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Preface

MATRIX is Australia’s first international and residential mathematical research
institute. It was established in 2015 and launched in 2016 as a joint partnership
between Monash University and the University of Melbourne, with seed funding
from the ARC Centre of Excellence for Mathematical and Statistical Frontiers.
The purpose of MATRIX is to facilitate new collaborations and mathematical
advances through intensive residential research programs, which are currently held
in Creswick, a small town nestled in the beautiful forests of the Macedon Ranges,
130 km west of Melbourne.

This book, 2016 MATRIX Annals, is a scientific record of the five programs held
at MATRIX in 2016:

• Higher Structures in Geometry and Physics
• Winter of Disconnectedness
• Approximation and Optimisation
• Refining C*-Algebraic Invariants for Dynamics Using KK-Theory
• Interactions Between Topological Recursion, Modularity, Quantum Invariants

and Low-Dimensional Topology

The MATRIX Scientific Committee selected these programs based on scientific
excellence and the participation rate of high-profile international participants. This
committee consists of Jan de Gier (Melbourne University, Chair), Ben Andrews
(Australian National University), Darren Crowdy (Imperial College London), Hans
De Sterck (Monash University), Alison Etheridge (University of Oxford), Gary
Froyland (University of New South Wales), Liza Levina (University of Michigan),
Kerrie Mengersen (Queensland University of Technology), Arun Ram (University
of Melbourne), Joshua Ross (University of Adelaide), Terence Tao (University of
California, Los Angeles), Ole Warnaar (University of Queensland), and David Wood
(Monash University).

The selected programs involved organisers from a variety of Australian uni-
versities, including Federation, Melbourne, Monash, Newcastle, RMIT, Sydney,
Swinburne, and Wollongong, along with international organisers and participants.
Each program lasted 1–4 weeks and included ample unstructured time to encourage
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vi Preface

collaborative research. Some of the longer programs had an embedded conference
or lecture series. All participants were encouraged to submit articles to the MATRIX
Annals.

The articles were grouped into refereed contributions and other contributions.
Refereed articles contain original results or reviews on a topic related to the
MATRIX program. The other contributions are typically lecture notes based on
talks or activities at MATRIX. A guest editor organised appropriate refereeing and
ensured the scientific quality of submitted articles arising from each program. The
editors (Jan de Gier, Cheryl E. Praeger, Terence Tao, and myself) finally evaluated
and approved the papers.

Many thanks to the authors and to the guest editors for their wonderful work.

MATRIX has hosted eight programs in 2017, with more to come in 2018; see
www.matrix-inst.org.au. Our goal is to facilitate collaboration between researchers
in universities and industry, and increase the international impact of Australian
research in the mathematical sciences.

David R. Wood
MATRIX Book Series Editor-in-Chief

www.matrix-inst.org.au


Higher Structures in Geometry and
Physics

6–17 June 2016

Organisers

Marcy Robertson (Melbourne)
Philip Hackney (Macquarie)

The inaugural program at MATRIX took place on June 6–17, 2016, and was
entitled “Higher Structures in Geometry and Physics”. It was both a pleasure and a
privilege to take part in this first ever program at MATRIX. The excellent working
conditions, cosy environment, friendly staff and energetic participants made this
time both memorable and productive.

The scientific component of our program was comprised of a workshop with
lecture series by several invited speakers, followed in the subsequent week by a
conference featuring talks on a range of related topics from speakers from around the
globe. The two events were separated by a long weekend which gave the participants
free time to discuss and collaborate. Within this volume is a collection of lecture
notes and articles reflecting quite faithfully the ideas in the air during these two
weeks.

Our title Higher Structures (not unlike the term down under) suggests a certain
fixed perspective. For the participants in our program, this perspective comes
from the twentieth-century examples of algebraic and categorical constructions
associated to topological spaces, possibly with geometric structures and possibly
taking motivation from physical examples. From this common frame of reference
stems a range of new and rapidly developing directions, activities such as this
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viii Higher Structures in Geometry and Physics

program at MATRIX play a vital role in weaving these threads into a collective
understanding. The excitement of working in this rapidly developing field was felt
during our time at MATRIX, and I hope it comes across in this volume as well.

I would like to thank all of the authors who took the time to contribute to this
volume. I would also like to thank the MATRIX staff and officials for hosting and
facilitating this event and giving us the opportunity to share our work with this
volume. Most importantly, I would like to thank the organizers of our program
Marcy and Philip for all of their hard work and for giving all of us participants
this unique opportunity.

Ben Ward
Guest Editor

Participants

Ramon Abud Alcala (Macquarie), Clark Barwick (Massachusetts Institute
of Technology), Alexander Campbell (Macquarie), David Carchedi (George
Mason), Gabriel C. Drummond-Cole (IBS Center for Geometry and Physics),
Daniela Egas Santander (Freie Universitat Berlin), Nora Ganter (Melbourne),
Christian Haesemeyer (Melbourne), Philip Hackney (Osnabrueck), Ralph Kauffman
(Purdue), Edoardo Lanari (Macquarie), Martin Markl (Czech Academy of
Sciences), Branko Nikolic (Macquarie), Simona Paoli (Leicester), Sophia Raynor
(Aberdeen), Emily Riehl (Johns Hopkins), David Roberts (Adelaide), Marcy
Robertson (Melbourne), Chris Rogers (Louisiana), Martina Rovelli (EPFL),
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Matthew Spong (Melbourne), Michelle Strumila (Melbourne), TriThang Tran
(Melbourne), Victor Turchin (Kansas State), Dominic Verity (Macquarie), Raymond
Vozzo (Adelaide), Ben Ward (Stony Brook), Mark Weber (Macquarie), Felix
Wierstra (Stockholm), Sinan Yalin (Copenhagen), Jun Yoshida (Tokyo), Dimitri
Zaganidis (EPFL)



Winter of Disconnectedness

27 June–8 July 2016

Organisers

Murray Elder (Newcastle)
Jacqui Ramagge (Sydney)
Colin Reid (Newcastle)
Anne Thomas (Sydney)
George Willis (Newcastle)

Our understanding of totally disconnected locally compact (t.d.l.c.) groups has
been growing rapidly in recent years. These groups are of interest for general
theoretical reasons, because half the task of describing the structure of general
locally compact groups falls into the totally disconnected case, and also for purposes
of specific applications, because of the significance that various classes of t.d.l.c.
groups have in geometry, number theory and algebra. The workshop held at
Creswick from 27 June to 8 July 2016 was the first part of a program in which
leading researchers presented the most recent advances by giving short courses and
individual lectures. Time was also set aside for collaboration between established
researchers and students. Both general techniques and results relating to particular
classes of t.d.l.c. groups were covered in the lectures.

Four courses of five lectures each were delivered at Creswick, as follows:

• Helge Glöckner (Paderborn): Endomorphisms of Lie groups over local fields
• George Willis (Newcastle): The scale, tidy subgroups and flat groups
• Anne Thomas (Sydney): Automorphism groups of combinatorial structures
• Phillip Wesolek (Binghamton): A survey of elementary totally disconnected

locally compact groups

A second workshop was held in Newcastle at the end of July 2016 with the same
structure.
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xii Winter of Disconnectedness

Notes from the four courses just listed and from the courses

• Adrien Le Boudec (Louvain Le Neuve): Groups of automorphisms and almost
automorphisms of trees: subgroups and dynamics

• Colin Reid (Newcastle): Normal subgroup structure of totally disconnected
locally compact groups

delivered at the Newcastle workshop are published here. Although the distinction
is not absolute, the notes by Reid, Wesolek and Willis cover general methods and
those by Glöckner, Le Boudec and Thomas treat specific classes of t.d.l.c. groups.
In several cases, they are based on notes taken by listeners at the workshops, and
we are grateful for their assistance. Moreover, the notes by Glöckner, which have
been refereed, are an expanded version of what was delivered in lectures and contain
calculations and proofs of some results that have not previously been published.

We believe that these notes give the 2016 overview of the state of knowledge
and of research directions on t.d.l.c. groups and hope that they will also serve to
introduce students and other researchers new to the field to this rapidly developing
subject.

Dave Robertson
Guest Editor

Participants
Benjamin Brawn (Newcastle), Timothy Bywaters (Sydney), Wee Chaimanowong
(Melbourne), Murray Elder (Newcastle), Helge Glöckner (Paderborn), John Harrison
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(Baylor), Waltraud Lederle (ETH Zurich), Rupert McCallum (Tübingen), Sidney
Morris (Federation), Uri Onn (ANU), C.R.E. Raja (Indian Statistical Institute,
Bangalore), Jacqui Ramagge (Sydney), Colin Reid (Newcastle), David Robertson
(Newcastle), Anurag Singh (Utah), Simon Smith (City University of New York),
George Willis (Newcastle), Thomas Taylor (Newcastle), Anne Thomas (Sydney),
Stephan Tornier (ETH Zurich), Tian Tsang (RMIT), Phillip Wesolek (Universite
Catholique de Louvain)



Approximation and Optimisation

10–16 July 2016

Organisers

Vera Roshchina (RMIT)
Nadezda Sukhorukova
(Swinburne)
Julien Ugon (Federation)
Aris Daniilidis (Chile)
Andrew Eberhard (RMIT)
Alex Kruger (Federation)
Zahra Roshanzamir
(Swinburne)

There are many open problems in the field of approximation theory where tools
from variational analysis and nonsmooth optimisation show promise. One of them is
the Chebyshev (also known as uniform) approximation problem. Chebyshev’s work
is generally considered seminal in approximation theory and remains influential to
this day in this field of mathematics. His work also has many significant implications
in optimisation, where uniform approximation of functions is considered an early
example of an optimisation problem where the objective function is not differen-
tiable. In fact, the problem of best polynomial approximation can be reformulated
as an optimisation problem which provides very nice textbook examples for convex
analysis.

The joint ancestry and connections between optimisation and approximation are
still very apparent today. Many problems in approximation can be reformulated as
optimisation problems. On the other hand, many optimisation methods require set
and/or function approximation to work efficiently.

These connections were explored in the 1950s, 1960s and 1970s. This was also
the period when the area of nonsmooth analysis emerged. Convex and nonsmooth
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xvi Approximation and Optimisation

analysis techniques can be applied to obtain theoretical results and algorithms
for solving approximation problems with nonsmooth objectives. These problems
include Chebyshev approximation: univariate (polynomial and fixed-knots polyno-
mial spline) approximation and multivariate polynomial approximation. In 1972,
P.-J. Laurent published his book, where he demonstrated interconnections between
approximation and optimisation. In particular, he showed that many difficult
(Chebyshev) approximation problems can be solved using optimisation techniques.

Despite this early work, historically the fields of optimisation and approxi-
mation have remained separate, each (re)developing their own methodology and
terminology. There is a clear pattern though: advances in optimisation result in
significant breakthroughs in approximation and, on the other hand, new approxi-
mation techniques and approaches advance the development of new optimisation
methods and improve the performance of existing ones. Therefore, the lift-off theme
of the program was multivariate and polynomial spline approximation from the
perspective of optimisation theory. We invited top researchers in approximation
theory, polynomial and semialgebraic optimisation and variational analysis to find
new ways to attack the existing open problems and to establish major new research
directions. A fresh look at approximation problems from the optimisation point of
view is vital, since it enables us to solve approximation problems that cannot be
solved without very advanced optimisation techniques (and vice versa) and discover
beautiful interconnections between approximation and optimisation.

The morning sessions of the program consisted of lectures:

• Approximation of set-valued functions (Nira Dyn, Tel Aviv University)
• Algebraic, convex analysis and semi-infinite programming approach to Cheby-

shev approximation (Julien Ugon, Federation University Australia, and Nadezda
Sukhorukova, Swinburne University of Technology)

• The sparse grid combination technique and optimisation (Markus Hegland,
Australian National University)

• Quasi-relative interior and optimisation (Constantin Zalinescu, Al. I. Cuza
University)

The afternoons were dedicated to smaller group discussions. The following discus-
sions were vital for the research papers submitted to this volume:

1. Compact convex sets with prescribed facial dimensions, by Vera Roshchina,
Tian Sang and David Yost

The rich soup of research ideas that was stirred up during the workshop helped
us with a breakthrough in a seemingly unrelated research direction. During the
workshop, David Yost came up with a neat inductive idea that finished the proof
of the dimensional sequence theorem that he and Vera Roshchina have been
working on for a while. Later during the workshop the fractal ideas introduced
by Markus Hegland motivated us to consider convex sets with fractal facial
structure. Even more surprisingly, we discovered that a beautiful example of such
a set can be obtained from the spherical gasket studied by Tian Sang in her prior
research on infinite Coxeter groups.
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2. Chebyshev multivariate polynomial approximation: alternance interpreta-
tion, by Nadezda Sukhorukova, Julien Ugon and David Yost

The notion of alternating sequence (alternance) is central for univariate
Chebyshev approximation problems. How can we extend this notion to the
case of multivariate approximation, where the sets are not totally ordered? In
one of the papers, namely, “Chebyshev multivariate polynomial approximation:
alternance interpretation” by Sukhorukova, Ugon and Yost, the authors work on
this issue and propose possible solutions, in particular a very elegant formulation
for necessary and sufficient optimality conditions for multivariate Chebyshev
approximation.

Julien Ugon and Nadezda Sukhorukova
Guest Editors

Participants

Alia Al nuaimat (Federation), Fusheng Bai (Chongqing Normal University), Yi
Chen (Federation), Jeffrey Christiansen (RMIT), Brian Dandurand (RMIT), Reinier
Diaz Millan (Federal Institute of Goias), Nira Dyn (Tel Aviv), Andrew Eberhard
(RMIT), Gabriele Eichfelder (Technische Universitat Ilmenau), Markus Hegland
(ANU), Alexander Kruger (Federation), Vivek Laha (Indian Institute of Technology,
Patna), Jeffrey Linderoth (Wisconsin- Madison), Prabhu Manyem (Nanchang Insti-
tute of Technology), Faricio Oliveira (RMIT), Zahra Roshan Zamir (Swinburne),
Vera Roshchina (RMIT), Tian Sang (RMIT), Jonathan Scanlan, Vinay Singh
(National Institute of Technology, Mizoram), Nadezda Sukhorukova (Swinburne),
Julien Ugon (Federation), Dean Webb (Federation), David Yost (Federation),
Constantin Zalinescu (University “Al. I. Cuza” Iasi), Jiapu Zhang (Federation)



Refining C*-Algebraic Invariants for
Dynamics Using KK-Theory

18–29 July 2016

Organisers

Magnus Goffeng
(Chalmers / Gothenburg)
Adam Rennie (Wollongong)
Aidan Sims (Wollongong)

This graduate school and workshop were motivated by intense recent interest and
progress in the non-commutative geometry of dynamical systems.

The progress has been of several sorts. The assignment of C�-algebras to
dynamical systems is not new but has become much more sophisticated in recent
years. The K-groups of such dynamical C�-algebras provide invariants of the
original dynamical system but are not always fine enough to capture the structural
features of greatest interest. In response to this, precise characterisations of the
relationships between more detailed K-theoretic invariants and equivalence classes
of dynamical systems have recently been sharpened significantly.

The extra ingredient whose potential applications to such problems we hoped to
highlight to attendees is recent progress in importing ideas from algebraic topology
to dynamical systems theory through the computability of the Kasparov product.
The Kasparov product is a far-reaching generalisation of index theory and provides
an abstract composition rule for morphisms in the KK-category of C�-algebras. The
KK-category extends and refines the correspondence category of C�-algebras; and
a correspondence can be regarded as a generalised dynamical system and is closely
related to the construction of dynamical C�-algebras.

xix



xx Refining C*-Algebraic Invariants for Dynamics Using KK-Theory

With this background in mind, we started the first week with three lecture series
during the mornings, with informal Q&A and research in the afternoons. The three
lecture courses were:

• Robin Deeley: Groupoids and C�-algebras
• Bram Mesland: Kasparov’s KK-theory
• Adam Rennie and Aidan Sims: Hilbert modules and Cuntz–Pimsner algebras

Groupoid C�-algebras and Cuntz–Pimsner algebras are two of the most flex-
ible and best developed frameworks for modelling dynamical systems using C�-
algebras. The basics of Kasparov’s KK-theory and the recent advances in the
computability of the product proved central to the progress seen during the
workshop.

The lecture series by Deeley, Mesland, Rennie, and Sims set the stage for the
second week, bringing attendees, particularly the significant student cohort, together
around a common language and a joint leitmotif. The talks ranged widely over the
core topics, their applications and neighbouring disciplines. The five papers which
follow give a good indication of the breadth of the conference.

Deeley offers refinements of Putnam’s homology theory for dynamical systems,
and Ruiz et al. provide strong invariants for a special class of dynamical systems.
Bourne (with Schulz-Baldes) provides an application of KK-theoretic techniques
to topological insulators. Goffeng and Mesland provide a detailed account of
novel aspects of the non-commutative geometry of the Cuntz algebras, while Arici
probes the non-commutative topology and geometry of quantum lens spaces using
techniques which are perfectly in tune with the theme of the workshop.

Adam Rennie
Guest Editor
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Participants

Zahra Afsar (Wollongong), Francesca Arici (Radboud University Nijmegen),
Chris Bourne (Erlangen-Nurnberg), Guo Chuan Thiang (Adelaide), Robin Deeley
(Hawaii), Anna Luise Duwenig (Victoria), James Fletcher (Wollongong), Iain
Forsyth (Leibniz University Hannover), Elizabeth Anne Gillaspy (Universitet
Manster), Magnus Goffeng (Chalmers Technology/Gothenburg), Peter Hochs
(Adelaide), Marcelo Laca (Victoria), Lachlan MacDonald (Wollongong), Michael
Mampusti (Wollongong), Bram Mesland (Leibniz University Hannover), Alexander
Mundey (Wollongong), Adam Rennie (Wollongong), Karen Rught Strung (Polish
Academy of Sciences), Efren Ruiz (Hawaii at Hilo), Thomas Scheckter (UNSW),
Aidan Sims (Wollongong), Hang Wang (Adelaide), Yasuo Watatani (Kyushu)



Interactions Between Topological
Recursion, Modularity, Quantum
Invariants and Low-Dimensional
Topology

28 November–23 December 2016

Organisers

Motohico Mulase (UC Davis)
Norman Do (Monash)
Neil Hoffman (Oklahoma State)
Craig Hodgson (Melbourne)
Paul Norbury (Melbourne)

This program contributed to the active international research effort under way at
present to connect structures in mathematical physics with those in low-dimensional
topology, buoyed by recent theoretical advances and a broad range of applications. It
brought together people in cognate areas with common interests, including algebraic
geometry, conformal field theory, knot theory, representation theory, quantum
invariants and combinatorics.

The program was motivated by recent generalisations of the technique of
topological recursion, as well as fundamental conjectures concerning invariants
in low dimensional topology. These include the AJ conjecture, the Jones slope
conjecture of Garoufalidis and the underlying topological significance of the 3D-
index. Algorithmic techniques to compute these and related invariants are also
featured in the program.

The program began with a week of short courses, comprising three lectures each,
on the following topics:

• Conformal field theory (Katrin Wendland, Freiburg)
• Hyperbolic knot theory (Jessica Purcell, Monash)
• Quantum invariants (Roland van der Veen, Leiden)
• Topological recursion (Norman Do, Monash)

xxiii
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The program for the middle week was largely informal and reserved for research
collaborations. The final week was dedicated to an international conference, which
gathered together leading experts in the areas of mathematical physics, topological
recursion, quantum invariants and low-dimensional topology to address recent
advances and explore new connections between these fields.

The program attracted a total of 51 attendees. During the conference, there were
33 talks, of which 23 were delivered by international visitors. Among these talks
were the following:

• Jørgen Andersen: Verlinde formula for Higgs bundles
• Feng Luo: Discrete uniformization for polyhedral surfaces and its convergence
• Rinat Kashaev: Pachner moves and Hopf algebras
• Scott Morrison: Modular data for Drinfeld doubles
• Hyam Rubinstein and Craig Hodgson: Counting genus two surfaces in 3-

manifolds
• Gaëtan Borot: Initial conditions for topological recursion
• Tudor Dimofte: Counting vortices in the 3D index
• George Shabat: Counting Belyi pairs over finite fields
• Leonid Chekhov: Abstract topological recursion and Givental decomposition
• Piotr Sułkowski: Knots and BPS/super-quantum curves

The articles in these proceedings represent different aspects of the program.
Kashaev’s contribution describes a topological quantum field theory in four dimen-
sions. Licata-Mathews and Spreer-Tillmann describe topological and geometric
results for 3-manifolds. Shabat describes first steps towards generalising Belyi maps
to finite fields. Roland van der Veen kindly contributed notes from his short course
on quantum invariants of knots.

Norman Do, Neil Hoffman, Paul Norbury
Guest Editors

Participants
Jørgen Andersen (Aarhus), Vladimir Bazhanov (ANU), Gaetan Borot (Max Planck),
Benjamin Burton (Queensland), Alex Casella (Sydney), Wee Chaimanowong (Mel-
bourne), Abhijit Champanerkar (CUNY), Anupam Chaudhuri (Monash), Leonid
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Chekhov (Steklov), Blake Dadd (Melbourne), Tudor Dimofte (California, Davis),
Norman Do (Monash), Petr Dunin-Barkovskiy (Moscow), Omar Foda (Melbourne),
Evgenii Fominykh, Sophie Ham, Robert Cyrus Haraway III (Sydney), Craig
Hodgson (Melbourne), Neil Hoffman (Oklahoma), Joshua Howie (Monash), Adele
Jackson (ANU), Max Jolley (Monash), Rinat Kashaev (Geneva), Seonhwa Kim
(IBS), Ilya Kofman (CUNY), Reinier Kramer (Amsterdam), Andrew James Kricker
(NTU), Priya Kshirsagar (UC Davis), Alice Kwon (CUNY), Tung Le (Monash),
Oliver Leigh (British Columbia), Danilo Lewanski (Amsterdam), Joan Eliza-
beth Licata (ANU), Beibei Liu (UC Davis), Feng Luo (Rutgers), Joseph Lynch
(Melbourne), Alessandro Malusa (Aarhus), Clément Maria (Queensland), Daniel
Mathews (Monash), Sergei Matveev (Chelyabinsk), Todor Milanov Kavli (IPMU),
Scott Morrison (ANU), Motohico Mulase (UC Davis), Paul Norbury (Melbourne),
Nicolas Orantin (EPFL), Erik William Pettersson (RMIT), Aleksandr Popolitov
(Amsterdam), Jessica Purcell (Monash), Robert Quigley-McBride, Hyam Rubin-
stein (Melbourne), Axel Saenz Rodriguez (Virginia), Sjabbo Schaveling, Henry
Segerman (Oklahoma), Georgy Shabat (Independent), Rafael Marian Siejakowski
(NTU Singapore), Ruifang Song (UC Davis), Piotr Sulkowski (Warsaw & Caltech),
Dominic James Tate (Sydney), Stephan Tillmann (Sydney), Roland van der Veen
(Leiden), Paul Wedrich (Imperial), Katrin Wendland (Friburg), Campbell Wheeler
(Melbourne), Adam Wood (Melbourne), Tianyu Yang (Melbourne)
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Homotopical Properties of the Simplicial
Maurer–Cartan Functor

Christopher L. Rogers

Abstract We consider the category whose objects are filtered, or complete, L1-
algebras and whose morphisms are1-morphisms which respect the filtrations. We
then discuss the homotopical properties of the Getzler–Hinich simplicial Maurer–
Cartan functor which associates to each filtered L1-algebra a Kan simplicial set,
or1-groupoid. In previous work with V. Dolgushev, we showed that this functor
sends weak equivalences of filtered L1-algebras to weak homotopy equivalences
of simplicial sets. Here we sketch a proof of the fact that this functor also sends
fibrations to Kan fibrations. To the best of our knowledge, only special cases of
this result have previously appeared in the literature. As an application, we show
how these facts concerning the simplicial Maurer–Cartan functor provide a simple
1-categorical formulation of the Homotopy Transfer Theorem.

1 Introduction

Over the last few years, there has been increasing interest in the homotopy theory
of filtered, or complete, L1-algebras1 and the role these objects play in deformation
theory [10, 12], rational homotopy theory [3, 4, 13], and the homotopy theory of
homotopy algebras [6, 8, 9]. One important tool used in these applications is the
simplicial Maurer–Cartan functor MC�.�/ which produces from any filtered L1-
algebra a Kan simplicial set, or 1-groupoid. This construction, first appearing
in the work of Hinich [12] and Getzler [10], can (roughly) be thought of as a
“non-abelian analog” of the Dold–Kan functor from chain complexes to simplicial

1Throughout this paper, all algebraic structures have underlying Z graded k-vector spaces with
char k D 0.
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vector spaces. In deformation theory, these1-groupoids give higher analogs of the
Deligne groupoid. In rational homotopy theory, this functor generalizes the Sullivan
realization functor, and has been used to study rational models of mapping spaces.

A convenient presentation of the homotopy theory of filtered L1-algebras has
yet to appear in the literature. But based on applications, there are good candidates
for what the weak equivalences and fibrations should be between such objects. One
would also hope that the simplicial Maurer–Cartan functor sends these morphisms to
weak homotopy equivalences and Kan fibrations, respectively. For various special
cases, which are recalled in Sect. 3, it is known that this is indeed true. In joint
work with Dolgushev [5], we showed that, in general, MC�.�/ maps any weak
equivalence of filtered L1-algebras to a weak equivalence of Kan complexes. This
can be thought of as the natural L1 generalization of the Goldman–Millson theorem
in deformation theory.

The purpose of this note is to sketch a proof of the analogous result for
fibrations (Theorem 2 in Sect. 3 below): The simplicial Maurer–Cartan functor
maps any fibration between any filtered L1-algebras to a fibration between their
corresponding Kan complexes. Our proof is not a simple generalization of the
special cases already found in the literature, nor does it follow directly from general
abstract homotopy theory. It requires some technical calculations involving Maurer–
Cartan elements, similar to those found in our previous work [5].

As an application, we show in Sect. 4 that “1-categorical” analogs of the
existence and uniqueness statements that comprise the Homotopy Transfer Theorem
[1, 2, 14, 15] follow as a corollary of our Theorem 2. In more detail, suppose we
are given a cochain complex A, a homotopy algebra B of some particular type (e.g.,
an A1, L1, or C1-algebra) and a quasi-isomorphism of complexes �WA ! B.
Then, using the simplicial Maurer–Cartan functor, we can naturally produce an
1-groupoid F whose objects correspond to solutions to the “homotopy transfer
problem”. By a solution, we mean a pair consisting of a homotopy algebra structure

on A, and a lift of � to a 1-quasi-isomorphism of homotopy algebras A
��! B.

The fact that MC�.�/ preserves both weak equivalences and fibrations allows us
to conclude that: (1) The 1-groupoid F is non-empty, and (2) it is contractible.
In other words, a homotopy equivalent transferred structure always exists, and this
structure is unique in the strongest possible sense.

2 Preliminaries

2.1 Filtered L1-Algebras

In order to match conventions in our previous work [5], we define an L1-algebra
to be a cochain complex .L; @/ for which the reduced cocommutative coalgebra
S.L/ is equipped with a degree 1 coderivation Q such that Q.x/ D @x for all x 2
L and Q2 D 0. This structure is equivalent to specifying a sequence of degree 1
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multi-brackets

f ; ; : : : ; gm W Sm.L/! L m � 2 (1)

satisfying compatibility conditions with the differential @ and higher-order Jacobi-
like identities. (See Eq. 2.5 in [5].) More precisely, if prLW S.L/ ! L denotes the
usual projection, then

fx1; x2; : : : ; xmgm D prLQ.x1x2 : : : xm/ ; 8xj 2 L :

This definition of L1-algebra is a “shifted version” of the original definition of L1-
algebra. A shifted L1-structure on L is equivalent to a traditional L1-structure on
sL, the suspension of L.

A morphism (or1-morphism) ˚ from an L1-algebra .L;Q/ to an L1-algebra
. QL; QQ/ is a dg coalgebra morphism

˚ W �S.L/;Q�! �
S. QL/; QQ�: (2)

Such a morphism ˚ is uniquely determined by its composition with the projection
to QL:

˚ 0 WD prQL˚:

Every such dg coalgebra morphism induces a map of cochain complexes, e.g., the
linear term of ˚ :

� WD prQL˚ jLW .L; @/! . QL; Q@/; (3)

and we say ˚ is strict iff it consists only of a linear term, i.e.

˚ 0.x/ D �.x/ ˚ 0.x1; : : : ; xm/ D 0 8m � 2 (4)

A morphism ˚ W .L;Q/ ! . QL; QQ/ of L1-algebras is an 1-quasi-isomorphism
iff �W .L; @/! . QL; Q@/ is a quasi-isomorphism of cochain complexes.

We say an L1-algebra .L;Q/ is a filtered L1-algebra iff the underlying cochain
complex .L; @/ is equipped with a complete descending filtration,

L D F1L � F2L � F3L � � � (5)

L D lim �
k

L=FkL ; (6)
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which is compatible with the brackets, i.e.

n
Fi1L;Fi2L; : : : ;FimL

o

m
�Fi1Ci2C���CimL 8 m > 1:

A filtered L1-algebra in our sense is a shifted analog of a “complete” L1-algebra,
in the sense of Berglund [3, Def. 5.1].

Remark 1 Due to its compatibility with the filtration, the L1-structure on L induces
a filtered L1-structure on the quotient L=FnL. In particular, L=FnL is a nilpotent
L1-algebra [3, Def. 2.1], [10, Def. 4.2]. Moreover, when the induced L1-structure
is restricted to the sub-cochain complex

Fn�1L=FnL � L=FnL

all brackets of arity � 2 vanish. Hence, the nilpotent L1-algebra Fn�1L=FnL is an
abelian L1-algebra.

Definition 1 We denote by cLie1 the category whose objects are filtered L1-
algebras and whose morphisms are 1-morphisms ˚ W .L;Q/ ! . QL; QQ/ which are
compatible with the filtrations:

˚ 0.Fi1L˝Fi2L˝ � � � ˝FimL/ �Fi1Ci2C���Cim
QL ; (7)

Definition 2 Let ˚ W .L;Q/! . QL; QQ/ be a morphism in cLie1.

1. We say ˚ is a weak equivalence iff its linear term �W .L; @/ ! . QL; Q@/ induces a
quasi-isomorphism of cochain complexes

�jFnLW .FnL; @/! .Fn QL; Q@/ 8n � 1:

2. We say ˚ is a fibration iff its linear term �W .L; @/! . QL; Q@/ induces a surjective
map of cochain complexes

�jFnLW .FnL; @/! .Fn QL; Q@/ 8n � 1:

3. We say˚ is an acyclic fibration iff˚ is both a weak equivalence and a fibration.

Remark 2 If .L;Q/ is a filtered L1-algebra, then for each n � 1, we have the
obvious short exact sequence of cochain complexes

0! Fn�1L=FnL
in�1��! L=FnL

pn�! L=Fn�1L! 0: (8)

It is easy to see that (8) lifts to a sequence of filtered L1-algebras, in which all
of the algebras in the sequence are nilpotent L1-algebras (see Remark 1), and in
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which all of the morphisms in the sequence are strict. In particular, the morphism

L=FnL
pn�! L=Fn�1L is a fibration.

2.2 Maurer–Cartan Elements

Our reference for this section is Section 2 of [6]. We refer the reader there for details.
Let L be a filtered L1-algebra. Since L D F1L, the compatibility of the multi-
brackets with the filtrations gives us well defined map of sets curvWL0 ! L1:

curv.˛/ D @˛ C
X

m�1

1

mŠ
f˛˝mgm: (9)

Elements of the set

MC.L/ WD f˛ 2 L0 j curv.˛/ D 0g

are called the Maurer–Cartan (MC) elements of L. Note that MC elements of L
are elements of degree 0. Furthermore, if˚ W .L;Q/! . QL; QQ/ is a morphism in cLie1
then the compatibility of ˚ with the filtrations allows us to define a map of sets

˚�WMC.L/! MC. QL/

˚�.˛/ WD
X

m�2

1

mŠ
˚ 0.˛˝m/:

(10)

The fact that curv.˚.˛// D 0 is proved in [6, Prop. 2.2].
Given an MC element ˛ 2 MC.L/, we can “twist” the L1-structure on L, to

obtain a new filtered L1-algebra L˛ . As a graded vector space with a filtration,
L˛ D L; the differential @˛ and the multi-brackets f ; : : : ; g˛m on L˛ are defined by
the formulas

@˛.v/ WD @.v/C
1X

kD1

1

kŠ
f˛; : : : ; ˛; vgkC1 ; (11)

fv1; v2; � � � ; vmg˛m WD
1X

kD0

1

kŠ
f˛; : : : ; ˛; v1; v2; � � � ; vmgkCm : (12)
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2.3 Getzler–Hinich Construction

The MC elements of .L;Q/ are in fact the vertices of a simplicial set. Let˝n denote
the de Rham-Sullivan algebra of polynomial differential forms on the geometric
simplex�n with coefficients in k. The simplicial set MC�.L/ is defined as

MCn.L/ WD MC.Lb̋˝n/ (13)

where Lb̋˝n is the filtered L1-algebra defined as the projective limit of nilpotent
L1-algebras

Lb̋˝n WD lim �
k

�
.L=FkL/˝˝n

�
:

Recall that the L1-structure on the tensor product of chain complexes .L=FkL/˝˝n

is induced by the structure on L=FkL, and is well-defined since˝n is a commutative
algebra. For example:

fNx1 ˝ !1; Nx2 ˝ !2; : : : ; Nxl ˝ !lg WD ˙fNx1; Nx2; : : : ; Nxlg ˝ !1!2 � � �!l:

Proposition 4.1 of [6] implies that the simplicial set MC�.L/ is a Kan complex,
or 1-groupoid, which is sometimes referred to as the “Deligne–Getzler–Hinich”
1-groupoid of L.

Any morphism ˚ WL ! QL in cLie1 induces a morphism ˚.n/WLb̋˝n ! QLb̋˝n

for each n � 0 in the obvious way:

˚.n/.x1 ˝ �1; x2 ˝ �2; : : : ; xm ˝ �m/ WD ˙˚.x1; x2; : : : ; xm/˝ �1�2 � � � �m: (14)

This then gives us a map of MC sets ˚.n/� WMC.Lb̋˝n/ ! MC. QLb̋˝n/ defined via
Eq. (10). It is easy to see that˚.n/ is compatible with the face and degeneracy maps,
which leads us to the simplicial Maurer–Cartan functor

MC�WcLie1 ! Kan

MC�
�
L

˚�! QL
�
WDMC�.L/

˚�
���!MC�. QL/

(15)

3 The FunctorMC�.�/ Preserves Weak Equivalences
and Fibrations

Our first observation concerning the simplicial Maurer–Cartan functor is that it

sends a weak equivalence ˚ WL ��! QL in cLie1 to a weak homotopy equivalence.
For the special case in which ˚ is a strict quasi-isomorphism between (shifted)
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dg Lie algebras, Hinich [12] showed that MC�.˚/ is a weak equivalence. If ˚
happens to be a strict quasi-isomorphism between nilpotent L1-algebras, then
Getzler [10] showed that MC�.˚/ is a weak equivalence. The result for the general
case of 1-quasi-isomorphisms between filtered L1-algebras was proved in our
previous work with V. Dolgushev.

Theorem 1 ([5, Thm. 1.1]) If˚ W .L;Q/ ��! . QL; QQ/ is a weak equivalence of filtered
L1-algebras, then

MC�.˚/WMC�.L/!MC�. QL/

is a homotopy equivalence of simplicial sets.
It is interesting that the most subtle part of the proof of the above theorem involves
establishing the bijection between �0.MC�.L// and �0.MC�. QL//.

The second noteworthy observation is that if ˚ WL � QL is a fibration then
MC�.˚/ is a Kan fibration. To the best of our knowledge, this result, at this level of
generality, is new.

Theorem 2 If ˚ W .L;Q/! . QL; QQ/ is a fibration of filtered L1-algebras, then

MC�.˚/WMC�.L/!MC�. QL/

is a fibration of simplicial sets.
Two special cases of Theorem 2 already exist in the literature. If ˚ happens to be a
strict fibration between nilpotent L1-algebras, then the result is again due to Getzler
[10, Prop. 4.7]. If ˚ is a strict fibration between profinite filtered L1-algebra, then
Yalin showed [16, Thm. 4.2(1)] that MC�.˚/ is a fibration.

The proof of Theorem 2 is technical and will appear in elsewhere in full detail.
We give a sketch here.

Suppose ˚ WL ! QL is a fibration. This induces a morphism between towers of
nilpotent L1-algebras

(16)
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which gives us a morphism between towers of Kan complexes:

(17)

The morphisms pn and Qpn are strict fibrations between nilpotent L1-algebras.
Hence, Prop. 4.7 of [10] implies that their images under MC�.�/ are fibrations
of simplicial sets. The inverse limit lim �W tow.sSet/ ! sSet of this morphism of

towers is MC�.˚/WMC�.L/ ! MC�. QL/. The functor lim � is right Quillen [11, Ch.
VI, Def. 1.7]. Hence, to show MC�.˚/ is a fibration, it is sufficient to show that the
morphism of towers (17) is a fibration. By definition, this means we must show, for
each n > 1, that the morphism induced by the universal property in the pullback
diagram:
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is a fibration of simplicial sets [11, Ch. VI, Def. 1.1]. So suppose we are given a
horn � W�m

k !MC�.L=FnL/ and commuting diagrams:

We need to produce an m-simplex ˛W�m ! MC�.L=FnL/ which fills the horn �

and satisfies ˚
.�/
� ˛ D Q̌ and p.�/n�˛ D ˇ. Since p.�/n� is a fibration, there exists an

m-simplex � lifting ˇ:

but there is no guarantee that ˚
.�/
� .�/ D Q̌. However, note that the m-simplex

� WD ˚.�/
� .�/ � Q̌ (18)

of the simplicial vector space QL=Fn QL˝˝� lies in the kernel of the linear map Qp.m/n .
We now observe that the fibration ˚ WL! QL induces a map between the short exact
sequences (8) of nilpotent L1-algebras:

(19)

It follows from the compatibility of ˚ with the filtrations, that Fn�1˚ above is
simply the linear term of the morphism ˚ restricted to the subspace Fn�1L=FnL.
Moreover, since ˚ is a fibration, Fn�1˚ is surjective. Hence, Fn�1˚ is a strict
fibration between abelian L1-algebras, and so Prop. 4.7 of [10] implies that the
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corresponding map in the diagram of simplicial sets below is a fibration:

(20)

A straightforward calculation shows that the vector � (18) is in fact a m-simplex of

MC�
�
Fn�1 QL=Fn QL

�
, whose restriction to the horn�m

k vanishes. Hence, there exists

a lift 	W�m !MC�
�
Fn�1L=FnL

�
of � through Fn�1˚

.�/
� .

One can then show via a series of technical lemmas that ˛ D 	 C � is a m-
simplex of MC�.L=FnL/ which fills the horn � and satisfies both ˚

.�/
� ˛ D Q̌ and

p.�/n�˛ D ˇ. Hence, the morphism of towers (17) is a fibration in tow.sSet/, and we
conclude that MC�.˚/WMC�.L/!MC�. QL/ is a fibration of simplicial sets.

4 Homotopy Transfer Theorem

For this section, we follow the conventions presented in Sections 1 and 2 of [8]. We
refer the reader there for further background on dg operads and homotopy algebras.
Let C be a dg cooperad with a co-augmentation NC that is equipped with a compatible
cocomplete ascending filtration:

0 D F0 NC � F1 NC � F2 NC �F3 NC � : : : (21)

Any co-augmented cooperad satisfying C.0/ D 0, C.1/ D k, for example, admits
such a filtration (by arity). Cobar.C/ algebra structures on a cochain complex .A; @A/
are in one-to-one correspondence with codifferentials Q on the cofree coalgebra

C.A/ D L
n�0
�
C.n/ ˝ A˝n

�

Sn
which satisfy QjA D @. Homotopy algebras

such as L1, A1, and C1 algebras are all examples of Cobar.C/ algebras of
this kind. A morphism (or more precisely “1-morphism”) FW .A;QA/ ! .B;QB/

between Cobar.C/ algebras is morphism between the corresponding dg coalgebras
FW �C.A/; @A C QA

� ! �
C.B/; @B C QB

�
. Such a morphism is an 1-quasi-

isomorphism iff its linear term prBFjAW .A; @A/ ! .B; @B/ is a quasi-isomorphism
of chain complexes.

Given a cochain complex .A; @A/, one can construct a dg Lie algebra
Conv. NC;EndA/ whose Maurer–Cartan elements are in one-to-one correspondence
with Cobar.C/ structures on .A; @A/. The underlying complex of Conv. NC;EndA/
can be identified with the complex of linear maps Hom. NC.A/;A/. The filtration (21)
induces a complete descending filtration on Conv. NC;EndA/ which is compatible
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with the dg Lie structure. Hence, the desuspension s�1 Conv. NC;EndA/ is a filtered
L1-algebra in our sense.

We now indulge in some minor pedantry by presenting the well-known Homo-
topy Transfer Theorem in the following way. Let .B;QB/ be a Cobar.C/-algebra,
.A; @/ a cochain complex, and �WA ! B a quasi-isomorphism of cochain
complexes. One asks whether the structure on B can be transferred through � to a
homotopy equivalent structure on A. A solution to the homotopy transfer problem
is a Cobar.C/-structureQA on A, and a1-quasi-isomorphismFW .A;QA/

��! .B;QB/

of Cobar.C/-algebras such that prBFjA D �.
Solutions to the homotopy transfer problem correspond to certain MC elements

of a filtered L1-algebra. The cochain complex

Cyl.C;A;B/ WD s�1 Hom. NC.A/;A/˚Hom.C.A/;B/˚ s�1 Hom. NC.B/;B/ (22)

can be equipped with a (shifted) L1-structure induced by: (1) the convolution Lie
brackets on Hom. NC.A/;A/ and Hom. NC.B/;B/, and (2) pre and post composition
of elements of Hom.C.A/;B/ with elements of Hom. NC.A/;A/ and Hom. NC.B/;B/,
respectively. (See Sec. 3.1 in [7] for the details.)

As shown in Sec. 3.2 of [7], the L1-structure on Cyl.C;A;B/ is such that its MC
elements are triples .QA;F;QB/, where QA and QB are Cobar.C/ structures on A and
B, respectively, and F is a 1-morphism between them. In particular, if �WA ! B
is a chain map, then ˛� D .0; �; 0/ is a MC element in Cyl.C;A;B/, where “0”
denotes the trivial Cobar.C/ structure.

We can therefore twist, as described in Sect. 2.2, by the MC element ˛� to obtain
a new L1-algebra Cyl.C;A;B/˛� . The graded subspace

Cyl.C;A;B/˛� WD s�1 Hom. NC.A/;A/ ˚ Hom. NC.A/;B/ ˚ s�1 Hom. NC.B/;B/
(23)

is equipped with a filtration induced by the filtration on C. Restricting the L1
structure on Cyl.C;A;B/˛� to Cyl.C;A;B/˛� makes the latter into a filtered L1-
algebra. The MC elements of Cyl.C;A;B/˛� are those MC elements .QA;F;QB/ of
Cyl.C;A;B/ such that prBFjA D �.

We have the following proposition. (See Prop. 3.2 in [7]).

Proposition 1 The canonical projection of cochain complexes

�BW s�1 Hom. NC.A/;A/ ˚ Hom. NC.A/;B/ ˚ s�1 Hom. NC.B/;B/! s�1 Hom. NC.B/;B/
(24)

lifts to a (strict) acyclic fibration of filtered L1-algebras:

�BWCyl.C;A;B/˛�
�� s�1 Conv. NC;EndB/
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We can now express the homotopy transfer theorem as a simple corollary:

Corollary 1 (Homotopy Transfer Theorem) Let .B;QB/ be a Cobar.C/-algebra,
.A; @/ a cochain complex, and �WA ! B a quasi-isomorphism of cochain
complexes. The solutions to the corresponding homotopy transfer problem are in
one-to-one correspondence with the objects of a sub1-groupoid

FQB �MC�
�

Cyl.C;A;B/˛�
�
:

Furthermore,

1. (existence) FQB is non-empty, and
2. (uniqueness) FQB is contractible.

Proof All statements follow from Theorems 1 and 2, which imply that

MC�.�B/WMC�
�

Cyl.C;A;B/˛�
� �� MC�

�
Conv. NC;EndB/

�
(25)

is an acyclic fibration of Kan complexes. Indeed, we define FQB as the fiber of

MC�.�B/ over the object QB 2 MC0

�
Conv. NC;EndB/

�
. Since MC�.�B/ is a

Kan fibration, FQB is a 1-groupoid. Objects of FQB are those MC elements of
Cyl.C;A;B/˛� which are of the form .QA;F;QB/, and hence are solutions to the
homotopy transfer problem.

Since MC�.�B/ is an acyclic fibration, it satisfies the right lifting property with
respect to the inclusion ; D @�0 � �0. Hence, MC�.�B/ is surjective on objects.
This proves statement (1). Statement (2) follows from the long exact sequence of
homotopy groups.

Let us conclude by mentioning the difference between the above formulation of
the Homotopy Transfer Theorem and the one given in Section 5 of our previous
work [8] with Dolgushev. There we only had Theorem 1 to use, and not Theorem 2.
Hence, we proved a slight variant of the transfer theorem [8, Thm. 5.1]. We defined
a solution to the homotopy transfer problem as a triple .QA;F; QQB/, where QA is a
Cobar.C/ algebra structure on A, QQB is a Cobar.C/ algebra structure on B homotopy
equivalent to the original structure QB, and FW .A;QA/ ! .B; QQB/ is a 1-quasi-
isomorphism whose linear term is �. We used the fact that MC�.�B/ is a weak
equivalence, and therefore gives a bijection

�0

�
MC�

�
Cyl.C;A;B/˛�

��
Š �0

�
MC�

�
Conv. NC;EndB/

��
;

to conclude that such a solution .QA;F; QQB/ exists. It is easy to see that objects of
the homotopy fiber of MC�.�B/ over the vertex QB are pairs consisting of a solution
.QA;F; QQB/ to this variant of the transfer problem, and an equivalence from QQB

to QB.
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Fibrations in 1-Category Theory

Clark Barwick and Jay Shah

Abstract In this short expository note, we discuss, with plenty of examples, the
bestiary of fibrations in quasicategory theory. We underscore the simplicity and
clarity of the constructions these fibrations make available to end-users of higher
category theory.

1 Introduction

The theory of1-categories—as formalized in the model of quasicategories—offers
two ways of specifying homotopy theories and functors between them.

First, we may describe a homotopy theory via a homotopy-coherent universal
property; this is a widely appreciated advantage, and it’s a feature that any
sufficiently well-developed model of 1-categories would have. For example, the
1-category Top of spaces is the free 1-category generated under (homotopy)
colimits by a single object [10, Th. 5.1.5.6].

The second way of specifying 1-categories seems to be less well-loved: this
is the ability to perform completely explicit constructions with excellent formal
properties. This allows one to avoid the intricate workarounds that many of us
beleaguered homotopy theorists have been forced to deploy in order solve infinite
hierarchies of homotopy coherence problems. This feature seems to be peculiar to
the model of quasicategories, and the main instrument that makes these explicit
constructions possible is the theory of fibrations of various sorts. In this étude,
we study eight sorts of fibrations of quasicategories in use today—left, right, Kan,
inner, iso (AKA categorical), cocartesian, cartesian, and flat—and we discuss the
beautifully explicit constructions they provide.

In the end, 1-category theory as practiced today combines these two assets,
and the result is a powerful amalgam of universal characterizations and crashingly
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explicit constructions. We will here focus on the underappreciated latter feature,
which provides incredibly concrete constructions to which we would not otherwise
have access. We have thus written this under the assumption that readers are more
or less familiar with the content of the first chapter of Lurie’s book [10].

2 Left, Right, and Kan Fibrations

The universal property of the1-categoryTop we offered above certainly character-
izes it up to a contractible choice, but it doesn’t provide any simple way to specify
a functor into Top.

At first blush, this looks like very bad news: after all, even if C is an ordinary
category, to specify a functor of1-categories FWC Top, one has to specify an
extraordinary amount of information: one has to give, for every object a 2 C, a
space F.a/; for every morphism f W a b, a map F. f /WF.a/ F.b/; for every
pair of composable morphisms f W a b and gW b c, a homotopy F.g f / '
F.g/F. f /; for every triple of composable morphisms, a homotopy of homotopies;
etc., ad infinitum.

However, ordinary category theory suggests a way out: Suppose FWC Set a
functor. One of the basic tricks of the trade in category theory is to build a category
TotF, sometimes called the category of elements of F. The objects of TotF are
pairs .a; x/, where a 2 C is an object and x 2 F.a/ is an element; a morphism
.a; x/ .b; y/ of TotF is a morphism f W a b such that F. f /.x/ D y.

The category TotF, along with the projection pWTotF C, is extremely useful
for studying the functor F. For example, the set of sections of p is a limit of F, and
the set �0.TotF/ of connected components is a colimit of F. In fact, the assignment
F TotF is an equivalence of categories between the category of functors
C Set and those functors X C such that for any morphism f W a b of
C and for any object x 2 X with p.x/ D a, there exists a unique morphism �W x y
with p.�/ D f . (These functors are sometimes called discrete opfibrations.) In other
words, functors C Set correspond to functors X C such that for any solid
arrow commutative square

there exists a unique dotted lift.
We may therefore hope that, instead of working with functors from C to Top, one

might work with suitable1-categories over C instead. To make this work, we need
to formulate the1-categorical version of this condition. To this end, we adopt the
same attitude that permits us to arrive at the definition of an1-category: instead of
demanding a single unique horn filler, we demand a whole hierarchy of horn fillers,
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none of which we require to be unique. The hierarchy ensures that the filler at any
stage is unique up to a homotopy that is unique up to a homotopy, etc., ad infinitum.

Definition 2.1 A left fibration is a map pWX S of simplicial sets such that for
any integer n � 1 and any 0 � k < n and any solid arrow commutative square

there exists a dotted lift.
Dually, a right fibration is a map pWX S of simplicial sets such that for any

integer n � 1 and any 0 < k � n and any solid arrow commutative square

there exists a dotted lift.
Of course, a Kan fibration is a map of simplicial sets that is both a left and a right

fibration.
To understand these notions, we should begin with some special cases.

Example 2.2 For any simplicial set X, the unique map X �0 is a left fibration if
and only if X is an1-groupoid (i.e., a Kan complex). Indeed, we see immediately
that X is an 1-category, so to conclude that X is an 1-groupoid, it suffices to
observe that the homotopy category hX is a groupoid; this follows readily from the
lifting condition for the horn inclusion�2

0 �2.
Since pullbacks of left fibrations are again left fibrations, we conclude immedi-

ately that the fibers of a left fibration are1-groupoids.

Example 2.3 ([10, Cor. 2.1.2.2]) IfC is an1-category and x 2 C0 is an object, then
recall that one can form the undercategory Cx= uniquely via the following functorial
bijection:

Mor.K;Cx=/ Š Mor.�0 ? K;C/ 	Mor.�0;C/ fxg:

The inclusion K �0 ? K induces a forgetful functor pWCx= C. The key fact
(due to Joyal) is that p is a left fibration; in particular, Cx= is an 1-category [10,
Cor. 2.1.2.2].

The fiber of p over a vertex y 2 C0 is the 1-groupoid whose n-simplices are
maps f W�nC1 C such that f .�f0g/ D x and f j�f1;:::;nC1g is the constant map at y.
In other words, it is HomL

C.x; y/ in the notation of [10, Rk. 1.2.2.5].
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Dually, we can define the overcategory C=x via

Mor.K;Cx=/ Š Mor.K ? �0;C/ 	Mor.�0;C/ fxg;

and the inclusion K K ? �0 induces a right fibration qWC=x C. The fiber of
q over a vertex y 2 C0 is then HomR

C.y; x/.

Subexample 2.3.1 In the introduction, we mentioned that Top is the 1-category
that is freely generated under colimits by a single object 
. This generator turns out
to be the terminal object in Top. Let us write Top� for the overcategory Top�=. The
forgetful functor Top� Top is a left fibration.

The fiber over a vertex X 2 Top0 is the 1-groupoid HomL
Top.
;X/, which we

will want to think of as a model for X itself.
Here is the theorem that is going to make that possible:

Theorem 2.4 (Joyal) Suppose C an1-category (or more generally, any simplicial
set). For any functor FWC Top, we may consider the left fibration

Top� 	Top;F C C:

This defines an equivalence of1-categories

Fun.C;Top/ � LFib.C/;

where LFib.C/ is the simplicial nerve of the full simplicial subcategory of sSet=C
spanned by the left fibrations.

Dually, for any functor GWC Topop, we may consider the right fibration

Topop� 	Topop;G C C:

This defines an equivalence of1-categories

Fun.Cop;Top/ � RFib.C/;

where RFib.C/ is the simplicial nerve of the full simplicial subcategory of sSet=C
spanned by the right fibrations.
A left fibration pWX C is said to be classified by FWC Top just in case it is
equivalent to the left fibration

Top� 	Top;F C C:

Dually, a right fibration qWY C is said to be classified by GWCop Top just in
case it is equivalent to the right fibration

Topop� 	Topop;G C C:
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The proofs of Joyal’s theorem1 are all relatively involved, and they involve
breaking this assertion up into several constituent parts. But rather than get
distracted by these details (beautiful though they be!), let us instead swim in the
waters of appreciation for this result as end-users.

Example 2.5 Even for C D �0, this theorem is nontrivial: it provides an equiv-
alence Top � Gpd1, where of course Gpd1 is the simplicial nerve of the full
simplicial subcategory of sSet spanned by the Kan complexes. In other words, this
result provides a concrete model for the1-category that was might have only been
known through its universal property.

But the deeper point here is that with the universal characterization of the
introduction, it’s completely unclear how to specify a functor from an1-categoryC
into Top. Even with the equivalence Top ' Gpd1, we would still have to specify
an infinite hierarchy of data to check this. However, with Joyal’s result in hand,
our task becomes to construct a left fibration X C. In practice, these are the
constructions which are tractable, because one trades the explicit specification of
coherence data for horn-filling conditions.

Example 2.6 One may use Joyal’s theorem to find that if pWX C is a left fibration
classified by a functor FWC Top, then the colimit of F is weakly homotopy
equivalent (i.e., equivalent in the Quillen model structure) to X, and the the limit of
F is weakly homotopy equivalent to the space MapC.C;X/ of sections of p.

Example 2.7 One attitude toward 1-categories is that they are meant to be
categories “weakly enriched” in spaces. Whatever this means, it should at least entail
corepresentable and representable functors

hxWC Top and hxWCop Top

for x 2 C0. But thanks to Joyal’s theorem, we already have these: the former is
given by the left fibration Cx= C, and the latter is given by the right fibration
C=x C.

This also provides a recognition principle: a left fibration X C corresponds
to a corepresentable functor if and only if X admits an initial object; in this case,
we call the left fibration itself corepresentable. Dually, a right fibration X C
corresponds to a representable functor if and only if X admits a terminal object; in
this case, we call the right fibration itself representable.

Example 2.8 In the same vein, we expect to have a functor

MapCWCop 	 C Top

1We know (with the referee’s help) five proofs: the original one due to Joyal, a modification thereof
due to Lurie [10], a simplification due to Dugger and Spivak [5], a more conceptual and self-
contained version due to Stevenson [14], and a recent simplification due to Heuts and Moerdijk
[7, 8].
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for any1-category C. From Joyal’s Theorem, our job becomes to construct a left
fibration .s; t/WeO.C/ Cop 	 C. It turns out that this isn’t so difficult: defineeO.C/
via the formula

eO.C/n WD Mor.�n;op ? �n;C/;

and s and t are induced by the inclusions �n;op �n;op ? �n and �n �n;op ?

�n, respectively.
So the claim is that .s; t/ is a left fibration. This isn’t a completely trivial matter,

but there is a proof in [12], and another, slightly simpler, proof in [2]. The key point
is to study the behavior of the left adjoint of the functoreO on certain “left anodyne”
monomorphisms.

These two examples illustrate nicely a general principle about working
“vertically”—i.e., with left and right fibrations—versus working “horizontally”—
i.e., with functors to Top. It is easy to write down a left or right fibration, but it may
not be easy to see that it is a left or right fibration. On the other hand, it is quite
difficult even to write down a suitable functor to Top. So working vertically rather
than horizontally relocates the difficulty in higher category theory from a struggle
to make good definitions to a struggle to prove good properties.

Example 2.9 Suppose C an 1-category. A Kan fibration to C is simultaneously
a left fibration and a right fibration. So a Kan fibration must correspond to a
both a covariant functor and a contravariant functor to Top, and one sees that the
“pushforward” maps must be homotopy inverse to the “pullback” maps. That is, the
following are equivalent for a map pWX C of simplicial sets:

• p is a Kan fibration;
• p is a left fibration, and the functor C Top that classifies it carries any

morphism of C to an equivalence;
• p is a right fibration, and the functor Cop Top that classifies it carries any

morphism of C to an equivalence.

From this point view, we see that when C is an 1-groupoid, Kan fibrations
X C are “essentially the same thing” as functors C Top, which are in turn
indistinguishable from functors Cop Top.

3 Inner Fibrations and Isofibrations

Inner fibrations are tricky to motivate from a 1-categorical standpoint, because the
nerve of any functor is automatically an inner fibration. We will discuss here a
reasonable way of thinking about inner fibrations, but we do not know a reference
for complete proofs, yet.
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Definition 3.1 An inner fibration is a map pWX S of simplicial sets such that
for any integer n � 2 and any 0 < k < n and any solid arrow commutative square

there exists a dotted lift.

Example 3.2 Of course a simplicial set X is an1-category just in case the canonical
map X �0 is an inner fibration. Consequently, any fiber of an inner fibration is
an1-category.

Example 3.3 If X is an1-category and D is an ordinary category, then it’s easy to
see that any map X ND is an inner fibration.

On the other hand, a map pWX S is an inner fibration if and only if, for any
n-simplex 
 2 Sn, the pullback

X 	S;
 �n �n

is an inner fibration. Consequently, we see that p is an inner fibration if and only if,
for any n-simplex 
 2 Sn, the pullback X 	S;
 �n is an1-category.

So in a strong sense, we’ll understand the “meaning” of inner fibrations one we
understand the “meaning” of functors from1-categories to �n.

Example 3.4 When n D 1, we have the following. For any 1-categories C0 and
C1, there is an equivalence of1-categories

fC0g 	Cat
1=�f0g

Cat1=�1 	Cat
1=�f1g

fC1g � Fun.Cop
0 	 C1;Top/:

A proof of this fact doesn’t seem to be contained in the literature yet, but we will
nevertheless take it as given; it would be a consequence of Proposition 5.1, which
we expect to be proven in a future work of P. Haine.

Now the1-category on the right of this equivalence can also be identified with
the1-category

FunL.P.C1/;P.C0//

of colimit-preserving functors between P.C1/ D Fun.Cop
1 ;Top/ and P.C0/ D

Fun.Cop
0 ;Top/. Such a colimit-preserving functor is sometimes called a profunctor.

Example 3.5 When n D 2, if C is an 1-category, and C �2 is a functor,
then we have three fibers C0, C1, and C2 and three colimit-preserving functors
FWP.C2/ P.C1/, GWP.C1/ P.C0/, and HWP.C2/ P.C0/. Furthermore,
there is natural transformation ˛WG ı F H.
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In the general case, a functor C �n amounts to the choice of1-categories
C0;C1; : : : ;Cn and a lax-commutative diagram of colimit-preserving functors
among the various1-categories P.Ci/.

What we would like to say now is that the1-category of inner fibrations X S
is equivalent to the 1-category of normal (i.e. identity-preserving) lax functors
from Sop to a suitable “double 1-category” of 1-categories and profunctors,
generalizing a classical result of Bénabou [15]. We do not know, however, how
to make such an assertion precise.

In any case, we could ask for more restrictive hypotheses. We could, for example,
ask for fibrations X S that are classified by functors from S to an 1-category
of profunctors (so that all the 2-morphisms that appear are equivalences); this is
covered by the notion of flatness, which will discuss in the section after next. More
restrictively, we can ask for fibrations X S that are classified by functors from
S to Cat1 itself; these are cocartesian fibrations, which we will discuss in the next
section.

For future reference, let’s specify an extremely well-behaved class of inner
fibrations.

Definition 3.6 Suppose C an1-category. Then an isofibration (AKA a categorical
fibration2) pWX C is an inner fibration such that for any object x 2 X0 and any
equivalence f W p.x/ b of C, there exists an equivalence �W x y of X such that
p.�/ D f .
We shall revisit this notion in greater detail in a moment, but for now, let us
simply comment that an isofibration X C is an inner fibration whose fibers vary
functorially in the equivalences of C.

For more general bases, this definition won’t do, of course, but we won’t have any
use for isofibrations whose targets are not 1-categories. The model-theoretically
inclined reader should note that isofibrations are exactly the fibrations with target
an 1-category for the Joyal model structure; consequently, any functor of 1-
categories can be replaced by an isofibration.

4 Cocartesian and Cartesian Fibrations

If FWC Cat is an (honest) diagram of ordinary categories, then one can
generalize the category of elements construction as follows: form the category X
whose objects are pairs .c; x/ consisting of an object c 2 C and an object x 2 F.c/,

2Emily Riehl makes the clearly compelling case that “isofibration” is preferable terminology,
because it actually suggests what kind of lifting property it will have, whereas the word
“categorical” is unhelpful in this regard. She also tells us that “isofibration” is a standard term in
1-category theory, and that the nerve of functor is an isofibration iff the functor is an isofibration.
We join her in her view that “isofibration” is better.
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in which a morphism . f ; �/W .d; y/ .c; x/ is a morphism f W d c of C and a
morphism

�WX. f /. y/ x

of F.c/. This is called the Grothendieck construction, and there is an obvious
forgetful functor pWX C.

One may now attempt to reverse-engineer the Grothendieck construction by
trying to extract the salient features of the forgetful functor p. What we may notice
is that for any morphism f W d c of C and any object y 2 F.d/ there is a special
morphism

˚ D . f ; �/W .d; y/ .c;X. f /. y//

of X in which

�WF. f /. y/ F. f /. y/

is simply the identity morphism. This morphism is initial among all the morphisms
� of X such that p.�/ D f ; that is, for any morphism � of X such that p.�/ D f ,
there exists a morphism I of X such that p.I/ D idc such that � D I ı ˚ .

We call morphisms of X that are initial in this sense p-cocartesian. Since a p-
cocartesian edge lying over a morphism d c is defined by a universal property, it
is uniquely specified up to a unique isomorphism lying over idc. The key condition
that we are looking for is then that for any morphism of C and any lift of its
source, there is a p-cocartesian morphism with that source lying over it. A functor
p satisfying this condition is called a Grothendieck opfibration.

Now for any Grothendieck opfibration pWX C, let us attempt to extract a
functor FWC Cat that gives rise to it in this way. We proceed in the following
manner. To any object a 2 C assign the fiber Xa of p over a. To any morphism
f W a b assign a functor F. f /WXa Xb that carries any object x 2 Xa to the
target F. f /.x/ 2 Xb of “the” q-cocartesian edge lying over f .

Right away, we have a problem: q-cocartesian edges are only unique up to
isomorphism. So these functors cannot be strictly compatible with composition;
rather, one will obtain natural isomorphisms

F.g ı f / ' F.g/ ı F. f /

that will satisfy a secondary layer of coherences that make F into a pseudofunctor.
Fortunately, one can rectify this pseudofunctor to an equivalent honest functor,
which in turn gives rise to p, up to equivalence.

As we have seen in our discussion of left and right fibrations, there are genuine
advantages in homotopy theory to working with fibrations instead of functors.
Consequently, we define a class of fibrations that is a natural generalization of the
class of Grothendieck opfibrations.
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Definition 4.1 If pWX S is an inner fibration of simplicial sets, then an edge
f W x y of X is p-cocartesian just in case, for each integer n � 2, any extension

and any solid arrow commutative diagram

a dotted lift exists. Equivalently, if S is an1-category, f is p-cocartesian if for any
object z 2 X the commutative square of mapping spaces

is a homotopy pullback square.
We say that p is a cocartesian fibration if, for any edge �W s t of S and for

every vertex x 2 X0 such that p.x/ D s, there exists a p-cocartesian edge f W x y
such that � D p. f /.

Cartesian edges and cartesian fibrations are defined dually, so that an edge of
X is p-cartesian just in case the corresponding edge of Xop is cocartesian for the
inner fibration popWXop Sop, and p is a cartesian fibration just in case pop is a
cocartesian fibration.

Example 4.2 ([10, Rk 2.4.2.2]) A functor pWD C between ordinary categories
is a Grothendieck opfibration if and only if the induced functor N.p/WND NC
on nerves is a cocartesian fibration.

Example 4.3 Any left fibration is a cocartesian fibration, and a cocartesian fibration
is a left fibration just in case its fibers are1-groupoids.

Dually, of course, the class of right fibrations coincides with the class of cartesian
fibrations whose fibers are1-groupoids.

Example 4.4 Suppose C an1-category and pWX C an inner fibration. Then for
any morphism � of X, the following are equivalent.

• � is an equivalence of X;
• � is p-cocartesian, and p.�/ is an equivalence of C;
• � is p-cartesian, and p.�/ is an equivalence of C.
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It follows readily that if p is a cocartesian or cartesian fibration, then it is an
isofibration.

Conversely, if C is an1-groupoid, then the following are equivalent.

• p is an isofibration;
• p is a cocartesian fibration;
• p is a cartesian fibration.

Example 4.5 ([10, Cor. 2.4.7.12]) For any 1-category C, we write O.C/ WD
Fun.�1;C/. Evaluation at 0 defines a cartesian fibration sWO.C/ C, and
evaluation at 1 defines a cocartesian fibration tWO.C/ C.

One can ask whether the functor sWO.C/ C is also a cocartesian fibration.
One may observe [10, Lm. 6.1.1.1] that an edge �1 O.C/ is s-cocartesian just
in case the corresponding diagram .�2

0/
B Š �1 	�1 C is a pushout square.

In the following, we will denote by Cat1 the simplicial nerve of the (fibrant)
simplicial category whose objects are 1-categories, in which Map.C;D/ is the
maximal 1-groupoid contained in Fun.C;D/. Similarly, for any 1-category C,
we will denote by Cocart.C/ (respectively, Cart.C/) the simplicial nerve of
the (fibrant) simplicial category whose objects are cocartesian (resp., cartesian)
fibrations X C, in which Map.X;Y/ is the1-groupoid whose n-simplices are
functors X 	�n Y over C that carry any edge . f ; �/ in which f is cocartesian
(resp. cartesian) to a cocartesian edge (resp., a cartesian edge).

Example 4.6 Consider the full subcategory RFibrep � O.Cat1/ spanned by the
representable right fibrations. The restriction of the functor tWO.Cat1/ Cat1
to RFibrep is again a cocartesian fibration.

Theorem 4.7 Suppose C an1-category. For any functor FWC Cat1, we may
consider the cocartesian fibration

RFibrep 	Cat
1

;F C C:

This defines an equivalence of categories

Fun.C;Cat1/ � Cocart.C/:

Dually, for any functor GWC Catop1, we may consider the cartesian fibration

RFibrep;op 	Catop
1

;G C C:

This defines an equivalence of categories

Fun.Cop;Cat1/ � Cart.C/:

A cocartesian fibration pWX C is said to be classified by F just in case it is
equivalent to the cocartesian fibration

RFibrep 	Cat
1

;F C C:
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Dually, a cartesian fibration qWY C is said to be classified by F just in case it is
equivalent to the cocartesian fibration

RFibrep;op 	Catop
1

;G C C:

Example 4.8 Suppose C an 1-category, and suppose X C an isofibration. If
C � C is the largest1-groupoid contained in C, then the pulled back isofibration

X 	C C C

is both cocartesian and cartesian, and so it corresponds to a functor

C ' Cop Cat1:

This is the sense in which the fibers of an isofibration vary functorially in
equivalences if C.

Example 4.9 For any1-category C, the functor Cop Cat1 that classifies the
cartesian fibration sWO.C/ C is the functor that carries any object a of C
to the undercategory Ca= and any morphism f W a b to the forgetful functor
f ?WCb= Ca=.

If C admits all pushouts, then the cocartesian fibration sWO.C/ C is classified
by a functor C Cat1 that carries any object a of C to the undercategory Ca=

and any morphism f W a b to the functor fŠWCa= Cb= that is given by pushout
along f .

One particularly powerful construction with cartesian and cocartesian fibrations
comes from [10, §3.2.2]. We’ve come to call this the cartesian workhorse.

Example 4.10 Suppose pWX Bop a cartesian fibration and qWY Bop a
cocartesian fibration. Suppose FWB Cat1 a functor that classifies p and
GWBop Cat1 a functor that classifies q. Clearly one may define a functor

Fun.F;G/WBop Cat1

that carries a vertex s of Bop to the 1-category Fun.F.s/;G.s// and an edge
�W s t of Bop to the functor

Fun.F.s/;G.s// Fun.F.t/;G.t//

given by the assignment F G.�/ ı F ı F.�/.
If one wishes to work instead with the fibrations directly (avoiding straightening

and unstraightening), the following construction provides an elegant way of writing
explicitly the cocartesian fibration classified by the functor Fun.F;G/.

Suppose pWX Bop is a cartesian fibration classified by a functor

FWB Cat1;
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and suppose qWY Bop is a cocartesian fibration classified by a functor

GWBop Cat1:

One defines a simplicial seteFunB.X;Y/ and a map rWeFunB.X;Y/ Bop defined by
the following universal property: for any map 
 WK Bop, one has a bijection

Mor=Bop.K;eFunB.X;Y// Š Mor=Bop.X 	Bop K;Y/;

functorial in 
 .
It is then shown in [10, Cor. 3.2.2.13] (but see Example 7.3 below for a proof

which places this result in a broader context) that r is a cocartesian fibration, and an
edge

gW�1
eFunB.X;Y/

is r-cocartesian just in case the induced map X 	Bop �1 Y carries p-cartesian
edges to q-cocartesian edges. The fiber of the map eFunB.X;Y/ S over a vertex
s is the 1-category Fun.Xs;Ys/, and for any edge �W s t of Bop, the functor
�ŠWTs Tt induced by � is equivalent to the functor F G.�/ ı F ı F.�/
described above.

Warning 4.11 We do not know of a proof that the functor associated to this fibration
via straightening is actually the expected one (In [6], this is verified in the case
where the functor G is constant).

Finally, let us mention a weakening of the notion of a cocartesian fibration to
that of a locally cocartesian fibration, which is an inner fibration p W X S
such that for every edge f W �1 S, the pullback pf is a cocartesian fibration.
Since p is cocartesian when restricted to live over any 1-simplex, the equivalence of
Theorem 4.7 produces functors fŠ W Xs Xt for every edge f W s t; however, one
loses the equivalence .d1
/Š ' .d0
/Š ı .d2
/Š for any 2-simplex 
 in S. Instead, the
analogue of Theorem 4.7 (proven in [11]) states that locally cocartesian fibrations
X S are equivalent to normal lax functors from S to Cat1 considered as an1
double category.

5 Flat Inner Fibrations

We have observed that if C is an1-category, and if C �1 is any functor with
fibers C0 and C1, then there is a corresponding profunctor from C1 to C0, i.e., a
colimit-preserving functor P.C1/ P.C0/. Furthermore, the passage from 1-
categories over�1 to profunctors is even in some sense an equivalence.

So to make this precise, let Prof denote the full subcategory of the1-category
PrL of presentable1-categories and left adjoints spanned by those1-categories of
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the form P.C/. We can almost—but not quite—construct an equivalence between
the1-categories Cat1=�1 and the1-category Fun.�1;Prof/.

The trouble here is that there are strictly more equivalences in Prof than there are
in Cat1; two1-categories are equivalent in Prof if and only if they have equivalent
idempotent completions. So that suggests the fix for this problem: we employ a
pullback that will retain the data of the1-categories that are the source and target
of our profunctor.

Proposition 5.1 There is an equivalence of1-categories

Cat1=�1 ' Fun.�1;Prof/ 	Fun.@�1;Prof/ Fun.@�1;Cat1/:

We do not know of a reference for this result, yet, but we expect this to appear in a
future work of P. Haine.

When we pass to1-categories over �2, we have a more complicated problem:
a functor C �2 only specifies a lax commutative diagram of profunctors:
three fibers C0, C1, and C2; three colimit-preserving functors FWP.C0/ P.C1/,
GWP.C1/ P.C2/, and HWP.C0/ P.C2/; and a natural transformation
˛WG ı F H. In order to ensure that ˛ be a natural equivalence, we need a
condition on our fibration. This is where flatness comes in.

Definition 5.2 An inner fibration pWX S is said to be flat just in case, for any
inner anodyne map K L and any map L S, the pullback

X 	S K X 	S L

is a categorical equivalence.
We will focus mostly on flat isofibrations. Let us see right away that some

familiar examples and constructions yield flat inner fibrations.

Example 5.3 (Lurie, [13, Ex. B.3.11]) Cocartesian and cartesian fibrations are flat
isofibrations; more precisely, the combination of the locally cocartesian and flat
conditions on an isofibration exactly yield the class of cocartesian fibrations [4, Prp.
1.5]. In particular, if C is an1-groupoid, then any isofibration X C is flat.

Example 5.4 (Lurie, [13, Pr. B.3.13]) If pWX S is a flat inner fibration, then for
any vertex x 2 X0, the inner fibrations Xx= Sp.x/= and X=x S=p.x/ are flat as
well.

It is not necessary to test flatness with all inner anodyne maps; in fact, one can
make do with the inner horn of a 2-simplex:

Proposition 5.5 (Lurie, [13, Pr. B.3.14]) An inner fibration pWX S is flat if and
only if, for any 2-simplex 
 2 S2, the pullback

X 	p;S;.
 j�21/ �
2
1 X 	p;S;
 �2

is a categorical equivalence.
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Proposition 5.6 (Lurie, [13, Pr. B.3.2, Rk. B.3.9]) An inner fibration X S is
flat just in case, for any 2-simplex

of S any for any edge x y lying over f , the simplicial set Xx= =y 	S fvg is weakly
contractible.

5.7 Note that the condition of the previous result is vacuous if the 2-simplex is
degenerate. Consequently, if S is 1-skeletal, then any inner fibration X S is flat.

Proposition 5.8 Suppose C an1-category. Then there is an equivalence

Flat.C/ � Fun.Cop;Prof/ 	Fun.Cop;Prof/ Fun.Cop;Cat1/;

where Flat.C/ is an1-category of flat isofibrations X C.
Once again, we do not know a reference for this in the literature yet, but we expect
that this will be shown in future work of P. Haine.

6 Marked Simplicial Sets and Categorical Patterns

In order to model the1-category Cocart.C/ of cocartesian fibrations at the level of
simplicial sets (and thereby implement the known proof of Theorem 4.7 via Lurie’s
straightening and unstraightening functors), it turns out that one must remember the
data of the cocartesian edges. Moreover, it is often useful to remember still more
data on the fibration side in order to reflect special features of the corresponding
functors. This leads us to the notions of marked simplicial sets and categorical
patterns.

Definition 6.1 A marked simplicial set consists of a simplicial set S together with
the additional datum of a set M � S1 of marked edges that contains all the
degenerate edges. A categorical pattern on a simplicial set S is a triple .M;T;P/
where .S;M/ constitutes a marked simplicial set and one additionally has:

• a set T � S2 of scaled 2-simplices that contains all the degenerate 2-simplices,
and

• a set P of maps f˛ WKC
˛ S such that f˛..KC

˛ /1/ � M and f˛..KC
˛ /2/ � T.

Let sSetC be the category of marked simplicial sets.

Example 6.2 There exists a marked model structure on sSetC such that the fibrant
objects are1-categories with the equivalences marked and the cofibrations are the
monomorphisms. We have the Quillen equivalence

.�/[W sSetJoyal sSetC WU
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where .�/[ marks the degenerate edges and U forgets the marking; also note that U
is left adjoint to the functor .�/] which marks all edges.

As a demonstration of the utility of sSetC over sSetJoyal, observe that sSetC is a
simplicial model category (unlike sSetJoyal) via the Quillen bifunctor

Map].�;�/ W .sSetC/op 	 sSetC sSet

defined by HomsSet.K;Map]..X;E/; .Y;F/// D HomsSetC.K
] 	 .X;E/; .Y;F//.

Consequently, we may define Cat1 to be the homotopy coherent nerve of the
simplicial subcategory .sSetC/ı of the fibrant objects in sSetC, and indeed this is
the definition adopted in [10]. In addition, sSetC is also enriched over sSetJoyal via

Map[.�;�/ W .sSetC/op 	 sSetC sSet

defined by HomsSet.K;Map[..X;E/; .Y;F/// D HomsSetC.K
[	 .X;E/; .Y;F//, and

over itself via the internal hom.
We now pass to a relative situation and introduce a class of model structures on

sSetC=.S;M/ which serve to model (variants of)1-categories of Cat1-valued functors
with domain S.

Notation 6.3 For the purposes of this section, if pWX S and f WK S are maps
of simplicial sets, then let us write

pf WX 	S K K

for the pullback of p along f .

Definition 6.4 Suppose .M;T;P/ a categorical pattern on a simplicial set S. Then
a marked map pW .X;E/ .S;M/ is said to be .M;T;P/-fibered if the following
conditions obtain.

• The map pWX S is an inner fibration.
• For every marked edge � of S, the pullback p� is a cocartesian fibration.
• An edge � of X is marked just in case p.�/ is marked and � is pp.�/-cocartesian.
• For any commutative square

in which 
 is scaled, if � is marked, then it is p
 -cocartesian.
• For every element f˛WKC

˛ S of P, the cocartesian fibration

pf˛ WX 	S KC
˛ KC

˛

is classified by a limit diagram KC
˛ Cat1.
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• For every element f˛ WKC
˛ S of P, any cocartesian section 
 of pf˛ is a p-

limit diagram in X [10, Dfn. 4.3.1.1]. If X and S are 1-categories, then this is
equivalent to requiring that for any x 2 X, the homotopy commutative square of
mapping spaces

is a homotopy pullback square (where v 2 KC
˛ is the cone point).

Theorem 6.5 (Lurie, [13, Th. B.0.20]) Suppose .M;T;P/ a categorical pattern on
a simplicial set S. Then there exists a left proper, combinatorial, simplicial model
structure on sSetC=.S;M/ in which the cofibrations are monomorphisms, and a marked
map pW .X;E/ .S;M/ is fibrant just in case it is .M;T;P/-fibered.

We will denote this model category sSetC=.S;M;T;P/ .

Example 6.6 For any simplicial set S, the .S1; S2;¿/-fibered maps .X;E/ S] are
precisely those maps of the form \X S], where the underlying map of simplicial
sets X S is a cocartesian fibration and \X denotes X with the cocartesian edges
marked. We are therefore entitled to call the model structure of Theorem 6.5 on
sSetC

=S]
given by .S1; S2;¿/ the cocartesian model structure. Abusing notation,

the underlying category is also denoted as sSetC=S. In [10, §3.2], Lurie proves an

equivalence Fun.S;Cat1/ ' N..sSetC=S/ı/.
We have a convenient characterization of the fibrations between fibrant objects

in the model structures of Theorem 6.5:

Proposition 6.7 (Lurie, [13, Th. B.2.7]) Suppose S an 1-category, and suppose
.M;T;P/ a categorical pattern on S such that every equivalence of S is marked, and
every 2-simplex �2 S whose restriction to �f0;1g is an equivalence is scaled.
If .Y;F/ is fibrant in sSetC=.S;M;T;P/ , then a map f W .X;E/ .Y;F/ over .S;M/ is

a fibration in sSetC=.S;M;T;P/ if and only if .X;E/ is fibrant, and the underlying map
f WX Y is an isofibration.

Example 6.8 For any marked simplicial set .S;M/, we may as well call the model
structure on sSetC=.S;M/ supplied by the categorical pattern .M; S2;;/ the cocartesian
model structure. Directly from the definition, we see that the fibrant objects are
those inner fibrations C S that possess cocartesian edges lifting the marked
edges in the base (such that those are the edges marked in C). Moreover, in light
of the previous proposition, we have another description of the cocartesian model
structure on sSetC=\S in the case of pW S T a cocartesian fibration, as created by

the forgetful functor to the cocartesian model structure sSetC=T—i.e., by regarding

sSetC=\S as .sSetC=T/=p. (Note that a model structure is uniquely characterized by its
cofibrations and fibrant objects.) For example, if S is an1-category and M is the set
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of equivalences in S, then the cocartesian model structure on sSetC=.S;M/ is Quillen
equivalent to .sSetJoyal/=S.

Example 6.9 Specifying the set of scaled 2-simplices allows us to model lax
functoriality. For example, in the extreme case where we take the categorical pattern
.S1; .S2/degen;;/ on S, then the resulting model structure on sSetC

=S]
has fibrant

objects the locally cocartesian fibrations over S.
Let us now consider examples where the set P of maps in the definition of a

categorical pattern comes into play.

Example 6.10 ([13, Prp. 2.1.4.6] and [13, Var. 2.1.4.13]) Let S D F� be the
category of finite pointed sets, with objects hni D f1; : : : ; n;
g. We call a map
˛W hni hmi inert if for every non basepoint element i 2 hmi, the preimage ˛�1.i/
consists of exactly one element. Then ˛ determines an injection hmiı hniı,
where hniı D hni n f
g. Let P be the set of maps�2

0 F� given by all

where the maps are inert and determine a bijection h piı t hqiı hniı. Then the
categorical pattern ..F�/1; .F�/2;P/ on F� yields a model structure on sSetC

=.F
�

/]

with fibrant objects symmetric monoidal 1-categories, and where maps between
fibrant objects are (strong) symmetric monoidal functors. To see this, observe that
the chosen set P implies that for a fibrant object C F�, the fiber Chni decomposes
as
Q
1�i�n Ch1i, with the n comparison maps induced by the n inert morphisms �i W

hni h1iwhich send i to 1 and the other elements to the basepoint. Then the active
maps, that is the maps in the image of the functor .�/C W F F� which adds a
basepoint, induce the multiplication maps which endow Ch1i with the structure of a
symmetric monoidal1-category.

If instead we took the categorical pattern ..F�/inert; .F�/2;P/ on F�, then we
would obtain a model structure on sSetC=.F

�

;.F
�

/inert/
whose fibrant objects are 1-

operads. Note that the last condition in the definition of .M;T;P/-fibered object is
now essential to obtain the correct description of the mapping spaces in the total
category of an1-operad.

The remaining two examples require an acquaintance with the theory of perfect
operator categories [1, §6], and generalize the examples of1-operads and symmet-
ric monoidal1-categories, respectively.

Example 6.11 Suppose ˚ a perfect operator category, and consider the following
categorical pattern

.Ne;N.�.˚//2;P/

on the nerveN�.˚/ of the Leinster category [1, §7]. Here the class Ne � N.�.˚//1
consists of all the inert morphisms of N�.˚/. The class P is the set of maps
�2
0 N�.˚/ given by diagrams I J I0 of�.˚/ in which both J I and

J I0 are inert, and

j Jj D j J 	TI Ij t j J 	TI0 I0j Š jIj t jI0j:
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Then a marked map .X;E/ .N�.˚/;N��.˚// is .Ne;N.�.˚//2;P/-fibered
just in case the underlying map of simplicial sets X N�.˚/ is a1-operad over
˚ , and E is the collection of cocartesian edges over the inert edges [1, §8].

In particular, when˚ D F, the category of finite sets, this recovers the collection
of1-operads.

Example 6.12 If ˚ is a perfect operator category, we can contemplate another
categorical pattern

.N.�.˚//1;N.�.˚//2;P/

on �.˚/. Here P is as in the previous example.
Now a marked map .X;E/ .N�.˚/;N��.˚// is .N.�.˚//1;N.�.˚//2;P/-

fibered just in case the underlying map of simplicial sets X N�.˚/ is a ˚-
monoidal1-category, and E is the collection of all cocartesian edges.

7 Constructing Fibrations via Additional Functoriality

The theory of flat isofibrations can be used to describe some extra functoriality of
these categorical pattern model structures in S. We will use this extra direction
of functoriality to perform some beautifully explicit constructions of fibrations of
various kinds. The main result is a tad involved, but the constructive power it offers
is worth it in the end.

Notation 7.1 Let us begin with the observation that, given a map of marked
simplicial sets �W .S;M/ .T;N/, there is a string of adjoints

�Š a �? a �?;

where the far left adjoint

�ŠW sSetC=.S;M/ sSetC=.T;N/

is simply composition with �; the middle functor

�?W sSetC=.T;N/ sSetC=.S;M/

is given by the assignment .Y;F/ .Y;F/	.T;N/ .S;M/; and the far right adjoint

�?W sSetC=.S;M/ sSetC=.T;N/
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is given by a “space of sections.” That is, an n-simplex of �?.X;E/ is a pair .
; f /
consisting of an n-simplex 
 2 Tn along with a marked map

.�n/[ 	.T;N/ .S;M/ .X;E/

over .S;M/; an edge .�; f / of �?.X;E/ is marked just in case � is marked, and f
carries any edge of �1 	T S that projects to a marked edge of S to a marked edge
of X.

Theorem 7.2 (Lurie, [13, Th. B.4.2]) Suppose S, S0, and X three 1-categories;
suppose .M;T;P/ a categorical pattern on S; suppose .M0;T 0;P0/ a categorical
pattern on S0; and suppose E a collection of marked edges on X. Assume these data
satisfy the following conditions.

• Any equivalence of either S or X is marked.
• The marked edges in S and X are each closed under composition.
• Every 2-simplex�2 S whose restriction to �f0;1g is an equivalence is scaled.

Suppose

�W .X;E/ .S;M/

a map of marked simplicial sets satisfying the following conditions.

• The functor �WX S is a flat isofibration.
• For any marked edge � of S, the pullback

��WX 	S �1 �1

is a cartesian fibration.
• For any element f˛ WKC

˛ S of P, the simplicial set K˛ is an1-category, and
the pullback

�f˛ WX 	S KC
˛ KC

˛

is a cocartesian fibration.
• Suppose

a 2-simplex of X in which �.�/ is an equivalence,  is locally �-cartesian, and
�. / is marked. Then the edge � is marked just in case � is.
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• Suppose f˛ WKC
˛ S an element of P, and suppose

a 2-simplex of X 	S KC
˛ in which � is �f˛ -cocartesian and �f˛ . / is an

equivalence. Then the image of  in X is marked if and only if the image of
� is.

Finally, suppose

�W .X;E/ .S0;M0/

a map of marked simplicial sets satisfying the following conditions.

• Any 2-simplex of X that lies over a scaled 2-simplex of S also lies over a scaled
2-simplex of S0.

• For any element f˛ WKC
˛ S of P and any cocartesian section s of �f˛ , the

composite

lies in P0.

Then the adjunction

�Š ı �?W sSetC=.S;M;T;P/ sSetC=.S0;M0 ;T0 ;P0/ W�? ı �?

is a Quillen adjunction.
Before applying this theorem, let us comment on the relevance of some of the

various hypotheses (sans the ones dealing with the class P in the definition of a
categorical pattern, which we only include for completeness).

• Flatness: We introduced flat inner fibrations in connection with composing
profunctors. Composition of profunctors involves inner anodyne maps such as
�2
1 �2 being sent to categorical equivalences upon pulling back, and the

added property of being an isofibration ensures that the larger class of categorical
equivalences is sent to itself by pullback [13, Cor. B.3.15]. Indeed, if � W X S
is a flat isofibration of 1-categories then �� W .sSetJoyal/=S .sSetJoyal/=X
is left Quillen [13, Prp. B.4.5]. Flatness is thus the basic necessary condition
which precedes additional considerations stemming from the categorical patterns
in play.

• Cartesian conditions: Cartesian fibrations are a subclass of the cosmooth maps,
which are those maps X S such that for any right cofinal (i.e. initial) map
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K L, X 	S K X 	S L is again right cofinal; dually, cocartesian fibrations
are a subclass of the smooth maps ([10, Dfn. 4.1.2.9] and [10, Prp. 4.1.2.15]).
This fact is clear in view of the total category X of a cocartesian fibration X S
being a model for the lax colimit of the associated functor. Moreover, a map
K] L] is an equivalence in the cocartesian model structure on sSetC

=S]
if and

only if K L is right cofinal, because this is equivalent to Map]S.�; \C/ yielding
an equivalence for any cocartesian fibration C S, and the 1-category of
cocartesian sections is a model for the limit of the associated functor. Thus, one
sees the relevance of � W X S being a cartesian fibration, for �� to be right
Quillen with respect to the cocartesian model structures; to be precise about this,
one then needs to handle the added complications caused by markings.

Let us now put Theorem 7.2 to work. We first discard some of the baggage of
categorical patterns which we will not need.

Corollary 7.2.1 Suppose �WX S and �WX T two functors of1-categories.
Suppose E � X1 a collection of marked edges on X, and assume the following.

• Any equivalence of X is marked, and the marked edges are closed under
composition.

• The functor �WX S is a flat locally cartesian fibration.
• Suppose

a 2-simplex of X in which �.�/ is an equivalence, and  is locally �-cartesian.
Then the edge � is marked just in case � is.

Then the functor �? ı �? is a right Quillen functor

sSetC=T sSetC=S

for the cocartesian model structure. In particular, if Y T is a cocartesian
fibration, then the map rWZ S given by the universal property

MorS.K;Z/ Š MorT.K[ 	S] .X;E/; \Y/

is a cocartesian fibration, and an edge of Z is r-cocartesian just in case the map
�1 	S X Y carries any edge whose projection to X is marked to a q-cocartesian
edge.

