
Chapter 14
Model Performance Assessment

In previous chapters, we used prediction accuracy to evaluate classification models.
However, having accurate predictions in one dataset does not necessarily imply that
the model is perfect or that it will reproduce when tested on external data. We need
additional metrics to evaluate the model performance and to make sure it is robust,
reproducible, reliable, and unbiased.

In this chapter, we will discuss (1) various evaluation strategies for prediction,
clustering, classification, regression, and decision trees; (2) visualization of ROC
curves and performance tradeoffs; and (3) estimation of future performance, internal
statistical cross-validation and bootstrap sampling.

14.1 Measuring the Performance of Classification Methods

As mentioned previously, classification model performances could not be evaluated
by prediction accuracy alone. We make different classification models for different
purposes. For example, in newborns screening for genetic defects we want the model
to have as few true negatives as possible. We don’t want to classify anyone as “no
defect” when they actually have a defect gene, since early treatment might alter the
destiny of this newborn.

We can use the following three types of data to evaluate the performance of a
classifier model.

• Actual class values (for supervised classification).
• Predicted class values.
• Estimated probability of the prediction.

We are familiar with the first two cases. The last type of validation relies on the
predict(model, test_data) function that we have talked about in previous classifica-
tion and prediction chapters (Chaps. 7, 8, and 9). Let’s revisit the model and test
data we discussed in Chap. 8; the Inpatient Head and Neck Cancer Medication data.

© Ivo D. Dinov 2018
I. D. Dinov, Data Science and Predictive Analytics,
https://doi.org/10.1007/978-3-319-72347-1_14

475

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_14&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_7
https://doi.org/10.1007/978-3-319-72347-1_8
https://doi.org/10.1007/978-3-319-72347-1_9
https://doi.org/10.1007/978-3-319-72347-1_8
https://doi.org/10.1007/978-3-319-72347-1_14

We will demonstrate prediction probability estimation using this case-study
CaseStudy14_HeadNeck_Cancer_Medication.csv

pred_raw<-predict(hn_classifier, hn_test, type="raw")
head(pred_raw)

early_stage later_stage
[1,] 0.9381891 0.06181090
[2,] 0.9381891 0.06181090
[3,] 0.8715581 0.12844188
[4,] 0.9382140 0.06178601
[5,] 0.9675997 0.03240026
[6,] 0.9675997 0.03240026

The above output includes the prediction probabilities for the first 6 rows of the
data. This example is based on the Naive Bayes classifier, however the same
approach works for any other machine-learning classification or prediction
technique.

In addition, we can report the predicted probability with the outputs of the Naive
Bayesian decision-support system (hn_classifier <- naiveBayes
(hn_train, hn_med_train$stage)):

pred_nb<-predict(hn_classifier, hn_test)
head(pred_nb)

[1] early_stage early_stage early_stage early_stage early_stage
early_stage
Levels: early_stage later_stage

(hn_classifier <- naiveBayes(hn_train, hn_med_train$stage)):

The general predict() method automatically subclasses to the specific pre-
dict.naiveBayes(object, newdata, type ¼ c("class", "raw"),
threshold¼ 0.001, ...) call where type¼ "raw" and type¼ "class"
specify the output as the conditional a-posterior probabilities for each class or the
class with maximal probability, respectively. Back in Chap. 9, we discussed the
C5.0 and the randomForest classifiers used to predict the chronic disease score
in a (different) Quality of Life Study.

Below are the (probability) results of the C5.0 classification prediction:

pred_prob<-predict(qol_model, qol_test, type="prob")
head(pred_prob)

minor_disease severe_disease
10 0.1979698 0.8020302
12 0.1979698 0.8020302
26 0.3468705 0.6531295
37 0.1263975 0.8736025
41 0.7290209 0.2709791
43 0.3163673 0.6836327

476 14 Model Performance Assessment

https://doi.org/10.1007/978-3-319-72347-1_9

These can be contrasted against the C5.0 classification label results:

pred_tree<-predict(qol_model, qol_test)
head(pred_tree)
[1] severe_disease severe_disease severe_disease severe_disease
[5] minor_disease severe_disease
Levels: minor_disease severe_disease

The same complementary types of outputs can be reported for most machine-
learning classification and prediction approaches

14.2 Evaluation Strategies

In Chap. 7, we saw an attempt to categorize the supervised classification and
unsupervised clustering methods. Similarly, Table 14.1 summarizes the basic
types of evaluation and validation strategies for different forecasting, prediction,
ensembling, and clustering techniques. (Internal) Statistical Cross Validation or
external validation should always be applied to ensure reliability and reproducibility
of the results. The SciKit clustering performance evaluation and Classification
metrics page provide details about many alternative techniques and metrics for
performance evaluation of clustering and classification methods.

