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Preface

This book sets out to describe the simplest market risk model that is still practical.
It outlines the model’s underlying math, daily operation, and implementation, while
stripping away as much statistical overhead as deemed fit. It does not advance some
novel methods but attempts to pick and present those modeling approaches and
methods that might conceivably do the job. We set up and operate a highly similar
model in a mid-sized Austrian bank; it performed very well overall, right through
some turbulent years in financial markets. Of the calls we made, we got a few right.
Some we didn’t at first, but we fixed them and hopefully learned from them. They
all came to shape this account.

I wrote this book for the fun of it. But why should you read it? If you are a recent
graduate on your first day in office or a time-starved manager ready to brush up
on your market risk fundamentals, you hopefully get an easy-to-digest introduction
to basic risk measures and their properties. If you are a programmer, you might
learn about the mathematical underpinnings of your code, making your exchanges
with the risk department just a bit smoother. If you are a quant, maybe you can
gauge the types of support statistics most useful to daily risk operation. If you are a
team leader allocating money and time, you possibly find ways to steer through the
technical jargon and rein in the understandable compulsion of your team to use the
latest tech and the fanciest math. If you operate the model on a daily basis, some of
the analytical support methods given here might help you understand, explain, and
defend the numbers. If you’re anyone, really, in this motley crew, I hope this book
will ease your communication with colleagues, clients, and controllers.

After my studies, I quickly figured out that college is far more fun than work, so
I applied to several programs at New York universities. By chance, I got admitted to
a financial mathematics one, where in my very first lecture I discovered this “bond”
thing, an alien concept in my cash-strapped student life. That other people may
likewise get exposed to market risk topics after varying journeys set up this book’s
angle. This book at times will state the obvious and thus often unmentioned—even
apparently trivial calls are easier to make if their trail is known to be trodden.
It will appear sloppy at times, as it proposes heuristics rooted in the nature of
imperfect real-world data. While it tries to offer a consistent notation, it will gladly
gloss over many technical details. Several opinions in it you will find judgmental;
indices missing in a sacrifice to readability; and shortcuts taken to save on paper and

ix



x Preface

rumination. (And those are just the infractions I committed on purpose.) The views
given here are mine and do not represent those of my current or former employers.

I meant this book, in the end, to be about simplicity and about communication
between team members of wildly differing backgrounds. I hope reading it is worth
a bit of your while.

Vienna, Austria Martin Auer
2018
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1Introduction

Financial markets let people trade promises of future payments. These payment
promises are called financial assets. Prominent examples are bonds or company
stocks. A bond is a way to borrow money, and it promises its buyer a future debt
repayment with interest. Stock is used to raise capital and promises its holder future
dividend payments. In addition to those, many other types of assets exist, but at
their core they all are tradable contractual claims on future cash flows. Supply and
demand determine the prices at which to buy or sell them—the prices at which to
enter positions.

Now, asset prices and thus the values of the positions in them change over time.
This can have fundamental causes, e.g., a company discovering a new drug or a
country recovering from a recession, but it can also be due to the market activity
itself, as witnessed in the hefty fluctuations of stock prices even on slow-news days.
These latter, seemingly random market movements in asset prices constitute market
risk to positions.

One way to assess this kind of risk is to determine the potential impact of specific
market movements on positions’ values. Such what-if inquiries often mimic or
simulate market shocks and are then called stress tests. If the shocks are tiny and
standardized, the results are called sensitivities; they serve to track and compare the
positions’ asset exposures.

In the same vein, you can try to estimate the plausibility and impact of future
asset price changes from historically observed ones and condense the effect on the
positions into some aggregate measure of risk. A prominent measure is the so-called
value-at-risk or VaR, which is a hypothetical daily loss expected to be breached once
every hundred days—in other words: the probability that tomorrow there will be a
loss larger than the VaR is 1%. A sibling of the VaR is the expected shortfall or ES,
which yields the estimated average loss over several worst-case scenarios.

These and similar measures are used to monitor the positions’ risk profile,
to signal critical market conditions, to limit exposures, and to otherwise meet
requirements as prescribed by law and banking regulation authorities. They may
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2 1 Introduction

also determine a bank’s crucial capital requirements, the amount of capital a bank
has to hold given its exposure to the markets, and thus the cost of doing business.
The risk numbers and their workings therefore matter to a large audience besides the
risk manager and his IT guy: to the trader, the accountant, the compliance officer,
the board member, and the regulator.

With the stakeholders many and varied, a risk model should not merely accu-
rately capture risks but also be transparent and easy to explain, avoid recurring
modifications and the resulting scrutiny, and operate reliably under real-world
duress like imperfect data. We now set out to describe a system designed to achieve
these goals.

Part I of this book outlines the basic risk measures and their relations, and it
proposes a simple VaR approach (a filtered historical one).

Part II describes how to apply the risk measures to common questions about a
risk profile’s bearings, and it details risk measure properties, time series behavior,
and model sanity-checks.

Part III illustrates a possible overall design of a risk system and presents ways to
implement this system into software.

Finally, the appendix collects some mathematical foundations, a brief digression
on risk-neutral pricing, and links to further reading material.

Before all that, however, the next chapter aims to give an intuitive introduction
to how risk can be thought of and compressed into one single number.



2Motivation

For some intuition on market risk, let’s first take a look at a simple asset position.
Assume throughout that our domestic currency is the dollar.

Consider a position of 10;000 units of a stock S whose price is quoted in euro.
We are interested in the dollar value of our position, which is affected by two asset
prices: the stock price Se in euro and the euro/dollar exchange rate e$, i.e., the price
of one euro in dollar terms. The current value or price p of our position is

p D 10;000 Se e$:

As stock price and exchange rate change over time, so does the value of our
position—it can net a profit or suffer a loss. We are interested in how large and how
likely a loss this position might experience tomorrow. We turn to history as a guide.
Figure 2.1 depicts the time series of stock prices over the course of 2 years or 500

business days.
The stock price was more than 30% lower 2 years ago, but the daily price changes

we are interested in were more subdued, as shown by the relative returns between
consecutive days given in Fig. 2.2. These returns seem to be a useful dimension
to work in. If tomorrow the stock price and the exchange rate were to change by
relative returns of x and y, then the change in value of our position would be

�p D 10;000 Se.1 C x/e$.1 C y/ � p

D p.1 C x/.1 C y/ � p:

This dollar quantity’s expected daily fluctuation or volatility is of interest to us,
and it depends on the underlying assets’ behavior:

• If the underlying assets fluctuate a lot, i.e., if they are volatile as manifested
by large returns in both directions, then the position’s value will also be more
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4 2 Motivation

Fig. 2.1 History of stock price

Fig. 2.2 History of stock prices changes, as relative returns

volatile. The standard statistical measures of volatility are the variance and its
square root, the standard deviation.

• If the underlying assets tend to move in the same direction, the combined effect
on the position will be larger, meaning higher volatility and risk; if they tend to
move in opposite directions, their impact will partially cancel out and translate
into lower position volatility. To measure this degree of co-movement, we use the
covariance and its normalized offspring, the correlation.

A risk model must account for both effects.
We can, in a first attempt, approximate the position’s price change as �p � px C

py (neglecting the small term pxy). Its volatility or standard deviation can be derived
from the standard deviations of x and y and from their correlation, all of which we
can, in turn, estimate from historical time series. We then assume the underlying
asset returns x and y to be normally distributed—a common, mathematically handy
assumption. Conveniently, it turns out that our �p, as a sum of normals, is then itself
normally distributed, which gives us a homely handle on its risk characteristics. We
will outline this analytical approach in Chap. 7.
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Such an approach is flexible in the sense that it is easy to tweak. Consider again
the time series of stock returns given above. Clearly, the recent returns on the right-
hand side seem to be more volatile than most of the older, previously observed ones.
This suggests that we should consider not the overall standard deviation but maybe
just the one observed in the most recent past, e.g., during the last 20 days. By simply
updating our volatility estimate for the stock this way, our model takes into account
the recent, apparent increase in the stock’s volatility and becomes more up-to-date
or in tune with current market conditions.

This basic model involves few and malleable steps. Alas, it also has several
drawbacks: it requires an admittedly modest amount of thought about standard
deviations and correlations; it (sometimes falsely) assumes normally distributed
asset returns; and it (often falsely) relies on well-behaved position pricing. (Good
behavior here means, loosely, that twice-as-large a return has twice-as-large a price
impact. Such linearity holds true in our example but does not have to in general.)

There is a straightforward way to avoid those drawbacks, at the expense of some
additional computation. Instead of worrying about the statistics of the underlying
assets, we ignore them and examine the whole set of hypothetical price changes
under the observed historical returns xi and yi:

f�pi D p.1 C xi/.1 C yi/ � pg:

In our example setup, 500 pairs of historical asset returns .xi; yi/ would yield 500

position price changes �pi—all certainly, and equally, plausible, since each one has
already been observed in the past. In fact, we can even do one better: if we add all
mirrored pairs .�xi; �yi/ to our initial set, we can obtain 1000 plausible position
price changes to work with—we simply hold that each uptick could have just as
well been a downtick, and vice versa. Put roughly, this is possible because we do
not substantially alter the core characteristics of the assets’ standard deviations and
correlations, and it is useful because we can operate on larger data sets with more
expressive statistics.1

This enlarged set of 1000 �pi-values can now be used to derive arbitrary
measures of volatility or risk: the standard deviation, the minimal value, the average,
the median, etc. This is the core idea in the historical approach, which we will
describe in Chap. 4.

Even at first glance, though, we see that the drawbacks of the analytical approach
mentioned above do not apply here. First, in the historical approach we don’t even
bother to compute and shuffle around the assets’ standard deviations and correlation.
We also do not make potentially unwarranted assumptions about the underlying
assets’ distributions, in particular their normality. Finally, we can use the exact price
of our position including, in our example, the small pxiyi terms, so even such non-

1We will later encounter an alternative method to artificially increase the number of price changes
to work with, also without using a larger historical observation period.
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linear behavior would not be an issue. All-in-all, this is a rare specimen of a model—
it combines simplicity and accuracy.

We’d almost be done, were it not for the tweak described above—the one where
we update our asset volatility estimate and base it on the most recently observed
returns to capture the current market mood. Not accounting for such recent market
information could lead to risk estimates based on outdated information and could
therefore potentially underestimate the current risk. The historical approach needs a
fix for this.

Luckily, the standard workaround is as simple as it appears beastly—we just
modify all historical returns: we stretch those that seem to appear in periods with a
volatility smaller than the current one, and we squeeze those that reside in periods of
larger volatility. We hereby obtain new rescaled asset returns and use those instead
of the original ones to get our set of position price changes. This model variation is
known as the filtered historical approach (we will usually omit this slightly obscure
label for brevity).

Both the analytical and the historical approach thus give us means to describe
the volatility of our position’s value. The analytical approach expresses the gains
and losses via a normal distribution with some standard deviation; the historical
approach operates on a set of plausible, historically derived gains and losses. We are
now ready to graph both approaches, show how they are aligned, and compress the
full risk picture into one snappy measure.

Let’s first depict, in the somewhat ugly Fig. 2.3, the price changes of our position
obtained from the historical returns by simply plotting each change as an individual
dot. We see that the price changes lie roughly between �30;000 and C30;000

dollars. Because they are many and huddled together, the dots overlap and the figure
is murky. A much better view is given by a histogram, which counts occurrences of
price changes in separate bins (see Fig. 2.4).

The analytical approach, on the other hand, uses a normal distribution with some
standard deviation to express the volatility behavior of price changes. Its shape

Fig. 2.3 Price changes, raw
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Fig. 2.4 Price changes, histogram

Fig. 2.5 Price changes, analytical

or probability density function is essentially an idealized version of the histogram
above (see Fig. 2.5).2

Now, the graphs actually already represent the full risk profile along the two risk
dimensions of probability and impact. Still, we want to consistently condense that
wealth of information into a succinct, single number (just imagine having to relay
the copious histogram shape over the phone!).

Why not just use the minimal, most negative price change, i.e., the most severe
loss, as such a summary measure of risk? Well, this would not be elegant. Such
a measure has no ready meaning in the analytical world of normal distributions
because losses are unbounded there. In the historical setup, it might oscillate wildly
over time, since it would be driven by a single observation, potentially an extreme

2Note the different y-axis scale of histogram and normal density. The latter is normalized to a total
area of 1, which lets us interpret partial areas as probabilities. We could normalize the histogram,
too, by dividing the bar heights by the total bar area.
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outlier. Alternatively, the standard deviation is a well-defined and highly stable
measure in both worlds; however, it may neglect substantial clusters of unusually
large losses, which really should be accounted for.

Yet these considerations already hint at a viable, middle-ground solution. It is to
split up the price changes into two sets, one containing the ten largest losses and one
containing all the remaining price changes, and then to characterize the overall risk
with the threshold value that separates those two sets. This is the value-at-risk or
VaR. This measure is both stable over time and sensitive to clusters of large losses.
We expect to see losses more severe than this VaR in 10 out of 1000 cases, or with
a 1% probability.

In the historical approach, the VaR is simply the 10th most severe loss, as seen
in Fig. 2.6. Hence, sorting the price changes is all that is needed to pick it out.

In the analytical approach, the price changes are represented by a normal
distribution with some standard deviation. But here, too, the VaR separates the worst
1% of the outcomes from the rest, as visualized in Fig. 2.7. The VaR is again easy
to compute because it turns out to be simply the normal distribution’s standard
deviation times a constant of �2:33. So in this analytical setup, the VaR doesn’t
actually give us any additional information that the standard deviation doesn’t
already imply. In the historical approach, however, the VaR does do that—it captures
how gains and losses behave at the very fringe of plausible values.

Fig. 2.6 Raw price changes and VaR

Fig. 2.7 Analytical price changes and VaR
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We don’t choose between these models but will rather use them both:

• The analytical approach is fast, which makes it well-suited for many support
tasks. It yields reasonably accurate results if assets and positions behave well,
and it thus serves as a good backup or sanity-check. It also provides, as side-
products, useful hints for getting at the reasons of VaR changes.

• The historical approach is more precise because it embraces both non-normal and
non-linear behavior. Nevertheless, it is simple to the point of being dumb, which
is always a good feature that makes knowledge sharing easy and programming
bugs rare.

A brief reminder before we start proper: you can find recaps of basic concepts like
the standard deviation, the correlation, or the normal distribution in Appendix A. It
is meant to be a bare, self-contained crash course in statistical topics most relevant
to VaR modeling, or a slightly more formal reference. Otherwise, the following
account will usually just intersperse the statistical results appropriate to the issues
at hand.



Part I

Measures



3Basic Terms and Notation

In this chapter, we give names to some basic concepts—assets, prices, returns,
positions, portfolios, and profit-and-loss—and introduce a few related notational
conventions.

Assets and Markets Financial assets are contracts that impose obligations to make
and confer rights to receive future monetary payments. They are first set up or sold
or issued mainly to raise money, as the rights come at a cost. This way, for example,
a company going public sells stock or stakes in itself in exchange for the promise of
handing out to the buyer some share of the profits to come. Assets are thus claims
on future cash flows.

These assets (more specifically, the rights that come with them) can later be
traded in financial markets like the stock market. These markets lower entry barriers
and increase participation because asset buyers know that they can easily get rid
of their investment. Markets thus help raise and allocate capital, borrow and lend
money, and unwind or hedge such obligations. Market risk, now, is concerned not
with the initial creation or issue of assets (that’s the investment bankers’ job) but
with those markets’ short-term behavior.

Apart from the prominent company stock, a wide range of asset types exists. A
bond is a debt agreement; buying one guarantees a future repayment by the bond’s
issuer of the money “lent” to him in the initial bond sale, along with interest. A
call option on a stock grants its buyer the right to a conditional future cash flow
that depends on the stock’s future performance. A swap comes with both rights and
duties; here, two parties agree to periodically exchange payments of different types,
for example, a fixed amount versus a variable one that depends on current market
conditions. Even money itself—a government-issued IOU granting the right to settle
public and private debts—can be considered a financial asset (alas, with guaranteed
future payments of zero).
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14 3 Basic Terms and Notation

The perceived value of all such assets is driven by supply and demand in the
markets; the recent trading transactions determine or, better, offer a glimpse on the
assets’ current prices. We can readily observe the price of General Motors stock,
the price of a US government bond, and the price or foreign exchange rate of Swiss
money.

Bond Basics Before we can proceed, we must take a quick digression and explore
how these prices are best quoted. In theory, we could quote them all in monetary
terms, i.e., as dollar prices—after all, money is what’s actually changing hands in
any given transaction. Yet for certain asset types, other ways to express the prices
are more insightful, especially as they allow for better price comparisons.

Take a fixed rate bond, for example, which promises to pay out a certain dollar
amount or nominal at some future date or maturity, and to also make several smaller,
intermediate payments called coupons, e.g., of 2% of the bond’s nominal each year.
The relation between those future payments and the bond’s current price allows for
a consistent way to describe different bonds and to make them comparable. This is
best illustrated with a zero coupon bond or zero bond, which is a special fixed rate
bond promising only a final repayment of some nominal while making no coupon
payments in between. Take, for example, a 1000$, 2-year zero bond worth 950$. We
can determine how much money this bond “earns” by calculating, via compounded
annual percentage increases, its rate of interest r from

950 .1 C r/2 D 1000:

It turns out that this bond pays r D 2:6% interest, which could now be easily
compared to the rate achieved from a different zero bond, say, a 2000$, 7-year one
currently trading at 1671$. (By the way, these two bonds earn the same interest.)
The idea is easy to extend to bonds in general, since individual coupon payments
can be viewed as small zero bonds.

So, basically, interest rates are best regarded as a convenient way of quoting (and
thus comparing) actual bond prices. Of course, if you knew a bond’s interest rate,
maturity, and nominal, you could compute its current price; this is routinely done
and called cash flow discounting. Still, it is helpful to keep in mind the underlying
real dependency: interest rates are derived from actual bond transactions and prices;
they do not determine those prices but express and replicate them.

Here are a few bond traits to keep in mind:

• The interest rate depends mainly on two factors: the creditworthiness of the bond
issuer and the bond’s time to maturity, i.e., how far off the repayment will take
place. High creditworthiness means lower interest rates; a long time to maturity
usually means higher interest rates. For each issuer, interest rates are expressed
as functions of time to maturity, or r.t/.

• In place of the annual compounding, other compounding frequencies, like a semi-
annual one, can be used just as well. The most convenient one is the limiting case
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of continuous compounding,1 which relates bond price p, nominal N, interest rate
r.t/, and maturity t via

p er.t/t D N:

The reverse operation, discounting, in this case becomes

p D Ne�r.t/t:

• To actually determine such interest rate functions r.t/, a procedure called
bootstrapping is used. A simple example helps describe it. Assume that there are
two bonds out there for some issuer, a 1-year zero bond B and a 2-year fixed rate
bond B0 with annual coupon payments. The first bond’s price will immediately
yield the 1-year interest rate r.1/ from

p D Ne�r.1/�1:

The 2-year bond’s first coupon payment, also due in one year, can then be
discounted with that rate; the remaining 2-year payout of nominal plus final
coupon then locks in the 2-year interest rate r.2/ via

p0 D c0e�r.1/�1 C .c0 C N0/e�r.2/�2:

This procedure can then be naturally extended to further, longer bonds. Alter-
natively, you can treat this as an optimization problem and try to find the r.t/
function that best fits the available bond prices. This means searching, e.g., with
Excel’s solver, for values x and y that minimize the following sum of squared
pricing errors:

. p � Ne�x�1/2 C . p0 � c0e�x�1 � .c0 C N0/e�y�2/2:

• It is often convenient to quote some rates in terms of spreads. For this, you
first determine a base interest rate, e.g., the US interest rate r.t/ derived from
government debt. The interest r0.t/ some company’s bonds pay can then be given
as spread s.t/ over that base rate:

s.t/ D r0.t/ � r.t/:

1Interest rates and their compounding conventions are inseparable. Annual compounding with r,
over a one year horizon, means we have to compound with .1 C r/. Semi-annual compounding
with r, again over one year, means we must compound with .1 C r

2
/2 . Because .1 C x

n /n converges
to ex for large n, compounding with er also seems to make sense as the limiting case of infinitely
small, continuous compounding steps.
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This allows us to elegantly separate generic from issuer-specific interest rate risk.
• Interest rates are usually positive, and prices of zero bonds thus smaller than their

nominals. There are exceptions, e.g., in flight-to-safety circumstances, where
bond buyers actually pay the borrower more than the nominal they’ll get in return
to safely store their wealth.

• Finally, a common unit encountered in dealing with interest rates is the so-called
basis point: it denotes one one-hundredth of 1%, or 0:0001.

Scenarios The market’s price information can be expressed, at any point in time, in
a snapshot of asset prices we call scenario. Typical scenarios are the current market
scenario, past or historical market scenarios, and hypothetical scenarios.

Say, we want to track General Motors (GM) stock, the currencies e and £, US
and UK government bonds, as well as GM debt. The current market scenario S0

might look like this:

S0 D

0
BBBBBBBBBBBBB@

35$
1:10$
1:54$
0:52%
0:72%
1:40%
1:60%
2:10%
2:30%

1
CCCCCCCCCCCCCA

$

GM stock price
e/$ exchange rate
£/$ exchange rate

US interest rate, 1yr
US interest rate, 3yr
UK interest rate, 1yr
UK interest rate, 3yr

GM spread over US interest rate, 1yr
GM spread over US interest rate, 3yr

In practice, these scenarios are much larger vectors. We might want to track, say,
100 exchange rates; dozens of interest rate curves for major countries or currency
regions, each ranging in maturities from 1 day/overnight, over 1 month, 3 months, 6
months, up to 50 or more years; spread curves for various issuers; stock prices; etc.
For mnemonic purposes, let’s assume we track 2200 assets.

The price history is, in our case, expressed in 520 historical scenarios H1 to
H520, with the latest scenario H520 corresponding to the current market scenario S0.
To compute VaR, sensitivities, and stress tests, we will soon use artificially created,
hypothetical scenarios S1, S2, etc..

Risk Factors and Returns Each component or value v in a scenario is associated
with an asset. Since those assets drive the market risk, we also refer to them as risk
factors.

Changes in the values of risk factors, usually between consecutive days, are
called returns. There are various ways to quote returns between two values v0 and
v, for example, absolute returns v0 � v, relative returns .v0 � v/=v, or logarithmic
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or log returns log.v0=v/, which behave similarly to relative returns.2 A risk factor’s
type suggests the appropriate return type to use. If a stock, say, is up by 2 dollars, it
matters whether it was worth 4 or 400 dollars beforehand—we therefore use either
relative or log returns for such prices. For interest rates, we use absolute returns,
which can be neatly motivated by the close, proportional relation between the log
return of bond prices log.e�r0t=e�rt/ and the absolute return of the corresponding
rates r0 � r. You can find more details on return types in Chap. 9.

Finally, note that returns are dimensionless.

Positions and Portfolios We call our own asset exposures positions, and we denote
them with Greek letters (˛; ˇ; : : : ). Examples are a position ˛ of 10 units of GM
stock (“10GM”) or a three-year, 100$ zero bond position ˇ (“C100$ @3yr”).
Assume that we need to keep track of many positions, e.g., 106 different ones.

Typically, we are interested in a whole set or portfolio of positions:

˝ D ˛ C ˇ C : : :

The mathematical operation C in such expressions denotes set operations, as you
can’t, e.g., really add a dollar and a unit of stock. Some basic arithmetic still makes
sense, for example, ˛ C ˛ D 2˛ plainly means to double down on a position.

Negative signs denote that you owe something, which should come as no surprise
to anyone who has ever seen a negative account balance like “�10$.” We can owe
other assets as well, for example, 10 units of GM stock or “�10GM,” in a position
we might as well call �˛. To enter such a position, you borrow the stock and sell
it—this is called to short the stock. It is used to bet on falling prices, for you might
be able to buy the stock back on the cheap before returning it. (Being long something
means to own it.)

Hedges If you borrow stock but decide to just keep it for a while, you enter two
opposing positions at the same time: you owe �˛ D �10GM and also hold the
borrowed ˛ D 10GM. Your portfolio is

˝ D �˛ C ˛:

Even though the individual positions may change in value and are thus risky, this
combined portfolio carries no risk: regardless of how the stock performs, you can
obviously always just return it without losing money.

Another take on this is that such opposing positions effectively cancel each other
out—whatever one position gains, the other one loses. For example, if you both own
and owe euro, a falling euro will decrease the dollar value of your euro holdings but

2Careful with log returns in Excel: the natural logarithm is required, so use the LN function instead
of the (tempting but base-10) LOG one.
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also reduce your (euro) debt burden in dollar terms. Two positions that behave this
way are said to hedge each other. They don’t necessarily have to be strictly opposite
positions as in our example of a perfect hedge. Two long stock positions, say, in a
company selling swords and in one selling ploughshares, may also act as hedges if
their stock price movements mirror each other closely.

Prices and Profit-and-Loss Determining the value of a position is called pricing
the position. Conceptually, it means looking up the position-related asset prices in a
given scenario. The position price is thus a function of the scenario. Here are some
pricing examples under the scenario S0:

• A position ˛ of “10GM” means we own some GM stock; its current dollar value
or price is

p˛.S0/ D 350:

• A corresponding short position �˛ would be valued at

p�˛.S0/ D �350:

• A bond position ˇ paying 100$ in three years’ time can be expressed as “C100$
@3yr”. We infer its current dollar price from

pˇ.S0/ D 100 e�0:72%�3:

• Another bond position � pays 70£ in two years’ time (“C70£ @2yr”). Prices
of UK bonds due in two years are not quoted in our scenario, but it seems
reasonable to assume an interest rate that’s somewhere between the 1- and 3-
year ones given—we use their average of 1:50%.3 We also, of course, need to
convert pounds into dollars. The bond’s price is then

p� .S0/ D 70 e�1:50%�2 � 1:54:

As asset prices move, the values of positions change. This change in value is
called profit-and-loss or PnL, and it can be expressed as the difference of prices
under two scenarios S0 and S1:

�p˛ D p˛.S1/ � p˛.S0/:

3This price approximation is simple, but there are others far more complex. They are the subject
of quantitative finance, which interpolates new asset prices from known ones.
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Like prices, PnLs are dollar values. If GM stock is only worth 33$ in scenario
S1, our stock positions ˛ and �˛ change by

�p˛ D p˛.S1/ � p˛.S0/ D 330 � 350 D �20;

�p�˛ D p�˛.S1/ � p�˛.S0/ D �330 � .�350/ D C20:

Of course, prices and PnLs are additive, so the price and the PnL of a portfolio
of positions (under the same scenario) are

p˝ D p˛ C pˇ C : : : ;

�p˝ D �p˛ C �pˇ C : : :

For opposite positions, we have

p˛ D �p�˛;

�p˛ D ��p�˛:

When dealing with several hypothetical scenarios Si, we are often interested in
whole vectors of price changes—PnL vectors—relative to a base scenario S0. We
write

�p˛ D �
p˛.S1/ � p˛.S0/; p˛.S2/ � p˛.S0/; : : :

�
:

Please note: we will denote column vectors like scenarios with bold, uppercase
letters X; row vectors like PnL vectors with bold, lowercase letters x; and matrices
with brackets ŒX�. We want the fundamental data entity of a single position’s PnLs
to be a row vector; this settles the orientation of the remaining vector types.

We try to keep the notation light and avoid indices as much as possible, and
we use real-world ranges (like 2200 risk factors, a history of size 520, or our 106

positions) to more intuitively keep track of the dimensionalities involved.
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One main concern of market risk management is to guess the plausible future
behavior of a portfolio’s value. There are two main parts to this:

1. Estimate asset price movements: compute returns and generate scenarios.
2. Determine the impact of those movements on the positions’ values and distill

portfolio risk measures: price positions, aggregate results, and summarize.

There are several ways to implement this, and they differ in accuracy, underlying
assumptions, and computational effort. We propose to mainly rely on a variant of
a historical approach and to back it up by a second, approximate one based on
normal distribution assumptions. Both approaches are conceptually simple. The
historical one is more accurate and makes few assumptions on the underlying
market data, but it is computationally expensive. The approximate approach is less
accurate and makes more assumptions on market data and pricing behavior, but it is
computationally cheap.

This chapter describes the main historical approach. It assumes that risk factors
will roughly behave like they did in the recent past, and that their observed returns
exhibit volatilities that change over time. It computes historical risk factor returns;
it rescales them to be responsive and mirrors them to increase the sample size; it
creates hypothetical future scenarios; it prices each position under each scenario; it
aggregates the prices into portfolio PnLs; and it reports summary stats derived from
those PnLs.

We now outline these individual steps in more detail.

Step 1: Calculate Returns We base our analysis on the recent 2 years of market
price information (1 year roughly contains 250 business days), more specifically,
on 520 historical scenarios H1; H2; : : : ; H520. Each historical scenario corresponds
to the market scenario of a past day. We want to track 2200 risk factors, so each
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Fig. 4.1 Daily stock returns, raw

historical scenario is a column vector with 2200 entries. Aligned next to each other,
these columns form a 2200 � 520 matrix ŒH� with 2200 rows and 520 columns.

Any row h D �
h1; h2; : : : ; h520

�
in this matrix corresponds to one risk factor

and represents the time series of its values. For each such row, we calculate raw
historical returns eri between consecutive days. Note that different risk factors
might use different return types and that we need to keep track of those types.
For risk factors like stock prices and foreign exchange rates, we use log returns
eri D log.hiC1/ � log.hi/ D log.hiC1=hi/; for interest rate or spread risk factors, we
use absolute returnseri D hiC1 � hi.1

Doing this for each day in a row and for each row yields a 2200 � 519 matrix
of raw returns ŒeR�. The wobbly tilde should denote that those returns potentially
exhibit a history of varying volatility.

Step 2: Rescale Returns As hinted at in Chap. 2, we now rescale the historical
returns of each risk factor to its current volatility. Let er denote any row of ŒeR�,
containing 519 historical returns associated with a risk factor. We assume that the
most recent 20 returns er500 to er519 give us the best estimate of the current market
volatility of that risk factor, and we use their standard deviation as target volatility
T. We want to stretch, or increase in magnitude, past returns that took place in
periods of low volatility; we want to squeeze, or decrease in magnitude, returns of
past high volatility periods. We picture our goal in Fig. 4.1.

To accomplish this, we first estimate the local volatility Li of each past returneri

as the standard deviation of the 20 returnseri�19;eri�18; : : : ;eri, i.e., over a window of
size 20 that runs up to and includeseri. We then simply determine the rescaled return
Nri as

Nri D eri

Li
T:

1Other return types for interest rates can commonly be encountered (see Chap. 9).
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Fig. 4.2 Daily stock returns, rescaled

We do this for each return eri—except for the first 19 ones, as they don’t have
enough preceding values for that local vola. We discard them and are left, by a
happy coincidence, with an even number of 500 rescaled returns we rename to Nr1 to
Nr500. Figure 4.2 shows how the series of rescaled returns looks for our example.

Doing this for every row yields a 2200 � 500 matrix of rescaled returns Œ NR�. The
bar should denote the “even keel” volatility behavior of the rescaled returns.2

Step 3: Mirror Returns For our historical approach, we rely on past data. We need
a decent number of days to do useful statistics, but we want to avoid time series
much longer than 2 years, since we hold ancient information to be less relevant
today. Still, the sample size of 500 returns seems to be a bit small, especially when
compared to the large number of risk factors. A neat trick can help: if we assume
that past returns were equally likely to go up or down, we can simply negate all
of our returns and append those mirrored returns to our original sample, doubling
its size. This does not unduly alter volatilities or correlations. The resulting return
matrix is then the 2200 � 1000 matrix Œ NR; � NR�, or simply ŒR�.

Step 4: Create Scenarios We are now ready to predict tomorrow’s scenarios,
based on the current market scenario S0.3 Each entry in (the column vector) S0

corresponds to a value of a market risk factor; let one such value be s0. If we take
the corresponding return vector r (a row in our return matrix), we can generate a
row of scenario values for that risk factor. Together with its current value as first
entry, we obtain a scenario vector of size 1001.

2A simpler rescaling procedure would be to just rescale all returns with the same constant to
achieve the desired target volatility. The drawback here is that—potentially brief—high-vola
regimes would dominate the resulting correlation disposition.
3Note that S0 coincides with the latest, most recent historical scenario H520.
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We just need to be mindful of the return type appropriate for any given risk
factor:

• Absolute return scenarios are

s D �
s0; s0 C r1; s0 C r2; : : : ; s0 C r1000

�
:

• Log return scenarios are

s D �
s0; s0 er1 ; s0 er2 ; : : : ; s0 er1000

�
:

Repeating this process for each risk factor yields the 2200�1001 scenario matrix
ŒS�. Its first column is S0, the current market scenario. The remaining 1000 columns
S1 to S1000 are our risk factors’ hypothetical VaR scenarios.

Step 5: Price Positions and Determine PnLs For any given position, we can
determine prices under each scenario:

p D �
p.S0/; p.S1/; p.S2/; : : : ; p.S1000/

�
:

Subtracting the current market price from the other scenario prices yields the PnL
vector of size 1000:

�p D �
p.S1/ � p.S0/; p.S2/ � p.S0/; : : : ; p.S1000/ � p.S0/

�
:

We repeat this step for each of our 106 positions.

Step 6: Aggregate Positions We are usually interested in the PnL behavior of a
portfolio of positions ˝ D ˛ C ˇ C : : : ; to obtain the portfolio PnLs, we simply
add the positions’ PnL vectors:

�p˝ D �p˛ C �pˇ C : : :

Step 7: Determine Risk Measures For any PnL vector—of a position or a
portfolio—we can then obtain various risk measures. For the 1%-VaR, we sort the
vector and (because our PnL vectors are of size 1000) take its 10th most negative
entry. We denote this by the bracketed index “(10)”:

VaRŒ˝� D �p˝
.10/:

Figure 4.3 outlines these steps and traces the various matrix dimensions.

