
7Analytical Value-at-Risk

A second approach, already mentioned at the beginning, to calculate the VaR is
an analytical one. It is only approximate, as its assumptions don’t always hold in
practice, but it involves fewer computational steps because it relies on sensitivities
and avoids the 1000 � 106 full position pricings. Often it is very close to the
VaR obtained in the historical simulation, which makes it a useful sanity-check. It
also clearly exposes the relation between the VaR and the sensitivities, volatilities,
and correlations. Even more importantly, it provides some helpful analysis tools in
dealing with the questions we’re most interested in: How does the VaR react if we
change our positions? What risk factors contribute most to the VaR? What is the
reason for a particular VaR change?

This small chapter is mathematically the most involved. At first reading, you
could also just skip it to avoid getting bogged down. Maybe return to it later if you
find, e.g., the VaR-contribution helpful in dealing with the model’s daily operation,
as described in Chap. 17 entitled “Nine to Five.” (If you tackle it, you can find some
background on multiple randoms, the covariance matrix, and normal quantiles in
Appendix A.)

7.1 Approximate VaR

We start off with our familiar 2200 � 1000 matrix of returns ŒR� (recall it from
Fig. 4.3). It represents, after some rescaling and mirroring, our view of the history
of asset or risk factor returns. Each row is associated to a risk factor and represents
a historical sample of its returns.
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We can also view each risk factor as a normal random variable xi instead and
denote all risk factors as

X D

0
BBB@

x1

x2

:::

x2200

1
CCCA :

These random variables have certain properties that can be estimated from their
corresponding historical samples. Each xi has a variance VarŒxi�, and each pair of
xi; xj has a covariance CovŒxi; xj�. Their estimates form the symmetric covariance
matrix ŒC�.1

Now assume that the current price of a position or portfolio is p0 and that its price
under various returns is a function of X, denoted as p.X/. We are, as ever, interested
in price changes or PnLs, which we can express as

�.X/ D p.X/ � p0:

This is a function of the random variables X, and we’d like to get a handle on its
volatility, i.e., standard deviation. For this, we first simplify � in a first-order Taylor
expansion (we’ll soon simply drop the anxious “�” and let the linearity assumption
take over):

�.X/ � p0 C x1
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If we denote the partial derivatives here with di, we may write:

�.X/ D d1x1 C d2x2 C : : :

This � is a weighted sum of random variables. With d D �
d1; d2; : : :

�
, its

variance and standard deviation become

VarŒ�� D dŒC�d>;

stdŒ�� D p
VarŒ�� D

q
dŒC�d>:

1Hence this method’s alternative name of variance-covariance approach.
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Because �, as sum of normals, is normal itself, the 1%-quantile or VaR2 can now
be directly derived from its standard deviation:

VaR.d/ D
q

dŒC�d> � .�2:33::/:

We don’t want to compute the partial derivatives. Luckily, for any position or
portfolio we usually have ready access to a close relative of their derivatives di—
their sensitivities si, collected in the vector s. We have already seen that d D 104s,
which gets us the following useful expression for the VaR as a function of our
sensitivities:
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We hereby have a fast way to estimate the VaR for each position or portfolio
whose sensitivity vector we know.

(Note: the behavior of this VaR estimate depends on the covariance matrix. If
we use rescaled returns to estimate it, this analytical VaR will also be aligned to the
most recently observed market volatilities.)

7.2 VaR-Sensitivity

Our VaR function here is expressed as a single-valued function of all the si. A natural
question to ask is then: how does this VaR change if the underlying sensitivities
change (i.e., if our exposures or, effectively, our positions change)? To answer this,
we need to look at the partial derivatives of the VaR function itself, called VaR-
sensitivities. There is one for each risk factor.

To compute these VaR-sensitivities, let us first denote the vector of partial
derivatives of any single-valued vector function f .x/ as follows:
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We recall that for any quadratic form g.x/ D xŒA�x> we have

@g

@x
D x.ŒA� C ŒA�>/:

2The variance “Var” is not the value-at-risk “VaR.”
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Mindful that ŒC� D ŒC�>, we proceed to partially differentiate our VaR function
by its sensitivities si:
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Each entry vi in the vector of VaR-sensitivities v describes by how much the VaR
changes if the corresponding sensitivity increases by 1$.

Example We would like to increase our exposure to asset i. Its sensitivity si D
�12;000. The corresponding VaR-sensitivity vi D �8. Changing the sensitivity by,
say, �1000$ should then approximately affect the VaR by �1000 � �8 D C8000,
so we’d expect the (negative) VaR to change by C8000, decreasing in magnitude.

VaR-sensitivities are handy for quickly assessing the sign and magnitude of
the VaR impact due to a prospective change in sensitivities, i.e., in positions. For
relatively small sensitivity changes, it is also fairly accurate, but we can just as easily
employ an exact, full repricing. The most useful application of VaR-sensitivities,
however, is described next.

7.3 VaR-Contribution

Our expression for the VaR turns out to be a so-called homogeneous function of
order 1, since for any scaling factor a we have

VaR.as/ D a VaR.s/:

This allows us to write, per Euler’s homogeneous function theorem,

VaR.s/ D s1v1 C s2v2 C : : :

The terms sivi sum up to the VaR-value; we call such a term the VaR-contribution
ci D sivi of its risk factor. These VaR-contributions can be positive or negative.
Large negative VaR-contributions indicate the risk factors that dominate or drive the
VaR’s magnitude. An example for a portfolio whose VaR is driven by the euro/dollar
exchange rate is given in Table 17.1.
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