
A Survey of Elementary Totally
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Abstract The class of elementary totally disconnected locally compact (t.d.l.c.)
groups is the smallest class of t.d.l.c. second countable (s.c.) groups which contains
the second countable profinite groups and the countable discrete groups and is
closed under taking closed subgroups, Hausdorff quotients, group extensions, and
countable directed unions of open subgroups. This class appears to be fundamental
to the study of t.d.l.c. groups. In these notes, we give a complete account of the
basic properties of the class of elementary groups. The approach taken here is more
streamlined than previous works, and new examples are sketched.

1 Introduction

In the general study of totally disconnected locally compact (t.d.l.c.) groups, one
often wishes to avoid discrete groups and compact t.d.l.c., equivalently profinite,
groups. For example, considering finitely generated groups as lattices in themselves
is unenlightening, and the scale function on a profinite group is trivial. However,
non-discreteness and non-compactness are often not enough by themselves. For
example, every finitely generated group is a lattice in a non-discrete t.d.l.c. group
simply by taking a direct product with an infinite profinite group. We thus wish to
study t.d.l.c. groups that are ‘sufficiently non-discrete.’

What we mean by ‘sufficiently non-discrete’ is that there is a suitably rich
interaction between the topological structure and the large-scale structure of the
group in question. With this in mind, let us consider examples. Certainly discrete
groups have weak interaction between topological and large-scale structure, since
they have trivial topological structure. The profinite groups have the opposite
problem: they have local structure but trivial large-scale structure. On the other hand,
compactly generated t.d.l.c. groups which are non-discrete and topologically simple
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Fig. 1 Interaction between
large-scale structure and
topological structure

have a rich interaction between topological and large-scale structure; examples of
these include the Neretin groups, Aut.Tn/C for Tn the n-regular tree, the simple
algebraic groups, and many others. Thinking further, it is clear that abelian groups
and compact-by-discrete groups have much weaker interaction between topological
and large-scale structure than that of the aforementioned simple groups, so these
groups should be collected with the profinite groups and discrete groups (Fig. 1). At
this point, it seems natural to conclude that any ‘elementary’ combination of groups
with weak interaction should again have weak interaction. We thus arrive to the
central definition of these notes:

Definition 1 The class of elementary groups is the smallest class E of t.d.l.c.s.c.
groups such that

(i) E contains all second countable profinite groups and countable discrete groups.
(ii) E is closed under taking closed subgroups.
(iii) E is closed under taking Hausdorff quotients.
(iv) E is closed under taking group extensions.
(v) If G is a t.d.l.c.s.c. group and G D S

i2N Oi where .Oi/i2N is an �-increasing
sequence of open subgroups of G with Oi 2 E for each i, then G 2 E. We say
that E is closed under countable increasing unions.

The operations (ii)–(v) are often called the elementary operations.

Remark 1 We restrict to the second countable t.d.l.c. groups. This is a mild and
natural assumption which makes our discussion much easier. Any notion of being
‘elementary’ must be ‘regional’ in the sense that it reduces to compactly generated
subgroups, and compactly generated groups are second countablemodulo a compact
normal subgroup. Generalizing our notion of elementary groups to the non-second
countable setting thus adds little to the theory.

In these notes, we explore the class of elementary groups. In particular, the class
is shown to enjoy strong permanence properties and to admit a well-behaved, ordinal
valued rank function. This rank function, aside from being an important tool to study
elementary groups, gives a quantitative measure of the level of interaction between
topological and large scale structure in a given elementary group.

Remark 2 The primary reference for these notes is [15]; the reader may also wish to
consult the nice survey of Cesa and Le Maître [5]. The general approach developed
in these notes is different from that of [15]. Our approach follows that of [16]; in loc.
cit., the class of elementary amenable discrete groups is studied, but the parallels are
obvious.
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2 Preliminaries

For G a t.d.l.c. group, we shall use U.G/ to denote the set of compact open
subgroups of G. For K a subgroup of a groupG, we use hhKiiG to denote the normal
subgroup generated by K in G. When clear from context, we drop the subscript. If
H is an open subgroup of G, we write H �o G. If H is a closed subgroup of G
such that G=H is compact in the quotient topology, we say that H is a cocompact
subgroup and writeH �cc G. It is a classical result that cocompact closed subgroups
of compactly generated t.d.l.c. groups are themselves compactly generated.

2.1 Ordinals

Ordinal numbers are used frequently in these notes; Kunen [8] contains a nice
introduction to ordinal numbers and ordinal arithmetic. Recalling that a well-order
is a total order with no infinite descending chains, the easiest definition of an ordinal
number is due to J. von Neumann: Each ordinal is the well-ordered set of all smaller
ordinals with 0 WD ;. For example, 2 D f0; 1g and 3 D f0; 1; 2g. Ordinal numbers
are in particular well-orders themselves. For example, 2 is the two element well-
order, and the first transfinite ordinal is ! WD N. The second transfinite ordinal,
! C 1, is the well-order given by a copy of N followed by one point. The first
uncountable ordinal is denoted by !1. An important feature of !1, which is often
used implicitly, is that there is no countable cofinal subset. That is to say, there is
no countable sequence of countable ordinals .˛i/i2N such that supi2N ˛i D !1. We
stress that !1 is much larger than any countable ordinal. Ordinals such as !! or
!!

!
are still strictly smaller than !1. Indeed, one can never reach !1 via arithmetic

combinations of countable ordinals.
Given ordinals ˛ and ˇ, the ordinal ˛ C ˇ is the well-order given by a copy

of ˛ followed by a copy of ˇ. Observe that the well-orders 1 C ! and ! C 1

are thus not equal, since the former is order isomorphic to ! while the latter is
not, hence addition is non-commutative. Multiplication and exponentiation can be
defined similarly. We shall not use ordinal arithmetic in a complicated way. The
reader is free to think of ordinal arithmetic as usual arithmetic keeping in mind that
it is non-commutative.

