEE standard double variable and will be fed into FGLL for the next
rounds.
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6 Experimental Setup and Results

In this section, we describe the Software and tools used to implement the protocol
and conduct the results. We used a PC with the following specifications, CPU
core i7, 8 GB RAM, and Microsoft Windows 10, as the server of the protocol for
generating random bit sequences. The server side application was developed by
Visual studio.NET 2015 (C#). On the other hand, the client side application was
designed by android studio (using JAVA) for mobile devices side. We used third
generation (3G) network and GPS to obtain GLL information. Then we started
to gather results by using two android mobile devices geographically located in
different places with initial longitude and latitude as (36:31161698; 59:52611958)
and (36:34281299; 59:46707233) respectively.

Each of mobile devices communicated with the server separately. The final
random bit sequences collected based on GLL information of each device was
5 × 107. In order to evaluate the quality of random generators, we needed to
collect a large number of sequences. The data was collected in different times of
day, and at various geographical locations.

6.1 Quality of Randomness Analysis

In this section we explain the required tools and parameters for evaluating the
quality of produced results. The quality of random bit sequences can be pre-
cisely analyzed by a set of standard tests introduced by the National Institute of
Standards and Technology (NIST) [14]. NIST tests evaluate the quality of ran-
dom bit sequences by investigation of three seminal factors, (i) uniformity, (ii)
scalability, and (iii) consistency. In Table 4, we briefly reviewed and summarized
the 15 NIST tests.

Table 3. NIST test suite parameters

Parameter Value

Bit sequence length 1000000

Number of tested binary sequences 100

P-value threshold α 0.01

The quality of obtained bit sequences was evaluated by the NIST tests and
reported in Table 5. In order to assess the quality of randomness using the NIST
tests, we need to define some necessary parameters. The total collection of results
was 108 bits divided to 100 sequences each of which has 106 bit sequence length.
The p-value threshold was set as 0.01 and a particular test passes if its p-value
is greater than the threshold value, as summarized in Table 3.
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Table 4. NIST tests: brief description

Test Brief description

Frequency Considers whether if the, number of zeros and
ones are normally distributed or not

Block frequency The same as previous one, but for a M-bit blocks

Runs Determines the oscillation of zeros and ones (slow
or fast)

Longest run The same as Run, but for a M-bit blocks on zeros
and ones

Binary matrix rank Tests the linear independency in substring of
sequences

Discrete fourier transform Searches for a repetition pattern on generated bit
sequences

Non-overlapping template
matching

Counts an specific pattern from the sequence

Overlapping template matching The same as previous one, with more details,
see [14]

Universal statistical Tests whether if a sequence is compressible or not

Linear complexity Investigates the complexity of the sequence

Serial Selects M-bits pattern and checks its distribution
over a random sequence

Approximate entropy Compares pair of overlapping blocks in
consecutive length (m and m + 1)

Cumulative sums Cumulative sum of bit sequences will be
compared with a sum of random sequence

Random excursions Calculates the cumulative sums and checks if
particular states range, see [14], are visited

Random excursions variant The same as previous one, with a wider range

7 Security Analysis and Discussion

We compared our approach with some other existing methods from different
point of views and criteria. Indeed, we compare this work with those using
communicational-based method for generating random numbers in different net-
works including WSN, Wireless LAN (WLAN) and LAN. The comprehensive
results are tabulated in Table 6. From the communication point of view, our
approach surpass others because it considers different security threats and pos-
sible attacks in the protocol. For example, the value of nonce is used in the
communication for avoiding reply attack, we effectively used the nonce value
for random number generator procedure as well. Moreover, an authentication
process via server’s digital signature provides integrity of the received payload.
Thus, many security threats addressed in our protocol. However, most of dis-
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Table 5. The results of 15 NIST tests based on α = 0.01

Test Our approach G. Lo Re et al. [11]

P-value Ratio P-value Ratio

Frequency 0.3505 1 0.1223 0.983

Block frequency 0.9248 0.98 0.3508 0.991

Runs 0.1 1 0.1223 0.981

Longest run 0.163 0.99 0.5341 0.991

Binary matrix rank 0.6787 0.99 0.7351 0.985

Discrete fourier transform 0.32 0.99 0.2135 0.991

Non-overlapping template matching 0.9915 1 0.4602 0.989

Overlapping template matching 0.6371 0.98 0.3509 0.983

Universal statistical 0.06 0.97 0.8065 0.999

Linear complexity 0.8343 1 0.8965 0.992

Serial 0.2368 1 0.5348 0.997

Approximate entropy 0.4373 1 0.7451 0.995

Cumulative sums 0.4373 1 0.7392 0.988

Random excursion 0.7231 0.99 0.6402 0.981

Random excursion variant 0.8755 1 0.7502 0.994

0.52 0.9927 0.56 0.9887

Average p-values and ratios

tributed protocols use the user sides to generate random bit sequences which
might be resource intensive, and also they may use some resources which are not
easily accessible for mobile devices (e.g. Wireless Sensors). To this point, these
approaches are not suitable and rarely suggested for mobile devices. There are
other comparison criteria based on different factors such as randomness qual-
ity, key management, security consideration, resource requirement, application
context, main randomness source, the main point of RNG engine, and etc., see
Table 6.

Furthermore, we measured the overall average of both p-value and ratios for
all the NIST tests and compared them. Those values for other studies shown in
Tables 5 and 6 were obtained based on the values reported on their original works
[6,11]. Table 5 compares the results for each NIST test, and Table 6 compares
the overall strength points of each approach. Despite almost the same results
obtained for randomness quality, our method outperforms than the other meth-
ods in regard to security, key management and computational resource usage for
users.

In [6,11], the integrity of data through communication is provided by the
symmetric cryptography and a hash function. However, they use the same master
key that all users can use for their communication. Hence, suppose a masquerader
user knows the master key (as the other legitimate users know). Thus, this may
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Table 6. Comparison of network based (communication-based) RNG protocols

Comparison cretria Our
approach

G. Lo Re
et al. [11]

A. Chefranov
et al.[6]

Randomness Average p-value 0.52 0.533387 0.567927

Average ratio 0.9927 0.989333 0.9886666

Robustness on security
threats secure (�)
Unsecure (×) Unknown
(−)

Man in the middle � × ×
Sniffing � × �
Data modification � × ×
Reply attack � � �
Integrity � × ×
Brute force attack � � �
DDoS × × ×

Security and key
infrastructure

Key management � × ×
Symmetric keys � � �
Asymmetric keys � × ×

Resource requirement(s) GPS Wireless
sensor

CPU
temperature
access

Application context Mobile WSN WLAN/LAN

Main randomness entropy GLL Sensor CPU
temperature

Main RNG engine server user Server User User

compromise the overall security by the tempering data; however, in our approach
data is encrypted by a symmetric shared key while the messages and the hash
values of the message are signed by asymmetric encryption. Hence, this method
is robust to all security services’ threats. In the case of man in the middle attack
our method is robust through a key management method. Supposed that the
first request message is tempered by an intruder, it means an intruder keeps the
original message and produces another message on behalf of the user including
intruder’s public key. Then, the server sends the requested bit values and a shared
key that is visible by intruder. Actually, it is not important because when the
intruder sends back the message to the user, that message cannot be opened by
the user’s private key.

