
Chapter 1
Motivation

1.1 DSPA Mission and Objectives

This textbook is based on the Data Science and Predictive Analytics (DSPA) course
taught by the author at the University of Michigan. These materials collectively aim
to provide learners with a solid foundation of the challenges, opportunities, and
strategies for designing, collecting, managing, processing, interrogating, analyzing,
and interpreting complex health and biomedical datasets. Readers that finish this
textbook and successfully complete the examples and assignments will gain unique
skills and acquire a tool-chest of methods, software tools, and protocols that can be
applied to a broad spectrum of Big Data problems.

The DSPA textbook vision, values, and priorities are summarized below:

• Vision: Enable active learning by integrating driving motivational challenges
with mathematical foundations, computational statistics, and modern scientific
inference.

• Values: Effective, reliable, reproducible, and transformative data-driven discov-
ery supporting open science.

• Strategic priorities: Trainees will develop scientific intuition, computational
skills, and data-wrangling abilities to tackle big biomedical and health data
problems. Instructors will provide well-documented R-scripts and software rec-
ipes implementing atomic data filters as well as complex end-to-end predictive
big data analytics solutions.

Before diving into the mathematical algorithms, statistical computing methods,
software tools, and health analytics covered in the remaining chapters, we will
discuss several driving motivational problems. These will ground all the subsequent
scientific discussions, data modeling techniques, and computational approaches.
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1.2 Examples of Driving Motivational Problems
and Challenges

For each of the studies below, we illustrate several clinically relevant scientific
questions, identify appropriate data sources, describe the types of data elements,
and pinpoint various complexity challenges.

1.2.1 Alzheimer’s Disease

• Identify the relation between observed clinical phenotypes and expected
behavior.

• Prognosticate future cognitive decline (3–12 months, prospectively) as a function
of imaging data and clinical assessment (both model-based and model-free
machine learning prediction methods will be used).

• Derive and interpret the classifications of subjects into clusters using the harmo-
nized and aggregated data from multiple sources (Fig. 1.1).

1.2.2 Parkinson’s Disease

• Predict the clinical diagnosis of patients using all available data (with and without
the unified Parkinson’s disease rating scale (UPDRS) clinical assessment, which
is the basis of the clinical diagnosis by a physician).

• Compute derived neuroimaging and genetics biomarkers that can be used to
model the disease progression and provide automated clinical decisions support.

• Generate decision trees for numeric and categorical responses (representing
clinically relevant outcome variables) that can be used to suggest an appropriate
course of treatment for specific clinical phenotypes (Fig. 1.2).

Data 
Source Sample Size/Data Type Summary 

ADNI 
Archive 

Clinical data: demographics, clinical assessments, cognitive 
assessments; Imaging data: sMRI, fMRI, DTI, PiB/FDG PET; 
Genetics data: Illumina SNP genotyping; Chemical 
biomarker: lab tests, proteomics. Each data modality comes 
with a different number of cohorts. Generally, 

. For instance, previously conducted ADNI studies 
with  [ doi: 10.3233/JAD-150335, doi: 
10.1111/jon.12252, doi: 10.3389/fninf.2014.00041]. 

ADNI provides interesting 
data modalities, multiple 
cohorts (e.g., early-onset, 
mild, and severe dementia, 
controls) that allow effective 
model training and validation 
NACC Archive. 

Fig. 1.1 Outline of an Alzheimer’s disease case-study
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1.2.3 Drug and Substance Use

• Is the Risk for Alcohol Withdrawal Syndrome (RAWS) screen a valid and
reliable tool for predicting alcohol withdrawal in an adult medical inpatient
population?

• What is the optimal cut-off score from the AUDIT-C to predict alcohol with-
drawal based on RAWS screening?