And that’s all there is, really, to our VaR model. Yet since it can be easy to
lose sight of the wood for the trees, we must re-emphasize the one important
and slightly non-trivial step—the rescaling of the historical returns. The proposed
way to do it is to apply a simple variant of a feature used by the family of
filtered historical simulations. (Originally, such simulations use so-called GARCH
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Fig. 4.3 Returns, scenarios, prices, PnLs, and VaR

estimates to determine local vola levels, but otherwise they operate equivalently.)
The rescaling of returns is sometimes referred to as volatility declustering; we will
mostly stick to calling it volatility rescaling.

This rescaling is important because it allows the use of the full set of historical
returns and their correlation information while still accounting for the most recent
vola levels seen in the market—the model is not beholden to potentially unrealistic,
long-gone vola behavior. The model is able to react quickly to changes in the
markets, so if volatilities increase, it will very soon yield more sizeable VaR
estimates and indicate a larger risk. For more on this model reactivity, please refer
to Chap. 14.

Vola rescaling, even though it operates on time series, should not be viewed
through the lens of time series modeling. It is largely parameter-free, does not
minimize error functions, and estimates no regression coefficients. It is probably
best interpreted as operator, as a vector-to-vector function f .�/,4 which takes raw
historical returns as input and yields rescaled returns as output. It has only two
goals: (1) to make the rescaled returns as volatile as desired and (2) to preserve the
co-movements and thereby correlations of historical return pairs (note how rescaling
never changes a return’s direction).

4The various operators in fields like signal or image processing are often called filters.
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The operator does not aim to do anything else. Specifically, it does not try
to extract or preserve further statistical properties of the original time series. We
implicitly assume that many such characteristics change over time and that it is
neither very useful nor feasible to try to grasp them. (See Sect. 17.6 for a more
detailed discussion of a specific statistical property the operator ignores.)

Now, whether such an operator is “correct” or “wrong” is not really a valid
question—it can certainly be technically computed, and it clearly achieves its, very
restricted, ambitions. But whether it is sensible in light of the overall goal of having
a realistic VaR estimate, i.e., whether it is possible to discard much of the historical
data’s properties, only end-to-end model tests like those given in Chaps. 15 and 16
can reveal.

Some final remarks and links to follow-up topics:

• One model parameter we encountered is the size of the windows used to
determine local vola levels, in our case 20. This could be regarded as being a meta
parameter, i.e., one with no mathematical optimality to it, set at the model users’
discretion. Defending the choice of parameters whose meta aspect is questioned
can be challenging; Sect. 17.4 delves into this topic.

• The local vola a return is rescaled with is affected by the return itself. This might
lead to questions from model reviewers, as some alternative approaches constrain
the vola estimate to rely on strictly preceding returns only. In short, both options
work. The advocated one can be considered to operate plainly in the vein of,
for instance, a moving average operator, which also “self-impacts” and does so
without scrutiny. The case for our choice is one of numerical stability in rare
cases; Chap. 9 has more on this topic of the local vola window’s location.

• Another variant of the historical simulation is the BRW approach,5 which
does not use volatility rescaling. It instead computes portfolio PnLs from raw
historical returns and assigns weights (summing up to 1) to them, with recent
PnLs weighted more prominently. The PnLs are sorted along with their weights;
a 1% cumulative weight of the largest losses then signals the PnL to be used
as VaR. This is a perfectly fine and workable method. In my view, however,
the approach proposed in the present chapter is slightly more elegant: bare-bone
BRW (without mirroring) dismisses positive PnLs in trying to react to market
vola changes; it requires some extra steps, however simple (weight handling and,
typically, interpolation), which makes manual test computations or comparisons
a tiny bit more involved; the decay parameter determining the weights is, in my
view, less tangible than plain vola windows; the correlations that end up getting
used are also weighted towards the recent past and potentially less stable; and
adding a Monte Carlo layer would be faintly more cumbersome. Still, expect its
results to strongly resemble those in our approach.

(You can find further references, for example, for the filtered or the BRW
approach, in Appendix C.)

5So named after Boudoukh, Richardson, and Whitelaw.



5Sensitivities

The price of a position depends on the underlying assets or risk factors, and we
express this price as the function p.S/ of a scenario. A natural question to ask is how
this price reacts to specific scenario changes. The particular price change resulting
from a small change in only one of the underlying risk factors is called the sensitivity
of the position with regard to that risk factor.

To calculate a specific sensitivity, we can change one risk factor value of a
given scenario and reprice the position with the new scenario—the difference to
the original price is the sensitivity. By convention, we typically use a relative or
absolute change of 1 basis point.

Take, for example, a zero bond that pays 1;000;000e in 2 years’ time, and assume
a 2-year interest rate (IR-EUR-Y02) of 3% as well as a e/$ exchange rate (FX-EUR)
of 1:11. The current dollar price of this bond is

1;000;000 � e�3%�2 � 1:11 D 1;045;358:63:

Its sensitivity with regard to the interest rate risk factor is

1;000;000 � e�3:01%�2 � 1:11 � 1;045;358:63 D �209:05: (5.1)

So this position loses 209$ in value if the 2-year interest rate increases slightly.
Its sensitivity with regard to the exchange rate risk factor is

1;000;000 � e�3%�2 � 1:110111 � 1;045;358:63 D C104:54: (5.2)

This position therefore gains 104$ in value if the exchange rate increases slightly,
i.e., if the euro appreciates against the dollar.

(Notice the absolute 1-basis point increase in the interest rate from 3% D 0:03

to 3:01% D 0:0301, and the logarithmic 1-basis point increase in the exchange rate
from 1:11 to 1:110111 D 1:11 � e0:0001.)
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The sensitivities with regard to all other 2198 risk factors are zero—those risk
factors do not influence this position’s price.

Sensitivities let us compare positions by pointing out which risk factors they are
exposed to, which direction this exposure takes, and which positions are exposed
most to any specific risk factor. They also allow us to compare risk factors and to
determine the most influential ones.

Sensitivities and market risk measures like the VaR are related. Typically, a
portfolio with zero sensitivity to a specific risk factor will not show market risk with
regard to that risk factor (except in special non-linear setups). A large positive or
negative sensitivity, however, hints at major risk drivers. A risk factor, for example,
with a sensitivity of 1000 (and that per just 1 basis point!) can apparently noticeably
affect prices and thus our risk as it changes. (Since those changes can go either way,
the sign of the sensitivity does not tell us all that much here.) Two risk factors with
a similar sensitivity may affect the overall risk differently, though: a risk factor that
typically jumps between C5 and �5 basis points has less impact than a risk factor of
the same sensitivity but with a C10 to �10 jump range. We will explore the relation
between sensitivities, volatilities, and risk in Chap. 7.

Conventions The bond in our example above has a maturity of exactly 2 years.
What if it had one of 18 months, i.e., 1.5 years? Different sensitivity conventions can
be used in this case. (Assume that, like before, our 1-year interest rate is 2%, that
our 2-year interest rate is 3%, and that such a bond is priced with the interpolated,
1.5-year interest rate of 2:5%.)

• Theoretically, we could just define the 1-year sensitivity to mean the price change
from a 1-basis point shift of the interest rate in the whole interval Œ1 year, 2 year/,
i.e., via a partial parallel shift of the interest rate curve (see Fig. 5.1). The bond
would be repriced under r0.1:5/ D 2:51%.

Fig. 5.1 Partial parallel shift of interest rate curve
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Fig. 5.2 Bending the interest rate curve like a bowstring

• Alternatively, we could apply a 1-basis point shock to the rate at one spe-
cific maturity only and then interpolate towards the neighboring maturities’
unchanged rates—much like bending a bowstring. Figure 5.2 illustrates this.

In this case, our bond will, due to the interpolations, only experience an
effective 0.5-basis point impact when calculating its 1-year sensitivity. However,
it will also experience a 0.5-basis point impact from the 2-year sensitivity
calculation. This effectively smears out the bond’s sensitivities across two risk
factors or interest rate maturities. (Their sum, though, will be very close to the
parallel shift sensitivity above.)

The bowstring approach is preferable. It is consistent with how we would
interpolate in the VaR calculation (this lets us use the same framework without any
sensitivity-specific adaptions). The most important point in its favor, though, is its
numerical stability. In the parallel shift approach, a bond with a maturity of 2 years
and 1 day will only affect the 2-year sensitivity; 2 days later, its maturity will be 2
years minus 1 day, and thus fully impact the 1-year sensitivity. This sudden jump is
a bit jarring.

It gets even worse for the parallel approach when it comes to hedges. That
is because real-world hedges might easily be a few days off with regard to their
maturities, i.e., not match perfectly. If both positions in such a hedge fall into the
same time interval that is parallel-shifted, their sensitivities correctly cancel each
other out to zero. Yet close to the interval borders, the hedges might happen to fall
into distinct intervals—we’d observe two opposing sensitivity spikes where ideally
there should be none at all. This is unwarranted and distracting noise. The bowstring
approach, now, is able to neatly avoid this noise: as time passes, it just makes
sensitivities flow very gradually from maturity to maturity. There are no worries
about interval boundaries, no sudden sensitivity jumps, and no hedges split asunder.

Framework To actually compute the sensitivities, we can use the same framework
used in the VaR setup encountered before. Starting off with our current market
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scenario S0, we create a new scenario S1 that is identical to S0 except for a 1-basis
point return applied to its 1st entry. We then copy S0 to a new S2, applying a return
only to its second entry, and so on. In the end, each of the 2200 new scenarios differs
from S0 in only one entry.1 All the Si together form a 2200 � 2201 scenario matrix.

For any position, these scenarios then yield 2201 prices and 2200 price changes
or PnLs, each a sensitivity associated to one risk factor:

s˛ D �
p˛.S1/ � p˛.S0/; p˛.S2/ � p˛.S0/; : : : ; p˛.S2200/ � p˛.S0/

�
:

Such a sensitivity vector describes the individual exposures of a position to all
the risk factors; it is usually non-zero for only a few of them. Sensitivity vectors are,
like other vectors of price changes, additive, and the portfolio sensitivities become

s˝ D s˛ C sˇ C : : :

Another way sensitivities may be added is within one position or portfolio. We
can, for example, take a sensitivity vector and add just its IR-EUR entries of various
maturities:

s˛
IR-EUR-M09 C s˛

IR-EUR-Y01 C s˛
IR-EUR-Y02 C s˛

IR-EUR-Y03:

This yields the price impact of a full, 1-basis point parallel shift of the interest
rate curve,2 a commonly used measure.

Not all sensitivity entries of different risk factors, however, can be meaningfully
added—adding two different exchange rate sensitivities apparently makes little
sense. In special cases, however, we might want to add the absolute values of
different sensitivities, e.g., if we want to limit some overall measure of sensitivity
exposure to whole classes of risk factors.

If we know a risk factor’s sensitivity s, we know the price impact of a 1-basis
point change in that risk factor. The approximate price impact of a 100-basis point
change is then, presumably, 100 s. This extrapolation works reasonably well for
small ranges and for positions whose pricing behavior doesn’t deviate much from
linearity, and it is a handy back-of-the-envelope shortcut to estimate PnL impacts.
For an exact result, a full repricing is required (see also Chap. 6).

One more remark about the vector framework used above. As most entries in a
position’s sensitivity vector will be zero, a simple optimization will avoid potentially
costly repricings under all but the few relevant sensitivity scenarios (see Sect. 20.7).

1This is equivalent of using a 2200 � 2200 return matrix with only diagonal entries of 10�4.
2Convince yourself of this by mentally adding the bowstring approach’s overlapping triangles.
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Relation to Derivatives Conceptually, sensitivities are partial derivatives quoted in
a more convenient scale. To see how sensitivities and partial derivatives are aligned,
consider this example of some position’s price expressed as a two-dimensional
function of asset returns:

f .x1; x2/ D 1;000;000 � e�.3%Cx1/�2 � 1:11e0Cx2 :

The current price p.S0/ corresponds to f .0; 0/, i.e., the “no returns” case.
We could now calculate the partial derivatives d1 and d2 of f analytically, or just

lazily approximate them numerically via

d1 D f .0:0001; 0/ � f .0; 0/

0:0001
;

d2 D f .0; 0:0001/ � f .0; 0/

0:0001
:

These two expressions correspond to Eqs. (5.1) and (5.2), save for the usual
normalization to step size 1 in the denominator here. We realize that

�
d1; d2

� D d D s
0:0001

D 104 s:
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The sensitivity measure we encountered in the previous chapter gives us price
impacts of individual, small risk factor changes; it mainly provides comparability
of exposures across risk factors. To gauge the impact of simultaneous and large
changes to several risk factors at once, we reprice our positions under custom-made
scenarios—this is called stress testing.

The stress tests often mimic certain past events, for example, 9/11 or the Lehman
collapse in 2008. To create a stress scenario Si, we simply apply the desired
risk factor returns—either historically observed or custom-designed ones like the
popular “200-basis point shift in all interest rates”—to our current market scenario.
It is not uncommon to create hundreds of such stress scenarios, many of which may
be prescribed by the regulator. Like with the VaR and sensitivities, once such a stress
scenario matrix is set up, prices and PnLs can be handled in our customary pricing
framework.

A tiny detail might warrant your attention. We know that for small shocks, some
return types are basically interchangeable (a relative return of one basis point is very
close to a logarithmic one of the same size, for example). But stress tests usually
apply rather large shocks, which makes return types deviate substantially. So make
sure to ascertain the appropriate return type to use if tasked, for example, with a
regulatory stress exercise of a �50% shock to all stocks. A relative return of that
magnitude would halve a stock’s value from 100$ to 50$; a logarithmic one of the
same magnitude yields what might not immediately spring to mind: 60:65$. Also
note that a �120% shock to a stock price is valid in logarithmic terms (it wipes off
about 70 of 100$) while making much less sense in relative terms.

Relation to Sensitivities Sensitivities can be used to approximate stress test
results; after all, they can be considered atomic or “mini” stress tests.

To estimate the PnL impact of a joint .C20; C10/-basis point change in two risk
factors, we could scale the two respective (1-basis point) sensitivities by 20 and 10,
and add the results. The first approximation error can be spotted in the example
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position outlined in Chap. 2, where we neglected the interaction term pxy that only
a full repricing takes into account.

The second and usually more grave issue concerns the scaling of sensitivities
itself. If a position’s pricing function does not behave linearly with respect to the
underlying returns, this scaling—especially if large—leads to another approxima-
tion error. Now, even basic pricing approaches like discounting exhibit slightly
non-linear behavior, but it can often be neglected.1 Let’s examine an asset type
where this effect is more pronounced.

Example for Non-linearity We dropped this asset’s name in Chap. 3, and it is now
time to revisit it: a call option on a stock S pays out, at some future date or expiry,
either zero if the stock price at expiry is below some level or strike K, or it pays out
S � K if the stock price is above.

Clearly, such an option always has a positive value or price, regardless of the
current stock price or strike—after all, we can’t lose any money. The option is also
worth more the higher the current stock price is, as a higher stock price makes a
payout both more likely and potentially larger. In other words: if the stock goes up,
so does the value of the call option.

Consider now a current stock price of 30$, a strike of 50$, and an expiry in 1
year’s time. The option would be worth very little, as it’s not all that likely that the
stock could increase by at least 20$ during that time. If the stock was to suddenly
increase to 31$, the option’s value would be only minimally higher (the stock is still
unlikely to make up the now-missing 19$), so the call option’s PnL resulting from
this 1$ jump will be some very small �pSC1, in this example, around 0:01$. Yet if
the stock price suddenly jumped up to 65$, we would expect the option to soon yield
approximately 65$ � 50$ D 15$. It will thus be immediately worth roundabout that
amount, and �pSC35 will be very roughly about 15$.

We can immediately see that this pricing behavior is non-linear—just scaling up
the PnL from the 1$ jump by a factor of 35 will not do:

35 �pSC1 � 0:35$ ¤ 15$ � �pSC35:

So for non-linear assets, we obviously can’t simply extrapolate PnLs for large
risk factor changes from the PnLs of small ones, and we must resort to a full
repricing. (The difference or error made in such an approximation attempt, however,
can be used as a measure for the exposure to non-linearity.)

1Compare, e.g., the PnL impact of a 2% interest rate change to twice the PnL impact of a 1%
change—they differ:

e�.rC2%/ � e�r ¤ 2.e�.rC1%/ � e�r/:
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A second approach, already mentioned at the beginning, to calculate the VaR is
an analytical one. It is only approximate, as its assumptions don’t always hold in
practice, but it involves fewer computational steps because it relies on sensitivities
and avoids the 1000 � 106 full position pricings. Often it is very close to the
VaR obtained in the historical simulation, which makes it a useful sanity-check. It
also clearly exposes the relation between the VaR and the sensitivities, volatilities,
and correlations. Even more importantly, it provides some helpful analysis tools in
dealing with the questions we’re most interested in: How does the VaR react if we
change our positions? What risk factors contribute most to the VaR? What is the
reason for a particular VaR change?

This small chapter is mathematically the most involved. At first reading, you
could also just skip it to avoid getting bogged down. Maybe return to it later if you
find, e.g., the VaR-contribution helpful in dealing with the model’s daily operation,
as described in Chap. 17 entitled “Nine to Five.” (If you tackle it, you can find some
background on multiple randoms, the covariance matrix, and normal quantiles in
Appendix A.)

7.1 Approximate VaR

We start off with our familiar 2200 � 1000 matrix of returns ŒR� (recall it from
Fig. 4.3). It represents, after some rescaling and mirroring, our view of the history
of asset or risk factor returns. Each row is associated to a risk factor and represents
a historical sample of its returns.
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We can also view each risk factor as a normal random variable xi instead and
denote all risk factors as

X D

0
BBB@

x1

x2

:::

x2200

1
CCCA :

These random variables have certain properties that can be estimated from their
corresponding historical samples. Each xi has a variance VarŒxi�, and each pair of
xi; xj has a covariance CovŒxi; xj�. Their estimates form the symmetric covariance
matrix ŒC�.1

Now assume that the current price of a position or portfolio is p0 and that its price
under various returns is a function of X, denoted as p.X/. We are, as ever, interested
in price changes or PnLs, which we can express as

�.X/ D p.X/ � p0:

This is a function of the random variables X, and we’d like to get a handle on its
volatility, i.e., standard deviation. For this, we first simplify � in a first-order Taylor
expansion (we’ll soon simply drop the anxious “�” and let the linearity assumption
take over):

�.X/ � p0 C x1

@p

@x1

.0/ C x2

@p

@x2

.0/ C � � � � p0:

If we denote the partial derivatives here with di, we may write:

�.X/ D d1x1 C d2x2 C : : :

This � is a weighted sum of random variables. With d D �
d1; d2; : : :

�
, its

variance and standard deviation become

VarŒ�� D dŒC�d>;

stdŒ�� D p
VarŒ�� D

q
dŒC�d>:

1Hence this method’s alternative name of variance-covariance approach.
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Because �, as sum of normals, is normal itself, the 1%-quantile or VaR2 can now
be directly derived from its standard deviation:

VaR.d/ D
q

dŒC�d> � .�2:33::/:

We don’t want to compute the partial derivatives. Luckily, for any position or
portfolio we usually have ready access to a close relative of their derivatives di—
their sensitivities si, collected in the vector s. We have already seen that d D 104s,
which gets us the following useful expression for the VaR as a function of our
sensitivities:

VaR.s/ D
q

.104s/ŒC�.104s>/ � .�2:33::/

D �2:33:: � 104 �
q

sŒC�s>

D c
q

sŒC�s>:

We hereby have a fast way to estimate the VaR for each position or portfolio
whose sensitivity vector we know.

(Note: the behavior of this VaR estimate depends on the covariance matrix. If
we use rescaled returns to estimate it, this analytical VaR will also be aligned to the
most recently observed market volatilities.)

7.2 VaR-Sensitivity

Our VaR function here is expressed as a single-valued function of all the si. A natural
question to ask is then: how does this VaR change if the underlying sensitivities
change (i.e., if our exposures or, effectively, our positions change)? To answer this,
we need to look at the partial derivatives of the VaR function itself, called VaR-
sensitivities. There is one for each risk factor.

To compute these VaR-sensitivities, let us first denote the vector of partial
derivatives of any single-valued vector function f .x/ as follows:

@f

@x
D

�
@f
@x1

; @f
@x2

; : : :
�

:

We recall that for any quadratic form g.x/ D xŒA�x> we have

@g

@x
D x.ŒA� C ŒA�>/:

2The variance “Var” is not the value-at-risk “VaR.”



38 7 Analytical Value-at-Risk

Mindful that ŒC� D ŒC�>, we proceed to partially differentiate our VaR function
by its sensitivities si:

v.s/ WD @ VaR

@s
D @c

p
sŒC�s>
@s

D 1

2
c

1p
sŒC�s>

@sŒC�s>

@s

D 1

2
c

1p
sŒC�s> s.ŒC� C ŒC�>/

D c
sŒC�p
sŒC�s> :

Each entry vi in the vector of VaR-sensitivities v describes by how much the VaR
changes if the corresponding sensitivity increases by 1$.

Example We would like to increase our exposure to asset i. Its sensitivity si D
�12;000. The corresponding VaR-sensitivity vi D �8. Changing the sensitivity by,
say, �1000$ should then approximately affect the VaR by �1000 � �8 D C8000,
so we’d expect the (negative) VaR to change by C8000, decreasing in magnitude.

VaR-sensitivities are handy for quickly assessing the sign and magnitude of
the VaR impact due to a prospective change in sensitivities, i.e., in positions. For
relatively small sensitivity changes, it is also fairly accurate, but we can just as easily
employ an exact, full repricing. The most useful application of VaR-sensitivities,
however, is described next.

7.3 VaR-Contribution

Our expression for the VaR turns out to be a so-called homogeneous function of
order 1, since for any scaling factor a we have

VaR.as/ D a VaR.s/:

This allows us to write, per Euler’s homogeneous function theorem,

VaR.s/ D s1v1 C s2v2 C : : :

The terms sivi sum up to the VaR-value; we call such a term the VaR-contribution
ci D sivi of its risk factor. These VaR-contributions can be positive or negative.
Large negative VaR-contributions indicate the risk factors that dominate or drive the
VaR’s magnitude. An example for a portfolio whose VaR is driven by the euro/dollar
exchange rate is given in Table 17.1.
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The VaR ignores quite a bit of seemingly important information—those losses that
are even larger than the VaR. To take large losses into account, we could measure,
e.g., the average of the 2.5% largest losses. This is called expected shortfall or ES.
In our case of 1000 PnL values, it is given by

ESŒ˝� D 1

25
.�p˝

.1/ C �p˝
.2/ C � � � C �p˝

.25//: (8.1)

In other words, and similarly to the way we determine the VaR, we just sort the
vector of PnLs and average the worst 25 ones.

Why specifically use 25 of the 1000 PnL values? This is because of how VaR
and ES are related in a normal distribution: the 1%-VaR there is very close to
the 2:5%-ES. We have already encountered the multiplier 2:32635 that relates our
analytical VaR to a normal standard deviation; the respective multiplier for the ES is
2:33780. This basically allows us to replace the 1%-VaR on the fly with the 2:5%-
ES at minimal disruption, e.g., when these measures are used to determine capital
requirements.

The analytical VaR approach in Chap. 7 would directly translate to an equivalent
ES one (up to the almost identical constant mentioned); we would gain nothing by
switching measures in this case. In the historical VaR calculation, however, the VaR
and ES can differ much more, depending on how the largest losses behave.

ES has become more popular recently. It is supposed to account for some VaR
weaknesses, and its application is usually required by regulation. We will outline its
properties in Chap. 13. Without giving too much away, it is not necessarily a much
better measure than the VaR, as it comes with its own share of drawbacks.

It does, however, offer a transparent and stable attribution of risk to individual
positions that is rather convenient. Consider a portfolio ˝ D ˛ C ˇ C : : : . We can
compute ESŒ˝� and the individual positions’ ESŒ˛�, ESŒˇ�, etc., as described above.
The ES of individual positions behaves fairly similarly to their individual VaRs and
won’t be of much help (more on this in Chap. 11). But a modified version of it, the
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conditional ES or cES for individual positions with respect to their portfolio, will
be. It is calculated as follows:

• First, sort the portfolio PnL vector �p˝ and remember the scenario indices of
the 25 largest losses. For example, the 3rd largest loss “.3 � ˝/” might reside at
index 714 of ˝’s PnL vector.

• Then, for a position ˛, calculate its cES as the average of exactly those entries in
its �p˛. In other words, we average exactly those position PnLs that contribute
to the 25 largest losses for the portfolio. The cES of the position ˛ with respect
to the portfolio ˝ is

cESŒ˛j˝� D 1

25
.�p˛

.1�˝/ C �p˛
.2�˝/ C � � � C �p˛

.25�˝//:

We will use the cES in much the same way as the VaR-contribution described
in Chap. 7, as the cES values of a portfolio’s positions sum up to the portfolio’s
(unconditional!) ES:

ESŒ˝� D cESŒ˛j˝� C cESŒˇj˝� C : : :

Again, negative cES values indicate risk-increasing positions; positive values
risk-decreasing ones. Chapter 13 will put these cES features to good use.

Note: the VaR-contribution decomposes the VaR additively to risk factors, while
the cES decomposes the ES additively to positions. What about a partner swap?
Well, a hypothetical analytical “ES-contribution” of risk factors would provide no
additional insight, as mentioned above. A “conditional VaR” for positions, on the
other hand, is easy to contrive but suffers from instability (this is discussed at the
beginning of Chap. 11).
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Without much ado, Chap. 4 outlined a relatively straightforward historical VaR
model. In the bank I worked at, such a model proved to work reliably right through
the 2008 financial crisis and its aftermath. Many a model aspect, however, could
be tuned or tweaked or altered, and this chapter zooms in on some of those model
choices. But how to weigh these features, how to choose between model options?
Let me give you my personal take on this.

By far the most important aspect of a VaR model is its input data. Thousands
of risk factors must be diligently tracked over years from different and evolving
market data sources. Market data may contain outliers and invalid entries, missing
values and whole gaps, or stale and constant periods; market data sources may break
down, change quoting conventions, or become inconsistent with other sources. And
eventually, all of this is going to happen. Some of those glitches can be avoided by
careful and continuous data screening, by manual overrides, by automatic checks
and warnings, etc.—in other words, by patience and diligence, also known as time
and money. But illiquid markets will continue to provide data that is inherently
spotty and unreliable. Unaligned snapshots will still make price moves decorrelate.
And holidays in all those countries won’t ever stop disrupting the time series.

Some data issues are more fundamental still. The sample size is relatively small
(often only 2 years of data are used, and sometimes fewer if mandated). But there
is often no choice, really: ancient market data is likely to be of less relevance today,
and newly introduced asset types can’t possibly boast an ample history. Replicating
the most recent vola levels in the markets reduces the effective sample size even
more. Consequently, the sample is unlikely to contain reliable tail information, and
it sure won’t be able to even hint at the unknown unknowns—the flood, the law, the
war. This sample, then, is no match for the numerous risk factors and their fearsome
dimensionality curse.

Nor is market data the result of some neat, reproducible process—it is the product
of this most complicated of non-linear feedback systems: man. The market data’s
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statistical properties we try to grasp change in ways we don’t comprehend. The very
magnitude of market risk itself hints at some reservoir of irrationality that calls into
question overly elaborate conclusions.

Market data quality, its size and dimensionality, and its intractability thus seem to
suggest a humble approach: to acknowledge and accept the data imperfections and
to keep unsupported, extravagant math at bay. A new model feature or enhancement
should be warranted by the data.

The second most important aspect is running the model, i.e., building, operating,
and maintaining an IT system that must reliably produce risk measures every day.
The model choices we make have a direct impact on such a system and its costs.

A complex model feature makes an IT system more time-consuming to build, i.e.,
to program and test and document. It makes the computational steps more difficult
to replicate for others and the results thus harder to accept, while impeding the use of
common standard software that might not support the more arcane model choices.

A brittle model feature affects operation. It has more ways to break down, impair-
ing reliability; it might be numerically less efficient, slowing down recalculations or
requiring costly hardware upgrades; and it obstructs custom, ad-hoc analyses for a
wide range of model end users.

Worst of all, an elaborate model feature is hard to maintain. Because its code
is larger in size and thus more difficult to understand and modify, it is usually
less flexible in accommodating new or changing requirements. Its black box nature
furthermore fosters secluded islands of knowledge and risky dependencies on fewer
and costly experts.

In the end, of course, all these considerations essentially just come down to
money—they compel us to eschew complexity wherever possible and instead to aim
for a system that is easy to code and reenact and trust, reliable to run, and simple to
grasp and adapt. Model features should not thwart this.

Third, the model must usually be approved by the regulator. Any particularly
inventive or unique model choices naturally—and rightfully—lead to dispropor-
tionate efforts in explaining and defending them. Non-standard approaches must
be extensively plausibilized; model parameters setups without ready reference to
canonical settings can and will be scrutinized; and even seemingly unsuspicious
changes may lead to additional tests and expensive recalculations.

The main factor here is time. Any model change requires a lengthy and procedu-
ral back-and-forth; large changes may require years to get approved. As regulatory
mills will grind diligently and slowly, the cast of characters will change. Original
model developers might be gone and their intentions become all but forgotten.
New personnel at the regulator will want to focus anew on the same, already
expounded issues and demand clarifications whose new angle, very naturally and
understandably, originates in the involved individuals’ personal views on modeling
issues. The same topic—any feature or choice or parameter—may raise its head
time and again.

Simplicity, again, goes a long way in minimizing discussions, dodging follow-
up efforts, and increasing model acceptance—in saving time. The path to delayed
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model approvals is paved with fancy mathematical intentions; we should opt for
model features that take a more direct and transparent route instead.

Mathematical elegance or optimization should, in my opinion, rank last when
weighing in on a particular model choice. Tune the kurtosis? Fine. Do a maximum
likelihood fit of a distribution to the PnL estimates and use the fit’s slightly more
stable quantile? By all means. But only do it if (1) it is warranted in light of the
data’s limitations, (2) it does not overly affect system complexity and operations,
and (3) it is transparent and defensible to a wider audience.

For each minor tweak has consequences: you will have to analyze it, discuss
it, estimate its implementation costs, program it, test it, change-track it, deploy it
on your various systems, run it in parallel for some time, document and explain it,
present it in PowerPoint slides to an skeptical audience, defend it, debug it, maintain
it, and potentially discard it if anything goes haywire. And that’s before someone
formally asks you to “validate” it.

Some examples seem in order:

• The vola rescaling feature makes very little assumptions on the data and is
certainly warranted to them, whereas trying to get a handle on, for instance, co-
kurtosis is most likely futile.

• Several intricate interpolation methods are widely recommended and thus easy
to defend, and they can’t be dismissed from a data limitation stance. But because
they can substantially complicate handling and replication, we may often go for
a simpler, linear interpolation.

• In a world of positive interest rates, should we opt for absolute or square root
return types? Both methods roughly match (or fail to match exactly) the data;
both have the same system complexity. But because square root returns are
widely used in literature, they might just be slightly easier to sell.

• This picture changes in a world of negative interest rates. Square root returns now
require a shift, which makes this choice both more complex to handle and more
onerous to justify and defend. Absolute returns become the expedient choice.

In light of these considerations, let’s revisit some steps and choices of the
historical approach outlined previously.

Return Types We use different ways to calculate returns from a historical time
series of values, depending on an asset’s type. Keeping in line with conventions
here does make some sense mathematically, but, more importantly, it facilitates
the defense of a model, as its reviewers appreciate familiarity in such basic model
choices. For strictly positive asset prices like foreign exchange rates or stock prices,
we will usually choose the commonly used logarithmic or log returns log.v0=v/.
Their use is so common that it is rarely challenged. Their benign numerical
properties (they are tractable and naturally shy of negative values) should not belie,
though, that reality log-normal is not.
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For interest rates we can use absolute returns v0 � v. Consistency is one point in
favor of this: log returns of bond prices neatly mimic absolute returns of rates.

An alternative is to use square root returns for time series and scenario genera-
tion, i.e., r D p

v0 � p
v and s D .

p
s0 C r/2. In order to handle negative interest

rates, however, they require positive shifts of the time series (and reverse ones to the
scenarios):

r0 D p
v0 C c � p

v C c;

s0 D .
p

s0 C c C r0/2;

s D s0 � c:

The shift c also requires a modicum of caution: the expression
p

s0 C c C r0
should not be negative lest we introduce a distorting repel-from-zero behavior.
(Shifted log returns avoid this issue naturally.)

The end results differ little from those created via absolute returns, but the shift
parameter involved can lead to follow-up questions in a model review—How is
the shift determined? What effects do different shifts have? Are strictly positive
time series shifted as well? Absolute returns avoid the potentially time-consuming
exercise of proving the immateriality of these concerns.

If, say, for reasons of continuity towards a legacy implementation, a shift can
not be avoided, it is good to be aware that such shifts are not that drastic—
asymptotically, large shifts will simply begin to mimic the behavior of absolute
returns. A specific way to set the shift is given in Sect. 20.1.

Target Volatility We use the 20 latest historical returns, i.e., the most recent local
volatility, to obtain the target volatility T of a risk factor. Do this by all means if you
are very confident in your time series’ data quality. However, consider a time series
that becomes stale and essentially starts to stay constant (maybe due to a market data
source failure). Over the course of 20 days, the target vola will gradually approach
zero, possibly without raising much suspicion. The risk factor stops being measured
by the VaR and effectively disappears. To avoid this and to account gracefully for at
least some staleness, we can redefine the target vola as the maximum of the original,
most current local vola and, say, 30% of the overall or long-term vola of the raw
returns Qr, effectively flooring the target volatility.

