Without much ado, Chap. 4 outlined a relatively straightforward historical VaR
model. In the bank I worked at, such a model proved to work reliably right through
the 2008 financial crisis and its aftermath. Many a model aspect, however, could
be tuned or tweaked or altered, and this chapter zooms in on some of those model
choices. But how to weigh these features, how to choose between model options?
Let me give you my personal take on this.

By far the most important aspect of a VaR model is its input data. Thousands
of risk factors must be diligently tracked over years from different and evolving
market data sources. Market data may contain outliers and invalid entries, missing
values and whole gaps, or stale and constant periods; market data sources may break
down, change quoting conventions, or become inconsistent with other sources. And
eventually, all of this is going to happen. Some of those glitches can be avoided by
careful and continuous data screening, by manual overrides, by automatic checks
and warnings, etc.—in other words, by patience and diligence, also known as time
and money. But illiquid markets will continue to provide data that is inherently
spotty and unreliable. Unaligned snapshots will still make price moves decorrelate.
And holidays in all those countries won’t ever stop disrupting the time series.

Some data issues are more fundamental still. The sample size is relatively small
(often only 2 years of data are used, and sometimes fewer if mandated). But there
is often no choice, really: ancient market data is likely to be of less relevance today,
and newly introduced asset types can’t possibly boast an ample history. Replicating
the most recent vola levels in the markets reduces the effective sample size even
more. Consequently, the sample is unlikely to contain reliable tail information, and
it sure won’t be able to even hint at the unknown unknowns—the flood, the law, the
war. This sample, then, is no match for the numerous risk factors and their fearsome
dimensionality curse.

Nor is market data the result of some neat, reproducible process—it is the product
of this most complicated of non-linear feedback systems: man. The market data’s

© Springer International Publishing AG 2018 41
M. Auer, Hands-On Value-at-Risk and Expected Shortfall, Management
for Professionals, https://doi.org/10.1007/978-3-319-72320-4_9


https://doi.org/10.1007/978-3-319-72320-4_9

42 9 Model Choices

statistical properties we try to grasp change in ways we don’t comprehend. The very
magnitude of market risk itself hints at some reservoir of irrationality that calls into
question overly elaborate conclusions.

Market data quality, its size and dimensionality, and its intractability thus seem to
suggest a humble approach: to acknowledge and accept the data imperfections and
to keep unsupported, extravagant math at bay. A new model feature or enhancement
should be warranted by the data.

The second most important aspect is running the model, i.e., building, operating,
and maintaining an IT system that must reliably produce risk measures every day.
The model choices we make have a direct impact on such a system and its costs.

A complex model feature makes an IT system more time-consuming to build, i.e.,
to program and test and document. It makes the computational steps more difficult
to replicate for others and the results thus harder to accept, while impeding the use of
common standard software that might not support the more arcane model choices.

A brittle model feature affects operation. It has more ways to break down, impair-
ing reliability; it might be numerically less efficient, slowing down recalculations or
requiring costly hardware upgrades; and it obstructs custom, ad-hoc analyses for a
wide range of model end users.

Worst of all, an elaborate model feature is hard to maintain. Because its code
is larger in size and thus more difficult to understand and modify, it is usually
less flexible in accommodating new or changing requirements. Its black box nature
furthermore fosters secluded islands of knowledge and risky dependencies on fewer
and costly experts.

In the end, of course, all these considerations essentially just come down to
money—they compel us to eschew complexity wherever possible and instead to aim
for a system that is easy to code and reenact and trust, reliable to run, and simple to
grasp and adapt. Model features should not thwart this.

Third, the model must usually be approved by the regulator. Any particularly
inventive or unique model choices naturally—and rightfully—lead to dispropor-
tionate efforts in explaining and defending them. Non-standard approaches must
be extensively plausibilized; model parameters setups without ready reference to
canonical settings can and will be scrutinized; and even seemingly unsuspicious
changes may lead to additional tests and expensive recalculations.