Ordinals of the form ˛ C 1 for some ordinal ˛ are called successor ordinals.
A limit ordinal is an ordinal which is not of the form ˛ C 1 for some ordinal ˛.
The ordinals !, ! C !, and !1 are examples of limit ordinals. We stress that our
definition implies 0 is a limit ordinal.

An important feature of ordinals is that they allow us to extend induction
arguments transfinitely. Transfinite induction proceeds just as the familiar induction
with one additional step: One must check the inductive claim holds for limit ordinals
� given that the claim holds for all ordinals ˛ < �. In the induction arguments in
these notes, the limit case of the argument will often be trivial.
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2.2 Descriptive-Set-Theoretic Trees

We will require the notion of a descriptive-set-theoretic tree. This notion of a tree
differs from the usual graph-theoretic definition; it is similar to the notion of a rooted
tree used in the study of branch groups. The definitions given here are restricted to
the collection of finite sequences of natural numbers; see [7, 2.A] for a general
account.

Denote the collection of finite sequences of natural numbers by N
<N. For

sequences s WD .s0; : : : ; sn/ 2 N
<N and r WD .r0; : : : ; rm/ 2 N

<N, we write s v r
if s is an initial segment of r. That is to say, n � m and si D ri for 0 � i � n.
The empty sequence, denoted by ;, is considered to be an element of N<N and is an
initial segment of any t 2 N

<N. We define the concatenation of s with r to be

sar WD .s0; : : : ; sn; r0; : : : ; rm/:

For t D .t0; : : : ; tk/ 2 N
<N, the length of t, denoted by jtj, is the number of

coordinates; i.e. jtj WD k C 1. If jtj D 1, we write t as a natural number, as opposed
to a sequence of length one. For 0 � i � jtj � 1, we define t.i/ WD ti. For an infinite
sequence ˛ 2 N

N, we set ˛ �nWD .˛.0/; : : : ; ˛.n � 1//, so ˛ �n2 N
<N for any

n � 0.

Definition 2 A set T � N
<N is a tree if it is closed under taking initial segments.

We call the elements of T the nodes of T. If s 2 T and there is no n 2 N such that
san 2 T, we say s is a leaf or terminal node of T. An infinite branch of T is a
sequence ˛ 2 N

N such that ˛ �n2 T for all n. If T has no infinite branches, we say
that T is well-founded.

For T a well-founded tree, there is an ordinal valued rank, denoted by �T , on the
nodes of T defined inductively as follows: If s 2 T is terminal, �T .s/ WD 0. For a
non-terminal node s,

�T.s/ WD sup f�T.r/C 1 j s @ r 2 Tg :

The reader is encouraged to verify that this function is defined on all nodes of a
well-founded tree. The rank of a well-founded tree T is defined to be

�.T/ WD supf�T.s/C 1 j s 2 Tg:

When T is the empty tree, �.T/ D 0, and for all other well-founded trees, it is easy
to verify that �.T/ D �T.;/C 1. We thus see that �.T/ is always either a successor
ordinal or zero. We extend � to ill-founded trees by declaring �.T/ D !1 for T an
ill-founded tree.

There is an important, well-known relationship between the rank �T on the nodes
of T and the rank � on well-founded trees; we give a proof for completeness. For T a
tree and s 2 T, we put Ts WD fr 2 N

<N j sar 2 Tg. The set Ts is the tree obtained by
taking the elements in T that extend s and deleting the initial segment s from each.
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Lemma 1 Suppose that T � N
<N is a well-founded tree and s 2 T. Then

(1) �T.s/C 1 D �.Ts/ and
(2) �.T/ D supf�.Ti/ j i 2 Tg C 1.

Proof Fixing s 2 T, we first argue by induction on �Ts.r/ that �Ts.r/ D �T .sar/.
For the base case, �Ts.r/ D 0, the node r is terminal in Ts. The node sar is thus
terminal in T, hence �T.sar/ D 0.

Suppose that the inductive claim holds for all r 2 Ts with �Ts.r/ < ˇ and say
that �Ts.r/ D ˇ. We now deduce that

�Ts.r/ D supf�Ts.t/C 1 j r @ t 2 Tsg
D supf�T.sat/C 1 j sar @ sat 2 Tg
D supf�T.t/C 1 j sar @ t 2 Tg
D �T.sar/

where the second equality follows from the inductive hypothesis. Our induction is
complete.

Taking r D ;, we deduce that �Ts.;/ D �T .s/. Therefore, �.Ts/ D �Ts.;/C 1 D
�T.s/C 1, which verifies .1/. Claim .2/ follows from .1/.

3 Elementary Groups and Well-Founded Trees

Classes defined by axioms, such as E, are often studied via induction on the class
formation axioms. In the case of E, this approach has the unfortunate side-effect
of cumbersome and technical proofs. We thus begin by characterizing E in terms
of well-founded descriptive-set-theoretic trees. This gives an elegant and natural
approach to the class of elementary groups.

To motivate our characterization, consider a game in which a friend builds a
t.d.l.c.s.c. group and asks you to determine if it is or is not elementary. Since
your friend built the group, there must be some way in which the group can be
disassembled. You could thus, in principle, devise a general strategy to disassemble
the group which halts exactly when the group is elementary.

Our characterization will be exactly such a strategy. Our decomposition strategy
will alternate between eliminating discrete quotients and passing to compactly
generated open subgroups. These operations will “undo” the closure properties .iv/
and .v/. A priori, there are other elementary operations that must also be “undone.”
It will turn out that it is indeed enough to only consider .iv/ and .v/. (This is
unsurprising in view of [10].)
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3.1 Decomposition Trees

Eliminating discrete quotients is accomplished by taking the discrete residual.

Definition 3 For a t.d.l.c. group H, the discrete residual of H is

Res.H/ WD
\

fO j O Eo Hg:

The discrete residual is a closed characteristic subgroup of H. The quotient
H=Res.H/ also has a special structure. A t.d.l.c. SIN group is a t.d.l.c. group which
admits a basis at 1 of compact open normal subgroups; note that t.d.l.c. SIN groups
are elementary.

