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Preface

This volume contains the proceedings of the 9th International Working Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE 2017), held during July
22–23, 2017 in Heidelberg, Germany, and co-located with the 29th International
Conference on Computer-Aided Verification.

The goal of the VSTTE conference series is to advance the state of the art in the
science and technology of software verification, through the interaction of theory
development, tool evolution, and experimental validation. We solicited contributions
describing significant advances in the production of verified software, i.e., software that
has been proven to meet its functional specifications. Submissions of theoretical,
practical, and experimental contributions were equally encouraged, including those that
focus on specific problems or problem domains. We were especially interested in
submissions describing large-scale verification efforts that involve collaboration, theory
unification, tool integration, and formalized domain knowledge. We also welcomed
papers describing novel experiments and case studies evaluating verification techniques
and technologies. The topics of interest included education, requirements modeling,
specification languages, specification/verification/certification case studies, formal
calculi, software design methods, automatic code generation, refinement methodolo-
gies, compositional analysis, verification tools (e.g., static analysis, dynamic analysis,
model checking, theorem proving, satisfiability), tool integration, benchmarks, chal-
lenge problems, and integrated verification environments.

The inaugural VSTTE conference was held at ETH Zurich in October 2005, and the
following editions took place in Toronto (2008 and 2016), Edinburgh (2010),
Philadelphia (2012), Menlo Park (2013), Vienna (2014), and San Francisco (2015).

This year we received 20 submissions. Each submission was reviewed by three
members of the Program Committee. The committee decided to accept 12 papers for
presentation at the conference. The program also included four invited talks, given by
Jan Hoffmann (CMU, USA), Shaz Qadeer (Microsoft, USA), Christoph Weidenbach
(MPI for Informatics, Germany), and Santiago Zanella-Beguelin (Microsoft, UK).

We would like to thank the invited speakers and the authors for their excellent
contributions to the program this year, the Program Committee and external reviewers
for diligently reviewing the submissions, and the organizers of CAV 2017 for their help
in organizing this event. We also thank Natarajan Shankar for his tireless stewardship
of the VSTTE conference series over the years.

The VSTTE 2017 conference and the present volume were prepared with the help of
EasyChair.

October 2017 Andrei Paskevich
Thomas Wies
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Everest: A Verified and High-Performance
HTTPS Stack

Santiago Zanella-Beguelin

Microsoft Research, UK

Abstract. The HTTPS ecosystem is the foundation of Internet security, with the
TLS protocol and numerous cryptographic constructions at its core. Unfortu-
nately, this ecosystem is extremely brittle, with frequent emergency patches and
headline-grabbing attacks (e.g. Heartbleed, Logjam, Freak). The Everest expe-
dition, joint between Microsoft Research, Inria and CMU, is a 5-year large-scale
verification effort aimed at solving this problem by constructing a
machine-checked, high-performance, standards-compliant implementation
of the full HTTPS ecosystem. This talk is a report on the progress after just over
one year into our expedition, and will overview the various verification tools
that we use and their integration, including:

– F*, a dependently-typed ML-like language for programming and verification
at high level;

– Low*, a subset of F* designed for C-like imperative programming;
– KreMLin, a compiler toolchain that extracts Low* programs to C;
– Vale, an extensible macro assembly language that uses F* as a verification

backend.

Our flagship project is miTLS, a reference implementation of TLS using
cryptographic components programmed and verified in F*, Low*, and Vale. We
compile all our code to source quality C and assembly, suitable for independent
audit and deployment. miTLS supports the latest TLS 1.3 standard, including
Zero Round-Trip Time (0-RTT) resumption, and has been integrated in
libcurl and the nginx web server.



Design Principles of Automated
Reasoning Systems

Christoph Weidenbach

Max Planck Institute for Informatics, Germany

Abstract. An automated reasoning system is the implementation of an algorithm
that adds a strategy to a calculus that is based on a logic. Typically, automated
reasoning systems “solve” NP-hard problems or beyond. Therefore, I argue that
automated reasoning system need often to be specific to a given problem. The
combination of a system and a problem is called an application.

In the talk I discuss design principles based on this layered view of auto-
mated reasoning systems and their applications. I select and discuss design
principles from all six layers: application, system, implementation, algorithm,
calculus, and logic.



Why Verification Cannot Ignore
Resource Usage

Jan Hoffmann

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Verified programs only execute as specified if a sufficient amount of
resources, such as time and memory, is available at runtime. Moreover, resource
usage is often directly connected to correctness and security properties that we
wish to verify. This talk will show examples of such connections and present
recent work on automatic inference and verification of resource-usage bounds
for functional and imperative programs. These automatic methods can be
combined with other verification techniques to provide stronger guarantees at
runtime.



Constructing Correct Concurrent Programs
Layer by Layer

Shaz Qadeer

Microsoft Research, USA

Abstract. CIVL is a refinement-oriented verifier for concurrent programs
implemented as a conservative extension to the Boogie verification system.
CIVL allows the proof of correctness of a concurrent program —
shared-memory or message-passing— to be described as a sequence of program
layers. The safety of a layer implies the safety of the layer just below, thus
allowing the safety of the highest layer to transitively imply the safety of the
lowest.

The central theme in CIVL is reasoning about atomic actions. Different
layers of a program describe the behavior of the program using atomic actions,
higher layers with coarse-grained and lower layers with fine-grained atomic
actions. The formal and automated verification justifying the connection among
layers combines several techniques — linear variables, reduction based on
movers, location invariants, and procedure-local abstraction.

CIVL is available in the master branch of Boogie together with more than
fifty micro-benchmarks. CIVL has also been used to refine a realistic concurrent
garbage collection algorithm from a simple high-level specification down to a
highly-concurrent implementation described in terms of individual memory
accesses.
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A Formally Verified Interpreter for a Shell-Like
Programming Language

Nicolas Jeannerod1,2(B), Claude Marché3, and Ralf Treinen2

1 Dpt. d’Informatique, École normale supérieure, Paris, France
2 Univ. Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 8243, CNRS, Paris, France

nicolas.jeannerod@irif.fr
3 Inria & LRI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France

Abstract. The shell language is widely used for various system admin-
istration tasks on UNIX machines, as for instance as part of the instal-
lation process of software packages in FOSS distributions. Our mid-term
goal is to analyze these scripts as part of an ongoing effort to use formal
methods for the quality assurance of software distributions, to prove their
correctness, or to pinpoint bugs. However, the syntax and semantics of
POSIX shell are particularly treacherous.

We propose a new language called CoLiS which, on the one hand, has
well-defined static semantics and avoids some of the pitfalls of the shell,
and, on the other hand, is close enough to the shell to be the target of
an automated translation of the scripts in our corpus. The language has
been designed so that it will be possible to compile automatically a large
number of shell scripts into the CoLiS language.

We formally define its syntax and semantics in Why3, define an inter-
preter for the language in the WhyML programming language, and
present an automated proof in the Why3 proof environment of soundness
and completeness of our interpreter with respect to the formal semantics.

Keywords: Posix shell · Programming language
Deductive program verification

1 Introduction

The UNIX shell is a command interpreter, originally named Thompson shell in
1971 for the first version of UNIX. Today, there exist many different versions
of the shell language and different interpreters with varying functionalities. The
most popular shell interpreter today is probably the Bourne-Again shell (a.k.a.
bash) which was written by Brian Fox in 1988 for the GNU project, and which
adds many features both for batch usage as an interpreter of shell scripts, and
for interactive usage.

We are interested in a corpus of maintainer scripts which are part of the
software packages distributed by the Debian project. The shell features which

This work has been partially supported by the ANR project CoLiS, contract number
ANR-15-CE25-0001.

c© Springer International Publishing AG 2017
A. Paskevich and T. Wies (Eds.): VSTTE 2017, LNCS 10712, pp. 1–18, 2017.
https://doi.org/10.1007/978-3-319-72308-2_1



2 N. Jeannerod et al.

may be used by these scripts are described in the Debian Policy [18], Sect. 10.4,
Scripts. Essentially, this is the shell described by the POSIX [12] standard. In the
rest of the paper we will just speak of “shell” when we mean the shell language
as defined by the POSIX standard.

Maintainer scripts are run as the root user, that is with maximal privileges,
when installing, removing or upgrading packages. A single mistake in a script
may hence have disastrous consequences. The work described in this paper is
part of a research project with the goal of using formal methods to analyse
the maintainer scripts, that is to either formally prove properties of scripts as
required by the Debian policy, or to detect bugs. The corpus contains, even when
ignoring the small number of scripts written in other languages than POSIX
shell, more than 30.000 scripts.

Verifying shell scripts is a hard problem in the general case. However, we
think that the restriction to Debian maintainer scripts makes the problem more
manageable, since all the scripts are part of the common framework of the Debian
package installation process, and the Debian policy tells us how they are called,
and what they are allowed to do. For instance, the package installation process
is orchestrated by the dpkg tool which guarantees that packages are not installed
in parallel, which justifies our decision to completely ignore concurrency issues.
The installation scripts are indeed often simple and repetitive. They are written
by package developers, who have, in general, good knowledge of the shell; they
try to avoid bad practices, and are quite aware of the importance of writing
modular and maintainable code.

Even in that setting, the syntax and the semantics of shell is the first obstacle
that we encounter during our project, since they can be treacherous for both the
developer and the analysis tools. We have written a parser and a statistical
analyser for the corpus of shell scripts [14] which we used in order to know
which features of the shell are mostly used in our corpus, and which features
we may safely ignore. Based on this, we developed an intermediate language for
shell scripts, called CoLiS, which we will briefly define in this paper. The design
of the CoLiS language has been guided by the following principles:

– It must be “cleaner” than shell: we ignore the dangerous structures (like
eval allowing to execute arbitrary code given as a string) and we make more
explicit the dangerous constructions that we cannot eliminate.

– It must have clear syntax and semantics. The goal is to help the analysis tools
in their work and to allow a reader to be easily convinced of the soundness
of these tools without having to care about the traps of the syntax or the
semantics of the underlying language.

– The semantics must be less dynamic than that of the shell. This can be
achieved by a better typing discipline with, for instance, the obligation of
declaring the variables and functions in a header.

– An automated translation from shell must be possible. Since the correctness
of the translation from shell to CoLiS cannot be proven, as we will argue in
the following, one will have to trust it by reading or testing it. For this reason,
the CoLiS language cannot be fundamentally different from shell.
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This language is not conceived as a replacement of shell in the software
packages. If that was our goal, we would have designed a declarative language as
a replacement (similar to how systemd has nowadays mostly replaced System-V
init scripts). Our mid-term goal is to analyse and, in the end, help to improve the
existing shell scripts and not to change the complete packaging system. Because
of this, our language shares a lot of similarities (and drawbacks) with shell.

We have formally defined the syntax and semantics of CoLiS in the Why3 verifi-
cation environment [5]. It is already at this stage clear that we will be faced with an
important problem when we will later write the compiler from shell to CoLiS: how
can we ensure the correctness of such a compiler? The root of the problem is that
there simply is no formal syntax and semantics of the shell language, even though
there are recent attempts to that (see Sect. 5). In fact, if we could have clean syntax
and semantics for the shell, then we wouldn’t need our intermediate language, nor
this translation, in the first place. An interpreter plays an important role when we
want to gain confidence in the correctness of such a compiler, since it will allow us to
compare the execution of shell scripts by real shell interpreters, with the execution
of their compilation into CoLiS by the CoLiS interpreter. The main contribution
of this paper is the proof of correctness and completeness of our CoLiS interpreter,
with respect to the formal semantics of CoLiS.

Plan of the Paper. We present the syntax and semantics of our language in
Sect. 2. We also explain some of our design choices. We describe our interpreter
in Sect. 3 and the proof of its completeness in Sect. 4. This proof uses a technique
that we believe to be interesting and reusable. Finally, we compare our work to
other’s in Sect. 5 and conclude in Sect. 6.

2 Language

2.1 Elements of Shell

Some features of the shell language are well known from imperative programming
languages, like variable assignments, conditional branching, loops (both for and
while). Shell scripts may call UNIX commands which in particular may operate
on the file system, but these commands are not part of the shell language itself,
and not in the scope of the present work. Without going into the details of
the shell language, there are some peculiarities which are of importance for the
design of the CoLiS language:

Expressions Containing Instructions. Expressions that calculate values
may contain control structures, for instance a for loop, or the invocation
of an external command. Execution of these instructions may of course fail,
and produce exceptions.

No Static Typing. Variables are not declared, and there is no static type dis-
cipline. In principle, values are just strings, but it is common practice in shell
scripts to abuse these strings as lists of strings, by assuming that the elements
of a list are separated by the so-called internal field separator (usually the
blank symbol).
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Dynamic Scoping. Functions may access non-local variables, however, this is
done according to the chronological order of the variables on the execution
stack (dynamic scoping), not according to the syntactic order in the script
text (lexical scoping).

Non-standard Control Flow. Some instructions of the shell language may
signal exceptional exit, like a non-zero error-code. Different constructions
of the shell language propagate or capture these exceptions in differ-
ent ways. This has sometimes quite surprising consequences. For instance,
false && true and false are not equivalent in shell. Furthermore, there is
a special mode of the shell (the strict mode, in Debian parlance, obtained by
the -e flag), which changes the way how exceptions are propagated.

2.2 Syntax of CoLiS

The shell features identified in Sect. 2.1 motivate the design of the CoLiS lan-
guage, the syntax of which is shown in Fig. 1. There only is an abstract syntax
because the language is meant to be the target of a compilation process from
the shell language, and is not designed to be used directly by human developers.

Terms and Expressions. The mutual dependency between the categories of
instructions and expressions which we have observed in the shell does not pose

String variables xs ∈ SV ar

List variables xl ∈ LV ar

Procedures names c

Natural numbers n ∈ N

Strings σ ∈ String

Programs p ::= vdecl∗ pdecl∗ program t

Variables declarations vdecl ::= varstring xs | varlist xl

Procedures declarations pdecl ::= proc c is t

String expressions s ::= nils | fs :: s

String fragments fs ::= σ | xs | n | t

List expressions l ::= nill | fl :: l

List fragments fl ::= [s] | split s | xl

Terms t ::= true | false | fatal
| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | do t while t
| process t | pipe t into t
| call l | shift

Fig. 1. Syntax of CoLiS
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any real problem, and shows up in the definition of the CoLiS syntax as a
mutual recursion between the syntactic categories of terms (corresponding to
instructions), expression fragments, and expressions.

Variables and Typing. All the variables must be declared. These declarations
can only be placed at the beginning of the program. They are accompanied by
a type for the variables: string or list.

CoLiS makes an explicit distinction between strings and lists of strings. Since
we only have these two kinds of values, we do not use a type system, but can make
the distinction on the syntactic level between the categories of string expressions,
and the category of list expressions. Consequently, we have two different con-
structors in the abstract syntax for assignments: one for string values, and one
for list values. This separation is made possible by the fact that CoLiS syntax
isn’t supposed to be written by humans, so that we may simply use different
kinds of variables for strings and for lists. The future compiler from shell to
CoLiS will reject scripts for which it is not possible to statically infer types of
variables and expressions.

Arithmetical expressions, which we could have easily added at this point, are
omitted here for the sake of presentation, and since we found that they are very
rarely used in our corpus of scripts.

Absence of Nested Scopes. Note that variables and procedures have to be
declared at the beginning of the program, and that the syntax does not provide
for nested scopes. This is motivated by the fact that our corpus of scripts only
very rarely uses nested shell functions, and that the rare occurrences where they
are used in our corpus can easily be rewritten. Hence, we have circumvented the
problem of dynamic binding which exists in the shell. The future compiler from
shell to CoLiS will reject scripts which make use of dynamic scoping.

Control Structures and Control Flow. Proper handling of exceptions is
crucial for shell scripts since in principle any command acting on the file system
may fail, and the script should take these possible failures into account and
act accordingly. Debian policy even stipulates that fatal errors of commands
should usually lead to abortion of the execution of a script, but also allows the
maintainer to capture exceptions which he considers as non-fatal. Hence, we have
to keep the exception mechanism for the CoLiS language. This decision has an
important impact on the semantics of CoLiS, but also shows in the syntax (for
instance via the fatal term).

The terms true, false, return t and exit t correspond to shell built-ins;
fatal raises a fatal exception which in real shell scripts would be produced by a
failing UNIX command. Note that return t and exit t take a term instead of
a natural number. In fact, these commands transform a normal behaviour (of
the term t) into an exceptional one for the complete construct. This does only
provide for distinction between null or non-null exit codes, which is sufficient for
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us since we found that the scripts of our corpus very rarely distinguish between
different non-null exit codes.

Some shell-specific structures remain. The shift command, for instance,
removes the first element of the argument list if it exists, and raises an error
otherwise.

Note that the procedure invocation, call, does not work on a procedure
name with arguments, but on a list whose first element will be considered as the
name of the procedure and the remaining part as the arguments. This makes a
difference when dealing with empty lists; in that case, the call is a success.

The pipe command (the | character in shell) takes the standard output of a
term and feeds it as input to a second term. The process construct corresponds
to the invocation of a sub-shell (backquotes, or $(...) in shell).

2.3 Semantics

All the elements (that is terms, string fragments and expressions, and list frag-
ments and expressions) of the language are evaluated (see semantic judgements
in Fig. 2) in a context that contains the file system (left abstract in this work),
the standard input, the list of arguments from the command line and the vari-
able environments. They produce a new context, a behaviour and a string or a
list. In particular, terms produce strings, which is their standard output. For
instance, a judgement

t/Γ ⇓ σ � b/Γ ′

means that the evaluation of the term t in the context Γ terminates with
behaviour b, produces the new context Γ ′, and the standard output σ.

Note that the file system as well as the built-ins of the shell are left abstract
in this work. We focus only on the structure of the language.

Behaviours. We inherit a quite complex set of possible behaviours of terms
from the shell: True, False, Fatal, Return True, Return False, Exit True,
Exit False and None. The case of expressions is simpler, their behaviour can
only be True for success, Fatal for error, and None for the cases that do not
change the behaviour. A term behaviour b can be converted to an expression
behaviour b as follows:

b := True if b ∈ {True,Return True,Exit True}
| Fatal otherwise

The composition ββ′ of two expression behaviours β and β′ is defined as :

ββ′ := β if β′ = None
| β′ otherwise
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Values: strings σ ∈ String

Values: lists λ ∈ StringList � {σ∗ | σ ∈ String}
Behaviours: terms b ∈ {True,False,Fatal,Return True

Return False,Exit True,Exit False}
Behaviours: expressions β ∈ {True,Fatal,None}

File systems S
Environments: strings SEnv � [SV ar ⇀ String]

Environments: lists LEnv � [LV ar ⇀ StringList]

Contexts Γ ∈ S × String × StringList × SEnv × LEnv

Judgments: terms t/Γ ⇓ σ � b/Γ ′

Judgments: string fragment fs/Γ ⇓sf σ � β/Γ ′

Judgements: string expression s/Γ ⇓s σ � β/Γ ′

Judgements: list fragment fl/Γ ⇓lf λ � β/Γ ′

Judgements: list expression l/Γ ⇓l λ � β/Γ ′

Fig. 2. Semantics of CoLiS

Expressions. The semantics of string fragments and expressions are defined
by the derivation rules of Fig. 3, operating on the judgements defined on Fig. 2.
Each expression or fragment is evaluated with respect to a context and pro-
duces a value of type string or list, an expression behaviour and a new context.
An expression behaviour can be True, Fatal or the absence of behaviour None.
Roughly, the behaviour of an expression is the last success or failure of a term
observed when evaluating the expression. Expression fragments other than terms
do not contribute to the behaviour of a term, this is modeled by giving them the
dummy behaviour None.

nils/Γ ⇓s ε � None/Γ

fs/Γ ⇓sf σ � β/Γ ′ s/Γ ′ ⇓s σ′ � β′
/Γ ′′

fs :: s/Γ ⇓s σ · σ′ � ββ′
/Γ ′′

σ/Γ ⇓sf σ � None/Γ xs/Γ ⇓sf Γ.senv[xs] � None/Γ

n/Γ ⇓sf Γ.args[n] � None/Γ

t/Γ ⇓ σ � b/Γ ′

t/Γ ⇓sf σ � b/Γ [fs←Γ′.fs; input←Γ′.input]

Fig. 3. Semantic rules for the evaluation of string expressions and fragments

In the semantics of Fig. 3, we write Γ.senv, Γ.lenv and Γ.args for the fields
of the context Γ containing the string environment, the list environments and
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the argument line respectively, and we write Γ [input ← σ] for the context Γ in
which the field input has been changed to σ.

Figure 4 gives the rules for the evaluation of a “do while” loop, and spells
out how the possible behaviours observed when evaluating the condition and the
body determine the behaviour of the complete loop.

t1/Γ ⇓ σ1 � b1/Γ1 b1 ∈ {Fatal,Return ,Exit }
(do t1 while t2)/Γ ⇓ σ1 � b1/Γ1

Transmit-Body

t1/Γ ⇓ σ1 � b1/Γ1 b1 ∈ {True,False}
t2/Γ1 ⇓ σ2 � True/Γ2 (do t1 while t2)/Γ2

⇓ σ3 � b3/Γ3

(do t1 while t2)/Γ ⇓ σ1σ2σ3 � b3/Γ3

True

t1/Γ ⇓ σ1 � b1/Γ1 b1 ∈ {True,False}
t2/Γ1 ⇓ σ2 � b2/Γ2 b2 ∈ {False,Fatal}

(do t1 while t2)/Γ ⇓ σ1σ2 � b1/Γ2

False

t1/Γ ⇓ σ1 � b1/Γ1 b1 ∈ {True,False}
t2/Γ1 ⇓ σ2 � b2/Γ2 b2 ∈ {Return ,Exit }

(do t1 while t2)/Γ ⇓ σ1σ2 � b2/Γ2

Transmit-Cond

Fig. 4. Semantic rules for the “do while”

The pipe construct completely ignores the behaviour of the first term. Finally,
the process protects part of the context from modifications. Changes to vari-
ables and arguments done inside a process are not observable. The modifications
on the file system and the standard input are kept. Their semantics is given in
Fig. 5.

t1/Γ ⇓ σ1 � b1/Γ1 t2/Γ1[input←σ1] ⇓ σ2 � b2/Γ2

pipe t1 into t2/Γ ⇓ σ2 � b2/Γ2[input←Γ1.input]

Pipe

t/Γ ⇓ σ � b/Γ ′

process t/Γ ⇓ σ � b/Γ [fs←Γ ′.fs, input←Γ ′.input]
Process

Fig. 5. Semantics of the evaluation for pipe and process

2.4 Mechanised Version

We have formalised the syntax and semantics of CoLiS using the proof envi-
ronment Why3 [5]. Why3 is an environment dedicated to deductive program
verification. It provides both a specification language, and a programming lan-
guage. The theorems and annotated programs (in fact, everything that needs to
be proven) are converted by Why3 into proof obligations and passed to external
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inductive eval_term term context string behaviour context =

| EvalT_DoWhile_Transmit_Body : ∀ t1 Γ σ1 b1 Γ 1 t2.

eval_term t1 Γ σ1 b1 Γ 1 →
(match b1 with BNormal _ → false | _ → true end) →

eval_term (TDoWhile t1 t2) Γ σ1 b1 Γ 1

| EvalT_DoWhile_True : ∀ t1 Γ σ1 b1 Γ 1 t2 σ2 Γ 2 σ3 b3 Γ 3.

eval_term t1 Γ σ1 (BNormal b1) Γ 1 →
eval_term t2 Γ 1 σ2 (BNormal True) Γ 2 →
eval_term (TDoWhile t1 t2) Γ 2 σ3 b3 Γ 3 →

eval_term (TDoWhile t1 t2) Γ (concat (concat σ1 σ2) σ3) b3 Γ 3

Fig. 6. Term evaluation judgement as an inductive predicate in Why3 (excerpt with
two rules for the “do while”)

provers. Its programming language, WhyML, is a language of the ML family con-
taining imperative constructs such as references and exceptions. These elements
are well handled in the proof obligations, allowing the user to write programs in
a natural way.

The semantics of CoLiS is expressed in the Why3 specification language as a
so-called inductive predicate, defined by a set of Horn clauses. The translation
is completely straightforward, for instance a fragment of the translation of the
semantic rules from Fig. 4 to Why3 is shown in Fig. 6. Formalising the semantics
in Why3 this way has the immediate advantage of syntax and type checks done
by the Why3 system, and is of course indispensable for proving the correctness
of the interpreter.

3 Interpreter

The interpreter is written in WhyML, the programming language of the Why3
environment, as a set of mutually recursive functions. The functions are written
in a standard style combining functional and imperative features. The main
interpreter function has the following signature in Why3:

let rec interp_term (t: term) (Γ: context) (stdout : ref string)

: (bool, context)

There are some fundamental differences between the interpreter on the one hand,
and the specification of the semantics on the other hand:

– The function interp term returns normally only in case of normal
behaviours.
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– The exceptional behaviours Fatal, Return b and Exit b are signaled by rais-
ing Why3 exceptions, respectively of the form Fatal(Γ ), Return (b, Γ ) and
Exit (b, Γ ) where Γ is the resulting context.

– The standard output is modelled by the mutable variable stdout of type
string, to which characters are written. This makes the code closer to a stan-
dard interpreter which displays results as it produces them.

– The composition of expression behaviours is done by an auxiliary function
with an accumulator: instead of yielding the behaviours as a component of
a complex result type and then composing them (what corresponds to the
semantic rules), we transmit to the recursive call the current behaviour, and
let it update it if needed.

match t with
| TFatal → raise (EFatal Γ)
| TIf t1 t2 t3 →

let (b1, Γ 1) =
try

interp_term t1 Γ stdout
with

EFatal Γ’ → (false, Γ’)
end

in
interp_term (if b1 then t2 else t3) Γ 1 stdout

...

Fig. 7. Code of the interpreter for the if construct

To illustrate theses differences we present in Fig. 7 an excerpt of the inter-
preter code for the case of fatal command, and the conditional command. Note
that exceptions, other that EFatal, potentially raised by the interpretation of
t1 are naturally propagated. This implicit propagation makes the code of the
interpreter significantly simpler than the inductive definition of the semantics.

Due to while loops in particular, this interpreter does not necessarily termi-
nate. Yet, we prove that this interpreter is sound and complete with respect to
the semantics, as expressed by the two following theorems. We define a notation
for executions of the interpreter. For any term t, contexts Γ and Γ ′, string σ
and behaviour b,

t/Γ �→ σ � b/Γ ′

states that when given the term t, the context Γ and a string reference as its
input, the interpreter terminates, writing the string σ at the end of the reference.
It terminates

– normally when b is True or False, returning the boolean b and the new con-
text Γ ′;

– with an exception EFatal(Γ ′), EReturn(b′, Γ ′) or EExit(b′, Γ ′) when b is
Fatal, Return b′ or Exit b′ respectively.
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Theorem 1 (Soundness of the interpreter). For all t, Γ , σ, b and Γ ′: if
t/Γ �→ σ � b/Γ ′ then t/Γ ⇓ σ � b/Γ ′

Theorem 2 (Completeness of the interpreter). For all t, Γ , σ, b and Γ ′:
if t/Γ ⇓ σ � b/Γ ′ then t/Γ �→ σ � b/Γ ′

Due to the mutual recursion in the definition of the abstract syntax, and in
the functions of the interpreter, we need of course analogous theorems for string
and list fragments and expressions, which are omitted here.

3.1 Proof of Soundness

Soundness is expressed in Why3 as a set of post-conditions (see Fig. 8) for each
function of the interpreter. Why3 handles the recursive functions pretty well and
splits the proof into many simpler sub-goals. However, some of these subgoals
still require up to 30 s to be proven by the E prover.

One difficulty in the proof comes from the fact that the interpreter uses an
additional argument to pass the behaviour of the previous term. This makes the
annotations of the functions harder to read and the goals harder to prove, with
post-conditions of the form:

(eval_sexpr_opt s Γ σ None Γ’ ∧ b = previous)

∨ eval_sexpr_opt s Γ σ (Some b) Γ

for an output (σ, b, Γ ′) of the expression interpreter.
The choice to have an interpreter with imperative feature (and thus differ-

ent from the declarative semantics) makes the proof hard. The most disturbing
feature for provers is the use of a reference to model the standard output. This
causes proof obligations of the form:

∃ σ. !stdout = concat (old !stdout) σ ∧ eval_term t Γ σ b Γ’

An existential quantification is hard for SMT solvers; it is a challenge for them
to find the right instance of the existentially quantified variable that makes the
proof work. This is in general a weak point of SMT solvers and requires provers
like the E prover which is based on the superposition calculus.

let rec interp_term (t: term) (Γ: context) (stdout : ref string)
: (bool, context)

diverges
returns { (b, Γ’) → ∃ σ. !stdout = concat (old !stdout) σ

∧ eval_term t Γ σ (BNormal b) Γ’ }
raises { EFatal Γ’ → ∃ σ. !stdout = concat (old !stdout) σ

∧ eval_term t Γ σ BFatal Γ’ }
...

Fig. 8. Contract of the sound interpreter. There are similar post-conditions for other
exceptions raised.
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4 Proof of Completeness

We show completeness of the interpreter (Theorem 2) by proving two intermedi-
ary lemmas. The first lemma states the functionality of our semantic predicates:

Lemma 1 (Functionality of the semantic predicates). For all t, Γ , Γ1,
Γ2, σ1, σ2, b1, and b2: if t/Γ ⇓ σ1 � b1/Γ1 and t/Γ ⇓ σ2 � b2/Γ2 , then σ1 = σ2,
b1 = b2 and Γ1 = Γ2.

This lemma is quite straightforward to prove.
The second lemma states the termination of the interpreter in case one can

prove a judgement about the semantics for the same input:

Lemma 2 (Termination of the interpreter). For all t, Γ , Γ1, σ1 and b1:
if t/Γ ⇓ σ1 � b1/Γ1 , then the interpreter terminates when given t, Γ .

It is not obvious how to prove this lemma in the Why3 framework. The
difficulty of the proof will be discussed below in Sect. 4.1, and our solution to
the problem is presented in Sect. 4.2.

Theorem 2, stating the completeness of the interpreter, follows immediately
from the above two lemmas, together with Theorem 1 stating the soundness of
the interpreter:

Proof. Let t be a term, Γ and Γ1 contexts, σ1 a string and b1 a behaviour.
Let us assume that there exists a proof of the judgement t/Γ ⇓ σ1 � b1/Γ1 . By
Lemma 2 (termination of the interpreter), there exists some results σ2, b2 and Γ2

computed by the interpreter. By Theorem1 (soundness of the interpreter), we
have t/Γ ⇓ σ2 � b2/Γ2 . By Lemma 1 (functionality of the semantics), we obtain
σ1 = σ2, b1 = b2 and Γ1 = Γ2, which allows us to conclude.

4.1 Proving (or not Proving) Termination with Heights and Sizes

A first naive idea to prove the two lemmas is to use induction on the structure
of the terms. This does, of course, not work since one premise of the rule True
for the do while construct (see Fig. 4) uses the same term as its conclusion.

In fact, what does decrease at every iteration is the proof of the judgement
itself. A common way in by-hand proofs to exploit that fact is to use the size of
the proof (i.e. the number of rules involved), or alternatively the height of the
proof tree.

These numbers could then be passed to the interpreter as a new argument
along with a pre-condition specifying that this number corresponds to the size
(resp. the height) of the proof. It is then easy to prove that it decreases at each
recursive call, and since this value is always positive, we obtain termination of the
program. These solutions, however, have drawbacks that make them unsuitable
for use in the Why3 environment:
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– On the one hand, back-end SMT solvers can reason about arithmetic, but
have only incomplete strategies for handling quantifiers; on the other hand
superposition provers are good with quantifiers but do not support arithmetic.
One could think of replacing an axiomatised arithmetic by a simple successor
arithmetic, that is using only zero and the successor function. This would
not solve the problem since when using the size one still needs addition and
subtraction, and when using the height one needs the maximum function,
and handling of inequalities.

– When we know the size of a proof, we cannot deduce from it the size of the
proofs of the premises, which makes the recursive calls complicated.
A way to solve this problem is to modify the interpreter so that it returns the
“unused” size (a technique, sometimes referred to as the credit or fuel, which
can be useful for proving the complexity of a program). This does imply a
major modification of the interpreter, though: the exceptions would have to
carry that number as well, and the interpreter would have to catch them every
time, just to decrement the size and then raise them again.

– We have a similar problem with the height: we cannot deduce from the height
of a proof the heights of the premises, but only an upper bound.
We could solve this problem by using inequalities either in the pre- and post-
conditions or in the predicate itself. Nevertheless, it makes the definition of
the predicate and the pre- and post-conditions more onerous, and the work
of the SMT solvers more complicated.

4.2 Proving Termination with Ghosts and Skeletons

The proof of termination of the interpreter would be easy if we could use an
induction on the proof tree of the judgement. The problem is that the proof tree
is (implicitly) constructed during the proof, and is not available as a first-class
value in the specification. The solution we propose is to modify the predicates
specifying the semantics of CoLiS to produce a lightweight representation of the
proof tree. This representation, which we call a skeleton, contains only the shape
of the proof tree. The idea is that a complete proof tree could be abstracted to
a skeleton just be ignoring all the contents of the nodes, and just keeping the
outline of the tree. This avoids the use of arithmetic, since provers only have to
work with a simple algebraic data type.

The definition of the type of skeletons in Why3 is shown in Fig. 9. There is
one constructor for every number of premises of rules in the definition of the
semantics, that is in our case, 0, 1, 2 and 3. We then have alternative definitions
of our predicates including their skeleton (see Fig. 10).

We can now prove the properties of the semantic predicates by induction on
the skeletons. Skeletons make proofs by induction possible when nothing else
than the proof is decreasing. In fact, it also has an other interesting advantage:
we often need to conduct inductions on our semantic predicates. However, these
predicates are mutually recursive and do not work on the same data types, which
makes our proofs verbose and annoying. Now, we can run our induction on the
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type skeleton =
| S0
| S1 skeleton
| S2 skeleton skeleton
| S3 skeleton skeleton skeleton

Fig. 9. The data type for skeletons

inductive eval_term term context string behaviour context skeleton =

| EvalT_DoWhile_True : ∀ t1 Γ σ1 b1 Γ 1 t2 σ2 Γ 2 σ3 b3 Γ 3 s1 s2 s3.

eval_term t1 Γ σ1 (BNormal b1) Γ 1 s1 →
eval_term t2 Γ 1 σ2 (BNormal True) Γ 2 s2 →
eval_term (TDoWhile t1 t2) Γ 2 σ3 b3 Γ 3 s3 →

eval_term (TDoWhile t1 t2) Γ
(concat (concat σ1 σ2) σ3) b3 Γ 3 (S3 s1 s2 s3)

Fig. 10. (Part of the) inductive predicates with skeletons

skeletons, and that makes the definitions and proofs of the theorems much easier.
This is, for instance, the case for the Theorem 1.

There remains the question how to connect the interpreter to the skeletons
produced by the predicates. This is where ghost arguments come in. In the
context of deductive program verification, ghost code [9] is a part of a program
that is added solely for the purpose of specification. Ghost code cannot have
any impact on the execution of the code: it must be removable without any
observable difference on the program. In this spirit, we extend the functions of
the interpreter with a ghost parameter which holds the skeleton (see Fig. 11).

let rec interp_term (t: term) (g: context) (stdout : ref string)
(ghost sk: skeleton) : (bool, context)

requires { ∃ s b g’. eval_term t g s b g’ sk }
variant { sk }
returns { (b, g’) → ∃ s. !stdout = concat (old !stdout) s

∧ eval_term t g s (BNormal b) g’ sk }

Fig. 11. Contract for the terminating interpreter. There are similar post-conditions for
exceptions raised.

We also add ghost code in the body of the function (see Fig. 12) in order
to give indications to the provers, using some auxiliary destructor functions for
skeletons. The function skeleton23, for instance, takes a skeleton that is required
to have a head of arity 2 or 3, and returns its direct subtrees. The fact that it
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| TDoWhile t1 t2 →
let ghost sk1 = skeleton123 sk in
(* At this point, we know that the rules

that might apply can have 1, 2 or 3 premises. *)
let (b1, g1) = interp_term t1 g stdout sk1 in
let (b2, g2) =

try
let ghost (_, sk2) = skeleton23 sk in
(* At this point, we know that the rule

with 1 premise cannot be applied anymore. *)
interp_term t2 g1 stdout sk2

with
EFatal g2 → (false, g2)

end
in
if b2 then

let ghost (_, _, sk3) = skeleton3 sk in
(* And finally, only the rule with 3 premises can be applied. *)
interp_term (TDoWhile t1 t2) g2 stdout sk3

else
(b1, g2)

Fig. 12. Excerpt of the body of the terminating interpreter

requires the skeleton to have a head of arity 2 or 3 adds the right axioms and
goals to the proof context, thus helping the provers.

This works well because we wrote the semantics in a specific way: the order
of the premises always corresponds to the order in which the computation must
happen. This means that we can take the skeleton of the first premise and give
it to the first recursive call. After that call, either an exception is raised which
interrupts the control flow, or we take the skeleton of the second premise and
give it to the second recursive call.

It would have been tempting to match on the term and the skeleton at the
same time (to have something like |TDoWhile t1 t2, S1 sk1 → .). This, how-
ever, does not work, since it would make the execution of the code dependent on
a ghost parameter, which is rejected by the type checker of Why3 as a forbidden
effect of ghost code on non-ghost code [9].

4.3 Reproducibility

Using the technique of skeletons, all the proof obligations are proven by auto-
mated provers. The proof takes some time because there are a many cases (we
obtain 207 subgoals), but none of those takes more than 4 s to our provers.

The Why3 code for the syntax, semantics, the interpreter and all the proofs is
available online [13]. The proofs need of course Why3 [5], and at least the provers
Alt-Ergo [4] (1.30), Z3 [16] (4.5.0) and E [17] (1.9.1). One may in addition use
CVC3 [3], CVC4 [2] and SPASS [19] in order to gain additional confirmation.
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5 Related Work

Formalising the semantics of programming language is most of the time done
using interactive proof assistants like Coq or Isabelle. Yet, formalising seman-
tics and proving complex properties, with automatic provers only, was already
shown possible by Clochard et al. [8], who also use the Why3 environment. The
difficulty of proving completeness was not addressed in that work, though. Inter-
estingly, the issues we faced regarding completeness and inductive predicates was
present in other work conducted within the CoLiS project by Chen et al. [7], for
proving a shell path resolution algorithm. They solve completeness by indexing
their inductive predicates with heights. We would like to investigate whether an
approach with skeletons instead of heights would make the proofs easier. To our
knowledge, the idea of using proof skeletons is new, even though the idea seems
quite close to the concept of step-indexing for reasoning on operational semantic
rules [1].

Several tools can spot certain kinds of errors in shell scripts. The tool
checkbashisms [6], for instance, detects usage of bash-specific constructs in shell
scripts. It is based on regular expressions. The ShellCheck [11] tool detects error-
prone usages of the shell language. This tool is written in Haskell and analyses
the scripts on-the-fly while parsing.

There have been few attempts to formalize the shell. Recently, Greenberg [10]
has presented elements of formal semantics of POSIX shell. The work behind
Abash [15] contains a formalization of the part of the semantics concerned with
variable expansion and word splitting. The Abash tool itself performs abstract
interpretation to analyze possible arguments passed by Bash scripts to UNIX
commands, and thus to identify security vulnerabilities in Bash scripts.

6 Conclusion and Future Work

We presented a Why3 implementation of the semantics of an imperative pro-
gramming language. This formalisation is faithful to the semantic rules writ-
ten by hand. Our main contribution is an interpreter for this language proven
both sound and complete. The proof of completeness uses an original technique
involving what we call skeletons: an abstraction of the proof tree for an inductive
predicate, that decreases on recursive call, allowing us to use induction on the
proof itself.

Future work. In the near future, we would like to try a more direct proof of
completeness (i.e. without separating it into the soundness, the functionality
of the semantic predicates and the termination of the algorithm). Such a proof
would be interesting in cases where the functionality can not be proven (when
we can derive the same judgement in different manners, for instance).

To fulfil our mid-term goal to verify shell scripts in Debian packages, we will
need to formalise the file system as well as its built-ins. We will also have to
write the automated translation from shell to CoLiS. This translation will have
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to analyse the scripts statically to determine, among other things, the type of
the variables. The first step of this compiler, the parser of POSIX shell scripts,
is described in [14].

Acknowledgements. We would like to thanks Mihaela Sighireanu, Ilham Dami, Yann
Régis-Gianas, and the other members of the CoLiS project, for their contributions and
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Abstract. The Compact Position Reporting (CPR) algorithm is a
safety-critical element of the Automatic Dependent Surveillance - Broad-
cast (ADS-B) protocol. This protocol enables aircraft to share their cur-
rent states, i.e., position and velocity, with traffic aircraft in their vicinity.
CPR consists of a collection of functions that encode and decode aircraft
position data (latitude and longitude). Incorrect position decoding from
CPR has been reported to the American and European organizations
responsible for the ADS-B standard. This paper presents a formal anal-
ysis of the CPR algorithm in the Prototype Verification System (PVS).
This formal analysis shows that the published requirements for correct
decoding are insufficient, even if computations are assumed to be per-
formed using exact real arithmetic. As a result of this analysis tightened
requirements are proposed. These requirements, which are being con-
sidered by the standards organizations, are formally proven to guarantee
correct decoding under exact real arithmetic. In addition, this paper pro-
poses mathematically equivalent, but computationally simpler forms to
several expressions in the CPR functions in order to reduce imprecise
calculation.

1 Introduction

Automatic Dependent Surveillance - Broadcast (ADS-B) is arguably the most
important change to the operation of aircraft in national and international
airspace since the introduction of radar. The Federal Aviation Administration
has mandated that ADS-B out capability be installed on almost all general
aviation aircraft for most classes of airspace before the year 2020 [3]. ADS-B
allows for a wide variety of information to be broadcast from an aircraft to any
nearby receiver, enabling many new capabilities, including increased situational
awareness for pilots. To enable this technology, the industry and regulatory agen-
cies agreed on a standard message format based on an existing transponder1;
the 1090 Mhz Mode-S Extended Squitter. The broadcast message is 112 bits, of
which 56 bits are the data frame, the rest being aircraft identification, message

1 In fact, there are several allowable transponders and formats, though the majority
of current applications use the 1090 ES message described here.
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type, and parity check information. When the data frame is a position message,
21 bits go to transmitting status information and altitude, leaving 35 bits total
for latitude and longitude. If raw latitude and longitude data were taken and
approximated to 17 bits each, the resulting precision would be worse than 300
m, which would not be useful for precise navigation.

To remedy this, an algorithm referred to as Compact Position Reporting
(CPR) was developed to allow for more accurate position reporting. The general
idea is as follows. Each direction (latitude and longitude) is divided into zones
approximately 360 nautical miles long, and each zone into 217 bins. The position
broadcast corresponds to the centerline of the bin where the aircraft is currently
located in. This corresponds to one position in each zone. Depending on the type
of decoding being performed, the correct zone is then determined from either a
previously known position (for local decoding) or from a matched pair of mes-
sages (for global decoding). This allows for position accuracy of approximately
5 m in airborne applications. It should be noted that because the number of
longitude degrees in 360 nautical miles differs based on latitude, the number of
zones used for calculating the longitude message also depends on the latitude.
The function that determines the number of longitude zones, named NL, can
be calculated directly from the latitude, but in practice is determined from a
pre-calculated lookup table.

Anecdotal evidence from pilots and manufacturers suggests that decoding of
CPR messages can lead to incorrect position reports for target aircraft. A priori,
these errors could stem from any number of places, including issues with the
functions themselves, issues with the requirements under which the functions
may be used, numerical computation errors, environmental factors, or any other
number of unknown causes. The work described here addresses the first three of
these possibilities.

On the practical side, this paper has two significant contributions that are
presented in the form of recommendations to the standards organizations in
charge of the ADS-B protocol.2 These recommendations aid in more reliable
usage and implementation of the CPR algorithm and do not alter the logic of the
algorithm in its pure mathematical form. Hence, they do not impact implementa-
tions that are already in place and operating reliably. The first recommendation
is a tightening of the requirements on conditions for reliable decoding. These
strengthened requirements were discovered during the interactive construction
of the proof of correctness, during which a class of examples meeting the pub-
lished requirements for correct decoding were found to give significantly incor-
rect answers. The second recommendation consists of a collection of simplified
expressions for computations performed in the algorithm. These simplifications
reduce the numerical complexity of the expressions. This second class of results
are intended to aid future implementors of the algorithm in producing simpler
and more reliable code.

From the theoretical standpoint, the main contribution of this work is a
formal analysis of the CPR algorithm in the Prototype Verification System

2 These organizations are RTCA in the US and EUROCAE in Europe.
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(PVS) [6]. The analysis includes a mechanically verified proof that the encoding
and decoding functions work as designed under the proposed tightened require-
ments, and with the assumption of real number computation. This formal anal-
ysis is meant to increase confidence that the functions themselves, in their pure
mathematical forms, are correct. In addition, the formal specification itself is
done in a way that allows the CPR algorithm to be executed in a number of
different computational modes. By instantiating a parameter, any of the CPR
functions can be evaluated in single precision floating-point, double precision
floating-point, or exact rational arithmetic. Transcendental functions that occur
in the algorithm can be evaluated in either one of the floating-point implemen-
tations or to a user specified precision. This allows for simple comparison of
the algorithm’s results under different computation models, without the need to
write separate versions of the algorithm for each model.

The remainder of the paper is organized as follows. Section 2 presents the for-
mal development of the CPR algorithm, including its main properties and some
rationale for how the requirements for proper decoding arise. Section 3 details the
main practical results from the formal analysis, including the tightened require-
ments for proper decoding and a number of computational simplifications or the
CPR algorithm. Section 4 discusses a method used to animate the specification
of CPR in different computational modes. Finally, Sect. 5 concludes this work.

The formulas and theorems presented in this paper are written in PVS. For
readability, this paper uses mathematical notation as opposed to PVS syntax.
The formal development is available at http://shemesh.larc.nasa.gov/fm/CPR
and requires the latest version the NASA PVS Library, which is available at
http://github.com/nasa/pvslib.

2 The Compact Position Reporting Algorithm

This section presents the formal development of the CPR algorithm, which
closely follows its standard definition in [7]. The CPR algorithm allows for three
different classes of position messages known as coarse, airborne, and surface,
which provide accuracies of approximately 165 m, 5 m, and 1.3 m, respectively.
For simplicity, the analysis presented in this paper only considers airborne mes-
sages. The analysis of the NL function, as well as the mathematical simplifica-
tions of computations, apply to all three versions. The requirement tightening,
as well as the formal verification of correct decoding, applies only to the airborne
version. Generalization to the other classes of messages is not theoretically chal-
lenging but would require a non-trivial amount of work.

The principle of the CPR encoding and decoding functions is that trans-
mitting the entire latitude and longitude measurement of a target would be (a)
a prohibitively large message for sufficient precision, and (b) wasteful, as the
higher order bits of such a transmission are very unlikely to change over a short
period of time. To remedy both of these issues, CPR transmits a version of the
lower order bits, and uses two different techniques to recover the higher order
bits.

http://shemesh.larc.nasa.gov/fm/CPR
http://github.com/nasa/pvslib
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Fig. 1. CPR coordinates for latitude. Latitude is divided into 60 or 59 zones, depending
on the format to be broadcast (left). Each zone is then divided into 217 bins (right).
The bin the aircraft lies in determines the message.

To accomplish this, CPR divides each of latitude and longitude into a number
of equally sized zones. The number of these zones depends on if the message is
an even or odd format, and when encoding longitude, on the current latitude of
the target. Each zone is then divided into 217 bins (see Fig. 1). The transmitted
information is the number corresponding to the bin that the target is currently
in. The difficult part of the process is then determining the correct zone. This is
done in the local decoding case by identifying a reference position close enough to
the target that only one of the possible bins is feasible, and in the global decoding
case by using an odd and an even message, and employing the difference in size
of odd versus even zones.

2.1 Number of Longitude Zones

As previously stated, the number of longitude zones depends on both the format
(even or odd) and the present latitude of the target. Note that if the number
of zones used for longitude encoding were a constant with respect to latitude,
the size of one such zone would vary significantly between the poles and the
equator. This would make decoding much more difficult at the poles, since the
zone number would change more rapidly at high latitudes. In order to alleviate
this, the number of longitude zones is variable depending on the latitude. This
NL value is meant to keep the size of a zone nearly constant.

For latitude, the size of an even zone is 6◦, while the odd zone is slightly larger,
at 360◦/59◦. To keep longitude similarly spaced, there are 59 even longitude
zones at the equator, and one fewer odd zones (the number of odd zones is always
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one fewer than the number of even zones). This even zone is approximately 360
NMI wide. The number of even zones drops to 58 at the circle of latitude where
58 zones of size 360 NMI suffice to cover the circular latitude distance (assuming
a spherical earth). More precisely, the number of longitude zones (or NL value)
corresponding to a specific latitude lat is given by

NL(lat) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

59 if lat = 0,⌊

2π

(

arccos
(

1 − 1−cos( π
30 )

cos2( π
180 |lat|)

))−1
⌋

if |lat| < 87,

1 if |lat| > 87,
2 otherwise.

(1)

In practice, computing this function is inefficient and would be burdensome
to perform each time an encoding is done. Instead, a lookup table of transition
latitudes is pre-calculated, and the NL value is determined from this table. In
PVS, the NL table is specified as follows.

NL Table(lat) = if |lat| > transition(2) then 1
elsif |lat| > transition(3) then 2
elsif |lat| > transition(4) then 3

...
elsif |lat| > transition(59) then 58
else 59
endif.

The transition latitudes are given for a value nl from 2 to 59 by the following
formula.

transition(nl) =
180
π

arccos

(√
1 − cos(π/30)
1 − cos(2π/nl)

)

. (2)

The following theorem about the correctness of this table is proven in PVS.

Theorem 1. For every latitude value lat,

NL(lat) = NL Table(lat).

During the process of encoding, extra precaution must be taken to ensure
that the NL value used for the longitude encoding is consistent with the latitude
broadcast. To do so, the latitude message to be broadcast is decoded onboard,
and this latitude is used to determine the NL value, ensuring that the receiver
can decode the longitude message consistently with the broadcaster.
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2.2 Encoding

As mentioned in Sect. 1, the position message consists of 35 bits of information.
The first bit is used to describe the format of the message. The message is called
even if the bit is 0, and odd if the bit is 1.

Here, and throughout all computation in CPR, the mod function is defined by

mod(x, y) = x − y

⌊
x

y

⌋

. (3)

While this is fairly standard for mathematics, it differs from the version used
in practice in standard programming languages, where the function is generally
restricted to integers.

Let dlati = 360/(60 − i), where i is the format bit of the message to be sent.
The value of dlati is the size of a latitude zone. Next, for a latitude value lat,
compute

YZ i =
⌊

217
mod(lat, dlati)

dlati
+

1
2

⌋

. (4)

The latitude message, ŶZ i, is then the last 17 bits of this value. That is,

ŶZ i = mod(YZ i, 217). (5)

In Formula (4), mod(lat, dlati) corresponds to the distance that lat is from
the bottom of a zone edge. Thus mod(lat,dlati)

dlati
denotes the fractional amount

that lat is into this zone. Multiplying by 217 gives a value between 0 and 217,
while

⌊
x + 1

2

⌋
rounds a number x to the nearest integer. The interval of latitudes

inside a zone that are mapped to a particular number is referred to as a bin,
and the number they map to as the bin number. The latitude to be recovered is
in the center of this interval, and is referred to as the bin centerline. The final
truncation to 17 bits to determine ŶZ i may appear to discard some information,
but in actuality only affects half of a bin at the top of a zone, and is accounted
for by the adjacent zone.

In order to compute the longitude portion of the message, the NL value of
the encoded latitude must be determined. To do so, the latitude that is intended
to be decoded is computed as

r lat = dlati

(⌊
lat

dlati

⌋

+
YZ i

217

)

.

The NL value of r lat is then used to compute the longitude equivalent of
dlati as follows.

dloni = 360/max{1,NL(r lat) − i}. (6)

Note that the denominator in the above expression uses the max operator
for the case of latitudes beyond ±87◦, where there is only one longitude zone.
In this case the even and odd longitude encodings are identical.
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With dloni calculated, the encoding of a longitude lon is nearly identical to
that of latitude.

XZ i =
⌊

217
mod(lon, dloni)

dloni
+

1
2

⌋

. (7)

The longitude message is the final 17 bits of this value.

X̂Z i = mod(XZ i, 217). (8)

The final message to be broadcast is then the concatenated string of bits
(i, ŶZ i, X̂Z i) (see Fig. 2). In theory, it would be desirable to have the messages
sent strictly alternate between odd and even. In practice, the format for broad-
cast is chosen by any number of methods (including randomly) to ensure an
equiprobable distribution.

