
10A Monte Carlo Modification

Our VaR model typically uses 2 years of data or 500 returns, and it generates, via
mirroring, twice that number of scenario returns. Yet we might be confronted with
smaller input samples, be required to generate more scenarios, or both:

• For newly introduced asset types, the usual 2 years of market data might simply
not be available.

• The regulator might prescribe the use of a smaller time window, e.g., 1 year or
250 days.

• Sometimes we’d like to analyze multi-day returns instead of daily ones; if we
want them to be non-overlapping, the effective number of available returns
shrinks fast.

• For various reasons, more extreme VaR levels could be desirable (e.g., a 0:1%-
VaR), or we might otherwise require a larger number of scenarios to increase the
density of their event coverage.

Mirroring, which only doubles the number of effective scenarios, might not be
sufficient in such cases. An alternative approach is one that corresponds to random
averaging, and it is called Monte Carlo approach. It generates arbitrary many
(normally distributed) scenario returns r from a given sample while preserving its
correlation structure in a numerically stable way.

To illustrate how it works, we start off from a single row vector of rescaled returns
Nr, which we will, to be more in line with the terminology in Appendix A, call x D
.x1; x2; : : : ; x500/. If we wanted to create one new individual normal return with this
sample’s properties, we would usually just estimate the mean and standard deviation
from the sample and generate a corresponding random normal.
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Alternatively, we could choose the more laborious route of drawing samples from
500 (independent) standard normals Ni and computing
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(Note: we will here assume a mean of zero to avoid having to juggle with too
many terms; this is also largely justified numerically in this setup.)

As a sum of normals, this expression is also normally distributed. Since each
normal has zero expectation, its expected value is zero. Its variance, by construction,
is the one implied by the sample:
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If we recalculate this expression for a full new set of standard normals, we can
generate a second return, and so on. But why bother with creating 500 normals
for just one single new return? The reason is that this scales well to additional
dimensions. If we throw a second vector of rescaled returns y in the mix, we can
calculate:
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The components X0 and Y 0 still preserve the mean and variance of the samples x
and y, respectively. But beyond that, they also preserve the sample pair’s covariance:
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(The final step uses EŒN2� D 1 and EŒN1N2� D 0 for uncorrelated standard
normals. All steps should be traceable via the statistics crash course in Appendix A.)

We can straightaway extend this from 2 dimensions to the 2200 dimensions of
our risk factors. Using 500 normals, we thus generate one column vector R of 2200
returns, in a way that preserves the (co)variances.
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Fig. 10.1 Returns via
random averaging

If we repeatedly recalculate the vector expression with new sets of standard
normals, we can generate arbitrary many return vectors R and thus arbitrary many
scenarios. Figure 10.1 illustrates how this can be expressed as a matrix-matrix
multiplication. With ŒN� a 500 � 3000 matrix of standard normals, the graph
shows how 3000 return vectors are generated from the 500 rescaled ones—in short:
ŒR� D 1p

3000
Œ NR� ŒN�.

The computational costs are negligible. The main drawbacks of this approach
are twofold: it enforces the generated returns to be normally distributed, and it
introduces an additional Monte Carlo error on top of the time series-driven noise.
To deal with the imposed normality, this approach can be combined with the
artificial kurtosis feature described in Chap. 9. Benign negligence (recommended),
increasing the number of return scenarios that are generated, or using standard
variance reduction techniques like antithetic variates can all help reduce the Monte
Carlo noise.

By the way, the textbook approach for generating random normals with a
given correlation structure is to Cholesky-factorize a covariance matrix and to
use the resulting triangular matrix to generate the desired normals. Yet numerical
errors in the floating-point calculations or additional, too restrictive assumptions on
the matrix properties—as in NumPy’s cholesky function—can cause standard
algorithms to fail, which would have to be addressed with non-trivial workarounds.
These issues are especially pronounced if the number of dimensions is larger than
the sample size, like in our case. We therefore avoid that approach altogether.

Using this Monte Carlo approach omits the mirroring step. Mirroring has, besides
increasing the sample size, the useful feature of making any return also appear as its
negative sibling—so a large, PnL-increasing return that would itself not influence
the VaR much is also bound to appear, mirrored, in a PnL-decreasing variant. This is
prudent, as we assume return directions to be essentially random and don’t want to
miss out on large ones just because our positions’ direction happens to be a fortunate
one. In addition, mirroring also forces the returns to have zero mean, which can be
desirable (even if the original mean is likely to be so close to zero as to practically
vanish anyway).



52 10 A Monte Carlo Modification

Luckily, random averaging already has an implicit mirroring effect built in: an
individual rescaled return Nr, as part of the random average of several returns, is
scaled by a different random number in each scenario, maybe C1:01 in one scenario,
�1:03 in the next, etc. Overall, this achieves a near-perfect mirroring of the input
returns as well.

A final note on the names of the presented VaR methods. We used the terms
historical, analytical, and—here—Monte Carlo approach. Each method, however,
clearly relies mostly on (recent) historical data. The conceptual difference between
them can be considered smaller than their names imply.
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