We will speak of applying Corollary 7.2.1 to the span
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to obtain a Quillen adjunction

�Š ı �?W sSetC=S sSetC=T W�? ı �?:

Example 7.3 Suppose pWX S is a cartesian fibration, and suppose qWY S
is a cocartesian fibration. The construction of Example 4.10 gives a simplicial set
eFunS.X;Y/ over S given by the universal property

MorS.K;eFunS.X;Y// Š MorS.K 	S X;Y/:

By the previous result, the functor eFunS.X;Y/ S is a cocartesian fibration.
Consequently, one finds that [10, Cor. 3.2.2.13] is a very elementary, very special
case of the previous result.

Another compelling example can be obtained as follows. Suppose �WA B
is a functor of 1-categories. Of course if one has a cocartesian fibration Y B
classified by a functor Y, then one may pull back to obtain the cocartesian fibration
A 	B Y A that is classified by the functor Y ı �. In the other direction, however,
if one has a cocartesian fibration X A that is classified by a functor X, then
how might one write explicitly the cocartesian fibration Z B that is classified
by the right Kan extension? It turns out that this is just the sort of situation that
Corollary 7.2.1 can handle gracefully. We’ll need a spot of notation for comma1-
categories:

Notation 7.4 If f WM S and gWN S are two maps of simplicial sets, then let
us write

M #S N WD M 	
Fun.�f0g;S/

Fun.�1; S/ 	
Fun.�f1g;S/

N:

A vertex of M #S N is thus a vertex x 2 M0, a vertex y 2 N0, and an edge
f .x/ g.y/ in S1. When M and N are1-categories, the simplicial set M #S N is
a model for the lax pullback of f along g.

Proposition 7.5 If �WA B is a functor of1-categories, and if pWX A is a
cocartesian fibration, then form the simplicial set Y over B given by the following
universal property: for any map �WK Z, we demand a bijection

Mor=B.K;Y/ Š Mor=A.K #B A;X/;

functorial in �. Then the projection qWY B is a cocartesian fibration, and if p is
classified by a functorX, then q is classified by the right Kan extension ofX along �.

Proof As we have seen, we need conditions on � to ensure that the adjunction

��W sSetC=B sSetC=A W��
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is Quillen. However, we can rectify this situation by applying Corollary 7.2.1 to the
span

in view of the following two facts, which we leave to the reader to verify (or see
[10, Cor. 2.4.7.12] and [3, Lem. 9.8] for proofs):

• the functor ev0 ıprO.B/ is a cartesian fibration;

• for all C B fibrant in sSetC=B, the identity section B O.B/ induces a functor

C 	B A] C 	B O.B/] 	B A]

which is a cocartesian equivalence in sSetC=A.

We thereby obtain a Quillen adjunction

.prA/Š ı .ev0 ıprO.B//
�W sSetC=B sSetC=A W.ev0 ıprO.B//� ı .prA/

�

which models the adjunction of1-categories

��WFun.B;Cat1/ Fun.A;Cat1/ W��;
as desired.

This result illustrates the basic principle that replacing strict pullbacks by lax
pullbacks allows one to make homotopically meaningful constructions. Of course,
any suitable theory of 1-categories would allow one to produce the right adjoint
�� less explicitly, by recourse to the adjoint functor theorem. This example rather
illustrates, yet again, how the model of quasicategories affords more explicit
descriptions of standard categorical constructions.

Let us end our study with some simple but gratifying observations concerning the
interaction of Theorem 7.2 with compositions and homotopy equivalences of spans.
First the compositions:

Lemma 7.6 Suppose we have spans of marked simplicial sets

and

and categorical patterns .Mi;Ti;;/ on Ci such that the hypotheses of Theorem7.2
are satisfied for each span. Then the hypotheses of Theorem7.2 are satisfied for the
span
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with the categorical patterns .MDi ; �
�1
i .Ti/;;/ on each Di. Consequently, we obtain

a Quillen adjunction

.�1 ı pr1/Š ı .�0 ı pr0/
?W sSetC

=.C0;M0;T0;¿/ sSetC
=.C2;M2;T2;¿/ W.�0 ı pr0/? ı .�1 ı pr1/

?;

which is the composite of the Quillen adjunction from sSetC=.C0;M0;T0;¿/ to

sSetC=.C1;M1;T1;¿/ with the one from sSetC=.C1;M1;T1;¿/ to sSet
C
=.C2;M2;T2;¿/.

Proof The proof is by inspection. However, one should beware that the “long” span

C0 D0 	C1 D1 D1

can fail to satisfy the hypotheses of Theorem 7.2, because the composition of
locally cartesian fibrations may fail to be again be locally cartesian; this explains
the roundabout formulation of the statement. Finally, observe that if we employ
the base-change isomorphism ��0 �1;� Š pr0;� ı pr�1 , then we obtain our Quillen
adjunction as the composite of the two given Quillen adjunctions.

Now let us see that Theorem 7.2 is compatible with homotopy equivalences of
spans:

Lemma 7.7 Suppose a morphism of spans of marked simplicial sets

where �Š�� and .�0/Š.� 0/� are left Quillen with respect to the model structures
given by categorical patterns PC and PC0 on C and C0. Suppose moreover that
f is a homotopy equivalence in sSetC=PC0

—i.e., suppose that there exists a homotopy
inverse g and homotopies

hW id ' g ı f and kW id ' f ı g:

Then the natural transformation �Š�� .�0/Š.� 0/� induced by f is a weak
equivalence on all objects, and, consequently, the adjoint natural transformation
.� 0/�.�0/� ���� is a weak equivalence on all fibrant objects.

Proof The homotopies h and k pull back to show that for all X C, the map

idX 	C f WX 	C K X 	C L

is a homotopy equivalence with inverse idX 	C g. The last statement now follows
from [9, 1.4.4(b)].
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The Smooth Hom-Stack of an Orbifold

David Michael Roberts and Raymond F. Vozzo

Abstract For a compact manifold M and a differentiable stack X presented by a
Lie groupoid X, we show the Hom-stack Hom.M;X/ is presented by a Fréchet–
Lie groupoid Map.M;X/ and so is an infinite-dimensional differentiable stack. We
further show that if X is an orbifold, presented by a proper étale Lie groupoid, then
Map.M;X/ is proper étale and so presents an infinite-dimensional orbifold.

This note serves to announce a generalisation of the authors’ work [8], which
showed that the smooth loop stack of a differentiable stack is an infinite-dimensional
differentiable stack, to more general mapping stacks where the source stack is a
compact manifold (or more generally a compact manifold with corners). We apply
this construction to differentiable stacks that are smooth orbifolds, that is, they can
be presented by proper étale Lie groupoids (see Definition 9).

Existing work on mapping spaces of orbifolds has been considered in the case of
Ck maps [4], of Sobolev maps [10] and smooth maps [3]; in the latter case several
different notions of smooth orbifold maps are considered, from the point of view
of orbifolds described by orbifold charts. In all these cases, some sort of orbifold
structure has been found (for instance, Banach or Fréchet orbifolds).

Noohi [6] solved the problem of constructing a topological mapping stack
between more general topological stacks, when the source stack has a presentation
by a compact topological groupoid. See [8] for further references and discussion.

We take as given the definition of Lie groupoid in what follows, using finite-
dimensional manifolds unless otherwise specified. Manifolds will be considered
as trivial groupoids without comment. We pause only to note that in the infinite-
dimensional setting, the source and target maps of Fréchet–Lie groupoids must be
submersions between Fréchet manifolds, which is a stronger hypothesis than asking
the derivative is surjective (or even split) everywhere, as in the finite-dimensional or
Banach case.
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We will also consider groupoids in diffeological spaces. Diffeological spaces (see
e.g. [1]) contain Fréchet manifolds as a full subcategory and admit all pullbacks
(in fact all finite limits) and form a cartesian closed category such that for K
and M smooth manifolds with K compact, the diffeological mapping space MK is
isomorphic to the Fréchet manifold of smooth maps K ! M.

Differentiable stacks are, for us, stacks of groupoids on the site M of finite-
dimensional smooth manifolds with the open cover topology that admit a presenta-
tion by a Lie groupoid [2]. We can also consider the more general notion of stacks
that admit a presentation by a diffeological or Fréchet–Lie groupoid.

Definition 1 Let X;Y be stacks on M. The Hom-stack Hom.Y;X/ is defined by
taking the value on the manifold N to be StackM.Y 	 N;X/.

Thus we have a Hom-stack for any pair of stacks on M. The case we are
interested in is where we have a differentiable stack X associated to a Lie groupoid
X, e.g. an orbifold, and the resulting Hom-stack Hom.M;X/ for M a compact
manifold.

We define a minimal cover of a manifold M to be a cover by regular closed sets
Vi such that the interiors Vi

o form an open cover of M, and every Vi
o contains a point

not in any other Vj
o. We also ask that finite intersections Vi\ : : :\Vk are also regular

closed. Denote the collection of minimal covers of a manifold M by C.M/min, and
note that such covers are cofinal in open covers. Recall that a cover V of a manifold
defines a diffeological groupoid LC.V/ with objects

∐
i Vi and arrows

∐
i;j Vi \ Vj.1

We are particularly interested in the case when we take the closure fUig of fUig, a
good open cover, minimal in the above sense.

We denote the arrow groupoid of a Lie groupoid X by X2—it is again a Lie
groupoid and comes with functors S;TWX2 ! X, with object components source
and target, resp. Let M be a compact manifold with corners and X a Lie groupoid.
Define the mapping groupoid Map.M;X/ to be the following diffeological groupoid.
The object space Map.M;X/0 is the disjoint union over minimal covers V of the
spaces X LC.V/ of functors LC.V/! X. The arrow space Map.M;X/1 is

∐

V1;V22C.M/min

X LC.V1/ 	X LC.V12/ .X2/
LC.V12/ 	X LC.V12/ X

LC.V2/

where the chosen minimal refinement V12 � V1 	M V2 is defined using the boolean
product on the algebra of regular closed sets. The maps

S;TW .X2/
LC.V12/ ! X LC.V12/ and X LC.Vi/ ! X LC.V12/ .i D 1; 2/ (1)

give us a pullback and the two projections

X LC.V1/ 	
X LC.V12/

.X2/
LC.V12/ 	

X LC.V12/
X LC.V2/ �! X LC.Vi/; (2)

1We can in what follows safely ignore the issue of intersections of boundaries.
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induce, for i D 1; 2, the source and target maps for our groupoid resp. Composition
in the groupoid is subtle, but is an adaptation of the composition of transformations
of anafunctors given in [7]. The proof of the following theorem works exactly as in
Theorem 4.2 in [8].

Theorem 2 For X a Lie groupoid and M a compact manifold the Hom-stack
Hom.M;X/ is presented by the diffeological groupoid Map.M;X/. ut

We need some results that ensure the above constructions give Fréchet manifolds.

Proposition 3 For M a compact smooth Riemannian manifold (possibly with
corners), K a compact regular closed Lipschitz subset of M and N a smooth
manifold, the induced restriction map NM ! NK is a submersion of Fréchet
manifolds.

Proof Recall that a submersion of Fréchet manifolds is a smooth map that is locally,
for suitable choices of charts, a projection out of a direct summand. This means we
have to work locally in charts and show that we have a split surjection of Fréchet
spaces. We can reduce this to the case that N D R

n, since the charts are given
by spaces of sections of certain vector bundles, and we can consider these spaces
locally and patch them together, and thence to N D R. The proof then uses [5,
Theorem 3.15], as we can work in charts bi-Lipschitz to flat Rn, hence reduce to the
case of K � B � R

n, for B some large open ball. ut
In particular this is true for sets K that are closures of open geodesically convex

sets, and even more specifically such open sets that are the finite intersections of
geodesically convex charts in a good open cover. We also use a special case of
Stacey’s theorem [9, Corollary 5.2]; smooth manifolds with corners are smoothly
T-compact spaces in Stacey’s sense.

Theorem 4 (Stacey) Let N1 ! N2 be a submersion of finite-dimensional mani-
folds and K a compact manifold, possibly with corners. Then the induced map of
Fréchet manifolds NK

1 ! NK
2 is a submersion. ut

The following proposition is the main technical tool in proving the mapping stack
is an infinite-dimensional differentiable stack.

Proposition 5 The diffeological space X LC.V/ is a Fréchet manifold.

Proof First, the diffeological space of functors is isomorphic to the space of
simplicial maps N LC.V/! NX between the nerves of the groupoids. Then, since the
subspaces of degenerate simplicies in N LC.V/ are disjoint summands, we can remove
those, and consider semi-simplicial maps between semisimplicial diffeological
spaces instead. Then, since inverses in LC.V/ are also disjoint, we can remove those
as well, and consider the diffeological space of semisimplicial maps from the ‘nerve’
of the smooth irreflexive partial order LC<.V/ to the nerve of X, considered as a
semisimplicial space (where we have chosen an arbitrary total ordering on the finite
minimal cover V). This diffeological space is what we show is a Fréchet manifold,
by carefully writing the limit as an iterated pullback of diagrams involving maps that
are guaranteed to be submersions by Proposition 3 and Theorem 4, and using the
fact that X is appropriately coskeletal, i.e. .NX/n D X1 	X0 : : : 	X0 X1. The original
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space of functors is then a diffeological space isomorphic to this Fréchet manifold,
hence is a Fréchet manifold. ut
Lemma 6 Let X ! Y be a functor between Lie groupoids with object and arrow
components submersions, and V1 ! V2 a refinement of minimal covers. Then the
induced map X LC.V2/ ! Y LC.V1/ is a submersion between Fréchet manifolds. ut

We will consider the special cases that the functor X ! Y is the identity, and also
that the refinement V1 ! V2 is the identity.

Theorem 7 For a Lie groupoid X and compact manifold M, Map.M;X/ is a
Fréchet–Lie groupoid.

Proof The object space Map.M;X/0 is a manifold by Proposition 5. The arrow
space Map.M;X/1 is a manifold since it is given by a pullback diagram built with
the maps (1), which are submersions by Lemma 6. The identity map is smooth, as it
is a smooth map between diffeological spaces that happen to be manifolds, and so
is composition. ut

The following theorem is the first main result of the paper. The proof uses the
technique of [6, Theorem 4.2] as adapted in [8], where it is shown that all of the
constructions remain smooth.

Theorem 8 For a Lie groupoid X and compact manifold M, the stack Hom.M;X/
is weakly presented by the Fréchet–Lie groupoid Map.M;X/. ut

A weak presentation means that the pullback of the map Map.M;X/0 !
Hom.M;X/ against itself gives a stack representable by the Fréchet manifold
Map.M;X/1, and the two projections are submersions. For the site of diffeological
spaces, a weak presentation is an ordinary presentation. This is also the case if we
allow non-Hausdorff manifolds [2, Proposition 2.2], so we either have to pay the
price of a weak presentation or working over a site of non-Hausdorff manifolds. If
the groupoid Map.M;X/ is proper, as in Theorem 10 below, then we can upgrade
this weak presentation to an ordinary one over Hausdorff manifolds.

Definition 9 A (Fréchet–)Lie groupoid Z is proper if the map .s; t/WZ1 ! Z0 	 Z0
is a proper map (i.e. closed with compact fibres), étale if the source and target maps
are local diffeomorphisms, and an orbifold groupoid if it is a proper and étale.

It is a theorem of Moerdijk–Pronk that orbifold groupoids are equivalent to
orbifolds defined in terms of orbifold charts—in finite dimensions—if we ignore
issues of effectivity (which we do, for now). For infinite dimensional orbifolds this
is not yet known, but may be possible for Fréchet–Lie groupoids with local additions
on their object and arrow manifolds, of which our construction is an example.

Our second main result is then:

Theorem 10 If X is an étale Lie groupoid, then Map.M;X/ is étale. If X is an
orbifold groupoid, then Map.M;X/ is an orbifold groupoid.

Proof Stability of local diffeomorphisms under pullback mean that we only need to

show that the smooth maps S LC.V/;T LC.V/W .X2/
LC.V/ ! X LC.V/, for any minimal cover

V , are local diffeomorphisms. If X is an étale Lie groupoid then the fibres of its
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source and target maps are discrete, and one can show that S LC.V/;T LC.V/ have discrete
diffeological spaces as fibres. But these maps are submersions of Fréchet manifolds,
hence are local diffeomorphisms.

Properness follows if we can show that .s; t/ for the mapping groupoid is closed
and every object has a finite automorphism group. This reduces to showing that

.S;T/
LC.V/ is closed and its fibres are finite. We can show the latter by again working

in the diffeological category and showing that the fibres of .S;T/
LC.V/ are discrete,

and also a subspace of a finite diffeological space. As all the spaces involved are
metrisable, we use a sequential characterisation of closedness together with the
local structure of the proper étale groupoid X, and find an appropriate convergent
subsequence in the required space of natural transformations. ut

Acknowledgements This research was supported under the Australian Research Council’s
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Complicial Sets, an Overture

Emily Riehl

Abstract The aim of these notes is to introduce the intuition motivating the notion
of a complicial set, a simplicial set with certain marked “thin” simplices that
witness a composition relation between the simplices on their boundary. By varying
the marking conventions, complicial sets can be used to model .1; n/-categories
for each n � 0, including n D 1. For this reason, complicial sets present a
fertile setting for thinking about weak infinite dimensional categories in varying
dimensions. This overture is presented in three acts: the first introducing simplicial
models of higher categories; the second defining the Street nerve, which embeds
strict !-categories as strict complicial sets; and the third exploring an important
saturation condition on the marked simplices in a complicial set and presenting
a variety of model structures that capture their basic homotopy theory. Scattered
throughout are suggested exercises for the reader who wants to engage more deeply
with these notions.

1 Introduction

As the objects that mathematicians study increase in sophistication, so do their
natural habitats. On account of this trend, it is increasingly desirable to replace mere
1-categories of objects and the morphisms between them, with infinite-dimensional
categories containing 2-morphisms between 1-morphisms, 3-morphisms between 2-
morphisms, and so on. The principle challenge in working with infinite-dimensional
categories is that the naturally occurring examples are weak rather than strict, with
composition of n-morphisms only associative and unital up to an nC 1-morphism
that is an “equivalence” in some sense. The complexity is somewhat reduced in
the case of .1; n/-categories, in which all k-morphisms are weakly invertible for
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k > n, but even in this case, explicit models of these schematically defined .1; n/-
categories can be extremely complicated.

Complicial sets provide a relatively parsimonious model of infinite-dimensional
categories, with special cases modeling .1; 0/-categories (also called 1-
groupoids), .1; 1/-categories (the ubiquitous 1-categories), indeed .1; n/-
categories for any n, and also including the general case of .1;1/-categories.
Unlike other models of infinite-dimensional categories, the definition of a complicial
set is extremely simple to state: it is a simplicial set with a specified collection of
marked “thin” simplices, in which certain elementary anodyne extensions exist.
These anodyne extensions provide witnesses for a weak composition law and
guarantee that the thin simplices are equivalences in a sense defined by this weak
composition.

This overture is dividing into three acts, each comprising one part of the 3-h mini
course that generated these lecture notes. In the first, we explore how a simplicial
set can be used to model the weak composition of an .1; 1/-category and consider
the extra structure required to extend these ideas to provide a simplicial model
of .1; 2/-categories. This line of inquiry leads naturally to the definition of a a
complicial set as a stratified (read “marked”) simplicial set in which composable
simplices admit composites.

In the second part, we delve into the historical motivations for this model for
higher categories based on stratified simplicial sets. John Roberts proposed the
original definition of strict complicial sets, which admit unique extensions along
the elementary anodyne inclusions, as a conjectural model for strict !-categories
[6]. Ross Street defined a nerve functor from !-categories into simplicial sets [7],
and Dominic Verity proved that it defines a full and faithful embedding into the
category of stratified simplicial sets whose essential image is precisely the strict
complicial sets [9]. While we do not have the space to dive into proof of this result
here, we nonetheless describe the Street nerve in some detail as it is an important
source of examples of both strict and also weak complicial sets, as is explained in
part three.

In the final act, we turn our attention to those complicial sets that most accurately
model .1; n/-categories. Their markings are saturated, in the sense that every sim-
plex that behaves structurally like an equivalence, is marked. We present a variety of
model structures, due to Verity, that encode the basic homotopy theory of complicial
sets of various flavors, including those that are n-trivial, with every simplex above
dimension n marked, and saturated. The saturation condition is essential for a
conjectural equivalence between the complicial sets models of .1; n/-categories
and other models known to satisfy the axiomatization of Barwick–Schommer–Pries
[1], which passes through a complicial nerve functor due to Verity. This result will
appear in a future paper.
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2 Introducing Complicial Sets

Infinite dimensional categories have morphisms in each dimension that satisfy a
weak composition law, which is associative and unital up to higher-dimensional
morphisms rather than on the nose. There is no universally satisfactory definition of
“weak composition”; instead a variety of models of infinite-dimensional categories
provide settings to work with this notion.

A complicial set, nee. weak complicial set, is a stratified simplicial set, with
a designed subset of “thin” marked simplices marked, that admits extensions
along certain maps. Complicial sets model weak infinite-dimensional categories,
sometimes called .1;1/-categories. By requiring all simplices above a fixed
dimension to be thin, they can also model .1; n/-categories for all n 2 Œ0;1�.

Strict complicial sets were first defined by Roberts [6] with the intention of
constructing a simplicial model of strict !-categories. He conjectured that it should
be possible to extend the classical nerve to define an equivalence from the category
of strict !-categories to the category of strict complicial sets. Street defined this
nerve [7], providing a fully precise statement of what is known as the Street–Roberts
conjecture, appearing as Theorem 3.1. Verity proved the Street–Roberts conjecture
[9] and then subsequently defined and developed the theory of the weak variety of
complicial sets [8, 10] that is the focus here.

We begin in Sect. 2.1 by revisiting how a quasi-category (an unmarked simplicial
set) models an .1; 1/-category. This discussion enables us to explore what would be
needed to model an .1; 2/-category as a simplicial set in Sect. 2.2. These excursions
motivate the definition of stratified simplicial sets in Sect. 2.3 and then complicial
sets in Sect. 2.4. We conclude in Sect. 2.5 by defining n-trivial complicial sets,
which, like .1; n/-categories, have non-invertible simplices concentrated in low
dimensions.

We assume the reader has some basic familiarity with the combinatorics of
simplicial sets and adopt relatively standard notations, e.g., �Œn� for the standard
n-simplex and �kŒn� for the horn formed by those faces that contain the kth vertex.

2.1 Quasi-Categories as .1; 1/-Categories

The most popular model for .1; 1/-categories were first introduced by Michael
Boardman and Rainer Vogt under the name weak Kan complexes [2].

Definition 2.1 A quasi-category is a simplicial set A so that every inner horn
admits a filler
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This presents an .1; 1/-category with:

• A0 as the set of objects;
• A1 as the set of 1-cells with sources and targets determined by the face maps

and degenerate 1-simplices serving as identities;
• A2 as the set of 2-cells;
• A3 as the set of 3-cells, and so on.

The weak 1-category structure arises as follows. A 2-simplex

(1)

provides a witness that h ' g f .

Notation 2.2 We adopt the convention throughout of always labeling the vertices
of an n-simplex by 0; : : : ; n to help orient each picture. This notation does not assert
that the vertices are necessarily distinct.

A 3-simplex then

provides witnesses that h.gf / ' hj ' ` ' kf ' .hg/f .
The homotopy category of a quasi-category A is the category whose objects

are vertices and whose morphisms are a quotient of A1 modulo the relation f ' g
that identifies a pair of parallel edges if and only if there exists a 2-simplex of the
following form:

(2)

Notation 2.3 Here and elsewhere the notation “D” is used for degenerate sim-
plices.
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Exercise 2.4 Formulate alternate versions of the relation f ' g and prove that
in a quasi-category each of these relations defines an equivalence relation and
furthermore that these relations are all equivalent.

The composition operation witnessed by 2-simplices is not unique on the nose
but it is unique up to the notion of homotopy just introduced.

Exercise 2.5 Prove that the homotopy category is a strict 1-category.
A quasi-category is understood as presenting an .1; 1/-category rather than an

.1;1/-category because each 2-simplex is invertible up to a 3-simplex, and each 3-
simplex is invertible up to a 4-simplex, and so on, in a sense we now illustrate. First
consider a 2-simplex as in (2). This data can be used to define a horn �1Œ3� ! A
whose other two faces are degenerate

which can be filled to define a “right inverse” ˇ in the sense that this pair of 2-cells
bound a 3-simplex with other faces degenerate. Similarly, there is a “special outer
horn”1 �3Œ3�! A

which can be filled to define a “left inverse” � . In this sense, ˛ is an equivalence
up to 3-simplices, admitting left and right inverses along the boundary of a pair of
three simplices.

This demonstrates that 2-simplices with a degenerate outer edge admit left and
right inverses, but what if ˛ has the form (1)? In this case, we can define a horn
�1Œ3�! A horn

1Special outer horns�0Œn�! A and�nŒn�! A have first or last edges mapping to 1-equivalences
(such as degeneracies) in A, as introduced in Definition 4.1 below.
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whose 3rd face is constructed by filling a horn �1Œ2� ! A. In this sense, any 2-
simplex is equivalent to one with last (or dually first) edge degenerate.

Exercise 2.6 Generalize this argument to show that the higher-dimensional sim-
plices in a quasi-category are also weakly invertible.

2.2 Towards a Simplicial Model of .1; 2/-Categories

Having seen how a simplicial set may be used to model an .1; 1/-category, it is
natural to ask how a simplicial set might model an .1; 2/-category. A reasonable
idea would be interpret the 2-simplices as inhabited by not necessarily invertible 2-
cells pointing in a consistent direction. The problem with this is that the 2-simplices
need to play a dual role: they must also witness composition of 1-simplices, in which
case it does not make sense to think of them as inhabited by non-invertible cells. The
idea is to mark as “thin” the witnesses for composition and then demand that these
marked 2-simplices behave as 2-dimensional equivalences in a sense that can be
intuited from the preceding three diagrams.

Then 3-simplices can be thought of as witnesses for composition of not-
necessarily thin 2-simplices. For instance, given a pair of 2-simplices ˛ and ˇ with
boundary as displayed below, the idea is to build a �2Œ3�-horn

whose 0th face is a thin filler of the �1Œ2�-horn formed by g and k. The 2nd face,
defined by filling the horn �2Œ3�-horn, defines a composite 2-simplex, which is
witnessed by the (thin) 3-simplex. Note that because the 0th face is thin, its 1st edge
is interpreted as a composite kg of g and k, which is needed so that the boundary of
the new 2-cell agrees with the boundary of the pasted composite of ˇ and ˛. Since
the 3-simplex should be thought of as a witness to a composition relation involving
the 2-simplices that make up its boundary, the three simplex should also be regarded
as “thin.”

A similar �1Œ3�-horn can be used to define composites where the domain of
˛ is the last, rather than the first, edge of the codomain of ˇ. It is in this way that
simplicial sets with certain marked simplices are used to model .1; 2/-categories or
indeed .1; n/-categories for any n 2 Œ0;1�. We now formally introduce stratified
simplicial sets before stating the axioms that define these complicial sets.
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2.3 Stratified Simplicial Sets

We have seen that for a simplicial set to model an infinite-dimensional category
with non-invertible morphisms in each dimension, it should have a distinguished
set of “thin” n-simplices witnessing composition of .n � 1/-simplices. Degenerate
simplices are always thin in this sense. Furthermore, the intuition that the “thin”
simplices are the equivalences, in a sense that is made precise in Sect. 4, suggests
that certain 1-simplices might also be marked as thin. This motivates the following
definition:

Definition 2.7 A stratified simplicial set is a simplicial set with a designated sub-
set of marked or thin positive-dimensional simplices that includes all degenerate
simplices. A map of stratified simplicial sets is a simplicial map that preserves
thinness.

Notation 2.8 The symbol “'” is used throughout to decorate thin simplices.
There are left and right adjoints

to the forgetful functor from stratified simplicial sets to ordinary simplicial sets,
both of which are full and faithful. The left adjoint assigns a simplicial set its
minimal stratification, with only degenerate simplices marked, while the right
adjoint assigns the maximal stratification, marking all simplices. When a simplicial
set is regarded as a stratified simplicial set, the default convention is to assign the
minimal stratification, with the notation “.�/[” typically omitted.

Definition 2.9 An inclusion U ,! V of stratified simplicial sets is:

• regular, denoted U ,!r V , if thin simplices in U are created in V (a simplex is
thin in U if and only if its image in V is thin); and

• entire, denoted U ,!e V , if the map is the identity on underlying simplicial sets
(in which case the only difference between U and V is that more simplices are
marked in V).

A standard inductive argument, left to the reader, proves:

Proposition 2.10 The monomorphisms in Strat are generated under pushout and
transfinite composition by

f@�Œn� ,!r �Œn� j n � 0g [ f�Œn� ,!e �Œn�t j n � 1g;

where the top-dimensional n-simplex in �Œn�t is thin.

Exercise 2.11 Prove this.
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2.4 Complicial Sets

A stratified simplicial set is a simplicial set with enough structure to talk about
composition of simplices. A complicial set is a stratified simplicial set in which
composites exist and in which thin witnesses to composition compose to thin
simplices, an associativity condition that will also play a role in establishing their
equivalence-like nature. The following form of the definition of a (weak) complicial
set, due to Verity [10], modifies an earlier equivalent presentation due to Street [7].
Verity’s modification focuses on a particular set of k-admissible n-simplices, thin n-
simplices that witness that the kth face is a composite of the .kC 1/th and .k � 1/th
simplices.

Definition 2.12 (k-Admissible n-Simplex) The k-admissible n-simplex is the
entire superset of the standard n-simplex with certain additional faces marked thin: a
non-degeneratem-simplex in�kŒn� is thin if and only if it contains all of the vertices
fk � 1; k; kC 1g \ Œn�. Thin faces include:

• the top dimensional n-simplex
• all codimension-one faces except for the .k � 1/th, kth, and .kC 1/th
• the 2-simplex spanned by Œk � 1; k; k C 1� when 0 � k � n or the edge spanned

by Œk � 1; k; kC 1� \ Œn� when k D 0 or k D n.

Definition 2.13 A complicial set is a stratified simplicial set that admits extensions
along the elementary anodyne extensions, which are generated under pushout and
transfinite composition by the following two sets of maps:

i. The complicial horn extensions

�kŒn� ,!r �
kŒn� for n � 1; 0 � k � n

are regular inclusions of k-admissible n-horns. An inner admissible n-horn
parametrizes “admissible composition” of a pair of .n � 1/-simplices. The
extension defines a composite .n � 1/-simplex together with a thin n-simplex
witness.

(3)

ii. The complicial thinness extensions

�kŒn�0 ,!e �
kŒn�00 for n � 1; 0 � k � n;

are entire inclusions of two entire supersets of�kŒn�. The stratified simplicial set
�kŒn�0 is obtained from�kŒn� by also marking the .k � 1/th and .kC 1/th faces,
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while �kŒn�00 has all codimension-one faces marked. This extension problem

(4)

demands that whenever the composable pair of simplices in an admissible horn
are thin, then so is any composite.

Definition 2.14 A strict complicial set is a stratified simplicial set that admits
unique extensions along the elementary anodyne extensions (3) and (4).

Example 2.15 (Complicial Horn Extensions) To gain familiarity with the ele-
mentary anodyne extensions, let us draw the complicial horn extensions in low
dimensions, using red to depict simplices present in the codomain but not the
domain and “'” to decorate thin simplices. The labels on the simplices are used
to suggest the interpretation of certain data as composites of other data, but recall
that in a (non-strict) complicial set there is no single simplex designated as the
composite of an admissible pair of simplices. Rather, the fillers for the complicial
horn extensions provide a composite and a witness to that relation.

� �1Œ2� ,!r �
1Œ2�

� �0Œ2� ,!r �
0Œ2�

� �2Œ3� ,!r �
2Œ3�

� �0Œ3� ,!r �
0Œ3�
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� For �2Œ4� ,!r �
2Œ4� the non-thin codimension-one faces in the horn define the

two 3-simplices with a common face displayed on the left, while their composite is
a 3-simplex as displayed on the right.

It makes sense to interpret the right hand simplex, the 2nd face of the 2-admissible
4-simplex, as a composite of the 3rd and 1st faces because the 2-simplex

is thin.

2.5 n-Trivialization and the n-Core

We now introduce the complicial analog of the condition that an .1;1/-category
is actually an .1; n/-category, in which each r-cell with r > n is weakly invertible.

Definition 2.16 A stratified simplicial set X is n-trivial if all r-simplices are
marked for r > n.

The full subcategory of n-trivial stratified simplicial sets is reflective and
coreflective

in the category of stratified simplicial sets. That is n-trivialization defines an
idempotent monad on Strat with unit the entire inclusion

X ,!e trnX

of a stratified simplicial set X into the stratified simplicial set trnX with the same
marked simplices in dimensions 1; : : : ; n, and with all higher simplices “made thin.”
A complicial set is n-trivial if this map is an isomorphism.
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The n-core corenX, defined by restricting to those simplices whose faces above
dimension n are all thin in X, defines an idempotent comonad with counit the regular
inclusion

corenX ,!r X:

Again, a complicial set is n-trivial just when this map is an equivalence. As is always
the case for a monad-comonad pair arising in this way, these functors are adjoints:
trn a coren.

The subcategories of n-trivial stratified simplicial sets assemble to define a string
of inclusions with adjoints

that filter the inclusion of simplicial sets, considered as maximally marked stratified
simplicial sets, into the category of all stratified simplicial sets.

Exercise 2.17 Show that the two right adjoints restrict to complicial sets to define
functors that model the inclusion of .1; n � 1/-categories into .1; n/-categories
and its right adjoint, which takes an .1; n/-category to the “groupoid core,” an
.1; n � 1/-category.

Remark 2.18 By contrast, the left adjoint, which just marks things arbitrarily, does
not preserve complicial structure; this construction is too naive to define the “freely
invert n-arrows” functor from .1; n/-categories to .1; n � 1/-categories.2

Exercise 2.19 Show that a 0-trivial complicial set is exactly a Kan complex with
the maximal “.�/]” marking.

Exercise 2.20 Prove that the underlying simplicial set of any 1-trivial complicial
set is a quasi-category.

Conversely, any quasi-category admits a stratification making it a complicial
set. The markings on the 1-simplices cannot be arbitrarily assigned. At minimum,
certain automorphisms (endo-simplices that are homotopic to identities) must
be marked. More to the point, each edge that is marked necessarily defines an
equivalence in the quasi-category. But it is not necessary to mark all of the
equivalences.

2For instance, if A is a naturally marked quasi-category, that is 1-trivial, then its zero trivialization
is not a Kan complex (because we have not changed the underlying simplicial set) but its groupoid
core is (by a theorem of Joyal).
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Example 2.21 Strict n-categories define n-trivial strict complicial sets, with unique
fillers for the admissible horns, via the Street nerve, which is the subject of the next
section.

In the third part of these notes, we argue that the complicial sets that most closely
model .1; n/-categories are the n-trivial saturated complicial sets, in which all
equivalences are marked. In the case of an n-trivial stratification, the equivalences
are canonically determined by the structure of the simplicial set. One bit of evidence
for the importance of the notion of saturation discussed below is the fact that the
category of quasi-categories is isomorphic to the category of saturated 1-trivial
complicial sets (Example 4.19).

3 The Street Nerve of an !-Category

The Street nerve is a functor

NW!-Cat! sSet

from strict !-categories to simplicial sets. As is always the case for nerve construc-
tions, the Street nerve is determined by a functor

OWΔ! !-Cat:

In this case, the image of Œn� 2 Δ is the nth oriental On, a strict n-category defined
by Street [7]. The nerve of a strict !-category C is then defined to be the simplicial
set whose n-simplices

NCn WD hom.On;C/

are !-functors On ! C. There are various ways to define a stratification on the
nerve of an !-category, defining a lift of the Street nerve to a functor valued in
stratified simplicial sets. One of these marking conventions turns Street nerves of
strict !-categories into strict complicial sets, and indeed all strict complicial sets
arise in this way. This is the content of the Street–Roberts conjecture, proven by
Verity, which motivated the definition of strict complicial sets.

Theorem 3.1 (Verity) The Street nerve defines a fully faithful embedding

of !-categories into stratified simplicial sets, where an n-simplex On ! C in NC is
marked if and only if it carries the top dimensional n-cell on On to an identity in C.
The essential image is the category of strict complicial sets.
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In Sect. 3.1, we introduce strict !-categories, and then in Sect. 3.2 we introduce
the orientals. In Sect. 3.3, we then define the Street nerve and revisit the Street–
Roberts conjecture, though we leave the details of its proof to [9]. At the conclusion
of this section, we look ahead to Sect. 4.1, which explores other marking conven-
tions for Street nerves of strict n-categories. In this way, the Street nerve provides
an important source of examples of weak, as well as strict, complicial sets. These
are obtained by marking the equivalences and not just the identities in NC, the
consideration of which leads naturally to the notion of saturation in a complicial
set, which is a main topic for the final section of these notes.

3.1 !-Categories

Street’s “The algebra of oriented simplexes” [7] gives a single-sorted definition of
a (strict) n-category in all dimensions n D 1; : : : ; !. In the single-sorted definition
of a 1-category, an object is identified with its identity morphism, and these 0-cells
are recognized among the set of 1-cells as the fixed points for the source and target
maps.

Definition 3.2 A 1-category .C; s; t;
/ consists of

• a set C of cells
• functions s; tWC � C so that ss D ts D s and tt D st D t (a target or source has

itself as its target and its source).
• a function 
WC 	C C! C from the pullback of s along t to C so that s.a 
 b/ D

s.b/ and t.a 
 b/ D t.a/ (the source of a composite is the source of its first cell
and the target is the target of the second cell).

and so that

• s.a/ D t.v/ D v implies a 
 v D a (right identity)
• u D s.u/ D t.a/ implies u 
 a D a (left identity)
• s.a/ D t.b/ and s.b/ D t.c/ imply a 
 .b 
 c/ D .a 
 b/ 
 c (associativity).

The objects or 0-cells are the fixed points for s and then also for t and conversely.

Definition 3.3 A 2-category .C; s0; t0;
0; s1; t1;
1/ consists of two 1-categories

.C; s0; t0;
0/ and .C; s1; t1;
1/

so that

• s1s0 D s0 D s0s1 D s0t1, t0 D t0s1 D t0t1 (globularity plus 1-sources and
1-targets of points are points)

• s0.a/ D t0.b/ implies s1.a 
0 b/ D s1.a/ 
0 s1.b/ and t1.a 
0 b/ D t1.a/ 
0 t1.b/
(1-cell boundaries of horizontal composites are composites).
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• s1.a/ D t1.b/ and s1.a0/ D t1.b0/ and s0.a/ D t0.a0/ imply that

.a 
1 b/ 
0 .a0 
1 b0/ D .a 
0 a0/ 
1 .b 
0 b0/

(middle four interchange).

Identities for 
0 are 0-cells and identities for 
1 are 1-cells.

Definition 3.4 An !C-category3 consists of 1-categories .C; sn; tn;
n/ for each
n 2 ! so that .C; sm; tm;
m; sn; tn;
n/ is a 2-category for each m < n. The identities
for 
n are n-cells. An !C-functor is a function that preserves sources, targets, and
composition for each n.

An !-category is an !C-category in which every element is a cell, an n-cell for
some n. Every !C-category has a maximal sub !-category of cells and all of the
constructions described here restrict to !-categories.

An n-category is an !-category comprised of only n-cells. This means that the
1-category structures .C; sm; tm;
m/ for m > n are all discrete.

Example 3.5 The underlying set functor !C-Cat! Set is represented by the free
!C-category 2! on one generator,4 whose underlying set is

.2 	 !/ [ f!g:

The element ! is the unique non-cell, while the objects .0; n/ and .1; n/ are n-cells,
respectively the n-source and n-target of !:

sn.!/ D .0; n/ and tn.!/ D .1; n/:

An m-cell is necessarily its own n-source and n-target for m � n; thus:

sn.�;m/ D tn.�;m/ D .�;m/ for m � n;

while:

sn.�;m/ D .0; n/ and tn.�;m/ D .1; n/ for n < m:

The identity laws dictate all of the composition relations, e.g.:

! 
n .0; n/ D ! D .1; n/ 
n !:

Using 2! one can define the functor !C-category ŒA;B� for two !C-categories
A and B: elements are !C-functors A 	 2! ! B.

3Street called these “!-categories” but we reserve this term for something else.
4In personal communication, Ross suggests that there may be something wrong with this example,
but I do not see what it is.
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Exercise 3.6 Work out the rest of the definition of the!C-category ŒA;B� and prove
that !C-Cat is cartesian closed.

Theorem 3.7 (Street) There is an equivalence of categories

.!C-Cat/-Cat '�! !C-Cat

which restricts to define an equivalence

.n-Cat/-Cat
'�! .1C n/-Cat

for each n 2 Œ0; !�.5
Proof The construction of this functor is extends the construction of a 2-category
from a Cat-enriched category. Let C be a category enriched in !C-categories.
Define an !C-category C whose underlying set is

C WD tu;v2obCC.u; v/:

The 0-source and 0-target of an element a 2 C.u; v/ are u and v, respectively, and
0-composition is defined using the enriched category composition. The n-source,n-
target, and n-composition are defined using the .n � 1/-category structure of the
!C-category C.u; v/.

Conversely, given an !C-category C, the associated !C-category enriched
category C can be defined by taking the 0-cells of C as the objects of C, defining
C.u; v/ to be the collection of elements with 0-source u and 0-target v, using the
operations .sn; tn;
n/ for n > 0 to define the !C-category structure on C.u; v/.

3.2 Orientals

The nth oriental On is a strict n-category with a single n-cell whose source is the
pasted composite of .n� 1/-cells, one for each of the odd faces of the simplex�Œn�,
and whose target is a pasted composite of .n�1/-cells, one for each of the even faces
of the simplex �Œn�. The orientals On can be recognized as full sub !-categories
of an !-category O! , the free !-category on the !-simplex �Œ!�, spanned by the
objects that correspond to the vertices of�Œn�. The precise combinatorial definition
of On is rather subtle to state, making use of Street’s notion of parity complex, which
we decline to introduce in general. Before defining the orientals as special cases of
parity complexes, we first describe the low-dimensional cases.

5Recall that in ordinal arithmetic 1C ! D !.
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The orientals O0;O1;O2; : : : are !-categories, where each On is an n-category.
In low dimensions:

(n D 0) O0 is the !-category with a single 0-cell:

0

(n D 1) O1 is the !-category with two 0-cells 0; 1 and a 1-cell:

(n D 2) O2 is the !-category with three 0-cells 0; 1; 2 and four 1-cells as
displayed:

Note that only two of these are composable, with their composite the 1-cell
denoted by f01; 12g. The underlying 1-category of O2 is the non-commutative
triangle, the free 1-category generated by the ordinal Œ2�.
There is a unique 2-cell

whose 0-source is 0 and whose 0-target is 2, and whose 1-source is 02 and whose
1-target is f01; 12g. We can simplify our pictures by declining to draw the free
composites that are present in O2, as they must be in any !-category. Under this
simplifying convention, O2 is depicted as:

(n D 3) Similarly O3 has four 0-cells, abbreviated 0,1,2,3; has the free category
on the graph [3] as its underlying 1-category, with six atomic 1-cells and five
free composites; has four atomic 2-cells plus two composites; and has a 3-cell
from one of these composites to the other. Under the simplifying conventions
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established above, O3 can be drawn as:

Definition 3.8 (The nth Oriental, Informally) The nth oriental is the strict n-
category On whose atomic k-cells corresponding to the k-dimensional faces of
�Œn� (the non-degenerate k-simplices, which can be identified with .kC 1/-element
subsets of Œn�). The codimension-one source of a k-cell is a pasted composite of
the odd faces of the �Œk�-simplex, while the codimension-one target is a pasted
composite of the even faces of the k-simplex.

If S is a subset of faces of�Œn�write S� for the union of the odd faces of simplices
in S and write SC for the union of even faces of simplices in S. Write Sk for the k-
dimensional elements of S and jSjk for the elements of dimension at most k.

Definition 3.9 (The nth Oriental, Precisely) The k-cells of the n-category On are
pairs .M;P/ where M and P are non-empty, well-formed, finite subsets of faces of
�Œn� of dimension at most k so that M and P both move M to P. Here a subset S of
faces of �Œn� is well-formed if it contains at most one vertex and if for any distinct
elements x ¤ y, x and y have no common sources and no common targets. A subset
S movesM to P if

M D .P [ S�/nSC and P D .M [ SC/nS�:

If .M;P/ is a m-cell, the axioms imply that Mm D Pm. The k-source and k-target
are given by

sk.M;P/ WD .jMjk;Mk [ jPjk�1/
tk.M;P/ WD .jMjk�1 [ Pk; jPjk/

and composition is defined by

.M;P/ 
k .N;Q/ WD .M [ .NnNk/; .PnPk/ [Q/:

Example 3.10 The oriental O4 has a unique 4-cell given by the pair

M D f01234; 0124; 0234; 012; 023; 034; 04; 0g
P D f01234; 0123; 0134; 1234; 124; 234; 014; 01; 12; 23; 34; 4g:

Exercise 3.11 Identify the source and target of the unique 4-cell in O4.

Exercise 3.12 Show that On has a unique n-cell.
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The orientals satisfy the universal property of being freely generated by the faces
of the simplex, in the sense of the following definition of free generation for an
!-category.

Definition 3.13 For an !-category C, write jCjn for its n-categorical truncation,
discarding all higher-dimensional cells. The !-category C is freely generated by a
subset G � C if for each !-category X, n 2 !, n-functor jCjn ! X, and map G \
jCjnC1 ! X, compatible with n-sources and targets there exists a unique extension
to an .nC 1/-functor jCjnC1 ! X.

Theorem 3.14 (Street) The category On is freely generated by the faces of �Œn�.

Exercise 3.15 Use this universal property to show that the orientals define a
cosimplicial object in !-categories

OWΔ! !-Cat:

This cosimplicial object gives rise to the Street nerve, to which we now turn.

3.3 The Street Nerve as a Strict Complicial Set

Definition 3.16 The Street nerve of an !-category C, is the simplicial set NC
whose n-simplices are !-functors On ! C.

Example 3.17 (Street Nerves of Low-Dimensional Categories)

i. The Street nerve of a 1-category is its usual nerve.
ii. The Street nerve of a 2-category has 0-simplices the objects, 1-simplices the

1-cells, and 2-simplices the 2-cells ˛W h ) g f whose target is a specified
composite

The 3-simplices record equations between pasted composites of 2-cells of the
form
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This simplicial set is 3-coskeletal, with a unique filler for all spheres in higher
dimensions.

In general:

Theorem 3.18 (Street) The nerve of an n-category is .nC 1/-coskeletal.
The Street nerve can be lifted along UWStrat! sSet by choosing a stratification

for the simplicial set NC.

Definition 3.19 In the identity stratification of the Street nerve of an !-category
C, an n-simplex in NC is marked if and only if the corresponding!-functorOn ! C
carries the n-cell in On to a cell of lower dimension in C. That is, in the identity
stratification of NC, only those n-simplices corresponding to identities are marked.

The identity stratification defines a functor !-Cat ! Strat. This terminology
allows us to restate the Street–Roberts conjecture more concisely:

Theorem 3.20 (Verity) The Street nerve with the identity stratification defines a
fully faithful embedding

of !-categories into stratified simplicial sets, with essential image the category of
strict complicial sets.

Example 3.21

i. If C is a 1-category, the identity stratification turns NC into a 2-trivial strict
complicial set with only the identity (i.e., degenerate) 1-simplices marked.

ii. If C is a 2-category, the identity stratification turns NC into a 3-trivial strict
complicial set with only the degenerate 1-simplices marked and with a 2-simplex
marked if and only if it is inhabited by an identity 2-cell, whether or not there
are degenerate edges, e.g.,:

An interesting feature of the complicial sets model of higher categories is that
strict !-categories can also be a source of weak rather than strict complicial sets,
simply by choosing a more expansive marking convention. We begin the next
section by exploring this possibility.
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4 Saturated Complicial Sets

In the previous section, we defined the Street nerve of an !-category C, a simplicial
set NC whose n-simplices are diagrams On ! C indexed by the nth oriental. We
observed that this simplicial set becomes a strict complicial set if we mark precisely
those diagrams On ! C that carry the n-cell of On to a cell of dimension less than
n in C (i.e., to an identity).

One of the virtues of the complicial sets model of weak higher categories is the
possibility of changing the stratification on a given simplicial set if one desires a
more generous or more refined notion of thinness, corresponding to a tighter or
looser definition of composition. The identity stratification of NC is the smallest
stratification that makes this simplicial set into a weak complicial set, but we will
soon meet other larger stratifications that are more categorically natural.

In Sect. 4.1, we begin by looking in low dimensions for limitations on which
simplices can be marked in a complicial set, and discover that any marked 1-simplex
is necessarily an 1-equivalence, in a sense that we define. In Sect. 4.2, we introduce
the higher-dimensional generalization of these notions. We conclude in Sect. 4.3
by summarizing the work of Verity that establishes the basic homotopy theory of
complicial sets of various flavors.

To construct weak complicial sets from nerves of strict !-categories, the
stratification on the Street nerve is enlarged, but in other instances refinement
of the markings is desired. For example, Verity constructs a Kan complex of
simplicial cobordisms between piecewise-linear manifolds. Because the underlying
simplicial set is a Kan complex, it becomes a weak complicial set under the 0-trivial
stratification where all cobordisms (all positive-dimensional simplices) are marked.
Other choices, in increasing order of refinement, are to mark the h-cobordisms
(cobordisms for which the negative and positive boundary inclusions are homotopy
equivalences), the quasi-invertible cobordisms (the “equivalences”), or merely the
trivial cobordisms (meaning the cobordism “collapses” onto its negative and also its
positive boundary).

4.1 Weak Complicial Sets from Strict !-Categories

To explore other potential markings of Street nerves of strict !-categories, we first
ask whether it is possible to mark more than just the degenerate 1-simplices.

If f is a marked edge in any complicial set A, then the �2Œ2�-horn with 0th face
f and 1st face degenerate is admissible, so f has a right equivalence inverse. A dual
construction involving a �0Œ2�-horn shows that f has a left equivalence inverse.

(5)
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The elementary thinness extensions imply further than these one-sided inverses are
also marked, so they admit further inverses of their own.

Definition 4.1 A 1-simplex in a stratified simplicial set is a 1-equivalence if there
exist a pair of thin 2-simplices as displayed

Note the notion of 1-equivalence is defined relative to the 2-dimensional
stratification.

Remark 4.2 There are many equivalent ways to characterize the 1-equivalences
in a complicial set A. We choose Definition 4.1 because of its simplicity and
naturality, and because this definition provides a homotopically well-behaved type
of equivalences in homotopy type theory; see [3, 2.4.10].

The elementary anodyne extensions displayed in (5) prove:

Proposition 4.3 Any marked 1-simplex in a complicial set is a 1-equivalence.
This result suggests an alternate stratification for nerves of 1-categories:

Proposition 4.4 If C is a 1-category then the 1-trivial stratification of NC with the
isomorphisms as marked 1-simplices defines a complicial set.

Depending on the 1-category there may be intermediate stratifications where only
some of the isomorphisms are marked (the set of marked edges has to satisfy the 2-
of-3 property) but these are somehow less interesting.

Exercise 4.5 Prove Proposition 4.4.
Let us now consider the degenerate edges, the thin edges, and the 1-equivalences

as subsets of the set of 1-simplices in a complicial set A. In any stratified
simplicial set, the degenerate 1-simplices are necessarily thin. In a complicial set
A, Proposition 4.3 proves that the thin 1-simplices are necessarily 1-equivalences,
but there is nothing in the complicial set axioms that guarantees that all equivalences
are marked. We introduce terminology that characterizes when this is the case:

Definition 4.6 A complicial set A is 1-saturated if every 1-equivalence is marked.
If a 1-trivial complicial set is 1-saturated then it is saturated in the sense of

Definition 4.15 below. From the definitions, it is easy to prove:

Proposition 4.7 If C is a strict 1-category, there is a unique saturated 1-trivial
complicial structure on NC, namely the one in which every isomorphism in C is
marked. Moreover, this is the maximal 1-trivial stratification making NC into a
complicial set.

Exercise 4.8 Prove this.
To build intuition for higher dimensional generalizations of these notions, next

consider the Street nerve of a strict 2-category as a 2-trivial stratified simplicial set.
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As the notion of 1-saturation introduced in Definitions 4.1 and 4.6 depends on the
markings of 2-simplices, it makes sense to consider the markings on the 2-simplices
first. If only identity 2-simplices are marked, then the 1-saturation ofNC is as before:
marking all of the 1-cell isomorphisms in the 2-category C. But we might ask again
whether a larger stratification is possible at level 2.

In any complicial set, consider a thin 2-simplex ˛ with 0th edge degenerate. From
˛ one can build admissible �1Œ3� and admissible �3Œ3�-horns admitting thin fillers:

So again we conclude that any thin 2-simplex of this form is necessarily an
“equivalence” up to thin 3-simplices, in the sense of the displayed diagrams.
Informally, a complicial set is 2-saturated if all 2-simplices that are equivalences
in this sense are marked. A precise definition of saturation that applies in any
dimension appears momentarily as Definition 4.15. It follows that:

Proposition 4.9 If C is a strict 2-category, there is a unique saturated 2-trivial
complicial structure on NC, in which the 2-cell isomorphisms and the 1-cell
equivalences are marked. Moreover, this is the maximal 2-trivial stratification
making NC into a complicial set.

Unlike the 1-trivial saturated stratification on the Street nerve of a 1-category
described in Proposition 4.7, the 2-trivial saturated stratification on the Street nerve
of a 2-category described in Proposition 4.9 describes a weak and not a strict
complicial set.

4.2 Saturation

To define saturation in any dimension, it is convenient to rephrase the definition of
1-saturation as a lifting property. The pair of thin 2-simplices
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define the 3rd and 0th faces of an inner admissible �1Œ3�- or �2Œ3�-horn that fills to
define a thin 3-simplex

This 3-simplex defines a map �Œ3�eq ! A, where �Œ3�eq is the 3-simplex given a
1-trivial stratification with the edges Œ02� and Œ13� also marked.

Proposition 4.10 A complicial set A is 1-saturated if and only if it admits exten-
sions along the entire inclusion of �Œ3�eq into the maximally marked 3-simplex:

Exercise 4.11 Prove this.
There are similar extension problems that detects saturation in any dimension,

which are defined by forming the join of the inclusion �Œ3�eq ,!e �Œ3�
] with

simplices on one side or the other.

Definition 4.12 (Join and Slice) The ordinal sum on ΔC extends via Day convo-
lution to a bifunctor on the category of augmented simplicial sets called the join.
Any simplicial set can be regarded as a trivially augmented simplicial set. Under
this inclusion, the join restricts to define a bifunctor

sSet 	 sSet
?�! sSet

so that�Œn� ?�Œm� D �ŒnCmC 1�. More generally, an n-simplex in the join A?B
of two simplicial sets is a pair of simplices �Œk� ! A and �Œn � k � 1� ! B for
some �1 � k < n. Here �Œ�1� is the trivial augmentation of the empty simplicial
set, in which case the functors �Œ�1� ? � and � ? �Œ�1� are naturally isomorphic
to the identity.

The left and right slices of a simplicial set A over a simplex 
 W�Œn�! A are the
simplicial sets 
nA and A=
 whose k-simplices correspond to diagrams

(6)

See [4] for more.
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Definition 4.13 (Stratified Join) The simplicial join lifts to a join bifunctor

Strat 	 Strat
?�! Strat

in which a simplex�Œn�! A?B, with components�Œk�! A and�Œn�k�1�! B,
is marked in A ? B if and only if at least one of the simplices in A or B is marked.
More details can be found in [9].

Exercise 4.14 Define a stratification on the slices 
nA and A=
 over an n-simplex

 W�Œn�! A so that the correspondence (6) extends to stratified simplicial sets.

Definition 4.15 A complicial set is saturated if it admits extensions along the set
of entire inclusions

f�Œm� ? �Œ3�eq ? �Œn� ,!e �Œm� ? �Œ3�
] ? �Œn� j n;m � �1g:

In fact, it suffices to require only extensions

along inclusions of one-sided joins of the inclusion �Œ3�eq ,!e �Œ3�
] with an n-

simplex for each n � �1, and as it turns out only the left-handed joins or right-
handed joins are needed.

By Proposition 4.10, the n D �1 case of Definition 4.15 asserts that every 1-
equivalence in A, defined relative to the marked 2-simplices and marked 3-simplices,
is marked. By Proposition 4.10 again, the general extension property

asserts that every 1-equivalence in the slice complicial set A=
 is marked.
At first blush, Definition 4.15 does not seem to be general enough. In the case of a

vertex 
 W�Œ0�! A, 1-equivalences in A=
 define 2-simplices in A whose Œ01�-edge
is a 1-equivalence. In particular, a generic 2-simplex
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with no 1-equivalence edges along its boundary, does not define a 1-equivalence in
any slice complicial set. However, there are admissible 3-horns that can be filled to
define the pasted composites of ˛ with 1f and 1g, respectively:

By the complicial thinness extension property, if any of ˛, Ǫ , or L̨ are marked, then
all of them are.

Exercise 4.16 Generalize this “translation” argument to prove that any n-simplex
in a complicial set is connected via a finite sequence of n-simplices to an n-simplex
whose first face is degenerate and an n-simplex whose last face is degenerate in such
a way that if any one of these simplices is thin, they all are.

Definition 4.17 In an n-trivial complicial set, an n-simplex 
 W�Œn� ! A is an n-
equivalence if it admits an extension

along the map �Œn� ,! �Œ3�eq ? �Œn � 2� whose image includes the edge Œ1; 2� of
�Œ3�eq and all of the vertices of �Œn � 2�.
Remark 4.18 The set of n-equivalences identified by Definition 4.17 depends on the
marked .n C 1/-simplices, which is the reason we have only stated this definition
for an n-trivial complicial set. The n-equivalences in a generic complicial set are
characterized by an inductive definition, the formulation of which we leave to the
reader.

Example 4.19 (Quasi-Categories as Complicial Sets) Expanding on the work of
Sect. 2.1, a quasi-category has a unique saturated stratification making it a compli-
cial set: namely the 1-trivial saturation where all of the 1-equivalences are marked.
This is the “natural marking” discussed in [5]. Conversely, any 1-trivial saturated
complicial set is a quasi-category. So quasi-categories are precisely the 1-trivial
saturated complicial sets.
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Each simplicial set has a minimum stratification, with only degeneracies marked.
Because the definition of saturation is inductive, each simplicial set also has a
minimum saturated stratification. Larger saturated stratifications also exist (e.g.,
the maximal marking of all positive-dimensional simplices). It is more delicate
to describe how the process of saturating a given complicial set interacts with the
complicial structure: adding new thin simplices adds new admissible horns which
need fillers. What is more easily understood are model structures whose fibrant
objects are complicial sets of a particular form, a subject to which we now turn.

4.3 Model Categories of Complicial Sets

The category of stratified simplicial sets is cartesian closed, where the cartesian
product 	 is referred to as the Gray tensor product because this is the analogous
tensor product in higher category theory.6 We write “hom” for the internal hom
characterized by the 2-variable adjunction

Strat.A 	 B;C/ Š Strat.A; hom.B;C// Š Strat.B; hom.A;C//:

Let

I WD f@�Œn� ,! �Œn� j n � 0g [ f�Œn� ,! �Œn�t j n � 0g

denote the generating set of monomorphisms of stratified simplicial sets introduced
in Proposition 2.10 and let

J WD f�kŒn� ,!r �
kŒn� j n � 1; k 2 Œn�g [ f�kŒn�0 ,!e �

kŒn�00 j n � 2; k 2 Œn�g

denote the set of elementary anodyne extensions introduced in Definition 2.13,
the right lifting property against which characterizes the complicial sets. A com-
binatorial lemma proves that the pushout product I O	J of maps in I with maps in
J is an anodyne extension: that is, may be expressed as a retract of a transfinite
composite of pushouts of coproducts of elements of J (here mere composites of
pushouts suffice). As a corollary:

Proposition 4.20 (Verity [10]) If X is a stratified simplicial set and A is a weak
complicial set, then hom.X;A/ is a weak complicial set.

Verity provides a very general result for constructing model structures whose
fibrant objects are defined relative to some set of monomorphisms K containing J.

6Note that in the theory of bicategories, the cartesian product plays the role of the Gray tensor
product in 2-category theory, in the sense that there is a biadjunction between the cartesian product
and the hom-bicategory of pseudofunctors, pseudo-natural transformations, and modifications.
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Call a stratified simplicial set a K-complicial set if it admits extensions along each
map in K. Suppose K is a set of monomorphisms of Strat so that

i. every elementary anodyne extension is in K

and moreover each of/all of the following equivalent conditions hold for each j 2
K:

ii. Each element j of K is a K-weak equivalence: i.e., hom. j;A/ is a homotopy
equivalence7 for each K-fibrant stratified set.

iii. hom. j;A/ is a trivial fibration for each K-complicial set.
iv. Each K-complicial set admits extensions along all the maps i O	j for all i 2 I and

j 2 K.

Call a map that has the right lifting property with respect to the set K a K-complicial
fibration.

Theorem 4.21 (Verity [10]) Each set of stratified inclusions K satisfying the
conditions (i)–(iv) gives rise to a cofibrantly generated model structure whose:

• weak equivalences are the K-weak equivalences,
• cofibrations are monomorphisms,
• fibrant objects are the K-complicial sets, and
• fibrations between fibrant objects are K-complicial fibrations.

Moreover, such a model structure is monoidal with respect to the Gray tensor
product.

Proof Apply Jeff Smith’s theorem [10, 125].

Example 4.22 Theorem 4.21 applies to the minimal set of elementary anodyne
extensions

J WD f�kŒn� ,!r �
kŒn� j n � 1; k 2 Œn�g [ f�kŒn�0 ,!e �

kŒn�00 j n � 2; k 2 Œn�g

defining the model structure for complicial sets.

Example 4.23 Theorem 4.21 applies to the union of the minimal J with

Ktr
n WD f�Œr� ,!e �Œr�t j r > ng

defining the model structure for n-trivial complicial sets.

Example 4.24 Theorem 4.21 applies to the union of the minimal J with

Ks WD f�Œm� ? �Œ3�eq ? �Œn� ,! �Œm� ? �Œ3�] ? �Œn� j m; n � �1g

7Two maps f ; gWX ! A are homotopic if they extend to a map X 	 �Œ1�] ! A. If A is a weak
complicial set, this “simple homotopy” is an equivalence relation.
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defining the model structure for saturated complicial sets.

Example 4.25 Theorem 4.21 applies to the union of the minimal J with both Ktr
n

and Ks defining the model structure for n-trivial saturated complicial sets.
By Example 4.19, the n D 1 case of this last result gives a new proof of Joyal’s

model structure for quasi-categories.
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A Non-crossing Word Cooperad for Free
Homotopy Probability Theory

Gabriel C. Drummond-Cole

Abstract We construct a cooperad which extends the framework of homotopy
probability theory to free probability theory. The cooperad constructed, which seems
related to the sequence and cactus operads, may be of independent interest.

1 Introduction

The purpose of this paper is to provide a convenient operadic framework for the
cumulants of free probability theory. In [4, 5], the author and his collaborators
described an operadic framework for classical and Boolean cumulants. This frame-
work involves a choice of governing cooperad, and in both the classical and Boolean
cases, the choice is an “obvious” and well-studied algebraic object. Namely, for
classical cumulants, the governing cooperad is the cocommutative cooperad, while
for Boolean cumulants it is the coassociative cooperad.

Extending this framework to free probability requires the construction of a
governing cooperad with certain properties. The main construction of this paper is a
cooperad, called the non-crossing word cooperad, satisfying these properties. As far
as the author can tell, this cooperad is, at least to some degree, new. No well-studied
cooperad (such as those in [21]) seems to satisfy the requisite properties. That said,
there is clearly some sort of relationship between the newly constructed cooperad
and the sequence [1, 10] and cactus [8, 9, 20] operads. This line of thinking is not
pursued in this article beyond the remark at the end of Sect. 3. If it turns out that this
cactus variant is well-known, that would be delightful—please let us know.

Also, we make no attempt here to axiomatize the properties necessary to interface
appropriately with free probability or to prove any uniqueness results. That is
to say, there is every likelihood that this is the “wrong” cooperad. First of all,
there is the near miss in terms of structure compared to the previously known

G.C. Drummond-Cole (�)
Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of
Korea
e-mail: gabriel@ibs.re.kr

© Springer International Publishing AG, part of Springer Nature 2018
D.R. Wood et al. (eds.), 2016 MATRIX Annals, MATRIX Book Series 1,
https://doi.org/10.1007/978-3-319-72299-3_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72299-3_5&domain=pdf
mailto:gabriel@ibs.re.kr
https://doi.org/10.1007/978-3-319-72299-3_5


78 G.C. Drummond-Cole

operads. In addition, there are at least two failures of parallelism between the
classical and Boolean cases and the new case presented here. See the remark
following Theorem 1. One possible explanation for these failures is that the correct
framework requires operator-valued free cumulants, that is, free cumulants with a
not necessarily commutative ground ring. This line of reasoning has been pursued
in other work [2]. It would also be exciting to hear about other potential frameworks
to bring free cumulants into the framework of this kind of operadic algebra, whether
along the same rough lines as in this paper or not.

The remainder of the paper is organized as follows. For convenience, we work
with unbiased definitions of operads and cooperads, writing them in terms of finite
sets and never choosing a particular ordered set. This is not usual in the literature
although it should be familiar to experts. The paper begins with a review of this
formalism.

Next, we describe the kind of words we will use and construct two cooperads
spanned by them. The first, the word cooperad, is auxiliary for our purposes
although it may have independent interest. We construct the non-crossing word
cooperad as a quotient of the word cooperad. After a brief review of necessary
notions from homotopy probability theory and free probability theory, we apply the
non-crossing word cooperad to the motivating question and show that it fits into the
framework of homotopy probability theory.

1.1 Conventions

We will use the notation Œn� to denote the set f1; : : : ; ng. We work over a field K of
characteristic zero.

2 Unbiased Operads and Cooperads

We will use an unbiased definition for operads and cooperads, as it significantly
reduces the notation necessary to describe our structures at the cost of requiring
a few explicit definitions rather than a reference. There are several distinct issues
that one faces with cooperadic algebra in full generality, related to issues like
conilpotency, 0-ary operations, and the “handedness” of the categories we generally
work in. We will make several strong simplifying assumptions to avoid the most
obvious pitfalls.

Let Lin be either the category of vector spaces, the category of graded vector
spaces, or the category of chain complexes over K. We consider vector spaces as
graded vector spaces concentrated in degree zero and graded vector spaces as chain
complexes with zero differential without further comment.
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2.1 Species and Plethysm

Definition 1 A linear species is a functor from finite sets and their isomorphisms
to Lin. A species is reduced if it takes value 0 on the empty set.

All species will be linear in this paper.
The unit species I has I.S/ D K if jSj D 1 and I.S/ D 0 otherwise, with the

identity for every nonzero morphism.
The coinvariant composition or coinvariant plethysm of two species F and G is

the species F ıG given by

.F ıG/.S/ D colim
S

f�!T

 

F.T/˝
O

t2T
G. f�1.t//

!

:

The invariant composition or invariant plethysm of two species F and G is the
species F NıG given by

.F NıG/.S/ D lim
S

f�!T

 

F.T/˝
O

t2T
G. f�1.t//

!

:

In both cases the limits and colimits are taken over the diagram category whose
objects are maps out of S and whose morphisms are isomorphisms under S.

Lemma 1 Let F be a species and let G be a reduced species. Then there is an
isomorphism between F NıG and F ıG, defined below.

Proof For a fixed set S, choose a set of representatives f fi W S ! Tig, one for each
isomorphism type of surjection f W S ! T in the diagram category defining both
plethysms. This set is a fortiori finite because we have restricted to surjections.

The invariant plethysm projects onto the defining factor

.F ıG/.S/i :D F.Ti/˝
O

t2Ti
G. f�1i .ti// :

Likewise, the coinvariant plethysm receives a map from .F ıG/.S/i.
This collection of maps then determines both:

1. a map from the invariant plethysm to the direct product
Q
.F ıG/.S/i and

2. a map from the direct sum
L
.F ıG/.S/i to the coinvariant plethysm.

But since the product is finite, the natural map from the sum to the product is
invertible and so we can compose to get a map

F NıG!
Y

i

.F ıG/.S/i Š
M

i

.F ıG/.S/i! F ıG :
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This overall composition is independent of the choices of representatives. Since G is
reduced, this runs over all isomorphism types necessary to define both the invariant
and coinvariant plethysm. Moreover, because we are working in characteristic zero,
the map, for each fixed isomorphism class, is an isomorphism. ut

There are two points that require care. First of all, we should make sure that when
we actually move between the two, that we consistently adhere to the particular
choice of isomorphism outlined here. That is, there are two or three different
normalizations of this isomorphism present in the literature. The others differ by
something like a factor of jSjŠ or 1

jSjŠ on each component of the product/sum above.
Secondly, we do not have such a map when G is not reduced.

Lemma 2 There are natural isomorphisms making linear species equipped with
the unit species and coinvariant plethysm a monoidal category. There are natural
isomorphisms making reduced linear species equipped with the unit species and
invariant plethysm a monoidal category.

Proof The left and right unitor isomorphisms can be constructed by direct compu-
tation of the (co)limits involved.

Colimits (and essentially finite limits) commute with tensor product. Then .F ı
G/ ı H and F ı .G ı H/ are both naturally isomorphic to

colim
S

f
�T

g
�U

 

F.U/˝
O

u2U
G.g�1.u//˝

O

t2T
H. f�1.t//

!

:

Verifying that these natural isomorphisms satisfy the triangle and pentagon axioms
is straightforward. The case of the invariant plethysm is basically the same. ut

2.2 Operads and Cooperads

Definition 2 An operad is a monoid in the monoidal category of linear species with
coinvariant plethysm. A (reduced) cooperad is a comonoid in the monoidal category
of reduced species with invariant plethysm.
The data of an operad P D .P; �; �/ consists of a species P equipped with maps

� W I ! P (the unit) and P ı P ��! P (the composition). The composition must be
associative and the unit must satisfy left and right unit properties.

More explicitly, to specify a composition map out of the defining colimit of PıP
it suffices to give a map out of each term with the appropriate equivariance. So for a
map f W S! T, one can specify a map

�f W P.T/˝
O

t2T
P. f�1.t//! P.S/

and then define the composition map as the colimit of �f .
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Similarly, the data of a cooperad C D .C; ";�/ consists of a reduced species C

equipped with maps " W C ! I (the counit) and C
��! C Nı C (the decomposition).

The decomposition must be coassociative and the counit must satisfy left and right
counit properties.

More explicitly, to specify a decomposition map into the defining limit of C Nı C
it suffices to give a map into each term with the appropriate coequivariance. So for
a surjection f W S � T, one can specify a map

�f W C.S/! C.T/˝
O

t2T
C. f�1.t//

and then define � as the limit of �f .
In practice, the (co)equivariance and (co)unital conditions are easy to verify and

the main thing to check is (co)associativity.

Remark 1 The expression of operads as monoids in a monoidal category is due to
Smirnov [16]; the dual picture was written down in [7]. In general, biased definitions
are more common in the literature. Given a (co)operad in this unbiased definition,
one can recover the data of a (co)operad under a more standard definition by
restricting to the full subcategory containing only the objects Œn�.

2.3 Examples

We shall use a few simple operads and cooperads. In all of the following,

1. by definition all the species in the examples are reduced, and sets S are assumed
to be non-empty.

2. all units and counits are given by the identity map K ! K for each singleton
set S,

3. it is easy to verify (co)unitality and (co)equivariance, and
4. it is a straightforward (potentially tedious) calculation to verify (co)associativity

of the specified (co)composition.

Verifications of (co)unitality, (co)equivariance, and (co)associativity are omitted.

Example 1

1. The unit species I, along with the identity and the canonical isomorphisms I Nı I Š
I Š I ı I, has both an operad and cooperad structure. We denote both of these
by I.

2. Let Com be the species withCom.S/ D K for all S (andCom applied to all maps
is the identity on K). We give this species an operad structure by specifying

�f W K˝
O

t2T
K! K
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given by the natural identification. This is the commutative operad and is denoted
Com.

3. Similarly, we give the data �f for a cooperad with underlying species Com. In
this case as well,

�f W K! K˝
O

t2T
K

is the natural identification. This is the cocommutative cooperad and is denoted
coCom.

4. Let Ass be the species such that Ass.S/ is the K-linear span of total orders on S:

Ord.S/ :D Iso.S; ŒjSj�/ :

We will specify an operad with underlying species Ass. Given a surjection f W
S! T, there is an embedding f W Ord.T/ 	QOrd. f�1.t//! Ord.S/ given by

f

�
% 	

Y
�t

�
.s/ D �f .s/.s/C

X

%.t/<%. f .s//

j f�1.t/j :

Define the composition map �f as the K-linear extension of f . The resulting
operad is the associative operad, denoted Ass.

5. Finally, we specify a cooperad with the same underlying species Ass. The
decomposition map

�f W KhOrd.S/i ! KhOrd.T/i ˝
O

t2T
KhOrd. f�1.t//i :

is again determined by  by the equation

�f .
/ D
X

%;�t

ı
;f .%	Q �t/

�
% 	

Y
�t

�
:

The resulting cooperad is the coassociative cooperad and is denoted coAss.

2.4 Algebras and Coalgebras

Now we move on to the discussion of algebras over operads and coalgebras over
cooperads. The category Lin embeds into the category of (non-reduced) species as
follows. Let V be an object in Lin. Then .V/ is the species with .V/.;/ D V and
.V/.S/ D 0 for nonempty S.



A Non-crossing Word Cooperad for Free Homotopy Probability Theory 83

Definition 3 Let F be an species. The Schur functor associated to F is a functor
Lin! Lin, defined by

V 7! .F ı .V//.;/ :
We will abuse notation and use the notation Fı for this functor.

The Schur functor Iı for the unit species I is naturally equivalent to the identity
functor. Since the coinvariant plethysm is associative, the iterated Schur functor of
two species is naturally isomorphic to the Schur functor of the plethysm:

F ı .G ı .V// Š .F ıG/ ı .V/ :
This implies the following.

Lemma 3 If the species F is equipped with an operad structure, the unit and
composition induce a monad structure on the Schur functor F.

If the reduced species F is equipped with a cooperad structure, the counit and
cocomposition induce a comonad structure on the Schur functor F.

Definition 4 Let P D .P; �; �/ be an operad. An algebra over P is an algebra
over the monad P. This is the same as a Lin object V equipped with a morphism
P ı V ! V compatible with the monad structure.

Let C D .C; ";�/ be a cooperad. A conilpotent coalgebra over C is a coalgebra
over the comonad Cı. This is the same as a Lin object V equipped with a morphism
V ! C ı V compatible with the comonad structure.
As is general for monads, the forgetful functor from the category of algebras over an
operad P D .P; �; �/ to Lin has a left adjoint, the free P-algebra functor, realized
by the Schur functor and the monad structure of Pı. We distinguish between the
Schur functor Pı between Lin and itself and the Schur functor Pı between Lin and
P-algebras.

Similarly, the forgetful functor U from conilpotent coalgebras over a cooperad
C D .C; ";�/ to Lin has a right adjoint, the cofree conilpotent C-coalgebra
functor, realized by the Schur functor and the comonad structure of Cı. Again,
we distinguish between the Schur functor Cı between Lin and itself and the Schur
functor Cı between Lin and C-coalgebras.

In any event, the adjunction above implies that a morphism of conilpotent C-
coalgebras from some coalgebra X into C ıV may be identified via this adjoint with
a Lin morphism from the underlying Lin-object of X to V .

In general, the adjunction HomLin.UX;V/! HomC-coalgebras.X;CıV/ is realized
by taking a Lin-morphism f to the composite

X
coalgebraic structure map��������������! C ı .UX/ Cıf��! C ı V

and the inverse map is given by taking a coalgebra map to its composite with the
counit applied to V:

UX ! U.C ı V/ Š C ı V ! I ı V Š V :
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2.5 Automorphisms of Cofree Coalgebras

We record a characterization of automorphisms of cofree coalgebras in terms of
this adjunction. We call a cooperad (or a species, by abuse of notation) strongly
coaugmented if it is reduced and takes value K on a singleton. A strongly
coaugmented cooperad C accepts a map from the cooperad I which fits into the
following diagram

which is necessarily unique.
For a species C, given a Lin map f W CıV ! V and a finite set S we let fS denote

the restriction

colim
Aut S

C.S/˝ V˝S ! C ı V f�! V :

Then we have the following.

Lemma 4 Let C D .C; ";�/ be a strongly coaugmented cooperad. Let V be an
object of Lin. A morphism f W U.C ı V/ Š C ı V ! V is adjoint to a coalgebra
automorphism C ı V ! C ı V if and only if fS is an isomorphism when jSj D 1.
Proof Let Qf and Qg be composable morphisms from C ı V to itself with composite
Qh D Qg ı Qf . Write their adjoints from U.C ı V/ to V as f , g, and h. Then by using
the above characterization of the adjunction, one can calculate that for S a singleton,
we have hS D gS ı fS (identifying V with C.S/˝V). This shows the necessity of the
condition.

To show sufficiency, we can proceed by induction on the size of the finite sets in
the colimit definining the Schur functor. Let us be a little more explicit for the left
inverse to f .

Since we want Qh to be the identity, we should have hS D 0 for jSj > 1. The
explicit formula for hS contains the term gSı. f˝S

1 / plus a sum of terms each of which
involves only fS0 and gS00 for some S00 strictly smaller than S. Then by invertibility of
f1 this suffices to define gS recursively. A similar procedure defines a right inverse.
A priori the formulas defining the right inverse are different but existence of both
one-sided inverses forces them to be equal. ut
We conclude the section with a few remarks inessential to the flow of the paper.

Remark 2

1. The proof above explicitly uses the fact that our species are reduced and strongly
augmented. In more generality, as long as there is some filtration with good
properties (often called weight grading) the same argument works.
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2. Algebras over Ass (respectively Com) are the same thing as associative (associa-
tive and commutative) algebra objects in Lin, justifying the notation.

3. The reader may have noticed a failure of parallelism, where the coalgebras are
conilpotent but the algebras have no dual adjective. This failure of parallelism
occurs because we have only used coinvariant Schur functor. Even in our
restricted setting, the more natural notion for coalgebras over a cooperad would
involve an invariant Schur functor. As we are interested only in conilpotent
coalgebras, the construction here is preferable.

3 Words and Their Cooperads

3.1 Words

This section establishes some basic definitions and lemmas about words.
A word w is a nonempty finite sequence of elements from a set S. In this context,

S is called the alphabet and elements of S or the sequence w are called letters.
The word w is pangrammatic if it contains each letter from the alphabet S.

Definition 5 The word w is reduced if it has no subword of the form aa and either
is length one or has different first and last letters.

The reduction w of the word w is the unique minimal length word obtained by
repeated reduction by

: : : aa : : : 7! : : : a : : :

a : : : a 7! a : : :

In the second case, a must be the first and last letter of w; this relation is not a “local”
move on subwords.

Definition 6 The word w is non-crossing if it never contains

: : : a : : : b : : : a : : : b : : :

for distinct a and b in S.
A word is crossing unless it is non-crossing.

Remark 3 A map of sets f W S ! T induces a map from words in S to words in T,
which will be also denoted by f .

Definition 7 Let w be a word on the alphabet T and let S be a subset of the alphabet
T which contains at least one letter of w. Then wjS, called the word restricted to S,
is the word obtained by deleting all letters not in S.
If a word w is pangrammatic then w can be restricted to any nonempty subset of the
alphabet and the result is pangrammatic.
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The following lemmas about reduction, restriction, and words induced by
functions, are immediate.

Lemma 5 Let w be a word on the alphabet S and let f be a map of sets S ! T.
Then f .w/ D f .w/.

Lemma 6 Let w be a word on the alphabet T and let S be a subset of T containing
at least one letter from w. Then wjS D wjS.
Lemma 7 Let w be a word on the alphabet R, let f be a map of sets R! S, and let T
be a subset of S containing at least one letter of f .R/. Then f .wj f�1.T// D f .w/jT:

In general, we do not have f .wjS/ D f .w/j f .S/ unless S D f�1f .S/.

3.2 The Word Cooperad

Now we construct a cooperad spanned by a class of words. In Sect. 3.3, we construct
a second, closely related cooperad which will be our main point of interest. As stated
in the introduction, there is some relationship between the cooperads constructed
here and the sequence and cactus operads. As the relationship is not entirely
clear, the following is a self-contained presentation. There is a remark about the
connection at the end of Sect. 3.

Definition 8 The word species is the species W constructed as follows. To a finite
set S, the functor W assigns the K-vector space spanned by pangrammatic reduced
words on S. We define the structure necessary to make this species a cooperad, the
word cooperad W, showing coassociativity in Proposition 1 below.

The decomposition map W ! W NıW can be specified, as discussed in Sect. 2,
by defining�f for each surjection f W S � T. We define �f as follows.

�f .w/ D f .w/˝
O

t2T
wj f�1.t/ :

The counit map ", for jSj D 1, takes the unique word in W.S/ to 1 2 I.S/.
Checking equivariance with respect to both isomorphisms S ! S0 and isomor-
phisms T ! T 0 under S is straightforward, so the decomposition map � is
well-defined.

Example 2 Let S D fa1; a2; a3g and let w D a1a2a1a3. Then the limit of interest
can be specified in terms of five choices of T and a surjection. S! T. These are:

• the constant map f0 W S! fb0g,
• the three maps fij W S ! Tij D fbij; bkg which take ai and aj to bij and ak to bk,

and
• the map f3 D S! T3 D fb1; b2; b3g which takes ai to bi.



A Non-crossing Word Cooperad for Free Homotopy Probability Theory 87

Then�w is (represented by) the sum of �f
�

over these five choices of f�. That is:

�w D b0˝ w„ƒ‚…
b0

C b12b3˝
0

@ a1a2„ƒ‚…
b12

˝ a3„ƒ‚…
b3

1

A

C b13b2˝
0

@ a1a3„ƒ‚…
b13

˝ a2„ƒ‚…
b2

1

A

C b1b23b1b23˝
0

@ a1„ƒ‚…
b1

˝ a2a3„ƒ‚…
b23

1

A

C b1b2b3˝
0

@ a1„ƒ‚…
b1

˝ a2„ƒ‚…
b2

˝ a3„ƒ‚…
b3

1

A :

Proposition 1 The decomposition map and the counit map give W D .W; ";�/
the structure of a cooperad.

Proof It suffices to show coassociativity holds separately on each individual factor

in the limit making upW NıW NıW. Given a wordw in S and surjections S
f

� T
g

� U,
we have the following two compositions of decompositions:

�
�g ˝ id

�
�f .w/ D g. f .w//˝

O

u2U
f .w/jg�1.u/˝

O

t2T
wj f�1.t/

and

 

id˝
O

u2U
�f j.g f /�1.u/

!

�g f .w/

D g f .w/˝
O

u2U

0

@f .wj.g f /�1.u//˝
O

t2g�1.u/
wj.g f /�1.u/j f�1.t/

1

A

D g f .w/˝
O

u2U
f .wj.g f /�1.u//˝

O

t2T
wj.g f /�1.g.t//j f�1.t/ :

To show coassociativity, we will show that the terms in the product match up
individually. This means that there are three easy verifications to make. First, it
is a direct application of Lemma 5 that

g. f .w// D g f .w/ :
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Second, using Lemmas 5–7, we see

f .w/jg�1.u/ D f .w/jg�1.u/ D f .wj.g f /�1.u// D f .wj.g f /�1.u// :

Finally, using Lemma 6 again, we see that

wj.g f /�1.g.t//j f�1.t/ D .wj.g f /�1.g.t/// j f�1.t/ D wj f�1.t/ :

We omit the verification of counitality. ut

3.3 The Non-crossing Word Cooperad

Definition 9 The non-crossing species N assigns to the set S the K-vector space
spanned by pangrammatic reduced non-crossing words on S. Similarly, the crossing
species X assigns to S the span of pangrammatic reduced crossing words on S.

There is a natural inclusion of X into W whose quotient is isomorphic to N.

Proposition 2 The quotient map W ! N makes the non-crossing species a
quotient cooperad of the word cooperad.

Proof X.1/ is zero dimensional so the counit descends to the quotient.
Let w be an arbitrary crossing word in the alphabet S. Then it is only necessary

to show that�.w/ is in the kernel of the map W NıW! N NıN. The word w contains
the pattern : : : a : : : b : : : a : : : b : : : for distinct a and b in S. Consider �f .w/ for
some surjection f W S! T. If f .a/ ¤ f .b/ then f .w/ and hence its reduction f .w/ is
crossing. On the other hand, if f .a/ D f .b/ then f j f�1f .a/ and hence its reduction
f j f�1f .a/ is crossing. Therefore�.w/ is contained in X NıWCW Nı X. ut
Definition 10 We call N D .N; ";�/, where " and � are induced by the quotient
map W! N, the non-crossing word cooperad.

The following is a direct calculation.

Lemma 8 Let w be a pangrammatic non-crossing word on the alphabet T and let
S be a subset of T. Then wjS is non-crossing.

Corollary 1 The decomposition map of the non-crossing word cooperad applied
to the word w is the limit of �nc

f .w/, where �
nc
f .w/ is equal to �f .w/ if f .w/ is

non-crossing and 0 if f .w/ is crossing.

Remark 4 Both of the operads constructed here clearly have some relationship to
the sequence operad [10] and cactus operad [8, 20]. This is perhaps easiest to see
with the very clean presentation in [6]. There the authors describe two operads
whose underlying species differ from those considered here only by allowing words
to begin and end with the same letter.
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From either a cactus or sequence perspective, the subspecies specified by
this additional condition forms a suboperad. For surjections, which are described
combinatorially, the condition itself probably gives the best description. For cacti,
one can say that it is the suboperad of cellular chains of spineless cacti where the
global root coincides with some intersection of lobes.

Based on this, a naive guess might be that the cooperads here are duals of
appropriate suboperads of cacti or sequences. However, the decomposition is not
dual to the composition map of sequences or cacti, at least not in terms of the
most straightforward identification of linear basis elements. In fact, a little further
thought shows that the straightforward identification of words with themselves could
not possibly have been a dual isomorphism. This is because the cacti and sequence
operads are graded (in fact differential graded) and so a dual presentation would
respect the grading. But it is easy to trace the induced “grading” on the (non-
crossing) word cooperad and see that in fact it is only a filtration, not actually a
grading because the decomposition maps are not homogeneous with respect to it.

There is still some hope that the word cooperads are dual to (the underlying
operads in vector spaces) of some suboperads of cacti or sequences, but this filtration
result shows that this could only be possible if the “natural” basis for the cooperads
constructed here is actually inhomogeneous with respect to the grading. So the
relationship, should it exist, must use some subtler identification. Ben Ward has
pointed out that the suboperad of “generic” cacti, where no more than two cactus
lobes can meet at a point, is dual to an appropriately defined subcooperad of the
non-crossing word cooperad. This corresponds to taking only leading terms in the
filtration and constitutes an encouraging sign.

It is also possible that both of these cooperads, along with cacti and sequences,
are mutual specializations of some common ancestor, a sort of ur-operad/cooperad
of words but do not directly relate to one another without passing through this
ancestor.

4 Review of (Homotopy) Probability Theory

This section consists of the glue directly connecting what we have set up to our
main application. First we review an operadic framework for homotopy probability
theory, and then recall the free cumulants, which govern free independence in non-
commutative probability theory.

4.1 Review of Homotopy Probability Theory

We recall in a few words the setup of homotopy probability theory in operadic terms.
Homotopy probability theory was introduced by Park [14] as a simplification

of his algebraic model for quantum field theory where Planck’s constant plays no
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role. The most complete reference is Park’s monograph [15], which differs in both
notation and definitions from this paper but agrees in spirit with what is here.

One of Park’s motivations was to generalize and properly axiomatize (algebraic)
probability spaces in terms of homotopy algebra. The following is a “classical”
definition before generalization (see, for example, [11]).

Definition 11 A non-commutative probability space (respectively, a commutative
algebraic probability space) is a unital associative (unital commutative associative)
K-algebra V equipped with a unit-preserving linear map E from V to K. We assume
no further compatibility between the linear map and the algebra structure. The
elements of V are called random variables and the map E is called the expectation.

Remark 5 Since commutative algebraic probability spaces most typically arise as
measurable functions on a measure space they are often defined to satisfy additional
analytic properties that we will ignore here. See e.g., [17].

Two basic ingredients of the motivation to generalize this definition come from
physics, where the random variables are the observables in a quantum field theory.

First of all, usually a field theory possesses physical symmetries. For symmetries
of the classical action, this is an old and well-known part of the BV-BRST formalism
that can be dealt with by introducing so-called ghosts. This amounts to replacing the
linear space of observables with a chain complex.

There is another kind of symmetry that may come into play, namely symmetry of
the expectation. In particular, we only expect closed elements in the complex to be
observables, and we expect boundaries in the chain complex to be trivial observables
(in well-behaved cases, the converse should also be true, at least morally). This
symmetry of the expectation is probably less understood and analyzed in these
terms than symmetry of the action. See [15, Section 6] for some discussion of this
point.

In the following definition, a unital version of a definition in [4], we stick to the
associative framework, but there is clearly a commutative variation.

Definition 12 A unital associative homotopy probability space is a unital graded
associative K-algebra equipped with a differential which kills the unit and a unit-
preserving chain map to the ground field.
A unital associative homotopy probability space concentrated in degree zero is
precisely a non-commutative probability space as defined above.