Fig. 2. The 35 bit CPR message. One bit determining the format, and 17 each for
latitude and longitude.

It is worth noting that every latitude lat can be exactly and uniquely deter-
mined by the following formula.

lat = dlati

(⌊
lat

dlati

⌋

+
217mod(lat, dlati)/dlati

217

)

. (9)

The only difference between this and the value intended to be recovered is
in the rounding of 217mod(lat, dlati)/dlati to the nearest integer, which induces
an error of at most 1/2. Hence the upper bound for the difference between a
latitude and its correctly encoded and decoded value is dlati/218. Similarly, a
longitude and its recovered value should differ by no more than dloni/218.

The formal development includes specification of the encoding algorithm as
a single function encode that takes as parameters the format i, and lat, lon, the
latitude and longitude to encode, and returns the pair (ŶZ i, X̂Z i) containing the
encoded latitude and longitude. The following lemma, formally proven in PVS,
ensures that the encoding fits into the available space for broadcast.

Theorem 2. For all i ∈ {0, 1}, latitudes lat and longitudes lon, if (Y,X) =
encode(i, lat, lon), then Y and X are integers and

0 ≤ X,Y < 217.

2.3 Local Decoding

Since a broadcast message corresponds to a position inside each zone, in order
to recover the correct position, one needs only to determine which zone is the
correct one, and in the case of longitude, how many zones there are.
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Local decoding does this using a reference position that is known to be near
the broadcast position. This can be a previously decoded position, or known
by some other means. The concept is simple, and uses the observation that the
interval one zone wide centered around any position contains exactly one point
corresponding to each bin centerline.

From this reasoning, it would seem to follow that if the target and the ref-
erence position are separated by at most half the length of a zone, the decoding
should be reliable. This is the requirement given in the standards document [7]
for local decoding. However, during the formal analysis, it was discovered that
this is too generous, as proven in Theorem3 below.

The local decoding uses the following formula to calculate the zone index
number j of the target using the format i, the latitude message ŶZ i, and a
reference latitude latref .

j =
⌊

latref
dlati

⌋

+

⌊
1
2

+
mod(latref , dlati)

dlati
− ŶZ i

217

⌋

. (10)

The first term in this sum calculates which zone the reference latitude lies in,
while the second term adjusts it by -1, 0, or 1 based on the difference between
the reference latitude and the broadcast message. This value is then used to
compute the recovered latitude r lat using the following formula.

r lat = dlati

(

j +
ŶZ i

217

)

. (11)

This decoded latitude is used to determine the NL value used for encoding
the longitude, which is then used to determine the value of dloni by Formula
(6). Using dloni, a reference longitude lonref , and the longitude message X̂Z i,
the longitude zone index m and recovered longitude rlon are determined nearly
identically to the latitude case.

m =
⌊

lonref

dloni

⌋

+

⌊
1
2

+
mod(lonref , dloni)

dloni
− X̂Z i

217

⌋

. (12)

rlon = dloni

(

m +
X̂Z i

217

)

. (13)

Local decoding is specified as a pair of functions Rlati and Rloni. The func-
tion Rlati takes as input a reference latitude latref , a format i, and a non-negative
integer Y less than 217 meant to be an encoded latitude. The function Rloni

takes an entire reference position latref , lonref , a format i and a pair Y,X of
non-negative integers at most 217 meant to be the encoded pair. The longitude
decoding requires the latitude input in order to calculate the correct NL value
to decode with.
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The two main theorems concerning local decoding are with respect to the
requirements for correct decoding. The first states that the published require-
ments are not sufficient for local decoding.

Theorem 3. For each format i, there exist latitudes lat, latref with |lat −
latref | < dlati

2 , but
|lat − Rlati(latref , i, ŶZ i)| > 5.9,

where (ŶZ i, X̂Z i) = encode(i, lat, lon).

The value of 5.9 is in degrees latitude, which at a longitude of 0 is more than 300
nautical miles. This theorem is formally proven in PVS by giving actual latitude
values that decode incorrectly. One such pair, for even encoding, is

lat = 71582788 ∗ 360/232 ≈ 5.99999997765,

latref = 35791394 ∗ 360/232 ≈ 2.99999998882.

The next theorem states that local decoding does work properly for the set of
tightened requirements, which reduce the bound between position and reference
by 1/2 bin.

Theorem 4. For all pairs of positions (lat, lon), (latref , lonref), let
(ŶZ i, X̂Z i) = encode(i, lat, lon). If

|lat − latref | <
dlati

2
− dlati

218
,

then
|lat − Rlati(latref , i, ŶZ i)| ≤ dlati

218
,

Furthermore, if dloni is calculated using this decoded latitude, and

|lon − lonref | <
doni

2
− dloni

218
,

then
|lon − Rloni(latref , lonref , i, ŶZ i, X̂Z i)| ≤ dloni

218
.

2.4 Global Decoding

Global decoding is used when an approximate position for the target is unknown.
This can occur when a target is first encountered, or when messages have not
been received for a significant amount of time.

Similar to local decoding, the receiver must determine the correct zone in
which the broadcast message lies, as well as (for longitude) the number of zones.
Global decoding does this through means of a pair of messages, one of each
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format type. Using a method that is essentially the Chinese Remainder Theorem,
the algorithm determines the number of zone offsets (the difference between an
odd zone length and an even zone length) from the origin (either equator or prime
meridian) to the broadcast position. This can be used to determine the zone for
either message type, and hence used to decode either message. The most recently
received message is used to provide more accurate information. Similar to the
local decoding, it seems that this should tolerate pairs of positions separated
by no more than half of a zone offset, since this is the critical parameter in the
computation. The formal analysis shows that this is too generous, as proven in
Theorem 5 below.

The first step in global decoding is to determine j, which is the number of
zone offsets between the southern boundaries of the two encoded latitudes.

j =

⌊
59ŶZ 0 − 60ŶZ 1

217
+

1
2

⌋

.

In order to convert this into the correct zone index number for the even or
odd message to be decoded, the positive value modulo 60 − i is calculated. This
is then used to determine the recovered latitude, as follows.

r lat = dlati

(

mod(j, 60 − i) +
ŶZ i

217

)

. (14)

For global decoding of longitude, care must be taken that both the even and
odd messages being used were calculated with the same number of zones. As
such, both even and odd latitude messages are decoded, and the NL values for
each are determined. If they differ, the messages are discarded and not decoded
until further broadcast meet this criterion. In the case both recovered latitudes
have the same NL value, longitude decoding proceeds as follows, where nl is the
common NL value computed, dloni is calculated according to Formula (6), and
ni = max{nl − i, 1}.

Calculate m, the number of zone offsets between the western zone boundaries
of the messages.

m =

⌊
(nl − 1)X̂Z 0 − nlX̂Z 1

217
+

1
2

⌋

.

Convert this value to a zone index number by taking the positive value mod-
ulo ni, and use this to determine the recovered longitude.

rlon = dloni

(

mod(m,ni) +
X̂Z i

217

)

. (15)

Global decoding is specified as a pair of functions Rlatg and Rlong. The
function Rlatg takes as inputs a format i and natural numbers Y0, Y1 meant to
be odd and even latitude messages. The function Rlong takes as inputs a format
i and four numbers Y0, Y1,X0,X1 meant to describe odd and even messages
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of latitude and longitude. Each latitude message is decoded, and the NL value
computed. If the values do not match, the computation is aborted. If they do,
the function returns both the even and odd decoded longitude.

As with local decoding, there are two accompanying theorems. In the fol-
lowing, the latitude zone offset is denoted by ZOlat. This is calculated as
ZOlat = dlat1 − dlat0. Similarly, ZOlon = dlon1 − dlon0 where it is assumed
that the NL value used is known from the context.

Theorem 5. For each format i, there exist latitudes lat0, lat1 with |lat0−lat1| <
ZOlat

2 , but
|lat − Rlatg(i, ŶZ 0, ŶZ 1)| > 5.9,

where (ŶZ j , X̂Z j) = encode(j, lat, lon) for j ∈ {0, 1}.
Again, the units of 5.9 are degrees latitude, which corresponds to over 300 nauti-
cal miles at longitude 0. This theorem is formally proven in PVS by giving actual
latitude values that decode incorrectly. One such pair, which decodes incorrectly
using either format, is

lat0 = 363373617 ∗ 360/232 ≈ 30.4576247279,

lat1 = 363980245 ∗ 360/232 ≈ 30.5084716994.

The next theorem states that the tightened requirements, given by shrinking
the bound by the size of one odd bin, suffice for proper global decoding.

Theorem 6. For all pairs of positions (lat0, lon0), (lat1, lon1), let (ŶZ j ,

X̂Z j) = encode(j, lat, lon) for j ∈ {0, 1}. If

|lat0 − lat1| <
ZOlat

2
− dlat1

217
,

then
|lat − Rlatg(i, ŶZ 0, ŶZ 1)| ≤ dlati

218
,

for each i ∈ {0, 1}. Furthermore, if these decoded latitudes have a common NL
value, dloni is calculated using this value, and

|lon − lonref | <
ZOlon

2
− dlon1

217
,

then
|lon − Rlong(i, ŶZ 0, ŶZ 1, X̂Z 0, X̂Z 1)| ≤ dloni

218

for each i ∈ {0, 1}.
These correctness theorems, while lacking the need for groundbreaking mathe-
matical insight to formulate, are nonetheless long and difficult proofs to develop
in an interactive proof system. For example, the proof of the correctness for
only the longitude portion of the global correctness theorem is composed of 763
individual proof commands.
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3 Practical Results

The main practical results of the formal analysis conducted are essentially in two
categories. The first set of results, presented in Sect. 3.1, concerns the require-
ments for both local and global decoding. As discussed in Sects. 2.3 and 2.4, the
formal analysis led to the discovery of examples that meet the stated algorithmic
requirements for decoding, but decode incorrectly. A set of tightened require-
ments were discovered that are formally proven to guarantee correct decoding.
In addition to the algorithmic requirements, an arguably less restrictive opera-
tional requirement is developed for global decoding. This proposed requirement
allows for CPR applications for aircraft with a much wider performance envelope
than the original specification, as well as a longer possible time delay between
received messages.

The second set of results, in Sect. 3.2, examine expressions in the CPR algo-
rithm, and give mathematically equivalent, but in a simpler or numerically more
stable form. These equivalent expressions are meant to assist implementors of
the CPR algorithm in creating more reliable code.

3.1 Decoding Requirements

The requirement stated in [7] for local decoding is that the reference position
and the encoded position must be within 1/2 of a zone to guarantee correct
decoding. As mentioned in Sect. 2, this stems from the fact that an interval
one zone long, centered at the reference position, encounters exactly one bin
centerline for each possible broadcast message, so only one recovered position is
possible. While this statement is true, it is not necessarily true that the position
being within 1/2 zone from the reference position ensures that the corresponding
bin centerline is within 1/2 zone of the reference position. For example, if the
reference position is slightly above a bin centerline, then the half-bin at the
bottom of the 1 zone length interval centered around the reference position is
mapped to a bin centerline that occurs outside of this one zone region. The bin
centerline with the same number, but lying inside the one zone region, occurs
at the top of this region. Hence local decoding in this case is inaccurate by the
size of one zone, approximately 360 nautical miles, as is the case in the example
after Theorem 3.

During the formal analysis, several examples illustrating this phenomenon
were discovered, and this discovery led to the tightened requirement of the target
position and reference position being required to be separated by no more than
half a zone minus half of a bin for reliable local decoding.

For global decoding, the requirement in [7] is that the two messages used are
received within ten seconds of each other. This is based on two conditions. The
first condition is a restriction on the performance limits of the aircraft to which
the standard applies. The second condition is an algorithmic restriction. The
document states that the positions for the odd and even messages be separated
by no more than half of a zone offset to ensure reliable decoding. As with local
decoding, this algorithmic condition is nearly correct, but fails to account for the
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positions not being on the bin centerline. The correct requirement is that the bin
centerlines of the encoded positions be within 1/2 zone offset. Since a position
is at most half of a bin size away from the corresponding centerline, shrinking
the original requirement by one odd bin size is sufficient to guarantee correct
global decoding. As with the local decoding, examples were discovered that meet
the published algorithmic requirement, but decode incorrectly by the length of
one zone, approximately 360 nautical miles, as is the case in the example after
Theorem 5.

The published global decoding requirement enforces the closeness of the orig-
inal positions of the two messages by means of a limit on the time between two
messages, paired with a limit on the speed of the aircraft. While this is a testable
and practical method of enforcing the algorithmic requirements, it limits the
applications that can be correctly decoded due to speed assumptions3, while
artificially limiting the time between messages for slow moving targets.

To loosen this restriction, while still providing a testable and practical method
for guaranteeing that the even and odd pair of messages meet the global decoding
algorithmic requirements, the following alternative requirement is proposed.

The receiver waits for three alternating messages, either even-odd-even or
odd-even-odd, where it is known (through a time restriction or some other
means) that the first and last messages were broadcast without having trav-
elled more than 1/2 zone. In addition, the difference between the values of the
first and last messages transmitted should be less than 1000 (modulo 217). The
second condition ensures that the bookend messages were broadcast within 1/2
zone offset (minus an odd zone) of each other, unless they are separated by a
full zone, which is impossible by the first condition. For longitude decoding, the
NL value of all three latitudes messages must also stay constant. The proposed
requirement allows for a much longer time frame to collect messages, even with
an increased performance threshold for the target. It also more directly enforces
the actual algorithmic requirement.

3.2 Numerical Simplifications

In addition to the formal specification and proof of the algorithm with the tight-
ened requirements, the formal analysis revealed several expressions in the CPR
algorithm that can be simplified or rewritten in a way that is mathematically
equivalent, but numerically simpler. Each pair of equivalent formulas was spec-
ified in PVS, and proven to be equal.

The formula for calculating the NL table, used as a lookup-table for calcu-
lating NL values for a latitude is given in Formula (2). An equivalent version,
removing four operations in total, is defined as follows.

latNL(nl) =
180
π

arccos
(

sin(π/60)
sin(π/nl)

)

. (16)

3 This is an issue that affects the usability of ADS-B for hypersonic aircraft and for
sub-orbital applications, both of which are poised to become more ubiquitous in the
near future.
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The remainder of the simplifications essentially rely on two observations.
The first observation is that when the mod operator is divided by its second
argument, a cancellation can be made instead of a division. That is,

mod(a, b)
b

=
a − b ∗ ⌊

a
b

⌋

b
=

a

b
−

⌊a

b

⌋
. (17)

The second observation is that the floor function and addition of integers are
commutative. That is, for any number x and any integer z,

�z + x� = z + �x�. (18)

Using the simplifications of Formula (17) and Formula (18) on the local
decoding formulas (10) and (12) yields

j =

⌊
1
2

+
latref
dlati

− ŶZ i

217

⌋

, (19)

and

m =

⌊
1
2

+
lonref

dloni
− ŶZ i

217

⌋

. (20)

The most significant simplification is in the encoding algorithm, and applies
to both latitude and longitude. Let x denote the position, either latitude or
longitude, and let dl denote dlati or dloni accordingly, then Formula (4) and
Formula (7) can be simplified as follows.

⌊

217
mod(x, dl)

dl
+

1
2

⌋

=
⌊

217
x

dl
+

1
2

⌋

− 217
⌊ x

dl

⌋
. (21)

The simplifications presented in this section reduce the number of operations
overall and remove computation of several expressions that strictly cancel math-
ematically. For instance, on the right hand side of Formula (21), once the term
x/dl is computed, the subtracted term can be calculated exactly as an integer.

4 Animation of the CPR Specification

In contrast to a programming language, PVS is designed to manipulate and rea-
son about real numbers. For example, the value of π in PVS is the real, irrational,
transcendental number that exactly relates a diameter to a circumference. In this
paper, the exact, ideal version of an algorithm or quantity is referred to as the
platonic version. For instance, the functions presented in Sect. 2 correspond to
the platonic version of CPR. However, since the CPR algorithm is implemented
on actual hardware, numerical imprecisions are unavoidable. In addition to the
formal verification of the CPR algorithm, the formal specification of CPR was
used to compare on a set of inputs the evaluation of the platonic algorithm versus
the algorithm implemented in both single and double precision floating-point.
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To achieve this goal, the CPR specification is written in a way that arithmetic
operators can be ground-evaluated in PVSio [5] using semantic attachments [1].
PVSio allows for the evaluation of PVS functional specifications using the ground
evaluator. A semantic attachment is a Lisp function that is called by the ground
evaluator when a particular function is not evaluable in PVS, e.g., square root,
trigonometric functions, etc. Since semantic attachments are external to the PVS
logic, ground evaluations in PVSio may not be logically sound. However, PVSio
provides a practical way to quickly test a PVS specification on concrete values.
See [2] for more details.

PVSio and, in particular, semantic attachments enable the evaluation of CPR
functions on concrete inputs using different computation models, e.g., real arith-
metic, single or double floating-point arithmetic, etc. Using this method on the
latitude encoding, it has been checked that the right-hand side of Formula (21)
performed in double precision floating-point agrees with the platonic calculation
for all angular weighted binary (AWB) latitudes [4]. These are latitudes of the
form n · 360

232 with n a whole number, and are a widely used format for provid-
ing position. Furthermore, a test of the standard formulation of the latitude
encoding using Formula (4) revealed that when performed with double precision
floating-point, the encoding differed from the correct value by 1 in 27,259 cases.
While this is a relatively small number compared to the 232 test cases, it shows
how different expressions of the same quantity may lead to numerical errors in
calculation.

The animation of the CPR specification also confirmed reported observations
that a straightforward implementation of CPR in single precision floating-point
arithmetic is unsound. The Appendix T of [7] includes several tables contain-
ing the expected output of the CPR algorithm on a reduced set of AWB lat-
itudes. Encoding these latitudes in a single precision implementation of For-
mula (4), resulted in 162 wrong encodings (with respect to the expected output
in Appendix T) over a total of 232 input AWB latitudes. In the case of local
decoding, 46 encoded positions over a total of 116 were wrongly decoded by using
single precision floating-point numbers. Finally, in the case of global decoding,
the number of wrong cases detected was 28 out of 116.

5 Conclusion

This paper presents a formal analysis of the CPR algorithm used for encod-
ing and decoding position messages for ADS-B broadcast. The formal analysis
includes a formal specification in PVS and a proof of the correctness of the algo-
rithm for a set of tightened requirements from those originally proposed. These
tightened requirements are also shown to be necessary, by proving that there
exist positions meeting the original requirements, but not decoding to a correct
position.

The paper also presents a collection of simplifications of some the mathemat-
ical expressions used in the algorithm, which are proven to be mathematically
equivalent to the original expressions, but also shown to be numerically simpler
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in the sense that the expressions evaluate in floating-point to values closer to the
platonic computation. The evaluation of these simplifications was aided by an
approach in the formal specification that allowed for the evaluation of arithmetic
operators in a variety of computation models. This approach may be useful out-
side of the current work to examine the effect of numerical imprecision on the
floating-point implementation of a platonic algorithm.

A possible further direction is the completion of the formal analysis for the
two types of CPR messages, coarse and surface, that were not addressed in this
work. This would not be theoretically difficult, as the existing specification and
proofs would serve as a clear roadmap, but would take a significant amount of
work. An area of current research is the formal numerical analysis of fixed-point
and floating-point implementations of CPR. This analysis will enable the devel-
opment of formally verified CPR implementations that could serve as reference
implementations of the standard mathematical definition.
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Abstract. Sorting is a fundamental functionality in libraries, for which
efficiency is crucial. Correctness of the highly optimised implementations
is often taken for granted. De Gouw et al. have shown that this certainty
is deceptive by revealing a bug in the Java Development Kit (JDK)
implementation of TimSort.

We have formally analysed the other implementation of sorting in
the JDK standard library: A highly efficient implementation of a dual
pivot quicksort algorithm. We were able to deductively prove that the
algorithm implementation is correct. However, a loop invariant which is
annotated to the source code does not hold.

This paper reports on how an existing piece of non-trivial Java soft-
ware can be made accessible to deductive verification and successfully
proved correct, for which we use the Java verification engine KeY.

1 Introduction

Sorting is an important functionality in every standard library. But implement-
ing sorting efficiently is a non-trivial task. Algorithms found in state-of-the-art
runtime libraries are highly optimised for cache-efficient execution on multi-core
platforms. De Gouw et al. [9] attempted to prove termination and absence of
runtime exceptions of the TimSort implementation used in the Java Develop-
ment KIT (JDK) for sorting object arrays. In the course of that attempt, they
detected a bug in the implementation, attracting a considerable amount of pub-
lic attention. TimSort is not the only sorting implementation in the JDK: Arrays
of primitive data types, such as int, float, or char, are sorted using an imple-
mentation of the Dual Pivot Quicksort (DPQS) algorithm [21], a very efficient
variation of traditional quicksort. This paper reports on the successful verifica-
tion of the highly optimised Java routine that implements the DPQS algorithm
in the JDK (both oracle’s JDK and OpenJDK). We used the deductive verifi-
cation engine KeY [3] for the task. In this paper, we show how we were able
to accommodate the code, which is not at all designed in a verification-friendly
fashion, for interactive program verification. The techniques used to make the
proof feasible can be transferred to other verification scenarios for real code.

We were able to fully verify correctness of the algorithm and did not find a bug
in the code. We found, however, like the authors of the TimSort investigation,
that a loop invariant annotated as a comment to the code does actually not hold.

c© Springer International Publishing AG 2017
A. Paskevich and T. Wies (Eds.): VSTTE 2017, LNCS 10712, pp. 35–48, 2017.
https://doi.org/10.1007/978-3-319-72308-2_3
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Contributions. We present a mechanised formal proof that the dual pivot quick-
sort implementation used in the JDK does sort an array in ascending order. This
consists of proving two properties: The resulting array is sorted, and it is a per-
mutation of the original input. In the course of the verification, lemmas about
array permutations have been identified, formulated and proved correct. These
can also be used, e.g., for the verification of other permutation-based sorting
implementations. Moreover, the paper lists refactoring mechanisms which main-
tain the semantics of a program but make it more accessible to formal verifica-
tion. The specifications in the form of annotations to the source code and the
proofs in KeY can be obtained from the companion webpage [1].

Structure of the paper. First we present the algorithm and its implementation
(Sect. 2) and the employed technologies – the Java Modeling Language and the
KeY system (Sect. 3). Then, in the main part of the paper, we describe the
specification and report on how the program was made more accessible to the
KeY tool and how it was proven correct (Sect. 4). The required effort for the
specification and verification is discussed in Sect. 5. In Sect. 6, we discuss our
discovery of an invariant contained as comment in the implementation that is
not always satisfied by the code. We draw conclusions in Sect. 7.

Related work. We did not find many publications, let alone high profile pub-
lications, specifically on formal machine-assisted verification of efficient sort-
ing implementations. But, what we found shows a marked line of development
in sorting algorithm verification that parallels the development in the field
of program verification in general. Before 2000, subsets or even idealised ver-
sions of programming languages were targeted and machine support was mostly
restricted to proof checking. The verification of merge sort by Black et al. [5]
may serve as an example. A next stage was reached by using an interactive veri-
fication system to verify single-thread programs in a real programming language,
but written by the people doing the verification. An example is the verification
of a counting sort and radix sort program [8]. Another kind of programs writ-
ten for verification uses a programming language designed for this purpose. As
described in a lab report [2], a whole array of sorting programs (selection, bub-
ble, insertion, and quick sort) written in Dafny are proved correct; Leino and
Lucio [16] report on the verification of merge sort in Dafny. In the final and
challenging stage, programs are verified as they are implemented and employed
by a great number of users, as has been done in the much acclaimed paper by
de Gouw et al. [9]. One should notice, however, that only normal termination
of the TimSort program was analysed. Galeotti et al. [7] successfully applied
their verification framework, which automatically infers loop invariants using a
combination of different static and dynamic techniques, to implementations of
less complex algorithms from the JDK package java.util. Sorting algorithms
were, however, not considered in this approach.
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2 Dual Pivot Quicksort

2.1 The Abstract Algorithm

While the worst-case runtime complexity of comparison-based sorting algorithms
is known to be in the class O(n log(n)), there have been numerous attempts to
reduce their “practical” complexity. In 2009, Vladimir Yaroslavskiy [21] sug-
gested a variation of the quicksort algorithm [10] that uses two pivot elements.
In conventional quicksort, one element – the pivot – of the array is chosen, and
the array elements are rearranged into two sections according to how they com-
pare against the pivot. In the dual pivot variant, the partition separates the
elements into the three sections according to their comparison against both piv-
ots. Figure 1 exemplarily illustrates the arrangement of the array elements after
the partitioning step. The pivot elements are shown as hatched bars. The first
part (green in the figure) contains all elements smaller than the smaller pivot
element, the middle part (blue) contains all elements between the pivots (inclu-
sively), and the third part (red) consists of all elements greater than the larger
pivot. The algorithm proceeds by sorting the three parts recursively by the same
principle.

Extensive benchmarking gave empirical evidence that dual pivot sorting per-
forms substantially better on the Java VM than the originally supplied sorting
algorithms. This led to the adoption of Yaroslavskiy’s Dual Pivot Quicksort
implementation as the OpenJDK 7 standard sorting function for primitive data
type arrays in 2011. Conclusive explanations for its superior performance appear
to be surprisingly hard to find, but evidence points to cache effects [13]. Wild
et al. [20] conclude: “The efficiency of Yaroslavskiy’s algorithm in practice is
caused by advanced features of modern processors. In models that assign con-
stant cost contributions to single instructions – i.e., locality of memory accesses
and instruction pipelining are ignored – classic Quicksort is more efficient.”

2.2 JDK’s Implementation

Like many modern programming languages, the standard library of Java uses a
portfolio of various sorting algorithms in different contexts. The standard sorting

Fig. 1. Illustration of a dual pivot partition (Colour figure online)
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algorithm for object arrays in general is TimSort, an optimised version of merge
sort. Calling sort() for a primitive data type array, however, leads to the Dual
Pivot Quicksort class.

This class, consisting of more than 3000 lines of code, makes use of no less
than four different algorithms: Merge sort, insertion sort, counting sort, and
quicksort. For the byte, char, or short data types, counting sort is used. Arrays
of other primitive data types are first scanned once to determine whether they
consist of a small number of already sorted sequences; if that is the case, merge
sort is used, taking advantage of the existing sorted array parts. For arrays with
less than 47 entries, insertion sort is used – in spite of its worse average-case
performance – to avoid the comparatively large overhead of quicksort or merge
sort.

In all other cases, quicksort is used (e.g., for large integer arrays that are
not partially sorted). This “default” option is the subject of our correctness
proof. The algorithm itself uses two different partitioning schemes. First, five
elements are drawn evenly distributed from the array range and compared; if
they are distinct, the range is partitioned with two pivot elements; otherwise,
the classical single-pivot three-way partition introduced by Hoare [10] is applied.

The method realising the central part of dual-pivot sorting comprises some
340 lines of Java code containing many optimisations that make the code less com-
prehensible and more susceptible to oversights. One example of such an optimisa-
tion is the approximation of len / 7 by (len >> 3) + (len >> 6) + 1.

Our verification shows that despite these intricacies, the implementation cor-
rectly sorts its input. An indication for the fact that the algorithm is difficult to
understand is a loop invariant added as a comment to the source code which is
not always preserved by the implementation (see Sect. 6).

3 Background

3.1 Java Modeling Language

The Java Modeling Language (JML) [14] is a behavioural interface specification
language which follows the principle of design by contract. It is the de facto stan-
dard language for the formal specification of Java programs. JML specifications
are added to the program source code as special comments beginning with /*@.
An introductory tutorial to JML can be found in [11].

The language possesses several means for structuring data on more abstract
levels, but also for a specification close to the implementation. JML allows
method-modular specifications, i.e., the behaviour of each method is described
(and later verified) individually. This keeps the complexity of the verification
task down. In the design by contract philosophy, the structuring artefact is the
method contract consisting of a precondition (requires), a postcondition condi-
tion (ensures) and a framing clause (assignable), which describes which part
of the memory may be modified by the method’s code.

All side-effect-free Java expressions may be used in specifications, in addi-
tion to specification-specific constructs like the implication connective ==>, or
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the quantifiers \forall and \exists. The expression (\forall T x; φ; ψ)
evaluates to true iff ψ is true for all elements of the type T that satisfy φ. It is
equivalent to (\forall T x; φ ==> ψ).

Besides the concept of method contracts, loop specifications are particularly
important for this verification project. Loop specifications are comprised of a loop
invariant (loop invariant), a termination measure or variant (decreases), and
a loop framing clause (assignable). Moreover, JML supports block contracts,
i.e., the specification of (non-loop) statement blocks with local postconditions
(ensures). Block contracts can be used to abstract from the effects of a block.
This allows breaking down larger methods into smaller code pieces as the code
block can be analysed separately from the enclosing method context.

JML is exception- and termination-aware, and we annotated all methods
as “normal behavior” indicating that they are expected to terminate normally
when called with a satisfied precondition.

The JML dialect that we consider in this work has a built-in data type
\seq for finite sequences (of values or object references). We also make use of
an extension to JML that allows marking specification clauses as “free”. Such
clauses are assumed to hold like their normal counterparts; but unlike them,
need not be proved. A free method precondition is hence assumed at method
entry without being proved at the method callsite. This mechanism has to be
used with care since it allows the introduction of arbitrary assumptions and
could make specifications inconsistent. We used this feature (in a sound fashion)
to reuse previously verified program properties without reproving them. The
theorem prover KeY has built in support for these language extensions.

3.2 The Program Verification System KeY

KeY is an interactive theorem prover for verifying the correctness of Java pro-
grams w.r.t. their formal JML specifications. The KeY tool is available at the
site www.key-project.org; more information may be found in the KeY Book [3].

KeY is designed as an interactive tool but has a powerful built in automatic
verification engine which can solve many proof obligations automatically. More-
over, state of the art satisfiability modulo theories (SMT) solvers like Z3 or Yices
can be called to discharge verification conditions. User interaction is relevant for
the most important decision points within the course of a proof, which include
quantifier instantiation, definition expansion, or reconfiguration of the strategy.

KeY uses a program logic called Java Dynamic Logic to formalise proof obli-
gations for program properties. It possesses a sequent calculus for that logic that
can be used to verify program properties both interactively and automatically.

The JML data type of sequences has its logical counterpart in the theory of
sequences in KeY [19]. For the verification of dual-pivot quicksort, the abstract
data type of sequences is used to abstract from arrays. This is important for
verification, as Java arrays are objects on the heap, which makes them susceptible
to effects like aliasing.

KeY usually treats integral primitive data types as unbounded mathematical
integers. Yet, it also supports the bounded bit vector semantics of Java using

https://www.key-project.org
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Listing 1. Top-level specification of the sort() method
1 class DualPivotQuicksort {
2 // . . .
3

4 /*@ public normal_behavior
5 @ ensures (\forall int i; 0 <= i && i < a.length;
6 @ (\forall int j; 0 < j && j < a.length;
7 @ i < j ==> a[i] <= a[j]));
8 @ ensures \seqPerm(\array2seq(a), \old(\array2seq(a)));
9 @ assignable a[*];

10 @*/
11 void sort(int[] a) { ... }
12 }

modulo operations and overflow checks, but is less efficient in these modes. In
the presented case study, the verification was first completed using unbounded
integer semantics. Only after finishing this simpler task did we prove that this
verification was sound since no integer operation ever overflows.

4 Specification and Verification

Usually, the first challenge of a verification endeavour is to come up with a
suitable and concise specification. Sorting algorithms have the neat property
that the top-level specification can be stated very concisely and comprehensibly,
which is not the case for specifications in general.

The top-level specification for the sort method, which is the top-level method
to be verified for our verification task, is shown in Listing 1. This JML specifi-
cation covers the following aspects of the behaviour of the method sort:

(a) On termination, the array is sorted in increasing order (lines 5–7).
(b) On termination, the array contains a permutation of the initial array content

(line 8).
(c) The implementation does not modify any existing memory location except

the entries of the array (line 9).
(d) The method always terminates (this is the default for JML if a diverges

clause has not been specified).
(e) The method does not throw an exception. This is implied since the contract

is declared normal behavior.

Stability of the sorting algorithm is not a relevant issue here as dual-pivot
quicksort is applied only to arrays of primitive values.

More specification constructs have to be provided for the verification task, like
invariants and contracts for helper methods. These are “auxiliary” specifications
that guide the proof but are not part of the requirement specification.
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4.1 Proof Management by Gentle Problem Adaptation

The dual-pivot quicksort implementation to be verified is embedded into the
portfolio solver of the JDK that is used to sort primitive values. In order to
treat it with the formal verification tool KeY, we have slightly adapted the code
to accommodate it to the style of programs that KeY can deal with comfortably.

Most importantly, our work focuses on the verification of the dual pivot imple-
mentation. The other sorting schemes from which the JDK’s portfolio sorting
mechanism may choose were not the main goal of this verification (for insights
regarding the other schemes, see Sect. 6).

While we claim that we verified the actual JDK implementation, a few
semantics-preserving refactorings were necessary to make the code accessible
for verification with KeY. A few of these changes were due to the less-supported
Java features, but more often they were needed due to a high complexity of the
implementation:

– The single-pivot and dual-pivot implementations were encapsulated in sepa-
rate classes. The part of the dual-pivot partition code that swaps all elements
equal to the pivots to the sides of the sorted array range was encapsulated in
its own class as well.

– Bit shift operations like x >>> k were replaced by divisions x / 2k, which
are semantically equivalent when applied to non-negative values of x.

– We extracted various code blocks into new private methods. Local variables
became fields of the class.

For an interactive verification project, it is more important to structure the
endeavour into more manageable parts than for an automatic one since the
human operator needs to be able to keep an overview. We employed two mech-
anisms to achieve this: modularisation (by splitting the code into smaller units)
and separation of concerns (by considering only one aspect of the specification
at a time).

To modularise the problem, we broke down the code into smaller units by
refactoring the large sort method into smaller new methods. Besides disentan-
gling the different sorting algorithms, it significantly reduced the complexity of
the individual proof obligations. The parts of the code that suggested themselves
for method extraction were the partitioning implementation, the initial sorting
of the five chosen elements, and several small loops for moving the indices used
in the partitioning algorithm.

Besides this modularisation into smaller sub-problems, we also reduced com-
plexity by separating three parts of the requirement specification (a) the sort-
edness property, (b) the permutation property, and (c) the absence of integer
overflows.

Each aspect of the specification contains particular (auxiliary) specification
clauses, but the aspects also share common elements. It is desirable that the
common elements need not be reproved in every verification step. To achieve this,
we added annotations verified for an earlier specification part as assumptions
for the following parts by using the mechanism of free JML clauses. Since these
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Listing 2. Specification of the partitioning method split
1 static int less, great; // static variables introduced duringmethod extraction to reflect
2 static int e1,e2,e3,e4,e5; // local variables of the enclosing method.
3
4 /*@ normal_behaviour
5 @ requires right - left + 1 > 46 && 0 <= left && right < a.length;
6 @ requires (\exists int x; left < x && x < right; a[x] < pivot1);
7 @ requires (\exists int y; left < y && y < right; a[y] > pivot2);
8 @ requires a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5];
9 @ requires left < e1 && e1 < e2 && e2 < e3 && e3 < e4 && e4 < e5 && e5 < right;

10 @ requires a[e2] == pivot1 && a[e4] == pivot2;
11 @ requires (\forall int i; 0 <= i && i < left; (\forall int j; left <= j && j < a.length; a[i] <= a[j]));
12 @ requires (\forall int i; 0 <= i && i <= right; (\forall int j; right < j && j < a.length; a[i] <= a[j]));
13 @ ensures (\forall int i; left <= i && i < less-1; a[i] < pivot1);
14 @ ensures a[less-1] == pivot1;
15 @ ensures (\forall int j; less <= j && j <= great; pivot1 <= a[j] && a[j] <= pivot2);
16 @ ensures a[great+1] == pivot2;
17 @ ensures (\forall int l; great+1 < l && l <= right; a[l] > pivot2);
18 @ ensures left < less-1;
19 @ ensures great < right-1;
20 @ ensures (\forall int i; 0 <= i && i < left; (\forall int j; left <= j && j < a.length; a[i] <= a[j]));
21 @ ensures (\forall int i; 0 <= i && i <= right; (\forall int j; right < j && j < a.length; a[i] <= a[j]));
22 @ assignable less, great, a[left..right];
23 @*/
24 private static void split(int[] a, int left, int right, int pivot1, int pivot2) {...}

clauses had been proven correct previously, reusing them later as assumptions
is sound.

The absence of implicit exceptions (e.g., division by zero or a null derefer-
ence) cannot be switched off in KeY and was thus checked thrice.

The atomic units for contract-based modular verification systems like KeY are
the methods of a program. The target method sort has about 340 lines of code
which causes difficulties concerning the resources required by the prover, and,
moreover, makes the interactive verification task unmanageable. To modularise
the task, we annotated relevant blocks (in particular the elementary steps of
the algorithm and the loop bodies) of the methods using block contracts and
then (manually) extracted the blocks as synthetic new methods using the block
contracts as their method contracts. Local variables of the enclosing method
became new class fields in the process such that they can be accessed from more
than one method. This method extraction preserves the program semantics for
single-threaded execution cases; the extracted fields would be shared between
threads which makes the code no longer reentrant. For future work we plan to
perform such extraction automatically.

4.2 The Sortedness Property

Proving sortedness is quite straight forward by means of assertions on the ele-
ments in the array. Quantification and arithmetic over integers are all that is
needed. Due to space limitations, we cannot show all intermediate loop invari-
ants and method contracts here, but they can be found in the sources available
on the companion web page [1].
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Exemplarily, we show in Listing 2 the precondition of the method split
which implements the partitioning part of the algorithm. The actual partitioning
property as illustrated in Fig. 1 is covered in lines 13–17. The remainder encodes
auxiliary properties needed for the recursive verification to be inductive, and
to facilitate proof automation (e.g., lines 3 and 4 provide a direct witness that
ensures the termination of the inner loop, which could also be derived from lines
8 and 10, but giving the witness in the precondition minimises the need for
interaction).

4.3 The Permutation Property

The textbook quicksort algorithm orders an array by continued swapping of its
elements. The resulting array is thus easily proved to be a permutation of the
original. However, in the optimised Java implementation, the two pivot elements
get special treatment: they are exchanged for the boundary elements during the
split phase and excluded from the recursive calls. As a consequence, there are
intermediate states where the array is only a permutation of the initial array if
the pivots are restored to their place.

Let us recall that a sequence b is called a permutation of sequence a iff a and
b have the same length n and there is an injective mapping σ from [0, . . . , n − 1]
onto itself such that b[i] = a[σ(i)] for all 0 ≤ i < n. The mapping σ is called a
witness of the permutation property.

The theory of sequences in KeY contains a predicate seqPerm(a,b), which
is true if and only if the sequence a is a permutation of sequence b. Already in
Listing 1, the function array2seq occurred. It transforms the (heap-dependent)
content of Java arrays into (heap-independent) mathematical sequences. This
frees us from the burden to incorporate the heap in all statements and allows us
to make use of the rich theory of the JML data type \seq of finite sequences built
into the KeY theorem prover. Besides the possibility to expand the definition of
\seqPerm using the permutation witness, KeY has calculus rules that allow one
to reason about the predicate exploiting its reflexivity, symmetry and transitivity
and the fact that it is maintained by a transposition.

The following lemma helps to deal with the problem described in the previous
paragraph (see [18, Corollary 1] for a proof).

Lemma 1. Let a, b be two arrays such that b is a permutation of a and such
that there are two indices i, j with a[i] = b[i] and a[j] = b[j].

Then there is a witness σ such that σ(i) = i and σ(j) = j.

The lemma was needed to show in KeY that there exists a witness to establish
the permutation invariant of the main loop of the partitioning algorithm. The
used fixed points are the left- and right-most element of the currently sorted
subarray. Only if the pivot values are stored to these places do we obtain a
permutation of the original input array.

Lemma 1 and, in fact, a much more general statement have been proved
using KeY. Further background material and full proofs of related lemmas and
theorems on permutations can also be found in the technical report [18].
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4.4 Absence of Integer Overflow

For the verification of the sortedness and permutation properties, we treated
the int data type in Java as mathematical integers. This made the deductive
verification tasks more accessible, both to the user and to the theorem prover.
Afterwards we switched the integer mode of KeY to overflow checking: All oper-
ations are still on mathematical integers, but for every operation in the code, an
additional assertion is added that the result of the operation is not beyond the
limits of the Java primitive data type. If these assertions can be discharged, it is
ensured that the proof conducted on mathematical integers is also valid for the
bounded data types of Java.

Moreover, since all clauses formulated over mathematical integers still hold,
the statements proved in earlier passes can soundly be used for this task as
assumptions (again using free JML clauses).

We were able to prove absence of overflows in the implementation. Most
proofs were comparatively simple. Only the code that computes the indices for
the pivot candidates was a challenge. Here, quantiles of the possible array indices
are considered, and this computation relies on bit shift operations. The deductive
engine of KeY was overwhelmed by the arithmetic used in this loop-free piece of
code, and the verification did not succeed. For this single obligation, we hence
employed the bounded verification engine CBMC [6] (which encodes C and Java
verification challenges as SAT problems). This proof obligation was discharged
fully automatically in a few seconds by CBMC. Since the bounded verifier did
make any bounding assumptions, this instance of bounded verification implies
full correctness.

4.5 Sorting Pivot Candidates

The pivot elements used by the quicksort algorithms are chosen as quantiles from
a set of five elements taken from the array. These five elements are sorted using
an insertion sort algorithm whose loops have been manually unrolled for perfor-
mance reasons yielding four consecutive nested if-statements. This if-cascade is
a real-world example of a piece of code where conventional weakest precondition
computation results in exponentially many paths to be considered. We employed
manually annotated block contracts to bring complexity back to linear. Alterna-
tively, we could have used KeY’s ability to recombine proof goals into one if they
represent the same node in the control-flow graph reached on different paths [17].
Similar effects can be obtained by using an efficient weakest precondition cal-
culus [15] after transforming the program into a sequence of assumptions and
assertions.

5 Verification Effort

The first part of the proof consisted of verifying the sortedness property and
termination without exceptional behaviour. Including the rather complex process
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of identifying and implementing suitable adaptations of the problem to a scale
where the proof became feasible in KeY, the proof took about two person months.

Similarly, the permutation proof required some effort outside the actual work
with KeY, including the design of the lemma described in Sect. 4.3, its incorpo-
ration into the KeY rule set, and improving the proof work-flow by making it
possible to use the loop invariants that were already proven in the sortedness
proof. Apart from these tasks, the proof of the permutation property required
roughly two weeks.

The proof of the sortedness property required a total of 510,439 sequent cal-
culus rule applications on the 1892 proof branches created by symbolic execution.
KeY’s automatic mode takes about 20 min to conduct this proof. Most of the rule
applications were automatic, but in 132 cases, calculus rules had to be applied
manually. 186 proof branches were closed by appeal to the SMT solver Z3, while
the others were discharged by KeY’s native theorem prover.

The proof of the permutation property required more interaction than the
sortedness proof, since the rules on sequences and permutation are not usually
included in the automatic mode of KeY. The proof of the permutation property
of the dual pivot partitioning, which was by far the hardest part, was achieved
using a proof script to automate interactive rule applications; the script takes
roughly 20 min to execute on a machine with a core i7 and 8 GB of memory.

Pair Insertion Sort. Besides the different quicksort variants, JDK’s portfolio
sorting engine uses a variation of insertion sort if there are less than 47 elements
to be sorted. Instead of the standard algorithm, a more efficient scheme called
pair insertion sort has been implemented that inserts two elements at a time.

During the latest VerifyThis verification competition [12] at ETAPS 2017,
this variation of insertion sort has been put up as specification and verification
challenge. During the event, one competitor succeeded in verifying a pseudo code
version of the algorithm within the given 90 min. In the aftermath of the event,
a full verification of the actual Java implementation using KeY has been carried
out and is available on the webpage [1].

6 Invalid Invariant in Single Pivot Quicksort

If there are two or more equal elements among the initially chosen five, the
sorting engine resorts to a single pivot partition. While we concentrated on
dual-pivot quicksort for the case study reported in this paper, we also verified
the implementation of single-pivot quicksort under a slight simplification.1

In the course of this verification, we discovered that a loop invariant, stated
as a comment in the source code, is not valid. This invariant is attached to the
loop for partitioning the array. It states that the array is divided into three parts

1 The first element of the array range to be sorted acts as the pivot element, instead
of choosing the median of the initially chosen five elements, as in the JDK imple-
mentation.
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Fig. 2. After a single pivot partition, the array can be in a state where the invariant
does not hold as the last part contains one misplaced element at the second position.

according to the general quicksort paradigm: (1) elements less than the pivot,
(2) elements equal to the pivot, and (3) elements greater than the pivot.

Due to the efficient implementation, this invariant may not hold when the
partitioning is finished. In many cases, the single pivot partition terminates in
a state as shown in Fig. 2, where the last part contains an element that should
have been placed in the central part because it is equal to the pivot.

This violation does not lead to incorrect sorting. The part violating the invari-
ant will itself be sorted recursively, leaving the offending element in the leftmost
place, which guarantees a correct order on termination. Since smaller parts of
the array with less than 47 elements will eventually be sorted using insertion
sort, the violation of the invariant does not persist.

The code can easily been modified such that the violated invariant becomes
valid by addition of an extra comparison. A non-representative statistical anal-
ysis with random arrays showed that the algorithm is more efficient without the
correction.

7 Conclusions

What conclusions can be drawn from this successful verification attempt? It
confirms that a real-world optimised algorithm implementation covering more
than 300 lines can be verified using existing verification technology if . . .

1. . . . the property to be verified can be concisely specified and formulated. The
specification language and verification technology must possess the right data
structures to speak about the program at the right abstraction level – or it
must be possible to define them effectively.

2. . . . sensible modularising refactorings can be made. In the case of this ver-
ification, the nature both of the portfolio solver and the sorting algorithm
had points at which modularisation was natural. In the present case we were
also able to separate concerns by considering the sortedness, permutation and
overflow properties separately. The challenges of verifying code that has not
been written with verification in mind is also discussed in [4], where modu-
larisation and separation of concerns are identified as being indispensable for
interactive post-hoc verification.
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3. . . . one is willing to add auxiliary specifications. The modularisation intro-
duced by splitting and extraction of individual methods reduces the com-
plexity of individual proof tasks at the price of a considerable amount of
intermediate specifications. In the case of KeY, additional user interaction is
required to guide the proof. Other tools do this using even more code anno-
tations.
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Abstract. We present a formal proof of the classical Tarjan-1972 algo-
rithm for finding strongly connected components in directed graphs. We
use the Why3 system to express these proofs and fully check them by
computer. The Why3-logic is a simple multi-sorted first-order logic aug-
mented by inductive predicates. Furthermore it provides useful libraries
for lists and sets. The Why3 system allows the description of programs in
a Why3-ML programming language (a first-order programming language
with ML syntax) and provides interfaces to various state-of-the-art auto-
matic provers and to manual interactive proof-checkers (we use mainly
Coq). We do not claim that this proof is new, although we could not find
a formal proof of that algorithm in the literature. But one important
point of our article is that our proof is here completely presented and
human readable.

1 Introduction

Formal proofs about programs are often very long and have to face a huge
amount of cases due to the multiplicity of variables, the details of programs, and
the description of their meta-theories. This is very frustrating since we would like
to explain these formal proofs and publish them in scientific articles. However
if one considers simple algorithms, we would expect to explain their proofs of
correctness in the same way as we explain a mathematical proof for a not too
complex theorem. This surely can be done on algorithms dealing with simple
recursive structures [5,19,29]. But we take here the example of an algorithm on
graphs where sharing and combinatorial properties holds.

Tarjan-1972’s algorithm for finding strongly connected components in
directed graphs is very magic [1,24,26]. It consists in an efficient depth-first
search in graphs which traces the bases of the strongly connected components.
It computes in linear time the strongly connected components. In textbooks, the
presentation uses an imperative programming style that we will refresh in Sect. 2,
but for the sake of the simplicity of the proof, we will describe this algorithm
in a functional programming style with abstract values for vertices in graphs,
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with functions between vertices and their successors, and with data types such
that lists (representing immutable stacks) and sets. This programming style will
much ease the readability of our formal proof.

We use the Why3 system [3,14] and the Why3-logic to express these proofs.
Our proof is rather short, namely 235 lines (38 lemmas) including the pro-
gram texts. Most of the lemmas and the 74 proof obligations generated by the
Why3 system for our program are proved automatically using Alt-Ergo (1.30),
CVC3 (2.4.1), CVC4 (1.5-prerelease), Eprover (1.9), Spass (3.5), Yices (1.0.4),
Z3 (4.4.0) except 2 of them which are manually checked by Coq (8.6) with a few
ssreflect features [13,15]. Coq proofs are 233-line long (65 + 168).

Our claim is that the details of our proof are human readable and intuitive.
The proof will be fully described in our paper. Therefore it could be an example
of teaching algorithms with their formal proofs. Finally our article can present a
useful step to compare with other formal methods, for instance within Isabelle
or Coq [2,6–8,16,18,20–22,27,28].

The next section will present the algorithm; Sects. 3 and 4 present the invari-
ants and pre-/post-conditions, Sect. 5 describes the formal proof. We conclude
in Sect. 6.

2 The Algorithm

A strongly connected component in a directed graph is a nonempty maximal set
of vertices in which any pair of vertices can be joined by a path. Therefore when
two vertices x and y are in such a component, there exist paths from x to y and
from y to x. In the rest of the paper we shall just say connected components for
strongly connected components.

Tarjan-1972 algorithm [1,24,26] for finding (strongly) connected components
in a directed graph performs a single depth-first search traversal. It maintains a
stack of visited vertices and a numbering of vertices. Initially the stack is empty
and the serial number of all vertices is −1. Then vertices get increasing serial
numbers in the order of their visit. Each vertex is visited once. The search is
realized by a recursive function which starts from any unvisited vertex x, pushes
it on the stack, visits the directly reachable vertices from x, and returns the
minimum value of the numbers of all vertices accessible from x by at most one
cross-edge. A cross-edge is an edge between an unvisited vertex and an already
visited vertex. If there is no such edge, the returned value is +∞. When the
returned value is equal to the number of x, a new component cc containing x
is found and all vertices of cc are then at top of the stack, x being the low-
est. Therefore the stack is popped until x and the numbers of the component
members are set to +∞, which withdraws them from further calculations in the
following visits of vertices.

To make this algorithm more explicit, we consider the below recursive func-
tion printSCC which prints the connected components reachable from any given
vertex x and returns an integer. It works with a given stack s, an array num of
numbers, and a current serial number sn. The program written in two columns
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Fig. 1. An example: in the graph on left, vertices are numbered and pushed onto the
stack in the order of their visit by the recursive function printSCC. When the first
component {0} is discovered, vertex 0 is popped; similarly when the second component
{5, 6, 7} is found, its vertices are popped; finally all vertices are popped when the
third component {1, 2, 3, 4, 8, 9} is found. Notice that there is no cross edge to a vertex
with a number less than 5 when the second component is discovered. Similarly in the
first component, there is no edge to a vertex with a number less than 0. In the third
component, there is no edge to a vertex less than 1 since we then set the number of
vertex 0 to +∞.

adopts a syntax close to the one of (Why3-)ML. The set of vertices directly
reachable from vertex x by a single edge is represented by the set (successors
x). This set can be implemented by a list of integers. We suppose that initially
sn is set to 0 and that all entries in num are equal to −1. The constant max int
represents +∞. Figure 1 provides an example of execution of that function.
let rec printSCC (x: int) (s: stack int)

(num: array int) (sn: ref int) =

Stack.push x s;

num[x] ← !sn; sn := !sn + 1;

let min = ref num[x] in

foreach y in (successors x) do

let m = if num[y] = -1

then printSCC y s num sn

else num[y] in

min := Math.min m !min

done;

if !min = num[x] then begin

repeat

let y = Stack.pop s in

Printf.printf "%d " y;

num[y] ← max_int;

if y = x then break;

done;

Printf.printf "\n";

min := max_int;

end;

return !min;

The proof of correctness of this algorithm in original Tarjan’s article relies
on the structure of the connected components with respect to the spanning tree
(forest) corresponding to the recursive calls of printSCC. A first lemma (Lemma
10 in the paper) states that if x and y are in a same component, their smallest
common ancestor (i.e. the one with highest number) in the spanning tree is also
in the same component. Therefore a connected component is always contained
in one subtree of the spanning forest. The root of that minimum subtree is called
the base of the component (Tarjan named it the root). Therefore the algorithm
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Fig. 2. Spanning forest: LOWLINK(x) is 0, 1, 1, 1, 2, 5, 5, 5, 4, 4 for 0 ≤ x ≤ 9

is designed to discover the bases of connected components. Lemma 12 proves
that a vertex x is a base of a connected component if and only if the number
of x is equal to the value of so-called LOWLINK(x), which corresponds to the
value computed by printSCC with x as input.

