
Chapter 13
k-Means Clustering

As we learned in Chaps. 7, 8, and 9, classification could help us make predictions on
new observations. However, classification requires (human supervised) predefined
label classes. What if we are in the early phases of a study and/or don’t have the
required resources to manually define, derive or generate these class labels?

Clustering can help us explore the dataset and separate cases into groups
representing similar traits or characteristics. Each group could be a potential candi-
date for a class. Clustering is used for exploratory data analytics, i.e., as
unsupervised learning, rather than for confirmatory analytics or for predicting
specific outcomes.

In this chapter, we will present (1) clustering as a machine learning task, (2) the
silhouette plots for classification evaluation, (3) the k-Means clustering algorithm
and how to tune it, (4) examples of several interesting case-studies, including
Divorce and Consequences on Young Adults, Pediatric Trauma, and Youth Devel-
opment, (5) demonstrate hierarchical clustering, and (6) Gaussian mixture modeling.

13.1 Clustering as a Machine Learning Task

As we mentioned before, clustering represents classification of unlabeled cases.
Scatter plots depict a simple illustration of the clustering process. Assume we
don’t know much about the ingredients of frankfurter hot dogs and we have the
following graph (Fig. 13.1).
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# See Chapter 12 code for complete details
# install.packages("rvest")
library(rvest)
wiki_url<-
read_html("http://wiki.socr.umich.edu/index.php/SOCR_012708_ID_Data_HotDogs"
)
html_nodes(wiki_url, "#content")
hotdog<- html_table(html_nodes(wiki_url, "table")[[1]])
plot(hotdog$Calories, hotdog$Sodium, main = "Hotdogs", xlab="Calories", 
ylab="Sodium")

In terms of calories and sodium, these hot dogs are clearly separated into three
different clusters. Cluster 1 has hot dogs of low calories and medium sodium
content; Cluster 2 has both calorie and sodium at medium levels; Cluster 3 has
both sodium and calories at high levels. We can make a bold guess about the meats
used in these three clusters of hot dogs. For Cluster 1, it could be mostly chicken
meat since it has low calories. The second cluster might be beef, and the third one is
likely to be pork, because beef hot dogs have considerably less calories and salt than
pork hot dogs. However, this is just guessing. Some hot dogs have a mixture of two
or three types of meat. The real situation is somewhat similar to what we guessed but
with some random noise, especially in Cluster 2.

The following two plots show the primary type of meat used for each hot dog
labeled by name (top) and color-coded (bottom) (Figs. 13.2 and 13.3).

Fig. 13.1 Hotdogs dataset – scatterplot of calories and sodium content blocked by type of meat
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Fig. 13.2 Scatterplot of calories and sodium content with meat type labels

Fig. 13.3 An alternative scatterplot of the hotdogs calories and sodium
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13.2 Silhouette Plots

Silhouette plots are useful for interpretation and validation of consistency of all
clustering algorithms. The silhouette value, 2[�1, 1], measures the similarity (cohe-
sion) of a data point to its cluster relative to other clusters (separation). Silhouette
plots rely on a distance metric, e.g., the Euclidean distance, Manhattan distance,
Minkowski distance, etc.

• High silhouette value suggest that the data matches its own cluster well.
• A clustering algorithm performs well when most Silhouette values are high.
• Low value indicates poor matching within the neighboring cluster.
• Poor clustering may imply that the algorithm configuration may have too many or

too few clusters.

Suppose a clustering method groups all data points (objects), {Xi}i, into k clusters
and define:

• di as the average dissimilarity of Xi with all other data points within its cluster. di
captures the quality of the assignment of Xi to its current class label. Smaller or
larger di values suggest better or worse overall assignment for Xi to its cluster,
respectively. The average dissimilarity of Xi to a cluster C is the average distance
between Xi and all points in the cluster of points labeled C.

• li as the lowest average dissimilarity of Xi to any other cluster, that Xi is not a
member of. The cluster corresponding to li, the lowest average dissimilarity, is
called the Xi neighboring cluster, as it is the next best fit cluster for Xi.

Then, the silhouette of Xi is defined by:

�1 � si ¼ li � di
max li; dif g �

1� di
li
, if di < li

0, if di ¼ li

li
di
� 1, if di > li

8>>>>><
>>>>>:

:

Note that:

• �1 � si � 1,
• si ! 1 when di � li, i.e., the dissimilarity of Xi to its cluster, C is much lower

relative to its dissimilarity to other clusters, indicating a good (cluster assignment)
match. Thus, high Silhouette values imply the data is appropriately clustered.

• Conversely,�1 siwhen li� di, di is large, implying a poor match of Xiwith its
current cluster C, relative to neighboring clusters. Xi may be more appropriately
clustered in its neighboring cluster.

• si � 0 means that the Xi may lie on the border between two natural clusters.
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13.3 The k-Means Clustering Algorithm

The k-means algorithm is one of the most commonly used algorithms for clustering.

13.3.1 Using Distance to Assign and Update Clusters

This algorithm is similar to k-nearest neighbors (KNN) presented in Chap. 7. In
clustering, we don’t have a priori pre-determined labels, and the algorithm is trying
to deduce intrinsic groupings in the data.

Similar to KNN, k-means uses Euclidean distance (k2 norm) most of the times,
however Manhattan distance (k1 norm), or the more general Minkowski distanceXn

i¼1 pi � qij jc
� �1

c

� �
may also be used. For c ¼ 2, the Minkowski distance

represents the classical Euclidean distance:

dist x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
n¼1

xi � yið Þ2
s

:

How can we separate clusters using this formula? The k-means protocol is as
follows:

• Initiation: First, we define k points as cluster centers. Often these points are
k random points from the dataset. For example, if k ¼ 3, we choose three random
points in the dataset as cluster centers.