14.2.1 Binary Outcomes

More details about binary test assessment are available on the Scientific Methods for
Health Sciences (SMHS) EBook site. Table 14.2 summarizes the key measures

Table 14.1 Categories of clustering validation and classification evaluation strategies

Inference Outcome Evaluation metrics Example R functions

Classification
& Prediction

Binary Accuracy, Sensitivity, Specific-
ity, PPV/Precision,
NPV/Recall, LOR

caret::
confusionMatrix,
gmodels::CrossTable,
cluster::silhouette

Classification
& Prediction

Categorical Accuracy, Sensitivity/Specific-
ity, PPV, NPV, LOR, Silhouette
Coefficient

caret::
confusionMatrix,
gmodels::CrossTable,
cluster::silhouette

Regression
Modeling

Real
Quantitative

correlation coefficient, R2,
RMSE, Mutual Information,
Homogeneity and Complete-
ness Scores

cor, metrics::mse

14.2 Evaluation Strategies 477

https://doi.org/10.1007/978-3-319-72347-1_7

commonly used to evaluate the performance of binary tests, classifiers, or
predictions.

See also SMHS EBook; Power, Sensitivity and Specificity section.

14.2.2 Confusion Matrices

We talked about this confusion matrices in Chap. 9. For binary classes, these will be
2 � 2 matrices. Each of the cells has specific meaning, see the 2 � 2 Table 14.2
where

• True Positive(TP): Number of observations that correctly classified as “yes” or
“success”

• True Negative(TN): Number of observations that correctly classified as “no” or
“failure”

• False Positive(FP): Number of observations that incorrectly classified as “yes” or
“success”

• False Negative(FN): Number of observations that incorrectly classified as “no”
or “failure”

Table 14.2 Evaluation of binary (dichotomous) statistical tests, classification methods, or forecast-
ing predictions

Actual condition(or real class label)

Test interpretationAbsent (H0 is true)
Present (H1 is
true)

Test Result
(Prediction
or Classifica-
tion
Label)

Negative (fail
to reject H0)

TN Condition
absent + Negative
result ¼ True
(accurate) Negative

FNCondition pre-
sent + Negative
result ¼ False
(invalid) Negative
Type II error
(proportional to β)

NPV ¼ TN
TNþFN

Positive(reject
H0)

FP Condition
absent + Positive
result ¼ False
Positive Type I
error (α)

TP Condition
Present + Positive
result ¼ True
Positive

PPV ¼ Precision
¼ TP

TPþFP

Test
Interpretation

Power ¼ 1 � β
¼
12 FN

FNþTP

Specificity ¼ TN
TNþFP

Power¼
Sensitivity¼

TP
TPþFN

LOR ¼ ln S1=F1
S2=F2

� �

¼ ln S1�F2
S2�F1

� �
,

S ¼ success,
F ¼ failure for
2 binary variables,
1 and 2

Table 14.3 Cross-table Predict_T predict_F

TRUE TP TN

FALSE FP FN

478 14 Model Performance Assessment

https://doi.org/10.1007/978-3-319-72347-1_9

Using Confusion Matrices to Measure Performance
The way we calculate accuracy using these four cells is summarized by the following
formula:

accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
¼ TPþ TN

Total number of observations
:

On the other hand, the error rate, or proportion of incorrectly classified observa-
tions, is calculated using:

errorrate ¼ FPþ FN

TPþ TN þ FPþ FN
¼¼ FPþ FN

Total number of observations

¼ 1� accuracy:

If we look at the numerator and denominator carefully, we can see that the error
rate and accuracy add up to 1. Therefore, 95% accuracy implies a 5% error rate.

In R, we have multiple ways to obtain confusion matrices. The simplest way
would be to use table(). For example, in Chap. 8, to report a plain 2� 2 table we
used:

hn_test_pred<-predict(hn_classifier, hn_test)
table(hn_test_pred, hn_med_test$stage)

hn_test_pred early_stage later_stage
early_stage 69 23
later_stage 8 0

Then why did we use CrossTable() function back in Chapter 8? Because it
reports additional useful information about the model performance.

library(gmodels)
CrossTable(hn_test_pred, hn_med_test$stage)

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 100
| hn_med_test$stage
hn_test_pred | early_stage | later_stage | Row Total |
-------------|-------------|-------------|-------------|
early_stage | 69 | 23 | 92 |
| 0.048 | 0.160 | |

14.2 Evaluation Strategies 479

https://doi.org/10.1007/978-3-319-72347-1_8
https://doi.org/10.1007/978-3-319-72347-1_8

| 0.750 | 0.250 | 0.920 |
| 0.896 | 1.000 | |
| 0.690 | 0.230 | |
-------------|-------------|-------------|-------------|
later_stage | 8 | 0 | 8 |
| 0.550 | 1.840 | |
| 1.000 | 0.000 | 0.080 |
| 0.104 | 0.000 | |
| 0.080 | 0.000 | |
-------------|-------------|-------------|-------------|
Column Total | 77 | 23 | 100 |
| 0.770 | 0.230 | |
-------------|-------------|-------------|-------------|

With both tables, we can calculate accuracy and error rate by hand.

accuracy<-(69+0)/100
accuracy

[1] 0.69

error_rate<-(23+8)/100
error_rate

[1] 0.31

1-accuracy

[1] 0.31

For matrices larger than 2 � 2, all diagonal elements are observations that have
been correctly classified and off-diagonal elements are those that have been incor-
rectly classified.