LOWLINK(x) = min ({num[x]} ∪ {num[y] | x
∗=⇒ z ↪→ y

∧ x and y are in the same connected component})

where x
∗=⇒ z means that z is a descendant of x in the spanning forest and

z ↪→ y means that there is a cross-edge from z to y (that is either an edge to
an ancestor y of x, or to a cousin y of x, or to a descendant y of a child of x).
Notice that in the second case, cousin y could only be at left of x in the spanning
tree. The trick of the algorithm is that the LOWLINK function can be simply
calculated through a single depth-first-search.

The proof of that Lemma 12 is about spanning trees and not about the
recursive function which implements the depth-first-search. In order to make a
formal proof of the algorithm, we may either formalize spanning trees and extract
a program from these formal specifications, or directly manipulate the program
and adapt the previous abstract proof to the various steps of this program. We
prefer the latter alternative which is more speaking to a programmer and maybe
easier to understand.

Our program will be expressed in a functional programming style. Thus we
avoid side-effects and mutable variables. This Why3-ML program is based on two
mutually recursive functions dfs1 and dfs which respectively take as arguments
a vertex x and a set of vertices roots, and which return the number n of the
oldest vertex accessible by at most one cross-edge. Both functions work with an
environment represented by a record with four fields: stack for the working stack,
sccs for the set of already computed connected components, sn for the current
available serial number and num for the numbering mapping. The environment
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at end of both functions is also returned in their results. Thus the result of dfs1
and dfs is a pair (n, e′) where n is the number of the oldest vertex accessible
by at most one cross-edge and e’ is the environment at end of these functions.
The main program tarjan calls dfs with all vertices as roots and an empty
environment, i.e. an empty stack, an empty set of connected components, a null
serial number and a constant mapping of vertices to −1.
let rec dfs1 x e =

let n = e.sn in

let (n1, e1) = dfs (successors x) (add_stack_incr x e) in

let (s2, s3) = split x e1.stack in

if n1 < n then (n1, e1) else

(max_int(), {stack = s3; sccs = add (elements s2) e1.sccs;

sn = e1.sn; num = set_max_int s2 e1.num})

with dfs roots e = if is_empty roots then (max_int(), e) else

let x = choose roots in

let roots’ = remove x roots in

let (n1, e1) = if e.num[x] �= -1 then (e.num[x], e) else dfs1 x e in

let (n2, e2) = dfs roots’ e1 in (min n1 n2, e2)

let tarjan () =

let e0 = {stack = Nil; sccs = empty; sn = 0; num = const (-1)} in

let (_, e’) = dfs vertices e0 in e’.sccs

The data structures used by these functions are the ones of the Why3 stan-
dard library. For lists we have the constructors Nil, Cons and the function ele-
ments which returns the set of elements of a list. For finite sets, we have the
empty set empty, and functions add to add an element to a set, remove to
remove an element from a set, choose to pick an element in a set, and cardinal,
is empty with intuitive meanings. We also use maps (instead of mutable arrays)
with functions const denoting the constant function, [] to get the value of an
element and [←] to create a new map with an element set to a given value.
Thus we can define an abstract type vertex for vertices and a constant vertices
for the finite set of all vertices in the graph. The type env of environments is a
record with the four fields stack, sccs, sn and num whose meanings were stated
above.
type vertex

constant vertices: set vertex

function successors vertex : set vertex

function max_int (): int = cardinal vertices

type env = {stack: list vertex; sccs: set (set vertex);

sn: int; num: map vertex int}

Finally the functions dfs1 and dfs use the following three functions. Two of them
handle environments: add stack incr pushes a vertex on the stack and sets its
number to the value of the current serial number which is then incremented,
set max int sets all the elements of a stack to max int(). The polymorphic func-
tion split returns the pair of sublists produced by decomposing a list with respect
to the first occurrence of an element.
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let add_stack_incr x e = let n = e.sn in

{stack = Cons x e.stack; sccs = e.sccs; sn = n+1; num = e.num[x ← n]}

let rec set_max_int (s : list vertex)(f : map vertex int) =

match s with

| Nil → f

| Cons x s’ → (set_max_int s’ f)[x ← max_int()]

end

let rec split (x : α) (s: list α) : (list α, list α) =

match s with

| Nil → (Nil, Nil)

| Cons y s’ → if x = y then (Cons x Nil, s’) else

let (s1’, s2) = split x s’ in ((Cons y s1’), s2)

end

We will assume that the imperative program printSCC behaves as the functions
dfs1 and dfs. Our formal proof will only work on these two functions. We exper-
imented several formal proofs of imperative versions, but they always looked
over-complex (that complexity is mainly notational, since one always has to refer
to the value of a variable at a given point of the program). To be convinced that
the functions dfs1 and dfs follow the algorithm in the original paper, we notice
that instead of printing the connected components, we accumulate them in the
sccs field of environments and produce them as the result of the main function
tarjan. We also use dfs to recursively execute the iterative loop of printSCC.
The heart of the algorithm is in the body of function dfs1 where we split the
working stack with respect to the vertex x giving two lists s2 and s3 (the last
element of s2 is x ). Then we test if the elements of s2 forms a new connected
component. In fact this test could be done before splitting, but the formal proof
looks clearer if we keep them in that order.

Notice a small modification between our presentation and the one of the
original version. In dfs1, we test n1 < n instead of n1 �= n. In the imperative
program, the minimum is initialized to the number of x. Thus this initial value
is used for two distinct purposes: the case when x is the root of a new connected
component and the case when x is the top of the working stack. In the latter case
we prefer returning +∞ for dfs which corresponds to the simpler formula E .

LOWLINK(x) = min {num[y] | x
∗=⇒ z ↪→ y (E)

∧ x and y are in the same connected component}
A final remark is that we could have inlined dfs1 in dfs or transformed the

call to dfs1 into a call to dfs with a singleton set of roots as argument. Both
alternatives do not simplify the proof, nor the invariants. Altogether we feel our
presentation easier to read.

3 Invariants

This algorithm collects connected components in the sccs field of environments
and we have to maintain that property along the execution of the program.
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Partial connected components are contained in the working stack, and as soon
as they are complete, they are moved from the stack to the sccs field. These
partial connected components are connected components of the graph restricted
to the elements of the stack and the sccs field, that is up to the already explored
subgraph. These partial connected components are merged as soon as a back
edge may access to an older ancestor in the spanning tree. This notion is not
easy to manipulate since we would have also to mark the edges that we have
visited. Therefore we break that property into several smaller pieces.

First we have to speak of the explored vertices. The num field marks visited
vertices when their num value is not −1. There are two kinds of visited vertices
as in any depth-first-search algorithm. The black vertices are fully explored by
the algorithm, namely the call of dfs1 has been totally performed on them.
The gray vertices are partially explored by that function, and the algorithm has
still to visit several of its descendants in the spanning tree. The gray vertices
represent the call stack of the recursive function dfs1. The non-visited vertices
are said white, they correspond to a num field equals to −1 in the environment.

The connected components are either fully black and are then members of
the sccs field, or they contain a gray vertex, or are fully white. A gray vertex can
access to any vertex pushed after it in the working stack (i.e. before in the list
representing the stack). Conversely any vertex in the stack can access to a gray
vertex pushed in the stack before it (i.e after in the list representing the stack).
This invariant property of the stack and environment is illustrated in Fig. 3 and
can be checked on the example of Figs. 1 and 2.

We now define formally the invariants. The graph is defined with an abstract
type vertex for the type of vertices, a constant vertices for the set of all vertices
in the graph, a function successors giving the set of vertices directly reachable
by a single edge (see Sect. 2). We also have the following axiom and definition:

axiom successors_vertices:

∀x. mem x vertices → subset (successors x) vertices

predicate edge (x y: vertex) = mem x vertices ∧ mem y (successors x)

Fig. 3. Invariants on colors and stack
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where mem and subset are the predicates denoting the membership in a set
and the subset relation between two sets. Therefore edge is the binary relation
defining the graph. The Why3 standard library defines paths in graphs as an
inductive predicate and we also use a reachability predicate:

inductive path vertex (list vertex) vertex =

| Path_empty: ∀x: vertex. path x Nil x

| Path_cons: ∀x y z: vertex, l: list vertex.

edge x y → path y l z → path x (Cons x l) z

predicate reachable (x y: vertex) = ∃l. path x l y

Strongly connected components are naturally defined as non-empty maximal
sets of vertices connected in both ways by paths.

predicate in_same_scc (x y: vertex) = reachable x y ∧ reachable y x

predicate is_subscc (s: set vertex) =

∀x y. mem x s → mem y s → in_same_scc x y

predicate is_scc (s: set vertex) = not is_empty s ∧
is_subscc s ∧ (∀s’. subset s s’ → is_subscc s’ → s == s’)

The colors of vertices are defined by membership to two sets: blacks and grays
for the set of black and gray vertices. A white vertex is neither in blacks, nor in
grays. (The grays set can also be implicit, since gray vertices are the non-black
elements of the working stack, but we feel simpler to keep it explicit). These two
sets blacks and grays are ghost variables for the Why3-ML program. They are
used inside the logic of the proof, but they affect neither the control flow, nor
the result of the program. We will treat them differently since blacks will be a
new ghost field in environments and grays will be an extra ghost argument to
the functions dfs1, dfs and tarjan. Adding the gray set as another new field of
environments was intractable in the proof. We will discuss that point later. Thus
the new type of environments is as follows:

type env = {ghost blacks: set vertex; stack: list vertex;

sccs: set (set vertex); sn: int; num: map vertex int}

and the main invariant (I) of our program will be: (I)

wf_env e grays ∧ ∀cc. mem cc e.sccs ↔ subset cc e.blacks ∧ is_scc cc

where wf env defines a well formed environment and the other conjunct specifies
that the black connected components are exactly the elements of the sccs field.

The definition of a well formed environment is done in three steps. First we
define a well formed coloring: the grays and blacks sets are disjoint subsets of
vertices in the graph; the elements of the stack is the union of grays and the
difference of blacks and the union of elements of sccs; the elements of sccs are
all black. The operations union, inter, diff on sets are defined in the Why3
standard library. But we had to define the big union set of axiomatically.

predicate wf_color (e: env) (grays: set vertex) =

let {stack = s; blacks = b; sccs = ccs} = e in

subset (union grays b) vertices ∧ inter b grays == empty ∧
elements s == union grays (diff b (set_of ccs)) ∧
subset (set_of ccs) b
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In the next two steps, we use two new predicates and a new definition. The
no black to white predicate states that there is no edge from a black vertex to
a white vertex. Any depth-first search respects that property since the black
set is saturated by reachability. The simplelist predicate says that a list has no
repetitions i.e. there is no more than one occurrence of any element. Our working
stack satisfies that predicate since any vertex is visited no more than once. (The
num occ function belongs to the Why3 standard library)

predicate no_black_to_white (blacks grays: set vertex) =

∀x x’. edge x x’ → mem x blacks → mem x’ (union blacks grays)

predicate simplelist (l: list α) = ∀x. num_occ x l ≤ 1

The rank function gives the position of an element in a list starting from the end
of the list. In a working stack of length �, the ranks of the bottom and top of
the stack are 0 and � − 1 (see Figs. 1 and 3). The rank function allows to order
vertices in the stack with respect to their positions. It could be done just with
numbers of the vertices, but we shall discuss that point later. (lmem and length
are the Why3 functions for membership in and length of a list)

function rank (x: α) (s: list α): int =

match s with

| Nil → max_int()

| Cons y s’ → if x = y && not (lmem x s’) then length s’ else rank x s’

end

Thewell formednumbering is a bit long to state formally, but is quite easy to under-
stand. Numbers of vertices can be −1, non-negative or +∞ (i.e. max int()). Finite
numbers range between −1 and sn (excluded). The serial number sn is the num-
ber of non-white vertices. A vertex has number +∞ if and only if it is in the set of
already discovered connected components. It has number −1 exactly when it is a
white vertex. Finally numbers of vertices in the stack are ordered as their ranks.

A well-formed environment is well colored, well numbered, respects the non-
black-to-white property, contains a stack without repetitions and the partial
connected components property described above. Thus there should be a path
between any gray vertex and any higher-ranked vertex in the stack, and con-
versely any vertex in the stack can reach a lower-ranked gray vertex (see Fig. 3).

predicate wf_num (e: env) (grays: set vertex) =

let {stack = s; blacks = b; sccs = ccs; sn = n; num = f} = e in

(∀x. -1 ≤ f[x] < n ≤ max_int() ∨ f[x] = max_int()) ∧
n = cardinal (union grays b) ∧
(∀x. f[x] = max_int() ↔ mem x (set_of ccs)) ∧
(∀x. f[x] = -1 ↔ not mem x (union grays b)) ∧
(∀x y. lmem x s → lmem y s → f[x] < f[y] ↔ rank x s < rank y s)

predicate wf_env (e: env) (grays: set vertex) = let s = e.stack in

wf_color e grays ∧ wf_num e grays ∧
no_black_to_white e.blacks grays ∧ simplelist s ∧

(∀x y. mem x grays → lmem y s → rank x s ≤ rank y s → reachable x y)

∧
(∀y. lmem y s → ∃x. mem x grays ∧ rank x s ≤ rank y s ∧ reachable y x)
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4 Pre-/Post-conditions

The previous invariant (I) of Sect. 3 is surely a pre-condition and a post-
condition of the dfs1 and dfs functions. We have several simple extra pre-
conditions, namely the argument x of dfs1 should be a white vertex and all
gray vertices must reach x. Similarly for dfs, the vertices in roots can all be
accessed by all gray vertices.

The post-conditions are more subtle. The simplest one is the monotony prop-
erty subenv which relates the environments at the beginning and at the end of
the function. It states that the working stack is extended by a new black area,
that the black set of vertices and the set of discovered connected components are
augmented, and that the numbers of vertices in the initial stack are unchanged.
Vertices whose numbers change are either the new white vertices pushed onto
the stack or the vertices moved to the sccs field; in the latter case they do not
belong to the initial stack. (++ is the infix append operator)

predicate subenv (e e’: env) =

(∃s. e’.stack = s ++ e.stack ∧ subset (elements s) e’.blacks) ∧
subset e.blacks e’.blacks ∧ subset e.sccs e’.sccs ∧
(∀x. lmem x e.stack → e.num[x] = e’.num[x])

There are four main post-conditions. For dfs1, the last one P4 tells that the white
vertex x argument of dfs1 is blackened at the end of the function. The other
post-conditions give properties of the number n returned in the resulting pair.
One way of specifying n is to give its definition by equation (E) of Sect. 2. Then
we would have to handle white paths which are not easy to handle. Instead
of paths we will only consider edges with the following three post-conditions
which describe implicit properties of the result n. Post-condition P1 says that n
cannot be greater than the number of x. Then n is either +∞ and then x is also
numbered +∞, or n is the number of some vertex in the stack reachable from x
(post-condition P2). Thirdly if an edge starts from the new part of the resulting
stack to a vertex y in the old stack, then n is smaller than the number of that
y (post-condition P3). For dfs, all roots are either black or gray at the end of
the function (post-condition P ′

1). The other post-conditions P ′
2, P ′

3, P ′
4 are the

natural extension to sets of the post-conditions of dfs1. These post-conditions
use the following predicates.

predicate num_reachable (n: int) (x: vertex) (e: env) =

∃y. lmem y e.stack ∧ n = e.num[y] ∧ reachable x y

predicate xedge_to (s1 s3: list vertex) (y: vertex) =

(∃s2. s1 = s2 ++ s3 ∧ ∃x. lmem x s2 ∧ edge x y) ∧ lmem y s3

predicate access_to (s: set vertex) (y: vertex) =

∀x. mem x s → reachable x y

The function dfs1 can now be written as follows.

let rec dfs1 x e (ghost grays) =

requires{mem x vertices}

requires{access_to grays x}

requires{not mem x (union e.blacks grays)}
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(* invariants *)

requires{wf_env e grays}

requires{∀cc. mem cc e.sccs ↔ subset cc e.blacks ∧ is_scc cc}

returns{(_, e’) → wf_env e’ grays}

returns{(_, e’) → ∀cc. mem cc e’.sccs ↔ subset cc e’.blacks ∧ is_scc cc}

(* post-conditions *)

returns{(n, e’) → n ≤ e’.num[x]} (*P1*)

returns{(n, e’) → n = max_int() ∨ num_reachable n x e’} (*P2*)

returns{(n, e’) → ∀y. xedge_to e’.stack e.stack y → n ≤ e’.num[y]} (*P3*)

returns{(_, e’) → mem x e’.blacks} (*P4*)

(* monotony *)

returns{(_, e’) → subenv e e’}

let n = e.sn in

let (n1, e1) = dfs (successors x) (add_stack_incr x e) (add x grays) in

let (s2, s3) = split x e1.stack in

if n1 < n then (n1, add_blacks x e1) else

(max_int(), {blacks = add x e1.blacks; stack = s3;

sccs = add (elements s2) e1.sccs; sn = e1.sn;

num = set_max_int s2 e1.num})

(The keywords “requires” and “returns” represent pre- and post-conditions;
“returns” allows pattern matching on the result). The functions dfs and tar-
jan have similar pre-/post-conditions.

with dfs roots e (ghost grays) =

requires{subset roots vertices}

requires{∀x. mem x roots → access_to grays x}

(* invariants *)

requires{wf_env e grays}

requires{∀cc. mem cc e.sccs ↔ subset cc e.blacks ∧ is_scc cc}

returns{(_, e’) → wf_env e’ grays}

returns{(_, e’) → ∀cc. mem cc e’.sccs ↔ subset cc e’.blacks ∧ is_scc cc}

(* post-conditions *)

returns{(n, e’) → ∀x. mem x roots → n ≤ e’.num[x]}

returns{(n, e’) → n = max_int() ∨ ∃x. mem x roots ∧ num_reachable n x e’}

returns{(n, e’) → ∀y. xedge_to e’.stack e.stack y → n ≤ e’.num[y]}

returns{(_, e’) → subset roots (union e’.blacks grays)}

(* monotony *)

returns{(_, e’) → subenv e e’}

if is_empty roots then (max_int(), e) else

let x = choose roots in

let roots’ = remove x roots in

let (n1, e1) = if e.num[x] �= -1 then (e.num[x], e)

else dfs1 x e grays in

let (n2, e2) = dfs roots’ e1 grays in (min n1 n2, e2)

let tarjan () =

returns{r → ∀cc. mem cc r ↔ subset cc vertices ∧ is_scc cc}

let e0 = {blacks = empty; stack = Nil; sccs = empty;

sn = 0; num = const (-1)} in

let (_, e’) = dfs vertices e0 empty in e’.sccs
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5 The Formal Proof

The proof of these post-conditions relies on three main remarks inside dfs1. In
the function dfs, proofs are more routine and could be treated automatically.

First as we already discussed about partial connected components, it is clear
that when the stack e1.stack is split into two pieces s2 and s3 with x as the last ele-
ment in s2, the elements of s2 form a subset of a connected component. Any vertex
y in s2 has higher rank than x and since x is gray in the call of dfs on the successors
of x, invariant (I) at end of dfs says that x reaches y. Conversely, we remark that
the extension of the stack s3 appended with x is black by the monotony condition
at end of dfs. Therefore the elements of s2 are either black or x. So invariant (I)
at end of dfs says that vertex y in s2 can reach a gray vertex z of lower rank, since
s2 only contains black vertices and x, the rank of z is smaller than or equal to the
rank of x. Therefore again by invariant (I) at end of dfs, there is a path from z to
x. Hence any element of s2 is connected both ways to x and therefore the elements
of s2 form a subset of a connected component.

In dfs1, in case we have n1 < n, we prove that there is a gray vertex in
the connected component of x (i.e. the same component as all elements in s2).
Therefore the connected component is not fully black and it cannot be inserted
in the sccs field of the environment. By post-condition P ′

2 of dfs, we know than
x can reach a vertex y in the stack with number n1 (n1 cannot be +∞ since
n1 < n = e.sn ≤ +∞). We also have by the monotony condition in dfs:

e1.num[y] = n1 < n = e.sn

= (add_stack_incr x e}).num[x]

= e1.num[x]

By invariant (I), the vertex y has a strictly smaller rank than x. Again by (I),
the vertex y can reach a gray vertex z with rank lower than y in the stack at end
of dfs. Therefore x can reach z gray with lower rank. Thus z can also reach x by
invariant (I). We indeed proved there is a gray vertex z in the same connected
component as x.

In dfs1, in case we have n1 ≥ n, we prove that s2 is the connected component
of x. Let us consider a vertex y in the same connected component as x. We show
that y belongs to s2. We proceed by contradiction. Suppose y is not in s2. Since
there is a path from x in s2 to y not in s2, there is an edge from x′ to y′ on that
path such that x′ is in s2 and y′ is not in s2. Moreover x′ and y′ are in the same
component as x. We have three subcases:

– y′ is in the set union of all members of sccs. This means that x is also in that
big union. Therefore x would be black. Impossible since x is white.

– y′ is in the working stack e1.stack but not in the s2 part. Therefore y′ is
in s3 (the other part of the split) and has rank strictly lower than the one
of x. By (I) at end of dfs, we have that the number of y′ is strictly less
than the number of x. Then there are two cases. When x′ is x, Then y′ is a
successor of x. Post-condition P ′

1 states that n1 is smaller than the number
of y′. Then n1 < n. Impossible. When x′ is not x, the vertex x′ is not the
last element of s2 and the edge from x′ to y′ crosses the border between the
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stacks e1.stack and Cons x s3, which are the stacks at end and beginning of
dfs. Hence n1 is less than the number of y′ in e1 by post-condition P ′

3. Thus
n1 < n. Impossible.

– y′ is white. When x′ = x, then y′ is in the successors of x. It cannot be white
by post-condition P ′

4. When x′ is not x, vertex x′ is in the black extension of
the stack at end of dfs. Therefore x′ is black. This is impossible since there is
no edge from a black vertex to a white vertex.

Thus the elements of s2 form a complete connected component. At end of dfs1,
the vertex x is turned to black and therefore the component can be inserted in
the field sccs of the current environment.

The three main above remarks are implemented in the Why3-ML program
by adding intermediate assertions in the body of dfs1. Namely the body is now:

let n = e.sn in

let (n1, e1) = dfs (successors x) (add_stack_incr x e) (add x grays) in

let (s2, s3) = split x e1.stack in

assert{is_last x s2 ∧ s3 = e.stack ∧
subset (elements s2) (add x e1.blacks)};

assert{is_subscc (elements s2)};

if n1 < n then begin

assert{∃y. mem y grays ∧ lmem y e1.stack ∧ e1.num[y] < e1.num[x] ∧
reachable x y};

(n1, add_blacks x e1) end

else begin

assert{∀y. in_same_scc y x → lmem y s2};

assert{is_scc (elements s2)};

assert{inter grays (elements s2) = empty};

(max_int(), {blacks = add x e1.blacks; stack = s3;

sccs = add (elements s2) e1.sccs; sn = e1.sn;

num = set_max_int s2 e1.num}) end

where the polymorphic predicate is last is defined by:

predicate is_last (x: α) (s: list α) = ∃s’. s = s’ ++ Cons x Nil

These assertions are proved automatically except for the third and the fourth
ones manually proved in Coq along the lines of the second and the third remarks
explained above. All pre-conditions and post-conditions are automatically proved
(see Table 1 or the detailed session at [9]). These Coq proofs use the compact
ssreflect syntax, several lemmas proved in Why3 and are 65 + 168 line-long. The
body of the functions dfs and tarjan is unchanged except for two assertions
which ease the behaviour of the automatic provers. In dfs, one adds

assert{e.num[x] �= -1 ↔ (lmem x e.stack ∨ mem x e.blacks)};

before the −1 test for the number of x. In tarjan we add this assertion

assert{subset vertices e’.blacks};

which ensures the blackness of all vertices before returning the result. Notice
finally the sixth assertion in dfs1 which caused us many problems and eases the
automatic proof of properties about sets.
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There is no space here to fully describe the lemmas that we added in our
proof. We have 8 lemmas about ranks in lists, 4 about simple lists, 12 about
sets, 3 about sets of sets, 2 about paths, 5 about connected components, 4
special ones to show proof obligations. We present three typical lemmas. The
first one states that when the vertex x is in the list s, the rank of x in s is
invariant by the extension of s.

lemma rank_app_r:

∀x:α, s s’. lmem x s → rank x s = rank x (s’ ++ s)

The second lemma shows that when a path l joins x to y and the vertex x is in
a set s and the vertex y is not in s, then there is an edge from vertex x′ in s to
vertex y′ not in s such that x reaches x′ and y′ reaches y. In fact x′ and y′ are
on that path l. This lemma is critical to reduce properties on paths to properties
on edges.

lemma xset_path_xedge:

∀x y l s. mem x s → not mem y s → path x l y →
∃x’ y’. mem x’ s ∧ not mem y’ s ∧ edge x’ y’ ∧

reachable x x’ ∧ reachable y’ y

The third lemma is used in the second assertion in the body of dfs1. The state-
ment is not interesting by itself and this lemma is part of the four specialized
lemmas. It shows the use of the by logical connector in Why3 [11]. This opera-
tor is no more than an explicit cut-rule meaning that in order to prove A with
A by B, one can prove B and B → A in current environment.

lemma subscc_after_last_gray:

∀x e.g. s2 s3. wf_env e (add x g) →
let {blacks = b; stack = s} = e in

s = s2 ++ s3 → is_last x s2 →
subset (elements s2) (add x b) → is_subscc (elements s2)

by (access_to (add x g) x

by inter (add x g) (elements s2) == add x empty)

∧ access_from x (elements s2)

Table 1. These are the provers results in seconds on a 3.3 GHz Intel Core i5 proces-
sor. The two last columns contains the numbers of verification conditions and proof
obligations. Notice that there could be several VCs per proof obligation.

Provers Alt-Ergo CVC3 CVC4 Coq E-prover Spass Yices Z3 All #VC #PO

38 lemmas 2.35 0.23 5.79 0.66 0.75 0.21 9.99 77 38

split 0.09 0.2 0.29 6 6

add stack incr 0.01 0.01 1 1

add blacks 0.01 0.01 1 1

set max int 0.02 0.02 1 1

dfs1 53.52 12.88 36.39 3.06 28.06 9.01 142.92 218 24

dfs 4.6 0.23 11.63 0.31 16.77 51 35

Tarjan 0.44 0.44 16 6

Total 61.04 13.54 53.81 3.06 28.72 0.75 0.21 9.32 170.45 371 112
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6 Conclusion

We presented a formal proof of Tarjan’s algorithm for computing strongly con-
nected components in a graph. There are other (less efficient) algorithms. We
did prove the two-passes Kosaraju’s algorithm in a similar way, but the proof
for Tarjan is more involved. Many of the lemmas in our proof can be used for
other algorithms on graphs such as acyclicity test, articulation points, or bicon-
nected components. We had to fight with properties on sets, maybe because of
a misusage of the Why3 library and the distinction between == (membership in
both directions) and the extensional equality =.

In our presentation, we treated differently the blacks and grays sets. The
main reason is that the automatic provers have difficulties when the data is too
structured. We indeed started with flat formalizations where environment fields
were passed as arguments of the functions. Then the automatic provers worked
splendidly. But the presentation was uglier [10]. As soon as you have structures
such as records, the automatic proofs are more complex and we had to help them
with the inlining strategies of the Why3 ide. At time of writing this article, we
could not succeed in introducing the grays set in the environment.

We also use the rank function and it is unclear if reasoning with the num
field could be sufficient. Indeed if you want to escape painful properties about
spanning trees and white paths, you have to speak about positions in the working
stack. The ranks are an explicit expression of these positions. Moreover we had
versions of Tarjan algorithm with just ranks and no numbers. The properties are
then simpler, since there are less many variables in the algorithm: stack, blacks,
grays, sccs and functions return ranks. But we experienced that the presentation
is further from the initial sequential algorithm and therefore was less convincing.

We also said that white paths are difficult to handle and we then took an
implicit description of the results of functions dfs1 and dfs. One of the reasons
is that a white path is a volatile notion, since its color could be modified on its
intermediate vertices. The proofs are indeed longer than with simple edges.

Notice also that we only prove partial correctness. Total correctness is very
easy since a variant with lexicographic ordering on the pair made of the number
of white vertices and the number of roots is clearly decreasing.

This comes to the comparison with other formalisms. We have a similar proof
fully in Coq/ssreflect [12] with the Mathematical Components library. The proof
is 920-line long and a version with explicit expression of the results is 951-line
long for the version of our algorithm with just ranks and no numbers depending
upon the accounting of the Coq parts. Notice that the use of Mathematical
Components makes Coq proofs much shorter. Still our proof is between two or
four times shorter (up to the accounting of our Coq proofs), and we think that
our proof is also much more readable. Coq demanded some agility to follow the
same partial correctness proof. It would also be interesting to redo our proof
in Isabelle or another system. In the literature, many articles are about graph
concurrent algorithms, either embedded in Coq [25] or in separation logic [17,23]
or both. None of them treat strong connectivity except [22] by Kosaraju method
and with reasoning more on spanning trees than on the effective program.
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Hence, for a non-obvious algorithm, Why3 allowed us to achieve a not too
long formal proof, not much sophisticated, as simple-minded as first-order logic,
and fully described in this article. The system is easy to use, but very unstable
which makes uneasy incremental development, although the replay function [4]
of the Why3 ide greatly helps. But we gained in readability, which seems to us
a very important criterion in formal proofs of programs. Thus we were able to
present here the full details of this formal proof.

Acknowledgments. Thanks to the Why3 group at Inria-Saclay/LRI-Orsay for very
valuable advices, to Cyril Cohen and Laurent Théry for their fantastic expertise in Coq
proofs, to Claude Marché and the reviewers for many corrections.
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12. Cohen, C., Théry, L.: Full script of Tarjan SCC Coq/ssreflect proof. Technical
report, Inria (2017). github.com/CohenCyril/tarjan

www.cs.princeton.edu/~appel/vfa/
www.cs.princeton.edu/~appel/vfa/
http://why3.lri.fr/download/manual-0.86.1.pdf
https://doi.org/10.1007/978-3-642-54108-7_10
https://doi.org/10.1007/978-3-642-54108-7_10
http://hal.inria.fr/hal-00875395
http://hal.inria.fr/hal-00967132
http://arthur.chargueraud.org/research/2010/cfml
http://jeanjacqueslevy.net/why3/graph/abs/scct/2/scc.html
http://hal.inria.fr/hal-01404935
http://github.com/CohenCyril/tarjan


A Semi-automatic Proof of Strong Connectivity 65

13. Coq Development Team: the coq 8.5 standard library. Technical report, Inria
(2015). coq.inria.fr/distrib/current/stdlib
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Abstract. This paper discusses an approach to verification of assembly
code using theWhy3 platform.As a case study,we prove the functional cor-
rectness of hand-optimized routines formultiplyingmultiprecision integers
on 8-bit microcontrollers which use an efficient version of Karatsuba’s algo-
rithm. We find that by carefully constructing an underspecified model of
an instruction set architecture in Why3, and specifying a few simple lem-
mas, verification can succeed using a high degree of automation in a short
amount of time. Furthermore, our approach is sensitive to subtle memory
aliasing issues, demonstrating that formal verification of security-critical
assembly code is not only feasible, but also effective.

Keywords: Why3 · Assembly language · Karatsuba multiplication

1 Introduction

Hand-optimized assembly code is usually hard to read and reason about. How-
ever, in application areas such as cryptographic engineering, the level of con-
trol over the code generation process it offers makes it a common means of
implementing primitive operations. At the same time, the correctness of such
implementations is critical for their security.

Formal verification often concerns itself with programs written in a higher
level programming language. In these environments, the structured nature of
programs aids reasoning about their properties, for example by allowing the for-
mulation of loop invariants. In contrast, programs written in assembly language
are more unstructured in nature. In these cases, the code itself does not facilitate
structural reasoning, and so the structure of a correctness proof must be inferred
from the code explicitly. Second, the semantics of assembly languages are more
fine-grained, requiring more primitive operations to achieve a certain result, and
consequently many more steps are needed in an accompanying deductive proof
of its correctness.

This paper presents an approach to verifying optimized assembly code using
the Why3 verification framework [8]. We show that this framework provides the
tools to tackle both challenges, by allowing us to logically partition unstructured
code to facilitate proofs, and enabling automation to take care of most inter-
mediate steps needed in these proofs. We discovered that stepwise refinement
of proofs — aimed at minimizing the need for user-supplied assertions, thus
maximizing the utility of automated provers — allows this approach to scale.
c© Springer International Publishing AG 2017
A. Paskevich and T. Wies (Eds.): VSTTE 2017, LNCS 10712, pp. 66–83, 2017.
https://doi.org/10.1007/978-3-319-72308-2_5
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Using this approach, we have verified the multiprecision multiplication rou-
tines for the 8-bit AVR microarchitecture presented in [9], up to a 96 × 96-bit
multiplication routine that employs Karatsuba’s algorithm. We have also found
that formal verification exposes a potential issue in some of the larger routines
that is not likely to be detected by testing alone.

Organization of this paper. The remainder of this section will provide an overview
of Why3, and the selected case study. In Sect. 2, we will discuss the general app-
roach we propose for the verification of assembly programs using Why3. Section 3
shows how this approach has been applied in constructing a model for the AVR
instruction set architecture, with Sect. 4 describing how we have subsequently
used this model to verify the assembly programs we selected. Sections 5 and 6
conclude the paper by discussing related and future work.

1.1 The Why3 Verification Platform

Why3 [8] consists of two parts: a logical specification language, with libraries for
reasoning about mathematical objects (such as integers, maps and sets) and a
programming language in the form of WhyML. A verification condition generator
extracts proof obligations from annotated WhyML programs; these are then
discharged by either automated or interactive theorem provers. This process is
illustrated in Fig. 1.

WhyML’s primary use is as an intermediate language for verification of struc-
tured programs. However, it also has features that are useful in the context of
unstructured code. In particular, its support for abstract blocks, type invariants
and bit-vector theories turn out to be highly useful.

Using Why3 provides two major benefits. First, its verification condition
generator and support for automated theorem provers allows the manual effort
to focus more on what we need to prove, instead of how to prove it. Second, it
allows using multiple theorem provers at no additional cost; allowing us to apply
the state of the art in the field of automated (and interactive) theorem proving,
and preventing a verification effort from getting hampered by the limitations of
any single theorem prover.

WhyML programs

Why logic

Alt-Ergo CVC3 CVC4 E Z3 Coq PVS

automated provers interactive provers

Fig. 1. Graphical representation of Why3 workflow
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1.2 Multiprecision Multiplication

Optimization of multiprecision arithmetic for the AVR ATmega family of 8-bit
microcontrollers is an active research area, with many possible implementation
strategies [12]. As a case study for this paper, we selected the hand-optimized
multiplication routines developed by Hutter and Schwabe [9]. These routines
currently hold the speed records for multiplication on this architecture, and are
written in the context of cryptographic engineering, to serve as a primitive for
efficiently implementing elliptic curve computations. This makes it an interesting
target for formal verification for two reasons:

1. These routines are used as primitives in other cryptographic code [6], and so
their correctness is security-critical. Bug attacks have been demonstrated to
lead to practical exploits [4]. Exhaustive testing of a multiplication routine is
not feasible — testing a routine which multiplies two 32-bit numbers would
already mean we have to check 264 cases, and random testing is known to fail
to catch bugs that are triggered with low probability [5].

2. Hand-optimized assembly code is difficult to analyse; as it will contain various
tricks that would not suggest themselves at a higher level, such as direct
manipulation of the carry flag, and bit manipulations aimed at eliminating
conditional jumps.

In fact, the programs we selected for our case study are examples of branch-
free code. In cryptographic engineering, branch-free code is preferred to avoid
side-channel attacks [11,13]. This has the effect of eliminating control flow
structure from assembly programs entirely, making verification potentially even
harder. In essence, branch-free code is a sequential flow program, and a correct-
ness proof of such code is a long sequence of symbolic rewriting steps. Note that
when verifying assembly code that does contain jumps, the first step is also to
split a program into a set of branch-free fragments [14], which then need to be
verified in turn. Therefore, in this paper we focus purely on this type of code.

2 Verification Approach

To verify assembly code, we need a model of the underlying instruction set archi-
tecture. Such a model consists of a representation of the machine memory (i.e.,
the organization of the register file, condition flags, and memory), and a set of
WhyML functions corresponding to the necessary instructions. Such a model can
employ underspecification, as we can safely ignore features of a microarchitec-
ture that are not used. The usefulness of a model can be increased by building a
richer logical infrastructure on top of it. For example, to allow reasoning about
multiprecision integers, we introduce the function uint in Sect. 3.1.

By modelling each instruction as a single WhyML function, expressing an
assembly fragment as a WhyML program conforming to our model is a simple
transformation which does not require special tools.
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2.1 Validation of the Formal Model

The trustworthiness of formally verified software is only as good as the tools
used for verification. This paper tries to address that issue by enforcing internal
consistency of our model. That is, we carefully avoid introducing any logical
axioms in our Why3 formalization that are not present in its standard library
(or supporting theorem provers).

Furthermore, since all instructions are modelled using WhyML functions, we
can simply provide full implementations of these functions (in terms of WhyML
primitives). This will ensure that Why3 actually checks that the postconditions
are possible to satisfy, and that they are consistent with respect to any type
invariants specified, which is not the case had we modelled instructions using
abstract function prototypes.

This approach also allows the model to act as a bridge between the offi-
cial specification of an instruction set architecture, and a Why3 specification
that is most suited for reasoning about the correctness of a particular piece of
code. Since we use Why3 to verify the function body of a modelled instruction
with respect to its specification, this specification can be tailored to fit a cer-
tain problem domain. At the same time, the function body can be created to
adhere closely to an official reference document. This can increase the confidence
in the correctness of a machine model without exposing automated provers to
unnecessary complexity when using this model to verify programs.

2.2 Logical Partitioning

In principle the WhyML code obtained by translating an assembly program
can be verified as any other — for example, we can insert assert statements
anywhere to indicate conditions that are needed to achieve a particular result.
However, for the scalability of our approach, it is important that the demands
placed on automated provers can be kept under control for larger programs.

Using Why3’s abstract mechanism, it is possible to group any number of
instructions together in an abstract block and specify the effect that they col-
lectively have on the program. This will hide all computations inside the block
from being seen by theorem provers. The usefulness of this strategy rests on two
observations:

1. Automated provers find proofs more efficiently when presented with as little
irrelevant information as necessary.

2. By grouping related operations together, their collective result can be effec-
tively summarized (by the user) as a formula that brings us closer to the
result we are trying to prove.

The benefits of logically partitioning a program in this way are maximized if
we are able to verify large groups of instructions fully automatically. To achieve
this, a model should be optimized (using stepwise refinement) by trying it out on
small program fragments, with the aim of reducing the number of user-inserted
assert statements needed.
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3 Modelling the AVR Instruction Set

The AVR architecture is a RISC architecture, containing 32 general purpose 8-bit
registers. Most instructions take two operands; with the first operand functioning
both as a source and destination for the operation. Memory is only accessed
via dedicated load (LD, LDD) and store (ST, STD) instructions, which require
a memory address to be stored (as a 16-bit value) in one of three dedicated
register pairs, denoted in mnemonic form as X for the register pair (R26, R27),
Y for the pair (R28, R29) and Z for the pair (R30, R31). The register file itself
is also accessible, residing at memory address 0. The instructions that are most
important in our case study are instructions for adding and subtracting with and
without carry (ADD, ADC, SUB, SBC) and multiplication (MUL). The MUL instruction
deviates from the two-operand convention by always producing its result in the
register pair (R0, R1). In Karatsuba multiplication, bitwise exclusive or (EOR) and
arithmetic right shift (ASR) also play an important role, as well as the BST and
BLD instructions, which transfer a single bit between a general purpose register
and the T flag in the CPU status register.

We model the AVR address space in Why3 as a map of addresses to integers,
where we restrict the allowed values in the range of this map to conform to those
representable as an unsigned 8-bit value by adding a type invariant :

type address_space = { mutable data: map int int }
invariant { forall i. 0 <= self.data[i] < 256 }

This type is embellished with some syntactic sugar for accessing elements of an
address space, allowing us to write a succinct specification of the MOV instruction,
which copies a value from one register to another:

type register = int
val reg: address_space
val mov (dst src: register): unit

writes { reg }
ensures { reg = old (reg[dst<-reg[src]]) }

Here, the notation m[addr <-value ] means the address space m obtained by
assigning value to the address addr, and leaving all other values unaltered.

The AVR also contains eight 1-bit status flags, of which only the carry flag
and ‘transfer bit’ (T flag) are relevant to our case study. We model these flags as
a boolean value, and provide a conversion operator to interpret them as integers:

type cpu_flag = { mutable value: bool }
function (?) (x: cpu_flag): int = if x.value then 1 else 0
val cf: cpu_flag

Reasoning about the carry flag as an integer allows for the specification of the
ADD instruction as follows:

val add (dst src: register): unit
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writes { cf, reg }
ensures { reg = old (reg[dst <- mod (reg[dst]+reg[src]) 256]) }
ensures { ?cf = old (div (reg[dst]+reg[src]) 256) }

By specifying the result in terms of the mod and div operations, automated
provers are easily able to use arithmetical theories to deduce that ?cf*256 +
reg[dst] is exactly equal to the sum of the input values.

As an alternative approach, we have also attempted to model the register
file using Why3’s bit-vector theories; as a practical benefit, this would allow us
to get rid of the type invariant mentioned above. However, it appears that the
additional conversion function needed to convert a register to an integer value
(similar to the one needed for the 1-bit status flags) hampered the efficacy of
SMT solvers.

The largest Karatsuba routine we verified also required the AVR stack to
store values; we have similarly modelled this as an address space:

val stack_pointer: ref int
val stack: address_space

let push (src: register): unit
writes { stack, stack_pointer }
reads { reg }
ensures { stack = old(stack[!stack_pointer <- reg[src]]) }
ensures { !stack_pointer = old !stack_pointer - 1 }

This implicitly assumes that the stack and the space for registers and memory
does not overlap. In our case study (as in most code), that is something that
can be easily statically verified, and so we have not focused on this property.

3.1 Representing Multiprecision Integers

Integers that are too large to be represented as a single 8-bit value are represented
by multiple bytes stored consecutively in memory (or the register file), with the
least significant byte occupying the lowest address. To enable reasoning about
this, we define a function uint n A b, taken to mean the integer formed by
examining the n bytes stored in address space A, starting at position b. We can
define this function in Why3 as uint n A b =

∑
0≤i<n 28i · A[i + b].

Automated provers, however, work much better when given an explicit first-
order expression of a multiprecision integer for a concrete value of n, for instance
by fully expanding uint 2 A b using the rule uint 2 A b = A[b] + 256 ·A[b+ 1].
We can achieve this by adding these explicit rewrite rules as auxiliary lemmas,
together with a set of meta directives instructing Why3 to expand matching
occurrences of the uint function accordingly before handing a formula off to an
SMT solver. This functionality is crucial, as it allows us to easily state properties
about multiprecision integers in our model, while at the same time presenting
them in a format that SMT solvers are able to cope with.
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3.2 Using Ghost Code to Reduce Annotations

A drawback of modelling the AVR registers in combination with logical parti-
tioning is that updates to individual registers will be hidden by the abstract
block: even if only a single register was altered, the only thing known outside
the abstract block is that the register file changed. This necessitates the spec-
ification of extra user-supplied annotations stating what part of the register file
remained constant.

Modelling each register individually (as a ref int) would solve this prob-
lem, as Why3 will in this case keep of track of which registers changed inside
the abstract block. However, this approach involves other drawbacks. For
instance, Why3’s type system does not allow creating an array of ref int,
precluding the simple specification of the uint function of the previous section.

We solve this issue by combining both approaches, using ghost code [7]. In
addition to modelling the register file as specified in Sect. 3, we also model it a
second time using individual ref int’s, which are marked as ghost to prevent
them from affecting the semantics of the code under verification. We can then
specify as postcondition for each abstract block that the individual ghost registers
must be equal to those in the actual register file. Ensuring that this postcondition
holds is then simply done by updating only the registers that have actually been
modified — information that can be obtained by a simple static analysis — in
the ghost register file. We find that by using this trick Why3 is able to provide
SMT solvers with enough information so that unnecessary annotations can be
eliminated, reducing the total assertions needed by half.

3.3 Model Validation

As mentioned in Sect. 2.1, we are also interested in demonstrating the consistency
and validity of our model. As an example of this, consider the ADD instruction,
whose specification (as an abstract function prototype) was given in Sect. 3. The
reference manual [1] defines the effects of the ADD Rd, Rr instruction in terms of
operations on 8-bit registers, instead of the language of arithmetic:

Rd′ ← Rd +8 Rs

CF ← (Rd7 ∧ Rr7) ∨ (Rr7 ∧ ¬Rd′
7) ∨ (¬Rd′

7 ∧ Rd7)

Where +8 means 8-bit addition, and R w7 denotes the most significant bit of R w.
We can let the implementation of our model of the ADD instruction follow this

specification closely by using Why3’s bit-vector theories, which allow reasoning
about both arithmetical and bitwise operations on bit-vectors of various sizes,
and map onto the bit-vector theories of SMT solvers that support this reasoning
(cvc4 and z3). In this case, the BV8 theory, which deals with 8-bit operations,
allows the above specification to be followed closely. The function BV8.add can
be used for performing the 8-bit addition, and the function BV8.nth for accessing
individual bits:
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let add (dst src: register): unit
writes { reg, cf }
ensures { reg = old (reg[dst <- mod (reg[dst]+reg[src]) 256]) }
ensures { ?cf = old (div (reg[dst]+reg[src]) 256) }

= let rd = BV8.of_int (Map.get reg.data dst) in
let rr = BV8.of_int (Map.get reg.data src) in
let rd’ = BV8.add rd rr in
reg.data <- Map.set reg.data dst (BV8.to_uint rd’);
if BV8.nth rd 7 && BV8.nth rr 7 ||

BV8.nth rd 7 && not BV8.nth rd’ 7 ||
not BV8.nth rd’ 7 && BV8.nth rr 7

then
cf.value <- 1

else
cf.value <- 0

Using this definition, Why3 will generate proof obligations to show that the
postconditions and the type invariant of the register file hold. The proof of
the type invariant is immediately discharged by the prover Alt-Ergo, and the
first postcondition is easily solved by cvc3. The second postcondition is more
complex, but is discharged by cvc4 in less then a minute.

By constructing the model in this manner, we can be confident that our model
is as internally sound as the Why3 platform itself. Furthermore, by keeping the
model readable we can get a high degree of confidence that our model captures
the relevant parts of the AVR instruction set architecture correctly.

It should in theory also be possible to externally validate the model by using
Why3’s code extraction feature to turn it into an executable AVR simulator,
and testing that against a reference implementation. However, code extraction
of programs involving bit-vectors turned out to not be possible with the version
of Why3 we used. Furthermore, since AVR devices can only be re-programmed a
limited number of times, such validation could be costly if we were to use actual
hardware as a reference.

3.4 Underspecification

Since our case study only required a small subset of the entire AVR microarchi-
tecture, we have used underspecification in our model in the following areas:

– We only model instructions that are actually needed in the case study.
– We have only modelled the flags that are actually needed; since none of the

other flags are ever used as inputs during any of the computations.
– We have modelled the register file and memory contents as two separate

address spaces, and disallow accessing the register file in the LD and ST instruc-
tions, since the code we verify does not use this feature.

– We assume that there is enough room on the stack for the PUSH and POP
instructions to work safely.
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To properly handle loads and stores to and from memory, it is also necessary
to know what constitutes a valid address for accessing SRAM. However, the
allowed range of addresses is specific to each type of AVR microcontroller, and
so we cannot verify this in general. A possible approach would be two specify
two abstract constants in our model, ram begin and ram end, and add as a
precondition to the LD and ST instructions that addresses must fall inside the
interval [ram begin, ram end).

However, in our case study, memory is only accessed using addresses supplied
by the caller, and so we have no choice but to assume that these addresses are
correct anyway. Therefore we have not added an address sanity check in the
current model.

4 Verifying AVR Assembly Code

The target of our verification effort was the branch-free multiplication routines
presented by Hutter and Schwabe [9]. These consist of routines using a quadratic
complexity “schoolbook” method called operand-scanning for integer sizes from
24 bits to 48 bits, as well as routines using the subquadratic Karatsuba method
for multiplying integers of sizes from 48 bits to 256 bits.

For verification, we targeted all “schoolbook” routines for multiplying inte-
gers of 48 bits and less, as well as the routines using only one application of
Karatsuba’s method, which are all the routines for argument sizes of 96 bits and
less. The routines for larger argument sizes require multiple (recursive) applica-
tions of Karatsuba’s method. These do seem to be in reach of our approach, but
we have not yet finished verification of these versions.

4.1 Operand-Scanning Multiplication

The operand-scanning multiplication can be summarized as follows. Let A =∑
0≤i<n 28i · ai and B =

∑
0≤i<n 28i · bi. Their product can be computed as:

A · B =
∑

0≤i,j<n

28(i+j) · ai · bj

This can be implemented as an algorithm which iterates over the operands ai
and bj , repeatedly multiplying and adding. This is exactly how the operand-
scanning algorithms presented in [9] work. As an example, we show an AVR
assembly version for multiplying two 16-bit values in Fig. 2, where A is stored in
the register pair (R2,R3), and B is in the pair (R7,R8), with the result rendered in
the registers (R12,R13,R14,R15). This algorithm first computes 216 · a1b1 + a0b0,
and then adds in 28 · a0b1 and 28 · a1b0 using two sequences consisting of ADD
and ADC instructions.1

During verification, it appears the difficult part in the code of Fig. 2 is showing
that after the last ADC in each such sequence, the carry flag is guaranteed to be
1 As this version was not included in [9], we implemented it ourselves.
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CLR R23

MUL R3, R8

MOVW R14, R0

MUL R2, R7

MOVW R12, R0

MUL R2, R8

ADD R13, R0

ADC R14, R1

ADC R15, R23

MUL R3, R7

ADD R13, R0

ADC R14, R1

ADC R15, R23

let mul16()

ensures {

uint 4 reg 12 = old(uint 2 reg 2*uint 2 reg 7)

}

= clr r23;

mul r3 r8;

movw r14 r0;

mul r2 r7;

movw r12 r0;

mul r2 r8;

add r13 r0;

adc r14 r1;

adc r15 r23;

mul r3 r7;

add r13 r0;

adc r14 r1;

adc r15 r23

Fig. 2. 16 × 16 bit multiplication in AVR assembly (left) and WhyML (right)

zero. At the end of the first sequence, this can still be easily manually asserted
and automatically proven (by the prover z3), since the pair (R14,R15) contained
at most the value 255·255 = 254·28+1 before this sequence is executed, meaning
that R15 contains at most the value 254. However, to prove that the second
sequence does not result in a carry requires showing that a product of two 16-bit
values fits in 32-bits. Manual attempts at showing this for larger routines with
many sequences of ADD and ADC instructions resulted in a substantive amount
of assertions, initially slowing down the verification effort. However, by iterative
improvements of the proof for the small routine of Fig. 2, we discovered that
adding a version of the aforementioned fact as a lemma in Why3 is beneficial:

Lemma. Let m be a map from addresses to integers, where for each address i
we have 0 ≤ m[i] < 256. Then for all i, j we have 0 ≤ m[i] · m[j] ≤ 255 · 255.

Note that the condition in this lemma matches the type invariant in the def-
inition of an address space in Sect. 3 closely. Using this lemma, the prover
cvc4 can automatically prove the code in Fig. 2 to be correct; that is, in
the WhyML translation, the postcondition uint 4 reg 12 = old(uint 2 reg
2*uint 2 reg 7) is automatically verified in less than a second. The lemma
itself is instantly proven by the prover Alt-Ergo.

More importantly, it turns out that this single lemma, together with the
rewrite rules for the uint function mention in Sect. 3.1, are enough to prove the
correctness of all other operand-scanning algorithms presented in [9] in a short
amount of time, as shown in Table 1. This demonstrates that if we optimize
proofs on small examples, automated provers can be successfully utilized to
verify scaled-up versions without requiring further user intervention.
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4.2 Karatsuba Multiplication

Starting at 48-bit multiplications, subtractive Karatsuba multiplication is found
to be more efficient on the AVR than operand-scanning multiplication. In this
case, the process for multiplying two n-bit integers A and B, looks as follows
(slightly adapted from [9]):

– Write A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

– Let L = Al · Bl

– Let H = Ah · Bh

– Let M = |Al − Ah| · |Bl − Bh|
– If Al ≥ Ah ⇐⇒ Bl ≥ Bh, obtain the result as

A · B = L + 2n/2(L + H − M) + 2nH

– Otherwise, obtain the result as

A · B = L + 2n/2(L + H + M) + 2nH

Note that to implement this algorithm as a strictly sequential program, some
assembly tricks are needed. In particular, to obtain the result, and in the compu-
tation of M , a value needs to be conditionally negated. To achieve that without
using a conditional branch, the assembly program uses the fact that, in two’s
complement representation, −x is equal to x+ 1 = (x⊕ 0) − 0, where v denotes
the bitwise complement of v, and ⊕ the bitwise exclusive or. Accordingly, when
computing Al−Ah the program stores the resultant carry flag in a register using
the SBC Rd, Rd instruction. This produces a value w in the register Rd, which will
be 0 if the subtraction generated a carry, and 0 otherwise. And because a carry
is only generated if Al < Ah, we then have that for any value x, (x ⊕ w) − w is
equal to −x if Al < Ah, and equal to x otherwise.

