
Chapter 12
Apriori Association Rules Learning

HTTP cookies are used to monitor web-traffic and track users surfing the Internet.
We often notice that promotions (ads) on websites tend to match our needs, reveal
our prior browsing history, or reflect our interests. That is not an accident. Nowa-
days, recommendation systems are highly based on machine learning methods that
can learn the behavior, e.g., purchasing patterns, of individual consumers. In this
chapter, we will uncover some of the mystery behind recommendation systems for
transactional records. Specifically, we will (1) discuss association rules and their
support and confidence; (2) the Apriori algorithm for association rule learning; and
(3) cover step-by-step a set of case-studies, including a toy example, Head and Neck
Cancer Medications, and Grocery purchases.

12.1 Association Rules

Association rules are the result of process analytics (e.g., market analysis) that
specify patterns of relationships among items. One specific example would be:

charcoal; lighter; chicken wingsf g ! barbecue saucef g
In words, charcoal, lighter and chicken wings imply barbecue sauce. Those curly

brackets indicate that we have a set. Items in a set are called elements. When an item-
set like {charcoal, lighter, chicken wings, barbecue sauce} appears in our dataset
with some regularity, we can discover the above pattern.

Association rules are commonly used for unsupervised discovery of knowledge
rather than prediction of outcomes. In biomedical research, association rules are
widely used to:

© Ivo D. Dinov 2018
I. D. Dinov, Data Science and Predictive Analytics,
https://doi.org/10.1007/978-3-319-72347-1_12

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_12&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_12

• Search for interesting or frequently occurring patterns of DNA.
• Search for protein sequences in an analysis of cancer data.
• Find patterns of medical claims that occur in combination with fraudulent credit

card or insurance use.

12.2 The Apriori Algorithm for Association Rule Learning

Association rules are mostly applied to transactional data, like business, trade,
service or medical records. These datasets are typically very large in number of
transactions and features. This will add lots of possible orders and patterns when we
try to do analytics, which makes data mining a very hard task.

With the Apriori rule, this problem is easily solved. If we have a simple prior
(belief about the properties of frequent elements), we can efficiently reduce the
number of features or combinations that we need to look at.

The Apriori algorithm has a simple apriori belief that all subsets of a frequent
item-set must also be frequent. This is known as the Apriori property. The full set
in the last example, {charcoal, lighter, chicken wings, barbecue sauce}, can be fre-
quent if and only if itself and all its subsets of single elements, pairs and triples occur
frequently. We can see that this algorithm is designed for finding patterns in large
datasets. If a pattern happens frequently, it is considered “interesting”.

12.3 Measuring Rule Importance by Using Support
and Confidence

Support and confidence are the two criteria to help us decide whether a pattern is
“interesting”. By setting thresholds for these two criteria, we can easily limit the
number of interesting rules or item-sets reported.

For item-sets X and Y, the support of an item-set measures how frequently it
appears in the data:

support Xð Þ ¼ count Xð Þ
N

,

where N is the total number of transactions in the database and count(X) is the
number of observations (transactions) containing the item-set X. Of course, the union
of item-sets is an item-set itself. For example, if Z ¼ X, Y, then

support Zð Þ ¼ support X; Yð Þ:
For a rule X! Y, the rule’s confidencemeasures the relative accuracy of the

rule:

424 12 Apriori Association Rules Learning

confidence X ! Yð Þ ¼ support X; Yð Þ
support Xð Þ

This measures the joint occurrence of X and Y over the X domain. If whenever
X appears Y tends to be present too, we will have a high confidence(X ! Y). The
ranges of the support and confidence are 0 � support, confidence � 1. Note that in
probabilistic terms, Confidence (X!Y) is equivalent to the conditional probability
P(YjX).

{peanut butter} ! {bread} would be an example of a strong rule because it has
high support as well as high confidence in grocery store transactions. Shoppers tend
to purchase bread when they get peanut butter. These items tend to appear in the
same baskets, which yields high confidence for the rule {peanut butter}! {bread}.