14.2.3 Other Measures of Performance Beyond Accuracy

So far, we discussed two performance methods - table and cross-table. A third
function is confusionMatrix() which provides the easiest way to report
model performance. Notice that the first argument is an actual vector of the labels,
i.e., Test_Y, and the second argument, of the same length, represents the vector of
predicted labels.

This example was presented as the first case-study in Chap. 9.

480 14 Model Performance Assessment

https://doi.org/10.1007/978-3-319-72347-1_9

library(caret)

qol_pred<-predict(qol_model, qol_test)
confusionMatrix(table(qol_pred, qol_test$cd), positive="severe_disease")

Confusion Matrix and Statistics

qol_pred minor_disease severe_disease
minor_disease 149 89
severe_disease 74 131

Accuracy : 0.6321
95% CI : (0.5853, 0.6771)
No Information Rate : 0.5034
P-Value [Acc > NIR] : 3.317e-08

Kappa : 0.2637
Mcnemar's Test P-Value : 0.2728

Sensitivity : 0.5955
Specificity : 0.6682
Pos Pred Value : 0.6390
Neg Pred Value : 0.6261
Prevalence : 0.4966
Detection Rate : 0.2957
Detection Prevalence : 0.4628
Balanced Accuracy : 0.6318

'Positive' Class : severe_disease

14.2.4 The Kappa (κ) Statistic

The Kappa statistic was originally developed to measure the reliability between two
human raters. It can be harnessed in machine-learning applications to compare the
accuracy of a classifier, where one rater represents the ground truth (for labeled
data, these are the actual values of each instance) and the second rater represents
the results of the automated machine-learning classifier. The order of listing the
raters is irrelevant.

Kappa statistic measures the possibility of a correct prediction by chance alone
and answers the question of How much better is the agreement (between
the ground truth and the machine-learning prediction) than
would be expected by chance alone? Its value is between 0 and 1. When
κ ¼ 1, we have a perfect agreement between a computed prediction (typically the
result of a model-based or model-free technique forecasting an outcome of interest)

14.2 Evaluation Strategies 481

and an expected prediction (typically random, by chance prediction). A common
interpretation of the Kappa statistics includes:

• Poor agreement: less than 0.20
• Fair agreement: 0.20–0.40
• Moderate agreement: 0.40–0.60
• Good agreement: 0.60–0.80
• Very good agreement: 0.80–1

In the above confusionMatrix output, we have a fair agreement. For differ-
ent problems, we may have different interpretations of Kappa statistics. To under-
stand the Kappa statistic better, let’s look at its definition:

kappa ¼ P að Þ � P eð Þ
1� P eð Þ :

P(a) and P(e) simply denote probability of actual and expected agreement
between the classifier and true values.

table(qol_pred, qol_test$cd)

qol_pred minor_disease severe_disease
minor_disease 149 89
severe_disease 74 131

According to above table, actual agreement is the accuracy:

p_a<-(149+131)/(149+89+74+131)
p_a

[1] 0.6320542

The manually and automatically computed accuracies coincide (0.6321). It may
be trickier to obtain the expected agreement. Probability rules tell us that the
probability of the union of two disjoint events equals to the sum of the individual
(marginal) probabilities for these two events. Thus, we have:

P expect agreement for minor diseaseð Þ ¼ P actual type is minor diseaseð Þ
þ P predicted type is minor diseaseð Þ

Similarly:

P expect agreement for severe diseaseð Þ ¼ P actual type is severe diseaseð Þ
þ P predicted type is severe diseaseð Þ:

482 14 Model Performance Assessment

In our case:

p_e_minor <- (149+74)/(149+89+74+131))*((149+89)/(149+89+74+131)
p_e_severe <- ((131+74)/(149+89+74+131)) * ((89+131)/(149+89+74+131))
p_e<-p_e_minor+p_e_severe
p_e

[1] 0.5002522

Plugging in p_a and p_e into the formula we get:

kappa<-(p_a-p_e)/(1-p_e)
kappa

[1] 0.26

We get a similar value as the confusionTable() output. A more straight-
forward way of getting the Kappa statistics is by using Kappa() function in the
vcd package.

#install.packages(vcd)
library(vcd)

Loading required package: grid

Kappa(table(qol_pred, qol_test$cd))

value ASE z Pr(>|z|)
Unweighted 0.2637 0.04573 5.767 8.071e-09
Weighted 0.2637 0.04573 5.767 8.071e-09

The combination of Kappa() and table function yields a 2 � 4 matrix. The
Kappa statistic is under the unweighted value.