Proposition 1 ([3, Corollary 4.1]) For G a compactly generated t.d.l.c. group, the
quotient G=Res.G/ is a SIN group.

To reduce to compactly generated open subgroups, we define a second operation.
Let G be a t.d.l.c.s.c. group and U 2 U.G/. Fix � a choice of a countable dense
subset of every closed subgroup of G; we call � a choice function for G. Formally,
� is a map that sends a closed subgroup H � G to a countable dense subset fhigi2N
of H; the axiom of choice ensures such a � exists. If L is a closed subgroup of
G, then the restriction of � to closed subgroups of L obviously induces a choice
function for L. We will abuse notation and say that � is a choice function for L.

For H � G closed and n 2 N, we now define

R.U;�/n .H/ WD hU \ H; h0; : : : ; hni

where the h0; : : : ; hn are the first n C 1 elements of the countable dense set of H
picked out by � . For each n 2 N, the subgroup R.U;�/n .H/ is a compactly generated
open subgroup of H. Furthermore, R.U;�/n .H/ � R.U;�/nC1 .H/ for all n, and

H D
[

i2N
R.U;�/i .H/:

The subgroups R.U;�/n .H/ thus give a canonical increasing exhaustion of H by
compactly generated open subgroups.

We now define a tree T.U;�/.G/ and associated closed subgroupsGs of G for each
s 2 T.U;�/.G/. Put

• ; 2 T.U;�/.G/ and G; WD G.
• Suppose we have defined s 2 T.U;�/.G/ and Gs � G. If Gs ¤ f1g and n 2 N,

then put san 2 T.U;�/.G/ and set

Gsan WD Res
�
R.U;�/n .Gs/

�
:
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Definition 4 For G a t.d.l.c.s.c. group, U 2 U.G/, and � a choice function for G,
we call T.U;�/.G/ the decomposition tree of G with respect to U and � .

The decomposition tree is always non-empty, and the subgroup associated to any
terminal node is the trivial group. We make one further observation; the proof is
straightforward and therefore left to the reader. Recall that Ts is the tree below the
node s in the tree T; precisely, Ts D fr 2 N

<N j sar 2 Tg. For a decomposition tree
T.U;�/.G/, we shall write T.U;�/.G/s, instead of the more precise .T.U;�/.G//s, for the
tree below s.

Observation 1 For any s 2 T.U;�/.G/, T.U;�/.G/s D T.Gs\U;�/.Gs/. Further, for
r 2 T.Gs\U;�/.Gs/, the associated subgroup .Gs/r is the same as the subgroup Gsar

associated to sar 2 T.U;�/.G/.

Remark 3 By classical results in descriptive set theory, the choice function � can
indeed be constructed in a Borel manner using selector functions; see [7, (12.13)].
The advantage of using selector functions to produce � is that the assignment
G 7! T.U;�/.G/ is Borel, when considered as a function between suitable parameter
spaces. This allows for further descriptive-set-theoretic analysis of the class of
elementary groups. See [16] for an example of such an analysis in the space of
marked groups.

The decomposition tree plainly depends on the choices of compact open sub-
group U and choice function � , so there is no hope the decomposition tree outright
is an invariant of the group. However, a decomposition tree comes with an ordinal
rank, and this rank is a group invariant. That is to say, the rank of a decomposition
tree does not depend on the choices of compact open subgroup and choice function.

Proposition 2 Suppose that G is a t.d.l.c.s.c. group, U 2 U.G/, and � is a choice
function for G. Suppose additionally that H is a t.d.l.c.s.c. group, W 2 U.H/, and ı
is a choice function for H. If  W H ! G is a continuous, injective homomorphism,
then

�.T.W;ı/.H// � �.T.U;�/.G//:

Proof We induct on �.T.U;�/.G// simultaneously for all G, U 2 U.G/, and � a
choice function for G. The base case is obvious since �.T.U;�/.G// D 1 implies
G D f1g. We may also ignore the case of �.T.U;�/.G// D !1, since the proposition
obviously holds here.

Suppose �.T.U;�/.G// D ˇ C 1. For each i, the subgroup R.W;ı/i .H/ is compactly

generated, so there is n.i/ with  
�
R.W;ı/i .H/

�
� R.U;�/n.i/ .G/. We thus have that

 .Hi/ D  
�
Res

�
R.W;ı/i .H/

��
� Res

�
R.U;�/n.i/ .G/

�
D Gn.i/:

The map  thereby restricts to  W Hi ! Gn.i/. Lemma 1 and Observation 1 imply

�
�
T.Gn.i/\U;�/.Gn.i//

� D �
�
T.U;�/.G/n.i/

� � ˇ:
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Applying the inductive hypothesis, we deduce that

�
�
T.Hi\W;ı/.Hi/

� � �
�
T.Gn.i/\U;�/.Gn.i//

�
:

Therefore,

�.T.W;ı/.H// D supi2N �
�
T.Hi\W;ı/.Hi/

� C 1

� supi2N �
�
T.Gn.i/\U;�/.Gn.i//

� C 1

� �.T.U;�/.G//;

so �.T.W;ı/.H// � ˇ C 1. This finishes the induction, and we conclude the
proposition.
Proposition 2 ensures that the rank of a decomposition tree is indeed a group-
theoretic property.

Corollary 1 For G a t.d.l.c.s.c. group, U;W 2 U.G/, and � and ı choice functions
for G, �.T.U;�/.G// D �.T.W;ı/.G//. In particular, T.U;�/.G/ is well-founded for
some U and � if and only if T.U;�/.G/ is well-founded for all U and � .

In view of Corollary 1, we make a definition.

Definition 5 For a t.d.l.c.s.c. group G, the decomposition rank of G is

�.G/ WD �.T.U;�/.G//

for some (any) U 2 U.G/ and � a choice function for G.
Decomposition trees are a strategy to disassemble t.d.l.c.s.c. groups. Requiring

the resulting decomposition tree to be well-founded is the obvious halting condition
for this decomposition strategy. With this in mind, we define the following class:

Definition 6 The class WF is defined to be the class of t.d.l.c.s.c. groups G with
�.G/ < !1. Equivalently, WF is the collection of t.d.l.c.s.c. groups with some
(equivalently every) decomposition tree well-founded.

