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Abstract. Semantic Web technology has established a framework for
creating a “web of data” where the nodes correspond to resources of
interest in a domain and the edges correspond to logical statements that
link these resources using binary relations of interest in the domain. The
framework provides a standardized way of describing a domain of interest
so that the description is machine-processable. This enables applications
to share data and knowledge about entities in an unambiguous manner.
Also, as all resources are represented using IRIs, a massive distributed
network of datasets gets created. Applications can dynamically discover
these datasets, access most recent data, interpret it using the associated
meta-data (ontologies) and integrate them into their operations. While
the Linked Open Data (LOD) initiative, based on the Semantic Web
standards, has resulted in a huge web corpus of domain datasets, it is
well-known that the majority of the statements in a dataset are of the
type that link specific individuals to specific individuals (e.g. Paris is
the capital of France) and there is major need to augment the datasets
with statements that link higher-level entities (e.g. A statement about
Countries and Cities such as “Every country has a city as its capital”).
Adding statements of this kind is part of the task of enrichment of the
LOD datasets called “ontology enrichment”. In this paper, we review
various recent research efforts that address this task. We investigate dif-
ferent types of ontology enrichments that are possible and summarize the
research efforts in each category. We observe that while the initial rapid
growth of LOD was contributed by techniques that converted structured
data into the LOD space, the ontology enrichment is more involved and
requires several techniques from natural language processing, machine
learning and also methods that cleverly make use of the existing ontol-
ogy statements to obtain new statements.

Keywords: Linked data · Knowledge enrichment · LOD enrichment
T-Box enrichment · Schema enrichment

1 Introduction

The Semantic Web (aka Web of data or Web 3.0) enables data from one source
to be linked to any other source and to be “understood” by machines so that
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they can perform increasingly sophisticated tasks without human supervision.
Semantic Web is often perceived as complementary to the World Wide Web,
while it is actually an extension to the World Wide Web. It provides a framework
to add new data and metadata to augment the existing web of documents. The
Semantic Web technologies bring forth a new “web of data” paving the way for
software agents to integrate data from diverse sources in a meaningful manner.
RDF (Resource Description Framework) is the technology used to represent the
nodes and edges of this new web of data. Linked Data is the particular realization
of the web of data and it has now become a major constituent of the Semantic
Web [1].

Linked Data refers to a recommended best practice for exposing, sharing,
and connecting pieces of data, information, and knowledge on the Semantic
Web using URIs and RDF. The LOD community project1 works with the main
objective of publishing open datasets as RDF triples and establishing RDF links
between entities from different datasets. LOD complements the World Wide Web
with a data space of entities connected to one another with labelled edges, which
represent the relations among entity pairs (or entities and literal values).

With over 1014 interlinked datasets2 across diverse domains such as life sci-
ence, geography, politics, etc., the Linked Data initiative now supports a variety
of applications ranging from semantic search to open domain question answering.
For example, the Google’s Knowledge Graph which is powered (partly) by the
Freebase linked dataset is now being used by Google to enhance its search results
with semantic-search information gathered from a wide variety of sources3. While
many prominent organizations have started realising and exploiting the potential
of linked datasets, these linked datasets are far from being complete [54]. More
domains need to be covered, and more entities, concepts and links between them
are required to be represented as RDF to enable improved and more intelligent
usage of Linked Data. Sophisticated question answering systems like Watson
which have linked datasets as part of their knowledge sources make use of the
enriched linked datasets to answer more number and also a wider range of ques-
tions. The Linked Data community has realised the importance of enriching the
linked datasets and hence the number of efforts towards enriching linked datasets
in LOD have increased immensely in the past few years. A comprehensive study
of the works done on Linked Data enrichment so far will help the community to
understand the impact of LOD enrichment and its future scope.

1.1 Preliminaries

In this sub-section, we describe the important terms involved in the context of
Semantic Web.

A resource is a real-world object we want to describe, and it is represented
using an URI. A class (aka concept or type) is a group of resources, which is
1 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData.
2 http://lod-cloud.net/state/state 2014/.
3 http://neilpatel.com/blog/the-beginners-guide-to-the-googles-knowledge-graph/.

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://lod-cloud.net/state/state_2014/
http://neilpatel.com/blog/the-beginners-guide-to-the-googles-knowledge-graph/
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also a resource by itself. A property (aka role or relation or binary predicate) is
a relation between resources, and is also a resource by itself. A statement (aka
an RDF triple) is composed of three parts - (subject, predicate, object) where
the subject is a resource, predicate is a property and object is a resource or a
literal. A literal is a constant value such as a string or a date. Given below is an
example of an RDF triple:

(<http://dbpedia.org/resource/Barack Obama>,
<http://dbpedia.org/ontology/birthPlace>,
<http://dbpedia.org/resource/Honolulu>).

A statement can be represented as a directed edge of a graph or as a triple or
in XML (Fig. 1, Listings 1.1 and 1.2 respectively4).

http : //www.example.org/ joe/contact.rdf#joesmith

http : //xmlns.com/foaf/0.1/Person http : //www.example.org/ ∼ joe/

mailto : joe.smith@example.org

Joe

Smith

rdf : type http : //xmlns.com/foaf/0.1/homepage

http : //xmlns.com/foaf/0.1/mbox

http : //xmlns.com/foaf/0.1/givenname

http : //xmlns.com/foaf/0.1/family name

Fig. 1. RDF graph representation

@prefix : <http ://www.example.org/~joe/contact.rdf#> .
@prefix foaf : <http ://www.xmlns.com/foaf /0.1> .
@prefix rdf : <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

:joesmith a foaf:Person .
foaf:givenname"Joe";
foaf:last_name"Smith";
foaf:homepage <http ://www.example.org/~joe/>;
foaf:mbox <mailto:joe.smith@example.org > .

