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Abstract Platinum Group Metals (PGMs) play a significant role in the manufac-
turing of catalysts, super alloys, electronics, space materials, biomedical equipments,
jewellery, etc. due to their excellent electrical and thermal conductivity as well as
chemical resistivity. The rising demand of PGMs in industrial applications and their
limited natural resources have laid emphasis on the development of feasible and
eco-friendly processes for the extraction of these metals from different sources to
meet their future requirements. Present review reports commercial processes based
on pyro-/hydro- and hybrid techniques to recover PGMs from various resources. The
salient findings on different processes used for recovery of PGMs have been
reviewed with respect to various methodologies and objectives.
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Introduction

Platinum group metals (PGMs) comprises of six noble metals namely Ruthenium
(Ru), Rhodium (Rh), Palladium (Pd), Osmium (Os), Iridium (Ir), Platinum
(Pt) which are found together in the d-block of periodic table. These transition
metals possess similar physical and chemical properties. The unique properties of
PGMs such as catalytic activity, chemical inertness, resistance towards corrosion,
thermal as well as electrical stability make them a vital component of many
industrial applications, thus, they are also called ‘Vitamin of modern industry’ [1–4].
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Recent technological modernization involving advanced chemistry has commer-
cially accelerated the use of PGMs in the field of vehicle and equipment con-
struction, chemical industry, oil refining, medical practices, jewellery making, etc.
[5]. Pt and Pd are of major commercial significance followed by Rh, Ir and Ru
whereas Os has rare viable applications [6, 7]. The global demand of PGMs (Pt, Pd
and Rh) is over 590 tons while their natural resources are only 66,000 tons all over
the world. South Africa is the leading producer of PGMs in the world followed by
Russia, Canada, Zimbabwe, USA and Colombia. Extensive deposits of PGMs are
located in the norite belt of the Bushveld Igneous Complex covering the Transvaal
Basin in South Africa, the Stillwater Complex in Montana, United States, the
Thunder Bay District of Ontario, Canada, and the Norilsk Complex in Russia.
PGMs are also found associated with base metal (Cu, Ni) sulfide minerals where
their content is almost 2–10 g/t [8]. Nowadays, reefs like Merensky, Upper Group
Two (UG-2) and Plat reefs are also mined due to presence of significant quantity of
PGMs in them [3, 9]. They are also recovered as by-products depending on their
concentration in the ore [2, 10].

It has been observed that high value of PGMs coupled with their increasing
demand has fuelled its processing from low-grade resources using elaborated
techniques [3]. Despite expensive multi-step processes, different innovative meth-
ods are continuously being explored to extract PGMs from primary resources. But
the depletion of high grade PGMs resources due to continuous mining, has laid
emphasis on their production of PGMs from secondary resources viz. automobile
catalysts, e-waste, industrial waste (solid/liquid), etc. Hence, in order to explore
improved possibilities for the recovery of PGMs, an attempt has been made to
provide a general overview on prevailing commercial technologies. The present
paper gives an overview of the commercial processes developed for the recovery of
PGMs from various resources using pyro-/hydro- or hybrid techniques. The paper
will be helpful for researchers in future to develop new process flow-sheet for
extraction of PGMs keeping in view the drawbacks of the existing commercial
process.

Processing of Primary Resources to Recover PGMs

Although extensive deposits of PGMs are available but deposits for their eco-
nomical extraction are inadequate [11]. Primary ores of PGMs are broadly divided
into four types: (i) Stratiform deposits (*10–1000 MT) containing 3–10 g/t PGMs;
(ii) Norite intrusions (*10–1000 MT) having 1–3 g/t PGMs (iii) Ni-Cu bearing
sills (*10–1000 MT) with 2–15 g/t PGMs and (iv) Placer deposits containing
coarse PGMs (mainly Pt). PGMs ores are mined through conventional underground
or open cut techniques followed by grinding. Further, gravity-based separation and
flotation is generally used to produce a PGM-rich concentrates [12].