Our goal is to show that indeedWF D E, verifying that well-founded decomposi-
tion trees exactly isolate the elementary groups; the notation “WF” will be discarded
after establishing WF D E. We shall argue for E � WF by verifying that WF
satisfies the same closure properties; the next section will make these verifications.
The converse inclusion will be an easy induction argument.

3.2 The Class WF

Our analysis of the class WF is via induction on the decomposition rank, so we
first establish a computation technique for the rank. This technique allows us to
avoid discussing decomposition trees. To establish this technique, let us first recast
Proposition 2; our restatement also gives a first closure property of WF.
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Proposition 3 Suppose that G and H are t.d.l.c.s.c. groups. If  W H ! G is a
continuous, injective homomorphism, then �.H/ � �.G/. In particular, if H � G,
then �.H/ � �.G/, so WF is closed under taking closed subgroups.

Proposition 4 Suppose G 2 WF is non-trivial.

(1) If G D S
i2N Oi with .Oi/i2N an �-increasing sequence of compactly generated

open subgroups of G, then �.G/ D supi2N �.Res.Oi//C 1.
(2) If G is compactly generated, then �.G/ D �.Res.G//C 1.

Proof For .1/, fix U 2 U.G/ and a choice function � for G. For each i, there is n.i/
such that Oi � R.U;�/n.i/ .G/, since Oi is compactly generated. Therefore,

Res.Oi/ � Res
�
R.U;�/n.i/ .G/

�
D Gn.i/;

and Proposition 2 implies �.Res.Oi// � �.Gn.i//. We conclude that

sup
i2N

�.Res.Oi//C 1 � sup
j2N

�.Gj/C 1 D �.G/:

On the other hand, .Oi/i2N is an exhaustion of G by open subgroups, so for each
j, there is n. j/ with R.U;�/j .G/ � On. j/. Therefore, Gj � Res.On. j//, and applying
Proposition 2 again,

�.G/ D sup
j2N

�.Gj/C 1 � sup
i2N

�.Res.Oi//C 1:

Hence, �.G/ D supi2N �.Res.Oi//C 1, as required.
Claim .2/ now follows immediately from .1/ by taking the sequence .Oi/i2N with

Oi D G for all i.
We now begin in earnest to verify that WF satisfies the same closure properties

as E. A t.d.l.c. group G is residually discrete if Res.G/ D f1g. From the definition
of a decomposition tree, we see that any decomposition tree for such a group has
rank at most 2. We thus deduce the following proposition:

Proposition 5 All residually discrete groups are elements of WF. In particular, all
second countable profinite groups and countable discrete groups are elements of
WF.

We next consider countable unions; we prove a slightly more general result for
later use.

Proposition 6 Suppose G is a t.d.l.c.s.c. group and .Oi/i2N is an �-increasing
exhaustion of G by compactly generated open subgroups. If �.Res.Oi// < !1 for all
i, then G 2 WF. In particular,WF is closed taking countable increasing unions.

Proof Fix U 2 U.G/ and � a choice function for G. Via Observation 1, the tree
T.U;�/.G/ is well-founded exactly when T.Gj\U;�/.Gj/ is well-founded for all j 2 N.
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For each j 2 N, there is i 2 N such that R.U;�/j .G/ � Oi, since R
.U;�/
j .G/ is compactly

generated. We deduce that Gj � Res.Oi/. Proposition 3 now ensures that �.Gj/ <

!1, and thus, T.Gj\U;�/.Gj/ is well-founded. We conclude that G 2 WF.
We now turn our attention to quotients and group extensions. Our arguments

here require several preliminary results. The first observation is immediate from the
relevant definitions.

Observation 2 If G is a t.d.l.c. SIN group and L E G, then G=L is a t.d.l.c. SIN
group.
Let us also note an easy fact about the discrete residual.

Lemma 2 If G is a compactly generated t.d.l.c.s.c. group and L E G, then
Res.G=L/ D Res.G/L=L.

Proof Let � W G ! G=L be the usual projection map. For every open normal
O E G=L, the subgroup��1.O/ is an open normal subgroup ofO. Hence, Res.G/ �
��1.Res.G=L//, and we deduce that Res.G/L=L � Res.G=L/.

Conversely, the group .G=L/=.Res.G/L=L/ is a quotient of the SIN group
G=Res.G/. Observation 2 ensures .G=L/=.Res.G/L=L/ is a SIN group and therefore
residually discrete. We conclude that Res.G=L/ � Res.G/L=L, verifying the
proposition.
A non-trivial permanence property of t.d.l.c. SIN groups will be needed. The
argument requires the following easy application of the Baire category theorem,
which we leave as an exercise: Every element of a discrete normal subgroup of a
t.d.l.c.s.c. group has an open centralizer.

Lemma 3 If G is a compactly generated t.d.l.c. group and N Ecc G is a SIN group,
then G is a SIN group.

Proof Fix U 2 U.G/ and form the subgroup UN. Since N is a SIN group, we may
find W 2 U.N/ with W � U and W E N. The normal closure J WD hhWii of W in
UN is generated by U-conjugates of W, and thus J � U. Since N is cocompact in
G, UN has finite index in G, so NG.J/ has finite index in G. Letting g1; : : : ; gn list
left coset representatives for NG.J/ in G, we see that

\

g2G
gJg�1 D

n\

iD1
giJg

�1
i :

Defining K WD T
g2G gJg�1, it follows that K 2 U.N/ and that K E G.

