
Chapter 15
Improving Model Performance

We already explored several alternative machine learning (ML) methods for predic-
tion, classification, clustering, and outcome forecasting. In many situations, we
derive models by estimating model coefficients or parameters. The main question
now is How can we adopt the advantages of crowdsourcing and biosocial network-
ing to aggregate different predictive analytics strategies? Are there reasons to
believe that such ensembles of forecasting methods may actually improve the
performance (e.g., increase prediction accuracy) of the resulting consensus meta-
algorithm? In this chapter, we are going to introduce ways that we can search for
optimal parameters for a single ML method, as well as aggregate different methods
into ensembles to enhance their collective performance relative to any of the
individual methods part of the meta-aggregate.

After we summarize the core methods, we will present automated and customized
parameter tuning, and show strategies for improving model performance based on
meta-learning via bagging and boosting.

15.1 Improving Model Performance by Parameter Tuning

One of the methods for improving model performance relies on tuning, which is the
process of searching for the best parameters for a specific method. Table 15.1
summarizes the parameters for each method we covered in previous chapters.

15.2 Using caret for Automated Parameter Tuning

In Chap. 7, we used KNN and plugged in random k parameters for the number of
clusters. This time, we will test multiple k values simultaneously and pick the one
with the highest accuracy. When using the caret package, we need to specify a

© Ivo D. Dinov 2018
I. D. Dinov, Data Science and Predictive Analytics,
https://doi.org/10.1007/978-3-319-72347-1_15

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_15&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_7
https://doi.org/10.1007/978-3-319-72347-1_15

class variable, a dataset containing a class variable, predicting features, and the
method we will be using. In Chap. 7, we used the Boys Town Study of Youth
Development dataset, normalized all the features, stored them in boystown_n, and
formulated the outcome class variable first (boystown$grade).

Table 15.1 Synopsis of the basic prediction, classification and clustering methods and their core
parameters

Model Learning task Method Parameters

KNN Classification class::knn data, k

K-Means Classification stats::kmeans data, k

Naïve Bayes Classification e1071::
naiveBayes

train, class, laplace

Decision Trees Classification C50::C5.0 train, class, trials,
costs

OneR Rule
Learner

Classification RWeka::OneR class~predictors, data

RIPPER Rule
Learner

Classification RWeka::JRip formula, data, subset,
na.action, control,
options

Linear Regression Regression stats::lm formula, data, subset,
weights, na.action,
method

Regression Trees Regression rpart::rpart dep_var ~ indep_var, data

Model Trees Regression RWeka::M5P formula, data, subset,
na.action, control

Neural Networks Dual use nnet::nnet x, y, weights, size, Wts,
mask,linout, entropy,
softmax, censored, skip,
rang, decay, maxit, Hess,
trace, MaxNWts, abstol,
reltol

Support Vector
Machines (Poly-
nomial Kernel)

Dual use caret::train::
svmLinear

C

Support Vector
Machines (Radial
Basis Kernel)

Dual use caret::train::
svmRadial

C, sigma

Support Vector
Machines
(general)

Dual use kernlab::ksvm formula, data, kernel

Random Forests Dual use randomForest::
randomForest

formula, data

498 15 Improving Model Performance

https://doi.org/10.1007/978-3-319-72347-1_7

str(boystown_n)

'data.frame': 200 obs. of 10 variables:
$ sex : num 0 0 0 0 1 1 0 0 1 1 ...
$ gpa : num 1 0 0.6 0.4 0.6 0.6 0.2 1 0.2 0.6 ...
$ Alcoholuse: num 0.182 0.364 0.182 0.182 0.545 ...
$ alcatt : num 0.5 0.333 0.5 0.167 0.333 ...
$ dadjob : num 1 1 1 1 1 1 1 1 1 1 ...
$ momjob : num 0 0 0 0 1 0 0 0 1 1 ...
$ dadclose : num 0.143 0.429 0.286 0.143 0.286 ...
$ momclose : num 0.143 0.571 0.286 0.286 0.143 ...
$ larceny : num 0.25 0 0 0.75 0.25 0 0 0 0.25 0.25 ...
$ vandalism : num 0.429 0 0.286 0.286 0.286 ...