12.4 Building a Set of Rules with the Apriori Principle

To build a set of rules, we need to go through two steps:

• Step 1: Filter all item-sets with a minimum support threshold. This is accom-
plished iteratively by increasing the size of the item-sets. In the first iteration,
we compute the support of singletons, 1-item-sets. At the next iteration, we
compute the support of pairs of items, and so on. Item-sets passing iteration
i could be considered as candidates for the next iteration, i + 1. If {A}, {B},
{C} are all frequent, but D is not frequent in the first singleton-selection
round, then in the second iteration we only consider the support of these
pairs {A, B}, {A,C}, {B,C}, ignoring all pairs including D. This substantially
reduces the cardinality of the potential item-sets and ensures the feasibility of
the algorithm. At the third iteration, if {A,C}, and {B,C} are frequently
occurring, but {A, B} is not, then the algorithm may terminate, as the support
of {A,B,C} is trivial (does not pass the support threshold), given that {A, B}
was not frequent enough.

• Step 2: Using the item-sets selected in Step 1, generate new rules with confidence
larger than a predefined minimum confidence threshold. The candidate item-sets
that passed Step 1 would include all frequent item-sets. For the highly-supported
item-set {A, C}, we would compute the confidence measures for {A} ! {C} as
well as {C} ! {A} and compare these against the minimum confidence thresh-
old. The surviving rules are the ones with confidence levels exceeding that
minimum threshold.

12.4 Building a Set of Rules with the Apriori Principle 425

12.5 A Toy Example

Assume that a large supermarket tracks sales data by stock-keeping unit (SKU) for
each item, i.e., each item, such as “butter” or “bread”, is identified by an SKU
number. The supermarket has a database of transactions where each transaction is a
set of SKUs that were bought together (Table 12.1).

Suppose the database of transactions consist of following item-sets, each
representing a purchasing order:

require(knitr)
item_table = as.data.frame(t(c("{1,2,3,4}","{1,2,4}","{1,2}","{2,3,4}",

"{2,3}","{3,4}","{2,4}")))
colnames(item_table) <- c("choice1","choice2","choice3","choice4",

"choice5","choice6","choice7")
kable(item_table, caption = "Item table")

We will use Apriori to determine the frequent item-sets of this database. To do so,
we will say that an item-set is frequent if it appears in at least 3 transactions of the
database, i.e., the value 3 is the support threshold (Table 12.2).

The first step of Apriori is to count up the number of occurrences, i.e., the support,
of each member item separately. By scanning the database for the first time, we
obtain get:

item_table = as.data.frame(t(c(3,6,4,5)))
colnames(item_table) <- c("item1","item2","item3","item4")
rownames(item_table) <- "support"
kable(item_table,caption = "Size 1 Support")

All the item-sets of size 1 have a support of at least 3, so they are all frequent. The
next step is to generate a list of all pairs of frequent items.

For example, regarding the pair {1, 2}: the first table of Example 2 shows items
1 and 2 appearing together in three of the item-sets; therefore, we say that the support
of the item {1, 2} is 3 (Tables 12.3 and 12.4).

Table 12.1 Item table

choice1 choice2 choice3 choice4 choice5 choice6 choice7

{1,2,3,4} {1,2,4} {1,2} {2,3,4} {2,3} {3,4} {2,4}

Table 12.2 Size 1 support item1 item2 item3 item4

support 3 6 4 5

Table 12.3 Size 2 support {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

support 3 1 2 3 4 3

426 12 Apriori Association Rules Learning

item_table = as.data.frame(t(c(3,1,2,3,4,3)))
colnames(item_table) <- c("{1,2}","{1,3}","{1,4}","{2,3}","{2,4}","{3,4}")
rownames(item_table) <- "support"
kable(item_table,caption = "Size 2 Support")

The pairs {1, 2}, {2, 3}, {2, 4}, and {3, 4} all meet or exceed the minimum
support of 3, so they are frequent. The pairs {1, 3} and {1, 4} are not and any larger
set which contains {1, 3} or {1, 4} cannot be frequent. In this way, we can prune sets:
we will now look for frequent triples in the database, but we can already exclude all
the triples that contain one of these two pairs:

item_table = as.data.frame(t(c(2)))
colnames(item_table) <- c("{2,3,4}")
rownames(item_table) <- "support"
kable(item_table,caption = "Size 3 Support")

In the example, there are no frequent triplets – the support of the item-set {2, 3, 4}
is below the minimal threshold, and the other triplets were excluded because they were
super sets of pairs that were already below the threshold. We have thus determined the
frequent sets of items in the database, and illustrated how some items were not
counted because some of their subsets were already known to be below the threshold.