Passing to G=K, the image �.N/ is normal and discrete in G=K where � W
G ! G=K is the usual projection. The subgroup N is compactly generated, since
cocompact in a compactly generated group, hence the subgroup �.N/ is finitely
generated. Moreover, since each generator of �.N/ has an open centralizer, �.N/
has an open centralizer. Say thatQ �o �.U/ centralizes�.N/. Clearly,Q E Q�.N/,
and using that �.N/ is cocompact in G=K, we additionally see thatQ�.N/ has finite
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index in G=K. Just as in the previous paragraph, there is L �o Q with L E G=K. It
now follows that ��1.L/ is an open normal subgroup of G contained in U.

We conclude that inside every compact open subgroup U of G, we may find a
compact open normal subgroup of G. That is to say, G is a SIN group.

Our final subsidiary result is important outside the immediate application,
because it allows one to go from a closed normal subgroup to an open subgroup
with the same rank.

Proposition 7 ([11, Lemma 2.9]) If G 2 WF with N Ecc G closed and non-trivial,
then �.G/ D �.N/.

Proof Fix .Oi/i2N a countable �-increasing exhaustion of G by compactly gener-
ated open subgroups of G and put Ni WD N \ Oi. Each Ni is open in N, and since
Ni Ecc Oi, it is also compactly generated. Proposition 3 ensures N 2 WF, and in
view of Proposition 4, we infer that

�.N/ D sup
i2N

�.Res.Ni//C 1:

We now consider the groupOi=Res.Ni/. The subgroupNi=Res.Ni/ is a SIN group
via Proposition 1, and it is cocompact in Oi=Res.Ni/. Lemma 3 thus implies that
Oi=Res.Ni/ is also a SIN group, hence Oi=Res.Ni/ is residually discrete. It now
follows that Res.Oi/ D Res.Ni/. Applying Proposition 4 again, we conclude that

�.G/ D sup
i2N

�.Res.Oi//C 1 D sup
i2N

�.Res.Ni//C 1 D �.N/;

verifying the lemma.
We are now prepared to show WF is closed under taking quotients; the proof is

an instructive illustration of the utility of Proposition 7.

Proposition 8 If G 2 WF and L E G is closed, then G=L 2 WF with �.G=L/ �
�.G/.

Proof FixU 2 U.G/ and fix .Oi/i2N an �-increasing exhaustion ofG by compactly
generated open subgroups such that U � O0.

We induct on �.G/ for the proposition. The case of �.G/ D 1 is obvious, and
it will be convenient to take �.G/ D 2 as the base case. Proposition 4 ensures that
Res.Oi/ D f1g for all i, and in view of Proposition 1, we deduce that each Oi is a
SIN group. Since the class of SIN groups is stable under taking Hausdorff quotients,
Oi=Oi \ L is also a SIN group for all i 2 N. On the other hand, G=L is the union of
the increasing sequence .OiL=L/i2N, and since OiL=L ' Oi=Oi \ L, each term of
the sequence is a SIN group. Proposition 5 now ensures each OiL=L is inWF, so we
conclude that G=L 2 WF via Proposition 6. From Proposition 4, we deduce further
that �.G=L/ � 2.

Let us now suppose that �.G/ D ˇC1with ˇ > 1. In view of Proposition 4, each
Ri WD Res.Oi/ has rank at most ˇ. Furthermore, it cannot be the case that Ri D f1g
for all i, since then G has rank two. Throwing out finitely many Oi if needed, we
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may assume each Ri is non-trivial. Each Ri is then a non-trivial cocompact normal
subgroup of URi, so Proposition 7 implies �.URi/ D �.Ri/. Applying the inductive
hypothesis, we infer that

URi=URi \ L ' URiL=L

has rank at most ˇ for each i. As RiL=L is a closed subgroup of URiL=L, we deduce
further that �.RiL=L/ � ˇ, via Proposition 3.

The quotient G=L is the increasing union of the compactly generated open
subgroupsWi WD OiL=L. Lemma 2 shows that Res.Wi/ D RiL=L, so our work above
implies �.Res.Wi// � ˇ. Applying Proposition 6, we deduce that G=L 2 WF, and
via Proposition 4, �.G=L/ � ˇ C 1, completing the induction.

We next showWF is closed under forming group extensions; our proof is inspired
by a similar argument in [10].

Proposition 9 ([12, Lemma 7.4]) Suppose

f1g ! N ! G ! Q ! f1g

is a short exact sequence of t.d.l.c.s.c. groups. If N and Q are members ofWF, then
G 2 WF with

�.G/ � �.N/C �.Q/:

In particular,WF is closed under group extensions.

Proof We induct on �.Q/ for the proposition. The base case, �.Q/ D 1, is obvious,
so we suppose �.Q/ D ˇ C 1.

Let � W G ! Q be the projection given in the short exact sequence, fix .Oi/i2N
an �-increasing exhaustion of G by compactly generated open subgroups, and put
Wi WD �.Oi/. The sequence .Wi/i2N is an exhaustion of Q by compactly generated
open subgroups. Fix i 2 N, form R WD Res.Oi/, and put M WD RN. The group
M=N is a closed subgroup of Res.Wi/, hence �.M=N/ � ˇ via Proposition 3. The
inductive hypothesis implies M 2 WF with �.M/ � �.N/ C ˇ, and since R � M,
a second application of Proposition 3 ensures that �.R/ � �.N/ C ˇ. In view of
Propositions 4 and 6, we conclude that G 2 WF with �.G/ � �.N/ C ˇ C 1,
verifying the inductive claim.

3.3 The Return of Elementary Groups

We now argue thatWF is exactly the class of elementary groups. Our argument will
have the added benefit of showing that some of the elementary operations used to
define E are redundant.
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Definition 7 The class E � is the smallest class of t.d.l.c.s.c. groups such that the
following hold:

(i) E � contains all second countable profinite groups and countable discrete
groups.

(ii) E � is closed under taking group extensions of second countable profinite or
countable discrete groups. That is, if G is a t.d.l.c.s.c. group and H E G is
a closed normal subgroup with H 2 E � and G=H profinite or discrete, then
G 2 E �.