boystown_n<-cbind(boystown_n, boystown[, 11])
str(boystown_n)

'data.frame': 200 obs. of 11 variables:
$ sex : num 0 0 0 0 1 1 0 0 1 1 ...
$ gpa : num 1 0 0.6 0.4 0.6 0.6 0.2 1 0.2 0.6 ...
$ Alcoholuse : num 0.182 0.364 0.182 0.182 0.545 ...
$ alcatt : num 0.5 0.333 0.5 0.167 0.333 ...
$ dadjob : num 1 1 1 1 1 1 1 1 1 1 ...
$ momjob : num 0 0 0 0 1 0 0 0 1 1 ...
$ dadclose : num 0.143 0.429 0.286 0.143 0.286 ...
$ momclose : num 0.143 0.571 0.286 0.286 0.143 ...
$ larceny : num 0.25 0 0 0.75 0.25 0 0 0 0.25 0.25 ...
$ vandalism : num 0.429 0 0.286 0.286 0.286 ...
$ boystown[, 11]: Factor w/ 2 levels "above_avg","avg_or_below": 2 1 2 1
2 2 1 2 1 2 ...

colnames(boystown_n)[11]<-"grade"

The dataset including a specific class variable and predictive features is now
successfully created. We are using the KNN method as an example with the class
variable grade. So, we plug this information into the caret::train() func-
tion. Note that caret is using the full dataset because it will automatically do the
random sampling for us. To make the results reproducible, we utilize the set.seed
() function that we previously used, see Chap. 14.

library(caret)

set.seed(123)
m<-train(grade~., data=boystown_n, method="knn")
m; summary(m)

k-Nearest Neighbors

200 samples
10 predictor
2 classes: 'above_avg', 'avg_or_below'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
Resampling results across tuning parameters:

15.2 Using caret for Automated Parameter Tuning 499

https://doi.org/10.1007/978-3-319-72347-1_14

k Accuracy Kappa
5 0.7952617 0.5193402
7 0.8143626 0.5585191
9 0.8070520 0.5348281

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 7.

Length Class Mode
learn 2 -none- list
k 1 -none- numeric
theDots 0 -none- list
xNames 10 -none- character
problemType 1 -none- character
tuneValue 1 data.frame list
obsLevels 2 -none- character

In this case, using str(m) to summarize the object m may report out too much
information. Instead, we can simply type the object name m to get more concise
information about it.

1. Description about the dataset: number of samples, features, and classes.
2. Re-sampling process: here, we use 25 bootstrap samples with 200 observations

(same size as the observed dataset) each to train the model.
3. Candidate models with different parameters that have been evaluated: by default,

caret uses 3 different choices for each parameter, but for binary parameters, it
only allows two choices, TRUE and FALSE). As KNN has only one parameter k,
we have three candidate models reported in the output above.

4. Optimal model: the model with largest accuracy is the one corresponding to k¼5.

Let’s see how accurate this “optimal model” is in terms of the re-substitution
error. Again, we will use the predict() function specifying the object m and the
dataset boystown_n. Then, we can report the contingency table showing the
agreement between the predictions and real class labels.

set.seed(1234)
p<-predict(m, boystown_n)
table(p, boystown_n$grade)

p above_avg avg_or_below
above_avg 132 17
avg_or_below 2 49

This model has (17 + 2)/200¼ 0.09 re-substitution error (9%). This means that in
the 200 observations that we used to train this model, 91% of them were correctly
classified. Note that re-substitution error is different from accuracy. The accuracy of
this model is 0.8, which is reported by a model summary call. As mentioned in
Chap. 14, we can obtain prediction probabilities for each observation in the original
boystown_n dataset.