Our approach is applicable for mobile devices that cannot access to extra elec-
tronic hardware, sensor networks, or enough CPU and battery resources to gener-
ate random numbers by utilizing complicated cryptographic methods, while they
can access their geographical locations. We use information about the current geo-
graphical position of the mobile devices to produce secure and qualified random
bit sequences. The strength of our approach is that mobile devices will not endure
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the burden of generating random numbers themselves. They securely communi-
cate with a strong centralized server for obtaining random bit sequences.

8 Conclusion

Generation of qualified random numbers requires power and computing resources
that most mobile devices to not have. Further to this, mobile devices cannot eas-
ily use extra hardware-based random number generators. Secure cryptographic
methods have already been implemented for different contexts but they are not
suitable for the mobile device’s capabilities. This paper has presented a novel
protocol that uses geographical location of the mobile device to generate random
values for mobile device security. The process of generating random numbers is
performed in a trusted server by using the geographical location of mobile devices
as a physical source of randomness. Users can send their requests to the trusted
server and securely receive qualified random numbers. This paper also presents
a key distributing approach that uses the random number generator protocol for
use in the security of communication in mobile devices. The proposed protocol
is robust in securing communication under different type of attacks while also
being applicable to the mobile device contexts.

As part of future work, we will expand our work to cover scenario where there
are different trusted mobile subscribers having certificates and communicating
with server. Thus, the server have access to more GLL information to generate
even better quality random numbers.
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Abstract. In a blockchain system, a blockchain transaction is protected
against forgery by adding a digital signature. By digital signature ver-
ification, we can confirm that a creator of a transaction has a correct
private key. However, in some critical fields, we need to prove that a
creator of a transaction is a proper user. In such a case, the conventional
digital signature verification cannot achieve sufficient security. Further-
more, a system that combines blockchain and IoT has been proposed.
However, since an IoT device in this system automatically generates a
blockchain transaction, reliable creator verification is challenging issue.
To achieve reliable creator verification in the IoT blockchain system, we
propose a new signature scheme for blockchain. Our contributions are
as follows: (1) We propose a new secure and practical signature scheme.
(2) We implement our signature scheme for an IoT blockchain system
and evaluate the security and the practicality of our scheme.

In our scheme, by using user’s biometric information as a private key,
we prove that a creator of a transaction has a correct biometric informa-
tion in the transaction verification. Since biometric information such as
fingerprint, face, finger vein and so on is unique, this means that a cre-
ator of a transaction is a proper user. Moreover, the proposed signature
scheme generates a short-term private key and utilizes it for creating
transactions. By using this scheme, IoT device can automatically gener-
ate a new transaction. Finally, we evaluate security and practicality of
the proposed scheme.

Keywords: Blockchain · Biometrics · IoT · Fuzzy signature · PBI
PKI

1 Introduction

1.1 Background and Motivation

The Bitcoin [1] was proposed in 2009 and become widespread as a cryptocur-
rency. The core technology of the Bitcoin is called “blockchain.” Blockchain can
realize a decentralized database, and it is applied to cryptocurrency and smart
c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 877–891, 2017.
https://doi.org/10.1007/978-3-319-72359-4_55
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contract systems [2]. Blockchain will be widely used to critical social infrastruc-
ture systems such as financial ones in the future and will spread widely. For
blockchain as a critical infrastructure, highly strict verification of a blockchain
transaction creator is required. However, conventional blockchain systems guar-
antee only that a blockchain transaction creator has a correct private key. That
is, conventional blockchain systems cannot confirm that a blockchain transaction
creator is a proper user. For example, there is a risk that an attacker steals a
user’s private key by a cyber attack and creates an illegal transaction. However,
conventional blockchain systems cannot detect this attack.

Moreover, many physical devices have connected each other on a network and
exchanged information. This mechanism is called IoT (Internet of Things) [3].
Recently, they introduce a collaborating system between blockchain and IoT for
automatic smart contract. This collaborating system is expected to spread in the
future. For example, IBM’s ADEPT (Autonomous Decentralized Peer-To-Peer
Telemetry) [4] has a vision called Device Democracy that proposes a scalable
and secure platform with non-centralized authority. By using this ADEPT, it
is possible to realize automatic and non-centralized smart contract systems. For
example, an IoT device like a washing machine collects information and auto-
matically executes a smart contract for consumables order. Even when an IoT
device automatically generates a blockchain transaction, it is necessary to con-
firm not only that a correct device has generated a blockchain transaction but
also that a proper user has generated a blockchain transaction at his intention.
However, to check user’s own intention from automatically generated blockchain
transaction is challenging issue.

1.2 Our Contributions

In this paper, we propose a secure and practical signature scheme for IoT
blockchain system based on biometrics. This method is the first study to com-
bine blockchain and biometrics at the algorithm level as far as we know. Our
method uses the fuzzy signature technology [5,6] for generating a blockchain
transaction and realizes strict verification of blockchain transaction creator in
IoT blockchain system. Our contributions are as follows:

1. A secure and practical signature scheme for an IoT blockchain system (Sect. 3)
We propose a new hierarchical signature scheme based on a fuzzy key and
a short-term key. This scheme enables us to use biometric information as a
user’s private key and achieves strict verification of blockchain transaction
creator.

2. Implementation and evaluation of our signature scheme (Sects. 4 and 5)
We implement our signature scheme for an IoT blockchain system and eval-
uate the practicality of our scheme.
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Fig. 1. An example of a Bitcoin transaction.

2 Related Works

2.1 Blockchain

The Bitcoin [1] was proposed in 2009 and become widespread as a cryptocur-
rency. The core technology of the Bitcoin is blockchain which is a decentral-
ized database. After the blockchain introduction with the Bitcoin, they applied
blockchain to many types of cryptocurrencies and smart contract systems [2].
In this paper, we explain blockchain with the Bitcoin transaction as a simple
example. In the other blockchain system, the model of a transaction is different
from the Bitcoin’s. However, the basic model of a transaction is common for the
Bitcoin and the other blockchain systems. Thus we can apply our method to the
other blockchain systems.

A transaction of the Bitcoin is shown in Fig. 1. In the Bitcoin system, a sender
generates a transaction which includes sender’s digital signature and receiver’s
public key. After this transaction generation, the transaction is verified whether it
is valid payment or not by verifier (they are called “miner” in the Bitcoin). In this
verification, the sender’s digital signature is verified by the sender’s public key
in the previous transaction. The sender’s public key in the previous transaction
means that the sender has the Bitcoin, and the sender’s digital signature means
that the sender himself generates a payment transaction. Therefore, a verifier can
confirm that the transaction is valid or not by sender’s public key and a digital
signature. This verification scheme is one of the core methods of blockchain.