(iii) If G is a t.d.l.c.s.c. group and G D S
i2N Oi where .Oi/i2N is an �-increasing

sequence of open subgroups of G with Oi 2 E � for each i, then G 2 E �.

Obviously E � is contained in E. It turns out this containment is indeed an equality.

Theorem 1 E D WF D E �.

Proof Since E � � E, it suffices to show the inclusions E � WF � E �. For the
first inclusion, since E is defined to be the smallest class such that certain closure
properties hold, it is enough to show that WF satisfies the same properties. That
WF contains the profinite groups and discrete groups is given by Proposition 5.
The class WF is closed under taking closed subgroups, Hausdorff quotients, and
countable increasing unions via Propositions 3, 8, and 6, respectively. Proposition 9
ensuresWF is closed under forming group extensions.

For the second inclusion, we argue by induction on �.G/. If �.G/ D 1, then
G D f1g is plainly in E �. Suppose H 2 E � for all H 2 WF with �.H/ � ˇ and
consider G 2 WF with �.G/ D ˇ C 1. Fix .Oi/i2N an �-increasing exhaustion
of G by compactly generated open subgroups. In view of Proposition 4, each Oi

is such that �.Res.Oi// � ˇ, so the inductive hypothesis implies Res.Oi/ 2 E �.
The quotient Oi=Res.Oi/ is a SIN group via Proposition 1. We may then fix W E
Oi=Res.Oi/ a compact open normal subgroup. Letting � W Oi ! Oi=Res.Oi/ be the
usual projection, Res.Oi/ is a cocompact normal subgroup of ��1.W/, and as E � is
closed under extensions of profinite groups, we deduce that ��1.W/ 2 E �. On the
other hand, the quotient Oi=�

�1.W/ is discrete. As E � is closed under extensions
of discrete groups, we can conclude that Oi 2 E �. It now follows that G 2 E �,
completing the induction.

As an immediate consequence, we obtain a simpler characterization of elemen-
tary groups.

Corollary 2 The class of elementary groups is the smallest class E of t.d.l.c.s.c.
groups such that the following hold:

(i) E contains all second countable profinite groups and countable discrete
groups.

(ii) E closed under taking group extensions of second countable profinite or
countable discrete groups; that is, if G is a t.d.l.c.s.c. group and H E G is
a closed normal subgroup with H 2 E and G=H profinite or discrete, then
G 2 E.
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(iii) If G is a t.d.l.c.s.c. group and G D S
i2N Oi where .Oi/i2N is an �-increasing

sequence of open subgroups of G with Oi 2 C for each i, then G 2 E.

We note a second consequence, which is quite useful in the study of elementary
groups.

Corollary 3 If G is a non-trivial compactly generated elementary group, then G
has a non-trivial discrete quotient.

Proof Via Theorem 1, G is a member of WF, and Proposition 4 implies �.G/ D
�.Res.G//C1. We conclude that Res.G/ Œ G, and thus, G has a non-trivial discrete
quotient.

4 Examples and Non-examples of Elementary Groups

We conclude with a discussion of examples and non-examples. In particular, we
will exhibit a family of examples with unboundedly large finite rank and compactly
generated examples with transfinite rank.

4.1 Non-examples

Our motivation to form the class of elementary groups is to make precise the class
of groups with weak interaction between topological and large-scale structure. The
groups which surely have strong interaction between topological and large-scale
structure are the compactly generated t.d.l.c.s.c. groups which are non-discrete and
simple. Our notion of an elementary group excludes these simple groups.

Proposition 10 If G is a compactly generated t.d.l.c.s.c. group that is non-discrete
and topologically simple, then G is not elementary.

Proof SinceG is topologically simple and non-discrete, it has no non-trivial discrete
quotients. In view of Corollary 3, that G is compactly generated ensures that it is
non-elementary.

We note that there are many compactly generated t.d.l.c.s.c. groups that are
topologically simple and non-discrete. For the n-regular tree Tn with n � 3, work
of Tits [14] shows that there is an index two closed subgroup of Aut.Tn/, denoted
by AutC.Tn/, that is topologically simple, compactly generated, and non-discrete.
The projective special linear groups PSLn.Qp/ where Qp is the p-adic numbers and
n � 2 are further examples; cf. [1, 6]. There are in fact continuum many compactly
generated t.d.l.c.s.c. groups that are topologically simple and non-discrete by work
of Smith [13].
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4.2 Finite Rank Examples

Our construction requires a couple of general notions. A group is called perfect if
it is generated by commutators; a commutator is an element of the form Œg; h� WD
ghg�1h�1 for group elements g and h. We also require the notion of a local direct
product.

Definition 8 Suppose that .Gi/i2N is a sequence of t.d.l.c. groups and suppose that
there is a distinguished compact open subgroup Ui � Gi for each i 2 N. The local
direct product of .Gi/i2N over .Ui/i2N is defined to be

(

f W N !
G

i2N
Gi j f .i/ 2 Gi, and f .i/ 2 Ui for all but finitely many i 2 N

)

with the group topology such that
Q

i2N Ui continuously embeds as an open
subgroup. We denote the local direct product by

L
i2N .Gi;Ui/.

The following property of local direct products is an easy consequence of the
definitions; we leave the proof to the reader.

Proposition 11 If .Gi/i2N is a sequence of elementary groups with Ui a distin-
guished compact open subgroup for each i, then

L
N
.Gi;Ui/ is an elementary group.

We are now ready to construct our groups. Let A5 be the alternating group on five
letters and let S be an infinite finitely generated perfect group. Form H WD SŒ5� Ì A5
where A5 Õ SŒ5� by shift and fix a transitive, free action of H on N.

Lemma 4 The normal subgroup of H generated by A5 equals H.

Proof Identify S with the copy of S in SŒ5� supported on 0 and take a 2 A5 so that
a.0/ ¤ 0. For g; h 2 S � SŒ5�, the element aga�1 has support disjoint from both g
and h, hence aga�1 commutes with both g and h. An easy calculation now shows
that Œh; Œg; a�� D Œh; g�. Since Œg; a� 2 hhA5ii, we deduce that Œh; Œg; a�� 2 hhA5ii. The
group hhA5ii thus contains all commutators of S, and since S is perfect, S � hhA5ii.
It now follows that hhA5ii D H.