The one main drawback of this approach is that we introduce a rather arbitrary
new model parameter (the 30%). Parameters like this are often in the drill-down
focus of model reviewers. Still, this safety valve is probably worth its likely
explanation effort. For more on such parameters and their defense, see Sect. 17.4.

Local Volatility via Decaying Weights The target volatility is fully or, if floored,
mainly driven by the latest 20 returns. A single new, large return can greatly
increase it and cause a jump in the VaR. After 20 days, this very return exits the
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20-day window, and the target vola and VaR fall back. This is sometimes considered
unwanted behavior. A workaround often proposed is to modify the way the local
vola is calculated, e.g., via exponentially decaying weights, which make an extreme
return fade away more gradually. (One such approach is the so-called exponentially
weighted moving average, or EMWA.)

I am not in favor of such an approach. It makes this step marginally more
complicated—it becomes, e.g., more tedious to exactly reenact manually in Excel,
which is often very useful for model end users. It merely sugarcoats the results; I
find the transparent raw results more informative. But if truly abhorred, such VaR
jumps are best dealt with ex post, for example, by using the moving average of VaR
values when determining capital requirements. Furthermore, the decay factor used
can, as a model parameter, again solicit unwanted attention during model reviews.

Detrending A commonly used procedure we omitted is detrending—removing the
sample average from the raw returns by subtracting it. Now, the return average is
typically much smaller than the volatility and seldom requires dedicated actions.
Also, our mirroring of the returns already achieves a similar result of ensuring a
certain symmetry in return distributions, so we may often take a pass on a practically
redundant intermediate step.

Good intentions, oversight, or modeling by the numbers, however, could well
lead to its accidental implementation. This can, in certain cases, lead to unintended
behavior. Consider a time series with one large positive jump and, hence, one large
positive return (this might occur if you have to paste your time series together from
two market data source systems). Subtracting the overall return average (positive
because of our outlier) from all returns might drive the non-outliers down and
off their near-zero mean; they might even all become, in our example, quite a bit
negative. The possibly erroneous outlier thus unduly influences all other returns
and their distribution; subsequent mirroring then effectively blows up the vola even
further by adding, for good measure, reversely skewed return versions as well. Of
course it’s best to avoid the outlier in the first place; still, a model that is unfazed by
erroneous input data, that is stable, is usually preferable.

Operations like this one—an overall normalization or “master override”—are
often not innocuous. They casually and globally affect the whole input (and can
thus do quite a bit of harm). They are also often suspiciously easy to implement, to
test against a well-behaved data set, to OK, and to then forget. Because in technical
or syntactic terms this operation cannot fail, it all too easily becomes invisible while
its semantics go unchecked and remain dangerously concealed. Should the problem
mentioned above then ever materialize, you most likely will spend precious time
tracking the various process steps to identify the culprit.1

1Such overrides are not uncommon. If, for example, separate models yield probabilities that should
sum up to 1, the probabilities can be normalized to enforce an exact match or identity to 1. If one
model fails and yields, say, 230%, such a step, if thoughtlessly implemented, may cover up and
obfuscate a breakdown more apparent otherwise.
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Location of Local Vola Window The time series of returns exhibit varying vola
levels, also called heteroscedasticity. A vola rescaling operator does not leverage but
actively tries to destroy this property. To do this, it must estimate the local volatility
of the region a return resides in.

The textbook approach for this is to use so-called GARCH (short for, you guessed
it, generalized autoregressive conditional heteroscedasticity) models. Such models
are mathematically sound and widely used in literature. In fact, the original filtered
historical VaR simulations rely on GARCH, which makes its application easy to
defend.2 But GARCH models must be fit first—in our case, 2200 times or once
for each risk factor, and repeatedly. This means an increased implementation effort
and plenty of things that can go wrong. It also makes it difficult or impossible to
precisely reenact model results for anyone who does not command a ready time
series analysis kit. For these reasons, we propose to use a poor man’s version of a
vola estimate, the plain standard deviation.

When using the standard deviation, it is tempting to stick with as many GARCH
conventions as possible to minimize any perception of deviation from an ingrained,
established method. Since GARCH is essentially a regression-based approach, it
relies on returns up to, but not including, the day for which a vola is estimated.
In that line, the standard deviation of those same, preceding returns could be used
for estimating the local vola of a return about to be rescaled. This is not necessary,
however, as the standard deviation is simply not bound by regression limitations. In
fact, if you were tasked to come up with a risk factor’s volatility for some January
15, you would most likely take the standard deviation of that month’s returns, never
even considering to drop the return of the 15th itself from that estimate.

If we associate, as we have to, our target volatility for tomorrow with the most
recent local vola, which clearly precedes tomorrow, we could become inclined to
align past vola estimation windows and the corresponding raw return day likewise,
in a strictly preceding manner. This might appear to be conceptually more elegant
or consistent.

Alas, such elegance would come at a cost—the vola estimator’s numerical
behavior after periods of stale data. Consider a constant series of historical price
quotes and a corresponding period of zero returns. This may arise due to a problem
with a market data source system, but this can happen naturally as well, e.g., when
certain markets are closed during bank holidays over a fortuitous regimen of feast
days. When rescaling, the first non-zero return after such a stale period would have
to be divided by an essentially arbitrary small local vola value if a preceding window
is used, causing the rescaled return to basically explode. Of course, one could floor
the local vola somehow or impose a cap on the rescaled return, yet this would
introduce a new and undesired ad-hoc parameter.

If, however, a return influences its own local vola estimate (like in the proposed
approach), that vola is ensured to be at least somewhat positive and to thus have

2Just as nobody got ever fired for buying IBM, no vola model was ever rejected for relying on
GARCH.
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a much lower blow-up potential. To be sure, both approaches are of course off
with regard to the new, correct vola level—we know that only after a few days
of non-stale data. And after roughly 20 days, both will converge to the newly
established vola level. It’s just that the proposed approach does so in a less disruptive
manner and overestimates the rescaling factor required by less (it is still conservative
in many conceivable real-world setups of such a departure from staleness). The
numerical stability in face of bad data outweighs the very slight inelegance in design.
In fact, vola rescaling would work just as well with centered windows (in that case,
you’d just have to handle the edges of your time series, which is possible in any
number of ways).

Technical Floor for Local Vola A special case still necessitates mention and
treatment: the rescaling of zero returns within stale periods of zero local vola. The
rescaled return, for lack of any usable information, will still have to be zero, but the
raw computation would break down. Flooring the local vola at an unreachably low
level (say, 10�12) at least avoids the dreaded division-by-zero error.3

Exact Rescaling Once the volatility rescaling is done, the rescaled returns will
have a vola T 0 that is similar, but not exactly identical, to the desired target vola
T. We can easily rescale them all again by a single constant T=T 0 to make them
precisely match the target vola.

Such a final rescaling is, like detrending above, a master override; if applied
without support checks, it may hide some ugly data. Consider a long period of
stale data and zero returns. Since zero returns scale to zero, the usual rescaling will
achieve a lower volatility than the target vola; if monitored, this becomes noticeable
and can be fixed. If, instead, the final exact rescaling is blindly applied on top of the
standard one, the non-zero returns will be increased more aggressively (as the zero
ones will remain unaltered), and while the target vola is reached by construction,
those returns alone will carry the correlation information. This is quite subtle a
model distortion, which might thus go unnoticed. So exact rescaling does not rid
us from checking the basic vola rescaling’s results.

Nevertheless, enforcing the exact target vola is most likely still worth the small
effort (separate checks for staleness are of course strongly advised). It simply does
away, in regular circumstances, with those random cases where rescaled returns have
a slightly lower vola than expected, a risk-underestimating characteristic that would,
despite its usually very small deviation, welcome the regulator’s comprehensible
scrutiny. To prove, at the almost inevitable request, that the impact of the (original
version’s) target vola mismatch is insignificant would require implementing exact

3The lowest naturally occurring local volas “in the wild” remain unaffected by this floor. The
standard deviation of 19 zero returns combined with a return of one one-hundredth of one basis
point is—with about 10�7—already much larger than this purely technical floor.
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rescaling for comparison purposes anyway. We might as well nip this issue in the
bud.

Artificial Kurtosis Once the rescaled returns r are created, we could further tweak
them. One such adjustment is the artificial increase of their kurtosis—a measure of
how extreme the values at the fringes or tails are when compared to extremeness
levels expected from normal distributions.

To make the tails “heavier,” i.e., to increase the kurtosis, we can scale up some of
the returns, say, 10% of them, by a constant factor s > 1. If we scale the same entries
in each risk factor’s return vector, i.e., if we scale whole return column vectors R,
we don’t affect the correlation structure too much. Larger values of s lead to larger
kurtosis and to more extreme VaR values.

This feature is possibly best used if the returns are obtained with the Monte
Carlo modification (see the upcoming Chap. 10), as those returns exhibit a normal
distribution and thus no kurtosis. While crude and best thought of as a safety valve,
it is a simple way to ensure some non-normality, which might be a regulatory
requirement.

The main problems lie in defending the chosen target kurtosis (see Sect. 17.4)
and—worse—in determining one in the first place (see Sect. 17.6).

Scenario Drift When not using absolute returns, two scenarios sC and s� based
on a scenario s and mirrored returns r and �r do not result in exactly symmetric
scenarios: s ¤ .sC C s�/=2 (try it, for example, with log returns). This makes the
average of the generated scenarios deviate or drift from the base scenario value,
which is often considered undesirable as it breaks the symmetry of profits and
losses. One could correct for this effect; however, over small time periods like in
our case, its impact is negligible. For example, in a Monte Carlo setup (which we
will cover soon), tens of thousands of scenarios would be required to even notice
this effect, especially as the Monte Carlo error involved is more pronounced for the
scenario VaR than for the scenario average. (For time horizons much longer than
1 day, though, certain market-implied target scenario averages different from zero
may be considered.)

Simplifications The proposed steps are a typical minimal setup for 2 years of data
and the 1%-VaR. If you are comfortable with using a larger market data window
(or you have to use it via regulatory requirements), or if you only need, say, the
10%-VaR, you might omit the mirroring step. For certain tasks, VaR models might
be required with equally weighted returns; sometimes, daily backtesting or a fast
model reaction to increasing vola levels is not desired—in such cases the rescaling
of returns is superfluous. Each such simplification has immediate benefits for the
implementation, testing, documentation, etc.

An alternative to mirroring for generating scenario returns r from the rescaled
ones Nr warrants its own, upcoming chapter.
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Our VaR model typically uses 2 years of data or 500 returns, and it generates, via
mirroring, twice that number of scenario returns. Yet we might be confronted with
smaller input samples, be required to generate more scenarios, or both:

• For newly introduced asset types, the usual 2 years of market data might simply
not be available.

• The regulator might prescribe the use of a smaller time window, e.g., 1 year or
250 days.

• Sometimes we’d like to analyze multi-day returns instead of daily ones; if we
want them to be non-overlapping, the effective number of available returns
shrinks fast.

• For various reasons, more extreme VaR levels could be desirable (e.g., a 0:1%-
VaR), or we might otherwise require a larger number of scenarios to increase the
density of their event coverage.

Mirroring, which only doubles the number of effective scenarios, might not be
sufficient in such cases. An alternative approach is one that corresponds to random
averaging, and it is called Monte Carlo approach. It generates arbitrary many
(normally distributed) scenario returns r from a given sample while preserving its
correlation structure in a numerically stable way.

To illustrate how it works, we start off from a single row vector of rescaled returns
Nr, which we will, to be more in line with the terminology in Appendix A, call x D
.x1; x2; : : : ; x500/. If we wanted to create one new individual normal return with this
sample’s properties, we would usually just estimate the mean and standard deviation
from the sample and generate a corresponding random normal.
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Alternatively, we could choose the more laborious route of drawing samples from
500 (independent) standard normals Ni and computing

X0 D 1p
500

500X
iD1

xiNi:

(Note: we will here assume a mean of zero to avoid having to juggle with too
many terms; this is also largely justified numerically in this setup.)

As a sum of normals, this expression is also normally distributed. Since each
normal has zero expectation, its expected value is zero. Its variance, by construction,
is the one implied by the sample:

VarŒX0� D 1

500

500X
iD1

x2
i VarŒNi� D 1

500

500X
iD1

x2
i � 1:

If we recalculate this expression for a full new set of standard normals, we can
generate a second return, and so on. But why bother with creating 500 normals
for just one single new return? The reason is that this scales well to additional
dimensions. If we throw a second vector of rescaled returns y in the mix, we can
calculate:

�
X0
Y 0

�
D 1p

500

500X
iD1

�
xi

yi

�
Ni:

The components X0 and Y 0 still preserve the mean and variance of the samples x
and y, respectively. But beyond that, they also preserve the sample pair’s covariance:

CovŒX0; Y 0� D EŒX0Y 0�

D E

��
1p
500

X
xiNi

� �
1p
500

X
yiNi

�	

D 1

500
E

2
4X

iDj

xiyiN
2
i C

X
i¤j

xiyjNiNj

3
5

D 1

500

X
i

xiyi:

(The final step uses EŒN2� D 1 and EŒN1N2� D 0 for uncorrelated standard
normals. All steps should be traceable via the statistics crash course in Appendix A.)

We can straightaway extend this from 2 dimensions to the 2200 dimensions of
our risk factors. Using 500 normals, we thus generate one column vector R of 2200
returns, in a way that preserves the (co)variances.
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Fig. 10.1 Returns via
random averaging

If we repeatedly recalculate the vector expression with new sets of standard
normals, we can generate arbitrary many return vectors R and thus arbitrary many
scenarios. Figure 10.1 illustrates how this can be expressed as a matrix-matrix
multiplication. With ŒN� a 500 � 3000 matrix of standard normals, the graph
shows how 3000 return vectors are generated from the 500 rescaled ones—in short:
ŒR� D 1p

3000
Œ NR� ŒN�.

The computational costs are negligible. The main drawbacks of this approach
are twofold: it enforces the generated returns to be normally distributed, and it
introduces an additional Monte Carlo error on top of the time series-driven noise.
To deal with the imposed normality, this approach can be combined with the
artificial kurtosis feature described in Chap. 9. Benign negligence (recommended),
increasing the number of return scenarios that are generated, or using standard
variance reduction techniques like antithetic variates can all help reduce the Monte
Carlo noise.

By the way, the textbook approach for generating random normals with a
given correlation structure is to Cholesky-factorize a covariance matrix and to
use the resulting triangular matrix to generate the desired normals. Yet numerical
errors in the floating-point calculations or additional, too restrictive assumptions on
the matrix properties—as in NumPy’s cholesky function—can cause standard
algorithms to fail, which would have to be addressed with non-trivial workarounds.
These issues are especially pronounced if the number of dimensions is larger than
the sample size, like in our case. We therefore avoid that approach altogether.

Using this Monte Carlo approach omits the mirroring step. Mirroring has, besides
increasing the sample size, the useful feature of making any return also appear as its
negative sibling—so a large, PnL-increasing return that would itself not influence
the VaR much is also bound to appear, mirrored, in a PnL-decreasing variant. This is
prudent, as we assume return directions to be essentially random and don’t want to
miss out on large ones just because our positions’ direction happens to be a fortunate
one. In addition, mirroring also forces the returns to have zero mean, which can be
desirable (even if the original mean is likely to be so close to zero as to practically
vanish anyway).
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Luckily, random averaging already has an implicit mirroring effect built in: an
individual rescaled return Nr, as part of the random average of several returns, is
scaled by a different random number in each scenario, maybe C1:01 in one scenario,
�1:03 in the next, etc. Overall, this achieves a near-perfect mirroring of the input
returns as well.

A final note on the names of the presented VaR methods. We used the terms
historical, analytical, and—here—Monte Carlo approach. Each method, however,
clearly relies mostly on (recent) historical data. The conceptual difference between
them can be considered smaller than their names imply.
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We have selectively presented a few risk measures in the preceding chapters that, in
our experience, cover many relevant aspects and tasks in a real-world market risk
setup. We propose to mainly use the volatility-rescaled historical VaRŒ˝� for daily
risk management. It is especially well-suited to capturing “tomorrow’s PnL,” as it
reacts fast to changes in volatility levels. The concurrent use of the sensitivity-based
analytical VaR.s˝/ serves as a sanity check and provides an additive decomposition
to VaR-contributions of the risk factors, which is a handy analysis tool because
it appropriately weighs risk factors by both their sensitivity and volatility. Finally,
the most helpful measure we take away from the expected shortfall world is the
position-wise conditional expected shortfall cESŒ˛j˝�, which provides a useful
complementary breakdown of risk to positions.

The main difficulty in analyzing VaR figures and thus the need for additional
support measures arise because the VaR is generally not additive:

VaRŒ˛ C ˇ� ¤ VaRŒ˛� C VaRŒˇ�:

More background on this and actual use cases of our measures will be given in
Part II. Before that, the current chapter will mention additional helper measures you
should be able to reference. Some of them are useful, others less so; either way,
certain ones might be mandated by the regulator.

First, let’s address an apparent gap in our measures presented earlier. As
mentioned in Chap. 8, the analytical VaR approach immediately translates to an
analytical ES approach (we only need to tweak the final multiplier of the standard
deviation ever so slightly). But can, reversely, the concept of the conditional
expected shortfall be translated to the VaR as well? Can we find an additive
decomposition of the VaR to positions?

The answer is we sure can, and easily too, but we should nevertheless steer
well clear of it. First, how would we do it? Well, in analogy to the cES, we could
determine the index of the portfolio PnL vector’s VaR scenario; the corresponding
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Fig. 11.1 Individual and combined PnLs near the VaR scenario

entries in the positions’ PnL vectors could then be considered the individual “cVaR”
values for each position (of course summing up to the portfolio PnL in that scenario,
i.e., the VaR). We did the exact same for the cES—we just remembered all the
original indices of the 25 most negative portfolio PnLs.

Why should we avoid doing this? The short answer is that this measure would
be far too unstable, essentially yielding almost random numbers (the averaging
involved in the cES calculation, on the other hand, provides for stability). One
way to illustrate this unreliability of a cVaR is to artificially create, e.g., in Excel,
1000 pairs of (random normal) returns/PnLs of uncorrelated positions, along with
their sums, the hypothetical portfolio PnLs. Figure 11.1 depicts—for a random
example—the subset of those 20 return pairs with the largest portfolio losses. The
tenth return pair from the left (call it pair A) can lay claim to represent our VaR and
proclaim two cVaR values.

A first hint at the fickleness of all this is that the return pairs neighboring the VaR
one (e.g., pair B, the 11th from the left) exhibit quite different cVaR candidates.
Now assume the return sets to change slightly (after all, as time progresses, new
returns materialize and old ones disappear). Say, the fifth most negative PnL above is
dropped because its corresponding return pair vanishes. Suddenly, pair B sits at the
tenth location and provides apparently very different cVaR values.1 Workarounds
have been proposed to modify such a cVaR and to make it more stable, but they
essentially perform some sort of averaging over several entries around the portfolio’s
VaR scenario index and therefore basically converge to the cES behavior, with the
added baggage of custom heuristics.

Keep in mind that the desire for an additive decomposition of the VaR to positions
is comprehensible. It would allow us, for example, to cleanly assign parts of the risk
as described by the overall portfolio VaR to positions and sub-portfolios. Along with
this, the risk costs arising from the capital requirements could be allocated to units

1This issue gets even more pronounced for negatively correlated positions, where more return pairs
yield close VaR contenders.
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and departments and desks and individuals. A cVaR is too fickle, as we have seen,
but even the cES is not ideally suited: while additive and stable, its values can be
both positive or negative, offering no obvious “weight” interpretation akin to, e.g.,
some always non-negative probabilities. Such same-sign additive decompositions
are, alas, not available.2

Let’s now examine some other helper measures.

Individual VaR We are mostly interested in the VaR of a portfolio of positions,
i.e., some VaRŒ˝�. Of course we could compute each individual position’s VaR as
well, as in VaRŒ˛�, maybe with the aim to detect outlier positions or track down
suspicious changes or jumps in the overall VaR at the position level.

In practice, such an individual VaR is not that useful. A position with a
conspicuously extreme individual VaR might, in the end, not affect the portfolio VaR
by much (it depends on how the position is correlated to the remaining portfolio).
As another example, two positions that hedge each other could signal two extreme
individual VaR values but actually have, combined, no effect on the portfolio VaR
at all. If such hedges were to involve non-linear positions, we could potentially get
one extreme and one moderate individual VaR value, muddying the analysis waters
further (those positions’ combined influence on the VaR is, again, zero).

In some instances, sub-portfolio VaRs can of course be helpful, as they help
restrict the search space to position subsets when VaR changes need to be pinned
down. Calculating and storing each position’s VaR, however, can usually be avoided.

Incremental VaR When adding a new position ˛0 to an existing portfolio ˝ D
˛ C ˇ C : : : , the portfolio VaR changes. By how much mainly depends on the
new position’s size and its correlation to the portfolio’s PnL behavior. The resulting
new portfolio VaR can range from 0 (if the deal mirrors the portfolio exactly) to
arbitrarily negative values (if the deal is dominant). Naturally, we’d like to know in
advance how the VaR (and thus our costs, i.e., capital requirements) would change
if we entered a new position. Computing such an impact is often referred to as
performing a pre-deal inquiry.

Plainly, we just compute the new VaR and relate it to the current one. The new
position’s impact is called its incremental VaR:

iVaRŒ˛0j˝� D VaRŒ˝ C ˛0� � VaRŒ˝�:

2The concepts involved here are more deeply connected, as one could consider each position to
represent a separate asset. While we tried to delineate those views on risk decomposition, they
really represent two sides of the same coin. The terms marginal VaR and component VaR are
commonly used in this context. The names used here I chose by sympathy and memorability;
marginal VaR often also refers to what we called incremental VaR, while component VaR sounds
a bit like poet laureate or Astronomer Royal.



56 11 Support Measures

We can do the same with a portfolio’s current positions. For a deal ˛ already
contained in our portfolio, we can determine the VaR impact of its removal from the
portfolio3:

VaRŒ˝ � ˛� � VaRŒ˝�:

This corresponds to the incremental VaR of the deal’s hedge, �˛, which
compensates for or cancels the original position’s impact:

iVaRŒ�˛j˝� D VaRŒ˝ � ˛� � VaRŒ˝�:

This expression should help drive home one particular point. When calculating
the incremental VaR, we usually have already calculated the portfolio VaR and
thus have at our disposal the PnL vectors of all positions and of the portfolio.
Determining the VaR impact is then cheap:

• When adding a new position, we only have to compute its PnL vector �p˛0

and
add it to the known portfolio PnL vector �p˝ before the subsequent sort and
lookup steps.

• When removing an existing position, we subtract the known �p˛ from the
known �p˝ .

For existing positions, this measure has similar drawbacks as the individual,
position-level VaR.

Partial VaR We usually generate scenarios on all risk factors. We can reduce this
scope to subsets of risk-factors, e.g., to only foreign exchange (FX) or to only
interest rate (IR) risk factors, which yields partial VaRs denoted as VaRFX or VaRIR.
This is done by creating new, distinct scenario sets where all but those risk factors
we’re interested in are kept constant.

Partial VaR figures facilitate locating possible sources of overall VaR changes. A
VaR jump in only one of the tracked partial VaRs expeditiously narrows down the set
of positions or risk factors we have to examine further. All major risk factor classes
should therefore be tracked this way. Theoretically, we could break this down to
individual risk factors, but this might become computationally too expensive.

Note that partial VaRs also do not add up to the overall portfolio VaR, the same
way individual VaRs don’t. Chapter 12 will illustrate this further.

There is a shortcut for actually implementing partial VaRs that avoids creating
separate scenario sets with (somewhat redundant) constant rows. The pricing step
can simply rely on the original scenarios and, before performing the computation,
force the appropriate scenarios to be constant on the fly (see Sect. 19.5).

3We must refrain from dubbing this excremental VaR.
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Synthetic Marginals Computing the partial VaR of a single risk factor (e.g.,
VaRIR-USD-Y10) would allow us to track the model performance with respect to just
that one risk factor and to its individual or marginal distribution. This would require
performing a whole VaR calculation over a million positions 2200 times over,
which is often unfeasible. A quicker alternative is to create artificial or synthetic
test positions that are only sensitive to individual risk factors or small sets thereof.

To keep the set of tracked risk factors small and manageable, we can use the
risk factors’ VaR-contributions to determine the main and thus most interesting risk
drivers and only set up and track synthetic positions for them.

Analyzing the behavior of those synthetic portfolios can then either show that that
model performs well with respect to major risk factors or help expose problematic
risk factors that might otherwise remain hidden in the joint distribution.

Stressed VaR Our VaR setup relates the recent two-year period of market activity
to tomorrow’s PnL behavior. Alternatively, one might ask which historic precedent
of a previously observed market period would, now and for our current positions,
indicate a high degree of risk—after all, such past periods might conceivably occur
in similar form again.

To answer this, we need to find the historical period4 of returns that projects
the most extreme VaR for our current positions. So for each past day, we take
its corresponding return window, create new scenarios based on it and on today’s
market scenario S0, and compute a VaR. One such return window will yield the
most extreme or stressed VaR.

Finding such a worst-case past period is computationally very expensive, as it
entails running a full VaR evaluation for each day in our history of thousands of
days. This step is therefore typically only performed once a year in a separate cali-
bration exercise.5 It should also be explicitly triggered whenever the characteristics
of our portfolio composition change drastically (e.g., when a new trading strategy
is put in place or when different risk factors start to dominate the portfolio’s risk).
The hereby settled stress period returns can then be used each day anew to compute
the current portfolio’s stressed VaR, off of the current market scenario. (Note that
for the stressed VaR the volatility rescaling step is omitted, for it would effectively
mean selecting the worst-case 20-day return period.)

A main reason for using this measure is simply that you might have to, as
regulators increasingly rely on it. As a mathematical instrument, though, it is not
very elegant. The stressed VaR has no direct relation to PnLs that are actually
observed, and it is thus nigh impossible to plausibilize (except that it should
exceed the VaR in all but rare instances). And its warning-signaling power may

4The regulator prescribes the window size to be used for this purpose; one-year periods are
typically used for the stressed VaR.
5The fast analytical approach can provide valuable support for speeding up this procedure. It
can, for example, run a first tentative selection, thus limiting the number of full VaR evaluations
required.
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be overstated: benign market conditions, like happy families, are all alike; every
market crisis is probably messed up in its own way.

The individual, incremental, partial, and stressed expected shortfall are
computed along the very same lines as their VaR cousins.



Part II

Operations
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The VaR is an altogether relatively intuitive abbreviation of the two-dimensional
concept of risk, but one characteristic in particular might not be self-evident at first
sight. Before we turn to that, let’s address a few of the basic properties first:

• The VaR is usually negative except in rare instances; we can omit those special
cases in the following discussion. If you encounter positions with a positive VaR,
either check and fix your calculation or start investing in them right now instead
of reading on.

• Doubling down on a position will double its risk as reported by the VaR:

VaRŒ˛ C ˛� D VaRŒ2˛� D 2 VaRŒ˛�:

You can verify this relation in both the historical and the analytical VaR setup.
In the former, we add a PnL vector to itself and hence also double the PnL in the
sum vector’s VaR entry; in the latter, the new position will have twice the original
sensitivities. (The relation also holds true for any positive constant other than 2,
of course.)

• A position ˛ and its hedge �˛ have opposite PnL values. As mentioned already,

�p�˛ D ��p˛:

Adding �p˛ and �p�˛ thus yields a zero vector �p˛�˛ D .0; 0; : : : ; 0/, and
we obtain what we intuitively expect:

VaRŒ˛ C .�˛/� D VaRŒ˛ � ˛� D 0:
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• Because both ˛ and �˛ do have a (negative) VaR, we can immediately infer that,
except in special cases, the VaR is not additive:

VaRŒ˛ C ˇ� ¤ VaRŒ˛� C VaRŒˇ�:

• What about the specific VaRŒ�˛�? You might encounter simple linear hedges and
observe that, for those, apparently VaRŒ˛� � VaRŒ�˛�. For non-linear ones like
the call options described in Chap. 6, this is not the case in general. Just imagine
a position ˛ with some slightly negative PnLs and some massively positive ones;
its hedge �˛ necessarily has, in turn, some slightly positive PnLs and some
massively negative ones. Their VaRs are driven by the negative PnLs in both
cases, and their level can thus differ arbitrarily:

VaRŒ˛� ¤ VaRŒ�˛�:

(Lastly, convince yourself that VaRŒ�˛� ¤ � VaRŒ˛�.)

How do combinations of different positions behave under our measure of risk?
We start off with a common case: two positions with PnLs that are normally
distributed and behave independently of each other.

The normality ensures that our VaR is simply a scaled standard deviation, so we
have VaRŒ˛� D �2:33:: � stdŒ˛� and VaRŒˇ� D �2:33:: � stdŒˇ�. Their portfolio
VaR will of course be VaRŒ˛ C ˇ� D �2:33:: � stdŒ˛ C ˇ�.

We recall that in such a setup the involved standard deviations are related:

stdŒ˛ C ˇ� D
p

stdŒ˛�2 C stdŒˇ�2:

It becomes clear, via Pythagoras, that

stdŒ˛ C ˇ� 6 stdŒ˛� C stdŒˇ�;

and consequently, aware of the negative sign of our constant,

j VaRŒ˛ C ˇ�j 6 j VaRŒ˛�j C j VaRŒˇ�j: (12.1)

This reflects the concept that the risk of two combined positions is lower than
the sum of the individual risks. This is called diversification or portfolio effect, also
paraphrased as “not putting all your eggs in one basket.”1

Before we proceed, we briefly square the initial examples with the simplest
setups that are not independent. When we combine two identical positions (which

1An even simpler example might be of use. Assume to own 2 units of some stock that can go up or
down with the same probability; you will lose money 50% of the time. Investing instead in 1 unit
of two different, independent stocks each will have you lose money only 25% of the time.
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clearly are not independent), the combined standard deviation is, as we would
expect,

stdŒ˛ C ˛� D
p

stdŒ˛�2 C stdŒ˛�2 C 2CovŒ˛; ˛�

D
p

stdŒ˛�2 C stdŒ˛�2 C 2VarŒ˛�

D
p

stdŒ˛�2 C stdŒ˛�2 C 2 stdŒ˛�2

D 2 stdŒ˛�:

When we combine a position with its hedge (also not independent), we get

stdŒ˛ � ˛� D
p

stdŒ˛�2 C stdŒ�˛�2 C 2CovŒ˛; �˛�

D
p

stdŒ˛�2 C stdŒ˛�2 � 2CovŒ˛; ˛�

D
p

stdŒ˛�2 C stdŒ˛�2 � 2 stdŒ˛�2

D 0:

In both cases, the portfolio behaves as promised above. If our positions move
in tandem, the risk is additive. With opposing positions, the risk not only becomes
smaller but in fact zero. Most often, positions diversify the risk and thus act between
those two extremes. Either way, the relation (12.1) seems to hold.

Until, of course, it doesn’t. To find an example of how the VaR might break
relation (12.1), we must leave the benign world of normally distributed PnLs. The
historical approach, where the VaR is the 10th most negative PnL, yields an example
where the combined risk appears to be larger than the sum of the individual risks—
where the VaR is said to be not sub-additive:

j VaRŒ˛ C ˇ�j > j VaRŒ˛�j C j VaRŒˇ�j:

Consider a PnL vector �p˛ . It will contain negative and positive PnLs scattered
about randomly. Somewhere we’ll encounter the tenth most negative entry, the
VaRŒ˛�, say, at position 714. The vector will also contain a most negative value
somewhere, say, at position 339, a second most negative value, maybe at position
107,.. well, you get the picture. Now imagine the nine most negative values to be
very negative, make it �1. In fact, no matter how negative you imagine them to
be and how risky a position you thus concoct in your mind, the VaRŒ˛� remains
unconcerned and keeps signaling the same risk.

Now on to another position ˇ. With the same thought experiment, we can
assume its PnL vector �pˇ to contain a reasonable VaRŒˇ� somewhere, as well
as nine further super-negative entries at positions 216, 17, 903, etc.—again without
impacting the position’s own individual VaR.
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To obtain the portfolio’s VaRŒ˛Cˇ�, we need to add the individual PnL vectors as
in �p˝ D �p˛ C �pˇ and get this sum’s tenth most negative entry. Our searched-
for example now readily looms in plain sight: up to 18 entries will be arbitrarily
negative (�1), and thus the tenth most negative one, the portfolio VaR, will be too.
The combined positions’ risk appears to be larger than the sum on the individual
risks. The VaR, here, suggests we actually put all our eggs in one basket rather than
in two.2

This is considered, by many, to be a highly undesirable property of a risk
measure, and alternative measures—guaranteed to be sub-additive—are therefore
often proposed instead. Yet first, instances where the VaR behaves this way are
very rare in the real world (I personally encountered them twice over the course of
8 years). And while being sub-additive is desirable, alternative measures may exhibit
unwanted traits of their own, as we will soon see.

So it is good to be aware of this issue, for in instances of violated sub-additivity,
you might have to do some explaining lest your model results be discredited. For
the overwhelming part, you will find assumption (12.1) to hold up well.

2The same effect can crop up with partial VaRs.
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The expected shortfall or ES shares the basic properties of the VaR given in the
previous chapter: it is negative; it scales for positive multiples of positions; it
vanishes for hedges; it is not additive; etc. For normally distributed PnLs, it is again
a mere multiple of the standard deviation, and the scaling factor of the 2:5%-ES is,
with 2:34::, very close to the 2:33:: of the 1%-VaR.