• Assignment: Second, we determine the maximum extent of the cluster boundaries
that all have maximal distance from their cluster centers. Now the data is
separated into k initial clusters. The assignment of each observation to a cluster
is based on computing the least within-cluster sum of squares according to the
chosen distance. Mathematically, this is equivalent to Voronoi tessellation of the
space of the observations according to their mean distances.

• Update: Third, we update the centers of our clusters to new means of the cluster
centroid locations. This updating phase is the essence of the k-means algorithm.

Although there is no guarantee that the k-means algorithm converges to a global
optimum, in practice, the algorithm tends to converge, i.e., the assignments no longer
change, to a local minimum as there are only a finite number of such Voronoi
partitionings.
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13.3.2 Choosing the Appropriate Number of Clusters

We don’t want our number of clusters to be either too large or too small. If it is too
large, the groups are too specific to be meaningful. On the other hand, too few groups
might be too broadly general to be useful. As we mentioned in Chap. 7, k ¼ ffiffi

n
2

p
is a

good place to start. However, it might generate a large number of groups. Also, the
elbow method may be used to determine the relationship of k and homogeneity of the
observations of each cluster. When we graph within-group homogeneity against k,
we can find an “elbow point” that suggests a minimum k corresponding to relatively
large within-group homogeneity (Fig. 13.4).

This graph shows that homogeneity barely increases above the “elbow point”.
There are various ways to measure homogeneity within a cluster. For detailed
explanations please read On clustering validation techniques, Journal of Intelligent
Information Systems Vol. 17, pp. 107–145, by M. Halkidi, Y. Batistakis, and
M. Vazirgiannis (2001).

13.4 Case Study 1: Divorce and Consequences on Young
Adults

13.4.1 Step 1: Collecting Data

The dataset we will be using is the Divorce and Consequences on Young Adults
dataset. This is a longitudinal study focused on examining the consequences of
recent parental divorce for young adults (initially ages 18–23) whose parents had
divorced within 15 months of the study’s first wave (1990–91). The sample
consisted of 257 White respondents with newly divorced parents. Here we have a
subset of this dataset with 47 respondents in our case-studies folder,
CaseStudy01_Divorce_YoungAdults_Data.csv.

Fig. 13.4 Elbow plot of the
within-group homogeneity
against the number of
groups parameter (k)
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Variables

• DIVYEAR: Year in which parents were divorced. Dichotomous variable with
1989 and 1990.

• Child affective relations:

– Momint: Mother intimacy. Interval level data with four possible responses
(1-extremely close, 2-quite close, 3-fairly close, 4- not close at all).

– Dadint: Father intimacy. Interval level data with four possible responses
(1-extremely close, 2-quite close, 3-fairly close, 4-not close at all).

– Live with mom: Polytomous variable with three categories (1- mother only, 2-
father only, 3- both parents).

• momclose: measure of how close the child is to the mother (1-extremely close,
2-quite close, 3-fairly close, 4-not close at all).

• Depression: Interval level data regarding feelings of depression in the past
4 weeks. Possible responses are 1-often, 2-sometimes, 3-hardly ever, 4-never.

• Gethitched: Polytomous variable with four possible categories indicating
respondent’s plan for marriage (1-Marry fairly soon, 2-marry sometime,
3-never marry, 8-don’t know).

13.4.2 Step 2: Exploring and Preparing the Data

Let’s load the dataset and pull out a summary of all variables.

divorce<-read.csv("https://umich.instructure.com/files/399118/download?downl
oad_frd=1")
summary(divorce)

##     DIVYEAR          momint          dadint         momclose    
##  Min.   :89.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:89.00   1st Qu.:1.000 1st Qu.:2.000   1st Qu.:1.000  
##  Median :90.00   Median :1.000   Median :2.000   Median :2.000  
##  Mean   :89.68   Mean   :1.809   Mean   :2.489   Mean   :1.809  
##  3rd Qu.:90.00   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000  
##  Max.   :90.00 Max.   :4.000   Max.   :4.000   Max.   :4.000  
##    depression     livewithmom      gethitched   
##  Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :3.000   Median :1.000   Median :2.000  
##  Mean   :2.851   Mean   :1.489   Mean   :2.213  
##  3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :4.000   Max.   :9.000   Max.   :8.000

According to the summary, DIVYEAR is actually a dummy variable (either 89 or
90). We can recode (binarize) the DIVYEAR using the ifelse() function (men-
tioned in Chap. 8). The following line of code generates a new indicator variable for
divorce year ¼ 1990.
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divorce$DIVYEAR<-ifelse(divorce$DIVYEAR==89, 0, 1)

We also need another preprocessing step to deal with livewithmom, which has
missing values, livewithmom ¼ 9. We can impute these using momint and
dadint variables for each specific participant

table(divorce$livewithmom)

## 
##  1  2  9 
## 31 15  1

divorce[divorce$livewithmom==9, ]

##    DIVYEAR momint dadint momclose depression livewithmom gethitched
## 45       1      3      1        3          3           9          2

For instance, respondents that feel much closer to their dads may be assigned
divorce$livewithmom¼¼2, suggesting they most likely live with their
fathers. Of course, alternative imputation strategies are also possible.

divorce[45, 6]<-2
divorce[45, ]

##    DIVYEAR momint dadint momclose depression livewithmom gethitched
## 45       1      3      1        3          3           2          2

13.4.3 Step 3: Training a Model on the Data

We are only using R base functionality, so no need to install any additional packages
now, however library(stats) may still be necessary. Then, the function
kmeans() will provide the k-means clustering of the data.

myclusters<-kmeans(mydata, k)

• mydata: dataset in a matrix form.
• k: number of clusters we want to create.
• output:

– myclusters$cluster: vector indicating the cluster number for every observation.
– myclusters$center: a matrix showing the mean feature values for every center.
– mycluster$size: a table showing how many observations are assigned to each

cluster.
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Before we perform clustering, we need to standardize the features to avoid
biasing the clustering based on features that use large-scale values. Note that
distance calculations are sensitive to measuring units. The method as.data.
frame() will convert our dataset into a data frame allowing us to use the
lapply() function. Next, we use a combination of lapply() and scale()
to standardize our data.

di_z<- as.data.frame(lapply(divorce, scale))
str(di_z)

## 'data.frame':    47 obs. of  7 variables:
##  $ DIVYEAR    : num  0.677 0.677 -1.445 0.677 -1.445 ...
##  $ momint     : num  1.258 1.258 -0.854 1.258 -0.854 ...
##  $ dadint     : num  -0.514 -0.514 0.536 1.586 0.536 ...
##  $ momclose   : num  0.225 1.401 -0.951 1.401 0.225 ...
##  $ depression : num  0.164 -0.937 1.265 0.164 -2.038 ...
##  $ livewithmom: num  -0.711 1.377 -0.711 -0.711 -0.711 ...
##  $ gethitched : num  0.846 -0.229 -0.229 0.846 -0.229 ...

The resulting dataset, di_z, is standardized so all features are unitless and follow
approximately standardized normal distribution.

Next, we need to think about selecting a proper k. We have a relatively small
dataset with 47 observations. Obviously we cannot have a k as large as 10. The rule
of thumb suggests k ¼ ffiffiffiffiffiffiffiffiffiffi

47=2
p ¼ 4:8. This would be relatively large also because

we will have less than 10 observations for each cluster. It is very likely that for some
clusters we only have one observation. A better choice may be 3. Let’s see if this
will work.

library(stats)
set.seed(321)
diz_clussters<-kmeans(di_z, 3)

13.4.4 Step 4: Evaluating Model Performance

Let’s look at the clusters created by the k-means model.

diz_clussters$size

## [1] 12 24 11

At first glance, it seems that 3 worked well for the number of clusters. We don’t
have any cluster that contains a small number of observations. The three clusters
have relatively equal number of respondents.

Silhouette plots represent the most appropriate evaluation strategy to assess the
quality of the clustering. Silhouette values are between �1 and 1. In our case, two
data points correspond to negative Silhouette values, suggesting these cases may be
“mis-clustered” or perhaps are ambiguous, as the Silhouette value is close to 0. We
can observe that the average Silhouette is reasonable, about 0.2 (Fig. 13.5).
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require(cluster)

dis = dist(di_z)
sil = silhouette(diz_clussters$cluster, dis)
summary(sil)

## Silhouette of 47 units in 3 clusters from silhouette.default(x = diz_clus
sters$cluster, dist = dis) :
##  Cluster sizes and average silhouette widths:
##         12         24         11 
## 0.16444649 0.27684356 0.07921684 
## Individual silhouette widths:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.08466  0.11760  0.20080  0.20190  0.30450  0.39820

plot(sil)

The next step would be to interpret the clusters in the context of this social study.

diz_clussters$centers

##      DIVYEAR     momint      dadint   momclose depression livewithmom
## 1  0.5004720  1.1698438 -0.07631029  1.2049200 -0.1112567   0.1591755
## 2 -0.2953914 -0.5016290  0.36107795 -0.5096937  0.1180883  -0.7107373
## 3  0.0985208 -0.1817299 -0.70455885 -0.2023993 -0.1362761   1.3770536
##   gethitched
## 1 -0.1390230
## 2 -0.1390230
## 3  0.4549845

This result shows:

• Cluster 1: divyear ¼ mostly 90, momint ¼ very close, dadint ¼ not close,
livewithmom ¼ mostly mother, depression¼ not often, (gethiched) marry ¼ will
likely not get married. Cluster 1 represents mostly adolescents that are closer to
mom than dad. These young adults do not often feel depressed and they may

Fig. 13.5 Silhouette plot
for the 3 classes
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avoid getting married. These young adults tends to be not be too emotional and do
not value family.

• Cluster 2: divyear ¼ mostly 89, momint ¼ not close, dadint ¼ very close,
livewithmom ¼ father, depression ¼ mild, marry ¼ do not know/not inclined.
Cluster 2 includes children that mostly live with dad and only feel close to dad.
These people don’t felt severely depressed and are not inclined to marry. These
young adults may prefer freedom and tend to be more naive.

• Cluster 3: divyear ¼ mix of 89 and 90, momint ¼ not close, dadint ¼ not at all,
livewithmom ¼ mother, depression ¼ sometimes, marry ¼ tend to get married.
Cluster 3 contains children that did not feel close to either dad or mom. They
sometimes felt depressed and are willing to build their own family. These young
adults seem to be more independent.

We can see that these three different clusters do contain three alternative types of
young adults. Bar plots provide an alternative strategy to visualize the difference
between clusters (Fig. 13.6).

par(mfrow=c(1, 1), mar=c(4, 4, 4, 2))
myColors <- c("darkblue","red","green","brown","pink","purple","yellow")
barplot(t(diz_clussters$centers), beside = TRUE, xlab="cluster", 
ylab="value", col = myColors)
legend("topleft", ncol=2, legend = c("DIVYEAR", "momint", "dadint",
"momclose", "depression", "livewithmom", "gethitched"), fill = myColors)

Fig. 13.6 Barplot illustrating the features discriminating between the three cohorts in the divorce
sonsequences on young adults dataset
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For each of the three clusters, the bars in the plot above represent the following
order of features DIVYEAR, momint, dadint, momclose, depression,
livewithmom, gethitched.