PGMs from high grade chromite ores (containing 200–2000 g/t PGM along with
0.4–2.8% Cr2O3) are conventionally recuperated by matte-smelting-refining process
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as shown in Fig. 1 [3, 11]. The chromite rich ores are generally processed by
conventional flotation in a mill-float-mill-float (MF2) open circuit prior to recovery
of PGMs, in order to prevent the accumulation of chromite fines generated during
over grinding of ores. Initially, the ore is ground by crushing and ball milling in
several stages or by SAG (semi-autogenous grinding) and then followed by
smelting. The matte obtained undergoes hydrometallurgical treatment for removal
of impurities such as Fe, Co, Ni and Cu leaving 10–50% of PGMs in the slime [13].
Emission of SO2, accumulation of highly refractory chromite spinel layers in the
furnace and environmental pollution as a result of high temperature smelting are
some of the major limitation of the conventional smelting and converting processes
[14–16].

Several researchers have also reported hydrometallurgical or the combination
pyro-hydrometallurgical processes as a pre-treatment step for the recovery of PGM
from ores/concentrates [17–22]. Hydrometallurgical processes consisting of
leaching operation for enrichment PGMs from base metal (Cu, Ni, Co, Fe) sulfide
minerals have also been employed. During this process, the base metals are dis-
solved leaving behind the PGM concentrate for further refining. The same process
has also been used in Ni and Cu-Ni refineries for the enrichment of PGMs [23].
Apart from high grade ores, hydrometallurgical processes have also been developed
for the commercial extraction of PGMs from low grade refractory sulfide ores and
concentrate as presented in Table 1.

High grade ores 
- 2O3)

SMELTING
(Green matte: Fe & S)

CONVERSION
(White matte: Cu, Ni, PGMs)

REFINING
(Base metals)

Slag + SO2, CO2, etc.

PGMs 
concentrate 

Cu, Ni, Fe, etc. 

Fig. 1 Conventional matte-smelting-refining technology to get PGM concentrates [3]

Table 1 Technologies for commercial extraction of PGMs from low grade ores

Processes Medium Scale References

Anglo American Corporation/University
of British Columbia Process

Sulfate Pilot [24, 25]

Albion process Sulfate Commercial [26–32]

Galvanox™ process Sulfate Pilot [32–34]

Total pressure oxidation process Sulfate Commercial [24, 25, 35]

Hydro copper process Chloride Commercial [36–39]

Kell process Sulfate + Chloride Pilot [40]

Nitrogen species catalyzed process Sulfate + Nitrogen Commercial [25, 35]
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Processing of Secondary Resources to Recover PGMs

PGMs are vital component of several products like mobile phones, industrial cat-
alysts, ceramic glazes, hard disks, aircraft turbines, etc. Catalysts and electronic
wastes are two imperative secondary resources containing significant amount of
PGMs due to their remarkable resistance to high temperature corrosion and oxi-
dation. Among these, PGMs are widely used as a catalyst in various chemical
reactions like reduction, reformation, hydrogenation, isomerisation, conversion, etc.
[41–53]. Automobile industry is the largest consumer of PGMs. Almost 34% Pt,
55% Pd and 95% Rh out of their total demand is used for the manufacturing of
catalytic filters-neutralizers of exhaust gases in automobile industries [54–57].
Varying amount of Pt, Pd and Rh are used in auto catalysts depending upon the
type of vehicle, manufacturer, country, etc. which helps in regulating the harmful
emission of CO, NOx and hydrocarbons. During the catalytic conversion, Pt helps
in converting hydrocarbons and CO to H2O and CO2, while Rh is highly efficient in
reducing NOx to N2 whereas Pd alone can handle all three pollutants, but less
efficiently compared to Pt and Rh [58, 59]. Thus, spent automobile catalysts are
important supplementary source for the recycling and recovery of PGMs.
Processing 2 mg of spent automobile catalysts to recover PGMs can prevent the
mining of 150 kg of their ores [58]. The rise in demand of PGMs in automobile
industries and strict environmental regulations make their recycling indispensable.
The spent automobile catalyst contains an average of *4 g PGMs which is quite
high in comparison to primary resources of PGMs [58, 60, 61]. Moreover, the high
price of Pt, Pd and Rh, makes their recovery from used catalysts profitable. Based
on their chemical composition and nature, the recycling of these PGM-bearing
catalysts is carried out through hydrometallurgical as well as pyrometallurgical
processes. Several corporations and industries like Umicore, Belgium; Hereaus,
Germany; BASF/Engelhard, USA; Johnson Matthey, UK; Nippon/Mitsubishi,
Japan, etc. have already developed successful commercial processes for the recy-
cling of PGMs from secondary resources [2].