However, this definition cannot capture the full subtlety of the observables in a
quantum field theory. Usually, the symmetries of the action are not compatible with
the product, so that the product of observables may not be observables (the product
of closed elements may not be closed). Instead, the product may need to be “cor-
rected” in some way to be fully defined. Homotopy probability theory can be traced
back to Park’s observation of this problem and a potential solution for it in [13].

One way to deal with the problem of correcting the classical product is via
homotopy algebra, which gathers together these corrections into a coherent package.
But this leads naturally to an algebraic generalization where there is not a single
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product out of which many products can be built, but rather a binary product, an
independent trilinear product, and so on. Again, this point of view is espoused at
much greater length and in more detail in [15]. Following Park, here we take a
broad view and treat this system of corrections as a black box, defining the algebraic
structure as minimally as possible.

The following definition defines our spaces of random variables or observables
along with mock products, which basically don’t need to satisfy any algebraic
identities or respect the differential. See Sect. 2.5 for the definition of strong
coaugmentation and the notation below.

Definition 13 Let C be a strongly coaugmented species.A C-correlation algebra is
a chain complex V equipped with a degree zero linear map (not necessarily a chain
map) 'V W C ı V ! V such that, for jSj D 1, we have

V Š CS ı V ! C ı V 'V�! V

is the identity.
Next, we encode the expectation.

Definition 14 Let C be a strongly coaugmented species. Fix a C-correlation algebra
A. An A-valued homotopy C-probability space is a C-correlation algebra .V; 'V/
equipped with

1. a map � of chain complexes A! V , called the unit, such that 'V ıC� D � ı 'A
and

2. a map E of chain complexes from V to A, called the expectation, such that Eı� D
idA.

The conditions on the maps � and E are equivalent to the commutativity of the
following diagram.

Remark 6 Definitions 13 and 14 provide definitions for homotopy probability
theory over an arbitrary strongly coaugmented species. The case of the species
Ass was addressed in [4]; the case of the species Com was addressed in [3, 5].
The specialization of the definition given here to the appropriate cooperads is not
equivalent to the definitions given there. Rather, the definition here is more general.
See Remark 2 of [5]. Park [15] addresses the cocommutative case at a roughly
comparable level of generality.
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In order to define C-correlation algebras and C-probability spaces as above, the
only structure on C is that of a species. From a probabilistic point of view, this
structure should be taken as insufficient, because it includes no choice of regime
to decide on independence. Independence is a critical feature in probability theory.
So-called cumulants gather the information of a probability space in a way that
facilitates the study of independence; the cumulant of a sum of independent random
variables is the sum of the individual cumulants. In order to include a notion of
independence in the probability spaces under consideration, we shall endow the
species C with additional structure, namely that of a cooperad.

This article is only intended to establish a relationship between the noncrossing
word cooperad and free cumulants. It is not intended to establish a full homotopy
probability theory in the free setting. Because of this, the recollection below may
be too terse for some. Therefore, regardless of any differences in definitions, the
interested or puzzled reader is advised to consult the references above (especially
the monograph [15]) for more details about homotopy probability theory.
Now let C D .C; ";�/ be a strongly coaugmented cooperad and let V be an
A-valued homotopy C-probability space. The C-cumulant morphism is the C-
coalgebra map QK (or its adjoint K W C ı V ! A) that fits into the following diagram
of C-coalgebras (well-defined because Q'A is an automorphism by Lemma 4):

(1)

Example 3

1. We reinterpret a unital associative homotopy probability space .V; �;E/ in our
current framework. Since the underlying species of Ass and coAss are the
same, the associative algebra structure map Ass ıK! K makes K into a Ass-
correlation algebra (and similarly for V).

Because the unit � is an algebra map and the expectation E respects �, the
conditions of Definition 14 are satisfied and we thus have the data of a K-
valued homotopy Ass-probability space. The coAss-cumulant morphism K is
made up of the so-called Boolean cumulants of the non-commutative (homotopy)
probability space. That is, KŒn� is the nth Boolean cumulant. This is essentially
the main example of [4].

2. Now assume V is as above but also commutative. Then it is a commutative homo-
topy probability space in the sense of [5]. Again this is supposed to generalize a
classical definition. If V is concentrated in degree zero and satisfies two simple
inequalities, then it is an algebraic probability space in the sense of [17].
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As above, the identification of the underlying species of Com and coCom gives
maps 'K and 'V which are defined as in the previous example: Com ıK! K

(and likewise for V). Altogether then, this is the data of a K-valued homotopy
Com-probability space. The coCom-cumulant morphism K encapsulates
the so-called classical cumulants of the classical algebraic (or homotopy
commutative) probability space. This is essentially the main example of [5].

Remark 7

1. The definitions of correlation algebras and probability spaces only required a
species, but the cumulant morphism uses the cooperadic structure in a fundamen-
tal to extend the correlation algebra structure to a morphism of cofree coalgebras.

2. The cumulants of a probability space (whether classical, Boolean, or free) can be
defined combinatorially in terms of Möbius inversion using an appropriate poset
of partitions. One can view the encapsulation of the cumulants of a probability
space in terms of operadic algebra as a sort of algebraic enrichment of this
combinatorial data, where the choice of cooperad corresponds to the choice of
appropriate type of partition.

4.2 Review of Free Cumulants

The correct notion for independence in many non-commutative contexts is free
independence, discovered by Voiculescu [18] (or see the historical survey [19]) and
studied by many others since then. We briefly recall free cumulants. See [12] for a
quick overview and [11] for a more detailed introduction to free cumulants and their
connection to free probability theory in general.

Definition 15 A non-crossing partition of N is a surjective map f from Œn� to Œk�
such that:

1. (ordering) if i < j then min
�
f�1.i/

�
< min

�
f�1. j/

�
and

2. (non-crossing) f .1; 2; : : :N/ is a non-crossing word in Œk�.

We call k the size of f .

Definition 16 ([11, 11.1]) Let V be a unital K-algebra, let .%n/n�1 be a sequence of

functionals V˝n %n�! K, and let f be a non-crossing partition of N of size k. Then the
multiplicative extension %f W V˝N ! K is defined as

%f .a1 ˝ � � � ˝ an/ D
kY

iD1
%j f�1.i/j.af�1.i// :

Here af�1.i/ is the tensor product aj1 ˝ � � � ˝ aj
j f�1.i/j

where j1; : : : ; jj f�1.i/j is the

restriction a1; : : : ; anj f�1.i/.
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Definition 17 ([11, 11.4 (3)]) Let .V;E/ be a non-commutative probability space.
The free cumulants of V are the unique functions f�Ng whose multiplicative
extension satisfies the defining equation

E.a1 � � � aN/ D
X

f

�f .a1 ˝ � � � ˝ aN/

as f ranges over non-crossing partitions.

5 The Non-crossing Word Cooperad and Free Probability
Theory

Finally, we relate non-commutative probability spaces to N-correlation algebras and
homotopy N-probability spaces and show that the N-cumulant morphism of a K-
valued homotopy N-probability space recovers the free cumulants defined above.

Definition 18 We define a map of species from the non-crossing species N to the
underlying species Ass of the associative operad (defined in Example 1). Under the
map  , a word w in the letters fw1; : : : ;wjSjg goes to the order fw where fw.wi/ D j
if the subword of w which ends with the first occurrence of wi in w contains j letters
from the alphabet.
Now, as in the first example above, let V be a unital associative homotopy probability
space.

We can give both K and V the structure of N-correlation algebras by composing
the map  with the structure maps of the associative algebras V and K:

N ı V  �! Ass ı V structure����! V ;

N ıK  �! Ass ıK structure����! K :

As before, since the map E preserves the unit and the unit is a map of associative
algebras, they are compatible with this structure and the whole package is then the
data of a K-valued homotopy N-probability space.

Now we are ready for the main theorem.

Theorem 1 Let .V;E/ be a non-commutative probability space, viewed as above
as a K-valued homotopyN-probability space.

Then theN-cumulant morphism K recovers the free cumulants of the probability
space.
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Proof Consider the defining diagram (1) of the cumulant morphism. By adjunction
into vector spaces (or chain complexes), we may restrict the right half of the diagram
without losing information, as follows.

Let wN be the word 1; : : : ;N in the alphabet ŒN�. Define KN W V˝N ! K in terms of
the N-cumulant morphism as

KN.z/ D K.wN ˝ z/ :

We will show that the map KN is precisely the Nth free cumulant map.
Apply the maps making up the bottom commutative square to the element of

N ı V represented by wN ˝ .v1 ˝ � � � ˝ vN/. The map 'V is just multiplication and
so the composition on the bottom and right sides of the square is

E.v1 � � �vN/ :
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Recall the vertical map QK is defined as the extension of the N-cumulant morphism
K W N ı V ! K as follows:

Since N ı .N ı V/ and N ı V are defined as colimits (see Sect. 2), in order to

evaluate the overall composition N ı V U QK��! N ı K 'K�! K, it suffices to evaluate
on a choice of representatives. That is, let S be the (finite) set of surjections f from
ŒN� to ŒM� such that i < j implies min f�1.i/ < min f�1. j/ (this set exhausts
the isomorphism classes of surjections out of ŒN�). Then the following diagram
commutes. The diagram may look intimidating but the right hand side is precisely
what we are trying to compute while the left hand side just gives a concrete recipe
for the calculation.
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Using the characterization from Corollary 1, we see that the contribution is 0 for a
function f from ŒN� to ŒM� if f .wN/ is crossing. Then the subset of functions from
ŒN� to ŒM� which contribute to the overall composition coincides precisely with the
set of functions from ŒN� to ŒM� which are non-crossing partitions.

For a given partition f , let us trace the contribution from the f factor in the left side
composition. Explicitly, starting with wN ˝ V˝ŒN�, the first vertical map, restricted
to the f factor takes this to

f .wN/˝
O

t2ŒM�
wN j f�1.t/˝ V˝ŒN� :

The second vertical map is just a change of parenthesization on the factor.
The third vertical map applies K to the factors wN j f�1.t/ ˝ V˝f�1.t/. Because

there is no repeated letter in wN , the reduction is trivial, and we can identify
wN j f�1.t/ with wN j f�1.t/. Then there is an order-preserving isomorphism between
f�1.t/ and Œj f�1.t/j� which realizes K.wN j f�1.t/˝ V˝f�1.t// as

KN.wN j f�1.t/˝ V˝f�1.t// :

By construction the map  takes f .wN/ to the identity order ŒM� ! ŒM� and the
final map in the vertical composition is then just the ordered product of the factors
corresponding to f�1.t/ for t in ŒM�. This product is then

MY

tD1
KN.wN j f�1.t/˝ V˝f�1.t//

which is precisely the multiplicative extension of Kf of .K1;K2; : : :/.
Thus the overall equation is then

E.v1 � � �vN/ D
X

f

Kf .v1 ˝ � � � ˝ vN/

which demonstrates that KN satisfy precisely the same definining equations as the
free cumulants �N . ut
To conclude the paper, we make two caveats about this approach.

Remark 8

1. First of all, this theorem only makes use of the N-cumulant morphism for very
special non-crossing words, those of the form wN D 1; : : : ;N. This means that
there are many other “cumulants” in this context, not only the free cumulants.
For example, applying the same methods with the word w0N D 1; 2; : : : ;N �
1;N;N � 1; : : : ; 3; 2 yields the Boolean cumulants of the same non-commutative
probability space. This may be seen either as a feature (flexibility in the method)
or a bug (imprecision in the output).
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2. More damning is the fact that this method does not seem to work at all
in operator-valued free probability, where the ground ring is itself non-
commutative. In our case, the right hand side of the formula relating expectations
and cumulants was a product of individual cumulants �n. But in operator-valued
free probability, the right hand side includes nested cumulants, like �2.a�1.b/˝
c/. This kind of “tree-like” formula does not fit well in this formulism. However,
operadic algebra is tailored to describe tree-like compositions and there is a
somewhat different and more technical approach using these tools that works in
the more general case. This approach is taken in the preprint [2].
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12. Novak, J., Śniady, P.: What is. . . a free cumulant? Not. Am. Math. Soc. 58(2), 300–301 (2011)
13. Park, J.S.: Flat family of QFTs and quantization of d-algebras (2003). http://arxiv.org/abs/

hep-th/0308130
14. Park, J.S.: Einstein chair lecture (2011). City University of New York
15. Park, J.S.: Homotopy theory of probability spaces I: classical independence and homotopy Lie

algebras (2015). http://arxiv.org/abs/1510.08289
16. Smirnov, V.: On the cochain complex of topological spaces. Math. USSR Sbornik 43, 133–144

(1982)

http://arxiv.org/abs/arxiv:1607.04933
http://arxiv.org/abs/arxiv:1607.04933
http://arxiv.org/abs/1410.5506
http://arxiv.org/abs/1410.5506
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s40062-013-0067-y
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s40062-014-0078-3
http://arxiv.org/abs/hep-th/9403055
http://arxiv.org/abs/hep-th/0308130
http://arxiv.org/abs/hep-th/0308130
http://arxiv.org/abs/1510.08289


A Non-crossing Word Cooperad for Free Homotopy Probability Theory 99

17. Tao, T.: Algebraic probability spaces (2014). https://terrytao.wordpress.com/2014/06/28/
algebraic-probability-spaces/. Blog post

18. Voiculescu, D.: Symmetries of some reduced free product C�-algebras. In: Operator Algebras
and Their Connections with Topology and Ergodic Theory: Proceedings of the OATE
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Endomorphisms of Lie Groups over
Local Fields

Helge Glöckner

Abstract Lie groups over totally disconnected local fields furnish prime exam-
ples of totally disconnected, locally compact groups. We discuss the scale, tidy
subgroups and further subgroups (like contraction subgroups) for analytic endo-
morphisms of such groups.

1 Introduction

The scale s.˛/ 2 N of an automorphism (or endomorphism) ˛ of a totally
disconnected locally compact group G was introduced in the works of George Willis
(see [57, 58, 60]). Following [58] and [60], the scale s.˛/ can be defined as the
minimum of the indices1

Œ˛.U/ W ˛.U/ \U�;

for U ranging through the set COS.G/ of all compact open subgroups of G.
Compact open subgroups for which the minimum is attained are called minimizing;
as shown in [58] and [60], they can be characterized by certain ‘tidiness’ properties,
and therefore coincide with the so-called tidy subgroups for ˛ (the definition of
which is recalled in Sect. 2).

Besides the tidy subgroups, further subgroups of G have been associated to ˛
which proved to be useful for the study of ˛, and for the structure theory in general

1If we wish to emphasize the underlying group G, we write sG.˛/ instead of s.˛/.
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(see [1] and [60]). We mention the contraction group

�!
con.˛/ WD

n
x 2 GW lim

n!1˛
n.x/ D e

o

and the parabolic subgroup
�!
par .˛/ of all x 2 G whose ˛-orbit .˛n.x//n2N0 is

bounded in the sense that f˛n.x/W n 2 N0g is relatively compact in G. It is also
interesting to consider group elements x 2 G admitting an ˛-regressive trajectory
.x�n/n2N0 of group elements x�n such that x0 D x and ˛.x�n�1/ D x�n for all n.
Setting xn WD ˛n.x/ for n 2 N, we then obtain a so-called two-sided ˛-orbit .xn/n2Z
for x. The anti-contraction group

 �
con .˛/ is defined as the group of all x 2 G

admitting an ˛-regressive trajectory .x�n/n2N0 such that

lim
n!1 x�n D eI

the anti-parabolic subgroup
 �
par .˛/ is the group of all x 2 G admitting a bounded

˛-regressive trajectory. The intersection

lev.˛/ WD �!par .˛/\  �par.˛/

is called the Levi subgroup of ˛; it is the group of all x 2 G admitting a bounded
two-sided ˛-orbit (see [1] and [60] for these concepts, which were inspired by
terminology in the theory of linear algebraic groups).

In this work, we consider Lie groups over totally disconnected local fields,
like the field of p-adic numbers or fields of formal Laurent series over a finite
field (see Sects. 2 and 4 for these concepts). The topological group underlying
such a Lie group G is a totally disconnected locally compact group, and the
analytic endomorphisms ˛WG ! G we consider are, in particular, continuous
endomorphisms of G.

Our goal is twofold: On the one hand, we strive to give an exposition to
Lie groups over local fields and their endomorphisms, for readers with varying
backgrounds who wish to see examples for the theory of endomorphisms of totally
disconnected groups developed in [60]. To this end, we also recall basic concepts
concerning Lie groups over totally disconnected local fields, as far as required for
the purpose. On the other hand, most of the text can be considered as a research
article, as it contains results which are new (or new in the current generality), and
which are proved here in full. Compare [21] for a broader (but more sketchy)
introduction with a similar thrust, confined to the study of automorphisms. For
further information on Lie groups over totally disconnected local fields, see [49]
and the references therein, also [48] and [7].2 Every p-adic Lie group has a compact

2Contrary to our conventions, the Lie groups in [7] are modelled on Banach spaces which need not
be of finite dimension.



Endomorphisms of Lie Groups over Local Fields 103

open subgroup which is an analytic pro-p-group; see [12, 13], and [48] for the theory
of such groups, and Lazard’s seminal work [38]. For related studies in positive
characteristic, cf. [35] and subsequent studies.

Every group of K-rational points of a linear algebraic group defined over a
totally disconnected local field K can be considered as a Lie group over K (see
[39, Chapter I, Proposition 2.5.2]). We refer to [4, 30, 39], and [52] for further
information on such groups, which can be studied with tools from algebraic
geometry, and via actions on buildings (see [8] and later work).

The Lie groups we consider need not be algebraic groups, they are merely K-
analytic manifolds. Yet, compared to general totally disconnected groups, we have
additional structure at our disposal: Every Lie group G over a totally disconnected
local field K has a Lie algebra L.G/ (its tangent space Te.G/ at the neutral element
e 2 G), which is a finite-dimensional K-vector space. If ˛WG ! G is a K-analytic
endomorphism, then its tangent map L.˛/ WD Te.˛/ at e is a linear endomorphism

L.˛/WL.G/! L.G/

of the K-vector space L.G/. It is now natural to ask how the scale and tidy subgroups
for ˛ are related to those of L.˛/. Guided by this question, we describe tidy
subgroups and calculate the scale for linear endomorphisms of finite-dimensional
K-vector spaces (which also provides a first illustration of the abstract concepts),
see Theorem 3.6. For ˛WG! G an analytic endomorphism of a Lie group G over a
totally disconnected local field K, we shall prove that

s.˛/ D s.L.˛// (1)

if and only if the contraction group
�!
con .˛/ is closed in G (see Theorem 8.13, the

main result), which is always the case if char.K/ D 0 (by Corollary 6.7). If
�!
con .˛/

is closed, then

s.L.˛// D
Y

j2f1;:::;mg
s.t. j	j jK�1

j	jjK (2)

in terms of the eigenvalues	1; : : : ; 	m of L.˛/˝Kid
K

in an algebraic closureK ofK,
where j:jK is the unique extension of the ‘natural’ absolute value on K specified
in (9) to an absolute value on K (see Theorem 3.6).

The text is organized as follows.
After a preparatory Sect. 2 on background concerning totally disconnected

locally compact groups and totally disconnected local fields, we study linear
endomorphisms of finite-dimensional K-vector spaces (Sect. 3).

In Sect. 4, we recall elementary definitions and facts concerning K-analytic
functions, manifolds, and Lie groups. We then construct well-behaved compact open
subgroups in Lie groups over totally disconnected local fields (see Sect. 5).
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In Sect. 6, we calculate the scale (and determine tidy subgroups) for ˛ an
endomorphism of a p-adic Lie group G. This is simplified by the fact that every
p-adic Lie group has an exponential function, which provides a local conjugacy
between the dynamical systems .L.G/;L.˛// and .G; ˛/ around the fixed points 0
(resp., e).

By contrast, analytic endomorphisms ˛WG ! G cannot be linearized in general
if G is a Lie group over a local field of positive characteristic (see [21, 4.8.3] for
a counterexample). As a replacement for a linearization, we use (locally) invariant
manifolds (viz. local stable, local unstable, and centre manifolds) around the fixed
point e of the time-discrete, analytic dynamical system .G; ˛/. As shown in [18] and
[19], the latter can be constructed as in the classical real case (cf. [32] and [56]). The
necessary definitions and facts are compiled in Sect. 7.

The following section contains the main results, notably a calculation of the scale
for analytic endomorphisms ˛WG! G of a Lie group G over a totally disconnected

local field, if
�!
con .˛/ is closed (see Theorem 8.13). We also show that if

�!
con .˛/ is

closed, then
�!
con.˛/, lev.˛/, and

 �
con.˛/ are Lie subgroups of G and the map

�!
con.˛/ 	 lev.˛/	  �con.˛/! �!

con.˛/ lev.˛/
 �
con.˛/ DW ˝

taking .a; b; c/ to abc has open image ˝ and is an analytic diffeomorphism (see
Theorem 8.15).

The final three sections are devoted to automorphisms with specific properties.
An automorphism ˛WG ! G of a totally disconnected, locally compact group G is

called contractive if G D �!con.˛/, i.e.,

lim
n!1˛

n.x/ D e for all x 2 G

(see [50] and [26]). If

\

n2Z
˛n.V/ D feg

for some identity neighbourhood V � G, then ˛ is called expansive (see [23]), or
also of finite depth in the case of compact G (see [59]). If

e 62 f˛n.x/W n 2 Zg

for each x 2 G n feg, then ˛ is called a distal automorphism (cf. [42, 43]). Every
contractive automorphism is expansive (see, e.g., [23]).

If G is a Lie group over a totally disconnected local field K with algebraic

closure K and ˛WG ! G an analytic automorphism, then
�!
con .˛/ is open in G

(resp., ˛ is expansive, resp., ˛ is distal) if and only if

j	jK < 1
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(resp., j	jK 6D 1, resp., j	jK D 1) for each eigenvalue 	 of the K-linear
automorphism L.˛/˝K id

K
of L.G/˝K K obtained by extension of scalars from K

to K (see Proposition 7.10 for details).
Recall that every continuous homomorphism between p-adic Lie groups is ana-

lytic, whence the Lie group structure on a p-adic Lie group is uniquely determined
by the underlying topological group (see, e.g., [7]). Lazard [38] characterized p-adic
Lie groups within the class of all totally disconnected, locally compact compact
groups, and later many further characterizations were found (see [12]).

Recent research showed that p-adic Lie groups are among basic building blocks
for general totally disconnected groups in various situations, e.g. in the study of
ergodic Zn-actions on locally compact groups by automorphisms (see [11]) and also
in the theory of contraction groups (see [26]). In both cases, Lazard’s theory of
analytic pro-p-groups was invoked to show that the groups in contention are p-adic
Lie groups. Section 9 surveys results concerning contractive automorphisms. We
give an alternative, new argument for the appearance of p-adic Lie groups, using the
structure theory of locally compact abelian groups (i.e., Pontryagin duality) instead
of the theory of analytic pro-p-groups.

Section 10 briefly surveys results concerning expansive automorphisms.
The final section is devoted to distal automorphisms and Lie groups of type R;

we prove a criterion for pro-discreteness (Theorem 11.2) which had been announced
in [21, Proposition 4.54].

Further papers have been written on the foundation of [60]: Analogues of results
from [1, 36], and [58] for endomorphisms of totally disconnected, locally compact
groups were developed in [9]; the topological entropy htop.˛/ of an endomorphism˛
of a totally disconnected, locally compact groupG was studied in [14]. It was shown
there that

htop.˛/ D ln s.˛/ (3)

if and only if the so-called nub subgroup nub.˛/ of ˛ (as in [60]) is trival (see [14,

Corollary 4.11]); the latter holds if and only if
�!
con .˛/ is closed (as shown in [9,

Theorem D]). In the current paper, we can do with the results from [60] and give
Lie-theoretic proofs for results which can be generalized further (see [9]), by more
involved arguments.3 The results were obtained before those of [9], and presented
in the author’s minicourse June 27–July 1, 2016 at the MATRIX workshop and
in a talk at the AMSI workshop July 25, 2016.4 For complementary studies of
endomorphisms of pro-finite groups, see [45].

3Notably, we have the Inverse Function Theorem at our disposal.
4Except for results concerning the scale on subgroups and quotients (Proposition 8.27) and the
endomorphism case of Lemma 8.20, which were added in 2017. In the talks, I also confined myself
to a proof of the equivalence of (a) and (b) in Theorem 8.13 when ˛ is an automorphism, which is
easier (while the theorem was stated in full).
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Conventions We write N WD f1; 2; : : :g N0 WD N [ f0g, and Z WD N0 [ .�N/.
Endomorphisms of topological groups are assumed continuous; automorphisms of
topological groups are assumed continuous, with continuous inverse. If we say that
a mapping f is an analytic diffeomorphism (or an analytic automorphism), then also
f�1 is assumed analytic. If E is a vector space over a field K, we write EndK.E/ for
the K-algebra of all K-linear endomorphisms of E, and GL.E/ WD EndK.E/	 for its
group of invertible elements. If L is a field extension of K, we let EL WD E˝K L be
the L-vector space obtained by extension of scalars. We identify E with E˝1 � EL

as usual. Given ˛ 2 EndK.E/, we let ˛L WD ˛ ˝ idL be the endomorphism of EL

obtained by extension of scalars. If K is an algebraic closure of K, we shall refer to
the eigenvalues 	 2 K of ˛

K
simply as the eigenvalues of ˛ in K. Given n 2 N,

we write Mn.K/ for the K-algebra of n 	 n-matrices. If f WX ! X is a self-map of a
set X, we say that a subset Y � X is ˛-stable if ˛.Y/ D Y. If ˛.Y/ � Y, then Y is
called ˛-invariant. If X is a set, Y � X a subset, f WY ! X a map and x 2 Y, we say
that a sequence .x�n/n2N0 of elements xn 2 Y is an f -regressive trajectory for x if
f .x�n�1/ D x�n for all n 2 N0 and x0 D x. In this situation, we also say that x admits
the f -regressive trajectory .x�n/n2N0 . If, instead, f is defined on a larger subset of X
which contains Y but all xn are elements of Y, we call .x�n/n2N0 an f -regressive
trajectory in Y.

2 Some Basics of Totally Disconnected Groups

In this section, we recall basic definitions and facts concerning totally disconnected
locally compact groups and totally disconnected local fields.

The Module of an Automorphism Let G be a locally compact group and B.G/ be
the 
-algebra of Borel subsets of G. Let 	GWB.G/ ! Œ0;1� be a Haar measure
on G, i.e., a non-zero Radon measure which is left invariant in the sense that
	G.gA/ D 	G.A/ for all g 2 G and A 2 B.G/. It is well-known that a Haar measure
exists, and that it is unique up to multiplication with a positive real number (cf.
[28]). If ˛WG! G is an automorphism, then also

B.G/! Œ0;1�; A 7! 	G.˛.A//

is a left invariant non-zero Radon measure on G and hence a multiple of Haar
measure: There exists �.˛/ > 0 such that 	G.˛.A// D �.˛/	G.A/ for all
A 2 B.G/. If U � G is a relatively compact, open, non-empty subset, then

�.˛/ D 	G.˛.U//

	G.U/
(4)

(cf. [28, (15.26)], where however the conventions differ). We also write �G.˛/

instead of �.˛/, if we wish to emphasize the underlying group G.
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Remark 2.1 Let U be a compact open subgroup of G. If U � ˛.U/, with index
Œ˛.U/ W U� DW n, we can pick representatives g1; : : : ; gn 2 ˛.U/ for the left cosets
of U in ˛.U/. Exploiting the left invariance of Haar measure, (4) turns into

�.˛/ D 	G.˛.U//

	G.U/
D

nX

jD1

	G.gjU/

	G.U/
D Œ˛.U/ W U� : (5)

If ˛.U/ � U, applying (5) to ˛�1 instead of ˛ and ˛.U/ instead of U, we obtain

�.˛�1/ D ŒU W ˛.U/� : (6)

Tidy Subgroups and the Scale If G is a totally disconnected, locally compact
group,˛WG! G an endomorphism and U a compact open subgroup ofG, following
[60] we write

U� WD
\

n2N0
˛�n.U/ D fx 2 UW .8n 2 N0/ ˛

n.x/ 2 Ug;

where ˛�n.U/ means the preimage .˛n/�1.U/. Let UC be the set of all x 2 U
admitting an ˛-regressive trajectory .x�n/n2N0 in U. Then

UC D
\

n2N0
Un with

U0 WD U and UnC1 WD U \ ˛.Un/ for n 2 N0; (7)

moreover, UC and U� are compact subgroups of G such that

˛.U�/ � U� and ˛.UC/ � UC

(see [60]). The sets

U�� WD
[

n2N0
˛�n.U�/ and UCC WD

[

n2N0
˛n.UC/

are unions of ascending sequences of subgroups, whence they are subgroups of G.

2.2 If we wish to emphasize which endomorphism ˛ is considered, we write Un;˛ ,
UC;˛, and U�;˛ instead of Un, UC, and U�, respectively.
The following definition was given in [60].

Definition 2.3 If U D UCU�, then U is called tidy above for ˛. If UCC is closed
in G and the indices

Œ˛nC1.UC/ W ˛n.UC/� 2 N
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are independent of n 2 N0, then U is called tidy below for ˛. If U is both tidy above
and tidy below for ˛, then U is called tidy for ˛.
The following fact (see [60, Proposition 9]) is useful for our ends:

2.4 U is tidy for ˛ if and only if U is tidy above and U�� is closed in G.

2.5 As shown in [60], a compact open subgroup U of G is minimizing for ˛ (as
defined in Sect. 1) if and only if it is tidy for ˛, in which case

s.˛/ D Œ˛.U/ W ˛.U/ \U� D Œ˛.UC/ W UC�:

2.6 If ˛ is an automorphism of G, then simply (as in [58])

UC D
\

n2N0
˛n.U/:

Let us consider some easy special cases (which will be useful later).

Lemma 2.7 Let ˛ be an endomorphism of a totally disconnected, locally compact
group G.

(a) If V � G is a compact open subgroup such that ˛.V/ � V, then V is tidy,
V� D V and s.˛/ D 1.

(b) If V � G is a compact open subgroup with V � ˛.V/, then V is tidy above
for ˛, and VC D V. If, moreover, V is tidy, then s.˛/ D �.˛/.

(c) If ˛ is nilpotent .say ˛n D e/ and U � G a compact open subgroup, then

V WD U� D
1\

kD0
˛�k.U/ D

n�1\

kD0
˛�k.U/ (8)

is a compact open subgroup of G with ˛.V/ � V.

Proof

(a) Since V � ˛�1.V/, we have V � ˛�k.V/ for all k 2 N0 and thus

V� D
1\

kD0
˛�k.V/ D V:

Hence V D VCV� is tidy above. As the subgroup

V�� D
1[

kD0
˛�k.V�/ D

1[

kD0
˛�k.V/
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contains V , it is open and hence closed. Thus V is tidy for ˛, by 2.4. Finally
˛.V/ � V entails that s.˛/ D Œ˛.V/ W ˛.V/ \ V

„ ƒ‚ …
D˛.V/

� D 1.

(b) Since V � ˛.V/, every x 2 V has an ˛-regressive trajectory within V , whence
x 2 VC. Hence V D VC, and thus V D VCV� is tidy above. If V is tidy, then
s.˛/ D Œ˛.V/ W ˛.V/ \ V� D Œ˛.V/ W V� D �.˛/, using (5).

(c) For integers k � n, we have ˛k.x/ D e 2 U for all x 2 G, whence x 2 ˛�k.U/
and thus ˛�k.U/ D G. This entails the second equality in (8), and so V is
compact and open. As ˛.U�/ � U�, the final inclusion holds. ut

2.8 If G is a totally disconnected, locally compact group and g 2 G, let

IgWG! G; x 7! gxg�1

be the corresponding inner automorphism of G. Given g 2 G, abbreviate s.g/ WD
s.Ig/. Following [57], the mapping sWG! N so obtained is called the scale function
on G.

Local Fields Basic information on totally disconnected local fields can be found in
many books, e.g. [55] and [34].

By a totally disconnected local field, we mean a totally disconnected, locally
compact, non-discrete topological field K.

Each totally disconnected local field K admits an ultrametric absolute value j:j
defining its topology, i.e.,

(a) jtj � 0 for each t 2 K, with equality if and only if t D 0;
(b) jstj D jsj � jtj for all s; t 2 K;
(c) The ultrametric inequality holds, i.e., jsC tj � maxfjsj; jtjg for all s; t 2 K.

An example of an absolute value defining the topology of K is what we call the
natural absolute value on K, given by j0jK WD 0 and

jxjK WD �K.mx/ for x 2 K n f0g (9)

(cf. [55, Chapter II, §2]), where mxWK ! K, y 7! xy is scalar multiplication by x
and�K.mx/ its module.5

It is known that every totally disconnected local field K either is a field of formal
Laurent series over some finite field (if char.K/ > 0), or a finite extension of the
field of p-adic numbers for some prime p (if char.K/ D 0). Let us fix our notation
concerning these basic examples.

5Note that if K is an extension of Qp of degree d, then jpjK D p�d depends on the extension.
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Example 2.9 Given a prime number p, the field Qp of p-adic numbers is the
completion of Q with respect to the p-adic absolute value,

ˇ
ˇ
ˇpk

n

m

ˇ
ˇ
ˇ
p
WD p�k for k 2 Z and n;m 2 Z n pZ:

We use the same notation, j:jp, for the extension of the p-adic absolute value to Qp.
Then the topology coming from j:jp makes Qp a totally disconnected local field,
and j:jp is the natural absolute value on Qp. Every non-zero element x in Qp can be
written uniquely in the form

x D
1X

kDn

ak p
k

with n 2 Z, ak 2 f0; 1; : : : ; p � 1g and an 6D 0. Then jxjp D p�n. The elements of
the form

P1
kD0 akpk form the subring Zp D fx 2 QpW jxjp � 1g of Qp, which is open

and also compact, as it is homeomorphic to f0; 1; : : : ; p � 1gN0 via
P1

kD0 akpk 7!
.ak/k2N0 .

Example 2.10 Given a finite field F (with q elements), we let F..X// � F
Z be the

field of formal Laurent series
P1

kDn akX
k with ak 2 F and n 2 Z. Here addition

is pointwise, and multiplication is given by the Cauchy product. We endow F..X//
with the topology arising from the ultrametric absolute value

ˇ
ˇ
ˇ̌
ˇ

1X

kDn

akX
k

ˇ
ˇ
ˇ̌
ˇ
WD q�n if an 6D 0: (10)

Then the set FŒŒX�� of formal power series
P1

kD0 akXk is a compact and open subring
of F..X//, and thus F..X// is a totally disconnected local field. Its natural absolute
value is given by (10).
Beyond local fields, we also consider some ultrametric fields .K; j:j/. Thus K is
a field and j:j an ultrametric absolute value on K which defines a non-discrete
topology on K. For example, we shall repeatedly use an algebraic closure K of a
totally disconnected local field K and exploit that an ultrametric absolute value j:j
on K extends uniquely to an ultrametric absolute value on K (see, e.g., [47,
Theorem 16.1]). The same notation, j:j, will be used for the extended absolute value.
An ultrametric field .K; j:j/ is called complete if K is a complete metric space with
respect to the metric given by d.x; y/ WD jx � yj.
Ultrametric Norms and Balls Let .K; j:j/ be an ultrametric field and .E; k:k/ be
a normed K-vector space whose norm is ultrametric in the sense that kx C yk �
maxfkxk; kykg for all x; y 2 E. Since kxk D kx C y � yk � maxfkx C yk; kykg, it
follows that kxC yk � kxk if kyk < kxk and hence

kxC yk D kxk for all x; y 2 E such that kyk < kxk: (11)
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We shall use the notations

BE
r .x/ WD fy 2 EW ky � xk < rg and

B
E
r .x/ WD fy 2 EW ky � xk � rg

for balls in E (with x 2 E, r 2 �0;1Œ). The ultrametric inequality entails that BE
r .0/

and B
E
r .0/ are subgroups of .E;C/ with non-empty interior (and hence both open

and closed). Specializing to E D K, we see that

O WD fz 2 KW jzj � 1g (12)

is an open subring of K, its so-called valuation ring. If K is a totally disconnected
local field, then O is a compact subring of K (which is maximal and independent of
the choice of absolute value). In this case, also the unit group

O
	 D fz 2 OW jzj D 1g

of all invertible elements is compact, as it is closed in O.
An ultrametric Banach space over a complete ultrametric field is a normed space

.E; k:k/ over K, with ultrametric norm k:k, such that every Cauchy sequence in E
is convergent. We shall always endow a finite-dimensional vector space E over a
complete ultrametric field .K; j:j/ with the unique Hausdorff topology making it
a topological K-vector space (see Theorem 2 in [6, Chapter I, §2, no. 3]). Then
E Š K

m (carrying the product topology) as a topological K-vector space, with
m WD dimK.E/, entailing that there exists a norm k:k on E (corresponding to the
maximum norm on K

m) which defines its topology and makes it an ultrametric
Banach space. If .E:k:kE/ and .F; k:kF/ are finite-dimensional normed spaces over
a complete ultrametric field, then every linear map ˛WE ! F is continuous (see
Corollary 2 in [6, Chapter I, §2, no. 3]); as usual, we write

k˛kop WD sup

� k˛.x/kF
kxkE W x 2 E n f0g

�
2 Œ0;1Œ

for its operator norm. Then k˛.x/kF � k˛kopkxkE and, if ˛ is invertible and E 6D
f0g, then

k˛.x/kF � 1

k˛�1kop
kxkE for all x 2 E:

Module of a Linear Automorphism We recall a formula for the module of a linear
automorphism.
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Lemma 2.11 Let E be a finite-dimensional vector space over a totally disconnected
local field K and ˛ 2 GL.E/. Then

�E.˛/ D jdet˛ jK D
nY

iD1
j	ijK; (13)

where 	1; : : : ; 	n are the eigenvalues of ˛ in an algebraic closure K of K.

Proof See [7, Proposition 55 in Chapter III, §3, no. 16] for the first equality in (13).
The second equality in (13) is clear if all eigenvalues lie in K. For the general case,
pick a finite extension L of K containing the eigenvalues, and let d WD ŒL W K� be
the degree of the field extension. Then �EL

.˛L/ D .�E.˛//
d . Since the extended

absolute value is given by

jxjK D d
p
�L.mx/ for x 2 L n f0g

(see [34, Chapter 9, Theorem 9.8] or [47, Exercise 15.E]), the desired equality
follows from the special case already treated (applied now to L). ut

3 Endomorphisms of K-Vector Spaces

Linear endomorphisms of vector spaces over totally disconnected local fields
provide first examples of endomorphisms of totally disconnected locally compact
groups, and their understanding is essential also for our discussion of endomor-
phisms of Lie groups.

Throughout this section, K is a totally disconnected local field, E a finite-
dimensional K-vector space and ˛WE ! E a K-linear endomorphism. We shall
calculate the scale, determine the parabolic, Levi and contraction subgroups for ˛,
and find tidy subgroups.

Our starting point are ideas from [39, Chapter II, §1] concerning iteration
of linear endomorphisms. Following [39], we shall decompose E into certain
characteristic subspaces, which help us to understand the dynamics of ˛.

3.1 If the characteristic polynomial p˛ of ˛ 2 EndK.E/ splits into linear factors in
the polynomial ring KŒX�, then E is the direct sum of the generalized eigenspaces
for ˛. For � 2 Œ0;1Œ, let

E�

be the sum of all generalized eigenspaces fv 2 E W .9n 2 N/.	idE � ˛/n.v/ D 0g
for eigenvalues 	 2 K with j	jK D �; we call E� the characteristic subspace for �.
By construction,

E D
M

��0
E�: (14)
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3.2 If ˛ 2 EndK.E/ is arbitrary, we choose a finite extension field L of K such that
p˛ splits into linear factors in LŒX�. By 3.1, we have a decomposition

EL D
M

��0
.EL/�

into characteristic subspaces for ˛L. We call

E� WD .EL/� \ E

the characteristic subspace of E for �. If E� 6D f0g, then � is called a characteristic
value of ˛. Using the Galois Criterion, it can be shown that each .EL/� is defined
over K, i.e.,

.EL/� D .E�/L
(see [39, Chapter II, (1.0)]). As a consequence, again (14) holds.6

Remark 3.3

(a) By construction, ˛.E�/ � E� for each � � 0.
(b) E0 D S

n2N0 ker.˛n/ is the generalized eigenspace for the eigenvalue 0 (also
known as the “Fitting 0-component”), and thus ˛jE0 is a nilpotent endomor-
phism.

(c) For each � > 0, the restriction ˛jE� WE� ! E� is an injective endomorphism of
a finite-dimensional vector space and hence an automorphism.

(d) The restriction of ˛ to the “Fitting 1-component” E>0 WD L
�>0 E� is an

automorphism, and

E D E0 ˚ E>0:

Thus

s.˛/ D s.˛jE0 /s.˛jE>0/: (15)

Since s.˛jE0 / D 1 by Lemma 2.7 (c) and (a), we deduce from (15) that s.˛/ D
s.˛jE>0 /.
Proposition 3.4 The scale s.˛/ of ˛ 2 EndK.E/ coincides with the scale s.˛jE>0 /
of the automorphism of the Fitting 1-component induced by ˛. ut
For endomorphisms of p-adic vector spaces, this was already observed in [44].

6As E� 6D f0g for only finitely many � � 0, we can identify the direct sum E D L
��0 E� with

the direct product
Q
��0 E� whenever this is convenient.
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We now recall from [19, Proposition 2.4] the existence of norms which are well-
adapted to an endomorphism (see already [21, Proposition 4.29] for automorphisms;
cf. [39, Chapter II, Lemma 1.1] for a similar, weaker result, also valid for R and C).

Lemma 3.5 There exists an ultrametric norm k:k on E which is adapted to ˛ in the
following sense:

(a) k:k is a maximum norm with respect to the decomposition (14) of E into the
characteristic subspaces for ˛;

(b) k˛jE0kop < 1; and
(c) For all � > 0 and v 2 E�, we have k˛.v/k D �kvk.
If " 2 �0; 1� is given, then k:k can be chosen such that k˛jE0kop < ". ut
As before, in the following theorem we write E� for the characteristic subspace for
� > 0 with respect to ˛.

Theorem 3.6 Let ˛ 2 EndK.E/ be an endomorphism of a finite-dimensional vector
space E Š K

m over a local field K. Let k:k be a norm on E which is adapted to ˛.
Then the following holds:

(a) The ball BE
r .0/ is a compact open subgroup of .E;C/ which is tidy for ˛, for

each r 2 �0;1Œ.
(b) We have

�!
con.˛/ D E<1 WD

M

�<1

E�;
 �
con.˛/ D E>1 WD

M

�>1

E�;

�!
par .˛/ D E�1 WD

M

��1
E�;

 �
par .˛/ D E�1 WD

M

��1
E�;

and lev.˛/ D E1.
(c) The scale of ˛ is given by

s.˛/ D
Y

j2f1;:::;mg
s.t. j	jjK�1

j	jjK; (16)

where 	1; : : : ; 	m are the eigenvalues of ˛
K
in an algebraic closure K of K,

with repetitions according to algebraic multiplicities.
(d) s.˛/ D s.˛jE>0 / D s.˛jE

�1 / D s.˛jE>1 / D �.˛jE�1 / D �.˛jE>1/.
Proof We endow vector subspaces of E with the induced norm.

(a) Since E admits the Fitting decomposition E D E0˚E>0 into E0 and E>0 which
are ˛-invariant vector subspaces and

BE
r .0/ D BE0

r .0/	 BE>0
r .0/;
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we need only check that BE0
r .0/ is tidy for ˛jE0 and BE>0

r .0/ is tidy for ˛jE>0 . The
first property holds by Lemma 2.7, since ˛.BE0

r .0// � BE0
r .0/ by Lemma 3.5 (b).

To check the second property, after replacing˛ with ˛jE>0 we may assume that ˛
is an automorphism. Thus, let us consider ˛ 2 GL.E/ and verify that

U WD BE
r .0/ D

Y

�>0

B
E�
r .0/

is tidy for ˛. For each k 2 Z, have

˛k.BE
r .0// D

Y

�>0

B
E�
�kr
.0/;

using Lemma 3.5 (c). Hence

UCD
1\

kD0
˛k.U/ D

Y

��1
B
E�
r .0/ and U�D

1\

kD0
˛�k.U/ D

Y

0<��1
B
E�
r .0/ (17)

(where we used 2.6), entailing that U D UC C U� is tidy above for ˛. Since

U�� WD
1[

kD0
˛�k.U�/ D

0

@
Y

0<�<1

E�

1

A 	 BE1
r .0/ D E<1 	 BE1

r .0/

is closed in E, we deduce with 2.4 that U is tidy.
(b) is obvious from Lemma 3.5 (a), (b), and (c).
(c) Since UC D Q

��1 B
E�
r .0/ D B

E
�1

r .0/ is a compact open subgroup of .E�1;C/
such that UC � ˛.UC/, using 2.5 and (5) we obtain

s.˛/ D Œ˛.UC/ W UC� D �.˛jE
�1 /:

As the 	j with j	jjK � 1 are exactly the eigenvalues of ˛jE
�1 in K, Lemma 2.11

yields the desired formula.
(d) Eigenvalues 	j with j	jjK D 1 are irrelevant for the product in (c). Using

Lemma 2.11, we deduce that also s.˛/ D �.˛jE>1/. The first equality in (d)
holds by Proposition 3.4. Note that BE

�1
r .0/ and BE>1

r .0/ are tidy for ˛jE
�1

and ˛jE>1 , respectively, and are inflated by the latter. The third and fourth
scales in the formula therefore coincide with the corresponding modules, by
Lemma 2.7 (b). ut

Corollary 3.7 Let ˛ be a linear endomorphism of a finite-dimensional vector
space E over a totally disconnected local field K. Let F be an ˛-invariant vector
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subspace of E and

˛WE=F! E=F; xC F 7! ˛.x/C F

be the induced linear endomorphism of the quotient space E=F. Then

sE.˛/ D sF.˛jF/sE=F.˛/: (18)

Proof The eigenvalues of ˛ in an algebraic closure K of K are exactly the eigenval-
ues of ˛jF , together with those of ˛. Hence (18) follows from Theorem 3.6 (c). ut
For basic concepts concerning Lie algebras (which we always assume of finite
dimension),7 see [7, 31], and [49].

Lemma 3.8 If g is a Lie algebra over a totally disconnected local field K and

˛W g ! g a Lie algebra endomorphism, then
�!
con .˛/,

 �
con .˛/,

�!
par .˛/,

 �
par .˛/,

and lev.˛/ D �!con.˛/\  �con .˛/ are Lie subalgebras of g.

Proof If x and y are elements of
�!
con .˛/ (resp., of

�!
par .˛/), then ˛n.x/ and ˛n. y/

tend to 0 as n ! 1 (resp., the elements form bounded sequences), entailing that
also

˛n.Œx; y�/ D Œ˛n.x/; ˛n. y/�

tends to 0 (resp., is bounded). Hence Œx; y� 2 �!
con .˛/ (resp., Œx; y� 2 �!par .˛/).

If x and y are elements of
 �
con .˛/ (resp., of

 �
par .˛/), then we find an ˛-regressive

trajectory .x�n/n2N0 for x and an ˛-regressive trajectory .y�n/n2N0 for y such
that x�n ! 0 and y�n ! 0 as n ! 1 (resp., .x�n/n2N0 and .y�n/n2N0 are
bounded sequences). Then .Œx�n; y�n�/n2N0 is an ˛-regressive trajectory for Œx; y�,
since

˛.Œx�n�1; y�n�1�/ D Œ˛.x�n�1/; ˛.y�n�1/� D Œx�n; y�n� for all n 2 N0:

Moreover, Œx�n; y�n� ! 0 as n ! 1 (resp., the sequence .Œx�n; y�n�/n2N0 is

bounded), showing that Œx; y� 2  �con.˛/ (resp., Œx; y� 2  �par.˛/). ut
The following lemma will be used in Sect. 11.

Lemma 3.9 Let E be a finite-dimensional vector space over a totally disconnected
local field K and ˛ 2 GL.E/ be an automorphism such that j	jK D 1 for all
eigenvalues of ˛ in an algebraic closure K of K. Then the subgroup h˛i generated
by ˛ is relatively compact in GL.E/.

7Except for the Lie algebras of analytic vector fields mentioned in Sect. 4.



Endomorphisms of Lie Groups over Local Fields 117

Proof If K has characteristic p > 0, then it suffices to show that ˛p
n

generates a
relatively compact subgroup for some n 2 N0, since h˛i is contained in the finite
union

pn�1[

jD0
˛j ı K

of cosets of the compact group K WD h˛pni. We may therefore assume that the
characteristic polynomial p˛ 2 KŒX� of ˛ is separable over K. Let L � K be a
finite field extension of K which is Galois and such that p˛ splits into linear factors
in LŒX�. Then ˛ has a unique multiplicative Jordan decomposition

˛ D ˛h ı ˛u D ˛u ı ˛h
such that .˛h/L 2 GL.EL/ is diagonalizable and .˛u/L 2 GL.EL/ is unipotent (see
[4, Theorem I.4.4]). Let O be the valuation ring of L and O

	 be its compact group
of invertible elements. Since j	jK D 1 for all eigenvalues 	 2 L � K of ˛h (which
coincide with those of ˛), we have 	 2 O

	 and deduce that .˛h/L generates a
relatively compact subgroup L of GL.EL/. Identify GL.E/ with the closed subgroup
fˇ 2 GL.EL/Wˇ.E/ � Eg of GL.EL/. Then h˛hi is contained in the compact
subgroup L \ GL.E/ and hence relatively compact in GL.E/. Now .˛u/L generates
a relatively compact subgroup of GL.EL/, by [15, Lemma 4.1]. Hence ˛u generates
a relatively compact subgroup of GL.E/, by the preceding argument. Since

h˛i � h˛hi ı h˛ui;

we see that h˛i is relatively compact. ut

4 Analytic Functions, Manifolds and Lie Groups

The section compiles definitions and elementary facts concerning analytic functions,
manifolds, and Lie groups over totally disconnected local fields, which we shall
use without further explanation. The section ends with two versions of the Inverse
Function Theorem, which will be essential in the following.

Analytic Manifolds and Lie Groups Given a totally disconnected local field
.K; j:j/ and n 2 N, we endow K

n with an ultrametric norm k:k (the choice of norm
does not really matter because all norms are equivalent; see [47, Theorem 13.3]).
If ˛ 2 N

n
0 is a multi-index, we write j˛j WD ˛1 C � � � C ˛n. Confusion with the

absolute value j:j is unlikely; the intended meaning of j:j will always be clear from
the context. If ˛ 2 N

n
0 and y D .y1; : : : ; yn/ 2 K

n, we abbreviate y˛ WD y˛11 � � � y˛nn ,
as usual. Compare [49] for the following concepts.
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Definition 4.1 Given an open subset U � K
n, a map f WU ! K

m is called analytic8

(or K-analytic, if we wish to emphasize the ground field) if it is given locally by a
convergent power series around each point x 2 U, i.e.,

f .xC y/ D
X

˛2Nn
0

a˛ y
˛ for all y 2 BK

n

r .0/;

with a˛ 2 K
m and some r > 0 such that BK

n

r .x/ � U and

X

˛2Nn
0

ka˛k rj˛j < 1 :

Compositions of analytic functions are analytic [49, Theorem, p. 70]. We can
therefore define an m-dimensional analytic manifold M over a totally disconnected
local field K in the usual way, as a Hausdorff topological space M, equipped with
a maximal set A of homeomorphisms �WU� ! V� from open subsets U� � M
onto open subsets V� � K

m such that the transition map  ı ��1 is analytic, for all
�; 2 A.

In the preceding situation, the homeomorphisms � 2 A are called charts for M,
and A is called an atlas.

A map f WM ! N between analytic manifolds is called analytic if it is continuous
and � ı f ı  �1 (which is a map between open subsets of Km and K

n) is analytic,
for all charts �WU� ! V� � K

n of N and charts  WU ! V � K
m of M.

If .M;AM/ and .N;AN/ are analytic manifolds of dimension m and n, respec-
tively, then M 	 N with the product topology is an .m C n/-dimensional analytic
manifold, with the atlas containing f� 	  W� 2 AM;  2 ANg.

Every open subset U of a finite-dimensional K-vector space E can be considered
as an analytic manifold, endowed with the maximal atlas containing the global chart
idU WU ! U. Notably, we can speak about analytic functions

f WU ! V

if U and V are open subsets of finite-dimensional normed K-vector spaces E and F,
respectively. Any such function is totally differentiable at each x 2 U, and we write

f 0.x/WE! F (19)

for its total differential. Deviating from (19), we write f 0.x/ D d
dt

ˇ̌
tD0 f .x C t/ if

E D K, as usual (which is f 0.x/.1/ in the notation of (19)).

8In other parts of the literature related to rigid analytic geometry, such functions are called locally
analytic to distinguish them from functions which are globally given by a power series.
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A Lie group over a totally disconnected local field K is a group G, equipped with
an analytic manifold structure which turns the group multiplication

�GWG 	 G! G ; .x; y/ 7! xy

and the group inversion �GWG! G, x 7! x�1 into analytic mappings.
Lie groups over Qp are also called p-adic Lie groups. Besides the additive groups

of finite-dimensional K-vector spaces, the most obvious examples of K-analytic Lie
groups are general linear groups.

Example 4.2 GLn.K/ D det�1.K	/ is an open subset of the space Mn.K/ Š K
n2

of n 	 n-matrices and hence is an n2-dimensional K-analytic manifold. The group
operations are rational maps and hence analytic.
More generally, one can show (cf. [39, Chapter I, Proposition 2.5.2]):

Example 4.3 Every (group of K-rational points of a) linear algebraic group defined
over K is a K-analytic Lie group, viz. every subgroup G � GLn.K/ which is the set
of joint zeros of a set of polynomial functionsMn.K/! K. For instance, SLn.K/ D
fA 2 GLn.K/W det.A/ D 1g is a K-analytic Lie group.

Remark 4.4 See Example 8.26 (first mentioned in [21, Remark 9.7]) for a Lie
group G over K D Fp..X// which is not a linear Lie group, i.e., which does not
admit a faithful, continuous linear representation G! GLn.K/ for any n. We shall
also encounter a p-adic Lie group which is not isomorphic to a closed subgroup of
GLn.Qp/ for any n 2 N (Example 10.3).

Remark 4.5 The analytic manifolds and Lie groups we consider need not be
second countable topological spaces. Notably, arbitrary discrete groups (countable
or not) can be considered as (0-dimensional) p-adic Lie groups, which is natural
from the point of view of topological groups.

All the Lie groups and manifolds considered in these notes are analytic and
finite-dimensional. For smooth Lie groups modelled on (not necessarily finite-
dimensional) topological vector spaces over a topological field, see [2, 20] and the
references therein.

Tangent Vectors, Tangent Spaces, and Tangent Maps Tangent vectors can be
defined in many ways. We choose a description which corresponds to the so-called
“geometric” tangent vectors in the real case.9 If M is an m-dimensional analytic
manifold over a totally disconnected local field K and p 2 M, let us say that two
analytic mappings

� WBK

" .0/! M and �WBK

ı .0/! M

9Compare [5, 7, 49], also [2] for the following facts (although in different formulations).
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with �.0/ D �.0/ D p are equivalent (and write � p �) if

.� ı �/0.0/ D .� ı �/0.0/ (20)

for some chart �WU ! V of M around p (i.e., with p 2 U); here "; ı > 0. Then (20)
holds for all charts around p (by the Chain Rule), and we easily deduce that p is
an equivalence relation. The equivalence classes Œ�� with respect to p are called
tangent vectors for M at p. The set Tp.M/ of all tangent vectors at p is called the
tangent space of M at p. We endow it with the unique vector space structure making
the bijection

Tp.M/! K
m; Œ�� 7! .� ı �/0.0/

a vector space isomorphism for some (and hence every) chart � of M around p. The
union

T.M/ WD
[

p2M
Tp.M/

is disjoint and is called the tangent bundle of M. If f WM ! N is an analytic map
between analytic manifolds, we obtain a linear map

Tp. f /WTp.M/! Tf . p/.N/; Œ�� 7! Œ f ı ��

called the tangent map of f at p. The map T. f /WT.M/ ! T.N/ taking v 2 Tp.M/
to Tp. f /.v/ is called the tangent map of f . If also K is an analytic manifold over K
and gWK ! M an analytic mapping, then

T. f ı g/ D T. f / ı T.g/ (21)

as both mappings take a tangent vector Œ�� 2 T.K/ to Œf ı g ı ��. If U is an open
subset of a finite-dimensional vector space E, we identify T.U/ with U 	 E using
the bijection

T.U/! U 	 E; Œ�� 7! .�.0/; � 0.0//: (22)

If U is as before, M an analytic manifold and f WM ! U an analytic map, we write
df for the second component of the map

T. f /WT.M/! T.U/ D U 	 E;

using the identification from (22). Thus

df .Œ��/ D . f ı �/0.0/:



Endomorphisms of Lie Groups over Local Fields 121

If U and V are open subsets of finite-dimensional K-vector spaces E and F,
respectively, and f WU ! V is an analytic map, then T. f /WT.U/ ! T.V/ is the
mapping

U 	 E! V 	 F; .x; y/ 7! . f .x/; df .x; y//

with df .x; y/ D f 0.x/. y/.

Submanifolds and Lie Subgroups Let M be an m-dimensional analytic manifold
over a totally disconnected local field K and n 2 f0; 1; : : : ;mg. A subset N � M is
called an n-dimensional submanifold of M if, for each p 2 N, there exists a chart
�WU ! V � K

m of M around p such that

�.U \ N/ D V \ .Kn 	 f0g/:

Identifying K
n 	 f0g � K

m with K
n via .x; 0/ 7! x, we get a homeomorphism

�N WD �jU\N WU \ N ! V \ .Kn 	 f0g/ � K
n:

Then N is an n-dimensional analytic manifold in a natural way, using the topology
induced by M and the maximal atlas containing all of the maps �N . Using this
manifold structure, the inclusion jWN ! M is analytic. For each p 2 N, the tangent
map Tp.j/WTp.N/ ! Tp.M/ is injective, and will be used to identify Tp.N/ with
the image of Tp.j/ in Tp.M/. Moreover, for each analytic manifold K, a mapping
f WK ! N is analytic if and only if jıf WK ! M is analytic. We say that a subgroupH
of a Lie group G over K is a Lie subgroup if it is a submanifold. By the preceding
fact, the submanifold structure then turns the group operations on H into analytic
mappings and thus makes H a Lie group.

Lemma 4.6 Let G be a Lie group over a totally disconnected local field K, of
dimensionm. A subgroupH � G is a Lie subgroup of dimension n if and only if there
exists a chart �WU ! V � K

m of G around e such that �.U\H/ D V\ .Kn	f0g/.
Proof The necessity is clear. Sufficiency: For each h 2 H, the mapping
�hW hU ! V , x 7! �.h�1x/ is a chart for G such that �h.hU \ H/ D �.U \ H/ D
V \ .Kn 	 f0g/. ut
The Lie Algebra Functor An analytic vector field on an m-dimensional K-
analytic manifold M is a mapping XWM! T.M/ with X. p/ 2 Tp.M/ for all p 2 M,
which is analytic in the sense that its local representative

X� WD d� ı X ı ��1WV ! K
m

is an analytic function for each chart �WU ! V � K
m of M. The set V !.M/ of all

analytic vector fields on M is a K-vector space, with pointwise addition and scalar
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multiplication. Given X;Y 2 V !.M/, there is a unique vector field ŒX;Y� 2 V !.M/
such that

ŒX;Y�� D dY� ı .idV ;X�/ � dX� ı .idV ;Y�/

for all charts �WU ! V of M, and Œ:; :� makes V !.M/ a Lie algebra.
If G is a K-analytic Lie group, then its tangent space L.G/ WD Te.G/ at the

identity element can be made a Lie algebra via the identification of v 2 L.G/ with
the corresponding left invariant vector field v` on G given by v`.g/ WD T	g.v/ for
g 2 G with left translation 	gWG! G, x 7! gx (noting that the left invariant vector
fields form a Lie subalgebra of V !.G/). Thus

Œv;w� WD Œv`;w`�.e/ for v;w 2 L.G/:

If ˛WG! H is an analytic group homomorphism between K-analytic Lie groups,
then the tangent map L.˛/ WD Te.˛/WL.G/ ! L.H/ is a linear map and actually a
Lie algebra homomorphism (cf. [7, Chapter III, §3, no. 8] and Lemma 5.1 on p. 129
in [49, Part II, Chapter V.1]). An analytic automorphism of a Lie group G is an
invertible group homomorphism ˛WG ! G such that both ˛ and ˛�1 are analytic.
For example, each inner automorphism Ig of G is analytic. As usual, we abbreviate
Adg WD L.Ig/.

Since Ig ı Ih D Igh for g; h 2 G, we have Adgh D Adg ıAdh by (21). In Sect. 11,
we shall use the continuity of the adjoint representation of G on its Lie algebra
g WD L.G/. Even more is true (see Definition 8 in [7, Chapter III, §3, no. 12] and the
lines preceding it):

4.7 The map AdWG! Aut.g/ � GL.g/, g 7! Adg is analytic.

Ultrametric Inverse Function Theorems Since small perturbations do not change
the size of a given non-zero vector in the ultrametric case (see (11)), the ultrametric
inverse function theorem has a nicer form than its classical real counterpart. Around
a point p with invertible differential, an analytic map f behaves like an affine-linear
map (its linearization). If the differential at p is an isometry, then also f is isometric
on a p-neighbourhood.

In the following two lemmas, we let K be a totally disconnected local field and
j:j be an absolute value on K defining its topology. We fix an ultrametric norm k:k
on a finite-dimensional K-vector space E and write

Iso.E; k:k/ WD f˛ 2 GL.E/W .8x 2 E/ k˛.x/k D kxkg

for the group of linear isometries. It is well-known that Iso.E; k:k/ is open in GL.E/
(see, e.g., [16, Lemma 7.2]), but we shall not use this fact. Given x 2 E and
r > 0, we abbreviate Br.x/ WD BE

r .x/. The total differential of f at x is denoted
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by f 0.x/. The ultrametric inverse function theorem (for analytic functions) subsumes
the following10:

Lemma 4.8 Let f WU ! E be an analytic map on an open subset U � E and x 2 U
such that f 0.x/ 2 GL.E/. Then there exists r > 0 such that Br.x/ � U,

f .Bt. y// D f . y/C f 0.x/Bt.0/ for all y 2 Br.x/ and t 2 �0; r�; (23)

and f jBr.x/WBr.x/ ! f .Br.x// is an analytic diffeomorphism. If f 0.x/ 2 Iso.E; k:k/,
then r can be chosen such that Br.x/ � U,

f .Bt. y// D Bt. f . y// for all y 2 Br.x/ and t 2 �0; r�; (24)

and f jBr.x/WBr.x/! Br. f .x// is an isometric, analytic diffeomorphism. ut
It is useful that r can be chosen uniformly in the presence of parameters. As a
special case of [16, Theorem 7.4 (b)0], an ‘ultrametric inverse function theorem with
parameters’ is available11:

Lemma 4.9 Let F be a finite-dimensional K-vector space, P � F and U � E be
open, f WP 	 U ! E be a K-analytic map, p 2 P and x 2 U such that f 0p.x/ 2
Iso.E; k:k/, where fp WD f . p; �/WU ! E. Then there exists an open neighbourhood
Q � P of p and r > 0 such that Br.x/ � U,

fq.Bt. y// D fq. y/C Bt.0/ (25)

and fqjBt. y/ is an isometry, for all q 2 Q, y 2 Br.x/ and t 2 �0; r�. ut

5 Construction of Small Open Subgroups

It is essential for our following discussions that Lie groups over totally disconnected
local fields have a basis of identity neighbourhoods consisting of compact open
subgroups which correspond to balls in the Lie algebra. In this section, we explain
how these compact open subgroups can be constructed.

Let G be a Lie group over a totally disconnected local field K and j:j be an
absolute value on K defining its topology. Fix an ultrametric norm k:k on g WD L.G/
and abbreviate Bt.x/ WD Bg

t .x/ for x 2 g and t > 0. Let

�WU ! V

10A proof is obtained, e.g., by combining [16, Proposition 7.1 (a)0 and (b)0] with the inverse
function theorem for analytic maps from [49, p. 73], recalling that analytic maps are strictly
differentiable at each point (in the sense of [5, 1.2.2]), by [5, 4.2.3 and 3.2.4].
11To achieve that fqjBr.x/ is an isometry for all q 2 Q, note that [16, Lemma 6.1 (b)] applies to all
of these functions by [16, p. 239, lines 7–8].
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by an analytic diffeomorphism from an open identity neighbourhood U � G onto
an open 0-neighbourhood V � g, such that �.e/ D 0 and

d�jg D idg : (26)

5.1 After shrinking U (and V), we may assume that U is a compact open subgroup
of G. Then

�V WV 	 V ! V; .x; y/ 7! x 
 y WD �.��1.x/��1. y//
is a group multiplication on V with neutral element 0 which turns V into an analytic
Lie group and � into an isomorphism of Lie groups. It is easy to see that the first
order Taylor expansions of multiplication and inversion in .V;
/ at .0; 0/ and 0,
respectively, are given by

x 
 y D xC yC � � � (27)

and

x�1 D �xC � � � (28)

(compare [49, p. 113]). Applying the Ultrametric Inverse Function Theorem with
Parameters (Lemma 4.9) to the maps .x; y/ 7! x
 y and .x; y/ 7! y
 x around .0; 0/,
we find R > 0 with BR.0/ � V such that

x 
 Bt.0/ D xC Bt.0/ D Bt.0/ 
 x (29)

for all x 2 BR.0/ and t 2 �0;R� (exploiting that both relevant partial differentials are
idg and hence an isometry, by (27)). Notably, (29) entails that

Bt.0/ 
 Bt.0/ D Bt.0/ for each t 2 �0;R�;

whence y�1 2 Bt.0/ for each t 2 �0;R� and y 2 Bt.0/.
Summing up (with Bt WD Bt.0//:

Lemma 5.2 .Bt;
/ is a group for each t 2 �0;R� and hence B�t WD ��1.Bt/ is a
compact open subgroup of G, for each t 2 �0;R�. Moreover, Bt is a normal subgroup
of .BR;
/, whence B�t is normal in B�R. ut
Thus small balls in g correspond to compact open subgroups in G.

Remark 5.3 (29) entails that the indices of Bt in .BR;C/ and .BR;
/ coincide (as
the cosets coincide), for all t 2 �0;R�.
5.4 Now consider an analytic endomorphism ˛WG ! G, or, more generally, an
analytic homomorphism

˛WG0 ! G
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defined on an open subgroup G0 � G. For the domain U of �, assume that U � G0.
After shrinking R (if necessary) we may assume that

˛.B�R/ � U; (30)

whence an analytic homomorphism

ˇ WD � ı ˛j
B
�
R
ı ��1jBR WBR ! V (31)

can be defined such that

ˇ ı �j
B
�
R
D � ı ˛j

B
�
R
: (32)

As a consequence of (26), we have

ˇ0.0/ D L.˛/: (33)

For ˛WG ! G an analytic automorphism and k:k adapted to L.˛/, we shall see in
Sect. 8 that the groups B�t WD ��1.Bt/ are tidy for ˛ and t 2 �0;R� close to 0, as long

as
�!
con .˛/ is closed (and also the case of ˛WG0 ! G will be used). This motivates

us to calculate the displacement indices for the compact open subgroups B�t � G.

Lemma 5.5 Let G be a Lie group over a totally disconnected local field, G0 be
an open subgroup of G and ˛WG0 ! G an analytic homomorphism which is an
analytic diffeomorphism onto an open subgroup ˛.G0/ of G. Let � be as before, k:k
be adapted to L.˛/, and R be as in 5.4. Then there exists t0 2 �0;R� such that

Œ˛.B�t / W ˛.B�t / \ B�t � D s.L.˛// for all t 2 �0; t0�:

Proof Let ˇ be as in (31). By (33) and the Ultrametric Inverse Function Theorem
(Lemma 4.8), there is t0 2 �0;R� with L.˛/.Bt0 / � BR such that

.� ı ˛ ı ��1/.Bt/ D L.˛/.Bt/

for all t 2 �0; t0� and hence

˛.B�t / D ��1.L.˛/.Bt//: (34)

Given t 2 �0; t0�, there exists � 2 �0; t� such that B� � L.˛/.Bt/. Then

s.L.˛// D ŒL.˛/.Bt/ W L.˛/.Bt/ \ Bt�

D ŒL.˛/.Bt/ W B� �
ŒL.˛/.Bt/\ Bt W B� � in .BR;C/
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D ŒL.˛/.Bt/ W B� �
ŒL.˛/.Bt/\ Bt W B� � in .BR;
/

D Œ˛.B�t / W B�� �
Œ˛.B�t / \ B�t W B�� �

D Œ˛.B�t / W ˛.B�t /\ B�t �

using Remark 5.3 for the third equality; to obtain the final equality, (34) was used
and the fact that �WB�R ! .BR;
/ is an isomorphism. ut
The following lemma shows that different choices of � do not affect the B�t for
small t (as long as the norm is unchanged).

Lemma 5.6 Let M be an analytic manifold over a totally disconnected local
field K, E be a finite-dimensional K-vector space, and k:k be an ultrametric norm
on E. Let p 2 M and �jWUj ! Vj, for j 2 f1; 2g, be an analytic diffeomorphism
from an open neighbourhood Uj of p in M onto an open 0-neighbourhood Vj � E
such that �j. p/ D 0. If d�1jTp.M/ D d�2jTp.M/, then there exists " > 0 with
BE
" .0/ � V1 \ V2 such that

��11 .BE
t .0// D ��12 .BE

t .0// for all t 2 �0; "�:

Proof The map h WD �2 ı ��11 W�1.U1 \ U2/ ! �2.U1 \ U2/ is an analytic
diffeomorphism between open 0-neighbourhoods in E. Since T0.h/ D idT0.E/, we
have h0.0/ D idE, which is an isometry. Thus, the Ultrametric Inverse Function
Theorem provide " > 0 with BE

" .0/ � �1.U1 \ U2/ such that h.BE
t .0// D

BE
t .0/ for all t 2 �0; "�. Notably, BE

t .0/ � �1.U1 \ U2/ and ��11 .BE
t .0// D

��12 .�2.�
�1
1 .BE

t .0//// D ��12 .BE
t .0//. ut

6 Endomorphisms of p-Adic Lie Groups

In this section, we first recall general facts concerning p-adic Lie groups which go
beyond the properties of Lie groups over general local fields already described. In
particular, we recall that every p-adic Lie group has an exponential function, and
show that contraction groups of endomorphisms of p-adic Lie groups are always
closed. We then calculate the scale and describe tidy subgroups for endomorphisms
of p-adic Lie groups.

Basic Facts Concerning p-Adic Lie Groups For each n 2 N, the exponential
series

P1
kD0 1

kŠA
k converges for matrices A in some 0-neighbourhood V in the

algebra Mn.Qp/ of n 	 n-matrices and defines an analytic mapping expWV !
GLn.Qp/. More generally, every analytic Lie group G over Qp has an exponential
function (see Definition 1 and the following lines in [7, Chapter III, §4, no. 3]):

6.1 An analytic map expGWV ! G on an open Zp-submodule V � g WD L.G/
is called an exponential function if expG.0/ D e, T0.expG/ D idg (identifying
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T0.g/ D f0g 	 g with g via .0; v/ 7! v) and

expG..sC t/x/ D expG.sx/ expG.tx/

for all x 2 U and s; t 2 Zp.

6.2 Since T0.expG/ D idg, after shrinking V one can assume that expG.V/ is
open in G and expG is a diffeomorphism onto its image (by the Inverse Function
Theorem). After shrinking V further if necessary, we may assume that expG.V/ is
a subgroup of G (cf. Lemma 5.2). Hence also V can be considered as a Lie group.
The Taylor expansion of multiplication with respect to the logarithmic chart exp�1G
is given by the Baker-Campbell-Hausdorff (BCH-) series

x 
 y D xC yC 1

2
Œx; y�C � � � (35)

(all terms of which are nested Lie brackets with rational coefficients), and hence x
y
is given by this series for small V (see Proposition 5 in [7, Chapter III, §4, no. 3] and
proof of Proposition 3 in [7, Chapter III, §7, no. 2], also [49]). If 
 is given on all of
V 	 V by the BCH-series, we call expG.V/ a BCH-subgroup of G.
Next, let us consider homomorphisms between p-adic Lie groups.

6.3 If ˛WG ! H is an analytic homomorphism between p-adic Lie groups, we
can choose exponential functions expGWVG ! G and expHWVH ! H such that
L.˛/:VG � VH and

expH ıL.˛/jVG D ˛ ı expG (36)

(see Proposition 8 in [7, Chapter III, §4, no. 4], also [49]).
The following classical fact (see Theorem 1 in [7, Chapter III, §8, no. 1], also [49])
is important:

6.4 Every continuous homomorphism between p-adic Lie groups is analytic.
As a consequence, there is at most one p-adic Lie group structure on a given

topological group. As usual, we say that a topological group is a p-adic Lie group
if it admits a p-adic Lie group structure. Closed subgroups of p-adic Lie groups are
Lie subgroups (see Theorem 2 in [7, Chapter III, §8, no. 2] or [49]), finite direct
products and Hausdorff quotient groups of p-adic Lie groups are p-adic Lie groups
(see Proposition 11 in [7, Chapter III, §1, no. 6], also [49]).

Closedness of Ascending Unions and Contraction Groups Another fact is vital:

Lemma 6.5 Every p-adic Lie group G has an open subgroup which satisfies the
ascending chain condition on closed subgroups. As a consequence,

S
n2N Hn is

closed for each ascending sequence H1 � H2 � � � � of closed subgroups of G.
Proof See, e.g. [21, Propositions 4.19 and 4.20]; cf. also step 1 of the proof of [54,
Theorem 3.5]. ut
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Two important applications are now described.

Corollary 6.6 Let ˛ be an endomorphism of a p-adic Lie group G and V be a
compact open subgroup of G. If V is tidy above for ˛, then V is tidy.

Proof The subgroup V�� D S
n2N0 ˛

�n.V�/ is an ascending union of closed
subgroups of G and hence closed, by Lemma 6.5. Thus V is tidy, by 2.4. ut
The second application of Lemma 6.5 concerns contraction groups. For automor-
phisms, see already [54, Theorem 3.5 (ii)].

Corollary 6.7 Let G be a p-adic Lie group. Then the contraction group
�!
con .˛/ is

closed in G, for each endomorphism ˛WG! G.

Proof Let V1 � V2 � � � � be a sequence of compact open subgroups of G which
form a basis of identity neighbourhoods (cf. Lemma 5.2). Then an element x 2 G

belongs to
�!
con.˛/ if and only if

.8n 2 N/ .9m 2 N/ .8k � m/ ˛k.x/ 2 Vn :

Since ˛k.x/ 2 Vn if and only if x 2 ˛�k.Vn/, we deduce that

�!
con.˛/ D

\

n2N

[

m2N

\

k�m
˛�k.Vn/ :

Note that Wn WD S
m2N

T
k�m ˛�k.Vn/ is an ascending union of closed subgroups

of G and hence closed, by Proposition 6.5. Consequently,
�!
con .˛/ D T

n2N Wn is
closed. ut
Remark 6.8 We shall see later that also

 �
con .˛/ is always closed in the situation

of Corollary 6.7 (see Theorem 8.15). Alternatively, this follows from the general
structure theory (see [9, Proposition 10.4]).

Scale and Tidy Subgroups The following lemma prepares the construction of
tidy subgroups in p-adic Lie groups, and can also be re-used later when we turn
to Lie groups over general local fields. As two endomorphisms are discussed
simultaneously in the lemma, we use notation as in 2.2.

Lemma 6.9 Let G and H be totally disconnected, locally compact topological
groups, ˛WG ! G and ˇWH ! H be endomorphisms, U � G and V � H be
subsets and  WV ! U be a bijection. Assume that there exists a compact open
subgroup B � H such that B � V, ˇ.B/ � V, the image W WD  .B/ is a compact
open subgroup of G, and

˛ ı  jB D  ı ˇjB: (37)

Write BC WD BC;ˇ, B� WD B�;ˇ , WC WD WC;˛ and W� WD W�;˛ . Then

 .BC/ D WC;  .B�/ D W� and  .ˇ.BC// D ˛.WC/:
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Proof We define Bn WD Bn;ˇ and Wn WD Wn;˛ for n 2 N0 as in 2.2. Then Bn � B for
each n 2 N0, by construction. We show that

 .Bn/ D Wn (38)

for all n 2 N0, by induction. The case n D 0 is clear: we have  .B0/ D  .B/ D
W D W0. Now assume that (38) holds for some n. Since Bn � B, we have ˇ.Bn/ �
V . Using that  is injective, (37), and the inductive hypothesis, we see that

 .BnC1/ D  .ˇ.Bn/\ B/ D  .ˇ.Bn//\  .B/ D ˛. .Bn// \W

D ˛.Wn/ \W D WnC1:

Thus (38) holds for all n 2 N0. Since  is injective, we deduce that

 .BC/ D  
0

@
\

n2N0
Bn

1

A D
\

n2N0
 .Bn/ D

\

n2N0
Wn D WC:

As BC � B, using (37) also  .ˇ.BC// D ˛. .BC// D ˛.WC/ follows. Finally, for
n 2 N0 let B�n be the set of all x 2 B such that ˇk.x/ 2 B for all k 2 f0; 1; : : : ; ng,
and W�n be the set of all w 2 W such that ˛k.w/ 2 W for all k 2 f0; 1; : : : ; ng. We
claim that

 .B�n/ D W�n for all n 2 N0: (39)

Since B� D Tn2N0 B�n with B�n � B � V for all n 2 N0, using the injectivity of  
we then get

 .B�/ D  
0

@
\

n2N0
B�n

1

A D
\

n2N0
 .B�n/ D

\

n2N0
W�n D W�:

It only remains to prove the claim. It suffices to show that

 .B�n/ � W�n (40)

for all n 2 N0, as the arguments can also be applied to G, ˛, H, ˇ,  �1, W, and B in
place of H, ˇ, G, ˛,  , B, and W, respectively. In fact, (37) implies that ˛.W/ � U,
enabling us to compose the functions in (37) with  �1 on the left. Composing also
with . jWB /�1 on the right, we find that

 �1 ı ˛jW D ˇ ı  �1jW : (41)
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We now prove (40) by induction, starting with the observation that  .B0/ D
 .B/ D W D W0. If (39) holds for some n 2 N0, let x 2 B�.nC1/. Then
 .x/ 2  .B/ D W and ˇj.ˇ.x// D ˇjC1.x/ 2 B for j 2 f0; 1; : : : ; ng shows
that ˇ.x/ 2 B�n, whence ˛. .x// D  .ˇ.x// 2 W�n by induction. Hence
 .x/ 2 fw 2 WW˛.w/ 2 W�ng D W�.nC1/. ut

We are now ready to calculate the scale and find tidy subgroups for endomor-
phisms of p-adic Lie groups. It is illuminating to look at this easier case first, before
we turn to endomorphisms of Lie groups over general local fields. Of course, the
p-adic case is subsumed by the later discussion, but the latter is more technical
as techniques from dynamical systems (local invariant manifolds) will be used
as a replacement for the exponential function, which provides a local conjugacy
between the linear dynamical system .L.G/;L.˛// and .G; ˛/ in the case of an
endomorphism ˛ of a p-adic Lie group G, and thus enables a more elementary
reasoning.

Preparations If G is a p-adic Lie group and ˛WG ! G an endomorphism, then
there exists an open subgroup V of .L.G/;C/ which is a BCH-Lie group with
BCH-multiplication 
, and an exponential function expGWV ! U which is an
isomorphism from the Lie group .V;
/ onto a compact open subgroup U of G,
as recalled above. Fix a norm k:k on g WD L.G/ which is adapted to L.˛/; after
shrinking V , we may assume that

V D Bg
R.0/ (42)

for some R > 0. Abbreviate Bt WD Bg
t WD Bg

t .0/ for t > 0. Applying 6.3
and Lemma 5.2 to � WD .expG/

�1WU ! V , we find r 2 �0;R� such that
B�t WD ��1.Bt/ D expG.Bt/ is a compact open subgroup of G for all t 2 �0; r�
and, moreover,

L.˛/.Br/ � V and expG ıL.˛/jBr D ˛ ı expG jBr ; (43)

whence ˛.B�r / � U in particular. Let g<1 WD L
�2Œ0;1Œ g� be the indicated sum of

characteristic subspaces with respect to L.˛/, and g�1 WDL��1 g�. Since

g<1 D �!con.L.˛// and g�1 D  �par.L.˛//

are Lie subalgebras of g (see Theorem 3.6 (b) and Lemma 3.8) and 
 is given by the
BCH-series, we see that

Bg<1
r WD Br \ g<1 and Bg

�1
r WD Br \ g�1

are Lie subgroups of .Br;
/ with Lie algebras g<1 and g�1, respectively. After
shrinking R if necessary, we may assume that

x 
 Bg
�1

t D xC B
g
�1

t for all x 2 B
g
�1

R and t 2 �0;R�; (44)
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see Remark 5.3 (which applies with g�1 in place of g and idWBg
�1

r ! Bg
�1

r in place
of �). Now the mapping

Bg
�1

r 	 Bg<1
r ! Br; .x; y/ 7! x 
 y

has the derivative

g�1 	 g<1 ! g; .x; y/ 7! xC y (45)

at .0; 0/, which is an isometry if we endow g<1 and g�1 with the norm induced
by k:k and use the maximum norm thereof on the left-hand side of (45). Hence,
by the Ultrametric Inverse Function Theorem (Lemma 4.8), after shrinking r (if
necessary) we may assume that

Bg
�1

t 
Bg<1
t D Bt for all t 2 �0; r�: (46)

With notation as before, we have:

Theorem 6.10 If ˛ is an endomorphism of a p-adic Lie group G, then

sG.˛/ D sL.G/.L.˛//

holds and B�t is tidy for ˛, for all t 2 �0; r�.
Proof Let t 2 �0; r�. Applying the isomorphism expGW .V;
/ ! U to both sides
of (46), we see that

expG.B
g
�1

t / expG.B
g<1
t / D B�t : (47)

In view of (43), we can apply Lemma 6.9 to G, ˛, H WD .g;C/, ˇ WD L.˛/,  WD
expG, B WD Bg

t , and W WD B�t . Hence

.B�t /C WD .B�t /C;˛ D expG..B
g
t /C;ˇ/ and .B�t /� WD .B�t /�;˛ D expG..B

g
t /�;ˇ/:

Now

.Bg
t /C;ˇ D Bg

�1
t and .Bg

t /�;ˇ D Bg
t \

M

�2Œ0;1�
g� � Bg<1

t

(cf. (17)), whence

.B�t /C D expG.B
g
�1

t / and .B�t /� � expG.B
g<1
t /:
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Combining this with (47), we find that

B�t � .B�t /C.B�t /� � expG.B
g
�1

t / expG.B
g<1
t / D B�t

and thus B�t D .B�t /C.B
�
t /�, i.e., B�t is tidy above for ˛ and thus tidy for ˛, by

Corollary 6.6. Note that L.˛/jBg
t
W .Bg

t ;
/ ! .V;
/ is a group homomorphism,

as 
 is given by the BCH-series. Hence ˇ..Bg
t /C/ D L.˛/.B

g
�1

t / is a subgroup
of the group .V \ g�1;
/, which contains .Bg

t /C;ˇ D B
g
�1

t as a subgroup. Since
expGW .V;
/ ! U is an isomorphism of groups and cosets of balls coincide in the
groups .V \ g�1;C/ and .V \ g�1;
/ (see (44)), we obtain

s.L.˛// D ŒL.˛/Bg
�1

t WBg
�1

t � w.r.t.C
D ŒL.˛/Bg

�1
t WBg

�1
t � w.r.t. 


D ŒexpG.L.˛/.B
g
�1

t //W expG.B
g
�1

t /�

D Œ˛.expG.B
g
�1

t //W expG.B
g
�1

t /�

D Œ˛..B�t /C/W .B�t /C� D s.˛/;

which completes the proof. ut
Remark 6.11 For automorphisms of p-adic Lie groups, the calculation of the scale
was performed in [15].

7 Invariant Manifolds Around Fixed Points

As in the classical real case, (locally) invariant manifolds can be constructed around
fixed points of time-discrete analytic dynamical systems over a totally disconnected
local field (see [18] and [19]). We shall use these as a tool in our discussion of
analytic endomorphisms of Lie groups over such fields. In the current section, we
compile the required background.

Definition 7.1 Let E be a finite-dimensional vector space over a totally discon-
nected local field K, which we endow with its natural absolute value j:jK. Let
˛ W E! E be lk-linear. Given a 2 �0;1�, we call

E<a WD
M

�2Œ0;aŒ
E� and E>a WD

M

�2 �a;1Œ
E�

the a-stable and a-unstable vector subspaces of E with respect to ˛, using the
characteristic subspaces E� with respect to ˛ (as in 3.2). We call E1 (i.e., E� with
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� D 1) the centre subspace of E with respect to ˛. A linear endomorphism ˛ of E is
called a-hyperbolic if a 6D j	jK for all eigenvalues 	 of ˛ in an algebraic closure K,
i.e., if Ea D f0g and thus

E D E<a ˚ E>a:

Now consider an analytic manifold M over a local field K, an analytic mapping
f WM ! M, a fixed point p 2 M of f and a submanifold N � M such that p 2 N.
Given a > 0, decompose

Tp.M/ D Tp.M/<a ˚ Tp.M/a ˚ Tp.M/>a

with respect to the endomorphism Tp. f / of Tp.M/, as in Definition 7.1. For our
purposes, special cases of concepts in [18] and [19] are sufficient:

Definition 7.2

(a) If a 2 �0; 1� and Tp. f / is a-hyperbolic, we say that the submanifold N is a local
a-stable manifold for f around p if Tp.N/ D Tp.M/<a and f .N/ � N.

(b) We say that N is a centre manifold for f around p if Tp.N/ D Tp.M/1 and
f .N/ D N.

(c) If b � 1 and Tp. f / is b-hyperbolic, we say that N is a local b-unstable manifold
for f around p if Tp.N/ D Tp.M/>b and there exists an open neighbourhood P
of p in N such that f .P/ � N.

We need a fact concerning the existence of local invariant manifolds.

Proposition 7.3 Let M be an analytic manifold over a totally disconnected local
field K. Let f WM ! M be an analytic mapping and p 2 M be a fixed point of f .
Moreover, let a 2 �0; 1� and b 2 Œ1;1Œ be such that a 6D j	jK and b 6D j	jK for all
eigenvalues 	 of Tpf in an algebraic closure K of K. Finally, let k:k be a norm on
E WD Tp.M/ which is adapted to the endomorphism Tp. f /. Endow vector subspaces
F � E with the norm induced by k:k and abbreviate BF

t WD BF
t .0/ for t > 0. Then

the following holds:

(a) There exists a local a-stable manifold Ws
a for f around p and an analytic

diffeomorphism

�sWWs
a ! BE<a

R

for some R > 0 such that �s. p/ D 0 holds, Ws
a.t/ WD ��1s .BE<a

t / is a local
a-stable manifold for f around p for all t 2 �0;R�, and d�sjTp.Ws

a/
D idE<a .

(b) There exists a centre manifold Wc for f around p and an analytic diffeomor-
phism

�cWWc ! BE1
R
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for some R > 0 such that �c. p/ D 0 holds, Wc.t/ WD ��1c .BE1
t / is a centre

manifold for f around p for all t 2 �0;R�, and d�cjTp.Wc/ D idE1 .
(c) There exists a local b-unstable manifold Wu

b for f around p and an analytic
diffeomorphism

�uWWu
b ! BE>b

R

for some R > 0 such that �u. p/ D 0, Wu
b .t/ WD ��1u .BE>b

t / is a local b-unstable
manifold for f around p for all t 2 �0;R�, and d�ujTp.Wu

b /
D idE>b .

Proof (a) and (c) are covered by the Local Invariant Manifold Theorem (see [19,
p. 76]) and its proof. To get (b), let �WU ! V be an analytic diffeomorphism from
on open neighbourhoodU of p in M onto an open 0-neighbourhoodV � E such that
�. p/ D 0 and d�jE D idE. We can then construct centre manifolds for the analytic
map

� ı f ı ��1W�.U \ f�1.U//! V

around its fixed point 0 with [18, Proposition 4.2] and apply ��1 to create the
desired centre manifolds for f . We mention that the cited proposition only considers
mappings whose derivative at the fixed point is an automorphism, but its proof never
uses this hypothesis, which therefore can be omitted. ut
Remark 7.4 Of course, we can use the same R > 0 in parts (a), (b), and (c) of
Proposition 7.3 (simply take the minimum of the three numbers).

Remark 7.5 Note that, since f .Ws
a/ � Ws

a, we have a descending sequence

Ws
a � f .Ws

a/ � f 2.Ws
a/ � � � �

in Proposition 7.3 (a).

