
Chapter 19
Big Longitudinal Data Analysis

The time-varying (longitudinal) characteristics of large information flows represent a
special case of the complexity and the dynamic multi-scale nature of big biomedical
data that we discussed in the DSPA Motivation section. Previously, in Chap. 4, we
saw space-time (4D) functional magnetic resonance imaging (fMRI) data, and in
Chap. 16 we discussed streaming data, which also has a natural temporal dimension.
Now we will go deeper into managing, modeling and analyzing big longitudinal data.

In this Chapter, we will expand our predictive data analytic strategies specifically
for analyzing big longitudinal data. We will interrogate datasets that track the same
type of information, for the same subjects, units or locations, over a period of time.
Specifically, we will present time series analysis, forecasting using autoregressive
integrated moving average (ARIMA) models, structural equation models (SEM),
and longitudinal data analysis via linear mixed models.

19.1 Time Series Analysis

Time series analysis relies on models like ARIMA (Autoregressive integrated mov-
ing average) that utilize past longitudinal information to predict near future outcomes.
Times series data tent to track univariate, sometimes multivariate, processes over a
continuous time interval. The stockmarket, e.g., daily closing value of the Dow Jones
Industrial Average index, electroencephalography (EEG) data, and functional mag-
netic resonance imaging provide examples of such longitudinal datasets (timeserties).

The basic concepts in time series analysis include:

• The characteristics of (second-order) stationary time series (e.g., first two
moments are stable over time) do not depend on the time at which the series
process is observed.

• Differencing – a transformation applied to time-series data to make it stationary.
Differences between consecutive time-observations may be computed by yt
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¼ yt� yt � 1. Differencing removes the level changes in the time series, eliminates
trend, reduces seasonality, and stabilizes the mean of the time series. Differencing
the time series repeatedly may yield a stationary time series. For example, a
second order differencing:

y00t ¼ yt
0 � yt�1

0

¼ yt � yt�1ð Þ � yt�1 � yt�2ð Þ
¼ yt � 2yt�1 þ yt�2

:

• Seasonal differencing is computed as a difference between one observation and
its corresponding observation in the previous epoch, or season (e.g., annually,
there are m ¼ 4 seasons), like in this example:

yt
000 ¼ yt � yt�m where m ¼ number of seasons:

• The differenced data may then be used to estimate an ARMA model.

We will use the Beijing air quality PM2.5 dataset as an example to demonstrate
the analysis process. This dataset measures air pollutants - PM2.5 particles in
micrograms per cubic meter over a period of 8 years (2008–2016). It measures the
hourly average of the number of particles that are of size 2.5 microns (PM2.5) once
per hour in Beijing, China.

Let’s first import the dataset into R.

beijing.pm25<-read.csv("https://umich.instructure.com/files/1823138/download
?download_frd=1")
summary(beijing.pm25)
##      Index Site       Parameter              Date..LST.   
##  Min.   :    1   Beijing:69335   PM2.5:69335   3/13/2011 3:00:    2  
##  1st Qu.:17335                                 3/13/2016 3:00:    2  
##  Median :34668                                 3/14/2010 3:00:    2  
##  Mean   :34668                                 3/8/2009 3:00 :    2  
##  3rd Qu.:52002                    3/8/2015 3:00 :    2  
##  Max.   :69335                                 3/9/2014 3:00 :    2  
##                                                (Other)       :69323  
##       Year          Month             Day             Hour     
##  Min.   :2008   Min.   : 1.000   Min.   : 1.00   Min.   : 0.0  
##  1st Qu.:2010   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 5.5  
##  Median :2012   Median : 6.000   Median :16.00   Median :11.0  
##  Mean   :2012   Mean   : 6.407   Mean   :15.73   Mean   :11.5  
##  3rd Qu.:2014   3rd Qu.: 9.000   3rd Qu.:23.00   3rd Qu.:17.5  
##  Max.   :2016   Max.   :12.000   Max.   :31.00   Max.   :23.0  
##                                                                
##      Value         Duration        QC.Name     
##  Min.   :-999.00   1 Hr:69335   Missing: 4408  
##  1st Qu.:  22.00                Valid  :64927  
##  Median :  63.00                               
##  Mean   :  24.99                               
##  3rd Qu.: 125.00                               
##  Max.   : 994.00                               
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The Value column records PM2.5 AQI (Air Quality Index) for 8 years. We
observe that there are some missing data in the Value column. By looking at the
QC.Name column, we only have about 6.5% (4408 observations) missing values.
One way of solving data-missingness problems, where incomplete observations are
recorded, is to replace the absent elements by the corresponding variable mean.

beijing.pm25[beijing.pm25$Value==-999, 9]<-NA
beijing.pm25[is.na(beijing.pm25$Value), 9]<-floor(mean(beijing.pm25$Value,
na.rm = T))

Here we first reassign the missing values into NA labels. Then we replace all NA
labels with the mean computed using all non-missing observations. Note that the
floor() function casts the arithmetic averages as integer numbers, which is needed
as AQI values are expected to be whole numbers.

Now, let’s observe the trend of hourly average PM2.5 across 1 day. You can see a
significant pattern: The PM2.5 level peeks in the afternoons and is the lowest in the
early mornings. It exhibits approximate periodic boundary conditions (these patterns
oscillate daily) (Fig. 19.1).

Fig. 19.1 Time course of the mean, top-20%, and bottom-20% air quality in Beijing (PPM2.5)
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require(ggplot2)

id = 1:nrow(beijing.pm25)
mat = matrix(0,nrow=24,ncol=3)
stat = function(x){

c(mean(beijing.pm25[iid,"Value"]),quantile(beijing.pm25[iid,"Value"],c(0.2
,0.8)))
}
for (i in 1:24){

iid = which(id%%24==i-1)
mat[i,] = stat(iid)

}

mat <- as.data.frame(mat)
colnames(mat) <- c("mean","20%","80%")
mat$time = c(15:23,0:14)
require(reshape2)

## Loading required package: reshape2

dt <- melt(mat,id="time")
colnames(dt)

## [1] "time"     "variable" "value"

ggplot(data = dt,mapping = aes(x=time,y=value,color=variable))+geom_line()+
scale_x_continuous(breaks = 0:23)+ggtitle("Beijing hour average PM2.5 from

2008-2016")

Are there any daily or monthly trends? We can start the data interrogation by
building an ARIMA model and examining detailed patterns in the data.

19.1.1 Step 1: Plot Time Series

To begin with, we can visualize the overall trend by plotting PM2.5 values against
time. This can be achieved using the plyr package.

library(plyr)
ts<-ts(beijing.pm25$Value, start=1, end=69335, frequency=1)
ts.plot(ts)

The dataset is recorded hourly, and the 8-year time interval includes about 69,335 h
of records. Therefore, we start at the first hour and end with 69, 335th h. Each hour has
a univariate PM2.5 AQI value measurement, so frequency¼1.

From this time series plot, Fig. 19.2, we observe that the data has some peaks but
most of the AQIs stay under 300 (which is considered hazardous).

The original plot seems have no trend at all. Remember we have our measure-
ments in hours. Will there be any difference if we use monthly average instead of
hourly reported values? In this case, we can use Simple Moving Average (SMA)
technique to smooth the original graph.
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To accomplish this, we need to install the TTR package and utilize the SMA()
method (Fig. 19.3).