13.4.5 Step 5: Usage of Cluster Information

Clustering results could be utilized as new information augmenting the original
dataset. For instance, we can add a cluster label in our divorce dataset:

divorce$clusters<-diz_clussters$cluster
divorce[1:5, ]

##   DIVYEAR momint dadint momclose depression livewithmom gethitched
## 1       1      3      2        2          3           1    3
## 2       1      3      2        3          2           2          2
## 3       0      1      3        1          4           1          2
## 4       1      3      4        3          3           1          3
## 5       0      1      3        2   1           1          2
##   clusters
## 1        1
## 2        1
## 3        2
## 4        1
## 5        2

We can also examine the relationship between live with mom and feel close to
mom by displaying a scatter plot of these two variables. If we suspect that young
adults’ personality might affect this relationship, then we could consider the poten-
tial personality (cluster type) in the plot. The cluster labels associated with each
participant are printed in different positions relative to each pair of observations,
(livewithmom, momint) (Fig. 13.7).

Fig. 13.7 Drill down for
one feature (leave-with-
mom) between the three
cohorts
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require(ggplot2)
ggplot(divorce, aes(livewithmom, momint), main="Scatterplot Live with mom vs
feel close to mom") +

geom_point(aes(colour = factor(clusters), shape=factor(clusters), stroke =
8), alpha=1) +

theme_bw(base_size=25) +
geom_text(aes(label=ifelse(clusters%in%1, as.character(clusters), ''), hju

st=2, vjust=2, colour = factor(clusters)))+
geom_text(aes(label=ifelse(clusters%in%2, as.character(clusters), ''), hju

st=-2, vjust=2, colour = factor(clusters)))+
geom_text(aes(label=ifelse(clusters%in%3, as.character(clusters), ''), hju

st=2, vjust=-1, colour = factor(clusters))) +
guides(colour = guide_legend(override.aes = list(size=8))) +

theme(legend.position="top")

We used ggplot() function in ggplot2 package to label points with cluster
types. ggplot(divorce, aes(livewithmom, momint)) + geom_point
() gives us the scatterplot, and the three geom_text() functions help us label the
points with the corresponding cluster identifiers.

This picture shows that live with mom does not necessarily mean young adults
will feel close to mom. For “emotional” (Cluster 1) young adults, they felt close to
their mom whether they live with their mom or not. “Naive” (Cluster 2) young adults
feel closer to mom if they live with mom. However, they tend to be estranged from
their mother. “Independent” (Cluster 3) young adults are opposite to Cluster 1. They
felt closer to mom if they don’t live with her.

13.5 Model Improvement

Let’s still use the divorce data to illustrate a model improvement using k-means++.
(Appropriate) initialization of the k-means algorithm is of paramount importance.
The k-means++ extension provides a practical strategy to obtain an optimal initial-
ization for k-means clustering using a predefined kpp_init method.

# install.packages("matrixStats")
require(matrixStats)

kpp_init = function(dat, K) {
x = as.matrix(dat)
n = nrow(x)
# Randomly choose a first center
centers = matrix(NA, nrow=K, ncol=ncol(x))
set.seed(123)
centers[1,] = as.matrix(x[sample(1:n, 1),])
for (k in 2:K) {
# Calculate dist^2 to closest center for each point
dists = matrix(NA, nrow=n, ncol=k-1)
for (j in 1:(k-1)) {
temp = sweep(x, 2, centers[j,], '-')
dists[,j] = rowSums(temp^2)

}
dists = rowMins(dists)
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# Draw next center with probability proportional to dist^2
cumdists = cumsum(dists)
prop = runif(1, min=0, max=cumdists[n])
centers[k,] = as.matrix(x[min(which(cumdists > prop)),])

}
return(centers)

}

clust_kpp = kmeans(di_z, kpp_init(di_z, 3), iter.max=100, algorithm='Lloyd')

We can observe some differences.

clust_kpp$centers

##      DIVYEAR     momint     dadint   momclose depression livewithmom
## 1  0.3741445  1.2578161 -0.6636602  0.5610651 -0.1505730  -0.4124815
## 2 -0.2659149 -0.5798266  0.3805174 -0.2538624  0.1639572  -0.5560862
## 3  0.3508225  0.5269697 -0.4329499  0.2251408 -0.2594488   1.3770536
##   gethitched
## 1  0.9990071
## 2 -0.1489684
## 3 -0.2285310

This improvement is not substantial; the new overall average Silhouette value
remains 0.2 for k-means++. Third compares to the value of 0.2 reported for the
earlier k-means clustering, albeit the three groups generated by each method are
quite distinct. In addition, the number of “mis-clustered” instances remains
2 although their Silhouette values are rather smaller than before, and the overall
Cluster 1 Silhouette average value is low (0.006) (Fig. 13.8).

Fig. 13.8 Silhouette plot for k-means++ classification
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sil2 = silhouette(clust_kpp$cluster, dis)
summary(sil2)

## Silhouette of 47 units in 3 clusters from silhouette.default(x = clust_kp
p$cluster, dist = dis) :
##  Cluster sizes and average silhouette widths:
##          7         27         13 
## 0.00644352 0.24933847 0.19476785 
## Individual silhouette widths:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.12750  0.08781  0.22950  0.19810  0.29050  0.38120

plot(sil2)

13.5.1 Tuning the Parameter k

Similar to what we performed for KNN and SVM, we can tune the k-means
parameters, including centers initialization and k (Fig. 13.9).