Listing 1.1. Triple Representation

4 http://www.obitko.com/tutorials/ontologies-semantic-web/rdf-graph-and-syntax.
html.

http://www.obitko.com/tutorials/ontologies-semantic-web/rdf-graph-and-syntax.html
http://www.obitko.com/tutorials/ontologies-semantic-web/rdf-graph-and-syntax.html


30 S. Subhashree et al.

<rdf:RDF
xmlns:rdf="http ://www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:foaf="http ://www.xmlns.com/foaf /0.1"
xmlns="http ://www.example.org/~joe/contact.rdf#">

<foaf:Person rdf:about=
"http ://www.example.org/~joe/contact.rdf#joesmith">

<foaf:mbox rdf:resource =" mailto:joe.smith@example.org"/>
<foaf:homepage rdf:resource ="http ://www.example.org/~joe/"/>
<foaf:family_name >Smith </foaf:family_name >
<foaf:givenname >Joe </foaf:givenname >

</foaf:Person >
</rdf:RDF >

Listing 1.2. RDF/XML Representation

There are two types of properties. An object property is a property between
two resources while a datatype property is a property between a resource and a
literal. The domain of a property is an assertion about the type of the resources
that occur as subject of the property. Similarly, the range of a property is an
assertion about the type of the resources that occur as object of the property.
Domain (range) statements are also sometimes considered as domain (range)
restrictions as they impose certain restrictions on the individuals that can be in
the subject (object) position of a statement. For example, regarding the object
property birthPlace mentioned above, one can state that its domain is a concept
called Person and its range is Place. This allows us to infer that Barack Obama
is of type Person and Honolulu is of type Place.

An ontology is an explicit and formal representation of knowledge about a
domain. It consists of classes, properties, axioms relating the classes and proper-
ties, and individuals of the domain. Statements in an ontology are divided into
T-Box and A-Box. The T-Box is the terminological component of the ontol-
ogy. It consists of class descriptions, properties and axioms involving them. The
A-Box forms the assertion component of the ontology. Statements about the
individuals (instances) fall into the A-Box.

Class expressions are used to give a detailed description about a class. There
are two different types of class expressions:

• Atomic concept - denoted by a concept name Eg.: Person.
• Compound concept - denoted as a class expression involving one or more of

the following operators (where A and B are class expressions, R is a property
or role):
1. Union of classes - A � B

For example, the expression Father � Mother can be used to describe
the class Parent.

2. Intersection of classes - A � B
For example, the expression Male � Parent can be used to denote the
class Father.

3. Complement of a class - ¬A
For example, the expression ¬Male can be used to describe the class of
individuals who are not in the Male class.
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4. Existential restriction - ∃R.A
This expression denotes the class of all individuals that are related to
some individual of type A through a relation R. For example, the expres-
sion ∃hasChild.Female can be used to describe the class of individuals
who have daughters.

5. Universal restriction - ∀R.A
This expression denotes the set of all those individuals whose all R-
successors belong to the class A (if (x,R,y) is a triple, y is called an
R-successor of x). For example, the expression ∀hasChild.Female can
be used to describe the class of individuals who have only daughters as
children.

6. Cardinality restriction - ≤ nR.A
This expression denotes the set of all individuals that have at most n
R-successors. Similarly, ≥ nR.A can be used to place a lower bound on
the R-successors. For example, the expression ≥ 2hasChild.Female can
be used to describe the class of individuals who have at least 2 daughters.

Different Description Logics are formed from subsets of these operators, more
details of which can be found in [3]. The above mentioned description logic (DL)
notation is used occasionally in the paper to give class descriptions.

Important ontology frameworks and languages are listed below:

• RDF - Resource Description Framework - defines constructs which are the
building blocks of the Semantic Web such as classes and properties. E.g.:
rdf:type

• RDFS - Resource Description Framework Schema - defines properties and
classes of RDF resources. E.g.: rdfs:subClassOf

• OWL - Web Ontology Language - defines richer ontology constructs. E.g.:
owl:disjointWith, owl:sameAs

• SPARQL - SPARQL Protocol and RDF Query Language - a query language
similar to SQL in syntax. It is used to query the triples in linked datasets.

1.2 Prominent Linked Data Projects

DBpedia: DBpedia [32] is one of the most popular linked datasets and has been
developed based on a crowd-sourced community effort. DBpedia is composed of
the structured information extracted from Wikipedia articles and is represented in
triple format. Currently, DBpedia is available in 125 languages. The English ver-
sion of the DBpedia Knowledge Base (KB) currently describes 6.6 million enti-
ties, out of which, 5.5 million are described in a consistent ontology5 including

5 http://wiki.dbpedia.org/downloads-2016-10#dbpedia-ontology.

http://wiki.dbpedia.org/downloads-2016-10#dbpedia-ontology
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1.5 million persons, 840 K places, 496 K works, 286 K organizations, 306 K species,
58 K plants and 6 K diseases6.

YAGO: YAGO is a huge linked dataset constructed through automatic extrac-
tion from sources such as Wikipedia and WordNet. The current version of YAGO,
namely, YAGO3 [34] has around 10 million entities (of types persons, organiza-
tions, cities, etc.) and contains more than 120 million facts about these entities7.

LinkedMDB: LinkedMDB is the first open Semantic Web dataset for movies.
It contains links to other datasets such as DBpedia, Geonames, etc. and to
websites such as IMDb. A few important classes of LinkedMDB include films,
actors, movie characters, directors, producers, editors, writers, music composers,
soundtracks, and movie ratings8.

1.3 Categories of LOD Enrichment

This section categorizes and describes the different ways in which the linked
datasets in LOD can be enriched. We can classify LOD enrichment works broadly
into two types: T-Box enrichment and A-Box enrichment. T-Box enrichment
includes the following: discovering property axioms, discovering class axioms, dis-
covering new properties, and discovering new classes. A-Box enrichment involves
the following: discovering owl:sameAs links9, discovering instances of a class (type
assertions), discovering instances of existing relations, detecting erroneous type
assertions, detecting erroneous relations, detecting erroneous literal values, and
detecting erroneous owl:sameAs links.