Lemma 7.6 After shrinking R in Proposition 7.3 (a) if necessary, we can assume
that

\

n2N0
f n.Ws

a/ D fpg and lim
n!1 f n.x/ D p for all x 2 Ws

a: (48)

Proof Abbreviate F WD E<a. The map

h WD �s ı f jWs
a
ı ��1s WBF

R ! BF
R

is analytic, h.0/ D 0, and h0.0/ D Tp. f /jF has operator norm kh0.0/kop < a. Choose
" > 0 so small that

� WD kh0.0/kop C " < 1:
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Since h is totally differentiable at 0, we find r 2 �0;R� such that

kh.x/� h0.0/.x/k � "kxk for all x 2 BF
r :

Then kh.x/k D kh0.0/.x/C .h.x/� h0.0/.x//k � .kh0.0/kopC "/kxk D �kxk for all
x 2 BF

r , whence h.BF
r / � BF

�r � BF
r and

hn.BF
r / � BF

�nr for all n 2 N0:

As a consequence,
T

n2N0 h
n.BF

r / D f0g. Then Q WD Ws
a.r/ D ��1s .BF

r / is an open
neighbourhood of p in Ws

a such that
T

n2N0 f
n.Q/ D fpg. After replacing R with r,

we have (48). ut
Lemma 7.7 After shrinking R in Proposition 7.3 (b), we may assume that the map
f jWc.t/WWc.t/! Wc.t/ is an analytic diffeomorphism for each t 2 �0;R�.
Proof Abbreviate F WD Tp.M/1 D E1. The mapping

h WD �c ı f jWc ı ��1c WBF
R ! BF

R

is analytic with h.0/ D 0, and h0.0/ D Tp. f /jF is an isometry. By the Ultrametric
Inverse Function Theorem, after shrinking R if necessary, we can achieve that h is
an analytic diffeomorphism from BF

R onto BF
R. Then also f jWc is a diffeomorphism.

Since Wc.t/ is a centre manifold for all t 2 �0;R�, we have f .Wc.t// D Wc.t/, which
completes the proof. ut
Lemma 7.8 We can always choose the open neighbourhood P around p in a local
b-unstable manifold N � M .as in Definition 7.2 (c)) in such a way that, for each
x 2 P n fpg, there exists n 2 N such that x; f .x/; : : : ; f n�1.x/ 2 P but f n.x/ 2 N n P.
Proof To see this, excluding a trivial case,12 we may assume that the b-unstable
subspace F WD E>b WD Tp.M/>b with respect to Tp. f / is non-trivial. Let �WU ! V
be an analytic diffeomorphism from an open neighbourhood U of p in N onto an
open 0-neighbourhood V � Tp.N/ D F, such that �. p/ D 0 and d�jTp.N/ D idF .
Then

h WD � ı f ı ��1W�. f�1.U/ \U/! V

is an analytic mapping defined on an open 0-neighbourhood, such that h0.0/ D
Tp. f /jF is invertible and

1

kh0.0/�1kop
> b:

12Otherwise N is discrete and we can choose P D fpg.
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Since h is totally differentiable at 0, there exists r > 0 with BF
r .0/ in the domain D

of h such that

h.BF
r .0// � D;

kh.x/� h0.0/.x/k � bkxk (49)

for all x 2 BF
r .0/ n f0g, and f .P/ � U with P WD ��1.BF

r .0//. Using (49) and (11),
we deduce that

kh.x/k D kh0.0/.x/C .h.x/� h0.0/.x//k D kh0.0/.x/k > bkxk;

as kh0.0/.x/k � kh0.0/�1k�1op kxk > bkxk. So, for all x 2 BF
r .0/ n f0g, there is n 2 N

such that x; h.x/; : : : ; hn.x/ are defined and in BF
r .0/, but hnC1.x/ 2 DnBF

r .0/. Now P
is a neighbourhood of p with the desired property. ut
Lemma 7.9 Let U be an open neighbourhood of p in M and �WU ! V be an
analytic diffeomorphism onto an open 0-neighbourhood V � Tp.M/ DW E such that
�.P/ D 0 and d�jE D idE. After decreasing R in Proposition 7.3 (c) if necessary,
we can always assume that BE

R.0/ � V and the following additional property holds
for all t 2 �0;R� :

Wu
b .t/ is the set of all x 2 ��1.BE

t .0// DW B�t for which there exists an f -regressive
trajectory .x�n/n2N0 in B

�
t with x0 D x, such that

lim
n!1 bn�.x�n/ D 0: (50)

Then lim
n!1 x�n D p in particular, and x�n 2 Wu

b .t/ for all n 2 N0.

Proof As before, abbreviate BE
t WD BE

t .0/ and BE>b
t WD BE>b

t .0/ for t > 0. There is
r > 0 such that BE

r � V and f .��1.BE
r // � U, whence an analytic map

h WD � ı f ı ��1jBE
r
WBE

r ! E

can be defined with h.0/ D 0 and h0.0/ D Tp. f /. For t 2 �0; r�, let �t be the set
of all z 2 BE

t for which there exists an h-regressive trajectory .z�n/n2N0 in BE
t with

z0 D z such that

lim
n!1 bnkz�nk D 0: (51)

By [18, Theorem B.2] and the proof of Theorem 8.3 in [18], after shrinking r we
may assume that �t is a submanifold of BE

t and

��1.�t/
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a local b-unstable submanifold of M for each t 2 �0; r�; and, moreover, there is an
analytic map

�WBE>b
r ! BE<b

r

(called � there) with �.0/ D 0 and

�0.0/ D 0 (52)

such that

�t D f.�. y/; y/W y 2 BE>b
t g for all t 2 �0; r�;

identifying E D E<b ˚ E>b with E<b 	 E>b. Hence

�WBE>b
r ! ��1.�r/; y 7! ��1.�. y/; y/

is an analytic diffeomorphism, and thus also ��1W �.BE>b
r / ! BE>b

r is an analytic
diffeomorphism. As a consequence of (52), we have

d.��1/jE>b D idE>b :

Since, like Wu
b D ��1u .BE>b

R /, also ��1.�r/ D �.BE>b
r / is a local b-unstable manifold

for f , [18, Theorem 8.3] shows that there exists a subset Q � Wu
b \�.BE>b

r / which is
an open neighbourhood of p in both Wu

b and �.BE>b
r /. Hence, there exists � > 0 with

� � minfR; rg such that Wu
b .�/ � Q and �.BE>b

� / � Q. Since Q is a submanifold
of M, the manifold structures induced on Q as an open subset of Wu

b and �.BE>b
r /

coincide. By Lemma 5.6, after shrinking � if necessary we may assume that

Wu
b .t/ D ��1u .BE>b

t / D .��1/�1.BE>b
t / D ��1.�t/

for all t 2 �0; ��. Let t 2 �0; �� and x 2 B�t .
If x 2 ��1.�t/, then there exists an h-regressive trajectory .z�n/n2N0 in BE

t with
z0 D �.x/ and bnkz�nk ! 0. Now, for m 2 N0, the sequence .z�n�m/n2N0 is an
h-regressive trajectory for z�m in BE

t such that

bnkz�n�mk D b�mbnCmkz�n�mk ! 0

as n!1 and thus z�m 2 �t. As a consequence, .��1.z�n//n2N0 is an f -regressive
trajectory in Wu

b .t/ D ��1.�t/ such that ��1.z0/ D x and bnk�.��1.z�n//k D
bnkz�nk ! 0 as n!1.

Conversely, assume there exists an f -regressive trajectory .x�n/n2N0 in B�t with
x0 D x and (50). Then .�.x�n//n2N0 is an h-regressive trajectory in BE

t such that (51)
holds, whence �.x/ D �.x0/ 2 �t and thus x 2 ��1.�t/.
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Summing up, the conclusion of the lemma holds if we replace R with � . ut
Let us consider a first application of invariant manifolds.

Proposition 7.10 Let ˛ be an analytic automorphismof a Lie group G over a totally
disconnected local field K. Let K be an algebraic closure of K. Then we have:

(a)
�!
con.˛/ is open in G if and only if j	jK < 1 for each eigenvalue 	 of L.˛/ in K.

(b) ˛ is expansive if and only if j	jK 6D 1 for each eigenvalue 	 of L.˛/ in K.
(c) ˛ is a distal automorphism if and only if j	jK D 1 for each eigenvalue 	 of L.˛/

in K.

Proof (c) If j	jK < 1 for some 	, choose a 2 �0; 1� such that a > j	jK and L.˛/ is
a-hyperbolic. Then G has a local a-stable manifold W 6D feg for ˛ around e, which

can be chosen such that W � �!
con .˛/ (see Lemma 7.6). Since ˛n.x/ ! e for all

x 2 W n feg, we see that ˛ is not distal.
If j	jK > 1 for some 	, then again we see that ˛ is not distal, replacing ˛ with

˛�1 and its iterates in the preceding argument.
If j	jK D 1 for each 	, then g WD L.G/ coincides with its centre subspace

with respect to L.˛/, whence every centre manifold for ˛ around e is open in G. If
x 2 G n feg, then Proposition 7.3 (b) provides a centre manifold W for ˛ around e
such that x 62 W. Since ˛n.W/ D W for all n 2 Z and ˛n is a bijection, we must
have ˛n.x/ 62 W for all n 2 Z. As a consequence, the set f˛n.x/W n 2 Zg (and hence
also its closure) is contained in the closed set G n W. Thus e 62 f˛n.x/W n 2 Zg and
thus ˛ is distal.

The proofs for (b) and the implication “)” in (a) are similar and again involve
local invariant manifolds, see [23, Proposition 7.1] and [19, Corollary 6.1 and
Proposition 3.5], respectively.

(a) To complete the proof of (a), assume that j	jK < 1 for all 	. Choose a 2 �0; 1Œ
such that a > j	jK for all 	. Then g D g<a with respect to L.˛/. Let Ws

a and the
analytic diffeomorphism �sWWs

a ! Bg
R.0/ be as in Proposition 7.3 (a). Then Ws

a
is open in G. By Lemma 7.6, after shrinking R (if necessary) we can achieve that

Ws
a �

�!
con .˛/. Thus

�!
con .˛/ is an open identity neighbourhood in G and hence

�!
con.˛/ is open, being a subgroup. ut

8 Endomorphisms of Lie Groups over K

In this section, we formulate and prove our main results concerning analytic
endomorphisms of Lie groups over totally disconnected local fields.

Some Preparations

Definition 8.1 Let ˛ be an endomorphism of a totally disconnected, locally
compact group G. We say that G has small tidy subgroups for ˛ if each identity
neighbourhood of G contains a compact open subgroup of G which is tidy for ˛.
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For ˛ an automorphism, the existence of small tidy subgroups is equivalent to

closedness of
�!
con .˛/ (see [1, Theorem 3.32] for the case of metrizable groups;

the general case can be deduced with arguments from [36]). The following result
concerning endomorphisms is sufficient for our Lie theoretic applications.

Lemma 8.2 Let ˛ be an endomorphism of a totally disconnected, locally compact
group G.

(a) If G has small subgroups tidy for ˛, then
�!
con.˛/ is closed.

(b) If
�!
con.˛/ is closed and a compact open subgroup U of G satisfies

U� D .�!con.˛/ \ U�/.UC \U�/ (53)

and is tidy above, then U is tidy for ˛. Hence, if
�!
con .˛/ is closed and each

identity neighbourhood of G contains a compact open subgroup U which
satisfies (53) and is tidy above for ˛, then G has small tidy subgroups.

Proof

(a) Let T.˛/ be the set of all tidy subgroups for ˛. If T.˛/ is a basis of identity
neighbourhoods, then

�!
con.˛/ D fx 2 GW lim

n!1˛
n.x/ D eg

D fx 2 GW .8U 2 T.˛// .9m/.8n � m/ ˛n.x/ 2 U
„ ƒ‚ …

,x2U
��

g

D
\

U2T.˛/
U��;

which is closed.
(b) Assuming that U� D .�!con.˛/ \ U�/.UC \ U�/, let us show that

U�� D �!con.˛/.UC \U�/: (54)

If (54) holds, then U�� is closed (as
�!
con .˛/ is assumed closed and UC \ U� is

compact). Hence U will be tidy for ˛ (by 2.4), and also the final assertion is then
immediate.

The inclusion “�” in (54) is clear. To see that the converse inclusion holds, let

x 2 U��. Then ˛n.x/ 2 U� for some n. As U� D .
�!
con .˛/ \ U�/.UC \ U�/ by

hypothesis, we have

˛n.x/ D yz for some y 2 �!con.˛/ and some z 2 UC \ U�:
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Since ˛.UC \ U�/ D UC \ U�, find w 2 UC \ U� such that z D ˛n.w/. Then

˛n.xw�1/ D y 2 �!con.˛/, entailing that xw�1 2 �!con.˛/ and thus x D .xw�1/w 2 �!con

.˛/.UC \U�/. Thus U�� � �!con .˛/.UC \ U�/; the proof is complete. ut
Remark 8.3 With much more effort, it can be shown that closedness of

�!
con .˛/

is always equivalent to the existence of small tidy subgroups, for every endomor-
phism ˛ of a totally disconnected, locally compact group G (see [9, Theorem D]).
Lemma 8.2, which is sufficient for our ends, was presented at the AMSI workshop
July 25, 2016 (before the cited theorem was known).

We need a result from the structure theory of totally disconnected groups.

Lemma 8.4 Let ˛ be an endomorphism of a totally disconnected, locally compact
group G and V � G be a compact open subgroup which is tidy above for ˛. Then
s.˛/ divides Œ˛.V/ W ˛.V/ \ V�. ut
Proof As in [60, Definition 5], let LV be the subgroup of all x 2 G for which there
exist y 2 VC and n;m 2 N0 such that ˛m. y/ D x and ˛n. y/ 2 V�. Let LV be the
closure of LV in G,

eV WD fx 2 VW xLV � LVVg

(as in [60, (7)]) and W WD eVLV . Then eV is a compact open subgroup of G which is
tidy above for ˛ and

Œ˛.V/ W ˛.V/ \ V� D Œ˛.eV/ W ˛.eV/ \eV� (55)

(see [60, Lemma 16]). Moreover, W is a compact open subgroup of G which is
tidy for ˛, by the third step of the ‘tidying procedure’ (see [60, Step 3 following
Definition 10]). Let W�1 WD W \ ˛�1.W/ and eV�1 WD eV \ ˛�1.eV/. Then the left
action

eVC 	 Y ! Y; .v;w.WC \W�1// 7! vw.WC \W�1/

of eVC on Y WD WC=.WC \ W�1/ is transitive (as the map � defined in the proof
of [60, Proposition 6 (4)] is surjective). The point WC \ W�1 2 Y has stabilizer
eVC \WC \W�1 D eVC \W�1. Hence

s.˛/ D Œ˛.W/ W ˛.W/ \W� D ŒWC W WC \W�1� D jYj D ŒeVC W eVC \W�1�;
(56)

using tidiness of W for the first equality, [60, Lemma 3 (1) and (4)] for the second
and the orbit formula for theeVC-action for the last. SinceeVC\W�1 containseVC\
eV�1 as a subgroup, using [60, Lemma 3] again we deduce that

Œ˛.eV/ W ˛.eV/\eV� D ŒeVC W eVC \eV�1�
D ŒeVC W eVC \W�1�ŒeVC \W�1 W eVC \eV�1�: (57)
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Substituting (55) and (56) into (57), we obtain

Œ˛.V/ W ˛.V/ \ V� D s.˛/ŒeVC \W�1 W eVC \eV�1�; (58)

which completes the proof. ut
Scale and Tidy Subgroups If ˛WG ! G is an analytic endomorphism of a Lie
group G over a local field K, we fix a norm k:k on its Lie algebra g WD L.G/ WD
Te.G/ which is adapted to the associated linear endomorphism L.˛/ WD Te.˛/ of g.
Let K be an algebraic closure of K. In the proof of our main result, Theorem 8.13,
we want to use Lemma 5.5 to create compact open subgroups B�t of G. To get more
control over these subgroups, we now make a particular choice of �.

8.5 Pick a 2 �0; 1� such that L.˛/ is a-hyperbolic and a > j	jK for each eigenvalue
	 of L.˛/ in K such that j	jK < 1. Pick b 2 Œ1;1Œ such that L.˛/ is b-hyperbolic
and b < j	jK for each eigenvalue 	 of L.˛/ in K such that j	jK > 1. With respect
to the endomorphism L.˛/, we then have

g<1 D g<a and g>1 D g>b;

entailing that

g D g<a ˚ g1 ˚ g>b: (59)

We find it useful to identify g with the direct product g<a 	 g1 	 g>b; an element
.x; y; z/ of the latter is identified with xC yC z 2 g.

Let Ws
a, W

c, and Wu
b be a local a-stable manifold, centre-manifold, and local

b-unstable manifold for ˛ around p WD e in M WD G, respectively, R > 0 and

�sWWs
a ! Bg<a

R .0/; �cWWc ! Bg1
R .0/;

as well as �uWWu
b ! Bg>b

R .0/ be analytic diffeomorphisms as described in
Proposition 7.3. We abbreviate BF

t WD BF
t .0/ whenever F is a vector subspace of g.

Using the inverse maps

 s WD ��1s ;  c WD ��1c ; and  u WD ��1u ;

we define the analytic map

 WBg
R D Bg<a

R 	 Bg1
R 	 Bg>b

R ! G; .x; y; z/ 7!  s.x/ c. y/ u.z/:

Then T0 D idg by (27) and the properties of d�s, d�c, and d�u described in
Proposition 7.3 (a), (b), and (c), respectively, if we identify T0.g/ D f0g 	 g with
g as usual, forgetting the first component. By the Inverse Function Theorem, after
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shrinking R if necessary, we may assume that the image Ws
aW

cWu
b of  is an open

identity neighbourhood in G, and that

 WBg
R ! Ws

aW
cWu

b (60)

is an analytic diffeomorphism. We define

� WD  �1; (61)

with domain U WD Ws
aW

cWu
b and image V WD Bg

R. After shrinking R further if
necessary, we may assume that � and R have all the properties described in 5.1 and
Lemma 5.2.

8.6 In the following result and its proof, � and R are as in 8.5. We let Bt WD Bg
t � g

and the compact open subgroups

B�t WD ��1.Bg
t / D  .Bg

t / D  s.B
g<a
r / c.B

g1
t / u.B

g>b
t / D Ws

a.t/W
c.t/Wu

b .t/

of G for t 2 �0;R� be as in Lemma 5.2 (using notation as in Proposition 7.3). The
multiplication 
WBR 	 BR ! BR is as in 5.1.
We shrink R further (if necessary) to achieve the following:

Lemma 8.7 After shrinking R, we can achieve that Wu
b .t/ D ��1u .Bg>b

t / is a
subgroup of G for all t 2 �0;R� and Wc.t/ D ��1c .Bg1

t / normalizes W
u
b .t/.

Proof Let �, R and further notation be as in 8.5 and 8.6; notably, V D Bg
R. Using

Lemma 7.9 with M WD G, f WD ˛ and p WD e, we see that, after shrinking R if
necessary, we may assume the following condition (
) for all t 2 �0;R�:

Wu
b .t/ is the set of all x 2 B�t D Ws

a.t/W
c.t/Wu

b .t/ for which there exists an
˛-regressive trajectory .x�n/n2N0 in B�t with x0 D x such that

lim
n!1 bnk�.x�n/k D 0

(and then x�n 2 Wu
b .t/ for all n 2 N0). As the analytic map

gWV 	 V ! V � g; .x; y/ 7! x 
 y�1

is totally differentiable at .0; 0/ with g.0; 0/ D 0 and g0.0; 0/.x; y/ D x � y, after
shrinking R if necessary we may assume that

kx 
 y�1 � xC yk � maxfkxk; kykg
for all x; y 2 BR D V and thus

kx 
 y�1k D kx � yC .x 
 y�1 � xC y/k
� maxfkx � yk; kx 
 y�1 � xC ykg � maxfkxk; kykg; (62)
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using the ultrametric inequality. By definition, e 2 Wu
b .t/. Hence Wu

b .t/ will be a
subgroup of G for all t 2 �0;R� if we can show that xy�1 2 Wu

b .t/ for all x; y 2 Wu
b .t/.

Let .x�n/n2N0 and .y�n/n2N0 be ˛-regressive trajectories in B�t such that x0 D x,
y0 D y and

bnk�.x�n/k; bnk�.y�n/k ! 0 as n!1:

Then .x�ny�1�n/n2N0 is an ˛-regressive trajectory in the group B�t with x0y�10 D xy�1
and

bnk�.xny�1n /k D bnk�.xn/ 
 �.yn/�1k � maxfbnk�.xn/k; bnk�.yn/kg ! 0;

using that �WU ! .BR;
/ is a homomorphism of groups, and using the esti-
mate (62). Thus xy�1 2 Wu

b .t/, by (
).
We now show that, after shrinking R if necessary, Wu

b .t/ is normalized by Wc.R/
for all t 2 �0;R�. To this end, consider the analytic map

hWV 	 V ! V; .x; y/ 7! x 
 y 
 x�1:

For x 2 V , abbreviate hx WD h.x; :/. Since h0 D idV , we see that h00.0/ D idg which
is an isometry. By the Ultrametric Inverse Function Theorem with Parameters, after
shrinking R we can achieve that hxWBg

R ! Bg
R is an isometry for all x 2 Bg

R. Hence,
using that hx.0/ D 0,

kx 
 y 
 x�1k D khx. y/k D kyk for all x; y 2 Bg
R: (63)

If x 2 Wc.R/, t 2 �0;R� and y 2 Wu
b .t/, let .y�n/n2N0 be an ˛-regressive trajectory

in B�t such that y0 D y and bnk�.y�n/k ! 0 as n!1. Since ˛.Wc.R// D Wc.R/,
we can find an ˛-regressive trajectory .x�n/n2N0 in Wc.R/ such that x0 D x. Recall
from Lemma 5.2 that B�t is a normal subgroup of B�R. Hence .x�ny�nx�1�n/n2N0 is an
˛-regressive trajectory in B�t such that x0y0x�10 D xyx�1 and

bnk�.x�ny�nx�1�n/k D bnk�.x�n/ 
 �.y�n/ 
 �.x�n/�1k D bnk�.y�n/k ! 0

as n ! 1, using that � is a homomorphism of groups and (63). Thus xyx�1 2
Wu

b .t/, by (
). ut
8.8 By Lemma 7.6, after shrinking R if necessary, we may assume that

\

n2N0
˛n.Ws

a/ D feg and lim
n!1˛

n.x/ D e for all x 2 Ws
a: (64)

8.9 By Lemma 7.7, after shrinking R if necessary, we may assume that the map
˛jWc.t/WWc.t/! Wc.t/ is an analytic diffeomorphism for each t 2 �0;R�.
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8.10 By Lemma 7.9, after shrinking R if necessary, we may assume that, for each
t 2 �0;R�, for each x 2 Wu

b .t/ there exists an ˛-regressive trajectory .x�n/n2N0
in Wu

b .t/ such that x0 D x and

lim
n!1 x�n D e:

In particular, Wu
b .t/ � ˛.Wu

b .t// for all t 2 �0;R�.
8.11 By Lemma 7.8, there exists an open neighbourhoodP of e in Wu

b with ˛.P/ �
Wu

b such that, for each P n feg, there exists n 2 N0 such that ˛n.x/ 62 P. After
shrinking P, we may assume that P D Wu

b .r/ for some r 2 �0;R�.
The next lemma will be applied later to A WD Wc.t/, B WD Wu

b .t/ and C WD ˛.B/.
Lemma 8.12 Let G be a group, B � C � G be subgroups and A � G be a subset
such that AB and AC are subgroups of G and C \ AB D B. Then

ŒAC W AB� D ŒC W B�:

Proof The group C acts on X WD AC=AB on the left via c0:acAB WD c0acAB for
c; c0 2 C, a 2 A. To see that the action is transitive, let a 2 A and c 2 C. Since
AC is a group, we have .ac/�1 D a0c0 for certain a0 2 A and c0 2 C, entailing that
ac D .c0/�1.a0/�1 and thus acAB D .c0/�1AB D .c0/�1:AB. The stabilizer of the
point AB 2 X is C \ AB D B. Now the Orbit Formula shows that the map

C=B! X D AC=AB; cB 7! cAB

is a well-defined bijection. The assertion follows. ut
Using notation as before (notably � as in (61) and as in 8.11), we have:

Theorem 8.13 Let ˛ be an analytic endomorphism of a Lie group G over a
totally disconnected local field K. Then the scale s.˛/ divides the scale s.L.˛//
of the associated Lie algebra endomorphism L.˛/. The following conditions are
equivalent:

(a) sG.˛/ D sL.G/.L.˛//;

(b) There is t0 2 �0; r� such that the compact open subgroups B�t Š .Bt;
/ of G are
tidy for ˛, for all t 2 �0; t0�;

(c) G has small tidy subgroups for ˛;

(d) The contraction group
�!
con.˛/ is closed.

Proof The implication (b))(c) holds as the compact open subgroups B�t for t 2
�0; t0� form a basis of identity neighbourhoods in G. The implication (c))(d) is a
general fact, see Lemma 8.2(a).

(a),(b): We claim that there exists t0 2 �0; r� such that the compact open
subgroups B�t have displacement index

Œ˛.B�t /W˛.B�t /\ B�t � D s.L.˛// for all t 2 �0; t0�: (65)
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If this is true, then the equivalence of (a) and (b) is clear. If ˛ is an automorphism,
then the claim holds by Lemma 5.5. For ˛ an endomorphism, the argument is more
involved. We first note that the product map

�WWs
a 	Wc 	Wu

b ! Ws
aW

cWu
b D B�R

is an analytic diffeomorphism as so is  (from (60)). Let t 2 �0; r�. Since

˛.Ws
a.t/W

c.t// � Ws
a.t/W

c.t/;

we have ˛n.Ws
a.t/W

c.t// � Ws
a.t/W

c.t/ � B�t for all n 2 N0 and thus

Ws
a.t/W

c.t/ � .B�t /�: (66)

Since ˛.Wc.t// D Wc.t/ and each x 2 Wu
b .t/ has an ˛-regressive trajectory within

Wu
b .t/ (see 8.10), we have

Wc.t/Wu
b .t/ � .B�t /C: (67)

Thus B�t D Ws
a.t/W

c.t/Wu
b .t/ � .B�t /�.B

�
t /C � B�t , whence B�t D .B�t /�.B

�
t /C

and so B�t D .B�t /�1 D .B�t /C.B�t /� is tidy above for ˛.
Since B�t D Ws

a.t/W
c.t/Wu

b .t/ is a group and .B�t /C a subgroup, (67) implies that

.B�t /C D JtW
c.t/Wu

b .t/

with Jt WD .B�t /C \ Ws
a.t/. Since � is a bijection, ˛.Jt/ � ˛.Ws

a.t// � Ws
a.t/ and

˛.Wu
b .t// � Wu

b (see 8.11)), the inclusion

JtW
c.t/Wu

b .t/ D .B�t /C � ˛..B�t /C/ D ˛.Jt/Wc.t/˛.Wu
b .t//

entails that Jt � ˛.Jt/, whence

Jt �
\

n2N0
˛n.Jt/ �

\

n2N0
˛n.Ws

a/ D feg;

using (64). Thus Jt D feg and hence

Wc.t/Wu
b .t/ D .B�t /C; (68)

which is a subgroup. Also

˛..B�t /C/ D Wc.t/˛.Wu
b .t//
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is a subgroup, and

˛.Wu
b .t// \Wc.t/Wu

b .t/ D Wu
b .t/

since � is a bijection and ˛.Wu
b .t// � Wu

b by 8.11. Hence, by [60, Lemma 5] and
Lemma 8.12,

Œ˛.B�t / W ˛.B�t /\ B�t � D Œ˛..B�t /C/ W .B�t /C�
D ŒWc.t/˛.Wu

b .t// W Wc.t/Wu
b .t/�

D Œ˛.Wu
b .t// W Wu

b .t/�: (69)

Applying now Lemma 5.5 to ˛jWu
b .r/WWu

b .r/ ! Wu
b instead of ˛WG0 ! G and

�ujWu
b .r/ instead of �, we see that there is t0 2 �0; r� such that

Œ˛.Wu
b .t// W Wu

b .t/� D s.L.˛/jg>b / D s.L.˛/jg>1 / D s.L.˛// (70)

for all t 2 �0; t0�, using Theorem 3.6 (d) for the penultimate equality. Combining (69)
and (70), we get (65).

(d)) (b): Recall that B�t is tidy above for all t 2 �0; r�; from (66) and (67), we
deduce that

.B�t /C \ .B�t /� � Wc.t/: (71)

By (64) and (66), we have

Ws
a.t/ �

�!
con.˛/ \ .B�t /�: (72)

Since B�t D Ws
a.t/W

c.t/Wu
b .t/ and .B�t /� is a subgroup of B�t which contains

Ws
a.t/W

c.t/, we have

.B�t /� D Ws
a.t/W

c.t/It

with It WD .B�t /� \Wu
b .t/. Then It D feg as the existence of an element x 2 It n feg

gives rise to a contradiction as follows: Since It � .B�t /�, we must have ˛n.x/ 2 B�t
for all n 2 N0. However, by 8.11, there exists n 2 N such that ˛n.x/ 2 Wu

b nWu
b .r/

and thus ˛n.x/ 62 B�t , which is absurd. Hence

.B�t /� D Ws
a.t/W

c.t/; (73)

and thus .B�t /� D .
�!
con.˛/ \ .B�t /�/..B�t /C \ .B�t /�/. If

�!
con.˛/ is closed, we can

now use Lemma 8.2, to see that B�t is tidy for ˛, for all t 2 �0; r�.
Finally, as B�r is tidy above for ˛, we deduce from Lemma 8.4 and (65) that s.˛/

divides Œ˛.B�r / W ˛.B�r /\ B�r � D s.L.˛//. ut
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Remark 8.14 Let us collect further information on the subsets Ws
a.t/ and Wc.t/, for

t 2�0; r�. By (68) and (73),

Wc.t/ D Ws
a.t/W

c.t/\Wc.t/Wu
b .t/ D .B�t /� \ .B�t /C

is a compact subgroup of B�t , for each t 2 �0; r�. Now assume that B�t is tidy for ˛.
If we can show that

�!
con.˛/ \ B�t D �!con.˛/ \ .B�t /� D Ws

a.t/; (74)

then Ws
a.t/ is a compact subgroup of G, for all t 2 �0; r�. Now, the first equality

in (74) holds by [60, Proposition 11 (b)]. As for the second equality, the inclusion

“�” holds by (72). Since
�!
con.˛/ \ .B�t /� is a subgroup of .B�t /� D Ws

a.t/W
c.t/

which contains Ws
a.t/, it is of the form

�!
con.˛/ \ .B�t /� D Ws

a.t/Kt

with Kt WD �!
con .˛/ \ .B�t /� \ Wc.t/. But Kt D feg since

�!
con .˛/ \ Wc.t/ D feg;

to see the latter, let e 6D x 2 Wc.t/. There is � 2 �0; t� such that x 62 Wc.�/. Since
˛jWc.t/WWc.t/ ! Wc.t/ is a bijection and ˛.Wc.�// D Wc.�/ (see 8.9), we have
˛n.x/ 2 Wc.t/ nWc.�/ for all n 2 N0 and thus ˛n.x/ 62 Wc.�/, showing that ˛n.x/
does not converge to e in Wc.t/ as n!1 (and hence neither in G).

Foliations of the ‘Big Cell’

Theorem 8.15 Let ˛ be an analytic endomorphism of a Lie group G over a totally

disconnected local field K. If
�!
con .˛/ is closed in G, then also

 �
con .˛/ is closed and

the following holds:

(a)
�!
con .˛/, lev.˛/, and

 �
con .˛/ are Lie subgroups of G whose Lie algebras are

�!
con.L.˛//, lev.L.˛//, and

 �
con .L.˛//, respectively;

(b) ˝ WD �!
con .˛/ lev.˛/

 �
con .˛/ is an ˛-invariant open identity neighbourhood

in G. The product map

�W �!con.˛/ 	 lev.˛/	  �con.˛/! �!
con.˛/ lev.˛/

 �
con.˛/; .x; y; z/ 7! xyz

is an analytic diffeomorphism.
(c) ˛jlev.˛/ and ˛j �con.˛/

are analytic automorphisms.

Proof Openness of ˝: Note first that ˝ WD �!
con .˛/ lev.˛/

 �
con .˛/ contains the

open identity neighbourhood B�r D Ws
a.r/W

c.r/Wu
b .r/ encountered in the proof of

Theorem 8.13, since Ws
a.r/ �

�!
con .˛/ by (64), Wu

b .r/ �
 �
con .˛/ by 8.10 and

Wc.r/ � lev.˛/ since Wc.r/ is compact and ˛-stable. As lev.˛/ normalizes
�!
con.˛/
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and
 �
con .˛/, both P˛ WD�!con .˛/ lev.˛/ and P�̨ WD lev.˛/

 �
con .˛/ are subgroups

of G. For each g 2 P˛ , the left translation 	gWG! G, x 7! gx is a homeomorphism
which takes the identity neighbourhood˝ onto the g-neighbourhood

g˝ D gP˛
 �
con .˛/ D P˛

 �
con.˛/ D ˝:

If h 2 ˝ , then h D gk with g 2 P˛ and k 2  �con .˛/. Now the right translation
�kWG! G, x 7! xk is a homeomorphism which takes the g-neighbourhood˝ onto
the neighbourhood

˝k D P˛
 �
con.˛/k D P˛

 �
con.˛/ D ˝

of h D gk. Hence ˝ is a neighbourhood of each h 2 ˝ and thus˝ is open.

Lie Subgroups The open subset B�r D Ws
a.r/ 	Wc.r/ 	Wu

b .r/ of G has Ws
a.r/ as a

submanifold. Since
�!
con .˛/ \ B�r D Ws

a.r/ (see (74)) is a submanifold, we deduce

that
�!
con .˛/ is a Lie subgroup of G (cf. Lemma 4.6) which has Ws

a.r/ as an open
submanifold; thus

L.
�!
con .˛// D Te.W

s
a.r// D g<a D �!con .L.˛//:

Recall from the proof of Theorem 8.13 that B�r is tidy for ˛. Using the proof of [60,
Proposition 19] for the first equality, we have

lev.˛/ \ B�r D .B�r /C \ .B�r /� D Wc.r/;

which is a submanifold of B�r . Hence lev.˛/ is a Lie subgroup of G which has Wc.r/
as an open submanifold, and thus

L.lev.˛// D g1 D lev.L.˛//: (75)

Next, recall from [60, Proposition 11 (a)] that

 �
con.˛/ \ B�r � .B�r /C D Wc.r/Wu

b .r/:

Since Wu
b .r/ �

 �
con .˛/, this entails that

 �
con.˛/ \ B�r D NrW

u
b .r/

with Nr WD  �
con .˛/ \ Wc.r/. Let bik.˛/ be the bounded iterated kernel of ˛ and

nub.˛/ be the nub subgroup (see [60] and [9]). Then bik.˛/ � nub.˛/ and since
˛ has small tidy subgroups by Theorem 8.13, we have nub.˛/ D feg (see [60]). If
x 2 Nr , then there exists an ˛-regressive trajectory .x�n/n2N0 such that x0 D x and

lim
n!1 x�n D e:
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On the other hand, since x 2 Wc.r/ which is ˛-stable, there exists an ˛-regressive
trajectory .y�n/n2N0 in Wc.r/ with y0 D x. Then .x�ny�1�n/n2N0 is an ˛-regressive

trajectory such that fx�ny�1�nW n 2 N0g is relatively compact. Thus x�ny�1�n 2
 �
par .˛/

for each n 2 N0 and ˛n.x�ny�1�n/ D e, whence x�ny�1�n 2 bik.˛/ � nub.˛/ D feg.
Hence .x�n/n2N0 D .y�n/n2N0 is an ˛jWc.r/-regressive trajectory which tends to e as
n ! 1. As ˛jWc.r/ is a distal automorphism of Wc.r/ (cf. Proposition 7.10), the
latter is only possible if x D e. Thus Nr D feg and hence

 �
con.˛/ \ B�r D Wu

b .r/;

which is a submanifold of˝ . Hence
 �
con.˛/ is a Lie subgroup of G with Lie algebra

g>b D  �con.L.˛//.

� is injective. Let a; a0 2 �!con .˛/, b; b0 2 lev.˛/, and c; c0 2  �con .˛/ such that
abc D a0b0c0. Then

x WD .a0/�1a D b0c0c�1b�1 2 �!con.˛/\  �par.˛/ � lev.˛/:

There exists n 2 N0 such that ˛n.x/ 2 B�r . Since x 2 lev.˛/, also ˛n.x/ 2 lev.˛/
and thus

˛n.x/ 2 .B�r /C \ .B�r /� D Wc.r/:

Let y 2 Wc.r/ such that ˛n. y/ D ˛n.x/. Since Wc.r/ � lev.˛/, we then have

.a0/�1ay�1 2 bik.˛/ � nub.˛/ D feg, whence .a0/�1a D y 2 Wc.r/\ �!con .˛/ D
feg, using that ˛jWc.r/ is distal.
Thus x D y D e and thus bc D b0c0, whence

.b0/�1b D c0c�1 2 lev.˛/\ �!con.˛/:

Let .z�n/n2N0 be an ˛-regressive trajectory with z0 D c0c�1, such that z�n ! e as
n!1. For each t 2 �0; r�, we have z�n 2 B�t for some n 2 N0, entailing that

z�n 2 B�t \ lev.˛/ D .B�t /C \ .B�t /� D Wc.t/

and thus c0c�1 D ˛n.z�n/ 2 Wc.t/. Therefore

c0c�1 2
\

t2�0;r�
B�t D feg;

whence c0 D c and hence also b0 D b.



150 H. Glöckner

� is a diffeomorphism. Since  is an analytic diffeomorphism, also

� WD �jWs
a	Wc	Wu

b
WWs

a 	Wc 	Wu
b ! B�R

is an analytic diffeomorphism. For .a; b; c/ 2 �!con.˛/	 lev.˛/	  �con .˛/ DW Y, let us
show that � is a local diffeomorphism at .a; b; c/. It suffices to prove that the map

hWY ! ˝; .a0; b0; c0/ 7! �.aa0; bb0; c0c/

is a local diffeomorphism at .e; e; e/. Since lev.˛/ normalizes
�!
con.˛/ and

�!
con.˛/ is

a submanifold of G, the map

ˇW �!con.˛/! �!
con.˛/; a0 7! b�1a0b

is an analytic diffeomorphism. Let Q � �!con .˛/ be an open identity neighbourhood
such that ˇ.Q/ � Ws

a. Then the formula

h.a0; b0; c0/ D ab�.ˇ.a0/; b0; c0/c for .a0; b0; c0/ 2 Q 	Wc 	Wu
b

shows that h is a local diffeomorphism at .e; e; e/.
To prove (c), note that � WD ˛jlev.˛/ and ı WD ˛j

 �

con.˛/
are local diffeomorphisms

at e (by the Inverse Function Theorem), since L.�/ D L.˛/jg1 and L.ı/ D L.˛/jg>1
are automorphisms of the tangent spaces L.lev.˛// D g1 and L.

 �
con .˛// D g>1,

respectively, at e. Since � and ı are, moreover, bijective analytic endomorphisms,
they are analytic automorphisms. ut
Remark 8.16

(a) Note that also the groups P˛ and P�̨ encountered in the preceding proof are Lie
subgroups since � is an analytic diffeomorphism.

(b) We mention that P˛ D �!par .˛/ and P�̨ D  �par .˛/ (see [9, Lemma 13.1 (d) and
(e)]).

(c) Since � is an analytic diffeomorphism, we see that the “big cell” ˝ can be

foliated into right translates of
�!
con .˛/ parametrized by

 �
par .˛/, or alternatively

into right translates of
�!
par .˛/, parametrized by

 �
con .˛/. Likewise, we can

foliate ˝ into left translates of
 �
con .˛/ parametrized by

�!
par .˛/, or into left

translates of
 �
par.˛/ parametrized by

�!
con .˛/.

8.17 Consider an analytic map f WM ! N between analytic manifolds over a totally
disconnected local field K. Recall from [49, Part I, Chapter III] that f is called an
immersion if f locally looks like a linear injection around each point, in suitable
charts (or equivalently, if Tp. f / is injective for all p 2 M). If G is a Lie group over
a totally disconnected local field and H a subgroup of G, endowed with an analytic
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manifold structure turning it into a Lie group and making the inclusion map H ! G
an immersion, then H is called an immersed Lie subgroup of G.

Remark 8.18

(a) If ˛ is an analytic automorphism of a Lie group G over a totally disconnected

local field K and
�!
con .˛/ is not closed, then it is still possible to turn

�!
con .˛/

and
 �
con .˛/ into immersed Lie subgroups of G modelled on

�!
con .L.˛// and

 �
con .L.˛//, respectively, such that ˛j

�!

con.˛/
and ˛�1j

 �

con.˛/
are contractive

analytic automorphisms of these Lie groups (see [19, Proposition 6.3 (b)]).
(b) After this research was completed, it was shown in [22] that the ‘big cell’

˝ WD �!con.˛/ lev.˛/
 �
con.˛/

is open in G for each endomorphism˛ of a totally disconnected locally compact
groupG. IfG is a Lie group over a totally disconnected local field and ˛WG! G

an analytic endomorphism, then
�!
con .˛/, lev.˛/ and

 �
con .˛/ can be turned

into immersed Lie subgroups
�!
con�.˛/, lev�.˛/ and

 �
con�.˛/ of G modelled on

�!
con.L.˛//, lev.L.˛// and

 �
con.L.˛//, respectively, such that ˛ induces analytic

endomorphisms of the immersed Lie subgroups and the product map

�!
con�.˛/ 	 lev�.˛/	  �con�.˛/! ˝; .a; b; c/ 7! abc

is surjective and étale (i.e., a local diffeomorphism at each point), see [22].

Closedness of Contraction Groups We now mention a characterization and
describe a criterion for closedness of contraction groups of endomorphisms. The
next lemma is covered by [9, Theorem D and F]; for the case of automorphisms, see
already [1, Theorem 3.32] (if G is metrizable).

Lemma 8.19 Let ˛ be an endomorphism of a totally disconnected locally compact

group G. Then the contraction group
�!
con .˛/ is closed in G if and only if

�!
con .˛/ \

lev.˛/ D feg. ut
Lemma 8.20 Let �WG ! H be an injective, continuous homomorphism between
totally disconnected, locally compact groups and ˛WG ! G as well as ˇWH ! H

be endomorphisms such that ˇ ı � D � ı ˛. If �!con .ˇ/ is closed, then also
�!
con .˛/

is closed.

Proof Using Lemma 8.19, we get

�.
�!
con.˛/ \ lev.˛// � �!con.ˇ/ \ lev.ˇ/ D feg:

Thus
�!
con.˛/ \ lev.˛/ D feg, whence

�!
con.˛/ is closed (by Lemma 8.19). ut
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Proposition 8.21 For every totally disconnected local field K, every inner auto-
morphism of a closed subgroup G � GLn.K/ has a closed contraction group.

Proof It suffices to show that each inner automorphism of GLn.K/ has a closed
contraction group. Let e 2 GLn.K/ be the identity matrix. Given g 2 GLn.K/,
consider the inner automorphism

IgWGLn.K/! GLn.K/; h 7! ghg�1

and the vector space automorphism

˛WMn.K/! Mn.K/; A 7! gAg�1:

We know from Sect. 3 that
�!
con .˛/ is closed. Then V WD GLn.K/ � e is an ˛-stable

0-neighbourhood in Mn.K/ and

�WV ! GLn.K/; A 7! AC e

is a homeomorphism. Now Ig ı � D � ı ˛jV as

Ig.�.A// D g.AC e/g�1 D gAg�1 C e D �.˛.A//;

i.e., � is a topological conjugacy between the dynamical systems .V; ˛jV / and
.GLn.K/; Ig/. Hence

�!
con.Ig/ D �.�!con.˛/ \ V/;

which is closed in GLn.K/. ut
Combining Lemma 8.20 and Proposition 8.21, we get:

Corollary 8.22 If a totally disconnected, locally compact group G admits a faithful
continuous representation �WG ! GLn.K/ over some totally disconnected local
field K, then every inner automorphism of G has a closed contraction group. ut
Remark 8.23 In particular, every group G of K-rational points of a linear algebraic
group over a totally disconnected local field K is a closed subgroup of some

GLn.K/, whence
�!
con.˛/ is closed in G by Proposition 8.21 and so, for g 2 G

s.g/ D sL.G/.Adg/ D
Y

j	j jK�1
j	jjK (76)

in terms of the eigenvalues 	1; : : : ; 	m of Adg in an algebraic closure K, repeated
according to their algebraic multiplicities (by Theorems 8.13 and 3.6). For Zariski-
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connected reductive K-groups, this was already shown in [1, Proposition 3.23]. See
also [21, Proposition 4.48 and Remark 4.49].
The following result was announced in [25] (for automorphisms).

Proposition 8.24 Let ˛ be an analytic endomorphism of a 1-dimensional Lie
group G over a local field K, with Lie algebra g WD L.G/. If

 �
con.L.˛// D g;

assume that
S

n2N0 ker.˛n/ is discrete13; if
 �
con.L.˛// 6D g, we do not impose further

hypotheses. Then
�!
con .˛/ is closed in G and thus s.˛/ D s.L.˛//.

Proof Since g is a 1-dimensional K-vector space and

g D �!con.L.˛//˚ lev.L.˛//˚  �con.L.˛//;

we see that g coincides with one of the three summands. Let a, b, R, Ws
a, W

c, and
Wu

b be as in 8.5.

If
�!
con .L.˛// D g, then Ws

a is a submanifold of G of full dimension 1 and hence

open in G. By 8.8, we may assume that Ws
a �

�!
con.˛/, after shrinking R if necessary,

whence the subgroup
�!
con.˛/ is open and hence closed in G.

If lev.L.˛// D g, then Wc is open in G and we may assume that Wc.t/ is a
compact open subgroup of G for all t 2 �0;R�, after shrinking R if necessary. The
bijective analytic endomorphism˛jWc WWc ! Wc is a local analytic diffeomorphism
at e (by the Inverse Function Theorem) and hence an analytic automorphism of
the Lie group Wc. By Proposition 7.10 (c), the automorphism ˛jWc is distal and
hence

�!
con.˛/ \Wc D �!con.˛jWc / D feg:

Thus
�!
con.˛/ is discrete, and hence closed in G.

If
 �
con .L.˛// D g, then Wu

b is open and we choose an open neighbourhood P
of e in Wu

b as in Lemma 7.8 (with M WD G, f WD ˛, and p WD e). Then
�!
con .˛/ D S

n2N0 ker.˛n/, which is discrete (and thus closed) by hypothesis. In

fact, if x 2 �!con .˛/, then there exists n0 2 N0 such that ˛n.x/ 2 P for all n � n0.
Then ˛n0 .x/ D e, as we chose P in such a way that the ˛-orbit of each y 2 P n feg
leaves P.

In each case, the final assertion follows from Theorem 8.13. ut

13Which is, of course, automatic if ˛ is an automorphism.
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Remark 8.25 If F is a field of prime order p, then G WD .FŒŒX��;C/ is a 1-
dimensional Lie group over K D F..X// and the left shift

1X

nD0
anX

n 7!
1X

nD0
anC1Xn

is an analytic endomorphism ˛ of G, as it coincides with the linear (and hence
analytic) map

ˇWK! K; z 7! X�1z

on the open subgroup XFŒŒX�� of G. It is easy to see that
 �
con.˛/ D G and

�!
con.˛/ D

[

n2N0
ker.˛n/

is the proper dense subgroup of all finitely supported sequences (see [9,
Remark 10.5]). Since G is compact, s.˛/ D 1 holds. As L.˛/ D ˇ with scale p (by
Theorem 3.6 (c)), we have s.L.˛// D p 6D s.˛/.

A Non-closed Contraction Group We now describe an analytic automorphism ˛

of a Lie group over a local field of positive characteristic such that
�!
con .˛/ is not

closed. The example is taken from [21].

Example 8.26 Let F be a finite field, with p elements. Consider the set G WD F
Z of

all functions f WZ! F. Then G is a compact topological group under addition, with
the product topology. The right shift

˛WG! G ; ˛. f /.n/ WD f .n � 1/

is an automorphism of G. It is easy to check that
�!
con .˛/ is the set of all functions

f 2 F
Z with support bounded below (i.e., there exists n0 2 Z such that f .n/ D 0 for

all n < n0). Thus
�!
con.˛/ is a dense, proper subgroup of G.

Now G can be considered as a 2-dimensional Lie group over K WD F..X//, using
the bijection G! FŒŒX�� 	 FŒŒX��,

f 7!
 1X

nD1
f .�n/Xn�1;

1X

nD0
f .n/Xn

!

as a global chart. The automorphism of FŒŒX��2 corresponding to ˛ coincides on the
open 0-neighbourhood XFŒŒX�� 	 FŒŒX�� with the linear map

ˇWK2 ! K
2 ; ˇ.v;w/ D .X�1v;Xw/ :
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Hence ˛ is an analytic automorphism. Since
�!
con.˛/ is not closed, G cannot admit a

faithful continuous representation G! GLn.K/ for any n 2 N, see Corollary 8.22.

The Scale on Closed Subgroups and Quotients For ˛ an automorphism of a
totally disconnected locally compact group G, the scale of the restriction ˛jH to
a closed ˛-stable subgroup H � G and the scale of the induced automorphism on
the quotient group G=H (for normal H) were studied in [58]; some generalizations
for endomorphisms were obtained in [9] (compare also [14], if ˛ has small tidy
subgroups). The following proposition generalizes a corresponding result for inner
automorphisms of p-adic Lie groups established in [15, Corollary 3.8].

Proposition 8.27 Let G be a Lie group over a local field, ˛ be an analytic
endomorphism of G and H � G be an ˛-invariant Lie subgroup of G. Then the
following holds:

(a) If
�!
con.˛/ is closed, then sH.˛jH/ divides sG.˛/.

(b) If H is a normal subgroup,
�!
con .˛/ is closed and also the induced analytic

endomorphism ˛ of G=H has a closed contraction group
�!
con.˛/, then sG.˛/ D

sH.˛jH/sG=H.˛/.
Proof This is immediate from Theorem 8.13 and Corollary 3.7. ut
When Homomorphisms Are Subimmersions Let f WM ! N be an analytic
mapping between analytic manifolds over a totally disconnected local field K.
Recall from [49, Part I, Chapter III] that f is called a submersion if f locally
looks like a linear projection around each point, in suitable charts. If f locally
looks like j ı q where q is a submersion and j an immersion (as in 8.17), then f
is called a subimmersion. If char.K/ D 0, then an analytic map is a subimmersion if
and only if Tx. f / has constant rank for x in some neighbourhood of each point
p 2 M (see [49, Part II, Chapter III, §10, Theorem in 4)]). As a consequence,
every analytic homomorphism between Lie groups over a totally disconnected local
field of characteristic 0 is a subimmersion. Analytic homomorphisms between Lie
groups over local fields of positive characteristic need not be subimmersions, as the
following example shows.

Example 8.28 Let F be a finite field with p elements and K WD F..X//. Since
char.K/ D p, the Frobenius homomorphism

˛WK! K; z 7! zp

is an injective endomorphism of the field K and an injective endomorphism of the
additive topological group .K;C/. If ˛ was a subimmersion then ˛, being injective,
would be an immersion which it is not as ˛0.z/ D 0 for all z 2 K. Thus ˛ is not

a subimmersion. Note that
�!
con .˛/ coincides with the subgroup XFŒŒX��, which is

open; hence also ˛j
�!

con.˛/
is not a subimmersion.
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It is not a coincidence that the endomorphism ˛ in the preceding example is

pathological also on
�!
con .˛/: If an endomorphism fails to be a subimmersion, then

the trouble must be caused by its restriction to the contraction group:

Corollary 8.29 Let ˛ be an analytic endomorphism of a Lie group G over a local

field K of positive characteristic, with closed contraction group
�!
con .˛/. If ˇ WD

˛j
�!

con.˛/
is a subimmersion, then ˛ is a subimmersion.

Proof If ˇ is a subimmersion, then the restriction of ˛ to the open set ˝ from
Theorem 8.15 corresponds to the self-map

��1 ı ˛j˝ ı � D ˇ 	 ˛jlev.˛/	 �con.˛/

of
�!
con .˛/ 	 lev.˛/	  �con .˛/ whose second factor is an analytic diffeomorphism,

and thus ˛ is a subimmersion. ut

9 Contractive Automorphisms

As shown in [26], p-adic Lie groups appear naturally in the classification of the
simple totally disconnected contraction groups, and are among the building blocks
for general contraction groups. We recall some of the results and give a new proof
for the occurrence of p-adic Lie groups in the classification.

Definition 9.1 An automorphism ˛ of a Hausdorff topological group G is called

contractive if
�!
con .˛/ D G. We then call .G; ˛/ a contraction group. If, moreover,

G is totally disconnected and locally compact, we say that .G; ˛/ is a totally
disconnected contraction group. An isomorphism between totally disconnected
contraction groups .G; ˛/ and .H; ˇ/ is a continuous group homomorphism�WG!
H such that ˇ ı� D � ı˛. A totally disconnected contraction group .G; ˛/ is called
simple if G 6D feg and G does not have closed ˛-stable normal subgroups other
than feg and G.

Remark 9.2 Contraction groups
�!
con .˛/ of automorphisms arise in many contexts:

In representation theory in connection with the Mautner phenomenon (see [39,
Chapter II, Lemma 3.2] and (for the p-adic case) [54]); in probability theory on
groups (see [27, 50, 51] and (for the p-adic case) [10]); and in the structure theory
of totally disconnected, locally compact groups (see [1, 36], and [9]).

If a locally compact group G admits a contractive automorphism ˛, then there
exists an ˛-stable, totally disconnected, closed normal subgroup N � G such that

G D N 	 Ge
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internally as a topological group, where Ge is the identity component of G (see
[50]). Thus .G; ˛/ is the direct product of the totally disconnected contraction
group .N; ˛jN/ and the connected contraction group .Ge; ˛jGe/ (which is a simply
connected, nilpotent real Lie group, as shown by Siebert).

9.3 If F is a finite group and X a set, we write F.X/ for the group of all functions
f WX ! F whose support fx 2 XW f .x/ 6D eg is finite. We endow F.X/ with the discrete
topology.
See [26, Theorem A] for the following result.

Theorem 9.4 If .G; ˛/ is a simple totally disconnected contraction group, then G
is either a torsion group or torsion free. We have the following classification:

(a) If G is a torsion group, then .G; ˛/ is isomorphic to F.�N/ 	 FN0 with the right
shift, for some finite simple group F.

(b) If G is torsion free, then .G; ˛/ is isomorphic to .Qp/
d with a Qp-linear

contractive automorphism for which there are no invariant vector subspaces,
for some prime number p and some d 2 N.

Conversely, all of these are simple contraction groups.
To explain part (b) of the theorem, let us recall some concepts and facts.

9.5 If x is an element of a pro-p-groupG (i.e., a projective limit of finite p-groups),
then Z ! G, n 7! xn is a continuous homomorphism with respect to the topology
induced by Zp on Z, and hence extends to a continuous homomorphism

�WZp ! G:

As usual, we write xz WD �.z/ for z 2 Zp. If G is abelian and the group operation is
written additively, we write zx WD �.z/.
9.6 Let T WD R=Z with the quotient topology. If G is a locally compact abelian
group, we let G� WD Homcts.G;T/ be its dual group, endowed with the compact-
open topology; thus, the elements of G� are continuous homomorphisms �WG! T

(see [28, 29, 53]). We shall use the well-known fact that the dual group Z. p1/�
of the Prüfer p-group is isomorphic to Zp (compare, e.g., [53, Exercise 23.2 and
Theorem 22.6]).

Some Ideas of the Proof of Theorem 9.4 As the closure C of the commutator
group G0 is ˛-stable, closed and normal in G, we must have C D feg (in which case
G is abelian) or C D G, in which case G is topologically perfect. If G is abelian,
then either G is torsion free, or G is a torsion group of prime exponent p: In fact,
if G has a torsion element g 6D e, then a suitable power gn is an element of order p
for some prime number p, entailing that the p-socle N WD fx 2 GW xp D eg is a
non-trivial, ˛-stable closed (normal) subgroup of G and thus N D G. As shown
in [26], p-adic Lie groups occur in the case that G is abelian and torsion free, which
we assume now. Like every totally disconnected contraction group,G has a compact
open subgroup W such that ˛.W/ � W (see [50, 3.1]). Then W can be chosen as a
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pro-p-group for some p. In fact, there exists a p-Sylow subgroup P 6D feg of W for
some prime number p, which is unique as W is abelian (see [61, Proposition 2.2.2 (a)
and (d)]). Since every pro-p subgroup of a pro-finite group is contained in a p-Sylow
subgroup (see [61, Proposition 2.2.2 (c)]), we deduce that ˛.P/ � P. However, non-
trivial ˛-invariant closed normal subgroups of the simple contraction group G must
be open (see [26, Lemma 5.1]). Thus P is open. Now replace W with P if necessary.

For 0 6D x 2 W, can define zx for z 2 Zp by continuity (see 9.5). Let W.x/ be the
image of the continuous homomorphism

�WZN0
p ! W; .zn/n2N0 7!

1X

nD0
˛n.znx/:

Then W.x/ is a compact, non-trivial ˛-invariant subgroup of G and hence open by
[26, Lemma 5.1] just mentioned. Being a torsion free abelian pro-p-group, W.x/ is
isomorphic to Z

J
p for some set J. This can be shown using Pontryagin duality: Since

W.x/ is torsion free and a projective limit of finite p-groups F, its dual group W.x/�
is a divisible discrete group and a direct limit of the dual groups F� Š F, hence a
p-group (see [53, Corollary 23.10] as well as [29, Proposition 7.5 (i) and (1),(2)
in Corollary 8.5]). By the classification of the divisible abelian groups, W.x/� is
isomorphic to a direct sum

L
j2J Z. p1/ of Prüfer p-groups (see [28, Theorem

(A.15)], cf. also [29, Theorem A1.42]). As a consequence, W.x/ Š W.x/�� is
isomorphic to the direct product

Y

j2J
Z. p1/� Š .Zp/

J ;

as asserted (by [29, Theorem 7.63] and [53, Lemma 21.2 and Theorem 23.9]).
Since pW.x/ D W. px/ is a non-trival ˛-invariant closed (normal) subgroup of G

and hence open, . pZp/
J must be open in Z

J
p, whence J is finite and W.x/ Š Z

J
p a

p-adic Lie group.
Now a linearization argument14 shows that .G; ˛/ Š .L.G/;L.˛//. ut
The classification implies a structure theorem for general totally disconnected

contraction groups .G; ˛/ (see [26, Theorem B]):

Theorem 9.7 The set tor.G/ of torsion elements and the set div.G/ of divisible
elements are fully invariant closed subgroups of G and

G D tor.G/ 	 div.G/ :

14Let ˇ WD L.˛/. Using the underlying additive topological group of L.G/, the pair .L.G/; ˇ/ is a
p-adic contraction group such that L.ˇ/ D L.˛/. Hence .G; ˛/ Š .L.G/; ˇ/ by the last statement
of [17, Proposition 5.1].
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Moreover, tor.G/ has finite exponent and

div.G/ D Gp1 	 � � � 	 Gpn

is a direct product of ˛-stable p-adic Lie groups Gp for certain primes p. ut
Remark 9.8 By [54, Theorem 3.5 (iii)], each Gp is nilpotent, and it is in fact the
group of Qp-rational points of a unipotent linear algebraic group defined over Qp.

See [22] for algebraic properties of
�!
con .˛/ if ˛ is an analytic endomorphism of a

Lie groupG over a totally disconnected local field; if ˛ is an analytic automorphism,

then
�!
con.˛/ is nilpotent (cf. Remark 8.18 and [17]).

9.9 If .G; ˛/ is a totally disconnected contraction group with G 6D feg, then G has a
compact open subgroup U such that ˛.U/ is a proper subgroup of U (cf. [50, 3.1]),
whence U is a proper subgroup of ˛�1.U/ and thus

�.˛�1/ D Œ˛�1.U/ W U� 2 fn 2 NW n � 2g

(see [50, Lemma 3.2 (i)] and [26, Proposition 1.1 (e)]). If

feg D G0 C G1 C � � � C Gn D G (77)

is a properly ascending series of ˛-stable closed subgroups of G and ˛j the
contractive automorphism of Gj=Gj�1 induced by ˛ for j 2 f1; : : : ; ng, then

�.˛�1/ D �.˛�11 / � � ��.˛�1n /;

showing that n is bounded by the number of prime factors of �.˛�1/, counted with
multiplicities (see [26, Lemma 3.5]). As a consequence, we can choose a properly
ascending series (77) of maximum length. Then all of the subquotients .Gj=Gj�1; ˛j/
are simple contraction groups. To deduce Theorem 9.7 from Theorem 9.4, one
shows that the series can always be chosen in such a way that the torsion factors
appear at the bottom, whence tor.˛/ D Gk for some k. A major step then is to see
that Gk is complemented in G, and that G=Gk is a product of p-adic Lie groups
(see [26]).

10 Expansive Automorphisms

If ˛ is an expansive automorphism of a totally disconnected locally compact
group G, then the subset

�!
con .˛/

 �
con.˛/
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of G is an open identity neighbourhood (see [23, Lemma 1.1 (d)]). In some cases,
this enables the finiteness properties of totally disconnected contraction groups
(as described in 9.9) to be used with profit also for the study of expansive
automorphisms. The proof of expansiveness of ˛ in part (b) of the following result
from [23] is an example for this strategy.

Proposition 10.1 Let ˛ be an automorphism of a totally disconnected, locally
compact group G.

(a) If ˛ is expansive, then ˛jH is expansive for each ˛-stable closed subgroup H �
G.

(b) Let N � G be an ˛-stable closed normal subgroup and ˛ be the induced
automorphism of G=N which takes gN to ˛.g/N. Then ˛ is expansive if and
only if ˛jN and ˛ are expansive. ut

If a p-adic Lie group G admits an expansive automorphism ˛, then L.˛/ is a Lie
algebra automorphism of L.G/ such that j	j 6D 1 for all eigenvalues 	 of L.˛/ in
an algebraic closure K (as recalled in Proposition 7.10), entailing that none of the 	
is a root of unity. Hence L.G/ is nilpotent (see Exercise 21 (b) among the exercises
for Part I of [7], §4, or [33, Theorem 2]). If, moreover, G is linear in the sense that
it admits a faithful continuous representation G ! GLn.Qp/ for some n 2 N, then
G has an ˛-stable, nilpotent open subgroup [23, Theorem D]. For closed subgroup
of GLn.Qp/, such an open subgroup can be made explicit (see [23, Proposition 7.8]):

Proposition 10.2 Let ˛ be an expansive automorphism of a p-adic Lie group G.
If G is isomorphic to a closed subgroup of GLn.Qp/ for some n 2 N, then the set
�!
con.˛/

 �
con.˛/ is a nilpotent, open subgroup of G. ut

The following example is taken from [23, Remark 7.7].

Example 10.3 Let H D Q
3
p be the 3-dimensional p-adic Heisenberg group with

group multiplication given by

.x1; y1; z1/.x2; y2; z2/ WD .x1 C x2; y1 C y2; z1 C z2 C x1y2/

for all .x1; y1; z1/; .x2; y2; z2/ 2 H. Then N D f.0; 0; z/ 2 HW jzj � 1g is a compact
central subgroup of H. Identify G D H=N with Qp 	Qp 	 .Qp=Zp/ as a set. Define
˛WG! G by

˛.x; y; zC Zp/ D . px; p�1y; zC Zp/

for all .x; y; z C Zp/ 2 G. Then ˛ is an analytic automorphism of the p-adic Lie
group G with lev.˛/ D f.0; 0; zC Zp/W z 2 Qpg,

�!
con .˛/ D f.x; 0; 0/W x 2 Qpg; and

 �
con.˛/ D f.0; y; 0/W y 2 Qpg:
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Since lev.˛/ is discrete, ˛ is expansive (see [23, Proposition 1.3 (a)]). As

Œ
�!
con .˛/;

 �
con.˛/� D f.0; 0; zC Zp/W z 2 Qpg

and
�!
con.˛/

 �
con.˛/ D f.x; y; xyCZp/W x; y 2 Qpg, we see that the set

�!
con.˛/

 �
con.˛/

is a not a subgroup of G. Accordingly, G is not isomorphic to a closed subgroup of
GLn.Qp/ for any n 2 N (see Proposition 10.2).

11 Distality and Lie Groups of Type R

Following Palmer [40], a totally disconnected, locally compact group G is called
uniscalar if s.x/ D 1 for each x 2 G. This holds if and only if each group
element x 2 G normalizes some compact, open subgroup Vx of G (which may
depend on x). It is natural to ask whether this condition implies that Vx can be
chosen independently of x, i.e., whether G has a compact, open, normal subgroup.
The answer is negative for a suitable p-adic Lie group which is not compactly
generated (see [24, §6]). But also for some totally disconnected, locally compact
groups which are compactly generated, the answer is negative (see [3] together with
[37], or also [21, Proposition 11.4], where moreover all contraction groups for inner
automorphisms are trivial and hence closed); the counterexamples are of the form

.F.�N/ 	 FN0 / Ì H

with F a finite simple group and a suitable action of a specific finitely generated
group H on Z. Thus, to have a chance for a positive answer, one has to restrict
attention to particular classes of groups (like compactly generated p-adic Lie
groups). If G has the (even stronger) property that every identity neighbourhood
contains an open, compact, normal subgroup of G, then G is called pro-discrete.15

Finally, a Lie group G over a local field K is of type R if all eigenvalues 	 of
L.˛/ in an algebraic closure K have absolute value j	jK D 1, for each inner
automorphism ˛ (cf. [42] for K D Qp), i.e., if each inner automorphism is distal
(see Proposition 7.10).

Using the Inverse Function Theorem with Parameters and locally invariant
manifolds as a tool, we can generalize results for p-adic Lie groups from [24, 42],

15Another interesting group is the semidirect product G WD FT Ì T, where F is a finite simple
group and T is a Tarski monster (a certain finitely generated, infinite, simple torsion group) acting
on FT via .x:f /. y/ WD f .x�1y/ for x; y 2 T. Then, for each x 2 G, there is a basis of identity
neighbourhoods consisting of compact open subgroups of G which are normalized by x. Moreover,
G has FT as a compact open normal subgroup, but this is the only such and thus G is not pro-
discrete (see [25]).



162 H. Glöckner

and [41] to Lie groups over local fields of arbitrary characteristic. The following
result was announced in [21, Proposition 4.53].

Proposition 11.1 Let ˛ be an analytic automorphism of a Lie group G over a
totally disconnected local field K. Then the following properties are equivalent:

(a)
�!
con.˛/ is closed and s.˛/ D s.˛�1/ D 1;

(b) All eigenvalues of L.˛/ in K have absolute value 1;
(c) Each e-neighbourhood in G contains an ˛-stable compact open subgroup.

In particular, G is of type R if and only if G is uniscalar and
�!
con .˛/ is closed for

each inner automorphism ˛ of G .in which case
�!
con.˛/ D feg/.

Proof The implication “(a))(b)” follows from Theorem 8.13 and Theorem 3.6 (c).
If (b) holds, then g D g1 coincides with the centre subspace g1 D lev.L.˛// with

respect to L.˛/, whence �cWWc ! Bg1
R .0/ � g1 D g (as in 8.5) is a diffeomorphism

with �c.e/ D 0 and d�cjg D idg. After shrinking R if necessary, we may assume
that the sets Wc.t/ D ��1c .Bg

t .0//, which are ˛-stable by 8.9, are compact open
subgroups of G for all t 2 �0;R� (see Lemma 5.2). Thus (b) implies (c).

If (c) holds, then every identity neighbourhood of G contains a compact open
subgroup V which is ˛-stable and hence tidy for ˛ with

s.˛/ D Œ˛.V/ W ˛.V/ \ V� D ŒV W V� D 1

and, likewise, s.˛�1/ D 1. Moreover,
�!
con .˛/ is closed (by Lemma 8.2 (a)), and

thus (a) follows. (Since ˛ is distal, in fact
�!
con.˛/ D feg). ut

As shown in [41] and [24], every compactly generated, uniscalar p-adic Lie group
is pro-discrete. For Lie groups over totally disconnected local fields, we have the
following analogue (announced in [21, Proposition 4.54]):

Theorem 11.2 Every compactly generated Lie group of type R over a totally
disconnected local field is pro-discrete.

Proof Let G be a Lie group over a totally disconnected local field K, with Lie
algebra g WD L.G/, such that G is generated by a compact subset K. Then Ad.G/ �
GL.g/ is generated by the compact set Ad.K/, since the adjoint representation
AdWG ! GL.g/ is a continuous homomorphism (as recalled in 4.7). Moreover,
the subgroup generated by Adx is relatively compact in GL.g/ for each x 2 G, by
Lemma 3.9. Thus Ad.G/ is relatively compact in GL.g/, by [41, Théorème 1]. Let O
be the valuation ring of K. As a consequence of Theorem 1 in Appendix 1 of [49,
Chapter IV], there is a compact open O-submodule M � g with Adx.M/ D M for
all x 2 G. Let

k:kW g! Œ0;1Œ; x 7! inffjzjW z 2 K such that x 2 zMg

be the Minkowski functional of M. Then k:k is a norm on g such that Ad.G/ �
Iso.g; k:k/. Using this norm, we abbreviateBg

t WD Bg
t .0/ for all t > 0. Let �WU ! V
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be an analytic diffeomorphism from a compact open subgroup U of G onto an open
0-neighbourhood V � g such that �.e/ D 0 and d�jg D idg. Let R > 0 and
the compact open subgroups B�t D ��1.Bg

t / for t 2 �0;R� be as in 5.1. Since K is
compact and the mappingG	G! G, .x; y/ 7! xyx�1 is continuous with xex�1 D e,
we find an open identity neighbourhoodW � U such that xWx�1 � U for all x 2 K.
Now consider the analytic mapping

f WG 	 �.W/! V; f .x; y/ WD �.x��1. y/x�1/

and define fx WD f .x; :/W�.W/ ! V for x 2 G. Then fx.0/ D 0 and . fx/0.0/ D Adx
is an isometry for all x 2 G. As a consequence of Lemma 4.9, for each x 2 K there
exists an open neighbourhood Px of x in G and rx > 0 with Bg

rx � �.W/ such that

fz.B
g
t / D Bg

t for all z 2 Px and t 2 �0; rx�:

We may assume that rx � R for all x 2 K. There is finite subset ˚ � K such that
K �Sx2˚ Px. Set

r WD minfrxW x 2 ˚g:

Then fz.B
g
t / D Bg

t for all z 2 K and t 2 �0; r�, entailing that

zB�t z
�1 D ��1.�.z��1.Bg

t /z
�1// D ��1. fz.Bg

t // D ��1.Bg
t / D B�t :

Since K generates G, we deduce that the compact open subgroup B�t is normal in G,
for each t 2 �0; r�. ut
Related problems were also studied in [46].
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Compact Convex Sets with Prescribed
Facial Dimensions

Vera Roshchina, Tian Sang, and David Yost

Abstract While faces of a polytope form a well structured lattice, in which faces
of each possible dimension are present, this is not true for general compact convex
sets. We address the question of what dimensional patterns are possible for the
faces of general closed convex sets. We show that for any finite sequence of
positive integers there exist compact convex sets which only have extreme points
and faces with dimensions from this prescribed sequence. We also discuss another
approach to dimensionality, considering the dimension of the union of all faces of
the same dimension. We show that the questions arising from this approach are
highly nontrivial and give examples of convex sets for which the sets of extreme
points have fractal dimension.

1 Introduction

It is well known that faces of polyhedral sets have a well-defined structure (see
[12, Chap. 2]). In particular, every face of a polyhedral set is a polyhedron, and
there are no ‘gaps’ in the dimensions of their faces. On the other hand, a simple
reformulation of [4, Corollary 3.7] asserts that in the compact convex set of all
positive semidefinite n 	 n matrices with trace 1, every proper face has dimension
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k.kC1/
2
� 1 for some k < n. Thus there are naturally occurring examples with serious

gaps in the dimensions of their faces. For other descriptions of this phenomenon,
see Theorem 2.25 and the explanation that follows it in [10] (for the cone S

nC of
positive semidefinite n 	 n matrices), or [1, Theorem 5.36] (for the state space
of a C�-algebra). This raises the question, what are the possible patterns for the
dimensions of faces of compact convex sets?

Recall that a face F of a closed convex set C � R
n is a closed convex subset

of C such that for any point x 2 F and for any line segment Œa; b� � C such that
x 2 .a; b/, we have a; b 2 F. The fact that F is a face of C is expressed as F C C.

The difference between this definition and the definition of faces of polyhedral
sets as intersections with supporting hyperplanes is due to the fact that for
nonpolyhedral convex sets faces are not necessarily exposed: it may happen that
a face cannot be represented as the intersection of a supporting hyperplane with the
set. Some classic examples are shown in Figs. 1 (see [8]) and 2 (see [7]).

The dimension of a convex set is the dimension of its affine hull, same for the
face. We refer the reader to the classic textbooks [5, 8]. We also would like to
mention that some problems related to dimensions of convex sets were studied in the
literature. For instance, [2] focusses on the dimensions of convex sets coming from
optimisation problems with inequality constraints, and [3] deals with the results
related to the dimensions of intersections of convex sets. However, we were unable
to identify references that would address the existence of convex sets with prescribed
facial dimensions.

Fig. 1 Convex hull of a torus is not facially exposed (the dashed line shows the unexposed extreme
points)

unexposed face

Fig. 2 An example of a two dimensional set and a three dimensional cone that have an unexposed
face
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The total number of possible face patterns in n dimensional space is the
cardinality of the powerset of n elements. This is because every set contains zero-
dimensional faces (because of the Krein-Milman theorem). We can write down face
patterns either as an increasing sequence of positive numbers .d1; d2; : : : ; dk/, which
encode all possible dimensions of faces of positive dimension present in a set, or as
a binary sequence .b1; b2; : : : ; bn/, where bi D 1 if a face of dimension i is present in
the set, and bi D 0 otherwise. For example, the dimensional pattern of a tetrahedron
is either .1; 2; 3/ in the d-notation or .1; 1; 1/ in the binary notation, and the pattern
of a closed Euclidean ball is either .n/ or .0; 0; : : : ; 1/, as it does not have any faces
except for zero- and n-dimensional ones. We will use the first encoding style via an
increasing sequence of positive numbers in what follows.

The easiest cases to classify are the ones that we can visualise, i.e. the convex
compact sets in zero- one-, two- and three-dimensional spaces. In dimension zero
we have singletons fxg for any real x with pattern ./, in one-dimensional space there
is no freedom: the only fully dimensional convex compact sets are line segments,
with the only possible pattern .1/. On the plane the two-dimensional possibilities are
exhausted by a circle and a triangle, with patterns .2/ and .1; 2/ respectively (see
Fig. 3). Therefore for the two dimensional case we have four possibilities: ./, .1/,
.1; 2/ and .2/, which coincides with the cardinality of the powerset of two: 22 D 4.

In three dimensions the possibilities for fully dimensional sets are exhausted by
the unit ball (3), the tetrahedron .1; 2; 3/, the unit ball intersected with a closed half-
space .2; 3/, and the convex hull of a circle in the plane and two points on opposite
sides of the plane .1; 3/ (see Fig. 4), together with the lower dimensional examples
we have in total 23 D 8 possibilities.

Fig. 3 All possible face patterns of fully dimensional sets in two dimensional case are given by a
disk and a triangle

Fig. 4 All possible facial patterns for the three dimensional sets
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2 Main Result

We show that all patterns of facial dimensions can be realised in a compact convex
set.

Theorem 1 For any increasing sequence of positive integers

d D .d1; d2; : : : ; dk/

there exists a compact convex set in dk-dimensional space such that the vector d
describes the pattern of facial dimensions for this set.

To prove this, we need the following technical lemma, which is surely known,
but we were not able to identify it in the literature. We hence provide a short proof
here as well.

Lemma 1 Let P;Q � R
n be nonempty convex compact sets, and let C D PC Q.

Then every face of C is the Minkowski sum of faces of P and Q. More precisely,

8F C C 9FP C P;FQ C Q such that F D FP C FQ:

Proof Let F be a nonempty face of C. We construct two sets

FP WD fx 2 P j 9y 2 Q; xC y 2 Fg; FQ WD fy 2 Q j 9x 2 P; xC y 2 Fg:

Both FP and FQ are nonempty since F is nonempty.
First we show that F D FPC FQ. It is obvious that F � FPC FQ, and it remains

to show the reverse inclusion. For that, pick an arbitrary x 2 FP, y 2 FQ. We will
next show that z D xC y 2 F.

By the definition of FP and FQ there exist u 2 P and v 2 Q such that xC v 2 F
and y C u 2 F. If x D u or y D v, there is nothing to prove, as in this case
z D uC v 2 F. Otherwise, by the convexity of F we have

z0 D xC v
2
C yC u

2
2 F:

At the same time, notice that x C y 2 PC Q � C; likewise, uC v 2 PC Q � C,
and z0 2 .xC y; uC v/. Since F is a face of C, this yields z D xC y 2 F.

It remains to show that both FP and FQ are faces of P and Q respectively. First
note that both are convex compact sets, and that FQ � Q and FP � P.

Let x 2 FP, and pick any interval Œa; b� � P such that x 2 .a; b/. By the definition
of C, for an arbitrary y 2 FQ we have aC y; bC y 2 C. At the same time, xC y 2
FPC FQ D F and xC y 2 .aC y; bC y/. From F C C we have ŒaC y; bC y� � F,
hence, aC y; bC y 2 F, and therefore a; b 2 FP. This shows that FP is a face of P.
The proof for FQ is identical.
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Fig. 5 Minkowski sum of a
line segment and a unit sphere
(on the left hand side), and of
a unit square and a sphere (on
the right hand side)

In the proof of Theorem 1 presented next we use an inductive argument to
explicitly construct a compact convex set with a given facial pattern from a lower
dimensional example for a truncated sequence. The key observation is that the
Minkowski sum of an arbitrary compact convex set with a unit ball does not generate
faces of any new dimensions (compared to the original set) other than possibly the
fully dimensional face that coincides with the sum, which follows directly from
Lemma 1. We sketched the Minkowski sum of two simple compact convex sets
with a Euclidean ball in Fig. 5 to illustrate this argument.

Proof (Proof of Theorem 1) We use induction on dk to demonstrate the result. Our
induction base is lower dimensional examples discussed earlier. For all increasing
sequences of positive numbers .d1; : : : ; dk/ with dk � 2 we have found the relevant
examples. They are realised by a point, line segment, disk and triangle.

Assume that our assertion is proven for all sequences .d1; : : : ; dk/ with dk � m.
We will show that the statement is true for dk D mC1. Choose an arbitrary sequence
d D .d1; : : : ; dk/, where dk D m C 1. If d D .dk/, the sequence is realised by
the Euclidean unit ball in R

mC1. If the sequence contains more than one number,
consider the truncated sequence d0 D .d1; d2; : : : ; dk�1/. Since dk�1 < dk, we have
l WD dk�1 � m, and there exists a compact convex set Q � R

l that realises the
sequence d0 in l D dk�1-dimensional space. We embed the set Q in the m C 1-
dimensional space by letting Q0 WD Q 	 f0mC1�lg. Observe that since the definition
of the face is algebraic, the facial pattern of the set Q0 is identical to the one of Q.
Let B be the unit ball in R

mC1. We let

C WD BC Q0

and claim that d is the facial pattern of C.
From Lemma 1 every face of C can be represented as the sum of faces of Q0 and

B. Since the only faces of B are the set itself and the singletons on the boundary,
the only possible dimensions of the faces of the set C can come from the sequence
.d1; : : : ; dk/. To show that no facial dimensions are lost, observe that if e denotes
the unit vector .0; 0; : : : ; 1/ 2 B, then the set feg C Q0 is a face of C (hence all its
faces are also faces of C). Indeed, for the hyperplane H D fx j he; xi D xmC1 D 1g
supports C (notice that for every x D q C b 2 C with q 2 Q0 and b 2 B we have
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xmC1 D 0C qmC1 � 1), moreover,

H \ C D fqC b j q 2 Q0; b 2 B; qmC1 C bmC1 D 1g
D fqC b j q 2 Q0; b 2 B; bmC1 D 1g
D feg C Q0:

It is not difficult to observe (e.g., see [8, Section 18]) that any supporting hyperplane
slices off a face from a convex set, hence, F D feg C Q0 C C. This face is
linearly isomorphic to Q, and hence the facial structure of F coincides with the
facial structure of Q, giving all possible dimensions of faces from the sequence d0.
The face of the maximal dimension m C 1 is given by the set C itself, as it has a
nonempty interior (take any point from Q0 and sum it with an open ball).

3 Fractal Convex Sets

Observe that polytopes not only possess faces of all possible dimensions, but their
faces are also arranged in a very regular fashion: the union of the edges of a
polytope is a one-dimensional set (here we refer to a general notion of Hausdorff
dimension, rather than the dimension of the affine hull that is useful for convex
sets), the union of all two dimensional faces is two dimensional, and so on. More
generally, the union of all faces of a polytope of a given dimension is a set of the
same dimension. This is not the case for a more general setting: for instance, the
dimension of the union of all extreme points of a Euclidean ball in R

n is n � 1, a
stark contrast with the polyhedral case. Hence it is natural to study the dimension
of the unions of equidimensional faces. The purpose of this section is to present
some examples which emerged from the discussions during the MATRIX program,
namely nontrivial sets with fractal facial structure and hence noninteger dimensions
of the said unions; these form the foundation for our ongoing research on this topic.

Some work on fractals and convexity has been done before (see the recent work
[11] and references therein), but we are not aware of any references studying the
particular problems that we propose here. We focus on two examples of convex
sets that are generated in a natural way by spherical fractals. The finite root
system and Coxeter system are fundamental concepts in Lie algebras, which is very
important in many branches of mathematics. Given a finite root system, there is
a natural associated finite Coxeter group, which is the Weyl group. People in the
field of geometric group theory consider finite Coxeter groups are well-studied and
explained in liberature, see [6]. Therefore, we are more interested in the behaviours
of infinite Coxeter groups. One such fractal comes from a recent work [9] by one of
our co-authors (curiously from the study of infinite Coxeter groups), another one is
constructed via projecting the Sierpinski triangle onto the unit sphere.
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We first consider a fractal set on a sphere and then take its convex hull, hence
generating a convex set. Our first example is constructed in a similar way to the
Apollonian gasket: we take the unit sphere and construct a tetrahedron whose edges
touch the sphere (see Fig. 6), then consider the intersection of the sphere with the
tetrahedron. After that, we continue slicing off spherical caps in such a way that
they are tangential to the existing slices (see Fig. 7). The resulting body is a spherical
fractal, which is also a convex set. If we now take its convex hull, the extreme points
of this convex set would be exactly the points on the fractal set, with remaining
proper faces disks that result from the sliced off spherical caps. Notice that this
structure is somewhat similar to the compact convex set obtained as the intersection
of the cone of symmetric positive semidefinite matrices of dimension 3 	 3 with an
affine subspace defined by matrices with a constant trace

C WD S
3C \ fM j tr.M/ D 1g:

This set has dimension 5 however.

Fig. 6 Construction of the spherical gasket

Fig. 7 Apollonian gasket on a sphere and Sierpinski triangles
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Algebraically, this particular fractal set is generated by the infinite Coxeter group
with following group presentation:

G D hs1; s2; s3; s4 j .si/2 D .sisj/1 D 1i

The fractal sets are generated by limit roots, see [9]. Limit roots exhibit peculiar
geometric behaviour. Even though Coxeter groups are generated by affine reflec-
tions across hyperplanes, when we compute the roots of the group and project them
down to a lower dimensional affine hyperplane, the set of limit roots behaves like a
fractal set, giving self-similar patterns that cannot be obtained by reflecting across
any hyperplanes.

This approach can be applied to constructing other spherical fractals. For
instance, one can generalise the Sierpinski carpet by cutting out triangular pieces
of the sphere in a similar fashion. The convex set obtained after taking the convex
hull of this spherical fractal will have faces of all possible dimensions.

The Hausdorff dimension of the union of the extreme points is non-integer in both
cases, and coincides with the dimension of the relevant two-dimensional objects.
It would be interesting to study the conditions that can be imposed on the facial
dimensions to define good or regular convex sets.
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Chebyshev Multivariate Polynomial
Approximation: Alternance
Interpretation

Nadezda Sukhorukova, Julien Ugon, and David Yost

Abstract In this paper, we derive optimality conditions for Chebyshev approxima-
tion of multivariate functions. The theory of Chebyshev (uniform) approximation
for univariate functions was developed in the late nineteenth and twentieth century.
The optimality conditions are based on the notion of alternance (maximal deviation
points with alternating deviation signs). It is not clear, however, how to extend
the notion of alternance to the case of multivariate functions. There have been
several attempts to extend the theory of Chebyshev approximation to the case of
multivariate functions. We propose an alternative approach, which is based on the
notion of convexity and nonsmooth analysis.

1 Introduction

The theory of Chebyshev approximation for univariate functions was developed in
the late nineteenth (Chebyshev) and twentieth century (just to name a few [3, 6, 9]).
In most cases, the authors were working on polynomial and polynomial spline
approximations, however, other types of functions (for example, trigonometric
polynomials) have also been used. In most cases, the optimality conditions are based
on the notion of alternance: maximal deviation points with alternating deviation
signs.

There have been several attempts to extend this theory to the case of multivariate
functions. One of them is [7]. In this paper the author underlines the fact that
the main difficulty is to extend the notion of alternance to the case of more than
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one variable, since Rd, unlike R, is not totally ordered. There have been also
several studies in a slightly different direction, namely, in the area of multivariate
interpolation [2, 4], where triangulation based approaches were used to extend the
notion of polynomial splines to the case of multivariate functions.

The objective functions appearing in Chebyshev approximation optimisation
problems are nonsmooth (minimisation of the maximal absolute deviation). There-
fore, it is natural to use nonsmooth optimisation techniques to tackle this problem.
In this paper we propose an approach, which is based on the notion of subdifferential
of convex functions [8]. Subdifferentials can be considered as a generalisation of the
notion of gradients for convex nondifferentiable functions.

The paper is organised as follows. In Sect. 2 we present the most relevant results
from the theory of convex and nonsmooth analysis, that are essential to obtain our
optimality conditions. Then, in the same section, we investigate the extremum prop-
erties of the objective function, appearing in Chebyshev approximation problems,
from the points of view of convexity and nonsmooth analysis. In Sect. 2 we obtain
our main results. Finally, in Sect. 3 we draw our conclusions and underline further
research directions.

2 Optimality Conditions

2.1 Convexity of the Objective

Let us now define the objective function. Suppose that Q 2 Rd is a compact set and
a continuous function f W Q! R is to be approximated on Q by a function

L.A; x/ D a0 C
nX

iD1
aigi.x/; (1)

where gi are the basis functions and the multipliers A D .a1; : : : ; an/ are the
corresponding coefficients. At a point x the deviation between the function f and
the approximation is defined as follows

p.A; x/ D j f .x/� L.A; x/j: (2)

Then we can define the uniform approximation error over the set Q by

�.A/ D k f � a0 �
nX

iD1
aigik1; (3)
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where

k f � a0�
nX

iD1
aigik1 D max

x2Q maxf f .x/� a0�
nX

iD1
aigi.x/; a0C

nX

iD1
aigi.x/� f .x/g:

The approximation problem can be formulated as follows.

minimise �.A/ subject to A 2 RnC1: (4)

Since the function L.A; x/ is linear in A, the approximation error function �.A/,
as the supremum of affine functions, is convex. Convex analysis tools [8] can be
applied to study this function.

Define by EC.A/ and E�.A/ the points of maximal positive and negative
deviation:

EC.A/ D
n
x 2 Q W L.A; x/� f .x/ D max

y2Q p.A; y/
o

E�.A/ D
n
x 2 Q W f .x/� L.A; x/ D max

y2Q p.A; y/
o

and the corresponding sets GC.A/ and G�.A/ as

GC.A/ D
n
.1; g1.x/; : : : ; gn.x//T W x 2 EC.A/

o

G�.A/ D
n
� .1; g1.x/; : : : ; gn.x//T W x 2 E�.A/

o

Then the subdifferential of the approximation error function �.A/ at a point A
can be obtained using the active affine functions in the supremum [11, Theorem
2.4.18]:

@�.A/ D co
˚
GC.A/ [G�.A/

�
: (5)

2.2 Optimality Conditions: General Case

In the case of univariate polynomial approximation, the optimality conditions are
based on the notion of an alternating sequence.

Definition 1 A sequence of maximal deviation points whose deviation signs are
alternating is called an alternating sequence or alternance.
The following theorem holds

Theorem 1 (Chebyshev [1]) A degree n polynomial approximation is optimal if
and only if there exist nC 2 alternating points.
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In the case of multivariate approximation there is no natural order and therefore the
notion of alternance, as a base for optimality verification, has to be modified. The
following theorem holds.

Theorem 2 A vector A� is an optimal solution to problem (4) if and only if the
convex hulls of the vectors .g1.x/; : : : ; gn.x//T ; built over corresponding positive
and negative maximal deviation points, intersect, that is

co
˚
GC.A/

� \ co f�G�.A/g ¤ ;: (6)

Proof The vector A� is an optimal solution to the convex problem (4) if and only if

0nC1 2 @�.A�/;

where � is defined in (3). Note that due to Carathéodory’s theorem, 0 can be
represented as a convex combination of a finite number of points (one more than the
dimension of the corresponding space). Since the dimension of the corresponding
space is nC 1, it can be done using at most nC 2 points.

Assume that in this collection of n C 2 points k points (hi; i D 1; : : : ; k) are
from GC.A/ and nC 2� k (hi; i D kC 1; : : : ; nC 2) points are from G�.A/. Note
that 0 < k < n C 2, since the first coordinate is either 1 or �1 and therefore 0nC1
can only be formed by using both sets (GC.A/ and �G�.A/). Then

0nC1 D
nC2X

iD1
˛ihi; 0 � ˛ � 1:

Let 0 < � DPk
iD1 ˛i, then

0nC1 D
nC2X

iD1
˛ihi D �

kX

iD1

˛i

�
hi C .1� �/

nC2X

iDkC1

˛i

1 � � hi D �h
C C .1 � �/h�;

where hC 2 GC and h� 2 �G�. Therefore, it is enough to demonstrate that 0nC1 is
a convex combination of two vectors, one from GC.A/ and one from �G�.