Fig. 13.9 Evolution of the average silhouette value with respect to the number of clusters
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n_rows <- 21
mat = matrix(0,nrow = n_rows)
for (i in 2:n_rows){

set.seed(321)
clust_kpp = kmeans(di_z, kpp_init(di_z, i), iter.max=100, algorithm='Lloyd

')
sil = silhouette(clust_kpp$cluster, dis)
mat[i] = mean(as.matrix(sil)[,3])

}
colnames(mat) <- c("Avg_Silhouette_Value")
mat

##       Avg_Silhouette_Value
##  [1,]            0.0000000
##  [2,]            0.1948335
##  [3,]            0.1980686
##  [4,]            0.1789654
##  [5,]            0.1716270
##  [6,]            0.1546357
##  [7,]            0.1622488
##  [8,]            0.1767659
##  [9,]            0.1928883
## [10,]            0.2026559
## [11,]            0.2006313
## [12,]            0.1586044
## [13,]            0.1735035
## [14,]            0.1707446
## [15,]            0.1626367
## [16,]            0.1609723
## [17,]   0.1785733
## [18,]            0.1839546
## [19,]            0.1660019
## [20,]            0.1573574
## [21,]            0.1561791

ggplot(data.frame(k=2:n_rows,sil=mat[2:n_rows]),aes(x=k,y=sil))+
geom_line()+
scale_x_continuous(breaks = 2:n_rows)

This suggests that k� 3may be an appropriate number of clusters to use in this case.
Next, let’s set the maximal iteration of the algorithm and rerun the model with

optimal k ¼ 2, k ¼ 3 or k ¼ 10. Below, we just demonstrate the results for k ¼ 3.
There are still 2 mis-clustered observations, which is not a significant improvement
on the prior model according to the average Silhouette measure (Fig. 13.10).

k <- 3
set.seed(31)
clust_kpp = kmeans(di_z, kpp_init(di_z, k), iter.max=200, algorithm="MacQuee
n")
sil3 = silhouette(clust_kpp$cluster, dis)
summary(sil3)

## Silhouette of 47 units in 3 clusters from silhouette.default(x = clust_kp
p$cluster, dist = dis) :
##  Cluster sizes and average silhouette widths:
##         10         22         15 
## 0.02096194 0.30414984 0.15474729 
## Individual silhouette widths:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.1365  0.1032  0.1971  0.1962  0.3122  0.4113

plot(sil3)
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Note that we now see 3 cases of group 1 that have negative silhouette values
(previously we had only 2), albeit the overall average silhouette remains 0.2.

13.6 Case Study 2: Pediatric Trauma

Let’s go through another example demonstrating the k-means clustering method
using a larger dataset.

13.6.1 Step 1: Collecting Data

The dataset we will interrogate now includes Services Utilization by Trauma-
Exposed Children in the US data, which is located in our case-studies folder. This
case study examines associations between post-traumatic psychopathology and
service utilization by trauma-exposed children.

Variables:

• id: Case identification number.
• sex: Female or male, dichotomous variable (1 ¼ female, 0 ¼ male).
• age: Age of child at time of seeking treatment services. Interval-level variable,

score range ¼ 0–18.
• race: Race of child seeking treatment services. Polytomous variable with 4 cate-

gories (1 ¼ black, 2 ¼ white, 3 ¼ hispanic, 4 ¼ other).

Fig. 13.10 Silhouette plot for the optimal k ¼ 3 andd kpp_init Initialization
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• cmt: The child was exposed to child maltreatment trauma - dichotomous variable
(1 ¼ yes, 0 ¼ no).

• traumatype: Type of trauma exposure the child is seeking treatment sore.
Polytomous variable with 5 categories ("sexabuse" ¼ sexual abuse,
"physabuse" ¼ physical abuse, "neglect" ¼ neglect, "psychabuse" ¼ psychologi-
cal or emotional abuse, "dvexp" ¼ exposure to domestic violence or intimate
partner violence).

• ptsd: The child has current post-traumatic stress disorder. Dichotomous variable
(1 ¼ yes, 0 ¼ no).

• dissoc: The child currently has a dissociative disorder (PTSD dissociative
subtype, DESNOS, DDNOS). Interval-level variable, score range ¼ 0–11.

• service: Number of services the child has utilized in the past 6 months, including
primary care, emergency room, outpatient therapy, outpatient psychiatrist, inpatient
admission, case management, in-home counseling, group home, foster care, treat-
ment foster care, therapeutic recreation or mentor, department of social services,
residential treatment center, school counselor, special classes or school, detention
center or jail, probation officer. Interval-level variable, score range ¼ 0–19.

• Note: These data (Case_04_ChildTrauma._Data.csv) are tab-delimited.

13.6.2 Step 2: Exploring and Preparing the Data

First, we need to load the dataset into R and report its summary and dimensions.

trauma<-read.csv("https://umich.instructure.com/files/399129/download?downlo
ad_frd=1", sep = " ")
summary(trauma); dim(trauma)

##        id              sex             age              ses      
##  Min.   :   1.0   Min.   :0.000   Min.   : 2.000   Min.   :0.00  
##  1st Qu.: 250.8   1st Qu.:0.000   1st Qu.: 7.000   1st Qu.:0.00  
##  Median : 500.5   Median :1.000   Median : 9.000   Median :0.00  
##  Mean   : 500.5   Mean   :0.506   Mean   : 8.982   Mean   :0.18  
##  3rd Qu.: 750.2   3rd Qu.:1.000   3rd Qu.:11.000   3rd Qu.:0.00  
##  Max.   :1000.0   Max.   :1.000   Max.   :25.000   Max.   :1.00  
##        race          traumatype       ptsd          dissoc     
##  black   :200   dvexp     :250   Min.   :0.00   Min.   :0.000  
##  hispanic:100   neglect   :350   1st Qu.:0.00   1st Qu.:0.000  
##  other   :100   physabuse :100   Median :0.00   Median :1.000  
##  white   :600   psychabuse:200   Mean   :0.29   Mean   :0.598  
##                 sexabuse  :100   3rd Qu.:1.00   3rd Qu.:1.000  
##                          Max.   :1.00   Max.   :1.000  
##     service      
##  Min.   : 0.000  
##  1st Qu.: 8.000  
##  Median :10.000  
##  Mean   : 9.926  
##  3rd Qu.:12.000  
##  Max.   :20.000