The main factor here is time. Any model change requires a lengthy and procedu-
ral back-and-forth; large changes may require years to get approved. As regulatory
mills will grind diligently and slowly, the cast of characters will change. Original
model developers might be gone and their intentions become all but forgotten.
New personnel at the regulator will want to focus anew on the same, already
expounded issues and demand clarifications whose new angle, very naturally and
understandably, originates in the involved individuals’ personal views on modeling
issues. The same topic—any feature or choice or parameter—may raise its head
time and again.

Simplicity, again, goes a long way in minimizing discussions, dodging follow-
up efforts, and increasing model acceptance—in saving time. The path to delayed



9 Model Choices 43

model approvals is paved with fancy mathematical intentions; we should opt for
model features that take a more direct and transparent route instead.

Mathematical elegance or optimization should, in my opinion, rank last when
weighing in on a particular model choice. Tune the kurtosis? Fine. Do a maximum
likelihood fit of a distribution to the PnL estimates and use the fit’s slightly more
stable quantile? By all means. But only do it if (1) it is warranted in light of the
data’s limitations, (2) it does not overly affect system complexity and operations,
and (3) it is transparent and defensible to a wider audience.

For each minor tweak has consequences: you will have to analyze it, discuss
it, estimate its implementation costs, program it, test it, change-track it, deploy it
on your various systems, run it in parallel for some time, document and explain it,
present it in PowerPoint slides to an skeptical audience, defend it, debug it, maintain
it, and potentially discard it if anything goes haywire. And that’s before someone
formally asks you to “validate” it.

Some examples seem in order:

e The vola rescaling feature makes very little assumptions on the data and is
certainly warranted to them, whereas trying to get a handle on, for instance, co-
kurtosis is most likely futile.

» Several intricate interpolation methods are widely recommended and thus easy
to defend, and they can’t be dismissed from a data limitation stance. But because
they can substantially complicate handling and replication, we may often go for
a simpler, linear interpolation.

* In a world of positive interest rates, should we opt for absolute or square root
return types? Both methods roughly match (or fail to match exactly) the data;
both have the same system complexity. But because square root returns are
widely used in literature, they might just be slightly easier to sell.

» This picture changes in a world of negative interest rates. Square root returns now
require a shift, which makes this choice both more complex to handle and more
onerous to justify and defend. Absolute returns become the expedient choice.

In light of these considerations, let’s revisit some steps and choices of the
historical approach outlined previously.

Return Types We use different ways to calculate returns from a historical time
series of values, depending on an asset’s type. Keeping in line with conventions
here does make some sense mathematically, but, more importantly, it facilitates
the defense of a model, as its reviewers appreciate familiarity in such basic model
choices. For strictly positive asset prices like foreign exchange rates or stock prices,
we will usually choose the commonly used logarithmic or log returns log(v’/v).
Their use is so common that it is rarely challenged. Their benign numerical
properties (they are tractable and naturally shy of negative values) should not belie,
though, that reality log-normal is not.



44 9 Model Choices

For interest rates we can use absolute returns v’ — v. Consistency is one point in
favor of this: log returns of bond prices neatly mimic absolute returns of rates.

An alternative is to use square root returns for time series and scenario genera-
tion, i.e., r = Vv — Jvand s = (/50 + r)%. In order to handle negative interest
rates, however, they require positive shifts of the time series (and reverse ones to the
scenarios):

¥ = Vv +c— v+,
s = (\/s0+c+r’)2,

SZSI—C.

The shift ¢ also requires a modicum of caution: the expression /sy + ¢ + »/
should not be negative lest we introduce a distorting repel-from-zero behavior.
(Shifted log returns avoid this issue naturally.)

The end results differ little from those created via absolute returns, but the shift
parameter involved can lead to follow-up questions in a model review—How is
the shift determined? What effects do different shifts have? Are strictly positive
time series shifted as well? Absolute returns avoid the potentially time-consuming
exercise of proving the immateriality of these concerns.