Partitioning. For verifying the Karatsuba implementations, we have used logi-
cal partitioning of the actual assembly program into abstract blocks by identifying
(roughly) the following distinct computational steps in the implementation:

1. The computation of L = Al · Bl, using a operand-scanning multiplication.
2. The computation of |Al − Ah| and |Bl − Bh|.
3. A multiply-add step, which computes the product H = Ah · Bh, and adds

this to L to create L + 2n/2H.
4. The computation of M by multiplying |Al − Ah| and |Bl − Bh|.
5. A processing step which prepares a bitmask w = 0 or w = 0 to control

whether M will be negated in the next step, and which computes (2n/2 + 1) ·
(L + 2n/2H) = L + 2n/2(L + H) + 2nH.

6. Obtaining either M or −M by computing (M ⊕ w) − w.
7. Adding 2n/2M or −2n/2M to the value from step 5 to obtain the desired

result.
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The steps mentioned are (in principle) documented in [9], which describes their
design process, and they are also indicated by comments in the original source
code. This structure is shared by all Karatsuba implementations (up to the
96×96-bit version). The main differences between these lie in the order in which
data is loaded from memory into the available registers, and where the data is
stored ‘in flight’. For example, the 48 × 48-bit version does not use the ‘T’ flag,
and only the 96 × 96-bit implementation used the CPU stack to store values.
This did not alter the choice of partitioning. As an illustration, the WhyML
code of the abstract block for step 2 for the 64 × 64-bit multiplication routine
is shown in Fig. 3. The modify rN statements at the end of this block indicate
which registers are modified by the code inside it, and are used to update the
ghost registers, as explained in Sect. 3.2.

In general, if assembly code is hand-written (or generated using a simple
process), documentation is expected to be available for complicated routines,
and should be sufficient to inform a partitioning of it into abstract blocks. If
assembly code is written with verification in mind, it should also be possible to
instruct programmers to indicate potential blocks, or even to employ verification
already during the development process. On the other hand, it is probably much
harder to find a useful partitioning in code emitted by an optimizing compiler.

Lemmas Needed. As in Sect. 4.1, some simple lemmas were needed to help
along the automated verification of some of the resultant abstract blocks. In
the case of Karatsuba’s routine, these concerned themselves primarily with the
bit manipulation involved in computing absolute values, as explained in the
previous section. For instance, a lemma was needed for the fact that w⊕ 0 = w,
and w ⊕ 0 = 255 − w, where w is an 8-bit vector.

Ordering of Load and Stores. As opposed to the operand-scanning rou-
tines, which multiply values already stored in the register file, the Karatsuba
multiplication routine reads its input from SRAM (under control of the register
pairs X and Y), and writes its result back to SRAM as well (under control of
the register pair Z). In order to deal with register pressure, some of these loads
and stores happen after some computation has already been performed. In par-
ticular, the lower three bytes of L are committed to memory before the values
needed to compute H are loaded. In the 48-bit implementation, this happens in
the following fragment:
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abstract

ensures { synchronized shadow reg }

ensures { uint 4 reg 2 = old (abs (uint 4 reg 2 - uint 4 reg 18)) }

ensures { uint 4 reg 6 = old (abs (uint 4 reg 6 - uint 4 reg 22)) }

ensures { ?tf = 0 <-> old((uint 4 reg 2 < uint 4 reg 18) <->

(uint 4 reg 6 < uint 4 reg 22)) }

sub r2 r18;

sbc r3 r19;

sbc r4 r20;

sbc r5 r21;

sbc r0 r0;

sub r6 r22;

sbc r7 r23;

sbc r8 r24;

sbc r9 r25;

sbc r1 r1;

eor r2 r0;

eor r3 r0;

eor r4 r0;

eor r5 r0;

eor r6 r1;

eor r7 r1;

eor r8 r1;

eor r9 r1;

sub r2 r0;

sbc r3 r0;

sbc r4 r0;

sbc r5 r0;

sub r6 r1;

sbc r7 r1;

sbc r8 r1;

sbc r9 r1;

eor r0 r1;

bst r0 0;

modify_r0(); modify_r1(); modify_r2(); modify_r3(); modify_r4();

modify_r5(); modify_r6(); modify_r7(); modify_r8(); modify_r9();

end;

Fig. 3. Abstract block for computing |Al − Ah| and |Bl − Bh|, where Al is stored in
the registers R2,R3,R4,R5, Ah is stored in the registers R18,R19,R20,R21; Bl is stored
in the registers R6,R7,R8,R9 and Bh is stored in the registers R22,R23,R24,R25.
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STD Z+0, R8
STD Z+1, R9
STD Z+2, R10
LD R14, X+
LD R15, X+
LD R16, X+
LDD R17, Y+3
LDD R18, Y+4
LDD R19, Y+5

This code fragment caused several of the assertions relating the original mem-
ory contents to the contents of the register file to fail — the reason for this is
that it cannot be proven that the memory contents read by the load instructions
(LD and LDD) is not altered by the store (STD) instructions. This would indeed
cause an invalid computation in the unlikely case where the memory pointed to
by Z overlaps with the upper three bytes of either of the input values.

To prohibit this situations and allow the entire Karatsuba routine to be
verified, preconditions are necessary to ensure the memory separation of the
input and outputs, which take the form:

uint 2 reg Z + m ≤ uint 2 reg X ∨ uint 2 reg Z ≥ uint 2 reg X + n

uint 2 reg Z + m ≤ uint 2 reg Y ∨ uint 2 reg Z ≥ uint 2 reg Y + n

However, in the case of the 48-bit and 64-bit implementations, it was straight-
forward to rearrange the code fragment so that the STD instructions happen after
the LD instructions, removing the problem (and the need for any special precon-
dition) altogether. In the 80-bit implementation, improving the implementation
in this manner is not possible due to the increased register pressure, and so the
preconditions (with m = 0 and n = 10) were necessary. For the 96-bit imple-
mentation, this separation precondition was even more restrictive (m = 6 and
n = 12), prohibiting most forms of aliasing input and output memory locations.

This leads to the observation that these routines are not perfect drop-in
replacement for each-other: whereas the 80-bit (or smaller) implementations can
safely be called if the output overlaps with either of the inputs, the 96-bit cannot.
This could be a problem if the implementations are not used properly. While we
do not consider this to be a bug in the original code, it does show that formal
verification using our technique is indeed able to catch subtle issues like these in
real-world complex assembly code.

Discovery of this problem was guided by automated provers and Why3: when
several assertions fail to verify within a reasonable time frame, one approach is
to insert more assertions in order to find the exact step that automated provers
have difficulties with, and see what can be done to address this. In this case, this
led to the discovery that the code did not satisfy the assertion.

Verification Results. Using the partitioned and annotated WhyML program
as input, we can use Why3 to generate verification conditions. All proof obli-
gations that were generated, as well as the lemmas we needed, could be proven
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Table 1. Statistics of verifying optimized AVR multiplication routines

Program size Annotations Verification time Provers used

Operand scanning

16 × 16 13 lines 1 0 s cvc4

24 × 24 33 lines 1 1 s cvc4

32 × 32 59 lines 1 4 s cvc4

40 × 40 93 lines 1 10 s cvc4

48 × 48 136 lines 1 33 s cvc4

Karatsuba

48 × 48 169 lines 23 52 s cvc4, cvc3, E

64 × 64 286 lines 21 96 s cvc4, cvc3, E

80 × 80 411 lines 31 215 s cvc4, cvc3, E

96 × 96 611 lines 39 906 s cvc4, cvc3, E

by a combination of the SMT solvers cvc3 and cvc4. In a handful of cases
the automated E theorem prover was needed. As shown in Table 1, many of the
smaller routines could be verified in less than a minute. We have also listed the
number of annotations that had to be supplied by the user, in the form of assert
statement or ensures-clauses for the abstract blocks described in Sect. 4.2. This
count also includes the desired post-condition for the entire function, and any
possible requires-clauses needed as described in Sect. 4.2.

Due to the growing complexity of the verification conditions, the total ver-
ification time does grow dramatically, especially for the 96 × 96 multiplication
routine. On the other hand, the number of required annotations required per line
of code actually decreases. It should be noted that we have also found that the
verification time of the 96×96-bit routine can be brought down by adding extra
annotations — however, we prefer to minimize the number of user-annotations
required, since we have found these to be the largest bottleneck in verification.

5 Related Work

An early work on verifying machine code using an automated prover is given by
Yu [16], who used the Nqthm theorem prover to produce formal proofs about
object code generated for the Motorola 68020 microprocessor.

Pereira and Sousa [14] have used WhyML as an intermediate language for
the verification of ARM code. Their work focuses on handling the unstructured
control flow of assembly language: they have written the army tool that splits an
assembly language program containing jumps into a series of purely sequential
basic blocks, where the user specifies pre- and postconditions for each block, and
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then hands these off to Why3. They also provide a cost model to enable com-
plexity analysis. This work is therefore complementary to ours, since we focus on
the effective verification of large purely sequential programs that are supposed
to run in constant time. In essence we show that for verification, assembly pro-
grams can benefit from being split into more basic blocks than strictly necessary
in their approach.

Chen et al. [5] have verified a Montgomery ladder step of an elliptic curve
computation for the x86-64. architecture. The most complex step of this com-
putation is a 256× 256-bit multiplication, which is verified by translating (using
a special-purpose converter) annotated qhasm [3] code to input for the SMT
solver Boolector. Their approach appears to require more user intervention
(in the form of annotations) to perform the actual proofs, as well as more com-
putational resources — requiring more than an hour of computational effort.
On a 64-bit machine, a 256 × 256-bit multiplication is equivalent (in terms of
instruction complexity) to a 32 × 32-bit multiplication on the 8-bit AVR, which
we are able to verify using modest resources and without annotations. On the
other hand, the code they verify is more extensive and diverse, as they also verify
that their code performs other operations (such as an efficient reduction modulo
2255 − 19), making the results hard to compare directly.

Schwabe and Schmaltz [15] first attempted to verify the 48-bit multiplica-
tion routines examined in this paper using ACL2 in combination with external
SAT solvers. However, their approach focused on proving functional equivalence
between two implementations, instead of proving correctness with respect to
a simple specification, and required much more CPU time than the approach
presented in this paper.

Branch-free assembly code provides many more opportunities for formal ver-
ification. For instance, Barthe et al. [2] present a type system to mark certain
data as confidential, and provide an analysis that can be used to show that the
control flow and sequences of memory accesses of programs does not depend on
this confidential data. They also prove that x86 programs that are constant-
time in this sense are safe from cache-based attacks, using the Coq interactive
theorem prover.

6 Conclusion

The main contribution of this paper is the fact that by finding the right bal-
ance between manual verification and proof automation, verification of large and
optimized assembly code is feasible. The Why platform offers the machinery for
striking this balance. In particular, the key to using automated provers to prove
large and complex properties efficiently is the ability to not only summarize,
but also prune the proof context. Why3’s abstract blocks provides a significant
degree of control over this context.

Another advantage of using an off-the-shelf verification platform such as
Why3 is that we have a higher confidence in the correctness of our result, as
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it can be proven to be internally consistent, assuming that Why3 itself is consis-
tent. The validity of our model is also more easily examined than in the approach
taken in [5].

The manual effort involved in our approach concerns itself with imposing
a structure on an assembly language program by partitioning it into blocks,
controlling the information that will be presented to an automated prover. This
requires knowledge that is not necessarily easily deduced from the source code of
an assembly program. The best way to reduce this manual effort would be to have
programmers annotate assembly programs while writing them, indicating which
groups of instructions form a block and specifying the pre- and postconditions
of such a block.

6.1 Future Work

We would like to try our approach on even larger examples; the larger multiple-
level Karatsuba routines presented in [9], up to 256 bits, are an obvious first
choice. To verify assembly programs that contain control flow, combining our
approach with the sequentialization technique of [14] seems an obvious next
step, and should not pose much difficulties.

We are also interested in trying out the approach for other forms of unstruc-
tured code, such as the portable assembly language implemented in qhasm [3]
or the Instruction List language used in programmable logic controllers. In these
latter two cases, we expect the challenge to mainly consists of constructing a
model that can be both validated, and has the right expressivity so that it is
suitable for many different applications.

Finally, an interesting research question remains with the respect of identi-
fying an appropriate logical partitioning. We expect that determining the point
at which some proof context becomes irrelevant should be detectable by some
automatic means. Why3 already has some support for automatically pruning a
proof context in the poorly documented bisect feature [10], but this is compu-
tationally expensive and needs to be repeated for every individual verification
condition.

Availability of Code. The Why3 code used in this paper can be obtained in
full at https://gitlab.science.ru.nl/sovereign/why3-avr.
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Abstract. The GNU Multi-Precision library is a widely used, safety-
critical, library for arbitrary-precision arithmetic. Its source code is writ-
ten in C and assembly, and includes intricate state-of-the-art algorithms
for the sake of high performance. Formally verifying the functional behav-
ior of such highly optimized code, not designed with verification in mind,
is challenging. We present a fully verified library designed using the Why3
program verifier. The use of a dedicated memory model makes it possible
to have the Why3 code be very similar to the original GMP code. This
library is extracted to C and is compatible and performance-competitive
with GMP.

Keywords: Arbitrary-precision arithmetic
Deductive program verification · C language · Why3 program verifier

1 Introduction

The GNU Multi-Precision library,1 GMP for short, is a widely used library for
arithmetic on integers and rational numbers of arbitrary size. Its applications
range from academic research (e.g. research on computational algebra) to con-
crete applications of our daily life (e.g. security of Internet applications). Some of
these applications make GMP safety-critical. In this paper, we focus on the mpn
component of GMP, which is dedicated to non-negative integers and is used as a
basis in all others components. For maximal performance, GMP uses numerous
state-of-the-art algorithms for basic operations like addition, multiplication, and
division; these algorithms are selected depending on size of the numbers involved.
Moreover, the implementation is written in low-level C code, and depending on
the target computer architecture, some parts are even rewritten in assembly.

Being highly optimized for run-time efficiency, the code of GMP is intricate
and thus error-prone. It is extensively tested but it is hard to reach a satisfactory
coverage in practice: the number of possible inputs is very large, the different
branches of the algorithms are numerous, and some of them are taken with a
very low probability (some branches are taken with probability 2−64 or less).
1 http://gmplib.org/.
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Bugs in the division, occurring with very low probability, were discovered in
the past.2 Verifying the code for all inputs using static program verification is
thus desirable. Such a verification, however, is difficult, not only because of the
intrinsic complexity of the algorithms, but also because the code is written in a
low-level language with performance in mind, but not verification. In this paper
we present an approach to address this latter challenge.

The main idea of our approach is to first write the code in some higher-
level language, namely the programming language WhyML supported by the
Why3 verification environment. This language is designed for static verification
with respect to some functional behavior specified using an expressive formal
specification language. The main issue is then to convert such a high-level code
into an efficient executable code. Our approach is to first design a dedicated
memory model in Why3, on top of which we then implement our functions.
This memory model is designed to permit a direct compilation from WhyML
to C. As a result, we obtain the first fully verified library, compatible with
GMP (function signatures are the same), and almost as efficient as GMP on
medium-sized integers (up to around 20 words of 64 bits). The full development
is available from http://toccata.lri.fr/gallery/multiprecision.en.html.

The paper is organized as follows. In Sect. 2, we present the design of our
dedicated memory model and explain how it is suitable for compilation to C.
In Sect. 3, we present the specifications and the algorithms we implemented
for arithmetic operations. In Sect. 4, we present an extensive evaluation of the
efficiency of the generated code, comparing it with GMP. We discuss related
work in Sect. 5 and we conclude in Sect. 6.

2 From WhyML to C

Why3 is an environment for deductive program verification, providing a rich
language for specification and programming, called WhyML. WhyML is used as
an intermediate language for verification of C, Java, and Ada programs [12,18],
and is also intended to be comfortable as a primary programming language [13].
WhyML function definitions are annotated with pre- and postconditions both
for normal and exceptional termination, and loops are annotated with invariants.

The specification component of WhyML [5,9], used to write program annota-
tions and background theories, is an extension of first-order logic. It features ML-
style polymorphic types (prenex polymorphism), algebraic data types, induc-
tive and co-inductive predicates, and recursive definitions over algebraic types.
Constructions like pattern matching, let-binding, and conditionals, can be used
directly inside formulas and terms. Why3 comes with a rich standard library pro-
viding general-purpose theories useful for specifying programs, including integer
and real arithmetic. From programs annotated with specifications, Why3 gener-
ates proof obligations and dispatches them to multiple provers, including SMT
solvers Alt-Ergo, CVC4, Z3, TPTP first-order provers E, SPASS, Vampire, and
interactive theorem provers Coq, Isabelle, and PVS. As most of the provers do
2 Look for ‘division’ at https://gmplib.org/gmp5.0.html.

http://toccata.lri.fr/gallery/multiprecision.en.html
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type int32

val function to_int (n:int32) : int

meta coercion function to_int

predicate in_bounds (n:int) = - 0x8000_0000 ≤ n ≤ 0x7fff_ffff

axiom to_int_in_bounds: forall n:int32. in_bounds (to_int n)

val mul (x y:int32) : int32

requires { in_bounds (to_int x * to_int y) }

ensures { to_int result = to_int x * to_int y }

Fig. 1. Excerpt from the specification of 32-bit machine words in Why3.

not support some of the language features, typically pattern matching, polymor-
phic types, or recursion, Why3 applies a series of encoding transformations to
eliminate unsupported constructions before dispatching a proof obligation.

The programming part of WhyML is a dialect of ML with a number of
restrictions to make automated proving easier. The major restriction concerns
the potential aliasing of mutable data structures. The language and its typing
system are designed so that all aliases are statically known. Technically, the
typing system computes read and write effects on singleton regions for each
sub-expression [10]. These effects allow the design of a weakest precondition cal-
culus that is as simple as for the while languages usually considered in classical
Hoare logic. Verification of complex code with Why3 and automatic provers typ-
ically expects user guidance through addition of intermediate assertions [19] and
verification-only code (ghost code) [11]. See Why3’s Web site3 for an extensive
tutorial and a large collection of examples [6].

The extraction mechanism of Why3 amounts to compiling WhyML code into
a regular programming language while forgetting verification-only annotations.
Why3 natively supports extraction to OCaml. For our work we had to implement
extraction to C code. To obtain C code that includes low-level memory access
through pointers, it was mandatory to start by designing a Why3 model of the
C memory heap and pointers, where potential pointer aliasing is controlled in a
way that accommodates WhyML typing system. The description of this memory
model and the extraction to C is the purpose of the rest of this section.

2.1 Machine Words and Arithmetic Primitives

In WhyML, only the type int of unbounded mathematical integers is a built-in
data type. Machine integers are defined instead in Why3’s standard library, spec-
ified either in terms of intervals of mathematical integers or with bitvectors [15].
We use the first option here, which is roughly described in Fig. 1 for signed
32-bits words. The type int32 is abstract, equipped with a projection to int
mapping words to their mathematical value. Predicate in bounds together with
axiom to int in bounds specify their possible range. Arithmetic operators like

3 http://why3.lri.fr/.

http://why3.lri.fr/
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let constant max = 0xffff_ffff_ffff_ffff

val mul_mod (x y:uint64) : uint64

ensures { to_int result = mod (x * y) (max+1) }

val mul_double (x y:uint64) : (uint64,uint64)

returns { (l,h) → l + (max+1) * h = x * y }

Fig. 2. Multiplication operations on uint64.

multiplication are then specified in terms of a pre-condition preventing over-
flows, and a post-condition giving the expected value of the result. Notice the
special meta declaration which is a recent addition in Why3. It indicates that
int32 words should be implicitly cast to their integer values in specifications.
For example, in the contract of function mul, we could omit all occurrences of
to int, which we do in the rest of the paper.

To implement arbitrary-precision arithmetic, we have added primitive oper-
ations that allow overflows. This is shown in Fig. 2 for unsigned 64-bit words.
The function mul mod has a wrap-around semantics (result is taken modulo 264),
while the function mul double returns the full product as a pair of words. Simi-
larly, addition and subtraction come in different flavors (defensive against over-
flow, 2-complement, with carry in/out). Logical shifts also have both a defensive
version and a version with a two-word output. Finally, there is only one division
primitive, which takes a two-word numerator and a one-word denominator, and
computes a quotient and a remainder.

Regarding extraction, all these data types for machine words are translated
into their relevant C types (e.g. uint64 t). The axiomatized operations are
replaced by their equivalent native C functions when possible. For example, both
operations mul and mul mod are extracted to C multiplication, since C operators
on unsigned integer types are guaranteed to have the expected semantics for
overflows. The mul double operation, however, does not map to any C operator,
so we import the corresponding operation from GMP’s longlong.h file. Reusing
GMP’s primitives does not only make our library portable to numerous archi-
tectures, but it also makes for fairer benchmarks, allowing us to compare the
efficiency of big integer algorithms independently of the primitives.

2.2 A Simple Model for C Pointers and Heap Memory

Arbitrary-precision integers are represented in C as buffers of unsigned machine
words. The functions manipulate pointers, make use of aliasing, and sometimes
operate in place. To implement these functions in WhyML, we design a model
where the needed pointer operations are axiomatized, as shown in Fig. 3. At
extraction, these operations are then directly replaced by their C equivalents,
indicated as comments in Fig. 3. Our model only specifies the C features we
need. For pointer arithmetic, we only model incrementation of a pointer by an
integer, as we have no use for pointer comparisons or subtractions. We do not
need pointer cast either, nor do we need the C address-of operator &. Generally
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1 type ptr ’a = { mutable data : array ’a ; offset : int }

2

3 function plength (p:ptr ’a) : int = p.data.length

4

5 function pelts (p:ptr ’a) : (int → ’a) = p.data.elts

6

7 val malloc (sz:uint32) : ptr ’a (* malloc(sz * sizeof(’a)) *)

8 requires { sz > 0 }

9 ensures { plength result = sz ∨ plength result = 0 }

10 ensures { result.offset = 0 }

11

12 val free (p:ptr ’a) : unit (* free(p) *)

13 requires { p.offset = 0 }

14 writes { p.data }

15 ensures { plength p = 0 }

16

17 predicate valid (p:ptr ’a) (sz:int) =

18 0 ≤ sz ∧ 0 ≤ p.offset ∧ p.offset + sz ≤ plength p

19

20 val get (p:ptr ’a) : ’a (* *p *)

21 requires { 0 ≤ p.offset < plength p }

22 ensures { result = p.data[p.offset] }

23

24 val set (p:ptr ’a) (v:’a) : unit (* *p = v *)

25 requires { 0 ≤ p.offset < plength p }

26 writes { p.data.elts }

27 ensures { pelts p = Map.set (pelts (old p)) p.offset v }

28

29 val incr (p:ptr ’a) (ofs:int32) : ptr ’a (* p+ofs *)

30 requires { p.offset + ofs ≤ plength p }

31 alias { p.data ~ result.data }

32 ensures { result.offset = p.offset + ofs }

33 ensures { result.data = p.data }

34

35 val get_ofs (p:ptr ’a) (ofs:int32) : ’a (* *(p+ofs) *)

36 requires { 0 ≤ p.offset + ofs < plength p }

37 ensures { result = p.data[p.offset + ofs] }

Fig. 3. A Why3 memory model for C pointers and heap memory.

speaking, we do not use a model that would cover all features of C, because
we want to benefit from the non-aliasing properties provided by Why3’s static
typing system. The benefit is that both the specifications and the proofs are
simpler. With a general model of C heap memory, we would need to state a lot
of non-aliasing hypotheses among the pointers, these properties would generate
extra VCs to be established by back-end provers, moreover the other VCs will
be more difficult to discharge.
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The C heap memory is seen as a set of memory blocks called objects in
the C99 standard. The WhyML polymorphic type ptr ’a (Fig. 3, line 1) repre-
sents pointers to blocks storing data of type ’a. The field data of a pointer is an
array containing the block content, while the field offset indicates which array
cell it points to. This construction supports pointer aliasing: several pointers may
reference the same array (and thus point inside the same memory block). Thanks
to WhyML’s region-based type system, an assignment through one pointer is
propagated to other pointers.

Pointers are allocated by the malloc function. In case of failure it returns an
invalid pointer, represented by a block of length 0. As such, we forbid passing 0
to malloc. The free function invalidates its parameter by setting the length of
its block to 0. A pointer is considered valid for a size s (Fig. 3, line 17) if its
offset plus s does not exceed the size of its block. The function get (line 20) rep-
resents pointer dereferencing for reading. The function set represents memory
assignment; the writes clause specifies the expected write effect on the block.

The incr function (line 29) returns the sum of a pointer and an integer.
Just as in the C standard [16, Sect. 6.5.6, “Additive Operators”], one may only
compute a pointer that points inside a valid block or to the element just past it.
The Why3 keyword alias in the signature of incr declares the aliasing of the
returned pointer with the pointer parameter. Behind the scenes, it unifies the
regions of p.data and result.data [10]. This aliasing is correct not only with
respect to setting the contents of the pointed block, but also with respect to
free. This makes it possible to write a particularly short specification for free:
the writes effect on p.data induces a so-called reset on it [10], meaning that
the region formerly pointed by p can no longer be accessed by any of its aliases,
which are invalidated.

2.3 Extracting to Idiomatic C Code

The main objective of our extraction is to produce code that is correct and as
efficient as possible for our arbitrary-precision library. Some WhyML language
features, such as algebraic types and higher-order functions, are hard to translate
into C because they would require introducing complex constructions like clo-
sures and automatic memory allocation and deallocation. Therefore, we decided
to support only a small fragment of the WhyML language in our extraction.
The goal is not so much to extract arbitrary WhyML code to C as to extract
imperative, almost C-like WhyML code to a simple and efficient C program.
The supported features of WhyML are those that can be translated straightfor-
wardly to C, such as loops or references. What we gain by giving up on so many
language features is that the extraction process is extremely straightforward,
and the extracted code resembles the WhyML code line-to-line, with very little
added complexity. This makes it easier to obtain efficient C code, as the WhyML
programmer can have a good idea of what the extracted code will be like. The
straightforwardness of the extraction also gives a measure of additional trust in
the extracted code and in the extraction process, which is not formally verified.
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We now present in more details a few language features that we need to
design our library, for which the translation to C is not direct.

Compilation of Exceptions into break or return Statements. WhyML
does not support certain standard imperative constructs natively. For example,
it provides neither break nor return, which are used by some GMP algorithms,
e.g. big integer comparison (Sect. 3.2). So, we encode these constructs using
WhyML’s exception mechanism. Our extraction recognizes when exceptions can
be turned into break or return statements. For break, we essentially detect the
following pattern and extract all instances of raise B in the body of the loop
(but not inside potential inner nested loops) as break.

try while ... do ... raise B ... done with B → () end

For return, we similarly detect the following pattern of function definitions and
extract all instances of raise (R e) as return e.

let f (args) = ... ; try ... raise (R e) ... with R v → v end

Note that the try with construct must be in tail position of the function body.
Our extraction recognizes these patterns independently of the names of the
exceptions being used. Any try with or raise construct that does not fit in
any of these patterns causes the program to be rejected by our extraction.

Multiple Return Values. Many of our WhyML functions, particularly arith-
metic primitives, return multiple values in a tuple, as can be seen with the
mul double primitive (Fig. 2). This has no native equivalent in C. We choose to
extract each function returning a tuple as a C function returning void, taking
as extra parameters a pointer per component of the tuple. We detect the call
pattern

let f (a:int32) : (int32,int32) =

let b = a+a in

(a,b)

let g () : int32 =

let x = Int32.of_int 42 in

let (y,z) = f x in

z - y

void f(int32_t * result,

int32_t * result1,

int32_t a) {

int32_t b;

b = (a + a);

(*result) = a;

(*result1) = b;

return;

}

int32_t g() {

int32_t y, z;

f(&y, &z, 42);

return (z - y);

}

Fig. 4. WhyML function returning a tuple (on the left) and its C extraction.
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let (x1, x2, ...) = f(args) in ...

and extract it as

f(&x1, &x2, ..., args); ...

Figure 4 shows the C program extracted from a WhyML code that defines and
calls a function that returns a tuple.

3 Computing with Arbitrary-Precision Integers

3.1 Algorithm Specifications

Just as in GMP, we represent natural integers as buffers of unsigned integers
called limbs. We set a radix β (generally β = 232 or 264, but the proofs only
require it to be a power of 2). Any natural number N has a unique radix-β
decomposition

∑n−1
k=0 akβ

k, which is represented as the buffer a0a1 . . . an−1 (with
the least significant limb first).

For efficiency, there is no memory management in the low-level functions, so
the caller code has to keep track of number sizes. Operands are specified by a
pointer to their least significant limb and a limb count of type int32.

type limb = uint64

type t = ptr limb

If a pointer a is valid over a size n, we denote:

value(a, n) = a0 . . . an−1 =
n−1∑

k=0

akβ
k.

In our Why3 development, value is defined recursively

let rec ghost function value_sub (x:map int limb) (n:int) (m:int) : int

variant {m - n}

= if n < m then x[n] + radix * value_sub x (n+1) m else 0

function value (x:t) (sz:int) : int =

value_sub (pelts x) x.offset (x.offset + sz)

While the functions of our library use only machine types (pointers, limbs,
etc.), their specifications are expressed in terms of mathematical integers through
extensive use of the function value. As an example, Fig. 5 shows the specifica-
tion of the addition function. Note that the region-based type system forbids
aliasing r with x or y. Notice also that the specification is well-typed because
the conversion functions from int32 and limb to int are coercions: otherwise
many applications of to int would be required.



92 R. Rieu-Helft et al.

(** [wmpn_add r x sx y sy] adds [(x, sx)] to [(y,sy)] and writes the

result in [(r, sx)]. [sx] must be greater than or equal to [sy].

Returns carry, either 0 or 1. Corresponds to [mpn_add]. *)

let wmpn_add (r:t) (x:t) (sx:int32) (y:t) (sy:int32) : limb

requires { 0 ≤ sy ≤ sx }

requires { valid x sx }

requires { valid y sy }

requires { valid r sx }

writes { r.data.elts }

ensures { 0 ≤ result ≤ 1 }

returns { carry → value r sx + (power radix sx) * carry

= value x sx + value y sy }

Fig. 5. Specification of wmpn add.

3.2 Example of Proved Algorithm: Comparison

Let us look at the Why3 implementation of GMP’s mpn cmp function, shown in
Fig. 6. Just like GMP, this is the only comparison function on natural integers
provided by our library. The mpn cmp function takes two pointers to the integers
as arguments, as well as the size of the pointed buffers. It returns −1, 0, 1,
depending on the way the numbers are ordered. Our implementation has the
same interface and the same behavior. The algorithm is very straightforward:
it simply iterates both operands until it finds a difference, starting at the most
significant limb. Once a difference is found, we can conclude immediately. If no
difference is found, then the integers are equal.

The most important part of the proof is the loop invariant at line 10: both
source operands are identical from offsets i+1 to n. The following lemma is used
to prove the postcondition. It simply states that two big integers have the same
value if their limbs are equal.

Lemma 1 (value sub frame). Let a0, . . . , an−1, b0, . . . , bn−1 such that for all i,
ai = bi. Then a0 . . . an−1 = b0 . . . bn−1.

The proof is a straightforward induction, which translates well into a Why3
lemma function where the recursive call provides the induction hypothesis.

let rec lemma value_sub_frame (x y:map int limb) (n m:int)

requires { MapEq.map_eq_sub x y n m }

variant { m - n }

ensures { value_sub x n m = value_sub y n m }

= if n < m then value_sub_frame x y (n+1) m else ()

This lemma makes it possible to conclude that the numbers are equal if no
difference was found by the end of the loop. Notice that the loop body raises an
exception as soon as a difference is found. This emulates the return-inside-a-loop
pattern found in imperative languages. At extraction, this pattern is detected
and the extracted code simply has a return inside the main loop (Sect. 2.3).
Figure 7 shows the extracted code for the wmpn cmp function.
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1 let wmpn_cmp (x y:t) (sz:int32) : int32

2 requires { valid x sz }

3 requires { valid y sz }

4 ensures { result = compare_int (value x sz) (value y sz) }

5 = let i = ref sz in

6 try

7 while Int32.(≥) !i (Int32.of_int 1) do

8 variant { to_int !i }

9 invariant { 0 ≤ !i ≤ sz }

10 invariant { forall j. !i ≤ j < sz →
11 (pelts x)[x.offset+j] = (pelts y)[y.offset+j] }

12 i := Int32.(-) !i (Int32.of_int 1);

13 let lx = get_ofs x !i in let ly = get_ofs y !i in

14 if (Limb.ne lx ly) then

15 if Limb.(>) lx ly

16 then raise (Return32 (Int32.of_int 1))

17 else raise (Return32 (Int32.of_int (-1)))

18 end

19 done;

20 Int32.of_int 0

21 with Return32 r → r

22 end

Fig. 6. Why3 implementation of mpn cmp.

int32_t wmpn_cmp(uint64_t * x, uint64_t * y, int32_t sz) {

int32_t i, o;

uint64_t lx, ly;

i = (sz);

while (i >= 1) {

o = (i - 1); i = o;

lx = (*(x+(i)));

ly = (*(y+(i)));

if (lx != ly) {

if (lx > ly) return (1);

else return (-(1));

}

}

return (0);

}

Fig. 7. Extracted C code for wmpn cmp.

3.3 Trickier Example: Long Division

Let us now showcase one of the many algorithmic tricks from GMP that we
ported in our implementation. Long division consists in computing the quotient q
and remainder of the division of a big integer a of size m by a big integer d of
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Algorithm 1. General case long division (abridged).
1: function divmod gen(q, a, d, m, n)
2: . . . � Initialize
3: while i > 0 do
4: i ← i − 1
5: if x = dn−1 and an+i−1 = dn−2 then
6: . . . � Unlikely special case
7: else
8: (q̂, x, l) ← div 3by2(x, an+i−1, an+i−2, dn−1, dn−2, v)
9: b ← submul limb(a + i, d, n − 2, q̂)

10: b1 ← (l < b) � Last two steps of the subtraction are inlined
11: an+i−2 ← (l − b mod β)
12: b2 ← (x < b1)
13: x ← (x − b1 mod β) � Finish subtraction
14: . . . � Adjust

15: qi ← q̂

16: . . . � Finish and return

size n. It is a significantly more complex problem than long addition or multipli-
cation. Algorithm 1 is an excerpt of the general case algorithm for long division
in GMP (file mpn/generic/sbpi1 div qr.c).

The algorithm consists in computing the limbs of the quotient one by one,
starting with the most significant one. The numerator a is overwritten at each
step to contain the partial remainder. At each iteration of the loop (with i
decreasing from m − n), we compute a quotient limb q̂ by dividing the three
most significant limbs of the current remainder a (of size n + i) by the two most
significant limbs from the denominator d. We then subtract from the high part
of the current remainder the product of that quotient limb by the denominator.
Note that the most significant limb of the current remainder is never stored back
to an+i. It is kept in the local variable x as an optimization.

Let us take a closer look at lines 9 to 13 in Algorithm 1, which expose another
optimization of GMP meant to shave a few more processor cycles. The candidate
quotient limb q̂ is computed at line 8, and we need to subtract the product of
this quotient limb and the denominator from the current remainder. This could
be done with only the function call at line 9 by passing n instead of n − 2 (or
rather n − 1 and inlining the last step on x), but we can do better and optimize
the last two steps by making use of the remainder that was computed at line 8.
Indeed, we can show that the last two steps simply consist in propagating the
borrow from the previous subtraction, as the result of the 3 most significant
limbs of subtraction is known to be �x0 = �+βx in the absence of borrow-in (the
postcondition of the division is exactly that an+i−2an+i−1x = q̂×dn−2dn−1+�x).
Therefore, all that is left to do is propagate the borrow on �x0. Hence, lines 11
to 15 are equivalent to computing the subtraction

ai . . . an+i−1x − q̂ × d0 . . . dn−1



How to Get an Efficient yet Verified Arbitrary-Precision Integer Library 95

let a’ = C.incr a !i in

let a’’ = C.incr a’ (Int32.(-) n two) in

label L in

let qu,l,h = div3by2_inv !x (C.get_ofs a’’ one) (C.get a’’) dh dl v in

let b = submul_limb a’ y qu (Int32.(-) n two) in

let b1 = if (Limb.(<) l b) then uone else uzero in

C.set a’’ (sub_mod l b);

let b2 = if (Limb.(<) h b1) then uone else uzero in

x := sub_mod h b1;

assert { value a’ (n - 1) + power beta (n - 1) * !x

- power beta n * b2

= value (a’ at L) n + power beta n * (!x at L)

- qu * (value d n) };

Fig. 8. Transcription (modified for readability) of Algorithm 1, lines 8 to 13.

returning b2 as borrow and writing the result in ai . . . an+i−2x (one limb fewer).
This is exactly the last assertion of Fig. 8, which shows an abridged version of
our proof for this part of the algorithm.

All in all, this algorithmic trick saves several arithmetic operations: two mul-
tiplications, as the two most significant limbs of d are not multiplied by q̂, and
two subtractions, as in the last two steps, only a carry is propagated instead of
doing a subtraction and then propagating a carry. This is far from irrelevant: this
loop is the performance-critical one for long integer division, and almost all the
cost of the loop is in the submul limb call (it is the only operation with a cost
that scales with the size of the input that is run with non-negligible probability).
This trick, which makes the cost of the loop similar to what it would be if the
denominator was two limbs shorter, illustrates the kind of GMP implementation
details that we have to preserve in order to keep up in terms of performance.

3.4 Statistics on the Proof Effort

We have implemented and verified functions for performing addition, sub-
traction, multiplication, division, comparison, and logical shifts on arbitrary-
precision integers. In many cases, we also provide lower-level functions for the
cases when one of the inputs is a single limb or when the two inputs have the
same length (equivalent to the functions suffixed by 1 and n in GMP4).

This totals 6000 lines of Why3, which break down into 1350 lines of code
and 4650 lines of specifications and proofs, most of which are assertions. The
theorem provers Alt-Ergo, CVC3, CVC4, Eprover, and Z3 are used. All of these
provers are necessary for at least some subgoals. It is hard to precisely charac-
terize which subgoals are discharged by each prover, but we can provide some
heuristics. Typically, CVC3 is the best of these provers at discharging non-linear
arithmetic subgoals, with Z3 second. Z3 is also good at proving upper bounds

4 http://gmplib.org/manual/Low 002dlevel-Functions.html.

http://gmplib.org/manual/Low_002dlevel-Functions.html
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and absence of overflows. CVC4 tends to be the best at proving preconditions
such as pointer validity. The E prover is the best at instantiating hypotheses
modulo associativity and commutativity. Finally, Alt-Ergo is the best at instan-
tiating complex lemmas and tends to require fewer cut indications. The total
proof time is around 20 min. For a more detailed breakdown, refer to http://
toccata.lri.fr/gallery/multiprecision.en.html. The proof effort is about 5 person-
months, most of it being for the division, for a neophyte in computer arithmetic
and automated program verification.

4 Benchmarks

We have compared the execution time of our extracted code against GMP on
randomly generated medium-sized integers, up to 1280 bits. For bigger inputs,
the comparison becomes increasingly meaningless since GMP switches to divide-
and-conquer algorithms which have a better asymptotic complexity. To prevent
GMP from using too many architecture-specific optimizations, we have config-
ured GMP with the --disable-assembly flag, so that GMP uses only generic C
code. This is true both for the arithmetic primitives (which we share with GMP
to focus the benchmarks on the algorithms rather than the primitives) but also
for the operations on big numbers. Indeed, on many architectures, GMP uses
handwritten assembly functions for most of the performance-critical big number
algorithms, with performances out of reach of even very efficient C code.

We compare the execution times of GMP (without assembly) and our library
on three different functions: addition, multiplication, and division. We do sepa-
rate measures for all valid combinations of lengths of the input operands between
1 and 20. For each of these, we generate a few thousand random inputs and call
each function a hundred times on each input, and record the total time.

For multiplication, our library is between 5 and 10% slower than GMP across
all sizes (Fig. 9a). One possible cause for the discrepancy is the use of a different
basic block for addition: while we use a primitive that adds two one-limb integers
and a carry, GMP uses a primitive that adds two two-limb integers. We intend
to switch to GMP’s primitive in the near future.

n
m

5 7 10 13 15 20

5 0% 7% 8% 6% 8% 12%
7 — 5% 7% 8% 9% 14%
10 — — 9% 7% 7% 13%
13 — — — 9% 7% 14%
15 — — — — 6% 15%
20 — — — — — 13%

(a) multiplication

n
m

5 7 10 13 15 20

5 130% 8% 25% 18% 17% 16%
7 — 67% 3% 14% 19% 14%
10 — — 61% 2% 4% 12%
13 — — — 33% 7% 3%
15 — — — — 54% 5%
20 — — — — — 40%

(b) division

Fig. 9. Overhead for m-by-n operations.

http://toccata.lri.fr/gallery/multiprecision.en.html
http://toccata.lri.fr/gallery/multiprecision.en.html
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For division, the difference in execution times is much more dependent on the
length of the inputs, particularly in the difference in length between numerator
and denominator (Fig. 9b). When the length of the denominator is less than half
the length of the numerator, our algorithm is quite similar to GMP’s and runs
in about 20% more time.

The situation changes when the length n of the denominator is more than
half the length m of the numerator, that is, more than the length of the quotient.
Indeed, GMP no longer applies Algorithm1 directly on the operands. Instead,
the algorithm is called on the 2q most significant limbs of the numerator and q
most significant limbs of the denominator, where q is the length of the quotient.
This gives an estimated quotient, and a rather involved adjustment step follows.
This alternative algorithm is not yet implemented in our library, which simply
applies the general algorithm in all cases.

Note that GMP’s adjustment step is somewhat expensive in that it requires
the allocation of a long integer. Thus, for the small sizes we are considering,
the adjustment step seems to dominate the complexity in such a way that the
algorithm switch is only worth it when the denominator is almost as long as the
numerator. Thus, for m/2 ≤ n < m−1, the overhead of our library is below 10%.
It then increases drastically when the sizes of the numerator and denominator
get very close: for n = m − 1, our library is around 25% slower than GMP; for
n = m, our library is sometimes twice as slow.

We also compared our library with mini-gmp, a minimalistic implementation
of the GMP interface in a single C file that can be found in the main GMP
repository. The mini-gmp division does not implement the alternative algorithm
either, which makes our division 10 to 20% slower than it across the board.

5 Related Work

In this work, we have obtained our library in three steps: we first write some
WhyML code and specification, we then verify that the code satisfies the specifi-
cation, finally we extract the C code from the WhyML code. There are numerous
other approaches to obtain some verified C code; let us mention three examples.
In the case of the B method, an abstract specification is progressively refined
until it is detailed enough so that some C code can be extracted from it [1]. In the
case of the Frama-C environment, the C code is written by hand and it is spec-
ified using the behavioral specification language ACSL; the verification is then
directly performed at the level of the C code [8]. Finally, in the case of the seL4
microkernel, the C code is again written by hand, but so is some Haskell code
that models it; the verification process then consists of formally proving that
this Haskell code both models the C code and satisfies a specification written in
Isabelle/HOL [17].

Let us focus a bit more on the topic of verifying an arbitrary-precision integer
library. Bertot et al. verified the GMP’s divide-and-conquer algorithm for square
root [4]. It was performed using the Correctness tool which translates a program
and its specification into verification conditions for Coq. In that work, the mem-
ory is seen as a large array of machine integers, so function specifications have
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to tell which zones of memory are left unchanged. Other than that, the way the
authors implement and specify their algorithm is quite close to the way we do
ours; thus, had they wished to, they could easily have extracted it to C.

Myreen and Curello verified a library with a scope similar to the one
presented in this paper, although their division algorithm is simpler than
GMP’s [21]. The implementation, specification, and verification were done using
HOL4. An interesting aspect of this work is that the implementation language
is some kind of x86-64 pseudo-assembly, so as to effectively produce a low-level
verified library. Another interesting point is that it is not the assembly code
that is verified but the Hoare triples obtained by decompiling the corresponding
machine code. These triples are formally proved to be compatible with the spec-
ification of correct algorithms. The memory model is based on separation logic,
and the compiler and decompiler are specifically instrumented to preserve the
corresponding assertions about integer separation in the generated triples. The
library also supports signed integers but their encoding does not match GMP’s.

Affeldt verified a binary GCD algorithm and the functions it depends on [2].
Neither multiplications nor divisions are present. The implementation, specifi-
cation, and verification were done using Coq. This time, the implementation
language is a variant of MIPS assembly. An interesting aspect of this work is
that, even if the verified algorithm is not GMP’s binary GCD, the numbers are
encoded using GMP’s layout for signed integers, which incurs a pointer indi-
rection. To account for this complexity, the memory model is again based on
separation logic.

Further away from GMP, Berghofer verified an Ada library for performing
modular exponentiation [3]. It was written and specified using the SPARK subset
of Ada and the verification conditions were then proved using Isabelle/HOL. The
use of Montgomery multiplication makes it slightly more complicated than the
binary GCD example from an algorithmic point of view. There is no need for
a memory model, since arbitrary-precision integers are represented using plain
Ada arrays and SPARK prevents them from being aliased.

Fischer designed a modular exponentiation library developed for C and ver-
ified using Isabelle/HOL [14]. Multiplication and division algorithms are naive
and use arbitrary-precision integers represented using garbage-collected doubly-
linked lists of machine integers. Thus, this library is certainly not meant to be
efficient. Aliasing issues are solved by using both a Bornat-like memory model [7],
so as to automatically distinguish integer words from pointer words, and frame
predicates in specifications, so as to declare which heap positions are possibly
modified by a function.

Finally, there have also been various efforts to verify specific cryptography
primitives and their underlying arithmetic. Zinzindohoué et al. verified an elliptic
curve library written in F∗ and meant to be extracted to C [22]. A peculiarity is
that integers are no longer of arbitrary precision; they are represented by fixed-
size arrays. Moreover, only part of a machine word is used to store a limb; for
instance, a 448-bit integer is stored using 8 limbs of 56 bits (out of 64). As a
consequence, arithmetic operations on limbs do not have to be modular (which
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makes them simpler for SMT solvers to reason about) and carry bits do not
have to be propagated. Regarding the memory model, function specifications
explicitly tell which parts of the heap are modified.

6 Conclusions

Our work aims at devising a formally verified C library that provides the same
arbitrary-precision arithmetic primitives as GMP. At the time of this paper, we
have implemented and verified the following algorithms from GMP: comparison,
addition, subtraction, multiplication, and division. For multiplication and divi-
sion, those are only the algorithms meant to be used with integers of size less
than 20 limbs, that is, the so-called schoolbook algorithms. Moreover, in the case
of the division, we are lacking an optimized algorithm when the final quotient
is short, which means that the version for computing long quotients is always
being called (unless the divisor is one or two limbs long).

Thanks to our memory model and the notion of pointer it provides, we were
able to write the functions the same way GMP developers did. It also made it
easy to implement an extraction mechanism to C for Why3. Moreover, since this
memory model piggybacks on the region mechanism of Why3, we did not have
to bother with pointer aliasing, so the specification of the functions is just about
their arithmetic properties, contrarily to most of the other verified libraries.

Despite the terminology, the algorithms we have considered are far more
intricate than the algorithms one finds in a schoolbook and are still the topic
of active research [20]. For instance, the division operator is designed to cor-
rectly compute the remainder after a single pass with probability almost 1, and
thus does not incur a correction step. Our code implements all the algorithmic
tricks that can be found in the corresponding functions of GMP, which makes
our library competitive with GMP’s non-assembly implementation. In fact, the
extracted C code is so close to GMP’s own code that the formal verification of
our library increases the confidence in the correctness of GMP as a by-product.

As it stands, the proof effort for getting a verified GMP-like library is way
too costly. Indeed, while the algorithms are highly intricate, the effort required is
compounded by the nonlinear nature of the integer properties submitted to the
automated solvers. SMT solvers are especially unhelpful there, so the user has to
split proofs at a deeper level of detail than what an interactive theorem prover
with support for algebraic reasoning would require. Thus, before tackling the
implementation and verification of other GMP functions, we intend to work on
designing decision procedures dedicated to verifying these arithmetic properties.
While the class of nonlinear integer problems is undecidable, the properties that
occur when verifying a GMP-like library are sufficiently specific that we have
good hope for success.

Once the issue of proof automation has been tackled, we intend to implement
and verify divide-and-conquer algorithms for multiplication (e.g. Toom-Cook
algorithms) and division, so as to stay competitive with GMP even for larger
integers. We also intend to provide the same high-level interface as GMP for



100 R. Rieu-Helft et al.

abstract signed arbitrary-precision integers. This comes as a new challenge for
the memory model, since most mpz functions allow for aliasing between their
arguments. For instance, one can pass the same arbitrary-precision integer as
both input and output, so operators have to properly resolve any aliasing issue
(e.g. by allocating temporary buffers) before calling into the mpn functions.

Another future work is to extract not only the Why3 code to C, but also the
specifications. The C code could then be verified using an existing C verification
framework, e.g. Frama-C, so that our code extractor no longer needs to be part
of the trusted code base. It would be quite costly, however, to translate all the
annotations to the ACSL specification language of Frama-C and to perform once
again the whole verification, especially since ACSL is not as expressive as Why3.
The goal is rather to improve the interaction between Frama-C and Why3 (which
Frama-C already uses as a back-end), so as to minimize the proof effort when
verifying a C function whose algorithm has already been proved using Why3.

Acknowledgments. We gratefully thank Pascal Cuoq, Jean-Christophe Filliâtre and
Mário Pereira for their comments on preliminary versions of this article.

References

1. Abrial, J.R.: The B-Book, Assigning Programs to Meaning. Cambridge University
Press, Cambridge (1996)

2. Affeldt, R.: On construction of a library of formally verified low-level arithmetic
functions. Innov. Syst. Softw. Eng. 9(2), 59–77 (2013)

3. Berghofer, S.: Verification of dependable software using SPARK and Isabelle.
In: Brauer, J., Roveri, M., Tews, H. (eds.) 6th International Workshop on Sys-
tems Software Verification. OpenAccess Series in Informatics (OASIcs), Dagstuhl,
Germany, vol. 24, pp. 15–31 (2012)

4. Bertot, Y., Magaud, N., Zimmermann, P.: A proof of GMP square root. J. Autom.
Reason. 29(3–4), 225–252 (2002)
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Abstract. In the context of deductive program verification, handling
floating-point computations is challenging. The level of proof success
and proof automation highly depends on the way the floating-point
operations are interpreted in the logic supported by back-end provers.
We address this challenge by combining multiple techniques to sepa-
rately prove different parts of the desired properties. We use abstract
interpretation to compute numerical bounds of expressions, and we use
multiple automated provers, relying on different strategies for represent-
ing floating-point computations. One of these strategies is based on the
native support for floating-point arithmetic recently added in the SMT-
LIB standard. Our approach is implemented in the Why3 environment
and its front-end SPARK 2014 for the development of safety-critical Ada
programs. It is validated experimentally on several examples originating
from industrial use of SPARK 2014.

1 Introduction

Numerical programs appear in many critical software systems, for example to
compute trajectories, to control movements, to detect objects. As most proces-
sors are now equipped with a floating-point (FP for short) unit, many numerical
programs are implemented in FP arithmetic, to benefit from the additional pre-
cision of FP numbers around the origin compared to fixed-point numbers, and
from the speed of FP computations performed in hardware.

Safety conditions for critical software systems require strong guarantees on
the functional behavior of the computations performed. Automatically verify-
ing that these guarantees are fulfilled is desirable. Among other verification
approaches, deductive program verification is the one that offers the largest
expressive power for the properties to verify: complex functional specification
can be stated using expressive formal specification languages. Verification then
relies on the abilities of automated theorem provers to check that a code satisfies
a given formal specification.
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For some time, FP arithmetic was not well-supported by automated provers
and thus deductive verification of FP programs was relying on interactive proof
assistants, requiring a lot of expertise [6]. In recent years, FP arithmetic started
to be supported natively by the automated solvers of the SMT (Satisfiability
Modulo Theory) family. A theory reflecting the IEEE-754 standard for FP arith-
metic [24] was added in the SMT-LIB standard in 2010 [33]. This theory is now
supported by at least the solvers Z3 [32] and MathSAT5 [8].