500 15 Improving Model Performance

https://doi.org/10.1007/978-3-319-72347-1_14

head(predict(m, boystown_n, type = "prob"))

above_avg avg_or_below
1 0.0000000 1.0000000
2 1.0000000 0.0000000
3 0.7142857 0.2857143
4 0.8571429 0.1428571
5 0.2857143 0.7142857
6 0.5714286 0.4285714

15.2.1 Customizing the Tuning Process

The default setting of train() might not meet the specific needs for every study.
In our case, the optimal k might be smaller than 5. The caret package allows us to
customize the settings for train().

caret::trianControl() can help us to customize re-sampling methods.
There are 6 popular re-sampling methods that we might want to use in the following
table (Table 15.2).

These methods are helping us find representative samples to train the model. Let’s
use 0.632 bootstrap for example. Just specify method¼"boot632" in the
trainControl() function. The number of different samples to include can be
customized by number¼ option. Another option in trainControl() is about
the model performance evaluation. We can change our preferred method of evalu-
ation to select the optimal model. The oneSE method chooses the simplest model
within one standard error of the best performance to be the optimal model. Other
methods are also available in caret package. For detailed information, type best
in R console.

We can also specify a list of k values we want to test by creating a matrix or a grid.

ctrl<-trainControl(method="boot632", number=25, selectionFunction="oneSE")
grid<-expand.grid(.k=c(1, 3, 5, 7, 9))
Creates a data frame from all combinations of the supplied factors

Table 15.2 Six complementary methods for customizing the caret::trainControl()
re-sampling

Resampling method Method name Additional options and default values

Holdout sampling LGOCV p ¼ 0.75 (training data proportion)

k-fold cross-validation cv number ¼ 10 (number of folds)

Repeated k-fold cross validation repeatedcv number ¼ 10 (number of folds),
repeats ¼ 10 (number of iterations)

Bootstrap sampling boot number ¼ 25 (resampling iterations)

0.632 bootstrap boot632 number ¼ 25 (resampling iterations)

Leave-one-out cross-validation LOOCV None

15.2 Using caret for Automated Parameter Tuning 501

Usually, to avoid ties, we prefer to choose an odd number of clusters k. Now the
constraints are all set. We can start to select models again using train().

set.seed(123)
m<-train(grade~., data=boystown_n, method="knn",

metric="Kappa",
trControl=ctrl,
tuneGrid=grid)

m

k-Nearest Neighbors

200 samples
10 predictor
2 classes: 'above_avg', 'avg_or_below'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
Resampling results across tuning parameters:

k Accuracy Kappa
1 0.8726660 0.7081751
3 0.8457584 0.6460742
5 0.8418226 0.6288675
7 0.8460327 0.6336463
9 0.8381961 0.6094088

Kappa was used to select the optimal model using the one SE rule.
The final value used for the model was k = 1.

Here we added metric¼"Kappa" to include the Kappa statistics as one of the
criteria to select the optimal model. We can see the output accuracy for all the
candidate models are better than the default bootstrap sampling. The optimal model
has k¼3, a high accuracy 0.846, and a high Kappa statistic, which is much better than
the model we had in Chap. 7. As you can see from the output, the SE rule no longer
choses the model with the highest accuracy or Kappa statistic to be the “optimal
model”. It is a more comprehensive method than only looks at one statistic or a
single quality measure.

15.2.2 Improving Model Performance with Meta-learning

Meta-learning involves building multiple learners (can be single or multiple learning
algorithms) at the same time. It combines the output from these learners and
generates more effective meta-classifiers.

502 15 Improving Model Performance

https://doi.org/10.1007/978-3-319-72347-1_7

To decrease the variance (bagging) or bias (boosting), random forests attempt in
two steps to correct the general decision trees’ trend to overfit the model to the
training set:

1. Producing a distribution of simple ML models on subsets of the original data.
2. Combining the distribution into one “aggregated” model.

Before stepping into the details, let’s briefly summarize:

• Bagging (stands for Bootstrap Aggregating) is a way to decrease the variance of
your prediction by generating additional data for training from your original
dataset. It generates multiple sets of the same cardinality/size as your original
data, as combinations with repetitions. By increasing the size of your training set
you can’t improve the model predictive force, but just decrease the variance,
narrowly tuning the prediction to the expected outcome.