By the formulation of the subdifferential of � given by (5), there exists a
nonnegative number � � 1 and two vectors

gC 2 co

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

0

B
B
B
B
B
@

1

g1.x/
g2.x/
:::

gn.x/

1

C
C
C
C
C
A
W x 2 EC.A/

9
>>>>>=

>>>>>;

; and g� 2 co

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

0

B
B
B
B
B
@

1

g1.x/
g2.x/
:::

gn.x/

1

C
C
C
C
C
A
W x 2 E�.A/

9
>>>>>=

>>>>>;
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such that 0 D �gC � .1 � �/g�. Noticing that the first coordinates gC1 D g�1 D 1,
we see that � D 1

2
. This means that gC � g� D 0. This happens if and only if

co

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

0

B
B
B
B
B
@

1

g1.x/
g2.x/
:::

gn.x/

1

C
C
C
C
C
A
W x 2 EC.A/

9
>>>>>=

>>>>>;

\ co

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

0

B
B
B
B
B
@

1

g1.x/
g2.x/
:::

gn.x/

1

C
C
C
C
C
A
W x 2 E�.A/

9
>>>>>=

>>>>>;

¤ ;: (7)

As noted before, the first coordinates of all these vectors are the same, and therefore
the theorem is true, since if � exceeds one, the solution where all the components
are divided by � can be taken as the corresponding coefficients in the convex
combination.

In the rest of this section we show how Theorem 2 can be used to formulate nec-
essary and sufficient optimality conditions for the case of multivariate polynomial
approximation. We also demonstrate how the notion of alternance can be extended
to multidimensional cases. Equivalent results have been obtained in [7], however,
the conditions of Theorem 2 are easier to verify. Rice’s optimality verification
is based on separation of positive and negative maximal deviation points by a
polynomial of the same degree as the degree of the approximation m: there exists
no polynomial of degree m that separates positive and negative maximal deviation
points, but the removal of any maximal deviation point results in the ability to
separate the remaining points by a polynomial of degree m.

2.3 Optimality Conditions for Multivariate Linear Functions

In the case of multivariate linear functions (that is gi.x/ D xi; i D 1; : : : ; n)
Theorem 2 can be formulated as follows.

Theorem 3 A multivariate linear approximation is optimal if and only if the convex
hull of the maximal deviation points with positive deviation and convex hull of the
maximal deviation points with negative deviation have common points.

Theorem 3 can be considered as an alternative formulation to the necessary and
sufficient optimality conditions that are based on the notion of alternance. Clearly,
Theorem 3 can be used in univariate cases, since the location of the alternance points
ensures the common points for the corresponding convex hulls, constructed over the
maximal deviation points with positive and negative deviations respectively.

Note that in general d � n. Non-linear multivariate polynomial approximation is
one of our future research priorities.
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3 Conclusions and Further Research Directions

In this paper we obtained necessary and sufficient optimality conditions for best
polynomial Chebyshev approximation (characterisation theorem). The main obsta-
cle was to extend the notion of alternance to the case of multivariate polynomials.
This has been done using nonsmooth calculus.

For the future we are planning to proceed in the following directions.

1. Find a necessary and sufficient optimality condition that is easy to verify in
practice (currently, we only have a necessary condition, but not a sufficient one).

2. Extend these results to the case of variable polynomial degrees for each
dimension.

3. Develop similar optimality conditions for multivariate trigonometric polynomials
and polynomial spline Chebyshev approximations.

4. Develop an approximation algorithm to construct best multivariate approx-
imations (similar to the famous Remez algorithm, developed for univariate
polynomials [5] and extended to polynomial splines [3, 10])

Acknowledgements This paper was inspired by the discussions during a recent MATRIX
program “Approximation and Optimisation’’ that took place in July 2016. We are thankful to
the MATRIX organisers, support team and participants for a terrific research atmosphere and
productive discussions.

References

1. Chebyshev, P.L.: The theory of mechanisms known as parallelograms. Selected Works,
pp. 611–648. Publishing House of the USSR Academy of Sciences, Moscow (In Russian)
(1955)

2. Davydov, O.V., Nurnberger, G., Zeilfelder, F.: Approximation order of bivariate spline
interpolation for arbitrary smoothness. J. Comput. Appl. Math. 90(2), 117–134 (1998)

3. Nürnberger, G.: Approximation by Spline Functions. Springer, Berlin (1989)
4. Nurnberger, G., Zeilfelder, F.: Interpolation by spline spaces on classes of triangulations.

J. Comput. Appl. Math. 119(1-2), 347–376 (2000)
5. Remez, E.Y.: General computational methods of Chebyshev approximation. At. Energy Transl.

4491 (1957)
6. Rice, J.: Characterization of Chebyshev approximation by splines. SIAM J. Numer. Anal. 4(4),

557–567 (1967)
7. Rice, J.: Tchebycheff approximation in several variables. Trans. Am. Math. Soc. 109, 444–466

(1963)
8. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
9. Schumaker, L.: Uniform approximation by Chebyshev spline functions. II: free knots. SIAM

J. Numer. Anal. 5, 647–656 (1968)
10. Sukhorukova, N.: Vallée Poussin theorem and Remez algorithm in the case of generalised

degree polynomial spline approximation. Pac. J. Optim. 6(1), 103–114 (2010)
11. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)



Spectral Triples on ON

Magnus Goffeng and Bram Mesland

Abstract We give a construction of an odd spectral triple on the Cuntz algebra
ON , whose K-homology class generates the odd K-homology group K1.ON/. Using
a metric measure space structure on the Cuntz-Renault groupoid, we introduce
a singular integral operator which is the formal analogue of the logarithm of
the Laplacian on a Riemannian manifold. Assembling this operator with the
infinitesimal generator of the gauge action on ON yields a �-summable spectral
triple whose phase is finitely summable. The relation to previous constructions of
Fredholm modules and spectral triples on ON is discussed.

1 Introduction

We give a geometrically inspired construction of spectral triples on the Cuntz
algebra ON with non-trivialK-homological content. One reason such spectral triples
have been elusive is Connes’ construction of traces from finitely summable spectral
triples [1]. Purely infinite C�-algebras such as ON are traceless and should thus be
viewed as infinite dimensional objects, at best carrying �-summable spectral triples.
Another difficulty is presented by the fact that the K-homology of ON is torsion, so
the index pairing cannot be used to detect K-homology classes.

In the literature, several approaches to noncommutative geometry on Cuntz-
Krieger algebras have been explored. The crossed product C�-algebra associated
to the action of a free group on its Gromov boundary gives rise to a Cuntz-
Krieger algebra, and in [5] that geometric picture is used to establish the existence
of �-summable spectral triples on such C�-algebras. On the other hand, twisted
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noncommutative geometries [3] circumvent the obstruction to finite summability
whereas semifinite noncommutative geometries [19] allow for the extraction of
index-theoretic invariants.

Recent years have seen explicit constructions of spectral triples on Cuntz-Krieger
algebras [12] and more generally on Cuntz-Pimsner algebras [13], originating
in the dynamics of subshifts of finite type. Their classes in K-homology were
computed in [12] using Poincaré duality and extension theory (see [14, 15]),
thus bypassing the difficulties discussed above. These spectral triples have the
remarkable feature that they are �-summable, but their bounded transforms �.D/,
using a suitably chosen function � 2 Cb.R/ such that limt!˙1 �.t/ D ˙1, are
finitely summable. Providing a geometric context and understanding the distinct
dimensional behaviours of bounded and unbounded Fredholm modules over ON is
the main problem motivating this paper.

Using the metric and Patterson-Sullivan measure on the full N-shift, we equip
the Cuntz-Renault groupoid with the structure of a metric measure space. Then we
consider a singular integral kernel formally similar to that of the logarithm of the
Laplacian on a closed Riemannian manifold. We explicitly relate the associated
integral operator to the depth-kore operator from [13], yielding a geometric
construction of a K-homologically non-trivial noncommutative geometry on ON .

2 Statement of Results on ON

Before stating our results, we recall several notions from noncommutative geometry.
The reader familiar with summability properties in noncommutative geometry and
the groupoid model of ON can proceed to page 187 for the main results.

Let A be a unital C�-algebra. A spectral triple is a triple .A;H;D/ where A
acts unitally on the Hilbert space H and D is a self-adjoint operator with compact
resolvent on H such that the 
-subalgebra

LipD.A/ WD fa 2 A W aDom.D/ � Dom.D/ and ŒD; a� is boundedg � A ;

is norm dense in A. A spectral triple is sometimes called an unbounded Fredholm
module. A bounded Fredholm module is a triple .A;H;F/ as above safe the fact
that F is a bounded operator assumed to satisfy that F2� 1;F�F�; ŒF; a� 2 K.H /

for any a 2 A.
Dimensional properties of (un)bounded Fredholm modules are described in

terms of operator ideals. For a compact operator T on a Hilbert space H, we denote
by �k.T/ its sequence of singular values. Given p 2 .0;1/, let L p.H /; denote
the pth Schatten ideal and Li1=p.H / � K.H / the weak principal ideal defined by

Li1=p.H / WD fT 2 K.H / W �k.T/ D O..log k/�1=p/g:
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An unbounded Fredholm module .A;H;D/ is said to be p-summable if .D ˙
i/�1 2 L p.H /, weakly �-summable if .D ˙ i/�1 2 Li1=2.H / and �-summable
if .D ˙ i/�1 belongs to the closure of the finite rank operators in Li1=2.H /. Note
that �-summability is equivalent to requiring that e�tD2 2 L 1.H / for all t > 0. A
bounded Fredholm module .A;H;F/ is said to be p-summable if

F2 � 1;F � F� 2 L p=2.H /; and ŒF; a� 2 L p.H /;

and �-summable if

F2 � 1;F � F� 2 Li.H /; and ŒF; a� 2 Li1=2.H /;

for all a in a dense subalgebra of A.
We emphasize the difference between the two definitions. Summability of an

unbounded Fredholm module is a property of the operator D, whereas summability
of a bounded Fredholm module is a property of the operator F and of its commu-
tators with the algebra A. The two notions are related as follows. If .A;H;D/ is a
p-summable (resp. �-summable) unbounded Fredholm module, then .A;H; �.D//
is a p-summable (resp. �-summable) bounded Fredholm module if � 2 Cb.R/ is
a function satisfying �2 D 1 C O.jxj�2/ as jxj ! 1. Conversely, a �-summable
bounded Fredholm module can be lifted to a �-summable unbounded Fredholm
module, see [2, Chapter IV.8, Theorem 4]. This result fails for finite summability, as
is shown in particular by the examples in this paper.

Any K-homology class on a Cuntz-Krieger algebra is represented by a finitely
summable bounded Fredholm module [12]. In general, Cuntz-Krieger algebras
admit no finitely summable spectral triples, as discussed above. This phenomenon
is widespread and, for instance, occurs for boundary crossed product algebras of
hyperbolic groups [7]. The action of a free group on its Gromov boundary falls
into the class of examples considered in both [7] and [12]. To our knowledge,
obstructions to finite summability at the bounded level have not been studied. At
present, the example [12, Lemma 6, page 95] of a K-homology class not admitting
finitely summable bounded representatives is the only one known to the authors.

Before stating our main results, we recall some facts about ON that we review
in more detail in Sect. 3. For N > 1, the Cuntz algebra ON [6] is defined as the
universal C�-algebra generated by N isometries with orthogonal ranges. As the C�-
algebra ON is simple, it can be constructed in any of its Hilbert space realizations.
That is, for any operators S1; : : : ; SN such that S�j Sk D ıjk and 1 D PN

jD1 SjS�j , ON

is canonically isomorphic to the C�-algebra generated by S1; : : : ; SN .
An important realization of ON is as the groupoid C�-algebra of the Cuntz-

Renault groupoid GN introduced in [20, Section III.2]. The unit space of GN is the
full one-sided sequence space ˝N WD f1; : : : ;NgN. We equip ˝N with the product
topology in which it is compact and totally disconnected. Elements x 2 ˝N are
written x D x1x2 � � � where xj 2 f1; : : : ;Ng. The shift 
 W ˝N ! ˝N is defined by

.x1x2x3 � � � / D x2x3 � � � and is a surjective local homeomorphism. For a finite word
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� D �1�2 � � ��k 2 f1; : : : ;Ngk we define the cylinder set

C� WD fx 2 ˝N W x D �x0 for some x0 2 ˝Ng:

We call j�j WD k the length of �. As a set, the Cuntz-Renault groupoid is given by

GN WD f.x; n; y/ 2 ˝N 	 Z 	˝N W 9k 
nCk.x/ D 
k.y/g� ˝N ; (1)

with domain map dG W G! ˝N , range map rG W G! ˝N and product � defined by

dG.x; n; y/ WD y; rG.x; n; y/ WD x; .x; n; y/ � .y;m; z/ D .x; nC m; z/:

The space GN admits an extended metric �G defined below in Definition 2. The étale
topology described in [21] coincides with the metric topology on GN induced by �G
(see Sect. 3, Proposition 1).There is an isomorphism ON Š C�.GN/ (see [20, 21])
and an expectation ˚ W C�.GN/! C.˝N/ induced by the clopen inclusion

˝N � GN ; x 7! .x; 0; x/: (2)

The algebra ON admits a unique KMS-state � (see Sect. 3.2), and we write
L2.ON/ WD L2.ON ; �/ for its GNS-representation (see below in Sect. 3.2). Under
the isomorphism ON Š C�.GN/ we have L2.ON/ D L2.GN ;mG/ for the measure
mG WD d�Gm˝ induced by the Patterson-Sullivan measure m˝ on ˝N , characterized
by m˝.C�/ WD N�j�j. We often write g D .x; n; y/ for an element of GN . Note that
the Hausdorff dimension of ˝N , and hence of GN , equals logN.

Definition 1 We define the densely defined operators c, T and PF on L2.ON/ as
follows.

1. Define c0 by Dom.c0/ D Cc.GN/ and c0 f .x; n; y/ WD nf .x; n; y/ and let c denote
the closure of c0.

2. Define T0 by letting Dom.T0/ be the compactly supported locally constant
functions and

T0 f .g/ WD 1

.1 � N�1/

Z

GN

f .g/� f .h/

�G.g; h/log.N/
dmG.h/;

and let T denote the closure of T0. The extended metric �G is defined below in
Definition 2.

3. Define the set

XF WD
˚
.x; n; y/ 2 ˝N 	 N 	˝N W 9� 2 f1; : : : ;Ngn s.t. x 2 C� and 
n.x/ D y

�
:

(3)

Let PF denote the integral operator on L2.GN/ with integral kernel �XF (the
characteristic function of XF).
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There is an isomorphism K1.ON/ Š Z=.N � 1/Z defined from Poincaré duality
for Cuntz-Krieger algebras [14] and the isomorphism K0.ON/ Š Z=.N � 1/Z. We
denote by bŒ1� 2 K1.ON/ the class Poincaré dual to Œ1� 2 K0.ON/ and sometimes refer
to this class as the generator of K1.ON/. The generator of K1.ON/ is represented
by the extension considered in [8]. In the sequel we will use the operator T from
Definition 1 to construct spectral triples representing the K-homology class bŒ1�.

In the statement of our main result we will make use of the so called dispersion
operator B W L2.ON/ ! L2.ON/ which is a bounded operator defined below in
Lemma 1 (see page 194). The dispersion operator measures how non-diagonal the
operator T is in a particular ON-basis of L2.ON/. We also make use of a certain
projection Q defined just before Theorem 4.

Theorem 1 The operators c, T and PF from Definition 1 are well defined self-
adjoint operators. In fact PF is an orthogonal projection, T is positive and D WD
.2PF � 1/jcj � T is a self-adjoint operator with compact resolvent. Moreover,

1. .ON ;L2.ON/;D/ is a spectral triple whose class coincides with bŒ1� 2 K1.ON/

and e�tD2 is of trace class for all t > 0, i.e. D is �-summable.
2. Up to finite rank operators, PF D �Œ0;1/.D/ and for any p > 0,

.ON ;L
2.ON/; 2PF � 1/

is a p-summable Fredholm module whose class is bŒ1� 2 K1.ON/.
3. The operator QD WD D�BC.N�1/�1Q also defines a spectral triple on ON, where

B is the dispersion operator (see Lemma 1) and Q is a projection (see before
Theorem 4). For any extended limit ! 2 L1Œ0; 1�� at 0 there is a probability
measure Qm! on˝N such that

Q�!.a/ WD !
 

Tr.ae�t QD2 /
Tr.e�t QD2 /

!

; a 2 ON ;

is computed from Q�!.a/ D
R
˝N
˚.a/d Qm! .

Remark 1 The importance of part 3 of Theorem 1 is in the context of the
states constructed from �-summable spectral triples in [10]. The assumption [10,
Assumption 5.4] requires the associated states to be tracial. This condition clearly
fails in the purely infinite case.

A key ingredient in the proof of the theorem is the notion of the depth-kore
operator from [13]. The depth-kore operator � is a self-adjoint operator on L2.ON/

which together with c facilitates a decomposition L2.ON/ D L
n;k Hn;k into

finite-dimensional subspaces with an explicit ON-basis. As we will see below in
Proposition 5 of Sect. 3.2, PF is the orthogonal projection onto the free Fock space
F WDL1nD0Hn;0 Š `2.VN/ where VN D [1kD0f1; : : : ;Ngk.

The structure of the paper is as follows. In Sect. 3 we describe the geometry of
the Cuntz-Renault groupoid GN and the GNS representation of the KMS state of the
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Cuntz algebra in terms of the Cuntz-Renault groupoid. We compare the �-function
on GN (cf. [12, Section 5]) to the �-operator on its L2-space (cf. [13, Lemma 2.13])
in Sect. 4. The integral operator T is computed in Sect. 5 and we assemble these
ingredients to spectral triples in Sect. 6. The proof of Theorem 1 is found in Sects. 6
and 7.

3 Metric Measure Theory on ON

In this section we will set the scene for the paper and describe the relevant objects.
Most of this material reviews previously published results. The context we present,
which to our knowledge is novel, sheds a new light on them.

3.1 The Groupoid GN as a Metric Measure Space

The groupoid GN was defined as a set with algebraic structure in Eq. (1) and we
now describe its topology in more detail. Define the functions �G W GN ! N and
c W GN ! Z by

�G W .x; n; y/ 7! minfk � maxf0;�ng W 
nCk.x/ D 
k.y/g; c W .x; n; y/ 7! n:

For g 2 GN and composable g1; g2 2 GN it holds that

c.g1 � g2/ D c.g1/C c.g2/; �G.g1 � g2/ � �.g1/C �.g2/; c.g/C �G.g/ � 0:

In summary, c is a cocycle, �G is submultiplicative and their sum is a positive
function.

We equip GN with the smallest topology making c, �G, rG and dG continuous. It
is readily verified that a basis for the topology on GN is given by the sets

X�;� WD f.x; j�j � j�j; y/ 2 GN W x 2 C�; y 2 C�; 

j�j.x/ D 
 j�j.y/g; for �; � 2 VN :

The groupoid GN is étale in this topology. An étale groupoid over a totally dis-
connected space is again totally disconnected, so the space of compactly supported
locally constant functions is dense in Cc.GN/. For �; � 2 VN we use the notation
S� WD S�1 � � � S�

j�j
, S�� WD .S�/� and ��;� for the characteristic function of X�;� . The

following result is proven in [20, 21].

Theorem 2 The C�-algebras ON and C�.GN/ are isomorphic via a 
-
homomorphism ON ! C�.GN/ that maps S�S�� to the compactly supported locally
constant function ��;� 2 Cc.GN/.
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Notation 1 For g D .x; n; y/ 2 GN we have 
nC�G.g/.x/ D 
�G.g/.y/. We will use
the notation z.g/ WD 
�G.g/.y/, �G.g/ will denote the word of length n C �G.g/
such that x D �G.g/z.g/ and �G.g/ will denote the word of length �G.g/ such that
y D �G.g/z.g/. In particular, we have

g D .�G.g/z.g/; c.g/; �G.g/z.g//; 8g 2 GN :

Clearly, z W GN ! ˝N and �G; �G W GN ! VN are continuous. When there is no risk
of confusion with fixed finite words, we write simply �.g/ and �.g/. We also write
y.g/ WD y.

The compact space ˝N is metrized by the metric �˝ defined by

�˝.x1x2 � � � ; y1y2 � � � / WD inffe�l W x1x2 � � � xl D y1y2 � � � ylg;

with the convention that �˝.ix2 � � � ; jy2 � � � / D 1 if i ¤ j.

Definition 2 We define �G W GN 	 GN ! Œ0;1� by

�G.g1; g2/ WD
(
1; if �G.g1/ ¤ �G.g2/ or �.g1/ ¤ �.g2/;
�˝.y.g1/; y.g2//; if �G.g1/ D �G.g2/ and �.g1/ D �.g2/:

For � 2 VN and k 2 N, we define the set

C�;k WD fg 2 GN W �G.g/ D �; �G.g/ D kg: (4)

The set C�;k is homeomorphic to a clopen subset of˝N via the domain mapping dG.
We can clearly partition

GN D P[�;kC�;k:

Moreover, for a fixed g1 2 GN we have

fg2 2 GN W �G.g1; g2/ <1g D C�.g1/;�.g1/:

Proposition 1 The function �G is an extended metric on GN and the topology
induced by �G coincides with the étale topology on GN. The functions c, �G, rG
and dG as well as any compactly supported locally constant function are uniformly
Lipschitz continuous with respect to �G.

Proof We start by giving the argument for why �G is an extended metric. If
�G.g1; g2/ D 0 then y.g1/ D y.g2/, �G.g1/ D �G.g2/ and �G.g1/ D �G.g2/ so
c.g1/ D c.g2/ and we conclude that g1 D g2. The function �G is clearly non-
negative and symmetric. The triangle inequality follows from the fact that given
� 2 VN and k 2 N, the set C�;k is bi-Lipschitz homeomorphic to a clopen subset
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of ˝N via the domain mapping dG. The remainder of the proposition are direct
consequences of the construction of the extended metric.

Remark 2 We note that rG and dG are locally bi-Lipschitz homeomorphisms
between GN and˝N so any local metric invariant, e.g. Hausdorff dimension, remains
the same for the two spaces.

It is often fruitful to think of ˝N as the Gromov boundary of the discrete
hyperbolic space VN . Here we think of VN as a rooted tree, with root ; 2
f1; : : : ;Ng0 D f;g and given a directed graph structure by declaring an edge from
� to �j for any � 2 VN and j 2 f1; : : : ;Ng. We write VN WD VN [ ˝N for
the corresponding compactification of VN ; we topologize VN in such a way that
VN � VN is a discrete subspace and for any � 2 VN , the set f� 2 VN W � D ��0 for
some �0 2 VNg [ C� is open. Let ı� denote the Dirac measure at � 2 VN and for
s > log.N/ define probability measures on VN via

ms WD
P

�2VN
e�sj�jı�

P
�2VN

e�sj�j
:

The measures ms are supported in VN . The following construction of the Patterson-
Sullivan measures on ˝N is well-known, see for instance [4].

Proposition 2 The net of measures .ms/s>log.N/ has a w�-limit m˝ as s! log.N/.
The measure m˝ is supported on˝N � VN and coincides with log.N/-dimensional
Hausdorff measure. It satisfies m˝.C�/ D N�j�j for any � 2 VN.

3.2 The Representation Associated with the KMS State on ON

We will now approach ON from an operator theoretic viewpoint. The cocycle c
gives rise to a U.1/-action on ON by .z � f /.g/ D zc.g/f .g/ for f 2 Cc.GN/. Under
the isomorphism of Theorem 2, this action is given on the generators of ON by
z � Si D zSi. The functional

�. f / WD
Z

˝N

f .x; 0; x/dm˝;

extends to a state on ON . Indeed, �.S�S�� / D ı�;�N�j�j. The state � is the
unique KMS state on ON (equipped with the action defined above) and its inverse
temperature is log.N/, see [18].

Proposition 3 We consider the measure mG WD d�Gm˝ on GN. The isomorphism of
Theorem 2 uniquely determines a unitary isomorphism L2.ON ; �/ ! L2.GN ;mG/

compatible with the left ON-action.
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The proposition follows using the fact that 1 2 ON , which corresponds to �˝ 2
Cc.GN/ � C�.GN/, satisfies �. f / D h1; f 
 1iL2.GN ;mG/. Motivated by this result, we
identify L2.ON ; �/ with L2.GN ;mG/ and write simply L2.ON/.

Definition 3 For a finite word � 2 VN we write t.�/ WD �j�j for � non-empty and
t.;/ D ;. We define .e�;�/�;�2VN � L2.ON/ by e;;; D �˝ and

e�;� WD

8
ˆ̂
<

ˆ̂
:

Nj�j=2S�S�� ; t.�/ ¤ t.�/;

Nj�j=2
q

N
N�1

�
S�S�� � N�1S�S��

�
; t.�/ D t.�/ ¤ ;:

Here we have written � D �t.�/ and � D �t.�/.
Proposition 4 (Lemma 2.13 of [13]) The collection .e�;�/�;�2VN � L2.ON/ is an
ON-basis.

Definition 4 Following [13], we define the depth-kore operator � on L2.ON/ as the
densely defined self-adjoint operator such that

�e�;� D j�je�;�:

We define the operator c on L2.ON/ as the densely defined self-adjoint operator such
that

ce�;� D .j�j � j�j/e�;�:

We note that by construction, c commutes with � on a common core and cC � is
positive. We define the NnC2k-dimensional space

Hn;k WD ker.c � n/\ ker.� � k/ D l:s:fe�;� W j�j D nC k; j�j D kg: (5)

Proposition 5 Let XF denote the set from Eq. (3) and PF the integral operator
with kernel �XF . The operator PF is the orthogonal projection onto the Fock space
F WD ker � D L1

nD0Hn;0. Moreover, PF preserves the domain of c and � and
commutes with c and � on their respective domains.

Proof The integral kernel of the orthogonal projection onto the Fock space F is
given by the function

1X

nD0

X

j�jDn

e�;;.g1/e�;;.g2/ D
1X

nD0

X

j�jDn

�X�;;	X�;;.g1; g2/ D �[�X�;;	X�;;.g1; g2/:

The proposition follows from the fact that XF DS�

�
X�;; 	 X�;;

�
.
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Remark 3 The isometry v W `2.VN/ ! L2.ON/, ı� 7! e�;; surjects onto the Fock
space F D ker.�/ (compare [12, Remark 2.2.4]). We also note that there is an
isometry L2.˝N ;m˝/ ! L2.ON/ mapping surjectively onto the “anti-Fock space”
Fan WD ker.c C �/ via �C� 7! S�S��. The “anti-Fock space” is often a source of
trouble, see [13, Proof of Theorem 2.19]. The basis .e�;�/�2VN for L2.˝N ;m˝/ �
L2.ON/ is related to the wavelet basis studied in [9].

In [13] the operators c, � and PF were assembled into a spectral triple. We define
D� as the closure of .2PF�1/jcj��. It was proven in [13] that .ON ;L2.ON/;D�/ is
a spectral triple whose class coincides with bŒ1� 2 K1.ON/. The explicit construction
is motivated by the K-homological information carried by the projection PF �
�Œ0;1/.D�/. The aim of this paper is to give a more geometric construction of a
spectral triple on ON , with the same K-homological content.

4 The �-Function and �-Operator on ON

An important aspect in the noncommutative geometry of the Cuntz algebraON is the
distinction between the depth-kore function �G in the groupoid GN and the depth-
kore operator �. Both are invariants of Cuntz-Pimsner constructions of ON : the
depth-kore function from ON as a Cuntz-Pimsner algebra with coefficients C.˝N/

and the depth-kore operator from ON as a Cuntz-Pimsner algebra with coefficients
C. These two models are discussed in [13], notably in [13, Section 2.5.3].

Let us go into the details of the other approach using C.˝N/ as coefficients.
The details can be found in [12, 13]. Let �N denote the C.˝N/-Hilbert C�-module
completion of Cc.GN/ in the C.˝N/-valued inner product h f1; f2iC.˝/ WD ˚. f �1 
 f2/
where ˚ denotes the conditional expectation Cc.GN/! C.˝N/ onto the unit space
obtained from the inclusion (2). Multiplication by the functions c and �G define
self-adjoint regular operators on �N . The Fock module F˝ WD ker �G � �N is
complemented and the adjointable projection

P˝ D �f0g.�G/ W �N ! �N ;

satisfies F˝ D P˝�N . Following the recipe above, we define a self-adjoint regular
operator D˝ on �N as the closure of .2P˝ � 1/jcj � �G. Then P˝ D �Œ0;1/.D˝/
and this operator projects onto the C.˝/-Hilbert C�-submodule spanned by fS� W
� 2 VNg. The triple .ON ; �N ;D˝/ defines an unbounded .ON ;C.˝N//-Kasparov
module. In this instance, .ON ; �N ;D˝/ can be thought of as a bundle of spectral
triples over˝N . We recall the following result from [12, Theorem 5.2.3].

Theorem 3 Let w 2 ˝N and denote the discrete dG-fiber by Vw WD d�1G .w/ � GN.
The C�-algebra ON acts on `2.Vw/ via the groupoid structure. Define Dw as a self-
adjoint operator on `2.Vw/ by

Dwf .x; n;w/ WD jnj.2Pw � 1/f .x; n;w/� �G.x; n;w/f .x; n;w/;
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where Pw denotes the projection onto the closed linear span of the orthogonal
set f�X�;;jVw W � 2 VNg � `2.VN/. Then .ON ; `

2.VN/;Dw/ is a �-summable
spectral triple whose phase DwjDwj�1 defines a finitely summable Fredholm module
representing the class bŒ1� 2 K1.ON/.

A key step in proving that .ON ; �N ;D˝/ is a Kasparov module is the study of
the submodules �n;k WD ker.c � n/ \ ker.�G � k/ � �N . The modules do in this
instance carry geometric content as

�n;k D C.Gn;k/; where Gn;k D c�1.fng/\ ��1G .fkg/ � GN :

The set Gn;k is compact and C.Gn;k/ is a finitely generated projectiveC.˝N/-module.
Later in the paper, we will need to make use of the interaction between the depth-
kore function �G and the depth-kore operator �.

Definition 5 For two finite words �; � 2 VN we write � ^ � for the longest word
such that � D �0.�^ �/ and � D �0.�^ �/ for some words �0 and �0. We define

�V .�; �/ WD j�j � j� ^ �j:

Proposition 6 For �; � 2 VN, �Ge�;� D �V .�; �/e�;� . In particular, e�;� 2 �n;k if
and only if n D j�j � j�j and k D �V .�; �/.

The proof consists of a long inspection to verify that supp.e�;�/\Gn;k ¤ ; if and
only if n D j�j � j�j and k D �V .�; �/. A key point in the proof, putting the two
cases in Definition 3 on equal footing, is the identity:

�V .�i; �j/ D ıi;j�V .�; �/C .1 � ıi;j/.j�j C 1/:
Using the fact that 0 � �V .�; �/ � j�j we deduce the next Corollary from
Proposition 6.

Corollary 1 As self-adjoint operators on L2.ON/, the operator �G is relatively
bounded by � with relative norm bound 1. Moreover, �G and � commute on a
common core.

5 An Integral Operator on ON

In this section, we define the singular integral operator that is used to construct
spectral triples on ON . The singular integral operator will at large behave like the
depth-kore operator �.

Definition 6 Define C1c .GN/ � Cc.GN/ as the subspace of all compactly supported
locally constant functions. Define the operator T0 W C1c .GN/! L2.GN/ by

T0 f .g1/ WD 1

1� N�1

Z

GN

f .g1/� f .g2/

�G.g1; g2/log.N/
dmG.g2/:

In the integrand, we apply the convention that c
1 D 0 for any finite number c.
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We will compute T0 in the basis e�;� of L2.ON/ and since C1c .GN/ D spanfe�;�g,
the computation shows that T0 is well-defined and maps C1c .GN/ into L2.ON/. More
precisely, the computation shows that T0 is up to a bounded operator diagonal in the
basis e�;� , and as such we can extend T0 to a densely defined self-adjoint operator

T W Dom T � L2.ON/! L2.ON/;

with C1c .GN/ � Dom T.
First we define the so called dispersion operator. For two words �; � 2 VN we

write � _ � for the finite word of maximal length such that � D .� _ �/�0 and
� D .� _ �/�0 for some finite words �0; �0 2 VN .

Lemma 1 Define the dispersion operator B on L2.ON/ by the formula

Be�;� D .1 � N�1/�1.1 � ıt.�/;t.�//
X

m¤t.�/

j�j�1X

`D0

X

j� jDj�j�1; j�_�jD`
N`�j�je�;�m:

Then the operator B is a well defined bounded self-adjoint operator commuting with
�, c and �G on a common core. In fact �j.kerB/? D �Gj.kerB/? .

Proof The operator B is defined on an ON-basis and it is clear from the expression
that B is self-adjoint if B is bounded. The only non-trivial fact to prove is therefore
that B is bounded. We compute that

kBe�;�k2 D .1� N�1/�2.1 � ıt.�/;t.�//
X

m¤t.�/

j�j�1X

`D0

X

j� jDj�j�1; j�_�jD`
N2`�2j�j

D .1� ıt.�/;t.�// N

N � 1
j�j�1X

`D0
N`�j�j D .1 � ıt.�/;t.�// N

.N � 1/2 .1� N�j�j/:

It follows that B is bounded. Since .kerB/? is spanned by basis vectors e�;� where
t.�/ ¤ t.�/ and �V .�; �/ D j�j if t.�/ ¤ t.�/, Proposition 6 implies �j.kerB/? D
�Gj.kerB/? .

We define Q as the orthogonal projection onto the closed linear span of the set
fe�;� W 0 � �V .�; �/ < j�jg. That is, e�;� 2 QL2.ON/ if and only if t.�/ D t.�/ ¤
;.

Theorem 4 As an operator on C1c .GN/, we have that

T0 D � � 1

N
�G C .N � 1/�1Q � B:
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In particular, T0 is a well-defined operator with dense domain and extends to a self-
adjoint operator T on L2.ON/ with discrete spectrum and T�� is relatively bounded
by � and T with relative norm bound 1=N.

The proof of this theorem will occupy the rest of this section. To prove the
theorem, it suffices to prove that it holds when acting on basis elements e�;� : they
span the compactly supported locally constant functions. For g1 2 GN and ` 2 N,
we introduce the notation

X`.g1/ WD fg2 2 GN W �G.g1; g2/ D e�`g:
Note that .X`.g1//`2N is a clopen partition of C�.g1/;�G.g1/. In fact, for any g1 2 GN ,
we can make a disjoint clopen partition GN D fg2 W �G.g1; g2/ D 1g [
.[1̀D0X`.g1//. From this discussion, it follows that

T D 1

1 � N�1
1X

`D0
N`T`; where T`f .g1/ WD

Z

X`.g1/
. f .g1/ � f .g2//dmG.g2/:

(6)

To compute T in the ON-basis, we first compute T` on the characteristic functions
�X�;� . To ease notation, we write ��;� D �X�;� 2 Cc.GN/ and �� D �C� 2 C.˝N/.
We have that

T`��;�.g1/ D mG.X
`.g1/\ X�;�/.��;�.g1/� 1/
C mG.X

`.g1/ n .X`.g1/\ X�;�//��;�.g1/:

We now proceed to compute the relevant volumes appearing in this expression.

Lemma 2 For g1 … X�;� ,

mG.X
`.g1/ \ X�;�/ D N�j�j

X

j� jD�V .�;�/D�V .�;�/
��

nCj� j
;� .g1/.��`.y1/ � ��`C1 .y1//;

where �` and �`C1 denotes the first ` and ` C 1 letters of � and �
nCj� j the first

nC j� j D nC �V .�; �/ letters of �. We interpret �` D � if ` � j�j.
Proof Take g1 … X�;� . Firstly, suppose that g1 2 [j� jD�V .�;�/D�V .�;�/X�nCj� j

;� and

that y1 2 C�` n C�`C1 . This means precisely that the domain mapping defines a
measure preserving bi-Lipschitz homeomorphismX`.g1/\X�;� ! C� . Conversely,
if g1 … [j� jD�V .�;�/D�V .�;�/X�nCj� j

;� or y1 … C�` nC�`C1 then X`.g1/\X�;� is empty,

so X`.g1/ \ X�;� has measure zero.

Lemma 3 For g1 2 X�;� ,

mG.X
`.g1/ n .X`.g1/ \ X�;�// D

8
ˆ̂
<

ˆ̂
:

0; ` � j�j;
N�` � N�`�1; �G.g1/ � ` < j�j;
N�`�1.N � 1/2; 0 � ` < �G.g1/:
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Proof Take g1 … X�;� . A computation with cylinder sets shows that

mG.X
`.g1/ \ X�;�/ D

(
0; ` < j�j;
N�` � N�`�1; ` � j�j;

and mG.X
`.g1// D

(
N�` � N�`�1; �G.g1/ � `;
N�`�1.N � 1/2; 0 � ` < �G.g1/:

The result follows by subtracting the two expressions.
From these computations, we deduce a simple special case of Theorem 4. A short

computation shows that T`��;; D 0 for any finite word � and ` 2 N. Therefore

Te�;; D 0:

We now turn to the general case.

Proof (Proof of Theorem 4) Using the decomposition (6), Lemmas 2 and 3 we write

.1 � N�1/T��;� D
j�j�1X

`D0

X

j� jD�V .�;�/D�V .�;�/
N`�j�j��

nCj� j
;� .g1/.��`C1 .y1/ � ��`.y1//

C
0

@
�G.g1/�1X

`D0
N�2.N � 1/2 C

j�j�1X

`D�G.g1/
.1� N�1/

1

A��;�.g1/

D
j�j�1X

`D0

X

j� jD�V .�;�/D�V .�;�/
N`�j�j��

nCj� j
;� .g1/.��`C1 .y1/ � ��`.y1//

C .1 � N�1/
	
��G.g1/

N
C j�j



��;�.g1/: (7)

Take two words �; � 2 VN with t.�/ D t.�/ ¤ ;. Up to normalization, e�;�
coincides with ��;� � N�1��;� . Here we are using the notation of Definition 3, and
hence j�j D j�j � 1 whenever j�j > 0. We compute that

.1 � N�1/T.��;� � N�1��;�/

D.1 � N�1/
	
��G.g1/

N
C j�j



��;�.g1/

� .1 � N�1/
	
��G.g1/

N
C j�j � 1



N�1��;�.g1/

C N�1
X

j� jD�V .�;�/D�V .�;�/
��

nCj� j
;� .g1/.��.y1/� ��

j�j�1
.y1//
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C
j�j�2X

`D0

X

j� jD�V .�;�/D�V .�;�/
N`�j�j��

nCj� j
;� .g1/.��`C1 .y1/ � ��`.y1//

� N�1
j�j�2X

`D0

X

j� jD�V .�;�/D�V .�;�/
N`�j�jC1��

nCj� j
;� .g1/.��`C1 .y1/���`.y1//:

In the last line we are using that if j� j D �V .�; �/ then j� j < j�j and �V .�; �/ D
�V .�; �/. If t.�/ D t.�/ then �V .�; �/ D �V .�; �/ and the last two terms cancel
each other. We proceed with the remaining sums:

D.1 � N�1/
	
��G.g1/

N
C j�j



��;�.g1/

� .1 � N�1/
	
��G.g1/

N
C j�j � 1



N�1��;�.g1/

C N�1
X

j� jD�V .�;�/D�V .�;�/
��

nCj� j
;� .g1/.��.y1/ � ��

j�j�1
.y1//

D.1 � N�1/
	
��G.g1/

N
C j�j � 1C N

N � 1


.��;� � N�1��;�/

� N�1��;� C N�1
X

j� jD�V .�;�/D�V .�;�/
��

nCj� j
;� .g1/��.y1/

C N�1��;� � N�1
X

j� jD�V .�;�/D�V .�;�/
��

nCj� j
;� .g1/��.y1/

D .1 � N�1/
	
��G.g1/

N
C j�j C 1

N � 1


.��;� � N�1��;�/:

Since Be�;� D 0 if t.�/ D t.�/ the theorem follows in this case. We now consider
the case of two words �; � 2 VN with t.�/ ¤ t.�/. In this case, we simply note that
Eq. (7) implies that

.1 � N�1/T��;� D
j�j�1X

`D0

X

j� jD�V .�;�/Dj�j
N`�j�j��

nCj� j
;� .g1/.��`C1 .y1/� ��`.y1//

C .1 � N�1/
	
��G.g1/

N
C j�j



��;�.g1/

D�
X

m¤t.�/

j�j�1X

`D0

X

j� jDj�j�1; j�_�jD`
N`�j�j��;�m.g1/
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C .1 � N�1/
	
��G.g1/

N
C j�j



��;�.g1/

D.1 � N�1/
	
��G.g1/

N
C j�j � B



��;�.g1/

The only case left to consider is � D � D ; which holds trivially. This proves
the theorem.

6 A Spectral Triple on ON

We are now ready to assemble our operators into spectral triples on ON . In [13] a
spectral triple was constructed by defining the operator D� D .2PF � 1/jcj � �.
We proceed similarly and define D as the closure in L2.ON/ of the operator .2PF �
1/jcj �T with initial domain C1c .GN/. In the same way, the operator QD is defined as
the closure of

.2PF � 1/jcj � T � BC .N � 1/�1Q W C1c .GN/! L2.ON/:

We note that QD D .2PF � 1/jcj � QT where

QTe�;� D
	
��V .�; �/

N
C j�j



e�;�: (8)

The following two propositions prove part 1 and 2 of Theorem 1.

Proposition 7 The triples .ON ;L2.ON/; QD/ and .ON ;L2.ON/;D/ are spectral
triples representing the class bŒ1� 2 K1.ON/.

Proof Since D � QD is a bounded self-adjoint operator, Dom.D/ D Dom. QD/ and D
defines a spectral triple if and only if QD does. It is easily verified from Corollary 1
and Eq. (8) that .i˙ QD/�1 is a compact operator. Moreover, the generators Si 2 ON

preserve Dom. QD/. The operator QD has bounded commutators with the generators Si,
which is seen from combining [13, Theorem 3.19] in the model over C and in the
model over C.˝N/; the latter gives bounded commutators with �G and the former
bounded commutators with D� D QD C �G

N . Thus D and QD define K-cycles for ON .
To identify their class in K1.ON/, observe that the operator inequalities

0 � .1 � N�1/� � QT � �; 0 � jcj C .1 � N�1/� � jcj C QT � jcj C �; (9)

hold true on the core C1c .GN/ and hence on all of Dom QT D Dom � as well as on
Dom .jcjC QT/ D Dom .jcjC�/. By positivity, we have ker � D ker QT D imPF and
thus QTPF D PF QT D 0 as well as

ker.jcj C QT/ D ker jcj \ ker QT D ker jcj \ ker � D ker.jcj C �/:
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We can thus write the operator QD and its phase QDj QDj�1 as

QD D .2PF � 1/jcj � QT D .2PF � 1/.jcj C QT/; QDj QDj�1 D D� jD�j�1 D 2PF � 1;

which shows that ŒD� D Œ QD� D ŒD� � D bŒ1� 2 K1.ON/, by [8, 14] and [13, Theorem
3.19].

Proposition 8 The spectral triples .ON ;L2.ON/; QD/ and .ON ;L2.ON/;D/ are �-
summable, PF D �Œ0;1/. QD/ D �Œ0;1/.D�/ and the difference PF � �Œ0;1�.D/ is a
finite rank operator. Moreover, for any p > 0, the set

Sump.ON ;PF/ WD fa 2 ON W ŒPF; a� 2 L p.L2.ON//g;

is a dense 
-subalgebra of ON. In particular, .ON ;L2.ON/; 2PF � 1/ is a p-
summable generator of K1.ON/ for any p > 0.

Proof It suffices to prove �-summability for QD. This follows since Hn;k is NnC2k-
dimensional and �2.jnjC k/ � QDjHn;k � 2.jnjC k/. The identity PF D �Œ0;1/.D�/
follows from the construction using PFL2.ON/ D ker.�/. Since QDj QDj�1 D
D� jD� j�1, we have �Œ0;1/. QD/ D �Œ0;1/.D�/. Moreover, for C D kBk, we have
the operator inequalities

QDjHn;k � C � DjHn;k � QDjHn;k C C; 8n; k:

Thus, by compactness of resolvents and the fact that the sign of QDjHn;k is determined
purely by n and k, it follows that �Œ0;1/.D/��Œ0;1/. QD/ is a finite rank operator. The
remaining statements follow from [12, Proposition 2.2.5], which uses methods from
[11, 14].

7 The Fröhlich Functionals on ON

In [10], Fröhlich et al. associated a state with �-summable spectral triples. If
.A;H;D/ is a �-summable spectral triple, one defines the state on a 2 A as

�D
t .a/ WD

tr.ae�tD2 /
tr.e�tD2 /

; t > 0:

The assumption that an extended limit of �D
t as t ! 0 is tracial is used in [10].

This is clearly an unrealistic assumption if A admits no traces. In [17, Corollary
12.3.5] it is shown that under certain finite dimensionality conditions on .A;H;D/,
which are slightly stronger than finite summability, extended limits of �D

t are tracial.
This provides interesting connections between the tracial property of the states
introduced by Fröhlich et al. and Connes’ tracial obstructions to finite summability.
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Since D, D0 and D� are �-summable, they allow for the definition of Fröhlich
functionals on ON . For t > 0 we define the following states on B.L2.ON//:

�t.T/ WD tr.Te�tD2 /
tr.e�tD2 /

; Q�t.T/ WD tr.Te�t QD2 /
tr.e�t QD2 /

and ��t .T/ WD
tr.Te�tD2� /
tr.e�tD2� /

:

A state ! 2 L1Œ0; 1�� is said to be an extended limit at 0 if !. f / D 0 whenever
f D 0 near 0. For an extended limit ! at 0, we define �! WD ! ı �t, Q�! WD ! ı Q�t
and ��! WD ! ı ��t . The next result proves part 3 of Theorem 1.

Proposition 9 For any extended limit !, there exists probability measures Qm! and
m�! on˝N such that for a 2 ON

Q�!.a/ D
Z

˝N

˚.a/d Qm! and ��!.a/ D
Z

˝N

˚.a/dm�!:

Using the fact that ˚.S�S�� / D ı�;�S�S�� the proposition is immediate from the
next lemma which in turn is a computational exercise.

Lemma 4 For any finite words �; �; 
; � 2 VN,

he�;�;S�S�
e�;�iL2.ON /

D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
ˆ̂
:

ı�;
 ıj
_�j;minfj�j;j
 jNminf0;j�j�j�jg ; t.�/ ¤ t.�/;

.N � 1/�1ı�;

	
ıj
_�j;minfj�j;j
 j.N � 2/Nminf0;j�j�j�jgC t.�/ D t.�/

ıj
_�j;minfj�j�1;j
 jNminf0;j�j�j�j�1g


:

:

Here � starts with � and j�j D j�j � 1.
Remark 4 It is reasonable to expect that �! , Q�! and ��! are in fact related to the
KMS state �. We have not been able to prove this. A simple induction procedure, or
using uniqueness of KMS states on ON combined with [16], shows that it suffices to
prove that �!.S�S�� / D N�!.S�jS��j/ for any finite word � 2 VN and j D 1; : : : ;N.
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Application of Semifinite Index Theory to
Weak Topological Phases

Chris Bourne and Hermann Schulz-Baldes

Abstract Recent work by Prodan and the second author showed that weak
invariants of topological insulators can be described using Kasparov’sKK-theory. In
this note, a complementary description using semifinite index theory is given. This
provides an alternative proof of the index formulae for weak complex topological
phases using the semifinite local index formula. Real invariants and the bulk-
boundary correspondence are also briefly considered.

1 Introduction

The application of techniques from the index theory of operator algebras to systems
in condensed matter physics has given fruitful results, the quantum Hall effect being
a key early example [3]. More recently, C�-algebras and their K-theory (and K-
homology) have been applied to topological insulator systems, see for example [6,
14, 19, 23, 30, 36].

The framework of C�-algebras is able to encode disordered systems with
arbitrary (possibly irrational) magnetic field strength, something that standard
methods in solid state physics are unable to do. Furthermore, by considering the
geometry of a dense subalgebra of the weak closure of the observable algebra,
one can derive index formulae that relate physical phenomena, such as the Hall
conductivity, to an index of a Fredholm operator.
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Topological insulators are special materials which behave as an insulator in the
interior (bulk) of the system, but have conducting modes at the edges of the system
going along with non-trivial topological invariants in the bulk [33]. Influential
work by Kitaev suggested that these properties are related to the K-theory of the
momentum space of a free-fermionic system [22].

Recent work by Prodan and the second author considered so-called ‘weak’
topological phases of topological insulators [31]. In the picture without disorder or
magnetic flux, a topological phase is classified by the real or complex K-theory of
the torus Td of dimension d. Relating Atiyah’s KR-theory [1] to the K-theory of C�-
algebras and then using the Pimsner–Voiculescu sequence with trivial action allows
us to compute the relevant K-groups explicitly,

KR�n.Td; �/ Š KOn.C.iT
d// Š KOn.C

�.Zd// Š
dM

jD0

 
d

j

!

KOn�j.R/ : (1)

Here n labels the universality class as described in [6, 22] and C.iTd/ is the real C�-
algebra f f 2 C.Td;C/ W f .x/ D f .�x/g, which naturally encodes the involution �
on T

d. The ‘top degree’ term KOn�d.R/ is said to represent the strong invariants of
the topological insulator and all lower-order terms are called weak invariants.

Bounded and complex Kasparov modules were used to provide a framework to
compute weak invariants in the case of magnetic field and (weak) disorder in [31]. A
geometric identity is used there to derive a local formula for the weak invariants. The
purpose of this paper is to provide an alternative proof of this result using semifinite
spectral triples and, in particular, the semifinite local index formula in [8, 9]. This
shows the flexibility of the operator algebraic approach and complements the work
in [31].

The framework employed here largely follows from previous work, namely [7],
where a Kasparov module and semifinite spectral triple were constructed for a unital
C�-algebra B with a twisted Z

k-action and invariant trace. Therefore the main task
here is the computation of the resolvent cocycle that represents the (semifinite)
Chern character and its application to weak invariants. Furthermore, the bulk-
boundary correspondence proved in [7, 30] also carries over, which allows us to
relate topological pairings of the system without edge to pairings concentrated on
the boundary of the sample.

2 Review: Twisted Crossed Products and Semifinite Index
Theory

2.1 Preliminaries

Let us briefly recall the basics of Kasparov theory that are needed for this paper;
a more comprehensive treatment can be found in [5, 31]. Due to the anti-linear
symmetries that exist in topological phases, both complex and real spaces and
algebras are considered.
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Given a real or complex right-B C�-module EB, we will denote by .� j �/B the B-
valued inner-product and by EndB.E/ the adjointable endomorphisms on E with
respect to this inner product. The rank-1 operators �e; f , e; f 2 EB, are defined
such that

�e; f .g/ D e � . f j g/B ; e; f ; g 2 EB :

Then End00B .E/ denotes the span of such rank-1 operators. The compact operators
on the module, End0B.E/, is the norm closure of End00B .E/. We will often work with
Z2-graded algebras and spaces and denote by Ő the graded tensor product (see [16,
Section 2] and [5]). Also see [25, Chapter 9] for the basic theory of unbounded
operators on C�-modules.

Definition 1 Let A and B be Z2-graded real (resp. complex) C�-algebras. A real
(complex) unbounded Kasparov module .A; �EB;D/ is a Z2-graded real (complex)
C�-module EB, a graded homomorphism � W A ! EndB.E/, and an unbounded
self-adjoint, regular and odd operator D such that for all a 2 A � A, a dense 
-
subalgebra,

ŒD; �.a/�˙ 2 EndB.E/ ; �.a/.1C D2/�1=2 2 End0B.E/ :

For complex algebras and spaces, one can also remove the gradings, in which case
the Kasparov module is called odd (otherwise even).
We will often omit the representation � when the left-action is unambiguous.
Unbounded Kasparov modules represent classes in the KK-group KK.A;B/ or
KKO.A;B/ [2].

Closely related to unbounded Kasparov modules are semifinite spectral triples.
Let � be a fixed faithful, normal, semifinite trace on a von Neumann algebra N.
Graded von Neumann algebras can be considered in an analogous way to graded
C�-algebras, though the only graded von Neumann algebras we will consider are of
the form N0 Ő End.V /, with N0 trivially graded and End.V / the graded operators
on a finite dimensional and Z2-graded Hilbert space V. We denote by KN the �-
compact operators in N, that is, the norm closed ideal generated by the projections
P 2 N with �.P/ < 1. For graded von Neumann algebras, non-trivial projections
P 2 N are even, though the grading Ad
3 on M2.N / gives a grading on Mn.KN/.

Definition 2 Let N be a graded semifinite von Neumann algebra with trace � .
A semifinite spectral triple .A;H;D/ is given by a Z2-graded Hilbert space H, a
graded 
-algebra A � N with C�-closure A and a graded representation on H,
together with a densely defined odd unbounded self-adjoint operator D affiliated to
N such that

1. ŒD; a�˙ is well-defined on Dom.D/ and extends to a bounded operator on H for
all a 2 A,

2. a.1C D2/�1=2 2 KN for all a 2 A.

For N D B.H / and � D Tr, one recovers the usual definition of a spectral
triple.
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If .A;EB;D/ is an unbounded Kasparov module and the right-hand algebra B has
a faithful, semifinite and norm lower semicontinuous trace �B, then one can often
construct a semifinite spectral triple using results from [24]. We follow this route
in Sect. 2.2 below. The converse is always true, namely a semifinite spectral triple
gives rise to a class in KK.A;C/ with C a subalgebra of KN [15, Theorem 4.1]. If
A is separable, this algebra C can be chosen to be separable as well [15, Theorem
5.3], but in a largely ad-hoc fashion. Because we first construct a Kasparov module
and subsequently build a semifinite spectral triple, one obtains more explicit control
on the image of the semifinite index pairing defined next (see Lemma 1 below).
Therefore the algebra C is not required here (as in [10, Proposition 2.13]) to assure
that the range of the semifinite index pairing is countably generated, i.e. a discrete
subset of R.

Complex semifinite spectral triples .A;H;D/ with A trivially graded can be
paired with K-theory classes in K�.A / via the semifinite Fredholm index. If A
is Fréchet and stable under the holomorphic functional calculus, then K�.A / Š
K�.A/ and the pairings extend to the C�-closure. Recall that an operator T 2 N that
is invertible modulo KN has semifinite Fredholm index

Index� .T/ D �.PKer.T// � �.PKer.T�// ;

with PKer.T/ the projection onto Ker.T/ �H.

Definition 3 Let .A;H;D/ be a unital complex semifinite spectral triple relative
to .N; �/ with A trivially graded and D invertible. Let p be a projector in Mn.A /,
which represents Œ p� 2 K0.A / and u a unitary in Mn.A / representing Œu� 2 K1.A /.
In the even case, define T˙ D 1

2
.1��/T 1

2
.1˙�/ with Ad� the grading on H. Then

with F D DjDj�1 and˘ D .1CF/=2, the semifinite index pairing is represented by

hŒ p�; .A;H;D/i D Index�˝TrCn. p.F˝ 1n/Cp/ ; even case ;

hŒu�; .A;H;D/i D Index�˝TrCn ..˘ ˝ 1n/u.˘ ˝ 1n// ; odd case :

If D is not invertible, we define the double spectral triple .A;H ˚H;DM/ for
M > 0 and relative to .M2.N /; � ˝TrC2 /, where the operator DM and the action of
A is given by

DM D
	
D M
M �D



; a 7!

	
a 0
0 0



;

for all a 2 A. If .A;H;D/ is graded by � , then the double is graded by O� D
� ˚ .��/. Doubling the spectral triple does not change the K-homology class and
ensures that the unbounded operator DM is invertible [11].
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A unital semifinite spectral triple .A;H;D/ relative to .N; �/ is called p-
summable if .1 C D2/�s=2 is �-trace-class for all s > p, and smooth or QC1 (for
quantum C1) if for all a 2 A

a; ŒD; a� 2
\

n�0
Dom.ın/ ; ı.T/ D Œ.1C D2/1=2;T� :

If .A;H;D/ is complex, p-summable and QC1, we can apply the semifinite local
index formula [8, 9] to compute the semifinite index pairing of Œx� 2 K�.A/ with
.A;H;D/ in terms of the resolvent cocycle. Because the resolvent cocycle is a local
expression involving traces and derivations, it is usually easier to compute than the
semifinite Fredholm index.

2.2 Crossed Products and Kasparov Theory

2.2.1 The Algebra and Representation

Let us consider a d-dimensional lattice, so the Hilbert space H D `2.Zd/ ˝
C

n, and a disordered family fH!g!2˝ of Hamiltonians acting on H indexed by
disorder configurations ! drawn from a compact space ˝ equipped with a Z

d-
action (possibly with twist �). One can then construct the algebra of observables
Mn.C.˝/ Ì� Z

d/. The family of Hamiltonians fH!g!2˝ are associated to a self-
adjoint element H 2 Mn.C.˝/ Ì� Zd/, and we always assume that H has a spectral
gap at the Fermi energy. The Hilbert space fibres C

n and the matrices Mn.C/ are
often used to implement the symmetry operators that determine the symmetry-type
of the Hamiltonian. However the matrices do not play an important role in the
construction of the Kasparov modules and semifinite spectral triples we consider.
Hence we will work with C.˝/ Ì� Z

d, under the knowledge that this algebra
can be tensored with the matrices (or compact operators) without issue. The space
C.˝/ can also encode a quasicrystal structure and depends on the example under
consideration.

The twist � is in general a twisting cocycle � W Zd 	 Z
d ! U.C.˝// such that

for all x; y; z 2 Z
d,

�.x; y/�.xC y; z/ D ˛x.�. y; z//�.x; yC z/ ; �.x; 0/ D �.0; x/ D 1 ;

see [28]. We also assume that �.x;�x/ D 1 for all x 2 Z
d as in [20] or [30], which

still encompasses most examples of physical interest.

Remark 1 (Anti-Linear Symmetries, Real Algebras and Twists) Our model always
begins with a complex algebra acting on a complex Hilbert space. If the Hamil-
tonian satisfies anti-linear symmetries, then we restrict to a real subalgebra of the
complex algebra C.˝/ Ì� Z

d that is invariant under the induced real structure by
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complex conjugation. This procedure is direct for time-reversal symmetry, though
modifications are needed for particle-hole symmetry [14, 19, 36]. Such a restriction
puts stringent constraints on the twisting cocycle � and will often force the twist to
be zero (e.g. if � arises from an external magnetic field). For this reason, in the real
case, we will only consider untwisted crossed products C.˝/ÌZ

d. We note that this
may not encompass every example of interest, but we leave the more general setting
to another place. ˘

Our focus is on weak topological invariants which have the interpretation of
lower-dimensional invariants extracted from a higher-dimensional system. Using
the assumption �.x;�x/ D 1, one can rewrite C.˝/Ì�Zd Š �C.˝/Ì�Zd�k�Ì� Zk

with a new twist � [20, 28]. Hence for d large enough and 1 � k � d one can study
the lower-dimensional dynamics and topological invariants of the Z

k-action.
With the setup in place, let B be a unital separable C�-algebra, real or complex,

and consider the (twisted) crossed product B Ì� Zk with respect to a Z
k-action ˛.

This algebra is generated by the elements b 2 B and unitary operators fSjgkjD1 such
that Sn D Sn11 � � � Snkk for n D .n1; : : : ; nk/ 2 Z

k satisfy

Snb D ˛n.b/S
n ; SmSn D �.n;m/SmCn

for multi-indices n;m 2 Z
k and � W Zk 	 Z

k ! U.B/ the twisting cocycle. Let
A denote the algebra of elements

P
n2Zk Snbn, where .kbnk/n2Zk is in the discrete

Schwartz-space S.`2.Zk//. The full crossed product completion BÌ� Zk is denoted
by A. Following [7, 31] one can build an unbounded Kasparov module encoding
this action. First let us take the standard C�-module `2.Zk/ ˝ B D `2.Zk;B/ with
right-action given by right-multiplication and B-valued inner product

. 1 ˝ b1 j  2 ˝ b2/B D h 1; 2i`2.Zk/ b
�
1b2 :

The module `2.Zk;B/ has the frame fım˝ 1Bgm2Zk where fımgm2Zd is the canonical
basis on `2.Zk/. Then an action on generators is defined by

b1 � .ım ˝ b2/ D ım ˝ ˛�m.b1/b2 ;
Sn � .ım ˝ b/ D �.n;m/ � ımCn ˝ b D ımCn ˝ ˛�m�n.�.n;m//b :

It is shown in [7, 31] that this left-action extends to an adjointable action of the
crossed product on `2.Zk;B/.

2.2.2 The Spin and Oriented Dirac Operators

Using the position operators Xj.ım ˝ b/ D mjım ˝ b one can now build an
unbounded Kasparov module. To put things together, the real Clifford algebras C`r;s
are used. They are generated by r self-adjoint elements f� jgrjD1 with .� j/2 D 1 and



Application of Semifinite Index Theory to Weak Topological Phases 209

s skew-adjoint elements f�igsiD1 with .�i/2 D �1. Taking the complexification we
have C`r;s ˝ C D C`rCs.

In the complex case and k even, we may use the irreducible Clifford representa-
tion of C`k D span

C
f� jgkjD1 on the (trivial) spinor bundle S overTk to construct the

unbounded operator
Pk

jD1 Xj Ő � j on `2.Zk;B/ ŐS. After Fourier transform, this is
the standard Dirac operator on the spinor bundle over the torus. More concretely,
S Š C

2k=2 with f� jgkjD1 self-adjoint matrices satisfying � i� j C � j� i D 2ıi;j. For
odd k, one proceeds similarly, but there are two irreducible representations of C`k
on S Š C

2.k�1/=2 .

Proposition 1 Consider a twisted Z
k-action ˛; � on a complex C�-algebra B. Let

A be the associated crossed product with dense subalgebra A of
P

n2Zk Snbn with

.bn/n2Zk Schwartz-class coefficients. For � D 2b k2 c, the triple

	Sk D
	
A; `2.Zk;B/B Ő C�;

kX

jD1
Xj Ő � j




is an unbounded Kasparov module that is even if k is even with grading Ad�0 for
�0 D .�i/k=2� 1 � � �� k, specifying an element of KK.A;B/. The triple 	Sk is odd
(ungraded) if k is odd, representing a class in KK1.A;B/ D KK.A Ő C`1;B/ which
can be specified by a graded Kasparov module

	
A Ő C`1; `2.Zk;B/˝C

2.k�1/=2 Ő C2;
 

0 �iPk
jD1 Xj Ő � k

i
Pk

jD1 Xj Ő � k 0

!

; (2)

where the grading is given by conjugating with

	
1 0

0 �1


, and 
1 D

	
0 1

1 0



generates

the left C`1-action.

Proof The algebra A is trivially graded and one computes that

ŒXj;
X

m2Zk

Smbm� D
X

m2Zk

mjS
mbm ;

which is adjointable for .kbmk/m2Zk in the Schwartz space over Zk. Therefore the
commutator Œ

Pk
jD1 Xj Ő � j; a Ő 1C� � is adjointable for a 2 A. The operator .1 C

jXj2/�s=2 acts diagonally with respect to the frame fım ˝ 1Bgm2Zk on `2.Zk;B/. In
particular,

.1C jXj2/�1=2 D
X

m2Zk

.1C jmj2/�1=2�ım˝1B;ım˝1B ;

which is a norm convergent sum of finite-rank operators and so it is compact on
`2.Zk;B/. In particular, .1C jXj2/�1=2 Ő 1C� is compact on `2.Zk;B/ Ő C� . ut



210 C. Bourne and H. Schulz-Baldes

The triple 	Sk is the unbounded representative of the bounded Kasparov module
constructed in [31]. The (trivial) spin structure on the torus is used to construct
the Kasparov module 	Sk from Proposition 1. One can also use the torus’ oriented
structure. Following [16, §2], we consider

V�
R

k (or complex), which is a graded
Hilbert space such that EndR.

V�
R

k/ Š C`0;k Ő C`k;0, where the action of C`0;k
and C`k;0 is generated by the operators

� j.w/ D ej ^ w� .ej/w ; � j.w/ D ej ^ wC .ej/w ;

where fejgkjD1 denotes the standard basis of R
k, w 2 V�

R
k and .v/w the

contraction ofw along v (using the inner-product on R
k). A careful check also shows

that � j and �k graded-commute. The grading of
V�

R
k can be expressed in terms of

the grading operator

�V�
Rk D .�1/k�1 � � ��k Ő � k � � ��1:

Kasparov also constructs a diagonal action of Spin0;k (and Spink;0) on EndR.
V�

R
k/

[16, §2.18], though this will not be needed here.

Proposition 2 ([7, Proposition 3.2]) Consider a Zk-action ˛ on a real or complex
C�-algebra B, possibly twisted by � . Let A be the associated crossed product with
dense subalgebraA of elements

P
n S

nbn with Schwartz-class coefficients. The data

	k D
	
A Ő C`0;k; `2.Zk;B/B Ő

�̂
R

k;

kX

jD1
Xj Ő � j



(3)

defines an unbounded A Ő C`0;k-B Kasparov module and class in KKO.A Ő C`0;k;B/
which is also denoted KKOk.A;B/. The C`0;k-action is generated by the operators
� j. In the complex case, one has to replace C`k and

V�
C

k in the above formula.
For complex algebras and spaces, we have constructed two (complementary)

Kasparov modules, 	Sk and 	k. We have done this to better align our results with
existing literature on the topic, in particular [30, 31]. In the case k D 1, these
Kasparov modules directly coincide.

For higher k, we can explicitly connect 	Sk and 	k by a Morita equivalence

bimodule [27, 29]. For k even, there is an isomorphism C`k ! End.C2
k=2
/ by

Clifford multiplication. This observation implies that C2
k=2

is a Z2-graded Morita
equivalence bimodule between C`k and C, where we equip C

2k=2 with a left C`k-
valued inner-product C`k.� j �/ such that C`k.w1 j w2/ � w3 D w1hw2;w3iC� . This
bimodule gives an invertible class Œ.C`k;C2

k=2

C
; 0/� 2 KK.C`k;C/. One can take the

external product of 	Sk with this class on the right to obtain (complex) 	k. That is,

Œ	Sk � Ő CŒ.C`k;C2
k=2
; 0/� D Œ	k� 2 KK.A Ő C`k;B/ :
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Similarly Œ	Sk � D Œ	k� Ő Œ.C; .C2k=2 /�C`k ; 0/� with .C2
k=2
/�
C`k

the conjugate module

providing the inverse to Œ.C`k;C
2k=2

C
; 0/�, see [32] for more details on Morita

equivalence bimodules.
For k odd we use the graded Kasparov module (2) instead of 	Sk . We can again

compose this graded Kasparov module with the KK-class from the Morita equiva-
lence bimodule .C`k�1;C2

.k�1/=2

C
; 0/. The external product gives Œ	k� 2 KKk.A;B/.

Hence from an index-theoretic perspective, the Kasparov modules 	Sk and 	k are
equivalent up to a normalisation coming from the spinor dimension.

In the case of real spaces and algebras, a similar (but more involved) equivalence
also holds for real spinor representations. Namely, for K D R, C or H, there is a
unique irreducible representationC`r;s ! EndK.SK/ if s�rC1 is not a multiple of
4, otherwise there are 2 irreducible representations [26, Chapter 1, Theorem 5.7]. To
relate these modules to

V�
R

k, one also uses that C Š R
2 and H Š R

4. Obviously
there are more cases to check in the real setting, but because we do not use the spin
Kasparov module in the real case, the full details are beyond the scope of this paper.

In order to consider weak invariants in the real case, we will often go beyond the
limits of semifinite index theory and will need to work with the Kasparov modules
and KK-classes directly. In such a setting, we prefer to work with the ‘oriented’
Kasparov module 	k for several reasons:

1. The oriented structure,
V�

R
k, and its corresponding Clifford representations is

at the heart of Kasparov theory and, for example, plays a key role in the proof
of Bott periodicity [16, §5] and Poincaré duality [17, §4]. This is also evidenced
in Theorem 3 below (also compare with [13], where to achieve factorisation of
equivariant (spin) spectral triples, a ‘middle module’ is required that plays of the
role of the complex Morita equivalence linking 	Sk and 	k for complex algebras).

2. The Clifford actions of C`0;k and C`k;0 on
V�

R
k are explicit. This makes the

Clifford representations more amenable to the Kasparov product as well as the
Clifford index used to define real weak invariants (see Sect. 4).

2.2.3 Kasparov Module to Semifinite Spectral Triple

Returning to the example B D C.˝/ Ì� Zd�k, it will be assumed that ˝ possesses
a probability measure P that is invariant under the Z

d-action and supp.P/ D ˝ .
Hence P induces a faithful trace on C.˝/ and C.˝/ Ì� Zd�k by the formula

�
� X

m2Zd�k

Smgm
�
D

Z

˝

g0.!/ dP.!/ :

Thus, we will assume from now on that our generic algebraB has a faithful and norm
lower semicontinuous trace, �B, that is invariant under the Zk-action. This trace now
allows to construct a semifinite spectral triple from the above Kasparov module. We
first construct the GNS space L2.B; �B/ and consider the new Hilbert space `2.Zk/˝
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L2.B; �B/. Let us note that `2.Zk/ ˝ L2.B; �B/ Š `2.Zk;B/ ˝B L2.B; �B/ so the
adjointable action of A D B Ì� Zk on `2.Zk;B/ extends to a representation of A on
`2.Zk/˝ L2.B; �B/.

Proposition 3 ([24, Theorem 1.1]) Given T 2 EndB.`2.Zk;B// with T � 0, define

Tr� .T/ D sup
I

X

�2I
�BŒ.� j T�/B� ;

where the supremum is taken over all finite subsets I� `2.Zk;B/with
P

�2I ��;� � 1.
1. Then Tr� is a semifinite norm lower semicontinuous trace on the compact

endomorphisms End0B.`
2.Zk;B// with the property Tr� .��1;�2 / D �BŒ.�2 j �1/B�.

2. LetN be the von Neumann algebra End00B .`
2.Zk;B//00 � BŒ`2.Zk/˝L2.B; �B/�.

Then the trace Tr� extends to a faithful semifinite trace on the positive coneNC.

Recall that the operator .1C jXj2/ acts diagonally on the frame fım ˝ 1Bgm2Zk , so

.1C jXj2/�s=2 D
X

m2Zk

.1C jmj2/�s=2�ım˝1B;ım˝1B :

Using the properties Tr� , one can compute that

Tr�
�
.1C jXj2/�s=2� D

X

m2Zk

.1C jmj2/�s=2 �B..ım ˝ 1B j ım ˝ 1B/B/

D
X

m2Zk

.1C jmj2/�s=2 �B.1B/:

This observation and a little more work gives the following result.

Proposition 4 ([7, Proposition 5.8]) For A � B Ì� Zk the algebra of operatorsP
n2Zk Snbn with Schwartz-class coefficients, the tuple

	
A Ő C`0;k; `2.Zk/˝ L2.B; �B/ Ő

�̂
R

k;

kX

jD1
Xj ˝ 1 Ő � j




is a QC1 and k-summable semifinite spectral triple relative to N Ő End.
V�

R
k/

with trace Tr� Ő TrV�
Rk .

We have the analogous result for the spin Dirac operator.

Proposition 5 The tuple

	
A; `2.Zk/˝ L2.B; �B/ Ő C�;

kX

jD1
Xj ˝ 1 Ő � j
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is a QC1 and k-summable complex semifinite spectral triple relative to
N Ő End.C�/ with trace Tr� Ő TrC� . The spectral triple is even if k is even with
grading operator �0 D .�i/k=2� 1 � � �� k. The spectral triple is odd if k is odd.

Therefore all hypotheses required to apply the semifinite local index formula are
satisfied. Furthermore, the algebra A is Fréchet and stable under the holomorphic
functional calculus. Therefore all pairings of Kk.A / extend to pairings with
Kk.B Ì� Zk/.

3 Complex Pairings and the Local Index Formula

Let us now restrict to a complex algebra A D B Ì� Zk, where B is separable, unital
and possesses a faithful, semifinite and norm lower semicontinuous trace �B that
is invariant under the Z

k-action. First, the semifinite index pairing is related to the
‘base algebra’ B and the dynamics of the Zk-action.

Lemma 1 The semifinite index pairing of a class Œx� 2 Kk.B Ì� Zk/ with the spin
semifinite spectral triple from Proposition 5 can be computed by the K-theoretic
composition

Kk.B Ì� Zk/ 	 KKk.B Ì� Zk;B/ ! K0.B/
.�B/����! R ; (4)

with the class in KKk.B Ì� Zk;B/ represented by 	Sk from Proposition 1.

Proof We start with the even pairing, with p 2 Mq.B Ì� Zk/ representing Œ p� 2
K0.BÌ� Zk/. Taking the double X D XM if necessary, the semifinite index pairing is
given by the semifinite index

hŒ p�; Œ.A;H;X/�i D .Tr�˝TrCl/.PKer. p.X˝1q/
C

p//�.Tr�˝TrCl/.PKer. p.X˝1q/�
C

p// ;

with PKer.T/ the projection onto the kernel of T, TrCl the finite trace from the spin

structure and the operator XC comes from the decomposition X D
	
0 X�
XC 0



due

to the grading in even dimension. Next we compute the Kasparov product in Eq. (4)
following, for example, [31, Section 4.3.1]. The product Œ p� Ő AŒ	k� 2 KK.C;B/ is
represented by the class of the Kasparov module

	
C; p

�
`2.Zk;B/˚q

�˝C
2l;

	
0 p.X ˝ 1q/�p

p.X ˝ 1q/Cp 0




; � D Ad

	
1 0

0 �1


:

After regularising if necessary, Ker. p.X ˝ 1q/Cp/ is a finitely generated and
projective submodule of p

�
`2.Zk;B/˚q

�˝Cl and the projection onto this submodule
is compact (and therefore finite-rank). We can associate a K-theory class to this



214 C. Bourne and H. Schulz-Baldes

Kasparov module by noting that End0B
�
p.`2.Zk;B//˚q ˝ C

l
� Š B˝K and taking

the difference

ŒPKer. p.X˝1q/
C

p/� � ŒPKer. p.X˝1q/�
C

p/� 2 K0.B/

Because Ker. p.X ˝ 1q/Cp/ is finitely generated, there exists a finite frame fejgnjD1
in p.`2.Zk;B/˚q/˝C

l such that
Pn

jD1 �ej;ej D IdKer. p.X˝1q/
C

p/. Taking the induced
trace .�B/� W K0.B/! R, one can use the properties of the dual trace Tr� to note that

�B
�
PKer. p.X˝1q/

C

p/
� D

nX

jD1
�B..ej j ej/B/ D

nX

jD1
Tr� .�ej;ej/ :

The right hand side is now a trace defined over End00B
�
p.`2.Zk;B/˚q/ ˝ C

l/ �
N Ő End.Cl/ and by construction it is the same as .Tr� ˝ TrCl/.PKer. p.X˝1q/

C

p//.
An analogous result holds for Ker. p.X ˝ 1q/

�Cp/, so .�B/�.Œ p� Ő BÌ�Zk Œ	k�/ is
represented by

.Tr� ˝ TrCl/.PKer. p.X˝1q/
C

p// � .Tr� ˝ TrCl/.PKer. p.X˝1q/�
C

p// ;

and thus the pairings coincide.
For the odd pairing, the same argument applies for IndexTr� .˘u˘/ with ˘ the

positive spectral projection of X and Œu� 2 K1.B Ì� Zk/. For this, one has to appeal
to the appendix of [15] or [31, Section 4.3.2]. ut

Lemma 1 means that the semifinite pairing considered here has a concrete K-
theoretic interpretation. In particular, we know that hŒx�; Œ.A;H;X/�i � �B.K0.B//,
which is countably generated for separable B. This is one of the reasons we build
a Kasparov module first and then construct a semifinite spectral triple via the dual
trace Tr� .

Remark 2 We may also pair K-theory classes with the Kasparov module 	k from
Proposition 2 by the composition

Kk.B Ì� Zk/ 	 KKk.B Ì� Zk;B/ ! KK.C`2k;B/
Š��! K0.B/

.�B/����! R (5)

where KK.C`2k;B/ŠK0.B/ by stability and [16, §6, Theorem 3]. We can think of
Eq. (5) as the definition of the complex semifinite index pairing of K-theory with the
semifinite spectral triple from Proposition 4 over the graded algebra B Ì� Zk Ő C`k.
Indeed, in more general circumstances, the K-theoretic composition is how the
semifinite pairing is defined, where in general one pairs with the class in KKk.A;C/
with C a subalgebra of KN [10, Section 2.3].

Equation (5) also has a natural analogue in the real case, namely

KOk.B Ì Z
k/ 	 KKOk.B Ì Z

k;B/ ! KKO.C`k;0 Ő C`0;k;B/ Š�! KO0.B/
.�B/����! R



Application of Semifinite Index Theory to Weak Topological Phases 215

as C`k;0 Ő C`0;k Š Ml.R/ which is Morita equivalent to R. Of course, we also want
to pair our Kasparov module with elements in KOj.B Ì Z

k/ for j ¤ k, and in this
situation we use the general Kasparov product (see Sect. 4). ˘

To compute the local index formula, we first note some preliminary results.

Lemma 2 The function

�.s/ D Tr�
�
Snb.1C jXj2/�s=2� ; s > k ;

has a meromorphic extension to the complex plane with

res
sDk

Tr�
�
Snb.1C jXj2/�s=2� D ın;0 Volk�1.Sk�1/�B.b/ :

Proof We use the frame fım˝1Bgm2Zk for `2.Zk;B/ and note that Snb � .ım˝1B/ D
ımCn ˝ ˛�m�n.�.n;m//˛�m.b/. Computing, for s > k,

Tr�
�
Snb.1C jXj2/�s=2� D Tr�

	
Snb

X

m2Zk

.1C jmj2/�s=2�ım˝1;ım˝1



D
X

m2Zk

.1C jmj2/�s=2Tr�
�
�ımCn˝˛�m�n.�.n;m//˛�m.b/;ım˝1

�

D
X

m2Zk

.1C jmj2/�s=2�B
�hım; ınCmi`2.Zk/˛�m�n.�.n;m//˛�m.b/

�

D ın;0
X

m2Zk

.1C jmj2/�s=2�B
�
�.0;m/b

�

D ın;0 �B.b/
X

m2Zk

.1C jmj2/�s=2

D ın;0 �B.b/Volk�1.Sk�1/
�
�
k
2

�
�
�
s�k
2

�

2�
�
k
2

� ;

where the invariance of the ˛-action in the trace was used. By the functional
equation for the � -function, �.s/ has a meromorphic extension to the complex plane
and is holomorphic for <.s/ > k. Computing the residue obtains the result. ut

Next let us note that any trace on B can be extended to A by defining

T

 
X

n

Snbn

!

D �B.b0/ ;

where T is faithful and norm lower semicontinuous if �B is faithful and norm lower
semicontinuous. A direct extension of Lemma 2 then gives that

res
sDk

Tr�
�
a.1C jXj2/�s=2� D Volk�1.Sk�1/T .a/ ; a 2 A : (6)
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3.1 Odd Formula

We will compute the semifinite pairing with the spectral triple constructed from
Proposition 5, which aligns our results with [31]. The equivalence between spin
and oriented semifinite spectral triples means that we also obtain formulas for the
pairing with the semifinite spectral triple from Proposition 4, where the result would
be the same up to a normalisation.

Except for certain cases where specific results on the spinor trace of the gamma
matrices are needed, we will write the trace Tr� Ő TrC� on the von Neumann algebra
N Ő End.C�/ as just Tr� .

Theorem 1 (Odd Index Formula) Let u be a complex unitary in Mq.A / and
Xodd the complex semifinite spectral triple from Proposition 5 with k odd. Then the
semifinite index pairing is given by the formula

hŒu�; ŒXodd�i D Ck

X


2Sk
.�1/
 .TrCq ˝T /

	 kY

iD1
u�@
.i/u



;

where C2nC1 D �2.2�/nnŠ
inC1.2nC1/Š , TrCq is the matrix trace on C

q, Sk is the permutation

group on f1; : : : ; kg and @ja D �iŒXj; a� for any a 2 A and j 2 f1; : : : ; kg.
Let us focus on the case q D 1 and then extend to matrices by taking .D ˝ 1q/

with D D Pk
jD1 Xj ˝ � j. Because the semifinite spectral triple of Proposition 5 is

smooth and with spectral dimension k, the odd local index formula from [8] gives

hŒu�; ŒXodd�i D �1p
2�i

res
rD.1�k/=2

2N�1X

mD1;odd

�r
m.Chm.u// ;

where u is a unitary in A, N D bk=2c C 1 and

Ch2nC1.u/ D .�1/nnŠ u� ˝ u˝ u� ˝ � � � ˝ u ; .2nC 2 entries/ :

The functional �r
m is the resolvent cocycle from [8]. To compute the index pairing

we recall the following important observation.

Lemma 3 ([4, Section 11.1]) The only term in the sum
2N�1P

mD1;odd
�r
m.Chm.u// that

contributes to the index pairing is the term with m D k.

Proof We first note that the spinor trace on the Clifford generators is given by

TrC� .ik� 1 � � �� k/ D .�i/b.kC1/=2c2b.k�1/=2c ; (7)
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and will vanish on any product of j Clifford generators with 0 < j < k. The resolvent
cocycle involves the spinor trace of terms

a0Rs.	/ŒD; a1�Rs.	/ � � � ŒD; am�Rs.	/ ; Rs.	/ D .	 � .1C s2 CD2//�1 ;

for a0; : : : ; am 2 A. Noting that ŒD; al� D i
Pk

jD1 @jal ˝ � j and Rs.	/ is diagonal in
the spinor representation, it follows that the product a0Rs.	/ŒD; a1� � � � ŒD; am�Rs.	/

will be in the span of m Clifford generators acting on `2.Zk/ ˝ L2.B; �B/ Ő C� .
Furthermore, the trace estimates ensure that each spinor component of �r

m

Z

`

	�k=2�ra0.	 � .1C s2 C jXj2//�1@j1a1 � � � @jmam.	 � .1C s2 C jXj2//�1 d	

is trace-class for a0; : : : ; am 2 A and real part <.r/ sufficiently large. Hence for
0 < m < k, the spinor trace will vanish for <.r/ large and �r

m.Chm.u// analytically
extends as a function holomorphic in a neighbourhood of r D .1�k/=2 for 0 < m <
k. Thus �r

m.Chm.u// does not contribute to the index pairing for 0 < m < k. ut
Proof (Proof of Theorem 1) Lemma 3 simplifies the semifinite index substantially,
namely it is given by the expression

hŒu�; ŒXodd�i D �1p
2�i

res
rD.1�k/=2 �

r
k.Chk.u// :

Therefore one needs to compute the residue at r D .k � 1/=2 of

Ck

Z 1

0

sk Tr�

	Z

`

	�k=2�ru�Rs.	/ŒD; u�Rs.	/ŒD; u
�� � � � ŒD; u�Rs.	/ d	



ds ;

where k D 2nC 1 and the constant

Ck D � .�1/
nC1nŠ

.2�i/3=2

p
2i 2dC1� .d=2C 1/

� .dC 1/

comes from the definition of the resolvent cocycle, see [10, Section 3.2], and Chk.u/.
To compute this residue we move all terms Rs.	/ to the right, which can be done
up to a function holomorphic at r D .1 � k/=2. This allows us to take the Cauchy
integral. We then observe that ŒD; u�ŒD; u�� � � � ŒD; u�

„ ƒ‚ …
k terms

2 A˝1C� , so Lemma 2 implies

that the zeta function

Tr�
�
u�ŒD; u�ŒD; u�� � � � ŒD; u�.1C D2/�z=2

�
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has at worst a simple pole at <.z/ D k. Therefore we can explicitly compute

�1p
2�i

res
rD.1�k/=2 �

r
k.Chk.u//

D .�1/nC1 nŠ 1
kŠ
Q
n;0 res

zDk
Tr�
�
u�ŒD; u�ŒD; u�� � � � ŒD; u�.1CD2/�z=2

�
;

where the numbers Q
n;j are defined by the formula

n�1Y

jD0
.zC jC 1=2/ D

nX

jD0
zj Q
n;j :

Hence the number Q
n;0 is the coefficient of 1 in the product
Qn�1

lD0 .zC lC 1=2/. This
is the product of all the non-z terms, which can be written as

.1=2/.3=2/ � � �.n � 1=2/ D 1p
�
� .k=2/ :

Putting this back together, our index pairing can be written as

hŒu�; ŒXodd�i D .�1/nC1 nŠ� .k=2/
kŠ
p
�

res
zDk

Tr�
�
u�ŒD; u�ŒD; u�� � � � ŒD; u�.1C D2/�z=2

�
:

We make use of the identity ŒD; u�� D �u�ŒD; u�u�, which allows us to rewrite

u� ŒD; u�ŒD; u�� � � � ŒD; u�
„ ƒ‚ …

kD2nC1 terms

D .�1/nu�ŒD; u�u�ŒD; u�u� � � � u�ŒD; u�

D .�1/n �u�ŒD; u��k :

Recall that ŒD; u� DPk
jD1ŒXj; u� Ő � j D i

Pk
jD1 @j.u/ Ő � j so the relation u�ŒD; u� D

i
Pk

jD1 u�@j.u/ Ő � j follows. Taking the kth power

�
u�ŒD; u�

�k D ik
X

JD. j1;:::;jk/
u�.@j1u/ � � �u�.@jk u/ Ő � j1 � � �� jk

where the sum is extended over all multi-indices J. Note that every term in the sum
is a multiple of the identity of C� and so has a non-zero spinor trace. Writing this
product in terms of permutations,

.�1/n �u�ŒD; u��k D .�1/nik
X


2Sk
.�1/


kY

jD1
u�.@
. j/u/ Ő � j ;
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with Sk is the permutation group of k letters. Let’s put all this back together.

hŒu�; ŒXodd�i D .�1/nC1 nŠ� .k=2/
kŠ
p
�

res
zDk

Tr�
�
u�ŒD; u�ŒD; u�� � � � ŒD; u�.1CD2/�z=2

�

D � nŠ� .k=2/

kŠ
p
�

res
zDk

Tr�

�
ik
	X


2Sk
.�1/


kY

jD1
u�.@
. j/u/ Ő � j



.1C D2/�z=2

�

D � nŠ� .k=2/2b.k�1/=2c

ib.kC1/=2c kŠ
p
�

res
zDk

Tr�

	X


2Sk
.�1/


kY

jD1
u�.@
. j/u/.1C jXj2/�z=2



;

where we have used Eq. (7) and that .1C D2/ D .1 C jXj2/ ˝ 1C� . We can apply
Eq. (6) to reduce the formula to

hŒu�; ŒXodd�i D �nŠ� .k=2/Volk�1.Sk�1/2b.k�1/=2c

ib.kC1/=2ckŠ
p
�

X


2Sk
.�1/
 T

	 kY

iD1
u�.@
.i/u/



:

Now the identity Volk�1.Sk�1/ D k�k=2

� .k=2C1/ allows to simplify

nŠ� .k=2/Volk�1.Sk�1/2b.k�1/=2c

ib.kC1/=2ckŠ
p
�

D 2.2�/nnŠ

inC1.2nC 1/Š ;

for k D 2nC 1, and therefore

hŒu�; ŒXodd�i D Ck

X


2Sk
.�1/
 T

	 kY

iD1
u�.@
.i/u/



; C2nC1 D �2.2�/nnŠ

inC1.2nC 1/Š ;

which concludes the argument. ut

3.2 Even Formula

Theorem 2 (Even Index Formula) Let p be a complex projection in Mq.A / and
Xeven the complex semifinite spectral triple from Proposition 5 with k even. Then the
semifinite index pairing can be expressed by the formula

hŒ p�; ŒXeven�i D Ck

X


2Sk
.�1/
 .TrCq ˝T /

	
p

kY

iD1
@
.i/p



;

where Ck D .2� i/k=2

.k=2/Š and Sk is the permutation group of f1; : : : ; dg.
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Like the setting with k odd, the computation can be substantially simplified with
some preliminary results. Let us again focus on the case q D 1 and first recall the
even local index formula [9]:

hŒ p�; ŒXeven�i D res
rD.1�k/=2

kX

mD0;even

�r
m.Chm. p// ;

where �r
m is the resolvent cocycle and

Ch2n. p/ D .�1/n .2n/Š
2.nŠ/

.2p� 1/˝ p˝2n ; Ch0. p/ D p :

Proof (Proof of Theorem 2) The proof of Lemma 3 also holds here to show that
�r
m.Chm.p// does not contribute to the index pairing for 0 < m < k. Therefore the

index computation is reduced to

hŒ p�; ŒXeven�i D res
rD.1�k/=2 �

r
k.Chk. p// ;

which is a residue at r D .1 � k/=2 of the term

Ck

Z 1

0

sk Tr�
�
�0

Z

`

	�k=2�r.2p� 1/Rs.	/ŒD; p�Rs.	/ � � � ŒD; p�Rs.	/ d	
�

ds ;

where �0 D .�i/k=2� 1� 2 � � �� k is the grading operator of C� and

Ck D .�1/k=2kŠ 2k� .k=2C 1/
i�.k=2/Š � .kC 1/

comes from the resolvent cocycle and the normalisation of Chk. p/. Like the case
of k odd, one can move the resolvent terms to the right up to a holomorphic error
in order to take the Cauchy integral. Lemma 2 implies that the complex function
Tr�
�
�0.2p� 1/.ŒD; p�/k.1CD2/�z=2

�
has at worst a simple pole at <.z/ D k.