One nice-to-have characteristic of the ES is that it is always sub-additive, unlike
the VaR. Consider two positions’ PnL vectors, whose 25 worst losses determine, via
their average, the positions’ ES. It turns out that the portfolio ES can’t be “worse”
than the sum of the individual ES values:

j ESŒ˛ C ˇ�j 6 j ESŒ˛�j C j ESŒˇ�j:

There are various ways to formally prove this.1 We persuade ourselves of this
statement’s validity with a thought experiment. Now, to create a counterexample and
thereby breach the inequality above, the portfolio’s ESŒ˛Cˇ� would have to be very
negative—we can ask ourselves: how would the two positions’ PnL vectors have to
be aligned in order to create a maximally negative portfolio ES? (The individual
ES values are not influenced by any such alignment). Well, for the portfolio ES to
become very negative, it would have to pick up as many very negative PnLs from ˛

and ˇ as possible; ideally, it would pick up all their most negative PnLs. This can
only be the case if the worst ˛-scenarios coincide with, i.e., have the same vector
position as, the worst ˇ-scenarios. Yet we see that even in this special case, the
portfolio’s ES could at best be identical to the sum of the positions’ ES-values. In
all other cases, it can’t even reach that equality.

1See, for example, “Seven Proofs for the Subadditivity of Expected Shortfall” at https://people.
math.ethz.ch/~embrecht/ftp/Seven_Proofs.pdf. Also note that the idea here remains true even in
case of freak positive ES values; we would just have to phrase it more awkwardly.
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Another seemingly good feature of the ES is that it takes into account the PnL
distribution’s tail by factoring in all the most extreme negative PnL values, while
the VaR de facto ignores those potentially risk-revealing, most severe losses.

Mostly because of these two reasons, the ES has gained prominence in recent
years. In practice, the choice of measure might not be up to you, as it can be
prescribed by the regulator or by precedent. In any case it is good to have both
measures at the ready, if for nothing else than as a sanity check.

Yet one should be very careful not to write off the VaR and not to overly exalt
the ES:

• The VaR indeed fails to account for the outer fringe of the PnLs’ tail, unlike
the ES. However, the data itself does not necessarily allow for a full or reliable
description of tail behavior—the sample size is small, and the historical time
window might not encompass many revealing extreme or tail cases.

Now, while the VaR does not even pretend to capture that tail behavior, the
ES might effectively often just capture an incomplete or distorted one, possibly
providing a false sense of risk coverage.

Just as reporting a “4 out of 7” survey result as “57:14%” could be considered
slightly obfuscating and misleading, using ES implies confidence in a knowledge
about a model’s tail behavior that more often than not is unwarranted. The VaR,
on the other hand, is modest in this regard.

• Many model quality issues arise from data quality or, better, from missing data
quality. Individual outliers in the input data (like an erroneous return) or bugs in
pricing functions may end up producing erroneous extreme PnLs at times. The
VaR is benign in such situations because the most extreme PnLs barely affect
it. The same cannot be said for the ES, which can be arbitrarily distorted by
individual outliers.

It goes without saying that the ES is hardly to blame for bad input data. Of
course, data quality should be carefully and continuously monitored and pricing
implementations diligently tested in order to avoid such freak instances. Yet if an
issue still sneaks through, which might not be entirely avoidable, the ES might
turn out to be a bit less forgiving than the VaR.

• The VaR is straightforward in one sense especially: we can easily test this
measure against the actual PnLs. We expect, on average, to observe a PnL
breaching the previous day’s VaR estimate about once every hundred days, and
testing this essentially just boils down to counting (more on this procedure in
Chap. 15).

It’s trickier to test the ES. Intuitively, only the small number of days where the
VaR is breached can be analyzed further with respect to the breach’s (average)
size. There are various approaches and workarounds addressing this limitation,
but they lack the transparency of the VaR-related tests.

• Finally, the VaR is indeed not sub-additive. In practice, however, this quirk
manifests itself relatively rarely. The main drawback here is the effort you have
to put in if model result consumers stumble upon such occurrences and start
questioning the numbers.



13 Properties of ES 67

So while the ES is indeed smartly sub-additive, it is more pretentious in its
assertions, resentful with respect to outliers, and more elusive to validate. In a
bit more earnestness, the ES is a fine measure with no agenda of its own. We
should probably just try not to infuse it with an expressiveness unsupported by the
underlying data.

Of way more interest to us is the conditional expected shortfall or cES. (Recall
that the positions’ cES values add up to the portfolio ES and can be either negative
or positive.)

Unlike the individual ES and the individual VaR, the cES has a useful property
with regard to hedges. As it is simple to verify, a position’s hedge has the negative
cES of its counterpart:

cESŒ�˛j˝� D � cESŒ˛j˝�:

This can be used to visualize a portfolio’s hedging disposition. The scatter plot in
Fig. 13.1, for instance, gives an overview of each position’s impact on the ES (and
thus, by proxy, on the closely related VaR). At one glance, we can identify distinct
clusters of positions:

• Positions on the right-hand side have a large PnL standard deviation; they are
plausible candidates for being influential.

• Positions far below the x-axis have a large negative cES; they drive the overall
portfolio ES.

• Position pairs that appear mirrored along the x-axis represent hedges; they cancel
each other out and, together, do not impact the ES.

• Positions on or close to the x-axis also hardly impact the ES, even if they appear
on the far right; they are correlated with the rest of the portfolio in a way so as to
minimize the overall ES impact.

• Finally, positions in the lower-left part, i.e., with a small standard deviation but a
relatively massive negative cES, possibly feature somewhat extreme PnL values
in the tails. How come? Well, in general, the worst-case cES is the individual ES.2

Thus, the cES of normally distributed PnLs (i.e., without tails) is restrained by
the scaled standard deviation—breaching this would therefore clearly indicate
non-normal, heavy tails. Under portfolio diversification, the effect is often less
flagrant and an outright breach unlikely. Still, large cES values versus small
standard deviations hint at non-normality.

Especially if we have no explicit meta-information about which positions hedge
each other, or if hedges just slightly deviate from their perfectly complementary PnL

2Verify, along a similar line of thought as given at the beginning of this chapter, that

j cESŒ˛j˝�j 6 j ESŒ˛�j:



68 13 Properties of ES

Fig. 13.1 Standard deviation
of positions’ PnL vectors vs.
their cES

behavior, this view can help us weed out distracting positions with large individual
ES/VaR values but zero risk influence. The remaining positions become candidates
for further introspection in any analysis exercise we might have to perform.



14VaR Noise

Having examined the static properties of the VaR, we now look into its dynamic
behavior over time. As new positions are entered or old ones closed, and as the
volatilities of the assets involved change, the VaR, recalculated every day, will
change as well. Often, such VaR changes and their reasons are of more interest
in risk management than the level of the VaR itself.

In order to appraise VaR changes, it is useful to first look into the behavior of our
VaR measure in the special case of a constant portfolio and benign markets. It turns
out that even in such a stable environment the VaR will fluctuate to some extent. This
baseline of natural noise is good to keep in mind when analyzing a particular VaR
change, when comparing different VaR models, or when assessing the usefulness of
certain optimizations. Effects below that baseline might be inconsequential really.

To sketch this baseline, we create a pseudo-history of random normal returns
(say, in Excel) for a hypothetical asset. Since we can disregard units here, these
returns can directly be viewed as PnLs.

The history consists of 3 years or 750 days. For the first 2.5 years, we create
standard normal returns, i.e., with standard deviation 1. For the remaining half a
year, we create returns with twice that standard deviation. We proceed to take a
look at the VaR behavior in the third, last year (the first 2 years only provide a full,
valid input of “historical” data for that final year of interest). Since we know the
underlying distribution, we know what the VaR ought to be on each day, and we can
compare it to the VaR estimates of various model flavors.

We first examine the simplest one—computing the VaR from mirrored but non-
rescaled returns (see Fig. 14.1). During the first 6 months, we notice how the VaR
estimate from the raw returns skips between constant levels of similar magnitude.
Such a skip happens whenever the return associated to the VaR scenario for a given
day falls out of the historical 500-day window used for the following day.

Then, after 6 months, the VaR estimate starts to change and to converge to the
newly established vola level—yet as can be seen, very slowly. It takes time for the
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VaR (“real”)

VaR (mirrored raw returns)

Fig. 14.1 VaR estimate from artificial raw returns; 1 asset

Fig. 14.2 VaR estimate from artificial rescaled returns; 1 asset

new, larger returns to influence sets of 500 returns that still mostly contain old, low-
vola ones.

Let’s see how our historical approach—based, again, on mirrored but now also
rescaled returns—performs under the same circumstances. Figure 14.2 immediately
shows that the rescaling has a major impact on the VaR estimate—it is much more
volatile and overshadows any level skips (which happen underneath anyway). The
reason for this VaR volatility is that each day’s local vola estimate is based on only
20 returns. This small sample size hence causes the crucial target vola estimate to
fluctuate more and to randomly deviate further from any “real” underlying standard
deviation. The more important aspect, however, is that this VaR estimate, by design,
almost immediately reacts to the mid-year vola level change and quickly converges
to the newly established regime.

Now, the magnitude of our VaR’s volatility is still somewhat striking. There are
two ways to cope with this. The first is to notice that the deviation behavior is
only an “error” because we made it so—in real life, we never know the underlying
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Fig. 14.3 VaR estimate from artificial rescaled returns; 10 assets

Fig. 14.4 VaR estimate from Monte Carlo on rescaled returns; 10 assets

distribution and might as well tacitly assume our estimate to be perfect (so just
remove, in your mind, the dotted line of the real VaR).

Second, the effect becomes attenuated if a portfolio does not depend solely
on one single asset. For a portfolio of 10 uncorrelated assets, the behavior seems
less suspicious, as can be seen in Fig. 14.3. Some risk factors’ target volas are
overestimated, some are underestimated; combined, these errors tend to partially
offset each other.

We get a very similar picture with the Monte Carlo approach on top of rescaled
returns (see Fig. 14.4), again for 10 uncorrelated assets. There is one important issue
to keep in mind: Monte Carlo introduces an additional random deviation or Monte
Carlo error. This can be made arbitrarily small, e.g., by using a very large number of
normals or by appropriately mirroring those normals as well. However, even when
using an absurd 1010 scenarios and thus basically eliminating any Monte Carlo error,
your Monte Carlo VaR estimate will only ever converge to the (dashed) line driven
by the target volas (the figure, in fact, depicts this limit) and not to the (dotted)
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real VaR. So you can’t Monte Carlo yourself towards the truth—it is just too elusive
through our short-term vola spectacles.1

The area between the line of a VaR estimate and that of the real VaR is an
indication of how systematically or how long an estimate is off. If it takes too long
for an estimate to adjust, whole series of VaR breaches or backtesting violations
may ensue. Rescaling clearly makes this area smaller, but because nothing is free,
we buy this model reactivity by sacrificing some day-to-day stability of our risk
measure. The proposed model mimics a hummingbird instead of a sloth.

Finally, we can take a more narrow look at the daily VaR fluctuations driven by a
short-window target volatility. For one individual asset and a time series of standard
normals, we can compute each day’s local/target vola estimate Li and the relative
changes LiC1=Li � 1 over time. It turns out that the standard deviation of these
changes is about 5%, par for par the standard deviation of relative VaR changes in
any rescaled setup.

Like above, we can do the same exercise for 10 uncorrelated assets (we use the
square-rooted sum of the local variance estimates for this). Here, the daily VaR
changes clock in at a standard deviation of about 1:7%. Now, with 2200 risk factors
we are tracking many more than just 10, but we should be aware that often just a
small subset of them drives the risk, especially in sub-portfolios. Furthermore, risk
factors may at times be highly correlated. This clumps them together and makes
them act as if they were fewer in number, with less noise offsetting or relief.

1The Monte Carlo error depends mainly on the number of Monte Carlo scenarios used. You could
analytically determine how far the Monte Caro estimate is likely to be off the limiting case of
infinite scenarios, or you can simply try out sets of different random numbers to get an idea of this
error range. You may experience, e.g., the Monte Carlo VaR with 5000 scenarios in a real-world
portfolio to randomly deviate from the dashed (not dotted!) line by between ˙3% and ˙5% in
relative terms.
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The VaR model estimates tomorrow’s PnL behavior by projecting plausible asset
returns from these assets’ recent history. The next day, specific assets returns will
materialize, as will a corresponding actual PnL. To compute it, we merely have
to price our positions under two scenarios—the market scenario used for the VaR
calculation and that of the following day.

Let’s use some exemplary dates to illustrate this. On the evening of some January
10, our VaR calculation uses historical market snapshots (the most recent one being
S0 of January 10) to estimate the PnL behavior of the 11th. One day later, on the
11th, a new market snapshot S0

0 becomes available and will in turn contribute to the
VaR prediction for the 12th. But at the same time, this new scenario allows us to
calculate the actual PnL experienced between the 10th and 11th1:

�p˝ D p˝.S0
0/ � p˝.S0/:

As the non-bold typeface suggests, this PnL value is a single number and not a
vector. It is what actually happened.

Comparing the actual PnL and the VaR over time gives a good first indication
of our VaR model behavior (see Fig. 15.1 for an example). On most days, the PnLs
should be above the VaR. After all, we expect the VaR to be breached with only
a 1% probability—in other words, in a time series of 200 days, we expect roughly
2 PnLs to be below the VaR, i.e., to violate it. Also, whenever the PnL fluctuation
starts to increase, we’d expect the VaR to widen soon in turn because, by design, it
will take those new, more volatile asset returns relatively quickly into account with
its short, 20-day tackle on the target vola.

1Note: we calculate this PnL one day after the corresponding VaR and should therefore use the
portfolio of positions as of the tenth to align VaR and actual PnL. The next day’s VaR calculation
might already operate on an evolved portfolio.
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Fig. 15.1 Actual PnL versus VaR

This can be quantified a bit more rigorously with what is called backtesting. For
this, we look at the number of VaR breaches or backtesting violations over a certain
period of time, usually one year or 250 business days. Over this period we expect,
on average, 2.5 such violations, but of course we will actually experience 0 or 1 or
3 or 6. To assess how many violations are acceptable, we simply use the probability
of witnessing certain numbers of violations under a perfect model assumption and
check whether this probability seems unrealistically low. For a perfect model, the
number of observed violations X follows a binomial distribution, and the probability
of experiencing exactly k violations in 250 days is:

pXDk D
�

250

k

�
1%k.1 � 1%/250�k:

Now, we could use this probability of observing a specific number of backtesting
violations to grade our model, but the probabilities of individual outcomes are tricky
to compare across different time horizons—observing exactly two violations in
200 days has a much higher probability than observing exactly 2000 violations in
200;000 days.

It is better to standardize our metric and to rely on the probability of observing k
or more violations:

pX>k D
nX

iDk

pXDi D 1 �
k�1X
iD0

pXDi:

Statistical tests generally result in such probabilities of observing an outcome
under a given model assumption; these probabilities are referred to as p-values.
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Table 15.1 Probability of
observing k or more
violations over 250 days

k pX>k (%)

0 100:0

1 91:9

2 71:4

3 45:7

4 24:2

5 10:8

6 4:1

7 1:4

8 0:4

9 0:1

10 0:0

In Excel, you can use the formula 1-BINOM.DIST(k-1;250;0.01;TRUE)
to obtain this value for our n D 250 setup (for k D 0, we have pX>0 D 1 D 100%).

If this probability is small for some observed number of violations k, we should
question the model quality. Table 15.1 lists the probabilities for witnessing kC
violations over 250 days.

Witnessing, for example, 8 or more violations over 250 days is highly unlikely at
a probability of 0:4%—we should check our model implementation, our data feeds,
our pricing engine, etc. While on average we expect 2:5 violations, witnessing 4 or
more violations is not that unusual at a 24:2% probability—this is still acceptable.
We probably want to start doubting our model at around 6 violations, where the
probability becomes smaller than 5%, an often-used threshold in statistical tests of
this sort. However, it is still necessary to put such a result into context: at a 4%
probability, we actually expect 6 violations to occur—even in a perfect model—
about once every 25 years. So once in a generation, we might as well let such a
result slide (it helps if it doesn’t happen in a model’s first year of operation). Even
more pronouncedly, if we monitor 25 independent portfolios, one of them is likely—
again, under a perfect model—to exhibit 6 violations purely by chance.

Finally, in practice, there is another issue to consider. In addition to backtesting
violations we expect from a merely statistical point of view, there are some
violations that fall outside the scope of the VaR model entirely. The VaR can only
predict distribution characteristics visible in the market data, and it cannot possibly
account for risk factors changes not represented there. Out-of-left-field events must
unsurprisingly surprise the VaR. Most often, such events are political in nature, e.g.,
a central bank unpegging a currency after years of artificially low volatility, such
as when the Swiss central bank in 2015 allowed a sudden overnight increase in
the Swiss franc’s value. Such events should be managed via stress tests, and any
related VaR violations should ideally be discarded from backtesting considerations
(although the regulator, of course, might beg to differ).
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Backtesting and its visualization vindicate our particular choice of VaR model. A
bare-bone historical simulation, i.e., one without volatility rescaling, will obviously
run into issues like clusters of backtesting violations during rising-vola regimes, to
which such a model would not react quickly enough.

In our setup with vola rescaling, however, backtesting basically has to work
by construction—as long as tomorrow behaves similarly to the recent past. Here,
backtesting is less of a statistical test of the underlying model assumptions, for there
are very few of them in the first place; instead, it mainly checks for a bug-free
model implementation. A secondary fruitful application of backtesting is assessing
a model’s dependence on parameter choices, its parameter sensitivity (more on this
in Sect. 17.4).

Now, while backtesting is a simple, quantitative way of plausibilizing a model’s
behavior, we seem to disregard much of what is going on above the 1% quantile,
which, consequently, also forces us to use relatively large time series in such
backtesting setups. An alternative test—the distribution test—is more expressive,
and it is coming up next.
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We can relate the VaR model’s prediction (tomorrow’s PnL distribution) with actual,
later outcomes (the realized and experienced PnL) in a way that is more expressive
than the backtesting with its focus on relatively rare VaR violations. We can view
the prediction—a set of 1000 equally likely PnL values—as a skeleton or proxy
for the infinitely many possible PnL outcomes. More specifically, the sorted PnL
predictions �p.i/ delimit 1001 adjacent intervals into one of which the actual PnL
must later perforce fall:

.�1; �p.1/�; .�p.1/; �p.2/�; : : : ; .�p.1000/; 1/:

To depict these interval boundaries, we simply reprise a graph we’ve encountered
at the beginning of the book in Fig. 16.1.

Note how the left- and right-most intervals tend to be larger than the central ones,
as the predicted PnL values or interval boundaries are typically spaced further apart
at the fringes. In a leap of faith, we declare that the probabilities for an actual PnL to
fall in any of those intervals—if the model is correct—should be just about the same
(in this case, 1=1001). Intuitively, dense regions represent areas where we predict
the actual PnL to materialize more often—but the intervals in those regions are
also narrower, which keeps their hit probability at bay. Conversely, sparse regions
indicate areas where we generally expect few PnLs to happen—but if a stray PnL
should ever appear nearby, the larger intervals there can scoop it up more easily.
In both cases, hit frequencies and interval sizes offset each other, yielding uniform
probabilities for the various intervals.

We can have a go at this from another direction: the VaR, i.e., the 1%-quantile,
delimits the 10 most negative PnLs, and the probability of hitting that area is
1%. The 2%-quantile fences in the 20 most negative PnLs; the probability of
hitting that area is 2%. Consequently, the probability of falling between those two
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Fig. 16.1 Price changes as interval boundaries

quantiles—the 10th and 20th most negative PnLs—must again be 1%. The reason-
ing above just breaks this down to a more granular level.1

We can proceed to a fairly straightforward test setup. Each day, an actual PnL will
fall into one of the 1001 predicted, hypothetical PnL intervals, and we can assign
that interval’s index to that PnL. If we furthermore divide that index by 1001, we get,
for each day, a value u between 0 and 1. We can repeat that for a certain number of
days—typically 40—and obtain as many u-values. As each index is equally likely,
the normalized u values are—or at least should be in case of a correct model—
uniformly distributed. And that’s something we can test.

The following steps should help build up some intuition; you can easily retrace
them using Excel’s RAND formula, which generates a Œ0; 1�-uniform. An example of
40 such artificially generated uniforms is given in Fig. 16.2.

These values sure look random, but are they uniform? If they are, there should
be some small, some medium, and some large u-values. To visually check for that,
we sort them by size and graph them again in Fig. 16.3.

Clearly, sorted uniforms should form a diagonal, as they do in this example. Now,
by pure chance, such uniforms might also deviate from the diagonal (the smaller the
sample size, the larger the potential deviation). To give you an impression of that
deviation range in our case of a 40-sized sample, and sticking with this setup of
artificially created uniforms, Fig. 16.4 depicts ten such sorted uniform samples.

It turns out that this range can be described with so-called confidence intervals
based on the beta distribution. The kth largest uniform u.k/ of a size-n sample is

1The probability of a random number falling between two quantiles qd < qu is u�d (see Sect. A.7).
The PnL predictions (our interval bounds) correspond to k=1001-quantiles; the probability of a
random number falling between two adjacent ones, e.g., d D 17=1001 and u D 18=1001, is
u � d D 1=1001.

You will notice that this treatment of quantiles is slightly different from our previous one,
where we defined the 10th most negative PnL value to correspond to the 1%-quantile instead of
the 10=1001 D 0:99%-quantile. This is largely inconsequential here due to the large number of
PnL values involved, and our respective definition choices are solely motivated by convenience and
concise, short form notation. In any case, empirical quantiles like these are often handled slightly
differently according to a given problem at hand, for example, when it comes to dealing with the
very first and last intervals or with questions of quantile interpolation.
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Fig. 16.2 A sample of 40
uniforms

Fig. 16.3 The same sample
of 40 uniforms, sorted

Fig. 16.4 Ten samples of 40
uniforms, sorted

Beta.k; n C 1 � k/-distributed, which allows us to gauge plausible ranges for those
uniforms.2

2The confidence interval delimits the outcome of each u between an upper and lower bound (it is
thus two-sided); it uses the 5% and the 95% quantiles of the Beta distribution for this, spanning
the 90% of outcomes in between (hence it is a 90% confidence interval). You can use Excel’s
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Fig. 16.5 Good distribution
test

Fig. 16.6 Bad distribution
test

We are now ready to look at series of normalized PnL interval indices, derived
from actual PnLs versus their respective PnL distribution predictions. Here are
several real-world examples, along with two-sided 90%-confidence intervals. The
first example, given in Fig. 16.5, shows a portfolio for which the model works well
and makes predictions within the confidence intervals.

A second example, given in Fig. 16.6, shows a model that does not seem to work
that well—it seems to tend to underestimate the actual risk. Why is that so? The
lower left part of the graph is the region of interest, for it roughly corresponds to
negative PnL values, i.e., losses. That’s because PnLs close to zero should usually
hover around interval index 500 (or u � 0:5), positive PnLs or gains lie in the upper
intervals above it, and negative ones or losses are below. Like for all PnLs, we expect
the losses (represented by the observed u-values) to lie on the main diagonal. If
they are below, it means that realized PnLs happened to fall in lower-than-expected
intervals—the losses are more severe than predicted. The model thus underestimates
these losses’ magnitude and hereby the risk.

BETA.INV(0.95;k;n+1-k) and BETA.INV(0.05;k;n+1-k) functions to obtain each
day’s upper and lower bounds.
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Fig. 16.7 Ugly distribution
test

Finally, another example of a model that doesn’t work well, albeit with less dire
consequences, is given if Fig. 16.7. In this case, the model overestimates the risk
and the magnitude of losses. Mathematically, this is just as poor a model as the
previous one. In practice, though, this model errs on the conservative side, which
for the regulator usually proves fine. Bearing the increased costs, i.e., higher capital
requirements, of slightly risk-averse models may be preferable to constantly having
the validity of a model hovering around the lower confidence band questioned.

Using such distribution test graphs for various portfolios is a quick and com-
prehensive way to check a model’s quality. I personally prefer such graphical,
expressive tests to the blind use of statistical tests and their resulting—mono-
dimensional and highly condensed—p-values (like the ones we encountered in
the backtesting chapter, supplementing the VaR/PnL time series graphs). Some
don’t deem such tests to be strictly quantitative—I disagree: they represent a
wealth of quantitative data and do so in an interpretable context. Nonetheless,
some stakeholders will insist on p-values, and they can easily be created. We
can, for instance, check for the uniformity of our u-values with standard tests like
Kolmogorov-Smirnow or Anderson-Darling, which readily yield those comforting
numbers.3 In my view, p-values best serve to unceremoniously seal an argument you
are ready to win with a more transparent reasoning anyway, much like tossing in a
PhD title into an email signature.

Distribution tests are more powerful than backtesting, in the sense that they
use more information than mere binary and therefore abridged “violation yes/no”
flags. They require fewer days to become meaningful, and we use 40 to 60 days as
opposed to the 250 days common in backtesting. As the number of days increases,

3While we generally prefer Python and NumPy when doing statistics, the software suite R offers
some good support for such tests. The Kolmogorov-Smirnov test is built-in (ks.test(u,
"punif")), while Anderson-Darling is available as a separate library (called ADGofTest).
Please note that some tests do not allow for identical u-values, which in our case can happen
because of the discrete intervals. You can simply add/subtract tiny and different offsets to each
u-value to disentangle them, e.g., 10�8k.21u.k/<1=2 � 1/=n.
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the confidence bands will get narrower, and as is the case with all statistical tests,
too large a sample size will eventually guarantee a p-value violation. Using 2–3

months of business days seems to be a reasonable compromise: the time series is
long enough to avoid too large a leeway in terms of confidence bands, and it is short
enough to not artificially cause spurious rejections due to an oversized sample.

Like some other modeling choices, the number of days to use in distribution tests
is a matter of preference rather than optimality, which can lead to inquiries with
remarkable follow-up explanation efforts. Defending such choices will be the topic
of Sect. 17.4.
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We now try to examine our risk measures and their properties in the practical context
of daily risk management. We structure this chapter by the most common questions
you might face, in reverse order of urgency.

17.1 Why Did My VaR Increase?

This is the most common question you will encounter. It will be raised by the CEO,
desk managers, traders, and just about anyone in the risk audience.1 A VaR blowup
means increasing capital requirements, may cause breaches of VaR limits imposed
on desks or traders, indicate problems with a hedge, signal a pick-up in market
activity, etc. The opposite question—“Why did my VaR decrease?”—is much rarer,
albeit just as warranted.

The sheer number of positions and risk factors, i.e., the vast amount of raw data
available, combined with the (desirable but difficult-to-segregate) portfolio effect
can make it tricky to immediately assess specific reasons for VaR movements. To
answer this question and to localize any root causes of a VaR change, we basically
try to narrow down this large search space.

But before we delve into our data, we should check the calculation for profane
mishaps. Maybe a position source system has failed to deliver its data, and instead of
the usual 1;000;000 positions, we have calculated only half of them? Maybe some
fallback mechanism for such missing feeds (usually just copying the previous day’s
corresponding data over) has failed? Maybe a market data system has delivered a
clearly wrong market value that escaped the data scrubbing team, causing a huge
spike and an increase in the target volatility of a dominant risk factor? Maybe all
positions are there and priced alright, but the definition of which positions belongs

1We like to treat the VaR as negative value to preserve consistency with support measures like the
VaR-contribution. We quickly translate “increase” into its opposite and keep mum about it.
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Table 17.1
VaR-contribution

Risk factor Sensitivity VaR-sensitivity VaR-contribution

FX-EUR �12,228 176.45 �2,157,701

FX-RUB �661 152.43 �100,727

FX-GBP 537 �104.10 �55,889

FX-CNY �119 182.50 �21,641

IR-EUR-Y30 21,668 �0.61 �13,119

to which portfolio was messed up due to a small typo during yesterday’s otherwise
minor change to the portfolio definitions? Robust automatic check procedures,
detailed and human-readable logs, and warning or error alerts will greatly help
account for such adverse technical headwinds.

Once such mundane reasons are ruled out, we can proceed to see whether market
changes or changes in our positions cause our suspicious figures. A quick cross-
check is to calculate yesterday’s positions with today’s scenarios, and vice-versa.
This is a good indicator of which investigative path to go down next.

On the market or risk factor side, the partial VaRs like VaRFX or VaRIR (and
changes or non-changes in some of them) help restrict the search scope to types
or subsets of risk factors. We can then determine the most important risk factors
there (via the portfolio’s absolute sensitivities) and verify whether the corresponding
target volatilities have changed.

A more elegant and comprehensive way is to check the risk factors with
the most negative VaR-contributions—this measure helpfully already intermingles
sensitivities and volatilities in a consistent way. Table 17.1 shows an example report
of the risk factors with the most negative VaR-contributions for some portfolio.
Comparing such a report with, e.g., the previous day’s one quickly reveals the
comparative relative impact of the various risk factors and sniffs out the combined
effect of changes in volas and/or sensitivities. Or to put it more prosaically: in
isolation, a seemingly tiny IR vola increase from 0:0003 to 0:0005 might escape the
quick human glance amid apparently larger vola movements; the VaR-contribution
gives such changes the appropriate sensitivity-weights and is thus able to denounce
a change as influential or less so.

On the position side, we should first be aware of this:

• Adding a position to a portfolio, while usually amplifying the VaR, can also
dampen it, e.g., when adding a position that acts as a partial hedge to the
remaining portfolio. In the extreme case of adding the portfolio �˝ , we can
even reduce the VaR to zero.

• Removing a position from a portfolio, while usually curbing the VaR, can also
magnify it, e.g., if we remove one of two deals that hedge each other.2

• Even positions that idly remain in a portfolio can affect the VaR in both direc-
tions, for their contract terms might trigger changes in their PnL characteristics.

2As we want to avoid the ambiguous “increase” and “decrease” for the negative VaR, the thesaurus
is having a field day.
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So we need to go about our analysis accordingly and cannot limit our focus to
new positions alone. With that in mind, how to best drill down to a position that
moved the VaR?

It is tempting to first examine the positions’ very tangible sensitivities. But
while feasible, this is often quite tedious. There are, plainly, lots of sensitivities
on the position level (106 times the average number of risk factors the positions are
sensitive to). Many of them offset each other and blur the picture. Unsuspiciously
small sensitivities might stem from non-linear positions and just camouflage their
severe tail losses. And ostensibly large sensitivities might have a low corresponding
volatility and thus a negligible impact.

Individual VaRs for each position often don’t offer very clear signals either, as
portfolio effects are not accounted for. Hedges, if not filtered out beforehand and
dismissed for their zero risk contribution, will show up twice: linear hedges with
two identical (potentially large and alarming) individual VaR values, and non-linear
ones, even worse, with different individual VaRs. The former obfuscate the picture
somewhat more openly (two positions with the initially troubling but exact same
VaR of �217;244:63 are, after all, almost certainly hedges to be dismissed in a
quick exploratory analysis). The latter can be more baffling, as their individual VaRs
can differ arbitrarily. These very same issues also haunt the incremental VaR of
positions.

A more useful hint comes from the positions’ cES values. Positions with large
negative cES values drive the VaR. And as the cES values of (both linear and non-
linear) hedges have opposite signs and the same magnitude, hedges can often be
reasonably identified and “guessed away,” leaving the remaining positions with
dominant cES values as analysis candidates. Still, if there are overly many hedges
or imperfect ones that do not close each other completely, they will continue to fog
any quick and mindless drill-down analysis of a large set of positions.

How to get around this issue of hedges? In an ideal world, positions that hedge
each other are tagged, and you can thus filter them out explicitly. If not, you
can try to automatically detect hedges by pair-wise comparison of the positions’
basic attributes: if you detect two bonds with the same maturities and coupons
but with opposite nominals N and �N, they act as hedges and can be removed
from consideration. Finally, you could attempt to identify hedges by the positions’
sensitivities. If a deal’s sensitivities s˛ complement another one’s sˇ via s˛ � �sˇ

suspiciously closely, those two deals likely hedge each other and can often plausibly
be ignored in the search for influential positions. But even in a best-case scenario
with all hedges explicitly known and accounted for, positions will often, by chance,
at least partially act like hedges to parts or all of the remaining portfolio, so the
deficiencies of our support measures with regard to offsetting behavior will linger.

A fast impact analysis can be performed via the visualization presented in
Chap. 13: a scatter plot of all deals’ PnL standard deviation versus their cES. This
allows you to detect the largest and most influential positions as asymmetries in
the various characteristic parts of the plot, with the fuzzy human eye readily and
helpfully filtering out hedges both perfect and imperfect.
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17.2 HowWill the VaR Change?

When a new position is about to be added to a portfolio, the effect on the VaR
is clearly of interest—after all, it might increase the capital requirements or cause
limit breaches. For relatively small positions, a fast shortcut to approximate the VaR
impact is to use the portfolio’s VaR-sensitivities (see Sect. 7.2). For this, we multiply
the new position’s sensitivities with the portfolio’s corresponding VaR-sensitivities
and simply add the resulting dollar terms to the portfolio VaR. This approximation
is quick and often close enough. (Note: the signs matter, so if a deal is, e.g., sensitive
to the 10-year EUR interest rate to the tune of �1000 and the respective VaR-
sensitivity is �4, than the approximate impact on the VaR is C4000. This is added
to the negative VaR—so j VaR j decreases.)

A more tedious yet truly precise method is to simply recalculate the VaR with
the new position included in the portfolio. As we usually already know the existing
portfolio’s PnL vector, it is sufficient to compute the new position’s one and to
then add those two vectors before extracting the resulting new VaR. This of course
corresponds to the incremental VaR or pre-deal inquiry mentioned in Chap. 11.