Generally speaking, predicting a severe disease outcome is a more critical
problem than predicting a mild disease state. Thus, weighted Kappa is also useful.
We give the severe disease a higher weight. The Kappa test result is not acceptable
since the classifier may make too many mistakes for the severe disease cases. The
Kappa value is only �0.0714. Notice that the range of Kappa is not [0,1] for the
weighted Kappa.

Kappa(table(qol_pred, qol_test$cd),weights = matrix(c(1,10,1,10),nrow=2))

value ASE z Pr(>|z|)
Unweighted 0.26374 0.04573 5.767 8.071e-09
Weighted 0.06818 0.04009 1.701 8.898e-02

When the predicted value is the first argument, the row and column names
represent the true labels and the predicted labels, respectively.

table(qol_pred, qol_test$cd)

qol_pred minor_disease severe_disease
minor_disease 149 89
severe_disease 74 131

14.2 Evaluation Strategies 483

Summary of the Kappa Score for Calculating Prediction Accuracy

Kappa compares an Observed classification accuracy (output of our ML classifier)
with an Expected classification accuracy (corresponding to random chance classi-
fication). It may be used to evaluate single classifiers and/or to compare among a set
of different classifiers. It takes into account random chance (agreement with a
random classifier). That makesKappamore meaningful than simply using accuracy
as a metric. For instance, the interpretation of an Observed Accuracy of 80% is
relative to the Expected Accuracy. Observed Accuracy of 80% is more
impactful for an Expected Accuracy of 50% compared to Expected Accu-
racy of 75%.

14.2.5 Computation of Observed Accuracy and Expected
Accuracy

Consider the following example of a classifier generating the following
confusion matrix. Columns represent the true labels and rows represent the
classifier-derived labels for this binary prediction example (Table 14.4).

In this example, there is a total of 150 observations (50 + 35 + 25 + 40). In reality,
75 are labeled as True (50 + 25) and another 75 are labeled as False (35 + 40). The
classifier labeled 85 as True (50 + 35) and the other 65 as False (25 + 40).

• Observed Accuracy (OA) is the proportion of instances that were
classified correctly throughout the entire confusion matrix:

OA ¼ 50þ 40
150

¼ 0:6:

• Expected Accuracy (EA) is the accuracy that any random classifier would be
expected to achieve based on the given confusion matrix. EA is the propor-
tion of instances of each class (True and False), along with the number of
instances that the automated classifier agreed with the ground truth label. The EA
is calculated by multiplying the marginal frequencies of True for the true-state
and the machine classified instances, and dividing by the total number of
instances. The marginal frequency of True for the true-state is 75 (50 + 25)

Table 14.4 A simulated
confusion matrix.

Class True False Total

True 50 35 85

False 25 40 65

Total 75 75 150

484 14 Model Performance Assessment

and for the corresponding ML classifier is 85 (50 + 35). Then, the expected
accuracy for the True outcome is:

EA Trueð Þ ¼ 75� 85
150

¼ 42:5:

We similarly compute the EA(False) for the second, False, outcome, by using the
marginal frequencies for the true-state ((False| true state) ¼ 75 ¼ 50 + 25) and the
ML classifier (False| classifier) ¼ 65(40 + 25). Then, the expected accuracy for the
True outcome is:

EA Falseð Þ ¼ 75� 65
150

¼ 32:5:

Finally, the EA ¼ EA Trueð ÞþEA Falseð Þ
150

ExpectedAccuracy EAð Þ ¼ 42:5þ 32:5
150

¼ 0:5:

Note that EA ¼ 0.5 whenever the true-state binary classification is balanced
(in reality, the frequencies of True and False are equal, in our case 75).

The calculation of the kappa statistic relies on OA ¼ 0.6 and EA ¼ 0.5:

Kappað Þ κ ¼ OA� EA

1� EA
¼ 0:6� 0:5

1� 0:5
¼ 0:2:

14.2.6 Sensitivity and Specificity

If we take a closer look at the confusionMatrix() output, we find there are two
important statistics “sensitivity” and “specificity”.

Sensitivity, or true positive rate, measures the proportion of “success” observa-
tions that are correctly classified.

sensitivity ¼ TP

TPþ FN
:

Notice TP + FN are the total number of true “success” observations.
On the other hand, specificity, or true negative rate, measures the proportion of

“failure” observations that are correctly classified.

specificity ¼ TN

TN þ FP
:

Accordingly, TN + FP are the total number of true “failure” observations.

14.2 Evaluation Strategies 485

Using the table() output above and using "severe_disease" as “success”, we
can compute these two measures directly.

sens<-131/(131+89)
sens

[1] 0.5954545

spec<-149/(149+74)
spec

[1] 0.6681614

Another R package, caret, also provides functions to calculate sensitivity and
specificity.

library(caret)
sensitivity(qol_pred, qol_test$cd, positive="severe_disease")

[1] 0.5954545

Sensitivity and specificity both range from 0 to 1. For either measure, a value of 1
implies that the positive and negative predictions are very accurate. However,
simultaneously high sensitivity and specificity may not be attainable in real world
situations. There is a tradeoff between sensitivity and specificity. To compromise,
some studies loosen the demands on one and focus on achieving high values on the
other.