12.6 Case Study 1: Head and Neck Cancer Medications

12.6.1 Step 1: Collecting Data

To demonstrate the Apriori algorithm in a real biomedical case-study, we will use a
transactional healthcare data representing a subset of the Head and Neck Cancer
Medication data, which is available in our case-studies collection as
10_medication_descriptions.csv. It consists of inpatient medications
for head and neck cancer patients.

The data is in wide format, see Chap. 2, where each row represents a patient.
During the study period, each patient had records for a maximum of 5 encounters.
NA represents no medication administration records in this specific time point for the
specific patient. This dataset contains a total of 528 patients.

12.6.2 Step 2: Exploring and Preparing the Data

Different from our data imports in the previous chapters, transactional data need to
be ingested in R using the read.transactions() function. This function will
store data as a matrix with each row representing an example and each column
representing a feature.

Table 12.4 Size 3 support {2,3,4}

support 2

12.6 Case Study 1: Head and Neck Cancer Medications 427

https://doi.org/10.1007/978-3-319-72347-1_2

Let’s load the dataset and delete the irrelevant index column. With the write.
csv(R data, "path") function we can output our R data file into a local CSV
file. To avoid generating another index column in the output CSV file, we can use the
row.names ¼ F option.

med<-read.csv("https://umich.instructure.com/files/1678540/download?download
_frd=1", stringsAsFactors = FALSE)
med<-med[, -1]
write.csv(med, "medication.csv", row.names=F)

Now we can use read.transactions() in the arules package to read the
CSV file we just outputted.

install.packages("arules")
library(arules)

med<-read.transactions("medication.csv", sep = ",", skip = 1, rm.duplicates=
TRUE)
distribution of transactions with duplicates:
items
1 2 3
79 166 248

summary(med)

transactions as itemMatrix in sparse format with
528 rows (elements/itemsets/transactions) and
88 columns (items) and a density of 0.02085486

most frequent items:
fentanyl injection uh hydrocodone acetaminophen 5mg 325mg
211 165
cefazolin ivpb uh heparin injection
108 105
hydrocodone acetamin 75mg 500mg 15ml (Other)
60 320

element (itemset/transaction) length distribution:
sizes
1 2 3 4 5
248 166 79 23 12

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 1.835 2.000 5.000

includes extended item information - examples:
labels
1 09 nacl
2 09 nacl bolus
3 acetaminophen multiroute uh

428 12 Apriori Association Rules Learning

https://umich.instructure.com/files/1678540/download?download_frd=1
https://umich.instructure.com/files/1678540/download?download_frd=1

Here we use the option rm.duplicates ¼ T because we may have similar
medication administration records for two different patients. The option skip ¼ 1
means we skip the heading line in the CSV file. Now we get a transactional data with
unique rows.

The summary of a transactional data contains rich information. The first block of
information tells us that we have 528 rows and 88 different medicines in this matrix.
Using the density number we can calculate how many non NA medication records
are in the data. In total, we have 528 � 88 ¼ 46,464 positions in the matrix. Thus,
there are 46,464 � 0.0209 ¼ 971 medicines prescribed during the study period.

The second block lists the most frequent medicines and their frequencies in the
matrix. For example, fentanyl injection uh appeared 211 times; that is
211/528 ¼ 40 of the (treatment) transactions. Since fentanyl is frequently used to
help prevent pain after surgery or other medical procedure, we can see that many of
these patients were going through some painful medical procedures.

The last block shows statistics about the size of the transaction. 248 patients
had only one medicine in the study period, while 12 of them had 5 medication
records one for each time point. On average, the patients are having 1.8 different
medicines.

Visualizing Item Support: Item Frequency Plots

The summary might still be fairly abstract; let’s visualize the data.

inspect(med[1:5,])

items
[1] {acetaminophen uh,
cefazolin ivpb uh}
[2] {docusate,
fioricet,
heparin injection,
ondansetron injection uh,
simvastatin}
[3] {hydrocodone acetaminophen 5mg 325mg}
[4] {fentanyl injection uh}
[5] {cefazolin ivpb uh,
hydrocodone acetaminophen 5mg 325mg}

The inspect() call shows the transactional dataset. We can see that the
medication records of each patient are nicely formatted as item-sets.

We can further analyze the frequent terms using itemFrequency(). This will
show all item frequencies alphabetically ordered from the first five outputs
(Fig. 12.1).