A closely related question is the following: what size should a new position have
in order to achieve a certain target VaR? This target is often some optimal or capital-
minimizing VaR. To obtain it, we just recalculate the VaR repeatedly, each time
adding a different multiple a˛ of a deal ˛ to the portfolio. (We can even calculate
the position’s PnL vector only once and then just scale it by a before combining it
with the portfolio’s vector.)

How will the resulting VaRŒ˝ C a˛� look under various position sizes or scaling
factors a? As we increase a arbitrarily towards 1, the position a˛ will at some
point become the dominant deal in the portfolio, and the VaR will get ever more
negative. The same happens if we decrease a towards �1, as the deal once again
will become dominant at some point. So we expect to see some sort of upside-down
parabola whose maximum or least negative value corresponds to the “minimally
risky” VaR. Figure 17.1 depicts an example where a weight of about a D 0:8 would
lead to minimal capital requirements.

Fig. 17.1 Portfolio VaR under a variable new position
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17.3 How Good Is the VaRModel Anyway?

The VaR is—like any summary statistic—a stark abbreviation, in this case of the
wealth of information contained in a full PnL vector expressing the two-dimensional
concept of risk. As such, the VaR may potentially hide much. It does capture one
specific slice or aspect of risk but is probably most useful in a comparative sense
(over time or between portfolios) rather than via its raw absolute level. The VaR is
not the full picture of risk.

The data used to calculate it is real-world data, prone to errors, missing values,
outliers, gaps, etc. The sample size (usually 2 years of data) is small with respect
to the large number of risk factors or dimensions. The VaR model’s quality much
depends on the data fed into it; that data is not always pretty.

On top of that, to make the VaR model react quickly to volatility level changes,
it is heavily driven by the last 20 days and their observed returns. This naturally
involves a sample error, which is more pronounced for portfolios depending on few
risk factors only. If the Monte Carlo modification is applied, an additional noise
affects the VaR figure (see Chap. 14). Actual VaR results are fickle.

Nor can we simply math our way out of such issues. Alternative risk measures
like the expected shortfall do have some desirable properties, but are still limited by
the same basic restrictions. If anything, elaborate models may be too impressive for
their own good, lulling the audience into a false sense of certitude and complacency.
(More on this in Chap. 13 and the first part of Chap. 9.)

While it is a natural mental crutch to believe that the VaR or a VaR-like measure
predicts the future, a better and more prosaic view is that it merely extrapolates some
plausible asset behavior from that of the recent past. It assumes that tomorrow will
behave like the last few weeks. If this assumption fails, the model’s results become
void. (For example, a central bank’s decision to suddenly devalue a currency might
cause a backtesting violation—yet the model couldn’t possibly have accounted for
it.) This must remain the realm of the underappreciated stress tests (see Chap. 6).
The VaR can’t foresee the future; it disregards the unrecorded risk.

These reasons should give anyone pause before overestimating the importance
or reliability of the VaR. On the other extreme of the pendulum’s swing, the VaR
should not have to bear the blame for financial calamities—as some would have it
in light of financial market crises. Instead, the man relying blindly or solely on it
is the culprit, abetted by him who burdens this humble measure with elaborate but
difficult-to-vindicate risk quantization duties. The overconfidence at the heart of it
is not rarely fueled by mathematically impressive but less-than-transparent model
choices.3

3Take, for example, VaR models that must estimate not overnight or 1-day PnLs, but 1- or 3-month
PnLs. They may rely on correspondingly large historical returns, but this would make the returns
either fewer or older or overlapping. Alternatively, they may try to use daily returns and project
them farther into the future, which raises questions of reversion to the mean, among others. The
frowned-upon traditional shortcut is to simply scale up the 1-day VaR by the square root of time
(in days). Strictly speaking, this is somewhat off or incorrect, but it seems to usually do the trick. A
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By construction, the VaR model will behave—within its limitations and its
central assumption of “the world stays the same”—as expected and by and large
correctly guess tomorrow’s market volatility. Still, the model must pass at least some
quality checks, and be it only to ensure the absence of programming mishaps. For
this purpose, the plain backtesting or more elaborate distribution tests (Chaps. 15
and 16) serve well. Partial VaRs and synthetic marginals (Chap. 11) help plausibilize
the model behavior on a more granular level, as the overall, aggregate numbers
might hide erratic effects that cancel each other out. Going much further in
discussion or deed often seems to be unwarranted—a simple model first and
foremost calls for simple workability tests.

17.4 Hmm, How Did the ParametersMaterialize?

An ideal model is one devoid of free parameters, one that “just works” without
tinkering. John von Neumann once stated: “With four parameters I can fit an
elephant”—aptly hinting at the problem of too much modeling leeway.

Now, our VaR model comes pretty close to that ideal. It has few parameters, and
all have an immediate, transparent interpretation. We typically use 500 historical
returns and rescale them to the recent 20 days’ volatility (maybe flooring the target
vola at 20% of the overall historical volatility). When using Monte Carlo or injecting
kurtosis, a few more setscrews are introduced. If using log-normal interest rate
returns, a certain shift is required to be able to account for negative returns. We
won’t lose much sleep over these settings.

But while these choices are readily made, they can be much more tricky to justify
and defend. Especially those parameters without a natural optimality to them, i.e.,
those not resulting from an accepted calibration procedure, raise doubts. Rightfully
probing questions from the regulator (“Why use 20 and not 30 days for local
volas?”) have no obvious retort. The answer of first resort—“expert opinion”—
seems terribly smug; the contrasting alternative—“common sense”—amounts to an
insult. Alas, there is often no very satisfactory answer.

There are, however, some avenues in responding that may at least minimize the
back-and-forth required to allay such parametrization concerns. One can try, first, to
kill the question in the crib and openly shame the parameters from the start as being
arbitrarily set: “These parameters have wiggle room—there is no obviously correct
or optimal setting. We discussed them and our consensus fell on this particular
tuning; we feel that it is reasonable.” Your audience, hopefully impressed that you
didn’t try to bury the issue but to highlight it, might feel less inclined to dig deeper;
the hole is already there and plain to see.

A bit more suave it is to rechristen the parameters and declare them to be meta
parameters—not really within the model scope but somewhat residing ethereally

proper long-horizon estimate, on the other hand, has ample leeway in terms of modeling and thus
allows for a wide range of results, which doesn’t necessarily invite much greater confidence in it.
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outside of it. A good example is the choice of the 20-day window for target and
local volas. Longer windows cause the VaR to be more stable and to react slower
to market changes, while shorter ones do the opposite. This setting is due to the
model users’ preferences, not to some parameter optimality.4 In any case, don’t ever
casually observe that you “tested” various setups (in an feeble attempt to make your
point stronger). That will trigger the immediate, checklist-ticking “Can you please
send us your test results?” Now you’d actually have to run those tests.

If the “questicide” fails, an answer must reluctantly be produced. Luckily, people
since Hammurabi have a fond credulity for all things written. The “I told you so”
gets more heft when framed as “This is already written in stone.” Try hard to find a
reference to a book or paper or institution that has already put forward what you are
trying to do.5 The best reference is NASA, but even an—as of yet illusive—Journal
of Chart Analysis might handily absolve you from having to admit that no one ever
has come up with your exact same ideas.

Unable to unearth a precedent, you can set up some committee responsible
to agree on parameter values, along with periodic meetings, minutes, and stamp-
wielding due process. Parameter values conjured up in such a setting are coated in
paper-trailed consecration and less likely to be doubted.

If all fails, you are left to prove that other, similar parameter choices just don’t
make much of a difference. You could, for example, run a parallel calculation of
the same model using 30-day instead of the usual 20-day windows. If the VaR
time series obviously look very similar, then the model’s parameter sensitivity is
small, and the choice thus inconsequential and unworthy of investigative zeal. This
is relatively costly in terms of setup and calculation efforts, but it might well be
necessary to quell a topic.

All of the above is better, by the way, than trying futilely to prove some tuning
parameter’s “optimality”—any utility criterion you maximize will draw attention to
its own shaky justification. Instead, as very last resort, you must rely on the gravitas
of some PhD-adorned team member, preferably sporting a beard gray and flowing.

Needless to say, this section exists because we got stung. Be prepared to spend
time on your parameter defense and reluctant of any model improvement entailing
new free parameters (e.g., supposedly superior exponentially weighted volatilities
with some—new!—decay parameter). We spent more time explaining parameters
we considered obvious (and blatantly were not by our counterparts) than on actually
programming the model. It was us who did not press them effectively from the
start. The questions on model parameters are comprehensible, warranted, and indeed
necessary. Our answers, however, were at times hesitant, piecemeal, or winding. You
better best that.

4Other out-of-scope parameters are fudge parameters; they are introduced to circumvent numerical
issues. An example is the shift used to make square root processes operate on negative interest rates.
5A good example is the RiskMetrics decay parameter setting of 94%. It often goes unscrutinized
because it is so commonly used and ingrained in many model rehashes.
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17.5 Can You Validate Your Model?

Answering this innocuous question may become formidably time-consuming fast.
It is usually posed formally by entities like the regulator or audit, and it stubbornly
clings to life in imposed conditions and follow-up requests. The stakeholders’
incentives, their familiarity with a model setup, and their available time to dig into
the matter vary—causing expectations to diverge:

• It starts with the poor choice of wording: the rather generic “validation” is bound
to be interpreted differently by everyone involved. This is compounded by the
fact that the actual people representing, for example, the regulator, will change
over time, contributing novel and sometimes different views. Regulations or laws
seldom offer explicit guidelines or unambiguous criteria.

Worse still, you can technically invalidate a model and prove it to be deficient,
but never really completely prove that it works—you might always be just one
further test away from uncovering a major weakness.

• Charged with meaning in applied statistics, the word “validation” leads some to
immediately focus and hone in on issues like hypothesis testing and distribution
assumptions, possibly neglecting that, fundamentally, there is not a lot of
statistics going on here. It is sure fun to ponder the use of a battery of statistical
tests—more fun probably than stepping back in humility before the challenges
in data or operations. Not infrequently have I encountered people that will
gladly spend time on the most peripheral statistical aspects while not even
contemplating looking at the 2200 risk factor time series—the actual core of
it all. That would (obviously) be time-consuming and boring, but there is more
to it than that. It is also just not on many people’s radar, primed by the perfect
data sandbox exercises prevailing in education and academia.

• Vague terms also naturally inspire a longing for formal frameworks and crutches
to somehow pin it all down. Expect requests for “validation concepts” (essen-
tially meta documents), for separate “initial model validations” and “continuous
model validations,” for “actionable” traffic-light score cards, and for explicit trig-
gers and contingency plans (even to hitherto unknown events). While impressive
at face value, this whole superstructure is built on the same unchanged, humble
ground and more likely to cause sweat than make sense.

Such a conceptual overhead tends to provide little relief in terms of require-
ment consistency. Over the years, we have been variously tasked to either
provide more tests for increased coverage, or fewer ones for better readability
and accessibility; to perform the same tests year in and year out for consistency,
or to do varied ones to address different model aspects as markets change. These
requests—all perfectly worthy and sensible on their own—are hard to reconcile.

What is there to be done? Well, first, avoid the word “validation.” Rephrase it as
test or, though unsexy and a mouthful, as plausibilization. No harm ever came from
this (except to your tongue).
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Second, make sure to impart that a VaR model is simple at heart; that the sta-
tistical assumptions are trivial; that market volatilities are captured by construction;
that political events are out of scope; and that data and its limitations are front and
center. You bolster your case if you avoid proprietary model customizations and
opaque language or statisticalese. So curb you quants; smite them abacuses—stick
to standard methods and familiar terms instead.

With all parties on the same page about these basics, plausibilize (see?) your
model with the basic backtesting procedures and parameter justifications outlined
in Sects. 17.3 and 17.4. Mention the VaR measure’s inherent noise (Chap. 14)
if you sense concern over minor model result deviations; address worries about
distribution tails as needed (Sect. 17.6). Have your p-values ready, but provide them
with context: a test might fail for risk-averseness, which is tolerable; and out of
many tests, some are actually expected to fail statistically. Above all, visualize the
main results—a graph grasped equals trust earned.

As for the overall scope and shape of the results, it would be fantastic to get away
with providing a succinct, small subset of varying custom tests as a readable, crisp
model quality characterization. Alas, I fear that this is not workable in practice. The
regulator is very rightfully bound to distrust a bank’s motives—what is to prevent
one from running ten tests and reporting only the three best results? Test types
should probably remain largely unchanged. As for sheer test counts, using fewer
tests may be just as expressive and much more lightweight and accessible—but
only as long as everyone involved agrees to this virtue of brevity. This is untenable,
as different and changing personnel will require just another type of test, one more
metric, or a higher granularity of sub-portfolios. Stemming this tide of requirement
creep is hard, and it is probably better to instead just swim along with it by providing
a large set of automatically performed tests. Such cover-our-ass results, however
unwieldy and ponderous, are difficult to argue against. The world of VaR model
plausibilization is one of prose, not lyric.

Now, anyone charged with evaluating something and reporting about it must also
reveal at least some issues, lest it look suspicious. If handed the ten commandments
under such a duty, we’d all find this or that commandment lacking in purpose or
in need of clarification; in our best temper, we might limit our recommendation to
reshuffling them. Something like this is to be expected in model validation as well—
it will require some effort under the best of circumstances. The additional overhead
will then vary greatly.

17.6 What About the Kurtosis?

It is likely that asset returns are not perfectly normally distributed, and it is generally
assumed that returns exhibit tails heavier than normality would imply. A common
way to measure this is the kurtosis. A normal distribution (of any standard deviation)
has a kurtosis of 3. Larger kurtosis values denote heavier tails.

It is fairly easy to impose some kurtosis in a VaR model; one possible approach,
that of scaling some of the joint returns, is given in Chap. 9. However, this would
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first require having an idea about a desired or target kurtosis, and it is here that it
gets a bit murky—for kurtosis is quite fickle a measure, and it may, worse, also
overzealously indicate tails where there really are none.

Let’s look at the volatility of this measure first, which can easily be observed by
doing a small experiment in Excel. Just create 40 random normals and determine
their kurtosis with Excel’s KURT function repeatedly; the sample’s kurtosis will
fluctuate between roughly 2 and 4, even though the sample stems from a normal
distribution with a kurtosis of 3. This variability is caused by the influential 4th
power term used in computing the kurtosis. For the same reason, outliers in a sample
may potentially massively increase the kurtosis. It is indeed not unusual to observe
market data time series with a kurtosis of over 100. Now, comparing such potentially
large and highly fluctuating kurtosis values is possibly deceptive—two kurtoses of
60 and 80 seem to differ a lot, for example, but can be caused by data sets that are
quite similar in nature.

Can we obviate this by relying on larger samples? Unfortunately, in our setup of
historical returns observed in markets whose volatility regimes seem to change over
time, this can lead to an undesired signaling of tails—the kurtosis cries wolf. Why
so? Consider a sample of 500 artificial normal returns (with a standard deviation
of 1), whose sample kurtosis will hover around 3. Now replace the last 25% of
those returns with new normal returns with a standard deviation of 2. Those new
returns are also normally distributed, and their kurtosis will fluctuate around 3 as
well. The full 500 artificial returns should resemble an asset whose price fluctuations
have doubled in the last 6 months, as illustrated by the raw returns and their local
volatilities in Fig. 17.2.

If we blindly compute the overall kurtosis, however, we obtain a value different
from 3—say, 4:83. This is purely caused by mixing two different, innocent normals.
But blessed with the knowledge of how this time series came about, we can dismiss
this warning of non-normal, heavy tails: this is a time series of normals whose vola
level changed but whose tail characteristics effectively remain normal. Such a time
series simply would not call for worrying about or injecting kurtosis into our model.

Fig. 17.2 Artificial returns with recently increased volatility
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We can quantify this from a different angle: Fig. 17.3 depicts local kurtosis values
over 40-day windows for the same time series. By their nature, the local kurtosis
values fluctuate, but their median of 2:96 indicates no particular reason to believe in
the large overall kurtosis.

We have seen that combining two sets of returns from different random normals
will exhibit kurtosis. (Such combinations arise from mixed distributions, where a
random variable can follow, at each realization, one of several distinct distributions).
This is analytically tractable, but it is both simple and instructive to construct or
simulate this effect. The border cases—taking all returns from the first normal
distribution or taking all returns from the second one with a larger standard
deviation—both result in a kurtosis of 3. Figure 17.4 shows how throwing an
increasing percentage of large returns into a mix of normals affects the combined
kurtosis. The volatile dotted lines are derived from 500 returns, where standard
normal returns are replaced with more and more returns of standard deviation 2

(or 4). The smoother lines depict the same experiment done on a set of 100;000

normals.

Fig. 17.3 Local kurtosis over time vs. overall one

large stdev 2
large stdev 4

(small samples, resp.)

Fig. 17.4 Kurtosis of mixed normals
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We first see that samples of size 500 are quite unstable with regard to kurtosis.
More importantly, the kurtosis we experience—as exemplified in our artificial
simulation—must be interpreted. If it is merely the artifact of vola regime changes,
its tail indication might well be dismissed.

How would “real” kurtosis manifest itself? Let’s revisit the same returns as in
Figs. 17.2 and 17.3, but change their arrangement. Instead of putting all large returns
at the end of the series (representing a vola regime change), we could arbitrarily mix
them into the overall series, e.g., we could take every 4th overall return from the set
of larger ones. First, obviously, the overall kurtosis isn’t affected by the reshuffling
and remains at 4:83. Yet this time series now is different—we changed its meaning.
Now it represents (by our design) no longer a time series with recently increased
vola; now it resembles one that frequently, intermittently exhibits shocks that are
larger than expected. We can regard this as an actually heavy-tailed distribution as
opposed to a mere sequence of two different normal ones. Under this interpretation
of our series, and based on its new and known behavior over time, the overall
kurtosis becomes meaningful (even though it has the same value).

Figure 17.5 shows what happens to our time series in this reshuffling exercise. Its
overall kurtosis, as mentioned, is unchanged. But the behavior of the local kurtosis
is very different now: all 40-day windows, and no longer only the right-most ones,
now contain some large returns. Note how the median local kurtosis is no longer
close to 3, as in the previous Fig. 17.3, but larger at 3:76.

Unfortunately and obviously, the picture is less clear-cut with real-world data.
Figures 17.6 and 17.7 show returns and local kurtosis behavior for the Norwegian
krone versus euro exchange rate. The local kurtosis is above the normal one in the
first year; afterwards, it hovers closer to 3, indicating normality—except for two
periods where return spikes (outliers?) cause brief periods of large local kurtosis.
Even if we don’t dismiss those two return instances as data flukes or political
events, the overall kurtosis seems to be too large. Nevertheless, without the luxury of
replications available in the artificial setup, where we can dismiss or at least corral
in the kurtosis, agreeing on a target kurtosis for our one-off sample feels like an
exercise with dubious success prospects.

Fig. 17.5 Local kurtosis over time vs. overall one, with shuffled returns
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Fig. 17.6 Real returns

Fig. 17.7 Real local kurtosis over time vs. overall one

Distribution tails are certainly of interest, and an established measure for it is
readily at hand with the kurtosis. The very interventionist operation of volatility
rescaling may well reduce the overall historical kurtosis, as seen in our first example,
and thus ostensibly suppress tails; a Monte Carlo approach applied on top of
it would, by imposing normality, annihilate the kurtosis outright. This makes a
discussion about it in the context of a VaR model almost inevitable.

What are the approaches that can and should be taken with regard to kurtosis,
and how to defend them? By far the worst choice, in my opinion, is to tackle
this issue in a conventional manner and try to model the kurtosis in detail, e.g.,
for each risk factor. Trying to pin down an actual kurtosis is a highly speculative
exercise, due to spurious effects arising from vola level changes. In essence, we do
not know the kurtosis. But even if one decided to ignore that and just blindly and
technically computed the measure and imposed corresponding tails, the practical
obstacles would be considerable: separate analyses on 2200 time series would be
required; they would have to be repeated periodically in a dynamic VaR setup; and
any kurtosis-related tweaks or optimizations would be unsteady as functions of a
relatively fickle measure.
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Possibly less elegant from a position of mathematical purity but far more
practical is it to test the model via the standard backtesting and distribution tests.
If the results are unconvincing and can be traced back to the modeling of tails,
apply some simple heuristic to compensate for the shortfall; you could, for example,
scale up the VaR by some constant factor or inject some fixed, artificial kurtosis
as described in Chap. 9. This deliberately forgoes explicit criteria of optimality or
kurtosis fits. It avoids lengthy validation discussions, prolonged by the underlying
ignorance of any “real” kurtosis. It refuses to pretend to know the unknowable and
avoids giving a false sense of confidence. It essentially puts the kurtosis topic outside
the model’s core realm.

On the other hand, if backtesting and distribution tests are able to plausibilize
a model without explicit kurtosis handling, than ignoring kurtosis aspects is by far
the preferable choice of action. In fact, one could view such end-to-end tests as
strong indications that much of the technically signaled kurtosis is an artifact. We
expect many real-world portfolios to perform just fine in a kurtosis-oblivious VaR
model, and not only because often the main risk drivers happen to be liquid and
quasi-normal assets like domestic interest rates and major foreign currencies. If the
tests succeed, the benefits of further kurtosis tweaks surely appear to be marginal,
especially in light of disproportionate efforts. In other words: if the distribution tests
fit, you must acquit.

To sum up, we propose to neglect kurtosis issues whenever possible and justified
by standard test procedures and to defend this decision on the case of equivocal
kurtosis values in case of mixed distributions. If not viable, apply some simple
catch-all heuristic to ballast the tails. Squash the topic or keep it at arm’s length.



Part III

Setup



18Context

Finance is no stranger to grandiose monikers (my personal favorite has to be the
financial crisis’s “Master Liquidity Enhancement Conduit”). The same holds true
for software engineering and IT, with many a “business service framework” or
“disciplined agile delivery” being thrown around. Each IT area continuously breeds
forth new languages, customized frameworks, abstraction layers, and paradigms;
some are useful, some promising, others opaque, and quite a few short-lived.

Luckily, we can mostly avoid weeding through the various software flavors of
the month, since our VaR model is relatively trivial. From an input of market
prices and position data, it computes position prices and some aggregate statistical
measures. We can also easily break up the calculation into independent parts by,
for example, calculating half of the position prices on one computer and half on
another; such software is called “embarrassingly parallel.” Together, this allows us
to use low-complexity processes, cheap and standard open-source software, off-the-
shelf support tools, and an unspectacular programming style.

Still, there are a few factors we should be mindful of when designing and imple-
menting our system, as our VaR model does differ from conventional enterprise
software like customer relationship databases or ticketing systems:

• The VaR system heavily relies on real-world market data. Such data is nothing
like the one used in educational exercises. It is dirty in the sense that it may and
will contain outliers and missing values. Data feeds from market data systems are
expensive to set up and operate, and data formats are inconsistent across various
sources and need to be aligned. A good deal of work thus will be spent on market
data and its daily handling.

• The VaR model has more stakeholders than a lot of conventional business soft-
ware with a perhaps narrower scope or audience. It affects capital requirements,
which makes even senior management take a look at its results. Due to legal
ramifications, internal audit and external regulators take an interest in its validity
and in any changes to it. Model end users—for example traders working under

© Springer International Publishing AG 2018
M. Auer, Hands-On Value-at-Risk and Expected Shortfall, Management
for Professionals, https://doi.org/10.1007/978-3-319-72320-4_18

99

https://doi.org/10.1007/978-3-319-72320-4_18


100 18 Context

VaR limits—question its results as it directly affects their work. Accounting
wants to reconcile its results and reports, which often originate by wholly other
means and via different, historically grown systems, with VaR model results.

The main consequence of this is that changes to an existing VaR model are
difficult to put through. You usually need to first obtain the regulator’s OK,
which will take time. Unexpected, even if correct, changes in the numbers will
then trigger a multitude of questions and meetings. New model features, e.g.,
new methods or risk factors, must be consistently fed through the whole chain
of calculation and reporting tools, requiring training efforts and documentation
updates. Therefore, changes must be planned well in advance and are often best
introduced by first running parallel “shadow” test series in order to obtain the
required validation credentials and establish confidence in the upgraded model
version’s result.

Another effect of this multi-faceted impact of model changes is that the
data, at its various stages, often needs to be exchanged with others, e.g., for
comparing or plausibilizing intermediate results at various levels of granularity.
This strongly hints at using common standard formats that are easy to exchange
and process instead of optimized but proprietary and thus cordoned-off ones.

• Due to legal requirements, the system must reliably produce daily results—it
can’t just take a hiatus for a period of time. This requires backups and fallback
strategies in case subsystems fail or data feeds break down. The system also
needs to be able to scale: inevitably, the number of positions and risk factors
increases; simulation types are added; custom recalculations are requested; and
new regulatory requirements are introduced. If, say, a database struggles with the
initial system setup’s storage requirements, it will crack and collapse not too far
down the line.

• Market risk management could be seen as a cost-only center, as it does not add to
the bottom line (at best it avoids penalty payments). This might make expenses in
infrastructure, software maintenance and development, and personnel trickier to
justify—especially if the system seems to be running smoothly. But this natural
human tendency towards complacency vis-à-vis something not obviously broken
must be countered: in an evolving regulatory landscape, the system actually ages
as some features become obsolete and new ones are added on top. Cleaning
up the system environment from time to time by trimming or re-engineering
geriatric parts keeps long-term maintenance and operational costs in check.

• Market risk involves mathematics to a certain (moderate) degree. This can
make building the related software unsuited to the standard IT development
processes in place. Such processes often rely on business departments specifying
their requirements in writing, which is then interpreted and implemented by
separate, dedicated IT personnel. This (sometimes enforced) separation is not
productive and too inflexible in this context. Instead, quants and risk managers
should be allowed to develop directly, since math ill-translates across too many
intermediaries. Alternatively, consider embedding programmers into the risk
department and let them share home and hearth—desk and definitions—with it.
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As a corollary, standard IT guidelines or conventions need to be mendable.
Math-affine risk systems might call for at least some tools and software hitherto
unfamiliar to the IT department and thus not white-listed—the usage of such
components should not be precluded on noble bureaucratic grounds of avoiding
tool proliferation.

• It is common practice, and rightly so, to carefully manage and restrict access
rights to various system parts containing sensitive data. In the context of a VaR
system involving many parties that design or develop models and analyze data
at various levels, too restrictive access limitations, however, carry substantial
operative costs and operational risks. A more lenient handling of such rights,
e.g., allowing developers to work on large and real production data sets instead of
small and artificial dummy data sets, facilitates unhampered system interactions
and avoids Chinese whispers in unending email threads. Like with organizational
borders mentioned before, adapt such technical firewalls to how people work best
and not the other way round. Each however well-intentioned separation, be it
organizational or technical, ultimately sets up information fault lines that can be
just as harmful as they appear to be judicious.
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In a practical market risk system, we need to calculate several risk measures on
a daily basis. Let’s briefly describe this target scope first. We, of course, want to
determine the VaR for our main portfolios and to provide corresponding backtesting
results. As support, we also calculate several partial VaRs (each with their own
backtesting). In addition, we calculate the stressed VaR (without backtesting) as
well as sensitivities and stress tests.

In practice, you might want to run it all several times, once in a (stable) setup
approved by the regulator and once or more often with different model settings.
This allows you to flexibly adapt model parameters for internal use or to run test or
experimental systems in parallel.

Note that all the above computations usually run thrice: on a technical test
system, on a production-affine business test system, and on the actual production
system. All in all, this can amount to quite a bit of number crunching.

19.1 VaR Flow

With this overall environment in mind, we can now outline the actual system
components in terms of both data and tools. We start off with a basic example that
will help us identify and name our components. We use a pseudo command line
syntax to describe the various steps necessary.

Each day, to compute the VaR of our portfolios of interest, we need the current
positions’ PnL vectors as well as the definition of which positions each portfolio
contains. The positions’ PnL computation, in turn, is based on the scenarios and the
positions’ characteristics. The scenarios, of course, are derived from the most recent
historical market data. We thus start by extracting history, position information, and
portfolio definitions from our database:

extract_from_db ’hist’ ’today’ ’520’ > hist.txt
extract_from_db ’pos’ ’today’ > pos.txt
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extract_from_db ’port’ ’today’ > port.txt

The extract_from_db is our tool or command to access the database. The
’pos’, ’today’, etc., represent special instructions or flags or command line
parameters to our tool. For example, ’pos’ tells the tool to export position data.
The ’today’ instructs it to export the most recent data; by using explicit past dates
instead, we could export older entries. The “>” writes the output to the subsequently
named text file. Let’s examine the three steps above:

• After the first extract, the newly created file hist.txt contains the time series
(of values, not returns) of our 2200 risk factors up to and including the latest
market snapshot. We require the last 520 days of data. The file hist.txt is
thus a 2200 � 520 matrix.

• The file pos.txt defines each of our 106 positions. Assume, for now, that it
contains one line for each position, e.g.,

position_42|cashflow|1000000|USD|20301224

—more complex positions of course require a more extensive description.
• Lastly, the file port.txt describes how the portfolios are made up. For sim-

plicity, consider each line to define one portfolio and to contain that portfolio’s
name followed by its positions, e.g.,

portfolio_1 position_18 position_42 position_39

(Alternative, hierarchical definitions are of course possible as well.)

We can now generate scenarios from the historical market data:

calc_scen ’var’ hist.txt > scen_var.txt

The file hist.txt we created before now serves as an input to the scenario
generator calc_scen. The produced output file scen_var.txt contains 2200

rows of 1001 scenario values. The last, right-most column in hist.txt is
identical to the first, left-most column in scen_var.txt—it is the current market
snapshot/scenario.

The scenario generator may be used to create different types of scenarios; the
first flag, here set to ’var’, determines the desired type.

We are now able to compute the positions’ PnL vectors:

calc_pnl pos.txt scen_var.txt > pnl_var.txt

The pnl_var.txt is the largest file we produce: each of its 106 lines contains
a 1000-sized PnL vector—one for each position. It stores one billion values.



19.2 Backtesting Flow 105

Finally, we can aggregate the positions’ PnL vectors to portfolio vectors and
compute some summary statistics along the way:

aggregate port.txt pnl_var.txt > aggr_var.txt

This aggr_var.txt file is much smaller. There’s one line for each of our
portfolios, and each contains a portfolio PnL vector as well as summary stats like
the VaR or the ES.

We finally store the results in our database, but, to save space, usually only the
summary statistics (this behavior is controlled by the first flag, here set to a ’var’
storage mode):

store_to_db ’var’ ’today’ aggr_var.txt

19.2 Backtesting Flow

We now perform the backtesting for yesterday’s VaR estimate. For this, we must
compute the PnL actually experienced, based on the last two market data snapshots
in our history. Note how we don’t take today’s positions and portfolios, but
yesterday’s:

extract_from_db ’pos’ ’yesterday’ > pos_bt.txt
extract_from_db ’port’ ’yesterday’ > port_bt.txt

Using the last two values of each time series, i.e., the last two market snapshots,
we create a backtesting scenario file (the ’today’ is correct here):

extract_from_db ’hist’ ’today’ ’2’ > scen_bt.txt

Two scenarios will result in two prices and ultimately in one single PnL value for
each position:

calc_pnl pos_bt.txt scen_bt.txt > pnl_bt.txt

We then aggregate this by yesterday’s portfolio setup:

aggregate port_bt.txt pnl_bt.txt > aggr_bt.txt

This simply sums up the single PnL values of the positions in each portfolio.
The results are then once again stored in our database. The date identifier must

correspond to yesterday, since the backtesting PnLs correspond to yesterday’s VaR
calculation. Here, and triggered by ’bt’, one backtesting PnL value is stored for
each portfolio:

store_to_db ’bt’ ’yesterday’ aggr_bt.txt
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19.3 Sensitivity Flow

To compute sensitivities, we have to generate the respective scenarios from the last
market data snapshot:

extract_from_db ’hist’ ’today’ ’1’ > hist_curr.txt
calc_scen ’sens’ hist_curr.txt > scen_sens.txt

This generates the 2200 � 2201 matrix of sensitivity scenarios. (Here, or in the
backtesting above, we could have just used the already exported hist.txt and its
last column(s) as input, but for clarity we want to restrict the data scope to strictly
required values.)

The PnLs obtained via the following command are our position sensitivities:

calc_pnl pos.txt scen_sens.txt > pnl_sens.txt

We aggregate via

aggregate port.txt pnl_sens.txt > aggr_sens.txt

With VaR results we usually only store the summary stats for each portfolio.
Here, we want to store all the sensitivities contained in our PnL vector (or at least
all the non-zero ones, again to save space). We instruct our tool to do that with an
appropriate flag:

store_to_db ’sens’ ’today’ aggr_sens.txt

19.4 Stress Test and Stressed VaR Flow

In alignment with the previous workflows, we can generate custom stress test
scenarios (scen_stress.txt) as well as scenarios for the stressed VaR
(scen_svar.txt).

The latter involves using the returns of a pre-determined period of history and
applying them to the current market prices to generate scenarios. The period to use
is usually determined once a year; it is simply the past period with the largest VaR
given the portfolio at the time of the stress period selection. Its location in time
should remain fairly stable, though, as it tends to fall into the same crisis.