Starting from the group H, we inductively define compactly generated elemen-
tary groups Ln with a distinguished Kn 2 U.Ln/ such that hhKnii D Ln. For the base
case, n D 1, define L1 WD H and K1 WD A5. The group L1 is compactly generated,
K1 is a compact open subgroup of L1, and hhK1ii D L1, via Lemma 4.

Suppose we have defined a compactly generated group Ln with a compact open
subgroup Kn such that hhKnii D Ln. Let .Lin/i2N and .Ki

n/i2N list countably many
copies of Ln and Kn and form the local direct product

L
i2N.Lin;Ki

n/. Taking the
previously fixed action of H on N, we have that H Õ

L
i2N.Lin;Ki

n/ by shift, so we
may form

LnC1 WD
M

i2N
.Lin;K

i
n/ Ì H:
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The group LnC1 is a t.d.l.c. group under the product topology, and KnC1 WD KN

n ÌA5
is a compact open subgroup. Letting X be a compact generating set for L0n and F be
a finite generating set for H in LnC1, one verifies that X � Q

i>0 K
i
n [ F is a compact

generating set for LnC1. It is easy to further verify that hhKnC1iiLnC1
D LnC1. This

completes our inductive construction.

Proposition 12 For each n � 1, Ln 2 E with �.Ln/ � n C 1.

Proof In view of Proposition 11, an easy induction argument verifies that Ln 2 E
for all n � 1. For the lower bound on the rank, we argue by induction on n. For
the base case, L1 D H is non-trivial and discrete. Since the trivial group has rank 1,
Proposition 4 implies that �.L1/ D 2.

Suppose the inductive hypothesis holds up to n and consider LnC1. We first
compute Res.LnC1/. Consider O Eo LnC1. Since KN

n is a compact open subgroup of
LnC1, the subgroupO must contain

KŒk;1�
n WD f f W N ! Kn j f .0/ D � � � D f .k/ D 1g

for some k 2 N. Since H acts transitively on N and O is normal, O indeed contains
KN

n . Recalling that hhKniiLn D Ln, we conclude that

M

i2N
.Lin;K

i
n/ D hhKN

n iiLnC1
� O:

It now follows that Res.LnC1/ D L
i2N.Lin;Ki

n/.
In view of Proposition 4, �.LnC1/ D �.Res.LnC1// C 1, because LnC1 is

compactly generated. The group Ln admits a continuous injection into Res.LnC1/,
so

�.Res.LnC1// � �.Ln/ � n C 1

via Proposition 3 and the inductive hypothesis. We conclude that �.LnC1/ � n C 2,
and the induction is complete.

It is indeed the case that �.Ln/ D n C 1 for all n � 1; one can devise a proof
of this using the computation of the rank of a quasi-product given in [11]. The set
fLn j n � 1g is thus a family of elementary groups with members of arbitrarily
large finite decomposition rank. From this family, we obtain a first example of an
elementary group with transfinite rank.

Corollary 4 The group G WD L
n�1.Ln;Kn/ is elementary with �.G/ � ! C 1.

Proof For each n � 1, there is a continuous injection Ln ,! G. Via Proposition 3,
nC 1 � �.G/ for all n � 1, so ! � �.G/. Since the decomposition rank is always a
successor ordinal, we conclude that ! C 1 � �.G/.

Remark 4 The examples above demonstrate a strategy for finding examples of
higher rank. Suppose that we haveH 2 E with rank ˛ and suppose that we construct



A Survey of Elementary Totally Disconnected Locally Compact Groups 609

a compactly generated G 2 E for which H ,! Res.G/. Applying Proposition 4, we
then have that �.G/ � ˛ C 1. The problem, of course, is finding the group G. We
stress that one should not expect general embedding theorems which produce such a
G. Indeed, there are groups in E which do not embed into any compactly generated
t.d.l.c.s.c. group; see [4].

4.3 Compactly Generated Elementary Groups with Transfinite
Rank

We here describe a technique which produces compactly generated elementary
groups with transfinite rank. We omit proofs as they are somewhat technical; the
full details of the construction will appear in a later article. The construction is
inspired by ideas from [2, 9, 13], and the reader familiar with [9] and the theory of
elementary groups can likely fill in the proofs.

Let T be the countable regular tree and fix ı an end of T. We orient the edges of
T such that all edges point toward the end ı. The resulting directed graph is denoted
byT, and we call ı the distinguished end ofT. Given a countable set X, a coloring
of T is a function c W ET ! X such that for each v 2 VT,

cv WD c �inn.v/W inn.v/ ! X

is a bijection. The set inn.v/ is the collection of directed edges with terminal vertex
v. We call the coloring ended if there is a monochromatic directed ray which is a
representative of the distinguished end ı; we shall always assume our colorings are
ended. The coloring allows us to define the local action of g 2 Aut.T/ at v 2 VT:

�.g; v/ WD cg.v/ ı g ı c�1
v 2 Sym.X/:

The local action allows us to isolate the groups we wish to consider. It shall be
convenient to make a definition: A t.d.l.c.s.c. permutation group is a pair .G;X/
where G is a t.d.l.c.s.c. group and X is a countable set on which G acts faithfully
with compact open point stabilizers. We stress that X is assumed to be infinite.

Definition 9 Suppose that .G;X/ is a t.d.l.c.s.c. permutation group with U 2 U.G/
and color the tree T by X. We define the group EX.G;U/ � Aut.T/ as follows:
EX.G;U/ is the set of g 2 Aut.T/ such that �.g; v/ 2 G for all v 2 VT and that
�.g; v/ 2 U for all but finitely many v 2 VT.