• Should any items be deleted from, or added to, the RAWS screening tool to
enhance its performance in predicting the emergence of alcohol withdrawal
syndrome in an adult medical inpatient population? (Fig. 1.3)

Data 
Source Sample Size/Data Type Summary

PPMI
Archive

Demographics: age, medical history, sex; Clinical data: 
physical, verbal learning and language, neurological and 
olfactory (University of Pennsylvania Smell 
Identification Test, UPSIT) tests, vital signs, MDS-UPDRS 
scores (Movement Disorder; Society-Unified Parkinson's 
Disease Rating Scale), ADL (activities of daily living), 
Montreal Cognitive Assessment (MoCA), Geriatric 
Depression Scale (GDS-15); Imaging data: structural 
MRI; Genetics data: lllumina ImmunoChip (196,524 
variants) and NeuroX (covering 240,000 exonic variants) 
with 100% sample success rate, and 98.7% genotype 
success rate genotyped for APOE e2/e3/e4. Three 
cohorts of subjects; Group 1 = {de novo PD Subjects 
with a diagnosis of PD for two years or less who are not 
taking PD medications}, N1 = 263; Group 2 = {PD 
Subjects with Scans without Evidence of a Dopaminergic 
Deficit (SWEDD)}, N2 = 40; Group 3 = {Control Subjects 
without PD who are 30 years or older and who do not 
have a first degree blood relative with PD}, N3 = 127.

The longitudinal PPMI dataset 
including clinical, biological, and 
imaging data (screening, baseline, 
12, 24, and 48 month follow-ups) 
may be used conduct model-based
predictions as well as model-free
classification and forecasting 
analyses.

Fig. 1.2 Outline of a Parkinson’s disease case-study

Data 
Source

Sample Size/Data Type Summary

MAWS 
Data / 
UMHS EHR 
/ WHO 
AWS Data

Scores from Alcohol Use Disorders 
Identification Test-Consumption (AUDIT-
C), including dichotomous variables for 
any current alcohol use (AUDIT-C, 
question 1), total AUDIT-C score > 8, and 

~1,000 positive cases per year among 10,000 
adult medical inpatients, % RAWS screens 
completed, % positive screens, % entered 
into MAWS protocol who receive 
pharmacological treatment for AWS, % 

any positive history of alcohol 
withdrawal syndrome (HAWS).

entered into MAWS protocol without a 
completed RAWS screen.

Fig. 1.3 Outline of a substance use case-study
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1.2.4 Amyotrophic Lateral Sclerosis

• Identify the most highly significant variables that have power to jointly predict the
progression of ALS (in terms of clinical outcomes like ALSFRS and muscle
function).

• Provide a decision tree prediction of adverse events based on subject phenotype
and 0–3-month clinical assessment changes (Fig. 1.4).

1.2.5 Normal Brain Visualization

The SOCR Brain Visualization tool (http://socr.umich.edu/HTML5/BrainViewer)
has preloaded sMRI, ROI labels, and fiber track models for a normal brain. It also
allows users to drag and drop their data into the browser to visualize and navigate
through the stereotactic data (including imaging, parcellations, and tractography)
(Fig. 1.5).

1.2.6 Neurodegeneration

A recent study of Structural Neuroimaging in Alzheimer’s disease (https://www.
ncbi.nlm.nih.gov/pubmed/26444770) illustrates the Big Data challenges in model-
ing complex neuroscientific data. Specifically, 808 ADNI subjects were divided into
3 groups: 200 subjects with Alzheimer’s disease (AD), 383 subjects with mild
cognitive impairment (MCI), and 225 asymptomatic normal controls (NC). Their
sMRI data were parcellated using BrainParser, and the 80 most important neuroim-
aging biomarkers were extracted using the global shape analysis pipeline workflow.
Using a pipeline implementation of Plink, the authors obtained 80 SNPs highly
associated with the imaging biomarkers. The authors observed significant

Data 
Source Sample Size/Data Type Summary

ProAct
Archive

Over 100 clinical variables are recorded for all 
subjects including: Demographics: age, race, 
medical history, sex; Clinical data: Amyotrophic 
Lateral Sclerosis Functional Rating Scale (ALSFRS), 
adverse events, onset_delta, onset_site, drugs use 
(riluzole). The PRO-ACT training dataset contains 
clinical and lab test information of 8,635 patients.
Information of 2,424 study subjects with valid gold 
standard ALSFRS slopes will be used in out 
processing, modeling and analysis.