Given a pre-defined stress period, e.g., a 1-year period ending in June 2008, we
need to use that period’s returns along with the current market snapshot to generate
stressed VaR scenarios. The whole process becomes:

extract_from_db ’hist’ ’20080630’ ’251’ > hist_svar.txt
extract_from_db ’hist’ ’today’ ’1’ > hist_curr.txt

extract_from_db ’pos’ ’today’ > pos.txt
extract_from_db ’port’ ’today’ > port.txt
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calc_scen ’svar’ hist_svar.txt hist_curr > scen_svar.txt

calc_pnl pos.txt scen_svar.txt > pnl_svar.txt

aggregate port.txt pnl_svar.txt > aggr_svar.txt

store_to_db ’svar’ ’today’ aggr_svar.txt

As we usually avoid doing the volatility rescaling for the stressed VaR, 251

historical scenarios are sufficient to generate 1-year return time series of size 250.
Also, if the number of scenarios generated by mirroring is deemed too small, the
’svar’-type scenarios can also be generated via the Monte Carlo modification.

19.5 Partial VaR Flow

A special case are partial VaR calculations. We could, e.g., generate separate
scenarios like scen_var-fx.txt, where all but the FX risk factors remain
constant and identical to their current market values. It is more efficient instead
to just modify calc_pnl: after reading in the scenario file, it simply overwrites
some risk factors’ scenario values with their current market values on the fly. This
way we avoid separate, largely redundant scenario files:

calc_pnl ’rf-filter:FX’ pos.txt scen_var.txt
> pnl_var-fx.txt

19.6 Naming

All the above results are usually derived under different model setups and both for
regulatory and strictly internal use. They are also typically calculated on various
independent test and production systems. The file names should reflect that.

As an example, here are the names that denote the most important results: the
ones from the production environment (p), used for regulatory reporting (reg), and
under the main model parametrization:

p_reg_main_scen_var.txt
p_reg_main_pnl_var.txt
p_reg_main_aggr_var.txt

The regulator might demand additional, auxiliary model parametrizations for
cross-checks, e.g., one with larger 30-day windows in the vola rescaling:

p_reg_lv30d_scen_var.txt
p_reg_lv30d_pnl_var.txt
...
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Internally (int), we might want to use a Monte Carlo setup with more scenarios.
The resulting files are generated on some test system; here are, as examples, the
names of some partial VaR files generated on test system t2:

t2_int_mc_scen_var.txt
t2_int_mc_pnl_var-ir.txt
t2_int_mc_aggr_var-ir.txt

If all this sounds rather dull, that’s because it is. But keeping your namespace
clean from the start will greatly help in the long run. Proper naming goes a long
way towards a sound system design.

19.7 Encapsulation

All the files are produced daily. It proved useful to encapsulate each day’s data into
one directory, e.g., p_reg_20170601. This directory contains all regulatory files
of a given day created on the production system. The date should be the latest market
snapshot date (sometimes also referred to as position date or business date) and not
the subsequent date for which the VaR is estimated—that’s because all model end
users will usually refer to the position date. (I know this because I stupidly opted to
use the VaR prediction date for this directory name some 8 years ago. Names and
conventions, alas, often die a slow death, so this misguided date tag is still in place
and requires regular asterisks in our emails.)

It is useful to copy, into each day’s directory, the current version of the tools used
for the calculation. At first, this might seem redundant—we have both

p_20160108/tools/calc_pnl

and

p_20160109/tools/calc_pnl

—two separate tool copies which most of the time will be identical. Yet as the
software evolves, it will go through various versions and updates. Those could be
tracked separately, of course, in order to recall which day was computed under
which version (and to be able to reenact the whole computation). Yet copying the
tool and wrapping it up with the data it belongs to is just much less error prone. It
helps that the tools’ sizes are absolutely insignificant really in the avalanche of data
produced daily.
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With the overall workflow outlined in the previous chapter in mind, we now zoom
in to the individual system components. We first cover the involved tools and their
implementation and later focus on data sets and their structure.

As for the tools, their functionality is best split up into separate and manageable
components. The Linux operating system serves well as a stable foundation, as
it explicitly supports such modularity. Linux also provides a host of standard
functionality out of the box, which our tools can beneficially leverage. Newly
developed tools together with operating system ones are best thought of as a Lego
set, with autonomous bricks being combined into a system ensemble that is bigger
than the sum of its parts.

20.1 Generating Scenarios

We start off with the scenario generator calc_scen. This is a slender component
with small data input and output, and it requires little computational effort. We
therefore implement it in Python and one of its most popular numeric libraries,
NumPy. The whole scenario generator can be implemented in a handful of lines of
code, as shown in this working code snippet (in this example, using log returns):

for v in HIST: #v is a risk
factor’s history

s0 = v[-1] #current asset
value

r_raw = np.log(v[1:] / v[:-1]) #519 raw log
returns

lv = np.zeros(500) #500 local volas
for i in range(500):

lv[i] = np.std(r_raw[i:i + 20], ddof=1)
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r_resc = r_raw[-500:] / lv * lv[-1] #target = last
local vola

r = np.append(r_resc, -r_resc) #mirror

s = s0 * np.exp(r) #1000 scenarios

print("%f|" % s0 + "|".join(str(x) for x in s)) #1001
outputs

A few additional lines of code won’t hurt if we want to explicitly handle the
following special cases:

• Historical time series may contain missing values. Fill such gaps with previous-
day values, log each instance as a warning, and check the market data source for
underlying problems.

• Automatically scrub for clearly nonsensical outliers, e.g., interest rates above
500%, possibly due to erroneous manual data input of 6 instead of 0:06. Don’t
simply cap/floor such values, but again replace them with previous-day values,
log, and investigate.

• Stale time series can exhibit zero local volatilities. Floor local volas at 10�12 and
track the issue down.

• Make sure your return types (e.g., logarithmic or square root ones) are valid
operations on your time series; logarithmic returns, for example, need strictly
positive values. If such returns are used for interest rates (which can become
negative after all), shift the whole series up into valid territory, create scenarios,
and then shift those scenarios down again. This operation is less dubious or
dangerous than it might appear at first, mainly because very large shifts make
the returns behave asymptotically like absolute ones.

A shifting logic for interest rates that proved to be workable is to automatically
shift up a whole time series if its minimum value is below 1%, by so much that
after the shift, the new minimal value equals 1%. (This makes sure that times
series with negative values are shifted up; that time series with large positive
values remain unchanged; and that time series between those extremes, i.e., those
that are just slightly positive, are treated consistently and avoid any unbecoming
gap behavior.)

• When generating square root-based scenarios, make sure they are not floored at
(or reflected from) 0; shift the time series further up to let the scenario generation
operate in a valid range. As always, log and track.

Python, with its excellent helper data structures and concise matrix notation,
allows us to implement this with minimal overhead and in few lines of code to
write, debug, understand, and maintain. Type safety and code organization is of
secondary importance due to the small overall size of this tool. (By the way,
NumPy’s vectorization support is also very efficient from a numerical point of view.)
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20.2 Computing PnLs

Once the scenarios are generated, the next step is to price the positions under
these scenarios and to compute the PnL vectors with the pricing tool calc_pnl.
Computationally, this will be by far the most demanding step, as you need to
compute prices for each of the 106 positions under each of the 1001 scenarios.
Furthermore, you will have to repeat this for each type of VaR simulation you want
to run, and again on each test or production system. Also, the code complexity here
will be far higher than that of the scenario generator, especially if you have to price
sophisticated types of financial products. (While the topic of pricing is outside the
scope of this book, Appendix B tries to hint at some of its fundamental concepts.)

This makes C++ the language of choice for implementing sophisticated pricing
functionality:

• A common adage is that “C++ is fast,” i.e., that it allows us to create highly
efficient tools. Yet as the VaR calculation usually takes place overnight, one
might ask if this execution speed is required—after all, there are plenty of hours
available, and a slower tool (written in another language) might just also be able
to make it through, especially if executed on subsets of positions in parallel.
However, this neglects a fundamental use case: the recalculation of whole VaR
time series, for example, when testing a different model parametrization. If an
overnight run requires a run time of 8 h on your infrastructure, a year’s worth of
recalculations will take 2000 h—hardly interactive and prone to discourage you
from testing new model features on sensibly large time windows.

• C++ is sometimes considered an old, complex, and difficult-to-learn language,
giving rise to frighteningly difficult-to-maintain source code. The language Java
is preferred in many setups, more for its user-friendliness than its computational
efficiency. Now, it is possible to write efficient Java code, but there’s a catch: C++
will create fairly fast tools if you don’t mess up; Java will do the same, but only
if you don’t mess up anywhere. Just neglecting one bottleneck, maybe a slow
data structure or a time-consuming memory management feature, will slow your
Java code down. The level of expertise required to avoid those Java fallacies is
entirely comparable to that of the sound handling of C++ quirks. Finally, many
“dangerous” C++ features can simply be avoided or forbidden, as do the crack
C++ programmers working on the Firefox web browser.1

• Finally, C++ provides object orientation for organizing your code in modular
components, static type checking for early detection of suspicious expressions, a
host of numerical libraries, and very granular performance optimization tools.

1Mozilla, the Firefox developers, discourage using quite a few C++ features in https://developer.
mozilla.org/en-US/docs/Mozilla/C++_Portability_Guide. I don’t agree with all of them, especially
those concerning the C++ standard library and exceptions, but would certainly want to avoid C++
templates.

https://developer.mozilla.org/en-US/docs/Mozilla/C++_Portability_Guide
https://developer.mozilla.org/en-US/docs/Mozilla/C++_Portability_Guide
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Even if you have successfully implemented a fast pricer, you still want to
parallelize the calculation. You can, for example, compute the VaR and the stressed
VaR in parallel or, in a more fine-grained approach, split up your positions and com-
pute various types of PnL vectors for each of those subsets concurrently. Luckily,
the computation of PnLs can be considered to be what is called “embarrassingly
parallel,” as each subset of positions is independent and can be treated completely
on its own.2

20.3 Aggregating

The PnL aggregation with aggregate is again a small, well-defined component.
It can readily be implemented in Python, which supports fast vector operations and
suitable data structures like dictionaries. Alternative setups are also possible, e.g., in-
memory databases or vector databases (standard databases add too much overhead
in dealing with vectors). Such extra layers, however, are not strictly necessary and
can be avoided for the sake of simplicity.

Aggregation serves as a good example of how tools can be combined and
leveraged. Recall the input and output of aggregate:

aggregate port.txt pnl_var.txt > aggr_var.txt

The small input file port.txt contains the portfolio setup or composition; the
small output file aggr_var.txt contains the resulting PnL vectors and summary
statistics for each portfolio. The second input, pnl_var.txt, is by far the largest
file. A sensible idea is to zip it to save disk space. Now, one could explicitly unzip
the file each time it is required or allow aggregate to read zip files directly. But
the former would add a step, while the latter would require adding zip functionality
to our tool. There is a third, more elegant way: make aggregate support the
operating system’s pipe, a way of routing data directly from one tool to another:

unzip -p pnl_var.zip | aggregate port.txt - > aggr_var.txt

The standard command unzip -p <filename> unzips the file and outputs
its content; the pipe operator “|” then routes this output to the following tool in
this chain; finally, the “-” denotes which file input (the second one) should be
superseded with the pipe’s throughput.

We also immediately gain support for multi-file handling, which therefore
doesn’t have to be encoded explicitly into aggregate. The following command

2This calls for using simple parallel processes instead of the more involved technique of multi-
threading.
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uses the wild card “*” to unzip all zip files in the current directory and to
sequentially pass their contents on for aggregation:

unzip -p *.zip | aggregate port.txt - > aggr_var.txt

20.4 Accessing the Database

The database access tools (extract_from_db, store_to_db) embed the
VaR system in the overall IT landscape. They mainly retrieve reference input data
and centrally store the relevant end results. Such tools are often implemented in
Java due to its traditionally strong support for database-related operations. It is no
coincidence that Oracle, a major database vendor, has acquired Java and actively
promotes its development. Nothing to see here; move along.

20.5 Coding Guidelines

Coding guidelines or conventions can help promote some degree of consistency and
thus readability and maintainability of the source code. It’s reasonable to rely on
(and slightly modify) standard guidelines like Google’s.3 Enforcing them too strictly
or endlessly debating their relative merits is best avoided. On a general level,

• strive—first and foremost—to carefully name and design your data structures;
• separate data and functionality into de-coupled modules;
• only then worry about the algorithms, which are secondary;
• write your code to minimize the time it would take a graduate student to

understand it, and then opt for solutions with fewer lines of code, but only if
clarity is preserved;

• comprehensively check for operation validity, error return codes, and any kind of
program exception—no error indication must be left behind;

• extensively log error occurrences, warning conditions, and all extraordinary
events (e.g., if a local volatility is floored);

• avoid doing the same thing in two different ways or re-implementing stuff that
already exists (e.g., zip functionality);

• let your tools fail fast and especially avoid overriding guesses (e.g., by misguid-
edly trying to gracefully interpret typos in command line parameters);

• avoid any optimization unless you can prove that the speed gained more than
offsets the additional complexity and impaired code readability.

3https://google.github.io/styleguide/cppguide.html.

https://google.github.io/styleguide/cppguide.html
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Feel free to skip the following minor, technical recommendations with regard
to C++ in our specific and narrow pricing setup (and look up the jargon only once
needed):

• Avoid or minimize the use of C++ templates. They are useful in many cases for
avoiding code duplication, but they are often overkill. They are also prone to
generate difficult-to-interpret compiler error messages.

• Extensively use the const modifier to denote unchanging arguments and side
effect-free member functions.

• Do use break/continue statements if a loop’s readability is improved. Also,
do use the goto statement in such instances, e.g., at special loop exit junctures.

• Avoid complex constructor/destructor logic, especially in combination with C++
error exceptions.

• Avoid enums to ease debugging; rely on ints or, often even better, strings instead.
• Use expressive strings to signal errors or warnings instead of error codes. The

error message “E:permission_denied:test.txt” is more expressive
than “13”. The whole mapping logic from error codes to their meaning can be
avoided or streamlined, along with its maintenance and documentation.

• Avoid unsigned integer data types. They are often unsuited to expressing
exception indications, inevitably lead to overflow or underflow errors, and cause
headaches with integer promotion and function/operator overloading.

• Avoid the float data type; use double instead. Floats require you to fret about
floating-point math, and their performance behavior is difficult to predict as it
highly depends on system specifics (e.g., using float operations can potentially
and unintuitively even cause slower run times).

• Avoid fat external libraries. Libraries like Boost are very tempting to rely on, but
often only a very small subset of features, like command line parsing, is actually
used, at the expense of burdening your project with a host of unneeded ballast
and an additional and avoidable compile-time dependency.

• Use static instead of dynamic linking. This gives you neatly encapsulated tools
without external run-time dependencies; such tools are therefore easy to deploy.

20.6 File Formats

We mainly use plain text files for most input and output artifacts. They are easy to
introspect and check, to exchange with other stakeholders or third-party software,
and to process in a Linux environment via pipes and standard support tools. The
files represent neat boundaries between tools and facilitate a clear separation of
responsibilities between developers—they essentially double duty as contracts. File
access permissions provide a lightweight approach to manage user access rights.

Now, files could of course be replaced with higher-level artifacts like vector
databases, XML or binary files, or in-memory data structures, yet those alternatives
are typically more complex and less transparent while adding an additional software
layer to set up and maintain.
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Before we describe the various data formats in our VaR setup in greater detail, a
few general remarks about file formats are in order:

• Avoid rare file encodings and stick to UTF-8/ASCII.
• Avoid spaces in file and directory names.
• Within files, avoid using delimiters that might be interpreted differently depend-

ing on an operating system’s locale, i.e., country and language settings. (The
comma, for example, is the German decimal separator.) Whitespace delimiters
impede the spotting of missing values, especially at the lines’ ends. Best always
use the pipe character “|”.

• Regardless of your country, always use the English encoding of decimal points;
avoid thousands separators entirely. Ideally, only deploy English versions of
operating systems and office productivity software.

• Always encode mathematical values properly, i.e., use 0:02 to denote 2%. Only
in the final reporting steps (e.g., pdf files sent to the board) should you reformat
the values to an appropriate representation.

• Encode dates as integers in the YYYYMMDD format, e.g., “20181224”. This
is unambiguous across locales and conveniently exhibits the appropriate sorting
behavior. Also, Excel’s auto-formatting is gagged.

• In intermediate and result files, there is no need to ever contemplate allowing
missing values or not-a-number codes like “nan”. Especially as we want
to combine, Lego-like, different tools (which may react differently to such
occurrences), handling such special cases consistently becomes soon highly
error-prone. The initial database export of historical data might well contain
missing values; they should be recorded in error logs and defaulted to previous-
day values. But if later, for example, a position’s pricing function fails to compute
a price, simply record it in the error log and dismiss the whole position. This way,
no missing or invalid values are ever propagated through the tool chain.

• Avoid the tilde character “˜” in IDs or names; Excel’s various functions handle
it inconsistently (I am looking at you, VLOOKUP function).

Let’s now have a look at the various files we require.

Historical Data The file hist.txt contains the risk factors’ history:

#risk-factor|20150101|20150102|...
...
FX-EUR|1.11|1.12|...
...
IR-EUR-Y10|0.012234|0.012344|...
...

Scenarios The scenario files have a similar structure; their first comment line
describes the columns.
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The standard VaR scenarios are stored as follows:

#risk-factor|S_0|S_1|...|S_1000
...
FX-EUR|1.11|1.14|...|1.09
...
IR-EUR-Y10|0.012234|0.012359|...|0.012199
...

Risk factor names are used to label the columns of sensitivity scenarios:

#risk-factor|S_0|FX-AUD|FX-CAD|...|IR-ZAR-Y20|IR-ZAR-Y30
FX-AUD|1.34|1.340134|1.34|...|1.34|1.34
...
IR-ZAR-Y30|0.0820|0.0820|0.0820|...|0.0820|0.0821

Stress scenarios contain the stress tests’ descriptions:

#risk-factor|S_0|NineEleven|...|Apocalypse
...
FX-EUR|1.11|1.24|...|201.09
...
IR-EUR-Y10|0.012234|0.022359|...|0.341199
...

Positions The positions are described in the file pos.txt. Here is a simple
example of a future cash flow:

...
pos_id_17|subpos_id_0|cashflow|1000000|USD|20181224
...

The first entry is the position’s unique identifier or ID. But why include an
additional sub-position ID? This is useful for handling complex positions, which
can often be broken down into simpler ones. Here is a 2-year fixed rate bond with
annual payments, represented as several cash flows:

...
bond_21|coupon_0|cashflow|10000|USD|20171224
bond_21|coupon_1|cashflow|10000|USD|20181224
bond_21|repayment|cashflow|1000000|USD|20181224
...

This is considered one single position. The pricing tool calc_pnl can aggre-
gate the result vectors of the three sub-positions into one result vector. This
essentially optimizes output file sizes while still retaining a position-level granu-
larity. For our typical 106 positions, our position file actually contains about 107

sub-positions.
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We alternatively could have encoded the bond into a single line, with a more
complex interface. The three new fields denote payment frequency, coupon rate,
and day count convention4:

...
bond_21||bond|1000000|USD|20181224|annual|0.01|ACT/ACT
...

If you have the capability to explicitly denote which deals are meant to hedge
each other, consider adding a field that labels deal sets pertaining to a hedge.
Depending on your portfolio setup and the quality of the hedge, you may be able
to speed up the overall computation by not pricing perfectly hedged deals at all. At
the very least, you can beneficially filter out those deals’ noisy results in any later
analysis exercises.

Position identifiers can be put to good use. While some systems just use numbers
as identifiers, a more expressive name can save separate and time-consuming
lookups into a position’s meta-information. Consider encoding some relevant
information into an ID, for example:

bond_desk:gvnt_bond:austria:438

PnL Vectors The result of calc_pnl are lines containing the positions’ PnL
vectors. The price under the current scenario S0 is given in the second field5:

...
bond_21|980000|1343|-1734|...|2504
...

Given the current price and the scenario PnLs, we could of course always recreate
scenario prices, but that is rarely of use. Besides being our main measure of interest,
PnLs also have the nice property of using up less disk space (e.g., about 4 instead of
6 digits above).

Be careful with fractional digits: for VaR calculation results, you can ignore them
and save disk space; for sensitivity PnLs, several decimal digits are appropriate for
signaling non-zero values:

...
some_small_position_27|1200|0|0|...|0|-0.3563|0|...|0
...

The standard floating-point output behavior of C++’s printf function, which
uses the fewest number of digits needed to encode a number, is adequate here. In
Python, use the format specifier “%g”.

4Day count conventions define how time periods are handled in light of unevenly-sized months,
leap years, etc.; ACT/ACT stands, e.g., for actual/actual, a convention that uses the actual number
of days to measure time-interval lengths.
5Note that the sub-position ID is no longer part of this output.



118 20 Implementation

Aggregated PnL Vectors The aggregated portfolio PnL vectors also contain
summary statistics:

...
portfolio_27|12580600|-41356|20654|...|36776|var:010|-48546|

es:025|-49657
...

The summary statistics are stored as tuples of type and value; this way you
can flexibly add or discard statistics. Consider adding to the usual var:010 and
es:025 at least stdev, avg, median, kurt, var:050, and var:990.

Notice a detail in the proposed format: the conditional expected shortfall does
not appear. That’s of course because it is computed for a position or sub-portfolio
with respect to an overall reference portfolio. The aggregation tool should therefore
provide an explicit, alternate mode for this task:

aggregate ’ces’ pnl_var.txt > aggr_ces.txt

This computes the cES of every entry in the PnL input versus the sum of all
entries (no portfolio info is therefore needed) and outputs a ces:025:all|N
tuple for each input line.

(Another useful tool option could trigger the output of either PnL vectors,
summary stats, or both, since for sensitivity and stress aggregations the summary
stats are not needed. Alternatively, just compute but ignore them.)

20.7 Optimizations

Optimizations should be applied judiciously and only if the gained benefits out-
weigh the increased complexity and maintenance effort. We will take a look at some
of the rather obvious ones.

Approximate Pricing The VaR is based on PnL values, i.e., changes in the
positions’ prices. This has a fortunate consequence for our pricing step, which,
recall, should be speedy as it needs to be executed millions of times each day. We
can often get away with using fast, approximate pricing functions instead of slower,
more precise ones because a pricing error or bias � often roughly cancels out in our
PnL view, in the sense of �pi D pi C � � .p0 C �/.

Efficient Repricing The calculations of sensitivities, stress tests, and partial VaRs
only change a subset of risk factor values in each scenario. If a position does
not depend on those changed risk factors, it should not be explicitly repriced but
immediately be given the price of scenario 0.

This can save valuable computation time at a minimal implementation overhead.
The speedup can be massive, e.g., for a sensitivity calculation, 2 full pricings (in the
market and in one sensitivity scenario) might be sufficient instead of the full 2201

ones of a careless implementation. The effect becomes especially noticeable for
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complex product types, which might require time-consuming methods like trinomial
trees or separate Monte Carlo simulations.

Binary File Formats Most files used in our VaR setup are small; the only exception
are the large PnL result files, whose size makes them an optimization target. One
could store them, e.g., in a binary format using essentially a matrix of double values
(of 8 bytes each).

Now, depending on how your storage system is connected to your processing
units, access to binary files might be faster. This is less pronounced in the pricing
stage, where the time spent on outputting the results is relatively small compared to
the actual pricing. In the aggregation step, however, much time is wasted converting
string input to double values—this step could profit the most.

Yet binary file formats have several drawbacks. You need custom-made tools for
inspecting those files, and many end-users will likely need new know-how or help in
dealing with those files. And then there is the issue of file size, which impacts your
archival strategy and horizon; the file sizes of VaR pricing results of 106 positions
are exemplified in Table 20.1.

The text files are smaller than their binary cousin because many values in them
(even accounting for the additional delimiter) are likely to use up less than 8 bytes.
PnLs, as mentioned previously, take up the least space.

What if we were to compress or zip the files? Zipping the binary file usually leads
to few gains if the original floating point values are exported as-is—they behave
much like random numbers or noise. Yet can we truncate the decimal digits even in
this binary export—this makes the double values contain more zero bytes and their
pattern more regular and thus susceptible to compression. The results are given in
Table 20.2.

Using zipped PnL text files seems to be a reasonable sweet spot between small
storage size and simplicity of use. No additional custom layer is required, since the
zip layer is standard. And for relatively slow network connections, the additional
unzip step doesn’t even have to impair the overall run time—it might actually speed
up the whole process.

Table 20.1 Files sizes of
pricing results

Result file type Size in GB

Prices or PnLs as binary 8:0

Prices as text 4:3

PnLs as text 2:6

Table 20.2 Files sizes of compressed/zipped pricing results

Result file type Size in GB

PnLs as binary, original floating-point values, zipped 7:7

PnLs as binary, decimal places truncated, zipped 0:9

PnLs as text, zipped 0:7
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There is one part of the VaR calculation that can benefit from binary formats,
though. When pricing positions, the tool calc_pnl must read in scenario files; in
a parallelized setup, this happens many times over. Providing the scenario files in
binary format eliminates a substantial string-to-floating-point conversion overhead.

20.8 Metal

Finally, let’s examine the question of the actual computer hardware the system
should run on. Basically, you could run all computations in-house on your local
system, typically several servers with multiple processors (called a grid), or you
could choose to run them via some cloud provider like Amazon or Google.

The VaR model described above seems—technically—tailor-made for cloud
computing. The input/output sizes are relatively small (positions, history, and
aggregated results), so bandwidth should not be an issue. The calculations are highly
parallelizable. Peak computation requirements, like recalculating whole VaR time
series, can be met with flexible hardware allocation. The downtime risk with large-
scale cloud providers is probably smaller than with your own system.

What might balance the scale towards hoarding local hardware? In theory, once
your model is stable, time-consuming recalculations of whole time series should
become less frequently needed. And if your hardware is scaled to your positions
and simulations, it will be used to capacity most of the time, which narrows the
cost gap to a cloud solution. Doing your calculation off-site would probably require
some position obfuscation (e.g., normalizing all positions’ nominals to 1, encoding
less information into deal and portfolio names, etc.), adding an extra (however thin)
software layer. Internal policies or your local regulator might discourage or outright
prohibit putting confidential information off-site. And even large and entrenched
companies like the current cloud players have been known to vanish or to cease
operations in some jurisdictions.

Still, it seems a stretch to deny that number crunching is likely to become
commoditized like electricity. Raw computations need not heat up your own
server rooms. It should be feasible to offload major parts of the computation to
a cloud provider while retaining some base capacity for core regulatory purposes,
backup, archival, and custom analysis exercises. An adventurous IT department and
resourceful compliance officers will concur.



Part IV

Wrap-Up
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Here are a few of the glorious blunders I committed that will remain on my head.
I first thought it wise to output sorted PnL aggregation vectors (like destroying
information is a good thing). I also proposed to add an additional column of zero
to the PnL results for some “future use” as special indicator flag—a use that never
materialized and now requires constant nudging when we have to explain our file
formats. I unthinkingly used the VaR prediction date as label for our daily results,
which is just plain stupid—everybody will always refer to the previous, close-of-
business date. Each email now requires a qualifier, and each new hire will at least
once perform an analysis of the wrong data. (The latter two imbecilities are actually
still in place, ingrained and phlegmatic like a glacier.) Hopefully, this account helps
you avoid similar pitfalls.

I have tried my best to outline a minimal VaR system that works. I believe that
the model can and should be kept simple, that data rules in all its imperfection, and
that it takes a band of many with different backgrounds to nourish our handle on
risk every day. Here’s then to clarity, humility, and concert.

Do not hesitate to contact me at martin@value-at-risk.com with your
questions and feedback and my bugs and typos.

There’s nothing left for me but to wish you godspeed with your endeavors.

© Springer International Publishing AG 2018
M. Auer, Hands-On Value-at-Risk and Expected Shortfall, Management
for Professionals, https://doi.org/10.1007/978-3-319-72320-4_21
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Dealing with uncertainty—experienced as randomness—is fraught with limitations,
yet we can get at least some formal handle on it.

We can, first, simply observe random outcomes repeatedly and essentially count
what happens. On 1000 tosses of some coin, we might observe, e.g., 104 head and
896 tail outcomes. We may interpret the frequencies of occurrences (104=1000 and
896=1000) as indicators of the likelihood of the two outcomes.

We also conclude that this particular coin does not seem to be very fair—that’s
because we have an idea of how a coin ought to behave. We intuit the chance or
probability of observing either head or tail as about 50%, in the sense of counts or
frequencies we would expect to see. With that idea of a fair coin in mind, we would
not have been surprised to see, say, 495 occurrences of head. Here we deduce: this
coin is rigged.

These two approaches of (i) watching and counting and of (ii) thinking and
inferring are referred to as statistics and probability theory, respectively. They most
often work in tandem. In a poll, for example, we count the responses of a small set
of people to estimate some overall opinion; by making some assumptions about the
nature of the involved uncertainty, we can then try to infer the confidence we can
put in our estimate.

A.1 Random Variables and Probabilities

To formalize our view on randomness, we start off with the concept of a so-called
random variable. Think of it as an entity or device that produces one specific output:
a single number. It simply selects one number out of many, by chance. How likely a
given number is bound to occur is governed by probabilities.

The random variable X describing a die, for example, can result in one of six
numbers 1; 2; 3; 4; 5; or 6, each with a probability of 1

6
. This is an example of a

discrete random variable.

© Springer International Publishing AG 2018
M. Auer, Hands-On Value-at-Risk and Expected Shortfall, Management
for Professionals, https://doi.org/10.1007/978-3-319-72320-4
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We can also inscribe larger numbers on our die, e.g., 10; 20; 30; 40; 50; and 60.
This pimped die will help us think of how to label stuff. The first outcome, i.e., 10,
is called x1, and its probability of 1

6
is variously called p1 or pXDx1. Overall, xi is the

outcome 10�i, with pi D 1
6
. (The standard die, where xi corresponds to the outcome

i, unhelpfully blurs name/index and number/outcome.)
First and obviously, the probabilities involved must always sum up to 1:

p1 C � � � C p6 D
6X

iD1

pi D
X

pi D 6 � 1

6
D 1 D 100%:

The probability of observing an outcome larger than 25 is

pXDx3 C pXDx4 C pXDx5 C pXDx6 D p3 C p4 C p5 C p6 D
6X

iD3

pi D 4

6
D 66:6%:

When throwing the die twice in a row, the probability of observing 10 followed
by 50 is

pXDx1 � pXDx5 D p1 p5 D 1

6
� 1

6
D 1

36

—unsurprisingly, as there are 36 possible combinations.
Next, consider a spinning top like the one in the movie Inception. After a spin,

once it falls and stands still, its handle will point in an arbitrary, random direction—
this angle X is a random variable between 0 and 2� . It has uncountably many
outcomes (provided we can measure the angle arbitrarily precisely), which makes X
an example of a continuous random variable. No outcome or angle x is more likely
than any other. This immediately means that we cannot assign a positive probability
to an individual outcome—if we used even the smallest such probability � for this,
the probabilities could never sum up to 1 (because, well, 1 � � > 1).

We instead capture the involved probabilities via a function p.x/, with p.x/ D 1
2�

for x in Œ0; 2��, and p.x/ D 0 otherwise. Why so? Well, this makes sure that the
whole area under p.x/, the rectangle 2� � 1

2�
, equals 1. We can now interpret slices

or partial areas over outcome ranges as probabilities. For example, the probability
of X falling between 0:12 and 0:25 is the corresponding (in this case, rectangular)
area .0:25 � 0:12/ 1

2�
.

The function p.�/ is called probability density function. It need not be constant,
just positive and covering an area of 1. Slice areas or probabilities are then generally
expressed as integrals, and the probability of X falling between a and b is

Z b

a
p.x/ dx:
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We let this sink in using our example. The probability of any outcome occurring
is, in our case,

Z
p.x/ dx D

Z 1

�1
p.x/ dx D

Z 2�

0

1

2�
dx D 1

2�
xj2�

0 D 1 D 100%:

In a clockwise arrangement, the probability of a lower-right or south-east
outcome, i.e., that X lies between east (�=2) and south (�), is the plausible

Z �

�=2

1

2�
dx D 25%:

So in the continuous case, we only ever really deal with outcome ranges. The
probability of a specific outcome to occur, e.g., X D a, is

R a
a p.x/ dx D 0, as

mentioned before.
Both the discrete and the continuous examples were rather boring, as all the

outcomes were equally likely (such random variables are called uniform). Let’s
make the next example a bit more exciting. Let Z denote the time you have to wait
in line at some supermarket (a precise stop watch makes this a continuous random
variable). Now, you might have observed that you usually have to wait between 1:5

and 2:5 min, but rarely less than 1 or more than 3, and never longer than 4. So, first,
this is clearly not uniform. Second, unlike in the examples above, we don’t know the
real probabilities involved—but based on our experience, we can simply invent or
postulate some probabilities and try to express them via a p.x/. We want p.x/ to be
0 for x < 0 (we can’t wait a negative amount of time), and we set p.x/ D 0 for any
x > 4. We want the slice areas, i.e., probabilities, around 2 min to be larger than the
areas at the edges of our 4 min range in order to match our anecdotal observations.
A simple way to achieve this is to shape the function like a triangle with its peak
at 2 min set to p.2/ D 1

2
, for the whole, now triangular area must again equal

1 D 1
2

� 4 � p.2/. We thus have p.x/ D 1
4
x for x in Œ0; 2� and p.x/ D � 1

4
x C 1

for x in Œ2; 4� (see Fig. A.1).

Fig. A.1 Triangular probability density
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If we trust our hard-earned probabilistic model, we can now compute the
probability of waiting between 17 and 25 s as the respective area under this
function—the integral

R 25=60

17=60
1
4
x dx.

So outcomes and probabilities together describe and determine a random vari-
able’s behavior, its distribution.

A.2 Expected Value

As we have seen above, describing a random variable with all those outcomes and
probabilities can be a wordy affair. We are looking for a way to get across some
core characteristics of a random variable in a shorter, more succinct manner. On a
hunch, we let us inspire by how we tend to average large sets of numbers (e.g., all
the individual incomes of people living in Kansas) in order to compress the vast
amount of information therein.