## [1] 1000    9
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In the summary we see two factors race and traumatype. Traumatype
codes the real classes we are interested in. If the clusters created by the model are
quite similar to the trauma types, our model may have a quite reasonable interpre-
tation. Let’s also create a dummy variable for each racial category.

trauma$black<-ifelse(trauma$race=="black", 1, 0)
trauma$hispanic<-ifelse(trauma$race=="hispanic", 1, 0)
trauma$other<-ifelse(trauma$race=="other", 1, 0)
trauma$white<-ifelse(trauma$race=="white", 1, 0)

Then, we will remove traumatype the class variable from the dataset to avoid
biasing the clustering algorithm. Thus, we are simulating a real biomedical case-
study where we do not necessarily have the actual class information available, i.e.,
classes are latent features.

trauma_notype<-trauma[, -c(1, 5, 6)]

13.6.3 Step 3: Training a Model on the Data

Similar to case-study 1, let’s standardize the dataset and fit a k-means model.

tr_z<- as.data.frame(lapply(trauma_notype, scale))
str(tr_z)

## 'data.frame':    1000 obs. of  10 variables:
##  $ sex     : num  0.988 0.988 -1.012 -1.012 0.988 ...
##  $ age     : num  -0.997 1.677 -0.997 0.674 -0.662 ...
##  $ ses     : num  -0.468 -0.468 -0.468 -0.468 -0.468 ...
##  $ ptsd    : num  1.564 -0.639 -0.639 -0.639 1.564 ...
##  $ dissoc  : num  0.819 -1.219 0.819 0.819 0.819 ...
##  $ service : num  2.314 0.678 -0.303 0.351 1.66 ...
##  $ black   : num  2 2 2 2 2 ...
##  $ hispanic: num  -0.333 -0.333 -0.333 -0.333 -0.333 ...
##  $ other   : num  -0.333 -0.333 -0.333 -0.333 -0.333 ...
##  $ white   : num -1.22 -1.22 -1.22 -1.22 -1.22 ...

set.seed(1234)
trauma_clusters<-kmeans(tr_z, 6)

Here we use k ¼ 6 in the hope that we may have 5 of these clusters match the
specific 5 trauma types. In this case study, we have 1000 observations and k¼ 6may
be a reasonable option.
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13.6.4 Step 4: Evaluating Model Performance

To assess the clustering model results, we can examine the resulting clusters
(Fig. 13.11).

trauma_clusters$centers

##            sex          age          ses         ptsd     dissoc
## 1 -0.001999144  0.061154336 -0.091055799 -0.077094361  0.02446247
## 2 -1.011566709 -0.006361734 -0.000275301  0.002214351  0.81949287
## 3  0.026286613 -0.043755817  0.029890657  0.064206246 -1.21904661
## 4  0.067970886  0.046116384 -0.078047828  0.044053921 -0.07746450
## 5  0.047979449 -0.104263129  0.156095655  0.022026960 -0.09784989
## 6  0.987576985  0.028799955  0.019511957 -0.038046568  0.81949287
##        service      black   hispanic      other      white
## 1  0.001308569  1.9989997 -0.3331666 -0.3331666 -1.2241323
## 2  0.126332303 -0.4997499 -0.3331666 -0.3331666  0.8160882
## 3 -0.030083167 -0.4997499 -0.3331666 -0.3331666  0.8160882
## 4  0.128894052 -0.4997499 -0.3331666  2.9984996 -1.2241323
## 5 -0.103376956 -0.4997499  2.9984996 -0.3331666 -1.2241323
## 6 -0.111481162 -0.4997499 -0.3331666 -0.3331666  0.8160882
myColors <- c("darkblue", "red", "green", "brown", "pink", "purple", "lightb
lue", "orange", "grey", "yellow")
barplot(t(trauma_clusters$centers), beside = TRUE, xlab="cluster", 
ylab="value", col = myColors)
legend("topleft", ncol=4, legend = c("sex", "age", "ses", "ptsd", "dissoc", 
"service", "black", "hispanic", "other", "white"), fill = myColors)

Fig. 13.11 Key predictors discriminating between the 6 cohorts in the trauma study
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On this barplot, the bars in each cluster represents sex, age, ses, ptsd,
dissoc, service, black, hispanic, other, and white, respectively.
It is quite obvious that each cluster has some unique features.

Next, we can compare the k-means computed cluster labels to the original labels.
Let’s evaluate the similarities between the automated cluster labels and their real
class counterparts using a confusion matrix table, where rows represent the k-means
clusters, columns show the actual labels, and the cell values include the frequencies
of the corresponding pairings.

trauma$clusters<-trauma_clusters$cluster
table(trauma$clusters, trauma$traumatype)

##    
##     dvexp neglect physabuse psychabuse sexabuse
##   1     0       0       100          0      100
## 2    10     118         0         61        0
##   3    23     133         0         79        0
##   4   100       0         0          0        0
##   5   100       0         0          0        0
##   6    17      99         0         60        0

We can see that all of the children in Cluster 4 belong to dvexp (exposure to
domestic violence or intimate partner violence). If we use the mode of each cluster to
be the class for that group of children, we can classify 63 sexabuse cases,
279 neglect cases, 41 physabuse cases, 100 dvexp cases, and another
71 neglect cases. That is 554 cases out of 1,000 cases identified with correct
class. The model has a problem in distinguishing between neglect and
psychabuse, but it has a good accuracy.