• Boosting is a two-step approach, where one first uses subsets of the original data
to produce a series of moderately performing models and then “boosts” their
performance by combining them together using a particular cost function (e.g.,
Accuracy). Unlike bagging, in classical boosting, the subset creation is not
random and depends upon the performance of the previous models: every new
subset contains the elements that were (likely to be) misclassified by previous
models. Usually, we prefer weaker classifiers in boosting. For example, a prev-
alent choice is to use stump (level-one decision tree) in AdaBoost (Adaptive
Boosting).

15.2.3 Bagging

One of the most well-known meta-learning method is bootstrap aggregating or
bagging. It builds multiple models with bootstrap samples using a single algorithm.
The models’ predictions are combined with voting (for classification) or averaging
(for numeric prediction). Voting means that bagging model’s prediction is based on
the majority of learners’ predictions for a class. Bagging is especially good with
unstable learners like decision trees or SVM models.

To illustrate the Bagging method, we will again use the Quality of Life and
chronic disease dataset in Chap. 9. Just like we did in the second practice problem in
Chap. 11, we will use CHARLSONSCORE as the classes labels, which has 11 different
class labels.

qol<-read.csv("https://umich.instructure.com/files/481332/download?download_
frd=1")
qol<-qol[!qol$CHARLSONSCORE==-9 , -c(1, 2)]
qol$CHARLSONSCORE<-as.factor(qol$CHARLSONSCORE)

To apply bagging(), we need to download the ipred package first. After
loading the package, we build a bagging model with CHARLSONSCORE as class

15.2 Using caret for Automated Parameter Tuning 503

https://doi.org/10.1007/978-3-319-72347-1_9
https://doi.org/10.1007/978-3-319-72347-1_11
https://umich.instructure.com/files/481332/download?download_frd=1
https://umich.instructure.com/files/481332/download?download_frd=1

label and all other variables in the dataset as predictors. We can specify the number
of voters (decision tree models we want to have), the default number is 25.

install.packages("ipred")
library(ipred)
set.seed(123)
mybag<-bagging(CHARLSONSCORE~., data=qol, nbagg=25)

Next, we shall use the predict() function to apply this model for prediction.
For evaluation purposes, we create a table reporting the re-substitution error.

bt_pred<-predict(mybag, qol)
agreement<-bt_pred==qol$CHARLSONSCORE
prop.table(table(agreement))

agreement
FALSE TRUE
0.001718213 0.998281787

This model works very well with its training data. It labeled 99.8% of the cases
correctly. To see its performances on feature data, we apply the caret train()
function again with 10 repeated CV as re-sampling method. In caret, bagged trees
method is called treebag.

library(caret)
set.seed(123)
ctrl<-trainControl(method="repeatedcv", number = 10, repeats = 10)
train(CHARLSONSCORE~., data=as.data.frame(qol), method="treebag", trControl=
ctrl)

Bagged CART

2328 samples
38 predictor
11 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 10 times)
Summary of sample sizes: 2095, 2096, 2093, 2094, 2098, 2097, ...
Resampling results:

Accuracy Kappa
0.5234615 0.2173193

We got an accuracy of 52% and a fair Kappa statistics. This result is better than
our previous prediction attempt in Chap. 11 using the ksvm() function alone
(~50%). Here, we combined the prediction results of 38 decision trees to get this
level of prediction accuracy.

In addition to decision tree classification, caret allows us to explore alternative
bag() functions. For instance, instead of bagging based on decision trees, we can
bag using an SVM model. caret provides a nice setting for SVM training, making

504 15 Improving Model Performance

https://doi.org/10.1007/978-3-319-72347-1_11

predictions and counting votes in a list object svmBag. We can examine these
objects by using the str() function.

str(svmBag)

List of 3
$ fit :function (x, y, ...)
$ pred :function (object, x)
$ aggregate:function (x, type = "class")

Clearly, fit provides the training functionality, pred the prediction and fore-
casting on new data, and aggregate is a way to combine many models and
achieve voting-based consensus. Using the member operator, the $ sign, we can
explore these three types of elements of the svmBag object. For instance, the fit
element may be extracted from the SVM object by:

svmBag$fit

function (x, y, ...)
{
loadNamespace("kernlab")
out <- kernlab::ksvm(as.matrix(x), y, prob.model = is.factor(y),
...)
out
}
<environment: namespace:caret>

fit relies on the ksvm() function in the kernlab package, which means this
package needs to be loaded. The other two methods, pred and aggregate, may
be explored in a similar way. They just follow the SVM model building and testing
process we discussed in Chap. 11.