If a random variable X can have n discrete outcomes xi, each with probability pi,
then we expect an “average,” probability-weighted outcome—or expected value—of

EŒX� D
nX

iD1

xi pi:

If each outcome is equally likely, we have pi D 1
n , and this expression becomes

the familiar average.
In case of a continuous random variable, X can take on infinitely many values;

their probabilities are described via a probability density function p.x/. By direct
analogy with the discrete case we have1

EŒX� D
Z 1

�1
x p.x/ dx:

(In both cases, or course, the probabilities themselves must always sum up to
1 D 100%, i.e.,

P
pi D 1 and

R
p.x/ D 1.)

Our examples fare as follows:

• The expected value of our pimped die is

EŒX� D
6X

iD1

xi pi D
6X

iD1

10i pi D 35:

• The expected value of a standard die is
P6

iD1 i pi D 3:5.

1The discrete pi corresponds to the infinitesimally small p.x/ � dx.
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• The expected value of our spinning top is

EŒX� D
Z 1

�1
x p.x/ dx D

Z 2�

0

x
1

2�
dx D � � � D �:

• The expected value of the triangle probability density of waiting times we
constructed at the beginning of this chapter is

EŒX� D
Z 1

�1
x p.x/ dx D

Z 2

0

x .
1

4
x/ dx C

Z 4

2

x .1 � 1

4
x/ dx D � � � D 2:

(This corresponds to what we’d expect—the expected value here lies at our
triangle’s peak. As an exercise, try using a triangular probability density that is
not isosceles and both guess and calculate its expected value.)

The expected value alone can’t possibly give us the full picture of a random
variable, yet it provides a first, brief glance at its behavior. If, for example, you
hyper-pimped a die and only told me its new expected value of 3500, I might already
get a fairly good impression of that die without knowing the details. (I might be
wrong, because of course you could just have replaced a standard die’s 6 with 20;985

to obtain that very same expected value.)
Sometimes the expected value already tells us all we need to know. Imagine a

die game where you win a roll’s outcome in dollars, e.g., a 4 nets you four bucks.
Should you be willing to pay 3 dollars to take part in this game? We know that the
die’s expected value is 3:5, i.e., when playing repeatedly, you expect to receive 3:5

dollars and to thus earn 50 cents on average. Clearly, the 3 dollars investment would
be worth it, but, alas, such games do not exist. If we reverse the setting, though, we
obtain a game that does: would you be willing to offer the die game if someone paid
4 dollars to take part? Sure you would, and so do others; such games go by the name
of lottery.

Moving on, the expected values intuitively extend to functions of randoms f .X/,
i.e., to what we expect f .x/ to be on (probability-weighted) average, in both the
discrete and the continuous case:

EŒ f .X/� D
nX

iD1

f .xi/ pi;

EŒ f .X/� D
Z 1

�1
f .x/ p.x/ dx:

For any constant c, we have

EŒcX� D cEŒX�;
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or, as special case (think: X D x1 D c with p1 D 100%),

EŒc� D c;

or, more generally,

EŒc1f1.X/ C c2f2.X/� D c1 EŒ f1.X/� C c2 EŒ f2.X/�:

A multiplicative separation is usually not possible. A discrete random variable X
that is either 1 or 3 with a 50% chance has an expected value of 1�50%C3�50% D
2, while the expected value of X2 is 12�50%C32�50% D 5. We see that, in general,

EŒX�2 ¤ EŒX2�:

A.3 Variance and Standard Deviation

The expected value expresses our average expectation of X. We’d also like to have
a measure of a random’s range of outcomes—its variability or volatility—around
this expected value. For this, we examine .X � EŒX�/2—this expression becomes
larger the more X tends to stray from its expected value. The average behavior of
this expression is called variance, and it is defined as the following expected value:

VarŒX� D EŒ.X � EŒX�/2� D
Z

.x � EŒX�/2 p.x/ dx:

We can use the properties of the expected value mentioned above to find an
alternative expression for the variance as exercise (the expected value of an expected
value EŒEŒX�� is the constant EŒX� inside):

VarŒX� D EŒ.X � EŒX�/2�

D EŒX2 � 2X EŒX� C EŒX�2�

D EŒX2� � 2EŒX�EŒX� C EŒX�2

D EŒX2� � EŒX�2:

We can use either expression to derive the following general properties:

VarŒcX� D c2
VarŒX�;

VarŒc� D 0:

The standard deviation is defined as the square root of the variance:

stdŒX� D p
VarŒX�:
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It is often more useful than the variance because its scale or dimension is the
same as that of X. If X values are in dollars, then the standard deviation lies on the
same scale, while the variance has the unintuitive dimension of dollars-squared.
(The variance’s squaring approach merely helped make all the deviations from
EŒX� positively count toward our measure, and more gently so than the obnoxious
absolute value.)

For our example of waiting times with its triangular probability density, we
already know that

EŒX� D 2:

We compute

EŒX2� D
Z 1

�1
x2 p.x/ dx D

Z 2

0

x2 .
1

4
x/ dx C

Z 4

2

x2 .1 � 1

4
x/ dx D � � � D 14

3
:

The variance becomes, via our shortcut,

VarŒX� D EŒX2� � EŒX�2 D 14

3
� 22 D 2

3
:

Its square root yields the standard deviation of 0:82 min or 49 s.

A.4 Sample Estimates

Funnily, not many of the concepts mentioned above are of immediate use—we
usually do not know the probabilities pi or the shape of the probability density
function p.x/, and we therefore cannot compute the expected value or the variance.
What we can do is make some observations and estimate them.

Recall our example of the waiting-time random variable, where we postulated
a triangular probability density function that allowed us to compute the random’s
expected value. Instead of making such a sweeping assumption, we might also
observe and record some actual waiting times, for example, {1:45, 0:23, 2:35, 3:17,
1:33, 2:10, 1:52}.

We call such sample observations xi.2 Given n such observations, we use the
sample mean

Nx D 1

n

X
xi

2This is fine for continuous distributions where these names are nowhere to be seen. Just make sure
not to confound them with the outcomes of a discrete distribution.
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and the sample standard deviation

s D
r

1

n � 1

X
.xi � Nx/2

to estimate the real but unknown expected value and standard deviation.
For our example of waiting times, the sample above yields an estimate for the

expected value of 1:56 (as opposed to the calculated 2 min) and one for the standard
deviation of 54 s (close enough to the 49 s obtained theoretically)—all without those
pesky integrals.

The estimator for the standard deviation warrants a few words. Our original
definition of variance would, in the discrete, equiprobable case, translate into
1
n

P
.xi � EŒX�/2—a prime suspect for an estimator. Why then use the unintuitive

n � 1 in our sample standard deviation?
There are several ways to frame an answer. Dividing by n � 1 can be shown to

yield an unbiased estimate for the variance, i.e., it doesn’t err systematically, which
sure is a welcome feature.3 Most of the time we can get away with just using this
unbiased variant. It’s also the default way Excel’s STDEV function operates.

Also, a market risk setup typically involves different statistical software pack-
ages, programming languages, and the odd Excel analysis; outside parties like
regulators or consumers of risk reports might try to reenact the figures on their
own systems. This—most commonly used—unbiased estimator ensures the desired
exact comparability of results.

And finally, as the sample size n gets larger, the correction by �1 becomes ever
less significant. A professor of mine once quipped that whenever you worry about
this denominator, you really should be worried about your sample size.

But what is the mathematical rationale behind all this? Omitting theory, we
can give an intuitive mnemonic aid. The variance is all about squared deviations
from the expected value. Unfortunately, we don’t know this expected value and
have to estimate it via the sample mean. Assume, for example, two samples of
f�2; C1; C2; �1g and fC2; C1; C2; C1g (of the same distribution), and notice
how the entries in the latter, by chance, all point in the same direction. The first
sample has a mean of Nx D 0, which would have the variance estimator add up terms
the like of 12 and 22. The second, somewhat more compact sample has, smack in
the middle of its value range, a mean of Nx D 1:5, which would have the variance
estimator add up the smaller 0:52 terms. In fact, the sample mean always minimizes
the sum of squared differences to itself, and because the unknown underlying
expected value is usually different, this sum inevitably tends to undershoot the real
variance. Luckily, it can be shown that the humble tweak of averaging the sum of
squares over the smaller n�1 instead of n can swimmingly correct for this tendency.

3A minor detail for your next Jeopardy session: the standard deviation estimate is still not unbiased,
due to the square root operation.
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In some cases, we do not have to estimate the expected value via the sample
mean because we know it—for example, if we impose our own when creating
random values artificially, or if we have some knowledge or strong intuition about
the underlying random’s behavior. In such cases, we don’t have to compute an Nx
from the sample but can directly apply the knowledge of EŒX� in estimating the
variance. It turns out that the uncorrected estimator (note the n instead of n � 1 and
the EŒX� instead of Nx) is then the way to go:

s D
r

1

n

X
.xi � EŒX�/2:

We use this variant, for example, when illustrating the Monte Carlo modification
in our VaR setup.

Some standard software packages support this directly, e.g., Python’s
statistics.pvariance(data,mu) function, which accounts for a known
expected value. Often, however, implementations only use n in the denominator but
still implicitly estimate the mean.4

A.5 Kurtosis

We have primarily looked at the average behavior of distributions and at their range
or volatility of outcomes. This can often already give us a pretty good idea about a
distribution. Observing, for example, the height of males, we might obtain a mean
of roughly 172 cm and a standard deviation of about 7 cm. We can relate to these
numbers: we know quite a few average-height people, some that are shorter or taller,
and a select few that are extremely short or tall. We also certainly know very few
people that are, for example, ten times the standard deviation of 7 cm (or 70 cm)
taller than the average. All in all, we are confident of having a good grasp on the
height range and might well be inclined to call its distribution “normal.”

Now consider the number of Barbie dolls in households. This might often be 0,
or 1, or 7, and maybe have a mean of 3 and a standard deviation of, say, 2 dolls.
It is easy to imagine, however, that one avid collector in Wichita will own maybe
250 dolls (many, but too few to meaningfully impact the standard deviation itself).
This is more than 100 times that standard deviation of 2, or a full 200 dolls, above
the mean of 3. We didn’t observe such strange behavior with heights—there, the
same multiplier of the standard deviation would describe a giant, 7 m taller than the

4Many software packages default to the unbiased estimate (Matlab; Octave; S-plus; R; SAS;
Mathematica; SPSS; Python’s np.cov for calculating a covariance matrix).

Several implementations, by default, divide by n without accounting for the potentially known
mean (Boost’s variance function; Python’s np.var and np.std functions.)

Often, alternative estimator functions are provided and can be used to coordinate disparate
implementations. (Excel’s STDEV.P divides by n; Python’s np.var and np.std use n � 1

when setting the optional argument ddof=1.)



134 A Statistics 101

average. The doll distribution, now, seems to exhibit such extreme outliers that are
many standard deviations away from the average.

Distributions with such behavior are said to feature heavy or fat tails. To measure
them, we need to smoke out such very large deviations. We achieve this by
examining .X�EŒX�/4, whose hefty fourth power should bring them to our attention.
Additionally, we’d like a measure of “tailedness” to also be independent of the scales
or dimensions involved; the “number of limbs of Barbie dolls,” about four times
the original random number, should have the same heavy tail indicator as the doll
distribution itself.

The following measure does this, and it is called kurtosis:

KurtŒX� D EŒ.X � EŒX�/4�

VarŒX�2
:

Normalizing by the variance in the denominator ensures our desired invariance
under scaling:

KurtŒcX� D KurtŒX�:

For reasons we will tackle soon, a good reference value for the kurtosis is 3.
It indicates a benign tail behavior and no undue or extreme outliers. Larger
kurtosis values indicate heavier tails and outliers more extreme than conventionally
expected, and it is not uncommon to observe kurtosis values of 10 or even 50 in the
wild. As for our examples:

• A million and one households, one with 250 Barbie dolls, 500;000 with 1 doll,
and 500;000 with 5 dolls, have a combined and unsuspicious mean of 3:0002, a
standard deviation estimate of 2:0152, but a whopping kurtosis of about 224.

• Our example of waiting times above has a kurtosis of 4:16, or nothing much to
worry about.

As with the variance, we usually don’t compute this kurtosis but instead estimate
it from a sample. Many burdensome tweaks are required to obtain an unbiased
estimate, as a quick Google search for “kurtosis estimator” will reveal. For our
purposes, it suffices to rely on your preferred software package’s implementation.

Be mindful of one thing, though: some kurtosis functions, like Excel’s KURT
one, report the so-called excess kurtosis, which is the kurtosis minus 3.

A.6 Multiple Random Variables and Covariance

So far we have examined an individual random variable X and its properties. We
now take a look at how multiple randoms play together. Consider, first, two discrete
random variables X and Y, where X can take on x1 D 0 or x2 D 1 and where Y can
take on y1 D 0, y2 D 3, or y3 D 9. Combined, we can obtain 6 different outcomes:
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.0; 0/, .0; 3/, .0; 9/, .1; 0/, .1; 3/, or .1; 9/. Correspondingly, we need 6 probabilities
(adding, again, up to 1) to describe the joint distribution, best expressed in a two-
dimensional matrix:

�
pXD0;YD0 pXD0;YD3 pXD0;YD9

pXD1;YD0 pXD1;YD3 pXD1;YD9

�
:

We can proceed to naturally define the expected value of, for example, the sum
of the two random variables over all outcomes:

EŒX C Y� D
2X

iD1

3X
jD1

.xi C yi/ pXDxi;YDyj :

(If we assume identical probabilities of 1
6

for each outcome, we obtain a result of
4:5 for this expression.)

The expected value of X alone would be, again involving 6 terms,

EŒX� D
2X

iD1

3X
jD1

xi pXDxi;YDyi :

The one-dimensional approach we encountered at the beginning of this chapter
can also be used, if we appropriately collect the involved probabilities:

EŒX� D 0 � . pXD0;YD0 C pXD0;YD3 C pXD0;YD9/

C1 � . pXD1;YD0 C pXD1;YD3 C pXD1;YD9/:

The two probabilities involved, each a sum of three of the original ones, express
the events X D 0 and X D 1, irrespective of Y. Such “collapsed” probabilities are
called marginal probabilities.

By analogy, we use two-dimensional density functions p.x; y/ and double
integrals in case of continuous distributions:

EŒ f .X; Y/� D
Z Z

f .x; y/ p.x; y/ dx dy:

Luckily, all this comes down to a simple conclusion—shuffle the terms around
and convince yourself that we usefully always have

EŒX C Y� D EŒX� C EŒ Y�:

We can now begin to pose the first interesting question about multiple random
variables: are they somehow related? For this, we examine whether they tend to
move in the same direction. The expression .X � EŒX�/.Y � EŒ Y�/ is positive if
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both random variables are above their expected value, but it is also positive if
both are below their expected value—this thus indicates co-movement in the same
direction. The expression becomes negative, on the other hand, if they deviate
in opposite directions from their expected values. Which of these types of co-
movement dominates on average can be captured via the covariance:

CovŒX; Y� D EŒ.X � EŒX�/. Y � EŒ Y�/�

D EŒXY� � EŒX�EŒ Y�:

If the covariance is positive, X and Y tend to move in the same direction on
average; if it is negative, they tend to move in opposite directions. Either way, they
two randoms are related.

We incidentally also note that

CovŒX; X� D VarŒX�:

We shall mostly rely on estimators to guess the real but unknown covariance. In
the special case where the individual expectations EŒX� and EŒ Y� are known to be
zero, the sample covariance estimate of n pairs of observations .x1; y1/ to .xn; yn/

simplifies to 1
n

P
xiyi.

A convenient, normalized measure directly derived from this is the correlation,
which yields values between C1 and �1, regardless of the volatilities underneath:

corrŒX; Y� D CovŒX; Y�

stdŒX� stdŒ Y�
:

(A quick intermediate sanity check: the variable X is surely strongly related to
itself, as X always moves in the same direction as X (d’oh). If we actually evaluate
the correlation of X to itself, we get corrŒX; X� D 1. Likewise, the correlation of X
to its opposite �X is corrŒX; �X� D �1.)

The covariance only approximates how random variables interact. For a deeper
apprehension, we need the concept of dependence. It can be approached as follows:
if knowing the outcome of one random variable does not give you any hint or
additional information on how the other random variable will behave, then the two
randoms are called independent.

It turns out that independent randoms always have a covariance or correlation of
zero, and non-zero covariance or correlation thus signals dependence. Let’s wrap
our heads around this. If, for example, two randoms are positively correlated and
we know that the first one went up, we’d expect the second random to tend to do the
same. This is definitely tangible information, and it follows that the two randoms
can’t be independent.

When meeting a statistician at a bar, it is useful to keep in mind that zero
correlation does not, in turn, guarantee independence. Witness the two randoms
X (uniform in Œ�1; 1�) and Y D X2. They are clearly dependent, for knowing the
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outcome of X will already foretell us the exact outcome of Y, but they have zero
correlation. Yet such instances are rare in our context, and you’ll find that zero
correlation will many times correctly hint at independence.

We are now ready to tackle the issue of the variance of random sums. We already
know that VarŒX � X� D 0 and that VarŒX C X� D 4VarŒX�—a hint, maybe, that the
relation between the random numbers might affect the variance of their sum. But
let’s plow through:

VarŒX C Y� D EŒ..X C Y/ � EŒX C Y�/2�

D EŒ.X C Y/2 � 2.X C Y/EŒX C Y� C EŒX C Y�2�

D EŒ.X C Y/2� � EŒX C Y�2

D EŒX2 C 2XY C Y2� � .EŒX� C EŒ Y�/2

D EŒX2� C 2EŒXY� C EŒ Y2� � EŒX�2 � 2EŒX�EŒ Y� � EŒ Y�2:

If we look carefully at the last line’s terms, we find that

VarŒX C Y� D VarŒX� C VarŒ Y� C 2CovŒX; Y�:

We get an even nicer expression for independent randoms, whose covariance, as
mentioned above, is zero:

VarŒX C Y� D VarŒX� C VarŒ Y�:

Going one step further, we can determine the variance of sums of more than two
randoms. The number of terms becomes a bit unwieldy, but, fortunately, we can
express the final result in a conveniently brief matrix notation. With a row vector
of constants c, recalling that VarŒX� D CovŒX; X�, and defining a covariance matrix
ŒC� with entries CovŒXi; Xj�, we conclude, with some patience, that

VarŒc1X1 C c2X2 C c3X3� D cŒC�c>:

A.7 Distribution, Inverse, and Quantiles

The probability that X < q is given by

Z q

�1
p.x/ dx:
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This recurring concept is best abbreviated via the cumulative distribution
function P.x/:

P.x/ D
Z x

�1
p.t/ dt:

The probability that X < q is then P.q/.
The probability that X lies in a certain range Œqd; qu� is

Z qu

�1
p.x/ dx �

Z qd

�1
p.x/ dx D P.qu/ � P.qd/:

The probability that X > q is 1 � P.q/.
We already know that the probability of X D q, i.e., of X ending up in the zero-

length interval Œq; q�, is P.q/ � P.q/ D 0. This odd property, once it has been
shruggingly accepted, has the nice consequence that we need to worry less about
open/closed intervals or the difference between“ <” and “6”—the infinitesimally
small “border” outcomes make (for practical intents and purposes) no difference.
This also makes many expressions for continuous distributions simpler, whereas,
for discrete ones, we have to be much more careful about indices at boundaries.

Now let’s do the reverse: given a probability p, we can use the inverse P�1.�/ to
find the corresponding value q such that P.q/ D p:

q D P�1. p/:

Such q-values are called quantiles. The 1%-quantile q1% D P�1.1%/, for
example, is our 1%-value-at-risk.

It makes sense to name or index the quantiles with their corresponding probabili-
ties. The probability of a random number falling between q3% and q7%, for instance,
then becomes

P.q7%/ � P.q3%/ D 7% � 3% D 4%:

What are the 5% shortest waiting times in our triangular waiting time distribu-
tion, i.e., what is its 5%-quantile? For quantiles q on the left side of the triangle,
the integral in the cumulative is simply the triangular area P.q/ D 1

2
q q

4
D 1

8
q2.

For a probability p D 1
8
q2, the inverse becomes q D P�1. p/ D p

8p. Thus, for

p D 5%, the quantile q5% D p
8 � 5% D p

4=10. Verifying this, we see that indeed
P.q5%/ D 1

8
q2

5% D 4
80

D 5%. The 5% shortest waiting times lie between 0 and 38 s.
Quantiles, just like the expected value, scale and translate under linear transfor-

mations of the type Y D aXCb, with a > 0. You can formally prove this, or you can
consider this to be simply a change of measurement units, like transforming Celsius
to Fahrenheit, and sign off on it. The distribution’s core characteristics remain, and
only the involved dimensions change. We have, e.g., for the 1%-quantile,

qY
1% D a qX

1% C b:
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A.8 Conditional Expectation

Sometimes only a subset of outcomes is of interest to us. The expected value,
for instance, of a random variable under such a restricting condition is called
conditional expected value. A typical example is the expected value of X if X is
smaller than a certain number c. To obtain it, we simply sum/integrate up only to
that number and normalize the result with the probability of our condition:

EŒXjX < c� D 1

P.c/

Z c

�1
x p.x/ dx:

Our risk measure of the expected shortfall is such a conditional expectation. It
deals with the 2:5% largest losses, so we have c D q2:5% and P.c/ D P.q2:5%/ D
2:5%. In our discrete case, we sum up 25 values of interest (the largest losses), each
weighted with a probability pi D 1

1000
. Dividing by the overall probability of 2:5%

leaves us with the denominator 25 in Eq. (8.1).

A.9 The Normal Distribution

We finally get to meet an important and ubiquitous kind of distribution, one so
common as to be called normal distribution. It arises in the context of sums of
random variables, by which many phenomena can be characterized. A leaf falling
through the air, for example, will undergo a series of tiny random nudges hither and
thither before hitting the ground. A heap of leaves below a tree is then normally
distributed. But onwards, from the bucolic to the more prosaic.

The normal distribution’s probability density function p.x/ is driven by two
parameters, � and � :

p.x/ D 1

�
p

2�
e� .x��/2

2�2 :

This is denoted as an N.�; �2/-distribution. It is shaped like a bell, as can be seen
in Fig. A.2, and also called a bell curve or a Gaussian.

This particular parameter setup is chosen to make the integral expressions for the
base measures conveniently evaluate to

EŒX� D
Z

x p.x/ dx D � � � D �;

VarŒX� D
Z

.x � EŒX�/2 p.x/ dx D � � � D �2;

stdŒX� D �:
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Fig. A.2 Normal probability density, for � D 0 and � D 1

In theory, a normal random can take on any value—notice how the density is
positive for all real numbers x, which allows for arbitrarily large positive or negative
outcomes to occur. In practice, the probabilities become small so fast (due to the
mighty e�x2

term) that extreme events far away from � are highly unlikely. The tails
of a normal are thus not heavy but rather ordinary. The normal’s kurtosis in fact
came to signify unexciting and boring tail behavior. For any normal, regardless of
its standard deviation, we have

KurtŒX� D 3:

That’s where our ominous kurtosis value of 3 in Sect. A.5 originates.
A normal’s cumulative and its inverse have no closed-form solution; we evaluate

them by numerical approximation or by referring to tables with pre-computed
values. For a normal distribution with � D 0 and � D 1 (i.e., an N.0; 1/-distribution,
also called standard normal distribution), the cumulative distribution is usually
called ˚ . Its 1%-quantile is approximately

q1% D ˚�1.1%/ D �2:32635:: � �2:33:

Quantiles scale with � .5 For an N.0; �2/-normal, we have

q1% D P�1.1%/ D � � ˚�1.1%/ � �2:33 �:

To calculate the constant, use Excel’s NORM.INV(0.01;0;1) or Wolfram
Alpha’s InverseCDF[NormalDistribution[0,1], 0.01].

5That’s because it can be proven that each N.�; �/-normal can be expressed as a scaled �X C
�, with X standard normal. Since quantiles scale in general under such linear transformations,
all normal quantiles can be retraced back to the standard ones, and we don’t have to explicitly
recalculate them for each different parameter combination.
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The expected shortfall of a normal is the following conditional expectation:

ESŒX� D EŒXjX < q2:5%�

D 1

P.q2:5%/

Z q2:5%

�1
x p.x/ dx

D 1

2:5%

Z q2:5%

�1
x p.x/ dx:

For a standard normal with a density function ', this evaluates to

ESŒX� D � 1

2:5%
'.˚�1.2:5%//;

and it is approximated numerically as 2.33780, e.g., using Excel’s

-NORM.S.DIST(NORM.S.INV(0.025);FALSE)/0.025

It also scales with � .

A.10 Sums of Randoms

We have already encountered random sums like X C Y. Still, we now get our hands
dirty and try to become a bit more acquainted with them. Warning: your best friends
in this section will be a pen and some sheets of paper.

Consider two independent random numbers with a uniform distribution, say,
X over the interval Œ0; 2� and Y over the interval Œ0; 3�. Their two-dimensional
probability density function is

p.x; y/ D
(

1
6

for x in Œ0; 2� and for y in Œ0; 3�;

0 otherwise:

Each random has, individually, its own (one-dimensional) probability density
function. As its area must sum up to 1, we must have

pX.x/ D
(

1
2

for x in Œ0; 2�;

0 otherwiseI

pY. y/ D
(

1
3

for y in Œ0; 3�;

0 otherwise:
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The relation between p.x; y/ and pX.x/ or pY.y/ goes deeper. Just like we
“collapsed” 6 discrete probabilities into 2 marginal ones in Sect. A.6, we may also
determine pX.x/ (for x in Œ0; 2�; it is zero otherwise) by integrating over y:

pX.x/ D
Z 1

�1
p.x; y/ dy D

Z 3

0

p.x; y/ dy D
Z 3

0

1

6
dy D 1

2
:

Equivalently, integrating over the x-dimension yields the Y-marginal pY .
A very similar collapse from two dimensions to one will help us tackle the

probabilities of random sums. If we define a new random variable Z D X C Y, with
X and Y uniform as above, we might ask: What is Z’s one-dimensional probability
density? Is Z maybe also uniformly distributed?

To tackle this, we briefly digress to the discrete, two-dimensional setup of a
uniformly random chess board with discrete axes X and Y between 1 and 8. The
probabilities of the 64 outcomes X D i and Y D j are pXDi;YDj D 1

64
. What about a

random Z D X C Y and its (one-dimensional) probabilities pZDk?
First, Z D 1 can never happen, as it will always at least be 2.
There is only one way our Z can become 2: if both X and Y are 1 (all other setups

create a larger Z). The corresponding probability is thus

pZD2 D pXD1;YD1:

There are two ways to obtain Z D 3: via X D 1 and Y D 2, or via X D 2 and
Y D 1. The corresponding probability is

pZD3 D pXD1;YD2 C pXD2;YD1:

There are three ways to obtain Z D 4: via X D 1 and Y D 3, via X D 2 and
Y D 2, or via X D 3 and Y D 1:

pZD4 D pXD1;YD3 C pXD2;YD2 C pXD3;YD1:

You get the idea—we basically sum up probabilities over diagonal segments of
our board to obtain the pZDk. And it is also clear that these probabilities differ—that
Z is not uniform. Its probabilities are as follows:

• The white main diagonal corresponds to pZD9:

pZD9 D
8X

tD1

pXDt;YD9�t D 8

64
:

• The lower left diagonals yield 7 probabilities for Z D k, with k between 2 and 8:

pZDk D
k�1X
tD1

pXDt;YDk�t D k � 1

64
:
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• The upper right diagonals also yield 7 probabilities for Z D k, with k between 10

and 16:

pZDk D
8X

tDk�8

pXDt;YDk�t D 17 � k

64
:

With a good hunch, we return to our continuous two-dimensional distribution.
Because the original Œ0; 2� � Œ0; 3�-uniform is a bit tedious with regard to integration
bounds, we consider the simpler uniform on Œ0; 1� � Œ0; 1� with p.x; y/ D 1 over that
area. We confidently declare that the following density describes Z D X C Y:

pZ.z/ D
Z 1

�1
p.t; z � t/ dt

D

8̂
<̂
ˆ̂:

R z
0

p.t; z � t/ dt D tjz
0 D z for z in Œ0; 1�;R 1

z�1
p.t; z � t/ dt D tj1z�1 D 2 � z for z in Œ1; 2�;

0 otherwise:

The probability density function of Z is thus a triangle. (As an exercise, you
might want to try this for uniforms of unequal ranges.)

There are several reasons we went through this exercise. It should, first, underline
the close correspondence of discrete and continuous setups. It also hopefully illus-
trates that boundary cases can often be managed more elegantly, and with less of an
index mess, in a continuous setup. Mainly, however, is should stress that probability
densities of randoms do not always translate trivially into the density of their sum.
This should prepare the stage for what hopefully provides some relief now.

For it turns out that multiple normal random variables following the so-called
multi-variate normal distribution behave much more benignly under summation.
Each random variable is normally distributed, and, crucially, it can be shown that
their sum is also normally distributed, which spares us laborious integrals. We can
derive the characteristics (i.e., � and �) of the sum of normals directly from the
individual distributions’ �, � , and their correlation 	:

�XCY D �X C �Y ;

�XCY D
q

�2
X C �2

Y C 2	�X�Y :

The main takeaway, neglecting normals that follow degenerate “non-multi-
variate” distributions, is that “the sum of normals is normal”—if for no other reason
than because we often simply assume such a distribution off the bat.6

6Two more things to keep in mind: two independent normals also share a joint density, and
the expressions above simplify further because their 	 D 0; and for multi-variate normals,
independence and zero correlation are fully equivalent concepts.
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Fig. A.3 A Galton board

There are several ways to prove this, but they often only provide verification
in a formal, technical sense. Surely such a fundamental property must be rooted
understandably in the very setup of the normal distribution itself. So to instill some
confidence, we look at the case of independent normals and their sum via the so-
called Galton board depicted in Fig. A.3.

In this game, a ball is dropped over layers of offset nails. As it traverses
downwards, it randomly goes left or right at each nail, before finally ending up
in a bin below. The height of the ball stacks in the bins—the outcome of random
sequences or sums of left/right movements—can be shown to resemble a normal
density as we use more and more layers of nails. Assume that one such board
corresponds to a normal X. Now, let’s drill a hole in a bin below, attach a second
board right below that hole, let the balls fall on, and collect them again further down;
we repeat this for each bin. This is akin to adding a second (also normal) board Y to
the first one. The whole procedure should result in the same final bin tally as when
using one larger board with as many layers as X and Y combined. Because such a
larger board is, like any board, also akin to a normal, the sum of the original boards
better be as well.

We can use a similar trick with our sum of uniforms, whose probability density
we already found to be triangular. This time the game is Tetris. We let a first random
X in Œ0; 4� determine the starting position of the coveted 1�4 brick. Each such brick
we then interpret as the probability density of width 4 of a second uniform Y, right
before we let it drop down. Once such a brick, starting off at position X, comes to
rest, we consider it to stand for part of the density of XCY. As each starting position
X is equally likely, we might as well loop through them, obtaining the left-hand side
in Fig. A.4.
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Fig. A.4 Tetris

If we then let the bricks unglue and the resulting 1 � 1 pieces drop to their final
resting place, we obtain the X C Y density—our familiar triangle.

A.11 Some Densities for the Road (to Independence)

We have seen that we were able to derive quite a few properties of randoms
without much actual computation. Some distributions, most notably the normal one,
provide additional shortcuts because of their very specific structure. Still, it is often
instructive to perform a handful of raw calculations explicitly to whet our intuition,
especially in the two-dimensional case. Here are some starting points.

We have already encountered the triangular distribution in our waiting time
example. What would a two-dimensional probability density of two independent
waiting times X and Y over Œ0; 4� � Œ0; 4� look like? To get an idea, go to your
bedroom, grab your bed sheet right at the center of the mattress, and pull it up.
The resulting structure resembles a wigwam. Let’s try to construct a corresponding
probability density p.x; y/.

The wigwam has its peak at .x; y/ D .2; 2/. Let’s look at the lower left part or
quarter of this volume first (i.e., x in Œ0; 2� and y in Œ0; 2�). If we define p.x; y/ D cxy,
we see that its height is 0 for x D 0 or y D 0, and it is 4c for .x; y/ D .2; 2/. The
volume of the lower left part is7

Z 2

0

Z 2

0

p.x; y/ dx dy D
Z 2

0

Z 2

0

cxy dx dy D 4c:

To also describe the remaining 3 quarters of the wigwam, we may use, for x and
y both in Œ0; 4�,8

p.x; y/ D c.2 � j2 � xj/.2 � j2 � yj/:

7You can use Wolfram Alpha’s website and type in
integrate c x y dx dy, x = 0 to 2, y = 0 to 2
to make sure.
8You can directly google (2-abs(2-x))(2-abs(2-y)), which should give you a nice 3D-
plot where you just need to adjust the graph’s display ranges.
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Fig. A.5 Wigwam (z-axis
range tuned for clarity)

The total volume of the wigwam must be, because of its symmetry, 4�4c D 16c.
For c D 1=16, we obtain a valid probability density (see Fig. A.5).

Let’s check the marginal distribution of X, for x in Œ0; 2� (larger x work similarly):

pX.x/ D
Z 2

0

1

16
xy dy C

Z 4

2

1

16
x.2 � . y � 2// dy D � � � D 1

4
x:

This is the left side of our trustworthy triangle distribution. For the full range of
x in Œ0; 4�, we get

pX.x/ D 1

4
.2 � j2 � xj/:

We notice that in our wigwam case we have p.x; y/ D pX.x/pY.y/—so we
could have avoided all the construction work and simply have multiplied the
individual densities in the first place. Such a neat multiplicative separation of a two-
dimensional probability density is not always possible. If it is, though, then this is
very telling, as we will soon discover.