In a typical blockchain, private keys are managed by users or membership
servers to ensure security. However, private keys are at risk of leakage. When an
adversary obtains a private key, it can generate arbitrary digital signatures, so
the blockchain system becomes unsafe. There is a biometric authentication as a
method of confirming the identity more reliably than the digital signature using
the private key. For example, FIDO (Fast IDentity Online) [7] checks biomet-
ric information such as fingerprints, faces, irises and so on in secure hardware
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and then activates the private key. By linking such an authentication method
with blockchain, a secure blockchain system is realized. However, FIDO registers
biometric information on a smart phone equipped with dedicated secure hard-
ware and performs biometric authentication within its hardware. For this reason,
when creating a signature, it is necessary to carry a smart phone with biometric
information registered and to input biometric information to the smart phone.
In our method, we use the fuzzy signature which can be used from any device
without requiring dedicated secure hardware.

2.2 Fuzzy Signature

In our proposed scheme, the fuzzy signature technology [5,6] is used for gener-
ating a blockchain transaction. We explain the procedures of the fuzzy signature
technology in this subsection. The fuzzy signature technology is a digital signa-
ture technology which uses fuzzy data as a cryptographic key. In a conventional
digital signature technology, we can use only fixed digital data as a cryptographic
key. Therefore, we cannot use fuzzy biometric information such as fingerprint,
face, finger-vein, and so on as a cryptographic key. By using the fuzzy signature
technology, we can use fuzzy biometric information as a cryptographic key. We
call a fuzzy signature generated based on biometric information as “biometric
signature”. For the detailed algorithm of the fuzzy signature technology, see [6].

Fig. 2. The procedures of PBI.

By using the fuzzy signature technology, we can construct biometrics-based
PKI (Public Key Infrastructure) [8] which uses biometric information as a user’s
private key. They call it the public biometrics infrastructure (PBI). The pro-
cedures of the PBI are shown in Fig. 2. The PBI requires a biometric certifi-
cate authority (BCA) and a repository in addition to the PKI components.
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In [5], they propose a PBI construction method that realizes the PKI using
biometric information as a user’s private key. The procedures for registration,
signature generation, and signature verification of the PBI using biometric sig-
nature are as follows:

1. Registration
(a) The BCA confirms the identity of a user and then acquires user’s biomet-

ric information X.
(b) The BCA find T = Gen(X). Here, T is a public template and Gen(X)

is a function for obtaining a public template from user’s biometric
information X.

(c) The BCA issues a public template certificate (PTC) by giving a digital
signature of the BCA to a set of information such as T , a user ID (UID),
and an expiration date.

(d) The BCA registers a PTC in the repository and publishes it.
2. Signature generation

(a) A user (hereinafter referred to as “signer”) generates a biometric signature
σ = BSig(X ′,M) from his biometric information X ′ and a plaintext M .

(b) The signer transmits the pair of a plaintext and a biometric signature
(M,σ) to a user who verifies a signature (hereinafter referred to as “ver-
ifier”).

3. Signature verification
(a) The verifier acquires a PTC of a signer from the repository, verifies a dig-

ital signature of the BCA attached to the PTC, and checks the expiration
date of the PTC.

(b) The verifier calculates a signature verification result
BVer(M,σ, T ) from the plaintext M , the biometric signature σ, and the
public template T included in the PTC. If a biometric signature is given
to a plaintext M and the error between the biometric information X at
registration and the biometric information X ′ at signature is less than a
certain threshold, BVer(M,σ, T ) = 1 (verification succeeded), otherwise
BVer(M,σ, T ) = 0 (verification failure). The successful verification means
that a registered user and a signer are same persons.

In the PBI, there is no necessity to store a user’s private key into a device or a
cloud server. Moreover, they mathematically prove that anyone cannot estimate
biometric information from a public template and a biometric signature. Thus
the risk of forgery is significantly reduced in the PBI. By using the PBI, we can
develop a secure signature platform.

3 A Proposed Scheme

In this section, we propose a secure and practical signature scheme for an
IoT blockchain system. By applying biometrics to a blockchain system, we can
improve the security of a blockchain system. We propose two schemes: one is
fuzzy key based signature scheme and the other is short-term key based signa-
ture scheme.
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3.1 A Fuzzy Key Based Signature Scheme

In this system, we apply the fuzzy signature technology [6] to the generation
of a blockchain transaction. After generating the content of a new blockchain
transaction, a user inputs his biometric information to an IoT device, and his
biometric signature is attached to the blockchain transaction. A verifier of a
blockchain system verifies a biometric signature of a blockchain transaction by
a public template certificate (PTC). In this way, a verifier can confirm that
a proper user creates a blockchain transaction. Therefore, there is no risk of
successful forgery due to the theft of a user’s private key.

Fig. 3. The overview of the fuzzy key based signature scheme.

The overview of the fuzzy key based signature scheme is shown in Fig. 3. In
this situation, the Owner 2 generates a new blockchain transaction. A detailed
explanation of the fuzzy key based signature scheme is as follows.

1. PTC Registration
This procedure is completely same as the PBI registration’s one. See from
(1-a) to (1-d) in Subsect. 2.2.

2. Previous Transaction Generation
This procedure is transaction generation from the Owner 1 to the Owner 2.
The specific procedures of transaction generation are described in procedure 3.
(a) The Owner 1 sets the Owner 2’s PTC to a blockchain transaction, and

issues it.
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3. Transaction Generation
(a) The Owner 2 creates a new blockchain transaction which includes the

Owner 3’s PTC (a receiver’s PTC), some contents, and their hash value
H ′. The Owner 2’s biometric signature φ = BSig(X ′,H ′) is generated
from the hash value H ′ using his biometric information X ′.

(b) The Owner 2 attaches the Owner 2’s biometric signature φ to the
blockchain transaction, and issues it.

4. Transaction Verification
(a) A transaction verifier checks the expiration date of the Owner 2’s PTC

in the previous blockchain transaction and verifies the Owner 2’s PTC by
using the BCA’s public key.

(b) The transaction verifier calculates a signature verification result
BVer(H ′, φ, T ) for the hash value H ′, the biometric signature φ, and the
public template T included in the PTC. If the biometric signature is given
to the hash value H ′ and the error between the biometric information X
at registration and the biometric information X ′ at signature is less than a
certain threshold, BVer(H ′, φ, T ) = 1 (verification succeeded), otherwise
it is BVer(H ′, φ, T ) = 0 (verification failure).

The fuzzy key based signature scheme need not store a user’s private key
in any devices or cloud servers. In this scheme, a user’s biometric information
acts as a user’s private key. This means that a user can store his private key
in his body. Therefore, we can prevent key theft and realize a highly secure
blockchain system. Furthermore, the fuzzy signature generates a different PTC
for each registration. Therefore, when the private key corresponding to a PTC
leaks, the PTC can be updated in the same manner as the public key certificate
of the PKI. However, in this method, it is necessary for a user to input biomet-
ric information every time he generates a blockchain transaction. Therefore, an
IoT device cannot automatically create a blockchain transaction. Moreover, if
a blockchain transaction is frequently generated, the usability of a blockchain
system is reduced. To solve this problem, we propose a short-term key based
signature scheme.

