Having examined the static properties of the VaR, we now look into its dynamic
behavior over time. As new positions are entered or old ones closed, and as the
volatilities of the assets involved change, the VaR, recalculated every day, will
change as well. Often, such VaR changes and their reasons are of more interest
in risk management than the level of the VaR itself.

In order to appraise VaR changes, it is useful to first look into the behavior of our
VaR measure in the special case of a constant portfolio and benign markets. It turns
out that even in such a stable environment the VaR will fluctuate to some extent. This
baseline of natural noise is good to keep in mind when analyzing a particular VaR
change, when comparing different VaR models, or when assessing the usefulness of
certain optimizations. Effects below that baseline might be inconsequential really.

To sketch this baseline, we create a pseudo-history of random normal returns
(say, in Excel) for a hypothetical asset. Since we can disregard units here, these
returns can directly be viewed as PnLs.

The history consists of 3 years or 750days. For the first 2.5 years, we create
standard normal returns, i.e., with standard deviation 1. For the remaining half a
year, we create returns with twice that standard deviation. We proceed to take a
look at the VaR behavior in the third, last year (the first 2 years only provide a full,
valid input of “historical” data for that final year of interest). Since we know the
underlying distribution, we know what the VaR ought to be on each day, and we can
compare it to the VaR estimates of various model flavors.

We first examine the simplest one—computing the VaR from mirrored but non-
rescaled returns (see Fig. 14.1). During the first 6 months, we notice how the VaR
estimate from the raw returns skips between constant levels of similar magnitude.
Such a skip happens whenever the return associated to the VaR scenario for a given
day falls out of the historical 500-day window used for the following day.

Then, after 6 months, the VaR estimate starts to change and to converge to the
newly established vola level—yet as can be seen, very slowly. It takes time for the
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Fig. 14.1 VaR estimate from artificial raw returns; 1 asset
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Fig. 14.2 VaR estimate from artificial rescaled returns; 1 asset

new, larger returns to influence sets of 500 returns that still mostly contain old, low-
vola ones.

Let’s see how our historical approach—based, again, on mirrored but now also
rescaled returns—performs under the same circumstances. Figure 14.2 immediately
shows that the rescaling has a major impact on the VaR estimate—it is much more
volatile and overshadows any level skips (which happen underneath anyway). The
reason for this VaR volatility is that each day’s local vola estimate is based on only
20 returns. This small sample size hence causes the crucial target vola estimate to
fluctuate more and to randomly deviate further from any “real” underlying standard
deviation. The more important aspect, however, is that this VaR estimate, by design,
almost immediately reacts to the mid-year vola level change and quickly converges
to the newly established regime.

Now, the magnitude of our VaR’s volatility is still somewhat striking. There are
two ways to cope with this. The first is to notice that the deviation behavior is
only an “error” because we made it so—in real life, we never know the underlying
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Fig. 14.3 VaR estimate from artificial rescaled returns; 10 assets
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Fig. 14.4 VaR estimate from Monte Carlo on rescaled returns; 10 assets

distribution and might as well tacitly assume our estimate to be perfect (so just
remove, in your mind, the dotted line of the real VaR).

Second, the effect becomes attenuated if a portfolio does not depend solely
on one single asset. For a portfolio of 10 uncorrelated assets, the behavior seems
less suspicious, as can be seen in Fig. 14.3. Some risk factors’ target volas are
overestimated, some are underestimated; combined, these errors tend to partially
offset each other.

We get a very similar picture with the Monte Carlo approach on top of rescaled
returns (see Fig. 14.4), again for 10 uncorrelated assets. There is one important issue
to keep in mind: Monte Carlo introduces an additional random deviation or Monte
Carlo error. This can be made arbitrarily small, e.g., by using a very large number of
normals or by appropriately mirroring those normals as well. However, even when
using an absurd 10'? scenarios and thus basically eliminating any Monte Carlo error,
your Monte Carlo VaR estimate will only ever converge to the (dashed) line driven
by the target volas (the figure, in fact, depicts this limit) and not to the (dotted)
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real VaR. So you can’t Monte Carlo yourself towards the truth—it is just too elusive
through our short-term vola spectacles.’

The area between the line of a VaR estimate and that of the real VaR is an
indication of how systematically or how long an estimate is off. If it takes too long
for an estimate to adjust, whole series of VaR breaches or backtesting violations
may ensue. Rescaling clearly makes this area smaller, but because nothing is free,
we buy this model reactivity by sacrificing some day-to-day stability of our risk
measure. The proposed model mimics a hummingbird instead of a sloth.

Finally, we can take a more narrow look at the daily VaR fluctuations driven by a
short-window target volatility. For one individual asset and a time series of standard
normals, we can compute each day’s local/target vola estimate L; and the relative
changes L;y1/L; — 1 over time. It turns out that the standard deviation of these
changes is about 5%, par for par the standard deviation of relative VaR changes in
any rescaled setup.

Like above, we can do the same exercise for 10 uncorrelated assets (we use the
square-rooted sum of the local variance estimates for this). Here, the daily VaR
changes clock in at a standard deviation of about 1.7%. Now, with 2200 risk factors
we are tracking many more than just 10, but we should be aware that often just a
small subset of them drives the risk, especially in sub-portfolios. Furthermore, risk
factors may at times be highly correlated. This clumps them together and makes
them act as if they were fewer in number, with less noise offsetting or relief.

'The Monte Carlo error depends mainly on the number of Monte Carlo scenarios used. You could
analytically determine how far the Monte Caro estimate is likely to be off the limiting case of
infinite scenarios, or you can simply try out sets of different random numbers to get an idea of this
error range. You may experience, e.g., the Monte Carlo VaR with 5000 scenarios in a real-world
portfolio to randomly deviate from the dashed (not dotted!) line by between +3% and £5% in
relative terms.
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