Pyrometallurgical process is usually employed to concentrate the PGMs fol-
lowed by refining technology to recover them. Pyrometallurgical process including
crushing, batching, granulation, smelting, separation, has become a traditional
method to recover PGMs from spent catalyst [41, 58]. The spent catalyst is initially
mixed with fluxes, collector and reductant during smelting and a PGM-collector
alloy is obtained which further undergoes purification [41]. The choice of collector
plays an important role during smelting. The selection between collector and PGMs
is based on their mutual solubility, melting point and chemical properties. Metals
like Cu, Ni, Pb and Fe are generally considered good collectors [1]. PGM-Pb
collection is one of the oldest methods [62, 63] that has been used to process
secondary resources in Inco, Johnson Matthey, Impala, etc. before 1980s. The
process is simple to operate, require low smelting temperature, followed by simple
refining process, and needs less investment but the major disadvantages are low
recovery of Rh and generation of hazardous lead oxide. PGM-Cu collection is
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another method for treating the spent auto-exhaust catalyst in an electric arc furnace
with addition of fluxes (SiO2, CaO, etc.), collector (CuCO3 or CuO) and reductant
[64, 65]. PGMs are collected at low temperature and weak reduction atmosphere.
A semi-industrial process combining pyrometallurgy and electrolytic refining for
the recovery of PGMs from spent auto-exhaust catalyst using metal copper col-
lection has been performed by the Institute for Mining and Metallurgy Bor, Serbia
as shown in Fig. 2 [66]. The Nippon PGM Co. Japan works on the well-known
Rose Process (Fig. 2) which is basically copper collection process. The final con-
centrates contain almost 30% of PGMs whereas the CuxO produced can be reused
during the smelting process [1, 58].

The Umicore operated at Hoboken, Belgium is an integrated metal smelter and
refinery, which also recovers PGMs along with other metals from auto-catalysts/
printed circuit boards/electronic components [67]. PGM-Fe collection process
mainly involves the method of plasma arc smelting and mineral phase recon-
struction. The plasma arc smelting technology was very popular during 1980s to
recover PGMs from spent auto-exhaust catalyst [68–70]. High energy density, high
temperatures and flexibility in the plasma gases are the vital advantages of this
technology [71]. The Plasma arc smelting process for recovery of PGMs from the
spent auto-exhaust catalyst has also been commercialized in Texasgulf, USA and
Safina, Czech Republic [41, 70]. On the other hand, the short lifetime of plasma gun
accessory restricted its practical industrial application. Based on the findings,
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Fig. 2 Industrial process for the recovery of PGMs from spent automobile catalyst [1]
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a mineral phase reconstruction process was proposed to recover PGMs from spent
auto-exhaust catalyst [72]. The Johnson Matthey process involves smelting of
crushed catalyst with flux materials in a crucible containing molten collector metal
(Fe or Cu), using a plasma torch [62]. The operation is carried out at temperatures
between 1500–1650 °C where the alloy of collector metal is tapped off and *95%
PGMs are recovered by conventional refining methods. From the above studies, it
can be concluded that metal smelting collection process is appropriate for pro-
cessing various secondary materials containing PGMs. The affinity of PGM parti-
cles towards the collector metal is an important factor behind the success of this
process whereas other factors like fluxes, collector, smelting equipment, operating
system, etc. should also be considered. From industrial point of view, PGM-Cu
collection technology has wide applications due to high efficiency, low smelting
temperature, less pollution and easy industrialization.