Our initial goal is to build upon the recent support for FP arithmetic in SMT-
LIB to propose an environment for deductive verification of numerical programs
with a higher level of automation. We implemented this approach in the program
verifier Why3 and in its front-end SPARK for verifying Ada programs. Indeed
a support for FP arithmetic in Why3 already existed before [1,6], but it was
based on an axiomatization of FP operations in terms of their interpretations
into operations on real numbers. It was suitable for using as back provers either
the Gappa solver dedicated to reason about FP rounding [14], for the simplest
verification conditions, or the Coq proof assistant for the rest. To achieve a
higher level of automation, in particular on the examples we considered coming
from users of SPARK, we identified the need for combining several theorem
provers, and even more, a need for combining deductive verification with an
abstract interpretation based analysis (namely the CodePeer tool for Ada). The
main goal of the new support we designed is thus to exploit the SMT solvers
with native support for FP arithmetic (Z3), while maintaining the ability to
use solvers that do not offer native support (CVC4, Alt-Ergo, Gappa, Coq).
Our new approach can prove automatically FP properties that were beyond the
reach of the previous approach. For example, we were previously unable to prove
automatically the assertion in the following toy Ada code, because the rounding
error on X + 2.0 was over-approximated.

procedure Range_Add (X : Float_32; Res : out Float_32) is

begin

pragma Assume (X in 10.0 .. 1000.0);

Res := X + 2.0;

pragma Assert (Res >= 12.0);

end Range_Add;

We first give a quick introduction to auto-active verification with the envi-
ronments SPARK and Why3 in Sect. 2. In Sect. 3, we present a new Why3 theory
used in the verification condition generation process so as to exploit the support
of FP arithmetic in SMT-LIB, while still keeping use of other provers, thanks to
an axiomatization. We evaluate experimentally our approach in Sect. 4, showing
our results on 22 examples extracted from industrial programs. We also present
a case study for the computation of safe bounds for the trajectory of a device
from an embedded safety-critical software, where the combination of techniques
is achieved through the insertion of ghost code. We refer to our extended research
report [19] for more details on our approach, including the full axiomatization
and the complete source code of our examples. Section 5 draws conclusions and
discusses some related work and future work.
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2 Quick Introduction to SPARK and Why3

Why3 is an environment for deductive program verification, providing a rich
language for specification and programming, called WhyML. WhyML is used as
an intermediate language for verification of C, Java or Ada programs [17,25],
and is also intended to be comfortable as a primary programming language.
Why3 generates proof obligations, called verification conditions (VCs for short),
from program annotations using a weakest-precondition calculus. It relies on
external provers, both automated and interactive, in order to discharge the aux-
iliary lemmas and VCs. As most of the provers do not support some of the
language features (typically pattern matching, polymorphic types, or recursion),
Why3 applies a series of encoding transformations to eliminate unsupported con-
structions before dispatching a VC. Why3 comes with a rich standard library
providing general-purpose theories useful for specifying programs [3]. This natu-
rally includes integer and real arithmetic. In this work, we added a new theory of
floating-point arithmetic, that we present in Sect. 3. Why3 provides a mechanism
called realization that allows a user to construct a model for her axiomatizations,
using a proof assistant. This feature can be used to guarantee that an axiomati-
zation is consistent, or even that it is a faithful abstraction of an existing model.
In Sect. 3.6, we use this feature to ensure that our own axiomatization of FP
arithmetic is faithful to the IEEE-754 standard [24].

SPARK is an environment for the verification of Ada programs used in crit-
ical software development [10,29]. The SPARK language subset and toolset for
static verification has been applied for many years in on-board aircraft systems,
control systems, cryptographic systems, and rail systems. As displayed in Fig. 1,
to formally prove a SPARK program, the tool GNATprove uses WhyML as an
intermediate language. The SPARK program is translated into an equivalent
WhyML program which can then be verified using the Why3 tool. Since version
SPARK 17, GNATprove also includes the static analyzer CodePeer as prover.
CodePeer [2] is a tool developed at AdaCore to detect errors in Ada programs,
based on modular abstract interpretation. The benefit of this integration for our
work is that CodePeer computes precise bounds on FP computations.

Fig. 1. Deductive verification in SPARK 2014
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Automatic verification in both Why3 and GNATprove relies on the ability
to interact with users through assertions, and more generally verification-only
code also called ghost code [25]. This type of verification is called auto-active
verification, to characterise tools where user input is supplied before VC gener-
ation [and] therefore lie between automatic and interactive verification (hence
the name auto-active) [26]. We use ghost code in Sect. 4.2 to prove a case study
involving FP computations.

3 VC Generation for Floating-Point Computations

We now describe what we designed for the support for FP types in Why3 and
then how we use this support to enhance SPARK’s already existing support
for FP types. In Sect. 3.1 we present the signature, in other words the user
interface, of our Why3 formalization of the IEEE-754 standard. That signature
is generic, parameterized by the size of FP numbers. In Sect. 3.2 we show how we
build specific instances for 32 and 64 bits formats, and how we can write literal
constants in these formats. Then in Sect. 3.3 we show how the FP computations
in Ada programs are translated by GNATprove into Why3 intermediate code
based on our formalization, thus producing verification conditions involving the
symbols of our signature. Section 3.4 explains how we map our signature to the
SMT-LIB FP theory, so as to exploit SMT solvers with native support for that
theory. Section 3.5 presents an axiomatization for our Why3 theory of FP, to
be used by provers that do not support FP natively. Finally Sect. 3.6 explains
how we ensure that our theory and axiomatization is conformant to the IEEE
standard.

The IEEE-754 standard [24] defines an expected behavior of FP computa-
tions. In any binary formats, an interpretation of a bit sequence under the form
of a sign, a mantissa and an exponent is given, so that the set of FP numbers
denotes a finite subset of real numbers.

sign s biased exponent e mantissa m

The number of bits of e is denoted eb. The significand is the mantissa plus a
hidden bit which is 1 for the so-called normal numbers and 0 for subnormal
ones. The number of bits of the significand, that is also the number of bits
of the mantissa plus 1, is denoted sb. The numbers eb and sb characterize the
format, for the standard binary format on 32 bits and 64 bits we respectively
have eb = 8, sb = 24 and eb = 11, sb = 53. Let us call bias the number 2eb−1 − 1.
The interpretation of the sequence of bits above is then as follows.

– if 0 < e < 2eb − 1, it represents the real number (−1)s · 1.m · 2e−bias (normal
numbers)

– if e = 0, it represents ±0 if m = 0 (positive and negative zeros), (−1)s · 0.m ·
2−bias+1 otherwise (subnormal numbers)

– if e = 2eb − 1, ±∞ if m = 0 (positive and negative infinities) Not-a-Number
otherwise, abbreviated as NaN.
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For each of the basic arithmetic operations (add, sub, mul, div, and also sqrt,
fused-multiply-add, etc.) the standard requires that it acts as if it first computes
a true real number, and then rounds it to a number representable in the chosen
format, according to some rounding mode. The standard defines five rounding
modes: if a real number x lies between two consecutive representable FP numbers
x1 and x2, then the rounding of x is as follows. With directed modes toward +∞
(resp. −∞) it is x2 (resp. x1). With directed mode toward 0, it is x1 if x > 0
and x2 if x < 0. With directed modes to nearest, it is the closest to x among x1

and x2, and if x is exactly the middle of [x1, x2] then in the case ‘ties to away’
it is x2 if x > 0 and x1 if x < 0; whereas in the case ‘ties to even’ the one with
even mantissa is chosen.

As seen above, the standard defines three special values: −∞,+∞ and NaN.
It also distinguishes between positive zero (+0) and negative zero (−0). These
numbers should be treated both in the input and the output of the arith-
metic operations as usual, e.g. (+∞) + (+∞) = (+∞), (+∞) + (−∞) = NaN,
1/(−∞) = −0, ±0/ ± 0 = NaN, etc.

3.1 Signature for a Generic Theory of IEEE FP Arithmetic

We first present the signature of our theory. Such a signature presents the ele-
ments that some user should use: type names, constants, logic symbols for func-
tions and predicates. These elements are only declared with their proper profiles,
but no definition nor axiomatization are given.

One of our goals was to make this signature as close as possible to the SMT-
LIB theory. One of the difficulty is that one wants to describe a generic signature,
in the sense that it should be parameterized by the number of bits eb and sb.
In SMT-LIB, this is done using the ad-hoc built-in construct with underscore
character to handle parametric sorts, e.g. (_FloatingPoint 8 24) denotes the
sort of IEEE 32-bits binary floating-point numbers. In Why3 there is no such
ad-hoc construct, but instead it is possible to define a parametric theory that
can be cloned later on, for particular instances of the parameters.

Our generic signature for floats thus starts as follows.

theory GenericFloat

constant eb : int (* number of bits of the exponent *)

constant sb : int (* number of bits of the significand *)

axiom eb_gt_1: 1 < eb

axiom sb_gt_1: 1 < sb

type t (* abstract type of floats *)

The abstract type t denotes the sort of FP numbers for the given eb and sb,
both assumed greater than 1.

The next part of the signature provides the rounding modes and the arith-
metic operations.

type mode = RNE | RNA | RTP | RTN | RTZ

function add mode t t : t (* add *)

function sub mode t t : t (* sub *)
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function mul mode t t : t (* mul *)

function div mode t t : t (* div *)

It continues with the comparison operators

predicate le t t

predicate lt t t

predicate ge (x:t) (y:t) = le y x

predicate gt (x:t) (y:t) = lt y x

predicate eq t t (* different from = *)

It includes predicates for classification of numbers.

predicate is_infinite t

predicate is_nan t

predicate is_finite t

Finally, it includes rounding and conversion functions.

function roundToIntegral mode t : t (* rounding to an integer *)

function to_real t : real (* conversion to a real number *)

function of_int mode int : t (* conversion from an integer *)

function to_int mode t : int (* conversion to an integer *)

Conversions from and to integers need a rounding mode in both ways, since
not all integers are representable. of_int may even return an infinite value. The
results of to_int and to_real are unspecified if the argument is infinite or NaN.
See [19] for additional elements in the signature.

3.2 Theory Clones and FP Literals

The theory above is generic. So far, it does not allow the construction of FP
literals. Indeed it is possible only on clones of our theory for the binary formats
of standard sizes 32 and 64 bits. For the purpose of allowing literal constants,
we implemented a new feature in Why3 itself: the possibility to declare a type
denoting FP values. Cloning the generic theory for 32-bit format is then done
by the Why3 code below.

theory Float32

type t = < float 8 24 >

clone export GenericFloat with

type t = t, constant eb = t’eb, constant sb = t’sb,

function to_real = t’real, predicate is_finite = t’isFinite

end

The new declaration feature is the line of the form type t = < float eb sb >
above. It introduces a new type identifier t that represents the FP values for the
given sizes for eb and sb. It also introduces the functions t’eb, t’sb, t’isFinite
and t’real, that are used in the cloning substitution above. The main purpose
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this new built-in Why3’s declaration is the handling of literals: what is normally
a real literal in Why3 can be cast to the type t, so that one may write float literals
in decimal (e.g. (1.0:t), (17.25:t)), possibly with exponent (e.g. (6.0e23:t)),
possibly also in hexadecimal1 (e.g. (0x1.8p-4:t) that represents 3

32 ). A very
important design choice is that only the real numbers that are representable in
the target type can be cast. Casting a literal constant that is not representable
is rejected by Why3’s typing engine, e.g. (0.1:t) will raise a typing error2. See
below for implications of this choice.

Finally, each clone contains declarations of conversions with bitvectors of the
appropriate sizes. We reuse here existing Why3 theories for bitvectors [18].

function to_bv mode t : BV32.t

function of_bv mode BV32.t : t

3.3 Interpreting FP Computations in Ada

The Ada standard does not impose the rounding mode used for FP computa-
tions, except for conversions from floats to integers where it is nearest, ties to
away, and from integers to floats where it is nearest, ties to even. To avoid non-
determinism, the SPARK fragment of Ada imposes the rounding mode nearest,
ties to even, for arithmetic operations. Moreover, in SPARK, overflow is forbid-
den, so special values for infinities and NaN are not allowed to appear. Thus
encoding an FP operation from an Ada program amounts to generating the cor-
responding operation in Why3 with the proper rounding mode, and to insert a
check for the absence of overflow. Roughly speaking, a piece of Ada code like:

procedure P (X : in out Float_32) is

begin

X := X + 2.0;

end P;

is translated into WhyML intermediate code as follows:

let p (x : ref Float32.t) : unit

requires { is_finite x }

= let tmp = Float32.add RNE x (2.0:Float32.t) in

assert { is_finite tmp };

x := tmp

The additional assertion will lead to a VC to check the absence of overflow.
All operations are handled in a similar way. Signed integers in Ada are inter-

preted as integers in Why3, and Ada unsigned integers are interpreted as bitvec-
tors [18]. The conversions are translated using the functions to_int, to_bv and
of_int, of_bv with the modes RNA and RNE respectively.
1 C99 notation for hexadecimal FP literals: 0xhh.hhpdd, where h are hexadecimal

digits and dd is in decimal, denotes number hh.hh × 2dd.
2 For that purpose, we had to implement in the typing engine a specific code that

checks that a literal is representable and compute its mantissa and exponent. It is
worth to note that implementing such a code is significantly easier than a code that
would compute a correct rounding for any literals.
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A remark about literals: in the translation from SPARK to Why3, the FP
literals of the Ada source are first interpreted by the GNAT compiler. For exam-
ple, if one uses the constant 0.1 in Ada for a 32-bit float, it is rounded to the
closest representable value 0x1.99999Ap-4. Thus the rounded value that may be
used for such constants to produce a binary code is the very same value that is
passed to Why3. Thus, not only are we sure that the generated Why3 literals are
representable, but we are also sure that we use the same value as the executable.

3.4 Proving VCs Using Native Support for SMT-LIB FP

To attempt to discharge generated VCs using an SMT solver like Z3 that provides
native support for floats, we simply have to map the symbols of our theory to
the ones of SMT-LIB. The mapping is quite straightforward since most symbols
have an SMT counterpart, with the same name, prefixed by ‘fp.’. An exception
is the predicate is_finite which does not exists in SMT-LIB, we encode it as
(not (or (fp.isInfinite x) (fp.isNaN x))). Other notable exceptions are
the conversions with integers, of_int and to_int, which do not exist in SMT-
LIB. The two functions are left uninterpreted, and such conversions are dealt
with the axiomatization below.

Regarding the literals, we use the mechanism that we implemented in Why3
together with our extension of float type declarations, that allows Why3 to print
literals under the SMT-LIB bitvector form (fp s e m), for example the constant
0x1.99999Ap-4 in 32 bits is written as

(fp #b0 #b01111011 #b10011001100110011001101)

3.5 Axiomatization for Provers Without Native Support

Because the VCs generated from Ada programs mix FP computations with other
data-types (integers, bitvectors, arrays. . . ) but also quantified hypotheses, we
cannot hope the solver to be complete. With an axiomatization, we can hope
that a prover may discharge goals including elements outside the SMT-LIB FP
theory (such as conversions with integers) and we can even call a prover without
native support of FP arithmetic. We provide an axiomatization for the operators
introduced in our theory, thus we rely on the generic handling of first-order
axioms the prover may have. Our axiomatization is naturally incomplete: our
intent is to provide the axioms that are useful in practice to discharge VCs.
Notice that when using a solver with native FP support, the driver mechanism
of Why3 removes all these axioms, so as to avoid the prover getting lost with
the extra logic context.

Handling of Literals. We need a mechanism to interpret our built-in Why3
support for literals for provers without native support. This is done using a Why3
transformation that replaces each literal of the proof task by an extra constant
with an axiom that specifies its value. That is, if some FP literal (v : t) appears
in the proof task, it is replaced by a fresh constant l of type t, declared with the
axiom (t’isFinite l) ∧ (t’real l = v).
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Overflow Checks. We start by introducing a few useful constants derived from
eb and sb:

constant pow2sb : int = pow2 sb (* 2^{sb} *)

constant emax : int = pow2 (eb - 1) (* 2^{eb-1} *)

constant max_int : int = pow2 emax - pow2 (emax - sb)

constant max_real : real = FromInt.from_int max_int

The constants max_real and max_int both represent the exact value of the
biggest finite float, as a real and an integer respectively. In order to speak about
overflows and finiteness, we introduce the following predicates.

predicate in_range (x:real) = - max_real <= x <= max_real

predicate no_overflow (m:mode) (x:real) = in_range (round m x)

axiom is_finite: forall x:t. is_finite x → in_range (to_real x)

axiom Bounded_real_no_overflow :

forall m:mode, x:real. in_range x → no_overflow m x

The predicate in_range specifies the range of floats. The predicate no_overflow
composes round and in_range to check for overflows. We stress that the two
axioms specify that to be finite implies that the projection is in the float range,
which in turns implies that there is no overflow. However we do not specify that
no overflows implies finiteness in order to force the provers to reason on reals as
well as avoid circularity in their proof attempts.

Rounding and Arithmetic. The rounding function, that is used to specify
the FP operations, plays a central role in our axiomatization. This rounding
function operates on real numbers, as defined in IEEE-754. It takes a rounding
mode m, a real value x and returns the value of the FP number nearest to x
up to m.

function round mode real : real

axiom Round_monotonic :

forall m:mode, x y:real. x <= y → round m x <= round m y

axiom Round_idempotent :

forall m1 m2:mode, x:real. round m1 (round m2 x) = round m2 x

axiom Round_to_real :

forall m:mode, x:t. is_finite x → round m (to_real x) = to_real x

Those axioms are completed with axioms in the clones for 32 and 64 bits, giving
quite precise bounds on the error made by rounding [31]. Here are the ones for
32 bits:

lemma round_bound_ne :

forall x:real [round RNE x]. no_overflow RNE x →
x - 0x1p-24 * Abs.abs(x) - 0x1p-150 <= round RNE x

<= x + 0x1p-24 * Abs.abs(x) + 0x1p-150

lemma round_bound :

forall m:mode, x:real [round m x]. no_overflow m x →
x - 0x1p-23 * Abs.abs(x) - 0x1p-149 <= round m x

<= x + 0x1p-23 * Abs.abs(x) + 0x1p-149
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For 64 bits, the constants 0x1p-24, 0x1p-150, 0x1p-23, 0x1p-149 are replaced
by 0x1p-53, 0x1p-1075, 0x1p-52 and 0x1p-1074.

Of course the axioms are not completely specifying the rounding function but
only give bounds. A complete specification is not an objective. Indeed, giving a
complete semantic with axioms would only lose the provers, the function round
is too complex for that. Furthermore we don’t want solvers to “reason” about the
function round itself but rather up to it. Hence we only provide some properties
to help provers move the predicate around. This is at the cost of losing precision
in computations, in particular proof of equality and proofs dealing with precise
ranges are hard, or even impossible.

The axiomatization of arithmetic operators derives from the rounding func-
tion. We only present the float addition, the other arithmetic operators are in
the same line. It is axiomatized through the projection to reals. The main axiom
add_finite specifies the non overflowing addition of two finite floats.

axiom add_finite: forall m:mode, x y:t [add m x y].

is_finite x → is_finite y →
no_overflow m (to_real x + to_real y) →
is_finite (add m x y) ∧
to_real (add m x y) = round m (to_real x + to_real y)

lemma add_finite_rev: forall m:mode, x y:t [add m x y].

is_finite (add m x y) → is_finite x ∧ is_finite y

lemma add_finite_rev_n: forall m:mode, x y:t [add m x y].

(m = RNE ∨ m = RNA) → is_finite (add m x y) →
no_overflow m (to_real x + to_real y) ∧
to_real (add m x y) = round m (to_real x + to_real y)

The two lemmas specify what we can deduce from the finiteness of an addition,
add_finite_rev for the general case and add_finite_rev_n for the rounding
modes RNE and RNA. The two lemmas are important when the finiteness of an
addition appears in the context of a VC without any other fact about how it
was proven (e.g. it was proven in another VC, or provided as an hypothesis).
As mentioned, a second axiom is provided in the theory to specify all other
cases dealing with special values (overflows, addition with a NaN, etc.). All other
arithmetic operators, namely subtraction, multiplication, division, negation as
well as absolute value, square root and fused multiply-add are specified in the
same way. See [19] for all the axioms.

Conversions with Integers. Since these conversions are not supported by
SMT-LIB, we handle them specially with a set of axioms that are useful to dis-
charge goals coming from our Ada examples. Here is an excerpt of these axioms
concerning the addition of FP numbers that come from integer conversions.

predicate in_safe_int_range (i: int) = - pow2sb <= i <= pow2sb

axiom of_int_add_exact: forall m n, i j.

in_safe_int_range i → in_safe_int_range j →
in_safe_int_range (i + j) →

eq (of_int m (i + j)) (add n (of_int m i) (of_int m j))
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The predicate in_safe_int_range, building on pow2sb, specifies the range in
which every integer is representable in the float format. The axiom then expresses
the necessary conditions to deduce that some addition is indeed exact. We have
similar axioms for other operations. See [19] for a more detailed description of
this part of the axiomatization.

3.6 Consistency and Faithfulness

Our FP theory, with all its axioms, is proven conformant to the IEEE standard
by realizing a model of it in Coq, using the existing library Flocq [7]. While part
of the realization was simply to reuse results already proved in Flocq, we did
provide significant proof efforts, in particular to deal with the relation between
integers and floats which is absent from this library (and might end up contribute
to it). The faithfulness of the axiomatization with regard to IEEE standard is
then enforced by modeling the theory’s operators with Flocq’s corresponding
IEEE operators.

For SMT solvers with native support, we need to ensure that the axioma-
tization is coherent with the SMT-LIB theory of floats. This is the case if the
implementation of SMT-LIB FP in a given solver is itself consistent with the
IEEE standard, which is supposed to be the case.

4 Experiments

The tables from Figs. 2 and 4 summarize the proof results with provers from
the current SPARK toolset: SMT solvers CVC4, Alt-Ergo, Z3 and static ana-
lyzer CodePeer. We add in these figures two provers: AE fpa, the prototype of
Alt-Ergo with FP support [12], and COLIBRI, a prover based on constraint
solving techniques [11,28]. Gray cells correspond to unproved VCs. White cells
correspond to proved VCs with the running time of the prover given in seconds
(round to nearest, away from zero).

4.1 Small Representative Examples

We start with 22 simple examples representative of the problems encountered
with proof of industrial programs using FP arithmetic. Each example consists in
a few lines of code with a final assertion. Although each assertion should be prov-
able, none of the assertions were provable with the version of SPARK released in
2014, when we established this list. These examples show a variety of FP com-
putations that occur in practice, combining linear and non-linear arithmetic,
conversions between integers and FP, conversions between single and double
precision FP. The first 11 examples correspond to reduced examples from actual
programs. The last 11 examples correspond to so-called user rules, i.e. axioms
that were manually added to the proof context in the SPARK technology prior
to SPARK 2014. Out of 22 examples, 20 directly come from industrial needs.
See [19] for the complete Ada source code for these small examples. Figure 2
summarizes the proof results. It can be noted that all examples are now proved
by the combination of provers.



Automating the Verification of Floating-Point Programs 113

Fig. 2. Proof times in seconds for the reduced examples (timeout = 30 s)

4.2 A Case Study

We now present a simple case study representative of production code from an
embedded safety-critical software, on which we have applied the combination
of techniques presented previously. The complete Ada source code for this case
study is available online at http://toccata.lri.fr/gallery/trajectory computation.
en.html. This program computes the speed of a device submitted to gravitational
acceleration and drag from the atmosphere around it. The formula to compute
the new speed S(N +1) from the speed S(N) at the previous step, after a given
increment of time is:

S(N + 1) = S(N) + δ (1)

where δ = drag + factor × G × framelength, where factor is a value between −1
and 1 reflecting the importance of Archimedes’ principle on the system, G is the
gravitational acceleration constant, and framelength is a constant that defines
the time in seconds between two steps in the computations.

Because of the types and the values of constants involved, both CodePeer
and Z3 can prove that there is no possible overflow. To go beyond absence of
overflows, we aim at proving safe bounds for the speed computed by the program
at each step, based on the extreme values allowed for drag and the initial speed.
Reasoning in real numbers, we’d like to state that (showing only the upper bound
here, the lower bound is similar):

δ ≤ maxdrag + G × framelength

and, starting from an initial speed S(0) of value zero, by summation over N
steps, that

S(N) ≤ N × (maxdrag + G × framelength)

Naturally, these bounds in real numbers do not necessarily hold for the FP
computations in the program. But they do hold when considering the ceiling

http://toccata.lri.fr/gallery/trajectory_computation.en.html
http://toccata.lri.fr/gallery/trajectory_computation.en.html
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Fig. 3. Formal specification of Compute_Speed

value of the FP computations above, using ⊕ for FP addition and ⊗ for FP
multiplication:

δ ≤ �maxdrag ⊕ G ⊗ framelength� (2)

S(N) ≤ N ⊗ �maxdrag ⊕ G ⊗ framelength� (3)

Indeed, given the magnitude of the integers involved (both operands and results
of arithmetic operations), they are in a safe range where all integers are repre-
sented exactly as FP numbers, and arithmetic operations like additions and mul-
tiplications are thus exact as well on such integers. This is expressed in axioms
such as of_int_add_exact of our axiomatization relating floats and integers, as
presented in Sect. 3.5. Hence, for the integer value Q of ceiling in the equation
above, we have that (N ⊗Q)⊕Q = (N ⊕1)⊗Q which allows to prove the bounds
on S(N) by induction on N , from Eqs. (1), (2) and (3). We follow this strategy in
proving a corresponding contract on procedure Compute_Speed which computes
the value of S(N), shown in Fig. 3. The ghost function Invariant expresses a
bound on the N th term of the series S(N).

The automatic proof of Compute_Speedin GNATprove requires the collabo-
ration of static analyzer CodePeer and SMT solvers Alt-Ergo, CVC4 and Z3.
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Fig. 4. Proof times in seconds for the case study (timeout = 60 s). Underlined
cells correspond to provers actually used by GNATprove when using switches
--codepeer=on --level=2

The way that we make this collaboration work is that we state intermediate
assertions that are proved by either CodePeer or an SMT solver, and which are
used by all to prove subsequent properties. Figure 4 gives the list of intermedi-
ate assertions that we wrote to fully prove the case study, and summarizes the
proof results. It can be noted that all VCs in the case study are proved by the
combination of provers.

We start by bounding all quantities involved using a ghost function
In_Bounds. CodePeer is used to prove automatically three assertions bound-
ing the values of Delta_Speed, High_Bound(N) and Low_Bound(N). Then, Z3 is
used to prove the distribution of addition over multiplication that is required
to prove Invariant(N+1) from Invariant(N), using a value N_BV which is the
conversion of N into a modular type. As modular types are converted into bitvec-
tors for Z3, the assertion mixing integers and floats can be interpreted fully in
bitvectors by Z3, which allows to prove it. Then, CodePeer is used to prove
equivalent assertions on signed integers. CodePeer is also used to prove that the
conversion of integer 1 into float is 1.0, using an expression function T returning
its input, which prevents the analyzer frontend from simplifying this assertion
to True. Then, CVC4 is used to prove that adding 1 to N can be done with the
same result in integers and in floats, using the previously proved assertion and
the axiom of_int_add_exact presented in Sect. 3.5. Finally, a combination of
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CVC4 and Z3 is used to prove bounds on the value of New_Speed. With these
assertions, the postcondition of Compute_Speed is proved by CVC4.

5 Conclusions and Perspectives

Our approach for automated verification of floating-point programs relies on a
generic theory, written in Why3’s specification language, to model FP arithmetic.
This theory is faithful to the IEEE standard. Its genericity allows to map it both
to the Flocq library of Coq and to the FP theory of SMT-LIB. This theory is
used to encode FP computations in the VC generation process performed by
Why3. The resulting VCs can be dispatched either to the CodePeer analyzer
that performs interval analysis, or to SMT solvers, with or without a native
support for FP theory. The versatility of the different targets for discharging
VCs permit a high degree of automation of the verification process.

Related Work. Since the mid 1990s, FP arithmetic has been formalized in
interactive deductive verification systems: in PVS [9], in ACL2 [34], in HOL-
light [22], and in Coq [15]. These formalizations allowed one to represent
abstraction of hardware components or algorithms, and prove soundness prop-
erties. Representative case studies were the formal verification of FP multipli-
cation, division and square root instructions of the AMD-K7 microprocessor in
ACL2 [34], and the development of certified algorithms for computing elementary
functions in HOL-light [21,22]. See also [23] for a survey of these approaches.

In 2007, Boldo and Filliâtre proposed an approach for proving properties
related to FP computations in concrete C, using the Caduceus tool and Coq
for the proofs [5]. The support for FP in Caduceus was somehow ported to the
Frama-C environment [13] and its Jessie plug-in, aiming at using automated
solvers instead of Coq, for a higher degree of automation [1]. Several case stud-
ies using Frama-C/Jessie, with various degree of complexity were designed by
different authors [4,6,20,27]. In these various case studies, proofs using Coq or
PVS were still needed to discharge the most complex VCs. Yet, a significant
improvement in the degree of automation was obtain thanks to the use of the
automated solver Gappa dedicated to reasoning on FP rounding [14].

Regarding the use of abstract interpretation to verifying FP programs, this
indeed obtained very good successes in industrial contexts. In 2004, Minéused
relational abstract domains to detect FP run-time errors [30], an approach that
was implemented in the Astrée tool and successfully applied to the verification
of absence of run-time errors in the control-command software of the Airbus
A380. Another tool based on abstract interpretation is Fluctuat [16], which is
not limited to the verification of absence of runtime errors, but is also able to
compare between executions of the same code in finite precision and in infinite
precision, giving some bounds on the difference between the two.

Previous support for floats in GNATprove translated every FP value in
SPARK into a real value in Why3 and relied on the support for real arith-
metic in provers, plus explicit use of rounding after each arithmetic operation.
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A limitation (documented in previous versions of SPARK) was that the map-
ping from FP values to the real line, even when excluding infinities and NaN,
is not injective: both FP values +0 and −0 are translated into the real number
zero. Thus, the translation was not sound when programs in the input language
may distinguish values −0 and +0, as the representation in real numbers cannot
distinguish them anymore. Contrary to the axiomatization presented in Sect. 3,
the previous axiomatization of rounding was not realized. Consistency and con-
formance of the set of axioms was ensured by review only.

In our own approach, we combine different techniques from abstract inter-
pretation (interval analysis) and theorem proving (recent support of FP in SMT
solvers), to achieve verification not only of runtime errors but also functional
properties given by the user, with a high degree of automation. Our approach
indeed follows the same path we followed for improving the support for bit-level
computations [18], where in that case we tried to exploit native support for
bitvectors in SMT solvers.

Future Work. The new combined approach we designed is successful on the
typical examples with FP computations coming from current industrial use of
SPARK. Yet, we noticed that this new technique is not as good as the former one
used in Frama-C and Why3 [6] for proving very advanced functional behaviors
of programs, relating the concrete computations with some purely mathematical
computations on real numbers [4,6,27]. A short term perspective is to better
unify the two approaches. Notice that the authors of the CVC4 SMT solver are
currently working on a native support for FP arithmetic, it will be worth to
experiment our approach with this new prover when it is available. As shown by
our case study, handling conversion between integers and FP numbers remains
quite challenging, a better support by back-end provers is desirable.

These future work, together with further improvements in the prototype
back-end experimental solvers COLIBRI and AE fpa we mentioned quickly
in the experimental results of Sect. 4.2, are central in the on-going project
SOPRANO.
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Abstract. SAT solvers are increasingly being used for cryptanalysis
of hash functions and symmetric encryption schemes. Inspired by this
trend, we present MapleCrypt which is a SAT solver-based cryptanal-
ysis tool for inverting hash functions. We reduce the hash function inver-
sion problem for fixed targets into the satisfiability problem for Boolean
logic, and use MapleCrypt to construct preimages for these targets.
MapleCrypt has two key features, namely, a multi-armed bandit based
adaptive restart (MABR) policy and a counterexample-guided abstrac-
tion refinement (CEGAR) technique. The MABR technique uses rein-
forcement learning to adaptively choose between different restart poli-
cies during the run of the solver. The CEGAR technique abstracts away
certain steps of the input hash function, replacing them with the identity
function, and verifies whether the solution constructed by MapleCrypt
indeed hashes to the previously fixed targets. If it is determined that
the solution produced is spurious, the abstraction is refined until a cor-
rect inversion to the input hash target is produced. We show that the
resultant system is faster for inverting the SHA-1 hash function than
state-of-the-art inversion tools.

1 Introduction

Over the last 15 years we have seen a dramatic improvement in the efficiency of
conflict-driven clause-learning (CDCL) SAT solvers [2,7,35,43] over industrial
instances generated from a large variety of applications such as verification, test-
ing, security, and AI [9,11,46]. Inspired by this success many researchers have
proposed the use of SAT solvers for cryptanalysis of hash functions and sym-
metric encryption schemes [41]. The use of SAT solvers in this context holds
great promise as can be seen based on their success to-date in automating many
aspects of analysis of cryptographic primitives [51]. SAT solvers are an increas-
ingly important tool in the toolbox of the practical cryptanalyst and designer of
hash functions and encryption schemes. Examples of the use of SAT solvers in
cryptanalysis include tools aimed at the search for cryptographic keys in 1999
[36], logical cryptanalysis as a SAT problem in 2000 [37], encoding modular root
finding as a SAT problem in 2003 [21] and logical analysis of hash functions in
2005 [26]. Most of these approaches used a direct encoding of the said problems
into a satisfiability problem and used SAT solvers as a blackbox.
c© Springer International Publishing AG 2017
A. Paskevich and T. Wies (Eds.): VSTTE 2017, LNCS 10712, pp. 120–131, 2017.
https://doi.org/10.1007/978-3-319-72308-2_8



Adaptive Restart and CEGAR-Based Solver 121

In this paper, we propose a set of techniques and an implementation, we call
MapleCrypt, that dramatically improve upon the state-of-the-art in solving
the cryptographic hash function inversion problem. The problem of inverting a
hash function is of great importance to cryptographers and security researchers,
given that many security protocols and primitives rely on these functions being
hard-to-invert. Informally, the problem is “given a specific hash value (or tar-
get) H find an input to the hash function that hashes to H”. We focus on the
inversion problem, as opposed to the more well-studied collision problem. The
value of this research is not only the fact that cryptanalysis is an increasingly
important area of application for SAT solvers, but also that instances generated
from cryptographic applications tend to be significantly harder for solvers than
typical industrial instances, and hence are a very good benchmark for solver
research.

Summary of Contributions. We focus on the SHA-1 cryptographic hash func-
tion in this paper, and make the following contributions:

1. We present a counter-example guided abstraction-refinement [13] (CEGAR)
based technique, wherein certain steps of the hash function under analysis are
abstracted away and replaced by the identity function. The inversion problem
for the resultant abstracted hash function is often much easier for solvers, and
we find that we do not have to do too many steps of refinement. An insight
from this experiment is that certain steps of the SHA-1 hash function do not
have sufficient levels of diffusion, a key property of hash functions that makes
them difficult to invert.

2. In addition to the above-mentioned CEGAR technique, we present a multi-
armed bandit [50] based adaptive restart policy. The idea is that a reinforce-
ment learning technique is used to select among a set of restart policies in an
online fashion during the run of the solver. This method is of general value,
beyond cryptanalysis. The result of combining these two techniques is a tool,
we call MapleCrypt, that is around two times faster on the hash function
inversion problem than most state-of-the-art SAT solvers. More importantly,
with a time limit of 72 h, MapleCrypt can invert a 23-step reduced version
of SHA-1 consistently, whereas other tools we compared against can do so
only occasionally.

3. We perform extensive evaluation of MapleCrypt on the SHA-1 inversion
problem, and compare against CryptoMiniSat, Lingeling, MiniSAT, Minisat-
BLBD. In particular, MapleCrypt is competitive against the best tools out
there for inverting SHA-1.

2 Background on Cryptographic Hash Functions

In this section we provide a brief background on cryptographic hash functions,
esp. SHA-1. We refer the reader to [22] for a more detailed overview of hash
functions. A hash function maps an arbitrary length input string to a fixed
length output string (e.g., 160 bits in the case of SHA-1). There are three main
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properties that are desired for a cryptographic hash function [30]. Informally,
they are:

– Preimage Resistance: Given a hash value H, it should be computationally
infeasible to find a message M , where H = hash(M).

– Second Preimage Resistance: Given a message M1, it should be computation-
ally infeasible to find another message M2, where hash(M1) = hash(M2) and
M1 �= M2.

– Collision Resistance: It should be computationally infeasible to find a pair of
messages M1 and M2, where hash(M1) = hash(M2) and M1 �= M2. (There
is a subtle difference between second pre-image resistance and collision resis-
tance, in that the message M1 is not fixed in the case of collision resistance.)

Preimage resistance implies that the hash function should be hard to invert.
The terms preimage attack and inversion attack are used interchangeably. Stan-
dard cryptographic hash functions at their core have a compression function,
which can essentially be seen as repeated application of a step function on its
input bits for a fixed number of steps. The compression function takes as input
a fixed length input and outputs a fixed length (with smaller length) output.
For making a collision resistant compression function, one method is to use a
block cipher and apply the Davis-Meyer method. Feistel ladder which is widely
used in hash functions like MD5 and SHA-1 (and also block ciphers like DES),
is an implementation of this method, where the key is a message word. If the
key is known, each step is easily reversible. For making a hash function able to
accept arbitrary long messages as input, one can use Merkle-Damgard structure
[40], where it is shown that if one block is collision resistant, the whole structure
would be collision resistant.

2.1 SHA-1

SHA-1 (Secure Hash Algorithm), was designed by NSA, and adopted as a stan-
dard in 1995 [22], and is still widely used in many applications. SHA-1 consists
of iterative application of a so-called compression function which takes a 160-bit
chaining value and transforms it into the next chaining value using a 512-bit mes-
sage block. The current chaining value would be added to the output of compres-
sion function to make the next chaining value: CVi+1 = Comp(CVi,Mi) + CVi,
and the CV0 is set to a fixed initialization vector. The input message will be
padded to make the input message length a multiple of 512. A single bit ‘1’ fol-
lowed by a set of ‘0’s and the original message length (as a 64-bit value) will
be appended to the message. The message is broken down to blocks of 512 bits.
Each compression function breaks down the input message block into sixteen
32-bit words. Then it will go through a message expansion phase, which extends
sixteen words to eighty words, using the following formulation (consider that Wi

for 0 ≤ i ≤ 15 refers to input message words):

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1 (16 ≤ i ≤ 79) (1)
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where ‘≪ 1’ is left rotation by one position.
There are five 32-bit words (namely, a, b, c, d, e) as the intermediate variables.

In each step a function Ft is applied to three of these words, and it changes every
20 steps:

Ft(b, c, d) =

⎧
⎪⎪⎨

⎪⎪⎩

Ch(b, c, d) = (b ∧ c) ⊕ (¬b ∧ d) 0 ≤ t ≤ 19
Parity(b, c, d) = b ⊕ c ⊕ d 20 ≤ t ≤ 39
Maj(b, c, d) = (b ∧ c) ⊕ (b ∧ d) ⊕ (c ∧ d) 40 ≤ t ≤ 59
Parity(b, c, d) = b ⊕ c ⊕ d 60 ≤ t ≤ 79

(2)

The step process would be like:

(at+1, bt+1, ct+1, dt+1, et+1) ←
(Ft(bt, ct, dt) � et � (at ≪ 5) � Wt � Kt, at, bt ≪ 30, ct, dt)(3)

where ≪ is left rotation, � is modulo-232 addition and Kt is the round constant.
This is repeated for next 512-bit message block in the Merkel-Damagard chain.

Step-Reduced Version: Usually inverting or finding collision for full version
of a hash function is very hard. Thus, cryptanalysts work on a relaxed version
of those functions like step-reduced versions, which means the function under
attack is the same, except that the number of steps is reduced.

3 Architecture of MapleCrypt

We seek to perform a preimage or inversion attack on a step-reduced version of
SHA-1, with one block input (512 bits). Although the current work is focused
on SHA-1, our approach is applicable to other iterative hash functions. The
two main contributions in our design are adaptive restart and a CEGAR-based
approach. The adaptive restart is not directly dealing with the structure of
the function and therefore could be used in solving other SAT instances. The
CEGAR approach is abstracting and refining step functions. Thus it could be
used for the other hash functions that have a repeated use of a step function
(e.g. MD4, MD5, SHA-2).

3.1 SAT Encoding

The encoding we use in this paper is based on the one in [44]. Most of the
operations are encoded using Tseitin transformation, but some operations are
described using high level relations. There is a 5-operand addition in each step
of SHA-1 (refer to Eq. (3)). The main contribution of the encoding in [44] is the
encoding of this multi-operand addition (instead of encoding of multiple two-
operand additions). Current SHA-1 instances in SAT competition are generated
using this tool [45]. We have made minor modifications, namely to the encoding
of round-dependent logical function (Ft in Eq. (2)), replacing XOR operations
with inclusive-OR to simplify the corresponding clauses.
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3.2 CEGAR Loop Design

The SHA-1 SAT instances of up to 20 steps are very easy to solve (less than a
second using most modern solvers), but the level of difficulty rapidly rises from
20 steps to 23 steps (needs 2 to 3 days to solve). To the best of our knowledge,
preimage for more than 23 steps cannot be constructed in a reasonable amount
of time even with the latest techniques and hardware [31,32,44].

For the instances of more than 20 steps (e.g. 22 steps), we abstract away
initial step functions and keep the last 20 steps intact (abstracting first 2 steps),
but we do not abstract away the message words and the message expansion
relations. We solve the simplified instance, and find a solution for the message
words. However, the resultant solution may be spurious, i.e., may not actually
hold for the specific hash target. In order to verify the solution, we run the
hash function in the forward direction and check the result with the target, and
record values of intermediate variables throughout the hashing. If the computed
hash does not match the target (i.e., the solution produced by the solver is
spurious), we refine back those parts of abstracted steps of the hash function
that are unsatisfiable under the spurious solution. Finally we also add a subset
(all except last 8 steps) of intermediate values (computed during the forward
run of the hash function on spurious solutions) as blocking clauses.

The intuition behind this procedure is that, first of all, 20 steps are very easy
to solve, and it is the highest number of steps that we are better off solving
directly, rather than using an abstraction. Secondly, the first few intermediate
variables have the most degree of freedom when searching for a preimage or
collision. Lastly, blocking a subset of intermediate values, although might block
some legitimate solutions, but also blocks many spurious solutions. We can divide
our main procedure into two main functions, listed in Algorithm1.

In the listing of Algorithm1, interValues refers to the collection of interme-
diate variables across working steps that will be negated and added as a conflict
clause to a CCDB (conflict clause database). The Refine function evaluates the
clauses of the original formula with the found solution and checks which vari-
ables are in the UNSAT clauses and add them back to the current abstracted
instance.

3.3 Multi-armed Bandit Restart

Many restart policies have been proposed in the SAT literature [4–6,34], in par-
ticular we focus on the uniform, linear, Luby, and geometric restart policies [10].
For a given preimage attack instance, we can not know a priori which of the
4 restart policies will perform the best. To compensate for this, we use multi-
armed bandits (MAB) [50], a special case of reinforcement learning, to switch
between the 4 policies dynamically during the run of the solver. We chose to
use discounted UCB algorithm [24] from MAB literature, as it accounts for
the nonstationary environment of the CDCL solver, in particular changes in
the learnt clause database over time. Discounted UCB has 4 actions to choose
from corresponding to the uniform, linear, Luby, and geometric restart policies.
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Algorithm 1. Finding Preimage using a CEGAR loop
Require: W : 512-bit found preimage, H: Hash target, nsteps: number of hash steps
Ensure: true if W is a valid preimage, false otherwise
1: function Check(W, H, nsteps)
2: (H ′, interValues) ← SHA-1(W , nsteps)
3: if H = H ′ then
4: return true
5: else
6: CCDB.add(interValues)
7: return false
8:
Require: H: Hash target, nsteps: number of hash steps
Ensure: W : 512-bit preimage of H
9: function FindPreimage(H, nsteps)

10: InstanceSteps ← AbsInstGen(nsteps) � Abstracted set of step functions
11: InstanceW ← MsgInstGen(nsteps) � All of input and expanded message words
12: while true do
13: W [0..15] ← SATSolver(InstanceSteps, InstanceW, CCDB)
14: if Check(W, H, nsteps) = true then
15: return W
16: InstanceSteps ← Refine(InstanceSteps, W, nsteps)

Once the action is selected, the solver will proceed to perform the CDCL back-
tracking search until the chosen restart policy decides to restart. The algorithm
computes the average LBD (Literals Block Distance [3]) of the learnt clauses
generated since the action was selected, and the reciprocal of the average is the
reward given to the selected action. Intuitively, a restart policy which generates
small LBDs will receive larger rewards and UCB will increase the probability of
selecting that restart policy in the future. Over time, this will bias UCB towards
restart policies that generate small LBDs.

4 Experimental Results

4.1 Experimental Setup

Our baseline benchmark consists of instances of preimage of step-reduced SHA-1,
from 21 to 23 steps. Instances for less than 21 steps were trivial for every solver we
tried. For each step we generated 25 random targets and encoded them as fixed
value for the hash output. All jobs were run on AMD opteron CPUs at 2.2 GHz
and 8 GB RAM. The timeout for solving a single instance was 72 h, with 4 GB of
memory allocated for each process. We used 5 SAT solvers, CryptoMiniSat-4.5.3
[47], Minisat BLBD [12], Lingeling-ayv [8], Minisat-2.2 [18] and MapleSAT [33].
We also tried 4 SMT solvers to take advantage of their BitVector theory solvers.
We used, STP-2.0/CryptoMinisat4, Boolector-2.0.7/Lingeling, CVC4-1.5, Z3-
4.4. However, all of these SMT solvers performed surprisingly poorly (marginally
better than the worst performing SAT solver in our solver set). Hence, we did
not include them in our comparisons.
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Fig. 1. The performance of various SAT solvers against MapleSAT with adaptive
MAB-restart and CEGAR.

4.2 CEGAR and MABR

State-of-the-art results for automated and practical preimage of SHA-1 that
construct a result rather than presenting an upper bound for attack complexity,
propose a SAT encoding of the preimage attack and solve it using modern SAT
solvers. Therefore we picked the best existing encoding method for SHA-1 [44]
and applied our solving techniques on them. We are comparing our runtimes
with other SAT solvers, given the same instances. Figure 1 shows the cactus
plot of solving times where each data point shows how many instances could
be solved in the corresponding time. Curves more toward bottom are faster and
more toward right are solving more instances. It can be seen that MapleSAT
with MAB restart dominates in terms of runtime and number of instances solved,
and after employing the CEGAR technique, we are able to solve faster and more
instances. MapleCrypt is the CEGAR architecture that uses MapleSAT+MABR
as backend solver.

4.3 Partial Preimage

This is the kind of attack where the attacker knows some bits of the input
message and wants to find out the rest. Our experiments on SHA-1 show that
knowing parts of the message does not necessarily make the problem easier,
as it might force the solver to find a specific input that matches those bits and
reduces the possibilities. Our results mostly confirm the observations on hardness
of partial preimage of SHA-1 in [45]. We could invert up to 27 steps of SHA-1
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when having 40 bits of the input message unknown, which matches the best
results known in this setting for SHA-1 [42].

5 Related Work

We review the related work on inversion attacks, and touch upon collision attacks
as appropriate. Note that for inversion attacks, every additional round of a hash
function inverted is considered significant improvement over previous work.

SAT-Based Constructive Methods. Since 2005, several hash functions have
been shown to be prone to collision attacks [52,53]. In 2006, Mironov et al. [41]
automated parts of collision attack of Wang et al. [52] using SAT solvers. Not
many of the collision attack methods use SAT solvers, as the collision finding
problem is studied very well and most cryptanalysts use direct implementation
of mathematical analyses (e.g., differential cryptanalysis) for this problem.

Given that the focus of our paper is on inversion attacks, we provide a thor-
ough overview of the related work for the same. In 2007, De et al. [14] used
a SAT solver for an inversion attack on MD4 and enhanced number of steps
inverted, up to 2 rounds and 7 steps, by encoding Dobbertin’s attack model [17]
into SAT constraints. In 2008, Srebrny et al. [48] formulated inversion of SHA-1
as a SAT instance and could solve for restricted message size up to 22 steps.
Several later works could solve up to 23 rounds of SHA-1 [31,32,44]. Lafitte
et al. [29] presented a generic way to encode basic cryptographic operations
which was an improvement over operator overloading model in [26] and used it
in a preimage test on MD4 and finding weak keys in IDEA and MESH ciphers,
although other than finding weak keys, preimage results were not better than
the best previously published attack. In 2013, Morawiecki et al. [42] used the
idea of minimization of SAT instances generated via analysis of cryptographic
primitives. They applied their tool CryptLogVer on some hash functions like
SHA-1 and Keccak to analyze their preimage resistance. Although they did not
increase the number of inverted steps, they showed improvement in solving time.
Nossum [45], also presents an encoding for preimage attack of SHA-1 which tar-
gets the 5-operand addition operation that is performed in each step of SHA-1
and the generated instances have fewer variables than the work of Srebrny et al.
[48] and Morwiecki et al. [42], and in general are easier to solve by modern SAT
solvers. It is used to generate SHA-1 instances of SAT competition [45]. The
work presented in this paper is using Nossum’s instance generator with small
tweaks. All of the mentioned techniques use SAT solvers as a black box tool. By
contrast our design leverages CEGAR and modifies the restart policies of SAT
solvers. Additionally, our method is faster for finding preimages and can solve
more hash targets in the given time limit than previous work.

Non SAT Solver Based Constructive Attacks. These methods are almost
exclusively aimed at collision attacks. In 2006, De Cannière et al. [15] built a non
SAT solver based tool for SHA-1 collision attack leveraging the breakthrough of
Wang et al. [53]. In 2011, Mendel et al. [38] extended it for SHA-256 which was
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further improved in their work in 2013 [39]. Eichlseder et al. [19] improved upon
the branching heuristics of this tool and applied it to SHA-512. Recently Stevens
et al. [49] presented a parallelized search implementation and found free-start
collision on full SHA-1.

Non-constructive Theoretical Bounds. Here we review known theoretical
bounds on preimage attack on various hash functions. One of the first preimage
results on SHA-1 was achieved by using techniques like reversing the inver-
sion problem and mathematical structures like P 3 graphs [16], which could
invert 34 and 44 steps with complexity of 280 and 2157 respectively. Aoki and
Sasaki [1] used meet-in-the-middle to attack SHA-1 (and also MD4 and MD5)
and improved the number of steps to 48 with the solving complexity of 2159.3.
Knellwolf et al. [28] improved it in 2012 by providing a differential formulation
of MITM model and raised the bar up to 57 steps. Espiatu et al. [20] extended
this work further to higher order differentials for preimage attack on SHA-1
and BLAKE2 and went up to 62 steps for SHA-1. Mathematical structure like
Biclique [27], allowed extending coverage of MITM over larger number of steps.

Adaptive Restarts. Armin Biere proposed monitoring variable assignment
flips in PicoSAT, and delayed restarts when the weighted average of flips is below
a predetermined threshold [5]. Audemard and Simon proposed monitoring the
LBD of learnt clauses, and a restart is triggered if the short term LBDs exceeds
the long term LBDs by a constant factor [4]. Haim and Walsh used machine
learning to train a classifier to select from a portfolio of restart policies [25].
Gagliolo and Schmidhuber used bandits to select between Luby and uniform
restart heuristic [23].

6 Conclusion and Future Work

We presented a tool called MapleCrypt for preimage attack on SHA-1 hash
functions, which uses CEGAR and adaptive restart techniques. Our tool is faster
than other automated search tools in the literature for the constructive preim-
age attack. Our results show that SAT solvers and SAT-based techniques are a
promising approach for handling the laborious parts of cryptanalysis, and identi-
fying weaknesses in hash function designs. This design can be extended to work
on other hash functions like SHA-2 family.
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19. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential col-

lision search with applications to SHA-512. IACR Cryptology ePrint Archive
2014:302 (2014)

20. Espitau, T., Fouque, P.-A., Karpman, P.: Higher-order differential meet-in-the-
middle preimage attacks on SHA-1 and BLAKE. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 683–701. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 33

21. Fiorini, C., Martinelli, E., Massacci, F.: How to fake an RSA signature by encoding
modular root finding as a SAT problem. Discrete Appl. Math. 130(2), 101–127
(2003)

22. PUB FIPS: 180–4. Federal Information Processing Standards Publication, Secure
Hash (2011)

https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-540-79719-7_4
http://fmv.jku.at/lingeling/
https://doi.org/10.1007/978-3-319-06089-7_11
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-72788-0_36
https://doi.org/10.1007/978-3-540-72788-0_36
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/978-3-540-85174-5_11
https://doi.org/10.1007/3-540-60865-6_43
https://doi.org/10.1007/3-540-60865-6_43
http://minisat.se/
https://doi.org/10.1007/978-3-662-47989-6_33


130 S. Nejati et al.

23. Gagliolo, M., Schmidhuber, J.: Learning restart strategies. In: IJCAI, pp. 792–797
(2007)

24. Garivier, A., Moulines, E.: On upper-confidence bound policies for switching bandit
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Abstract. Null pointer dereferencing remains one of the major issues in
modern object-oriented languages. An obvious addition of keywords to
distinguish between never null and possibly null references appears to be
insufficient during object initialization when some fields declared as never
null may be temporary null before the initialization completes. Unlike all
previous publications on the subject, this work avoids explicit encoding
of these intermediate states in programs in favor of statically checked
validity rules that do not depend on special conditionally non-null types.
I review all object initialization examples proposed earlier and I suggest
new ones to compare applicability of different approaches. I demonstrate
the usability of the proposed scheme on open-source libraries with a
million lines of code that were converted to satisfy the rules.