Let’s review the output Silhouette value summary. It works well as only a small
portion of samples appear mis-clustered.

dis_tra = dist(tr_z)
sil_tra = silhouette(trauma_clusters$cluster, dis_tra)
summary(sil_tra)

## Silhouette of 1000 units in 6 clusters from silhouette.default(x = trauma
_clusters$cluster, dist = dis_tra) :
##  Cluster sizes and average silhouette widths:
##       200       189       235       100       100       176 
## 0.2595725 0.2185706 0.1039559 0.3223076 0.3199830 0.2423110 
## Individual silhouette widths:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.008893 0.139100 0.234400 0.224500 0.303300 0.388200

#plot(sil_tra)
# report the overall mean silhouette value
mean(sil_tra[,"sil_width"])

## [1] 0.2245298

# The sil object colnames  are ("cluster", "neighbor", "sil_width")
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Next, let’s try to tune k with k-means++ and see if k ¼ 6 appears to be optimal
(Fig. 13.12).

mat = matrix(0,nrow = 11)
for (i in 2:11){

set.seed(321)
clust_kpp = kmeans(tr_z, kpp_init(tr_z, i), iter.max=100, algorithm='Lloyd

')
sil = silhouette(clust_kpp$cluster, dis_tra)
mat[i] = mean(as.matrix(sil)[,3])

}
mat

##            [,1]
##  [1,] 0.0000000
##  [2,] 0.2433222
##  [3,] 0.1675486
##  [4,] 0.1997315
##  [5,] 0.2116534
##  [6,] 0.2400086
##  [7,] 0.2251367
##  [8,] 0.2199859
##  [9,] 0.2249569
## [10,] 0.2347122
## [11,] 0.2304451

ggplot(data.frame(k=2:11,sil=mat[2:11]),aes(x=k,y=sil))+geom_line()+scale_x_
continuous(breaks = 2:11)

Fig. 13.12 Evolution of the average silhouette value with respect to the number of clusters
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Finally, let’s use k-means++with k¼ 6 and set the algorithm’s maximal iteration
before rerunning the experiment:

set.seed(1234)
clust_kpp = kmeans(tr_z, kpp_init(tr_z, 6), iter.max=100, algorithm='Lloyd')
sil = silhouette(clust_kpp$cluster, dis_tra)
summary(sil)

## Silhouette of 1000 units in 6 clusters from silhouette.default(x = clust_
kpp$cluster, dist = dis_tra) :
##  Cluster sizes and average silhouette widths:
##       422       100       178        85        15       200 
## 0.2166778 0.3353976 0.1898492 0.2478090 0.2294502 0.2836607 
## Individual silhouette widths:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.03672 0.19730 0.23080 0.24000 0.27710 0.40650

# plot(sil)
# report the overall mean silhouette value
mean(sil[,"sil_width"])

## [1] 0.2400086

13.6.5 Practice Problem: Youth Development

Use the Boys Town Study of Youth Development data, second case study,
CaseStudy02_Boystown_Data.csv, which we used in Chap. 7, to find clusters
using variables like GPA, alcohol abuse, attitudes on drinking, social status, parent
closeness, and delinquency for clustering (all variables other than gender and ID).

First, we must load the data and transfer sex, dadjob, and momjob into
dummy variables.

boystown<-read.csv("https://umich.instructure.com/files/399119/download?down
load_frd=1", sep=" ")
boystown$sex<-boystown$sex-1
boystown$dadjob <- (-1)*(boystown$dadjob-2)
boystown$momjob <- (-1)*(boystown$momjob-2)
str(boystown)

## 'data.frame':    200 obs. of  11 variables:
##  $ id        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ sex       : num  0 0 0 0 1 1 0 0 1 1 ...
##  $ gpa       : int  5 0 3 2 3 3 1 5 1 3 ...
##  $ Alcoholuse: int  2 4 2 2 6 3 2 6 5 2 ...
##  $ alcatt    : int  3 2 3 1 2 0 0 3 0 1 ...
##  $ dadjob    : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ momjob    : num  0 0 0 0 1 0 0 0 1 1 ...
##  $ dadclose  : int  1 3 2 1 2 1 3 6 3 1 ...
##  $ momclose  : int  1 4 2 2 1 2 1 2 3 2 ...
##  $ larceny   : int  1 0 0 3 1 0 0 0 1 1 ...
##  $ vandalism : int  3 0 2 2 2 0 5 1 4 0 ...
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Then, extract all the variables, except the first two columns (subject identifiers
and genders).

boystown_sub<-boystown[, -c(1, 2)]

Next, we need to standardize and clustering the data with k ¼ 3. You may have
the following centers (numbers could be a little different) (Fig. 13.13).

##          gpa  Alcoholuse      alcatt     dadjob      momjob   dadclose
## 1 -0.5101243 -0.08555163 -0.30098866  0.1939577  0.04868109  1.1914502
## 2 -0.2753631  0.49998217  0.13804858 -0.2421906 -0.30151766 -0.4521484
## 3  0.6590193 -0.51256447  0.04599325  0.1451756  0.31107377 -0.2896562
##      momclose    larceny  vandalism
## 1  0.65647213 -0.1755012 -0.4453044
## 2 -0.33341358 -0.4017282  0.5252308
## 3 -0.06343891  0.5769583 -0.2981561

Add k-means cluster labels as a new (last) column back in the original dataset.
To investigate the gender distribution within different clusters we may use

aggregate().

# Compute the averages for the variable 'sex', grouped by cluster
aggregate(data=boystown, sex~clusters, mean)

##   clusters       sex
## 1        1 0.6875000
## 2        2 0.5802469
## 3        3 0.6760563

Here clusters is the new vector indicating cluster labels. The gender distri-
bution does not vary much between different cluster labels (Fig. 13.14).

Fig. 13.13 Main features discriminating between the 3 cohorts in the divorce impact on youth
study
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This k-means live demo shows point clustering (Applies Multiclass AdaBoost.M1,
SAMME and Bagging algorithm) http://olalonde.github.com/kmeans.js.

13.7 Hierarchical Clustering

There are a number of R hierarchical clustering packages, including:

• hclust in base R.
• agnes in the cluster package.

Alternative distance measures (or linkages) can be used in all Hierarchical
Clustering, e.g., single, complete and ward.