3.2 A Short-Term Key Based Signature Scheme

In this method, a user generates a short-term key pair which consists of a
short-term private key and a short-term public key in an IoT device. By
attaching a user’s biometric signature to a short-term public key, a user cre-
ates a short-term public key certificate (SPKC). He uses a short-term private
key for generating a digital signature in a blockchain transaction. The valid-
ity of a blockchain transaction is confirmed based on three-phased hierarchi-
cal verification. The first one is PTC’s verification by the BCA’s public key.
This phase confirms that the BCA issued a PTC. The second one is SPKC’s
verification by a PTC. This phase confirms that an SPKC is generated by a
proper user. The third one is short-term signature’s verification by an SPKC.
This phase confirms that a blockchain transaction is created by using a correct
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Fig. 4. The procedures of the short-term key based signature scheme.

short-term public key. This hierarchical verification allows a transaction verifier
to verify that a proper user generated a blockchain transaction.

The overview of the short-term key based signature scheme is shown in Fig. 4.
A detailed explanation of the short-term key based signature scheme is as follows.

1. PTC Registration
This procedure is completely same as the PBI registration’s one. See from
(1-a) to (1-d) in Subsect. 2.2.

2. Previous Transaction Generation
This procedure is entirely same as the fuzzy key based signature scheme’s
one. See (2-a) in Subsect. 3.1.

3. Short-Term Key Registration
In this procedure, a user generates a short-term private key and a short-term
public key certificate (SPKC) and stores the keys on an IoT device.
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(a) An IoT device generates a short-term key pair which is a short-term
private key sk and a short-term private key pk .

(b) The Owner 2 creates a short-term public key with contents p̂k from the
short-term public key pk , an expiration date, an issuer name, and so on.
This information can be followed public key certificate standard X.509 [9].

(c) The Owner 2 inputs his biometric information X ′ and generates his bio-
metric signature σ = BSig(X ′, p̂k) from a short-term public key with
some contents p̂k .

(d) An IoT device obtains an SPKC which includes a short-term public key
with some contents p̂k and the biometric signature σ and stores it.

4. Transaction Generation
(a) The Owner 2 creates a new blockchain transaction which includes the

Owner 3’s PTC (a receiver’s PTC), some contents, and their hash value
H ′ and generates a short-term signature λ = Sig(H ′, sk) from the hash
value H ′ and his short-term private key sk . Here, Sig(A,B) is a function
for obtaining a digital signature from a plaintext A and a private key
B. Any digital signature algorithm such as RSA, DSA, ECDSA can be
applied to this signature.

(b) The Owner 2 attaches the SPKC (p̂k, σ) and the short-term signature λ
to the new blockchain transaction and issues it.

5. Transaction Verification
(a) A transaction verifier checks the expiration date of the Owner 2’s PTC

in the previous blockchain transaction and verifies the Owner 2’s PTC by
using the BCA’s public key.

(b) The transaction verifier calculates a signature verification result
BVer(pk ′, σ, T ) for the short-term public key with some contents pk ′, the
biometric signature σ, and the public template T included in the Owner
2’s PTC. If a biometric signature is given to a short-term public key with
some contents pk ′ and the error between the biometric information X at
registration and the biometric information X ′ at signature is less than a
certain threshold, BVer(p̂k , σ, T ) = 1 (verification succeeded), otherwise
it is BVer(p̂k , σ, T ) = 0 (verification failure). The successful verification
means that the SPKC is issued by a proper user.

(c) The transaction verifier calculates a signature verification result
Ver(H ′, λ, pk) for the hash value H ′, the digital signature λ and the short-
term public key pk . If a digital signature λ is valid, Ver(H ′, λ, pk) = 1
(verification succeeded), otherwise it is Ver(H ′, λ, pk) = 0 (verification
failed). The successful verification means that a blockchain transaction is
generated using a correct private key sk corresponding to pk .

If all of the signature verifications (5-a), (5-b), and (5-c) are successful, trans-
action verification is successful. If one or more signature verification fails,
transaction verification fails.

The short-term key based signature scheme stores a short-term private key
in an IoT device. Therefore, there is a risk that an attacker steals a short-term
private key and successfully spoofs a digital signature in a blockchain transaction.
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However, this risk can be reduced compared to the conventional private key based
signature scheme.

For example, suppose that we set the validity period of a short-term public
key certificate to one day. An IoT device can continually generate a blockchain
transaction by user’s updating of a short-term public key certificate once a day.
In this case, spoofing will not succeed if it takes more than one day for a cyber
attack, theft of an encrypted short-term private key, decryption of a short-term
private key, and attack using the decrypted short-term private key.

Furthermore, with this method, the user does not need to input his biometric
information every time an IoT device generates a blockchain transaction. There-
fore, it is possible to achieve high usability than the fuzzy key based signature
scheme.

4 Discussion on Security

We discuss on the security of the proposed schemes and confirm their effective-
ness. In this paper, “security” is defined as resistance to spoofing or signature
forgery in a signature scheme. We address the threats of the blockchain system
and discuss security against three signature schemes: the conventional private key
based signature scheme (PKSS), our fuzzy key based signature scheme (FKSS)
and our short-term key based signature scheme (SKSS) (Table 1).

Table 1. The security of each signature scheme.

Signature scheme (T1) (T2) (T3)

PKSS - Low High

FKSS High High High

SKSS High Middle - High High

(T1) Issuing a short-term public key certificate corresponding to a short-
term private key of imposter user
This threat is that an imposter user’s short-term public key certificate
is issued as a genuine user’s one. By using this imposter user’s short-
term public key certificate, the imposter user can forge genuine user’s
signature. In the PKSS, this threat does not occur, because we do not use
a short-term public key certificate in this signature scheme. In the FKSS
and the SKSS, there are three attack patterns against this threat: (T1-a)
forcing a genuine user to issue an illegal short-term public key certificate
of an imposter user, (T1-b) forging the biometric signature of a short-term
public key certificate, and (T1-c) issuing a short-term public key certificate
of an imposter user by collusion between a genuine user and an imposter
user.
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In the thread (T1-a), there is an attack that an imposter user sends
his short-term public key to a genuine user and asks him to generate his
biometric signature to an attacker’s short-term public key. By using this
signed attacker’s key as a short-term public key certificate, the attacker
can forge a blockchain transaction. As countermeasures against this attack,
there are two kinds of methods. One is that a user separates biomet-
ric information for each purpose (for example, he use a fingerprint of an
index finger for signing to a document and use a fingerprint of a middle
finger for issuing a certificate). The other is that a user adds signature
purpose information (for example, signature to a document or issuing a
certificate) to his biometric signature. In this way, biometric signatures
assigned for different purposes cannot be used to issue a short-term public
key certificate. Thus transaction verification is failed.

Concerning the threat (T1-b), if it is hard to forge a biometric sig-
nature, issuing an illegal short-term public key certificate is difficult. For
example, the fuzzy signature proposed in [6] is CMA - EUF (Existential
Unforgeability against Adaptive Chosen Message Attacks) which means
that it is hard to forge a biometric signature. By using such a secure
algorithm for biometric signature, we can sufficiently reduce a risk to this
threat.