If, say, for reasons of continuity towards a legacy implementation, a shift can
not be avoided, it is good to be aware that such shifts are not that drastic—
asymptotically, large shifts will simply begin to mimic the behavior of absolute
returns. A specific way to set the shift is given in Sect. 20.1.

Target Volatility We use the 20 latest historical returns, i.e., the most recent local
volatility, to obtain the target volatility T of a risk factor. Do this by all means if you
are very confident in your time series’ data quality. However, consider a time series
that becomes stale and essentially starts to stay constant (maybe due to a market data
source failure). Over the course of 20 days, the target vola will gradually approach
zero, possibly without raising much suspicion. The risk factor stops being measured
by the VaR and effectively disappears. To avoid this and to account gracefully for at
least some staleness, we can redefine the target vola as the maximum of the original,
most current local vola and, say, 30% of the overall or long-term vola of the raw
returns T, effectively flooring the target volatility.

The one main drawback of this approach is that we introduce a rather arbitrary
new model parameter (the 30%). Parameters like this are often in the drill-down
focus of model reviewers. Still, this safety valve is probably worth its likely
explanation effort. For more on such parameters and their defense, see Sect. 17.4.

Local Volatility via Decaying Weights The target volatility is fully or, if floored,
mainly driven by the latest 20 returns. A single new, large return can greatly
increase it and cause a jump in the VaR. After 20 days, this very return exits the



9 Model Choices 45

20-day window, and the target vola and VaR fall back. This is sometimes considered
unwanted behavior. A workaround often proposed is to modify the way the local
vola is calculated, e.g., via exponentially decaying weights, which make an extreme
return fade away more gradually. (One such approach is the so-called exponentially
weighted moving average, or EMWA.)

I am not in favor of such an approach. It makes this step marginally more
complicated—it becomes, e.g., more tedious to exactly reenact manually in Excel,
which is often very useful for model end users. It merely sugarcoats the results; I
find the transparent raw results more informative. But if truly abhorred, such VaR
jumps are best dealt with ex post, for example, by using the moving average of VaR
values when determining capital requirements. Furthermore, the decay factor used
can, as a model parameter, again solicit unwanted attention during model reviews.

Detrending A commonly used procedure we omitted is detrending—removing the
sample average from the raw returns by subtracting it. Now, the return average is
typically much smaller than the volatility and seldom requires dedicated actions.
Also, our mirroring of the returns already achieves a similar result of ensuring a
certain symmetry in return distributions, so we may often take a pass on a practically
redundant intermediate step.

Good intentions, oversight, or modeling by the numbers, however, could well
lead to its accidental implementation. This can, in certain cases, lead to unintended
behavior. Consider a time series with one large positive jump and, hence, one large
positive return (this might occur if you have to paste your time series together from
two market data source systems). Subtracting the overall return average (positive
because of our outlier) from all returns might drive the non-outliers down and
off their near-zero mean; they might even all become, in our example, quite a bit
negative. The possibly erroneous outlier thus unduly influences all other returns
and their distribution; subsequent mirroring then effectively blows up the vola even
further by adding, for good measure, reversely skewed return versions as well. Of
course it’s best to avoid the outlier in the first place; still, a model that is unfazed by
erroneous input data, that is stable, is usually preferable.

Operations like this one—an overall normalization or “master override”—are
often not innocuous. They casually and globally affect the whole input (and can
thus do quite a bit of harm). They are also often suspiciously easy to implement, to
test against a well-behaved data set, to OK, and to then forget. Because in technical
or syntactic terms this operation cannot fail, it all too easily becomes invisible while
its semantics go unchecked and remain dangerously concealed. Should the problem
mentioned above then ever materialize, you most likely will spend precious time
tracking the various process steps to identify the culprit.!