#install.packages("TTR")
library(TTR)
bj.month<-SMA(ts, n=720)
plot.ts(bj.month, main="Monthly PM2.5 Level SMA", ylab="PM2.5 AQI")

Here we chose n to be 24∗ 30¼ 720, and we can see some pattern. It seems that
for the first 4 years (or approximately 35,040 h), the AQI fluctuates less than the last

Fig. 19.3 Simple moving monthly average PM2.5 air quality index values

Fig. 19.2 Raw time-series plot of the Beijing air quality measures (2008–2016)
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5 years. Let’s see what happens if we use exponentially-weighted mean, instead of
arithmetic mean.

bj.month<-EMA(ts, n=1, ratio = 2/(720+1))
plot.ts(bj.month, main="Monthly PM2.5 Level EMA", ylab="PM2.5 AQI")

The pattern seems less obvious in this graph, Fig. 19.4. Here we used exponential
smoothing ratio of 2/(n + 1).

19.1.2 Step 2: Find Proper Parameter Values
for ARIMA Model

ARIMA models have 2 components: autoregressive (AR) part and moving average
(MA) part. An ARMA( p, d, q) model is a model with p terms in AR, q terms in MA,
and d representing the order difference. Differencing is used to make the
original dataset approximately stationary. ARMA( p, d, q) has the following analyti-
cal form:

1�
Xp
i¼1

ϕiL
i

 !
1� Lð ÞdXt ¼ 1þ

Xq
i¼1

θiL
i

 !
Et:

Fig. 19.4 Exponentially-weighted monthly mean of PM2.5 air quality
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19.1.3 Check the Differencing Parameter

First, let’s try to determine the parameter d. To make the data stationary on the mean
(remove any trend), we can use first differencing or second order differencing.
Mathematically, first differencing is taking the difference between two adjacent
data points:

yt
0 ¼ yt � yt�1:

While second order differencing is differencing the data twice:

y∗t ¼ yt
0 � yt�1

0 ¼ yt � 2yt�1 þ yt�2:

Let’s see which differencing method is proper for the Beijing PM2.5 dataset.
Function diff() in R base can be used to calculate differencing. We can plot the
differences by plot.ts() (Fig. 19.5).

par(mfrow= c(2, 1))
bj.diff2<-diff(ts, differences=2)
plot.ts(bj.diff2, main="2nd differencing")
bj.diff<-diff(ts, differences=1)
plot.ts(bj.diff, main="1st differencing")

Neither of them appears quite stationary. In this case, we can consider using some
smoothing techniques on the data like we just did above (bj.month<-SMA(ts,
n¼720)). Let’s see if smoothing by exponentially-weighted mean (EMA) can help
making the data approximately stationary (Fig. 19.6).

Fig. 19.5 First- and second-order differencing of the AQI data
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par(mfrow=c(2, 1))
bj.diff2<-diff(bj.month, differences=2)
plot.ts(bj.diff2, main="2nd differencing")
bj.diff<-diff(bj.month, differences=1)
plot.ts(bj.diff, main="1st differencing")

Both of these EMA-filtered graphs have tempered variance and appear pretty
stationary with respect to the first two moments, mean and variance.

19.1.4 Identifying the AR and MA Parameters

To decide the auto-regressive (AR) and moving average (MA) parameters in the
model we need to create autocorrelation factor (ACF) and partial autocorrelation
factor (PACF) plots. PACF may suggest a value for the AR-term parameter q, and
ACF may help us determine the MA-term parameter p. We plot the ACF and PACF
using the approximately stationary time series, bj.diff object (Fig. 19.7).

par(mfrow=c(1, 2))
acf(ts(bj.diff), lag.max = 20, main="ACF")
pacf(ts(bj.diff), lag.max = 20, main="PACF")

• Pure AR model, (q ¼ 0), will have a cut off at lag p in the PACF.
• Pure MA model, (p ¼ 0), will have a cut off at lag q in the ACF.
• ARIMA(p, q) will (eventually) have a decay in both.

Fig. 19.6 Monthly-smoothed first- and second-order differencing of the AQI data
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All spikes in the plots are outside of the (normal) insignificant zone in the ACF
plot while two of them are significant in the PACF plot. In this case, the best ARIMA
model is likely to have both AR and MA parts.

We can examine for seasonal effects in the data using stats::stl(), a
flexible function for decomposing and forecasting the series, which uses averaging
to calculate the seasonal component of the series and then subtracts the seasonality.
Decomposing the series and removing the seasonality can be done by subtracting the
seasonal component from the original series using forecast::seasadj().
The frequency parameter in the ts() object specifies the periodicity of the data
or the number of observations per period, e.g., 30, for monthly smoothed daily
data (Fig. 19.8).

count_ma = ts(bj.month, frequency=30)
decomp = stl(count_ma, s.window="periodic")
deseasonal_count <- forecast::seasadj(decomp)
plot(decomp)

The augmented Dickey-Fuller (ADF) test, tseries::adf.test can be used
to examine the timeseries stationarity. The null hypothesis is that the series is
non-stationary. The ADF test quantifies if the change in the series can be explained
by a lagged value and a linear trend. Non-stationary series can be corrected by
differencing to remove trends or cycles.

Fig. 19.7 Autocorrelation factor (ACF) and partial autocorrelation factor (PACF) plots of
bj.diff
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tseries::adf.test(count_ma, alternative = "stationary")

##  Augmented Dickey-Fuller Test
## 
## data:  count_ma
## Dickey-Fuller = -8.0313, Lag order = 41, p-value = 0.01
## alternative hypothesis: stationary

tseries::adf.test(bj.diff, alternative = "stationary")

##  Augmented Dickey-Fuller Test
## 
## data:  bj.diff
## Dickey-Fuller = -29.188, Lag order = 41, p-value = 0.01
## alternative hypothesis: stationary

We see that we can reject the null and therefore, there is no statistically significant
non-stationarity in the bj.diff timeseries.

19.1.5 Step 3: Build an ARIMA Model

As we have some evidence suggesting d ¼ 1, the auto.arima() function in the
forecast package can help us to find the optimal estimates for the remaining pair
parameters of the ARIMA model, p and q.

Fig. 19.8 Trend and seasonal decomposition of the time-series
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# install.packages("forecast")
library(forecast)
fit<-auto.arima(bj.month, approx=F, trace = F)
fit

## Series: bj.month 
## ARIMA(1,1,4)                    
## 
## Coefficients:
##          ar1     ma1     ma2     ma3     ma4
##       0.9426  0.0813  0.0323  0.0156  0.0074
## s.e.  0.0016  0.0041  0.0041  0.0041  0.0041
## 
## sigma^2 estimated as 0.004604:  log likelihood=88161.91
## AIC=-176311.8   AICc=-176311.8   BIC=-176257

Acf(residuals(fit))

Finally, the optimal model determined by the step-wise selection is ARIMA
(1, 1, 4). The residual plot is show on Fig. 19.9.

We can also use external information to fit ARIMA models. For example, if we
want to add the month information, in case we suspect a seasonal change in PM2.5
AQI, we can use the following script.

Fig. 19.9 ACF of the time-series residuals
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fit1<-auto.arima(bj.month, xreg=beijing.pm25$Month, approx=F, trace = F)
fit1

## Series: bj.month 
## Regression with ARIMA(1,1,4) errors 
## 
## Coefficients:
##          ar1     ma1     ma2     ma3     ma4  beijing.pm25$Month
##       0.9427  0.0813  0.0322  0.0156  0.0075             -0.0021
## s.e.  0.0016  0.0041  0.0041  0.0041  0.0041              0.0015
## 
## sigma^2 estimated as 0.004604:  log likelihood=88162.9
## AIC=-176311.8   AICc=-176311.8   BIC=-176247.8

fit3<-arima(bj.month, order = c(2, 1, 0))
fit3

## Call:
## arima(x = bj.month, order = c(2, 1, 0))
## 
## Coefficients:
##          ar1      ar2
##       1.0260  -0.0747
## s.e.  0.0038   0.0038
## 
## sigma^2 estimated as 0.004606:  log likelihood = 88138.32,aic=-176270.6

We want the model AIC and BIC to be as small as possible. In terms of AIC and
BIC, this model is not drastically different compared to the last model without
Month predictor. Also, the coefficient of Month is very small and not significant
(according to the t-test) and thus can be removed.