12.6 Case Study 1: Head and Neck Cancer Medications 429

itemFrequency(med[, 1:5])

09 nacl
0.013257576
09 nacl bolus
0.003787879
acetaminophen multiroute uh
0.001893939
acetaminophen codeine 120 mg 12 mg 5 ml
0.001893939
acetaminophen codeine 300mg 30 mg
0.020833333

itemFrequencyPlot(med, topN=20)

The above graph is showing us the top 20 medicines that are most frequently
present in this dataset. Consistent with the prior summary() output, fentanyl is
still the most frequent item. You can also try to plot the items with a threshold for
support. Instead of topN ¼ 20, just use the option support ¼ 0.1, which will
give you all the items have a support greater or equal to 0.1.

Visualizing Transaction Data: Plotting the Sparse Matrix

The sparse matrix will show what mediations were prescribed for each patient
(Fig. 12.2).

Fig. 12.1 Rank-order plot of item frequencies

430 12 Apriori Association Rules Learning

image(med[1:5,])

The image on Fig. 12.2 has 5 rows (we only requested the first 5 patients) and
88 columns (88 different medicines). Although the picture may be a little hard to
interpret, it gives a sense of what kind of medicine is prescribed for each patient in
the study.

Let’s see an expanded graph including 100 randomly chosen patients (Fig. 12.3).

subset_int <- sample(nrow(med), 100, replace = F)
image(med[subset_int,])

It shows us clearly that some medications are more popular than others. Now,
let’s fit the Apriori model.

Fig. 12.2 A characteristic plot of the prescribed medications (columns) for the first 5 patients
(rows)

Fig. 12.3 A characteristic
plot of the prescribed
medications (columns) for
100 random patients (rows)

12.6 Case Study 1: Head and Neck Cancer Medications 431

12.6.3 Step 3: Training a Model on the Data

With the data in place,we can build the association rules usingapriori() function.

myrules <- apriori(data=mydata, parameter=list(support=0.1, confidence=0.8,
minlen=1))

• Data: a sparse matrix created by read.transacations().
• Support: minimum threshold for support.
• Confidence: minimum threshold for confidence.
• minlen: minimum required rule items (in our case, medications).

Setting up the threshold could be hard. You don’t want it to be too high so that
you get no rules or rules that everyone knows. You don’t want to set it too low either,
to avoid too many rules present. Let’s see what we get under the default setting
support ¼ 0.1, confidence ¼ 0.8:

apriori(med)

Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.8 0.1 1 none FALSE TRUE 5 0.1 1
maxlen target ext
10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 52

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[88 item(s), 528 transaction(s)] done [0.00s].
sorting and recoding items ... [5 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing ... [0 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

set of 0 rules

Not surprisingly, we have 0 rules. The default setting is too high. In practice, we
might need some time to fine-tune these thresholds, which may require certain
familiarity with the underlying process or clinical phenomenon.

In this case study, we set support ¼ 0.1 and confidence ¼ 0.25. This
requires rules that have appeared in at least 10% of the head and neck cancer patients
in the study. Also, the rules have to have least 25% accuracy.Moreover, minlen¼ 2
would be a very helpful option because it removes all rules that have fewer than two
items.

432 12 Apriori Association Rules Learning

The results suggest we have a new rules object consisting of 29 rules.

med_rule<-apriori(med, parameter=list(support=0.01, confidence=0.25, minlen=
2))

Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.25 0.1 1 none FALSE TRUE 5 0.01 2
maxlen target ext
10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 5

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[88 item(s), 528 transaction(s)] done [0.00s].
sorting and recoding items ... [16 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [29 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

med_rule

set of 29 rules

12.6.4 Step 4: Evaluating Model Performance

First, we can obtain the overall summary of this set of rules.

summary(med_rule)

set of 29 rules

rule length distribution (lhs + rhs):sizes
2 3 4
13 12 4

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 2.00 3.00 2.69 3.00 4.00

summary of quality measures:
support confidence lift
Min. :0.01136 Min. :0.2500 Min. :0.7583
1st Qu.:0.01705 1st Qu.:0.3390 1st Qu.:1.3333
Median :0.01894 Median :0.4444 Median :1.7481
Mean :0.03448 Mean :0.4491 Mean :1.8636
3rd Qu.:0.03788 3rd Qu.:0.5000 3rd Qu.:2.2564
Max. :0.11174 Max. :0.8000 Max. :3.9111

mining info:
data ntransactions support confidence
med 528 0.01 0.25

12.6 Case Study 1: Head and Neck Cancer Medications 433

We have 13 rules that contain two items; 12 rules containing 3 items, and the
remaining 4 rules contain 4 items.