The time points for all longitudinally 
varying data elements will be 
aggregated into signature vectors. 
This will facilitate the modeling and 
prediction of ALSFRS slope changes 
over the first three months (baseline 
to month 3).

Fig. 1.4 Outline of an amyotrophic lateral sclerosis (Lou Gehrig’s disease) case-study
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correlations between genetic and neuroimaging phenotypes in the 808 ADNI sub-
jects. These results suggest that differences between AD, MCI, and NC cohorts may
be examined by using powerful joint models of morphometric, imaging, and geno-
typic data (Fig. 1.6).

1.2.7 Genetic Forensics: 2013–2016 Ebola Outbreak

This Howard Hughes Medical Institute (HHMI) disease detective activity illustrates
the genetic analysis of sequences of Ebola viruses isolated from patients in Sierra
Leone during the Ebola outbreak of 2013–2016. Scientists track the spread of the
virus using the fact that most of the genome is identical among individuals of the
same species, most similar for genetically related individuals, and more different as
the hereditary distance increases. DNA profiling capitalizes on these genetic differ-
ences particularly in regions of noncoding DNA, which is DNA that is not tran-
scribed and translated into a protein. Variations in noncoding regions have less
impact on individual traits. Such changes in noncoding regions may be immune to
natural selection. DNA variations called short tandem repeats (STRs) are com-
prised on short bases, typically 2–5 bases long, that repeat multiple times. The repeat
units are found at different locations, or loci, throughout the genome. Every STR has
multiple alleles. These allele variants are defined by the number of repeat units
present or by the length of the repeat sequence. STRs are surrounded by
nonvariable segments of DNA known as flanking regions. The STR allele in
Fig. 1.7 could be denoted by “6”, as the repeat unit (GATA) repeats 6 times, or as
70 base pairs (bps) because its length is 70 bases in length, including the starting/
ending flanking regions. Different alleles of the same STR may correspond to
different number of GATA repeats, with the same flanking regions.

Fig. 1.5 Interactive 3D brain visualization
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1.2.8 Next Generation Sequence (NGS) Analysis

Whole-genome and exome sequencing include essential clues for identifying genes
responsible for simple Mendelian inherited disorders. A recent paper proposed
methods that can be applied to complex disorders based on population genetics.

Fig. 1.6 Indices of the 56 regions of interest (ROIs): A and B – extracted by the BrainParser
software using the LPBA40 brain atlas
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Next generation sequencing (NGS) technologies include bioinformatics resources to
analyze the dense and complex sequence data. The Graphical Pipeline for Compu-
tational Genomics (GPCG) performs the computational steps required to analyze
NGS data. The GPCG implements flexible workflows for basic sequence alignment,
sequence data quality control, single nucleotide polymorphism analysis, copy num-
ber variant identification, annotation, and visualization of results. Applications of
NGS analysis provide clinical utility for identifying miRNA signatures in diseases.
Enabling hypotheses testing about the functional role of variants in the human
genome will help to pinpoint the genetic risk factors many diseases (e.g., neuropsy-
chiatric disorders).

1.2.9 Neuroimaging-Genetics

A computational infrastructure for high-throughput neuroimaging-genetics
(doi: https://doi.org/10.3389/fninf.2014.00041) facilitates the data aggregation, har-
monization, processing, and interpretation of multisource imaging, genomic, clini-
cal, and cognitive data. A unique feature of this architecture is the graphical user
interface to the Pipeline environment. Through its client-server architecture, the
Pipeline environment provides a graphical user interface for designing, executing,
monitoring, validating, and disseminating complex protocols that utilize diverse
suites of software tools and web services. These pipeline workflows are represented
as portable Extensible Markup Language (XML) objects, which transfer the execu-
tion instructions and user specifications from the client user machine to remote
pipeline servers for distributed computing. Using Alzheimer’s and Parkinson’s
data, this study provides examples of translational applications using this infrastruc-
ture (Figs. 1.8 and 1.9).