The focus of this survey is to provide a comprehensive overview of the works
proposed for T-Box enrichment. A recent study on knowledge graph10 refinement
approaches [41] can be referred to for works on A-Box enrichment. It should be
noted that a knowledge graph mainly consists of individual members (of classes)
and relations among them [41] - i.e. a knowledge graph focusses on its A-Box
while its T-Box plays a minimal role. However, in the context of Linked Data,
the goal is to add more semantics to the dataset which is possible only when we
enrich the T-Box (schema) of the linked dataset. As this paper is written from the
perspective of LOD enrichment rather than Knowledge Graph enrichment, we
mainly focus on T-Box enrichment techniques. However, if there are Knowledge
6 http://wiki.dbpedia.org/datasets/dbpedia-version-2016-10.
7 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/.
8 http://www.linkedmdb.org/.
9 owl:sameAs is a built-in OWL property which links an individual to another indi-

vidual denoting that the two resources represent the same real-world entity.
10 The term Knowledge Graph was coined by Google in 2012, referring to their use of

semantic knowledge in Web Search. The term is recently being used in a broader
sense: any graph-based representation of some knowledge could be considered a
knowledge graph.

http://wiki.dbpedia.org/datasets/dbpedia-version-2016-10
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.linkedmdb.org/
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Graph enrichment techniques which also focus on T-Box enrichment, we include
them in this survey. Papers which discuss ontology building (from the ground-
up) are not dealt with in this survey as they are not enrichment works i.e. in
such papers, a partially built ontology does not exist.

The rest of the paper is organized as follows: Sect. 2 gives an account of the
techniques proposed in the literature for discovering property axioms. A brief
summary of approaches proposed in the literature for discovering class axioms is
given in Sect. 3. Sections 4 and 5 describe the systems proposed for discovering
new properties and new classes respectively. Conclusions drawn from the survey
are given in Sect. 6.

2 Discovering Property Axioms

Properties in Linked Data provide semantic associations between instances in
Linked Data and thus are indispensable in representing information in the seman-
tic web. Property Axioms give additional information about predicates and the
various Property Axioms that can be used are listed in Table 1. Additional details
on the semantics of these axioms can be found in [3]. Most linked datasets in
the LOD are deficient in Property Axioms. Thus, a considerable effort has been
directed towards enriching schemas associated with datasets in LOD by discov-
ering Property Axioms. We categorize these methods to discover axioms as : (1)
Instance based and (2) Schema based methods. The instance based methods rely
upon triples in the linked dataset while the schema based methods utilize the
schema information like Domain or Range restrictions, type statements to enrich
the linked datasets with axioms. We discuss these methods in detail below:

Table 1. Semantics of Property Axioms: ri, rj are properties in a linked dataset KB
and x, y, z are distinct instances in the KB. Here, ri(x, y) denotes a triple < xri y >
in the KB.

Axiom Semantics

Subsumption (ri, rj) ri(x, y) ∈ KB =⇒ rj(x, y) ∈ KB

Equivalence (ri, rj) ri(x, y) ∈ KB =⇒ rj(x, y) ∈ KB ∧ rj(x, y) ∈ KB =⇒ ri(x, y) ∈ KB

Symmetry (ri) ri(x, y) ∈ KB =⇒ ri(y, x) ∈ KB

Inverse (ri, rj) ri(x, y) ∈ KB =⇒ rj(y, x) ∈ KB ∧ rj(x, y) ∈ KB =⇒ ri(y, x) ∈ KB

Asymmetry (ri) ri(x, y) ∈ KB =⇒ ri(y, x) �∈ KB

Transitivity (ri) ri(x, y) ∈ KB ∧ ri(y, z) ∈ KB =⇒ ri(x, z) ∈ KB

Disjoint (ri, rj) ri(x, y) ∈ KB =⇒ rj(x, y) �∈ KB

Functionality (ri) ri(x, y) ∈ KB ∧ ri(x, z) ∈ KB =⇒ y = z

Inverse
functionality (ri)

ri(x, y) ∈ KB ∧ ri(z, y) ∈ KB =⇒ x = z
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2.1 Instance Based Methods

Methods under this category leverage the large number of triples present in the
linked datasets and use statistical techniques like classification, clustering and
association rule mining to discover axioms. Fleischhacker et al. [19] proposed
a method to discover all the property axioms shown in Table 1. The method
involved the use of an off-the-shelf association rule miner [9] to mine association
rules. The inputs to this rule miner were transaction tables which are created
from the linked datasets. Each row in the transaction tables represents a pair
of instances in the linked data and all the predicates that hold between them.
The rules mined by the rule miner are checked against a set of predefined pat-
terns. Rules matching these predefined patterns are selected to be converted to
property axioms. Most other works in the literature concentrate on discovering
subsumption and equivalence axioms.

Galárraga et al. [22] proposed Association Mining under Incomplete Evidence
(AMIE) for mining closed Horn rules under incomplete evidence. The rules gen-
erated by AMIE are of the form shown in Eq. (1). Here r is a predicate in the
linked dataset and Bi is a triple of the form <?x pi ?y > and x, y are placeholder
variables for instances in the linked dataset. As such

−→
B is called the Body of

a rule and r(x, y) is called the head of the rule. A rule produced by AMIE is
closed, i.e. every variable is in the rule occurs in multiples of two and always in
pairs.

−→
B ⇒ r(x, y)

−→
B = B1 ∧ B2 ∧ .... ∧ Bn

(1)

The Horn rules in Eq. (1) represent the correlations between properties in the
dataset. To ensure efficient computation of the Horn rules, Galárraga et al. pro-
posed several logical constraints in the form of refinement operators. Galárraga
et al. [22] also proposed the notion of PCA (Partial Completeness Assumption)
which makes concessions in selecting negative assertions for a rule. A negative
assertion for the Horn rule shown in Eq. (1) is a subject object pair (x, y) such
that it is a valid instantiation of the Body of the rule but is an invalid instanti-
ation of the Head of the rule. PCA states that for a rule shown in Eq. (1), given
a predicate r and its subject x, if we know one corresponding object y then we
may assume that we know all objects y- that is the objects associated with x in
the data are the only ones that x can get associated with.