The lift column shows how much more likely one medicine is to be prescribed
to a patient given another medicine is prescribed. It is obtained by the following
formula:

lift X ! Yð Þ ¼ confidence X ! Yð Þ
support Yð Þ :

Note that lift(X ! Y) is the same as lift(Y ! X). The range of lift is [0,1) and
higher lift is better. We don’t need to worry about support since we already set a
threshold that the support will exceed.

Using hte arugleViz package we can visualize the confidence and support
scatter plots for all the rules (Fig. 12.4).

install.packages("arulesViz")
library(arulesViz)

plot(sort(med_rule))

Again, we can utilize the inspect() function to see exactly what are these
rules.

Fig. 12.4 Confidence-Support scatterplot of 29 rules

434 12 Apriori Association Rules Learning

inspect(med_rule[1:3])

lhs rhs support
confidence lift
[1] {acetaminophen uh} => {cefazolin ivpb uh} 0.01136364
0.4615385 2.256410
[2] {ampicillin sulbactam ivpb uh} => {heparin injection} 0.01893939
0.3448276 1.733990
[3] {ondansetron injection uh} => {heparin injection} 0.01704545
0.2727273 1.371429

Here, lhs and rhs refer to “left hand side” and “right hand side” of the rule,
respectively. Lhs is the given condition and rhs is the predicted result. Using the
first row as an example: If a head-and-neck patient has been prescribed acetamino-
phen (pain reliever and fever reducer), it is likely that the patient is also prescribed
cefazolin (antibiotic that resist bacterial infections); bacterial infections are associ-
ated with fevers and some cancers.

12.6.5 Step 5: Improving Model Performance

Sorting the Set of Association Rules

Sorting the resulting association rules corresponding to high lift values will help us
select the most useful rules.

inspect(sort(med_rule, by="lift")[1:3])

lhs rhs
support confidence lift
[1] {fentanyl injection uh,
heparin injection,
hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}
0.01515152 0.8000000 3.911111
[2] {cefazolin ivpb uh,
fentanyl injection uh,
hydrocodone acetaminophen 5mg 325mg} => {heparin injection}
0.01515152 0.6153846 3.094505
[3] {heparin injection,
hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}
0.03787879 0.6250000 3.055556

These rules may need to be interpreted by clinicians and experts in the specific
context of the study. For instance, the first row, {fentanyl, heparin, hydrocodone
acetaminophen} implies {cefazolin}. Fentanyl and hydrocodone acetaminophen are
both pain relievers that may be prescribed after surgery. Heparin is usually used
before surgery to reduce the risk of blood clots. This rule may suggest that patients
who have undergone surgical treatments may likely need cefazolin to prevent post-
surgical bacterial infection.

12.6 Case Study 1: Head and Neck Cancer Medications 435

Taking Subsets of Association Rules

If we are more interested in investigating associations that are linked to a specific
medicine, we can narrow the rules down by making subsets. Let us try investigating
rules related to fentanyl, since it appears to be the most frequently prescribedmedicine.

fi_rules<-subset(med_rule, items %in% "fentanyl injection uh")
inspect(fi_rules)

lhs rhs
support confidence lift
[1] {ondansetron injection uh} => {fentanyl injection uh}
0.01893939 0.3030303 0.7582938
[2] {fentanyl injection uh,
ondansetron injection uh} => {hydrocodone acetaminophen
5mg 325mg} 0.01136364 0.6000000 1.9200000
[3] {hydrocodone acetaminophen 5mg 325mg,
ondansetron injection uh} => {fentanyl injection uh}
0.01136364 0.3750000 0.9383886
[4] {cefazolin ivpb uh,
fentanyl injection uh} => {heparin injection}
0.01893939 0.5000000 2.5142857
[5] {fentanyl injection uh,
heparin injection} => {cefazolin ivpb uh}
0.01893939 0.4761905 2.3280423
[6] {cefazolin ivpb uh,
fentanyl injection uh} => {hydrocodone acetaminophen
5mg 325mg} 0.02462121 0.6500000 2.0800000
[7] {fentanyl injection uh,
hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}
0.02462121 0.3250000 1.5888889
[8] {fentanyl injection uh,
heparin injection} => {hydrocodone acetaminophen
5mg 325mg} 0.01893939 0.4761905 1.5238095
[9] {heparin injection,
hydrocodone acetaminophen 5mg 325mg} => {fentanyl injection uh}
0.01893939 0.3125000 0.7819905
[10] {fentanyl injection uh,
hydrocodone acetaminophen 5mg 325mg} => {heparin injection}
0.01893939 0.2500000 1.2571429
[11] {cefazolin ivpb uh,
fentanyl injection uh,
heparin injection} => {hydrocodone acetaminophen
5mg 325mg} 0.01515152 0.8000000 2.5600000
[12] {cefazolin ivpb uh,
heparin injection,
hydrocodone acetaminophen 5mg 325mg} => {fentanyl injection uh}
0.01515152 0.4000000 1.0009479
[13] {cefazolin ivpb uh,
fentanyl injection uh,
hydrocodone acetaminophen 5mg 325mg} => {heparin injection}
0.01515152 0.6153846 3.0945055
[14] {fentanyl injection uh,
heparin injection,
hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}
0.01515152 0.8000000 3.9111111