This svmBag object could be used as an optional setting in the train()
function. However, this option requires that all features are linearly independent
with trivial covariances, which may be rare in real world data.

15.2.4 Boosting

Bagging uses equal weights for all learners we included in the model. Boosting is
quite different in terms of weights. Suppose we have the first learner correctly
classifying 60% of the observations. This 60% of data may be less likely to be
included in the training dataset for the next learner. So, we have more learners
working on “hard-to-classify” observations.

Mathematically, we are using a weighted sum of functions to predict the outcome
class labels. We can try to fit the true model using weighted additive modeling. We
start with a random learner that can classify some of the observations correctly,
possibly with some errors.

15.2 Using caret for Automated Parameter Tuning 505

https://doi.org/10.1007/978-3-319-72347-1_11

ŷ 1 ¼ l1:

This l1 is our first learner and ŷ 1 denotes its predictions (this equation is in matrix
form). Then, we can calculate the residuals of our first learner.

E1 ¼ y� v1 � ŷ 1,

where v1 is a shrinkage parameter to avoid overfitting. Next, we fit the residual
with another learner. This learner minimizes the following functionXN

i¼1
kyi � Lk�1 � lkk, here k¼2. Then we obtain a second model l2 with:

ŷ 2 ¼ l2:

After that, we can update the residuals:

E2 ¼ E1 � v2 � ŷ 2:

We repeat this residual fitting until adding another learner lk results in an updated
residual Ek that is smaller than a small predefined threshold. At the end, we will have
an additive model like:

L ¼ v1 � l1 þ v2 � l2 þ . . .þ vk � lK ,

where we have k weak learners, but a very strong ensemble model.
Schapire and Freund found that although individual learners trained on the pilot

observations might be very weak in predicting in isolation, boosting the collective
power of all of them is expected to generate a model no worse than the best
of all individual constituent models included in the boosting ensem-
ble. Usually, the boosting results are quite a bit better than the best single model.

Boosting can be used for almost all models. Most commonly, it is applied to
decision trees.

15.2.5 Random Forests

Random forests, or decision tree forests, represent a boosting method focusing on
decision tree learners.

Training Random Forests

One approach to train and build random forests relies on using randomForest()
under the randomForest package. It has the following components:

m<-randomForest(expression, data, ntree=500, mtry=sqrt(p))

506 15 Improving Model Performance

• expression: the class variable and features we want to include in the model.
• data: training data containing class and features.
• ntree: number of voting decision trees.
• mtry: optional integer specifying the number of features to randomly select at

each split. The p stands for number of features in the data.

Let’s build a random forest using the Quality of Life dataset.

install.packages("randomForest")
library(randomForest)

set.seed(123)
rf<-randomForest(CHARLSONSCORE~., data=qol)
rf

Call:
randomForest(formula = CHARLSONSCORE ~ ., data = qol)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 6

OOB estimate of error rate: 46.13%
Confusion matrix:
0 1 2 3 4 5 6 7 8 9 10 class.error
0 574 301 2 0 0 0 0 0 0 0 0 0.3454960
1 305 678 1 0 0 0 0 0 0 0 0 0.3109756
2 90 185 2 0 0 0 0 0 0 0 0 0.9927798
3 25 101 1 0 0 0 0 0 0 0 0 1.0000000
4 5 19 0 0 0 0 0 0 0 0 0 1.0000000
5 3 4 0 0 0 0 0 0 0 0 0 1.0000000
6 1 4 0 0 0 0 0 0 0 0 0 1.0000000
7 1 1 0 0 0 0 0 0 0 0 0 1.0000000
8 7 8 0 0 0 0 0 0 0 0 0 1.0000000
9 3 5 0 0 0 0 0 0 0 0 0 1.0000000
10 1 1 0 0 0 0 0 0 0 0 0 1.0000000

By default the model contains 500 decision trees and tried 6 variables at each
split. Its OOB, or out-of-bag, error rate is about 46%, which corresponds to a poor
accuracy rate (54%). Note that the OOB error rate is not re-substitution error. The
confusion matrix next to it is reflecting OOB error rate for specific classes. All of
these error rates are reasonable estimates of future performances with unseen data.
We can see that this model is so far the best of all models, although it is still not good
at predicting high CHARLSONSCORE.