Fig. 1.7 Snippet of the
Ebola STR genomic
sequence
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1.3 Common Characteristics of Big (Biomedical
and Health) Data

Software developments, student training, utilization of Cloud or IoT (Internet of
Things) service platforms, and methodological advances associated with Big Data
Discovery Science all present existing opportunities for learners, educators,

Fig. 1.8 A collage of modules and pipeline workflows from genomic sequence analyses

Fig. 1.9 A schematic of a distributed high-throughput computational environment for managing,
processing, and visualization of large, complex, and heterogeneous biomedical data
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researchers, practitioners, and policy makers alike. A review of many biomedical,
health informatics, and clinical studies suggests that there are indeed common
characteristics of complex big data challenges. For instance, imagine analyzing the
observational data of thousands of Parkinson’s disease patients, based on tens of
thousands of signature biomarkers derived from multisource imaging, genetics, and
clinical, physiologic, phenomics, and demographic data elements. IBM had defined
the qualitative characteristics of Big Data as 4 Vs: Volume, Variety, Velocity, and
Veracity (there are additional V-qualifiers that can be added).

More recently (PMID:26998309) we defined a constructive characterization of
Big Data that clearly identifies the methodological gaps and necessary tools to
handle such archives, Table 1.1.

1.4 Data Science

Data science is an emerging new field that (1) is extremely transdisciplinary –

bridging between the theoretical, computational, experimental, and biosocial areas;
(2) deals with enormous amounts of complex, incongruent, and dynamic data from
multiple sources; and (3) aims to develop algorithms, methods, tools, and services
capable of ingesting such datasets and generating semiautomated decision support
systems. The latter can mine the data for patterns or motifs, predict expected
outcomes, suggest clustering or labeling of retrospective or prospective observa-
tions, compute data signatures or fingerprints, extract valuable information, and offer
evidence-based actionable knowledge. Data science techniques often involve data
manipulation (wrangling), data harmonization and aggregation, exploratory or con-
firmatory data analyses, predictive analytics, validation, and fine-tuning.

1.5 Predictive Analytics

Predictive analytics is the process of utilizing advanced mathematical formulations,
powerful statistical computing algorithms, efficient software tools and services to
represent, interrogate, and interpret complex data. As its name suggests, a core aim
of predictive analytics is to forecast trends, predict patterns in the data, or

Table 1.1 The characteristic six dimensions of Big biomedical and healthcare data

BD dimensions Necessary techniques, tools, services, and support infrastructure

Size Harvesting and management of vast amounts of data

Complexity Wranglers for dealing with heterogeneous data

Incongruency Tools for data harmonization and aggregation

Multisource Transfer and joint modeling of disparate elements

Multiscale Macro to meso- to microscale observations

Incomplete Reliable management of missing data

1.5 Predictive Analytics 9



prognosticate the process behavior either within the range or outside the range of the
observed data (e.g., in the future, or at locations where data may not be available). In
this context, process refers to a natural phenomenon that is being investigated by
examining proxy data. Presumably, by collecting and exploring the intrinsic data
characteristics, we can track the behavior and unravel the underlying mechanism of
the system.

The fundamental goal of predictive analytics is to identify relationships, associ-
ations, arrangements, or motifs in the dataset, in terms of space, time, and features
(variables) that may prune the dimensionality of the data, i.e., reduce its complexity.
Using these process characteristics, predictive analytics may predict unknown out-
comes, produce estimations of likelihoods or parameters, generate classification
labels, or contribute other aggregate or individualized forecasts. We will discuss
how the outcomes of these predictive analytics may be refined, assessed, and
compared, e.g., between alternative methods. The underlying assumptions of the
specific predictive analytics technique determine its usability, affect the expected
accuracy, and guide the (human) actions resulting from the (machine) forecasts. In
this textbook, we will discuss supervised and unsupervised, model-based and model-
free, classification and regression, as well as deterministic, stochastic, classical, and
machine learning-based techniques for predictive analytics. The type of the expected
outcome (e.g., binary, polytomous, probability, scalar, vector, tensor, etc.) deter-
mines if the predictive analytics strategy provides prediction, forecasting, labeling,
likelihoods, grouping, or motifs.