Keywords: Null pointer dereferencing · Null safety · Void safety
Object initialization · Static analysis Library-level modularity

1 Introduction

In his talk at a conference in 2009 Hoare [8] called his invention of the null
reference in 1965 a “billion-dollar mistake”. The reason is simple: most object-
oriented languages suffer from the problem of null pointer dereferencing. What
does it mean in practice? Even in a type-safe language, if an expression is
expected to reference an existing object, it can reference none, or be null. On the
other hand, the core of object-oriented languages is in the ability to make calls
on objects. If there is no object, the normal program execution is disrupted.

Because most popular languages do not prevent null pointer dereferencing at
compile time, it remains one of the day-to-day issue discovered in open source
and private software. My analysis of the public database of cybersecurity vul-
nerabilities known as Common Vulnerabilities and Exposures (CVE R©)1 reveals
that in the past 10 years entries mentioning null pointer dereference bugs appear
at a consistent rate of about 78 bugs a year. As the database lists only the issues
affecting most widespread software on the planet, real economy losses are much
higher.

1 http://cve.mitre.org/ (visited on 2017-08-29).
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Possible solutions of the problem are not new, and either require special type
annotations or are non-modular. The idea of distinguishing between different
types of expressions, ones that always return existing objects and ones that may
return null was discussed in the early days of Java in 1995 by Stata [18]. He
proposed a notation T ? in the spirit of the Clanguage notation T * to denote
that the value may be null. However, the idea was not adopted for the standard
Java. Later authors of Extended Static Checked for Java (ESC/Java) [6] used
@non null annotations for declarations of non-null types. Today’s developers of
the Checkers Framework2 mention that most static analyzers for Java use similar
annotations: @Nullable and @NonNull, from different packages.

Fähndrich and Leino [4] used C# attributes [NotNull] and [MayBeNull] for
non-null and maybe-null types respectively to construct a sound null-safe type
system. In different forms, similar annotations are used in Spec# [2] (with type
marks ! and ?), Eiffel [9] (with type marks attached and detachable), and
Kotlin [10] (with a mark ? for maybe-null types). Such annotations would be
sufficient to solve the problem if objects could be created in an atomic operation,
so that all fields marked as [NotNull] were initialized with object references.
Unfortunately, sequential initialization of the fields breaks the solution.

Most proposals solving the object initialization issue [4,5,16,20] suggest
extending existing type systems to identify objects that are not completely ini-
tialized. In this work, I analyze public Eiffel libraries to see how much code could
be converted to null-safe code without any new type marks. The portion of such
code turns out to be extremely high.

Therefore, instead of tweaking the type system, I propose a static-analysis-
based solution. This solution relies on the validity rules checked during compi-
lation to cover the cases left by the type system checks. The approach has the
following properties:

– all examples relevant to this problem [4,5,16,20] could be correctly compiled
or rejected;

– it permits new scenarios, impossible with type-system-based solutions.

Combined with removal of annotations for local variables [11], based on typing
rules similar to those establishing security data flow [21] and recently named
flow-sensitive typing [15], the solution is very effective in practice for avoiding
null dereferencing problems, whilst having low cost in compilation time: (i) it
reduces the annotation overhead compared to previous solutions for the null-safe
programming; (ii) it simplifies the conversion of legacy code to satisfy null safety
rules; (iii) it makes the null-safe programming more accessible.

The paper is organized as follows. Section 2 presents a list of examples that
reveal the difficulties and cases that my approach aims to solve. Section 3 pro-
vides an intuitive overview of the solution proposed. Section 4 compares my
solution with the existing works. Section 5 formalizes validity predicates used for
the program analysis. Section 6 discusses experimental results. Finally, Sect. 7
summarizes main advantages and drawbacks of the solution.
2 The Checker Framework 2.1.10, (2017). https://checkerframework.org/ (visited on

2017-05-08).
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2 Motivating Examples

I. Polymorphic call from a constructor. When a constructor of a superclass is
invoked in C#, a call to a virtual method on this is considered a bad prac-
tice. At this moment, subclass fields of the object are not initialized yet and
using them in the polymorphic call is unsafe. An example of this situation
described by Fähndrich and Leino [4] is shown in Fig. 1. In class B, before the
field path is set, the superclass constructor is called. The constructor invokes
the virtual method m. The override of the method m in the class B causes
NullReferenceException.

Qi and Myers [16] give a similar example where they consider a class Point
and its subclass CPoint that adds a color attribute.

II. Polymorphic callback from a constructor. Figure 2 shows a class DIALOG
that allows creating and displaying a window dialog to a user. Its creation pro-
cedure adds a reset button to put controls to a default state and creates an
implementation communicating with the underlying window toolkit to initialize
the dialog. On success, the creation procedure of DIALOG IMP calls back the
procedure on create.

The class CHILD adds a text area that a user can fill in. The user can also
press the button Reset available from the parent dialog to reset the text area
value to the initial value saved in the attribute default text. The child class cre-
ation procedure calls the parent creation procedure to initialize parent attributes,
creates a text area and records the default text. The parent creation procedure
invokes implementation.make that calls on create. With the dynamic type of
the current object CHILD, the creation procedure (indirectly) executes text.put
(default text). But at this point, the field text is not set yet that causes a null
dereferencing problem.

III. Modification of existing structures. The ability to invoke regular procedures
inside a creation procedure is convenient, e.g., for a mediator pattern [7]. This
pattern decouples objects so that they do not know about each other, but still
can communicate using an intermediate object, mediator. Concrete types of the

class A {
[ NotNull ] string name ;
public A( [ NotNull ] string s )
{

this . name = s ; this .m( 5 5 ) ;
}
virtual void m( int x ) { . . . }

}

class B : A {
[ NotNull ] string path ;
public B( [ NotNull ] string p ,

[ NotNull ] string s ) :
base ( s ) { this . path = p ; }

override void m( int x )
{ . . . this . path . . . }

}

Fig. 1. Example of a polymorphic call from a constructor [4] (in C#)
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class DIALOG create make
feature
make
do
create reset button

−− Calls back on create.
create implementation.make
(Current)

reset button.select actions.
extend (agent on create)

end
reset button: BUTTON
on create
do
end

implementation: DIALOG IMP
end

class CHILD inherit DIALOG
rename make as make parent
redefine on create end

create make feature
make (original text: STRING)
do
make parent
create text
default text := original text

end
text: TEXT AREA
default text: STRING
on create
do
text.put (default text)

end
end

Fig. 2. Example of a polymorphic callback (in Eiffel)

communicating objects are unknown to the mediator, and, therefore, the media-
tor cannot create them. A mediator’s client is responsible for creating necessary
communicating objects instead.

Communicating objects know about the mediator and can register themselves
in the mediator according to their role. If the registration is done in constructors
of the communicating objects, the mediator’s clients do not need to clutter the
code with calls to a special feature register every time they create a new commu-
nicating object. An assignment like x = new Comm (mediator) should do both
actions: the recording of the mediator object in the new communicating object,
and the registration of the communicating object in the mediator. A chat room
adapted from [13] and shown in Fig. 3 is an example implementing a mediator
pattern.

When the feature join is called in the creation procedure make of a USER
object, all fields of the object should be set. Approaches based on type declara-
tions fail to capture that at some point the new object is completely initialized
and can be safely used in the context that does not expect uninitialized objects.

IV. Circular references. An issue arises when two objects reference each other. If
the corresponding fields have non-null types, access to them should be protected
to avoid retrieving null by the code that relies on the field types and, therefore,
expects non-null values. Fähndrich and Xia [5] demonstrate the problem on
a linked list example with a sentinel (Fig. 4). When a new data is added to
an existing list, insertAfter calls the constructor to obtain a new data node.
This constructor initializes all fields using the supplied arguments that refer to
completely initialized objects created earlier.
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class ROOM create make feature
users: ARRAYED LIST [USER]
make

do
create users.make (0)

end
join (a: USER)

do
users.extend (a)

end
send (s: STRING)

do
across users as u loop

u.item.receive (s)
end

end
end

class USER create make feature
room: ROOM
make (r: ROOM)

do
room := r
r.join (Current)

end
send (s: STRING)

do
room.send (s)

end
receive (s: STRING)

do
io.put string (s)
io.put new line

end
end

Fig. 3. Example of a mediator pattern (in Eiffel)

class L i s t {
Node ! s e n t i n e l ;
L i s t ( ) { s e n t i n e l =

new Node ( this ) ; }
void i n s e r t ( Object ? data )

{ s e n t i n e l .
i n s e r tA f t e r ( data ) ; }

}
class Node {

L i s t ! parent ; Object ? data ;
Node ! prev ; Node ! next ;
// For s e n t i n e l .
Node ( L i s t ! parent ) {

this . parent = parent ;
prev = this ; next = this ;

}

// For data node .
Node (Node ! prev , Node ! next ,

Object ? data ) {
parent = prev . parent ;
this . prev = prev ;
this . next = next ;
this . data = data ;

}
void i n s e r tA f t e r

( Object ? data ) {
Node newNode = new Node

( this , next , data ) ;
next . prev = newNode ;
next = newNode ;

}
}

Fig. 4. Example of circular object creation [5] (in Spec#)

However, when a new list is constructed, a special sentinel node is created
instead. The sentinel should reference the original list object. In other words, an
incompletely initialized list object has to be passed to a sentinel node constructor
as an argument. An attempt to access the field sentinel in this Node constructor
would compromise null safety, so there should be means to prevent such accesses
or to make them safe (e.g., by treating field values as possibly null and as referring
to uninitialized objects).
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A particular case of circular references concerns an object that references
itself rather than another object. Qi and Myers [16] give the example of a binary
tree where every node has a parent, and the root is a parent to itself. At a binary
node creation, left and right nodes should get a new parent and the parent should
reference itself. With any initialization order there are states where the new
binary node should be used to initialize either its own field or the field parent
of its left or right nodes before it is completely initialized. Therefore, arbitrary
accesses to this node should be protected like in the list example from Fig. 4.

3 Overview

3.1 Language Conventions and Terminology

Meyer [14] points out that some design principles of languages can simplify or
make it more difficult to achieve null safety guarantees. E.g., in Java or C# a
superclass constructor has to be called before the current constructor can be
executed. This leads to the inability to initialize non-null fields of the subclass
before the call to the superclass constructor. Without such restrictions, field ini-
tialization can be carried out in any suitable order that allows for fixing examples
I and II without any need for new types. The enforcement to call superclass con-
structors before executing any code in the current constructor makes void-safe
programming in such languages more verbose. A developer should rely either on
additional annotations or on a convention to invoke special initialization methods
from the top-level constructors.

This is different in Eiffel, an object oriented language designed with the goal
to increase reliability of software. It does not enforce any special policy on object
initialization, such as the requirement to call superclass constructors mentioned
above. Unfortunately, Java and C# that borrowed several concepts from Eiffel
did not incorporate this one. I implemented the proposed solution for Eiffel, and
it is now in production with the goal to include it in the language standard.
Applying the solution to other object-oriented languages such as Java and C#
could require more efforts due to the restrictions mentioned above.

In Eiffel, all class types without any type marks are attached, i.e., non-null.
The current object (this in Java and C#) is named Current and constructors
are called creation procedures. They can also be used as regular (non-creation)
procedures, and, therefore, are checked twice: as creation procedures for safe
object initialization, and as regular procedures for “normal” program execution,
not related to object initialization. Data members of a class are called attributes.

Some language constructs are specific to Eiffel: loops use exit conditions in
the until part, this is the inverse of continuation conditions found in while loops
of other languages. An object test expression attached {TY PE} expr as var
tests whether the value of expr is attached and whether the type of this value
conforms to the type TYPE. The effect of the object test expression is to initialize
the local variable var when the test gives True.

The language standard [9] introduces a notion of a properly set variable and
demands that all attributes of a class are properly set at the end of every creation
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procedure of this class. For object initialization, this means that all attributes
of attached types should be initialized at this point using either assignment or
creation instructions. Until properly set, a field of an attached reference type
does not reference an existing object, or is Void. If Void is used as a target of
a call, the run-time raises an exception “Access on void target”. A compile-time
guarantee that a system never causes such an exception is called Void safety.

3.2 Solution Outline

All examples from the previous section can be divided into 2 major groups:

(A) Examples I to III: Can the code be reordered so that all fields are initialized
before use?

(B) Example IV: Can compile-time rules ensure that an object with recursive
references to itself is not used as a completely initialized one?

The issue in group (A) arises when Current object is passed before all its
attributes are properly set. The simplest rule to fix this issue would be to forbid
the usage of Current until all attributes are properly set:

Validity rule 1 (Creation procedure, strong). A creation procedure is
void-safe if it satisfies all the following conditions:

1. All (i.e., immediate and inherited) attributes of the class are properly set at
the end of the creation procedure.

2. Every attribute is properly set before it is used.
3. All attributes of the current class are properly set at the execution point where

an expression Current is used inside the creation procedure or a feature to
which the creation procedure (directly or indirectly) makes an unqualified call.

The remark in the last condition about unqualified calls to features (i.e., the
calls that do not specify an explicit target as in my method(), whereas qualified
calls specify the target: expr.my method()) ensures that access on void target
does not happen in a feature called from the creation procedure if this feature
accesses Current. In particular, for the class CHILD from Fig. 2 not only the
creation procedure make is checked, but also the parent’s creation procedure
that passes Current to the window toolkit.

The rule is sufficient to deal with the group (A). The corrected version of
the class CHILD from example II (only changed code) is shown in Fig. 5b. The
main difference is in the order of initialization. The attributes of the child class
are set before calling a parent’s creation procedure. This ensures that at the
time Current is used, all attributes are properly set and are safe for access.
The similar fix (Fig. 5a) applies to example I.

But the rule is too strong for the group (B) the code will be rejected. If a
reference to an incompletely initialized object is leaked, the task to identify such
an object becomes almost intractable because it requires a complex alias analysis
that is difficult to implement correctly [22]. Explicit type annotations [4,5,16,20]
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class B inherit A redefine m end
create make b feature
path: attached STRING
make b (p: STRING; s: STRING)
do
path := p
make a (s)

end
m (x: INTEGER)
do
io.put string (path)

end
end

class CHILD ...
make (original text: STRING)
do
create text
default text := original text
make parent

end
...

end

(a) Example from Fig. 1 (b) Example from Fig. 2

Fig. 5. Corrected versions of examples I and II (in Eiffel)

move detection of incompletely initialized objects from static analysis methods
to the type system. I avoid performing alias analysis and extending the type
system by preventing the usage of incompletely initialized objects in the first
place.

To weaken the Validity rule 1, I have to deal carefully with the polymorphism,
which is the core of information loss in the situation under consideration. Cre-
ation procedures are associated with specific classes, hence, no polymorphism is
involved here. If a creation procedure makes an unqualified call to a feature, this
feature can be checked for creation validity because the call is not polymorphic.
But qualified calls are still an issue for two reasons:

– a call on an incompletely initialized object cannot assume that all attributes
are properly set, and

– a qualified call does not allow seeing whether there are calls on an incom-
pletely initialized object.

The solution is given by the following validity rule that disallows qualified
calls in the contexts where some objects are incompletely initialized:

Validity rule 2 (Creation procedure, weak). A creation procedure is void-
safe if it satisfies all the following conditions:

1. All attributes of the class are properly set at the end of the creation procedure.
2. Every attribute is properly set before it is used.
3. Any of the following is true at every execution point:

3.1. All attributes are properly set.
3.2. Current is unused before or at the current execution point.
3.3. The expression at the execution point is neither of

– a qualified feature call;
– a creation expression that makes a qualified call.
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deferred class NODE feature
parent: NODE assign set parent
set parent (p: NODE)
do
parent := p

end
end

class LEAF inherit NODE create
make, set parent

feature
make
do
parent := Current

end
end

class BINARY inherit NODE create
make root

feature
left, right: NODE
make root (l, r: NODE)
do
left := l
right := r
parent := Current
l.parent := Current
r.parent := Current

end
end

Fig. 6. Adapted example of a binary tree from [16] (in Eiffel)

Unlike Validity rule 1, the weak version assumes that there is information
about other classes, whether their creation procedures make direct or indirect
qualified feature calls. This information could be explicitly or implicitly specified
in the signatures of creation procedures. In the proposed solution, whether a
feature makes qualified calls is inferred from the feature code. The example in
Fig. 4 literally translated into Eiffel compiles with Validity rule 2 without any
further changes because the creation procedures do not make any qualified calls.

Similarly, an adapted version of the binary tree example from [16] only moves
the assignment to the attribute parent from the client code inside the creation
procedure of the class BINARY and sets the same attribute in the creation
procedure of the class LEAF to reference Current (Fig. 6).

4 Related Work

Raw types (solve example I with 2+ annotations). Fähndrich and Leino [4] denote
attached types with T− and detachable types with T+ and propose to add raw
types T raw− to be used for partially initialized objects. If a class C has an
attribute of type T and some entity has type Craw− then a qualified call on the
entity to this attribute has type T+ regardless of the original attachment status
of the attribute. An assignment to a variable of a raw type is allowed only with a
source expression of a non-raw non-null type to ensure that if an object becomes
fully initialized, it cannot be uninitialized. Also, by the end of every constructor,
every non-null field should be assigned.

Raw types are refined with class frames corresponding to superclasses. Inside
a constructor of a class C, the special entity this has type Craw−, and when the
constructor finishes, the type becomes C−. In a constructor of a super-class A
the type of this is Craw(A)−. The authors also specify conformance rules in this
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type system. Unfortunately, rules for super-class constructors, e.g., for T raw(R)−,
may not be directly applicable to the languages with multiple class inheritance
like Eiffel. Moreover, the creation of circular references is supported.

A prototype implementation of the proposal demonstrated that further
extensions are required to deal with real code, in particular, to access fields
that have been initialized and to indicate that a method initializes certain fields.

Masked types (solve examples I to IV with many annotations). Qi and Myers [16]
propose an approach that addresses the complete object life cycle, not just object
initialization. They instrument the type system with so called “masks” repre-
senting sets of fields that are not currently initialized. For example, the nota-
tion Node\parent!\Node.sub[l.parent] -> *[this.parent] for an argument
l tells that it has a type Node and requires that its field parent is not set on entry
to the method and at the same time fields declared in subclasses of Node are not
set unless l.parent is initialized. On exit the actual argument conforms to the
type Node\*[this.parent] meaning that the node object will be completely
initialized as soon as its field parent is set.

The notation is very powerful and goes far beyond void safety. However, the
authors complain that even this complexity is insufficient for real programs. For
information hiding, they propose abstract masks that are updated automatically
in descendant classes. The idea seems similar to the data groups approach pro-
posed by Leino in [12]. For modular processing of abstract masks, subclass masks
and mask constraints are introduced with union and difference operations.

Like with masked types, the Validity rule 2 depends on what class attributes
are properly set and whether a reference to Current object escapes before all
attributes have been set. In both cases, a flow-sensitive type analysis is per-
formed without special annotations. However, with masked types the type anal-
ysis results are checked against provided specifications, while in my approach
these results are used to check validity rule conditions.
Free and committed types (solve examples I and IV with 1+ annotations). Sum-
mers and Müller propose a solution [20] which distinguishes just two object
states: under initialization and completely initialized. A newly allocated object
has a so called “free” type. A deeply initialized object, i.e., with all its fields
set to deeply initialized objects, is said to have a “committed” type. The com-
mitment point logically changes the type of an object from free to committed
and is defined as the end of a constructor that takes only committed arguments.
Unlike the case with raw types discussed above, possible aliasing between free
and committed types is prevented by not having a subtyping relation between
them.

The Validity rule 2 is very close in spirit to the idea of free and commit-
ted types. However, the rule relies on a flow-sensitive static analysis for class
attributes and does not allow for propagating the free type status beyond the
point when all attributes are set. This allows for creating cyclic data structures
without explicit annotations.
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A variant of committed and free types is implemented in the Checker
Framework (see footnote 2) with annotations @UnknownInitialization and
@UnderInitialization. The tool supports type frames @UnderInitialization
(A.class) to tell that all fields specified in a (super)class A have been initialized.
Authors of the Checker Framework claim that this cannot be used in a class
constructor as @Initialized. This rules out examples II and III.
Other approaches (solve examples I to IV with 0 annotations, but are non-
modular). Meyer [14] avoids additional type annotations for solving the null
pointer dereference problem by using so called “targeted expressions” and
creation-involved features. The analysis is somewhat similar to the abstract
interpretation approach used by Spoto [17] and should be applied to the sys-
tem as a whole, thus sacrificing modularity. This makes it difficult (if possible)
to develop self-contained libraries. The advantage of “targeted expressions” is
in selective detection of attributes that are not (completely) initialized whereas
my approach flags the current object as a whole as unsafe and can reject more
code.

5 Formalization

5.1 Initialization State

For formalization, I use a simplified version of an Eiffel-like abstract syntax
(omitted here) with the following naming convention: e (possibly with an index)
stands for an expression, es – for a list of expressions, e · es – for e prepended to
es, t – for a type, n – for a name of a local variable or a feature, not including
Current which denotes the current object, v – for a literal constant value.

I formalize the predicate that reports if all attributes are properly set at a
particular execution point with the transfer function · � · whose equations are
specified in Fig. 7. The function takes 2 arguments: an expression and a set of
attributes V that may be unattached before the expression. It returns a set of
attributes that may be unattached after the expression. At the beginning of a
creation procedure the set of unattached attributes is a set of all current class
attributes of attached reference types.

If the expression is a sequence or an argument list, the set of unattached
attributes for a subsequent expression is computed starting from the set com-
puted for the first expression. For assignment to an attribute, firstly the set is
computed for the source expression, then the attribute name is removed from the
set of unattached attributes, because the attribute is set after the assignment.

For a creation expression, the set is computed using an associated list of
actual arguments starting from the initial set. For a qualified call the rule is
similar except that the set computed for the target of the call is used as a
starting one.

For a conditional expression, the computation is done for both branches like
for a sequence and then their union is used as a result. The rationale is that
even though every branch can set some attributes, if these attributes are not
set in the other branch, the attributes should not be considered set because the
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V >> e1 ;; e2 = V >> e1 >> e2 – Sequence

V >> n :=L e = V >> e – Local assignment

V >> n :=A e = V >> e − {n} – Attr. asssignment

V >> create {t} · n (es) = V >> es – Creation

V >> e · n (es) = V >> e >> es – Qual. call

V >> if e then e1 else e2 end = V >> e >> e1 ∪ V >> e >> e2 – Conditional

V >> until e loop e1 end = V >> e – Loop

V >> attached t e as n = V >> e – Object test

V >> Exception = ∅ – Exception

V >> = V – Val., loc., att., cur.

V >> =][ V – Empty arg. list

V >> (e · es) = V >> e >> es – Arg. list

Fig. 7. A function to compute a set of unattached attributes

branch to be taken at execution time is unknown at compile time. For a loop,
only the exit condition is taken into account and the loop body is completely
ignored. The loop body might be not executed at all, so any attributes the loop
body sets cannot reduce the set of unattached attributes.

For an exception, the set of unattached attributes is empty because execution
never goes after this point, so any assumptions are valid. Using an empty set
signals to the compiler that no more attributes have to be initialized. For the
rest of expressions, if there are subexpressions, the function returns sets for these
subexpressions, otherwise it returns the initial set.

The function is monotone, i.e., the more attributes are set before an expres-
sion, the more are set after the expression:

Lemma 1 (Monotonicity of �). A ⊆ B =⇒ A � e ⊆ B � e.

5.2 Safe Uses of Current

The predicate safe formalizes the conditions 3.1 and 3.2 of the Validity rule 2.
Its inductive definition over the expression syntax is given in Fig. 8. The intuitive
explanation of the different cases of this definition follows.

If Current is never referenced in a creation procedure, the potentially incom-
pletely initialized object is not passed anywhere, so access on void target, caused
by this object, is impossible. If Current is referenced when all attributes are set,
there is no issue as well: once an object is completely initialized, it remains
completely initialized. Finally, if Current is referenced when not all attributes
of the current class are set, but can escape only at the current execution point
(i.e., all previous expressions do not make any qualified calls, thus excluding the
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safe Current V = V = ∅

safe (e1 ;; e2) V = safe [e1, e2] V

safe (n :=L e) V = safe e V

safe (n :=A e) V = safe e V ∨ V >> n :=A e = ∅

safe (create {t} · n (es)) V = safe es V

safe (e · n (es)) V = safe (e · es) V

safe (if e then e1 else e2 end) V = safe [e, e1] V ∧ safe [e, e2] V

safe (until e loop e1 end) V = safe [e, e1] V

safe (attached t e as n) V = safe e V

safe V = True – Value, local, attribute

safe [] V = True

safe (e · es) V = safe e V ∧ safe es (V >> e) ∨ V >> (e · es) = ∅

Fig. 8. Function that tells if uses of Current (if any) are safe

possibility to access this incompletely initialized object), where all attributes are
set, the object is completely initialized and can be safely used from now on.

An expression Current is safe if and only if all attributes are properly set (i.e.,
the set of unattached attributes is empty). If the expression is an assignment to
an attribute, it is possible that the attribute would be the last one to initialize,
so the result of the function safe will be True if either the source expression is
safe or there are no unattached attributes left after the assignment.

Basically, if all attributes are set after an expression, it is safe to use Current
afterwards. If this is not the case, Current should be used safely (if at all). For a
list of expressions, the first expression should be safe in the initial context, and
the subsequent expressions should be safe in the context of unattached attributes
obtained for the first expression.

For a conditional expression, the checks should be done for both branches,
and only when they both succeed, the use of Current is safe. For a loop the check
is done for its exit condition and its body like for a sequence of expressions. For an
expression with just one subexpression, this subexpression is checked for safety.
And for the remaining expressions the function returns True.

The function safe is monotone: if more attributes are set for a given expres-
sions, the chances to use Current unsafely are lower.

The function specifies only safe uses of Current, not safe uses of attributes of
the current object. The cases with disjunctions describe situations when Current
was not used or was used safely in previous expressions or subexpressions and
is not used or is used safely in the current expression where all attributes of the
current class appear to be properly set.
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5.3 Detection of Qualified Feature Calls

This section formalizes the condition 3.3 of the Validity rule 2. The formalization
is based on two functions that are defined by induction on the expression syntax
(omitted) and apply to an expression e:

– A function Q evaluates to True if e has an immediate (i.e., syntactical, not
as a result of an unqualified call to some other feature) qualified call in at
least one of its subexpressions. Otherwise, it evaluates to False.

– A function S computes a set of creation procedures that can be called by the
given creation procedure. It returns a set of pairs (c, f) of class types and
feature names corresponding to all creation sub-expressions of e where f is
used as a creation procedure and c is used as a creation type.

I also assume there is a function routine body which returns an optional expres-
sion representing the routine body (None when the body is missing) for a feature
of name f in a class c of a system S given as arguments. With these functions,
I define the predicate has qualified (S, (c, f)) which returns True iff a creation
procedure f of a class c in a system S can (indirectly) lead to a qualified call. The
predicate searches in the set of all creation procedures reachable from the given
one (this set is obtained using S and routine body) a qualified call expression
(detected using Q) as follows.

In a given system S, the predicate has immediate qualified in routine tells
whether a creation procedure f in a class c makes an immediate qualified feature
call. It calls Q for the corresponding creation procedure body:

has immediate qualified in routine S (c, f)
= case routine body S c f of None ⇒ False | �b� ⇒ Q b

The function creation reachable1 computes a set of creation procedures that
can be called from the creation procedure of a given name f from a given
class c:

creation reachable1 S (c, f)
= case routine body S c f of None ⇒ ∅ | �x� ⇒ S x

Because the set of classes is known at compile time and is bounded, all
recursively reachable creation procedures can be computed as a least fixed point
using the previous function:

creation reachable S (c, f)

= lfp (λx.{(c, f)} ∪ x ∪ (
⋃

y ∈ x
creation reachable1 S y))

The definition of the predicate has qualified completes the formalization of
the condition 3.3 of the Validity rule 2:

has qualified S c

= ∃ x ∈ creation reachable S c. has immediate qualified in routine S x
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5.4 Validity Predicate

The formal predicate for the conditions 2 and 3 of the Validity rule 2 is defined
in Fig. 9. (The condition 1 is formalized by a predicate describing well-formed
programs like for free and committed types [20] and is not considered here.)
The conditions of the validity rule are encoded in the judgment S, V 
 e

√
c

meaning that an expression e is valid in a creation procedure of a system S in
the context of a set of unattached attributes V. The rule Attr ensures that an
attribute can be used only after it is set. The rule Current for an expression
Current tells that this expression is always valid.

The rule Create for a creation expression has a premise that Current should
be used safely or, alternatively (if Current is used before all attributes of the
current class are properly set), the called creation procedure should not make
any qualified calls. In the same vein, the rule Call for a qualified call has a
premise that Current should be used safely. The remaining the rules are defined
inductively making sure that all subexpressions satisfy the validity predicate in
the corresponding context.

Lemma 2 (Validity predicate monotonicity)

A ⊆ B ∧ S,B 
 e
√

c =⇒ S,A 
 e
√

c

S , V � Value v
√

c

Value
S , V � Current

√
c

Current

S , V � Local n
√

c

Local
n /∈ V

S , V � Attribute n
√

c

Attr

S , V � e1
√

c ∧ S , V >> e1 � e2
√

c

S , V � e1 ;; e2
√

c

Seq

S , V � e
√

c

S , V � n :=L e
√

c

AssignLocal
S , V � e

√
c

S , V � n :=A e
√

c

AssignAttr

S , V � es [
√

c] ∧ (safe es V ∨ ¬ has qualified S (t , n))
S , V � create {t} · n (es)

√
c

Create

S , V � e
√

c ∧ S , V >> e � es [
√

c] ∧ safe (e · es) V
S , V � e · n (es)

√
c

Call

S , V � e
√

c ∧ S , V >> e � e1
√

c ∧ S , V >> e � e2
√

c

S , V � if e then e1 else e2 end
√

c

If

S , V � e
√

c ∧ S , V >> e � e1
√

c

S , V � until e loop e1 end
√

c

Loop

S , V � e
√

c

S , V � attached t e as n
√

c

Test
S , V � Exception

√
c

Exception

S , V � [] [
√

c]
ArgNil

S , V � e
√

c ∧ S , V >> e � es [
√

c]
S , V � e · es [

√
c]

ArgCons

Fig. 9. Predicate S, V � e
√

c implementing the Validity rule 2
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The monotonicity of the predicate is an important property for the soundness
proof and for the implementation. Indeed, it allows analyzing loops and unquali-
fied feature calls just once, because any subsequent iterations or recursive feature
calls would be analyzed with a larger set of properly-set attributes.

The soundness proof for object initialization is similar to the one given by
Summers and Müller [19] with two major differences. Firstly, the free status of
a current object does not last until the end of a creation procedure, but only
up to the point where all attributes are set, with the proviso that the creation
procedure is not called by another one with an incompletely initialized Cur-
rent. Secondly, annotations are replaced with the requirement to avoid qualified
feature calls in the context with incompletely initialized objects.

For initialization of Current two situations are possible. In the first case all
attributes of the current class are set and there are no incompletely initialized
objects in the current context. Then the current object is deeply initialized and
satisfies the void-safe type system expectations before the creation procedure
finishes. In the second case either some attributes of the current class are not
properly set or the context has references to objects that are not completely
initialized. Because qualified calls are disallowed in these conditions, the unini-
tialized attributes cannot be accessed and therefore access on void target is
impossible. Due to the requirement to have all attributes properly set at the
end of a creation procedure, the current object will have all attributes set when
the control is returned to the caller. In the context where all attributes of the
class are set and no callers passed an uninitialized Current, the only reachable
objects are either previously fully initialized or new ones but with all attributes
pointing to old or new objects, i.e., also fully initialized. Therefore, under these
conditions, all objects satisfy the void-safe type system expectations where all
attributes of attached types evaluate to existing objects.

6 Practical Results

Although the Validity rule 1 looks pretty restrictive, 4254 classes of public Eiffel
libraries were successfully converted by Eiffel Software and contributors relying
on this rule. This comprises 822487 lines of code and 3194 explicit creation
procedures. 1894 (59%) of these creation procedures perform regular direct or
indirect qualified calls and might be in danger if not all attributes were set before
Current was used. However, it was possible to refactor all the classes manually
to satisfy the rule.

On average, 60% of creation procedures make qualified calls (Table 1). The
remaining 40% do not use any qualified calls and set attributes using supplied
arguments or by creating new objects. They could be unconditionally marked
with annotations as safe for use with incompletely initialized objects.

In contrast to this, just a tiny fraction of all creation procedures – 77 creation
procedures from two libraries, i.e., less than 2% – do pass uninitialized objects
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Table 1. Creation procedures classified by use of qualified calls and incompletely
initialized objects

Library Creation Qualified Uninitialized

abs. rel. abs. rel.

Docking 2062 1365 66.2% 16 0.8%

Gobo 1258 726 57.7% 61 4.8%

Others 3194 1894 59.3% 0 0.0%

Total (cumulative) 4045 2442 60.4% 77 1.9%

Legend:
Creation – number of explicit creation procedures
Qualified – number and percentage of creation procedures with
qualified calls
Uninitialized – number and percentage of creation procedures
passing Current before all attributes are set

and take advantage of the weaker Validity rule 2. In other words, if specific
annotations were used, at most 5% of them would be useful, the rest would just
clutter the code. Closer look reveals the following major families of uses:

Internal cursors are used in 59 of 61 cases in Gobo. Internal cursors perform
traversal abstracting away container implementation and avoiding object cre-
ation for traversal. They continue working when the underlying container
changes [1]. In Gobo, external cursors are aware about changes in the asso-
ciated containers, so they can replace internal cursors altogether. The same
functionality can also be provided without any additional classes, directly by
containers.

Domain structure is used in 2 of 61 cases in Gobo. The classes are designed
according to the XML specification [3] where an XML document has exactly
one root element that could have nested elements. A parent of a root element
is the document to which it belongs. In theory, the root element can be a
descendant of a general element class with properties specific to a document,
i.e., removing separation of concern can remove the need for two different
classes.

Helper classes are used in all cases in Docking. The library deals with many
aspects of a user interface, allows for storing and retrieving layout, animates
placeholders, etc. All the code related to these different groups of functionality
could be moved to just one class, but for maintainability it was distributed
among different classes.

The checks for creation procedure validity rules are pretty light in time. The
libraries were compiled with and without checks for the Validity rule 2 on a
machine with 64-bit Windows 10 Pro, Intel R© CoreTM i7-3720QM, 16 GB of
RAM and SSD hard drive using EiffelStudio 16.11 rev.99675. The compilation
involved only parsing and type checking, but not code generation. The max-
imum relative increase of compilation time was 1.5% for the Docking library.
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For all libraries, the slowdown was just 0.7% that is absolutely acceptable. Sets
of unattached attributes are encoded with bit vectors that in most scenarios
fit a fixed-width integer variable. The number of the sets kept in memory dur-
ing analysis is limited by the depth of branching instructions nesting which is
insignificant in practice.

7 Conclusion

I propose a solution for the object initialization issue based on static analysis
with the following advantages:

No annotations. Validity rules do not require any other type annotations in
addition to attachment marks.

Flexibility. Creation of objects mutually referencing other objects is possible.
Simplicity. The analyses require only tracking for attributes that are not prop-

erly set, for use of Current and for checking whether certain conditions are
satisfied when (direct or indirect) qualified feature calls are performed.

Coverage. It was possible to refactor all libraries to meet the requirements of
the rules without changing design decisions. The rules solve all examples from
the motivation section.

Modularity. The Validity rule 2 depends on properties of creation procedures
from other classes. Because these creation procedures are known at compile
time, the checks do not depend on classes that are not directly reachable
from the one being checked. Consequently, it is possible to check a library
as a standalone entity without the need to recheck it after inclusion in some
other project.

Performance. Experiments demonstrate very moderate increase of total com-
pilation time, below 1% on sample libraries with more than 2 millions lines
of code.

Incrementality. Fast recompilation is supported by my approach if, for every
class, the analyzer stores information about the creation procedures reachable
from other creation procedures and information about the creation procedures
performing qualified calls.

The main drawbacks of the solution detailed here are the following:

Certain coding pattern. A certain initialization order has to be followed.
Disallowing legitimate qualified calls. Lack of special annotations prevents

from distinguishing between legitimate and non-legitimate qualified calls. To
preserve soundness, all qualified calls are considered as potentially risky.

Special convention for formal generics. If a target type of a creation
expression is a formal generic parameter, special convention (e.g., that the
corresponding creation procedure makes qualified calls) should be used to
indicate whether the creation procedure of an actual generic parameter sat-
isfies the validity rule requirements.
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Abstract. We study model checking of LTL properties by means of
random walks, improving on the efficiency of previous results. Using
a randomized algorithm to detect accepting paths makes it feasible to
check extremely large models, however a naive approach may encounter
many non-accepting paths or require the storage of many explicit states,
making it inefficient. We study here several alternative tactics that can
often avoid these problems. Exploiting probability and randomness, we
present tactics that typically use only a small fraction of the memory
of previous approaches, storing only accepting states or an arbitrarily
small number of “token” states visited during executions. Reducing the
number of stored states generally increases the expected execution time
until a counterexample is found, but we demonstrate that the trade-off
is biased in favor of our tactics. By applying our memory-efficient tactics
to scalable models from the literature, we show that the increase in time
is typically less than proportional to the saving in memory and may be
exponentially smaller.

1 Introduction

Automatic verification of systems has become an essential part of the develop-
ment of many software and hardware projects. Complete verification of systems
is rarely possible because of time and space complexity results, yet there are
many techniques that help in applying verification to critical parts of the system.
For example, heuristics for SAT solving, abstraction, decomposition, symbolic
execution, partial order reduction and other techniques are all used to variously
speed up the verification of systems. Despite these, the problem of automatic
verification is asymptotically hard, and difficult cases often occur in practice.

We study here a randomized verification algorithm for LTL properties of
finite state nondeterministic systems, based on repeated random walks. Given a
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large enough number of such walks, this Monte Carlo model checking (MC2) pro-
cedure [5] will eventually find a violation of the specification, if one exists, with
probability one, i.e., almost surely. MC2 is different to statistical model checking
applied to inherently probabilistic systems (DTMC, CTMC, etc.) [6,16], where
the goal is to estimate or bound the true probability of a property. We also
distinguish MC2 from algorithms that use randomization to improve memory
consumption of standard model checking algorithms [2].

The principal advantage of MC2 is that it deliberately avoids an explicit con-
struction of the state space of a system and is thus usable when the size of the state
space is intractable. The price of this tractability is the probabilistic uncertainty
that a violation exists if none is found. There is also a potential cost in time: the
worst case expectation of the number of experiments to find an existing error is
exponential in the size of the state space. This upper bound can be avoided because
error traces are typically short with respect to the size of the state space and often
also occur quite densely among the system executions. Nevertheless, “rare event”
errors, e.g., in the form of a combination lock, where only the right combination
of choices reveals the erroneous sequence among a huge number of choices, can be
induced by a particular randomized search tactic. This problem, previously iden-
tified in [5,11], is the motivation of the present work.

The effective rarity of error traces is dependent both on their inherent rarity
among all execution traces and the search tactic used to find them. To over-
come problems with the original search tactic of [5], in [11] the authors propose
to optimize the randomized search by performing a preliminary analysis of the
state space. The detailed structure of the state space is typically unknown and in
using MC2 we presume that its traversal is computationally expensive. Hence, as
a more plausible approach, we suggest here several different tactics for forming
random walks to search for error traces. These tactics generally avoid the prob-
lems identified in [11], without the need for a priori knowledge or analysis of the
system, and have individual characteristics that may be optimal under different
circumstances. This is demonstrated in the various examples given in Sect. 6. We
also show that bounded memory versions of the same tactics are typically more
efficient when considering the product of the space and time they require.

The principal random walk tactic suggested in [5] by Grosu and Smolka,
which we denote GS, hashes the states encountered during the search, storing an
enumeration of their appearance order. When the random walk hits the same
state again for the first time it terminates. In this case it has generated an
ultimately periodic path, also called a “lasso”, i.e., a prefix followed by a simple
cycle. If the periodic part includes an accepting state of the property automaton,
the path forms a counterexample. Otherwise, the data structures are reset and
a new random walk is required. GS is thus sensitive to the existence of non-
accepting lassos, working best when there are few. Unfortunately, this is often
not the case.

In [5] the authors also suggested an alternative tactic they call multi-lasso,
which we denote here ML. They described its superiority over the GS tactic on
a specific pathological (though not necessarily uncommon) example, but do not
report experiments comparing these tactics. We provide experimental results
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here. ML detects all lassos, but if the current edge forms a loop that does not
include an accepting state, it chooses an alternative edge. If it exhausts the
alternatives, it starts a new random walk. In comparison to GS, we expect ML
to work well when the prefix of an accepting lasso is long or there are many
non-accepting lassos to avoid.

We propose two new tactics. Our tactic CW, for continue walking, does not
abandon a walk after encountering an edge that closes a cycle that is not accept-
ing, but rather continues the walk by revisiting the earlier state. CW can be seen
as a compromise between always resetting (like GS) and always exploring deeper
(like ML). Informally, we expect CW to work well when the prefix of an accepting
lasso is not long and there are also many non-accepting lassos.

Our new tactic OA is similar to CW, but stores only accepting states. This
tactic will generally require less memory to store an accepting lasso than other
tactics and uses substantially less memory when accepting states are rare, which
is often the case. We expect OA to work well under the same circumstances that
CW works well, but the fact that it inherently uses less memory can give it an
advantage when the state space is large relative to available memory.

The tactics GS, ML, CW and OA do not use an explicit stack to store the
random walk, but make use of a hash table that may be of substantial size,
noting that clearing the hash table after each random walk contributes to the
overhead. We thus propose alternative bounded memory versions of GS, ML, CW
and OA that store only a finite number of states as tokens, potentially using just
a small fraction of the memory. We denote these tactics GS-NH, ML-NH, CW-NH
and OA-NH, where suffix -NH signifies no hash. When the finite space to store
tokens is fully occupied and a new state occurs along the walk, these tactics
randomly replace an existing token or simply discard the new state. The tactics
will nevertheless detect an existing counterexample given enough random walks.

In what follows, we compare the performance of GS, ML, CW and OA with the
tokenized variants ML-NH, CW-NH and OA-NH. We show through qualitative
analysis and experiments on standard case studies that our tactics often make
substantial improvements over GS and do not share its pathological behavior
with certain models. We note here, however, that it is possible to construct
difficult examples for all the tactics. In general, the behavior of the tactics vary
considerably between different examples, suggesting that in the lack of further
knowledge about particular properties of the state space of a model, making a
particular tactic superior, one may want to run an assortment of different tactics.
A major advantage of randomized tactics is that they can be easily parallelized,
especially when their memory is bounded. If a counterexample exists, the running
time is then that of the fastest tactic to find it.

2 Preliminaries

Definition 1. The state space of a transition system is defined by the following
components:

– A finite set of states S.
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– Initial state ι ∈ S.
– A finite set of events E.
– Transitions T ⊆ S × E × S. We also write s

e−→ s′ instead of (s, e, s′) ∈ E.
In this case we say that e is enabled from s.

– A finite set AP of propositions (representing atomic properties of a state).
– A labeling function L : S �→ 2AP .

Definition 2. An execution of a transition system is a maximal path
s0, s1, s2, . . . such that s0 is the initial state, and for each si on the path, either
for some event e, si

e−→ si+1 or there is no enabled event from si. In the lat-
ter case, si = si+1 = si+2 = . . . (for convenience of dealing only with infinite
sequences).

Definition 3. A strongly connected component (SCC) G in a state space is a
maximal subset of states such that there is a path from each state in G to each
other state in G. A bottom strongly connected component (BSCC) is an SCC
that has no exits.

LTL and Büchi automata. We assume the use of linear temporal logic (LTL)
as a specification formalism. One can express in LTL properties such as �p
(“p always happens” i.e., in every state), ♦p (“p will happen eventually”) and
�♦p (“p will always eventually happen”, i.e., will happen infinitely many times).
For LTL syntax and semantics, see e.g., [10]. LTL formulas are interpreted over
infinite sequences σ = s0s1s2 . . . of evaluations of the atomic propositions; that
is, each si is a subset of AP , denoting the atomic propositions that hold at
position i of the sequence.

The simplest class of ω automata over infinite words is that of Büchi
automata [14]. We will describe a variant of it, where the labels are defined
on the states rather than on the transitions. A Büchi automaton A is a sextuple
〈Σ, Q, Δ, Q0, L, F 〉 such that

– Σ is the finite alphabet. In our case, Σ = 2AP .
– Q is the finite set of states.
– Δ ⊆ Q × Q is the transition relation.
– Q0 ⊆ Q are the initial states.
– L : Q → Σ is a labeling of the states.
– F ⊆ Q is the set of accepting states.

Let v be a word over Σω. A run ρ of A on v corresponds to an infinite path
in the automaton graph from an initial state, where the nodes on this path are
labeled according to the letters in v. Let inf(ρ) be the set of states that appear
infinitely often in the run ρ. A run ρ of a Büchi automaton A over an infinite
word is accepting exactly when inf(ρ) ∩ F 	= ∅. That is, when some accepting
state appears in ρ infinitely often.

Model checking (see, e.g., [3]) an LTL property ϕ can commence by first
transforming ¬ϕ into a Büchi automaton B that recognizes exactly the execu-
tions that are not satisfied by ϕ [4,15]. The translation may incur an exponential
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blowup on the size of the LTL property, however, in practice the LTL property
is usually quite small. The intersection of B with an automaton A that repre-
sents the state space is checked for a satisfying example. An accepted run of
the intersection is a counterexample for the state space satisfying ϕ. The inter-
section of these two automata includes pairs of states from A and B that agree
on their labeling. Initial states are those that consist of a pair of initial compo-
nents. Accepting states have a B accepting component. Because of finiteness, an
occurrence of an accepting sequence (a counterexample for the checked property)
implies that there is also one that has the following ultimately periodic form: a
finite prefix, followed by a simple cycle that includes an accepting state (see,
e.g., [10,14]). The cycle must exist entirely within one of the SCCs of the state
space, not necessarily a BSCC. The prefix may cross several SCCs to reach the
cycle.

One can use depth first search (DFS) to find such a path. Generating the state
space in advance, before the start of the search can be prohibitively intractable.
Instead, one can generate the state space “on-the-fly”, i.e., on demand, when
progressing from one state to another. A hash table and a stack can be used to
keep the states that were generated so far and the current search path for the
DFS algorithm [8].

3 Monte Carlo Model Checking

Monte Carlo search [5] can be used to exploit randomization in order to follow
different execution paths. A random walk is a path in a graph, where at each
step the next state is drawn at random from the possible successors. In our
case we consider random walks over an isotropic probabilistic abstraction of a
nondeterministic system. We define this to mean that an outgoing transition
from a state is chosen with probability equal to the reciprocal of the state’s
out-degree (the number of enabled outgoing transitions), which we assume to
be finite. The graph in our case is the intersection of the Büchi automaton and
the state space for the checked system. The random walks start from the initial
state, and the successors are generated by the set of transitions enabled at the
current state. There is no need to generate the entire state space in advance:
this will defy the advantage of using random walks and will be in many cases
too large. What we need is a generator that can produce the successor for the
current state given an enabled transition of the intersection. We will henceforth
loosely use the term state space to refer to this intersection.

The original GS random search tactic uses a hash that is cleared after each
unsuccessful random walk. It keeps a counter l of the steps in the search. The
counter value is hashed with the current state. The variable f holds the largest
counter value of an accepting state that the search has encountered. Upon return-
ing to a state again, which happens when the current state is already hashed,
we check if its hash value is smaller than f . If this is the case, we have found
an ultimately periodic counterexample. Otherwise, we restart the random walk.
The GS tactic is described by Algorithm 1, using the following notation.
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s0 s1 s2 sn

t2 t3t1

Fig. 1. A difficult case for GS.

s0 s1 s2 sn

Fig. 2. Case where ML needs only one
random walk.

d. Diameter of the graph, i.e., the maximum shortest path between any two
states. One can over-approximate d by the size of the state space, which can
often be estimated.

l. A variable that holds the distance of the path in the current random walk.
f. The maximal distance of an accepting state found in the random walk from

the initial state.
guess succ. A function that randomly returns one of the successors for the cur-

rent state. It returns void if there is no successor for the current state.
init . The initial state.
accepting. A Boolean function that returns true if its argument is an accepting

state.
current. The current state.

Algorithm 1. GS tactic of [5]
repeat

l := 0;
f := −1;
clear hash table;
current := init;
repeat

hash(current, l);
if accepting(current) then

f := l;

l := l + 1 ;
current :=
guess succ(current);

until current =
void ∨ hashed(current);

if hash value(current) <= f
then

print “error found”;
terminate

until true;

Evaluation. The maximal length of an
accepting lasso is d + 1 steps, in the
case that the unique accepting state is
maximally far from the initial state. The
algorithm requires d steps to reach the
accepting state, followed by one further
step to close the loop of the lasso. The
expected number of random walks to see
an accepting lasso (if one exists) is thus
bounded by O(md), where m is the max-
imal number of transitions enabled at
any state. In what follows we will refer
to this bound as the worst case expec-
tation. Figure 1 shows an example, with
m = 2, where the original GS algorithm
is expected to behave according to this
bound.

Algorithm 1 runs forever if no error is
found. We can run the algorithm for an
extended period, or a number of times
related to the worst case expectation calculated above. But note that the size
of a counter that counts up to the worst time expectation is in the order of
magnitude of the state space.
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Algorithm 2. ML tactic
repeat

l := 0;
f := −1;
clear hash table;
current:=init;
repeat

hash(current, l);
if accepting(current) then

f := l;

l := l + 1 ;
I := ∅;
old := current
repeat

current := guess new succ(current , I);
if current �= void ∧ hashed(current) then

if hash value(current) <= f then
print “error found”;
terminate

else if l <= d then
I := I ∪ {current};
current := old ;

until current = void ∨ ¬hashed(current) ∨ l > d;

until current = void ∨ l > d;

until true;

For concurrent systems, it is tempting to use commutativity based reduction
to limit the executions that are considered (e.g., partial order reduction). Such
methods benefit model checking by restricting it to representatives of equivalence
classes of executions. However, in the context of MC2, there is no reason to
suppose that such a reduction will necessarily increase the density of errors
among the overall executions. The density could in fact be reduced and thus
make errors more difficult to find.

Since a path potentially runs through all possible states, the size of the
hash is of the same order of magnitude as the number of states. Practically, it
makes sense to start with a much smaller hash table and grow it when too many
hash conflicts make it inefficient. We do not necessarily need to clear the entire
hash table at the end of each random walk, but can keep information about the
random walk number in which a value is hashed, clearing a hashed location upon
encountering this value in a later walk.

In [5] the authors bound the number of random walks using an hypothesis
test, with user-specified parameters ε and δ. The value of ε is the supposed
maximum probability of detecting an accepting lasso, and 1 − δ is the desired
maximum probability that an accepting lasso exists but is not observed, given
ε. The true value of the probability of observing an accepting lasso is dependent
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on their inherent rarity, the structure of the state space and the efficiency of
the particular tactic being used. All three of these are generally unknown (worst
case expectation of a tactic is not useful in this regard) so it is important to
note that δ only expresses statistical confidence with respect to the (arbitrarily)
chosen value of ε. If no accepting lasso is seen, it is not possible to distinguish
whether no counterexample exists or whether ε is too large. Such an hypothesis
test is equally applicable to our own tactics, but specifies a somewhat arbitrary
and thus meaningless level of confidence. We therefore do not consider it further.

4 Variants of the GS Tactic

To address problems with certain pathological models, the authors of [5] sug-
gested the “multi-lasso” approach, which we refer to as ML. Upon returning to
a value that is on the stack, but where the cycle does not contain an accepting
state, it makes another choice of a successor, when possible.

The ML tactic is described by Algorithm 2. Function guess new succ
(current , I) has two parameters: the current state, and the set of successors
to ignore.1 If all the successors of current appear in the set of successors I, then
it returns the special value void. The additional memory that it requires is just
storing a set of successors of the current state.