In [21], the Horn rules generated by AMIE are interpreted as subsumption
or equivalence axioms. The interpretation of rules is based on a set of patterns
called ROSA (Rule for Ontology Schema Alignment) rules, shown in Fig. 2. Each
rule that fits the patterns shown in Fig. 2 is also associated with a PCA confi-
dence score. The same technique can also be used to align equivalent predicates
across heterogeneous datasets. This involves first aligning the instances in the two
datasets using the owl:sameAs links between instances in the two datasets prior
to mining the rules. Once we have all the rules generated by AMIE, all it takes
to identify equivalent predicates across datasets is to compare the rules against
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r(x, y) ⇒ r′(x, y) (Property Subsumption)
r(x, y) ⇐⇒ r′(x, y) (Property Equivalence)

Fig. 2. ROSA rules for Property Subsumption and Equivalence

the ROSA rule for Property Equivalence. A owl:sameAs link between two entities
in Linked Data signifies that they are synonymous. For instance, the instances
yago:Barack Obama and dbr11:Barack Obama are resources to identify the same
person and hence will be linked by a owl:sameAs link. For datasets where the
owl:sameAs links are not mentioned, Galárraga et al. in [20] introduce a tech-
nique to canonicalize the instances and predicates across heterogeneous linked
datasets. They do this by first clustering synonymous instances using a tech-
nique called Token Blocking [40]. Under such a technique synonymous instances
in the two datasets like President Obama and Barack Obama will be placed in
the same cluster implying that they refer to the same entity. Post this cluster-
ing, we obtain a normalized dataset where instances have been aligned. Using
these aligned instances, we can now align equivalent predicates across the two
datasets. To obtain equivalent predicates a similar procedure involving use of
AMIE and ROSA rules can be employed. Each of the equivalent predicate pairs
discovered in the above methods can be added to the ontology as Equivalent
Property Axioms. The same holds true for the Subsumption Property Axioms.

On similar lines, in our recent work [25], we discover latent Inverse and Sym-
metric axioms in linked datasets. In this work we outline the challenges involved
in discovering latent property axioms by an instance based method and then
propose measures to overcome these challenges. One such challenge is the pres-
ence of synonymous predicates in the Linked Data and a higher preference to
use one of them. For instance, we have dbo:infuenced and dbo:influencedBy as
predicates in DBpedia, these predicates convey similar meaning but are inverse
of each other. However, dbo:influencedBy is more frequently used among the two
to make an assertion. This points to a preference of one predicate over the other
which makes the discovery of inverse axioms a challenging task. To this end,
we introduced predicate-preference factor (ppf ) to account for the difference in
frequency of use of synonymous (but inverse) predicates. Also, to remedy the
lack of reliable and useful domain and range information in linked datasets, we
introduced a novel semantic-similarity measure which uses the rdf:type informa-
tion of instances in the subject and object of a predicate to suggest the reliable
axioms. Through experiments we show that the proposed method discovers twice
as many axioms, at improved accuracy.

The triples in a linked dataset can also be visualized as a graph with the
instances in the subject/object of a triple as nodes and the predicates as edges.
Based on this view of linked dataset as a graph, many works apply graph mining
techniques to extract meaningful semantic associations between the nodes or edges
in the graph. However, most of these approaches consider just the instance-level

11 http://dbpedia.org/resource.

http://dbpedia.org/resource
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information (i.e. triples) to suggest rdf:type statements [8,27], to summarize graph
entities [47] or query re-writing [55].

2.2 Schema Based Methods

Methods in this section use the schema-level knowledge in addition to using the
instance-level information. Axioms discovered by instance based methods do not
use the schema information associated with the linked datasets. Work by Barati
et al. [5] describe how the lack of schema could negatively impact the induc-
tion of axioms. To this end, they propose SWARM (Semantic Web Association
Rule Mining), which generalizes Association Rule mining for the semantic web
setting. SWARM adds semantics to the association rules by using schema-level
knowledge such as rdf:type and rdfs:subClassOf statements. Augmenting the asso-
ciation rules with semantics allows us to interpret them as Behavioral Patterns.
For instance, consider a rule mined by SWARM as shown below:

{Person} : (livesIn,Delhi) ⇒ (Speaks,Hindi)

The rule above means that the dataset contains many instances to support
the pattern that a Person who is a resident of Delhi, speaks Hindi and SWARM
uses such rules to identify behavioral patterns from the linked datasets.

Ontology Matching and Alignment techniques [43] involve finding correspon-
dences among the properties either in the same ontology or across different
ontologies. Recent advances in this field have given emphasis on the use of
large linked datasets to align ontologies or match equivalent properties across
ontologies based on the evidence in the linked datasets. For instance, Suchanek
et al. propose PARIS [45], which automates the matching of instances, classes
and properties across ontologies. PARIS presents a probabilistic approach to
estimate the degree of overlap between the instances of two properties in the
datasets under consideration. It processes the instances in the linked dataset as
well as the ontologies associated with them to align equivalent predicates across
datasets. To work with heterogeneous datasets, Suchanek et al. begin by finding
equivalent instances across these datasets. They propose a probabilistic model
to find equivalent instance pairs. For example, two instances x ≡ x′ holds if
there is a common predicate r such that triples r(x, y) and r(x′, y′) exist in the
datasets, y ≡ y′ and r is inverse-functional. Here x, y belong to one dataset while
x′, y′ belong to another dataset. Observe that to align equivalent instances using
the above method, a common predicate r must exist in the two datasets. In
addition to finding equivalent instances, PARIS also attempts to discover equiv-
alent predicates (r, r′) across the two datasets and does so by using the instances
aligned in the method mentioned above. To discover equivalent predicate pairs
it checks for the existence of subsumption relation between them, i.e. r ≡ r′ if
r � r′ and r′ � r. Here, r ≡ r′ implies that r, r′ are equivalent predicates and
r′ � r implies that r′ is a sub-property of r. PARIS determines the probability
that r′ is sub-property of r i.e. Pr(r′ � r) as the ratio of number of instance-
pairs x, y in r′ that are also in r. Note that with the discovery of new equivalent
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predicate pairs, we can update the probability of equivalence of two instances
in the dataset which in turn updates the probability of equivalence of predicate
pairs. Thus, the two steps of finding equivalent instances and equivalent pred-
icates are iterated repeatedly until convergence, i.e. when the probabilities do
not change any more. It is found experimentally that the convergence is reached
after a few iterations. Details about how the probability values were calculated
are explained in [45].