'Such overrides are not uncommon. If, for example, separate models yield probabilities that should
sum up to 1, the probabilities can be normalized to enforce an exact match or identity to 1. If one
model fails and yields, say, 230%, such a step, if thoughtlessly implemented, may cover up and
obfuscate a breakdown more apparent otherwise.



46 9 Model Choices

Location of Local Vola Window The time series of returns exhibit varying vola
levels, also called heteroscedasticity. A vola rescaling operator does not leverage but
actively tries to destroy this property. To do this, it must estimate the local volatility
of the region a return resides in.

The textbook approach for this is to use so-called GARCH (short for, you guessed
it, generalized autoregressive conditional heteroscedasticity) models. Such models
are mathematically sound and widely used in literature. In fact, the original filtered
historical VaR simulations rely on GARCH, which makes its application easy to
defend.? But GARCH models must be fit first—in our case, 2200 times or once
for each risk factor, and repeatedly. This means an increased implementation effort
and plenty of things that can go wrong. It also makes it difficult or impossible to
precisely reenact model results for anyone who does not command a ready time
series analysis kit. For these reasons, we propose to use a poor man’s version of a
vola estimate, the plain standard deviation.

When using the standard deviation, it is tempting to stick with as many GARCH
conventions as possible to minimize any perception of deviation from an ingrained,
established method. Since GARCH is essentially a regression-based approach, it
relies on returns up to, but not including, the day for which a vola is estimated.
In that line, the standard deviation of those same, preceding returns could be used
for estimating the local vola of a return about to be rescaled. This is not necessary,
however, as the standard deviation is simply not bound by regression limitations. In
fact, if you were tasked to come up with a risk factor’s volatility for some January
15, you would most likely take the standard deviation of that month’s returns, never
even considering to drop the return of the 15th itself from that estimate.

If we associate, as we have to, our target volatility for tomorrow with the most
recent local vola, which clearly precedes tomorrow, we could become inclined to
align past vola estimation windows and the corresponding raw return day likewise,
in a strictly preceding manner. This might appear to be conceptually more elegant
or consistent.

Alas, such elegance would come at a cost—the vola estimator’s numerical
behavior after periods of stale data. Consider a constant series of historical price
quotes and a corresponding period of zero returns. This may arise due to a problem
with a market data source system, but this can happen naturally as well, e.g., when
certain markets are closed during bank holidays over a fortuitous regimen of feast
days. When rescaling, the first non-zero return after such a stale period would have
to be divided by an essentially arbitrary small local vola value if a preceding window
is used, causing the rescaled return to basically explode. Of course, one could floor
the local vola somehow or impose a cap on the rescaled return, yet this would
introduce a new and undesired ad-hoc parameter.

If, however, a return influences its own local vola estimate (like in the proposed
approach), that vola is ensured to be at least somewhat positive and to thus have

2Just as nobody got ever fired for buying IBM, no vola model was ever rejected for relying on
GARCH.



9 Model Choices 47

a much lower blow-up potential. To be sure, both approaches are of course off
with regard to the new, correct vola level—we know that only after a few days
of non-stale data. And after roughly 20 days, both will converge to the newly
established vola level. It’s just that the proposed approach does so in a less disruptive
manner and overestimates the rescaling factor required by less (it is still conservative
in many conceivable real-world setups of such a departure from staleness). The
numerical stability in face of bad data outweighs the very slight inelegance in design.
In fact, vola rescaling would work just as well with centered windows (in that case,
you’d just have to handle the edges of your time series, which is possible in any
number of ways).

Technical Floor for Local Vola A special case still necessitates mention and
treatment: the rescaling of zero returns within stale periods of zero local vola. The
rescaled return, for lack of any usable information, will still have to be zero, but the
raw computation would break down. Flooring the local vola at an unreachably low
level (say, 107'?) at least avoids the dreaded division-by-zero error.’

Exact Rescaling Once the volatility rescaling is done, the rescaled returns will
have a vola T’ that is similar, but not exactly identical, to the desired target vola
T. We can easily rescale them all again by a single constant 7/T’ to make them
precisely match the target vola.