In the threat (T1-c), a genuine user intentionally issues a short-term
public key certificate of an imposter user. The imposter user creates a
genuine user’s blockchain transaction by using the short-term public key
certificate and a genuine user later denies that he generated a blockchain
transaction. Concerning this attack, a genuine user issues a short-term
public key certificate in a correct procedure. Thus it is difficult to pre-
vent this attack using any signature scheme. Therefore, (T1-c) is out of
our scheme’s scope. The FKSS and the SKSS are safe against the threads
(T1-a) and (T1-b). Thus the security of these schemes is high.

(T2) Private key leakage
This threat is that a user’s private key leaks out from an IoT device,
imposter user obtains it and illegally generates a blockchain transaction.
This threat is caused by IoT device theft, cyber attack, and so on. In the
PKSS, a long-term private key is managed in an IoT device or a cloud
server. Therefore, there is a high risk that an attacker steals a private
key and a forges a digital signature. In the FKSS, any private key is not
managed in an IoT device. We use user’s biometric information as a user’s
private key. Therefore, the FKSS is highly secure against the threat (T2).
In the SKSS, we manage a short-term private key in an IoT device. Thus
there is a risk that an attacker steals a private key and forges a digital
signature. However, this risk can be significantly reduced compared to
the PKSS. Since the SKSS allows a user to issue a short-term public key
certificate, it is possible to shorten the expiration date of a short-term
public key certificate.

For example, suppose that we set the validity period of a short-term
public key certificate to one day. A user inputs his biometric information
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once a day to an IoT device and issues a short-term public key certificate.
As a result, the latest short-term public key certificate is always valid, so
that an IoT device can generate a blockchain transaction continuously.
Even if a short-term private key leaks out from an IoT device, we can
sufficiently reduce the risk of illegal blockchain transaction generation by
an imposter user. In other words, if an attacker takes a day or more to steal
an encrypted short-term private key, decrypt it, and generate a blockchain
transaction utilizing the decrypted short-term private key, the blockchain
system based on the SKSS is secure. We judge this SKSS’s security to be
a middle to high level.

(T3) Forgery of digital signatures
This threat is to forge a digital signature for an arbitrary blockchain trans-
action and make the verification of a digital signature succeed. We can
reduce the risk of this threat if we adopt a safe algorithm as a public
key cryptography for generating a private key and a public key. In the
PKSS and SKSS, if a secure signature algorithm that is difficult to be
forged is used, these signature schemes are safe. In the FKSS, if we use a
secure fuzzy signature algorithm [6] which has CMA - EUF (Existential
Unforgeability against Adaptive Chosen Message Attacks) for generating
a biometric signature, the forgery of a signature is significantly difficult.

From the above, the proposed FKSS and SKSS are safer than the conven-
tional PKSS. Furthermore, when comparing the FKSS and the SKSS, the FKSS
is more secure than the SKSS in that we do not store a short-term private key
on an IoT device. Therefore, we recommend the use of the FKSS in fields where
high safety is required.

5 Discussion and Experimental Evaluation on Practicality

5.1 Discuss on Usability

In this paper,“Usability” is defined as a user’s labor required to generate a
blockchain transaction. Specifically, “Usability” is evaluated on the number of
user authentications that is required for an IoT device to generate blockchain
transactions continuously. Note that the “user authentication” includes inputting
password, smart card, biometric information, and so on. The number of user

Table 2. The usability of each signature scheme.

Signature scheme Usability (Num. of user
authentication)

PKSS High (1)

FKSS Low (mn)

SKSS Middle (m)
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authentication is shown in Table 2. Here we consider blockchain transaction gen-
eration for a specified time unit. For example, given a time unit as one day, the
expected total number of blockchain transactions is expressed as mn using the
number of days m and the average number of transactions per day n.

In the PKSS, a user performs authentication at an initial setting only. Thus
the number of authentication is 1, and we can achieve high usability. In the
FKSS, a user needs to authenticate on an IoT device each time it generates a
blockchain transaction. The expected total number of user authentication is mn.
Since this frequency is very high, the usability of the FKSS is low. In the SKSS,
a user needs to authenticate on an IoT device each time unit, and the expected
number of user authentication is m. This frequency is lower than that of the
FKSS, and usability of the SKSS is the middle.

Furthermore, we compare the FKSS with the SKSS. In the FKSS, we require
user’s fuzzy signature generation each time an IoT device generates a blockchain
transaction. For this reason, it is impossible to generate a blockchain transaction
unless a user can input biometric information into an IoT device at the time.
On the other hand, in the SKSS, if a user issues a short-term public key certifi-
cate once per unit time, an IoT device can continuously generate a blockchain
transaction. Thus, the SKSS realizes higher usability than the FKSS.

5.2 Experimental Evaluation of Implementability

Experimental Set-Up. We implement the proposed methods and evaluate the
size of files and processing time. We develop the fuzzy signature algorithm for
finger-vein authentication [10]. Moreover, we use the ECDSA 256 bit [11] as a
digital signature algorithm in this evaluation. The ECDSA 256 bit is utilized in
the open source blockchain platform the Hyperledger Fabric [2] (Table 3).

Table 3. Implementation results of each signature scheme.

Results PKSS FKSS SKSS

File size PTC - 10 Kbyte 10Kbyte

Public key certificate 1 Kbyte - 1Kbyte

Signature in a blockchain transaction 71 byte 71 byte 71 byte

Process
time

PTC generation - 499ms 499ms

Short-term public key certificate
generation

- - 1306ms

Signature generation 78 ms 1306ms 78ms

Signature verification 70 ms 70 ms 140ms

Experimental Results. First, we evaluate the file size of a public template
certificate (PTC), public key certificate and signature in a blockchain transac-
tion. A PTC includes a public template for a finger-vein pattern, and the file
size of a PTC is 10 Kbyte. This file size is larger than a traditional public key
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certificate’s one (1 Kbyte). However, 10 Kbyte is small enough for practical use.
The file sizes of a public key certificate and signature are same in all methods,
and they are 1 Kbyte and 71 byte, respectively.

Second, we evaluate the processing time for each signature scheme. The CPU
and memory where we perform the evaluation are Intel Celeron N3050 1.6 GHz
and 4 GB, respectively. This spec is too rich as an IoT device. However, we think
that if sufficiently high-speed processing can be performed with this specifica-
tion, practical processing time can be achieved even if IoT device processing
is several times slower. PTC generation is executed one time in an initial user
registration. Thus the processing time 499 ms is fast enough. Short-term public
key certificate generation is performed every time unit (for example once a day).
Thus, the processing time 1306 ms is also fast enough. We perform signature
generation every blockchain transaction generation. In the PKSS and the SKSS,
the processing time of signature generation is 78 ms, and this is significantly fast.
In the FKSS, the processing time of signature generation is 1306 ms, and this is
slower than the PKSS and the SKSS. However, the processing time is fast enough
for practical use. We perform signature verification every blockchain transaction
verification. In the SKSS, signature verification takes twice the time of the other
schemes. However, 140 ms is fast enough comparing to the other blockchain pro-
cedures. In this way, you can see that the proposed schemes achieve practical
file size and processing time. Therefore, we can use these schemes for a practical
IoT blockchain system.