On similar lines, Koutraki et al. [28] propose SORAL (Supervised Ontol-
ogy Relation Alignment), a supervised approach to learn the subsumption and
equivalence property axioms. They propose the use of several ILP (Inductive
Logic Programming) and frequency based features to model a binary classifier
to determine if a pair of predicates form an equivalence or subsumption axiom.
Some of these features are discussed below:

1. ILP based features: This set of features include the confidence measure
calculated normally and confidence calculated under the partial completeness
assumption [22]. PCA works best when predicates are functional or quasi-
functional (The authors in [22] quantize the functionality of a predicate as a
value between 0, 1 where a value of 1 implies the predicate is functional and
0 otherwise. Quasi-functional predicates are those which have a functionality
values close to 1). To overcome this drawback, Koutaki et al. introduce PIA
(Partial Incompleteness Assumption) which can be considered as a weighted
PCA for less functional predicates.

2. Frequency based features: These features consider statistics of entities in
the dataset like cardinality of relations, type distributions of predicates etc.
The features under this category include the functionality of predicates, Jac-
card Similarity between the type distributions of 2 predicates. These features
also include joint probabilities of confidence score calculated normally and
under PCA.

It is worth noting that the training data used in the learning algorithm was
created by the authors. Thus, being a supervised technique to align predicates, it
is dependent on existence of a training resource. Koutraki et al. [28] also suggest a
method to alleviate the challenges of handling large linked datasets by using some
sampling techniques. They present experimental results for sample size 100, 500
and 1000. Through experiments Koutraki et al. show that a supervised method to
learn subsumption and equivalence axioms based on degree of overlap of instance
between two relations is effective in matching properties across ontologies.

However, a major drawback of techniques described above is assuming the
existence of common instances between ontologies. While it is a reasonable
assumption to make, the methods that depend on common instances fail when
the ontologies being aligned share very few or no common instances. To overcome
the lack of common instances in an ontology, Wijiya et al. [52] propose PIDGIN,
a system that supplements the lack of common overlapping instances between
ontologies with the information present in large natural language corpus. They
use the corpus to ground the relations and instances in the ontology to verbs
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and instances in the corpus respectively. This makes up for the lack of common
instances between ontologies being matched.

Domain and Range Restrictions. Often overlooked albeit important part of
ontologies are the Domain and Range restrictions related to properties. These
restrictions ensure that the instances in the subject or object of a property are
of the correct class-type. For instance dbo:manager has class dbo:SportsTeam
as Domain and class dbo:Person as Range, which means that the instances in
the subject of dbo:manager should belong to the class dbo:SportsTeam. However,
Tonon et al. [48] show that in most linked datasets, the domain and range restric-
tions are violated. Thus, we can enrich the corresponding ontology by updating
the domain and range restrictions based on the evidence in the linked datasets.
For example, consider the property dbo:manager above. Even though the DBpe-
dia ontology mentions dbo:SportsTeam, the instances in the linked data suggests
that the domain should be dbo:SportsSeason.

Work by Tonon et al. [48] explores determining the domain and range of prop-
erties based on the instances in the linked dataset. They propose LeXt and ReXt
to suggest the instance based domain and range of properties. The LeXt performs
a depth-first search on the class-type hierarchy for each instance in the subject of a
property to statistically determine the most specific class of instances occurring as
the domain of the properties. Similarly ReXt determines the instance-based range
of a predicate. Töpper et al. [49] also propose a frequency based method to suggest
the domain and range of properties in linked dataset based on the class-types of the
instances in the subject and object of a property.

3 Discovering Concept Axioms

In ontologies, Concept Axioms play an important role in expressing the rela-
tionships that hold between the different Concepts. The semantics of Concept
axioms are shown in Table 2 where we see that compared to property axioms,
class axioms are less diverse.

Töpper et al. [49] motivated the need for disjoint axioms as a means to find
inconsistencies in a linked dataset. They propose to find similarity between two
concepts in the ontology, thus, those concept pairs that have similarity scores below
a fixed threshold are considered disjoint. To this end, they represent a concept (C)
in the vector space. The length of the vector is equal to the number of properties

Table 2. Semantics of Concept Axioms: Ci, Cj are concepts in a linked dataset KB
and x, y, z are distinct instances in the KB. Here, Ci(x) denotes that x is of class-type
Ci in the KB.

Axiom Semantics

Subsumption (Ci, Cj) Ci(x) ∈ KB =⇒ Cj(x) ∈ KB

Equivalence (Ci, Cj) Ci(x) ∈ KB =⇒ Cj(x) ∈ KB ∧ Cj(x) ∈ KB =⇒ Ci(x) ∈ KB

Disjoint (Ci, Cj) Ci(x) ∈ KB =⇒ Cj(x) �∈ KB
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in the dataset. The weight of each property is modeled after tf, idf in Informa-
tion Retrieval where the tf part denotes frequency of occurrence of the property
with class C in the dataset and the idf part denotes the general relevance of the
property in the dataset. Additionally, Fleischhacker et al. [18] propose a method to
inductively learn disjointness axioms. They discuss multiple strategies like learn-
ing correlation between two concepts based on the count of common instantiations
between them. Thus, concepts that have very low or negative correlation are con-
sidered to be disjoint with each other. Another technique they suggest is similar to
[19] where the difference lies in the representation of rows (discussed in Sect. 2.1).
In this case, a row in the transaction table represents the set of concepts that an
instance belongs to.