Such a final rescaling is, like detrending above, a master override; if applied
without support checks, it may hide some ugly data. Consider a long period of
stale data and zero returns. Since zero returns scale to zero, the usual rescaling will
achieve a lower volatility than the target vola; if monitored, this becomes noticeable
and can be fixed. If, instead, the final exact rescaling is blindly applied on top of the
standard one, the non-zero returns will be increased more aggressively (as the zero
ones will remain unaltered), and while the target vola is reached by construction,
those returns alone will carry the correlation information. This is quite subtle a
model distortion, which might thus go unnoticed. So exact rescaling does not rid
us from checking the basic vola rescaling’s results.

Nevertheless, enforcing the exact target vola is most likely still worth the small
effort (separate checks for staleness are of course strongly advised). It simply does
away, in regular circumstances, with those random cases where rescaled returns have
a slightly lower vola than expected, a risk-underestimating characteristic that would,
despite its usually very small deviation, welcome the regulator’s comprehensible
scrutiny. To prove, at the almost inevitable request, that the impact of the (original
version’s) target vola mismatch is insignificant would require implementing exact

3The lowest naturally occurring local volas “in the wild” remain unaffected by this floor. The
standard deviation of 19 zero returns combined with a return of one one-hundredth of one basis
point is—with about 10~ 7—already much larger than this purely technical floor.



48 9 Model Choices

rescaling for comparison purposes anyway. We might as well nip this issue in the
bud.

Artificial Kurtosis Once the rescaled returns r are created, we could further tweak
them. One such adjustment is the artificial increase of their kurtosis—a measure of
how extreme the values at the fringes or fails are when compared to extremeness
levels expected from normal distributions.

To make the tails “heavier,” i.e., to increase the kurtosis, we can scale up some of
the returns, say, 10% of them, by a constant factor s > 1. If we scale the same entries
in each risk factor’s return vector, i.e., if we scale whole return column vectors R,
we don’t affect the correlation structure too much. Larger values of s lead to larger
kurtosis and to more extreme VaR values.

This feature is possibly best used if the returns are obtained with the Monte
Carlo modification (see the upcoming Chap. 10), as those returns exhibit a normal
distribution and thus no kurtosis. While crude and best thought of as a safety valve,
it is a simple way to ensure some non-normality, which might be a regulatory
requirement.

The main problems lie in defending the chosen target kurtosis (see Sect. 17.4)
and—worse—in determining one in the first place (see Sect. 17.6).

Scenario Drift When not using absolute returns, two scenarios s and s~ based
on a scenario s and mirrored returns r and —r do not result in exactly symmetric
scenarios: s # (sT 4 s7)/2 (try it, for example, with log returns). This makes the
average of the generated scenarios deviate or drift from the base scenario value,
which is often considered undesirable as it breaks the symmetry of profits and
losses. One could correct for this effect; however, over small time periods like in
our case, its impact is negligible. For example, in a Monte Carlo setup (which we
will cover soon), tens of thousands of scenarios would be required to even notice
this effect, especially as the Monte Carlo error involved is more pronounced for the
scenario VaR than for the scenario average. (For time horizons much longer than
1 day, though, certain market-implied target scenario averages different from zero
may be considered.)

Simplifications The proposed steps are a typical minimal setup for 2 years of data
and the 1%-VaR. If you are comfortable with using a larger market data window
(or you have to use it via regulatory requirements), or if you only need, say, the
10%-VaR, you might omit the mirroring step. For certain tasks, VaR models might
be required with equally weighted returns; sometimes, daily backtesting or a fast
model reaction to increasing vola levels is not desired—in such cases the rescaling
of returns is superfluous. Each such simplification has immediate benefits for the
implementation, testing, documentation, etc.

An alternative to mirroring for generating scenario returns r from the rescaled
ones r warrants its own, upcoming chapter.



	9 Model Choices