14.2.7 Precision and Recall

Very similar to sensitivity, precision measures the proportion of true “success”
observations among predicted “success” observations.

precision ¼ TP

TPþ FP
:

Recall is the proportion of true “positives” among all “true positive” conditions.
A model with high recall captures most “interesting” cases.

recall ¼ TP

TPþ FN
:

Again, let’s calculate these by hand for the QoL data:

prec<-131/(131+74)
prec

[1] 0.6390244

recall<-131/(131+89)
recall

[1] 0.5954545

486 14 Model Performance Assessment

Another way to obtain precisionwould be posPredValue() under the caret
package. Remember to specify which one is the “success” class.

posPredValue(qol_pred, qol_test$cd, positive="severe_disease")

[1] 0.6390244

From the definitions of precision and recall, we can derive the type 1 error and
type 2 errors as follow:

error1 ¼ 1� Precision ¼ FP

TPþ FP
, and

error2 ¼ 1� Recall ¼ FN

TPþ FN
:

Thus, we can compute the type 1 error (0.36) and type 2 error (0.40).

error1<-74/(131+74)
error2<-89/(131+89)
error1; error2

[1] 0.3609756

[1] 0.4045455

14.2.8 The F-Measure

The F-measure or F1-score combines precision and recall using the harmonic mean
assuming equal weights. High F-score means high precision and high recall. This is a
convenient way of measuring model performances and comparing models.

F � measure ¼ 2� precision� recall

recallþ precision
¼ 2� TP

2� TPþ FPþ FN
:

Let’s calculate the F1-score by hand using the confusion matrix derived from the
Quality of Life prediction:

F1<-(2*prec*recall)/(prec+recall); F1

[1] 0.6164706

The direct calculations of the F1-statistics can be obtained using caret:

precision <- posPredValue(qol_pred, qol_test$cd, positive="severe_disease")
recall <- sensitivity(qol_pred, qol_test$cd, positive="severe_disease")
F1 <- (2 * precision * recall) / (precision + recall); F1

[1] 0.6164706

14.2 Evaluation Strategies 487

14.3 Visualizing Performance Tradeoffs (ROC Curve)

Another choice for evaluating classifiers performance is by using graphs rather than
quantitative statistics. Graphs are usually more comprehensive than single statistics.

In R there is a package providing user-friendly functions for visualizing model
performance. Details can be found on the ROCR website.

Here, we evaluate the model performance for the Quality of Life case study, see
Chap. 9.

#install.packages("ROCR")
library(ROCR)

pred<-ROCR::prediction(predictions=pred_prob[, 2], labels=qol_test$cd)
avoid naming collision (ROCR::prediction), as
there is another prediction function in neuralnet package.

pred_prob[, 2] is the probability of classifying each observation as
"severe_disease". The above code saved all the model prediction information into
object pred.

The ROC (Receiver Operating Characteristic) curves are often used to examine
the tradeoff between detecting true positives and avoiding the false positives
(Fig. 14.1).

0%

Perfect Classifier

Test Classifier

Classifier with no predictive value

0%

20%

40%

60%

80%

20% 40%

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

60%

ROC curve

80% 100%

Fig. 14.1 Schematic of quantifying the efficacy of a classification method using the area under the
ROC curve

488 14 Model Performance Assessment

https://doi.org/10.1007/978-3-319-72347-1_9

curve(log(x), from=0, to=100, xlab="False Positive Rate", ylab="True Positiv
e Rate", main="ROC curve", col="green", lwd=3, axes=F)
Axis(side=1, at=c(0, 20, 40, 60, 80, 100), labels = c("0%", "20%", "40%", "6
0%", "80%", "100%"))
Axis(side=2, at=0:5, labels = c("0%", "20%", "40%", "60%", "80%", "100%"))
segments(0, 0, 110, 5, lty=2, lwd=3)
segments(0, 0, 0, 4.7, lty=2, lwd=3, col="blue")
segments(0, 4.7, 107, 4.7, lty=2, lwd=3, col="blue")
text(20, 4, col="blue", labels = "Perfect Classifier")
text(40, 3, col="green", labels = "Test Classifier")
text(70, 2, col="black", labels= "Classifier with no predictive value")

The blue line in the above graph represents the perfect classifier where we have
0% false positive and 100% true positive. The middle green line is the test classifier.
Most of our classifiers trained by real data will look like this. The black diagonal line
illustrates a classifier with no predictive value predicts. We can see that it has the
same true positive rate and false positive rate. Thus, it cannot distinguish between
the two.