In R scripting, the notation %in% signifies “belongs to.” There are 14 rules related
to this item. Let’s plot them (Fig. 12.5).

436 12 Apriori Association Rules Learning

plot(sort(fi_rules, by="lift"), method="grouped", control=list(type="items")
, main = "Grouped Matrix for the 14 Fentanyl-associated Rules")

Available control parameters (with default values):
main = Grouped Matrix for 14 Rules
k = 20
rhs_max = 10
lhs_items = 2
aggr.fun = function (x, na.rm = FALSE) UseMethod("median")
col = c("#EE0000FF", "#EE0303FF", "#EE0606FF", "#EE0909FF", "#EE0C0CFF
", "#EE0F0FFF", "#EE1212FF", "#EE1515FF", "#EE1818FF", "#EE1B1BFF", "#EE1E1E
FF", "#EE2222FF", "#EE2525FF", "#EE2828FF", "#EE2B2BFF", "#EE2E2EFF", "#EE31
31FF", "#EE3434FF", "#EE3737FF", "#EE3A3AFF", "#EE3D3DFF", "#EE4040FF", "#EE
4444FF", "#EE4747FF", "#EE4A4AFF", "#EE4D4DFF", "#EE5050FF", "#EE5353FF", "#
EE5656FF", "#EE5959FF", "#EE5C5CFF", "#EE5F5FFF", "#EE6262FF", "#EE6666FF",
"#EE6969FF", "#EE6C6CFF", "#EE6F6FFF", "#EE7272FF", "#EE7575FF", "#EE7878FF
", "#EE7B7BFF", "#EE7E7EFF", "#EE8181FF", "#EE8484FF", "#EE8888FF", "#EE8B8B
FF", "#EE8E8EFF", "#EE9191FF", "#EE9494FF", "#EE9797FF", "#EE9999FF", "#EE9B
9BFF", "#EE9D9DFF", "#EE9F9FFF", "#EEA0A0FF", "#EEA2A2FF", "#EEA4A4FF", "#EE
A5A5FF", "#EEA7A7FF", "#EEA9A9FF", "#EEABABFF", "#EEACACFF", "#EEAEAEFF", "#
EEB0B0FF", "#EEB1B1FF", "#EEB3B3FF", "#EEB5B5FF", "#EEB7B7FF", "#EEB8B8FF",
"#EEBABAFF", "#EEBCBCFF", "#EEBDBDFF", "#EEBFBFFF", "#EEC1C1FF", "#EEC3C3FF"
, "#EEC4C4FF", "#EEC6C6FF", "#EEC8C8FF", "#EEC9C9FF", "#EECBCBFF", "#EECDCD
FF", "#EECFCFFF", "#EED0D0FF", "#EED2D2FF", "#EED4D4FF", "#EED5D5FF", "#EED7
D7FF", "#EED9D9FF", "#EEDBDBFF", "#EEDCDCFF", "#EEDEDEFF", "#EEE0E0FF", "#EE
E1E1FF", "#EEE3E3FF", "#EEE5E5FF", "#EEE7E7FF", "#EEE8E8FF", "#EEEAEAFF", "#
EEECECFF", "#EEEEEEFF")
reverse = TRUE
xlab = NULL
ylab = NULL
legend = Size: support Color: lift
spacing = -1