Computing the residue explicitly,

res
rD.1�k/=2 �

r
k.Chk. p// D .�1/k=2

2..k=2/Š/

k=2;1 res

zDk
Tr�
�
�0.2p � 1/.ŒD; p�/k.1C D2/�z=2

�
;

where 
k=2;1 is the coefficient of z in
Qk=2�1

jD0 .z C j/ and is given by the number

k=2;1 D ..k=2/� 1/Š. Putting these results back together,

hŒ p�; ŒXeven�i D .�1/k=2 1
k

res
zDk

Tr�
�
�0.2p� 1/.ŒD; p�/k.1C D2/�z=2

�
:
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Next we claim that Tr�
�
�0.ŒD; p�/k.1C D2/�z=2

� D 0 for <.z/ > k. To see this,
let us compute for �0 D .�i/k=2� 1 � � �� k,

ŒD; p�k D
X


2Sk
.�1/


kY

iD1
ŒX
.i/; p� Ő � i D ik=2�0

X


2Sk
.�1/


kY

jD1
ŒX
. j/; p� Ő 1C� :

Because
P


 .�1/

Qk

jD1ŒX
. j/; p� is symmetric with respect to the ˙1 eigenspaces
of �0, the spinor trace Tr� .�0ŒD; p�k.1 C D2/�z=2/ will vanish for <.z/ > k.
Therefore the zeta function Tr� .�0ŒD; p�k.1 C D2/�z=2/ analytically continues as
a function holomorphic in a neighbourhood of z D k and its residue does not
contribute to the index.

We know that ŒD; p� DPk
jD1ŒXj; p� Ő � j D i

Pk
jD1 @jp Ő � j and so

p.ŒD; p�/k D .�1/k=2p
X


2Sk
.�1/


kY

jD1
@
. j/p Ő � j :

Therefore, recalling the spinor degrees of freedom and using Eq. (6),

hŒ p�; ŒXeven�i D .�1/k=2 1
k

res
zDk

Tr�
�
�0 2p.ŒD; p�/

k.1C D2/�z=2
�

D .�1/k=2.�1/k=2 i
k=22k=2

k
res
zDk

Tr�

	
p
X


2Sk
.�1/


kY

jD1
@
. j/p.1C jXj2/�z=2




D .2i/k=2Volk�1.Sk�1/
k

T

	
p
X


2Sk
.�1/


kY

jD1
@
. j/p



:

Lastly, we use that Volk�1.Sk�1/ D k�k=2

.k=2/Š for k even to simplify

hŒ p�; ŒXeven�i D .2�i/k=2

.k=2/Š

X


2Sk
.�1/
 T

	
p

kY

iD1
@
.i/p



;

and this concludes the proof. ut
The even and odd index formulas recover the generalised Connes–Chern charac-

ters for crossed products studied in [31, Section 6]. We emphasise that while we can
construct both complex and real Kasparov modules and semifinite spectral triples,
the local index formula only applies to complex algebras and invariants.



222 C. Bourne and H. Schulz-Baldes

3.3 Application to Topological Phases

Here we return to the case of A D �C.˝/Ì� Zd�k�Ì� Zk with B D C.˝/Ì� Zd�k.
If the algebra is complex and the system has no chiral symmetry, then the K-theory
class of interest is the Fermi projection PF D �.�1;��.H/, which is in A under the
gap assumption. If there is a chiral symmetry present, then H can be expressed as	
0 Q�
Q 0



with Q invertible (assuming the Fermi energy at 0). Therefore one can take

the so-called Fermi unitaryUF D QjQj�1 and obtain a class in K1.A/. Of course, this

unitary is relative to the diagonal chiral symmetry operator Rch D
	
1 0

0 �1



and so

the invariants are with reference to this choice, see [12, 35] for more information on
this issue. Provided H is a matrix of elements in A (which is physically reasonable),
then the above local formulas for the weak invariants will be valid.

Firstly, if k D d then the index formulae are the Chern numbers for the strong
invariants studied in [30]. If the measure P on˝ is ergodic under the Zd-action, then
T.a/ D TrVol.�!.a// for almost all !, where TrVol is the trace per unit volume on
`2.Zd/ and f�!g!2˝ is a family representations C.˝/ Ì� Zd ! B.`2.Zd// linked
by a covariance relation [30]. Under the ergodicity hypothesis, the tracial formulae
become

hŒUF�; ŒXodd�i D Ck

X


2Sk
.�1/
 .TrCq ˝ TrVol/

	 kY

iD1
�!.UF/

�.�i/ŒX
.i/; �!.UF/�



;

hŒPF�; ŒXeven�i D Ck

X


2Sk
.�1/
 .TrCq ˝ TrVol/

	
�!.PF/

kY

iD1
.�i/ŒX
.i/; �!.PF/�



;

for almost all ! 2 ˝ . As the left hand side of the equations are independent of
the disorder parameter !, the weak invariants are stable almost surely under the
disorder. Recall that we require the Hamiltonian H! to have a spectral gap for all
! 2 ˝ , so our results do not apply to the regime of strong disorder where the Fermi
projection lies in a mobility gap.

The physical interpretation of our semifinite pairings has been discussed in [30].
For k even, the pairing hŒPF�; ŒXeven�i can be linked to the linear and non-linear
transport coefficients of the conductivity tensor of the physical system. For k
odd, the pairing hŒUF�; ŒXodd�i is related to the chiral electrical polarisation and
its derivates (with respect to the magnetic field). See [30] for more details. All
algebras are separable, which implies that the semifinite pairing takes values in a
discrete subset of R. Hence we have proved that the physical quantities related to
the semifinite pairings are quantised and topologically stable.
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4 Real Pairings and Torsion Invariants

The local index formula is currently only valid for complex algebras and spaces.
Furthermore, the semifinite index pairing involves taking a trace and thus it will
vanish on torsion representatives, which are more common in the real setting.
Because of the anti-linear symmetries that are of interest in topological insulator
systems, we would also like a recipe to compute the pairings of interest in the case
of real spaces and algebras.

Given a disordered Hamiltonian H 2 Mn.C.˝/ Ì Z
d/ (considered now as a real

subalgebra of a complex algebra) satisfying time-reversal or particle-hole symmetry
(or both) and thus determining the symmetry class index n, one can associate a class
ŒH� 2 KOn.C.˝/ Ì Z

d/ (see [6, 19, 23, 36]). The class can then be paired with
the unbounded Kasparov module 	k from Proposition 2. As outlined in Sect. 2.2.2,
we prefer to work with the Kasparov module 	k coming from the oriented structure
`2.Zk;B/ Ő V�Rk as the Clifford actions are explicit and easier to work with. In the
case of a unital algebra B and A D B Ì Z

k, there is a well-defined map

KOn.B Ì Z
k/ 	 KKOk.B Ì Z

k;B/ ! KKO.C`n;k;B/ :

The class in KKO.C`n;k;B/ can be represented by a Kasparov module .C`n;k;EB; OX/
which can be bounded or unbounded. Up to a finite-dimensional adjustment (see [6,
Appendix B]), the topological information of interest of this Kasparov module is
contained in the kernel, Ker. OX/, which is a finitely generated and projective C�-
submodule of EB with a graded left-action of C`n;k. If B is ungraded, an Atiyah–
Bott–Shapiro like map then gives an isomorphism KKO.C`n;k;B/! KOn�k.B/ via
Clifford modules, see [34, Section 2.2].

Considering the example of B D C.˝/ÌZ
d�k, then one has the Clifford module

valued index

KOn.C.˝/ Ì Z
d/ 	 KKOk

�
C.˝/ Ì Z

d;C.˝/ Ì Z
d�k� ! KOn�k.C.˝/ Ì Z

d�k/ :

If k D d, then the pairing takes values in KOn�d.C.˝// and constitute ‘strong
invariants’. Furthermore, fixing a disorder configuration ! 2 ˝ provides a map
KOn�d.C.˝// ! KOn�d.R/ and then a corresponding analytic index formula can
be obtained as in [14] (note, however, that [14] also covers the case of a mobility
gap which does not require a spectral gap).

To compute range of the weak K-theoretic pairing, let us first consider the case
of ˝ contractible. Then one can compute directly

KOn�k.C.˝/ Ì Z
d�k/ Š KOn�k.C�.Zd�k// Š

d�kM

jD0

 
d � k

j

!

KOn�k�j.R/ ;
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which for the varying values of k 2 f1; : : : ; d � 1g recovers the weak phases
described for systems without disorder in Eq. (1). Computing the range of the pair-
ing for non-contractible ˝ is much harder, see [18, Section 6] for the computation
of KOj.C.˝/ÌZ

2/ for low j. Note also that a different action ˛0 on˝ or a different
disorder configuration space ˝ 0 could potentially lead to different invariants.

If the K-theory class Œx� 2 KO0.B/ is not torsion-valued and B contains a trace,
then one may take the induced trace Œ�B.x/� and obtain a real-valued invariant.
For B D C.˝/ Ì Z

d�k, the induced trace plays the role of averaging over the
disorder and .d � k/ spatial directions. For non-torsion elements in KOj.B/ with
j ¤ 0, we can apply the induced trace by rewriting KOj.B/ Š KO0.C0.Rj/˝ B/ Š
KKO.R;B Ő C`0;j/. This equivalence comes with the limitation that one either has
to work with traces on suspensions or graded traces on Clifford algebras. Of course,
if Œx� is a torsion element the discussion does not apply as Œ�.x/� D 0. See [18] for
recent work that aims to circumvent some of these problems.

5 The Bulk-Boundary Correspondence

We consider the (real or complex) algebra B Ì� Zk with k � 2 and the twist � such
that �.m;�m/ D 1 for all m 2 Z

k [21, 30]. Then one can decompose B Ì� Zk Š
.B Ì� Zk�1/ Ì Z, which gives us a short exact sequence of C�-algebras

0 ! .B Ì� Zk�1/˝K.`2.N// ! TZ ! B Ì� Zk ! 0 : (8)

The Toeplitz algebra TZ for the crossed product is described in [7, 21, 30]. In
particular, the algebra TZ acts on the C�-module `2.Zk�1 	 N;B/, thought of as
a space with boundary and the ideal .B Ì� Zk�1/˝K.`2.N// can be thought of as
observables concentrated at the boundary `2.Zk�1 	 f0g;B/.

Let Ae D B Ì� Zk�1 be the edge algebra with bulk algebra B Ì� Zk D Ae Ì Z.
Associated to Eq. (8) is a class in Ext�1.Ae Ì Z;Ae/ Š KKO1.Ae Ì Z;Ae/ by [16,
§7].

Proposition 6 ([7, Proposition 3.3]) The Kasparov module 	1 from Proposition 2
with k D 1 and representing Œ	1� 2 KKO1.Ae Ì Z;Ae/ or KK1.Ae Ì Z;Ae/ also
represents the extension class of Eq. (8).

Similarly, one can use Proposition 2 to build an edge Kasparov module 	k�1
representing a class in KKOk�1.B Ì� Zk�1;B/ or KKk�1.BÌ� ;B/. Hence we have a
map

KKO1.B Ì Z
k;B Ì Z

k�1/ 	 KKOk�1.B Ì Z
k�1;B/ ! KKOk.B Ì Z

k;B/

given by the Kasparov product Œ	1� Ő Ae Œ	k�1� at the level of classes.
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Theorem 3 ([7, Theorem 3.4]) The product Œ	1� Ő Ae Œ	k�1� has the unbounded
representative

	
A Ő C`0;k; `2.Zk;B/B Ő

�̂
R

k; Xk Ő �1 C
k�1X

jD1
Xj Ő � jC1




and at the bounded level Œ	1� Ő Ae Œ	k�1� D .�1/k�1Œ	k�, where �Œx� represents the
inverse of Œx� in the KK-group.

Recall that the weak invariants arise from the pairing of 	k with a class ŒH� 2
KOn.B Ì Z

k/ (or complex). Theorem 3 implies that

ŒH� Ő AŒ	k� D ŒH� Ő A
�
Œ	1� Ő Ae Œ	k�1�

� D .�1/k�1�ŒH� Ő AŒ	1�
� Ő Ae Œ	k�1� ;

by the associativity of the Kasparov product. On the other hand, let us note that
ŒH� Ő AŒ	1� D @ŒH� 2 KOn�1.Ae/ as the product with Œ	1� represents the boundary
map in KO-theory associated to the short exact sequence of Eq. (8). Hence the weak
pairing, up to a possible sign, is the same as a pairing over the edge algebra Ae D
B Ì� Zk�1.

Corollary 1 (Bulk-Boundary Correspondence of Weak Pairings) The weak
pairing ŒH� Ő AŒ	k� is non-trivial if and only if the edge pairing @ŒH� Ő Ae Œ	k�1� is
non-trivial.

In the real case we achieve a bulk-boundary correspondence of the K-theoretic
pairings representing the weak invariants. The Morita equivalence between spin and
oriented structures means that Theorem 3 also applies to the spin Kasparov module
	Sk . In particular, the bulk-boundary correspondence extends to the semifinite
pairing, allowing us to recover the following result from [30].

Corollary 2 (Bulk-Boundary Correspondence of Weak Chern Numbers) The
cyclic expressions for the complex semifinite index pairing are the same (up to sign)
for the bulk and edge algebras. Namely for k � 2 and p; u 2 Mq.A /,

hŒu�; ŒXodd�i D h@Œu�; ŒXeven�i ; hŒ p�; ŒXeven�i D �h@Œ p�; ŒXodd�i :

Proof Because the factorisation of pairings occurs at the level of the Kasparov
modules 	Sk , the result immediately follows when taking the trace. ut

Recall that for B D C.˝/ Ì� Zk, the complex K-theory classes of interest were

the Fermi projection PF or the Fermi unitary coming from sgn.H/ D
	
0 U�F
UF 0




if H is chiral symmetric. We take the edge algebra, Ae D
�
C.˝/ Ì� Z

d�k� Ì�
Z
k�1 Š C.˝/ Ì� Zd�1, which is an algebra associated to a system of 1 dimension

lower. The boundary maps in K-theory @ŒPF� and @ŒUF � can be written in terms
of the Hamiltonian bH 2 TZ associated to the system with boundary. Furthermore,
the pairings h@ŒPF�; ŒXodd�i and h@ŒUF�; ŒXeven�i can be related to edge behaviour of
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the sample with boundary, e.g. edge conductance, see [21, 30]. Hence in the better-
understood complex setting, the bulk-boundary correspondence has both physical
and mathematical meaning.
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Filtered K-Theory for Graph Algebras

Søren Eilers, Gunnar Restorff, Efren Ruiz, and Adam P.W. Sørensen

Abstract We introduce filtered algebraic K-theory of a ring R relative to a
sublattice of ideals. This is done in such a way that filtered algebraic K-theory of
a Leavitt path algebra relative to the graded ideals is parallel to the gauge invariant
filtered K-theory for graph algebras. We apply this to verify the Abrams-Tomforde
conjecture for a large class of finite graphs.

1 Introduction

Since the inception of Leavitt path algebras in [1, 4] it has been known that
there is a strong connection between Leavitt path algebras and graph C�-algebras.
In particular many results for both graph C�-algebras and Leavitt path algebras
have the same hypotheses when framed in terms of the underlying graph and
the conclusions about the structure of the algebras are analogous. For instance,
by [13, Theorem 4.1] and [5, Theorem 4.5] the following are equivalent for a
graph E.
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1. E satisfies Condition (K) (no vertex is the base point of exactly one return path).
2. C�.E/ has real rank 0.
3. LC.E/ is an exchange ring.

That real rank 0 is the analytic analogue of the algebraic property of being an
exchange ring is justified in [3, Theorem 7.2].

One of the most direct connections we could possibly have between Leavitt path
algebras and graph C�-algebras would be: If E;F are graphs then

LC.E/ Š LC.F/ ” C�.E/ Š C�.F/:

This is called the isomorphism question and it is unknown if it is true. As currently
stated the question is very imprecise, while it is clear what is meant by isomorphism
of C�-algebras, we could consider isomorphisms of Leavitt path algebras both as
rings, algebras, and 
-algebras. In the last case the forward implication of the
isomorphism question holds. In [2] Abrams and Tomforde take a systematic look
at the isomorphism question and many related questions, for instance whether or
not the above holds with Morita equivalence in place of isomorphism. They provide
evidence in favor of a positive answer to the Morita equivalence question and elevate
one direction to a conjecture.

Conjecture 1 (The Abrams-Tomforde Conjecture) Let E and F be graphs. If LC.E/
is Morita equivalent to LC.F/, then C�.E/ is (strongly) Morita equivalent to C�.F/.

In [17] the third named author and Tomforde use ideal related algebraic K-theory
to verify the Abrams-Tomforde conjecture of large classes of graphs. They introduce
ideal related algebraic K-theory as a Leavitt path algebra analogue for filtered K-
theory for graph C�-algebras. This then allows them to prove the Abrams-Tomforde
conjecture for all classes of graphs where the associated C�-algebras are classified
by filtered K-theory.

The authors have shown in [10] that when classifying graph C�-algebras that
do not have real rank 0, it can be useful to replace the full filtered K-theory with
a version that only looks at gauge invariant ideals. Motivated by this, we develop
a version of ideal related algebraic K-theory relative to a sublattice of ideals. Our
goal is to get an ideal related K-theory for Leavitt path algebras that only considers
graded ideals, but we try to state our result in greater generality. We look at a
sublattice S of ideals in some ring R and consider the spectrum of these ideals,
that is the set of S-prime ideals. This set is equipped with the Jacobson (or hull-
kernel) topology. In nice cases there exists a lattice isomorphism from the open sets
in the spectrum to the ideals in S. Specializing to the case of a Leavitt path algebra
Lk.E/, we show that the spectrum associated to the graded ideals is homeomorphic
to the spectrum of gauge invariant ideals in C�.E/. Using this we define filtered
algebraic K-theory of Lk.E/ relative to the graded ideals in complete analogy to the
C�-algebra definition. We then follow the work of [17] and establish the Abrams-
Tomforde conjecture for all graphs where the C�-algebras are classified by filtered
K-theory of gauge invariant ideals. By [10] this includes a large class of finite
graphs.
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2 Preliminaries

In this section we set up the notation we will use throughout the paper and we recall
the needed definitions. We begin with the definitions of graphs, graph C�-algebras
and Leavitt path algebras.

Definition 1 A graph E is a quadruple E D .E0;E1; r; s/ where E0 is the set of
vertices, E1 is the set of edges, and r and s are maps from E1 to E0 giving the range
and source of an edge.

Standing Assumption. Unless explicitly stated otherwise, all graphs are
assumed to be countable, i.e., the set of vertices and the set of edges are
countable sets.

We follow the notation and definition for graph C�-algebras in [11] and warn the
reader that this is not the convention used in the monograph by Raeburn [15].

Definition 2 Let E D .E0;E1; r; s/ be a graph. The graph C�-algebra C�.E/ is the
universal C�-algebra generated by mutually orthogonal projections

˚
pv W v 2 E0

�

and partial isometries
˚
se W e 2 E1

�
satisfying the relations

• s�e sf D 0 if e; f 2 E1 and e ¤ f ,
• s�e se D pr.e/ for all e 2 E1,
• ses�e � ps.e/ for all e 2 E1, and,
• pv DPe2s�1.v/ ses�e for all v 2 E0 with 0 < js�1.v/j <1.

We get our definition of Leavitt path algebras from [1, 4].

Definition 3 Let k be a field and let E be a graph. The Leavitt path algebra Lk.E/ is
the universal k-algebra generated by pairwise orthogonal idempotents fv j v 2 E0g
and elements fe; e� j e 2 E1g satisfying

• e�f D 0, if e ¤ f ,
• e�e D r.e/,
• s.e/e D e D er.e/,
• e�s.e/ D e� D r.e/e�, and,
• v DPe2s�1.v/ ee�, if s�1.v/ is finite and nonempty.

Recall that graph C�-algebras come with a natural gauge action and that Leavitt
path algebras come with a natural grading. We now turn to the ideal structure of
Leavitt path algebras and graph C�-algebras, where we are particularly interested in
graded ideals and gauge invariant ideals.
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Standing Assumption. Unless explicitly stated otherwise, all ideals in rings
are two-sided ideals and all ideals in a C�-algebra are closed two-sided ideals.

Definition 4 For any ring R we denote by I.R/ the lattice of ideals in R.
As per usual we write v � w if there is a path from the vertex v to the vertex

w. We call a subset H � E0 hereditary if v 2 H and v � w imply that w 2 H,
and we say that H is saturated if for every v 2 E0 with 0 < js�1.v/j < 1 and
r.s�1.v// � H we have v 2 H. If H is saturated and hereditary we define

BH D
˚
v 2 E0 n H W js�1.v/j D 1 and 0 < js�1.v/ \ r�1.E0 n H/j <1� :

In other words, BH consists of infinite emitters that are not in H and emit a non-zero
finite number of edges to vertices not in H. We say that those vertices are breaking
for H.

Definition 5 ([19, Definition 5.4]) An admissible pair .H; S/ consists of a saturated
hereditary subset H and a subset S of BH . We put an order on the set of admissible
pairs by letting .H; S/ � .H0; S0/ if and only if H � H0 and S � H0 [ S0. This is in
fact a lattice order.

Theorem 1 ([6, Theorem 3.6] and [19, Theorem 5.7]) Let E be a graph and let k
be a field.

• There is a canonical lattice isomorphism from the set of admissible pairs to
the set of gauge invariant ideals of C�.E/. We write Itop

.H;S/ for the image of an
admissible pair.

• There is a canonical lattice isomorphism from the set of admissible pairs to the
set of graded ideals of Lk.E/. We write I

alg
.H;S/ for the image of an admissible pair.

One of the main reasons the sublattice of graded ideals can be used to study
the Morita equivalence classes of Leavitt path algebras is that the graded ideals are
preserved by (not necessarily graded) ring isomorphisms.

Lemma 1 Let E be a graph and let k be a field. Suppose I is an ideal in Lk.E/.
Then I is graded if and only if I is generated by idempotents.

Proof Suppose I is graded. Then I D Ialg
.H;S/ for some admissible pair .H; S/. By

definition (see for instance [19, Definition 5.5]) Ialg
.H;S/ is generated by fv W v 2 Hg

and

fv �
X

s.e/Dv
r.e/…H

ee� W v 2 Sg:

Hence I is generated by idempotents.
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Suppose instead I is generated by idempotents. Let e 2 I be an idempotent in
the generating set S of idempotents for I. By [12, Theorem 3.4], e is equivalent in
M1.Lk.G// to a finite sum of the idempotents of the form v 2 E0 and w�Pn

iD1 eie�i
where s.e/ D w 2 E0, js�1.w/j D 1, and each ei is an element of s�1.w/. Then Se
where e is replaced by these new idempotents in the generating set S will generate
the ideal I. Thus, I is generated by idempotents in the vertex set and idempotents
of the form v �Pn

iD1 eie�i , where s.e/ D v 2 E0, js�1.v/j D 1, and each ei is an
element of s�1.v/. Therefore, I is a graded ideal.

Finally we briefly recall from [10, Section 3] the definition of Prime� .C�.E//
and FKtop;C.Prime� .C�.E//IC�.E//.
Definition 6 Let E D .E0;E1; r; s/ be a graph. Let Prime� .C�.E// denote the set
of all proper ideals that are prime within the set of proper gauge invariant ideals.

We give Prime� .C�.E// the Jacobson topology and can then show that C�.E/
has a canonical structure as a Prime� .C�.E//-algebra. So when E has finitely
many vertices—or, more generally, Prime� .C�.E// is finite—we can consider
the reduced filtered ordered K-theory of C�.E/: FKtop;C.Prime� .C�.E//IC�.E//.
Loosely speaking this is the collection of the K-groups associated to certain
subquotients I=J of gauge invariant ideals I; J in C�.E/ together with certain maps
of the associated six-term exact sequences.

3 S-Prime Spectrum for a Ring

We will now introduce the Prime-spectrum of a ring relative to a sublattice of ideals.
Our primary motivation is to look at prime graded ideals in Leavitt path algebras.

Definition 7 Let R be a ring and let S be a sublattice of I.R/ containing the trivial
ideals f0g and R. An ideal P 2 S is called S-prime if P ¤ R and for any ideals
I; J 2 S,

IJ � P H) I � P or J � P:

We denote by SpecS.R/ the set of all S-prime ideals of R.
We note that if P is S-prime and I; J are in S then IJ � I \ J so we have

I \ J � P H) I � P or J � P:

We will equip SpecS.R/ with the Jacobson (or hull-kernel) topology. For each
subset T � SpecS.R/ we define the kernel of T as

ker.T/ D
\

p2T
p



234 S. Eilers et al.

and the closure of T as

T D fp 2 SpecS.R/ W p � ker.T/g : (1)

Note that if R is a commutative ring and S D I.R/, then SpecS.R/ is the spectrum
of R with the Zariski topology.

Lemma 2 Let R be a ring and let S be a sublattice of I.R/ closed under arbitrary
intersections and containing the trivial ideals f0g and R. The closure operation
defined in (1) satisfies the Kuratowski closure axioms, that is

1. ; D ;,
2. T � T, for all T � SpecS.R/,

3. T D T, for all T � SpecS.R/, and,
4. T1 [ T2 D T1 [ T2, for all T1;T2 � SpecS.R/.

Proof Once we recall that by definition ker.;/ D R it is clear that 1. holds and
since we have p � ker.T/ for all p 2 T, 2. also holds. For 3. we observe that

ker.T/ D ker.T/, and then clearly T D T .
Finally suppose that T1;T2 � SpecS.R/. Since ker.T1[T2/ D ker.T1/\ker.T2/

we have that

T1 [ T2 D fp 2 SpecS.R/ W p � ker.T1 [ T2/g
D fp 2 SpecS.R/ W p � ker.T1/ \ ker.T2/g
D fp 2 SpecS.R/ W p � ker.T1/ or p � ker.T2/g
D T1 [ T2:

So 4. holds.
We now describe the open sets in the Jacobson topology. To this end we define

for each I 2 S the set

W.I/ D fp 2 SpecS.R/ W p « Ig :

Lemma 3 Let R be a ring and let S be a sublattice of I.R/ closed under
arbitrary intersections and containing the trivial ideals f0g and R. Then for all
U � SpecS.R/, U is open if and only if

U D W.ker.Uc//:

Furthermore, if I 2 S is such that

I D ker.fp 2 SpecS.R/ W p � Ig/;

then W.I/ is open.
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Proof Let U be a subset of SpecS.R/. Then U is open if and only if Uc D Uc if and
only if

Uc D fp 2 SpecS.R/ W p � ker.Uc/g

if and only if

U D fp 2 SpecS.R/ W p « ker.Uc/g D W.ker.Uc//:

Let now I 2 S be such that

I D ker.fp 2 SpecS.R/ W p � Ig/:

To ease notation we let H D fp 2 SpecS.R/ W p � Ig, so that I D ker.H/. Then

W.I/c D fp 2 SpecS.R/ W p « Igc D fp 2 SpecS.R/ W p « ker.H/gc

D fp 2 SpecS.R/ W p � ker.H/g D H:

Hence W.I/ is open.
We now define a lattice isomorphism between the open sets of SpecS.R/ and the

elements of S.

Theorem 2 Let R be a ring and letS be a sublattice of I.R/ closed under arbitrary
intersections and containing the trivial ideals f0g and R. Suppose that for each
I 2 S we have that

I D ker.fp 2 SpecS.R/ W p � Ig/:

Define � W O.SpecS.R//! S by

�.U/ D ker.Uc/:

Then � is a lattice isomorphism.

Proof To show that � is bijective we define � W S! O.SpecS.R// by �.I/ D W.I/
and check that it is an inverse. Note that by Lemma 3 the set W.I/ is in fact open.
For each I 2 S we have

�.�.I// D �.W.I// D ker.W.I/c/ D ker.fp 2 SpecS.R/ W p � Ig/ D I;

by the assumption on I. On the other hand, if U � SpecS.R/ is open we can use
Lemma 3 to get

�.�.U// D �.ker.Uc// D W.ker.Uc// D U:
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Hence � is bijective. To show that � is a lattice isomorphism it only remains to
verify that both � and � preserves order. Let U;V be open subsets of SpecS.R/
with U � V . Then Vc � Uc so

�.U/ D ker.Uc/ � ker.Vc/ D �.V/;

and hence � is order preserving. Let now I; J 2 S be such that I � J. Then

W.I/c D fp 2 SpecS.R/ W p � Ig � fp 2 SpecS.R/ W p � Jg D W. J/c;

which implies that �.I/ D W.I/ � W. J/ D �. J/, i.e., � is order preserving.
In keeping with the notation from C�-algebras we define

RŒU� D �.U/

for every U 2 O.SpecS.R//. Whenever we have open sets V � U we can form
the quotient RŒU�=RŒV�. The next lemma shows that the quotient RŒU�=RŒV� only
depends on the set difference U n V up to canonical isomorphism.

Lemma 4 Let R be a ring and let S be a sublattice of I.R/ closed under arbitrary
intersections and containing the trivial ideals f0g and R. Suppose that for each
I 2 S we have that

I D ker.fp 2 SpecS.R/ W p � Ig/:

Then for all U;V 2 O.SpecS.R// we have

RŒU [ V� D RŒU�C RŒV� and RŒU \ V� D RŒU� \ RŒV�:

Consequently, if V1;V2;U1;U2 2 O.SpecS.R// are such that V1 � U1, V2 � U2,
and U1 n V1 D U2 n V2, then there exits an isomorphism from RŒU1�=RŒV1� to
RŒU2�=RŒV2� and this isomorphism is natural, i.e., if also V3;U3 2 O.SpecS.R//
with V3 � U3 and U3 n V3 D U1 n V1, then the composition of the isomorphisms
from RŒU1�=RŒV1� to RŒU2�=RŒV2� and from RŒU2�=RŒV2� to RŒU3�=RŒV3� is equal to
the isomorphism from RŒU1�=RŒV1� to RŒU3�=RŒV3�.

Proof The first part of the theorem follows from the fact that � is a lattice
isomorphism (Theorem 2) and that S is a sublattice.

Suppose now V1;V2;U1;U2 2 O.X/ are as in the statement of the Lemma. Then
V1 [ U2 D U1 [ U2 D U1 [ V2 and therefore

RŒU2�C RŒV1� D RŒV1 [ U2� D RŒU1 [ V2� D RŒU1�C RŒV2�:
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Since U2 \ .V1 [ V2/ D V2 we get

.RŒU2�C RŒV1�/=.RŒV1�C RŒV2�/ Š RŒU2�=.RŒU2� \ RŒV1 [ V2�/

D RŒU2�=RŒU2 \ .V1 [ V2/�

D RŒU2�=RŒV2�:

Similarly

.RŒU1�C RŒV2�/=.RŒV1�C RŒV2�/ Š RŒU1�=RŒV1�:

Hence

RŒU1�=RŒV1� Š .RŒU1�C RŒV2�/=.RŒV1�C RŒV2�/

D .RŒU2�C RŒV1�/=.RŒV1�C RŒV2�/

Š RŒU2�=RŒV2�:

Suppose that we also have V3;U3 2 O.SpecS.R// with V3 � U3 and U3 n V3 D
U1 n V1. Then

V1 [ U2 D U1 [ U2 D U1 [ V2;

V2 [ U3 D U2 [ U3 D U2 [ V3;

V1 [ U3 D U1 [ U3 D U1 [ V3;

V1 D U1 \ .V1 [ V2/ D U1 \ .V1 [ V3/ D U1 \ .V1 [ V2 [ V3/;

V2 D U2 \ .V1 [ V2/ D U2 \ .V2 [ V3/ D U2 \ .V1 [ V2 [ V3/; and

V3 D U3 \ .V1 [ V3/ D U3 \ .V2 [ V3/ D U3 \ .V1 [ V2 [ V3/:

Now, by considering the isomorphism constructed above, one then gets that the
isomorphism is natural from Noether’s isomorphism theorem.

Definition 8 Let X be a topological space and let Y be a subset of X. We call Y
locally closed if Y D U n V where U;V 2 O.X/ with V � U. We let LC.X/ be the
set of locally closed subsets of X.

Definition 9 Let R be a ring and let S be a sublattice of I.R/ closed under arbitrary
intersections and containing the trivial ideals f0g and R. Suppose that for each I 2 S
we have that

I D ker.fp 2 SpecS.R/ W p � Ig/:
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For Y D U n V 2 LC.SpecS.R//, define

RŒY� WD RŒU�=RŒV�:

By Lemma 4, RŒY� does not depend on U and V up to a canonical choice of
isomorphism.

4 Spec�.Lk.E// and Prime�.C�.E//

Having set up our notion of prime ideal spectrum relative to a sublattice, we will
now apply it to the graded ideals of Leavitt path algebras.

Definition 10 Let E be a graph and let k be a field. We denote by I� .Lk.E// the
sublattice of I.Lk.E// consisting of all graded ideals of Lk.E/ and for brevity we let
Spec� .Lk.E// D Spec

I� .Lk.E//.Lk.E//.
Similarly we let I� .C�.E// be the sublattice of I.C�.E// consisting of all gauge

invariant ideals of C�.E/.
Recall from [10, Section 3] that Prime� .C�.E// denotes the collection of prime

gauge invariant ideals of C�.E/. We first prove that the lattice of graded ideals and
the lattice of gauge invariant ideals are isomorphic in a canonical way.

Lemma 5 Let E be a graph. The map ˇ W I� .Lk.E// ! I� .C�.E// that is given
by ˇ.Ialg

.H;S// D Itop
.H;S/ is a lattice isomorphism. Furthermore ˇ maps Spec� .Lk.E//

bijectively onto Prime� .C�.E//.

Proof By Theorem 1 there is a lattice isomorphism ˇalg from the set of admissible

pairs to I� .Lk.E// given by ˇalg..H; S// D Ialg
.H;S/, and a lattice isomorphism ˇtop

from the set of admissible pairs to I� .C�.E// given by ˇtop..H; S// D Itop
.H;S/.

Consequently, ˇ D ˇtop ı ˇ�1alg is a lattice isomorphism.
Let S D I� .Lk.E//. It follows from [14, Proposition II.1.4] that a graded

ideal I of Lk.E/ is S-prime if and only if I is a prime ideal of Lk.E/. Thus, by
[16, Theorem 3.12], every S-prime ideal I of Lk.E/ is of the form

• I D Ialg
.H;S/, where E0 nH is a maximal tail and S D BH, or

• I D Ialg
.H;S/ where E0 n H D M.u/ and S D BH n fug for some breaking vertex,

and that these ideals are distinct. In [10, Section 3] it is shown that every ideal I in
Prime� .C�.E// is of the form

• I D Itop
.H;S/, where E0 nH is a maximal tail and S D BH , or

• I D Itop
.H;S/ where E0 n H D M.u/ and S D BH n fug for some breaking vertex,
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and that these ideals are distinct. Hence Itop
.H;S/ is in Prime� .C�.E// if and only if

Ialg
.H;S/ is in Spec� .Lk.E//. In other words ˇ maps Spec� .Lk.E// bijectively onto

Prime� .C�.E//.
We can now prove that the collection of graded ideals satisfies the kernel

assumption we used in Sect. 3.

Proposition 1 Let E be a graph. If I is a proper graded ideal of Lk.E/, then

I D ker
�˚
p 2 Spec� .Lk.E// W p � I

��
:

Proof Let ˇ be the lattice isomorphism from Lemma 5 and let I 2 I� .Lk.E// be a
proper ideal.

By [10, Lemma 3.5] we have that

ˇ.I/ D
\

q2Prime� .C�.E//
q
ˇ.I/

q:

Since I is a graded ideal I D Ialg
.H;S/ for some admissible pair .H; S/. As the

intersection of graded ideals is again graded we also have

\

p2Spec� .Lk.E//
p
I

p D Ialg
.H0;S0/;

for some admissible pair .H0; S0/. We will now show that Itop
.H;S/ D Itop

.H0;S0/.

Since Ialg
.H0;S0/ is an intersection of ideals that all contain Ialg

.H;S/, I
alg
.H;S/ � Ialg

.H0;S0/

which implies that Itop
.H;S/ � Itop

.H0;S0/ as ˇ is order preserving. If q 2 Prime� .C�.E//
is such that Itop

.H;S/ � q, then Ialg
.H;S/ � ˇ�1.q/. Therefore ˇ�1.q/ is one of the ideals

whose intersection define Ialg
.H0;S0/ so

Itop
.H0;S0/ D ˇ.Ialg

.H0;S0// � ˇ.ˇ�1.q// D q:

We now have the following inclusions

Itop
.H;S/ � Itop

.H0;S0/ �
\

q2Prime� .C�.E//

q
Itop
.H;S/

q D ˇ.I/ D Itop
.H;S/:

Therefore, Itop
.H;S/ D Itop

.H0;S0/. Hence .H; S/ D .H0; S0/ so

I D Ialg
.H;S/ D Ialg

.H0;S0/ D
\

p2Spec� .Lk.E//
p
I

p D ker
�˚
p 2 Spec� .Lk.E// W p � I

��
:
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Corollary 1 The map

U 7!
\

p2Spec� .Lk.E//nU
p

is a lattice isomorphism from O.Spec� .Lk.E/// to I� .Lk.E//.

Proof This follows from Theorem 2 which is applicable by Proposition 1 and the
fact that the intersection of graded ideals is again a graded ideal.

As the final result in this section we prove that ˇ restricts to a homeomorphism
between the graded prime ideals and the gauge prime ideals.

Theorem 3 Let E be a graph. Then � D ˇjSpec� .Lk.E// is a homeomorphism from
Spec� .Lk.E// to Prime� .C�.E//, where ˇ is the lattice isomorphism from Lemma 5.

Proof We first observe that Lemma 3 and Proposition 1 combine to show that the
open sets of Spec� .Lk.E// are precisely the sets of the form W.I/ for some proper
ideal I 2 I� .Lk.E//.

Let a proper ideal I 2 I� .Lk.E// be given. Then

ˇ.W.I// D ˇ �˚p 2 Spec� .Lk.E// W p « I
��

D ˚ˇ.p/ W p 2 Spec� .Lk.E// and p « I
�

D ˚ˇ.p/ W p 2 Spec� .Lk.E// and ˇ.p/ « ˇ.I/
�

D ˚q 2 Prime� .C�.E// W q « ˇ.I/
�
:

By [10, Lemma 3.6] the last set is open, and hence ��1 is continuous.
The above computation used that ˇ was a lattice isomorphism and that we had

complete, and similar looking, descriptions of the open sets in Spec� .Lk.E// and
Prime� .C�.E//. Hence a completely parallel computation will show that � is also
continuous. Therefore � is a homeomorphism.

5 Filtered Algebraic K-Theory

In this section we define filtered algebraic K-theory for rings and show that if
two Leavitt path algebras over C have isomorphic filtered algebraic K-theory then
the associated graph C�-algebras have isomorphic filtered K-theory. We then use
this result to answer the Abrams-Tomforde conjecture for a large class of finite
graphs.

Let R be a unital ring and let BGL.R/C be Quillen’s C-construction (see [20,
Chapter IV, Definition 1.1]). Consider K0.R/ as a topological space with the discrete
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topology. Let K.R/ D K0.R/	BGL.R/C with the product topology. Define Kalg
n .R/

to be

Kalg
n .R/ D

(
�n.K.R// if n � 0
K0.

P�n R/ if n < 0;

where
P

A denotes the suspension of a ring A. For a non-unital ring R, define
Kalg
n .R/ to be

Kalg
n .R/ D

(
�n.fiber.K.RC/! K.Z/// if n � 0
ker.Kn.RC/! Kn.Z// if n < 0

where RC is the ring obtained from R by adjoining a unit. Therefore, Kalg
0 .R/ agrees

with the usual definition of K0.R/ using idempotents and Kalg
1 .R/ agrees with the

usual definition of K1.R/ using invertible matrices.
Suppose R is a ring and S is a sublattice of ideals. Moreover, assume that every

I 2 S has a countable approximate unit consisting of idempotents, i.e., for every
I 2 S, there exists a sequence feng1nD1 in I such that

• en is an idempotent for all n 2 N,
• enenC1 D en for all n 2 N, and
• for all r 2 I, there exists n 2 N such that ren D enr D r.

Then for any locally closed subset Y D U n V of SpecS.R/, we have a collection of
abelian groups fKalg

n .RŒY�/gn2Z. Moreover, for all U1;U2;U3 2 O.SpecS.R// with
U1 � U2 � U3, by [17, Lemma 3.10], we have a long exact sequence in algebraic
K-theory

Definition 11 Let R be a ring and let S be a sublattice of I.R/ closed under arbitrary
intersections and containing the trivial ideals f0g and R. Suppose that for each I 2 S
we have that

I D ker.fp 2 SpecS.R/ W p � Ig/:

Moreover, assume that every I 2 S has a countable approximate unit consisting of
idempotents.

1. For k;m 2 Z [ f˙1g with k � m, we define FKalg
k;m.SpecS.R/IR/ to be the

collection

fKalg
n .RŒY�/gk�n�m;Y2LC.SpecS.R//;

equipped with the natural transformations f�; ��; @�g.
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2. For k;m 2 Z [ f˙1g with k � 0 � m, we define FKalg;C
k;m .SpecS.R/;R/ to be

the collection FKalg
k;m.SpecS.R/IR/ together with the positive cone of Kalg

0 .RŒY�/
for all Y 2 LC.SpecS.R//.

Set

FKalg.SpecS.R/IR/ D FKalg
�1;1.SpecS.R/IR/ and

FKalg;C.SpecS.R/IR/ D FKalg;C
�1;1.SpecS.R/IR/:

Definition 12 Let R;R0 be rings, let S be a sublattice of I.R/ closed under arbitrary
intersections and containing the trivial ideals f0g and R, and let S0 be a sublattice
of I.R0/ closed under arbitrary intersections and containing the trivial ideals f0g and
R0. Suppose that for each I 2 S we have that

I D ker.fp 2 SpecS.R/ W p � Ig/;

and that for each I0 2 S0 we have that

I0 D ker.
˚
p 2 SpecS0.R

0/ W p � I0
�
/:

Moreover, assume that every I 2 S and every I0 2 S0 have a countable approximate
unit consisting of idempotents.

For all k;m 2 Z[f˙1g with k � m, an isomorphism from FKalg
k;m.SpecS.R/IR/

to FKalg
k;m.SpecS0.R

0/IR0/ consists of a homeomorphism �WSpecS.R/ !
SpecS0.R

0/ and an isomorphism ˛Y;n from Kn.RŒY�/ to Kn.R0Œ�.Y/�/ for each n
with k � n � m and for each Y 2 LC.SpecS.R// such that the diagrams involving
the natural transformations commute.

Let k;m 2 Z [ f˙1g with k � 0 � m. If the isomorphism from
FKalg

k;m.SpecS.R/IR/ to FKalg
k;m.SpecS0.R

0/IR0/ restricts to an order isomorphism on
K0.RŒY�/ for all Y 2 LC.SpecS.R//, we write

FKalg;C
k;m .SpecS.R/IR/ Š FKalg;C

k;m .SpecS0.R
0/IR0/:

Lemma 6 Let E be a graph and let k be a field. Then every graded-ideal of Lk.E/
has a countable approximate unit consisting of idempotents. Consequently, for all
k;m 2 Z [ f˙1g with k � 0 � m, FKalg;C

k;m .Spec� .Lk.E//ILk.E// is defined.
Proof Let F be a graph and set F0 D fv1; v2; : : : g. Then fPn

kD1 vkg1nD1 is a
countable approximate unit consisting of idempotents for Lk.F/. Thus, every
Leavitt path algebra has a countable approximate unit consisting of idempotents.
The lemma now follows since by [18, Corollary 6.2] every graded-ideal of Lk.E/ is
isomorphic to a Leavitt path algebra.
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Lemma 7 Let E be a directed graph and let � W Spec� .LC.E// ! Prime� .C�.E//
be the homeomorphism given in Theorem 3. Then for all U 2 O.Spec� .LC.E///,

there exists an admissible pair .H; S/ such that LC.E/ŒU� D Ialg
.H;S/ and

C�.E/Œ�.U/� D Itop
.H;S/, where LC.E/ŒU� is the graded ideal corresponding to the

open set U under the lattice isomorphism from O.Spec� .LC.E/// to I� .LC.E//
given in Theorem 2.

Proof This follows from the construction of � in Theorem 3 as the restriction of the
lattice isomorphism ˇ that sends Ialg

.H;S/ to Itop
.H;S/.

Let A be a C�-algebra and let A be a 
-algebra. Suppose A is a 
-homomorphism
from A to A. Denote the composition

by �n;A, where Ktop
n .A/ is the (usual) topological K-theory of the C�-algebra A.

Theorem 4 Let E be a directed graph and let

� W Spec� .LC.E//! Prime� .C�.E//

be the homeomorphism given in Theorem 3. For all U1;U2;U3 2 O.Spec� .LC.E///
with U1 � U2 � U3, the diagrams

and

are commutative, where Vi D �.Ui/.

Proof This follows Lemma 7 and from [7, Theorems 2.4.1 and 3.1.9] .

Lemma 8 Let E be a graph. Then for all .H1; S1/; .H2; S2/ admissible pairs with
.H1; S1/ � .H2; S2/, we have that

�
0;I

top
.H2;S2/

=I
top
.H1;S1/
WKalg

0 .I
alg
.H2;S2/

=Ialg
.H1;S1/

/! Ktop
0 .I

top
.H2;S2/

=Itop
.H1;S1/

/
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is an order isomorphism and

�
1;I

top
.H2;S2/

=I
top
.H1;S1/
WKalg

1 .I
alg
.H2;S2/

=Ialg
.H1;S1/

/! Ktop
1 .I.H2;S2/=I.H1;S1//

is surjective with kernel a divisible group.
Suppose F is a graph and suppose there exists an order isomorphism

˛0WKalg
0 .I

alg
.H2;S2/

=Ialg
.H1;S1/

/! Kalg
0 .I

alg
.H02;S

0

2/
=Ialg
.H01;S

0

1/
/

and there exists an isomorphism

˛1WKalg
1 .I

alg
.H2;S2/

=Ialg
.H1;S1/

/! Kalg
1 .I

alg
.H02;S

0

2/
=Ialg
.H01;S

0

1/
/;

where .Hi; Si/ is an admissible pair of E for i D 1; 2 and .H0i ; S0i/ is an admissible
pair of F for i D 1; 2 with .H1; S1/ � .H2; S2/ and .H01; S01/ � .H02; S02/. Then ˛0 and
˛1 induce isomorphisms

ę0WKtop
0 .I

top
.H2;S2/

=Itop
.H1;S1/

/! Ktop
0 .Itop

.H02;S
0

2/
=Itop
.H01;S

0

1/
/

and

ę1WKtop
1 .I

top
.H2;S2/

=Itop
.H1;S1/

/! Ktop
1 .Itop

.H02;S
0

2/
=Itop
.H01;S

0

1/
/

such that ę0 is an order isomorphism and

�i;Itop

.H02;S
0

2/
=I

top

.H01;S
0

1/

ı ˛i D ęi ı �i;Itop
.H2;S2/

=I
top
.H1;S1/

:

Proof Let EWLC.E/ ! C�.E/ be the 
-homomorphism sending v to pv and
e to se. Note that for all admissible pairs .H; S/, E.I

alg
.H;S// � Itop

.H;S/. Therefore,
for all admissible pairs .H1; S1/; .H2; S2/ with .H1; S1/ � .H2; S2/, E induces a

-homomorphism from Ialg

.H2;S2/
=Ialg
.H1;S1/

to Itop
.H2;S2/

=Itop
.H1;S1/

. We denote this map by
E;Itop

.H2;S2/
=I

top
.H1;S1/

. Thus, the composition of this induced map in K-theory with the

homomorphism from Kalg
n .I

top
.H2;S2/

=Itop
.H1;S1/

/ to Ktop
n .Itop

.H2;S2/
=Itop
.H1;S1/

/ is �n;Itop
.H2;S2/

=I
top
.H1;S1/

.

We will show that it is enough to prove the first part of the lemma for the case
.H2; S2/ D .;;;/ and .H1; S1/ D .E0;;/. Let .H; S/ be an admissible pair. Let
E.H;S/ be the graph given in [18, Definition 4.1]. By the proofs of [18, Theorems 5.1
and 6.1], there exist 
-isomorphisms

ˇ.H;S/WLC.E.H;S//! Ialg
.H;S/ and 	.H;S/WC�.E.H;S//! Itop

.H;S/
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given by

ˇ.H;S/.v/ WD

8
ˆ̂
ˆ̂
<

ˆ̂̂
:̂

v if v 2 H

vH if v 2 S

˛˛� if v D ˛ 2 F1.H; S/

˛r.˛/H˛� if v D ˛ 2 F2.H; S/

ˇ.H;S/.e/ WD

8
ˆ̂<

ˆ̂
:

e if e 2 E1

˛ if e D ˛ 2 F1.H; S/

˛r.˛/H if e D ˛ 2 F2.H; S/

ˇ.H;S/.e
�/ WD

8
ˆ̂
<

ˆ̂
:

e� if e 2 E1

˛� if e D ˛ 2 F1.H; S/

r.˛/H˛� if e D ˛ 2 F2.H; S/

and

	.H;S/.qv/ WD

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
:

pv if v 2 H

pHv if v 2 S

s˛s�̨ if v D ˛ 2 F1.H; S/

s˛pHr.˛/s
�̨ if v D ˛ 2 F2.H; S/

	.H;S/.te/ WD

8
ˆ̂
<

ˆ̂
:

se if e 2 E1

s˛ if e D ˛ 2 F1.H; S/

s˛pHr.˛/ if e D ˛ 2 F2.H; S/:

Note that the diagram
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commutes. Therefore, for admissible pairs .H1; S1/; .H2; S2/ with .H1; S1/ �
.H2; S2/, the diagram

where ˇ.H2;S2/ and 	.H2;S2/ are the induced 
-isomorphisms on the quotient, com-

mutes. Therefore, it is enough to prove the lemma for the graph E.H2;S2/. Hence, we
may assume that .H2; S2/ D .E0;;/.

Set .H1; S1/ D .H; S/ to simplify the notation. Let E n .H; S/ be the graph
defined in [19, Theorem 5.7(2)]. Then by the proof of [19, Theorem 5.7(2)] and
the discussion before [6, Corollary 5.7], there are 
-isomorphisms

ı.H;S/WLC.E n .H; S//! LC.E/=I.H;S/

and

�.H;S/WC�.E n .H; S//! C�.E/=I.H;S/

such that the diagram

commutes. Hence, it is enough to prove the lemma for the graph E n .H; S/. Hence,
we may assume that .H; S/ D .;;;/. Thus, proving the claim.

The fact that �0;C�.E/=0 is an isomorphism follows from [12, Corollary 3.5]. To
prove that �1;C�.E/=0 is surjective and its kernel is a divisible group we reduce to the
case that E is row-finite. Let F be a Drinen-Tomforde desingularization of E defined
in [8]. Then there are embeddings!WLC.E/! LC.F/ and �WC�.E/! C�.F/ such
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that the diagram

commutes, !.LC.E// is a full corner of LC.F/, and �.C�.E// is a full corner of
C�.F/. Hence, ! and � induce isomorphisms in K-theory. Therefore, it is enough
to prove �1;C�.E/;0 is surjective with kernel a divisible group for the case that E is
row-finite. The row-finite case follows from [17, Lemma 4.7]. The first part of the
lemma now follows.

For the last part of the lemma, since K0.E;Itop
.H2;S2/

=I
top
.H1;S1/

/ is an order isomorphism,

it is clear that ˛0 induces an order isomorphism ę0 such that

�
0;I

top

.H02;S
0

2/
=I

top

.H01;S
0

1/

ı ˛0 D ę0 ı �0;Itop
.H2;S2/

=I
top
.H1;S1/

The fact that ˛1 induces an isomorphism ę1 such that �
1;I

top

.H02;S
0

2/
=I

top

.H01;S
0

1/

ı ˛1 D ę1 ı
�
1;I

top
.H2;S2/

=I
top
.H1;S1/

is the result of the kernel of �
1;I

top
.H2;S2/

=I
top
.H1;S1/

being a divisible group

and K1.I
top
.H02;S

0

2/
=Itop
.H01;S

0

1/
/ being torsion free, thus [17, Lemma 4.8] applies.

Theorem 5 Let E and F be graphs.

1. Suppose FKalg;C
0;1 .Spec� .LC.E//ILC.E// Š FKalg;C

0;1 .Spec� .LC.F//ILC.F//.
Then FKtop;C.Prime� .C�.E//IC�.E// Š FKtop;C.Prime� .C�.F//IC�.F//.

2. Suppose jE0j; jF0j <1. If

� WFKalg;C
0;1 .Spec� .LC.E//ILC.E//! FKalg;C

0;1 .Spec� .LC.F//ILC.F//

is an isomorphism such that �0 sends Œ1LC.E/�0 2 Kalg
0 .LC.E// to Œ1LC.F/�0 2

Kalg
0 .LC.F//, then there exists an isomorphism

�WFKtop;C.Prime� .C�.E//IC�.E//! FKtop;C.Prime� .C�.F//IC�.F//

such that �0 sends Œ1C�.E/�0 2 Ktop
0 .C

�.E// to Œ1C�.F/�0 2 Ktop
0 .C

�.F//.

Proof The theorem follows from Lemmas 7 and 8, and Theorem 4.

Corollary 2 Let E and F be graphs.

1. If LC.E/ and LC.F/ are isomorphic as rings, then

FKtop;C.Prime� .C�.E//IC�.E// Š FKtop;C.Prime� .C�.F//IC�.F//:
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If, in addition, jE0j; jF0j <1, then there exists an isomorphism

�WFKtop;C.Prime� .C�.E//IC�.E//! FKtop;C.Prime� .C�.F//IC�.F//

such that �0 sends Œ1C�.E/�0 2 Ktop
0 .C

�.E// to Œ1C�.F/�0 2 Ktop
0 .C

�.F//.
2. If LC.E/ and LC.F/ are Morita equivalent, then

FKtop;C.Prime� .C�.E//IC�.E// Š FKtop;C.Prime� .C�.F//IC�.F//:

Proof 1. Follows from Lemma 1 and Theorem 5.
Suppose LC.E/ and LC.F/ are Morita equivalent. Then by [2, Corollary 9.11],

M1.LC.E// Š M1.LC.F// as rings. By [2, Proposition 9.8(2)], M1.LC.E// Š
LC.SE/ and M1.LC.F// Š LC.SF/ as C-algebras, where SE and SF are the
stabilized graphs of E and F respectively (see [2, Definition 9.4]). Note that every
graded ideal LC.SE/ is of the from M1.I/ for a unique graded ideal of I of LC.E/
and every graded ideal of LC.SF/ is of the from M1. J/ for a unique graded ideal J
of LC.F/. We also have that

FKalg;C
0;1 .Spec� .LC.E//ILC.E// Š FKalg;C

0;1 .Spec� .LC.SE//ILC.SE//
Š FKalg;C

0;1 .Spec� .LC.SF//ILC.SF//
Š FKalg;C

0;1 .Spec� .LC.F//ILC.F//:

Therefore, by Theorem 5,

FKtop;C.Prime� .C
�.E//IC�.E// Š FKtop;C.Prime� .C

�.F//IC�.F//:

Corollary 3 The Abrams-Tomforde conjecture holds for the class of finite graphs
that satisfy Condition (H) of [10, Definition 4.19]. In particular the Abrams-
Tomforde conjecture holds for the class of finite graphs that satisfy Condition (K).

Proof The first part is just a combination of Corollary 2 and [10, Theorem 6.1].
Finally, all graphs that satisfy Condition (K) satisfy Condition (H).

Remark 1 Corollary 2 will be used in [9] to show that the Abrams-Tomforde
conjecture holds for the class of graphs with finitely many vertices.
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Gysin Exact Sequences for Quantum
Weighted Lens Spaces

Francesca Arici

Abstract We describe quantum weighted lens spaces as total spaces of quantum
principal circle bundles, using a Cuntz-Pimsner model. The corresponding Pimsner
exact sequence is interpreted as a noncommutative analogue of the Gysin exact
sequence. We use the sequence to compute the K-theory and K-homology groups of
quantum weighted lens spaces, extending previous results and computations due to
the author and collaborators.

1 Introduction

Quantum lens spaces, both weighted and unweighted, have been the subject of
increasing interest in the last years. They are Cuntz-Krieger algebras of a directed
graph [16] and have played an important role in the classification program of C�-
algebras [12]. Using graph algebra techniques their K-theory groups have been
computed recently in [8] under very general assumptions on the weight. From a
more geometric point of view, they have a natural structure of noncommutative
principal circle bundles over quantum weighted projective spaces [2, 4, 6, 7, 22]
and can thus be interpreted as a deformation of their classical counterparts. In this
paper we focus on the noncommutative topology of quantum weighted lens spaces,
realising them as Cuntz-Pimsner algebras of self-Morita equivalence bimodules.
This allows us to compute their K-theory and K-homology groups, using different
techniques than those in [8].

Being graph algebras, quantum weighted lens spaces admit a Cuntz-Pimsner
model where the coefficient algebra is the algebra of functions on the vertex space.
This picture is very well suited to encode the dynamical information contained in
the graph, but has the disadvantage that the fixed point algebra for the natural gauge
action does not agree with the coefficient algebra. In the Cuntz-Pimsner model
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we employ here, which comes from the geometric analogy described above, the
coefficient algebra is the algebra of functions on a quantum weighted projective
space and the resulting Cuntz-Pimsner algebra can be thought of as the total space
of a noncommutative circle bundle.

The associated six term exact sequences can then be interpreted as the operator
theoretic counterpart of the classical Gysin exact sequence for circle bundles (cf.
[18, IV.1.13]). Under some mild assumptions on the weight, we will describe the
K-theory and K-homology of quantum weighted lens spaces of any dimension, thus
extending the results of [2] and [4].

2 QuantumWeighted Projective and Lens Spaces

In this section we describe the coordinate algebras of weighted projective and lens
spaces, as described in [3, 7, 11] and their C�-completions, which were extensively
studied in [8].

Classically, weighted projective and lens spaces are quotients of odd-dimensional
spheres by actions of the circle and of a finite cyclic group, respectively. The same
is true upon replacing the sphere by a quantum sphere.

Let q 2 .0; 1/. We recall from [23] that the coordinate algebra of the quantum
odd-dimensional sphere O.S2nC1q / is the universal 
-algebra with generators the nC
1 elements fzigiD0;:::;n and relations:

zizj D q�1zjzi 0 � i < j � n ;

z�i zj D qzjz
�
i i ¤ j ;

Œz�n ; zn� D 0; Œz�i ; zi� D .1 � q2/
nX

jDiC1
zjz
�
j i D 0; : : : ; n � 1 ;

and a sphere relation:

z0z
�
0 C z1z

�
1 C : : :C znz

�
n D 1 :

The notation of [23] is obtained by setting q D eh=2.
A weight vectorm D .m0; : : : ;mn/ is a finite sequence of positive integers, called

weights. A weight vector is said to be coprime if g:c:d:.m0; : : : ;mn/ D 1; and it is
pairwise coprime if g:c:d:.mi;mj/ D 1, for all i ¤ j.

For any weight vector m D .m0; : : : ;mn/, we define a weighted circle action
f
m
� g�2T1 on the quantum sphere, given on generators by


m
� .zi/ D �mizi � 2 T

1; (1)
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The Z-grading induced by this action is equivalent to that obtained by declaring
each zi to be of degree mi and z�i of degree �mi.

The degree zero part or, equivalently, the fixed point algebra for the action, is
the coordinate algebra of the quantum n-dimensional weighted projective space
associated with the weight vector m, and it is denoted by O.WP

n
q.m//.

By D’Andrea and Landi [11, Lemma 3.2] a set of generators for the algebra
O.WP

n
q.m// is given by the elements

ziz
�
i ; and zk WD zk00 � � � zknn ;

for i D 0; : : : ; n and k 2 Z
nC1 with k �m WD k0m0C � � �C knmn D 0. Note that such

a set of generators is in general not minimal.
For some particular classes, one gets a complete characterisation of generators

of the algebra O.WP
n
q.m//. Indeed, we have two classes of weighted projective

spaces, in some sense orthogonal to each other, for which it is possible to describe
the generators and the representation theory.

The first class consists of those weighted projective spaces for which the weight
m is of the form m D p] for p pairwise coprime, where p] is defined as the weight
vector whose i-th component is equal to

Q
j¤i pj. Classically those are the weighted

projective spaces that are isomorphic, as projective varieties, to the unweighted
projective space CP

n. By D’Andrea and Landi [11, Theorem 3.8], having such a
weight is a necessary and sufficient condition for the algebra O.WP

n
q.m// to be

generated by the elements

ai;j WD .z�i /mjWi z
miWj

j ; miWj D mi=g:c:d:.mi;mj/ 8i; j D 0; : : : ; n:

The second class of examples, that goes in another direction with respect to
the class we just described, is that of the multidimensional teardrops [7], that are
obtained for the weight vector m D .1; : : : ; 1;m/ having all but the last entry equal
to 1. As described in [7, Lemma 6.1] the algebra O.WP

n
q.1; : : : ;m// is generated,

as a *-algebra, by the elements

bi;j WD .z�i /zj and cl WD zl00 � � � zln�1n�1 z
�
n ;

for 0 � i � j � n � 1 and l 2 N
n such that

Pn�1
iD0 li D m.

As a particular case of both constructions, for m D .1; : : : ; 1/ one gets the
coordinate algebra O.CPn

q/ of the quantum projective space CP
n
q. This is the 
-

subalgebra of O.S2nC1q / generated by the elements pij WD z�i zj for i; j D 0; 1; : : : ; n.
Let now N � 2 be fixed. By restriction O.S2nC1q / admits an action of the cyclic

group ZN given by



.1=N;m/
� zi D �mizi;

where � D e2� i=N 2 T is the generator of ZN .
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The coordinate algebra of the quantum lens space O.L2nC1q .NIm// is defined as
the fixed point algebra for this action:

O.L2nC1q .NIm// WD O.S2nC1q /ZN : (2)

2.1 Principal Bundle Structures

In noncommutative geometry the notion of a free action of a quantum group H
on A is translated into that of a principal coaction on A, which in algebraic terms
amounts to having a Hopf-Galois extension. In the case of a classical Abelian group,
principality is equivalent to the notion of a strong grading.

Given a group G, a G-graded algebra A is an algebra that decomposes as a direct
sum A D ˚g2GAg, with AgAh � Agh. Whenever AgAh D Agh for all g; h 2 G,
one says that the grading is strong. Note that it is enough to check this condition on
a set of generators of the group.

As described in [19, Theorem 8.1.7], having a strongly graded algebra over a
group G is equivalent to having a Hopf-Galois extension over the group algebra
CG. In this work we will only focus on classical Abelian groups; as said, in that
case principality is equivalent to the induced grading over the Pontryagin dual being
strong.

By Brzeziński and Fairfax [7, Lemma 2.1] strong gradings are preserved under
extensions of Abelian groups, i.e. given an exact sequence

a G-graded algebra A is strongly graded if the induced H-grading on A and the
induced K-grading on AK WDLk2K A'.k/ are strong.

In our case we will be dealing with the group Z D bT and the finite group cyclic
group ZN D cZN , so we will be interested in the short exact sequence

As described in [7, Proposition 4.1], the ZN-action on O.S2nC1q / induces a ZN-
grading which is strong, and O.L2nC1q .NIm// is the degree-zero subalgebra with
respect to that grading. The lens space O.L2nC1q .NIm// is a Z-graded algebra
with respect to the grading induced by that of O.S2nC1q /, by saying that x 2
O.L2nC1q .NIm// has degree n if and only if it has degree nN in O.S2nC1q /. The
degree-zero part is given by the coordinate algebra of the quantum projective space
O.WP

n
q.m//. The induced grading is not always strong. However, by Brzeziński

and Fairfax [7, Proposition 4.2], for Nm WD Qn
iD1mi, the algebra O.L2nC1q .NmIm//
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is strongly Z-graded. As a consequence, the coordinate algebra of the quantum
weighted lens spaceO.L2nC1q .NmIm// has the structure of a quantum principal circle
bundle over the n-dimensional weighted projective space O.WP

n
q.m//.

Let d � 1. By Proposition 4.6 in [4] the coordinate algebra of the quantum
weighted lens space O.L2nC1q .d � NmIm// also has the structure of a quantum prin-
cipal circle bundle over the n-dimensional weighted projective space O.WP

n
q.m//.

This can be seen as a consequence of the aforementioned Lemma 2.1 of [7].

2.2 C�-Completions

The C�-algebra C.S2nC1q / of the odd-dimensional quantum sphere is the completion
of the *-algebraO.S2nC1q / in the universal C�-norm. This C�-algebra can be realised
as a graph C�-algebra.

The C�-algebraC.WP
n.m// of the quantum weighted projective space is defined

as the fixed point algebra for the circle action on C.S2nC1q / obtained by extending

 . A complete characterisation of those C�-algebras is not available at the moment;
partial results were obtained in [8] for a large class of weighted lens spaces, those
with weight vector m satisfying g:c:d:.mj;mn/ D 1 for at least one j < n. By
Brzeziński and Szymański [8, Proposition 3.2] there exists an exact sequence of
C�-algebras

(3)

where mn denotes the weight vector .m0; : : : ;mn�1/.
The K-theory groups of the C�-algebraic weighted projective spaces can be

computed by iterative use of the extension (3) under suitable assumptions on the
weight vector m.

Proposition 2.1 ([8, Corollary 3.3]) Let m be a weight vector with the property
that for each j � 1 there exists i < j such that g:c:d:.mi;mj/ D 1. Then the K-theory
groups of the quantum weighted projective spaces are given by

K0.C.WP
n
q.m// D Z

1CPn
iD1 mi ; K1.C.WP

n
q.m// D 0:

The C�-algebraic quantum lens space is defined as the fixed point algebra for the
action of ZN on C.S2nC1q /. By constructing a conditional expectation for the ZN-
action, one can show that it agrees with the closure of the algebraic quantum lens
space O.L2nC1q .NIm// with respect to the universal C�-norm on C.S2nC1q /. It is
isomorphic to the C�-algebra of a directed graph.
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3 A Cuntz-Pimsner Model for Quantum Lens Spaces

Cuntz-Pimsner algebras [20] are universal C�-algebras constructed out of a C�-
correspondence E over a C�-algebra B. They encompass a large class of examples,
like crossed product by the integers, Cuntz and Cuntz-Krieger algebras [9, 10], graph
algebras and C*-algebras associated to a partial automorphism [13]. We now give a
simple description of Pimsner’s construction for the case of interest for this work.

Under the assumptions that B is unital and that E is a self-Morita equivalence
bimodule, i.e. we have left action implemented by an isomorphism � W B !
EndB.E/, the Cuntz-Pimsner algebra OE admits a description in terms of generators
and commutation relations. This construction, which can be found for instance in
[17, Section 2], works for any finitely generated projective module over a unital C�-
algebra and relies on the existence of a finite frame for the module E, i.e. a finite set
of elements f�igniD1 of E satisfying

� D
nX

jD1
�jh�j; �iB:

for any � 2 E.
The algebra OE is realised as the universal C�-algebra generated by B together

with n operators S1; : : : ; Sn, satisfying

S�i Sj D h�i; �jiB;
X

j
SjS
�
j D 1; and bSj D

X

i
Sih�i; �.b/�jiB; (4)

for b 2 B, and j D 1; : : : ; n.

Example 3.1 The module � .E/ of sections of the tautological line bundle E over
the quantum projective line is a self-Morita equivalence bimodule over the algebra
C.CP1/. The corresponding Cuntz-Pimsner algebra O� .E/ is isomorphic to the
algebra of continuous functions on the three sphere C.S3/.

More generally, the Cuntz-Pimsner algebra OE of a self-Morita equivalence
bimodule can be thought of as the algebra of continuous functions on the total space
of a quantum principal circle bundle. While the commutative version of this analogy
was spelled out in [14], the more general case of quantum principal circle bundles
was described in [4]. We also refer to the review article [3] for more details and
recall the salient points here.

Given a C�-algebra A together with a strongly continuous circle action 
 WD
f
�g�2T1 , we define the n-th spectral subspace as

A.n/ WD fa 2 A j 
�.a/ D �na 8� 2 T
1g:

Then the invariant subspaceA.0/ � A is a C�-subalgebra and each A.n/ is a Hilbert
C�-bimodule over A.0/. If the module A.1/ is a self-Morita equivalence bimodule,
which is equivalent to the Z-grading given by the spectral subspaces being strong,
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then the action 
 is said to be saturated. Then by Prop. 3.5 in [4] the Cuntz-Pimsner
algebra OA.1/ of the first spectral subspace A.1/ is isomorphic to the algebra A.

Let see what this means in our examples: if we denote by E the first spectral
subspace of C.S2nC1q / for the weighted action of T

1, then we get that the C�-
algebraC.L2nC1q .NmIm// is isomorphic to the Pimsner algebraOE overC.WP

n
q.m//

associated to E.
More generally, by Thm. 3.9 in [4] for any d � 1, the C�-algebraic lens space

C.L2nC1q .d � NmIm// is isomorphic to the Pimsner algebra OE associated to the
module E˝d over C.WP

n
q.m//.

As particular cases, C.S2nC1q / is a Pimsner algebra over C.CPn
q/, and more

generally the unweighted lens space C.L2nC1q .dI 1//, for the weight vector with
entries identically one, is a Pimsner algebra over C.CPn

q/ for any d � 1. Those
algebras and their K-theory group were the subject of [2].

3.1 Six-Term Exact Sequences

For a Pismner algebra one has natural exact sequences in bivariant K-theory, relating
the KK-groups of the Pimsner algebra OE with those of the base space algebra B.
Those sequences were constructed by Pimsner, see [20, Theorem 4.8] and arise as
six-term exact sequences associated to a semisplit extension of C�-algebras in which
the Pimsner algebra is the quotient, the ideal is Morita equivalent to the base and
the middle algebra is KK-equivalent to the base. Using those identifications, the
resulting exact sequences in bivariant K-theory read:

and

A crucial role is played by the Kasparov product with the class of the identity
1 2 KK.B;B/ minus the class ŒE� 2 KK.B;B/ of the bimodule E.



258 F. Arici

The connecting homomorphism @ is implemented by taking the Kasparov
product with the class of the defining extension. An unbounded representative for
this extension class was constructed in [21] and later generalised in [15]. A treatment
of the non-unital case is in [1].

In the case of self-Morita equivalence bimodules these could be considered as a
generalization of the classical Gysin sequence in K-theory for the noncommutative
line bundle E over B, the Kasparov product with 1 � ŒE� plays the role of the cup
product with the Euler class of the corresponding line bundle.

Examples of Gysin sequences in K-theory were given in [2] for line bundles
over quantum projective spaces leading to a class of quantum lens spaces. These
examples were generalized later in [4] for a class of quantum lens spaces as circle
bundles over quantum weighted projective spaces with arbitrary weights.

To ease our notation, we let C.Lq.d// WD C.L2nC1q .d � Nm;m//. Also, E will
denote the Hilbert C�-module given by the first spectral subspace for the weighted
circle action on C.S2nC1q /.

Then, given any separable C�-algebra C, we obtain the following two six term
exact sequences in KK-theory:

(5)

and

(6)

where i� and i� are the maps in KK-theory induced by the inclusion of the coefficient
algebra into the Pimsner algebra i W C.WP

n
q/ ,! OE˝d ' C.Lq.d//.

We will refer to these two sequences as the Gysin sequences (in KK-theory) for
the C�-algebraic quantum lens space C.L2nC1q .d � NmIm//.
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3.2 Computing the K-Theory and K-Homology of Quantum
Lens Spaces

We finish by describing how the exact sequences (5) and (6) can be used to obtain
information about the KK-theory groups of quantum weighted lens spaces.

Even though those sequences exist for every choice of weight m, we will now
restrict our attention to the case of weight vectors satisfying the assumptions of
Proposition 2.1. This will allow us to use the computations of the K-theory groups
of the weighted projective spaces in our computations.

We will now state an easy corollary of the results contained in [8].

Proposition 3.2 Let m be a weight vector satisfying the assumptions of Proposi-
tion 2.1. Then the C�-algebra C.WP

n.m// is KK-equivalent to C
1Cm1C���Cmn .

Proof As a first step we use the fact that the UCT class is closed under extensions
and contains the algebra of compact operators. Whenever the weight vector m
satisfies the assumptions of Proposition 2.1, by iterated use of the exact sequence
(3) and the fact that C.WP

0.m// D C we obtain that the C�-algebraic weighted
projective space is also in the UCT class. By Proposition 2.1 its K-theory groups
are isomorphic to those of C1Cm1C���Cmn . The claim follows from the fact that in the
UCT class two C�-algebras are KK-equivalent if and only if they have isomorphic
K-theory groups (cf. [5, Corollary 23.10.2]).

Note that for n D 1 the extension (3) admits a completely positive splitting, hence
KK-equivalence follows from the fact that the algebra C.WP

1
q.m// is isomorphic to

the unitalisation K m1 ˚ C. Explicit representatives for the two KK-equivalences
were constructed in [4].

For ease of notation we will denote by M WD m1 C � � � C mn. We let ŒI� 2
KK.CMC1;C.WP

n
q.m/// and Œ˘� 2 KK.C.WP

n
q.m//;C

MC1/ be the two classes
that implement the KK-equivalence between C

MC1 and C.WP
n
q.m//, i.e., satisfy

ŒI�˝C.WP
n
q.m// Œ˘� D 1KK.CMC1;CMC1/; Œ˘�˝CMC1 ŒI� D 1KK.C.WP

n
q.m//;C.WP

n
q.m///:

(7)

These KK-equivalences can be used to simplify the exact sequences (5) and (6).
Indeed, one can use them to replace the KK-groups of C.WP

n
q.m// with those of

the vector space CMC1 and then use the natural isomorphisms

KKi.C;C
MC1/ '

MC1M

kD1
Ki.C/ and KKi.C

MC1;C/ '
MC1M

kD1
Ki.C/; i D 0; 1:

Tensoring the class of the Hilbert C�-module E with the KK-equivalences ŒI� and
Œ˘� one gets a class

ŒI�˝C.WP
n
q.m// ŒE�˝C.WP

n
q.m// Œ˘� 2 KK.CMC1;CMC1/: (8)
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Since the ring KK.CMC1;CMC1/ is isomorphic to .M C 1/ 	 .M C 1/ matrices
with entries in Z, we can look at the corresponding matrix implementing the map
(8), that we denote by A. The six term exact sequence in (5) becomes

while, denoting the transpose of A by At, the six term exact sequence in (6) becomes

For C D C, using the fact that K1.C/ D K1.C/ D 0, the corresponding Gysin
exact sequences in K-theory and K-homology become of the form

and

thus allowing for the computation of the K-theory and K-homology groups of the
quantum lens spaces as kernels and cokernels of a suitable integer matrix.

Theorem 3.3 Let m be a weight vector satisfying the assumptions of Proposi-
tion 2.1. Then for the matrix A constructed using (8) and any d 2 N we have
that

K0
�
C.Lq.d//

� ' Coker.1 �Ad/; K1
�
C.Lq.d//

� ' Ker.1 �Ad/

and

K0
�
C.Lq.dlkI k; l//

� ' Ker.1 � .At/d/; K1
�
C.Lq.d//

� ' Coker.1 � .At/d/ :

It remains an open problem to describe the precise relationship of our matrix A with
the matrix used in [8] to compute the K-theory of quantum lens spaces.
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4 Final Remarks

An interesting class of lens spaces that lies in the intersection of those studied in [8]
and [11] is that for which the weight vector m satisfies m0 D 1 and mi D m for
all i D 1; : : : ; n. The associated coprime weight vector p for which m D p] is then
p D .m; 1; : : : ; 1/. It is straightforward to check that the number of independent
Fredholm modules constructed in [11], given by the formula

1C
nX

kD1
p0p1 : : : pk�1;

equals in that case 1CM, the dimension of the K-homology groupK0.C.WP
n
q.m///.

We are also able to give, at least for this special class of examples, a positive
answer to the question left open at the end of [11, Section 9], where the authors
asked whether the Fredholm module they constructed actually built a complete set
of generators for the K-homology group K0.C.WP

n
q.m///.

Moreover these Fredholm modules can be used to give an explicit expression
for the KK-equivalences Œ˘� in (7), using a construction similar to the one of [4,
Section 7.4], thus allowing one to write the matrix A in the form of a matrix of
pairings.

Those computations go beyond the scope of the present paper and we postpone
them to a later, more detailed work, where we plan to also address the problem
of finding explicit representatives of K-theory and K-homology classes under less
restrictive conditions on the set of weights.
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16. Hong, J.H., Szymański, W.: Quantum lens spaces and graph algebras. Pac. J. Math. 211, 249–

263 (2003)
17. Kajiwara, T., Pinzari, C., Watatani, Y.: Ideal structure and simplicity of the C�–algebras

generated by Hilbert bimodules. J. Funct. Anal. 159, 295–322 (1998)
18. Karoubi, M.: K-Theory: An Introduction. Grundlehren der Mathematischen Wissenschaften,

vol. 226. Springer, Berlin (1978)
19. Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in

Mathematics, vol. 82. American Mathematical Society, Providence, RI (1993)
20. Pimsner, M.: A class of C�-algebras generalising both Cuntz-Krieger algebras and crossed

products by Z. In: Free Probability Theory. Fields Institute Communications, vol. 12, pp. 189–
212. American Mathematical Society, Providence, RI (1997)

21. Rennie, A., Robertson, D., Sims, A.: The extension class and KMS states for Cuntz-Pimsner
algebras of some bi-Hilbertian bimodules. J. Topol. Anal. 09(02), 297 (2015). https://doi.org/
10.1142/S1793525317500108

22. Sitarz, A., Venselaar, J.J.: The Geometry of quantum lens spaces: real spectral triples and
bundle structure. Math. Phys. Anal. Geom. 18, 1–19 (2015)

23. Vaksman, L., Soibelman, Ya.: The algebra of functions on the quantum group SU.nC 1/ and
odd-dimensional quantum spheres. Leningr. Math. J. 2, 1023–1042 (1991)

https://doi.org/10.1142/S1793525317500108
https://doi.org/10.1142/S1793525317500108


A Signed Version of Putnam’s Homology
Theory: Lefschetz and Zeta Functions

Robin J. Deeley

Abstract A signed version of Putnam homology for Smale spaces is introduced.
Its definition, basic properties and associated Lefschetz theorem are outlined. In
particular, zeta functions associated to an Axiom A diffeomorphism are compared.

1 Introduction

Let .M; f / be an Axiom A diffeomorphism [9]. Then there are two natural zeta
functions associated to .M; f /, the dynamical zeta function and the homological
zeta function, see [9, Section I.4]. The former is defined as follows:

�dym.s/ WD exp

0

@
X

n�1

Nn

n
tn

1

A

where Nn is the cardinality of the set of points with period n. The definition of latter
is

�hom.s/ WD exp

0

@
X

n�1

QNn

n
tn

1

A

where QNn is obtained by counting the points of period n with “sign” (see Example 8
or [9, Section I.4] for further details).

Both these functions extend meromorphically to rational functions. For the
former, this is an important theorem of Manning [6]. For the latter, it is a corollary of
the Lefschetz fixed point theorem. Based on Manning’s result, Bowen asked whether
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there exists a homology theory for basic sets of an Axiom A diffeomorphism along
with an associated Lefschetz theorem that implies that the dynamical zeta function is
a rational function in the same way the classical Lefschetz theorem implies that the
homological zeta function is a rational function. Recently, Ian Putnam constructed
such a homology theory and proved the relevant Lefschetz theorem [7] (in particular
see [7, Section 6]). For more on the relationship between zeta functions, homology,
and Lefschetz theorems see [9, Section I.4] or [7, Section 6.1] for brief introductions
or [5] and references therein for more details.

Putnam’s homology theory is defined using the framework of Smale spaces.
Smale spaces were introduced by Ruelle [8]. The reader who is unfamiliar with them
can assume that any Smale space in the present paper is either the nonwandering set
or a basic set of an Axiom A diffeomorphism. The precise definition of a Smale
space is given in Sect. 2.

It is important to note that the dynamical zeta function of an Axiom A
diffeomorphism depends only on its restriction to the nonwandering set, but this is
not the case for the homological zeta function. In particular, the two zeta functions
defined above are not in general equal and as such the classical homology of M
and Putnam’s homology of the nonwandering set of M are (again in general) not
isomorphic.

The modest goal of the present paper is to outline the construction of a homology
theory defined in the same spirit as Putnam’s homology, but whose associated
Lefschetz theorem is more closely related to the classical Lefschetz theorem; it
counts periodic points with “sign”, see Theorem 5 for the precise statement. This
goal is achieved by considering signed Smale spaces. By definition, a signed Smale
space is a Smale space along with a continuous map to f�1; 1g, which is called a
sign function. Then, by following Putnam’s constructions in [7] quite closely but
with this additional sign function, one obtains a new “signed version” of Putnam’s
homology. In the case of an Axiom A diffeomorphism, the signed homology theory
of the nonwandering set with a particular sign function is more closely related (in
particular through the associated Lefschetz theorem) to the standard homology of
the manifold, at least in particular situations, see Theorem 6 and Example 10. The
notion of signed Smale space is based on work of Bowen, see in particular [1,
Theorem 2].

If the Smale space is connected the only possible sign functions are constant
and the signed homology is essentially the same as Putnam’s homology. However,
typically the nonwandering set of an Axiom A diffeomorphism is not connected and
this can also occur for basic sets (e.g., shifts of finite type).

I have assumed the reader is familiar with Putnam’s monograph [7] and Bowen’s
paper [1]. In particular, see [1] for more on filtrations and the no-cycle condition.
Also, the reader should be warned that there are many definitions and a number
proofs are omitted. Most notable among these are Theorems 4 and 5. Although,
proofs of these theorems are long, the reader familiar with the proofs in [7]
will likely see how they are proved. In particular, for Theorem 5, one follows
almost verbatim the construction (which is based on Manning’s proof in [6]) in
[7, Section 6]. Detailed proofs of these theorems will appear elsewhere.
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2 Main Results

Definition 1 A Smale space .X; '/ consists of a compact metric space .X; d/ and a
homeomorphism ' W X ! X such that there exist constants �X > 0; 0 < 	 < 1 and
a continuous partially defined map:

f.x; y/ 2 X 	 X j d.x; y/ � �Xg 7! Œx; y� 2 X

satisfying the following axioms:

B1 Œx; x� D x,
B2 Œx; Œ y; z�� D Œx; z�,
B3 ŒŒx; y�; z� D Œx; z�, and
B4 'Œx; y� D Œ'.x/; '.y/�;
where in these axioms, x, y, and z are in X and in each axiom both sides are assumed
to be well-defined. In addition, .X; '/ is required to satisfy

C1 For x; y 2 X such that Œx; y� D y, we have d.'.x/; '.y// � 	d.x; y/ and
C2 For x; y 2 X such that Œx; y� D x, we have d.'�1.x/; '�1.y// � 	d.x; y/.
The map Œ � ; � � in the definition of a Smale space is called the bracket map; it is
unique (provided it exists).

Example 1 If .M; f / is an Axiom A diffeomorphism, then the restriction of f to the
nonwandering set is a Smale space and likewise the restriction of f to a basic set is
also a Smale space. The bracket map in the definition of a Smale space is, in these
cases, given by the canonical coordinates.
An important class of Smale spaces are the shifts of finite type. They can be defined
as follows. Let G D .G0;G1; i; t/ be a directed graph; that is, G0 and G1 are finite
sets called the set of vertices and the set of edges and each edge e 2 G1 is given
by a directed edge from i.e/ 2 G0 to t.e/ 2 G0, see [7, Definition 2.2.1] for further
details.

From G a dynamical system is constructed by taking

˙G WD f.gj/j2Z j gj 2 G1 and t.gj/ D i.gjC1/ for each j 2 Zg

with the homeomorphism, 
 W ˙G ! ˙G given by left sided shift. Then, see for
example [7], .˙G; 
/ is a Smale space and one can define a shift of finite type to be
any dynamical system that is conjugate to .˙G; 
/ for some graph G. Often we will
drop the G from the notation and denote a shift of finite type by .˙; 
/.

From G and k � 2, one can obtain a higher block presentation by constructing
another graph Gk whose edges are paths in G of length k and whose vertices are
paths in G of length k � 1; for the precise details see [7, Definition 2.2.2].
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2.1 Signed Smale Spaces

Definition 2 A signed Smale space is a Smale space .X; '/ along with a continuous
map �X W X ! f�1; 1g. Furthermore, for n � 1, we define

�
.n/
X .x/ D

n�1Y

iD0
�X.'

i.x//:

A signed Smale space is denoted by .X; ';�X/ and �X is called the sign function;
it is often denoted simply by�.

Example 2 Let .˝; f j˝/ be a basic set of an Axiom A diffeomorphism, .M; f /. We
assume that the bundle Euj˝ can be oriented and then define � W ˝ ! f�1; 1g as
follows:

�.x/ D
�

1 W Dx. f / W .Euj˝/jx ! .Euj˝/jf .x/ preserves the orientation
�1 W Dx. f / W .Euj˝/jx ! .Euj˝/jf .x/ reverses the orientation.

The fact that ˝ is hyperbolic implies that � is continuous; hence .˝; f j˝;�/ is a
signed Smale space.
A special case of Example 2 occurs in both the statement and proof of [1, Theorem
2]. Another class of examples are hyperbolic toral automorphisms:

Example 3 Let M D R
2=Z2 and f D A where A 2 M2.Z/ with det.A/ D ˙1

and eigenvalues 	1 and 	2 such that 0 < j	2j < 1 < j	1j. This diffeomorphism is
globally hyperbolic and the nonwandering set is the entire manifold; that is,˝ D M.

The bundle Eu is isomorphic to the trivial rank one bundle. Its fiber, for example
at the origin, is the eigenspace associated to 	1. One can then show that for any
x 2 M, �.x/ D sign.	1/.

Definition 3 Let .˙; 
/ be a shift of finite type and �˙ W ˙ ! f�1; 1g be a
continuous function. Then .˙; 
;�˙/ is called a signed shift of finite type.

2.2 The Signed Dimension Group

Proposition 1 Let .˙; 
;�˙/ be a signed shift of finite type. Then, there exists a
graph G such that

1. there is conjugacy h W .˙G; 
/! .˙; 
/;
2. for any .gj/j2Z 2 ˙G, .�˙ ı h/..gj/j2Z/ depends only on g0.
Proof The first item is a possible definition of a shift of finite type. Using the fact
that �˙ is continuous, one can obtain the second item by taking a higher block
presentation.
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Definition 4 Let .˙; 
;�˙/ be a signed shift of finite type and G is a graph which
satisfies the conclusions of the previous theorem. Then, G (and the conjugacy h W
.˙G; 
/! .˙; 
/) is called a signed presentation of .˙; 
;�˙/. We denote�˙ ıh
by �˙G .

By assumption, for .gj/j2Z 2 ˙G, �G..gj/j2Z/ depends only on g0. As such, the
function�G W G1 ! f�1; 1g defined via �G.g/ WD �˙G..gj/j2Z/ (where g0 D g) is
well-defined. Moreover, for a path g0 � � � gm in G and n � m, we define

�G;n.g0 � � � gm/ D
mY

jDm�n
�G.gj/:

Finally, given�G as above, we define �Gk W Gk ! f�1; 1g via

�Gk.g0g1 � � � gk�1/ D �G.gk�1/

where g0g1 � � � gk�1 is an element in Gk (i.e., a path of length k in G). This choice is
based on [7, Theorem 3.2.3 Part 1]. We use .˙G; 
;�G/ to denote a signed shift of
finite type with a fixed signed presentation. It is important to note that�˙G and �G

are related, but not the same; their domains are different.

Definition 5 Suppose .˙; 
;�G/ is a signed shift of finite type with a fixed signed
presentation. Define � sG;�G

W ZG0 ! ZG0 as follows: for each v 2 G0, we let

v 7!
X

e2G1;t.e/Dv
i.e/ ��G.e/:

Furthermore, define Ds
�G
.G/ to be the inductive limit group: lim!.ZG0; � sG;�G

/.

Example 4 Let G be the graph with one vertex and two edges labelled by 0 and 1.
Then the associated shift of finite type is the full two shift, .˙G; 
/. Furthermore,
let �G W G! f�1; 1g be the continuous map

�G.g/ D
�
1 g D 1
�1 g D 0:

Then, in this case, Ds
�G
.˙G/ Š f0g.

Theorem 1 (Reformulation of [1, Theorem 2]) Suppose .M; f / is an Axiom
A diffeomorphism satisfying the no-cycle condition, dim.˝s/ D 0, and q WD
rank.Euj˝s/. Then there exists signed shift of finite type .˙G; 
;�G/ such that

1. .˙G; 
/ is conjugate to .˝s; f j˝s/;
2. the map � sG;�G

W ZG0 ! ZG0 has the same nonzero eigenvalues as the map on
homology: f jMs W Hq.Ms;Ms�1/! Hq.Ms;Ms�1/;
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3. the map � sG;�G
W Ds

�G
.G/ ! Ds

�G
.G/ has the same nonzero eigenvalues as the

map on homology: f jMs W Hq.Ms;Ms�1/! Hq.Ms;Ms�1/;

where .Ms/
m
sD1 is a fixed filtration associated to the basic sets, .˝s/

m
sD1, of .M; f /;

we assume it satisfies the assumptions in [1].

Proof Theorem 2 of [1] implies the existence of the signed shift of finite type
satisfying items (1) and (2) in the statement. Basic properties of inductive limits
of abelian groups imply that for any signed shift of finite type � sG;�G

W Ds
�G
.G/ !