We can examine further the ACF and the PACF plots and the residuals to
determine the model quality. When the model order parameters and structure are
correctly specified, we expect no significant autocorrelations present in the model
residual plots.

tsdisplay(residuals(fit), lag.max=45, main='(1,1,4) Model Residuals')

There is a clear pattern present in ACF/PACF plots, Fig. 19.10, suggesting that
the model residuals repeat with an approximate lag of 12 or 24 months. We may try a
modified model with a different parameters, e.g., p ¼ 24 or q ¼ 24. We can define a
new displayForecastErrors() function to show a histogram of the fore-
casted errors (Figs. 19.11 and 19.12).
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Fig. 19.10 ARIMA(1,1,4) model plot, ACF and PACF plots of the resiguals for bj.month

Fig. 19.11 An improved ARIMA(1,1,24) model plot, ACF and PACF plots of the resiguals for
bj.month
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fit24 <- arima(deseasonal_count, order=c(1,1,24)); fit24

## Call:
## arima(x = deseasonal_count, order = c(1, 1, 24))
## 
## Coefficients:
##          ar1     ma1   ma2     ma3      ma4      ma5      ma6      ma7
##       0.9496  0.0711  0.0214  0.0054  -0.0025  -0.0070  -0.0161  -0.0149
## s.e.  0.0032  0.0049  0.0049  0.0048   0.0047   0.0046   0.0045   0.0044
##           ma8      ma9     ma10     ma11     ma12  ma13     ma14
##       -0.0162  -0.0118  -0.0100  -0.0136  -0.0045  -0.0055  -0.0075
## s.e.   0.0044   0.0043   0.0042   0.0042   0.0042   0.0041   0.0041
##          ma15     ma16     ma17    ma18    ma19    ma20    ma21    ma22
##       -0.0060  -0.0005  -0.0019  0.0066  0.0088  0.0156  0.0247  0.0117
## s.e.   0.0041   0.0041   0.0041  0.0041  0.0041  0.0040  0.0040  0.0040
##         ma23    ma24
##       0.0319  0.0156
## s.e.  0.0040  0.0039
## 
## sigma^2 estimated as 0.004585:log likelihood = 88295.88,aic = -176539.8

tsdisplay(residuals(fit24), lag.max=36, main='Seasonal Model Residuals')

displayForecastErrors <- function(forecastErrors)
{

# Generate a histogram of the Forecast Errors
binsize <- IQR(forecastErrors)/4
sd   <- sd(forecastErrors)
min  <- min(forecastErrors) - sd
max  <- max(forecastErrors) + sd

# Generate 5K normal(0,sd) RVs 
norm <- rnorm(5000, mean=0, sd=sd)
min2 <- min(norm)
max2 <- max(norm)

Fig. 19.12 Diagnostic plot of the residuals of the ARIMA(1,1,24) time-series model for bj.
month
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if (min2 < min) { min <- min2 }
if (max2 > max) { max <- max2 }

# Plot red histogram of the forecast errors
bins <- seq(min, max, binsize)
hist(forecastErrors, col="red", freq=FALSE, breaks=bins)

myHist <- hist(norm, plot=FALSE, breaks=bins)

# Overlay the Blue normal curve on top of forecastErrors histogram
points(myHist$mids, myHist$density, type="l", col="blue", lwd=2)

}

displayForecastErrors(residuals(fit24))

19.1.6 Step 4: Forecasting with ARIMA Model

Now, we can use our models to make predictions for future PM2.5 AQI. We will use
the function forecast() to make predictions. In this function, we have to specify
the number of periods we want to forecast. Using the smoothed data, we can make
predictions for the next month, July 2016. As each month has about
24 � 30 ¼ 720 h, we specify a horizon h ¼ 720 (Fig. 19.13).

par(mfrow=c(1, 1))
ts.forecasts<-forecast(fit, h=720)
plot(ts.forecasts, include = 2880)

When plotting the forecasted values with the original smoothed data, we include
only the last 3 months in the original smoothed data to see the predicted values clearer.
The shaded regions indicate ranges of expected errors. The darker (inner) region
represents by 80% confidence range and the lighter (outer) region bounds by the

Fig. 19.13 Prospective out-of-range prediction intervals of the ARIMA(1,1,4) time-series model
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95% interval. Obviously near-term forecasts have tighter ranges of expected errors,
compared to longer-term forecasts where the variability naturally expands. A live
demo of US Census data is shown on Fig. 19.14.

19.2 Structural Equation Modeling (SEM)-Latent
Variables

Timeseries analyses provide effective strategies to interrogate longitudinal univari-
ate data. What happens if we have multiple, potentially associated, measurements
recorded at each time point?

SEM is a general multivariate statistical analysis technique that can be used for
causal modeling/inference, path analysis, confirmatory factor analysis (CFA),
covariance structure modeling, and correlation structure modeling. This method
allows separation of observed and latent variables. Other standard statistical pro-
cedures may be viewed as special cases of SEM, where statistical significance may
be less important, and covariances are the core of structural equation models.

Latent variables are features that are not directly observed but may be inferred
from the actually observed variables. In other words, a combination or transforma-
tion of observed variables can create latent features, which may help us reduce the
dimensionality of data. Also, SEM can address multi-collinearity issues when we fit
models because we can combine some high collinearity variables to create a single
(latent) variable, which can then be included into the model.

19.2.1 Foundations of SEM

SEMs consist of two complementary components: (1) a path model, quantifying
specific cause-and-effect relationships between observed variables, and (2) a mea-
surement model, quantifying latent linkages between unobservable components and
observed variables. The LISREL (LInear Structural RELations) framework repre-
sents a unifying mathematical strategy to specify these linkages, see Grace 2006.

http://www.seasonal.website/

Fig. 19.14 Live Demo: Interactive US Census ARIMA modeling
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The most general kind of SEM is a structural regression path model with latent
variables, which account for measurement errors of observed variables. Model
identification determines whether the model allows for unique parameter estimates
and may be based on model degrees of freedom (dfM� 0) or a known scale for every
latent feature. If ν represents the number of observed variables, then the total degrees
of freedom for a SEM, ν 1þνð Þ

2 , corresponds to the number of variances and unique
covariances in a variance-covariance matrix for all the features, and the model
degrees of freedom, df M ¼ ν 1þνð Þ

2 � l, where l is the number of estimated parameters.
Examples include:

• Just-identified model (dfM ¼ 0) with unique parameter estimates,
• Over-identified model (dfM > 0) desirable for model testing and assessment,
• Under-identified model (dfM < 0) is not guaranteed unique solutions for all

parameters. In practice, such models occur when the effective degrees of freedom
are reduced due to two or more highly-correlated features, which presents
problems with parameter estimation. In these situations, we can exclude or
combine some of the features boosting the degrees of freedom.

The latent variables’ scale property reflects their unobservable, not measurable,
characteristics. The latent scale, or unit, may be inferred from one of its observed
constituent variables, e.g., by imposing a unit loading identification constraint fixing
at 1.0 the factor loading of one observed variable.