Fig. 12.5 Bubble chart of the grouped matric for 14 rules

12.6 Case Study 1: Head and Neck Cancer Medications 437

panel.function = function (row, size, shading, spacing) { size[s
ize == 0] <- NA shading[is.na(shading)] <- 1 grid.circle(x = c(1:len
gth(size)), y = row, r = size/2 * (1 - spacing), default.units = "native", g
p = gpar(fill = shading, col = shading, alpha = 0.9)) }
gp_main = list(cex = 1.2, fontface = "bold", font = 2)
gp_labels = list(cex = 0.8)
gp_labs = list(cex = 1.2, fontface = "bold", font = 2)
gp_lines = list(col = "gray", lty = 3)
newpage = TRUE
interactive = FALSE
max.shading = NA
verbose = FALSE

Saving Association Rules to a File or Data Frame

We can save these rules into a CSV file using write(). It is similar with the
function write.csv() that we have mentioned in the beginning of this case
study.

write(med_rule, file = "medrule.csv", sep=",", row.names=F)

Sometimes it is more convenient to convert the rules into a data frame.

med_df<-as(med_rule, "data.frame")
str(med_df)

'data.frame': 29 obs. of 4 variables:
$ rules : Factor w/ 29 levels "{acetaminophen uh} => {cefazolin ivpb
uh}",..: 1 2 28 27 29 13 12 14 10 23 ...
$ support : num 0.0114 0.0189 0.017 0.0189 0.0303 ...
$ confidence: num 0.462 0.345 0.273 0.303 0.485 ...
$ lift : num 2.256 1.734 1.371 0.758 1.552 ...

As we can see, the rules are converted into a factor vector.

12.7 Practice Problems: Groceries

In this practice problem, we will investigate the associations of frequently purchased
groceries using the grocery dataset in the R base. Firstly, let’s load the data.

data("Groceries")
summary(Groceries)

transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146

most frequent items:
whole milk other vegetables rolls/buns soda
2513 1903 1809 1715
yogurt (Other)
1372 34055

438 12 Apriori Association Rules Learning

element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1
5
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 5
5
16 17 18 19 20 21 22 23 24 26 27 28 29 32
46 29 14 14 9 11 4 6 1 1 1 1 3 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:
labels level2 level1
1 frankfurter sausage meat and sausage
2 sausage sausage meat and sausage
3 liver loaf sausage meat and sausage

We will try to find out the top 5 frequent grocery items and plot them (Fig. 12.6).

Then, try to use support ¼ 0.006, confidence ¼ 0.25, minlen ¼ 2 to
set up the grocery association rules. Sort the top 3 rules with highest lift.

Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.25 0.1 1 none FALSE TRUE 5 0.006 2
maxlen target ext
10 rules FALSE

Fig. 12.6 Top-5 grocery items according to their frequencies

12.7 Practice Problems: Groceries 439

Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 59

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [109 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.02s].
writing ... [463 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
set of 463 rules

lhs rhs support confidence
lift
[1] {herbs} => {root vegetables} 0.007015760 0.4312500
3.956477
[2] {berries} => {whipped/sour cream} 0.009049314 0.2721713
3.796886
[3] {tropical fruit,
other vegetables,
whole milk} => {root vegetables} 0.007015760 0.4107143
3.768074

The number of rules (463) appears excessive. We can try stringer parameters. In
practice, it’s more possible to observe underlying rules if you set a higher confi-
dence. Here we set the confidence ¼ 0.6.

groceryrules <- apriori(Groceries, parameter = list(support = 0.006, confide
nce = 0.6, minlen = 2))

Apriori
Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.6 0.1 1 none FALSE TRUE 5 0.006 2
maxlen target ext
10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 59
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [109 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.02s].
writing ... [8 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

groceryrules

set of 8 rules

440 12 Apriori Association Rules Learning

inspect(sort(groceryrules, by = "lift")[1:3])

lhs rhs support confidence
[1] {butter,whipped/sour cream} => {whole milk} 0.006710727 0.6600000
[2] {butter,yogurt} => {whole milk} 0.009354347 0.6388889
[3] {root vegetables,butter} => {whole milk} 0.008235892 0.6377953
lift
[1] 2.583008
[2] 2.500387
[3] 2.496107

We observe mainly rules between dairy products. It makes sense that customers
pick up milk when they walk down the dairy products isle. Experiment further with
various parameter settings and try to interpret the results in the context of this
grocery case-study (Fig. 12.7).