Evaluating Random Forest Performance

The caret package also supports random forest model building and evaluation. It
reports more detailed model performance evaluations. As usual, we need to specify a
re-sampling method and a parameter grid. As an example, we use the 10-fold CV

15.2 Using caret for Automated Parameter Tuning 507

re-sampling method. The grid for this model contains information about the mtry
parameter (the only tuning parameter for random forest). Previously we tried the
default value

ffiffiffiffiffi
38

p ¼ 6 (38 is the number of features). This time we could compare
multiple mtry parameters.

library(caret)
ctrl<-trainControl(method="cv", number=10)
grid_rf<-expand.grid(.mtry=c(2, 4, 8, 16))

Next, we apply the train() function with our ctrl and grid_rf settings.

set.seed(123)
m_rf <- train(CHARLSONSCORE ~ ., data = qol, method = "rf",
metric = "Kappa", trControl = ctrl,
tuneGrid = grid_rf)
m_rf

Random Forest

2328 samples
38 predictor
11 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 2095, 2096, 2093, 2094, 2098, 2097, ...
Resampling results across tuning parameters:

mtry Accuracy Kappa
2 0.5223871 0.1979731
4 0.5403799 0.2309963
8 0.5382674 0.2287595
16 0.5421562 0.2367477

Kappa was used to select the optimal model using the largest value.
The final value used for the model was mtry = 16.

This call may take a while to complete. The result appears to be a good model,
when mtry¼16 we reached a relatively high accuracy and good kappa statistic.
This is a very good result for a learner with 11 classes.

15.2.6 Adaptive Boosting

We may achieve even higher accuracy using AdaBoost. Adaptive boosting
(AdaBoost) can be used in conjunction with many other types of learning algorithms
to improve their performance. The output of the other learning algorithms (‘weak
learners’) is combined into a weighted sum that represents the final output of the

508 15 Improving Model Performance

boosted classifier. AdaBoost is adaptive in the sense that subsequent weak learners
are tweaked in favor of those instances misclassified by the previous classifiers.

For binary classification, we could use ada() in package ada and for multiple
classes (multinomial/polytomous outcomes) we can use the package adabag. The
boosting() function allows us to select a type method by setting coeflearn.
Two prevalent types of adaptive boosting methods can be used. One is AdaBoost.
M1 algorithm including Breiman and Freund, and the other is Zhu’s SAMME
algorithm. Let’s see some examples:

set.seed(123)
qol<-read.csv("https://umich.instructure.com/files/481332/download?download_
frd=1")
qol<-qol[!qol$CHARLSONSCORE==-9 , -c(1, 2)]
qol$CHARLSONSCORE<-as.factor(qol$CHARLSONSCORE)

The key parameter in the adabag::boosting() method is coeflearn:

• Breiman (default), corresponding to α ¼ 1
2 � ln 1�err

err

� �
, using the AdaBoost.M1

algorithm, where α is the weight updating coefficient
• Freund, corresponding to α ¼ ln 1�err

err

� �
, or

• Zhu, corresponding to α ¼ ln 1�err
err

� �þ ln nclasses� 1ð Þ.
The generalizations of AdaBoost for multiple classes (�2) include AdaBoost.

