
11Support Measures

We have selectively presented a few risk measures in the preceding chapters that, in
our experience, cover many relevant aspects and tasks in a real-world market risk
setup. We propose to mainly use the volatility-rescaled historical VaRŒ˝� for daily
risk management. It is especially well-suited to capturing “tomorrow’s PnL,” as it
reacts fast to changes in volatility levels. The concurrent use of the sensitivity-based
analytical VaR.s˝/ serves as a sanity check and provides an additive decomposition
to VaR-contributions of the risk factors, which is a handy analysis tool because
it appropriately weighs risk factors by both their sensitivity and volatility. Finally,
the most helpful measure we take away from the expected shortfall world is the
position-wise conditional expected shortfall cESŒ˛j˝�, which provides a useful
complementary breakdown of risk to positions.

The main difficulty in analyzing VaR figures and thus the need for additional
support measures arise because the VaR is generally not additive:

VaRŒ˛ C ˇ� ¤ VaRŒ˛� C VaRŒˇ�:

More background on this and actual use cases of our measures will be given in
Part II. Before that, the current chapter will mention additional helper measures you
should be able to reference. Some of them are useful, others less so; either way,
certain ones might be mandated by the regulator.

First, let’s address an apparent gap in our measures presented earlier. As
mentioned in Chap. 8, the analytical VaR approach immediately translates to an
analytical ES approach (we only need to tweak the final multiplier of the standard
deviation ever so slightly). But can, reversely, the concept of the conditional
expected shortfall be translated to the VaR as well? Can we find an additive
decomposition of the VaR to positions?

The answer is we sure can, and easily too, but we should nevertheless steer
well clear of it. First, how would we do it? Well, in analogy to the cES, we could
determine the index of the portfolio PnL vector’s VaR scenario; the corresponding
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Fig. 11.1 Individual and combined PnLs near the VaR scenario

entries in the positions’ PnL vectors could then be considered the individual “cVaR”
values for each position (of course summing up to the portfolio PnL in that scenario,
i.e., the VaR). We did the exact same for the cES—we just remembered all the
original indices of the 25 most negative portfolio PnLs.

Why should we avoid doing this? The short answer is that this measure would
be far too unstable, essentially yielding almost random numbers (the averaging
involved in the cES calculation, on the other hand, provides for stability). One
way to illustrate this unreliability of a cVaR is to artificially create, e.g., in Excel,
1000 pairs of (random normal) returns/PnLs of uncorrelated positions, along with
their sums, the hypothetical portfolio PnLs. Figure 11.1 depicts—for a random
example—the subset of those 20 return pairs with the largest portfolio losses. The
tenth return pair from the left (call it pair A) can lay claim to represent our VaR and
proclaim two cVaR values.

A first hint at the fickleness of all this is that the return pairs neighboring the VaR
one (e.g., pair B, the 11th from the left) exhibit quite different cVaR candidates.
Now assume the return sets to change slightly (after all, as time progresses, new
returns materialize and old ones disappear). Say, the fifth most negative PnL above is
dropped because its corresponding return pair vanishes. Suddenly, pair B sits at the
tenth location and provides apparently very different cVaR values.1 Workarounds
have been proposed to modify such a cVaR and to make it more stable, but they
essentially perform some sort of averaging over several entries around the portfolio’s
VaR scenario index and therefore basically converge to the cES behavior, with the
added baggage of custom heuristics.

Keep in mind that the desire for an additive decomposition of the VaR to positions
is comprehensible. It would allow us, for example, to cleanly assign parts of the risk
as described by the overall portfolio VaR to positions and sub-portfolios. Along with
this, the risk costs arising from the capital requirements could be allocated to units

1This issue gets even more pronounced for negatively correlated positions, where more return pairs
yield close VaR contenders.
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and departments and desks and individuals. A cVaR is too fickle, as we have seen,
but even the cES is not ideally suited: while additive and stable, its values can be
both positive or negative, offering no obvious “weight” interpretation akin to, e.g.,
some always non-negative probabilities. Such same-sign additive decompositions
are, alas, not available.2

Let’s now examine some other helper measures.

Individual VaR We are mostly interested in the VaR of a portfolio of positions,
i.e., some VaRŒ˝�. Of course we could compute each individual position’s VaR as
well, as in VaRŒ˛�, maybe with the aim to detect outlier positions or track down
suspicious changes or jumps in the overall VaR at the position level.

In practice, such an individual VaR is not that useful. A position with a
conspicuously extreme individual VaR might, in the end, not affect the portfolio VaR
by much (it depends on how the position is correlated to the remaining portfolio).
As another example, two positions that hedge each other could signal two extreme
individual VaR values but actually have, combined, no effect on the portfolio VaR
at all. If such hedges were to involve non-linear positions, we could potentially get
one extreme and one moderate individual VaR value, muddying the analysis waters
further (those positions’ combined influence on the VaR is, again, zero).

In some instances, sub-portfolio VaRs can of course be helpful, as they help
restrict the search space to position subsets when VaR changes need to be pinned
down. Calculating and storing each position’s VaR, however, can usually be avoided.

Incremental VaR When adding a new position ˛0 to an existing portfolio ˝ D
˛ C ˇ C : : : , the portfolio VaR changes. By how much mainly depends on the
new position’s size and its correlation to the portfolio’s PnL behavior. The resulting
new portfolio VaR can range from 0 (if the deal mirrors the portfolio exactly) to
arbitrarily negative values (if the deal is dominant). Naturally, we’d like to know in
advance how the VaR (and thus our costs, i.e., capital requirements) would change
if we entered a new position. Computing such an impact is often referred to as
performing a pre-deal inquiry.