6 Conclusions

In this paper, we propose a secure and practical signature scheme for an IoT
blockchain system based on biometrics. In the proposed scheme, the fuzzy signa-
ture is applied to generate a blockchain transaction. The fuzzy signature can use
a user’s biometric information as a user’s private key. Since the proposed scheme
requires biometric information at blockchain transaction generation, it is possi-
ble to achieve high security against spoofing and signature forgery. Therefore,
our scheme can integrate blockchain and biometrics and achieve highly secure
blockchain system. Moreover, we newly propose a short-term key based signa-
ture scheme. This method can achieve both blockchain security and usability.
In the discussion and the experimental evaluation, we evaluate the security and
the practicality of the proposed scheme, and the effectiveness of the proposed
scheme is confirmed.
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Abstract. Fuzz test is effective and efficient technique in discovering
serious vulnerability in a network protocol by inserting unexpected data
into the input message of the protocol and finding its bugs or errors.
However, traditional fuzz test requires a large number of test cases to
cover every test case, which is a time-consumed and inefficient process. In
order to address this problem, we propose a novel method to reduce the
number of test cases. The proposed method uses the technique of protocol
reverse engineering to reconstruct the protocol’s specification and create
test cases by inserting fault fields into protocol input according to its
format. The experimental results show that the proposed method can
effectively identify the message fields of protocol and the total number
of test cases is dramatically reduced.

Keywords: Vulnerability detection · Network security
Protocol reverse engineering

1 Introduction

Fuzz testing is a security test to discover the vulnerabilities of software systems
by inserting random data or faults into the input of the software systems and
detecting the software exceptions. Generally, there are two types of fuzz testing,
i.e., Generation and data mutation [1]. The former type constructs test cases
based on the complete specification of target protocol, while the latter type
generates test cases by inserting faults into existing sample files.

The main problem of data mutation fuzz testing is that it needs too many
fault-inserted files to cover all test cases, such as FileFuzz and SPIKEfile. The
number of fault-inserted files come up to 28×FILESIZE if the size of sample file is
FILESIZE. However, it is time consuming to handle so great sum of fault-inserted
files when FILESIZE becomes large and many of which are not necessary for
successful testing. Actually, a software system parses its input by considering
the format of input and treats any file that do not follows the file format as
invalid input. The system may throw an error and exit before it reaches the
fault pieces of code.

c© Springer International Publishing AG 2017
J. K. Liu and P. Samarati (Eds.): ISPEC 2017, LNCS 10701, pp. 892–897, 2017.
https://doi.org/10.1007/978-3-319-72359-4_56
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Hence, it is a novel idea to use the generation type of fuzz testing and create
test cases by taking the file format into account, such as PROTOS, a network
protocol fuzzer. The advantage of generation type testing is that it decreases
greatly the number of test cases but still maintains the maximum test cases cov-
erage [2]. However, one has to completely analyze the target system and fully
understand the protocol specification before he generates a series of effective but
ad-hoc test cases. Since protocol reverse engineering [3] a the most promising
technique to reconstruct the specification of private protocol, we apply the pro-
tocol reverse engineering technique to enhance the efficiency of network protocol
fuzz test.

2 System Design

The protocol specification consists of both protocol message format and protocol
state machine. The former is the protocol syntax rules which conduct the process
of constructing different types of protocol messages, while the latter regulates
the behaviors of protocol entities during the communication process, such as the
order in which different types of messages should be sent or received.

In order to recover the protocol specification and perform a efficient fuzz
test, we propose an architecture of protocol-reverse-engineering based fuzz test
system. The core of the fuzz test is called QCD-PInfer, as shown in Fig. 1.
The QCD-PInfer module includes the following four components: Data Pre-
Processing, Multi-Change-Point Detection, Message Segmenting and Message
Format Inference.

Data Set

Data Pre-processing

Multi-Change-Point Detection

Suffix Trie Construction

Computing Probability Metric

Change-Point Detection

Message
Segmenting

Message Format Inference

Post-processing

Semantic Analysis

Position Test Analysis

Occurrence Probability Analysis

Message Formats Fuzz Fields

Keyword Fields

Data Fields

Legends:

INPUT/OUTPUT

PROCESS MODULE

Fig. 1. The system architecture of QCD-PInfer.

We assume that a stochastic process is undergone by the observed messages
and different type of fields have different statistical properties. So multiple change
points would occur in the process and each of the change points indicates a
change undergone by the statistical properties of the process. A change point
means the ending of previous field and the beginning of a new field in a message.
Under these assumption, our goal is transformed into the problem of multiple
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change-point detection and one can address this problem by using techniques of
change-point detection [4,5].

Once the change-points are detected, message fields are identified. In order
to determine the type of fields, a two-phase inference procedure, including occur-
rence probability analysis (OPA) and position test analysis (PTA), is present to
classify the message fields into keyword fields, data fields and uncertain fields.
In the OPA phase, fields with approximate zero-probability are marked as data
fields. The other fields are passed to PTA to be further classified as keyword
fields and uncertain fields. In the PTA phase, a benchmark position is selected
for each field, and a binomial test is applied to test whether the field positions
are equal to the benchmark position with probability 1 given a significance level
α. The fields passed the statistic test are selected as keyword fields, while the
rest fields are uncertain fields.

3 Results and Analysis

In this section, we perform experiments to evaluate the effectiveness of the pro-
posed method. We also compare our results with those of Discoverer [6] and
PI [7]. We implement the proposed approach on a system called QCD-PInfer in
C/C++ and run all experiments on PCs with 2.93 GHz dual-core CPU, 4 GB
RAM and operation system of Windows 7.

The recall and precision of inferred keyword fields are shown in Tables 1 and 2,
respectively. It is important for us to note that, the true keywords are keywords
occurred in the data set. Any keywords that do not appear in the data set will
be omitted. We also note that the keyword quality of DNS and QQ would not be
consider since the two protocols are pure binary protocol with no keyword defined
in their protocol specifications.

As we seen, the recall rate of QCD-PInfer is higher than both Discoverer and
PI. We also find that the recall rate of PI is too low: the recall rates of HTTP,
FTP, SMTP and POP are less than 10%.

Table 1. The recall rate of protocol keyword.

System HTTP FTP SMTP POP SSDP BitTorrent

QCD-PInfer 87.0 92.9 85.7 84.0 74.1 100

Discoverer 78.3 60.7 64.3 40.0 33.3 100

PI 4.4 3.6 7.1 4.0 18.5 50.0

The precision of Discoverer is much lower than QCD-PInfer since Discoverer
infers too many segments as keyword fields most of which are false positive. The
precision of HTTP and FTP inferred by PI is 100%. However, recall rate of the
two protocol by PI is 4.4% and 3.6%, respectively. The reason is that PI infers
too few (less than 5) keyword fields, which leads to a low recall rate.
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Table 2. The precision rate of protocol keyword.