M1 (where individual trees are required to have an error < 1
2) and SAMME (where

individual trees are required to have an error < 1� 1
nclasses).

install.packages("ada"); install.packages("adabag")
library("ada"); library("adabag")

qol_boost <- boosting(CHARLSONSCORE~.,data=qol,mfinal = 100,coeflearn =
'Breiman')
mean(qol_boost$class==qol$CHARLSONSCORE)

[1] 0.5425258

qol_boost <- boosting(CHARLSONSCORE~.,data=qol,mfinal = 100,coeflearn =
'Freund')
mean(qol_boost$class==qol$CHARLSONSCORE)

[1] 0.5524055

qol_boost <- boosting(CHARLSONSCORE~.,data=qol, mfinal = 100, coeflearn =
'Zhu')
mean(qol_boost$class==qol$CHARLSONSCORE)

[1] 0.6542096

We observe that in this case, the Zhu approach achieves the best results. Notice
that the default method is M1 Breiman and mfinal is the number of iterations for
which boosting is run or the number of trees to use.

15.2 Using caret for Automated Parameter Tuning 509

https://umich.instructure.com/files/481332/download?download_frd=1
https://umich.instructure.com/files/481332/download?download_frd=1

Try applying model improvement techniques using other data from the list of our
Case-Studies (Fig. 15.1).

15.3 Assignment: 15. Improving Model Performance

Use some of the methods below to do classification, prediction, and model perfor-
mance evaluation (Table 15.3).

https://rdrr.io/cran/adabag/man/
adabag-package.html

Fig. 15.1 Live demo: Iris flowers classification using adabag

Table 15.3 Performance evaluation for several classification, prediction, and clustering methods

Model Learning task Method Parameters

KNN Classification knn k

Naïve Bayes Classification nb fL, usekernel

Decision Trees Classification C5.0 model, trials, winnow

OneR Rule Learner Classification OneR None

RIPPER Rule Learner Classification JRip NumOpt

Linear Regression Regression lm None

Regression Trees Regression rpart cp

Model Trees Regression M5 pruned, smoothed, rules

Neural Networks Dual use nnet size, decay

Support Vector Machines
(Linear Kernel)

Dual use svmLinear C

Support Vector Machines
(Radial Basis Kernel)

Dual use svmRadial C, sigma

Random Forests Dual use rf mtry

510 15 Improving Model Performance

https://rdrr.io/cran/adabag/man/adabag-package.html
https://rdrr.io/cran/adabag/man/adabag-package.html
https://rdrr.io/cran/adabag/man/adabag-package.html

15.3.1 Model Improvement Case Study

From the course datasets, use the 05_PPMI_top_UPDRS_Integrated_LongFormat1.
csv case-study data to perform a multi-class prediction.

Use ResearchGroup as response, which have “PD”, “Control” and
“SWEDD” three classes.

• Delete ID column, impute missing value with mean or median and justify your
choice.

• Normalize the covariates.
• Implement automated parameter tuning process and report the optimal accuracy

and κ.
• Set arguments and rerun the tuning, trying different method and number

settings.
• Train a random forest, tune the parameters, report the result and output cross

table.
• Use bagging algorithm and report the accuracy and κ.
• Perform randomForest and report the accuracy and κ.
• Report the accuracy by AdaBoost and make sure to try all three methods.
• Finally, give a brief summary about all the model improvement approaches.
• Try the procedure on other data in the list of Case-Studies, e.g., Traumatic Brain

Injury Study and the corresponding dataset.

References

Zhu, J, Zou, H, Rosset, S, Hastie, T. (2009) Multi-class AdaBoost, Statistics and Its Interface,
2, 349–360.

Breiman, L. (1998): Arcing classifiers, The Annals of Statistics, 26(3), 801–849.
Freund, Y, Schapire, RE. (1996) Experiments with a new boosting algorithm, In Proceedings of the

Thirteenth International Conference on Machine Learning, 148–156, Morgan Kaufmann

References 511

	Chapter 15: Improving Model Performance
	15.1 Improving Model Performance by Parameter Tuning
	15.2 Using caret for Automated Parameter Tuning
	15.2.1 Customizing the Tuning Process
	15.2.2 Improving Model Performance with Meta-learning
	15.2.3 Bagging
	15.2.4 Boosting
	15.2.5 Random Forests
	Training Random Forests
	Evaluating Random Forest Performance

	15.2.6 Adaptive Boosting

	15.3 Assignment: 15. Improving Model Performance
	15.3.1 Model Improvement Case Study

	References