It is easy to verify that EX.G;U/ is an abstract group. With more care, one can
also identify a natural t.d.l.c.s.c. group topology on EX.G;U/. One first verifies
that the vertex stabilizer EX.U;U/.v/ is compact in the topology on Aut.T/. The
group Aut.T/ is given the topology of pointwise convergence; this topology is not
locally compact, since the tree is locally infinite. One then argues for the following
proposition:



610 P. Wesolek

Proposition 13 For .G;X/ a t.d.l.c.s.c. permutation group and U 2 U.G/, there
is a t.d.l.c.s.c. group topology on EX.G;U/ such that the inclusion EX.U;U/.v/ ,!
EX.G;U/ is continuous with a compact open image for any v 2 VT.

The resulting t.d.l.c.s.c. group EX.G;U/ yields the desired examples.

Theorem 2 Suppose that .G;X/ is a transitive t.d.l.c.s.c. permutation group. If G
is compactly generated and elementary, then EX.G;U/ is compactly generated and
elementary with

�.EX.G;U// � �.G/C ! C 2

for any non-trivial U 2 U.G/.
Take G any infinite finitely generated group with a non-trivial finite subgroup U

such that U has a trivial normal core in U. Letting X WD G=U and G Õ X by left
multiplication, the pair .G;X/ is a t.d.l.c.s.c. permutation group. Theorem 2 now
implies that EX.G;U/ is elementary with rank at least ! C 2. (It is indeed the case
that EX.G;U/ has rank exactly ! C 2.)

Applying Theorem 2 repeatedly allows us to build elementary groups with even
larger rank.

Corollary 5 For each 0 � n < !, there is a compactly generated elementary group
Ln with �.Ln/ � ! � n C 2.

Acknowledgements This survey originated from a mini-course given at the Mathematical
Research Institute MATRIX. The author thanks the institute for its hospitality. He also thanks
Colin Reid and Simon M. Smith for their many suggestions for improvements to these notes and
for reading an initial draft. The author is supported by ERC grant #278469.

References

1. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s property (T), New Mathematical Mono-
graphs, vol. 11. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/
CBO9780511542749

2. Brin, M.G.: Elementary amenable subgroups of R. Thompson’s group F. Int. J. Algebra
Comput. 15(4), 619–642 (2005). https://doi.org/10.1142/S0218196705002517

3. Caprace, P.E., Monod, N.: Decomposing locally compact groups into simple pieces. Math.
Proc. Camb. Philos. Soc. 150(1), 97–128 (2011). https://doi.org/10.1017/S0305004110000368

4. Caprace, P.E., Cornulier, Y.: On embeddings into compactly generated groups. Pac. J. Math.
269(2), 305–321 (2014). https://doi.org/10.2140/pjm.2014.269.305

5. Cesa, M., Le Maître, F.: Elementary totally disconnected locally compact groups, after
Wesolek (2015). https://webusers.imj-prg.fr/~francois.le-maitre/articles/surveyETDLC.pdf

6. Dieudonné, J.: La géométrie des groupes classiques. Springer, Berlin (1971). Troisième
édition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5

7. Kechris, A.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156.
Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4190-4

8. Kunen, K.: Set Theory: An Introduction to Independence Proofs. Studies in Logic and the
Foundations of Mathematics, vol. 102. North-Holland Publishing Co., Amsterdam (1980)

https://doi.org/10.1017/CBO9780511542749
https://doi.org/10.1017/CBO9780511542749
https://doi.org/10.1142/S0218196705002517
https://doi.org/10.1017/S0305004110000368
https://doi.org/10.2140/pjm.2014.269.305
https://webusers.imj-prg.fr/~francois.le-maitre/articles/surveyETDLC.pdf
https://doi.org/10.1007/978-1-4612-4190-4


A Survey of Elementary Totally Disconnected Locally Compact Groups 611

9. Le Boudec, A.: Groups acting on trees with almost prescribed local action. Comment. Math.
Helv. 91(2), 253–293 (2016). https://doi.org/10.4171/CMH/385

10. Osin, D.V.: Elementary classes of groups. Mat. Zametki 72(1), 84–93 (2002). https://doi.org/
10.1023/A:1019869105364

11. Reid, C.D., Wesolek, P.R.: Dense normal subgroups and chief factors in locally compact
groups. Proc. London Math. Soc. (2017). https://doi.org/10.1112/plms.12088

12. Reid, C.D., Wesolek, P.R.: Homomorphisms into totally disconnected, locally compact groups
with dense image (2015). http://arxiv.org/abs/1509.00156

13. Smith, S.M.: A product for permutation groups and topological groups. Duke Math. J. 166(15),
2965–2999 (2017)

14. Tits, J.: Sur le groupe des automorphismes d’un arbre. In: Essays on topology and related
topics (Mémoires dédiés à Georges de Rham), pp. 188–211. Springer, New York (1970)

15. Wesolek, P.: Elementary totally disconnected locally compact groups. Proc. Lond. Math. Soc.
(3) 110(6), 1387–1434 (2015). https://doi.org/10.1112/plms/pdv013

16. Wesolek, P., Williams, J.: Chain conditions, elementary amenable groups, and descriptive set
theory. Groups Geom. Dyn. (2015, accepted for publication). http://arxiv.org/abs/1410.0975

https://doi.org/10.4171/CMH/385
https://doi.org/10.1023/A:1019869105364
https://doi.org/10.1023/A:1019869105364
https://doi.org/10.1112/plms.12088
http://arxiv.org/abs/1509.00156
https://doi.org/10.1112/plms/pdv013
http://arxiv.org/abs/1410.0975

	A Survey of Elementary Totally Disconnected Locally CompactGroups
	1 Introduction
	2 Preliminaries
	2.1 Ordinals
	2.2 Descriptive-Set-Theoretic Trees

	3 Elementary Groups and Well-Founded Trees
	3.1 Decomposition Trees
	3.2 The Class WF
	3.3 The Return of Elementary Groups

	4 Examples and Non-examples of Elementary Groups
	4.1 Non-examples
	4.2 Finite Rank Examples
	4.3 Compactly Generated Elementary Groups with Transfinite Rank

	References