Algorithm 3. CW tactic
repeat

l := 0;
f := −1;
clear hash table;
current := init;
hash(current, l);
repeat

if accepting(current) then
f := l;

l := l + 1 ;
current := guess succ(current);
if current �= void then

if hashed(current) then
if
hash value(current) ≤ f
then

print “error found”;
terminate

else
hash(current, l);

until current = void ∨ l > d;

until true;

For the state space in Fig. 2, a
single random walk of ML will find
the accepting cycle, whereas GS
is expected to need a number of
random walks exponential in the
length of the longest path (which
is also the number of states).

We suggest here a variant of
the GS algorithm, not considered
in [5], which we call CW. It sim-
ply continues walking if the cur-
rent closed cycle does not con-
tain an accepting state. As with
GS, the worst case random walk is
bounded by d + 1 steps, however
we expect CW to perform much
better in practice. The CW tactic
is described by Algorithm 3.

The tactic CW differs from GS
in that when an edge in the ran-
dom walk points back to a state
that does not close an accepting
cycle, the search continues, and
1 By ordering the transitions, we do not need to keep the actual states in I, but only

a counter for the next enabled transition that was not tried from the previous state.
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different choices can (eventually) be made. This saves on the amount of work
it takes to set up a new random walk. The savings are particularly meaningful
when an essential common prefix for the error trace is a combination lock.

As a variant of both GS and CW, we introduce the tactic OA that continues
walking in the manner of CW, but stores only accepting states in the hash. This
tactic can avoid storing many states that are irrelevant to the property, but must
nevertheless step through them on its random walk, and can only close a loop
when it observes an accepting state twice. The consequence of this latter feature
is that the worst case random walk requires 2 × d + 1 steps. This occurs when
the only accepting lasso contains a single accepting state that is reached after
a maximal path from the initial state, and the cycle of the lasso returns to the
initial state. OA then requires d steps to first reach the accepting state, one step
to close the loop and a further d steps to reach the accepting state again. The
worst case expectation therefore grows quadratically from that of GS, but as
with CW, we expect OA to perform significantly better in practice.

We give details of OA in its bounded memory “no hash” form, OA-NH, in
Sect. 5.

5 Token-Based Tactics Without Hashing

We describe here the tactic OA-NH, which does not use hashing. The memory
required is a counter, and a fixed number of tokens that keep a fixed number
of accepting states that appeared on the current walk. The OA-NH tactic is
described by Algorithm 4, using the following notation.

K. The set of accepting states kept as “tokens”.
k. The constant maximal number of tokens.
drop one(M, r). A function that randomly drops one element from a set M if

|M | = r, otherwise returns M .

The algorithm makes a random walk of size 2×d+1 for an ultimately periodic
path (lasso). Whenever a new accepting state is found, it is added to the set K.
A lasso is identified when the current state appears in K. However, we keep
a maximum of k accepting states as tokens. If we already hold k tokens and
encounter another accepting state, we discard one of the k +1 states at random.
Note that keeping just the first k accepting states is useless if they happen to
appear before a cycle begins. Likewise, keeping only the most recent k accepting
states would also not guarantee to catch an ultimately periodic error trace, as we
may have more than k accepting states on the cyclic part and thus repeatedly
throw away the token of an accepting state before we meet it again on the run.
Discarding tokens at random guarantees that a run will always have positive
probability of detecting an accepting lasso, if one exists.
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Algorithm 4. OA-NH tactic
repeat

l := 0 ;
K := ∅;
current := init;
repeat

if accepting(current) then
K := drop one(K ∪
{current}, k + 1);

l := l + 1 ;
current := guess succ(current);
if current �= void ∧ current ∈ K
then

print “error found”;
terminate

until current = void ∨ l > 2 × d;

until true;

Suppose that the maximal
out-degree in the graph is m.
If we can keep all the encoun-
tered accepting states, the worst
case expectation of finding a
counterexample is bounded by
O(m2×d). If there are more than
k accepting states in a path,
then after storing k such states
as tokens, an existing token
will be retained with proba-
bility k/(k + 1) every time a
new accepting state is encoun-
tered. The worst case expecta-
tion for the number of random
walks to find a counterexample
is thus bounded by O((m× (k+
1)/k)2×d). It is sufficient to have k = 1, i.e., one token, but note that the expec-
tation is now (also) exponential in the size of (k + 1)/k. Hence one may choose
to increase the number of tokens used.

In Sect. 6 we give the results of simulation experiments that compare GS, OA
and OA-NH, however we itemize here some key differences between these tactics.

– The GS algorithm has more chances of closing a cycle.
– The GS algorithm produces a counterexample that has length bounded by

d + 1, rather than 2 × d + 1 with the OA algorithm. Thus, the worst case
expectation of the number of random walks is quadratically better.

– The GS algorithm wastefully generates random walks that terminate with a
cycle that does not contain an accepting state.

– The GS algorithm requires a hash table that can potentially store values
(counters) for all the reachable states. On the other hand, the OA-NH algo-
rithm uses O(log d) memory, for storing the counter l and a fixed number of
tokens.

Tokenizing GS, ML and CW

In a similar way, we can modify the tactics GS, ML and CW to use only a finite
number of tokens, instead of the hash table. In this case, a token is a pair,
consisting of a state s and its distance from the initial state l. We denote these
tactics GS-NH, ML-NH and CW-NH, respectively. The worst case expectation of
the number of random walks for these tactics is bounded by O((m×(k+1)/k)d),
which follows from the analysis of GS and OA-NH. The CW-NH tactic is described
by Algorithm 5. In Sect. 6 we compare the performance of the various hash-based
and tokenized tactics.

Lemma 1. Given an isotropic probabilistic abstraction of a nondeterministic
automaton representing the product of a system and the negation of a property,
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Algorithm 5. CW-NH tactic
repeat

l := 0 ;
K := ∅;
f := −1;
current := init ;
repeat

if accepting(current) then
f := l;

K := drop one(K ∪ {〈current , l〉}, k + 1);
l := l + 1 ;
current := guess succ(current);
if current �= void ∧ ∃x 〈current , x〉 ∈ K ∧ x <= f then

print “error found”;
terminate

until current = void ∨ l > d;

until true;

the worst case expectation of the number of random walks necessary to detect an
existent counterexample for tactics GS, ML and CW is bounded by O(md), and
by O((m× (k +1)/k)d) for tokenized tactics GS-NH, ML-NH and CW-NH, where
m is the maximal out-degree of the automaton graph, d is the diameter of the
graph and k is the number of tokens. The worst case expectation of the number
of random walks necessary to detect an existent counterexample for tactics OA
and OA-NH is bounded by O(m2×d) and by O((m × (k + 1)/k)2×d), respectively.

Proof. The proof is immediate from the definitions of the upper bound expec-
tations. ��

Theorem 1. Given an isotropic probabilistic abstraction of a nondeterministic
automaton representing the product of a system and the negation of a property,
the probabilistic measure of paths from an initial state that demonstrate a coun-
terexample is non-zero iff there exists a counterexample.

Proof. From automata theory we know that the Büchi automaton forms a graph
comprising strongly connected components of states and transitions. A coun-
terexample will be a trace starting in the initial state and having the general
form of a finite “lasso”, with an ultimately periodic cycle that includes an accept-
ing state (see, e.g., [14]). By virtue of finite branching and our definition of an
isotropic probabilistic abstraction, all transitions have non-zero probability and
all lassos (not just counterexamples) therefore have non-zero probability. It has
been shown in [5] that such lassos from a probability space, hence any subset of
lassos will have positive measure. If no counterexample exists, no lassos will exist
to demonstrate a counterexample. If one or more counterexamples exists there
will be a subset of lassos that demonstrate them and these will have positive
measure. ��
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Corollary 1. Given sufficient random walks, all of the presented tactics (GS,
ML, CW, OA, GS-NH, ML-NH, CW-NH, OA-NH) will find a counterexample
almost surely, if one exists.

Savitch construction for binary search [12] is used to show that model check-
ing is in PSPACE. The construction uses space that is quadratic in a logarithm of
the size of the state space (and polynomial in the size of the LTL property [13]).
The time required is exponential in that (hence, the space efficient binary search
is quadratically worse in time than the explicit state space search). Using ran-
domization and our no-hash tactics provides an extremely compact representa-
tion, which is quadratically smaller than the one needed for the binary search.
Moreover, our randomized search progresses from one reachable state to its suc-
cessor, rather than blindly enumerating reachable and unreachable states. It
thus has the potential to be significantly more efficient than the binary search,
although the worst case expectation analysis, which is related to the time com-
plexity, is exponential in the size of the state space and therefore exponentially
worse than the binary search. In practice, however, the effectiveness of random-
ization depends on the particular properties of the state space. For example,
any first order theory over dense graphs holds with probability of either one or
zero (zero-one laws), but does not hold for graphs in general. Thus, the result of
applying randomized methods to graphs can highly depend on their properties.

The Binary search algorithm does not produce a counterexample for the
checked property: such a path can potentially be as long as the number of states
of the system, exponentially larger than the amount of memory used by the
binary search. The no-hash random walk tactics presented here also do not
produce such a path, for the same reason; they do not keep enough memory to
store the states that were reached during the execution. One can consider these
algorithms as highly memory efficient checks for the existence of errors. Note
that if an error is found and an error trace is needed, it is possible to make use
of the properties of pseudo-random number generators to simply re-simulate the
desired counterexample, or to invest in a more memory-heavy algorithm that
would produce the desired counterexample.

6 Experimental Results

To compare the behavior of the tactics, we first apply them to multiple instances
of three scalable models:

– The dining philosophers of [9], as also used in [5],
– The shared memory consensus model of [1], and
– A linear model with self loops [11].

We chose well known probabilistic algorithms because they are only correct with
probability one, hence they include incorrect execution paths. We abstract ran-
dom choice by nondeterminism then use randomized model checking to find these
paths, noting that our method is not a statistical evaluation of these algorithms.
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An experiment consists of performing random walks (we also write “walks”)
until an error is found (we know that erroneous executions exist in these algo-
rithms). For each model and tactic we perform 100 experiments searching for
accepting ultimately periodic cycles. Since the number and length of the walks
used by each tactic is different, we report on the average number of steps used
per experiment (successful and failed ones), which is the sum of the lengths of
the random walks. The number of steps is a good measure to compare the time
required by the tactics to find the counterexample.

For the tactics with unbounded memory, we also calculated the maximum
number of states stored per walk in the hash table. In the case of tactics with
a fixed number of tokens, we used 100 tokens. For reference, we also calculated
the total number of states in each model using Prism [7].

Our -NH tactics trade reduced space for increased time, but the trade-off
is biased in their favor. To demonstrate this we also plot the product of steps
and states for increasing model size, showing that this product is typically less
with a bounded number of states stored as tokens. One reason for this is that
an accepting lasso may contain more than one accepting state. In such a case, if
all but one of the accepting states is randomly discarded, the lasso nevertheless
remains valid and the number of steps in the random walk is unaltered. Space
has been saved, but with no increase in time.

6.1 Dining Philosophers

We consider models with 3 to 10 philosophers, with approximately 103 to 1010

states, respectively. We look for counterexamples for the property that an arbi-
trarily chosen philosopher will be hungry and then fed, infinitely often, i.e.,
ϕ = �♦(hungry ∧ ♦eat).

We first describe the performance of the unbounded tactics, then summarize
what happens when we bound the memory. The results of our experiments are
summarized in Fig. 3.

GS. The average number of steps grows approximately an order of magnitude
larger than the total number of states in the model, which, in turn, grows
exponentially with the number of philosophers. Due to this quick growth, we
were only able to test models up to 6 philosophers. Our 100 experiments in
this case took approximately 16 h. The poor performance is because these
models contain a lot of non-accepting loops that cause the algorithm to start
new walks, rather than continue exploring further. Walks of GS are therefore
generally short.

ML. The average number of steps grows at an exponential rate, but at a sig-
nificantly lower rate than the number of states in the model. Hence, on this
example, ML performs exponentially better in time than GS. Intuitively, this
is because ML continues rather than stops at the first repeated state, allowing
the algorithm more chances to explore potentially good transitions.
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Fig. 3. Performance of tactics with dining philosophers protocol.

CW. The average number of steps grows at a similar exponential rate as ML,
hence CW is also exponentially faster than GS. The intuition behind the
performance of CW is similar to ML, however in these experiments it requires
approximately 10% more steps.

OA. The average number of steps grows at a lower (exponential) rate than the
growth of states in the model, but it grows at a slightly higher rate than CW.
Since OA only stores accepting states, it inherently requires less memory than
the other tactics, however it pays by having to wait longer to close a cycle.

Due to the fact that CW and ML store all explored states, not only accepting
states, they require approximately three times more memory than OA. However,
the time performance of the bounded variants of these tactics, using 100 tokens,
seems largely unrelated to their unbounded memory requirements. In general,
as expected, when the number of tokens is bounded, the time performance wors-
ens, but the relative performance between the tactics remains the same as the
unbounded versions: ML (ML-NH) is better than CW (CW-NH), which is bet-
ter than OA (OA-NH). For up to 5 philosophers, OA-NH requires fewer than 100
tokens, so its performance is actually identical to OA. CW-NH and ML-NH require
more than 100 tokens with 3 philosophers, so their performance is consistently
worse than the unbounded versions.

6.2 Shared Memory Consensus Protocol

We consider models containing from 2 to 12 processes, with approximately
103 to 1012 states, respectively. The negated property we check is ¬ϕ =
(�♦heads ∧�♦tails). That is, the processes reach different consensuses infinitely
often without terminating. The checked models contain a BSCC that includes
the state in which the processes do reach a consensus and recognize that they
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Fig. 4. Performance of tactics with shared memory consensus protocol.

have done so, hence ϕ holds. The protocol almost always reaches a consensus,
which corresponds to falling into this BSCC, which contains no accepting states.

The tactics CW and OA (similarly, CW-NH and OA-NH), whose walks have a
long a priori bound, tend to very quickly fall into this BSCC, where the property
can not be satisfied. In contrast, when GS (similarly, GS-NH) falls into the BSCC,
it rapidly discovers a non-accepting loop and starts a new walk. Likewise, when
ML (similarly ML-NH) falls into the BSCC, it rapidly explores the extent of
the component and starts a new walk. The consequence is that only GS, ML
(and GS-NH, ML-NH) are feasible tactics for these models. The results of our
experiments are summarized in Fig. 4.

GS. The average number of steps grows at a lower exponential rate than the
total number of states in the model.

ML. The average number of steps grows at a lower exponential rate than GS.
MLNH. With 100 tokens the performance deteriorates towards that of GS up to

6 processes, but then converges to that of ML by 12 processes.
CW,OA. These tactics tend to lead the random walk into the BSCC that has

no accepting state. Our experiments show that with very few processes one
would need a huge number of random walks, significantly outside the scale
we use to plot the results for the other tactics.

6.3 Pathological Linear Model

s0 s1 s2 sn

Fig. 5. A linear state space with local
loops.

These models are illustrated in Fig. 5 and
consist of a linear sequence of n states,
where each state has a self loop. The
negated property we use is ¬ϕ = ♦p. The
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final (accepting) state satisfies p and happens to have a self loop. The results of
our experiments are summarized in Fig. 6. The simplicity of the models allows
us to include analytical results in the following description.

GS. Every encountered self loop causes the algorithm to reset to the beginning.
Hence the average number of steps grows exponentially. Analysis reveals that
the expected number of steps to reach the accepting state is 2n − 2. The
maximum number of states that are stored is the entire state space.

ML. This tactic does not complete loops, but nevertheless takes the first step of
a loop to discover it. The expected number of steps to pass from one state to
the next is 1.5, so the expected number of steps to reach the accepting state
is 1.5 × (n − 1). The maximal number of states that are stored is the entire
state space.

CW. Allowing simulations to follow the self loops gives multiple chances to get
to the next state. The infinite sum of all such chances makes the expected
number of moves to reach the next state equal to 2. Hence the expected
number of steps to reach the accepting state is 2 × (n − 1). The maximum
number of stored states is the state space.

OA. The expected number of steps is the same as CW, but there is only one
accepting state to store.

Bounding the memory to 100 tokens has minimal effect. In the case of OA-
NH, for any model size it has no effect, since there is only ever one accepting
state. In the case of ML-NH and CW-NH with n ≤ 100 it has no effect. In the
cases of ML-NH and CW-NH with n > 100, there is a 1/101 chance that the
accepting state will not be stored when it is first encountered, however every
subsequent step will find the accepting state again and it will be stored with
probability 100/101.

Fig. 6. Performance of tactics with pathological model.
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7 Conclusions and Further Work

Our new tactics can make significant improvements in efficiency over those of [5],
especially GS. We have demonstrated this by considering the number of steps
necessary to detect a counterexample, but our tactics also avoid the repeated
setup cost of GS. Our bounded-memory tactics are particularly modest in their
memory requirement, as they dispense with the hash (and stack). They require
less memory even compared with the memory efficient binary search that estab-
lishes that model checking is in PSPACE [15]. However, as we have only a finite
number of tokens and the execution path can be as large as the state space (so
in the limit the eliminated hash table is of that magnitude), we risk throwing
away good states in favor of useless states. This increases the expected number
of steps needed to find an existing error, since a random walk that is a counterex-
ample may not be detected as such if key states are randomly discarded. Our
experiments demonstrate, however, that the increase in the required number of
random walks is typically less than the memory saving and may be exponentially
less. One explanation of this phenomenon is that accepting lassos can contain
more than one accepting state. Removing all but one of the accepting states
within the loop saves memory without invalidating it as a counterexample and
without increasing the number of steps in the random walk.

Our experiments suggest that while GS is not necessarily the worst perform-
ing tactic under all circumstances, it is most likely to give poor or very poor per-
formance in terms of the number of steps required to detect a counterexample.
It is nevertheless possible to construct examples where GS requires fewer steps
than some of the alternatives. For example, models whose non-accepting paths
contain many loops and whose accepting paths contain no non-accepting loops.
In these cases GS will quit non-accepting paths at the first encountered loop,
while other tactics will pursue the paths to their maximum extent. In general,
the performance of all tactics is strongly dependent on the model, whose detailed
structure is usually unknown. Given that our tactics are memory-efficient and
may be easily parallelized, we thus advocate running multiple tactics simultane-
ously. The running time will then always be that of the fastest tactic.

As future work we propose to study additional strategies. For example, ML
and ML-NH effectively use single step backtracking and it is possible to extend
them to multiple steps. Another promising approach is to exploit information
about the structure of the SCCs in the state space of a system and a property. It is
well known that random execution traces work their way down through the SCCs
and eventually arrive in the BSCC. This affects the performance of randomized
verification when accepting lassos are in intermediate SCCs, as demonstrated
by the example in Sect. 6.2. Each SCC of the global state space comprises a
combination of states in local SCCs of individual processes. We can use this
knowledge to limit searches within specific global SCCs, avoiding the problem
of wasting time in BSCCs with no accepting states.
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Abstract. The relaxedness of memory consistency models, which allows
the reordering of instructions and their effects, intensifies the state explo-
sion problem of software model checking. In this paper, we propose three
approaches that can reduce the number of states to be visited in soft-
ware model checking with memory consistency models. The proposed
methods control the reordering of instructions. The first approach con-
trols the number of reordered instructions. The second approach spec-
ifies the instructions that are reordered in advance, and prevents the
other instructions from being reordered. The third approach specifies
the instructions that are reordered, and preferentially explores execution
traces with the reorderings. We applied these approaches to the McSPIN
model checker that we have been developing, and reported the effective-
ness of the approaches by examining various concurrent programs.

Keywords: Software model checking
Relaxed memory consistency model · State explosion
Instruction reordering control · Concurrent program examination

1 Introduction

Relaxed memory consistency models (MCMs) promote parallel processing on
computer architectures that consist of multiple processors by allowing the
reordering of instructions and their effects. Modern computing systems that
include computer architectures and programming languages typically adopt
relaxed MCMs [14,16,17,22,28].

A substantial problem with the relaxedness of MCMs is that it intensifies the
state explosion problem of software model checking because reordering increases
the number of execution traces to be explored. For example, consider a simple
program (x=1; r0=y)‖(y=1; r1=x), where ; and ‖ denote sequential and par-
allel compositions, respectively. Many relaxed MCMs allow load operations to
overtake store operations because, in many cases, store operations do not need
to be completed before load operations are executed, and relaxing the order
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x=1 y=1 r0=y r1=x x’s effect y’s effect
the buffer on the left thread x x x x

the buffer on the right thread y y y

the shared memory x x, y

Fig. 1. An execution trace on a computer architecture with store buffers

of executions in this way may enhance computational performance. In model
checking with such relaxed MCMs, the right-hand thread can observe not only
an execution trace (x=1; r0=y), but also (r0=y; x=1) on the left-hand thread.
Similarly, the left-hand thread can observe not only an execution trace (y=1;
r1=x), but also (r1=x; y=1) on the right-hand thread. These can be seen on
computer architectures with store buffers. Figure 1 denotes that the two store
instructions are invoked, but their reflects to the shared memory are delayed.
Thus, model checking with relaxed MCMs requires more execution traces to be
explored than conventional model checking, which ignores MCMs.

In our four-year study of relaxed MCMs (since [2]) and development of the
model checker with relaxed MCMs, McSPIN, which utilizes SPIN [13], how-
ever, we observed that counterexamples, that is, execution traces that violate the
properties to be verified, often reorder a small number of instructions. This obser-
vation implies that counterexamples can be detected efficiently by performing a
state-space search in which the number of reordered instructions is controlled.
For example, an assertion r0==1 or r1==1 for the above example program, which
is violated by an execution trace (r0=y, r1=x, x=1, y=1) with two reorderings
of (x=1; r0=y) and (y=1; r1=x), can be violated by another execution trace
(r0=y, y=1, r1=x, x=1) with just one reordering of (x=1; r0=y).

In this paper, we propose three approaches to control the reordering of
instructions for software model checking with MCMs. These approaches focus
on the improvement of the efficiency of the counterexample detection, whereas
our previous approaches are general-purpose [3,5].

The first approach controls the number of reordered instructions. Let us sup-
pose that one reordering between two instructions is allowed. Under this restric-
tion, the execution trace (r0=y, r1=x, x=1, y=1) is not allowed because there
is a point at which two reorderings occur. However, (r0=y, x=1, r1=x, y=1)
is allowed because the latter reordered instructions are executed after the for-
mer reordered instructions have been completed, that is, the two reorderings
do not occur. The second approach specifies the instructions to be reordered in
advance. We specify an arbitrary set of instructions which is given to a model
checker with MCMs. For example, suppose that the first and second instruc-
tions (x=1; r0=y) on the left-hand thread can be reordered, and the other
reordering is prohibited. Whereas (x=1, r0=y, y=1, r1=x) and (r0=y, x=1,
y=1, r1=x) are allowed under this definition, (x=1, r0=y, r1=x, y=1) is not
allowed because the pair (y=1; r1=x) is reordered. This approach also enables
the parallel processing of model checking with MCMs. The third approach spec-
ifies the instructions that are reordered, and preferentially explores execution
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traces with the reorderings. A difference from the second approach is that the
reorderings of the other instructions are not prohibited but postponed. We would
like to note that the former two approaches restrict explored execution traces.
For example, if the number of pairs of reordered instructions is limited to one,
then no counterexample on an execution trace which has two pairs of reordered
instructions is detected. The third approach is not a restriction of an exploration
but a change of an exploration.

As a proof of concept, we implement the approaches in McSPIN and report
on their effectiveness by examining various concurrent programs, including some
popular mutual exclusion algorithms, such as Dekker’s algorithm [25] and con-
current copying protocols for garbage collection [21,23,24]. Properties to be ver-
ified in this paper are whether mutual exclusions and concurrent copies work
correctly or not. The experimental results show that the proposed approaches
successfully mitigate the state explosion caused by the relaxedness of MCMs
when counterexamples are found. In a few cases, our approaches can detect coun-
terexamples that the original exploration of McSPIN could not detect. Also, in
other cases, some of our approaches can detect counterexamples more quickly
than the original exploration of McSPIN. We would like to note that their effec-
tiveness disappears when there is no counterexample (i.e., the property to be
verified holds) because it becomes necessary to consider all the reorderings of
instructions allowed under MCMs.

The remainder of this paper is organized as follows: In Sect. 2, we formally
define the reordering of instructions. In Sect. 3, we introduce the three pro-
posed approaches. In Sect. 4, we explain the implementation of the approaches
in McSPIN. In Sect. 5, we present case studies and experimental results obtained
by applying McSPIN to these approaches. In Sect. 6, we discuss related work,
and in Sect. 7, we conclude this paper by identifying future work.

2 Preliminaries

In this section, we formally define reorderings of instructions.

2.1 Instructions and Concurrent Programs

A program is defined by an N -tuple of sequences of labeled instructions. A
labeled instruction i is a pair of a label and instruction 〈L, ι〉, where

ι ::= Move r t | Load r x | Store x t | Fence | Jump L if t | Nop
t ::= r | v | t + t | t − t | · · ·

and N is the number of processes. We write the set of labeled instructions that
occur in a program P as I(P ). A label L denotes an instruction in a program.
Distinct instructions have distinct labels. In this paper, L is a natural number.
In the definitions of instructions and terms, r denotes a variable local to a pro-
cess and x, . . . , are shared variables. The term v denotes an immediate value.
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The terms t0 + t1, t0 − t1, . . . , denote arithmetic expressions in a standard
manner. Note that term t contains no shared values.

In this paper, we omit to explain arrays, pointers, and functions for simplicity.
However, McSPIN (introduced in Sect. 4) supports them, and the programs used
in experiments in Sect. 5 contain them.

Instructions are defined as follows: Movert denotes the assignment of an eval-
uated value of a term t to r, which does not affect the other processes. Load r x
denotes loading x from its own store buffer if a value of x is buffered in it, or from
shared memory otherwise, and assigning its value to r. Storex t denotes storing
an evaluated value of t to x in its own store buffer. Fence denotes a memory fence,
which separates preceding memory operations from succeeding memory opera-
tions, and guarantees the completion of preceding memory operations before
succeeding memory operations are invoked. Various fence instructions are con-
sidered to control memory operations more delicately (e.g., lwsync and hwsync
of POWER [14]). However, in this paper, we define the so-called full fence, which
separates memory operations without distinguishing load and store instructions,
since the variety of fence instructions is out of the scope of this paper, although
McSPIN (introduced in Sect. 4) supports various fence instructions. JumpL if t
denotes a conditional jump to L depending on the evaluated value of t. Because
t contains no shared values by definition, to jump to L depending on x, it is
necessary to perform Load r x in advance. Nop denotes no operation.

2.2 Reorderings of Instructions Under Relaxed MCMs

Suppose that a sequence of labeled instructions i0; i1 is included in a program.
We say that i0 and i1 are ordered in program order. We call i0 and i1 reordered
if a thread performs the two instructions in program order while another thread
observes that i0 and i1 have been invoked in the reverse order.

To manage this case, we introduce operations for each instruction as follows:

o ::= Issuej i | Effectj i

where superscript j denotes the j-th dynamic instance of labeled instruction
i. A labeled instruction may be executed multiple times because our language
has jump instructions. To take reorderings into account under relaxed MCMs,
one operation has to be distinguished from another. Although the j-th dynamic
instance is defined for any j � 0, all the instances are not invoked in general.

For any labeled instruction i, its issue Issuej i operation is defined. This
represents the issue of the instruction, as its name suggests. For load and store
instructions, which deal with shared variables, additional operations are defined.
Effectj i denotes an effect of i, that is, a change of state in shared memory. For
load/store instruction i, its execution Effectj i denote load/store from/to shared
memory, respectively.

Although fence instructions themselves do not access shared variables and
are separators for the effects of load/store instructions, we define Effectj i for
any fence instruction i. This is because delays in the effects of memory fences
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by separating executions from issues can be separators for delays of the effects
of load/store instructions.

Execution traces are defined as sequences of operations.

2.3 Representations of Memory Consistency Models

The formalized MCMs used as inputs in model checking are defined as con-
straints. An execution trace that follows constraints corresponding to an MCM
M is called M-admissible. An execution trace that does not follow constraints
corresponding to an MCM M, is called M-inadmissible.

Constraints are defined as equational first-order predicate formulas consist-
ing of operations and the unique predicate symbol �, which denotes an order
between operations. We write o < o′ as o � o′ ∧ o �≡ o′. An atomic formula
Issuej i < Issuej

′
i′ means that the j-th dynamic instance of instruction i is

issued before the j′-th dynamic instance of instruction i′.
We can easily define constraints to control the reordering of operations of

instructions. Such constraints are called integrations in our previous paper [4].
Let i be a labeled instruction whose instruction is Store. The instruction i is split
into two operations: Issue and Effect. Operation Effect must be performed
after the other operations. To prohibit the splitting of i, it is sufficient to force the
operations of instructions that are issued after Issue of i to wait for Effect of
i: Issuej i < o ⊃ Effectj i < o where the logical connective ⊃ is the implication
in a standard manner, and o is an arbitrary operation except Effectj i.

3 Reordering Control

In this section, we propose three approaches for controlling the reordering of
instructions to address the state explosion problem in model checking with
MCMs.

Because an execution trace that is inadmissible under a non-relaxed MCM
may be admissible under a relaxed MCM, the relaxedness of MCMs intensifies
the state explosion problem in model checking. A key idea in addressing the
problem is to control the reordering of instructions, that is, to control splits
of instructions into operations and exploring strategies of operations. Splits of
instructions into operations form a hierarchical structure. Execution traces that
allow the splits into operations on at most n − 1 instructions are contained
in the set of execution traces that allow the splits into operations for at most
n instructions. Therefore, exploring execution traces in ascending order of the
supremums seems promising.

3.1 Restriction of the Number of Issued Instructions

The first approach is based on the idea of controlling the number of issued
instructions. Let n be the number of instructions that are split into operations.
For example, n = 0 means that no instruction can be issued, that is, no issue
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Fig. 2. Example execution traces which are PSO-admissible/inadmissible

operation can be performed while an operation of an instruction is delayed. In
the following, the restriction by the number of instructions that are split into
operations is called the n-local restriction. Execution traces that are admissible
under the n-local restriction are called n-local admissible. By definition, explo-
rations with the (n − 1)-local restriction are contained by explorations with
n-local restrictions.

We explain the n-local restriction using a simple example program (x=0;
y=1; z=2)‖r0=z under partial store ordering (PSO), which allows load and store
operations to overtake store operations. The statements on the left-hand thread
are translated into 〈0, Store x 0〉; 〈1, Store y 1〉; 〈2, Store z 2〉.

The three execution traces in Fig. 2 are PSO-admissible. The first trace is
at most 2-local PSO-admissible because it does not violate the restriction that
two instructions are split into operations. The figure below the trace denotes the
effects of the store instructions within the two buffers and memory. However, the
second trace violates the 2-local restriction, that is, it is 2-local PSO-inadmissible
because 〈2, Store z 2〉 is issued before either the effect of 〈0, Store x 0〉 or
〈1, Storey1〉 has been performed (denoted by ×). The third trace is 2-local PSO-
admissible even under the 2-local restriction because the effect of 〈1, Store y 1〉
is completed before 〈2, Store z 2〉 is issued.

3.2 Restriction of Separations of Specified Instructions

Another proposed approach is based on the idea of specifying the instructions
that are reordered. Specifically, we specify the instructions that are allowed to
be split into two types of operations. Instructions that are not specified are
not allowed to be split into operations. In the following, we call this the L-
global restriction, where L is a set of labels of instructions. Execution traces
that are admissible under the L-global restriction are called L-global admissi-
ble. The global restriction can control the reordering more delicately than the
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local restriction. For example, consider the {0}-global restriction of the example
program described in Sect. 3.1.

The first and second execution traces are {0}-global PSO-inadmissible
because 〈1, Store y 1〉 (�≡ 〈0, Store x 0〉) is a separated instruction. The third
trace is {0}-global PSO-admissible because 〈0, Storex0〉 is the unique separated
instruction.

There exist 2M global restrictions, where M is the number of instructions
that occur in a program, including M global restrictions that are indexed by
singletons {L | 0 � L < M }, which are called the singular global restrictions.
We will check these M models under the global restrictions indexed by the
singletons in parallel in Sect. 5. Thus, we can make a sufficiently large number
of explorations by focusing on reorderings, and conduct model checking with
MCMs in parallel.

3.3 Reordering-Oriented Explorations

The third approach is based on the idea of changing the exploration strategies
of execution traces. Because model checking with relaxed MCMs has the prob-
lem of which instructions are reordered, unlike conventional model checking with
non-relaxed MCMs, we can try exploration strategies of execution traces that
focus on the reordering of instructions. In this paper, we try two exploration
strategies: increasing and decreasing the number of reordered instructions. The
purpose of the increasing strategy is first to try model checking under sequen-
tial consistency (SC), which prohibits all reorderings, and then to increment
the number of instructions that are reordered. The decreasing strategy is the
converse.

We would like to note the relations among the approaches introduced in
this section. Since the approach in Sect. 3.1 controls the number of instructions
that are reordered, the exploration strategy to increment the number of instruc-
tions that are reordered is the increasing strategy in Sect. 3.3. Conversely, the
exploration strategy to decrement the number of instructions that are reordered
is the decreasing strategy in Sect. 3.3. Since the approach in this subsection
ignores which instructions are reordered, the approach in Sect. 3.2 can control
reorderings more delicately than the approaches in Sects. 3.1 and 3.3.

4 Implementation for a Model Checker McSPIN

In this section, we explain how to implement the approaches proposed in Sect. 3
to McSPIN.

4.1 PROMELA Code Generated by McSPIN

McSPIN takes a program written in a subset of the C programming language and
generates a code written in PROMELA (the modeling language of SPIN [13]),
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which represents an N -tuple of sequences of instructions. An operation is rep-
resented as a clause of PROMELA. SPIN chooses and performs one of the
clauses nondeterministically. Each clause has a guard that determines whether
the operation can be performed, in which case, the operation is called executable.
Specifically, multiple clauses are generated on each thread p in Fig. 3 where
i0, . . . , in, . . . , iMp−1 are instructions on the thread p, and prologuejn,k and epi-
loguejn,k (k = 0, 1) are pre/post-processings of the j-th dynamic instances of
operations of in, respectively, such as setting a program counter and turning on
a flag (endo = 1) denoting that an operation o has been executed. We write Jp as
the supremum of loop iterations on thread p in model checking. Model checking
that considers the reordering of instructions distinguishes instructions that may
be operated multiple times. In this sense, McSPIN is implemented as a bounded
model checking protocol with respect to the supremums of loop iterations (for
more details, see [4]).

From the constraints that define an MCM M, McSPIN automatically gen-
erates guards, which are carefully designed to promote partial order reduc-
tion on SPIN (for more details, see [3]). For example, the following guard
(¬endIssuej i) ∨ endEffectj i (corresponding to the integration constraint intro-
duced in Sect. 2.3) denotes that the effect of the j-th dynamic instance of i has
to be performed if the j-th dynamic instance of i is issued, where 1 and 0 are
interpreted as true and false, respectively. Example constraints, Itanium and
Unified Parallel C MCMs [15,30] are fully formalized in [4]. Additionally, the
full constraints for total store ordering (TSO), PSO, relaxed memory ordering
(RMO) [6], and other relaxed MCMs are formalized in McSPIN’s public reposi-
tory. SPIN chooses an executable operation, and the execution traces that SPIN
generates are M-admissible because they follow guards that McSPIN generates.

Thus, McSPIN adopts constraint-based reorderings of instructions. Therefore,
generating appropriate constraints enables implementing the reordering controls
of instructions. In the following subsections, we introduce implementations of
the approaches in Sect. 3.

4.2 Implementation of Local Restrictions

We explain an implementation of the n-local restriction introduced in Sect. 3.1.
Under the n-local restriction, the number of instructions that are reordered is
limited to n. For an instruction i on thread p, an additional guard to its issue
operation is an implementation of the n-local restriction:

|{ 〈i′, j〉 | i′ ∈ I(P ) \ {i}, 0 � j < Jp, separated(p, i′, j) = 1 }| � n

where separated(p, i′, j) denotes endIssuej i′ − endEffectj i′ , and |A| denotes the
cardinality of A. The equation separated(p, i′, j) = 1 means that the j-th
dynamic instance of instruction i′ on thread p is split into operations. The n-local
restriction is represented as their summation is less than n.

To be precise, a trace that is prohibited under the n-local restriction can be
generated at some point in time. However, at the next time step, the trace is
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Fig. 3. A PROMELA code of thread p

Fig. 4. An example code

Fig. 5. Another example code

Fig. 6. A simplification of Fig. 3

determined to be inadmissible, and is removed from the list of admissible traces
that are explored.

4.3 Implementation of Global Restrictions

Next, we consider an implementation of L-global restriction introduced in
Sect. 3.2. By definition, the L-global restriction does not split an instruction
indexed by L into operations for any L �∈ L, that is, it requires them to behave
sequentially consistently. We introduce a new Boolean variable specified i for
each instruction i to denote whether i on thread p is specified by the L-global
restriction. An additional guard is simply

∧
{ specified i ∨

∧
{¬separated(p, i, j) | 0 � j < Jp } | i ∈ I(P ) }

which denotes that i is allowed to be split into operations, that is,
separated(p, i, j) is ignored if i is specified, and vice versa, where 1 and 0 are
interpreted as the truth values true and false, respectively.

4.4 Implementation of the Increasing and Decreasing Exploration
Strategies

In this section, we explain how to implement the increasing and decreasing
strategies introduced in Sect. 3.3. The straightforward approach is to modify
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the implementation of SPIN, but it is hard because the exploration strategy of
SPIN is fixed and embedded in its implementation. To workaround the problem,
we modify McSPIN to generate PROMELA code so that (unmodified) SPIN can
explore execution traces with the increasing and decreasing exploration strate-
gies. More specifically, in this section, we first explain the exploration strategy
for do loops of SPIN and then explain how to generate PROMELA code which
achieves the increasing and decreasing strategies on top of the strategy.

As explained in Sect. 4.1, clauses in do loops written in PROMELA are non-
deterministically chosen according to the semantics of SPIN. We explain the
exploration strategy for do loops with the example code shown in Fig. 4. Please
note that the following explanation strongly depends on the semantics of SPIN,
and may be not applicable to the other model checkers for PROMELA such as
SpinJa [9].

SPIN adopts the so-called depth-first search by default [13]. That is, when
exploring a do loop, SPIN chooses the first executable clause in the loop, fully
explores the chosen clause, and then moves to the next executable clause. For
example, when exploring the do loop in Fig. 4, SPIN first chooses the second
clause because, in the semantics of SPIN, false is not executable, whereas true
is executable. After exploring all the execution traces following the first exe-
cutable clause, SPIN chooses the second executable clause in the do loop, that
is, the fourth clause. Thus, SPIN eventually explores all the execution traces by
choosing all the executable clauses in the do loop.

Because of the above-mentioned exploration strategy of SPIN, the order of
clauses in a do loop can affect the number of states to be explored to find a
counterexample. For example, let us consider the PROMELA code in Fig. 5.
In the do loop, the first and second clauses are executable. According to the
exploration strategy, SPIN chooses the first clause and explores all the execution
traces that follow it. Because x is set to 1 in the first clause, the assertion x==1
holds in the following execution traces. Then, SPIN chooses the second clause and
explores all the execution traces that follow it. Because i<1 is not an executable
statement in the following execution traces, x retains the initial value 0. Thus,
SPIN finds that the assertion is violated. More concretely, SPIN (version 6.4.6)
explores nine states to find the violation of the assertion.

Next, let us suppose that the first and second clauses are exchanged in the
PROMELA code of Fig. 5. SPIN first chooses the first clause (i.e., the second
clause in the original code) and explores all the execution traces that follow it. In
this case, SPIN immediately finds that the assertion is violated. More concretely,
SPIN (version 6.4.6) explores four states to find the counterexample.

By exploiting the exploration strategy and the sensitivity to the order of
clauses of SPIN, we implement the increasing and decreasing exploration strate-
gies on McSPIN. More specifically, we implement them by reordering clauses in
do loops in the generated PROMELA code. As explained in Sect. 4.1, McSPIN
generates PROMELA code that has do loops as instructions that are nondeter-
ministically chosen under relaxed MCMs. By default, the loops have clauses that
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Fig. 7. A loop for the increase strategy Fig. 8. A loop for the decrease strategy

correspond to instructions. More specifically, their issues and effects on thread
p are placed in order as shown in Fig. 6, as explained in Sect. 4.1.

To implement the increasing exploration strategy, McSPIN generates a code
written in PROMELA as shown in Fig. 7. The point is that the issues of the
instructions follow their effects in do loops, that is, if an issue of an instruction
is chosen to be explored, its corresponding effect tends to be chosen first before
the issues of the other instructions. Thus, SPIN first explores execution traces
as in sequential consistency (that is, no reorderings), and gradually increases the
number of reorderings of instructions.

To implement the decreasing exploration strategy, McSPIN generates a code
written in PROMELA as shown in Fig. 8. The point is that the issues of the
instructions precede their effects in do loops, that is, if an issue of an instruction
is chosen to be explored, the issues of the other instructions tend to be chosen
first before its corresponding effect. Thus, SPIN first reorders instructions as
much as possible, then gradually decreases the number of reorderings.

5 Case Studies of Various Concurrent Programs

In this section, we demonstrate the effectiveness of the proposed approaches
through various case studies.

5.1 MCMs, Programs, and the Experimental Environment

We formalize several MCMs as inputs of McSPIN. A key characteristic of MCMs
is the reordering between load/store instructions from/to shared memory. In this
paper, we considered the following MCMs:

SC no operation can overtake the other operations,
TSO load operations can overtake store operations,
PSO load and store operations can overtake store operations, and

RMO load and store operations can overtake load and store operations,
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where the above describes operations that have neither a data nor control depen-
dency.

These MCMs are theoretical and actually arranged to be specific MCMs
for practical use. For example, the Intel 64 [16] and POWER [14] MCMs are
based on TSO and RMO, respectively. The SPARC specification manual [28]
also defines multiple MCMs based on TSO, PSO, and RMO.

We used three types of program sets. The first included the following popular
mutual exclusion algorithms: Dekker’s, Lamport’s bakery, Peterson and Fischer’s
tournament-based, Peterson’s, Lamport’s fast, and Aravind’s algorithms [25].
The second set included the SV-COMP competition benchmarks [29]. We
selected six programs: X true-unreach-call where

X ∈ {fib bench, indexer, queue, stack, stateful01, sync01}
from the 32 programs in the pthread directory that collects C programs with
POSIX threads, which (1) work correctly under SC, (2) have more than two
instructions for each thread, and (3) are the simplest programs among similar
programs. In the following, we omit the postfix true-unreach-call, for short.
Because this work considers the reordering of instructions, we did not choose any
program that worked incorrectly under SC and had fewer than three instructions.
We were not concerned with conducting a stress test of McSPIN. Therefore,
we ignored duplicated programs whose only difference was the data size, and
simply reduced the data size. For example, we did not choose fib bench longer
under the third criterion because it was almost the same as fib bench except
for the value of the loop length NUM. We also reduced NUM in the program to
two for the same reason. The third set contained concurrent copying protocols
that are used in concurrent copying garbage collection algorithms, Chicken [24],
Staccato [21], and Stopless [23], which are larger than the mutual exclusion
algorithms described above. We already modeled these algorithms in our previous
work [5]. Chicken and Staccato are essentially the same algorithm, although
they were developed independently. The only difference is their target MCMs:
Chicken is designed for the MCMs of Intel CPUs, whereas Staccato’s main target
appears to be POWER MCM. Staccato works correctly under RMO. Stopless is
a different algorithm from the other two, which is designed for x86-TSO.

The experimental environment was as follows: CPU was Intel Xeon E5-2620
2.10 GHz, memory was DDR4-2400 128 GB, OS was Ubuntu 16.10, SPIN version
was 6.4.6, and GCC version was 5.4.0.

5.2 How to Read the Tables of Experiments

Table 1 presents the experimental results. The first column lists the program
names. The second column lists the MCMs under which the experiments were
conducted. The third, fourth, and fifth columns list whether the assertions, that
is, verified properties, held or were violated, the memory consumed, and time
elapsed with no reordering control with model checking on a single core. More
specifically, � denotes that an assertion held, whereas × denotes that an asser-
tion was violated by detecting a counterexample execution trace. A dash “—”
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denotes that the experiment could not be completed because of a lack of mem-
ory. N/A denotes that McSPIN was unable to perform the experiment. McSPIN
could not manage indexer. The reason is explained in Sect. 5.4.

The sixth, seventh, and eighth columns in Table 1 refer to the 1-local restric-
tion. The sixth column states whether the assertions held or were violated. When
an assertion was violated, the seventh and eighth columns list the memory con-
sumed and time elapsed, respectively, until the execution trace that violated the
assertion was detected. In the case that the assertion held, the seventh column
lists the supremum of the memory consumed with the 1-local restriction and
no restriction because we retried to conduct model checking with the original
PROMELA code in our experimental environment. The eighth column lists the
sum of the elapsed times with the 1-local restriction and no restriction.

We note that we retried experiments with no restriction in cases in which
assertions held with the 1-local restriction. This is because, even if no counterex-
ample was determined with the 1-local restriction, this does not ensure that an
assertion held. Therefore, in the case in which an assertion held, its experimen-
tal result was necessarily worse. Thus, the local restrictions – and the global
restrictions, as described later – have the penalty of retries unlike the increasing
and decreasing exploration strategies.

A reason of such retries is that our implementation is not sufficient. In this
paper, we developed a prototype implementation of the proposed approaches,
and did not implement the exploration of execution traces with no restriction
using the experimental results with the 1-local restriction. We conducted the
experiment with no restriction when we did not detect an execution trace that
violated the assertion in the experiment with the 1-local restriction.

The ninth, tenth, and eleventh columns in Table 1 state whether the asser-
tions held or were violated, the memory consumed, and the time elapsed under
the singular global restriction. The singular global restriction enables the par-
allel processing of model checking. The × symbol denotes that there existed at
least one counterexample in the experiments that was processed in parallel. The
tenth and eleventh columns present the memory consumed and the time elapsed
in the experiment for which a counterexample was detected in the smallest time.

A checkmark � denotes that an assertion held in all the experiments. Simi-
larly to the experiments with the 1-local restriction, we retried to conduct model
checking with the original PROMELA code. The tenth and eleventh columns are
similar to the seventh and eighth columns, respectively. The tenth column pro-
vides the supremum of the memory consumed with the singular global restric-
tions and the original code. The eleventh column then provides the sum of the
largest of elapsed times with the singular global restrictions and the original
code. Similarly to the experiments with the original code, the 12–17th columns
show experimental results under the increasing and decreasing strategies.

5.3 Experimental Results

We show overall comparisons of the performances by our approaches, and com-
pare counterexample detectabilities of the approaches.



Reordering Control Approaches to State Explosion in MC with MCMs 183

Table 1. Experimental results by our approaches
Algorithm MCM The original The 1-local The singular The increasing The decreasing

Sects. 3.1 and 4.2 global Sects. 3.2 Sects. 3.3 and 4.4 Sects. 3.3 and 4.4

and 4.3

mem. time mem. time mem. time mem. time mem. time

(MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.)

dekker SC � 101 0.37 � 101 0.77 � 101 0.81 � 101 0.37 � 101 0.39

TSO × 101 0.69 × 101 0.61 × 99 0.28 × 101 0.71 × 101 0.23

PSO × 101 0.84 × 101 0.68 × 99 0.31 × 101 0.86 × 101 0.39

RMO × 101 1.10 × 101 0.88 × 99 0.36 × 101 1.12 × 101 0.53

bakery SC � 1487 25.86 � 1487 54.17 � 1609 62.48 � 1487 25.89 � 1487 25.86

TSO × 3423 74.14 × 2153 43.37 × 1075 21.22 × 3423 74.46 × 419 7.77

PSO × 6294 154.82 × 2821 63.00 × 741 13.68 × 6294 159.30 × 1020 29.28

RMO — — — — — — × 941 18.28 — — — × 66267 1814.29

tournament SC � 99 2.22 � 99 4.49 � 99 4.50 � 99 2.20 � 99 2.24

TSO � 99 2.22 � 99 4.50 � 99 4.48 � 99 2.22 � 99 2.13

PSO � 99 2.22 � 99 4.46 � 99 4.50 � 99 2.22 � 99 2.24

RMO � 99 3.96 � 99 7.98 � 99 7.96 � 99 3.94 � 99 3.98

peterson SC � 101 0.96 � 101 1.99 � 101 2.10 � 101 0.97 � 101 0.96

TSO × 101 0.96 × 101 0.91 × 99 0.72 × 101 1.00 × 101 0.37

PSO × 101 1.37 × 101 1.14 × 99 0.74 × 101 1.37 × 101 0.90

RMO × 101 2.07 × 101 1.54 × 99 0.98 × 101 2.05 × 101 1.18

fast SC � 224 2.79 � 224 6.03 � 224 5.95 � 224 2.98 � 224 2.94

TSO × 224 3.66 × 156 1.73 × 81 0.98 × 224 3.64 × 157 2.60

PSO × 424 8.24 × 223 3.21 × 82 1.00 × 424 8.16 × 625 14.28

RMO × 492 11.22 × 224 3.94 × 82 1.17 × 492 11.12 × 692 18.23

aravind SC � 225 2.88 � 225 6.05 � 225 6.37 � 225 2.83 � 225 2.85

TSO × 359 6.72 × 291 4.81 × 151 2.79 × 359 6.69 × 225 4.57

PSO × 493 13.32 × 358 6.60 × 151 2.80 × 493 13.37 × 426 10.53

RMO × 28739 905.12 × 9374 222.56 × 218 3.56 × 28739 894.59 × 9308 313.70

fib bench SC � 89 0.51 � 89 1.07 � 89 1.07 � 89 0.53 � 89 0.39

TSO � 89 1.80 � 89 3.06 � 89 2.78 � 89 1.80 � 89 1.82

PSO � 89 2.52 � 89 4.05 � 89 3.68 � 89 2.50 � 89 2.34

RMO � 891 47.38 � 891 64.33 � 891 49.34 � 891 47.92 � 891 47.84

indexer ∗ N/A N/A N/A N/A N/A

queue ok SC � 83 0.24 � 83 0.50 � 83 0.53 � 83 0.23 � 83 0.24

TSO � 83 0.51 � 83 0.98 � 83 0.89 � 83 0.67 � 83 0.67

PSO � 150 1.63 � 150 2.39 � 150 2.08 � 150 1.59 � 150 1.60

RMO � 151 1.92 � 150 2.78 � 150 2.46 � 150 1.78 � 150 1.62

stack SC � 84 0.94 � 84 1.94 � 84 1.97 � 84 0.92 � 84 0.92

TSO � 150 1.25 � 150 2.41 � 150 2.27 � 150 1.24 � 150 1.26

PSO � 151 1.40 � 151 2.70 � 151 2.42 � 151 1.38 � 151 1.42

RMO � 151 1.78 � 151 3.40 � 151 2.94 � 151 1.80 � 151 1.79

state-ful01 SC � 92 0.03 � 92 0.06 � 92 0.08 � 92 0.03 � 92 0.02

TSO � 92 0.03 � 92 0.05 � 92 0.07 � 92 0.04 � 92 0.05

PSO � 92 0.02 � 92 0.05 � 92 0.06 � 92 0.03 � 92 0.04

RMO � 92 0.03 � 92 0.07 � 92 0.09 � 92 0.05 � 92 0.04

sync01 SC � 92 0.04 � 92 0.08 � 92 0.09 � 92 0.04 � 92 0.04

TSO � 92 0.03 � 92 0.06 � 92 0.09 � 92 0.04 � 92 0.03

PSO � 92 0.04 � 92 0.08 � 92 0.10 � 92 0.05 � 92 0.04

RMO � 92 0.04 � 92 0.09 � 92 0.10 � 92 0.05 � 92 0.05

(continued)
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Table 1. (continued)
Algorithm MCM The original The 1-local The singular The increasing The decreasing

Sects. 3.1 and 4.2 global Sects. 3.2 Sects. 3.3 and 4.4 Sects. 3.3 and 4.4

and 4.3

mem. time mem. time mem. time mem. time mem. time

(MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.)

chicken SC � 26522 369.69 � 26522 768.32 � 26522 929.13 � 26522 367.57 � 26522 379.39

TSO � 48163 709.24 � 48163 1333.47 � 48163 1372.40 � 48163 707.45 � 48163 712.32

PSO × 29328 455.63 × 19240 300.38 × 8586 175.73 × 29328 456.79 × 29662 460.57

RMO — — — — — — × 9792 194.73 — — — — — —

staccato SC � 51050 697.99 � 51050 1443.83 � 51050 1756.46 � 51050 697.98 � 51050 696.74

TSO � 82596 1198.35 � 82596 2365.73 � 82596 2391.03 � 82596 1197.39 � 82590 1202.74

PSO � 84669 1243.83 � 84669 2432.60 � 84669 2463.15 � 84669 1238.68 � 84663 1245.15

RMO — — — — — — — — — — — — — — —

stopless SC � 24361 438.72 � 24487 937.88 � 24361 1407.18 � 24361 457.30 � 24361 386.11

TSO � 37472 658.28 � 37472 1349.94 � 37472 1755.94 � 37472 715.72 � 37472 636.66

PSO × 2543 42.64 × 1934 33.18 × 1653 38.54 × 2543 39.40 × 2409 39.94

RMO × 15330 262.49 × 11309 193.97 × 1669 35.61 × 15330 264.55 × 15129 249.82

Overall Comparisons of Performances by the Approaches. In all the
experiments where assertions held, the elapsed times of the experiments without
the penalties were smaller than those of the experiments with the penalties, as
expected and explained in Sect. 5.2. Memory consumptions are similar to those
at the experiments with the original codes.