Plainly, we just compute the new VaR and relate it to the current one. The new
position’s impact is called its incremental VaR:

iVaRŒ˛0j˝� D VaRŒ˝ C ˛0� � VaRŒ˝�:

2The concepts involved here are more deeply connected, as one could consider each position to
represent a separate asset. While we tried to delineate those views on risk decomposition, they
really represent two sides of the same coin. The terms marginal VaR and component VaR are
commonly used in this context. The names used here I chose by sympathy and memorability;
marginal VaR often also refers to what we called incremental VaR, while component VaR sounds
a bit like poet laureate or Astronomer Royal.
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We can do the same with a portfolio’s current positions. For a deal ˛ already
contained in our portfolio, we can determine the VaR impact of its removal from the
portfolio3:

VaRŒ˝ � ˛� � VaRŒ˝�:

This corresponds to the incremental VaR of the deal’s hedge, �˛, which
compensates for or cancels the original position’s impact:

iVaRŒ�˛j˝� D VaRŒ˝ � ˛� � VaRŒ˝�:

This expression should help drive home one particular point. When calculating
the incremental VaR, we usually have already calculated the portfolio VaR and
thus have at our disposal the PnL vectors of all positions and of the portfolio.
Determining the VaR impact is then cheap:

• When adding a new position, we only have to compute its PnL vector �p˛0

and
add it to the known portfolio PnL vector �p˝ before the subsequent sort and
lookup steps.

• When removing an existing position, we subtract the known �p˛ from the
known �p˝ .

For existing positions, this measure has similar drawbacks as the individual,
position-level VaR.

Partial VaR We usually generate scenarios on all risk factors. We can reduce this
scope to subsets of risk-factors, e.g., to only foreign exchange (FX) or to only
interest rate (IR) risk factors, which yields partial VaRs denoted as VaRFX or VaRIR.
This is done by creating new, distinct scenario sets where all but those risk factors
we’re interested in are kept constant.

Partial VaR figures facilitate locating possible sources of overall VaR changes. A
VaR jump in only one of the tracked partial VaRs expeditiously narrows down the set
of positions or risk factors we have to examine further. All major risk factor classes
should therefore be tracked this way. Theoretically, we could break this down to
individual risk factors, but this might become computationally too expensive.

Note that partial VaRs also do not add up to the overall portfolio VaR, the same
way individual VaRs don’t. Chapter 12 will illustrate this further.

There is a shortcut for actually implementing partial VaRs that avoids creating
separate scenario sets with (somewhat redundant) constant rows. The pricing step
can simply rely on the original scenarios and, before performing the computation,
force the appropriate scenarios to be constant on the fly (see Sect. 19.5).

3We must refrain from dubbing this excremental VaR.
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Synthetic Marginals Computing the partial VaR of a single risk factor (e.g.,
VaRIR-USD-Y10) would allow us to track the model performance with respect to just
that one risk factor and to its individual or marginal distribution. This would require
performing a whole VaR calculation over a million positions 2200 times over,
which is often unfeasible. A quicker alternative is to create artificial or synthetic
test positions that are only sensitive to individual risk factors or small sets thereof.

To keep the set of tracked risk factors small and manageable, we can use the
risk factors’ VaR-contributions to determine the main and thus most interesting risk
drivers and only set up and track synthetic positions for them.

Analyzing the behavior of those synthetic portfolios can then either show that that
model performs well with respect to major risk factors or help expose problematic
risk factors that might otherwise remain hidden in the joint distribution.

Stressed VaR Our VaR setup relates the recent two-year period of market activity
to tomorrow’s PnL behavior. Alternatively, one might ask which historic precedent
of a previously observed market period would, now and for our current positions,
indicate a high degree of risk—after all, such past periods might conceivably occur
in similar form again.

To answer this, we need to find the historical period4 of returns that projects
the most extreme VaR for our current positions. So for each past day, we take
its corresponding return window, create new scenarios based on it and on today’s
market scenario S0, and compute a VaR. One such return window will yield the
most extreme or stressed VaR.

Finding such a worst-case past period is computationally very expensive, as it
entails running a full VaR evaluation for each day in our history of thousands of
days. This step is therefore typically only performed once a year in a separate cali-
bration exercise.5 It should also be explicitly triggered whenever the characteristics
of our portfolio composition change drastically (e.g., when a new trading strategy
is put in place or when different risk factors start to dominate the portfolio’s risk).
The hereby settled stress period returns can then be used each day anew to compute
the current portfolio’s stressed VaR, off of the current market scenario. (Note that
for the stressed VaR the volatility rescaling step is omitted, for it would effectively
mean selecting the worst-case 20-day return period.)

A main reason for using this measure is simply that you might have to, as
regulators increasingly rely on it. As a mathematical instrument, though, it is not
very elegant. The stressed VaR has no direct relation to PnLs that are actually
observed, and it is thus nigh impossible to plausibilize (except that it should
exceed the VaR in all but rare instances). And its warning-signaling power may

4The regulator prescribes the window size to be used for this purpose; one-year periods are
typically used for the stressed VaR.
5The fast analytical approach can provide valuable support for speeding up this procedure. It
can, for example, run a first tentative selection, thus limiting the number of full VaR evaluations
required.
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be overstated: benign market conditions, like happy families, are all alike; every
market crisis is probably messed up in its own way.

The individual, incremental, partial, and stressed expected shortfall are
computed along the very same lines as their VaR cousins.
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