We will demonstrate hierarchical clustering using case-study 1 (Divorce and
Consequences on Young Adults). Pre-set k ¼ 3 and notice that we have to use
normalized data for hierarchical clustering.

require(cluster)
pitch_sing = agnes(di_z, diss=FALSE, method='single')
pitch_comp = agnes(di_z, diss=FALSE, method='complete')
pitch_ward = agnes(di_z, diss=FALSE, method='ward')
sil_sing = silhouette(cutree(pitch_sing, k=3), dis)
sil_comp = silhouette(cutree(pitch_comp, k=3), dis)
# try 10 clusters, see plot above
sil_ward = silhouette(cutree(pitch_ward, k=10), dis)

You can generate the hierarchical plot by ggdendrogram in the package
ggdendro (Figs. 13.15 and 13.16).

Fig. 13.14 Live demo: k-means point clustering
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# install.packages("ggdendro")
require(ggdendro)

ggdendrogram(as.dendrogram(pitch_ward), leaf_labels=FALSE, labels=FALSE)

Fig. 13.16 Ten-level hierarchical clustering using the Ward method

Fig. 13.15 Hierarchical clustering using the Ward method
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mean(sil_ward[,"sil_width"])

## [1] 0.2398738

ggdendrogram(as.dendrogram(pitch_ward), leaf_labels=TRUE, labels=T, size=10)

Generally speaking, the best result should come from wald linkage, but you
should also try complete linkage (method ¼ ‘complete’). We can see that the
hierarchical clustering result (average silhouette value �0.24) mostly agrees with
the prior k-means (0.2) and k-means++ (0.2) results (Fig. 13.17).

summary(sil_ward)

## Silhouette of 47 units in 10 clusters from silhouette.default(x = cutree(
pitch_ward, k = 10), dist = dis) :
##  Cluster sizes and average silhouette widths:
##  4           5           6           3           6          12 
##  0.25905454  0.29195989  0.29305926 -0.02079056  0.19263836  0.26268274 
##           5           2           3           1 
##  0.32594365  0.44074717  0.08760990  0.00000000 
## Individual silhouette widths:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.1477  0.1231  0.2577  0.2399  0.3524  0.5176

plot(sil_ward)

Fig. 13.17 Silhouette plot for hierarchical clustering using the Ward method
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13.8 Gaussian Mixture Models

More details about Gaussian mixture models (GMM) are provided in the supporting
materials online. Below is a brief introduction to GMM using the Mclust function
in the R package mclust.

For multivariate mixture, there are totally 14 possible models:

• "EII" ¼ spherical, equal volume
• "VII" ¼ spherical, unequal volume
• "EEI" ¼ diagonal, equal volume and shape
• "VEI" ¼ diagonal, varying volume, equal shape
• "EVI" ¼ diagonal, equal volume, varying shape
• "VVI" ¼ diagonal, varying volume and shape
• "EEE" ¼ ellipsoidal, equal volume, shape, and orientation
• "EVE" ¼ ellipsoidal, equal volume and orientation (*)
• "VEE" ¼ ellipsoidal, equal shape and orientation (*)
• "VVE" ¼ ellipsoidal, equal orientation (*)
• "EEV" ¼ ellipsoidal, equal volume and equal shape
• "VEV" ¼ ellipsoidal, equal shape
• "EVV" ¼ ellipsoidal, equal volume (*)
• "VVV" ¼ ellipsoidal, varying volume, shape, and orientation

For more practical details, you may refer to Mclust. For more theoretical details,
see C. Fraley and A. E. Raftery (2002).

Let’s use the Divorce and Consequences on Young Adults dataset for a
demonstration.

library(mclust)

set.seed(1234)
gmm_clust = Mclust(di_z)
gmm_clust$modelName

## [1] "EEE"

Thus, the optimal model here is "EEE" (Figs. 13.18, 13.19, and 13.20).

plot(gmm_clust$BIC, legendArgs = list(x = "bottom", ncol = 2, cex = 1))

plot(gmm_clust,what = "density")

plot(gmm_clust,what = "classification")
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Fig. 13.18 Bayesian information criterion plots for different GMM classification models for the
divorce youth data

Fig. 13.19 Pairs plot of the GMM clustering density
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13.9 Summary

• k-means clustering may be most appropriate for exploratory data analytics. It is
highly flexible and fairly efficient in terms of tessellating data into groups.

• It can be used for data that has no Apriori classes (labels).
• Generated clusters may lead to phenotype stratification and/or be compared

against known clinical traits.

Try to use these techniques with other data from the list of our Case-Studies.

13.10 Assignments: 13. k-Means Clustering

Use the Amyotrophic Lateral Sclerosis (ALS) dataset. This case-study examines the
patterns, symmetries, associations and causality in a rare but devastating disease,
amyotrophic lateral sclerosis (ALS). A major clinically relevant question in this
biomedical study is: What patient phenotypes can be automatically and reliably
identified and used to predict the change of the ALSFRS slope over time?. This
problem aims to explore the data set by unsupervised learning.

• Load and prepare the data.
• Perform summary and preliminary visualization.

Fig. 13.20 Pairs plot of the GMM classification results
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• Train a k-means model on the data, select k
• as we mentioned in Chap. 13.
• Evaluate the model performance and report the center of clusters and silhouette

plots. Explain details (Note: Since we have 100 dimensions, it may be difficult to
use bar plots, so show the centers only).

• Tune parameters and plot with k-means++.
• Rerun the model with optimal parameters and interpret the clustering results.
• Apply Hierarchical Clustering on three different linkages and compare the

corresponding Silhouette plots.
• Fit a Gaussian mixture model, select the optimal model and draw BIC and

Silhouette plots. (Hint, you need to sample part of data or it could be very time
consuming).

• Compare the result of the above methods.
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