An SEMmodel with appropriate scale and degrees of freedom conditions may be
identifiable subject to Bollen’s two-step identification rule. When both the CFA path
components of the SEM model are identifiable, then the whole SR model is
identified, and model fitting can be initiated.

• For the confirmatory factor analysis (CFA) part of the SEM, identification
requires (1) a minimum of two observed variables for each latent feature, (2) inde-
pendence between measurement errors and the latent variables, and (3) indepen-
dence between measurement errors.

• For the path component of the SEM, ignoring any observed variables used to
measure latent variables, model identification requires: (1) errors associated with
endogenous latent variables to be uncorrelated, and (2) all causal effects to be
unidirectional.

The LISREL representation can be summarized by the following matrix
equations:

measurement model component
x ¼ Λxξþ δ,
y ¼ Λyηþ E:

�

And

path model component η ¼ Bηþ Γξþ ζ,
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where:

• xp � 1 is a vector of observed exogenous variables representing a linear function
of ξj � 1, vector of exogenous latent variables,

• δp � 1 is a vector of measurement error, Λx is a p � j matrix of factor loadings
relating x to ξ,

• yq � 1 is a vector of observed endogenous variables,
• ηk � 1 is a vector of endogenous latent variables,
• Eq � 1 is a vector of measurement error for the endogenous variables, and
• Λy is a q � k matrix of factor loadings relating y to η.

Let’s also denote the two variance-covariance matrices, Θδ( p� p) and ΘE(q� q),
representing the variance-covariance matrices among the measurement errors δ and
E, respectively. The third equation describing the LISREL path model component as
relationships among latent variables includes:

• Bk � k a matrix of path coefficients describing the relationships among endoge-
nous latent variables,

• Γk � j as a matrix of path coefficients representing the linear effects of exogenous
variables on endogenous variables,

• ζk � 1 as a vector of errors of endogenous variables, and the corresponding two
variance-covariance matrices Φj � j of the latent exogenous variables, and

• Ψ k � k of the errors of endogenous variables.

The basic statistic for a typical SEM implementation is based on covariance
structure modeling and model fitting relies on optimizing an objective function,
min{ f(Σ, S)}, representing the difference between the model-implied variance-
covariance matrix, Σ, predicted from the causal and non-causal associations speci-
fied in the model, and the corresponding observed variance-covariance matrix S,
which is estimated from observed data. The objective function, f(Σ, S) can be
estimated as shown below, see Shipley 2016.

In general, causation implies correlation, suggesting that if there is a causal rela-
tionship between two variables, there must also be a systematic relationship between
them. Specifying a set of theoretical causal paths, we can reconstruct themodel-implied
variance-covariance matrix, Σ, from total effects and unanalyzed associations. The
LISREL strategy specifies the following mathematical representation:

Σ ¼ ΛyA ΓΦΓ0 þ Ψð ÞA0Λ0
y þ ΘE ΛyAΓΦΛ0

x

ΛxΦΓ0A0Λ0
y ΛxΦΛ0

x þ Θδ

����
����,

where A ¼ (I � B)�1. This representation of Σ does not involve the observed and
latent exogenous and endogenous variables, x, y, ξ, η. Maximum likelihood estima-
tion (MLE) may be used to obtain the Σ parameters via iterative searches for a set of
optimal parameters minimizing the element-wise deviations between Σ and S.

The process of optimizing the objective function f(Σ, S) can be achieved by
computing the log likelihood ratio, i.e., comparing the likelihood of a given fitted
model to the likelihood of a perfectly fit model. MLE estimation requires
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multivariate normal distribution for the endogenous variables and Wishart distribu-
tion for the observed variance-covariance matrix, S.

Using MLE estimation simplifies the objective function to:

f Σ; Sð Þ ¼ ln j Σ j þtr S� Σ�1
� �� ln j S j �tr SS�1

� �
,

where tr() is the trace of a matrix. The optimization of f(Σ, S) also requires independent
and identically distributed observations and positive definite matrices, Σ, S. The
iterative MLE optimization generates estimated variance-covariance matrices and
path coefficients for the specified model. More details on model assessment (using
Root Mean Square Error of Approximation, RMSEA, and Goodness of Fit Index) and
the process of defining a priori SEMhypotheses are available in Lam&Maguire, 2012.

19.2.2 SEM Components

The R Lavaan package uses the following SEM syntax, Table 19.1, to represent
relationships between variables. We can follow the following table to specify
Lavaan models:

For example in R we can write the following model model<-
' # regressions

y1þ y2 � f 1þ f 2þ x1þ x2
f 1 � f 2þ f 3

f 2 � f 3þ x1þ x2

# latent variable definitions

f 1 ¼� y1þ y2þ y3
f 2 ¼� y4þ y5þ y6

f 3 ¼� y7þ y8þ y9þ y10

# variances and covariances

y1 �� y1
y1 �� y2
f 1 �� f 2

# intercepts

y1 � 1
f 1 � 1

'
Note that the two "

0
" symbols (in the beginning and ending of a model descrip-

tion) are very important in the R-syntax.
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19.2.3 Case Study – Parkinson’s Disease (PD)

Let’s use the PPMI dataset in our class file as an example to illustrate SEM model
fitting.

Step 1 – Collecting Data

The Parkinson’s Disease Data represents a realistic simulation case-study to examine
associations between clinical, demographic, imaging and genetics variables for
Parkinson’s disease. This is an example of Big Data for investigating important
neurodegenerative disorders.

Step 2 – Exploring and Preparing the Data

Now, we can import the dataset into R and recode the ResearchGroup variable
into a binary variable.

par(mfrow=c(1, 1))
PPMI<-read.csv("https://umich.instructure.com/files/330397/download?download
_frd=1")
summary(PPMI)

##     FID_IID     L_insular_cortex_ComputeArea L_insular_cortex_Volume
##  Min.   :3001   Min.   :  50.03              Min.   :   22.63       
##  1st Qu.:3272   1st Qu.:1976.88              1st Qu.: 4881.36       
##  Median :3476   Median :2498.65              Median : 7236.76       
##  Mean   :3534   Mean   :2255.20              Mean   : 6490.84       
##  3rd Qu.:3817   3rd Qu.:2744.05              3rd Qu.: 8405.43       
##  Max.   :4139   Max.   :3650.81              Max.   :13499.92       
…
##   UPDRS_part_I    UPDRS_part_II    UPDRS_part_III    time_visit   
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.: 0.000   1st Qu.: 2.000   1st Qu.:12.00   1st Qu.: 8.25  
##  Median : 1.000   Median : 5.000   Median :20.00   Median :21.00  
##  Mean   : 1.286   Mean   : 6.087   Mean   :19.44   Mean   :23.50  
##  3rd Qu.: 2.000   3rd Qu.: 9.000   3rd Qu.:27.00   3rd Qu.:37.50 
##  Max.   :13.000   Max.   :28.000   Max.   :61.00   Max.   :54.00  
##  NA's   :549      NA's   :553      NA's   :554

PPMI$ResearchGroup<-ifelse(PPMI$ResearchGroup=="Control", "1", "0")

Table 19.1 Lavaan syntax
for specifying the relations
between variables and their
variance-covariance structure

Formula type Operator Explanation

Latent variable definition ¼~ Is measured by

Regression ~ Is regressed on

(Residual) (co)variance ~~ Is correlated with

Intercept ~1 Intercept
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This large dataset has 1,746 observations and 31 variables with missing data in
some of them. A lot of the variables are highly correlated. You can inspect high
correlation using heat maps, which reorders these covariates according to correla-
tions to illustrate clusters of high-correlations (Fig. 19.15).