Hydrometallurgical processing for the recovery of PGMs mainly involves dis-
solution using suitable acidic and alkaline solutions in the presence of additives like
O2, I2, Br2, Cl2, H2O2, etc. [7, 73–82]. The spent catalyst containing PGMs is
pre-treated before hydrometallurgical processing. The PGMs present in the catalysts
are encapsulated by specific substances which lead to decrease in their leaching
efficiency. Thus, pre-treatment steps such as fine grinding, roasting, reduction,
pressure leaching, etc. are necessary prior to leaching of PGMs. Several researchers
have reported various pre-treatment methods (oxidization roasting, reduction
roasting, pre-leaching, etc.) to destroy organic substances on the surface of spent
catalysts or change the supporter forms which hinders the leaching of PGMs present
in spent catalysts [41, 58]. After pre-treatment, leaching of the spent catalysts are
carried out for maximum dissolution of PGMs. HCl is the most common complexing
agent, while HNO3, Cl2, or H2O2 can be used as oxidant [41, 83]. Aqua regia,
commonly used leachant for dissolution precious metals, but not all PGMs can be
dissolved with it. Several researchers have studied the use of aqua regia [84–90] to
recover Pt, Pd, Rh, etc. from different spent catalysts on the commercial scale.
Although leaching rate of PGMs is high in aqua regia but keeping in view envi-
ronmental aspects, the process has some major drawbacks due to the generation of
NOx, Cl2 and acid fumes during leaching. From the leach solution obtained,
purification and separation of PGMs could be achieved by the method of cemen-
tation, solvent extraction, ion exchange, etc. An alternative method is to leach the
ceramic material of the catalyst with NaOH or hot H2SO4 under pressure where
PGMs (Pt, Pd, Rh) are insoluble and remains in the residue. But owing to relatively
low yield of PGMs and generation of huge quantities of wastewater, the process is
infeasible. The general flow-sheet for extraction of PGMs from spent catalyst using
hydrometallurgical technique is shown in Fig. 3 [1].

The chemical and metallurgical industries have used the method of cyanide
leaching to recover PGMs [13, 91] due their ability to form stable complexes in
alkaline medium. PGMs extraction by cyanidation show poor kinetics at room
temperature and atmospheric pressure, thus, effective leaching of the PGMs is
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carried out at high temperature and pressure. In cyanide leaching process, the rate of
reaction rate is proposed to be controlled by a surface chemical reaction, which is
similar to gold cyanidation mechanism [92]. Cyanide leaching of PGMs requires
special equipment as well as proper management of the toxic waste generated
which may lead to severe environmental problem. Thus, the industrial application
of this process is difficult and it is still in exploratory stage. Several processes for
the commercially extracting PGMs from secondaries have been successfully
developed. Platinum Lake Technology Inc., Canada [93] has successfully devel-
oped a hydrometallurgical process for the recovery PGMs (95% Pt and 98% Pd)
from spent automotive catalysts. Nippon PGM Co. has reported the production of
PGMs from different resources on commercial-scale [94]. Heraeus, Germany has
reported the recovery of PGMs from spent materials using hydrometallurgical
processes consisting of leaching in HCl in presence of oxidant followed by selective
precipitation and ion exchange [2]. BASF Catalysts LLC, USA also developed a
novel process for the recovery of PGMs from membrane electrode assemblies
(MEAs) eradicating the release of HF (highly toxic gas) generated during the
current combustion recycling process [2]. Studies have also been carried out at
the Mining and Materials Processing Institute of Japan to recycle PGMs
from the residue of automobile catalyst with high leaching efficiency [7].
Hydrometallurgical route offers a faster rate of metal recovery at low capital costs. In
addition, the energy consumption is low compared to pyrometallurgical process,
which requires high temperatures to melt the raw material. Moreover, the wastewater
generated at the industrial scale could be treated in effluent treatment plant and
possibilities could be explored for further recovery of value added products.

HOMOGENIZATION

PRE-TREATMENT

Spent Catalyst

PRECONCENTRATION/ DISSOLUTION 

PGMs concentrates/Solution 

SEPARATION/ PURIFICATION

PGMs

Fig. 3 Hydrometallurgical processing of PGMs [1]

Commercial Processes for the Extraction of Platinum Group Metals (PGMs) 125



Conclusion

Based on the review it can be concluded that the recovery and recycling of PGMs
from both primary and secondary resources are essential due to their rising demand
in various industrial applications. Due to significant conflict between availability of
natural resources of PGMs and their increasing demands, it is necessary to exploit
indigenous resources of PGMs. Several pyrometallurgical and hydrometallurgical
processes for recovery of PGMs are already available but development of modern
and productive technologies to utilize indigenous resources as well as improvement
in prevailing technologies, will be helpful to meet the future demand of PGMs in
various applications. More emphasis should be laid on the recycling of PGMs from
secondary sources (spent automobile catalysts, e-waste, industrial wastes, etc.) in
order to economise the natural resources and to minimise the environmental pol-
lution in connection to production of PGMs. Thus, R & D efforts should be made to
develop hybrid processes consisting of physical beneficiation/pyro-/hydro-/electro
metallurgy for efficient recovery of PGMs from various resources.
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