In terms of identifying positive value, we want our ROC curve to be as close to
the perfect line as possible. Thus, we measure the area under the ROC curve
(abbreviated as AUC) to show how close our curve is to the perfect classifier. To
do this, we have to change the scale of the graph above. Mapping 100% to 1, we
have a 1 � 1 square. The area under the perfect classifier would be one, and area
under classifier with no predictive value would be 0.5. Then, 1 and 0.5 will be the
upper and lower limits for our model ROC curve. We have the following scoring
system (numbers indicate area under the curve) for predictive model ROC curves:

• Outstanding: 0.9–1.0
• Excellent/good: 0.8–0.9
• Acceptable/fair: 0.7–0.8
• Poor: 0.6–0.7
• No discrimination: 0.5–0.6.

Note that this rating system is somewhat subjective. Let’s use the ROCR package
to draw a ROC curve.

roc<-performance(pred, measure="tpr", x.measure="fpr")

By specifying "tpr"(True positive rate) and "fpr"(False positive rate) we
made a “performance” object (Fig. 14.2).

plot(roc, main="ROC curve for Quality of Life model", col="blue", lwd=3)
segments(0, 0, 1, 1, lty=2)

The segments command draws the dotted line representing the classifier with no
predictive value.

To measure this quantitatively, we need to create a new performance object with
measure ¼ "auc" or area under the curve.

14.3 Visualizing Performance Tradeoffs (ROC Curve) 489

roc_auc<-performance(pred, measure="auc")

Now the roc_auc is stored as a S4 object. This is quite different than data frame
and matrices. First, we can use str() function to see its structure.

str(roc_auc)

Formal class 'performance' [package "ROCR"] with 6 slots
..@ x.name : chr "None"
..@ y.name : chr "Area under the ROC curve"
..@ alpha.name : chr "none"
..@ x.values : list()
..@ y.values :List of 1
.. ..$: num 0.65
..@ alpha.values: list()

The ROC object has six members. The AUC value is stored in y.values. To
extract that we use the @ symbol according to the output of the str() function.

roc_auc@y.values

[[1]]
[1] 0.6496739

Thus, the obtained AUC ¼ 0.65, which suggests a fair classifier, according to the
above scoring schema.

0.0

0.0

0.2

0.4

T
ru

e
po

si
tiv

e
ra

te 0.6

0.8

1.0

0.2 0.4 0.6

False positive rate

ROC curve for Quality of Life model

0.8 1.0

Fig. 14.2 ROC curve of the prediction of disease severity using the quality of life (QoL) data

490 14 Model Performance Assessment

14.4 Estimating Future Performance (Internal
Statistical Validation)

The evaluation methods we have talked about are all measuring re-substitution error.
That is, building the model on training data and measuring the model error on
separate testing data. This is one way of dealing with unseen data. First, let’s
introduce the basic ideas, and more details will be presented in Chap. 21.

14.4.1 The Holdout Method

The idea is to partition the entire dataset into two separate datasets, using one of them
to create the model and the other to test the model performances. In practice, we
usually use a fraction (e.g., 50%, or 23) of our data for training the model, and reserve
the rest (e.g., 50%, or 13) for testing. Note that the testing data may also be further split
into proportions for internal repeated (e.g., cross-validation) testing and final exter-
nal (independent) testing.

The partition has to be randomized. In R, the best way of doing this is to create a
parameter that randomly draws numbers and use this parameter to extract random
rows from the original dataset. In Chap. 11, we used this method to partition the
Google Trends data.

sub<-sample(nrow(google_norm), floor(nrow(google_norm)*0.75))
google_train<-google_norm[sub,]
google_test<-google_norm[-sub,]

Another way of partitioning is by using createDataPartition() under the
caret package. Instead of using the entire original dataset, we can use the outcome
variable, google_norm$RealEstate, or any of the independent variables.

sub<-createDataPartition(google_norm$RealEstate, p=0.75, list = F)
google_train<-google_norm[sub,]
google_test<-google_norm[-sub,]

To make sure that the model can be applied to future datasets, we can partition
the original dataset into three separate subsets. In this way, we have two subsets
for testing. The additional validation dataset can alleviate the probability that we
have a good model due to chance (non-representative subsets). A common split
among training, test, and validation subsets would be 50%, 25%, and 25%
respectively.

14.4 Estimating Future Performance (Internal Statistical Validation) 491

https://doi.org/10.1007/978-3-319-72347-1_21
https://doi.org/10.1007/978-3-319-72347-1_11

sub<-sample(nrow(google_norm), floor(nrow(google_norm)*0.50))
google_train<-google_norm[sub,]
google_test<-google_norm[-sub,]
sub1<-sample(nrow(google_test), floor(nrow(google_test)*0.5))
google_test1<-google_test[sub1,]
google_test2<-google_test[-sub1,]
nrow(google_norm)

[1] 731

nrow(google_train)

[1] 365

nrow(google_test1)

[1] 183

nrow(google_test2)

[1] 183

However, when we only have a very small dataset, it’s difficult to split off too
much data as this reduces the sample further. There are the following two options for
evaluation of model performance using (independent) unseen data: cross-validation
and holdout methods. These are implemented in the caret package.