pp_heat <- PPMI[complete.cases(PPMI),-20]
corr_mat = cor(pp_heat)
# Remove upper triangle
corr_mat_lower = corr_mat
corr_mat_lower[upper.tri(corr_mat_lower)] = NA
# Melt correlation matrix and make sure order of factor variables is correct
corr_mat_melted = melt(corr_mat_lower)
colnames(corr_mat_melted) <- c("Var1", "Var2", "value")
corr_mat_melted$Var1 = factor(corr_mat_melted$Var1, levels=colnames(corr_mat
))
corr_mat_melted$Var2 = factor(corr_mat_melted$Var2, levels=colnames(corr_mat
))

Fig. 19.15 Pair-wise correlation structure of the Parkinson’s disease (PPMI) data.
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# Plot
corr_plot = ggplot(corr_mat_melted, aes(x=Var1, y=Var2, fill=value)) +

geom_tile(color='white') +
scale_fill_distiller(limits=c(-1, 1), palette='RdBu', na.value='white',

name='Correlation') +
ggtitle('Correlations') +
coord_fixed(ratio=1) +
theme_minimal() +
scale_y_discrete(position="right") +
theme(axis.text.x=element_text(angle=45, vjust=1, hjust=1),

axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.grid.major=element_blank(),
legend.position=c(0.1,0.9),
legend.justification=c(0,1))

corr_plot

And here are some specific correlations

cor(PPMI$L_insular_cortex_ComputeArea, PPMI$L_insular_cortex_Volume)

## [1] 0.9837297

cor(PPMI$UPDRS_part_I, PPMI$UPDRS_part_II, use = "complete.obs")

## [1] 0.4027434

cor(PPMI$UPDRS_part_II, PPMI$UPDRS_part_III, use = "complete.obs")

## [1] 0.5326681

One way to solve this substantial multivariate correlation issue is to create some
latent variables. We can consider the following model.

model1<-
' 

Imaging =~ L_cingulate_gyrus_ComputeArea  + L_cingulate_gyrus_Volume+R_c
ingulate_gyrus_ComputeArea+R_cingulate_gyrus_Volume+R_insular_cortex_Compute
Area+R_insular_cortex_Volume

UPDRS=~UPDRS_part_I+UPDRS_part_II+UPDRS_part_III
DemoGeno =~ Weight+Sex+Age

ResearchGroup ~ Imaging + DemoGeno + UPDRS
'

Here we try to create three latent variables: Imaging, DemoGeno, and UPDRS.
Let’s fit a SEM model using cfa(), a confirmatory factor analysis function. Before
fitting the data, we need to scale them. However, we don’t need to scale our binary
response variable. We can use the following code for normalizing the data.

mydata<-scale(PPMI[, -20])
mydata<-data.frame(mydata, PPMI$ResearchGroup)
colnames(mydata)[31]<-"ResearchGroup"
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Step 3 – Fitting a Model on the Data

Now, we can start to build the model. The cfa() function we will use is part of the
lavaan package.

# install.packages("lavaan")
library(lavaan)

fit<-cfa(model1, data=mydata, missing = 'FIML')

Here we can see some warning messages. Both our covariance and error term
matrices are not positive definite. Non-positive definite matrices can cause the
estimates of our model to be biased. There are many factors that can lead to this
problem. In this case, we might create some latent variables that are not a good fit for
our data. Let’s try to delete the DemoGeno latent variable. We can add Weight,
Sex, and Age directly to the regression model.

model2 <-
'

# (1) Measurement Model 
Imaging =~  L_cingulate_gyrus_ComputeArea  + L_cingulate_gyrus_Volume+R_cing
ulate_gyrus_ComputeArea+R_cingulate_gyrus_Volume+R_insular_cortex_ComputeAre
a+R_insular_cortex_Volume
UPDRS =~  UPDRS_part_I  +UPDRS_part_II + UPDRS_part_III
# (2) Regressions 
ResearchGroup ~ Imaging + UPDRS +Age+Sex+Weight
'

When fitting model2, the warning messages are gone. We can see that falsely
adding a latent variable can cause those matrices to be not positive definite. Cur-
rently, the lavaan functions sem() and cfa() are the same.

fit<-cfa(model2, data=mydata, missing = 'FIML')
summary(fit, fit.measures=TRUE)
## lavaan (0.5-23.1097) converged normally after 107 iterations
## 
##   Number of observations                          1764
## 
##   Number of missing patterns                   4
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic             7714.119
##   Degrees of freedom                                60
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic            30237.866
##   Degrees of freedom                                75
##   P-value                                        0.000
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##     UPDRS_part_II     1.890    0.177   10.699    0.000
##     UPDRS_part_III    2.345    0.248    9.468    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   ResearchGroup ~     
##     Imaging           0.008    0.010    0.788    0.431
##     UPDRS            -0.828    0.080  -10.299    0.000
##     Age               0.019    0.009    2.121    0.034
##     Sex              -0.010    0.010   -0.974 0.330
##     Weight            0.005    0.010    0.481    0.631

## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.746
##   Tucker-Lewis Index (TLI)                       0.683
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA
##   Loglikelihood unrestricted model (H1)             NA
## 
##   Number of free parameters                         35
##   Akaike (AIC)                                      NA
##   Bayesian (BIC)                                    NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.269
##   90 Percent Confidence Interval          0.264  0.274
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR       0.052
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Imaging =~                                          
##     L_cnglt_gyr_CA    1.000                           
##     L_cnglt_gyrs_V    0.994    0.004  260.366    0.000
##     R_cnglt_gyr_CA    0.961    0.007  134.531    0.000
##     R_cnglt_gyrs_V    0.955    0.008  126.207    0.000
##     R_nslr_crtx_CA    0.930    0.009  101.427    0.000
##     R_nslr_crtx_Vl    0.920    0.010   94.505    0.000
##   UPDRS =~                                            
##     UPDRS_part_I  1.000                           
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## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Imaging ~~                                          
##     UPDRS             0.059    0.014    4.361    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .L_cnglt_gyr_CA   -0.000    0.024   -0.001    1.000
##    .L_cnglt_gyrs_V   -0.000    0.024   -0.001    1.000
##    .R_cnglt_gyr_CA   -0.000    0.024   -0.001    1.000
##    .R_cnglt_gyrs_V   -0.000    0.024   -0.001    1.000
##    .R_nslr_crtx_CA   -0.000    0.024   -0.001    1.000
##    .R_nslr_crtx_Vl   -0.000    0.024   -0.001    1.000
##    .UPDRS_part_I     -0.135    0.032   -4.225    0.000
##    .UPDRS_part_II    -0.255    0.033   -7.621    0.000
##    .UPDRS_part_III   -0.317    0.034   -9.181    0.000
##    .ResearchGroup     1.290    0.011  119.239    0.000
##     Imaging           0.000                           
##     UPDRS             0.000                  
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .L_cnglt_gyr_CA    0.006    0.001    9.641    0.000
##    .L_cnglt_gyrs_V    0.019    0.001   23.038    0.000
##    .R_cnglt_gyr_CA    0.083    0.003   27.917    0.000
##    .R_cnglt_gyrs_V    0.093    0.003   27.508    0.000
##    .R_nslr_crtx_CA    0.141    0.005   28.750    0.000
##    .R_nslr_crtx_Vl    0.159    0.006   28.728    0.000
##    .UPDRS_part_I      0.877    0.038   23.186    0.000
##    .UPDRS_part_II 0.561    0.033   16.873    0.000
##    .UPDRS_part_III    0.325    0.036    9.146    0.000
##    .ResearchGroup     0.083    0.006   14.808    0.000
##     Imaging           0.993    0.034   29.509    0.000
##     UPDRS             0.182    0.035    5.213    0.000

19.2.4 Outputs of Lavaan SEM

In the output of our model, we have information about how to create these two latent
variables (Imaging, UPDRS) and the estimated regression model. Specifically, it
gives the following information.