Similar to property axioms, a large portion of the work in literature discusses
the discovery of concept subsumption axioms. The set of all subsumption axioms
in an ontology aid in creating the class hierarchy or the taxonomy while equiv-
alence axioms are mostly used to align two different ontologies. Volker et al.
[51] propose a framework which is a precursor to [19], explained in Sect. 2.1. As
explained in the discussion about the disjointness axioms above, the difference
between [19,51] is in the representation of transaction tables and in the patterns
that are matched to interpret association rules as axioms. Li et al. [33] suggest an
improvement over [51] by proposing a method to mine axioms more efficiently. It
involves dividing the linked dataset into several blocks (based on disjoint prop-
erties) to facilitate the application of mining axioms in parallel. Also note that
the methods [21,45] mentioned in Sect. 2 can also be used to find equivalent and
subsumption class axioms.

In addition to the axioms shown in Table 2, [33,51] also discover class expres-
sions like Ci � ∃r.Cj or ∃r.Cj � Ci. Here Ci, Cj are concepts and r is a property
in an ontology. The class expression above can be considered as a specialized
form of subsumption axioms where the latter expression suggests that when-
ever we have a triple < x r y > in KB and Cj(y), then we have Ci(x). Such
class expression are useful in describing class definitions. For instance for the
expression Ci � ∃r.Cj , if r is authorOf, Cj is Journal Article and Ci is Doc-
toral Advisor then, it means that every Doctoral Advisor besides other things
has authored a Journal Article.

The DL-Learner framework [12] encompasses various algorithms for inductive
learning of concept axioms and class expressions. The procedure followed by
the framework to detect axioms is as follows [11]: Frequent axiom patterns in
various ontologies are discovered and converted into corresponding SPARQL
query patterns. The query patterns are then applied to other datasets to enrich
them with new axioms. For example, in the experiments conducted by [11],
patterns have been mined from more than one thousand ontologies and then
applied on the DBpedia dataset. A few patterns which were obtained among the
top 15 patterns are given below:

A SubClassOf p some (q some B), or equivalently A � ∃p.(∃q.B) in DL
A equivalentTo B and p some C, or equivalently A ≡ B � ∃p.C
A SubClassOf p value A, or equivalently A � ∃p.{A}
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A few axioms which were obtained by applying the above patterns on DBpedia
are:

Song equivalentTo MusicalWork and (artist some Agent) and (writer
some Artist), or equivalently Song ≡ MusicalWork � (∃artist.Agent) �
(∃writer.Artist)
Conifer SubClassOf order value Pinales, or equivalently Conifer �
∃order.{Pinales}

The algorithms proposed under the DL-Learner framework for learning of class
expressions are described in Sect. 5.

3.1 Discussion

It is worth noting that most of the methods we discussed in this and in the
previous section focus on the discovery of subsumption and equivalence axioms,
be it property or concept axioms. These axioms, while crucial to formation of a
class/property hierarchy, limit the diversity of the axioms in the ontology. We
believe that expanding the scope of these methods to discover additional axioms
namely, Functionality, Inverse functionality, Inverse, Transitivity will enhance
the understanding of the underlying domain and also help in keeping the dataset
consistent with the world-knowledge. Thus, the discovery of axioms that add
value to the ontology is one of the promising areas of research. Additionally,
with the use of PCA (and PIA), several works described in the Sections above
compensate for the incomplete nature of data in the semantic web. While this is
a step in the correct direction, a technique that is not restricted by the function-
ality of the predicates (like PCA) will surely provide a more versatile method
to overcome the incompleteness in semantic web and thus is a potential future
extension.

4 Discovering New Properties

Most of the linked datasets are deficient in the number of object properties they
have. For example, the linked dataset YAGO has 488,469 classes [34]. Among
such a huge number of classes, surprisingly there are only 32 object properties12

and hence looking for more object properties to connect these classes becomes
a necessary step towards enriching linked datasets. Details of the methods pro-
posed in literature to add new object properties are given below:

Several works have been proposed to discover new object properties in the
context of enriching the NELL (Never Ending Language Learner) Knowledge
Base. NELL [37] is a part of the “Read the Web” project13 which is an initiative
12 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/statistics/ - totally there are 60 object properties, but
28 of them connect the domain class to the class http://dbpedia.org/class/yago/
YagoLiteral.

13 http://rtw.ml.cmu.edu/rtw/.