14.4.2 Cross-Validation

For complete details see DSPA Cross-Validation (Chap. 21). Below, we describe the
fundamentals of cross-validation as an internal statistical validation technique.

This technique is known as k-fold cross-validation or k-fold CV, which is a
standard for estimating model performance. K-fold CV randomly divides the orig-
inal data into k separate random subsets called folds.

A common practice is to use k ¼ 10 or 10-fold CV to split the data into
10 different subsets. Each time using one of the subsets to be the test set and the
rest to build the model. createFolds() under caret package will help us to do
so. seet.seed() insures the folds created are the same if you run the code line
twice. 1234 is just a random number. You can use any number for set.seed().
We use the normalized Google Trend dataset in this section.

library("caret")
set.seed(1234)
folds<-createFolds(google_norm$RealEstate, k=10)
str(folds)
List of 10
$ Fold01: int [1:73] 5 9 11 12 18 19 28 29 54 65 ...
$ Fold02: int [1:73] 14 24 35 49 52 61 63 76 99 115 ...
$ Fold03: int [1:73] 1 8 41 45 51 74 78 92 100 104 ...

492 14 Model Performance Assessment

https://doi.org/10.1007/978-3-319-72347-1_21

$ Fold04: int [1:73] 30 32 37 40 43 57 59 64 70 96 ...
$ Fold05: int [1:73] 13 16 25 53 56 68 77 81 93 95 ...
$ Fold06: int [1:73] 4 6 15 20 36 69 71 73 79 89 ...
$ Fold07: int [1:73] 34 42 44 84 90 98 102 110 112 117 ...
$ Fold08: int [1:73] 2 3 48 62 82 85 86 87 88 91 ...
$ Fold09: int [1:74] 10 21 23 27 33 39 46 55 58 75 ...
$ Fold10: int [1:73] 7 17 22 26 31 38 47 50 60 66 ...

Another way to cross-validate is to use cv_partition() in package
sparsediscrim.

install.packages("sparsediscrim")
require(sparsediscrim)
folds2 = cv_partition(1:nrow(google_norm), num_folds=10)

And the structure of folds may be reported by:

str(folds2)

List of 10
$ Fold1 :List of 2
..$ training: int [1:657] 4 5 6 8 9 10 11 12 16 17 ...
..$ test : int [1:74] 287 3 596 1 722 351 623 257 568 414 ...
$ Fold2 :List of 2
..$ training: int [1:658] 1 2 3 5 6 7 8 9 10 11 ...
..$ test : int [1:73] 611 416 52 203 359 195 452 258 614 121 ...
$ Fold3 :List of 2
..$ training: int [1:658] 1 2 3 4 5 7 8 9 10 11 ...
..$ test : int [1:73] 182 202 443 152 486 229 88 158 178 293 ...
$ Fold4 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 646 439 362 481 183 387 252 520 438 586 ...
$ Fold5 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 503 665 47 603 348 125 719 11 461 361 ...
$ Fold6 :List of 2
..$ training: int [1:658] 1 2 3 4 6 7 9 10 11 12 ...
..$ test : int [1:73] 666 411 159 21 565 298 537 262 131 600 ...
$ Fold7 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 269 572 410 488 124 447 313 255 360 473 ...
$ Fold8 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 11 ...
..$ test : int [1:73] 446 215 256 116 592 284 294 300 402 455 ...
$ Fold9 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 25 634 717 545 76 378 53 194 70 346 ...
$ Fold10:List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 10 11 ...
..$ test : int [1:73] 468 609 40 101 595 132 248 524 376 618 ...

Now, we have 10 different subsets in the folds object. We can use lapply()
to fit the model. 90% of data will be used for training so we use [�x,] to represent

14.4 Estimating Future Performance (Internal Statistical Validation) 493

all observations not in a specific fold. In Chap. 11 we showed building a neutral
network model for the Google Trends data. We can do the same for each fold
manually; train, test, aggregate the results, and report the agreement (correlations
between the predicted and observed RealEstate values).

library(neuralnet)

fold_cv<-lapply(folds, function(x){
google_train<-google_norm[-x,]
google_test<-google_norm[x,]
google_model<-neuralnet(RealEstate~Unemployment+Rental+Mortgage+Jobs+Inves

ting+DJI_Index+StdDJI, data=google_train)
google_pred<-compute(google_model, google_test[, c(1:2, 4:8)])
pred_results<-google_pred$net.result
pred_cor<-cor(google_test$RealEstate, pred_results)
return(pred_cor)
})

str(fold_cv)