1. First six lines are called the header contains the following information:

• Lavaan version number.
• Lavaan convergence information (normal or not), and #number of iterations

needed.
• The number of observations that were effectively used in the analysis.
• The estimator that was used to obtain the parameter values (here: ML).
• The model test statistic, the degrees of freedom, and a corresponding p-value.

2. Next, we have the Model test baseline model and the value for the SRMR
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3. The last section contains the parameter estimates, standard errors (if the informa-
tion matrix is expected or observed, and if the standard errors are standard, robust,
or based on the bootstrap). Then, it tabulates all free (and fixed) parameters that
were included in the model. Typically, first the latent variables are shown,
followed by covariances and (residual) variances. The first column (Estimate)
contains the (estimated or fixed) parameter value for each model parameter; the
second column (Std.err) contains the standard error for each estimated parameter;
the third column (Z-value) contains the Wald statistic (which is simply obtained
by dividing the parameter value by its standard error); and the last column
contains the p-value for testing the null hypothesis that the parameter equals
zero in the population.

19.3 Longitudinal Data Analysis-Linear Mixed Models

As mentioned earlier, longitudinal studies take measurements for the same individ-
ual repeatedly through a period of time. Under this setting, we can measure the
change after a specific treatment. However, the measurements for the same individ-
ual may be correlated with each other. Thus, we need special models that deal with
this type of internal multivariate dependencies.

If we use the latent variable UPDRS (created in the output of SEM model) rather
than the research group as our response we can obtain a longitudinal analysis model.
In longitudinal analysis, time is often an important model variable.

19.3.1 Mean Trend

According to the output of model fit, our latent variable UPDRS is a combination
of three observed variables-UPDRS_part_I, UPDRS_part_II, and
UPDRS_part_III. We can visualize how average UPDRS values differ among
the research groups over time.

mydata$UPDRS<-mydata$UPDRS_part_I+1.890*mydata$UPDRS_part_II+2.345*mydata$UP
DRS_part_III
mydata$Imaging<-mydata$L_cingulate_gyrus_ComputeArea  +0.994*mydata$L_cingul
ate_gyrus_Volume+0.961*mydata$R_cingulate_gyrus_ComputeArea+0.955*mydata$R_c
ingulate_gyrus_Volume+0.930*mydata$R_insular_cortex_ComputeArea+0.920*mydata
$R_insular_cortex_Volume

The above code stores the latent UPDRS and Imaging variables into mydata.
By now, we are experienced with using the package ggplot2 for data visualiza-
tion. Now, we will use it to set the x and y axes as time and UPDRS, and then
display the trend of the individual level UPDRS.
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require(ggplot2)
p<-ggplot(data=mydata, aes(x=time_visit, y=UPDRS, group=FID_IID))
dev.off()

p+geom_point()+geom_line()

This graph is a bit messy without a clear pattern emerging. Let’s see if group-level
graphs may provide more intuition. We will use the aggregate() function to get
the mean, minimum and maximum of UPDRS for each time point. Then, we will use
separate color for the two research groups and examine their mean trends
(Fig. 19.16).

ppmi.mean<-aggregate(UPDRS~time_visit+ResearchGroup, FUN = mean, data=
mydata[, c(30, 31, 32)])
ppmi.min<-aggregate(UPDRS~time_visit+ResearchGroup, FUN = min, data=
mydata[, c(30, 31, 32)])
ppmi.max<-aggregate(UPDRS~time_visit+ResearchGroup, FUN = max, data=
mydata[, c(30, 31, 32)])
ppmi.boundary<-merge(ppmi.min, ppmi.max,by=c("time_visit","ResearchGroup"))
ppmi.all<-merge(ppmi.mean,ppmi.boundary,by=c("time_visit","ResearchGroup"))
pd <- position_dodge(0.1) 
p1<-ggplot(data=ppmi.all, aes(x=time_visit, y=UPDRS, group=ResearchGroup,
colour=ResearchGroup))
p1+geom_errorbar(aes(ymin=UPDRS.x, ymax=UPDRS.y, width=0.1))+geom_point()+
geom_line()

Fig. 19.16 Average UPDRS scores of the two cohorts in the PPMI dataset, patients (1) and
controls (0)
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Despite slight overlaps in some lines, the resulting graph illustrates better the
mean differences between the two cohorts. The control group (1) appears to have
relative lower means and tighter ranges compared to the PD patient group (0).
However, we need further data interrogation to determine if this visual (EDA)
evidence translates into statistically significant group differences.

Generally speaking we can always use the General Linear Modeling (GLM)
framework. However, GLM may ignore the individual differences. So, we can try
to fit a Linear Mixed Model (LMM) to incorporate different intercepts for each
individual participant. Consider the following GLM:

UPDRSij � β0 þ β1∗Imagingij þ β2∗ResearchGroupi þ β3∗timeVisitj

þ β4∗ResearchGroupi∗timevisitj þ β5∗Agei þ β6∗Sexi
þ β7∗Weighti þ Eij:

If we fit a different intercept, bi, for each individual (indicated by FID_IID), we
obtain the following LMM model:

UPDRSij � β0 þ β1∗Imagingþ β2∗ResearchGroupþ β3∗timeVisitj
þ β4∗ResearchGroupi∗timeVisitj þ β5∗Agei þ β6∗Sexi
þ β7∗Weighti þ bi þ Eij:

The LMM actually has two levels:

Stage 1

Yi ¼ Ziβi þ Ei,

where both Zi and βi are matrices.

Stage 2
The second level allows fitting random effects in the model.

βi ¼ Ai∗β þ bi:

So, the full model in matrix form would be:

Yi ¼ Xi∗β þ Zi∗bi þ Ei:

In this case study, we only consider random intercept and avoid including random
slopes, however the model can indeed be extended. In other words, Zi ¼ 1 in our
simple model. Let’s compare the two models (GLM and LMM). One R package
implementing LMM is lme4.

#install.packages("lme4")
#install.packages("arm")
library(lme4)

library(arm)

#GLM
model.glm<-glm(UPDRS~Imaging+ResearchGroup*time_visit+Age+Sex+Weight,data=my
data)
summary(model.glm)
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##  Groups   Name        Variance Std.Dev. Corr
##  FID_IID  (Intercept) 7.8821   2.8075       
##           time_visit  0.2454   0.4954   0.16
##  Residual   3.1233   1.7673       
## Number of obs: 1206, groups:  FID_IID, 440
## 
## Fixed effects:

## 
## Call:
## glm(formula = UPDRS ~ Imaging + ResearchGroup * time_visit + 
##     Age + Sex + Weight, data = mydata)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -7.6065  -2.4581  -0.3159   1.8328  14.9746  
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                0.70000    0.10844 6.455 1.57e-10 ***
## Imaging                    0.03834    0.01893   2.025   0.0431 *  
## ResearchGroup1            -6.93501    0.33445 -20.736  < 2e-16 ***
## time_visit                 0.05077    0.10843   0.468   0.6397    
## Age                   0.54171    0.10839   4.998 6.66e-07 ***
## Sex                        0.16170    0.11967   1.351   0.1769    
## Weight                     0.20980    0.11707   1.792   0.0734 .  
## ResearchGroup1:time_visit -0.06842    0.32970  -0.208   0.8356    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 12.58436)
## 
##     Null deviance: 21049  on 1205  degrees of freedom
## Residual deviance: 15076  on 1198  degrees of freedom
##   (558 observations deleted due to missingness)
## AIC: 6486.6
## 
## Number of Fisher Scoring iterations: 2