Ds
�G
.G/ and � sG;�G

W ZG0 ! ZG0 have the same nonzero eigenvalues; item (3)
follows from this observation.

2.3 Signed Homology

Definition 6 (See [7, Definition 2.5.5]) Suppose .X; '/ and .Y;  / are Smale
spaces and � W .X; '/ ! .Y;  / is a factor map. Then � is s-bijective (resp. u-
bijective) if, for each x 2 X, �jXs.x/ (resp. �jXu.x/) is a bijection to Xs.�.x// (resp.
Xu.�.x//).

Definition 7 (Compare with [7, Definition 2.6.2]) Suppose .X; ';�X/ is a signed
Smale space. Then a signed s/u-bijective pair is the following data:

1. signed Smale spaces .Y;  ;�Y / and .Z; �;�Z/ such that Ys.y/ and Zu.z/ are
totally disconnected for each y 2 Y and z 2 Z;

2. s-bijective map �s W .Y;  /! .X; '/;
3. u-bijective map �u W .Z; �/! .X; '/;

such that �Y D �X ı �s and�Z D �X ı �u.

Proposition 2 (Compare with [7, Theorem 2.6.3]) If .X; ';�X/ is a nonwander-
ing signed Smale space, then it has a signed s/u-bijective.

Proof By Putnam [7, Theorem 2.6.3], .X; '/ has an s/u-bijective pair: .Y;  ; �s;Z;
�; �u/. Taking

�Y WD �X ı �s and �Z WD �X ı �u

leads to a signed s/u-bijective pair.
For L � 0, M � 0, consider the Smale space (obtained via an iterated fiber product
construction):

˙L;M.�/ WD f. y0; : : : ; yL; z0; : : : ; zM/j�s. yi/ D �u.zj/ for each i; jg

with 
 defined to be  	� � �	 	 �	� � �	 �. As the notation suggests .˙L;M.�/; 
/

is a shift of finite type.
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Moreover, again for each L � 0, M � 0, �˙L;M .�/ W ˙L;M.�/ ! f�1; 1g defined
via

�˙L;M .�/. y0; : : : ; yL; z0; : : : ; zM/ D �Y. y0/

is a continuous map. We note that�˙L;M.�/.y0; : : : ; yL; z0; : : : ; zM/ is to equal�Y.yi/
for any 0 � i � L and is also equal to �Z.zj/ for any 0 � j � M. In particular,
�˙L;M.�/ is constant on orbits of the natural action of SLC1 	 SMC1. For more details
on the action (which is the natural one) see [7, Section 5.1].

Definition 8 Suppose that � D .Y;  ; �s;Z; �; �u/ a signed s/u-bijective pair for a
signed Smale space, .X; ';�/. Then a graph G is a signed presentation of � if G is
a presentation of � , in the sense of Definition 2.6.8 of [7], and G is also a signed
presentation, in the sense of Definition 4, of .˙0;0; 
;�0;0/.

Proposition 3 (Compare with [7, Theorem 2.6.9]) If .X; ';�/ is a signed Smale
space and � D .Y;  ; �s;Z; �; �u/ is a signed s/u-bijective pair for .X; '/, then
there exists a presentation of � . Moreover, if G is a signed presentation of � , then,
for each L � 0 and M � 0, GL;M is a signed presentation of .˙L;M.�/; 
/.

Proof Work of Putnam (see [7, Theorem 2.6.9]) implies that � has a presentation
in the sense of [7, Definition 2.6.8]. That is, there is a graph G and conjugacy e W
˙0;0.�/ ! ˙G satisfying the conditions in [7, Definition 2.6.8]. Moreover, since
�˙0;0.�/ is continuous, by possibly taking a higher block presentation of G we can
ensure that this presentation leads to a signed presentation of .˙0;0.�/; 
;�0;0/. The
second statement in the proposition follows as in the proof of [7, Theorem 2.6.9] and
is omitted.

Definition 9 (Compare with Definition 5.2.1 of [7]) Suppose .X; ';�/ is a signed
Smale space, � D .Y;  ; �s;Z; �; �u/ a signed s/u-bijective pair for .X; '/, and G is
a presentation of � . Fix k � 0, L � 0, and M � 0 and let

1. B.Gk
L;M; SL	1/ be the subgroup of ZGk

L;M which is generated by elements of the
following forms:

a. p 2 Gk
L;M with the property that p � ..˛; 1/ D p for some non-trivial

transposition, ˛ 2 SLC1;
b. p0 D q � .˛; 1/� sign.˛/q for some q 2 Gk

L;M and ˛ 2 SLC1;

2. Q.Gk
L;M; SL 	 1/ be the quotient of ZGk

L;M by B.Gk
L;M/; we denote the quotient

map by Q;
3. A.Gk

L;M ; 1	 SMC1/ be fa 2 ZGk
L;M j a � .1; ˇ/ D sign.ˇ/ � a for all ˇ 2 SMC1g; it

is a subgroup of ZGk
L;M .

Proposition 4 (See the Remark Between Definitions 5.2.1 and 5.2.2 in [7])
Suppose � D .Y;  ; �s;Z; �; �u/ a signed s/u-bijective pair for a signed Smale
space, .X; ';�/ and G is a signed presentation of � . Then, for each k � 0, L � 0,
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and M � 0,

� s
Gk
L;M ;�GkL;M

.B.Gk
L;M; SL 	 1// � B.Gk

L;M ; SL 	 1/

� s
Gk
L;M ;�GkL;M

.A.Gk
L;M; SL 	 1// � A.Gk

L;M; SL 	 1/

where � s
Gk
L;M ;�GkL;M

is defined in Definition 5.

Definition 10 (Compare with [7, Definition 5.2.2]) Suppose � D .Y;  ; �s;Z;
�; �u/ a signed s/u-bijective pair for a signed Smale space, .X; ';�/ and G is a
signed presentation of � . Using the previous proposition, we define

Ds
Q;A;Gk;�Gk

.Gk
L;M/ D lim!

 

Q.A.Gk
L;M ; 1 	 SMC1//; � sGk

L;M ;�GkL;M

!

For each 0 � i � L, there is a map defined at the level of graphs, ısi; W Gk
L;M !

Gk
L�1;M obtained by removing the ith entry. Likewise, for 0 � j � M, one has a map

ıs;j W Gk
L;M ! Gk

L;M�1 that is defined by removing the L C j-entry. As in [7], these
induce maps at the level of the abelian groups introduced in the previous definition:

Proposition 5 (Comparewith [7, Lemma 5.2.4]) Suppose�D .Y;  ; �s;Z; �; �u/

a signed s/u-bijective pair for a signed Smale space, .X; ';�/ and G is a signed
presentation of � . Then, there exists k 2 N such that ıi; and ı;j induced group
homomorphisms:

ısi; W Ds
Q;A;Gk;�Gk

.Gk
L;M/! Ds

Q;A;Gk;�Gk
.Gk

L�1;M/

and

ıs�;j W Ds
Q;A;Gk;�Gk

.Gk
L;M/! Ds

Q;A;Gk;�Gk
.Gk

L;MC1/

respectively.

Definition 11 (Compare with [7, Definition 5.1.7] and [7, Sections 5.2 and 5.3])
Suppose � D .Y;  ; �s;Z; �; �u/ is a s/u-bijective pair for a signed Smale space,
.X; ';�/, G is a signed presentation of � , and k is as in the statement of previous
proposition. Then, we let

dsQ;A;Gk;�Gk
.�/L;M W Ds

Q;A;�Gk
.Gk

L;M/! Ds
Q;A;�Gk

.Gk
L�1;M/˚ Ds

Q;A;�Gk
.Gk

L;MC1/

be the map

LX

iD0
.�1/iısi; C .�1/L

MX

jD0
.�1/jıs�;j :
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Finally, for each N 2 Z, we let ds
Q;A;Gk;�Gk

.�/N DLL�MDN ds
Q;A;Gk;�Gk

.�/L;M .

Theorem 2 (See [7, Sections 5.1 and 5.2]) Assuming the setup of the previous
definition,

 
M

L�MDN

Ds
Q;A;�

GkL;M

.GL;M/;
M

L�MDN

dsQ;A;Gk;�Gk
.�/L;M

!

N2Z

is a complex.

Definition 12 (Compare with [7, Definition 5.1.11]) Suppose � D .Y;  ; �s;Z;
�; �u/ is a s/u-bijective pair for a signed Smale space, .X; ';�/ and G is a signed
presentation of � . We define Hs�.X; ';�; �;Gk/ to be the homology of the complex

 
M

L�MDN

Ds
Q;A;�

GkL;M

.GL;M/;
M

L�MDN

dsQ;A;Gk;�Gk
.�/L;M

!

N2Z

from the previous theorem. We call this the signed homology and denote it by
Hs�.X; ';�; �;Gk/; it is a Z-graded abelian group.

Theorem 3 (Compare with [7, Theorem 5.1.12]) The signed homology groups
have finite rank and vanish for all but finitely many N 2 Z.

Proof Basic properties of inductive limits imply that the signed dimension groups
have finite rank. Hence the homology is finite rank (see for example page 131 of
[7] for further details). That the homology vanishes for all but finitely many N also
follows as in [7, pages 131–132].

Theorem 4 (Compare with [7, Theorem 5.5.1]) The signed homology is indepen-
dent of the choice of signed presentation, and the choice of s/u-bijective pair.

Definition 13 Suppose .X; ';�/ is a signed Smale space. Based on the previous
theorem, for any choice of signed s/u-bijective pair, � , signed presentation G, and k
large enough, we can define Hs

N.X; ';�/ WD Hs
N.X; ';�; �;G

k/.

Proposition 6 (Compare with a Special Case of [7, Theorem 5.4.1]) Suppose
.X; ';�/ is a signed Smale space. The homeomorphism ' and its inverse induces
graded group homomorphism at the level of the signed homology groups. We denote
the induced maps by 's and .'�1/s respectively.

Remark 1 General functorial properties Putnam’s homology theory are nontrivial,
see [3, 4, 7]. The functorial properties of the signed version are further complicated
by the requirement that the map at the level of Smale space must respect the signed
structure. The full details of these properties are not discussed here as they are not
needed for the signed Lefschetz theorem.
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Example 5 Suppose .X; '/ is a Smale space and we take �X to be the constant
function one. Then, it follows from the definitions involved that Hs.X; ';�/ is
Putnam’s stable homology theory.

Example 6 Suppose .˙G; 
;�G/ is a signed shift of finite type. The signed
homology, Hs

N.˙G; 
;�G/ is the signed dimension group when N D 0 and is the
trivial group when N ¤ 0.

2.4 Lefschetz and Zeta Functions

Definition 14 Suppose .X; '/ is a Smale space. Then, for each n 2 N,

Per.X; '; n/ WD fx 2 X j 'n.x/ D xg:

Definition 15 Suppose .X; ';�/ is a signed Smale space. Then, the signed dynam-
ical zeta function is

�.X;�/.z/ D exp

 1X

nD1

Nn.X; ';�/

n
zn
!

where Nn.X; ';�/ DPx2Per.X;';n/ �
.n/.x/.

Example 7 If .X; ';�/ is a signed Smale space with � � 1, then the signed
dynamical zeta function is the dynamical zeta function (see the Introduction):

�dyn.z/ D exp

 1X

nD1

jPer.X; '; n/j
n

zn
!

:

For more details on this case, see [9, Section I.4] (and also [7, Chapter 6] and
references therein).

Example 8 Suppose .M; f / is an Axiom A diffeomorphism, .˝; f j˝/ be the
restriction of f to the nonwandering set, and for each m 2 Per.˝; f j˝; 1/,

L.m/ WD sign.det.I �Df .m/ W Tm.M/! Tm.M///:

The Lefschetz fixed point formula implies that

X

m2Per.˝;f j˝ ;1/
L.m/ D

dim.M/X

iD0
.�1/iTr. f� W Hi.MIR/! Hi.MIR//:
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Moreover, by for example [5, Proposition 5.7] or [9, Section I.4], L.m/ D
.�1/q�.m/ where q is the rank of Eu at the point m and � is as in Example 2.
From this one obtains the homological zeta function discussed in the Introduction.

Theorem 5 (Compare with [7, Theorem 6.1.1]) For each k 2 N,

X

N2Z
.�1/NTr

�
..'�1/sN ˝ idQ/

n
� D

X

x2Per.X;';n/

�.n/.x/

where .'�1/sN ˝ idQ W Hs
N.X; ';�/ ˝ Q ! Hs

N.X; ';�/ ˝ Q is the map on
rationalized homology induced from '�1.

Definition 16 Suppose .M; f / is an Axiom A diffeomorphism satisfying the no-
cycle condition, .˝s/

m
sD1 are the basic sets of .M; f /, and .Ms/

m
sD1 is a filtration

associated to the basic sets that satisfies the assumptions in [1]. Then we let feven
and fodd denotes the map induced by f on

M

n even

Hn.Ms;Ms�1/ and
M

n odd

Hn.Ms;Ms�1/

respectively.
Likewise if .X; '/ is a Smale space, we let '�1even and '�1odd denote the map induced

by '�1 on

M

n even

Hs
n.X; ';�/˝Q and

M

n Wodd

Hs
n.X; ';�/˝Q

respectively.

Theorem 6 Suppose .M; f / is an Axiom A diffeomorphism satisfying the no-cycle
condition, and Euj˝s is orientable. Then (using the notation introduced in the
paragraph preceding this theorem) there exists a signed Smale space, .X; ';�/,
such that

(1) .X; '/ is conjugate to .˝s; f j˝s/;
(2) (even case) if q is even, the maps '�1even ˚ fodd and '�1odd ˚ feven have the same

nonzero eigenvalues or
(3) (odd case) if q is odd, the maps '�1even ˚ feven and '�1odd ˚ fodd have the same

nonzero eigenvalues.

Corollary 1 Suppose .M; f / is an Axiom A diffeomorphism, .˝; f j˝/ is the non-
wandering set of .M; f /, Euj˝ is orientable, and � W ˝ ! f�1; 1g is defined as in
Example 2. Let q W ˝ ! f0; 1g be the function defined by q.x/ D rank.Eu

x/ mod 2.
Then

1. if q � 0, then �hom.z/ D �.˝;�/.z/;
2. if q � 1, then �hom.z/ D 1=�.˝;�/.z/.



274 R.J. Deeley

Proof By definition, the signed zeta function is given by

�'.z/ D exp

 1X

nD1

Nn.X; ';�/

n
zn
!

where Nn.X; ';�/ DPx2Per.X;';n/ �
.n/.x/. If q � 0, then

X

x2Per.˝;f j˝ ;n/
L.x/ D

X

x2Per.˝;f j˝ ;n/
�.n/.x/

while if q � 1, then

X

x2Per.˝;f j˝ ;n/
L.x/ D .�1/

X

x2Per.˝;f j˝ ;n/
�.n/.x/:

The result then follows.

3 Examples

To conclude the paper, two examples are discussed. These examples point to
the possibility of a stronger relationship between the signed version of Putnam’s
homology and the standard homology of the manifold associated with the Axiom A
diffeomorphism. However, such a relationship is (at this point) highly speculative.

Example 9 (Shifts of Finite Type) In [2], Bowen and Franks prove the following
results:

Theorem 7 (Reformulation of [2, Theorem 3.2]) Suppose .M; f / is an Axiom
A diffeomorphism satisfying the no-cycle condition, dim.˝s/ D 0, and q WD
rank.Euj˝s/. Then there exists signed shift of finite type .˙G; 
;�G/ such that

1. .˙G; 
/ is conjugate to .˝s; f j˝s/;
2. the maps � sG;�G

W ZG0 ! ZG0 and f jMs W Hq.Ms;Ms�1/ ! Hq.Ms;Ms�1/ are
shift equivalent;

3. the maps � sG;�G
W Ds

�G
.G/! Ds

�G
.G/ and f jMs W Hq.Ms;Ms�1/! Hq.Ms;Ms�1/

are shift equivalent

where .Ms/
m
sD1 is a fixed filtration associated to the basic sets, .˝s/

m
sD1, of .M; f /.

The reader might notice that Bowen’s and Franks’ result implies [1, Theorem 2]
(stated as Theorem 1 above). However, the proof in [2] uses [1, Theorem 2].

Example 10 (Two Dimensional Hyperbolic Toral Automorphisms) We give an
example in which one can compute the standard homology, Putnam’s homology
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and the relevant actions explicitly. Let

' D A D
	
1 1

1 0




and consider the induced action on the two-torus, R2=Z2. In this example,˝ is the
entire manifold and � is the constant function one and q D 1.

In regards to the standard homology, we have the following

HN.R
2=Z2IR/ Š

8
<

:

R W N D 0; 2
R
2 W N D 1
0 W otherwise

and the action is given by the identity on H0.R2=Z2IR/, A on H1.R2=Z2IR/, and
minus the identity on H2.R2=Z2IR/.

In regards to Putnam’s homology (based on [7, Example 7.4]) we have the
following

Hs
N.R

2=Z2;A/˝ R Š
8
<

:

R W N D �1; 1
R
2 W N D 0
0 W otherwise

and the action of ..'�1/s/˝ IdR is given by the identity on Hs�1.R2=Z2;A/˝ R, A
on H0.R2=Z2;A/˝ R, and minus the identity on Hs

1..R
2=Z2;A/˝ R:

Thus, in this very special case, there is an even stronger than predicted by
Theorem 6 relationship between the homology of torus and Putnam’s homology
of the Smale space .R2=Z2;A/. Namely, they are the same with dimension shift of
one (this is exactly the rank of bundleEu in this case). Moreover, the actions induced
by f and '�1 are also the same (again with dimension shift).
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A Simple Model of 4d-TQFT

Rinat Kashaev

Abstract We show that, associated with any complex root of unity !, there exists
a particularly simple 4d-TQFT model defined on the cobordism category of ordered
triangulations of oriented 4-manifolds.

1 Introduction

Pachner or bistellar moves are known to form a finite set of operations on triangu-
lations such that arbitrary triangulations of a piecewise linear (PL) manifold can be
related by a finite sequence of Pachner moves [13, 15]. As a result, the combinatorial
framework of triangulated PL manifolds combined with algebraic realizations
of Pachner moves can be useful for constructing combinatorial 4-dimensional
topological quantum field theories (TQFT) [1, 20]. Realization of this scheme
in three dimensions has been initiated in the Regge–Ponzano model [16], where
the Pachner moves are realized algebraically in terms of the angular momentum
6j-symbols satisfying the five term Biedenharn–Elliott identity [3, 7], which has
eventually led to the Turaev–Viro TQFT model [18] and subsequent generalizations
based on the theory of linear monoidal categories [17]. The same scheme in four
dimensions is more difficult to realize, mainly because of the complicated nature of
algebraic constructions generalizing those of the linear monoidal categories though
some realizations are known [4–6, 11, 12]. In this paper, to any complex root of unity
!, we associate a rather simple model W! of 4d-TQFT defined on the cobordism
category of ordered triangulations of oriented 4-manifolds. The definition is as
follows.

A simplicial complex is called ordered if the underlying set is linearly ordered.
We denote by N WD ord.!/ the order of !, and we recall that in any ordered
triangulation of an oriented d-manifold, each d-simplex S comes equipped with a
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sign �.S/ taking the positive value 1 if the orientation induced by the linear order
on the vertices of S agrees with the orientation of the manifold. We specify W!

by associating the vector space C
N to each positive tetrahedron and the dual vector

space
�
C

N
��

to each negative tetrahedron. For a pentachoron (4-simplex)P realizing
an oriented 4-ball, we associate the vector

W!.P/ 2 W!.@P/ D ˝4iD0W!.@iP/ (1)

defined by the formula

W!.P/ D
�
Q if �.P/ D 1I
NQ otherwise:

(2)

where

Q WD N�1=4
X

k;l;m2Z=NZ
!kmek ˝ NekCl ˝ el ˝ NelCm ˝ em; (3)

NQ WD N�1=4
X

k;l;m2Z=NZ
!�km Nek ˝ ekCl ˝ Nel ˝ elCm ˝ Nem (4)

with fekgk2Z=NZ and fNekgk2Z=NZ being the canonical dual bases of CN and
�
C

N
��

respectively.
Let X be an ordered triangulation of an oriented 4-manifold. We define

W!.X/ D N.jX
int
0 j�jXint

1 j/=2 Ev.˝P2XW!.P// (5)

where the tensor product is taken over all pentachora of X, Ev is the operation
of contracting along all the internal tetrahedra of X, and jXint

i j is the number of i-
dimensional simplices in the interior of X. Our main result is the following theorem.

Theorem 1 W! is a well defined 4d-TQFT.
This TQFT is unitary in the sense that

W!.X
�/ D W!.X/

� (6)

where X� is X with opposite orientation, while W!.X/� is the Hermitian conjugate
of W!.X/ with respect to the standard Hilbert structure of the space C

N where the
canonical basis is orthonormal. We collect a few results of calculation into Table 1
where �.X/ is the Euler characteristic.

Remark 1 Strictly speaking, the term TQFT (Topological Quantum Field Theory)
here is used in an extended sense of TQFT with corners [14, 19]. In particular, for
an ordered triangulation X of an oriented compact closed 3-manifold, the cylinder
X 	 Œ0; 1� admits an ordered triangulation that extends that of X, see e.g. [8], and
the partition function W!.X 	 Œ0; 1�/, interpreted as an element of End.W!.X//, is
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Table 1 The values of the
invariant W! and the Euler
characteristic � in the case of
few oriented compact closed
4-manifolds

X �.X/ W!.X/

S4 2 1

S2 	 S2 4 .3C .�1/N /=2
CP2 3 N�1=2

PN
kD1 !

k2

S3 	 S1 0 1

S2 	 S1 	 S1 0 .3C .�1/N /=2

not the identity map, as it would be if W! was an ordinary TQFT in the sense of
Atiyah [1], but only a projection operator to a vector subspace QW!.X/ � W!.X/.
It is this system of subspaces that can be given an interpretation of a TQFT in the
sense of Atiyah. One can show that dim QW!.S3/ D 1, and this fact implies that the
invariant is multiplicative under the connected sum.

Conjecture 1 For a given compact oriented closed 4-manifold X, the quantum
invariant W!.X/, considered as a function on the set of all complex roots of unity,
takes only finitely many different values.

The first preprint version of this paper is available as [9], where a different
normalization of pentachoral weight functions is used and the corresponding TQFT
is denoted M! . In the case of closed 4-manifolds, the two TQFT’s are related by the
formula

W!.X/ D N3�.X/=2M!.X/: (7)

In the next two sections we prove Theorem 1 by identifying the transformation
properties of W! under order changes and its invariance under the Pachner moves.

2 Behavior Under Order Changes

Proposition 1 For two ordered triangulations X and Y of a compact oriented 4-
manifold related by a change of ordering, one has the equality

W!. Y/ D b.W!.X// (8)

where

bWW!.@X/! W!.@Y/: (9)

is an isomorphism of vector spaces.
Let us fix a square root

p
!. Following [2], we define a function

˚ WZ=NZ! C; ˚.k/ D �p!�k.kCN/
; (10)
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which has the properties

˚.k/2 D !k2 ; ˚.�k/ D ˚.k/; ˚.kC l/ D ˚.k/˚.l/!kl: (11)

We also denote

N̊ .k/ WD 1

˚.k/
: (12)

Next, we define two vector space isomorphisms

S;TW �CN
�� ! C

N ; (13)

by the formulae

SNek D N�1=2
X

l2Z=NZ
˚.k � l/el; T Nek D ˚.k/e�k: (14)

Notice that their inverses are given by the Hermitian conjugate maps :

S�1ek D NSek D N�1=2
X

l2Z=NZ
N̊ .k � l/Nel; T�1ek D NTek D N̊ .k/Ne�k: (15)

We also define the permutation maps

PW �CN
��˝C

N ! C
N˝�CN

��
; NP D P�1WCN˝�CN

�� ! �
C

N
��˝C

N : (16)

The proof of Proposition 1 is based on the following lemma.

Lemma 1 ([10]) One has the equalities

Q D .P˝ T ˝ NT ˝ T/ NQ D .T ˝ NP˝ NS˝ S/ NQ
D .S˝ NS˝ P˝ T/ NQ D .T ˝ NT ˝ T ˝ NP/ NQ (17)

where the vectors Q and NQ are defined in (3) and (4).

Proof Let us prove the first equality:

N1=4.P˝ T ˝ NT ˝ T/ NQ D
X

k;l;m2Z=NZ
!�kmekCl ˝ Nek ˝ T Nel ˝ NTelCm ˝ T Nem

D
X

k;l;m2Z=NZ
!�km˚.l/ N̊ .lC m/˚.m/ekCl ˝ Nek ˝ e�l ˝ Ne�l�m ˝ e�m
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D
X

k;l;m2Z=NZ
!�km�lmekCl ˝ Nek ˝ e�l ˝ Ne�l�m ˝ e�m

D
X

k;l;m2Z=NZ
!�kmek ˝ Nek�l ˝ e�l ˝ Ne�l�m ˝ e�m

D
X

k;l;m2Z=NZ
!kmek ˝ NekCl ˝ el ˝ NelCm ˝ em D N1=4Q (18)

where, in the third equality, we used the last relation in (11), in the forth equality
we shifted the summation variable k ! k � l, and in the fifth equality we negated
the summation variables l and m. The other relations are proved in a similar manner,
see [10] for details.

Proof (of Proposition 1) For a triangle f of an ordered triangulation, we let
C. f / denote the set of all tetrahedra containing f . Let X and Y be two ordered
triangulations differing in the orientation of only one edge e. The change of the
orientation of e results in changing the sign of each pentachoron of X containing
e. By applying the appropriate equality of Lemma 1 to each such pentachoron in
W!.X/ we observe that for each triangle f containing e, there is a cancellation of
an inverse pair of S or T operators for each internal tetrahedron of C. f /. In this
way, we immediately obtain the equality W!.X/ D b.W!.Y// where b is given by
the product of non-canceled S or T operators acting on the boundary tetrahedra. We
finish the proof by remarking that any ordering change can be obtained as a finite
sequence of single edge orientation changes.

3 Invariance Under the Pachner Moves

A Pachner move in dimension 4 is associated with a splitting of the boundary
of a 5-simplex into two non-empty disjoint sets of 4-simplices (pentachora). A
Pachner move is called of the type .k; l/ with k C l D 6, if the two disjoint subsets
of pentachora consist of k and l elements respectively. Thus, altogether, we have
Pachner moves of three possible types (3,3), (2,4) and (1,5). Let us discuss in more
detail their algebraic realizations in terms of polynomial identities for the matrix
coefficients of the vectors (3) and (4) defined by the formulae:

Qi;j;k
l;m � hNei ˝ el ˝ Nej ˝ em ˝ Nek;Qi D N�1=4!ikıl;iCjım;jCk (19)

and

NQl;m
i;j;k � hei ˝ Nel ˝ ej ˝ Nem ˝ ek; NQi D N�1=4!�ikıl;iCjım;jCk (20)
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3.1 The Type (3,3)

This is the most fundamental Pachner move as it is the only one which can be written
in the form involving only the pentachora of one and the same sign and, in a sense,
it implies all other types.

Consider a 5-simplex with linearly ordered vertices A D fv0; v1; : : : ; v5g. Its
boundary is composed of six pentachora @iA D A n fvig of which three are positive
corresponding to even i’s and three are negative corresponding to odd i’s. All even
(respectively odd) pentachora compose a 4-ball, to be called even (respectively
odd) 4-ball, so that the boundary of both balls are naturally identified as simplicial
complexes. Both of these balls, when considered separately, are composed only in
terms of positive pentahora, and the corresponding algebraic condition on the vector
Q takes the form

X

s;t;u

Qi;l;m
s;t Qs;j;n

p;u Q
t;u;k
q;r D

X

s;t;u

Qm;n;k
s;t Ql;j;t

u;r Q
i;u;s
p;q (21)

where the left hand side corresponds to the even 4-ball and the right hand side to
the odd one, while the summations in both sides correspond to their own interior
tetrahedra. Namely, denoting the tetrahedron A n fvi; vjg by Aij, the indices s; t; u
correspond to the tetrahedra A02, A04 and A24 in the even 4-ball, and to the tetrahedra
A15, A35 and A13 in the odd 4-ball, while the exterior indices i; j; k; l;m; n; p; q; r on
both sides correspond to the boundary tetrahedra A01, A23, A45, A03, A05, A25, A12,
A14, A34 respectively. All other forms of the Pachner relation of the type (3,3) can
be obtained from (21) by applying the symmetry relations (17).

Lemma 2 The Pachner relation (21) holds true for the weights (19).

Proof By substituting one after another the explicit forms from (19), we have

N3=4.l:h:s: of (21)/ D
X

u

!imQiCl;j;n
p;u QlCm;u;k

q;r

D !imC.iCl/nıp;iClCjQ
lCm;jCn;k
q;r

D !imC.iCl/nC.lCm/kıp;iClCjıq;lCmCjCnır;jCnCk;

and, similarly,

N3=4.r:h:s: of (21)/ D
X

u

!mkQl;j;nCk
u;r Qi;u;mCn

p;q

D !mkCl.nCk/ır;jCnCkQ
i;lCj;mCn
p;q

D !mkCl.nCk/Ci.mCn/ır;jCnCkıp;iClCjıq;lCjCmCn:
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Comparing the obtained expressions, we see that they are the same.

Remark 2 It is interesting to note that by defining three families of linear maps

Li;Mj;RkWCN ˝ C
N ! C

N ˝ C
N ;

Qi;j;k
l;m D hNej ˝ Nek;Li.el ˝ em/i D hNei ˝ Nek;Mj.el ˝ em/i

D hNei ˝ Nej;Rk.el ˝ em/i; (22)

we can rewrite the system (21) as a 3-index family of matrix Yang–Baxter relations
in C

N ˝ C
N ˝C

N :

Li12M
j
13R

k
23 D Rk

23M
j
13L

i
12 (23)

with the standard meaning of the subscripts, for example, Li12 WD Li ˝ idCN , etc. It
would be interesting to understand the significance of this fact in relationships of
4d-TQFT with lattice integrable models of statistical mechanics.

Remark 3 Another equivalent form of the system (21) is given by a 3-index family
of “twisted” pentagon relations either for the Ri-matrices

Rm
12R

n
13R

k
23 D

X

s;t

Qm;n;k
s;t Rt

23R
s
12 D N�1=4!mkRnCk

23 RmCn
12 ; (24)

or for the Li-matrices

Lm23L
l
13L

i
12 D

X

s;t

Qi;l;m
s;t Ls12L

t
23 D N�1=4!imLiCl

12 L
lCm
23 ; (25)

where we use the matrices defined in (22).

3.2 The Type (2,4)

We split the pentachora of the 5-simplex A D fv0; v1; : : : ; v5g into a subset of two
pentachora @1A and @3A and the complementary subset of other four pentachora.
The corresponding algebraic relation takes the form

N�1=2
X

k;m;n;u;v;w

Qi;l;m
v;w Qv;j;np;u Qw;u;k

q;r
NQs;t
m;n;k D

X

u

Ql;j;t
u;r Q

i;u;s
p;q ; (26)

where the factor N�1=2 in the left hand side corresponds to the internal edge v1v3,
according to our TQFT rules. All other forms of the Pachner move of the type (2,4)
can be obtained from (26) combined with the symmetry relations (17).
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Lemma 3 The relation (26) holds true for the weights (19) and (20).

Proof We rewrite (26) in the equivalent matrix form

X

k;m;n

Rm
12R

n
13R

k
23
NQs;t
m;n;k D N1=2Rt

23R
s
12 (27)

and easily prove it by using (24):

X

k;m;n

Rm
12R

n
13R

k
23
NQs;t
m;n;k D N�1=4

X

n

!�.s�n/.t�n/Rs�n
12 Rn

13R
t�n
23

D N�1=2
X

n

Rt
23R

s
12 D N1=2Rt

23R
s
12: (28)

Remark 4 As the proof of Lemma 3 shows, the Pachner relation of the type (2,4)
given by Eq. (26) is clearly weaker than the Pachner relation of the type (3,3)
given by Eq. (21). Namely, we cannot revert the argument of the proof to obtain
an equivalence between the two relations.

3.3 The Type (1,5)

We split the pentachora of the 5-simplex A D fv0; v1; : : : ; v5g into the set composed
of only one pentachoron @1A and the complementary set of other five pentachora.
The corresponding algebraic relation takes the form

N�2
X

j;k;l;m;n;r;t;v;w;x

Qi;l;m
v;w Qv;j;np;x Qw;x;k

q;r
NQs;t
m;n;k
NQu;r
l;j;t D Qi;u;s

p;q (29)

where the factor N�2 in the left hand side corresponds to one internal vertex v1 and
five internal edges which connect it to other five vertices, so that N.1�5/=2 D N�2.
As before, all other forms of the Pachner relations of the type (1,5) can be obtained
from (29) by using the symmetry relations (17).

Lemma 4 The relation (29) holds true for the weights (19) and (20).

Proof By using (26), we write

N�2
X

j;k;l;m;n;r;t;v;w;x

Qi;l;m
v;w Qv;j;np;x Qw;x;k

q;r
NQs;t
m;n;k
NQu;r
l;j;t

D N�3=2
X

j;l;r;t;x

Ql;j;t
x;r Q

i;x;s
p;q
NQu;r
l;j;t D N�2

X

j;l;r;t;x

ıx;uıx;lCjır;jCtQ
i;x;s
p;q
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D Qi;u;s
p;q N�2

X

j;l;r;t

ıu;lCjır;jCt D Qi;u;s
p;q N

�2X

j;l;t

ıu;lCj

D Qi;u;s
p;q N

�2X

l;t

1 D Qi;u;s
p;q : (30)
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Morse Structures on Partial Open Books
with Extendable Monodromy

Joan E. Licata and Daniel V. Mathews

Abstract The first author in recent work with D. Gay developed the notion of a
Morse structure on an open book as a tool for studying closed contact 3-manifolds.
We extend the notion of Morse structure to extendable partial open books in order
to study contact 3-manifolds with convex boundary.

1 Introduction

In [3], the first author and David Gay developed the notion of a Morse structure on a
closed 3-manifold with an open book decomposition. Informally, a Morse structure
is a nice family of functions and vector fields on the pages of the open book: the
functions are Morse functions on the pages, and the vector fields are gradient-like
and Liouville in an appropriate sense. In [3] it was shown that every open book
admits a Morse structure.

The same paper [3] also developed the notion of a Morse diagram. This is a
diagram consisting of some tori, one for each binding component, with some curves
and decorations drawn on them. A Morse structure on an open book has a Morse
diagram, and [3] (Prop. 3.7) showed that every abstract Morse diagram arises as
the Morse diagram of an open book. This gives a graphical description, encoded
by a finite amount of combinatorial data, of an open book and hence of a contact
structure.

Morse structures and diagrams give a useful way to study Legendrian knots and
links in a closed contact 3-manifold. A Legendrian knot or link in the standard
contact R3 can be studied via its front projection, which projects the knot into a
plane, and whose distance from the plane at any point is determined by the slope
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of the projection. In an analogous way, a Morse structure allows one to define a
front projection for (almost) any Legendrian knot or link in any contact manifold.
By flowing the link to a neighbourhood of the binding, one obtains a front for the
link on the associated Morse diagram, and the slope of the diagram at any point
determines the “distance” of the link from the binding. Fronts were defined in [3],
along with a set of “Reidemeister moves”: two Legendrian links represented by
fronts are Legendrian isotopic if and only if their fronts are related by such moves.

The purpose of this short article is to explore a simple idea: what happens if we
look at partial open books defined by restrictions of the monodromies in the closed
case? We examine the consequences of [3] in this context, and extend the results to
a large family of contact 3-manifolds with convex boundary. We generalise [3] to
partial open books whose monodromy is extendable to the monodromy of an open
book in the usual (non-relative) sense.

Partial open books were introduced by Honda–Kazez–Matić in [7]. They are
related to open books in the same way that contact 3-manifolds with convex
boundary are related to closed contact 3-manifolds. In [7] Honda–Kazez–Matić
stated a relative version of the Giroux Correspondence between contact manifolds
and open books [6], which was also expounded by Etgü–Ozbagci in [1].

Following [3], define a contact manifold W with a contact form ˛ by

W D .0;1/	 S1 	 S1; ˛ D dzC x dy;

where x; y; z are coordinates on the three factors of W. We prove the following.

Theorem 1 Let .M; �; �/ be a contact 3-manifold with convex boundary, presented
by the partial open book .S;P; h/, with binding B. There is a 2-complex Skel �
Int M with the property that, after modifying � by an isotopy through contact
structures presented by .S;P; h/, the interior of each connected component of
.Mn .Skel[ B/ ; �/ is contactomorphic to a contact submanifold of W.

Once sufficient notation has been established, in Sect. 5 we give a more precise
description of these submanifolds in terms of the defining data .S;P; h/ of an
abstract open book defining .M; �; �/.

In Sect. 4.2 we define a Morse structure for an extendable partial open book
.S;P; h/. A Morse structure consists of a function F and a vector field V , and
this data can be used to define a Morse diagram, which is a decorated surface
consisting of tori, punctured tori and annuli. A Morse diagram can be viewed as
gluing instructions for assembling Skel and submanifolds of W into the original
manifold M. The components of the Morse diagram are properly embedded in M
and transverse to the vector field V along the pages of the partial open book. The
flow of V assigns to points in the complement of Skel and the binding a well-defined
image on the Morse diagram, which we call a front.

Theorem 2 If � is a properly embedded Legendrian tangle in .M; �/ disjoint from
the binding B and transverse to Skel, then the front associated to�nSkel completely
determines �. Consequently, any two Legendrian tangles with the same front are
equal.
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Fig. 1 Morse diagram for the extendable open book .S;P; h/, shown with a front for a Legendrian
tangle (bold). The bold segments at the top and bottom are identified, as are vertical edges as
indicated by arrows

Fronts can effectively distinguish Legendrian tangles up to Legendrian isotopy.

Theorem 3 The set of moves shown in Fig. 4 has the property that two Legendrian
tangles in .M; �; �/ are Legendrian isotopic if and only if their fronts are related by
a sequence of moves and by isotopy preserving sufficiently negative slope.

We illustrate the ideas with an example adapted from [1]; see Fig. 1. The
right hand figures show P � S and h.P/ � S. The gluing map h extends to a
homeomorphism of S which is a given by a Dehn twist around a curve parallel
to the exterior boundary component. The three boundary components of S each
correspond to a component of the Morse diagram shown on the left, and the thin
curves encode the extended monodromy. The bold curve on the Morse diagram is a
front projection of a Legendrian tangle with one closed component and one properly
embedded interval component.

We conclude this section with a brief remark about gluing. Contact manifolds
may be glued along compatible convex boundaries, and the simplest case of this is
gluing contact manifolds which are products. This gluing can be represented on the
Morse diagram level by stacking Morse diagrams. Front projection of Legendrian
tangles also behaves nicely under this operation. In the special case of tangles
braided with respect to the product structure, front projection offers a new tool for
studying Legendrian braids in product manifolds.

2 Partial Open Books

We follow the definition of partial open books in [1]. All handles will be assumed
two-dimensional, so a 0-handle is a closed disc D2 and a 1-handle is a closed
oriented 2-disc of the form P0 D Œ�1; 1� 	 Œ�1; 1�. To add a 1-handle to an
oriented surface S, select an embedded 0-sphere f p; qg 2 @S called the attaching
sphere and identify a regular neighbourhood of p; q with Œ�1; 1� 	 f�1; 1g � P0
in an orientation-reversing fashion. Any connected oriented surface with nonempty
boundary can be constructed by successively attaching 1-handles to 0-handles. The
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core of a handle is f0g 	 Œ�1; 1� and the co-core is Œ�1; 1� 	 f0g. We note that a
handle attachment may be undone by cutting an attached handle through its co-core
and deformation retracting it onto its attaching intervals.

Throughout this paper, .S;P/ denotes a pair of compact oriented surfaces, with
P � S, S connected and @S ¤ ;. We allow P D ; and P D S.

Definition 1 A handle structure compatible with .S;P/ is a sequence of 1-handles
P1;P2; : : : ;Pr in S such that P D P1 [ � � � [ Pr and S is obtained from SnP by
successively attaching 1-handles P1; : : : ;Pr.
When we have such a handle structure, for convenience we write R D SnP. Thus S
is obtained form R by attaching the 1-handles of P. Note then that each component
of @P is either a component of @S or a concatenation of arcs alternating between
@P \ @S and @Pn@S. We will denote A D @P \ @S.

Definition 2 An abstract partial open book is a triple .S;P; h/ where .S;P/ admits
a compatible handle structure and h W P ! S is a homeomorphism onto its image
such that h is the identity on A.
The function h is called the monodromy. Note when P D ;, h is the null function.
When P D S, h is a homeomorphism of S to itself fixing the boundary, and we
obtain an (abstract) open book in the usual sense.

This definition of abstract partial open book differs slightly from Honda–Kazez–
Matić in [7], who consider pairs .S;P/ where P is a subsurface of S such that each
component of @P is either contained in @S or is polygonal with every second side
in @S. As noted above, any .S;P/ admitting a compatible handle structure has this
form, but the [7] definition also allows bigon components of P with one side in A.
Such a boundary-parallel bigon deformation retracts into A and one can show that
the resulting contact manifold is contactomorphic to the original one. In effect, then,
the definitions are equivalent.

Clearly the existence of a compatible handle structure on .S;P/ restricts the
topology of S and P. For the reasons discussed above, no component of @P can
lie in IntS, and no component of P is a boundary-parallel bigon.

Following [1], from a partial open book decomposition .S;P; h/ we construct a
sutured 3-manifold as follows. We define two handlebodies by thickening S and P
and collapsing portions of their boundaries:

H D S 	 Œ�1; 0�
.x; t/  .x; t0/ for x 2 @S and t 2 Œ�1; 0�

N D P 	 Œ0; 1�
.x; t/  .x; t0/ for x 2 A and t 2 Œ0; 1� :

(Note we only collapse the part of the boundary along A D @P \ @S, leaving
.@Pn@S/ 	 Œ0; 1� unscathed.) Now glue these two handlebodies together, along both
the common P 	 f0g � S 	 f0g and also by identifying points .x; 1/  .h.x/;�1/
for x 2 P.
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The resulting manifold is denoted M.S;P; h/. It has boundary given by

R 	 f0g [ .�Snh.P//	 f�1g [ .@Pn@S/ 	 Œ0; 1�

and binding given by B D @S 	 f0g, modulo the identifications above, and thus has
a sutured structure, with sutures � and complementary regions R˙ given by

� D @Pn@S 	 f1=2g [ @Sn@P 	 f�1=2g;
RC D R 	 f0g D SnP 	 f0g; R� D �Snh.P/	 f�1g:

Since h is a homeomorphism onto its image, �.RC/ D �.R�/, so M.S;P; h/ is a
balanced sutured manifold in the sense of [8]. The sutured structure on the boundary
of .M; � / is equivalent to the structure of a dividing set for a convex surface in a
contact manifold [4].

Indeed, to a partial open book .S;P; h/ we associate a contact manifold with
convex boundary (up to contactomorphism), given by M.S;P; h/, with the unique
(isotopy class of) contact structure whose restrictions to H and N are both tight,
with dividing sets @S	 f�1=2g and @P	 f1=2g respectively [1, 11]. Thus we regard
M.S;P; h/ as a contact manifold.

Following [1], two partial open books .S;P; h/ and .S;P; h/ are said to be
isomorphic if there is a diffeomorphism g W S ! S such that g.P/ D P
and h D g ı h ı .g�1/jP. The relative Giroux Correspondence establishes a
bijection between isomorphism classes of partial open book decompositions, up to
positive stabilisation, and compact contact 3-manifolds with convex boundary, up to
contactomorphism [1, 5, 7].

In order to generalise the notion of a Morse structure from a closed contact
manifold to one with convex boundary, it is helpful to discuss particular manifolds
rather than isomorphism classes, so we make the following definitions.

Definition 3 A closed contact manifold .M; �/ is presented by the open book .S; h/
if it is contactomorphic to M.S; h/. A contact manifold with convex boundary
.M; �; �/ is presented by the partial open book .S;P; h/ if it is contactomorphic
to M.S;P; h/.

In the remainder of this paper we will consider manifolds of the form M.S; h/ or
M.S;P; h/ so all results are up to diffeomorphism. In the case that the initial object
is a manifold with an honest—as opposed to abstract—open book, the identifying
diffeomorphism may be used to transfer structures from M.S; h/ or M.S;P; h/ to the
given contact manifold.
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3 Slices

Up to isotopy, the pair .S;P/ may be encoded via a simple combinatorial diagram
generated by the handle structure, which we call a slice and define presently.

The first step in defining a slice is to extend the core and co-core of each handle
to a 1-complex. Consider a compact connected oriented surface S constructed from
a finite collection of 0-handles by successively attaching 1-handles P1;P2; : : : ;Pr.
Since we only consider handle structures up to isotopy, we are free to assume that
the attaching spheres are disjoint from the corners where two handles meet and
from the endpoints of any co-core. When a point p of the attaching sphere lies
on the boundary of a 0-handle, extend the core of Pi through p via a ray to the
centre of the 0-handle. Now assume that the cores of previous handles have already
been extended. When p lies on the boundary of a 1-handle, there is a unique (up to
isotopy) way to extend the core of Pi through 1-handles until it reaches a point on
the boundary of a 0 handle and satisfies the condition that the co-core of Pj intersects
the core of Pk in ıjk points for all j; k � i. Then one may extend radially, as above.
We call the union of the co-cores and the extended cores the core complex associated
to the handle structure. Note that S deformation retracts onto its core complex. If, at
each stage, we allow attaching points to slide along the boundary, by isotopy in the
complement of the co-cores, this core complex is still determined up to isotopy.

Now consider a pair .S;P/ with a compatible handle structure as in Definition 1.
Then S can be constructed from 0-handles D1; : : : ;Dd by first adding 1-handles
R1; : : : ;Rr to form R and then adding further 1-handlesP1; : : : ;Pp to form S. That is,

R D D1 [ � � � [ Dd [ R1 [ � � � [ Rr; P D P1 [ � � � [ Pp; S D R [ P:

In the corresponding core complex, each core and co-core arises from an Ri or Pj.
The boundary @S consists of finitely many circles, each of which inherits a

boundary orientation from S. These circles contain the endpoints of all co-cores,
which form r C p pairs of points. Each circle either lies in @Sn@P, or in A, or
decomposes into arcs alternately in A and @Sn@P. We represent the arcs of @Sn@P
by an additional decoration—a marker denoted by an X.

Definition 4 Let r; p; q � 0 be integers. A slice SL is a collection of oriented
circles, together with a set of decorations at 2.rCp/Cq distinct points as follows:

1. r pairs of points called antecedent pairs
2. p pairs of points called primary pairs
3. q further points called markers.

The slice of a handle structure R1; : : : ;Rr, P1; : : : ;Pp on .S;P/ consists of @S,
together with antecedent pairs given by endpoints of co-cores of the Ri, primary
pairs given by endpoints of co-cores of the Pj, and a marker in each arc of @Sn@P.

Figure 2 shows two examples of pairs .S;P/with handle structures, together with
their core complexes and slices.
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Fig. 2 Two pairs .S;P/,
together with core complexes
and slices. In both figures, P
is white and R is shaded. In
both figures, S is an annulus,
and R is a disc. However on
the left P is an annulus, while
on the right P consists of two
discs. The two handle
structures are related by an
isotopy of attaching points
which passes through arcs of
@Sn@P, resulting in distinct
slices
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The oriented circles and pairs of points (antecedent and primary taken together)
of a slice are sufficient to recover S, up to homeomorphism. To recover the pair
.S;P/, however, we need the distinction between antecedent and primary pairs as
well as the markers.

Remark 1 Slices bear a resemblance to the arc diagrams of bordered Floer theory
[9], especially in the bordered sutured case of [12] or in the context of the
quadrangulated surfaces studied by the second author in [10]. This is not surprising,
since both are essentially boundary data of handle decompositions of a surface,
though slices have slightly more decoration.

Lemma 1 If two pairs .S;P/, .S0;P0/ have isomorphic slices, then there is a
homeomorphism of pairs .S;P/ Š .S0;P0/.

The proof explicitly reconstructs a surface pair from a slice.

Proof First consider the slice SL of a pair .S;P/. Surgery on SL at each pair of
marked points (antecedent and primary) yields a 1-manifold which is the boundary
of the surface formed by cutting all the 1-handles along their co-cores. This surgered
surface is homeomorphic to the 0-handles, hence the number of components of
the 1-manifold obtained by surgery on SL is equal to the number of 0-handles.
In fact, the boundary of this surface naturally contains the markers, as well as the
attaching spheres needed to recover R and S in turn. We note that after reattaching
the antecedent handles, the boundary contains primary pairs of points and markers,
and each successive primary handle is attached at points on the boundary of R or
on already-attached primary handles. Up to homeomorphism preserving R and P at
each stage, there is no choice where to attach handles, so it follows that the slice
determines the pair .S;P/.

Remark 2 The handle structures which appear in [3] were required to have a unique
0-handle, but we note that this was a choice of convenience rather than necessity.
In particular, Lemma 4.5—the key technical lemma in the proof of the existence of
Morse structures—explicitly covers the case of multiple index 0 critical points.
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4 Morse Structures

4.1 Extendable Monodromy

For fixed S, there are many possible subsurfaces P so that .S;P/ admits a compatible
handle structure, and some such subsurfaces will contain others. If P � P0 and the
monodromies h W P ! S, h0 W P0 ! S satisfy h0jP D h, then we say h0 extends h or
that h extends to P0.

Lemma 2 If h0 W P0 ! S extends h W P ! S, then there is a contact embedding of
M.S;P; h/ into M.S;P0; h0/.

Proof Consider the construction of the contact manifolds via handlebodies H;N
and H0;N0, respectively. The construction of H is independent of h and P, so H;H0
are contactomorphic. The construction of N;N0 shows that N contact embeds in
N0. Now the gluing of H and N into M.S;P; h/, and the gluing of H0 and N0 into
M.S;P0; h0/, respect this contact embedding.

Definition 5 A monodromy map h W P ! S is extendable if it extends to S, i.e., if
there exists a homeomorphism Qh W S! S such that QhjP D h.

Thus, when h is extendable, M.S;P; h/ contact embeds into M.S; S; Qh/ D
M.S; Qh/, a closed manifold. This fact will allow us to use the results of [3] in the
context of partial open books.

In general, a monodromy map for a partial open book is not extendable. For
instance, if h is extendable then S nP Š S n h.P/, a condition which often fails; see,
for example, Example 5. However, certain conditions guarantee that h is extendable.

Proposition 1 If S n P and S n h.P/ are both connected, then h extends to a
homeomorphism of S.

Proof Boundary components of S n P and S n h.P/ are in bijective correspondence,
as @S n @P is preserved and arcs of @P \ Int S map to arcs connecting the same
pairs of points on @S n @P D @S n @h.P/. Since the Euler characteristic and
number of boundary components of these surfaces agree, they are homeomorphic.
A homeomorphism between connected surfaces may be chosen to induce any
permutation of the boundary components; this is easily seen by viewing the
boundary components as marked points on a closed surface and braiding them. Thus
the map fixing points of @S n @P may be extended to a homeomorphism of S which
sends P to h.P/, as desired.

Figure 1 provides an example of an extendable monodromy.
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4.2 Morse Diagrams for Extendable Partial Open Books

Section 3 introduced a slice as a combinatorial encoding of the pair .S;P/. In order
to completely encode a partial open book via slices, it remains to encode the map
h W P! S.

We begin by building up Morse functions on S 	 Œ�1; 1�.
Definition 6 Given a homeomorphismeh W S! S which restricts to the identity on
@S, a smooth function F W S 	 Œ�1; 1� ! .�1; 0� is a Morse structure function for
eh if the following properties are satisfied:

• F�1.0/ D @S 	 Œ�1; 1�;
• for all values of t 2 Œ�1; 1�, on the interior of the page S 	 ftg, F restricts to a

Morse function ft with finitely many index 0 critical points and no index 2 critical
points;

• ft is Morse-Smale except at isolated t values, called handleslide t-values;
• f�1 ı h D f1, where we regard h as a function S 	 f1g ! S 	 f�1g

A Morse structure function F W S 	 Œ�1; 1� ! .�1; 0� descends to M.S; Qh/
and then restricts to a function M.S;P; h/ ! .�1; 0�, also denoted F. We call a
function of this form a Morse structure function for the partial open book.

Definition 7 A Morse structure on M.S;P; h/ is a Morse structure function F
together with a vector field V such that the following conditions are satisfied:

1. the handle structures induced by ft are isotopic for all t 2 Œ0; 1�;
2. V is tangent to each page;
3. the restriction of V to the page S 	 ftg is gradient-like for ft
4. near each component of the binding, there is a neighbourhood parameterised by
.�; �; 	/ such that B D f� D 0g, � D t, F D ��2, and V D �. �

2
/@�.

Strictly speaking, f0 and f1 are defined on S	f0; 1g, while ft is defined only on P	ftg
for t 2 .0; 1/. Condition 1 above refers to ftjP for t 2 f0; 1g.
Proposition 2 Every partial open book with extendable monodromy admits a
Morse structure.

Proof This is immediate from Proposition 3.3 of [3]; this is a result about a (non-
partial) monodromy map for a standard (non-partial) open book. It is implicit in the
proof there that handleslides can happen at chosen values of t; we choose them not
to happen for t 2 .0; 1/.

A Morse structure induces a handle structure on S 	 ftg. In particular, on each
page the flowlines between index 0 and index 1 critical points, together with the
flowlines from the index 1 critical points to @S	ftg, form a core complex on S	ftg.
Thus Qh yields a slice SLt on S for each value of t.

Lemma 3 The slices on S 	 f�1g and S 	 f0g determine the mapping class ofeh.
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Proof According to Proposition 2.8 in [2], there is a unique mapping class which
renders the core complex of S 	 f�1g isotopic to that of S 	 f0g. The lemma then
follows from the observation that a slice determines these decorations up to isotopy.
As the handle structures are isotopic for t 2 .0; 1/, it is sufficient to look at t from
�1 to 0.

We now consider the slices derived from the partial monodromy h, taking a
Morse structure .F;V/ as above. We restrict the slices from Qh on S 	 Œ�1; 1� to
S	 Œ�1; 0�[P	 Œ0; 1�. As P is a collection of handles added to R, for each t 2 Œ0; 1�
we obtain a “slice” on P 	 ftg, again denoted SLt, consisting of the oriented arcs
and circles of A D @P \ @S, together with pairs of points from co-cores of primary
handles. (There are now no antecedent pairs, nor markers, since these arise from R,
rather than P.)

Let us now consider all the slices simultaneously. For each t 2 Œ�1; 0�, we have
a slice SLt consisting of the oriented @S with pairs of antecedent points, primary
points, and markers. For each t 2 Œ0; 1�, we have a slice SLt consisting of A � @S
with pairs of primary points only. For any value of t, the associated slice embeds as
a collection of curves in the corresponding page, and we may assemble these into a
surface embedded in M.S;P; h/.

Definition 8 Given an extendable partial open book .S;P; h/ and a Morse structure
.F;V/, the associated Morse diagram is the surface formed from the union of slices

[

t2Œ�1;1�
SLt 	 ftg:

Thus, the Morse diagram consists of

@S 	 Œ�1; 0� [ A 	 Œ0; 1�

with the identification .x; 1/  .x;�1/ for all x 2 A, together with some decorations.
(Note the gluing is straightforward since the restriction of Qh to @S is the identity.)
The decorations consist of curves, assembled from the points on each slice. Thus if
a slice with t 2 Œ�1; 0� has r antecedent pairs, p primary pairs, and q markers, the
Morse diagram contains r pairs of antecedent curves, p pairs of primary curves, and
q marker curves. However, the marker curves need not be drawn, as their location is
seen automatically: markers correspond to arcs of @S n @P, which arise as segments
of the boundary of the Morse diagram. Note that these curves cannot be assumed to
be either connected or disjoint from each other; a handle slide of one co-core over
another leads creates a teleport of the curve associated to the sliding co-core over
the curve associated to the stationary co-core; a handleslide on the page S 	 ft0g
corresponds to a pair of trivalent vertices on the Morse diagram at height t0. See
Fig. 3.

Lemma 3 and the discussion above establish the following result:

Proposition 3 A Morse diagram determines a partial open book .S;P; h/ up to
isotopy of the pair .S;P/ and the mapping class of an extensioneh � MCG.S/.
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Fig. 3 Left: A Morse diagram for a partial open book. Right: The monodromy h is defined by its
effect on P shown Note that h is extendable toeh which is a single left handed Dehn twist

Remark 3 The Morse diagram of a partial open book will clearly depend on the
choice of extensioneh, but this mirrors the closed case which also makes no claims
of uniqueness.

5 Front Projections of Legendrian Tangles

If the only goal is constructing a Morse diagram, there is a great deal of flexibility
in the choice of V . However, strengthening the conditions on V allows us to prove
Theorem 1 and promotes the Morse diagram to a tool for studying Legendrian
tangles in M.S;P; h/.

Proof of Theorem 1 The main result of [3] is that for each component of the binding
B of M.S;eh/, the preimage of the flow of V is contactomorphic to .0;1/ 	 S1 	 S1

with coordinates x 2 .0;1/, y; z 2 S1 and with contact structure �W D ker.dz C
x dy/.

We briefly summarise the idea of the proof and refer the reader to [3] for details.
The key technical ingredient is a proof that there exists a contact form ˛ and a Morse
structure .F;V/ with the additional property that V is Liouville for d.˛jIntS	ftg/. By
choosing ˛ to have a specified form near the binding, we may define an explicit map
which sends .�; �; 	/ to

�
1
�2
; 	; �/, where the latter represent .x; y; z/ coordinates on

W. This map identifies V near the binding with the vector field x@x on W and this
identification extends the map to the rest of M n .Skel [ B/.

Given this, we consider any extension eh for h and prove Theorem 1 by
considering the contact submanifold M.S;P; h/ inside M.S;eh/. In the case of
closed components of the binding of M.S;P; h/, the corresponding component of
M n .Skel[B/ is contactomorphic to W itself, just as in the case of a closed contact
manifold.

For binding components coming from A, we begin with a copy of W and remove
points which lie in M.S;eh/ but not M.S;P; h/. The contactomorphism described
above takes pages of the open book to planes corresponding to fixed z value.
For simplicity, then, we may assume that z takes values in the circle formed by
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identifying the endpoints of Œ�1; 1�. For each z 2 Œ�1; 0�, and annulus .0;1/ 	 S1

is left untouched. On the other hand, for z 2 .0; 1/, the circle parameterised by y is
identified with a boundary component of S; thus when we restrict to the partial open
book, we remove .0;1/	I for the image of each interval I in @SnA. In the language
of flows, we remove the image of any flowline of V which terminates on a point of
@SnA, deleting j@SnAj rectangles J	.0; 1/ from the Morse diagram. Finally, we note
that the complete flowline from a point on A (away from the co-cores) terminates
at an index 0 critical point. Since R contains an open neighborhood of each index 0
critical point, the flowline exits P after some finite amount of time. Thus for each
y-interval K which remains, we also remove an open set

�
0; g.y; z/

� 	 K 	 .0; 1/
from W; here g is a continuous function.
Having established (via appeal to the closed case) that one may always find a
Morse structure which is compatible with the contact structure as described in the
proof of Theorem 1, we henceforth assume all Morse structures are of this form.
Suppose now that � is a Legendrian curve in M.S;P; h/ which is disjoint from the
binding and meets the core complex C transversely. Viewing the Morse diagram as
a properly embedded subsurface of the manifold, we may flow � n .�\ C/ by˙V
to the Morse diagram to get a front F.�/ which is sufficient to recover the original
curve.

Proof of Theorem 2 In order to see that the front projection of a Legendrian tangle
determines the tangle itself, it is useful to note that W is a quotient of the x > 0

half-space of .R3; �std/. Front projection for Legendrian knots is classically defined
in R

3, with the key characteristic that the slope of the tangent in the projection
recovers the x coordinate of the Legendrian curve. Alternatively, one may take the
perspective that front projection to the x D c plane in R

3 is the image under the flow
of the vector field x@x; this vector field is Liouville for the area form induced by
˛ D dzC x dy on each plane z D c. The contactomorphism described above takes
the Liouville vector field on each page x@x and identifies the image of an x D c plane
with the Morse diagram. The property that a classical front completely determines a
Legendrian curve then implies the analogous statement in the context of open books.

The relationship between fronts in open books and fronts in R
3 yields the familiar

properties:

1. F.�/ determines �, as the slope of the tangent to F.�/ records the flow
parameter;

2. F.�/ is smooth away from finitely many semicubical cusps;

On the other hand, fronts in partial open books have some new features:

1. the slope of F.�/ is negative except where it has an endpoint on the image of
C; this follows from the description of W as a quotient of the fx < 0g half space
in R

3.
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2. for t 2 .0; 1/, the slope of F.�/ is bounded from above by �� < 0, as a slope
limiting to 0 corresponds to a Legendrian curve approaching the index 0 critical
point and R has an open neighbourhood around each index 0 critical point;

3. if � intersects a core circle C on the t0 page, then F.�/ will have a pair of
teleporting endpoints at height t0: F.�/ will approach a curve on the Morse
diagram corresponding to C from the left and the other curve corresponding to C
from the right.

5.1 Reidemeister Moves

The Reidemeister moves established for Legendrian links in closed contact man-
ifolds extend to a family of moves for fronts of properly embedded Legendrian
tangles.

Proof of Theorem 3 A complete collection of Legendrian Reidemeister moves for
front projections of Legnedrian knots in open books is given in [3] and shown
in Fig. 4 (S, H, K moves). Since we now consider contact manifolds with convex
boundary, we may extend this analysis to properly embedded Legendrian tangles.
The interior of M.S;P; h/ is indistinguishable from the interior of a closed contact
manifold, so the only new behaviour on fronts occurs at the boundary of the Morse
diagram. Whether one considers these to be new moves is a question of taste; each
of the moves listed below is simply the restriction to a Morse diagram for a partial
open book of a planar isotopy on a Morse diagram for an ordinary open book.

The boundary of the Morse diagram has three distinct pieces: the floor, which is
the image under the flow by V of S	 f�1g n h.P/; the ceiling, which is the image of
S	f0gnP; and the walls, which are the image of @Pn.@S\@S/	Œ0; 1�. In addition to
moves on the interior of the diagram which alter the combinatorics of the curves and
projection, we see the following moves near the boundary of the Morse diagram:

Move N0: The endpoint of a curve on the front may slide freely along a
component of the floor, the ceiling, or a wall, either crossing or teleporting at any
trace curve encountered on a floor or ceiling.

Move N1: The endpoint of a curve on the front may slide right from the ceiling
onto a wall and vice versa or left from the floor onto a wall and vice versa.

Move N2: : Given two curves whose endpoints are near each other on the
boundary of the Morse diagram, one may isotope the endpoints past each other,
introducing a crossing in the curves.

Move N2 move is reversible, and we note that it allows n parallel strands with
adjacent endpoints may be replaced by the front projection of an arbitrary positive
braid. If performing this isotopy in real time, the slopes at the endpoints must
be distinct at the moment of superposition to ensure that the endpoints of the
Legendrian curves remain disjoint.
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Fig. 4 Moves for Legendrian links and tangles

6 Examples

We consider some examples of simple extendable partial open books, Morse
structures and front projections.

Example 1 (Empty Monodromy) Suppose we have a partial open book .S;P; h/
where P is empty. Then h is trivially extendable. It is not difficult to see then that
M.S;P; h/ is just S 	 Œ�1; 1�= , with dividing set @S 	 f�1=2g. Legendrian fronts
exist for any Legendrian knots avoiding the skeleton, and as P is empty there is no
issue with maximum slope.

Example 2 (Tight Ball) This example also appears in [1]. Let S be an annulus and
P a thickened properly embedded arc. Let h be a positive Dehn twist, as shown in
Fig. 5. A Morse diagram is shown in Fig. 6, together with initial and final pages.



Morse Structures on Partial Open Books with Extendable Monodromy 301

Fig. 5 The tight ball of
Example 2

Fig. 6 A Morse diagram
(left) and pages showing
initial and final slices (right).
Note that the shaded region in
the top right actually the
image of P under h�1, as
required by the identification
conventions for the mapping
torus t=-1

t=1

t=0

To see why we obtain a tight 3-ball, consider a standard tight contact 3-ball B
with connected boundary dividing set � , and positive region RC a disc. Take a
Legendrian arc � properly embedded in B, with endpoints on � . Drill out a small
tubular neighbourhood T of � . Then the dividing set on the resulting surface is
shown in Fig. 5. The tube has boundary a cylinder, which is cut into two rectangles
by the dividing set. One of these rectangles is P. The tube can be regarded as P 	
Œ0; 1�, and its complement can be regarded as S 	 Œ�1; 0� where S is an annulus,
consisting of P together with R D RC. A co-core arc c as shown, when pushed
across the tube to c0, is isotopic in the complement of T to the arc c00 on S. Then the
monodromy takes c00 to c.

Example 3 (S2 	 I) Let S be a disc, P a thickened properly embedded arc. Then h
must be isotopic to the identity. So M.S;P; h/ consists of a ball D2 	 Œ�1; 0�, with a
disc P 	 Œ0; 1�, glued to a closed curve on its boundary, forming an S2 	 I. This in
fact extends to the identity Qh W S ! S, which produces the tight S3, and hence the
contact structure here is the unique tight one.

Example 4 (Overtwisted Ball) Let S again be an annulus and P a thickened properly
embedded arc, as in lower right picture in Fig. 6, but now let h be a negative Dehn
twist. A Morse diagram is shown in Fig. 8, together with a tb D 0 unknot bounding
an overtwisted disc.

The manifold M.S;P; h/ is shown in Fig. 7. As in Example 2, we drill a tube
T out of a ball. However now the dividing set on the tube twists in the opposite
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Fig. 7 The overtwisted ball of Example 4

tb=0 unknot

primary
curve pair

point
on B

Fig. 8 An overtwisted disc in Example 4. The boundary of the disc is parallel to one of the primary
curves, and the thinner lines indicate a foliation of the disc by Legendrian curves that teleport across
the primary curve and meet at a point on the binding represented by a vertical line. (Example due
to Dave Gay)

direction (the “wrong way”) around the tube. Thus the ball is overtwisted: even if
both the tube and its complement are tight, one can find an attaching arc on the
tube containing bypasses on both sides. One can again take a co-core curve c, trace
it through T to c0 and through the complement of T to c00 � S to show that the
monodromy is the restriction of a left-handed Dehn twist.

Indeed, a Legendrian unknot of Thurston-Bennequin number zero can be seen
explicitly from its front projection. The leftwards direction of the Dehn twist means
that we can draw the front shown in Fig. 8. This unknot avoids all curves of the
Morse diagram and bounds an overtwisted disc that lies in a subset of W. This disc
can be seen explicitly on the Morse diagram, as an overtwisted disc admits a radial
foliation by Legendrian curves, each of which can also be projected to the diagram.
These curves terminate on a vertical line which represents a single point on B.

Example 5 We conclude with an example which breaks several of the conventions
already established, but nevertheless illustrates an interesting phenomenon. The
right hand pictures in Fig. 9 show initial and final pages specifying a monodromy h
which is not extendable. By way of proof, consider an arc in S n P connecting two
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P

t=-1

t=1

x

z yx

z yz y x

Fig. 9 Example 5

distinct boundary components; no arc with the same endpoints exists in Snh.P/. On
the other hand, this monodromy nonetheless appears to have a perfectly valid Morse
diagram, in the sense that the left hand figure defines a sequence of handle slides
and isotopies taking the initial core complex to the terminal one. Examples such as
these may be interesting for further study.
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Counting Belyi Pairs over Finite Fields

George Shabat

Abstract Alexander Grothendieck’s theory of dessins d’enfants relates Belyi pairs
over Q with certain graphs on compact oriented surfaces; the present paper is
aimed at the extension of this correspondence. We introduce two closely related
categories of Belyi pairs over arbitrary algebraically closed fields, in particular
over the algebraic closures Fp of finite fields. The lack of the analogs of graphs
on surfaces over Fp promotes the development of other tools that are introduced
and discussed. The problem of counting Belyi pairs of bounded complexity is
posed and illustrated by some examples; the application of powerful methods of
counting dessins d’enfants together with the concept of bad primes is emphasized.
The relations with geometry of the moduli spaces of curves is briefly mentioned.

1 Introduction

The hidden relations between seemingly different objects cause the increasing
interest of mathematicians, especially since the middle of twentieth century, when
it became possible to understand these relations in categorical terms. The recent
explosions of activity in topological recursion, Langlands program (e.g., [9]),
monstrous moonshine (e.g., [10]) provide some obvious examples.

Alexander Grothendieck’s theory of dessins d’enfants (see [13, 24] and [17])
demonstrates yet another mixture of combinatorial topology, arithmetic geometry
and group theory. In its original form it relates Belyi pairs (to be defined soon)
over Q with certain graphs on compact oriented surfaces. The concept of Belyi
pair is automatically extended to the case of arbitrary algebraically closed fields,
in particular they can be defined over the fields Fp, the algebraic closures of
finite fields; the lack of the analogs of graphs on surfaces over Fp promotes the
development of other tools that will be introduced and discussed in the present paper.
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The objects of the categories that we are going to consider are definable by finite
amounts of information; hence the task of counting objects of bounded complexity
arises naturally. The theory is in its infancy and therefore the consideration of some
simple examples will prevail over the general theorems.

The paper is based on the author’s talk at the Creswick conference in the
December 2016; the author is indebted to the organizers of this conference for the
stimulating atmosphere in this wonderful place. The special thanks go to P. Norbury
for clarifying the matters that we are going to discuss in the last section.

2 Belyi Pairs

We shall work over ground fields k, assuming forever that they are algebraically
closed,

k D k:

The smaller fields k0 will be considered as well, such that k D k0; the typical cases
are k0 D Q and k0 D Fp for a prime p. The intermediate fields K,

k0 � K � k

with ŒK W k0� < 1, will also be in the game; typically, these K’s will be fields of
algebraic numbers and finite fields Fq D Fpr .

By a curve we always mean a complete curve over k; it would be nice to assume
that our curves are irreducible and smooth as well. However, in the cases of bad
reduction (at least one of) these properties is lost.

For a smooth irreducible curve X we identify a rational function f 2 k.X/ with a
regular map f W X! P1.k/ to the projective line.

For the rest of the paper we assume that these maps are separable, or, equiv-
alently, that the field extensions k.X/ � k. f / are separable, not like Fp.

p
p
x/ �

Fp.x/.
A non-constant f 2 k.X/ n k defines a surjective map f W X ! P1.k/, and for

almost all c 2 P1.k/—that is, except finitely many c’s—the cardinality of preimages
#f�1ı.c/ is the same. It is called the degree of f

#fc 2 P1.k/ j #f�1ı.c/ ¤ deg f g <1:

Since P1.k/ is infinite, the degree deg f is well-defined by this statement.
An equivalent definition is

deg f WD Œk.X/ W k. f /�:
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The sufficient condition for f to be separable is that either char.k/ D 0 or
char.k/ − deg f .

The points c 2 P1.k/ for which the number of c-preimages is non-standard, are
called the critical values of f ; the set of such points is denoted by

CritVal. f / WD fc 2 P1.k/ j #f�1ı.c/ ¤ deg f g:

An alternative way of expressing the inclusion c 2 CritVal. f / is saying that f
branches over c.

2.1 Definition

A Belyi pair is a pair .X; ˇ/, where X is a smooth irreducible curve over k and
ˇ 2 k.X/ n k with CritVal.ˇ/ � f1; 0; 1g. If .X; ˇ/ is a Belyi pair, then ˇ is a
Belyi function on X.

In the picture below we are just trying to fix the set-theoretical behavior of a
Belyi function—in particular, stressing the lack of ramification over a generic point
in P1.k/ n f0; 1;1g � P1.k/ n CritVal.ˇ/.

According to the Belyi theorem [1, 2], over k D C a curve X admits a Belyi
function if and only if X is a complexification, i.e. obtained via a base change, of a
curve X0, defined over Q. However, finding a Belyi function on an arbitrary curve
over Q is a very difficult task, and the minimal possible degree of such a function
can be tremendous, see [14]. The only thing we can estimate, as it will be reminded
in the next section, is the total number of Belyi pairs of bounded degree.

2.2 Cleanness

A Belyi pair .X; ˇ/ is called clean, if all the branchings over 1 2 P1.k/ are twofold:
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The formal definition uses the standard concepts: for a point P 2 X denote its
local ring OP WD f f 2 k.X/ j f .P/ ¤ 1g with the maximal ideal mP WD f f 2
k.X/ j f .P/ D 0g. The cleanness of ˇ means

ˇ � 1 2 m2
P nm3

P

at all points P with ˇ.P/ D 1. Imposing the cleanness condition is not a severe
one—see below.

2.3 Examples

We give a couple of series of the simplest ones.
Generalized Fermat curves are defined by the affine equation

xm C yn D 1:

Under some restrictions on the char.k/

ˇ WD xm D 1� yn

is a Belyi function on a generalized Fermat curve, usually not a clean one.
The concept of a curve with many automorphisms has two versions: in the zero

and the positive characteristic of the ground field—in the latter case the cardinality
of the automorphism group is quartic in genus (unlike the former case where the
Hurwitz bound #AutX � 84.gX � 1/ holds). In many cases the factorization map

ˇ W X �! X
AutX

is a Belyi function. One should be careful in the case of positive characteristic, since
the factorization map is often non-separable.

A detailed treatment of the Klein quartic can be found in [7], and that of the
Bring curve—in [28].
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2.4 Two Categories of Belyi Pairs

The objects of the categoryBELP.k/ are Belyi pairs .X; ˇ/ over k as defined above.
A morphism in BELP.k/ from .X; ˇ/ to .X0; ˇ0/ is defined as such a morphism
f W X! X0 of curves that the diagram commutes.

X X

P1(k)

β β

f

The category BELP2.k/ is a full subcategory of BELP.k/ consisting of the
clean Belyi pairs.

2.5 Cleaning Functor

Suppose that char(k/ ¤ 2. Then the introduced categories are close enough: it is
easy to check that the functor

BP.k/! BP2.k/ W .X; ˇ/ 7! .X; 4ˇ.1� ˇ//

is well-defined. Thus the problems of counting the objects of bounded complexity
in both categories are basically equivalent.

2.6 Fields of Definition and Galois Orbits

In the above-mentioned case k D k0 denote

� WD Gal.k=k0/

the corresponding Galois group. Then the action

� W BP.k/

is defined: take any standard model of k.X/—planar with the simplest singularities,
or tri-canonical, or whatsoever—and apply the elements of � coefficientwise to the
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equations of the curve and to the Belyi function on it. Since a Belyi pair is defined
by the finite set of elements, algebraic over k0, all the � -orbits thus defined are
finite. Therefore for each .X; ˇ/ 2 BP.k/ we have a stationary subgroup of � of
finite index

.X; ˇ/$ �.X;ˇ/

and by Galois theory

.X; ˇ/$ �.X;ˇ/ $ F.X;ˇ/;

where the last field satisfies k0 � F.X;ˇ/ � k. We call this field the field of definition1

of a Belyi pair .X; ˇ/. Tautologically

#.� � .X; ˇ// D .� W �.X;ˇ// D .F.X;ˇ/ W k0/:

If a Belyi pair .X; ˇ/ can be defined over some finite extension K � k0 (i.e., there
exists a model of X over K with the coefficients of ˇ belonging to K), then it is
obviously true that F.X;ˇ/ � K. However, it can happen that a Belyi pair .X; ˇ/
can not be defined over its field of definition; the obstruction lies in some non-
commutative Galois cohomology set, see [4] or [8] for the case k0 D Q. The author
is unaware of similar examples over k0 D Fp.

2.7 Passports and Their Realizations

The main invariant of a Belyi pair is the set of multiplicities:

div.ˇ/ D a1A1 C � � � C a˛A˛ � c1C1 � � � � � cNCN ;

div.ˇ � 1/ D b1B1 C � � � C bnBn � c1C1 � � � � � cNCN :

We collect them in a table called the passport of a Belyi pair:

pass.X; ˇ/ WD

0

BB
@

a1 b1 c1
: : : : : : : : :

: : : : : : : : :

a˛ bn cN

1

CC
A

Lemma 1 For any passport of a Belyi pair .X; ˇ/

a1 C : : :C a˛ D b1 C : : :C bn D c1 C : : :C cN DW d: (1a)

1It is often called the field of moduli, but we are going to use the word moduli in its traditional
algebro-geometrical sense.
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The genus g of X can be defined by the equality

˛ C nC N DW dC 2 � 2g: (1b)

Proof For (1a) we define d WD degˇ and use the well-known property of the degree
of a branched covering. To establish (1b) note that, according to the definition of
Belyi function

div.dˇ/ D
X̨

iD1
.ai � 1/Ai C

nX

jD1
.bj � 1/Bj �

NX

kD1
.ck C 1/Ck

for some points A1; : : : ;CN 2 X, and use deg.dˇ/ D 2g� 2. ut
Denote the set of realizations of a passport ˘ , satisfying the above conditions

(1a) and (1b),

R˘.k/ WD f.X; ˇ/ 2 BP.k/ j pass.X; ˇ/ D ˘g
isomorphism

:

This definition makes sense since the categories BP.k/ are equivalent to the small
ones.

Theorem 1 For any algebraically closed field k and any passport˘ , satisfying the
above conditions (1a) and (1b), the set R˘.k/ is finite.

Idea of the proof The set R˘.k/ is in a natural bijective correspondence with
the corresponding 0-dimensional subscheme of the moduli space Mg.k/, where g
is defined by (1b). The detailed proof will appear elsewhere. ut

So the basic counting question is to study the cardinalities of these sets:

#R˘.k/ D‹‹‹

We don’t have a complete answer even in the case k D C; however, see the
discussion below.

As the following simple example shows, this cardinality can depend on the field:

R.333/.Q/ D . y2 D 1 � x3; ˇ D yC 1
2

/;

while

R.333/.F3/ D ¿:

Finally, the general behavior of #R˘.k/’s can be studied in the Galois-theoretic
terms.

Lemma 2 For any Belyi pair .X; ˇ/

� � .X; ˇ/ � Rpass.X;ˇ/
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Proof Indeed, the entries of the passports are Galois-invariant since they consist of
the multiplicities of c-points of Belyi functions for the Galois-invariant points of
P1.k/. ut

This obvious fact should be taken into account together with the following

Observation “Generically” � � .X; ˇ/ D Rpass.X;ˇ/

Of course, this equality holds only in the absence of more subtle Galois-
invariants—non-trivial automorphisms and others.

3 Dessins

This section is devoted to the objects whose relation with the objects studied in
the previous one are far from obvious. This relation has been basically discovered
by Alexander Grothendieck, see [13], and many papers and several books s were
devoted to it. The books [17] and [11] are addressed to the beginners; however, we
are going to use the different basic concepts, and the reason for it will be explained
soon.

3.1 The Category of Grothendieck Dessins

The objects of the categoryDESS are dessins d’enfant in the sense of [13], i.e. such
triples of topological spaces

X0 � X1 � X2;

that X0 is a non-empty finite set, whose elements are called vertices, X2 is a compact
connected oriented surface and X1 is an embedded graph, which means that the
complement X1 n X0 is homeomorphic to a disjoint union of real intervals, called
edges. We demand as well that the complement X2 n X1 is homeomorphic to a
disjoint union of open discs, called faces. The difference between dessins and two-
dimensional cell complexes lies in the concepts of morphisms.

In order to give a short definition of morphisms in DESS , we add X�1 D ¿
to each triple as above and call a continuous mapping of surfaces admissible, if it
respects the orientation, is open2 and respects the differences, i.e. such a mapping
of triples f W .X2;X1;X0/! .Y2;Y1;Y0/ should satisfy

f .Xi n Xj/ � Yi n Yj

2According to the somewhat forgotten theory, developed by S. Stoilow, any open mapping of
Riemann surfaces is locally topologically conjugated to a holomorphic one, see [26].
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for �1 � j < i � 3. The two admissible mappings are called admissibly equivalent,
if they are homotopic in the class of admissible mappings, and the morphisms in
DESS are defined as classes of admissible equivalence of admissible mappings.

3.2 The Category of Colored Triangulations

The objects of the category DESS3 are the tricolored dessins, i.e. the dessins X0 �
X1 � X2 endowed with a coloring mapping

col3 W X1 �! fblue; green; redg;

constant on the edges. It is demanded that

(0) any vertex is incident to edges of only two colors;
(1) any edge has two vertices in its closure;
(2) any face has three edges in its closure, colored pairwise differently.

Taking into account the assumption (0), we color every vertex by the (only
remaining) color, that is different from the colors of incident edges. Due to the
assumption (2) the connected components of X2 n X1 will be called (topological)
triangles. It can be deduced from the orientability of X2 that these triangles can also
be colored, now in black and white, in such a way that the neighboring triangles—
i.e., having a common edge—will be colored differently.
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So the coloring mapping col3 can be extended to

col5 W X2 �! fblack; blue; green; red;whiteg;

with exactly two choices of black/white coloring, corresponding to the orientations
of X2. We agree that the positive-counter-clockwise orientation of the white triangles
corresponds to the blue-green-red-blue cyclic order of the colors of edges in its
closure; this choice will be motivated below.

The objects of DESS3 will be called colored triangulations; we note, however,
that there is precisely one object of this category, that is not a triangulation of a
surface in the usual sense; this object is formed by a pair of black and white triangles
with colored edges after identifying edges with the same color.

The morphisms in DESS3 are defined in the same way as in DESS with the
additional assumption of color-respecting.3

The theory is fundamentally symmetric with respect to the three colors involved;
this is the reason why the traditional approach, developed in [17] and [11], where
two of them are distinguished, does not satisfy us completely.

3.3 Relations Between Two Types of Dessins

There is an obvious color-forgetting functor

DESS3 �! DESS :

In the other direction there is a non-trivial one

DESS ,! DESS3;

which we introduce by the picture:

3The “same” category was considered in [15] under the name oriented hypermaps; our vertexes of
three colors were called hypervertices, hyperedges and hyperfaces.
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3.4 Counting Dessins

For several decades the powerful “physical” methods are used in the study of
the quantities of dessins of bounded complexity; the corresponding key words
are matrix integrals and map enumeration. The progress is still impressive. E.g.,
recently the generating function for the weighted4 quantities of dessins with the
prescribed set of degrees of 2-valencies has been (in a certain sense) written down—
see [16].

However, the quantities of dessins with prescribed sets of both 0- and 2- valencies
are still out of reach. As it will follow from the results of the next section, this
problem is equivalent to counting Belyi pairs over C with a prescribed passport.

4 Correspondence Between Belyi Pairs and Dessins

In this section we work over k D C.

4.1 The Functor “draw”

We define the functor

draw W BELP2.C/ �! DESS :

To a clean Belyi pair .X; ˇ/ 2 BELP2.C/ a dessin d’enfant with

X2 WD top.X/

is assigned; here top means the forgetful functor that assigns to a complex algebraic
curve (= Riemann surface) the underlying topological oriented surface.

Next define

X1 WD ˇ�1ı.Œ0; 1�/ and X0 WD ˇ�1ı.f0g/:

The branching condition imposed on ˇ over 1 implies that while P 2 X2 moves
along some edge (a connected component of X1 n X0) from one vertex (an element
of X0) to another, the point ˇ.P/ moves from 0 to 1 and back, the edge being folded
in the point of ˇ�1ı.1/; a local coordinate z centered at this point can be chosen so
that ˇ D 1C z2 in its domain.

4A dessin D is counted with the weight 1
#AutD .
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A morphism of Belyi pairs obviously defines the corresponding morphism of
dessins.

Theorem 2 The functor draw defines the equivalence of the categoriesBELP2.C/

and DESS :
A detailed proof can be found in [22].

4.2 The Functor “paint”

In order to define the functor

paint W BELP.C/ �! DESS3I

we introduce the Belyi sphere P1.C/Bel which is the colored Riemann sphere P1.C/.
Decomposing P1.C/ D C

`f1g, we define this coloring as

colBel5 W P1.C/ �! fblack; blue; green; red;whiteg W

z 7!

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂
:̂

black if z 2 C n R and =z < 0;
white if z 2 C n R and =z > 0;
blue if z 2 R<0 or z D 1;

green if z 2 .0; 1/ or z D1;
red if z 2 R>1 or z D 0:

The choice of the colors is motivated as follows. The black and white for the
lower and the upper parts is quite traditional (hell and heaven. . . ), while the real
line is colored in such a way that blue (symbolizing cold) corresponds to negative
numbers, while red (symbolizing hot) corresponds to positive ones. The green is just
in between and is assigned no meaningful association. The vertices of the colored
topological “triangle” P1.R/ have the same color as the opposite side.
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Furthermore, the colors of the pieces of the real line occur in the alphabetical
order. The motivation of the choice of “colored” orientation can be given now: the
traditional counter-clockwise detour around the white triangle correspond to moving
along the real line form �1 to1.

Now we can finalize the definition of the functor paint: for a Belyi pair .X; ˇ/ the
surface X2 WD top.X/ is colored by col5 WD ˇ�colBel5 , i.e. the points of the surface
are colored according to the colors of their images under the Belyi mapping: for any
P 2 X2

col5.P/ WD colBel5 .ˇ.P//:

Obviously, the set X1 turns out to be the closure of the union of the green edges and
X0 the set of isolated red points.

Theorem 3 The functor paint defines the equivalence of the categories BELP.C/
and DESS3:

A detailed proof can be found in [22].

4.3 Implications of Belyi Theorem

According to the above-quoted theorem, the category inclusion

BP2.Q/
'
,! BP2.C/

is a category equivalence. We emphasize that it is not canonical: introduce the
absolute Galois group

Γ WD Aut.Q/

and note that the inclusion Q ,! C is defined only up to the Γ-action.
According to the previously formulated results, we have the Γ-set of category

equivalences

BP2.Q/
' ! DESS

and, as we have just seen, it has some invariant meaning only being considered
together with the enigmatic action of Γ on DESS .

So the true arithmetic meaning can be given not to individual dessins, but only to
their Γ-orbits.
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5 Belyi Pairs over Finite Fields

The theory is in its infancy. However, it is inevitable, and we start this last section
with the demonstration of the occurrence of Belyi pairs over Fp’s in the course of

the constructive realization of the equivalence BP2.Q/
' ! DESS .

5.1 Example

The Belyi pairs, corresponding to the clean unicellular 4-edged toric dessins, were
calculated in [23]. In the course of calculations it was impossible to ignore the flows
of powers of small primes in the denominators. It turned out that in all the cases these
primes have the invariant meaning: they are the bad primes of the corresponding
elliptic curves, see [25]. The results are summarized in the following table.

Here all the toric dessins are drawn either in the square or in the hexagon; it is
meant that the opposite sides are identified. They are grouped in the raws according
to the sets of valencies; these raws constitute the Galois orbits, except the two cases
(in the second and the penultimate raws) where the Galois orbits are split due to the
obvious symmetries.
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In most cases the bad primes have an obvious combinatorial meaning; they divide
one of the valencies. However, the occurrence of 7 can not be explained this way.
Instead we see the sum of valencies phenomenon: the badness of 7 is explained by
7 D 2C 5 and 7 D 3C 4. The similar phenomenon in the case of plane trees was
explained by the author’s students [27] and [20].

5.2 Good and Bad Primes

This subsection is written in a somewhat informal style, since some details of the
corresponding concepts have not yet been written up (however, see [12]).

If for a Belyi pair .X; ˇ/ over Q both the equations of X and the coefficients of
ˇ can be chosen in a finite extension K � Q, such a field K is called a field of
realization of .X; ˇ/. Let O be the ring of integers of K; it is clear that .X; ˇ/ then
can be realized overO (nobody claims any kind of uniqueness of such a realization).

Given a nonzero prime ideal p C O, we can construct the pair .X; ˇ/ mod p
over the algebraic closure of the finite field O

p
. If the curve X mod p is smooth

(or, equivalently, has the same genus as X) and deg.ˇ mod p/ D deg.ˇ/ then K, a
model and p are called good for .X; ˇ/. A prime p is called good for .X; ˇ/, if such
a good choice exists with char

�O
p

� D p. Otherwise p is bad for .X; ˇ/.

For a dessin D denote .XD; ˇD/ the corresponding Belyi pair over Q and
introduce the set of primes of bad reduction

badD WD f p 2 f2; 3; 5; : : : g j p is bad for .XD; ˇD/:

As for many other objects of arithmetic geometry, all the sets badD are finite.
In the previous subsection the sets of bad primes were presented without any

attempts of precise definitions; the reason is that in the case of genus 1 the prime is
bad if and only if it divides the discriminant of the curve.

It is an outstanding problem
to define the sets badD in terms of the combinatorics of D.

5.3 Counting

The author is currently unaware of the passports that are realizable over Fp but not
realizable over C. Hence typically

#R˘.Fp/ � #R˘.C/;

and the inequality often becomes strict due to the bad reduction.
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The numbers of bad reductions often behave systematically in families of dessins.
Unfortunately, a mathematical definition of a family of dessins (similar, say, to the
definition of a family of algebraic varieties) hardly exists, so we just consider an
example.

The passports

0

B
B
@

n n 3

1

: : :

1

1

C
C
A with natural n � 3 correspond to the unicellular toric

dessins

(the opposite sides identified). In terms of [5] these are the dessins whose pruning
is a toric hexagon, defined by the passport (333).

Now, using the notation ##Z WDPz2Z 1
#Autz for the weighted sum, introduce for

a field k

Hexn.k/ WD ##R0

B
B
B
B
B
B
@

n n 3

1

: : :

1

1

C
C
C
C
C
C
A

.k/;

and give the promised example:

Hexn.C/ �Hexn.F�/ D
X

0<k< n
p

.n � kp/:

The proof can be found in [21]. The summing of the arithmetic progression in the
right-hand side has not been performed in order to emphasize the nature of the bad
reduction which is explained in terms of geometry of the modular curves.