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/statistics/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/statistics/
http://dbpedia.org/class/yago/YagoLiteral
http://dbpedia.org/class/yago/YagoLiteral
http://rtw.ml.cmu.edu/rtw/
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to create a machine that learns to read the entire web. NELL has been run-
ning continuously since January 2010 and it performs two main tasks - extract
facts from web pages, and improve its learning techniques to extract more accu-
rate facts in future. NELL has a few helper systems which aid it in extending its
T-Box so that more instances of the newly discovered relations and concepts can
be fetched by NELL from the web. Mohamed et al. proposed OntExt (Ontology
Extension system) [38] which discovers new relations given two categories from
the NELL ontology (classes are called as categories in the NELL KB). OntExt
does this by extracting text patterns from the web corpus and clustering them
based on co-occurrence values. For example, if the phrases “Ganges flows through
Allahabad” and “Ganges in the heart of Allahabad” occur in the web corpus with
a very high frequency then this is taken as an indicator that the patterns, “flows
through” and “in the heart of” are similar to each other. When such an evi-
dence is shown by many number of subject-object pairs, OntExt gives a very
high similarity score between the two patterns. In general, OntExt works in the
following manner: given a pair of categories and a set of sentences-each contain-
ing a pair of instances known to belong to the given categories, OntExt collects
the words in between the instances from each sentence and calls these words
a “context-pattern”. Then it builds a co-occurrence matrix (context-pattern X
context-pattern) which is based on the frequencies of occurrence of the context-
patterns with the same subject-object instance pairs. For example, in the above
case of finding relations between Rivers and Cities, if the pair “Ganges” and
“Allahabad” occurs with the context-pattern “flows through” with a frequency
f1 and the pair occurs with the pattern “in the heart of” with a frequency f2,
then the matrix entry corresponding to these two context-patterns will be given
a value of (f1 + f2). In case there is another subject-object pair (for example-
Thames, London) occurring with both these context-patterns with frequencies
f3 and f4 respectively, then the matrix cell value becomes (f1 + f2 + f3 + f4).
K-means clustering is applied on the normalized matrix to group the related
context-patterns together. The centroid of each cluster is proposed as a new
relation. OntExt also generates the instances (subject-object pairs) of these new
relations based on how often each subject-object pair co-occurs with a new rela-
tion in the web corpus. OntExt was followed by newOntExt [6,7] whose primary
goal was to overcome certain challenges faced by OntExt and to make the ontol-
ogy extension process scalable and feasible so that it can be effectively utilised
on the NELL Knowledge Base. The authors incorporated the following changes
in newOntExt: Instead of considering all the words in between the two input
instances as a pattern, newOntExt used ReVerb [17] for extracting the patterns
in order to reduce the number of noisy patterns obtained. In order to reduce the
computational cost, a more elegant file structure was used for searching through
the sentences. Instead of considering every pair of categories as input to this
system, reduced category groups of interest were formed to pick the input cat-
egory pairs (for example, the categories related to the domain of sports: sports
league, sport, athlete and sports team). Later, Cergani et al. [13] identified the
following issues in the clustering phase of newOntExt: An entity pair cannot be
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connected by multiple relations and even the most obvious outliers (noisy rela-
tions) cannot be removed by their clustering phase. Also, the number of clusters
had to be specified before-hand. Hence they have proposed a minor improve-
ment to overcome these issues by replacing the clustering phase of newOntExt
with matrix factorization techniques such as Non-negative Matrix Factorization
(NMF) and Boolean Matrix Factorization (BMF). The authors of [44] made the
following observations w.r.t. the working of newOntExt: The number of incor-
rect relations produced by newOntExt is high mostly because the new relations
are not filtered based on any contextual check. Even semantically dissimilar but
meaningful relations are placed in the same cluster and hence important rela-
tions get dropped by newOntExt. Also, the relations produced are not grounded
to the knowledge base (by grounding, we mean mapping of discovered relations
to existing LOD object properties). In [44], the authors propose a system called
DART (Detecting Arbitrary Relations for enriching T-Boxes of Linked Data) to
enrich linked datasets with new object properties between two given classes by
means of contextual similarity detection and paraphrase detection tools. DART
performs grounding of relations and is also shown to be better than newOntExt
in terms of both precision and recall.

Nimishakavi et al. [39] have explored the idea of using tensor factorization
models for inducing new relations and their schemas from OpenIE triples into
an ontology. By a relation schema, they mean the type signature of the relation.
For example, the type signature for the relation cityLocatedInCountry is cityLo-
catedInCountry(City, Country). The OpenIE triples are represented as a tensor.
An element xijk of the tensor refers to triple formed by ith noun phrase, jth

noun phrase and kth verb phrase. The possible hypernyms of the noun phrases
are collected from the text corpus using Hearst patterns [23] (for example, “a
<hypernym> such as a <noun phrase>”) and stored in a matrix. Another matrix
is used to store the similarity between the verb phrases (relations). The intu-
ition behind using this similarity matrix is that if two relations are found to be
similar in meaning, then their type signatures should also be same/similar. By
similarity, the authors mean the cosine similarity of the Word2Vec vectors of
the verbs [36]. Coupled factorization of the tensor and the two input matrices
is performed to obtain a core tensor which contains the relation schemas such
as suffer from(patient, disease), have undergo(patient, treatment) etc. and
a matrix containing the assignment of the noun phrases to the classes.

SOFIE, the system proposed in [46], has been primarily designed for adding
more instances of existing relations i.e. for A-Box enrichment. However, the
authors have conducted experiments and demonstrated its application for adding
a new property and its instances. The authors introduce seed instances manually
for a new property and thus adopt the same system to add more instances of the
new property. SOFIE works in the following manner: First, facts are collected
in two ways - ontological facts collected from the dataset under consideration
(includes the manual seed instances for the relation) and textual facts collected
from the corpus. These existing facts are given a truth value of 1. Hypotheses
for new facts are formed using the known facts. Truth value of these hypotheses
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are said to be unknown. In order to determine which hypotheses should be
accepted as true facts, a set of manually written logical rules are employed. Now
the problem is recast as finding the hypotheses that are likely to be true, such
that maximal number of rules are satisfied. This can be seen as a maximum
satisfiability problem (MAX SAT problem) with all facts, hypotheses and rules
rewritten as logical clauses in a uniform manner. A lower set of weights are
assigned to clauses which can be violated and a very large weight is assigned
for those clauses which are derived from existing facts. A new approximation
algorithm (as MAX SAT problem is NP-Hard) called the Functional Max Sat
(FMS) algorithm has been implemented to solve this Weighted Max Sat problem.
It should be noted that SOFIE is different from the other systems described in
this Section in the following aspect: SOFIE needs to know what property should
be added to the linked dataset, while the other systems do not take this input.

5 Discovering New Classes

There are quite a few works in the literature which focus on learning class expres-
sions to enrich ontologies. Petrucci et al. [42] solve the problem of class expression
learning from natural language text with a learn-by-examples approach. They
formulate the problem as a machine transduction task. In this case, a sequence
of words in natural language has to be converted into a sequence of logical sym-
bols - a formula. The system operates in two parallel phases, namely, sentence
transduction and sentence tagging. The sentence transduction phase identifies
the logical structure of the formula corresponding to the natural language input
given. The output of this phase is a formula template. The sentence tagging
phase tags each word of the input sentence into one of the following types: a
concept, a role, a number, or a generic word. Then these tagged words are fit
into the formula template to generate the final class expression. For example, let
(2) be given as input to both the phases.

A bee is an insect that has 6 legs and produces honey. (2)

Sentence transduction phase outputs the template (3) while the sentence tag-
ging phase tags the sentence and outputs (4).

C0 � C1 � (= N0R0.C2) � (∃R1.C3) (3)

A [bee]C0 is an [insect]C1 that [has]R0 [6]N0 [legs]C2 and [produces]R1 [honey]C3

(4)
The outputs of both the phases are combined to produce the class expression
given in (5).