#LMM
model.lmm<-lmer(UPDRS~Imaging+ResearchGroup*time_visit+Age+Sex+Weight+(time_
visit|FID_IID), data=mydata)
summary(model.lmm)

## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## UPDRS ~ Imaging + ResearchGroup * time_visit + Age + Sex + Weight +  
##     (time_visit | FID_IID)
##    Data: mydata
## 
## REML criterion at convergence: 5737.9
## 
## Scaled residuals: 
##     Min    1Q  Median      3Q     Max 
## -3.2660 -0.4617 -0.0669  0.3575  4.6158 
## 
## Random effects:
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##                           Estimate Std. Error t value
## (Intercept)                0.69803    0.16881   4.135
## Imaging                    0.04200    0.02669   1.574
## ResearchGroup1            -6.93136    0.34425 -20.135
## time_visit                 0.02799    0.06385   0.438
## Age                        0.47720    0.15065   3.168
## Sex                        0.18662    0.17212   1.084
## Weight   0.24146    0.17075   1.414
## ResearchGroup1:time_visit -0.04785    0.30496  -0.157
## 
## Correlation of Fixed Effects:
##             (Intr) Imagng RsrcG1 tm_vst Age    Sex    Weight
## Imaging     -0.059                                
## ReserchGrp1 -0.496  0.101                                   
## time_visit   0.067 -0.002 -0.033                            
## Age         -0.028  0.128  0.045  0.002                     
## Sex         -0.029  0.014  0.048  0.006  0.140    
## Weight      -0.015  0.046  0.022  0.006  0.125  0.522       
## RsrchGrp1:_ -0.011 -0.053 -0.001 -0.209 -0.010 -0.005  0.000

display(model.lmm)

## lmer(formula = UPDRS ~ Imaging + ResearchGroup * time_visit + 
##     Age + Sex + Weight + (time_visit | FID_IID), data = mydata)
##                           coef.est coef.se
## (Intercept)                0.70     0.17  
## Imaging                    0.04     0.03  
## ResearchGroup1            -6.93     0.34  
## time_visit                 0.03     0.06  
## Age                        0.48     0.15  
## Sex                        0.19     0.17  
## Weight                     0.24     0.17  
## ResearchGroup1:time_visit -0.05     0.30  
## 
## Error terms:
##  Groups   Name        Std.Dev. Corr 
##  FID_IID  (Intercept) 2.81          
##           time_visit  0.50     0.16 
##  Residual             1.77          
## ---
## number of obs: 1206, groups: FID_IID, 440
## AIC = 5761.9, DIC = 5702.5
## deviance = 5720.2

Note that we use the notation ResearchGroup*time_visit that is identical
to ResearchGroup + time_visit + ResearchGroup*time_visit.
Here R will include both terms and their interaction into the model. According to
the model outputs, the LMM model has a relatively smaller AIC. In terms of AIC,
LMM may represent a better model fit than GLM.

19.3.2 Modeling the Correlation

In the summary of the LMM model, we can see a section called Correlation of
Fixed Effects. The original model made no assumption about the correlation
(unstructured correlation). In R, we usually have the following 4 types of correlation
models.
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• Independence: No correlation:

1 0 0
0 1 0
0 0 1

0
@

1
A:

• Exchangeable: Correlations are constant across measurements:

1 ρ ρ
ρ 1 ρ
ρ ρ 1

0
@

1
A:

• Autoregressive order 1(AR(1)): Correlations are stronger for closer measure-
ments and weaker for more distanced measurements:

1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

0
@

1
A:

• Unstructured: Correlation is different for each occasion:

1 ρ1,2 ρ1,3
ρ1,2 1 ρ2,3
ρ1,3 ρ2,3 1

0
@

1
A:

In the LMM model, the output also seems unstructured. So, we needn’t worry
about changing the correlation structure. However, if the output under unstructured
correlation assumption looks like an Exchangeable or AR(1) structure, we may
consider changing the LMM correlation structure accordingly.

19.4 GLMM/GEE Longitudinal Data Analysis

If the response is a binary variable like ResearchGroup, we need to use General
Linear Mixed Model (GLMM) instead of LMM. The marginal model of GLMM is
called GEE. However, GLMM and GEE are actually different.

In situations where the responses are discrete, there may not be a uniform or
systematic strategy for dealing with the joint multivariate distribution of Yi ¼ {(Yi1,
Yi2, . . .,Yin)}

T, . That’s where the GEE method comes into play as it’s based on the
concept of estimating equations. It provides a general approach for analyzing
discrete and continuous responses with marginal models.

GEE is applicable when:

1. β, a generalized linear model regression parameter, characterizes systematic
variation across covariate levels,
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2. The data represents repeated measurements, clustered data, multivariate response,
and

3. The correlation structure is a nuisance feature of the data.

Notation

• Response variables: Yi, 1;Yi, 2; . . . ; Yi,ntf g, where i 2 [1,N] is the index for
clusters or subjects, and j 2 [1, nt] is the index of the measurement within
cluster/subject.

• Covariate vector: Xi, 1;Xi, 2; . . . ;Xi,ntf g.

The primary focus of GEE is the estimation of the mean model: E(Yi, jjXi, j) ¼
μi, j, where

g μi, j
� � ¼ β0 þ β1Xi, j 1ð Þ þ β2Xi, j 2ð Þ þ β3Xi, j 3ð Þ þ . . .þ βpXi, j pð Þ ¼ Xi, j � β:

This mean model can be any generalized linear model. For example: P(Yi, j ¼
1jXi, j) ¼ πi, j (marginal probability, as we don’t condition on any other variables):

g μi, j
� � ¼ ln

πi, j
1� πi, j

� �
¼ Xi, j � β:

Since the data could be clustered (e.g., within subject, or within unit), we need to
choose a correlation model. Let’s introduce some notation:

Vi, j ¼ var Yi, jjXi

� �
,

Ai ¼ diag Vi, j
� �

,

the paired correlations:

ρi, j,k ¼ corr Yi, j; Yi,kjXi

� �
,

the correlation matrix:

Ri ¼ ρi, j,k
� �

, for all j and k,

and the paired predictor-response covariances are:

Vi ¼ cov YijXið Þ ¼ A1=2
i RiA

1=2
i :

Assuming different correlation structures in the data leads to alternative models,
see the examples above.

Notes

• GEE is a semi-parametric technique because:

– The specification of a mean model, μi, j(β), and a correlation model, Ri(α), does
not identify a complete probability model for Yi
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– The model {μi, j(β),Ri(α)} is semi-parametric since it only specifies the first
two multivariate moments (mean and covariance) of Yi. Higher order moments
are not specified.

• Without an explicit likelihood function, to estimate the parameter vector β (and
perhaps the covariance parameter matrix Ri(α)) and perform a valid statistical
inference that takes the dependence into consideration, we need to construct an
unbiased estimating function:

• Di βð Þ ¼ ∂μi
∂β , the partial derivative, w.r.t. β, of the mean-model for subject i.

• Di j; kð Þ ¼ ∂μi, j
∂βk

, the partial derivative, w.r.t. β, , the partial derivative, w.r.t. the kth

regression coefficient (βk), of the mean-model for subject i and measurement
(e.g., time-point) j.