System HTTP FTP SMTP POP SSDP BitTorrent

QCD-PInfer 66.7 97.0 35.0 95.8 66.0 66.7

Discoverer 7.2 23.3 19.2 22.8 33.9 5.3

PI 100 100 20.0 16.7 35.6 33.3

As shown in Fig. 2, the F-score of QCD-PInfer is higher than both Discoverer
and PI for all the six protocols, which means that the quality of inferred keyword
by QCD-PInfer is better than the other systems. Thus, QCD-PInfer outperforms
Discoverer and PI in inferring keyword fields.

HTTP FTP SMTP POP SSDP BitTorrent
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Fig. 2. The F-score value of keywords.

In this paper, we combine the proposed method with the idea of PROTOS
to implement an automated fuzz testing tool (APREFuzz) for detecting the
buffer overflow vulnerability of an information-centric network system in our
test bed. The protocol used by the system could be considered as unknown
protocol or private protocol since its protocol specification is not available to
public. There are 5 message formats defined by the protocol specification, includ-
ing “INTEREST” message, “DATA DISTRIBUTION” message, “DATA PUSH-
ING” message, “RESPONSE WITH DATA” message and “RESPONSE WITH-
OUT DATA” message. APREFuzz is a proof-of-concept tool and only focuses
on the buffer overflow vulnerability caused by the “DATA PUSHING” message.

Given a sample message, we firstly identify all protocol keyword fields and
data fields in the message. Then generate test files by inserting fault data into
these fields. In keyword fields, we insert fault data by replacing a particular
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keyword field with one of the inferred protocol keywords or one random string.
In data fields, if the field contains only figures, we insert a boundary value of
numbers into the field. Otherwise, we insert a random string into the field.

We compare our results with FileFuzz in Table 3. APREFuzz identifies 7
keyword fields and 7 data fields in the sample message. One of the data fields
contains only figures. The number of inferred protocol keywords is 12. Thus, the
total number of fault-inserted files is 248 (= (12 + 11) × 7 + 21 × 1 + 11 × 6).
However, FileFuzz generates 393, 216 (= 1.5 × 1024 × 28) fault-inserted files
by replacing each byte with values from 0x00 to 0xFF . The results show that
APREFuzz has detected one vulnerability while FileFuzz failed to detect the
vulnerability.

Table 3. Fuzz testing to the information-centric network.

Fuzz system Sample file Fault-inserted files Vulnerability

APREFuzz 1.5KB 248 1

FileFuzz 1.5KB 393,216 0

4 Conclusion

The key idea of the proposed method is to introduce the technique of proto-
col reverse engineering to enhance the performance of fuzz test. The proposed
method considers the statistic properties of message fields and identifies the mes-
sage fields by detecting the change point in these statistic properties and recover
the message format by determining type and semantic of message fields. The
technique of change point detection is an excellent solution to detect the change
points. In order to deal with multiple change-points each of which corresponds to
message field, a multi-change-point detection technique is proposed based on the
traditional change point detection by restarting the detection procedure from an
initial condition once a change point is detected. The message fields are further
analyzed via occurrence probability test and position test, so as to identify the
data fields, keyword fields and uncertain fields. The minimal description length
criteria based position test analysis is proposed to identify those keyword fields
which have multiple position in the message. The experiment results show that
the protocol specification is useful for generating test cases for fuzz test.
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Abstract. Twitter Spam is a critical problem and current solution is
mainly about machine learning based detection. However, recent stud-
ies found that the spam features are continuously changing day by day
(called ‘Spam Drift’ problem), which may significantly affect the perfor-
mance of the detection. In this paper, we carried out a real-data driven
study to explored the ‘Spam Drift’ problem and its impact to machine
learning based detection. Our study found that only a small group of
spam features will continuously change. The results also suggested a
counter-intuitive conclusion that the ‘Spam Drift’ problem does not have
serious impact on spam detection Precision (SP) and non-spam detection
Recall (NR), two metrics that industries prioritise in practice.

Keywords: Security · Spam · Twitter

1 Introduction

Online social networks (OSNs) such as Facebook and Twitter become popular
platforms for individuals to communicate with other people nowadays. People
can share their ideas or post messages with each other anytime and anywhere
through multiple devices. However, criminals exploit the prevalence of this kind
of new media and broadcast malicious information for hostile attack such as
producing illegal selling, phishing and viruses [8]. Moreover, social spammers
tend to be more rampant with the increasing usage of OSNs. For instance, as
Twitter users are limited in posting 140-character tweet each time, spammers
always abuse hashtags, mentions and shortened URLs to disseminate unsolicited
messages [11].

Current Twitter spam detection methods are mainly based on machine learn-
ing algorithms and can be divided into three main categories: syntax-based,
feature statistic and URL-based methods. Among the state-of-art methods, the
feature statistic category took the dominant place [2]. The rationale of this main-
stream technique can be exhibited as two stages. A series of features are firstly
extracted for statistics such as hashtag number and digit number in a tweet.
Since more than ten features are generally selected, each collected tweet can be
c© Springer International Publishing AG 2017
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represented as a high-dimension vector [6]. These vectors will secondly be fed
into classic machine learning algorithms (e.g. Random Forest and Decision Tree)
to develop a model for spam classification [7].

There are plenty of works which utilised this method and achieved the real
time detection rate of over 90% [2]. However, Liu et al. and Chen et al. found the
problem of spam drift which can affect the performance of this method [3,10].
The spam drift problem is that the spam features fluctuate with the day changes,
so that the model generated based on historical tweets cannot be used to predict
real time data. In this paper, we will deeply analyse the impact of spam drift on
real-world Twitter spam detection.

Dataset. In this study, we collected a ten-day ground-truth dataset from Twit-
ter’s Streaming API [4]. This dataset contained more than 600 million tweets
with URLs. It was revealed that most spammers were keen on posting unsolicited
links in their messages to redirect victims to malicious websites or malware down-
loading [1]. Moreover, Liu et al. manually labelled thousands of ground-truth
tweets and noticed that only a small part of spam messages did not include
URLs [10]. Therefore, we only considered the tweets with embedding URLs in
our dataset. The dataset was labelled by employing the URL-detection technique
provided by Trend Micro, and the detection rate of it could reach 99.8% [4].

There are three main resources in the procedure of feature extraction: tweet,
account and social graph. Yang et al. generated several features based on the
structure of social graph such as Betweenness Centrality [13]. But generally, it
is time and resource consuming to construct the huge social network and not

Table 1. 14 Statistical Features

Number Notation Drift Description

1 account age � The age (days) of an account since its creation
until the time of sending the most recent tweet

2 no follower × The number of followers of a user

3 no following × The number of followings/friends of a user

4 no userfavourites × The number of favourites a user received

5 no tweetfavourites × The number of favourites a tweet received

6 no lists × The number of lists a user added

7 no tweets × The number of tweets a user sent

8 no retweets × The number of retweets in a tweet

9 no hashtag × The number of hashtags in a tweet

10 no usermention × The number of user mentions in a tweet

11 no urls × The number of URLs included in a tweet

12 no char � The number of characters in a tweet

13 no digits � The number of digits in a tweet

14 k score � The Klout score of a user
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feasible in real-world scenarios. For this reason, we mainly focus on the features
about tweet and account. These tweets could be processed using JSON format,
where each line of them was considered as an object [4]. Then, the features were
extracted directly through statistics. Totally, we refined 14 light-weight features
which are illustrated in Table 1.