In the following, we focus on the experiments in which assertions were vio-
lated. All the experiments with the singular global restrictions were the best with
respect to their elapsed times, for example, aravind under RMO and chicken
under PSO as follows:

Algorithm MCM The original The 1-local The singular The increasing The decreasing

Sects. 3.1 and 4.2 global Sects. 3.2 Sects. 3.3 and 4.4 Sects. 3.3 and 4.4

and 4.3

mem. time mem. time mem. time mem. time mem. time

(MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.)

aravind RMO × 28739 905.12 × 9374 222.56 × 218 3.56 × 28739 894.59 × 9308 313.70

chicken PSO × 29328 455.63 × 19240 300.38 × 8586 175.73 × 29328 456.79 × 29662 460.57

except for the following four cases: dekker, bakery, and peterson under TSO,
and stopless under PSO. The memory consumptions are interrelated to the
elapsed times. In the case of stopless under PSO, their counterexamples were
identical. In the other cases, the counterexample had delays of effects of identical
store instructions although the counterexamples themselves were distinct.

The decreasing exploration strategy was better than the increasing explo-
ration strategy except in the following four cases: fast under PSO and RMO,
and chicken and stopless under PSO. The model of fast (written the model-
ing language of McSPIN) differs from the other models with respect to containing
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jump instructions natively, while the other models do not have jump instructions
but if and while statements, which are compiled into Jump instructions intro-
duced in Sect. 2.1. The experiments of chicken and stopless under PSO with
the original, and the increasing and decreasing strategies had similar perfor-
mances, and we have confirmed that their counterexample had delays of effects
of identical store instructions, although the counterexamples were distinct.

In this settings of the paper, we cannot specify the best exploration strategy
with reordering control, which seems to depend on input programs and MCMs.
Nevertheless, we can conclude that the singular global restrictions seems to be
the best, followed by the decreasing exploration strategy, the 1-local restric-
tion, and the increasing exploration strategy. More detailed investigations are
necessary.

Comparisons of Counterexample Detectability. For all experiments
except those that could not be completed because of a lack of memory (des-
ignated by —), the detectabilities of the approaches coincide, that is, the
approaches detect the counterexamples which the experiments with the origi-
nal PROMELA codes can detect. This means that just one reordering between
instructions is sufficient to detect counterexamples in the experiments in this
paper.

We focus on the experiments that could not be completed because of a lack
of memory (designated by —). The singular global restriction can detect coun-
terexamples that the original PROMELA code could not detect as seen at the
experiments for bakery and chicken with RMO as follows:

Algorithm MCM The original The 1-local The singular The increasing The decreasing

Sects. 3.1 and 4.2 global Sects. 3.2 Sects. 3.3 and 4.4 Sects. 3.3 and 4.4

and 4.3

mem. time mem. time mem. time mem. time mem. time

(MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.)

bakery RMO — — — — — — × 941 18.28 — — — × 66267 1814.29

chicken RMO — — — — — — × 9792 194.73 — — — — — —

The experiments with the decreasing strategy for bakery could also detect a
counterexample that the original code could not detect. However, at the exper-
iment for chicken with RMO, the decreasing exploration strategy could not
detect a counterexample. The experiments with the 1-local restriction and the
increasing strategy could not detect a counterexample which the original code
could not detect. Therefore, we can only conclude that reordering controls affect
model checking with MCMs.

Careful readers may notice that in the setting of this paper, the experi-
ments of staccato under RMO were not completed. In fact, the assertion held
in the model checking of staccato under RMO. We conducted an additional
experiment in another experimental environment with ample memory, the super-
computer system at Kyoto University as follows: CPU was Intel Xeon E7-8880
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2.30 GHz, memory was DDR3-1600 3TB, SPIN version was 6.4.6, and GCC ver-
sion was 4.8.5. The experiment was completed using in 1.17 TB memory and in
7.07 h, and we confirmed that the assertion in (the original PROMELA code of)
staccato held under RMO.

5.4 Other Results Obtained Besides the Comparisons

We describe other results obtained besides the comparisons among the
approaches through the experiments. In the experiments using the popular
mutual exclusion algorithms, with the exception of Peterson and Fischer’s
tournament-based algorithm, the assertions were violated under TSO as would
certainly be the case under PSO and RMO. The reason is that these algorithms
have been organized delicately, and their behavior is sensitive to the relaxed-
ness of MCMs. The sensitivity was so high that the assertions were violated
in the experiments. As Peterson and Fischer’s tournament-based algorithm is
implemented by locking, it is independent of the relaxedness of MCMs.

The experiments using programs selected from the SV-COMP were inde-
pendent of the relaxedness of MCMs for the following reasons. The assertion
in fib bench denotes that Fibonacci numbers computed by two threads cannot
overtake a value. Therefore, the assertion is independent of delays to the effects
of stores. The experiments on indexer could not be completed. The assertion
concerns a property of using prime numbers on multiple threads. Therefore, we
could not reduce the size of the program to complete the experiments, although
we reduced the loop length NUM in fib bench. The other experiments using
programs selected from the SV-COMP were independent of the relaxedness of
MCMs because they were all implemented by locking.

6 Related Work and Discussion

As the reordering of instructions under relaxed MCMs obviously intensifies the
state explosion problem of software model checking, it is natural to attempt
to reduce the state explosion by controlling the reordered instructions. Van
der Berg [34] proposed an exploration strategy using the so-called cost [26] in
directed model checking [12], which roughly relaxes an MCM (SC→TSO→PSO),
and implemented it on a model checker LTSmin [7]. However, no previous
work has considered more delicate optimization by focusing on the number of
reordered instructions and controlling the execution traces that are explored.
Additionally, no previous works have considered case studies to show the effec-
tiveness of their approaches.

Edelkamp et al. provided heuristic search on SPIN, and developed HSF-
SPIN [11], which is an extension of SPIN, in the context of directed model
checking. However, they have not conducted heuristic searches as seen in our
paper for model checking with relaxed MCMs. However, HSF-SPIN could not
the take large guards (corresponding to constraints of MCM) which McSPIN
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generates. We have applied the reorderings approach in Sect. 4.4 through gen-
erating PROMELA codes without changing the exploration strategy of SPIN.

We believe there are two reasons for the absence of previous work. The first
is that there has been little work on handling various MCMs within a uniform
framework. Replacing the store buffers [20,31,32,35] is one method of defining
model checkers with various MCMs. However, this approach cannot manage rel-
atively strict relaxed MCMs, such as TSO and PSO. Although model checking
with the more relaxed MCMs has been studied, these are specific to certain
MCMs, namely the Unified Parallel C MCM [10] and POWER MCM [1], and
do not manage various MCMs in a uniform way. Jonsson’s seminal work [18] is
similar to our work. He considered relaxed MCMs, including SPARC RMO [28],
by translating the program into PROMELA. However, he did not conduct exper-
iments as substantial as those presented in this paper.

Senftleben et al. [27] recently succeeded in specifying some MCMs with linear
temporal logic (LTL). This is a significant contribution because several MCMs
can be represented as inputs of nuXmv [8], a bounded model checker that takes
LTL formulas. Thus, their approach does not embed MCMs into models, unlike
our approach. In 2013, when we started to define the general model checking
framework and develop McSPIN [2], we stopped specifying MCMs as temporal
logic formulas in, for example, LTL and computational tree logic, and adopted
standard first-order formulas. This led us to use the technique of program trans-
lation to follow non-intuitive behavior under relaxed MCMs. As a result, the
general model checking framework covers a wide range of MCMs, whereas Sen-
ftleben et al. have not identified LTL formulas that specify TSO, which many
computer architectures adopt. Our long-term development has also resulted in
several approaches for the general model checking framework [2–5], whereas the
work of Senftleben et al. has not yet presented substantial approaches or exper-
iments. In their approach, every event is assigned to a global identifier, which
may exacerbate the state explosion problem, whereas we have proposed an app-
roach in which states are recalled by predicates to reduce the problem in [3].
Certainly, they have not proposed the approaches described in this paper.

The second reason is that the idea of reducing the state explosion by con-
trolling the reordered instructions is too simple to have been explicitly described
in the literature. Model checking with relaxed MCMs is a topic of great inter-
est in the field of program verification, and some model checkers that manage
relaxed MCMs are currently being developed (e.g., [19,20,31–33]). Although
some of these may support the approaches proposed in this paper, it is not easy
to survey their source code. This paper explicitly describes the approaches as
simply and generally as possible using the general model checking framework,
and evaluates their effects through case studies of various concurrent programs.
The authors hope that this paper contributes to the development of other model
checkers with relaxed MCMs with respect to the strategy of exploring the traces.
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7 Conclusion and Future Work

In this paper we described model checking approaches by focusing on the con-
trol of the reordering of instructions, which affects the state explosion problem
encountered by relaxed MCMs. This paper also showed the effects of these tech-
niques through case studies using various concurrent programs, including pop-
ular mutual exclusion algorithms, benchmarks used for verification tools, and
practical concurrent copying protocols. In some cases, our approaches can detect
counterexamples that the original exploration of McSPIN could not detect, or
detect counterexamples more quickly if the original exploration could detect.

There are four future areas of interest for this research. While model checking
with MCMs is affected by the reordering controls, no uniform strategy is provided
in this paper. The best exploration strategy depends on the input programs and
MCM. Because the fast and bakery algorithms are sensitive to the increasing
and decreasing strategies, more detailed investigations are significant to study
exploration strategies with reordering control. This study dealt with the three
simple approaches of reordering controls. It is significant to design and implement
more complicated reordering controls, and investigate their effects. The present
study shows that a counterexample can be detected quickly if the reordering
instructions are specified. This opens the possibility of constructing a theory
to specify such reordering instructions from programs, verified properties, and
MCMs. As described in Sect. 6, Senftleben et al. [27] invented a new approach for
handling several MCMs in LTL, which can be the input of nuXmv [8], whereas
we adopted first-order logic. It would be interesting to implement the reordering
control described in this paper using their approach.
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E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

20. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying pro-
grams on relaxed memory models. In: van de Pol, J., Weber, M. (eds.) SPIN 2010.
LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16164-3 16

21. McCloskey, B., Bacon, D.F., Cheng, P., Grove, D.: Staccato: a parallel and concur-
rent real-time compacting garbage collector for multiprocessors. Research Report
RC24504, IBM (2008)

22. Oracle Corp.: The Java Language Specification. Java SE 8 edn. (2015)
23. Pizlo, F., Frampton, D., Petrank, E., Steensgaard, B.: Stopless: a real-time garbage

collector for multiprocessors. In: Proceedings of ISMM, pp. 159–172 (2007)
24. Pizlo, F., Petrank, E., Steensgaard, B.: A study of concurrent real-time garbage

collectors. In: Proceedings of PLDI, pp. 33–44 (2008)

https://doi.org/10.1007/s10009-016-0429-y
https://doi.org/10.1007/978-3-319-47677-3_8
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-16164-3_9
https://doi.org/10.1007/3-540-45139-0_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-16164-3_16
https://doi.org/10.1007/978-3-642-16164-3_16


190 T. Abe et al.

25. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9

26. Reffe, F., Edelkamp, S.: Error detection with directed symbolic model checking.
In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp.
195–211. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2 13

27. Senftleben, M., Schneider, K.: Specifying weak memory consistency with temporal
logic. In: Proceedings of VECoS, pp. 107–122 (2016)

28. SPARC International, Inc.: The SPARC Architecture Manual, Version 9 (1994)
29. SV-COMP: The 6th International Competition on Software Verification. https://

sv-comp.sosy-lab.org/
30. The UPC Consortium: UPC Language Specifications Version 1.3 (2013)
31. Tomasco, E., Truc Nguyen Lam, O.I., Fischer, B., Torre, S.L., Parlato, G.: Lazy

sequentialization for TSO and PSO via shared memory abstractions. In: Proceed-
ings of FMCAD, pp. 193–200 (2016)

32. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
311–326. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 21

33. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 3–24.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 1

34. van der Berg, F.: Model checking LLVM IR using LTSmin: using relaxed memory
model semantics. Master’s thesis, University of Twente (2013)

35. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory model
specification framework with integrated model checking capability. Concurr. Com-
put. Pract. Exper. 17(5–6), 465–487 (2005)

https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/3-540-48119-2_13
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1007/978-3-319-46750-4_1


An Abstraction Technique for Describing
Concurrent Program Behaviour

Wytse Oortwijn1, Stefan Blom1, Dilian Gurov2, Marieke Huisman1(B),
and Marina Zaharieva-Stojanovski1

1 University of Twente, Enschede, The Netherlands
{w.h.m.oortwijn,s.c.c.blom,m.huisman,m.zaharieva}@utwente.nl

2 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@csc.kth.se

Abstract. This paper presents a technique to reason about functional
properties of shared-memory concurrent software by means of abstrac-
tion. The abstract behaviour of the program is described using process
algebras. In the program we indicate which concrete atomic steps cor-
respond to the actions that are used in the process algebra term. Each
action comes with a specification that describes its effect on the shared
state. Program logics are used to show that the concrete program steps
adhere to this specification. Separately, we also use program logics to
prove that the program behaves as described by the process algebra term.
Finally, via process algebraic reasoning we derive properties that hold for
the program from its abstraction. This technique allows reasoning about
the behaviour of highly concurrent, non-deterministic and possibly non-
terminating programs. The paper discusses various verification examples
to illustrate our approach. The verification technique is implemented as
part of the VerCors toolset. We demonstrate that our technique is capa-
ble of verifying data- and control-flow properties that are hard to verify
with alternative approaches, especially with mechanised tool support.

1 Introduction

The major challenge when reasoning about concurrent or distributed software
is to come up with an appropriate abstraction that provides sufficient detail
to capture the intended properties, while at the same time making verifica-
tion manageable. This paper presents a new powerful abstraction approach that
enables reasoning about the intended properties of the program in a purely non-
deterministic setting, and can abstract code at different levels of granularity.
The presentation of the abstraction technique in this paper focuses on shared-
memory concurrent programs and safety properties, but many extensions may
be explored, for example for distributed programs or progress properties, as
sketched in the paragraph on future work. The paper illustrates our approach
by discussing multiple verification examples in which we verify various data-
and control-flow properties. We demonstrate that the proposed technique can
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1 int x, y;
2

3 void threadx() {
4 bool stop := false;
5 while ¬stop do {
6 acquire lock;
7 if (x > y) { x := x − y; }
8 stop := x = y;
9 release lock;

10 }
11 }
12

13 void thready() {
14 bool stop := false;
15 while ¬stop do {
16 acquire lock;

17 if (y > x) { y := y − x; }
18 stop := x = y;
19 release lock;
20 }
21 }
22

23 int startgcd(int a, int b) {
24 x := a; y := b;
25 init lock;
26 handle t1 := fork threadx();
27 handle t2 := fork thready();
28 join t1;
29 join t2;
30 destroy lock;
31 return x;
32 }

Fig. 1. A parallel implementation of the Euclidean algorithm for finding the greatest
common divisor of two (positive) integers x and y.

be used to verify program properties that are hard to verify with alternative
approaches, especially in a practical manner via mechanised tools.

To motivate our approach, consider the program shown in Fig. 1. The figure
shows a parallel version of the classical Euclidean algorithm for finding a greatest
common divisor, gcd(x, y), of two given positive integers x and y. This is done by
forking two concurrent threads: one thread to decrement the value of x whenever
possible, and one thread to decrement the value of y.

We are interested in verifying deductively that this program indeed computes
the greatest common divisor of x and y. To accomplish this in a scalable fashion
requires that our technique be modular, or more precisely procedure-modular
and thread-modular, to allow the individual functions and threads to be analysed
independently of one another. The main challenge in achieving this lies in finding
a suitable way of capturing the effect of function calls and threads on the shared
memory in a way that is independent of the other functions and threads. Our
proposal is to capture these effects as sequences of exclusive accesses (in this
example increments and decrements) to shared memory (in this example the
variables x and y). We abstract such accesses into so-called actions, and their
sequences into process algebraic terms.

In our example above we abstract the assignments x := x − y and y := y − x
needed to decrease the values of x and y into actions decrx and decry, respectively.
Action behaviour is specified by means of contracts consisting of a guard and an
effect; the explanation of the details of this are deferred to Sect. 3. Using these
actions, we can specify the effects of the two threads by means of the process
algebra terms tx and ty, respectively, which are defined as follows:

process tx() := decrx · tx() + done process ty() := decry · ty() + done
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Here the action done indicates termination of a process. The functional
behaviour of the program can then be specified by the process pargcd defined
as the term tx() ‖ ty(). Standard process algebraic reasoning can be applied to
show that executing pargcd results in calculating the correct gcd.

Therefore, by proving that the implementation executes as prescribed by
pargcd, we simultaneously establish its functional property of producing the cor-
rect result. The pargcd process thus describes the program behaviour.

Once the program has been specified, the access exclusiveness of the actions
is verified by a suitable extension of separation logic with permission account-
ing [5,19]. On top of it, we develop rules that allow to prove, in a thread-local
fashion, that the program indeed follows its prescribed process. The details of
our technique applied to the above program are presented in Sect. 3.

In previous work [4,27] we developed an approach that records the actions
of a concurrent program as the program executes. Reasoning with this app-
roach is only suitable for terminating programs, and occurs at the end of its
execution, requiring the identification of repeating patterns. In contrast, the
current approach requires a process algebra term upfront that describes the pat-
terns of atomic concurrent actions, which allows the specification of functional
behaviour of reactive, non-terminating programs. For instance, we can verify
properties such as “the values of the shared variables x and y will be equal
infinitely often”, expressed in LTL by the formula �♦(x = y), of a program that
forks separate threads to modify x and y, similarly to the above parallel GCD
program.

Compared to many of the other modern logics to reason about concurrent
programs, such as CAP [9], CaReSL [26], Iris [17], and TaDA [7], our app-
roach does the abstraction at a different level. Our abstraction connects program
code with individual actions, while these other approaches essentially encode an
abstract state machine, describing how program steps evolve from one abstract
program state to the next abstract program state, and explicitly consider the
changes that could be made by the thread environment. As a result, in our
approach the global properties are specified in a way that is independent of the
program implementation. This makes it easier for non-experts to understand the
program specification. The main contributions of this paper are:

– An abstraction technique to specify and verify the behaviour of possibly non-
terminating, shared-memory concurrent programs, where the abstractions are
implementation-independent and may be non-deterministic;

– A number of verification examples that illustrate our approach and can
mechanically be verified via the VerCors toolset; and thus

– Tool support for our model-based reasoning approach.

The remainder of this paper is organised as follows. Section 2 provides a brief
background on separation logic and process algebras. Then, Sect. 3 illustrates
in more detail how abstract models are used in the verification of the parallel
GCD example. Section 4 elaborates on the proof rules as they are used by the
VerCors tool set. Section 5 discusses two more verification examples that apply
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our approach: verifying a concurrent counter and verifying a locking protocol.
Finally, Sect. 6 discusses related work and Sect. 7 concludes.

2 Background

Our program logic is an extension of Concurrent Separation Logic (CSL) with
permission accounting [1,19,22]. The main difference with classical Hoare logic
is that each allocated heap location is associated with a fractional permission
π, modelled as a rational number in the range (0, 1] [5,6]. By allocating a heap
location �, the allocating thread gets full ownership over �, represented by the
�

1
↪−→ v predicate. The 1

↪−→ predicate gives writing permission to the specified heap
location, whereas π

↪−→ for π < 1 only gives reading permission. The π
↪−→ predicates

may be split and merged along π, so that �
π1↪−→ v ∗ �

π2↪−→ v ⇔ �
π1+π2↪−−−−→ v. In this

case, ⇔ can be read as “splitting” from right to left, or “merging” from left to
right. The ∗ connector is the separating conjunction; the assertion P ∗ Q means
that the heap can be split into two disjoint parts, so that one part satisfies
the assertion P and the other part satisfies Q. CSL allows (splitted) points-
to predicates that are separated via the ∗-connective to be distributed over
concurrent threads (under certain conditions), thereby allowing to reason about
race freedom and about functional behaviour of concurrent programs.

2.1 Dynamic Locking

To reason about dynamically allocated locks we use the program logic techniques
proposed by Gotsman et al. [11]. Our language includes the init L statement,
which initialises a new lock associated with the lock label L. The program logic
requires that a resource invariant is specified for each initialised lock. A resource
invariant is a predicate that expresses the ownership predicates protected by the
lock. In the program logic a Lock1(L) predicate is produced by init L, which
represents the knowledge of the existence of a lock labelled L and this predicate
is required to obtain the lock later. Obtaining a lock labelled L is done via the
acquire L statement which, on the program logic level, consumes the Lockπ(L)
predicate and exchanges it for the resource invariant that is associated to L.
Releasing a lock is done via the release L statement, which has the reverse
effect: it takes the resource invariant of L and exchanges it for Lockπ(L). The
destroy L statement destroys the lock L and thereby consumes Lock1(L) in the
program logic and gives back the resource invariant associated to L.

2.2 Process Algebra Terms

The abstract models we use to reason about programs are represented as pro-
cess algebra terms. A subset of the μCRL [12,13] language is used as a suitably
expressive process algebra with data. The basic primitives are actions, each rep-
resenting an indivisible process behaviour. Processes are defined by combining
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actions and recursive process calls, which both may be parameterised by data.
Process algebra terms have the following structure:

P,Q ::= ε | δ | a(E) | p(E) | P · Q | P + Q | P ‖ Q | if B thenP elseP

where E are arithmetic expressions, B are Boolean expressions, a are action
labels, and p are process labels. With E we mean a sequence of expressions.

The empty process is denoted ε and the deadlock process by δ. The pro-
cess a(E) is an action call and p(E) a recursive process invocation, with E the
argument sequence. Two process terms P and Q may compose either sequen-
tially P · Q or alternatively P + Q. The parallel composition P ‖ Q allows the
actions of P and Q to be interleaved during execution. The conditional construct
if B thenP elseQ resembles the classical “if-then-else”; it yields either P or Q,
depending on the result of evaluating the expression B.

3 Motivating Example

This section demonstrates our approach by verifying functional correctness of the
parallel GCD verification example that was discussed in the introduction. With
functional correctness we mean verifying that, after the program terminates,
the correct value has been calculated. In this example, the correct value is the
mathematical GCD of the two (positive) values given as input to the algorithm.

Our approach uses the following steps:

(1) Actions and their associated guards and effects are defined that describe in
what ways the program is allowed to make updates to shared memory.

(2) The actions are composed into processes by using the process algebraic
connectives discussed in Sect. 2. These processes determine the desired
behaviour of (parts of) the concrete program. Notably, processes that are
composed in parallel correspond to forked threads in the program.

(3) All defined processes that have a contract are verified. Concretely, we auto-
matically verify whether the postconditions of processes can be ensured by
all traces that start from a state in which the precondition is satisfied.

(4) Finally we verify that every thread forked by the program behaves as speci-
fied by the process algebraic specification. If this is the case, the verification
results that are established from (3) can be used in the program logic.

Tool support for model-based reasoning is provided as part of the VerCors
verification tool set [2,3]. The VerCors tool set aims to verify programs under var-
ious concurrency models, notably heterogeneous and homogeneous concurrency,
written in high-level programming languages such as Java and C. Although most
of the examples presented in this paper have been worked out and verified in
PVL, the Prototypal Verification Language that we use to prototype new veri-
fication features, tool support is also provided for both Java and C.

All verification examples presented in this paper have been verified with the
VerCors tool set. Moreover, all example programs are accessible via an online
interface to VerCors, available at http://utwente.nl/vercors.

http://utwente.nl/vercors
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1 int x, y;
2

3 guard x > 0 ∧ y > x
4 effect x = old(x) ∧ y = old(y) − old(x)
5 action decrx;
6

7 guard y > 0 ∧ x > y
8 effect x = old(x) − old(y) ∧ y = old(y)
9 action decry;

10

11 guard x = y
12 action done;
13

14 process tx() := decrx · tx() + done;
15 process ty() := decry · ty() + done;
16

17 requires x > 0 ∧ y > 0
18 ensures x = y
19 ensures x = gcd(old(x), old(y))
20 process pargcd() := tx() ‖ ty();

Fig. 2. The processes used for the parallel GCD verification example. Three actions
are used: decrx, decry, and done; the first two actions capture modifications made to
the (shared) variables x and y, and done indicates termination.

Parallel GCD. We demonstrate our model-based reasoning approach by cap-
turing the functional behaviour of a parallel GCD algorithm. The parallel GCD
verification problem is taken from the VerifyThis challenge held at ETAPS 20151

and considers a parallel version of the classical Euclidean algorithm.
The standard Euclidean algorithm is defined as a function gcd such that,

given two positive integers x and y, gcd(x, x) = x, gcd(x, y) = gcd(x − y, y)
if x > y, and gcd(x, y) = gcd(x, y − x) if y > x. The parallel version of this
algorithm uses two concurrent threads: the first thread continuously decrements
the value of x when x > y, the second thread continuously decrements the value
of y when y > x, and this process continues until x and y converge to the gcd
of the two original input values. Model-based reasoning is used to describe the
interleaving of the concurrent threads and to prove functional correctness of the
parallel algorithm in an elegant way. Figure 2 presents the setup of the pargcd
process, which models the behaviour of a parallel GCD algorithm with respect to
the two global variables x and y. The pargcd process uses three different actions,
named: decrx, decry, and done. Performing the action decrx captures the effect
of decreasing x, provided that x > y before the action is performed. Likewise,
performing decry captures the effect of decreasing y. Finally, the done action may
be performed when x = y and is used to indicate termination of the algorithm.

The pargcd process is defined as the parallel composition of two processes;
the process tx() describes the behaviour of the thread that decreases x, and
ty() describes the behaviour of the thread that decreases y. The pargcd process
requires that the shared variables x and y are both positive, and ensures that
both x and y contain the gcd of the original values of x and y. Proving that pargcd
satisfies its contract is done via standard process algebraic reasoning: first pargcd
is converted to a linear process (i.e. a process without parallel constructs), which
is then analysed (e.g. via model checking) to show that every thread interleaving
leads to a correct answer, in this case gcd(old(x), old(y)).

1 See also http://etaps2015.verifythis.org.

http://etaps2015.verifythis.org
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1 resource lock := ∃v1, v2 : v1 > 0 ∗
2 v2 > 0 ∗ x

1
↪−→p v1 ∗ y

1
↪−→p v2;

3

4 requires a > 0 ∧ b > 0
5 ensures x = y ∧ x = gcd(a, b)
6 void startgcd(int a, int b) {
7 x := a; y := b;
8 model m := init pargcd() over x, y;

9 init lock;
10 handle t1 := fork threadx(m);
11 handle t2 := fork thready(m);
12 join t1;
13 join t2;
14 destroy lock;
15 finish m;
16 }

Fig. 3. The entry point of the parallel GCD algorithm. Two threads are forked and
continuously decrement either x or y until x = y, which is when the threads converge.
The functional property of actually producing a gcd is proven by analysing the process.

Verifying Program Correctness. Figure 3 shows the startgcd function,
which is the entry point of the parallel GCD algorithm. According to startgcd’s
contract, two positive integers must be given as input and permission is required
to write to x and y. On line 8 a model is initialised and named m, which describes
that all further program executions behave as specified by the pargcd process.
Since pargcd is defined as the parallel composition of the processes tx and ty,
its definition may be matched in the program code by forking two concurrent
threads and giving each thread one of the components of tx() ‖ ty(). In this case,
the thread executing threadx() continues from the process tx() and the thread
executing thready() continues from ty(). By later joining the two threads and
finishing the model by using the ghost statement finish (which is only possible
if pargcd has been fully executed), we may establish that startgcd satisfies its
contract. However, we still have to show that the threads executing threadx and
thready behave as described by the model m.

Figure 4 shows the implementation of threadx and thready. Both procedures
require a Lockπ(lock) predicate, which gives the knowledge that a lock with
resource invariant labelled lock has been initialised, and gives the possibility to
acquire this lock and therewith the associated resource invariant. Moreover, both
procedures require one half of the splitted Proc1(m, tx() ‖ ty()) predicate that is
established in Fig. 3 as result of initialising the model on line 8.

The connection between the process and program code is made via the action
(ghost) statements. To illustrate, in the function threadx the decrement of x on
line 13 is performed in the context of an action block, thereby forcing the tx()
process in the Proc1/2 predicate to perform the decrx action. The guard of decrx
specifies the condition under which decrx can be executed, and the effect clause
describes the effect on the (shared) state as result of executing decrx. Eventually,
both threads execute the done action to indicate their termination.

The VerCors tool set can automatically verify the parallel GCD verification
example discussed above, including the analysis of the processes.
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1 requires Lockπ(lock)
2 requires Proc1/2(m, tx())
3 ensures Lockπ(lock)
4 ensures Proc1/2(m, ε)
5 void threadx(model m) {
6 bool stop := false;
7 loop-inv Lockπ(lock);
8 loop-inv ¬stop ⇒ Proc1/2(m, tx());
9 loop-inv stop ⇒ Proc1/2(m, ε);

10 while ¬stop do {
11 acquire lock;
12 if (x > y) {
13 action m.decrx() {
14 x := x − y;
15 }
16 }
17 if (x = y) {
18 action m.done() {
19 stop := true;
20 }
21 }
22 release lock;
23 }
24 }

1 requires Lockπ(lock)
2 requires Proc1/2(m, ty())
3 ensures Lockπ(lock)
4 ensures Proc1/2(m, ε)
5 void thready(model m) {
6 bool stop := false;
7 loop-inv Lockπ(lock);
8 loop-inv ¬stop ⇒ Proc1/2(m, ty());
9 loop-inv stop ⇒ Proc1/2(m, ε);

10 while ¬stop do {
11 acquire lock;
12 if (y > x) {
13 action m.decry() {
14 y := y − x;
15 }
16 }
17 if (x = y) {
18 action m.done() {
19 stop := true;
20 }
21 }
22 release lock;
23 }
24 }

Fig. 4. The implementation of the procedures used by the two threads to calculate the
gcd of x and y. The procedure threadx decrements x and thready decrements y.

4 Program Logic

This section shortly elaborates on the assertion language and the proof rules
of our approach, as used internally by the VerCors tool set to reason about
abstractions. We do not present a full formalisation, for full details we refer
to [27]. Only the proof rules related to model-based reasoning are discussed.

4.1 Assertion Language

Our program logic builds on standard CSL with permission accounting [6] and
lock predicates [11]. The following grammar defines its assertion language:

P,Q ::= B | ∀x.P | ∃x.P | P ∧ Q | P ∗ Q | Lockπ(L) | Lockedπ(L) | · · ·
| E

π
↪−→n E | E

π
↪−→p E | E

π
↪−→a E | Procπ(E, p, P )

where E are arithmetic expressions, B are Boolean expressions, x are variables,
π are fractional permissions, L are lock labels, and p are process labels. Note
that the specification language implemented in VerCors supports more assertion
constructs; we only highlight a subset to elaborate on our approach.
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Instead of using a single points-to ownership predicate, like in standard CSL,
our extensions require three different points-to predicates:

– The E
π

↪−→n E′ predicate is the standard points-to predicate from CSL. It
gives write permission to the heap location expressed by E in case π = 1,
and gives read access in case π ∈ (0, 1]. This predicate also represents the
knowledge that the heap contains the value expressed by E′ at location E.

– The process points-to predicate E
π

↪−→p E′ is similar to π
↪−→n, but indicates that

the heap location at E is bound by an abstract model. Since all changes to
this heap location must be captured by the model, the π

↪−→p predicate only
gives read permission to E, even when π = 1.

– The action points-to predicate E
π

↪−→a E′ gives read- or write access to the heap
location E in the context of an action block. As a precondition, action blocks
require π

↪−→p predicates for all heap locations that are accessed in their body.
These predicates are then converted to π

↪−→a predicates, which give reading
permission if π ∈ (0, 1], and writing permission if π = 1.

All three points-to ownership predicates can be split and merged along the
associated fractional permission, to be distributed among concurrent threads:

E
π1+π2↪−−−−→t E′ ⇔ E

π1↪−→t E′ ∗ E
π2↪−→t E′ for t ∈ {n, p, a}

Essentially, three different predicates are needed to ensure soundness of the
verification approach. When a heap location � becomes bound by an abstract
model, its �

π
↪−→ E predicate is converted to an �

π
↪−→p E predicate in the program

logic. As an effect, the value at � cannot just be changed, since the π
↪−→p predicate

does not permit writing to � (even when π = 1). However, the value at � can be
changed in the context of an action block, as the rule for action blocks in our
program logic converts all affected π

↪−→p predicates to π
↪−→a predicates, and π

↪−→a

again allows heap writes. The intuition is that, by converting �
π

↪−→p E predicates
to �

π
↪−→a E predicates, all changes to � must occur in the context of action

blocks, and this allows us to describe all changes to � as process algebra terms.
Consequently, by reasoning over these process algebra terms, we may reason
about all possible changes to �, and our verification approach allows to use the
result of this reasoning in the proof system.

The second main extension our program logic makes to standard CSL is the
Procπ(E, p, P ) predicate, which represents the knowledge of the existence of an
abstract model that: (i) is identified by the expression E, (ii) was initialised by
invoking the process labelled p, and (iii) is described by the process term P .
For brevity we omitted p from the annotations in all example programs, since
this component is constant (it cannot be changed in the proof system). The
third component P is the remaining process term that is to be “executed” (or
“matched”) by the program. The Procπ predicates may be split and merged
along the fractional permission and the process term, similar to the points-to
ownership predicates:

Procπ1+π2(E, p, P1 ‖ P2) ⇔ Procπ1(E, p, P1) ∗ Procπ2(E, p, P2)
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4.2 Proof System

Figure 5 shows the proof rules for our model-based reasoning approach. For pre-
sentational purposes these rules are somewhat simplified: the rules [init], [fin],
and [act] require some extra side conditions that deal with process- and action
arguments. We also omitted handing process arguments in [init]. More details
on these proof rules can be found in [27].

The [ass] rule allows reading from the heap, which can be done with any
points-to permission predicate (that is, π

↪−→t for any permission type t). Writing
to shared memory is only allowed by [mut] with a full permission predicate that
is not of type p; if the targeted heap location is bound by an abstract model,
then all changes must be done in an action block (see the [act] rule). [init]
handles the initialisation of a model, which on the specification level converts
all affected 1

↪−→n predicates to 1
↪−→p and produces a full Proc1 predicate. [fin]

handles model finalisation: it requires a fully executed Proc1 predicate (holding
the process ε) and converts all affected 1

↪−→p predicates back to 1
↪−→n. Finally,

[act] handles action blocks. If a proof can be derived for the body S of the
action block that: (i) respects the guard and effect of the action, and (ii) with
the 1

↪−→p predicates of all heap locations accessed in S converted to 1
↪−→a, then a

similar proof can be established for the entire action block. Observe that [act]
requires and consumes the matching action call in the process term.

x �∈ fv(E, E′)

 {P[x/E′] ∧ E

π
↪−→t E′} x := [E] {P ∧ E

π
↪−→t E′} [ass]

t �= p


 {E
1

↪−→t −} [E] := E′ {E
1

↪−→t E′} [mut]

B = precondition(p) P = body(p)

 {∗i=0..nEi

1
↪−→n E′

i ∗ B}
model m := init p() over E0, . . . , En

{∗i=0..nEi
1

↪−→p E′
i ∗ Proc1(m, p, P )}

[init]

locations(m) = (E0, . . . , En) B = postcondition(p)

 {∗i=0..nEi

1
↪−→p E′

i ∗ Proc1(m, p, ε)}finish m {∗i=0..nEi
1

↪−→n E′
i ∗ B} [fin]

accessedlocs(S) = (E0, . . . , En) B1 = guard(a) B2 = effect(a)

 {∗i=0..nEi

1
↪−→a E′

i ∗ B1} S {∗i=0..nEi
1

↪−→a E′′
i ∗ B2}


 {∗i=0..nEi
1

↪−→p E′
i ∗ Procπ(m, p, a(E) · P ) ∗ B1}

action m.a(E) { S }
{∗i=0..nEi

1
↪−→p E′′

i ∗ Procπ(m, p, P ) ∗ B2}

[act]

Fig. 5. The simplified proof rules of all model-related specification constructs.
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5 Applications of the Logic

In this section we apply our approach on two more verification problems: (i) a
concurrent program in which multiple threads increase a shared counter by one
(see Sect. 5.1); and (ii) verifying control-flow properties of a fine-grained lock
implementation (see Sect. 5.2). Also some interesting variants on these problems
are discussed. For example (i) we verify the functional property that, after the
program terminates, the correct value has been calculated. For (ii) we verify
that clients of the lock adhere to the intended locking protocol and thereby
avoid misusing the lock.

5.1 Concurrent Counting

Our second example considers a concurrent counter : a program where two
threads concurrently increment a common shared integer. The basic algorithm is
given in Fig. 6. The goal is to verify that program increments the original value
of counter by two, given that it terminates. However, providing a specification
for worker can be difficult, since no guarantees to the value of counter can be
given after termination of worker, as it is used in a concurrent environment.

Existing verification approaches for this particular example [8] mostly require
auxiliary state, a form of rely/guarantee reasoning, or, more recently, concurrent
abstract predicates, which may blow-up the amount of required specifications
and are not always easy to use. We show how to verify the program of Fig. 6 via
our model-based abstraction approach. Later, we show how our techniques may
be used on the same program but generalised to n threads.

Our approach is to protect all changes to counter by a process that we name
parincr. The parincr process is defined as the parallel composition incr ‖ incr of
two processes that both execute the incr action once. Performing incr has the
effect of incrementing counter by one. From a process algebraic point of view
it is easy to see that parincr satisfies its contract: every possible trace of parincr
indeed has the effect of increasing counter by two, and this can automatically be
verified. We use this result in the verification of program by using model-based
reasoning. In particular, we may instantiate parincr as a model m, split along its

1 int counter;
2

3 void worker() {
4 atomic {
5 counter := counter + 1;
6 }
7 }

8 void program(int n) {
9 counter := n;

10 handle t1 = fork worker();
11 handle t2 = fork worker();
12 join t1;
13 join t2;
14 }

Fig. 6. The concurrent counting example program, where two threads forked by
program increment the shared integer counter.



202 W. Oortwijn et al.

1 int counter;
2

3 effect counter = old(counter) + 1;
4 action incr;
5

6 ensures counter = old(counter) + 2;
7 process parincr() := incr ‖ incr;
8

9 requires Procπ(m, incr);
10 ensures Procπ(m, ε);
11 void worker(model m) {
12 atomic {
13 action m.incr {
14 counter := counter + 1;

15 }
16 }
17 }
18

19 ensures counter = c + 2;
20 void program(int c) {
21 counter := c;
22 model m := parincr();
23 handle t1 := fork worker(m);
24 handle t2 := fork worker(m);
25 join t1;
26 join t2;
27 finish m;
28 }

Fig. 7. Definition of the parincr process that models two concurrent threads performing
an atomic incr action, and the required annotations for worker and program.

parallel composition, and give each forked thread a fraction of the splitted Proc
predicate. The interface specification of the worker procedure thus becomes:

{Procπ(m, incr)} worker(m) {Procπ(m, ε)}

An annotated version of the concurrent counting program is presented in
Fig. 7. The atomic statement is used as a construct for statically-scoped locking;
for simplicity we assume that writing permissions for counter are maintained
by its resource invariant. Indeed, by showing that both threads execute the incr
action, the established result of incrementing counter by 2 can be concluded.

Generalised Concurrent Counting. The interface specification of worker is
generic enough to allow a generalisation to n threads. Instead of the parincr
process as presented in Fig. 7 one could consider the following process, which
essentially encodes the process “incr ‖ · · · ‖ incr” (n times) via recursion:

requires n ≥ 0;
ensures counter = old(counter) + n;
process parincr(int n) := if n > 0 then incr ‖ parincr(n − 1) else ε;

Figure 8 shows the generalised version of the concurrent counting program,
in which we reuse the incr action and the worker procedure from Fig. 7. Here
program takes an extra parameter n that determines the number of threads to
be spawned. The spawn procedure has been added to spawn the n threads. This
procedure is recursive to match the recursive definition of the parincr(n) process.
Again, each thread executes the worker procedure. We verify that after running
program the value of counter has increased by n.
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1 requires n ≥ 0;
2 requires Procπ(m, parincr(n));
3 ensures Procπ(m, ε);
4 void spawn(model m, int n) {
5 if (n > 0) {
6 handle t := fork worker(m);
7 spawn(m, n − 1);
8 join t;
9 }

10 }

11

12 requires n ≥ 0;
13 ensures counter = c + n;
14 void program(int c, int n) {
15 counter := c;
16 model m := parincr(n);
17 spawn(m, n);
18 finish m;
19 }

Fig. 8. Generalisation of the concurrent counting verification problem, where program

forks n threads using the recursive spawn procedure. Each thread executes the worker

procedure and therewith increments the value of counter by one.

On the level of processes we may automatically verify that each trace of the
process parincr(n) is a sequence of n consecutive incr actions. As a consequence,
from the effects of incr we can verify that parincr(n) increases counter by n.
On the program level we may verify that spawn(m,n) fully executes according
to the parincr(n) process. To clarify, on line 6 the definition of parincr(n) can
be unfolded to incr ‖ parincr(n − 1) and can then be split along its parallel
composition. Then the forked thread receives incr and the recursive call to spawn
receives parincr(n − 1). After calling join on line 8, both the call to worker and
the recursive call to spawn have ensured completing the process they received,
thereby leaving the (merged) process ε ‖ ε, which can be rewritten to ε to satisfy
the postcondition of spawn. As a result, after calling finish on line 18 we can
successfully verify that counter has indeed been increased by n.

Unequal Concurrent Counting. One could consider an interesting variant
on the two-threaded concurrent counting problem: one thread performing the
assignment “counter = counter + v” for some integer value v, and the other
thread concurrently performing “counter = counter ∗ v”. Starting from a state
where counter = c holds for some c, the challenge is to verify that after running
the program we either have counter = (c + v) ∗ v or counter = (c ∗ v) + v.

This program can be verified using our model-based approach (without
requiring for example auxiliary state) by defining corresponding actions for
the two different assignments. The global model is described as the process
count(int n) := plus(n) ‖ mult(n), where the action plus(n) has the effect of
incrementing counter by n and mult(n) has the effect of multiplying counter by
n. The required program annotations are then similar to the ones used in Fig. 7.

All three variants on the concurrent counting problem can be automatically
verified using the VerCors toolset.
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5.2 Lock Specification

The third example demonstrates how our approach can be used to verify control-
flow properties of programs, in this case the compare-and-swap lock implemen-
tation that is presented in the Concurrent Abstract Predicates (CAP) paper [9].
The implementation is given in Fig. 9. The cas(x, c, v) operation is the compare-
and-swap instruction, which atomically updates the value of x by v if the old
value at x is equal to c, otherwise the value at x is not changed. A Boolean result
is returned indicating whether the update to x was successful.

In particular, model-based reasoning is used to verify that the clients of this
lock adhere to the intended locking protocol: clients may only successfully acquire
the lock when the lock was unlocked and vice versa. Stated differently, we verify
that clients may not acquire (nor release) the same lock successively.

The process algebraic description of the locking protocol is a composition of
two actions, named acq and rel, that model the process of acquiring and releasing
the lock, respectively. A third action named done is used to indicate that the
lock is no longer used and can thus be destroyed. We use this process as a model
to protect changes to the shared variable flag, so that all changes to flag must
either happen as an acq or as a rel action. The acq action may be performed
only if flag is currently false and has the effect of setting flag to true. The rel
action simply has the effect of setting flag to false, whatever the current value
of flag (therefore rel does not need a guard). The locking protocol is defined by
the processes Locked() := rel ·Unlocked() and Unlocked() := acq ·Locked()+done.
This allows us to use the following interface specifications for the acquire and
release procedures (with m a global identifier of an initialised model):

{Procπ(m,Unlocked())} acquire() {Procπ(m, Locked())}
{Procπ(m, Locked())} release() {Procπ(m,Unlocked())}

Specification-wise, clients of the lock may only perform acquire when they
have a corresponding process predicate that is in an “Unlocked” state (and the
same holds for release and “Locked”), thereby enforcing the locking protocol
(i.e. the process only allows traces of the form: acq, rel, acq, rel, · · · ). The acquire
procedure performs the acq action via the cas operation: one may define cas
to update flag as an acq action. Moreover, since cas is an atomic operation,

1 bool flag := false;
2

3 void acquire() {
4 bool b := false;
5 while ¬b {
6 b := cas(flag, false, true);

7 }
8 }
9

10 void release() {
11 atomic { flag := false; }
12 }

Fig. 9. Implementation of a simple locking system.
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1 bool flag;
2 model m;
3

4 resource inv := flag
1

↪−→p −;
5

6 guard ¬flag; effect flag; action acq;
7 effect ¬flag; action rel;
8

9 process Unlocked() := acq · Locked();
10 process Locked() :=
11 rel · Unlocked() + done;
12

13 requires Procπ(m, Unlocked());
14 ensures Procπ(m, Locked());
15 void acquire() {
16 bool b := false;
17 loop-inv ¬b ⇒
18 Procπ(m, acq · Locked());
19 loop-inv b ⇒ Procπ(m, Locked());
20 while ¬b {
21 b := cas(flag, false, true);
22 }
23 }
24

25 requires Procπ(m, Locked());
26 ensures Procπ(m, Unlocked());
27 void release() {
28 atomic inv {
29 action m.rel { flag := false; }
30 }
31 }
32

33 requires flag
1

↪−→n −;
34 ensures Proc1(m, Unlocked());
35 void init() {
36 flag := false;
37 m := model Unlocked();
38 init inv;
39 }
40

41 requires Proc1(m, Unlocked());
42 ensures flag

1
↪−→n −;

43 void destroy() {
44 action m.done { }
45 destroy inv;
46 finish m;
47 }

Fig. 10. The annotated implementation of the simple fine-grained locking system.

it can get all necessary ownership predicates from the resource invariant inv.
Furthermore, calling destroy() corresponds to performing the done action on
the process algebra level, which may only be done in the “Unlocked” state.

The full annotated lock implementation is presented in Fig. 10. The init
and destroy procedures have been added to initialise and finalise the lock and
thereby to create and destroy the corresponding model. The init consumes
write permission to flag, creates the model, and transfers the converted write
permission into the resource invariant inv. Both the atomic block (on line 28)
and the cas operation (on line 21) make use of inv to get permission to change
the value of flag in an action block. The cas operation on line 21 performs
the acq action internally, depending on the success of the compare-and-swap
(indicated by its return value). This is reflected upon in the loop invariant. The
destroy procedure has the opposite effect of init: it consumes the (full) Proc
predicate (in state “Unlocked”), destroys the model and the associated resource
invariant, and gives back the converted write permission to flag.

In the current presentation, init returns a single Proc predicate in state
Unlocked, thereby allowing only a single client. This is however not a limita-
tion: to support two clients, init could alternatively initialise and ensure the
Unlocked() ‖ Unlocked() process. Furthermore, to support n clients (or a dynamic
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number of clients), init could apply a construction similar to the one used in
the generalised concurrent counting example (see Sect. 5.1).

Reentrant Locking. The process algebraic description of the locking protocol
can be upgraded to describe a reentrant lock : a locking system where clients
may acquire and release multiple times in succession. A reentrant lock that is
acquired n times by a client must also be released n times before it is available to
other clients. Instead of using the Locked and Unlocked processes, the reentrant
locking protocol is described by the following process (with n ≥ 0):

process Lock(int n) := acq · Lock(n + 1) + (if n > 0 then rel · Lock(n − 1))

Rather than describing the lock state as a Boolean flag, like done in the
single-entrant locking example, the state of the reentrant lock can be described
as a multiset containing thread identifiers. In that case, acq and rel protect all
changes made to the multiset in order to enforce the locking protocol described
by Lock. The interface specifications of acquire and release then become:

{Procπ(m, Lock(n))} acquire() {Procπ(m, Lock(n + 1))}
{Procπ(m, Lock(n)) ∧ n > 0} release() {Procπ(m, Lock(n − 1))}

Moreover, the Lock(n) process could be extended with a done action to allow
the reentrant lock to be destroyed. The done action should then only be allowed
when n = 0. Both the simple locking implementation and the reentrant locking
implementation have been automatically verified using the VerCors toolset.

5.3 Other Verification Examples

This section demonstrated the use of process algebraic models in three different
verification examples, as well as some interesting variants on them. We showed
how model-based reasoning can be used as a practical tool to verify different
types of properties that would otherwise be hard to verify, especially with an
automated tool. We considered data properties in the parallel GCD and the con-
current counting examples, and considered control-flow properties in the locking
examples. Moreover, we showed how to use the model-based reasoning approach
in environments with a dynamic number of concurrent threads.

Our approach can also be used to reason about non-terminating programs.
Notably, a no-send-after-read verification example is available that addresses a
commonly used security property: if confidential data is received by a secure
device, it will not be passed on. The concrete send- and receive behaviour of
the device can be abstracted by send and recv actions, respectively. Receiving
confidential information is modelled as the clear action. Essentially, we show that
after performing a clear action the device can no longer perform send’s.
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6 Related Work

The abstraction technique proposed in this paper allows reasoning about func-
tional behaviour of concurrent, possibly non-terminating programs. A related
approach is (impredicative) Concurrent Abstract Predicates (CAP) [9,25], which
also builds on CSL with permissions. In the program logic of CAP, regions of
memory can be specified as being shared. Threads must have a consistent view
of all shared regions: all changes must be specified as actions and all shared
regions are equipped with a set of possible actions over their memory. Our app-
roach uses process algebraic abstractions over shared memory in contrast to the
shared regions of CAP, so that all changes to the shared memory must be cap-
tured as process algebraic actions. We mainly distinguish in the use of process
algebraic reasoning to verify properties that could otherwise be hard to verify,
and in the capability of doing this mechanically by providing tool support.

Other related approaches include TaDA [7], a program logic that builds on
CAP by adding a notion of abstract atomicity via Hoare triples for atomic oper-
ations. CaReSL [26] uses a notion of shared regions similar to CAP, but uses
tokens to denote ownership. These tokens are used to transfer ownership over
resources between threads. Iris [17,18] is a reasoning framework that aims to
provide a comprehensive and simplified solution for recent (higher-order) con-
currency logics. Sergey et al. [24] propose time-stamped histories to capture
modifications to the shared state. Our approach may both capture and model
program behaviour and benefits from extensive research on process algebraic
reasoning [12]. Moreover, the authors provide a mechanised approach to inter-
actively verify full functional correctness of concurrent programs by building on
CSL [23]. Popeea and Rybalchenko [21] combine abstraction refinement with
rely-guarantee reasoning to verify termination of multi-threaded programs.

In the context of verifying distributed systems, Session Types [15] describe
communication protocols between processes [14]. However, our approach is more
general as it allows describing any kind of behaviour, including communication
behaviour between different system components.

7 Conclusion

This paper addresses thread-modular verification of possibly non-terminating
concurrent programs by proposing a technique to abstract program behaviour
using process algebras. A key characteristic of our approach is that properties
about programs can be proven by analysing process algebraic program abstrac-
tions and by verifying that programs do not deviate from these abstractions. The
verification is done in a thread-modular way, using an abstraction-aware exten-
sion of CSL. This paper demonstrates how the proposed technique provides an
elegant solution to various verification problems that may be challenging for
alternative verification approaches. In addition, the paper contributes tool sup-
port and thereby allow mechanised verification of the presented examples.
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Future Work. We are currently working on mechanising the formalisation and
the soundness proof of the proposed technique using Coq. At the moment, veri-
fication at the process algebra level is non-modular. As a next step, we plan to
achieve modularity at this level as well, by combining our approach with rely-
guarantee [16] and deny-guarantee reasoning [10]. We also plan to investigate
how to mix and interleave abstract and concrete reasoning. In the current set
up, reasoning is done completely at the level of the abstraction. If this part of
the program is used as a component in a larger program, we plan to investigate
how the verification results for the components can be used to reason about the
larger program, if reasoning about the larger program is not done at this level of
abstraction. Finally, in a different direction, we plan to extend the abstraction
technique to reason about distributed software. For example, abstractions may
be used to capture the behaviour of a single actor/agent as a process term, allow-
ing process algebraic techniques such as [20] to be used for further verification.
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