Estimating (cost) function:

U βð Þ ¼
XN
i¼1

DT
i βð ÞV�1

i β; αð Þ Yi � μi βð Þf g:

Solving the Estimating Equations leads to parameter estimating solutions:

0 ¼ U
�
β̂
� ¼XN

i¼1

DT
i

�
β̂
�

|fflfflffl{zfflfflffl}
scale

�
V�1
i β̂; α

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
variance weight

Yi � μi
�
β̂
�	 


|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
model mean

:

Scale: A change of scale term transforming the scale of the mean, μi, to the scale
of the regression coefficients (covariates).

Variance weight: The inverse of the variance-covariance matrix is used to
weight in the data for subject i, i.e., giving more weight to differences between
observed and expected values for subjects that contribute more information.

Model Mean: Specifies the mean model, μi(β), compared to the observed data, Yi.
This fidelity term minimizes the difference between actually-observed and mean-
expected (within the ith cluster/subject). See also the SMHS EBook.

19.4.1 GEE Versus GLMM

There is a difference in the interpretation of the model coefficients between GEE and
GLMM. The fundamental difference between GEE and GLMM is in the target of the
inference: population-average vs. subject-specific. For instance, consider an example
where the observations are dichotomous outcomes (Y), e.g., single Bernoulli trials or
death/survival of a clinical procedure, that are grouped/clustered into hospitals and
units within hospitals, with N additional demographic, phenotypic, imaging and
genetics predictors. To model the failure rate between genders (males vs. females) in
a hospital, where all patients are spread among different hospital units (or clinical
teams), let Y represent the binary response (death or survival).
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In GLMM, the model will be pretty similar with the LMM model.

log
P Yij ¼ 1
� �

P Yij ¼ 0
� � jXij; bi

 !
¼ β0 þ β1xij þ bi þ Eij:

The only difference between GLMM and LMM in this situation is that GLMM
used a logit link for the binary response.

With GEE, we don’t have random intercept or slope terms.

log
P Yij ¼ 1
� �

P Yij ¼ 0
� � jXij; bi

 !
¼ β0 þ β1xij þ Eij:

In the marginal model (GEE), we are ignoring differences among hospital-units
and just aim to obtain population (hospital-wise) rates of failure (patient death) and
its association with patient gender. The GEE model fit estimates the odds ratio
representing the population-averaged (hospital-wide) odds of failure associated
with patient gender.

Thus, parameter estimates (β̂ ) from GEE and GLMM models may differ because
they estimate different things.

Let’s compare the results of the GLM and GLMM models for our PPMI dataset.

##     family = "binomial", data = mydata)
## 
## Coefficients:
## (Intercept)        UPDRS      Imaging          Age          Sex  
##   -10.64144     -1.96707      0.03889      0.71562      0.19361  
##      Weight  
##     0.40606  
## 
## Degrees of Freedom: 1205 Total (i.e. Null);  1200 Residual
##   (558 observations deleted due to missingness)
## Null Deviance:       811.9 
## Residual Deviance: 195.8     AIC: 207.8

#mydata1<-na.omit(mydata)
#attach(mydata1)
#model.gee<-gee(ResearchGroup~L_insular_cortex_ComputeArea+L_insular_cortex_
Volume+ Sex + Weight + Age + chr17_rs11012_GT + chr17_rs199533_GT + UPDRS_pa
rt_I + UPDRS_part_II + time_visit, id=FID_IID, data = mydata1, family=binomi
al(link = logit))

# install.packages("gee")
library(gee)
model.glm1<-glm(ResearchGroup~UPDRS+Imaging+Age+Sex+Weight, data = mydata, f
amily="binomial")

model.glm1

## 
## Call:  glm(formula = ResearchGroup ~ UPDRS + Imaging + Age + Sex + Weight
, 
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model.glmm<-glmer(ResearchGroup~UPDRS+Imaging+Age+Sex+Weight+(1|FID_IID), da
ta=mydata, family="binomial")
display(model.glmm)

## glmer(formula = ResearchGroup ~ UPDRS + Imaging + Age + Sex + 
##     Weight + (1 | FID_IID), data = mydata, family = "binomial")
##             coef.est coef.se
## (Intercept) -86.63    32.07 
## UPDRS       -16.78     6.27 
## Imaging       0.59     0.61 
## Age           6.04     2.41 
## Sex           0.65     2.15 
## Weight        6.12     3.76 
## 
## Error terms:
##  Groups   Name        Std.Dev.
##  FID_IID  (Intercept) 40.72   
##  Residual              1.00   
## ---
## number of obs: 1206, groups: FID_IID, 440
## AIC = 129.5, DIC = -114.1
## deviance = 0.7

In terms of AIC, the GLMM model is a lot better than the GLM model.
Try to apply some of these longitudinal data analytics on the fMRI data we

discussed in Chap. 4 (Visualization).

19.5 Assignment: 19. Big Longitudinal Data Analysis

19.5.1 Imaging Data

Review the 3D/4DMRI imaging data discussion in Chap. 4. Extract the time courses
of several time series at different 3D spatial locations, some near-by, and some
farther apart (distant voxels). Then, apply time-series analyses, report findings,
determine if near-by or farther-apart voxels may be more correlated.

Example of extracting time series from 4D fMRI data:

#See examples here: https://cran.r-project.org/web/packages/oro.nifti/vignettes/nifti.pdf

fMRIURL <- "http://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4D.nii.gz"
fMRIFile <- file.path(tempdir(), "fMRI_FilteredData_4D.nii.gz")
download.file(fMRIURL, dest=fMRIFile, quiet=TRUE)
(fMRIVolume <- readNIfTI(fMRIFile, reorient=FALSE))
# dimensions: 64 x 64 x 21 x 180 ; 4mm x 4mm x 6mm x 3 sec 

fMRIVolDims <- dim(fMRIVolume); fMRIVolDims
time_dim <- fMRIVolDims[4]; time_dim

hist(fMRIVolume)

19.5 Assignment: 19. Big Longitudinal Data Analysis 657

https://doi.org/10.1007/978-3-319-72347-1_4
https://doi.org/10.1007/978-3-319-72347-1_4
https://cran.r-project.org/web/packages/oro.nifti/vignettes/nifti.pdf
http://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4D.nii.gz


# To examine the time course of a specific 3D voxel (say the one at x=30, y=30, z=15):
plot(fMRIVolume[30, 30, 10,], type='l', main="Time Series of 3D Voxel \n (x=30, y=30, z=1

5)", col="blue")

x1 <- c(1:180)
y1 <- loess(fMRIVolume[30, 30, 10,]~ x1, family = "gaussian")
lines(x1, smooth(fMRIVolume[30, 30, 10,]), col = "red", lwd = 2)
lines(ksmooth(x1, fMRIVolume[30, 30, 10,], kernel = "normal", bandwidth = 5), col = "gree

n", lwd = 3)

19.5.2 Time Series Analysis

Use Google Web-Search Trends and Stock Market Data to:

• Plot time series for the variable Job.
• Apply TTR to smooth the original graph by month.
• Determine the differencing parameter.
• Decide the auto-regressive (AR) and moving average (MA) parameters.
• Build an ARIMA model, forecast the Job variable over the next year and

evaluate this model.

19.5.3 Latent Variables Model

Use the Hand written English Letters data to:

• Explore the data and evaluate the correlations between covariates.
• Justify the application of a latent variable model.
• Apply proper data conversion and scaling.
• Fit a Structural Equation Model (SEM) using the lavaan::cfa() function for these

data by adding proper latent variable.
• Summarize and interpret the outputs.
• Use the model you found above to fit GEE and GLMM models using the latent

variable as response and compare the models using AIC. (Hint: add a fake
variable as random effect for GLMM).
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