In the experiment, for each day, a balanced 200,000-tweet sample dataset
was collected correspondingly from the labelled ten-day dataset. Basically, we
ran the experiments on Windows 10 operation system at a server with Inter(R)
Core(TM) i7 CPU of 12 GB.

2 Feature Drift

We analysed the spam and non-spam feature distribution for ten days and visu-
alised four representative features in Figs. 1 and 2 (i.e. drift and non-drift exam-
ples). It is shown in Fig. 1 that for the features of ‘number of characters’ and
‘account age’, the distribution in spam fluctuated dramatically and could not
be predicted when the day changed. However, the features for non-spam tweets
remained stable and the mean values stayed in a line in ten days. On the con-
trary, according to Fig. 2, there was no significant drift in terms of the features
‘number of followings’ and ‘number of followers’. The distribution of each sin-
gle day was scattered but the overall range did not change evidently over time
(i.e. the means were almost zeros excluding the values beyond the range). There-
fore, we can see that not all the features have the problem of spam drift. We
gathered the whole distributions of the 14 features during ten days, and collected
the corresponding drift result. From Table 1, we can conclude that given a series
of features, only a few of them experience spam drift.

Fig. 1. Example of drift features. The features of ‘number of characters’ and ‘account
age’ are drifting during the 10-day period.
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Fig. 2. Example of non-drift features. The features of ‘number of followings’ and ‘num-
ber of followers’ remain stable in both spam and non-spam tweets during the 10-day
period.

Spam drift is mainly caused by data fabrication produced by social engineer-
ing techniques [12]. Sophisticated criminals usually manipulate tweets according
to some specific syntax, but they change the template frequently in order not
to be detected [5]. Thus, the value range of the drifted features will fluctuate
significantly with the update of the criminal machines for generating spam. For
example, in Table 1, we can find that the drifted features are available for easy
manipulation. However, the features such as ‘number of followers’ and ‘number
of followings’ which are hard to be manipulated are identified as non-drift.

3 Impact

We then make an empirical study to deeply explore the impact of spam drift on
machine leaning based Twitter spam detection.

Table 2. Confusion matrix

Actual Predicted

Spam Non-spam

Spam TP FP

Non-spam FN TN

Performance Metrics. Traditionally, the spam classification result is repre-
sented as the confusion matrix as demonstrated in Table 2 (we consider spam as
positive). TP (True Positive) is the number of spam tweets which are correctly
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Fig. 3. Recall and Precision for spam and non-spam tweets throughout ten days. In
the classification procedure, DT (Decision Tree) and RT (Random Forest) algorithms
were applied to generate models based on day1 data and real time data.

classified as spam, and FP (False Positive) represents the amount of non-spam
tweets which are wrongly labelled as spam. On the contrary, TN (True Negative)
refers to the quantity of non-spam tweets which are exactly considered as non-
spam, while FN (False Negative) denotes the number of spam messages which
are treated as spam by mistake.

Table 3. Recall and Precision for spam and non-spam

Recall Precision

Spam SR ( TP
TP+FN

) SP ( TP
TP+FP

)

Non-spam NR ( TN
TN+FP

) NP ( TN
TN+FN

)

In our experiment, we applied Recall and Precision to evaluate the perfor-
mance of the classification method. Recall can be expressed by Recall = TP

TP+FN ,
and Precision is denoted as Precision = TP

TP+FP . Accordingly, we can obtain
the Recall and Precision matrix for both spam and non-spam (see Table 3). In
this table, when we calculate Recall and Precision for non-spam, the positive
and negative is swapped. For example, TN represents the number of non-spam
tweets which are correctly classified as non-spam.

There is a gap between industry and theoretical research on the moti-
vation of performance improvement. In real-world scenarios, security ser-
vice customers are zero-tolerant to FP, in contrast to FN. To achieve better
FP has been prioritised as the paramount principle in cyber security industries.
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Therefore, the basic requirement is that non-spam tweets should not be classified
as spam (i.e. FP should be zero). As for the experiment in our analysis, the high
enough NR (Non-spam Recall) and SP (Spam Precision) can satisfy the basic
requirement of the industry. Meanwhile, SR (Spam Recall) and NP (Non-spam
Precision) represent the spam detection rate and they are more treated as the
classification performance.

Classifiers. We applied machine learning algorithms as the classification meth-
ods after feature extraction. It was reported that Decision Tree (DT) and Ran-
dom Forest (RF) achieved better performance than using other traditional algo-
rithm such as Naive Bayes (NB) [9,10]. For this reason, DT and RF were selected
in our experiment. We ran 100 times for each experiment, and computed the
average, maximum and minimum values.

In order to explore the impact of spam drift, we constructed two kinds of
models based on day1 data and real time data separately. Day1 Model: when
we applied day1 data for modelling, 60% of it was randomly selected as training
data for all the ten days, and the whole sample dataset for each day was used
for testing. Real Time Model: in contrast, the real time detection partition
the data into 60% training data and 40% testing data on every day basis.

Result. Figure 3 shows the result of Recall and Precision for spam and non-spam
detection on ten days respectively, and there is a one-to-one correspondence
between the four sub-figures and the matrix in Table 3.

We can see that the outperformance of Real Time Model only occurred in
SR and NP. By employing both RF and DT, the result of Real Time Model was
significantly better than employing Day1 Model. Even the worst performance of
Real Time Model was better than the maximum result of Day1 Model. Take SR
result as an example, the mean for Real Time Model was approximately 30%
higher than Day1 Model. Therefore, spam drift could bring some effects on spam
detection performance.

However, as explained previously, SP and NR represent the basic requirement
of the industry. In the experiment result, SP and NR failed to behave the same as
SR and NP (see Fig. 3). In the figure, the lines of two models crossed more than
once for both classifiers. For example, in the left bottom sub-figure of Fig. 3, we
can see that for DT only at day6 and day9, Real Time Model exhibited better
performance than Day1 Model. Nevertheless, by using RF, both SP and NR for
two models could achieve about 95%, while the methods based on DT obtained
around 5% lower averagely. Therefore, spam drift actually did not have serious
influence on the basic practical use in real-world cases.

4 Conclusion

In this paper, we analysed the spam drift problem, and through a series of
empirical studies exploited its real impact on spam classification performance.
At the standpoint of industries, according to the experiment result, we found
that the spam drift problem did not affect user experience in spam detection,
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which were contradicted to the claims in recent works [3,10]. Current techniques
targeted at spam drift mainly focused on the detection performance (i.e. SR and
NP) instead of basic industrial requirement (i.e. SP and NR) [3,10]. According to
the study presented in this paper, the improvement on SR and NP is significant
only when the industrial demand has been prioritised and solved.
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