We are almost done with our wigwam but still want to check whether the X and
Y described by it are independent. Their covariance is zero (as you can verify by
doing the appropriate integration), but that’s only a hint. Recall that independence
essentially means that knowing X does not tell us anything about Y.

How can Y behave if we know that X equals some specific, say, x0? We intuit
that it should loosely behave according to the one-dimensional function of y given
by p.x0; y/, i.e., a vertical slice through our wigwam. This slice is always a triangle
here, as depicted in Fig. A.6.

This almost looks like a density already, except that its area does not have to be
1. We can easily remedy that by scaling the function and dividing it by its own areaR

p.x0; y/ dy, which of course is simply the value given by pX.x0/. Doing this yields
a valid conditional probability density with area 1:

p. yjX D x0/ D p.x0; y/

pX.x0/
:
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Fig. A.6 Wigwam with (yet
unscaled) conditional density

Fig. A.7 Plank

This density describes how Y behaves once X has settled on x0. The question of
independence becomes: does this x0 even influence Y? At first sight, yes (there are,
after all, plenty of x0 on the right-hand side of the equation). At second sight, we
recall that for the wigwam it holds that p.x; y/ D pX.x/pY.y/, and therefore

p. yjX D x0/ D p.x0; y/

pX.x0/
D pX.x0/pY. y/

pX.x0/
D pY. y/:

So Y’s conditional density is not affected by X at all—a realization of X does
not tell us anything about how Y might behave. The wigwam must be independent.
(It is also but a little mental stretch that makes us realize: independence and the
multiplicative separation of a two-dimensional density mean one and the same.)

Now take two randoms, with X uniform in Œ�1; 1� and Y uniform in Œx2; x2C0:01�.
The graph looks like a bended plank standing upright on its narrow side, 2 wide and
0:01 thick (see Fig. A.7). How long is it, i.e., how high is the graph? Well, the volume
must be 1 D 0:01 � 2 � h, so we have a height of 50.

The conditional density of Y given X D x0 is

p. yjX D x0/ D
(

50
0:01�50

D 100 for y in Œx02; x02 C 0:01�;

0 otherwise:

Clearly, we can’t get rid of the x0 here. Knowing x0 is in fact vital and, in turn,
also inevitably tells us a lot about how Y will behave. If X is close to 1 or �1, then
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Fig. A.8 Pyramid

Fig. A.9 Camel

Y will be close to 1; if X is close to zero, so will be Y. These X and Y are therefore
not independent.9

With this intuition, we can make short shrift of another density, the pyramid
density of Fig. A.8 over the base Œ0; 4� � Œ0; 4�, peaking at .2; 2/. Are the thusly
described X and Y independent? Well, the conditional densities around values of x0
close to 2 look like triangle distributions, whereas the ones around x0 D 1 or x0 D 3

look trapezoid. No amount of mere scaling can ever bring them in line—Y behaves
differently for different x0. The pyramid is not independent.

To wrap up, lest we get the impression that there are only freak distributions out
there, it helps to construct a plain one with a proper covariance. We might call this
one a camel hump distribution. To obtain peaks at, say, .1; 1/ and .3; 3/, we start
with the following guess10:

p‹.x; y/ D 1

1 C .1 � x/2 C .1 � y/2
C 1

1 C .3 � x/2 C .3 � y/2
:

9Their covariance, though, is zero, as a calculation exercise reveals. Also note that the already
encountered randoms X and Y D X2 are the limiting case of ever-thinner planks.
10Google 1/(1+(1-x)ˆ2+(1-y)ˆ2) + 1/(1+(3-x)ˆ2+(3-y)ˆ2) to confirm this func-
tion’s “camelity,” or refer to Fig. A.9.
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Its volume on Œ0; 4�� Œ0; 4� is 9:4774,11 which normalizes our guess into a proper
density p.x; y/ D 1

9:4774
p‹.x; y/. The resulting covariance is, finally, a full-fledged

number:

CovŒX; Y� D
Z Z

.x � 2/. y � 2/p.x; y/ dx dy D � � � D 0:342146:

11Via Wolfram Alpha’s
integrate (1/(1+((1-x)ˆ2+(1-y)ˆ2))+1/(1+((3-x)ˆ2+(3-y)ˆ2))) dx dy, x=0 to 4,
y=0 to 4.
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Determining the value of your positions is easy for frequently traded, liquid assets
because market quotes of prices are readily available. But what about completely
new, never-before traded assets without market quotes, or assets that are very rarely
traded, so-called illiquid assets? Determining their value cannot purely rely on direct
lookups into a current market snapshot, as there are no or only sporadic records of
actual trades.

The idea in pricing such positions is not spectacular and relies on one fundamen-
tal assumption: asset prices should be consistent. For example, bonds with similar
maturities and from issuers of similar credit-worthiness should probably cost about
the same. Likewise, currency exchange rates should be attuned to each other. If
given two exchange rates $e and e£, then the direct exchange rate $£ should be
in line with them. Otherwise there would be a cheap way to convert $ into £ (for
example, by converting $ into e and then e into £) and a more expensive one (the
other route of directly converting $ into £), and traders taking the cheap route would
bid up the prices involved until both ways of conversion aligned again.

Following this train of thought, another way of expressing this idea of price
consistency comes to mind: there should be no sure, risk-free profits. If you knew
that a stock is currently worth 12$ and someone offered it to you for 10$, you could
buy it and immediately sell it on the market—pocketing a sweet, risk-free 2$ in
the process. Price consistency means that such discrepancies are assumed not to
exist. Gains like these would be the financial world’s equivalent of the physical
impossibility of doing work without spending energy.

This reasoning can even be applied if it involves the fog of the future: you should
not be able to schedule prospective asset exchanges in a way that guarantees you a
risk-free profit. Assume, for example, that a stock S is currently worth 12$. Someone
offers you a deal: if you pay him 10$ now, he will deliver this stock in one month’s
time. It seems an OK deal, and you could accept it, pay, wait a month, and hope
the stock will later be worth more than what you paid now—yet you still can both
gain or lose, i.e., you take on some risk. However, you could transform this deal into
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one with guaranteed risk-free profit the following way: borrow the stock, sell it for
its current price of 12$, pay 10$ for the original deal, wait a month, get the stock
as promised, and return it to the stock lender. You are left with a sure profit of 2$,
regardless of how the stock develops. Assuming no risk-free profits exist thus rules
out such deal opportunities as well.

Extending this one step further, we even want to ban risk-free profits on average,
for example, for repeated, risky deals. Say, someone offered to (repeatedly) cast a
die and to give you the resulting number of stock units—how much would you be
willing to pay to take part in this game? If he offered you this deal in exchange for
three units of stock, you would certainly take it and just keep playing, for on average
you’d get 3:5 units of stock by investing only 3. As above, it seems reasonable to
rule out such deals as well.

In short, exchanging assets back and forth should not let you end up with more
asset units than you started out with. Such a profit bonanza is called arbitrage
opportunity (there is a precise mathematical definition of arbitrage, but we’ll keep
it shamelessly visceral). Finding consistent prices relies on the assumption that no
such arbitrage exists, and it is called no-arbitrage pricing. Another angle on this
is that prices of illiquid assets are interpolated from known prices of liquid ones,
and that the discipline of pricing, known as quantitative finance, is actually a big
interpolation framework.

But wait—didn’t we already encounter an arbitrage opportunity? We could buy
a zero bond for 0:9$ and thereby make sure to earn 0:1$ once the bond pays out
its promised 1$. This seems to be a sure profit—but only on the face of it. Money,
unfortunately, usually loses value over time, and comparing nominal units of money
at different points in time is therefore misleading. A can of Coke, for example, cost
5 cents in the 1950s; it costs more now but is probably “worth” the same as back in
the day.

So money is a special kind of asset, also called (negative) arbitrage asset for its
holder. Like cars, money typically loses value over time with respect to other assets.
It is a (positive) arbitrage asset for the issuer of the money, the government. This
makes—ironically—monetary prices, i.e., prices with respect to money, somewhat
ill-suited for consistent pricing. We shall now get to know a more elegant, money-
eschewing approach to arbitrage-free pricing. We can only hint at its most basic
ideas here. But after some simple examples, we should at least be able to price call
options, which was worthy of a cool Nobel prize not too long ago.

Note: this brief motivational chapter heavily borrows both ideas and notations
from Jan Vecer’s “Stochastic Finance: A Numeraire Approach” (Vecer 2011).

B.1 Trades as Asset Exchanges

Financial assets are often described as being intangible, but I find that it sometimes
helps to view them as existing, palpable, and immutable things. Like a dollar bill, we
can consider a bond or a stock to be a piece of paper or a contract (and not so long
ago, before online banking, those papers actually existed). In this chapter, we will
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denote assets in bold face—a dollar $, a stock S, a zero bond B, etc., to demarcate
assets from their prices. Assets do not change over time—a piece of paper remains
a piece of paper. Their prices, however, do change.

Positions and portfolios are then quite naturally mere multiples and sums of such
assets, e.g., a portfolio might consist of some stock, bonds, and debt:

80S C 400B � 1200$:

If we borrow one unit of a stock and sell it to bet on falling prices, i.e., if we short
it, the resulting portfolio is

�S C 12$:

This way of describing positions and portfolios is handy for keeping track of
rights and obligations. It can also express asset trades and deal with time. We can,
for example, describe buying a stock now (at time t D 0) with the following asset
exchange relation:

S �0 12$:

This asset relation denotes that 12$ can (now) be traded for one unit of S, or
vice-versa. The stock’s price in $ is 12. We can also express promises this way, for
example, that a zero bond B will pay 1$ at time T corresponds to the following
future exchange:

B �T $:

A contract F that obliges you to buy a stock at a set dollar price k in the future is
given by

F �T S � k$:

Think of it as exchanging, at time T, a piece of paper called F for a piece of paper
called S while parting with k precious pieces of paper called dollars.

The math of asset relations behaves intuitively. Adding or subtracting assets and
grouping together assets of the same kind make sense; operations like multiplying
an asset with another do not. Note that asset relations are valid only at a specific
point in time, so even if it holds that B �T $, it does not follow that a bond can be
exchanged for a dollar right now (B 6�0 $). A zero bond is typically cheaper than
the future dollar it promises; we might, e.g., experience current exchange levels of
B �0 0:9$. Expressed in terms of some continuously compounded interest rate r,
we often equivalently express this as B �0 e�rT$.
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B.2 Prices as Ratios

Asset prices are exchange ratios that describe how many units of an asset can
be exchanged for a unit of a different asset. Buying a stock S worth 12$ can be
expressed, as we have seen, in the following asset exchange relation:

S �0 12$:

Another way to describe this is to say “the price of S now, at time 0, in terms of
$ is 12” or, less chatty,

S$.0/ D 12:

This is no longer an asset relation but a conventional mathematical equation of
prices or ratios. The font face alerts us: S$.0/ is a number, while S is a thing.

The so-called reference asset used for pricing in the example above is the dollar
$. But we can also express price ratios with respect to another asset, maybe a zero
bond B. The price of S with respect to B is the number of units of B needed to buy
one unit of S. How to get this new price? We know that we can exchange S �0 12$.
If the current bond price is B$.0/ D 0:9, we can exchange B �0 0:9$ or $ �0 1

0:9
B.

So we can exchange

S �0 12$ �0 12 � 1

0:9
B �0 13:33B:

We thus obtain the current price of S with respect to B:

SB.0/ D 13:33:

Why would we ever want to use reference assets other than the $? The answer
is that some pricing exercises become simpler. By sidestepping money as reference
assets, we can often avoid having to compensate for its depreciation via discounting
or its opposite, compounding. In more complex setups, we might be able to reduce
the dimensionality of integrals. In short, it is simply more elegant.

So we mainly operate on prices with respect to no-arbitrage assets and in the end
convert those prices to dollar ones via chained relations like

S$.0/ D SB.0/B$.0/:

B.3 Prices of Future Delivery

The dollar prices of liquid assets are given by the current exchange ratios readily
visible in the markets. But what happens if we want to exchange assets in the future?
After all, asset prices fluctuate and the future is unknown.
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This section deals with two such examples and involves, even though future
prices are random, no probabilities. Both rely on the idea of no-arbitrage. The first
answers how much you should be willing to pay now in order to get one unit of S in
the future. The second is about how much you should agree to pay in the future for
that same S.

Consider a contract K that promises to deliver, at time T, one unit of S:

K �T S:

What is this contract worth now, i.e., what is its price K$.0/? Although we don’t
know what S will be worth at time T, we can determine this price. Consider the
following two cases:

• If K’s current price were higher than the current stock price S$.0/, you could sell
K, buy the stock S right now with only parts of the proceeds, hold it, and finally
deliver it as promised. You could pocket the leftover money as immediate, risk-
free gains.

• On the other hand, if the current price of K were lower than that of S, you could
borrow the stock S, sell it at its current price, buy the contract K with only parts of
the proceeds, and then wait unperturbed until K delivers you the S to be returned
to its lender. Again, a profit at no risk.

The only price a buyer and seller can ever agree upon as fair is thus the current
stock price:

K$.0/ D S$.0/ or KS.0/ D 1:

By the same reasoning, another contract K0 delivering a bond B is priced as
K0

$.0/ D B$.0/ D e�rT . Yet another contract K00 delivering n units of S is of course
priced as K00

$ .0/ D nS$.0/.
These same simple relations do not hold for arbitrage assets like money. What

would you be willing to pay now to get 1$ at time T? Certainly not 1$. This is
because money, as we mentioned, loses value with respect to other assets. Yet the
workaround is simple, and we’ll apply it in the following, second example.

With a forward contract F, you commit to buying S at time T for k$:

F �T S � k$:

What would be a fair future exchange ratio or price k that obviates any upfront
money exchange, i.e., that makes F$.0/ D 0?

First, F is clearly simply the sum KCJ, with K �T S and J �T �k$. The current
price of K is the same as the stock’s (see our example immediately above):

K$.0/ D S$.0/:
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But J is a monetary promise that ill-transcends time. Luckily, we know that a
zero bond B can be exchanged for a $ at maturity T:

B �T $:

This lets us express J’s promise in terms of a zero bond:

J �T �k$ �T �kB:

We know that J’s current price must thus be �k times the current price of the
bond B$.0/. We get:

J$.0/ D �kB$.0/ or J$.0/ D �ke�rT :

For the current price of the forward F to be zero, we must have

0 D F$.0/ D K$.0/ C J$.0/ D S$.0/ � kB$.0/ D S$.0/ � ke�rT :

This finally yields the so-called forward price k:

k D S$.0/erT :

(This forward price k is not to be confused with the price of the forward F$.�/
itself. The latter is, by agreement upon k, zero at the beginning. As the stock price
then starts to fluctuate, F$.�/ will stray from zero and fluctuate as well.)

So we have settled both our initial questions by purely relying on price
consistency or no-arbitrage. We now go one step further and explore the random
nature of prices over time.

B.4 Prices as Expectations

Consider the stock price in terms of bonds, SB.�/. We know its current value
SB.0/, but future prices SB.T/ are random and can only be described in terms of
probabilities. The future price of a stock in terms of bonds can be higher or lower
than the current price. However, as we hinted at before, it makes sense to assume the
following: at least on average, SB.T/ should not be higher or lower than SB.0/. For
if SB.T/ were usually higher than the current SB.0/, we would surely exchange all
our bonds for stock, wait, and convert the stock back into bonds, because we would
expect to often end up with more units of the bond than we set out with. In fact,
everybody would try to enter such trades and thus drive up the current stock price.
So we simply rule out such gains in our pricing model.
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We treat SB.T/ as a continuous random variable and assume it behaves according
to the commonly used log-normal probability density, with x shorthand for SB.T/:

p.x/ D 1

x�
p

2T�
e� .log.x/�log.SB.0//C 1

2 �2T/2

2�2T :

As discussed before, we want the average of our random variable to be identical
to the current stock price. Expressed via the expected value, we want EŒSB.T/� to
be identical to SB.0/. That this is indeed the case can be verified by computing the
integral EŒSB.T/� D R

x p.x/ dx, which actually yields SB.0/. So this seems to be a
reasonable probability density.

We can generally view current prices as the expected value of asset units
delivered. Take a contract that promises a random number X of bonds:

K �T XB:

The price of K with respect to the delivered asset B must then reasonably be
EŒX� if we exclude arbitrage, otherwise we could gain or lose assets on average. A
contract whose price we already derived may underline this point:

K �T S:

At time T, we could immediately exchange the stock for bonds and consider this
equivalent contract:

K �T SB.T/B:

This is a promise of a random number of bond units, and we therefore expect that

KB.0/ D EŒSB.T/�:

As noted above, this expected value evaluates to SB.0/. The resulting dollar price
of K thus coincides with our previous price derivation because

K$.0/ D KB.0/B$.0/ D EŒSB.T/�B$.0/ D SB.0/B$.0/ D S$.0/:

This is all fairly gimmicky when only considering trivial assets. Yet when
pricing so-called derivative assets, whose promises are conditional on the prices of
basic assets, we can gainfully apply the same approach. The most prominent such
derivative is coming up.
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B.5 The Call Option

We are now prepared to take on the call option C. It grants you the right to buy, at
some future time T, a stock at a pre-determined strike price k:

C �T .S � k$/C:

The C denotes that you will exercise your claim and enter the buying transaction
on the right only if the stock’s dollar price is larger than the strike at time T, i.e., if
the resulting portfolio value is positive.12 The option expires worthlessly otherwise.

Just like with the forward, we first replace the $ with a zero bond of maturity T:

C �T .S � kB/C:

We also replace the stock with a corresponding bond position:

C �T .SB.T/B � kB/C:

As we are now only dealing with the bond asset on the right-hand side, we can
factor it out:

C �T .SB.T/ � k/CB:

The coefficient of B is the random amount of units of B delivered by C, or CB.T/.
We are looking for the current price of the call, CB.0/, which must equal

CB.0/ D EŒCB.T/� D EŒ.SB.T/ � k/C�:

We next have to actually calculate the corresponding integral, with x D SB.T/:

CB.0/ D EŒ.x � k/C�

D
Z 1

�1
.x � k/Cp.x/ dx

D
Z 1

k
.x � k/p.x/ dx

D
Z 1

k
.x � k/

1

x�
p

2T�
e� .log.x/�log.SB.0//C 1

2 �2T/2

2�2T dx:

12The .�/C is a valid mathematical operator on asset expressions because the sign of a portfolio’s
price does not depend on the reference asset used for pricing.
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Depending on your mood, you can integrate this expression by hand or use
integration software like Mathematica. The integral evaluates to:

CB.0/ D SB.0/ ˚

�
1

�
p

T
.log SB.0/ � log K C 1

2
�2T/

	

�K ˚

�
1

�
p

T
.log SB.0/ � log K � 1

2
�2T/

	
:

This almost looks like the formula you find in the books. To exactly match that
classic formulation, which is given in dollar and not bond terms, two additional
steps are required. First, we replace the stock price in bond terms with the equivalent
dollar expression. We have

S$.0/ D SB.0/B$.0/ D SB.0/e�rT H) SB.0/ D S$.0/erT ;

and of course

log SB.0/ D log.S$.0/erT/ D log S$.0/ C rT:

If we also translate the call price from bond to dollar terms via

C$.0/ D CB.0/B$.0/ D CB.0/e�rT ;

we obtain the classic Black-Scholes formula:

C$.0/ D S$.0/ ˚

�
1

�
p

T
.log S$.0/ � log K C rT C 1

2
�2T/

	

�Ke�rT ˚

�
1

�
p

T
.log S$.0/ � log K C rT � 1

2
�2T/

	
:

As much fun as this is, such formulas are rarely used for pricing. Options are
traded, and their prices are determined by supply and demand. We can consider
them a given like stock or bond prices. The main use we have for this framework
is that we can, if you will, reverse it and determine the value of � that yields the
known option price—this � is called the implied volatility. Just like interest rates in
the context of bonds, it serves as a convenient way of quoting option prices.

B.6 Views on Probabilities

This is of course just a very brief glimpse into pricing. One additional facet worth
hinting at, though, are the probabilities involved. To illustrate their behavior, we
look at a simplified pricing model where the prices of a stock and a bond evolve into
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only two states (u for “stock up” and d for “stock down”) after some time T:

We are mainly interested in prices with respect to no-arbitrage assets. Here are
all asset prices with respect to the bond:

This is the view we adopted in pricing the option above. But of course we can
also express the asset prices with respect to the stock—unlike us, this is how Bill
Gates might view the world:

What probabilities pu and pd D 1 � pu should we—in our bond view—assign to
the two outcomes? Ruling out arbitrage tells us:

SB.0/ D 11:11 D EŒSB.T/� D pu � 20 C .1 � pu/ � 5 H) pu D 0:407:

How about Bill Gates? He wants to assume the following:

BS.0/ D 0:09 D EŒBS.T/� D pu � 0:05 C .1 � pu/0:20 H) pu D 0:733:

Whoa—the probabilities differ! We see that depending on the reference asset
used, the no-arbitrage condition entails different probabilities. We’d best rename
those distinct probabilities for the “stock up” scenario to pB

u for our bond-based
view and to pS

u for Bill’s stock-based one. We end up with two ways of computing
the expectations involved:

E
BŒX� D pB

u xu C .1 � pB
u /xd;

E
SŒX� D pS

uxu C .1 � pS
u/xd:

We have, by construction,

E
BŒSB.T/� D 11:11 D SB.0/;

E
SŒBS.T/� D 0:09 D BS.0/;
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as well as

E
BŒBS.T/� D 0:14 ¤ BS.0/;

E
SŒSB.T/� D 16 ¤ SB.0/:

How to price a contract C that pays out the stock S in the “stock up” scenario
and nothing in the “stock down” one? Under the bond view, getting S is identical to
getting SB.T/B, and the payoff (in bond terms) of this contract at time T is thus

CB.T/ D
(

SB.T/ D 20 in the “stock up” scenario;

0 otherwise:

Its current price is

CB.0/ D E
BŒCB.T/� D pB

u � 20 C .1 � pB
u / � 0 D 8:15:

Under the stock view, the contract payoff at time T is even simpler:

CS.T/ D
(

1 in the “stock up” scenario;

0 otherwise:

We have

CS.0/ D E
SŒCS.T/� D pS

u � 1 C .1 � pS
u/ � 0 D 0:73:

Yet both views agree on the dollar price:

C$.0/ D CB.0/B$.0/ D 8:15 � 0:9 D 7:33;

C$.0/ D CS.0/S$.0/ D 0:73 � 10 D 7:33:

The more natural way to price such a stock-affine payoff is Bill’s stock view.
Although multiplying by 20 in the bond view is certainly doable here, this step
falls away for Bill. Hopefully, this lets you imagine that in the continuous case,
where we have to evaluate integrals, a suitable problem formulation can bring about
considerable simplifications.

We can use much the same reasoning with our call option. We have used a
(bond-based) probability density that made sure that SB.0/ D E

BŒSB.T/�. (Note:
we usefully renamed the expectation just like above.) There is an alternative density
for SB.�/ that allows us to evaluate expectations under the stock view as well, i.e.,
expressions of the form E

SŒ f .SB.T//�.13

13There are also two densities for BS.�/, corresponding to the two expectations. One of them neatly
makes sure that BS.0/ D E

SŒBS.T/�.
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Expressing the call payoff via the indicator function as in

C �T 1SB.T/>kS � k1SB.T/>kB

lets us then derive the call’s current price from

C �0
E

SŒ1SB.T/>k�S � kEBŒ1SB.T/>k�B:

Possibly even niftier: we can also selectively use BS.T/ in this expression (recall
that BS D 1=SB and that the reciprocal of a log-normal distribution is also log-
normal and helpfully preserves �) and thereby use the “canonical” distributions
under each expectation:

C �0
E

SŒ1BS.T/6 1
k
�S � kEBŒ1SB.T/>k�B:

Computing these expectations also yields the Black-Scholes formula.



CFurther Reading

An excellent book about the basis of it all—debt and money—is Graeber’s “Debt:
The First 5000 years” (Graeber 2014), which outlines how debt preceded and indeed
paved the way for money and the subsequent financial products and markets. Some
insight into why those markets may behave the way they do can be found in Akerlof
and Shiller’s “Animal Spirits” (Akerlof and Shiller 2010).

An extensive market risk classic is Jorion’s “Value at Risk” (Jorion 2006), and
many other general reference resources are available online.14 An overview of the
risk landscape and the particular role of market risk in it is given in Allen (2009).
Many of the core concepts compiled in the book you are holding can be found
in Ortega et al. (2009), a paper by my former work colleagues and creators of the
initial version of our scenario generator. The historical VaR approach championed in
this book belongs to the family of filtered historical simulations (Barone-Adesi et al.
1999, 2008). The BRW model is a commonly-encountered alternative (Boudoukh
et al. 1998).

Artzner et al. (1999) shine some light on desirable properties of risk measures
and introduce the influential concept of coherent measures. An in-depth treatment
of risk measures’ verificability can be found in Ziegel (2014). A workaround for the
usually unstable additive decomposition of VaR to individual positions is presented
in Epperlein and Smillie (2006). Anyone using p-values to make a point might
find (Wasserstein and Lazar 2016) useful.

In the context of a VaR model, you’ll inevitably encounter issues of pricing and
arbitrage, topics we hinted at only very briefly. A great gateway into this world
is Jan Vecer’s “Stochastic Finance: A Numeraire Approach” (Vecer 2011). He
neatly distinguishes between assets and their prices, concepts often intermingled
in traditional notations. He also doesn’t dwell on technical details and emphasizes
explicit step-by-step calculations. Then either head down the math alley with
Shreve’s excellent books, especially (Shreve 2008), or get a comprehensive and less

14www.value-at-risk.net.
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formal overview on pricing with Hull’s standard reference “Options, Futures and
Other Derivatives” (Hull 2011).

Books by practitioners can then greatly help you with more arcane prod-
ucts (Zhang 1996), tricky issues of calibration to market data (Rebonato 2002),
and explicit algorithms (Brigo and Mercurio 2007). Supplement your modeling
skills with the invaluable (Kutner et al. 2004). Finally, make sure to check out
Glasserman’s superb “Monte Carlo Methods in Financial Engineering” (Glasserman
2003). It is very accessible, and many of the presented methods, e.g., variance
reduction techniques, can not only be used in pricing but also in our simple VaR
model setup.

If you want to expose yourself to the wide and fast-paced IT-field, it can’t hurt
to understand its slang. Browse, for example, through the table of contents in Som-
merville (2015), and try to zoom in on unfamiliar terms until your have a grasp
of their meaning. Soon you should be able to roughly decipher the programmers’
gobbledygook (“we have deployed unit testing to the grid”). For managing IT
projects, consider looking into agile software development (Martin 2002).

Then learn about the Linux operating system (you can install one on a virtual
machine15 on your Windows desktop) and familiarize yourself with its command
line interface (Powers et al. 2002). To actually learn how to program, start off with
the programming language C, best with the concise and very elegant (Kernighan
and Ritchie 1989). Once you master the concept of pointers, feel free to speed
up your progress by learning Python (Gaddis 2014), possibly via some of the
excellent online courses available.16 Python also allows you to learn about object-
oriented programming. Once you understand why a “square” class should not
inherit from the “rectangle” one, you are ready for C++ (Stroustrup 2013), design
patterns (Gamma et al. 1994), and UML (Fowler 2004). A tool for creating UML
diagrams—high-level representations of object-oriented code—is UMLet.17

As for mathematical and statistical support tools, definitely check out NumPy18

(a Python add-on) or R.19 (NumPy, unlike R, uses 0-based indexing, which is
better.20) Many of the examples in this book can be reenacted in Excel or via
supporting Monte Carlo add-ins like MonteCarlito.21 Finally, drop by at this book’s
www.value-at-risk.com.

15www.virtualbox.org.
16www.codecademy.com/learn/python.
17www.umlet.com (full disclosure: tool by author).
18www.numpy.org.
19www.r-project.org.
20www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html—or google “Edsger
Dijkstra why numbering should start at zero” should this link prove unstable.
21www.montecarlito.com (tool by author).

www.value-at-risk.com
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www.codecademy.com/learn/python
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www.numpy.org
www.r-project.org
www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
www.montecarlito.com
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absolute return, see return type
aggregation, see PnL
analytical ES, see expected shortfall
analytical VaR, see value-at-risk
annual compounding, see compounding
arbitrage, 152
asset, 1, 13

derivative, 157
illiquid, 151
issue, 13
liquid, 151

backtesting, 73, 105
basis point, see interest rate
bond, 1, 13

coupon, 14
fixed rate, 14
maturity, 14
nominal, 14
zero coupon, 14

bootstrapping, see interest rate

call option, 13, 34, 158
Black-Scholes formula, 159
expiry, 34
implied volatility, 159
strike, 34

capital requirements, 2, 54, 83, 86
cES, see conditional ES
coding guidelines, 113
compounding

annual, 14
continuous, 15

conditional ES, see expected shortfall
conditional expected value, see expected value
conditional probability density, see probability

density

continuous compounding, see compounding
continuous distribution, see random variable
correlation, 4, 136
coupon, see bond
covariance, 4, 136
covariance matrix, 36, 137
cumulative distribution, see distribution
current market scenario, see scenario

discounting, 14
discrete distribution, see random variable
distribution, 128

cumulative, 138
log-normal, 157
marginal, 135, 142
mixed, 93
multi-variate normal, 143
normal, 4, 139
standard normal, 140
tail, 48, 66, 94, 134

distribution test, 77
Anderson-Darling, 81
beta distr. confidence interval, 78
Kolmogorov-Smirnow, 81

diversification, 62

ES, see expected shortfall
expected shortfall, 1, 39, 65

analytical, 39
conditional, 40, 67, 85
incremental, 58
individual, 58
partial, 58
stressed, 58

expected value, 128
conditional, 139

expiry, see call option
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filtered VaR, see value-at-risk
fixed rate bond, see bond
foreign exchange rate, 14
forward, 155
fudge parameter, see parameter
FX rate, 14

GARCH, 46
grid, 120

hedge, see position
heteroscedasticity, 46
histogram, 6
historical scenario, see scenario
historical VaR, see value-at-risk
hypothetical scenario, see scenario

illiquid asset, see asset
incremental ES, see expected shortfall
incremental VaR, see value-at-risk
independence, 136, 146
individual ES, see expected shortfall
individual VaR, see value-at-risk
interest rate, 14

basis point, 16
bootstrapping, 15
parallel shift, approx., 30
spread, 15

kurtosis, 48, 91, 133
artificial, 48
local, 93

linear position, see pricing
liquid asset, see asset
local volatility, see volatility
local volatility window, see volatility
log return, see return type
log-normal distribution, see distribution
long position, see position
long-term volatility, see volatility

marginal distribution, see distribution
maturity, see bond
meta parameter, see parameter
mirrored return, see return
mixed distribution, see distribution
Monte Carlo VaR, see value-at-risk
multi-variate normal, see distribution

no-arbitrage pricing, see pricing
nominal, see bond
non-linear position, see pricing
normal distribution, see distribution

p-value, 74, 81, 91
parameter

fudge, 89
meta, 26, 88
sensitivity, 89

partial ES, see expected shortfall
partial VaR, see value-at-risk
PnL, 18, 24

aggregation, 24, 112
portfolio, 17

synthetic, 57
portfolio effect, 62
position, 1, 17

hedge, 17, 85
long, 17
short, 17
synthetic, 57

pre-deal inquiry, 55, 86
pricing, 18, 24, 111, 151

linear, 5, 34
no-arbitrage, 152
non-linear, 6, 34

probability density, 7, 126, 128
conditional, 147

profit-and-loss, see PnL

quantile, 138

random variable, 125
continuous, 126
discrete, 125
uniform, 127

raw return, see return
regulator, 42, 88, 90
relative return, see return type
rescaled return, see return
return, 16

detrending, 45
mirroring, 5, 23, 51
raw, 22
rescaled, 23

return type, 43
absolute, 16
logarithmic, 17, 33, 43
relative, 16
square root, 44

risk factor, 16
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sample mean, 131
sample standard deviation, 132
scenario, 16

current market, 16
drift, 48
generation, 23, 109
historical, 16
hypothetical, 16

sensitivity, 1, 27, 106
as derivative, 31
bowstring approach, 29
partial parallel shift, 28

short position, see position
spread, see interest rate
square root return, see return type
standard deviation, 4, 130
standard normal distribution, see distribution
stock, 1, 13
stress test, 1, 33
stressed ES, see expected shortfall
stressed VaR, see value-at-risk
strike, see call option
sub-additivity, 63, 65
swap, 13
synthetic marginals, see value-at-risk

tail of distribution, see distribution
target volatility, see volatility

uniform distribution, see random variable

validation, 90

value-at-risk, 1, 8, 24, 103
analytical, 35
BRW approach, 26
filtered, 24
historical, 21
incremental, 55, 85, 86
individual, 55, 85
Monte Carlo, 49, 71
noise, 69, 87
partial, 56, 84
stressed, 57, 106
synthetic marginals, 57
VaR-contribution, 38, 84
VaR-sensitivity, 37, 86
variance-covariance approach, 36

VaR, see value-at-risk
VaR-contribution, see value-at-risk
VaR-sensitivity, see value-at-risk
variance, 4, 130

unbiased estimate, 132
variance-covariance approach, see analytical

VaR
volatility, 3

decaying weights, 44
declustering, 25
floor, 47
local, 22, 44
long-term, 44
rescaling, 6, 22, 25, 47, 57
target, 22, 44
window, 46
window location, 46

zero (coupon) bond, see bond
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