Mining association rules Demo https://rdrr.io/cran/arules/

copy-paste this R code into the live online demo:
https://rdrr.io/snippets/
press RUN, and examine the results.
The HYPERLINK "https://archive.ics.uci.edu/ml/datasets/adult" Adult dataset includes 48842 sparse transactions
(rows) and 115 items (columns).
library(arules)
data("Adult")
rules <- apriori(Adult,
 parameter = list(supp = 0.5, conf = 0.9, target = "rules"))
summary(rules)
inspect(sort(rules, by = "lift")[1:3])

Results: mining info:
data ntransactions support confidence
Adult 48842 0.5 0.9
lhs rhs support confidence lift count
[1] {sex=Male, native-country=United-States} => {race=White} 0.5415421 0.9051090 1.058554 26450
[2] {sex=Male, capital-loss=None, native-country=United-States} => {race=White} 0.5113632 0.9032585 1.056390 24976
[3] {race=White} => {native-country=United-States} 0.7881127 0.9217231 1.027076 38493

12.8 Summary

• The Apriori algorithm for association rule learning is only suitable for large
transactional data. For some small datasets, it might not be very helpful.

• It is useful for discovering associations, mostly in early phases of an exploratory
study.

Fig. 12.7 Live demo:
association rule mining

12.8 Summary 441

https://rdrr.io/cran/arules/
https://rdrr.io/snippets/
https://archive.ics.uci.edu/ml/datasets/adult

• Some rules can be built due to chance and may need further verifications.
• See also Chap. 20 (Text Mining and NLP).

Try to replicate these results with other data from the list of our Case-Studies.

12.9 Assignments: 12. Apriori Association Rules Learning

Use the SOCR Jobs Data to practice learning via Apriori Association Rules

• Load the Jobs Data. Use this guide to load HTML data.
• Focus on the Description feature. Replace all underscore characters “_” with

spaces.
• Review Chap. 8, use tm package to process text data to plain text. (Hint: need to

apply stemDocument as well, we will discuss more details in Chap. 20.)
• Generate a “transaction” matrix by considering each job as one record and

description words as “transaction” items. (Hint: You need to fill missing values
since records do not have the same length of description.)

• Save the data using write.csv() and then use read.transactions() in arules package
to read the CSV data file. Visualize the item support using item frequency plots.
What terms appear as more popular?

• Fit a model: myrules <� apriori(data ¼ jobs,parameter ¼ list(support ¼ 0.02,
confidence ¼ 0.6, minlen ¼ 2)). Try out several rule thresholds trading off gain
and accuracy.

• Evaluate the rules you obtained with lift and visualize their metics.
• Mine medical related rules (e.g., rules include “treatment”, “patient”, “care”,

“diagnos.” Notice that these are word stems).
• Sort the set of association rules for all and medical related subsets.
• Save these rules into a CSV file.

References

Witten, IH, Frank, E, Hall. MA. (2011) Data Mining: Practical Machine Learning Tools and
Techniques, The Morgan Kaufmann Series in Data Management Systems, Elsevier, ISBN
0080890369, 9780080890364.

Soh, PJ. Woo, WL, Sulaiman, HA, Othman, MA, Saat, MS (eds). (2016) Advances in Machine
Learning and Signal Processing: Proceedings of MALSIP 2015, Volume 387 of Lecture Notes
in Electrical Engineering, Springer, ISBN 3319322133, 9783319322131.

442 12 Apriori Association Rules Learning

https://doi.org/10.1007/978-3-319-72347-1_20
https://doi.org/10.1007/978-3-319-72347-1_8
https://doi.org/10.1007/978-3-319-72347-1_20

	Chapter 12: Apriori Association Rules Learning
	12.1 Association Rules
	12.2 The Apriori Algorithm for Association Rule Learning
	12.3 Measuring Rule Importance by Using Support and Confidence
	12.4 Building a Set of Rules with the Apriori Principle
	12.5 A Toy Example
	12.6 Case Study 1: Head and Neck Cancer Medications
	12.6.1 Step 1: Collecting Data
	12.6.2 Step 2: Exploring and Preparing the Data
	Visualizing Item Support: Item Frequency Plots
	Visualizing Transaction Data: Plotting the Sparse Matrix

	12.6.3 Step 3: Training a Model on the Data
	12.6.4 Step 4: Evaluating Model Performance
	12.6.5 Step 5: Improving Model Performance
	Sorting the Set of Association Rules
	Taking Subsets of Association Rules
	Saving Association Rules to a File or Data Frame

	12.7 Practice Problems: Groceries
	12.8 Summary
	12.9 Assignments: 12. Apriori Association Rules Learning
	References