1.6 High-Throughput Big Data Analytics

The pipeline environment provides a large tool chest of software and services that
can be integrated, merged, and processed. The Pipeline workflow library and the
workflow miner illustrate much of the functionality that is available. Java-based and
HTML5 webapp graphical user interfaces (GUIs) provide access to a powerful 4,000
core grid compute server (Fig. 1.10).

1.7 Examples of Data Repositories, Archives, and Services

There are many sources of data available on the Internet. A number of them provide
open access to the data based on FAIR (Findable, Accessible, Interoperable, Reus-
able) principles. Below are examples of open-access data sources that can be used to
test the techniques presented in this textbook. We demonstrate the tasks of retrieval,
manipulation, processing, analytics, and visualization using example datasets from
these archives.

• SOCR Wiki Data, http://wiki.socr.umich.edu/index.php/SOCR_Data
• SOCR Canvas datasets, https://umich.instructure.com/courses/38100/files/folder/

data
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• SOCR Case-Studies, http://wiki.socr.umich.edu/index.php/SOCR_Data
• XNAT, https://central.xnat.org
• IDA, http://ida.loni.usc.edu
• NIH dbGaP, https://dbgap.ncbi.nlm.nih.gov
• Data.gov (http://data.gov)

1.8 DSPA Expectations

The heterogeneity of data science makes it difficult to identify a precise and
complete list of prerequisites guaranteeing deep and lasting understanding of all
the presented methods and techniques. However, the reader is strongly encouraged
to glance over the preliminary prerequisites, the self-assessment pretest and reme-
diation materials, and the outcome competencies. Throughout this journey, it is
useful to remember the following points:

• You don’t have to satisfy all prerequisites, be versed in all mathematical foun-
dations, have substantial statistical analysis expertise, or be an experienced
programmer.

• You don’t have to complete all chapters and sections in the order they appear in
the DSPA Topics Flowchart. Completing one, or several, of the suggested
pathways may be sufficient for many readers.

http://pipeline.loni.usc.edu/webapp/

(JavaScript App) http://myumi.ch/LryM8

(JavaScript App) http://bit/ly/1DjhkG9

Fig. 1.10 The pipeline environment provides a client-server platform for designing, executing,
tracking, sharing, and validating complex data analytic protocols
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• The DSPA textbook aims to expand the trainees’ horizons, improve understand-
ing, enhance skills, and provide a set of advanced, validated, and practice-
oriented code, scripts, and protocols.

• To varying degrees, readers will develop abilities to skillfully utilize the tool
chest of resources provided in the DSPA textbook. These resources can be
revised, improved, customized, expanded, and applied to other biomedicine and
biosocial studies, as well as to Big Data predictive analytics challenges in other
disciplines.

• The DSPA materials will challenge most readers. When the going gets tough,
seek help, engage with fellow trainees, search for help on the DSPA site and the
Internet, communicate via DSPA discussion forum/chat, and review references
and supplementary materials. Be proactive! Remember that you will gain, but it
will require commitment, prolonged emersion, hard work, and perseverance. If it
were easy, its value would be compromised.

• When covering some chapters, some readers may be underwhelmed or bored.
Feel free to skim over chapters or sections that sound familiar and move forward
to the next topic. Still, it is worth trying the corresponding assignments to ensure
that you have a firm grasp of the material, and that your technical abilities are
sound.

• Although the return on investment (e.g., time, effort) may vary between readers,
those that complete the DSPA textbook will discover something new, acquire
some advanced skills, learn novel data analytic protocols, and may conceive of
cutting-edge ideas.

• The complete R code (R and Rmd markdown) for all examples and demonstra-
tions presented in this textbook are available as electronic supplements.

• The author acknowledges that these materials may be improved. If you discover
problems, typos, errors, inconsistencies, or other problems, please contact us
(DSPA.info@umich.edu) to correct, expand, or polish the resources, accordingly.
If you have alternative ideas, suggestions for improvements, optimized code,
interesting data and case-studies, or any other refinements, please send these
along, as well. All suggestions and critiques will be carefully reviewed, and
potentially incorporated in revisions or new editions with appropriate credits.
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