Bee � Insect � (= 6have.Leg) � (∃produce.Honey) (5)

Both the phases employ Recurrent Neural Networks (RNNs) to accomplish their
goals. The training data for sentence transduction phase would ideally consist
of huge number of pairs of natural language sentences and their corresponding



44 S. Subhashree et al.

DL axioms. Since such a dataset was not available, the authors have created
such a training dataset. The authors have first verbalized a set of OWL class
definitions using Attempto Controlled English (ACE) [26] to get definitions such
as the one given in Eq. (2). Then natural language variations of the verbalization
were added manually and finally a generalized grammar was built to generate
huge number of such training instances.

The authors of [2] handle the problem of class expression learning through
syntactic transformation of English sentences to OWL axioms. Syntactic trans-
formation is implemented through various rules of transformation of the parse
tree of a sentence. The paper proposes a new controlled natural language called
TEDEI (TExtual DEscription Identifier) to define the scope of the input sen-
tences that can be handled by their system. They employ an existing controlled
natural language, namely ACE, as an intermediate language and in this way,
address some of the limitations of ACE in the context of ontology authoring.
They also investigate the impact of two types of ambiguity in natural language
sentences, namely lexical ambiguity and semantic ambiguity. Instead of produc-
ing one axiom from a given sentence, their system generates all possible axioms
that can be generated from the sentence, which are then presented to the user.

As mentioned in Sect. 3, the DL-Learner framework [12] encompasses a set
of algorithms for learning class expressions by means of refinement operators i.e.
a refinement operator is used to traverse an ordered search space in order to
determine the correct concept definition. Informally, a refinement operator can
be defined as follows: a downward refinement operator is one which gives rise to
a set of more specific concepts and an upward refinement operator returns a set
of more general concepts for the given input concept. The general goal of these
algorithms is to devise refinement operators that have the following properties
[31] while still being able to efficiently traverse through the search space in search
of good candidate class expressions:

Let ρ be a downward refinement operator.

Finite: ρ is finite iff ρ(C) is finite for any concept C.
Non-redundant: ρ is redundant iff there exists a refinement chain from a
concept C to a concept D, which does not go through some concept E and a
refinement chain from C to a concept approximately equal to D, which does
go through E.
Proper: ρ is proper iff for all concepts C and D, D ∈ ρ(C) implies C �≡ D.
Complete: ρ is complete iff for all concepts C and D with C � D we can
reach a concept E with E ≡ C from D by ρ
Ideal: ρ is ideal iff ρ is finite, complete, and proper.

However, no refinement operator is ideal and hence the algorithms in the frame-
work work towards handling the missing properties. The major refinement-
operator based algorithms are OCEL, CELOE, ELTL and ISLE [12]. OCEL
(OWL Class Expression Learner) was the first algorithm defined specifically
for the Description Logic ALC. It was designed to cope with redundancy and
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lack of finiteness property of the refinement operator. CELOE (Class Expres-
sion Learning for Ontology Engineering) [29] which is an evolved form of OCEL
contains changes specific for learning shorter class expressions as long concept
expressions are difficult to maintain and understand in the context of ontology
creation. ELTL (EL Tree Learner) [30] is an algorithm for class expression learn-
ing specifically designed to suit the OWL EL profile. ISLE (Inductive Statistical
Learning of Expressions) [10] which is an extension of the ELTL, also took tex-
tual evidence from external corpus into account. Information from the corpus
has been used to modify the search heuristic and has been proven to give more
accurate expressions on manual evaluation.

Another set of algorithms proposed within the DL-Learner framework for
class expression learning which are not based on refinement operators are PAR-
CEL and Fuzzy-DLL. PARCEL (Parallel Class Expression Learning) [50] is suit-
able for situations which are better solved by parallelization. PARCEL computes
partial definitions of a learning problem, which are then aggregated to give com-
plete solutions. Fuzzy-DLL [24] was proposed to handle class expression learning
in vague and imprecise domains.

While the above described systems learn class expressions, the system pro-
posed in [39] (see Sect. 4) finds and adds new classes (atomic class names) to the
ontology in the process of finding new properties. The coupled tensor factoriza-
tion process results in a core tensor and a matrix. The core tensor consists of
the relation schemas generated and the matrix contains noun phrases assigned
to new classes.

5.1 Discussion

The task of inducing new properties and classes from within the linked dataset
itself is very difficult to accomplish and hence it becomes imperative to make use
of external sources. In this context, data generated through web-scale informa-
tion extraction systems [17] (which include OpenIE systems such as TextRunner
[4], WOE [53], ReVerb [17], SRLIE [14], OLLIE [35] and systems such as NELL,
ClausIE [15]) serve as a good starting point for enriching Linked Data. Map-
ping triples from the former kind of systems (let us call them web triples) to
Linked Data’s RDF triples can be beneficial in two ways: Linked Data can give
more structure and accuracy to the web triples and Linked Data can be enriched
(both A-box as well as T-Box) through the web triples. We have seen this trend
in [7,38] and also in [39] where the web triples form one of the main inputs for the
proposed system. Another set of works following this direction are [16,56]. [56]
proposes a framework to give RDF representation to NELL triples. [16] gives
RDF representation to NELL KB by linking it to DBpedia and also enriches
DBpedia in the process. However, these works are confined mostly to the NELL
KB while the opportunities of exploiting the outcomes of the other web-scale IE
projects remain largely unexplored.
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6 Conclusion

In order to realize the full potential of Linked Data in various applications,
it is important to enrich LOD with as many appropriate ontological axioms
and assertions as possible. This paper acquaints the readers with the recent
advancements in the field of T-Box enrichment of LOD datasets. Techniques for
discovery of property and class axioms are mostly based on the RDF triples from
within the linked datasets itself while discovery of new properties and classes rely
on external sources of data such as OpenIE triples. These enrichment techniques
move the datasets towards completeness, all the while making sure that the
datasets remain consistent and the manual effort for verifying the correctness of
the newly added properties, classes and axioms is reduced. However, as discussed
in Sects. 3.1 and 5.1, there are many directions to be explored that might enable
further enrichment of LOD.
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