List of 10
$ Fold01: num [1, 1] 0.977
$ Fold02: num [1, 1] 0.97
$ Fold03: num [1, 1] 0.972
$ Fold04: num [1, 1] 0.979
$ Fold05: num [1, 1] 0.976
$ Fold06: num [1, 1] 0.974
$ Fold07: num [1, 1] 0.971
$ Fold08: num [1, 1] 0.982
$ Fold09: num [1, 1] -0.516
$ Fold10: num [1, 1] 0.974

From the output, we know that in most of the folds the model predicts very well.
In a typical run, one fold may yield bad results. We can use the mean of these
10 correlations to represent the overall model performance. But first, we need to use
unlist() function to transform fold_cv into a vector.

mean(unlist(fold_cv))

[1] 0.8258223801

This correlation is high, suggesting strong association between predicted and true
values. Thus, the model is very good in terms of its prediction.

14.4.3 Bootstrap Sampling

The second method is called bootstrap sampling. In k-fold CV, each observation can
only be used once. However, bootstrap sampling is a sampling process with replace-
ment. Before selecting a new sample, it recycles every observation so that each
observation could appear in multiple folds.

494 14 Model Performance Assessment

https://doi.org/10.1007/978-3-319-72347-1_11

A very special setting of bootstrap uses at each iteration 63.2% of the original data
as our training dataset and the remaining 36.8% as the test dataset. Thus, compared
to k-fold CV, bootstrap sampling is less representative of the full dataset. A special
case of bootstrapping, 0.632 bootstrap, addresses this issue by changing the final
performance metric using the following formula:

error ¼ 0:632� errortest þ 0:368� errortrain:

This synthesizes the optimistic model performance on training data with the
pessimistic model performance on test data by weighting the corresponding errors.
This method is extremely good for small samples.

To see the rationale behind 0.632 bootstrap, consider a standard training set T of
cardinality n, where our bootstrap sampling generates m new training sets Ti, each of
size n0. Sampling from T is uniform with replacement, suggests that some observa-
tions may be repeated in each sample Ti. Suppose the size of the sub-samples are of
the same order as T, i.e., n0 ¼ n, then for large n the sample Di is expected to have
1� 1

e

� � � 0:632 unique cases from the complete original collection T, the remaining
proportion 0.368 are expected to be repeated duplicates. Hence, the name 0.632
bootstrap sampling. In general, for large n � n0, the sample Di is expected to have

n 1� e�
n0
n

� �
unique cases, see On Estimating the Size and Confidence of a Statistical

Audit).
Having the bootstrap samples, the m models can be fitted (estimated) and

aggregated, e.g., by averaging the outputs (for regression) or by using voting
methods (for classification). We will discuss this more in later chapters.

Try to apply the same techniques to some of the other data in the list of Case-
Studies.

14.5 Assignment: 14. Evaluation of Model Performance

The ABIDE dataset includes imaging, clinical, genetics and phenotypic data for over
1000 pediatric cases – Autism Brain Imaging Data Exchange (ABIDE).

• Apply C5.0 to predict on part of data (training data).
• Evaluate the model’s performance, using confusion matrices, accuracy, κ,

precision, and recall, F-measure, etc.
• Explain and compare each evaluation.
• Use the ROC to examine the tradeoff between detecting true positives and

avoiding the false positives and report AUC.
• Finally, apply cross validation on C5.0 and report the CV error.
• You may apply the same analysis workflow to evaluate the performance of

alternative methods (e.g., KNN, SVM, LDA, QDA, Neural Networks, etc.)

14.5 Assignment: 14. Evaluation of Model Performance 495

References

SciKit: http://scikit-learn.org/stable/modules/classes.html
Sammut, C, Webb, GI (eds.) (2011) Encyclopedia of Machine Learning, Springer Science &

Business Media, ISBN 0387307680, 9780387307688.
Japkowicz, N, Shah. M. (2011) Evaluating Learning Algorithms: A Classification Perspective,

Cambridge University Press, ISBN 1139494147, 9781139494144.

496 14 Model Performance Assessment

http://scikit-learn.org/stable/modules/classes.html

	Chapter 14: Model Performance Assessment
	14.1 Measuring the Performance of Classification Methods
	14.2 Evaluation Strategies
	14.2.1 Binary Outcomes
	14.2.2 Confusion Matrices
	14.2.3 Other Measures of Performance Beyond Accuracy
	14.2.4 The Kappa (κ) Statistic
	Summary of the Kappa Score for Calculating Prediction Accuracy

	14.2.5 Computation of Observed Accuracy and Expected Accuracy
	14.2.6 Sensitivity and Specificity
	14.2.7 Precision and Recall
	14.2.8 The F-Measure

	14.3 Visualizing Performance Tradeoffs (ROC Curve)
	14.4 Estimating Future Performance (Internal Statistical Validation)
	14.4.1 The Holdout Method
	14.4.2 Cross-Validation
	14.4.3 Bootstrap Sampling

	14.5 Assignment: 14. Evaluation of Model Performance
	References