5.4 On the Cohomology of Moduli Spaces

The geometry of moduli spaces Mg;N of N�pointed curves of genus g is related to
dessins in more than one way. The famous decomposition (constructed by Mumford,
Harer, Penner, Witten and others)

Mg;N.C/ 	R
N
>0 '

a

D2DESSg,N
R

E.D/
>0 ;
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where DESSg;N stands for the set of isomorphism classes of N-cellular dessins of
genus g with all the 0-valencies � 3 and E.D/ is the set of edges of a dessin D,
provides a direct way to the singular cohomology of Mg;N.C/. In the case .g;N/ D
.2; 1/ this approach (modified a bit for a level-3 smooth cover) was realized in [6].

In [18] it was shown that replacing R>0 be N (i.e. considering ribbon graphs
with only integer edge lengths) results in replacing C by Q, so more “arithmetic”
cohomology theories become available. The Witten-Kontsevich integrals then are
replaced by counting the integral points in the polytopes, the perfect techniques for
which was developed in [19].

The methods of calculating cohomology of moduli spaces by counting curves
over finite fields, i.e. determining #Mg;N.Fpr/, are based on the (now proved) Weil
conjectures. The applications of these methods can be found for example in [3].

Since counting Belyi pairs is closely related to counting curves and counting
dessins (together with the principles of bad reduction, the first steps of understand-
ing which were mentioned above), there is a fundamental hope of blending all these
approaches.

Acknowledgement The paper is supported in part by the Simons foundation.
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Unravelling the Dodecahedral Spaces

Jonathan Spreer and Stephan Tillmann

Abstract The hyperbolic dodecahedral space of Weber and Seifert has a natural
non-positively curved cubulation obtained by subdividing the dodecahedron into
cubes. We show that the hyperbolic dodecahedral space has a 6-sheeted irregular
cover with the property that the canonical hypersurfaces made up of the mid-cubes
give a very short hierarchy. Moreover, we describe a 60-sheeted cover in which the
associated cubulation is special. We also describe the natural cubulation and covers
of the spherical dodecahedral space (aka Poincaré homology sphere).

1 Introduction

A cubing of a 3-manifoldM is a decomposition of M into Euclidean cubes identified
along their faces by Euclidean isometries. This gives M a singular Euclidean metric,
with the singular set contained in the union of all edges. The cubing is non-positively
curved if the dihedral angle along each edge in M is at least 2� and each vertex
satisfies Gromov’s link condition: The link of each vertex is a triangulated sphere
in which each 1-cycle consists of at least three edges, and if a 1-cycle consists of
exactly three edges, then it bounds a unique triangle. In this case, we say that M has
an NPC cubing.

The universal cover of an NPC cubed 3-manifold is CAT(0). Aitchison et al. [5]
showed by a direct construction that if each edge in an NPC cubed 3-manifold
has even degree, then the manifold is virtually Haken. Moreover, Aitchison and
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Rubinstein [3] showed that if each edge degree in such a cubing is a multiple of
four, then the manifold is virtually fibred.

A cube contains three canonical squares (or 2-dimensional cubes), each of which
is parallel to two sides of the cube and cuts the cube into equal parts. These are called
mid-cubes. The collection of all mid-cubes gives an immersed surface in the cubed
3-manifold M, called the canonical (immersed) surface. If the cubing is NPC, then
each connected component of this immersed surface is �1-injective. If one could
show that one of these surface subgroups is separable in �1.M/; then a well-known
argument due to Scott [14] shows that there is a finite cover of M containing an
embedded �1-injective surface, and hence M is virtually Haken. In the case where
the cube complex is special (see Sect. 2), a canonical completion and retraction
construction due to Haglund and Wise [11] shows that these surface subgroups
are indeed separable because the surfaces are convex. Whence a 3-manifold with
a special NPC cubing is virtually Haken. The missing piece is thus to show that
an NPC cubed 3-manifold has a finite cover such that the lifted cubing is special.
This is achieved in the case where the fundamental group of the 3-manifold is
hyperbolic by the following cornerstone in Agol’s proof of Waldhausen’s Virtual
Haken Conjecture from 1968:

Theorem 1 (Virtual Special; Agol [2], Thm 1.1) Let G be a hyperbolic group
which acts properly and cocompactly on a CAT.0/ cube complex X: Then G has a
finite index subgroup F so that X=F is a special cube complex.

In general, it is known through work of Bergeron and Wise [6] that if M is
a closed hyperbolic 3-manifold, then �1.M/ is isomorphic to the fundamental
group of an NPC cube complex. However, the dimension of this cube complex
may be arbitrarily large and it may not be a manifold. Agol’s theorem provides
a finite cover that is a special cube complex, and the �1-injective surfaces of
Kahn and Markovic [13] are quasi-convex and hence have separable fundamental
group. Thus, the above outline completes a sketch of the proof that M is virtually
Haken. An embedding theorem of Haglund and Wise [11] and Agol’s virtual fibring
criterion [1] then imply that M is also virtually fibred.

Weber and Seifert [16] described two closed 3-manifolds that are obtained by
taking a regular dodecahedron in a space of constant curvature and identifying
opposite sides by isometries. One is hyperbolic and known as the Weber-Seifert
dodecahedral space and the other is spherical and known as the Poincaré homology
sphere. Moreover, antipodal identification on the boundary of the dodecahedron
yields a third closed 3-manifold which naturally fits into this family: the real
projective space.

The dodecahedron has a natural decomposition into 20 cubes, which is a NPC
cubing in the case of the Weber-Seifert dodecahedral space. The main result of this
note can be stated as follows.

Theorem 2 The hyperbolic dodecahedral space WS of Weber and Seifert admits a
cover of degree 60 in which the lifted natural cubulation of WS is special.
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In addition, we exhibit a 6-sheeted cover of WS in which the canonical immersed
surface consists of six embedded surface components and thus gives a very short
hierarchy ofeWS: The special cover from Theorem 2 is the smallest regular cover of
WS that is also a cover of this 6-sheeted cover. Moreover, it is the smallest regular
cover of WS that is also a cover of the 5-sheeted cover with positive first Betti
number described by Hempel [12].

We conclude this introduction by giving an outline of this note. The dodecahedral
spaces are described in Sect. 3. Covers of the hyperbolic dodecahedral space are
described in Sect. 4, and all covers of the spherical dodecahedral space and the real
projective space in Sect. 5.

2 Cube Complexes, Injective Surfaces and Hierarchies

A cube complex is a space obtained by gluing Euclidean cubes of edge length one
along subcubes. A cube complex is CAT.0/ if it is CAT.0/ as a metric space, and it
is non-positively curved (NPC) if its universal cover is CAT.0/: Gromov observed
that a cube complex is NPC if and only if the link of each vertex is a flag complex.

We identify each n-cube as a copy of Œ� 1
2
; 1
2
�n. A mid-cube in Œ� 1

2
; 1
2
�n is the

intersection with a coordinate plane xk D 0: If X is a cube complex, then a new
cube complex Y is formed by taking one .n � 1/-cube for each midcube of X and
identifying these .n�1/-cubes along faces according to the intersections of faces of
the corresponding n-cubes. The connected components of Y are the hyperplanes of
X; and each hyperplane H comes with a canonical immersion H ! X: The image
of the immersion is termed an immersed hyperplane in X: If X is CAT.0/; then each
hyperplane is totally geodesic and hence embedded.

The NPC cube complex X is special if

1. Each immersed hyperplane embeds in X (and hence the term “immersed” will
henceforth be omitted).

2. Each hyperplane is 2-sided.
3. No hyperplane self-osculates.
4. No two hyperplanes inter-osculate.

The prohibited pathologies are shown in Fig. 1 and are explained now. An edge
in X is dual to a mid-cube if it intersects the midcube. We say that the edge of X is
dual to the hyperplane H if it intersects its image in X: The hyperplane dual to edge
a is unique and denoted H.a/: Suppose the immersed hyperplane is embedded. It

Fig. 1 Not embedded; 1-sided; self-osculating; inter-osculating (compare to [17, Figure 4.2])
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is 2-sided if one can consistently orient all dual edges so that all edges on opposite
sides of a square have the same direction. Using this direction on the edges, H self-
osculates if it is dual to two distinct edges with the same initial or terminal vertex.
Hyperplanes H1 and H2 inter-osculate if they cross and they have dual edges that
share a vertex but do not lie in a common square.

The situation is particularly nice in the case where the NPC cube complex
X is homeomorphic to a 3-manifold. Work of Aitchison and Rubinstein (see
§3 in [4]) shows that each immersed hyperplane is mapped �1-injectively into
X: Hence if one hyperplane is embedded and 2-sided, then X is a Haken 3-
manifold. Moreover, if each hyperplane embeds and is 2-sided, then one obtains
a hierarchy for X: This is well-known and implicit in [4]. One may first cut
along a maximal union of pairwise disjoint hypersurfaces to obtain a manifold X1
(possibly disconnected) with incompressible boundary. Then each of the remaining
hypersurfaces gives a properly embedded surface in X1 that is incompressible and
boundary incompressible. This process iterates until one has cut open X along all
the mid-cubes, and hence it terminates with a collection of balls. In particular, if
Y consists of three pairwise disjoint (not necessarily connected) surfaces, each of
which is embedded and 2-sided, then one has a very short hierarchy.

3 The Dodecahedral Spaces

The main topic of this paper is a study of low-degree covers of the hyperbolic
dodecahedral space. However, we also take the opportunity to extend this study to
the spherical dodecahedral space in the hope that this will be a useful reference.
When the sides are viewed combinatorially, there is a third dodecahedral space
which naturally fits into this family and again gives a spherical space form: the
real projective space. The combinatorics of these spaces is described in this section.

3.1 The Weber-Seifert Dodecahedral Space

The Weber-Seifert Dodecahedral space WS is obtained by gluing the opposite faces
of a dodecahedron with a 3�=5-twist. This yields a decompositionDWS of the space
into one vertex, six edges, six pentagons, and one cell (see Fig. 2 on the left). The
dodecahedron can be decomposed into 20 cubes by (a) placing a vertex at the centre
of each edge, face, and the dodecahedron, and (b) placing each cube around one of
the 20 vertices of the dodecahedron with the other seven vertices in the centres of the
three adjacent edges, three adjacent pentagons, and the center of the dodecahedron.
Observe that identification of opposite faces of the original dodecahedron with a
3�=5-twist yields a 14-vertex, 54-edge, 60 square, 20-cube decomposition ODWS of
WS (see Fig. 2 on the right). Observe that every edge of ODWS occurs in � 4 cubes,
and each vertex satisfies the link condition. We therefore have an NPC cubing.
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Fig. 2 Left: face and edge-identifications on the dodecahedron yielding the Weber-Seifert dodec-
ahedron space. Right: decomposition of the Weber-Seifert dodecahedral space into 20 cubes

Fig. 3 Left: Immersed canonical surface in one cube. Right: intersection pattern of one cube, the
immersed canonical surface, and the boundary of the dodecahedron in DWS

The mid-cubes form pentagons parallel to the faces of the dodecahedron, and
under the face pairings glue up to give a 2-sided immersed surface of genus four.
The immersion of this canonical surface into DWS in the neighbourhood of one
cube is shown in Fig. 3. We wish to construct a cover in which the canonical surface
splits into embedded components—which neither self-osculate with themselves, nor
inter-osculate with other surface components.

3.2 The Poincaré Homology Sphere

The Poincaré homology sphere ˙3 is obtained from the dodecahedron by gluing
opposite faces by a �=5-twist. This results in a decomposition D˙3 of ˙3 into one
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Fig. 4 Left: face and edge-identifications on the dodecahedron yielding the Poincaré homology
sphere. Right: face and edge-identifications on the dodecahedron yielding the real projective space

vertex, ten edges, six pentagons, and one cell (see Fig. 4 on the left). Again, we
can decompose D˙3 into 20 cubes. Note, however, that in this case some of the
cube-edges only have degree three (the ones coming from the edges of the original
dodecahedron). This is to be expected since ˙3 supports a spherical geometry.

3.3 Real Projective Space

Identifying opposite faces of the dodecahedron by a twist of � results in identifying
antipodal points of a 3-ball (see Fig. 4 on the right). Hence, the result is a
decomposition DRP3of RP3 into ten vertices, 15 edges, six faces, and one cell. As in
the above cases, this decomposition can be decomposed into 20 cubes, with some
of the cube-edges being of degree two.

4 Covers of the Weber-Seifert Space

In order to obtain a complete list of all small covers of the Weber-Seifert space WS,
we need a list of all low index subgroups of �1.WS/ in a presentation compatible
with DWS and its cube decomposition ODWS.

The complex DWS has six pentagons u, v, w, x, y, and z. These correspond to
antipodal pairs of pentagons in the original dodecahedron, see Fig. 2 on the left.
Passing to the dual decomposition, these six pentagons corresponds to loops which
naturally generate �1.WS/. The six edges of DWS , , , , , and each give rise
to a relator in this presentation of the fundamental group of WS in the following
way: fix edge and start at a pentagon containing , say u. We start at the pentagon
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labelled u with a back of an arrow˝—the outside in Fig. 2 on the left. We traverse
the dodecahedron, resurface on the other pentagon labelled u with an arrowhead
ˇ (the innermost pentagon in Fig. 2). We then continue with the unique pentagon
adjacent to the center pentagon along edge . In this case v labelled with the tail
of an arrow, we traverse the dodecahedron, resurface at .v;ˇ/, and continue with
.w;ˇ/ which we follow through the dodecahedron in reverse direction, and so on.
After five such traversals we end up at the outer face where we started. The relator is
now given by the labels of the pentagons we encountered, taking into account their
orientation (arrowhead or tail). In this case the relator is r. / D uvw�1y�1z.

Altogether we are left with

�1.WS/ D h u; v; w; x; y; z j uxy�1v�1w; uyz�1w�1x; uzv�1x�1y;
uvw�1y�1z; uwx�1z�1v; vxzwy i:

Using this particular representation of the fundamental group of the Weber-
Seifert dodecahedral space we compute subgroups of �1.WS/ of index k (k < 10)
via GAP function LowIndexSubgroupsFpGroup [10], and Magma function
LowIndexSubgroups [7] and use their structure to obtain explicit descriptions
of their coset actions (using GAP function FactorCosetAction [10]) which, in
turn, can be transformed into a gluing table of k copies of the dodecahedron (or 20k
copies of the cube). Given such a particular decomposition, we can track how the
canonical surface evolves and whether it splits into embedded components.

We provide a GAP script for download from [15]. The script takes a list of
subgroups as input (presented each by a list of generators from �1.WS/) and
computes an array of data associated to the corresponding covers of DWS. The script
comes with a sample input file containing all subgroups of �1.WS/ of index less
than ten. The subgroups are presented in a form compatible with the definition of
�.WS/ discussed above.

4.1 Covers of Degree Up to Five

A computer search reveals that there are no covers of degrees 2, 3, and 4, and 38
covers of degree 5. Their homology groups are listed in Table 1. For none of them,
the canonical surface splits into embedded components. Moreover, in all but one
case it does not even split into multiple immersed components, with the exception
being the 5-sheeted cover with positive first Betti number described by Hempel [12],
where it splits into five immersed components.

4.2 Covers of Degree Six

There are 61 covers of degree six, for 60 of which the canonical surface does not
split into multiple connected components (see Table 1 below for their first homology
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Table 1 First homology groups of all 490 covers of degree up to nine

Degree H1.X/ ˇ1.X/ # surf. comp. 9 emb. surf. comp. # of covers

1 Z
3
5 0 1 No 1

˙ = 1
5 Z

2
5 ˚ Z

2
25 0 1 No 25

Z3 ˚ Z5 ˚ Z
3
25 0 1 No 6

Z
6
5 ˚ Z25 0 1 No 6

Z
4 ˚ Z

2
3 4 5 No 1

˙ = 38
6 Z4 ˚ Z

3
5 0 1 No 6

Z
2
3 ˚ Z4 ˚ Z

3
5 0 1 No 15

Z3 ˚ Z
3
5 ˚ Z

2
11 0 1 No 24

Z
2
3 ˚ Z4 ˚ Z

3
5 ˚ Z

2
16 0 1 No 15

Z
5 ˚ Z

2
2 ˚ Z

3
5 5 6 Yes (all) 1

˙ = 61
7 Z

3
2 ˚ Z

3
5 0 1 No 20

Z
2
3 ˚ Z

3
5 ˚ Z7 ˚ Z9 ˚ Z11 0 1 No 30

˙ = 50
8 Z

3
2 ˚ Z

3
5 0 1 No 40

Z
3
2 ˚ Z3 ˚ Z

3
5 ˚ Z9 0 1 No 20

Z2 ˚ Z
3
5 ˚ Z

3
7 0 1 No 40

Z3 ˚ Z4 ˚ Z
3
5 ˚ Z

2
19 0 1 No 15

Z
5
2 ˚ Z3 ˚ Z

3
5 ˚ Z

2
7 0 1 No 10

Z˚ Z
3
2 ˚ Z

2
3 ˚ Z

3
5 1 2 No 20

Z˚ Z
3
2 ˚ Z3 ˚ Z

3
5 ˚ Z

2
13 1 1 No 40

˙ = 185
9 Z2 ˚ Z3 ˚ Z

2
4 ˚ Z

3
5 0 1 No 60

Z2 ˚ Z3 ˚ Z
3
5 ˚ Z

2
8 0 1 No 40

Z
4
2 ˚ Z

3
5 ˚ Z9 ˚ Z89 0 1 No 15

Z˚ Z3 ˚ Z4 ˚ Z
3
5 ˚ Z7 1 2 Yes (one) 10

Z˚ Z3 ˚ Z
2
4 ˚ Z

3
5 ˚ Z19 1 1 No 30

˙ = 155

groups, obtained using GAP function AbelianInvariants [10]). However, the
single remaining example leads to an irregular cover C with deck transformation
group isomorphic to A5, for which the canonical surface splits into six embedded
components. The cover is thus a Haken cover (although this fact also follows from
the first integral homology group of C which is isomorphic to Z

5 ˚ Z
2
2 ˚ Z

3
5, see

also Table 1), and the canonical surface defines a very short hierarchy.
The subgroup is generated by

u; v�1w�1; w�1x�1; x�1y�1; y�1z�1;
z�1v�1; vuy�1; v2z�1; vwy�1; vxv�1
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face orbit

u (2,5,3,6,4)
v (1,2,6,4,3)
w (1,3,2,5,4)
x (1,4,3,6,5)
y (1,5,4,2,6)
z (1,6,5,3,2)

Fig. 5 Left: gluing orbits of face classes from DWS in 6-sheeted Haken cover C. Right: face pairing
graph of C. Colours encode face classes in the base DWS. Note that each dodecahedron has one
self-identification and, in particular, that the cover is not cyclic

and the complex is given by gluing six copies 1; 2; : : : ; 6 of the dodecahedron with
the orbits for the six faces as shown in Fig. 5 on the left (the orientation of the orbit
is given as in Fig. 2 on the left). The dual graph of C (with one vertex for each
dodecahedron, one edge for each gluing along a pentagon, and one colour per face
class in the base DWS) is given in Fig. 5 on the right.

The six surfaces consist of 60 mid-cubes each. All surfaces can be decomposed
into 12 “pentagonal disks” of five quadrilaterals each, which are parallel to one of
the pentagonal faces of the complex, but slightly pushed into one of the adjacent
dodecahedra. The six surfaces are given by their pentagonal disks and listed below.
Since all of their vertices (which are intersections of the edges of the dodecahedra)
must have degree 5, each surface must have 12 such vertices, 12 pentagonal disks,
and 30 edges of pentagonal disks, and thus is of Euler characteristic �6. Moreover,
since the Weber-Seifert space is orientable and the surface is 2-sided, it must be
orientable of genus 4.

Every pentagonal disk is denoted by the corresponding pentagonal face it is
parallel to, and the index of the dodecahedron it is contained in. The labelling
follows Fig. 2.

S1 D
D
.z;ˇ/1; . y;˝/1; .v;ˇ/2; . y;ˇ/2; .w;ˇ/3; .w;˝/3;
.x;˝/4; .z;˝/4; .v;˝/5; .u;˝/5; .u;ˇ/6; .x;ˇ/6

E

S2 D
D
.w;˝/1; .x;ˇ/1; .u;˝/2; . y;˝/2; .u;ˇ/3; .v;ˇ/3;
.w;ˇ/4; . y;ˇ/4; .z;˝/5; .z;ˇ/5; .x;˝/6; .v;˝/6

E
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S3 D
D
.w;ˇ/1; .v;˝/1; .w;˝/2; .z;˝/2; .x;˝/3; .u;˝/3;
.z;ˇ/4; .u;ˇ/4; .x;ˇ/5; .v;ˇ/5; . y;˝/6; . y;ˇ/6

E

S4 D
D
.x;˝/1; . y;ˇ/1; .w;ˇ/2; .u;ˇ/2; .x;ˇ/3; .z;ˇ/3;
.v;ˇ/4; .v;˝/4; .w;˝/5; . y;˝/5; .z;˝/6; .u;˝/6

E

S5 D
D
.u;˝/1; .u;ˇ/1; .v;˝/2; .z;ˇ/2; .z;˝/3; . y;ˇ/3;
.x;ˇ/4; . y;˝/4; .x;˝/5; .w;ˇ/�5; .w;˝/6; .v;ˇ/6

E

S6 D
D
.v;ˇ/1; .z;˝/1; .x;˝/2; .x;ˇ/2; .v;˝/3; . y;˝/3;
.u;˝/4; .w;˝/4; . y;ˇ/5; .u;ˇ/5; .w;ˇ/6; .z;ˇ/6

E

Note that the 12 pentagonal disks of every surface component intersect each
dodecahedron exactly twice (A priori, given a sixfold cover of DWS with six
embedded surface components, such an even distribution is not clear: an embedded
surface can intersect a dodecahedron in up to three pentagonal disks.). Moreover,
every surface component can be endowed with an orientation, such that all of its dual
edges point towards the centre of a dodecahedron. Hence, all surface components
must be self-osculating through the centre points of some dodecahedron.

Remark 1 The fact that there must be some self-osculating surface components
in C can also be deduced from the fact that the cover features self-identifications
(i.e., loops in the face pairing graph). To see this, assume w.l.o.g. that the top and
the bottom of a dodecahedron are identified. Then, for instance, pentagonal disk
P1 (which must be part of some surface component) intersecting the innermost
pentagon in edge hv1; v2i must also intersect the dodecahedron in pentagon P2, and
the corresponding surface component must self-osculate (see Fig. 6).

4.3 A Special Cover of Degree 60

The (non-trivial) normal cores of the subgroups of index up to 6 are all of index
either 60 or 360 in �1.WS/. For the computation of normal cores we use the GAP
function Core [10]. One of the index 60 subgroups is the index 12 normal core of
Hempel’s cover mentioned in Sect. 4.1. This is equal to the index 10 normal core of
�1.C/ from Sect. 4.2, and we now show that it produces a special cover S of WS
of degree 60. The deck transformation group is the alternating group A5 and the
abelian invariant of the cover is Z41 ˚ Z

12
2 .
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Fig. 6 Self-identifications
(as indicated by the arrows)
always result in a
self-osculating component of
the canonical surface—as
indicated by the two
pentagonal disks P1 and P2 of
the canonical surface, glued
along the dotted edge hv1; v2i
as a result of the
self-identification

The generators of �1.S/ are

uv�1w�1; uw�1x�1; ux�1y�1; uy�1z�1; uz�1v�1; u�1vz
u�1wv; u�1xw; u�1yx; u�1zy; vuy�1u�1; vu�1w
vwy�1; vxv�1u�1; vx�1z; vy�1x�1; v�1uz�1; v�1u�1xu
v�1xy; v�1y�1vu; wuz�1u�1; wu�1x; wv�1xv; wxz�1

wyw�1u�1; wzw�1v; wz�1y�1; w�1u�1yu; w�1vzv�1; w�1xwv�1

w�1z�1wu; xuv�1u�1; xvwv�1; xw�1yw; xzx�1u�1; x�1u�1zu
x�1v�1xu; x�1wxv; x�1yxw�1; yuw�1u�1; yvy�1u�1; ywxw�1

yx�1zx; y�1u�1vu; y�1v�1z�1v; y�1w�1yu; y�1xyw; zux�1u�1

z�1u�1wu; u5; u2v�1w�1u�1; uvuy�1u�2; uvw�1x�2; uvxv�1u�2

uvyv�2; uwuz�1u�2; uwx�1y�2; uwzw�2; uxuv�1u�2; uxy�1z�2

uyuw�1u�2; u�2vzu; u�2v�1w�1u�2; u�1v�1u�1y�1u�2; u�1v�1x�1v2:

In order to see that S is in fact a special cover, we must establish a number of
observations on embedded surface components in covers of ODWS. In the following
paragraphs we always assume that we are given a finite cover B of DWS together
with its canonical immersed surface defined by the lift of ODWS in B. Whenever we
refer to faces of the decomposition of B into dodecahedra, we explicitly say so.
Otherwise we refer to the faces of the lift of the natural cubulation in B. We start
with a simple definition.

Definition 1 A dodecahedral vertex is said to be near a component S of the
canonical immersed surface of B if it is the endpoint of an edge of the cubulation
dual to S.
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Lemma 1 An embedded component S of the canonical immersed surface ofB self-
osculates if and only if at least one of the following two situations occurs.

a) There exists a dodecahedron containing more than one pentagonal disk of S.
b) The number of dodecahedral vertices near S is strictly smaller than its number

of pentagonal disks.

Proof First note that S is 2-sided and can be transversely oriented such that one
side always points towards the centres of the dodecahedra it intersects. From this it
is apparent that if one of (a) or (b) occurs, then the surface component must self-
osculate.

Assume that (a) does not hold; that is, all dodecahedra contain at most one
pentagonal disk of S. Hence, no self-osculation can occur through the centre of a
dodecahedron. Since every surface component S is made out of pentagonal disks,
with five of such disks meeting in every vertex, S has as many pentagonal disks as it
has pentagonal vertices. Moreover, every such pentagonal vertex of S must be near
exactly one dodecahedral vertex of B. Hence, the number of dodecahedral vertices
that S is near to is bounded above by its number of pentagonal disks. Equality
therefore occurs if and only if S is not near any dodecahedral vertex twice. Hence, if
(b) does not hold, no self-osculation can occur through a vertex of a dodecahedron.

It remains to prove that if S self-osculates, then it must self-osculate through
a centre point of a dodecahedron or through a vertex of a dodecahedron. The
only other possibilities are that it self-osculates through either the midpoint of a
dodecahedral edge or through the centre point of a dodecahedral face.

First assume that the surface self-osculates through the midpoint of a dodecahe-
dral edge e. Then either the surface has two disjoint pentagonal disks both parallel
to e and hence also self-osculates through the two dodecahedral endpoints of e;
or the surface has two disjoint pentagonal disks both intersecting e, in which case
there exists a pair of pentagonal disks in the same dodecahedron—and the surface
self-osculates through the centre of that dodecahedron.

Next assume the surface self-osculates through the centre point of a dodecahedral
face f . Then either the surface has two disjoint pentagonal disks both parallel to f
and hence also self-osculates through the five dodecahedral vertices of f ; or the
surface has two disjoint pentagonal disks both intersecting f , in which case there
exists a pair of pentagonal disks in the same dodecahedron and the surface self-
osculates through the centre of that dodecahedron.

Lemma 2 A pair of intersecting, embedded, and non-self-osculating components S
and T of the canonical immersed surface of B inter-osculates if and only if at least
one of the following two situations occurs.

a) Some dodecahedron contains pentagonal disks of both S and T which are
disjoint.

b) The number of all dodecahedral vertices near S or T minus the number of all
pairs of intersecting pentagonal disks is strictly smaller than the number of all
pentagonal disks in S or T.

Proof We first need to establish the following three claims.
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Claim 1: If S and T inter-osculate, then they inter-osculate through the centre of a
dodecahedron or a vertex of a dodecahedron.

This follows from the arguments presented in the second part of the proof of
Lemma 1 since inter-osculation locally behaves exactly like self-osculation.
Claim 2: Every pentagonal disk of S intersects T in at most one pentagonal disk and
vice versa.

A pentagonal disk can intersect another pentagonal disk in five different ways.
Every form of multiple intersection causes either S or T to self-osculate or even
self-intersect.
Claim 3: A dodecahedral vertex near an intersection of S and T cannot be near any
other pentagonal disk of S or T, other than the ones close to the intersection.

Assume otherwise, then this causes either S or T to self-osculate or even self-
intersect.

We now return to the proof of the main statement. If (a) is satisfied, then the
surface pair inter-osculates through the centre of the dodecahedron (see also the
proof of Lemma 1). If (b) is satisfied, then by Claim 2 and Claim 3, both S and T
must be near a dodecahedral vertex away from their intersections and thus S and T
inter-osculate.

For the converse assume that neither (a) nor (b) holds. By Claim 1, it suffices to
show that S and T do not inter-osculate through the centre of a dodecahedron or a
vertex of a dodecahedron.

We first show that S and T do not inter-osculate through the centre of a
dodecahedron. If at most one of S or T meets a dodecahedron, then this is true
for its centre. Hence assume that both S and T meet a dodecahedron in pentagonal
discs. By Claim 2 the dodecahedron contains exactly one pentagonal disc from each
surface. These intesect since (a) is assumed false. The only dual edges to S (resp. T)
with a vertex at the centre of the cube run from the centre of the pentagonal face of
the dodecahedron dual to S (resp. T) to the centre of the dodecahedron. But these
two edges lie in the boundary of a square in the dodecahedron since the pentagonal
discs intersect and hence the pentagonal faces are adjacent. Hence S and T do not
inter-osculate through the centre of a dodecahedron.

We next show that S and T do not inter-osculate through the vertex of a
dodecahedron. The negation of (b) is that the number of all dodecahedral vertices
near S or T minus the number of all pairs of intersecting pentagonal disks equals
the number of all pentagonal disks of S and T: Suppose a dodecahedral vertex is
the endpoint of dual edges to squares in S and T. If the dual edges are contained in
the same dodecahedron then they are in the boundary of a common square. Hence
assume they are contained in different dodecahedra. Then the equality forces at least
one of the dual edges to be in the boundary of a cube intersected by both S and T.
But then at least one of the surfaces self-osculates.

Due to Lemmata 1 and 2, checking for self-osculating embedded surface
components is a straightforward task. Furthermore, as long as surface components
are embedded and non-self-osculating, checking for inter-osculation of a surface
pair is simple as well.
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In the cover S we have:

(a) the canonical immersed surface splits into 60 embedded components,
(b) every surface component of S is made up of 12 pentagonal disks (and thus is

orientable of genus 4, see the description of the canonical surface components
of C in Sect. 4.2 for details),

(c) every surface component distributes its 12 pentagonal disks over 12 distinct
dodecahedra,

(d) every surface component is near 12 dodecahedral vertices, and
(e) every pair of intersecting surface components intersects in exactly three pentag-

onal disks (and hence in exactly three dodecahedra), and for each such pair both
surface components combined are near exactly 21 dodecahedral vertices.

These properties of S can be checked using the GAP script available from
[15]. From them, and from Lemmata 1 and 2 it follows that S is a special cover.
The gluing orbits for S of the face classes from DWS, as well as all 60 surface
components are listed in Sect. 6.

4.4 Covers of Higher Degree

An exhaustive enumeration of all subgroups up to index 9 reveals a total of 490
covers, but no further examples of covers where the canonical surface splits into
embedded components (and in particular no further special covers). There are,
however, 20 examples of degree 8 covers where the canonical surface splits into two
immersed connected components (all with first homology group Z˚Z

3
2˚Z

2
3˚Z

3
5).

Moreover, there are 10 examples of degree 9 covers, where the canonical surface
splits into two components, one of which is embedded (all with first homology
group Z ˚ Z3 ˚ Z4 ˚ Z

3
5 ˚ Z7). All of them are Haken, as can be seen by their

first integral homology groups.
In an attempt to obtain further special covers we execute a non-exhaustive,

heuristic search for higher degree covers. This is necessary since complete enumer-
ation of subgroups quickly becomes infeasible for subgroups of index larger than 9.
This more targeted search is done in essentially two distinct ways.

In the first approach we compute normal cores of all irregular covers of degrees 7,
8, and 9 from the enumeration of subgroups of �1.WS/ of index at most 9 described
above. This is motivated by the fact that the index 60 normal core of �1.C/ yields
a special cover. The normal cores have indices 168, 504, 1344, 2520, 20;160, and
181;440. Of the ones with index at most 2520, we construct the corresponding cover.
Very often, the covers associated to these normal cores exhibit a single (immersed)
surface component. However, the normal cores of the 10 subgroups corresponding
to the covers of degree 9 with two surface components yield (regular) covers where
the canonical immersed surface splits into nine embedded components. All of
these covers are of degree 504 with deck transformation group PSL.2; 8/. Each
of the surface components has 672 pentagons. Accordingly, each of them must be
(orientable) of genus 169. All nine surface components necessarily self-osculate
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(they are embedded and contain more pentagonal disks than there are dodecahedra
in the cover). The first homology group of all of these covers is given by

Z
8 ˚ Z

10
2 ˚ Z3 ˚ Z

9
4 ˚ Z

17
5 ˚ Z7 ˚ Z

6
8 ˚ Z

7
9 ˚ Z

28
17 ˚ Z

7
27 ˚ Z

9
29 ˚ Z

18
83:

In addition, there are 120 subgroups with a core of order 1344, and factor group
isomorphic to a semi-direct product of Z

3
2 and PSL.3; 2/. For 40 of them the

corresponding (regular) cover splits into 8 immersed components. These include the
covers of degree 8 where the canonical immersed surface splits into two immersed
components.

In the second approach we analyse low degree covers of C from Sect. 4.2. This is
motivated by the fact that, in such covers, the canonical surface necessarily consists
of embedded components.

There are 127 twofold covers of C, 64 of which are fix-point free (i.e., they do
not identify two pentagons of the same dodecahedron—a necessary condition for a
cover to be special, see the end of Sect. 4.2). For 40 of them the canonical surface
still only splits into six embedded components. For the remaining 24, the surface
splits into 7 components. For more details, see Table 2.

The 127 twofold covers of C altogether have 43;905 twofold covers. Amongst
these 24-fold covers of DWS, 16;192 are fix-point free. They admit 6–14 surface
components with a single exception where the surface splits into 24 components.
This cover is denoted by E. Details on the number of covers and surface components
can be found in Table 3.

We have for the generators of the subgroup corresponding to the cover E

u�2; uvz; uv�1w�1; uwv; uw�1x�1; uxw; ux�1y�1;
uyx; uy�1z�1; uzy; uz�1v�1; vux; vu�1w; vwy�1;
vxz; vx�1z; vy�1x�1; z�1uy�1; z�1u�1x�1; z�1vy�1v�1; z�1wx;
z�1w�1zv�1; z�1yv�2; z�1y�1w; z�2wv�1; wuy; wv�1xv:

Table 2 Summary of all 64
fix-point free double covers
of C

H1.X/ # surf. comp. # covers

Z
5 ˚ Z

2
4 ˚ Z

3
5 6 20

Z
5 ˚ Z

2
2 ˚ Z4 ˚ Z

3
5 6 20

Z
6 ˚ Z

2
2 ˚ Z

3
5 7 12

Z
7 ˚ Z

3
5 7 12

˙ = 64

By construction, all surface components are
embedded

Table 3 Summary of all 16;192 fix-point free double covers of the 127 double covers of C

# surf. comp. 6 7 7 8 8 8 9 9 12 14 14 24

# covers 8960 3240 2160 180 720 540 240 24 85 24 18 1 ˙ = 16,192

By construction, all surface components are embedded
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Surface components in E are small (12 pentagonal disks per surface, as also
observed in the degree 60 special coverS, see Sect. 4.3). This motivates an extended
search for a degree 48 special cover by looking at degree 2 covers of E. However,
amongst the 131;071 fix-point free covers of degree 2, no special cover exists. More
precisely, there are 120;205 covers with 24 surface components, 10;200 with 25
surface components, 240 with 26 and 27 surface components each, 162 with 28,
and 24 with 33 surface components. For most of them, most surface components
self-osculate.

5 Poincaré Homology Sphere and Projective Space

The Poincaré homology sphere has as fundamental group the binary icosahedral
group of order 120, which is isomorphic to SL.2; 5/. From its subdivision given by
the dodecahedron, we can deduce a presentation with six generators dual to the six
pentagons of the subdivision, and one relator dual to each of the ten edges:

�1.D˙3/ D h u; v; w; x; y; z j uxz; uyv; uzw; uvx; uwy;
xy�1z; yz�1v; zv�1w; vw�1x; wx�1y i:

SL.2; 5/ has 76 subgroups falling into 12 conjugacy classes forming the sub-
group lattice shown in Fig. 7 on the left hand side. For the corresponding hierarchy
of covers together with the topological types of the covering 3-manifolds see Fig. 7
on the right hand side.

SL(2, 5)

1

SL(2, 3)

Q8

Z4

Z2

Dic5

Z10

Z5

Dic3

Z6

Z3

6 5 10

2

2

2

2

3

2

2

25 3

5 3

5

3
4

6 5 10

2

2

2

2

3

2

2

25 3

5 3

5

3
4

Σ3

Δ(1)

P(1, 2)

L(4, 1)

R

S

P 3

3

P(1, 5)

L(10, 1)

L(5, 1)

P(1, 3)

L(6, 1)

L(3, 1)

Fig. 7 Left: subgroup lattice of SL.2; 5/ with indices. Right: covers of ˙3 with degrees. Here
P.n;m/ denotes the prism space with parameters n and m, and �.n/ denotes the tetrahedral space
with parameter n
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By construction, the universal cover of D˙3 is the 120-cell, which is dual to
the simplicial 600-cell. In particular, the dual cell decomposition of any of the 12
covers is a (semi-simplicial) triangulation. The dual of D˙3 itself is isomorphic to
the minimal five-tetrahedron triangulation of the Poincaré homology sphere.

Most of the topological types are determined by the isomorphism type of the
subgroups. The only two non-trivial cases are the lens spaces L.5; 1/ and L.10; 1/.
For the former, we passed to the dual triangulation of the cover of degree 24 using
the GAP-package simpcomp [9], and then fed the result to the 3-manifold software
Regina [8] to determine the topological type of the cover to be L.5; 1/. The latter
is then determined by the observation that there is no 2-to-1-cover of L.10; 3/ to
L.5; 1/.

Regarding the canonical immersed surface, the situation is quite straightforward.
Since all edges of D˙3 , or of any of its covers, are of degree three, the canonical
surface is a surface decomposed into pentagonal disks with three such disks
meeting in each vertex. Consequently, all surface components must be 2-spheres
isomorphic to the dodecahedron, thus have 12 pentagons, and the number of
connected components of the canonical surface must coincide with the degree of
the cover. Moreover, each surface component runs parallel to the 2-skeleton of a
single dodecahedron, and the surface components are embedded if and only if there
are no self-intersections of dodecahedra.

In more detail the relevant properties of all covers are listed in Table 4.
The case of the projective space is rather simple. The only proper cover (of degree

> 1) is the universal cover of degree 2. Since the edges of DRP3 are all of degree
two, the canonical surface of DRP3 has six embedded sphere components, each
consisting of two pentagons glued along their boundary, surrounding one of the six

Table 4 Covers of ˙3

Deg. Top. type. Subgroup f -vec. Embedded # surf. Regular Deck trafo grp.

1 ˙3 SL.2; 5/ .5; 10; 6; 1/ No 1 Yes 1

5 �.1/ SL.2; 3/ .25; 50; 30; 5/ Yes 5 No A5

6 P.1; 5/ Dic.5/ .30; 60; 36; 6/ No 6 No A5

10 P.1; 3/ Dic.3/ .50; 100; 60; 10/ Yes 10 No A5

12 L.10; 1/ Z10 .60; 120; 72; 12/ No 12 No A5

15 P.1; 2/ Q8 .75; 150; 90; 15/ Yes 15 No A5

20 L.6; 1/ Z6 .100; 200; 120; 20/ Yes 20 No A5

24 L.5; 1/ Z5 .120; 240; 144; 24/ Yes 24 No SL.2; 5/

30 L.4; 1/ Z4 .150; 300; 180; 30/ Yes 30 No A5

40 L.3; 1/ Z3 .200; 400; 240; 40/ Yes 40 No SL.2; 5/

60 RP3 Z2 .300; 600; 360; 60/ Yes 60 Yes A5

120 S
3 1 .600; 1200; 720; 120/ Yes 120 Yes SL.2; 5/

P.n;m/ denotes the prism space with parameters n and m, and �.n/ denotes the tetrahedral
space with parameter n. “f -vec.” denotes the f -vector of the cover as a decomposition into
dodecahedra. I.e., .25; 50; 30; 5/means that the corresponding cover contains 25 vertices, 50 edges,
30 pentagons, and 5 dodecahedra. “deck trafo grp.” denotes the deck transformation group of the
cover
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pentagonal faces each. Consequently, the universal cover is a 3-sphere decomposed
into two balls along a dodecahedron with the canonical surface splitting into 12
sphere components.

6 The Special Cover S

The special cover S from Sect. 4.3 is of degree 60 with deck transformation group
A5 and abelian invariant Z41 ˚ Z

12
2 . The subgroup is generated by

uv�1w�1; uw�1x�1; ux�1y�1; uy�1z�1; uz�1v�1; u�1vz
u�1wv; u�1xw; u�1yx; u�1zy; vuy�1u�1; vu�1w
vwy�1; vxv�1u�1; vx�1z; vy�1x�1; v�1uz�1; v�1u�1xu
v�1xy; v�1y�1vu; wuz�1u�1; wu�1x; wv�1xv; wxz�1

wyw�1u�1; wzw�1v; wz�1y�1; w�1u�1yu; w�1vzv�1; w�1xwv�1

w�1z�1wu; xuv�1u�1; xvwv�1; xw�1yw; xzx�1u�1; x�1u�1zu
x�1v�1xu; x�1wxv; x�1yxw�1; yuw�1u�1; yvy�1u�1; ywxw�1

yx�1zx; y�1u�1vu; y�1v�1z�1v; y�1w�1yu; y�1xyw; zux�1u�1

z�1u�1wu; u5; u2v�1w�1u�1; uvuy�1u�2; uvw�1x�2; uvxv�1u�2

uvyv�2; uwuz�1u�2; uwx�1y�2; uwzw�2; uxuv�1u�2; uxy�1z�2

uyuw�1u�2; u�2vzu; u�2v�1w�1u�2; u�1v�1u�1y�1u�2; u�1v�1x�1v2:

The gluing orbits of face classes from DWS are given by

Face Orbit

u .1; 2; 14; 20; 3/.4; 18; 47; 24; 7/.5; 12; 17; 46; 23/.6; 19; 48; 25; 9/

.8; 15; 49; 21; 11/.10; 16; 50; 22; 13/.26; 54; 43; 37; 27/.28; 42; 52; 36; 29/

.30; 33; 39; 38; 51/.31; 44; 53; 40; 32/.34; 55; 45; 41; 35/.56; 59; 60; 58; 57/

v .1; 4; 26; 30; 5/.2; 15; 51; 32; 6/.3; 13; 28; 54; 21/.7; 29; 56; 33; 11/

.8; 27; 57; 31; 12/.9; 10; 18; 49; 23/.14; 46; 40; 35; 16/.17; 38; 58; 34; 19/

.20; 25; 41; 42; 47/.22; 45; 59; 43; 24/.36; 55; 44; 39; 37/.48; 53; 60; 52; 50/

w .1; 6; 34; 36; 7/.2; 16; 52; 37; 8/.3; 5; 31; 55; 22/.4; 10; 35; 58; 27/

.9; 32; 57; 29; 13/.11; 12; 19; 50; 24/.14; 47; 43; 39; 17/.15; 18; 42; 60; 38/

.20; 21; 33; 44; 48/.23; 30; 56; 45; 25/.26; 28; 41; 40; 51/.46; 49; 54; 59; 53/

x .1; 8; 38; 40; 9/.2; 17; 53; 41; 10/.3; 7; 27; 51; 23/.4; 15; 46; 25; 13/

.5; 11; 37; 58; 32/.6; 12; 39; 60; 35/.14; 48; 45; 28; 18/.16; 19; 44; 59; 42/

.20; 22; 29; 26; 49/.21; 24; 36; 57; 30/.31; 33; 43; 52; 34/.47; 50; 55; 56; 54/

y .1; 10; 42; 43; 11/.2; 18; 54; 33; 12/.3; 9; 35; 52; 24/.4; 28; 59; 39; 8/

.5; 6; 16; 47; 21/.7; 13; 41; 60; 37/.14; 49; 30; 31; 19/.15; 26; 56; 44; 17/

.20; 23; 32; 34; 50/.22; 25; 40; 58; 36/.27; 29; 45; 53; 38/.46; 51; 57; 55; 48/

z .1; 12; 44; 45; 13/.2; 19; 55; 29; 4/.3; 11; 39; 53; 25/.5; 33; 59; 41; 9/

.6; 31; 56; 28; 10/.7; 8; 17; 48; 22/.14; 50; 36; 27; 15/.16; 34; 57; 26; 18/

.20; 24; 37; 38; 46/.21; 43; 60; 40; 23/.30; 54; 42; 35; 32/.47; 52; 58; 51; 49/
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The 60 surfaces are given by their pentagonal disks. Every pentagonal disk is
denoted by the corresponding pentagonal face in the lift of DWS it is parallel to, and
the index of the dodecahedron it is contained in. The labelling follows Fig. 2.

S1 D
D
.u;ˇ/60; .x;ˇ/42; .w;ˇ/39; .v;ˇ/41; .z;ˇ/43; . y;ˇ/53;
. y;˝/54; .w;˝/28; .x;˝/44; .v;˝/33; .z;˝/45; .u;˝/56

E

S2 D
D
.x;˝/60; .w;ˇ/52; .u;˝/41; . y;ˇ/58; .v;˝/42; .z;˝/40;
.z;ˇ/16; .u;ˇ/34; .w;˝/9; . y;˝/10; .v;ˇ/32; .x;ˇ/6

E

S3 D
D
. y;˝/60; .x;ˇ/40; .u;˝/39; .z;ˇ/58; .w;˝/53; .v;˝/37;
.v;ˇ/46; .u;ˇ/51; .x;˝/8; .z;˝/17; .w;ˇ/27; . y;ˇ/15

E

S4 D
D
.z;˝/60; . y;ˇ/37; .u;˝/42; .v;ˇ/58; .x;˝/43; .w;˝/35;
.w;ˇ/24; .u;ˇ/36; .v;˝/47; . y;˝/16; .x;ˇ/34; .z;ˇ/50

E

S5 D
D
.v;˝/60; .z;ˇ/35; .u;˝/53; .w;ˇ/58; . y;˝/41; .x;˝/38;
.x;ˇ/9; .u;ˇ/32; .w;˝/25; .z;˝/46; . y;ˇ/51; .v;ˇ/23

E

S6 D
D
.w;˝/60; .v;ˇ/38; .u;˝/43; .x;ˇ/58; .z;˝/39; . y;˝/52;
. y;ˇ/8; .u;ˇ/27; .v;˝/24; .x;˝/11; .z;ˇ/36; .w;ˇ/7

E

S7 D
D
.v;ˇ/60; .x;ˇ/52; . y;ˇ/39; .w;˝/42; .u;ˇ/37; .z;˝/59;
.z;ˇ/24; . y;˝/47; .w;ˇ/11; .x;˝/33; .u;˝/54; .v;˝/21

E

S8 D
D
.w;ˇ/60; . y;ˇ/40; .z;ˇ/42; .x;˝/53; .u;ˇ/35; .v;˝/59;
.v;ˇ/9; .z;˝/25; .x;ˇ/10; . y;˝/28; .u;˝/45; .w;˝/13

E

S9 D
D
.x;ˇ/60; .z;ˇ/37; .v;ˇ/53; . y;˝/43; .u;ˇ/38; .w;˝/59;
.w;ˇ/8; .v;˝/11; . y;ˇ/17; .z;˝/44; .u;˝/33; .x;˝/12

E

S10 D
D
. y;ˇ/60; .v;ˇ/35; .w;ˇ/43; .z;˝/41; .u;ˇ/52; .x;˝/59;
.x;ˇ/16; .w;˝/10; .z;ˇ/47; .v;˝/54; .u;˝/28; . y;˝/18

E
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S11 D
D
.z;ˇ/60; .w;ˇ/38; .x;ˇ/41; .v;˝/39; .u;ˇ/40; . y;˝/59;
. y;ˇ/46; .x;˝/17; .v;ˇ/25; .w;˝/45; .u;˝/44; .z;˝/48

E

S12 D
D
.u;˝/60; .v;˝/52; .w;˝/40; .x;˝/37; . y;˝/35; .z;˝/38;
.z;ˇ/34; .w;ˇ/36; .v;ˇ/51; .x;ˇ/32; . y;ˇ/27; .u;ˇ/57

E

S13 D
D
.u;ˇ/59; .x;ˇ/54; .w;ˇ/44; .v;ˇ/28; .z;ˇ/33; . y;ˇ/45;
. y;˝/30; .w;˝/26; .x;˝/55; .v;˝/31; .z;˝/29; .u;˝/57

E

S14 D
D
.v;ˇ/59; .x;ˇ/43; . y;ˇ/44; .w;˝/54; .u;ˇ/39; .z;˝/56;
.z;ˇ/11; . y;˝/21; .w;ˇ/12; .x;˝/31; .u;˝/30; .v;˝/5

E

S15 D
D
.w;ˇ/59; . y;ˇ/41; .z;ˇ/54; .x;˝/45; .u;ˇ/42; .v;˝/56;
.v;ˇ/10; .z;˝/13; .x;ˇ/18; . y;˝/26; .u;˝/29; .w;˝/4

E

S16 D
D
.x;ˇ/59; .z;ˇ/39; .v;ˇ/45; . y;˝/33; .u;ˇ/53; .w;˝/56;
.w;ˇ/17; .v;˝/12; . y;ˇ/48; .z;˝/55; .u;˝/31; .x;˝/19

E

S17 D
D
. y;ˇ/59; .v;ˇ/42; .w;ˇ/33; .z;˝/28; .u;ˇ/43; .x;˝/56;
.x;ˇ/47; .w;˝/18; .z;ˇ/21; .v;˝/30; .u;˝/26; . y;˝/49

E

S18 D
D
.z;ˇ/59; .w;ˇ/53; .x;ˇ/28; .v;˝/44; .u;ˇ/41; . y;˝/56;
. y;ˇ/25; .x;˝/48; .v;ˇ/13; .w;˝/29; .u;˝/55; .z;˝/22

E

S19 D
D
.u;˝/59; .v;˝/43; .w;˝/41; .x;˝/39; . y;˝/42; .z;˝/53;
.z;ˇ/52; .w;ˇ/37; .v;ˇ/40; .x;ˇ/35; . y;ˇ/38; .u;ˇ/58

E

S20 D
D
.x;˝/58; .w;ˇ/34; .u;˝/40; . y;ˇ/57; .v;˝/35; .z;˝/51;
.z;ˇ/6; .u;ˇ/31; .w;˝/23; . y;˝/9; .v;ˇ/30; .x;ˇ/5

E

S21 D
D
. y;˝/58; .x;ˇ/51; .u;˝/37; .z;ˇ/57; .w;˝/38; .v;˝/36;
.v;ˇ/15; .u;ˇ/26; .x;˝/7; .z;˝/8; .w;ˇ/29; . y;ˇ/4

E
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S22 D
D
.z;˝/58; . y;ˇ/36; .u;˝/35; .v;ˇ/57; .x;˝/52; .w;˝/32;
.w;ˇ/50; .u;ˇ/55; .v;˝/16; . y;˝/6; .x;ˇ/31; .z;ˇ/19

E

S23 D
D
.v;˝/58; .z;ˇ/32; .u;˝/38; .w;ˇ/57; . y;˝/40; .x;˝/27;
.x;ˇ/23; .u;ˇ/30; .w;˝/46; .z;˝/15; . y;ˇ/26; .v;ˇ/49

E

S24 D
D
.w;˝/58; .v;ˇ/27; .u;˝/52; .x;ˇ/57; .z;˝/37; . y;˝/34;
. y;ˇ/7; .u;ˇ/29; .v;˝/50; .x;˝/24; .z;ˇ/55; .w;ˇ/22

E

S25 D
D
.u;˝/58; .v;˝/34; .w;˝/51; .x;˝/36; . y;˝/32; .z;˝/27;
.z;ˇ/31; .w;ˇ/55; .v;ˇ/26; .x;ˇ/30; . y;ˇ/29; .u;ˇ/56

E

S26 D
D
.x;˝/57; .w;ˇ/31; .u;˝/51; . y;ˇ/56; .v;˝/32; .z;˝/26;
.z;ˇ/5; .u;ˇ/33; .w;˝/49; . y;˝/23; .v;ˇ/54; .x;ˇ/21

E

S27 D
D
. y;˝/57; .x;ˇ/26; .u;˝/36; .z;ˇ/56; .w;˝/27; .v;˝/55;
.v;ˇ/4; .u;ˇ/28; .x;˝/22; .z;˝/7; .w;ˇ/45; . y;ˇ/13

E

S28 D
D
.z;˝/57; . y;ˇ/55; .u;˝/32; .v;ˇ/56; .x;˝/34; .w;˝/30;
.w;ˇ/19; .u;ˇ/44; .v;˝/6; . y;˝/5; .x;ˇ/33; .z;ˇ/12

E

S29 D
D
.v;˝/57; .z;ˇ/30; .u;˝/27; .w;ˇ/56; . y;˝/51; .x;˝/29;
.x;ˇ/49; .u;ˇ/54; .w;˝/15; .z;˝/4; . y;ˇ/28; .v;ˇ/18

E

S30 D
D
.w;˝/57; .v;ˇ/29; .u;˝/34; .x;ˇ/56; .z;˝/36; . y;˝/31;
. y;ˇ/22; .u;ˇ/45; .v;˝/19; .x;˝/50; .z;ˇ/44; .w;ˇ/48

E

S31 D
D
. y;˝/55; .x;ˇ/29; .u;˝/50; .z;ˇ/45; .w;˝/36; .v;˝/48;
.v;ˇ/7; .u;ˇ/13; .x;˝/20; .z;˝/24; .w;ˇ/25; . y;ˇ/3

E

S32 D
D
.w;˝/55; .v;ˇ/22; .u;˝/19; .x;ˇ/45; .z;˝/50; . y;˝/44;
. y;ˇ/20; .u;ˇ/25; .v;˝/17; .x;˝/14; .z;ˇ/53; .w;ˇ/46

E
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S33 D
D
.v;ˇ/55; .x;ˇ/44; . y;ˇ/50; .w;˝/31; .u;ˇ/48; .z;˝/34;
.z;ˇ/17; . y;˝/12; .w;ˇ/14; .x;˝/16; .u;˝/6; .v;˝/2

E

S34 D
D
.x;ˇ/55; .z;ˇ/48; .v;ˇ/36; . y;˝/19; .u;ˇ/22; .w;˝/34;
.w;ˇ/20; .v;˝/14; . y;ˇ/24; .z;˝/52; .u;˝/16; .x;˝/47

E

S35 D
D
.x;˝/54; .w;ˇ/21; .u;˝/18; . y;ˇ/43; .v;˝/49; .z;˝/42;
.z;ˇ/20; .u;ˇ/24; .w;˝/16; . y;˝/14; .v;ˇ/52; .x;ˇ/50

E

S36 D
D
.z;˝/54; . y;ˇ/33; .u;˝/49; .v;ˇ/43; .x;˝/30; .w;˝/47;
.w;ˇ/5; .u;ˇ/11; .v;˝/23; . y;˝/20; .x;ˇ/24; .z;ˇ/3

E

S37 D
D
.w;ˇ/54; . y;ˇ/42; .z;ˇ/49; .x;˝/28; .u;ˇ/47; .v;˝/26;
.v;ˇ/16; .z;˝/10; .x;ˇ/14; . y;˝/15; .u;˝/4; .w;˝/2

E

S38 D
D
. y;ˇ/54; .v;ˇ/47; .w;ˇ/30; .z;˝/18; .u;ˇ/21; .x;˝/26;
.x;ˇ/20; .w;˝/14; .z;ˇ/23; .v;˝/51; .u;˝/15; . y;˝/46

E

S39 D
D
. y;˝/53; .x;ˇ/25; .u;˝/17; .z;ˇ/40; .w;˝/48; .v;˝/38;
.v;ˇ/20; .u;ˇ/23; .x;˝/15; .z;˝/14; .w;ˇ/51; . y;ˇ/49

E

S40 D
D
.v;˝/53; .z;ˇ/41; .u;˝/48; .w;ˇ/40; . y;˝/45; .x;˝/46;
.x;ˇ/13; .u;ˇ/9; .w;˝/22; .z;˝/20; . y;ˇ/23; .v;ˇ/3

E

S41 D
D
.x;ˇ/53; .z;ˇ/38; .v;ˇ/48; . y;˝/39; .u;ˇ/46; .w;˝/44;
.w;ˇ/15; .v;˝/8; . y;ˇ/14; .z;˝/19; .u;˝/12; .x;˝/2

E

S42 D
D
.w;˝/52; .v;ˇ/37; .u;˝/47; .x;ˇ/36; .z;˝/43; . y;˝/50;
. y;ˇ/11; .u;ˇ/7; .v;˝/20; .x;˝/21; .z;ˇ/22; .w;ˇ/3

E

S43 D
D
. y;ˇ/52; .v;ˇ/34; .w;ˇ/47; .z;˝/35; .u;ˇ/50; .x;˝/42;
.x;ˇ/19; .w;˝/6; .z;ˇ/14; .v;˝/18; .u;˝/10; . y;˝/2

E
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S44 D
D
.x;˝/51; .w;ˇ/32; .u;˝/46; . y;ˇ/30; .v;˝/40; .z;˝/49;
.z;ˇ/9; .u;ˇ/5; .w;˝/20; . y;˝/25; .v;ˇ/21; .x;ˇ/3

E

S45 D
D
.z;ˇ/51; .w;ˇ/26; .x;ˇ/46; .v;˝/27; .u;ˇ/49; . y;˝/38;
. y;ˇ/18; .x;˝/4; .v;ˇ/14; .w;˝/17; .u;˝/8; .z;˝/2

E

S46 D
D
.w;˝/50; .v;ˇ/24; .u;˝/14; .x;ˇ/22; .z;˝/47; . y;˝/48;
. y;ˇ/21; .u;ˇ/3; .v;˝/46; .x;˝/49; .z;ˇ/25; .w;ˇ/23

E

S47 D
D
.v;ˇ/50; .x;ˇ/48; . y;ˇ/47; .w;˝/19; .u;ˇ/20; .z;˝/16;
.z;ˇ/46; . y;˝/17; .w;ˇ/49; .x;˝/18; .u;˝/2; .v;˝/15

E

S48 D
D
.v;˝/45; .z;ˇ/28; .u;˝/22; .w;ˇ/41; . y;˝/29; .x;˝/25;
.x;ˇ/4; .u;ˇ/10; .w;˝/7; .z;˝/3; . y;ˇ/9; .v;ˇ/1

E

S49 D
D
.v;ˇ/44; .x;ˇ/39; . y;ˇ/19; .w;˝/33; .u;ˇ/17; .z;˝/31;
.z;ˇ/8; . y;˝/11; .w;ˇ/2; .x;˝/6; .u;˝/5; .v;˝/1

E

S50 D
D
.w;˝/43; .v;ˇ/39; .u;˝/21; .x;ˇ/37; .z;˝/33; . y;˝/24;
. y;ˇ/12; .u;ˇ/8; .v;˝/3; .x;˝/5; .z;ˇ/7; .w;ˇ/1

E

S51 D
D
.w;ˇ/42; . y;ˇ/35; .z;ˇ/18; .x;˝/41; .u;ˇ/16; .v;˝/28;
.v;ˇ/6; .z;˝/9; .x;ˇ/2; . y;˝/4; .u;˝/13; .w;˝/1

E

S52 D
D
.v;˝/41; .z;ˇ/10; .u;˝/25; .w;ˇ/35; . y;˝/13; .x;˝/40;
.x;ˇ/1; .u;ˇ/6; .w;˝/3; .z;˝/23; . y;ˇ/32; .v;ˇ/5

E

S53 D
D
.w;˝/39; .v;ˇ/17; .u;˝/11; .x;ˇ/38; .z;˝/12; . y;˝/37;
. y;ˇ/2; .u;ˇ/15; .v;˝/7; .x;˝/1; .z;ˇ/27; .w;ˇ/4

E

S54 D
D
.w;˝/37; .v;ˇ/8; .u;˝/24; .x;ˇ/27; .z;˝/11; . y;˝/36;
. y;ˇ/1; .u;ˇ/4; .v;˝/22; .x;˝/3; .z;ˇ/29; .w;ˇ/13

E
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S55 D
D
.x;˝/35; .w;ˇ/16; .u;˝/9; . y;ˇ/34; .v;˝/10; .z;˝/32;
.z;ˇ/2; .u;ˇ/19; .w;˝/5; . y;˝/1; .v;ˇ/31; .x;ˇ/12

E

S56 D
D
.v;ˇ/33; .x;ˇ/11; . y;ˇ/31; .w;˝/21; .u;ˇ/12; .z;˝/30;
.z;ˇ/1; . y;˝/3; .w;ˇ/6; .x;˝/32; .u;˝/23; .v;˝/9

E

S57 D
D
.v;˝/29; .z;ˇ/26; .u;˝/7; .w;ˇ/28; . y;˝/27; .x;˝/13;
.x;ˇ/15; .u;ˇ/18; .w;˝/8; .z;˝/1; . y;ˇ/10; .v;ˇ/2

E

S58 D
D
.v;˝/25; .z;ˇ/13; .u;˝/20; .w;ˇ/9; . y;˝/22; .x;˝/23;
.x;ˇ/7; .u;ˇ/1; .w;˝/24; .z;˝/21; . y;ˇ/5; .v;ˇ/11

E

S59 D
D
.v;ˇ/19; .x;ˇ/17; . y;ˇ/16; .w;˝/12; .u;ˇ/14; .z;˝/6;
.z;ˇ/15; . y;˝/8; .w;ˇ/18; .x;˝/10; .u;˝/1; .v;˝/4

E

S60 D
D
.v;˝/13; .z;ˇ/4; .u;˝/3; .w;ˇ/10; . y;˝/7; .x;˝/9;
.x;ˇ/8; .u;ˇ/2; .w;˝/11; .z;˝/5; . y;ˇ/6; .v;ˇ/12

E
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Lecture Notes on Infinity-Properads

Philip Hackney and Marcy Robertson

Abstract These are notes for three lectures on higher properads given at a program
at the mathematical institute MATRIX in Australia in June 2016. The first lecture
covers the case of operads, and provides a brief introduction to the Moerdijk-Weiss
theory of dendroidal sets. The second lecture extends the discussion to properads
and our work with Donald Yau on graphical sets. These two lectures conclude with
models for higher (pr)operads given by an inner horn filling condition. Finally, in
the last lecture, we explore some properties of the graphical category and use them
to propose a Segal-type model for higher properads.

1 Introduction

The main goal of this lecture series is to provide a brief introduction to the theory
of higher operads and properads. As these informal lecture notes stay very close
to our presentations, which occupied only three hours in total, we were necessarily
extremely selective in what is included. It is important to reiterate that this is not a
survey paper on this area, and the reader will necessarily have to use other sources
to get a ‘big picture’ overview.

Various models of infinity-operads have been developed in work of Barwick,
Cisinski, Lurie, Moerdijk, Weiss and others [1, 8–10, 18, 20, 21]. In these lectures
we focus on the combinatorial models which arise when one extends the simplicial
category � by a category of trees &. This ‘dendroidal category’ leads immediately
to the category of dendroidal sets [20], namely the presheaf category Set&

op
. A

dendroidal set X 2 Set&
op

which satisfies an inner horn-filling condition is called
a quasi-operad (see Definition 2.14). We briefly review these objects in Sect. 2.
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Properads are a generalization of operads introduced by Vallette [23] which
parametrize algebraic structures with several inputs and several outputs. These
types of algebraic structures include Hopf algebras, Frobenius algebras and Lie
bialgebras. In our monograph [12] with D. Yau and in subsequent papers, we work
to generalize the theory of infinity-operads to the properad setting. In Sect. 3 we
explain the appropriate replacement of the dendroidal category & the graphical
category( and define quasi-properads as graphical sets which satisfy an inner horn-
filling condition. This material (and much more) can be found in the monograph
[12]. It is worth mentioning that J. Kock, while reading the manuscript of [12],
realized that one can give an alternative definition of the category ( . The interested
reader can find more details of this construction in [17].

In the final section, we propose a Segal-type model for infinity properads. There
are clear antecedents for models of this form in several other settings [4, 6, 9, 16].
We recall the C. Berger and I. Moerdijk theory of generalized Reedy categories
from [3]. The graphical category ( is such a category, so the category of graphical
spaces sSet(

op
possesses a cofibrantly generated model structure with levelwise

weak equivalences and relatively few fibrant objects. Finally, we discuss the Segal
condition in the context of graphical sets and spaces.

2 Colored Operads, Dendroidal Sets, and Quasi-Operads

This section is a brief overview of dendroidal sets, introduced by Moerdijk
and Weiss [20], which allow us to discuss the ‘quasi-operad’ model for infinity
categories [8, 20]. Throughout this section, we are using the formal language that
we will need to extend to the more subtle case of properads. For those who are
unfamiliar with dendroidal sets we recommend the original paper [20] and the
lecture notes by Moerdijk [19] as references.

Definition 2.1 A graph is a connected, directed graph G which admits legs and
does not admit directed cycles. A leg is an edge attached to a vertex at only one end.
We also want our graphs to have an ordering given by bijections

ordinG W f1; : : :;mg �! in.G/

ordoutG W f1; : : :; ng �! out.G/

as well as bijections

ordinv W f1; : : :; kg �! in.v/

and

ordoutv W f1; : : :; jg �! out.v/

for each v in Vt.G/.



Lecture Notes on Infinity-Properads 353

If we say that G is a C-colored graph then we are including the extra data of an
edge coloring function � W Edge.G/ �! C:

When we draw pictures of graphs, we will omit the arrows, and always assume
the direction in the direction of gravity.

Definition 2.2 A tree is a simply connected graph with a unique output (the root).
For any vertex v in a C-colored tree T, in.v/ is written as a list c D c1; : : : ; ck

of colors ci 2 C. A list of colors like c is called a profile of the vertex v. Similarly,
out.v/ D d identifies the element d 2 C which colors the output of the vertex v. The
complete input-output data of a vertex v is given by the biprofile .cI d/.
Example 2.3 In the following picture the tree has legs labeled 3; 4; 5; 6 and 0.
The leg 0 is the single output of this graph. Internal edges are labeled 1; 2 and 7.
The edges at each vertex all come equipped with an ordering, and if we wish to
list the inputs to the vertex v we would write in.v/ D .1; 2/.

q

w

v

y

2

1

3 4 5

0

6

7

If we wanted to consider T as a C-colored tree, we would add the data of a coloring
function Edge.T/! C which would result in our picture looking like

where d and each of the ci are elements of C. The profile of v is in.v/ D .c1; c2/ D c
and the biprofile of v is written as .cI d/, where the semi-colon differentiates
between inputs and outputs.
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2.1 Colored Operads

A colored operad is a generalization of a category in which we have a set of objects
(or colors) but where we allow for morphisms which have a finite list of inputs and
a single output. When we visualize these morphisms we write them as colored trees,

so that the morphism looks like

Notice that in this depiction the edges of the tree are colored by the objects (hence
the name colors). A modern comprehensive treatment of colored operads appears in
the book of Yau [24].

Definition 2.4 A colored operad P consists of the following data:

1. A set of colors C D col.P/;
2. for all n � 0 and all biprofiles .cI d/ D .c1; : : :; cnI d/ in C, a set P.cI d/;
3. for 
 2 †n, maps 
�WP.cI d/ ! P.c
 I d/ D P.c
.1/; : : : ; c
.n/I d/ so that
.
�/� D ��
�;

4. for each c 2 C a unit element idc 2 P.cI c/;
5. associative, equivariant and unital compositions

P.cI d/ ıi P.dI ci/! P.c1; : : :; ci�1; .d1: : :; dk/; ciC1; : : :; cmI d/

where d D .d1; : : :; dk/ and 1 � i � m.

A morphism f W P! Q consists of:

1. a map of color sets f W col.P/! col.Q/;
2. for all n � 0 and all biprofiles .cI d/, a map of sets

f W P.c; d/! Q. f c; fd/

which commutes with symmetric group actions, composition and units.

The category of colored operads is denoted by Operad.
Examples of colored operads include:

• The 2-colored operad OŒ1�, whose algebras are morphisms of O-algebras for a
specified uncolored operad O [2, 1.5.3]

• The N-colored operad whose algebras are all one colored operads [2, 1.5.6], [24],
[25, §14.1].
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We now focus on operads which are generated by uncolored trees. Explicitly,
given any uncolored tree T, one can generate a colored operad&.T/ so that

• the set of colors of &.T/ is taken to be the set of edges of T;
• the operations of &.T/ are freely generated by vertices in the tree.

Example 2.5 Consider the uncolored tree T

q

w

v

y

a
b

c d e

r

f

g

where we have labeled the edges by letters, but do not mean there is a coloring.
The associated colored operad&.T/ will have color set

C D fa; b; c; d; e; f ; g; rg D Edge.T/

and operations freely generated by the vertices. In this example, generating oper-
ations are v 2 &.T/.a; bI r/, y 2 &.T/. f ; gI a/, w 2 &.T/.c; d; eI b/ and q 2
&.T/.�I g/. Composition of operations are given by formal graph substitutions (see
Definition 2.10) into appropriate partially grafted corollas (Definition 2.8). To give
a specific example, the operation v ıa y 2 &.T/.b; f ; gI r/ is a composition of v and
y which we visualize as being the result of collapsing along the edge marked a.

Definition 2.6 ([20]) The dendroidal category& is the full subcategory of Operad
whose objects are colored operads of the form &.T/. When no confusion can arise,
we often write T for &.T/.

Definition 2.7 ([20, Definition 4.1]) A dendroidal set is a functor X W &op ! Set.
Collectively these form a category Set&

op
of dendroidal sets.

An element of x 2 XT is called a dendrex of shape T. We also have the
representable functors&ŒT� D &.�;T/:

2.2 Coface Maps and Graph Substitution

Quasi-operads are similar in spirit to quasi-categories. In particular, they are
dendroidal (rather than simplicial) sets which satisfy an inner Kan condition. This
requires that we define coface and codegeneracy maps in & which we will make
precise by using formal graph substitution.
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Definition 2.8 ([12, 2.16]) A partially grafted corolla P is a graph with two
vertices u and v in which a nonempty finite list of outputs of u are inputs of v.

Example 2.9 The following graph P is a partially grafted corolla.

u

v

Partially grafted corollas play a key role in describing operadic and properadic
composition as it arises from graph substitution. Graph substitution is a formal
language for saying something very intuitive, namely that in a given graph G, you
can drill a little hole at any vertex and plug in a graph H and assemble to get a new
graph.

Definition 2.10 ([12, 2.4]) We can substitute a graph H into a graph G at vertex
v if:

1. there is a specified bijection in.H/
Š�! in.v/,

2. a specified bijection out.H/
Š�! out.v/, and

3. the coloring of inputs and outputs of H matches the local coloring of G at the
vertex v.

The resulting graph is denoted as G.Hv/ and we say that G.Hv/ was obtained from
G via graph substitution. The subscript on Hv indicates that we substituted H into
vertex v. If S � Vt.G/, we will write GfHvgv2S when we perform graph substitution
at several vertices simultaneously.

Graph substitution induces maps in &. For example consider T
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and the partially grafted corolla P

Since the total number of inputs of P matches the total number of inputs of the
vertex w 2 Vt.G/ and the number of outputs of P matches the number of outputs of
w we can preform graph substitution.

Graph substitution induces a map T ! T.Pw/ in & which sends the w to u ı v,
x to x, y to y, and q to q. This example generalizes, in that if we take any tree S
we can expand a vertex to create an additional internal edge by substitution of the
proper partially grafted corolla. The expansion of an internal edge can be written as
an internal graph substitution, and we have an induced&-map duv W S! T D S.P/
where P is the appropriate partially grafted corolla. Maps of the type duv are called
inner coface maps [12, 6.1.1], [20, p. 6].

Let’s look at another example of graph substitution. Consider the partially grafted
corolla P

and the tree S
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We can substitute S into the vertex v in the partial grafted corolla P since S has
the same number of inputs and outputs as v. The resulting picture is the tree P.Sv/

z

u

x

y

and there is a natural map du W S ! P.Sv/ which is an inclusion of S as a subtree
in P.Sv/. For any tree T we can write all subtree inclusions by (possibly iterated)
substitution of the subtree into a partially grafted corolla and maybe relabeling [12,
Definition 6.32]. Maps like these which are induced by graph substitution where
the partially grafted corolla is on the “outside” are called outer coface maps [12,
6.1.2], [20, p. 6]. The third class of maps we will concern ourselves with are called
codegeneracies and are given by the substitution of a graph with no vertices # into
a bivalent vertex v, i.e. the maps 
v W H ! H.#/ [12, 6.1.3], [20, p. 6]. The cofaces
and codegeneracies satisfy identities reminiscent of the simplicial identities.

Lemma 2.11 ([20, Lemma 3.1]) The category & is generated by the inner and
outer coface maps, codegeneracies and isomorphisms.

In other words, any every map in & can be factored as a composition of inner
and outer coface maps, codegeneracies and isomorphisms. These factorizations will
be more carefully discussed in Sect. 4.

2.3 Boundaries and Horns

Now that we have defined inner and outer coface maps, we can describe faces and
boundaries of dendroidal sets.

Definition 2.12 ([20, pg 16]) Let ˛ W T ! S be an (inner or outer) coface map in
&. Then the ˛-face of&ŒT� is the image of the induced map ˛� W &ŒS�! &ŒT�. We
will write @˛ŒT� for the ˛-face of &ŒT�.

Definition 2.13 The boundary of &ŒT� is the union over all the faces @ŒT� DS
˛ @˛ŒT�. If we omit the ˇ-face, we have the ˇ-horn ƒˇŒT� D S

˛¤ˇ @˛ŒT�. If,

moreover, ˇ is the image of an inner coface map thenƒˇŒT� is called an inner horn.
A quasi-operad is now defined as a dendroidal set satisfying an inner Kan lifting

property.
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Definition 2.14 ([21, pg 352]) A dendroidal set X is a quasi-operad if for every
diagram given by the solid arrows admits a lift

where T ranges over all trees and ˇ ranges over all inner coface maps.

Definition 2.15 ([8, Proposition 1.5]) A monomorphism of dendroidal sets X ! Y
is said to be normal if and only if for any tree T, the action of Aut.T/ on YT n XT is
free.

In analogy to the Joyal model structure on sSet for quasi-categories (see [5] for
references), we have the following.

Theorem 2.16 ([8, Theorem 2.4]) There is a model category structure on Set&
op

such that the quasi-operads are the fibrant objects and the normal monomorphisms
are the cofibrations.

3 Colored Properads, Graphical Sets, and Quasi-Properads

In the previous section we gave a very quick introduction to the dendroidal category
using some of the formal language of graph substitution. We will now extend this
language to a larger class of graphs to describe properads.

Isomorphisms between graphs preserve all the structure (including orderings)
and weak isomorphisms between graphs preserve all the structure except the
ordering. We denote the category of graphs up to strict isomorphism as Graph. The
category Graph.m; n/ is a subcategory of Graph whose objects are graphs G where
jin.G/j D m and jout.G/j D n. The category Graph.c; d/ similarly consists of all
C-colored graphs with in.G/ D c D .c1; ::; cm/ and out.G/ D d D .d1; : : :; dm/.

3.1 Properads

Like an operad, a colored properad is a generalization of a category. We have a set
of objects, called colors, and now we allow our morphisms to have finite lists of
inputs and finite lists of outputs. When we write down a visual representation of a

morphism in a properad we usually write a colored graph
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but it really could be any graph with 2 inputs and 3 outputs that is colored by the

objects of the properad P. In other words, a morphism in P
is a graph g 2 Graph.x1; x2I y1; y2; y3/. Composition of morphisms follows the same
basic principle of operad composition. In an operad you think of the ıi composition
as plugging the root of a tree into the ith leaf of another tree. For properads we want
to be able to take any sub-list of outputs of a graph and glue them to appropriately
matched sub-list of inputs in another graph.

Definition 3.1 ([12, Definition 3.5]) An C-colored properad P consists of

• a set C D col.P/ of colors;
• for each biprofile .cI d/ D .c1; : : :; cmI d1; : : :; dn/, a set P.cI d/;
• for 
 2 †m and � 2 †n, maps

P.cI d/! P.c
 I �d/ D P.c
.1/; : : :; c
.m/I d��1.1/; : : :; d��1.n//

which assemble into a †op
m 	†n action on the collection

`
jcjDm;jdjDn P.cI d/;

• for all c 2 C, a unit idc 2 P.cI c/;
• an associative, unital and equivariant composition

�a0
b0 W P.cI d/˝ P.aI b/! P.a ıa0 cI b ıb0 d/

where a0 and b0 denote some non-empty finite sublist of c and b, respectively.
The notation a ıa0 c denotes identifying some sublist of a with the appropriate
sublist of c.

A map of colored properads f W P! Q consists of

• f0 W Col.P/! Col.Q/;
• f1 W P.cI d/! Q. f0cI f0d/ for all biprofiles .c; d/ in C.

We denote the category of all colored properads and properad maps between
them as Properad.

Properadic composition is easiest to write down in terms of graph substitution.
In the previous talk we described a formal process called graph substitution, which
now repeat in the case of graphs.

Definition 3.2 ([12, 2.4]) Given a graph G 2 Graph.cI d/, and a graph Hv 2
Graph.in.v/I out.v// so that each Hv is equipped with bijections
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• in.Hv/! in.v/ and
• out.Hv/! out.v/

one constructs a new graph G.Hv/ 2 Graph.cI d/ by formally identifying Hv with
v 2 G: In this case we say that G.Hv/ is obtained from G by substitution.

The following is an example of (uncolored) graph substitution. Let G and P be
the graphs below.

The graph G.Px/ is still a member in the category Graph.5; 6/; but now has a
additional three internal edges.

To see how this might encode composition, notice that if we squish down the three
internal edges between the vertex u and v we would have something that captures
our description of composition.

Following this discussion, one would say that a C-colored properadP is the object
you get if you consider the set C as objects (or colors) and morphisms between
objects P.cI d/ are a set of (possibly decorated) C-colored graphs in Graph.c; d/.
Composition of a G-configuration of morphisms is given by graph substitution

�GP W PŒG� D
Y

Vt.G/

P.in.v/I out.v//! P.inGI outG/

where we are ranging over all maps that arise from graph substitution and look
like G.Px/! G in the example above. Properadic composition defined in this way
is associative and unital because graph substitution is associative and unital [12,
2.2.4]. Symmetric group actions come from weak isomorphisms of graphs and
properadic composition is equivariant because graph substitution is an operation
which is defined up to weak isomorphism class of graphs.
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Remark 3.3 Because graph substitution is associative, we observe that it is possible
to define properadic composition one operation at a time. In fact, properadic
composition is completely determined by the operations described by partially
grafted corollas, �GP , the graph with just an edge (for identities), and the one vertex
graphs (for symmetric group actions).

3.2 The Graphical Category �

It should by now be unsurprising to hear that given an uncolored graph G we can
freely generate a properad (.G/.

Definition 3.4 ([12, Section 5.1]) Given an uncolored graph G, the properad (.G/
is a colored properad which has the set Edge.G/ as colors and morphisms are
generated by the vertices.

More explicitly, an operation in (.G/.cI d/ is a OG-decorated graph, meaning:

• a graph H in Graph.cI d/ whose edges are colored by edges of G;
• a function from the vertices of H to the vertices of G which is compatible with

the coloring of H.

Example 3.5 ([12, Lemma 5.13]) Given the following graph G,

the OG-decorated graph H below is an example of a morphism in (.G/.1; 1I 4; 4/.
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Notice that there are many, many more operations in the properads (.G/ than
there were in the operads &.T/ that we discussed in the first lecture. This isn’t
because we forgot to mention operations in&.T/ but rather because of the following
lemma.

Lemma 3.6 ([12, Lemma 5.10]) If G is a simply connected graph, then each vertex
in G can appear in a morphism in the properad (.G/ at most once.

As we mentioned in Remark 3.3, properadic composition is generated by the
composites of partially grafted corollas, the graph with one edge, and one vertex
graphs. To see that our definition of (.G/ actually is a properad, it then suffices to
check the following lemma.

Lemma 3.7 All OG-decorated graphs can be built iteratively using partially grafted
corollas.

The naive guess, based on what we expect from understanding� and &, would
be to define a category ( which has as objects the graphical properads (.G/
and morphisms all properad maps between them. This is, unfortunately, not the
appropriate definition of ( as there maps between graphical properads that exhibit
idiosyncratic behavior.

Definition 3.8 A properad morphism f W (.G/! (.H/ consists of:

• a function f0 W Edge.G/! Edge.H/ together with
• a map f1 W Vt.G/ ! fVt.H/-decorated graphsg such that for every v 2 Vt.G/,

f1.v/ is an OH-decorated graph in Graph. f0 in vI f0 out v/.

Definition 3.9 The image of f W (.G/ ! (.H/ is f0Gf f1.v/gv2Vt.G/ which
is naturally Vt.H/-decorated. The notation Gf f1.v/gv2Vt.G/ stands for performing
iterated graph substitution of Vt.H/-decorated graphs at each vertex v in G.

Morphisms between graphical properads are very strange, so we will pause here
and give an explicit description of the image of a map f W (.G/! (.H/.

Example 3.10 Suppose that G D# is the graph with no vertices and let Q be a
C-colored properad. Then a properad map f W (.# /! Q is a choice of color c 2 C.

Example 3.11 An example of a morphism of graphical properads that behaves
poorly is the following. Suppose G is the graph

let f W (.G/! (.G/ be the morphism where f0 is the identity on edge sets and
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• f1.v/ is the OG decorated graph

and
• f1.u/ is the OG decorated graph

The image of f in (.G/ is then the OG-decorated graph

As we saw in Example 3.11, properad maps f W (.H/ ! (.G/ need not have
the property that the image of H is a subgraph of G. This kind of behavior does
not show up in dendroidal sets. In fact, for maps into simply connected graphical
properads behaves exactly as we would expect from the dendroidal case.

Proposition 3.12 ([12, Proposition 5.32]) If the target of f W (.H/ ! (.G/ is
simply connected (eg any object of &), then f is uniquely determined by what it
does on edges.
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As we will explain in Sect. 4, in order for our graphical category to have the
proper sense of homotopy theory, we will want to force a property of this kind on
the category ( .

Proposition 3.13 If the image of H under f W (.H/ ! (.G/ is a subgraph of G,
then f is uniquely determined by what it does on edges.

Definition 3.14 The graphical category ( is the category with objects graphical
properads and morphisms the subset of properad maps f W (.H/! (.G/ consisting
of those f with the property that imf is a subgraph of G.

Definition 3.15 The category of graphical sets is the category of presheaves on ( ,
that is Set(

op
.

For every graph G an element in the set XG is called a graphex with shape G.
The plural form of graphex is graphices. The representable objects of shape G are
(ŒG� D (.�;G/.

3.3 The Properadic Nerve

The obvious question to ask at this point is how do we know that by throwing out
badly behaved properad maps that we are still looking at a reasonable definition of
graphical sets? The properadic nerve [12, Definition 7.5] is the functor

N W Properad �! Set(
op

defined by

.NP/G D Properad.(.G/;P/

for P a properad. A graphex in .NP/G is really a P-decoration of G, which consists
of a coloring of the edges in G by the colors of P and a decoration of each vertex in
G by an element in P with the corresponding profiles.

Proposition 3.16 ([12, Proposition 7.39]) The properadic nerve

N W Properad �! Set(
op

is fully faithful.
This proposition implies that while we have lost some maps in ( we have still

enough information so that the entire category Properad sits inside of Set(
op

.

3.4 Cofaces and Codegeneracies

As in our first lecture, the coface and codegeneracy maps are given by graph
substitutions of various kinds. A codegeneracy map 
v W H ! H.#/ is a map
induced by substitution of the graph with one edge # into .1; 1/-vertex v 2 Vt.H/.
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This has the effect of deleting a vertex. Like in&, an inner coface map will have the
effect of “blowing up” the graph between two vertices by an inner substitution of a
partially grafted corolla duv W G! G.P/.

Example 3.17 As an example of an inner coface map consider the graph substitu-
tion we have already seen,

where the partially grafted corolla P 2 Graph.4; 4/ is pictured below.

Example 3.18 When restricted to linear graphs, an inner coface map as above is the
same as an inner coface map in the simplicial category� [12, Example 6.4].

An outer coface map dv W G ! P.G/ is an outer substitution of a graph G
into a partially grafted corolla. In the next section, we will discuss how these maps
generate the whole category( in the sense that all morphisms in ( are compositions
of (inner or outer) coface maps, codegeneracies and isomorphisms.

Definition 3.19 A face of a representable (ŒH� is given by considering the image
of an inner or outer coface map. The boundary of (ŒH� is defined as @ŒH� DS
˛ @˛ŒH� � (ŒH� where ˛ ranges over all inner and outer coface maps. The ˇ-

horn is then defined as ƒˇŒH� � (ŒH� D Sˇ¤˛ @˛ŒH� where ˇ is a coface map.

Definition 3.20 A graphical set X is a quasi-properad if, for all inner coface maps
˛ and all H in ( , the diagram

admits a lift.
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A model category structure on Set(
op

in which quasi-properads are the fibrant
objects is work in progress between the authors and D. Yau.

4 Generalized Reedy Structures and a Segal Model

In the previous section we described the graphical category ( and quasi-properads.
For more details on why this is precisely a properad “up to homotopy” see the
description in [12, 7.2]. In this section we will describe the Reedy structure of (
and use it as a starting point to construct one model category structure for infinity
properads.

4.1 Generalized Reedy Categories

Definition 4.1 ([3, Definition 1.1]) A dualizable generalized Reedy structure on a
small category R consists of two subcategories RC and R

� which each contain all
objects of R, together with a degree function Ob.R/! N satisfying:

1. non-invertible morphisms in R
C (respectively R

�) raise (respectively lower
degree). Isomorphisms preserve degree.

2. RC \R
� D Iso.R/

3. Every morphism f factors as f D gh such that g 2 R
C and h 2 R

� and this
factorization is unique up to isomorphism.

4. If � f D f for � 2 Iso.R/ and f 2 R
� then � is an identity.

5. f� D f for � 2 Iso.R/ and f 2 R
C then � is an identity.

Remark 4.2 A category R that satisfies axioms .1/–.4/ is a generalized Reedy
category. If, in addition, R satisfies axiom .5/ then R is said to be dualizable, which
implies that Rop is also a generalized Reedy category.

A (classical) Reedy category is a generalized Reedy category R in which every
element of Iso.R/ is an identity. Examples of classical Reedy categories include �
and�op. Examples of generalized Reedy categories include the dendroidal category
&, finite sets, pointed finite sets, and the cyclic categoryƒ.

The main idea of Reedy categories is that we can think about lifting morphisms
from R to MR by induction on the degree of our objects. To formalize this idea we
introduce the notion of latching and matching objects.

For any r 2 R, the category R
C.r/ is defined to be a full subcategory of

R
C # r consisting of those maps with target r which are not invertible. Similarly,

the category R
�.r/ is the full subcategory of r # R

� consisting of maps ˛ W r ! s
which are non-invertible. One can now define the latching object

Lr.X/ D colim
˛2RC.r/

Xs;
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for each X in MR which comes equipped with a map Lr.X/ ! Xr. Similarly, for
each X 2MR we define the matching object

lim
˛2R�.r/Xs D Mr.X/

which comes equipped with a map Xr ! Mr.X/.

Definition 4.3 If M is a cofibrantly generated model category, and R is generalized
Reedy, we say that a morphism f W X ! Y in MR is:

• a Reedy cofibration if Xr [LrX LrY ! Yr is a cofibration in MAut.r/ for all r 2 R;
• a Reedy weak equivalence if Xr ! Yr is a weak equivalence in MAut.r/ for all

r 2 R ;
• a Reedy fibration if Xr ! MrX 	MrY Yr is a fibration in MAut.r/ for all r 2 R.

Theorem 4.4 ([3, Theorem 1.6]) If M is a cofibrantly generated model category
and R is a generalized Reedy category then the diagram category MR is a
model category with the Reedy fibrations, Reedy cofibrations, and Reedy weak
equivalences defined above.

4.2 The Graphical Category is Generalized Reedy

Theorem 4.5 ([12, 6.4]) The graphical category ( is a dualizable generalized
Reedy category.

The degree function d W Ob.(/! N is defined as d.G/ D jVt.G/j. The positive
maps are then those morphisms in ( which are injective on edge sets. The negative
maps are those H ! G which are surjective on edge sets and which, for every vertex
v 2 Vt.G/, there is a vertex Qv 2 Vt.H/ so that f1. Qv/ is a corolla containing v. An
alternate, more illuminating, description is given by the following proposition.

Lemma 4.6 ([12, 6.65])

• A map f W H ! G is in (C if we can write it as a composition of isomorphisms
and coface maps.

• A map f W H ! G is in (� if we can write it as a composition of isomorphisms
and codegeneracy maps.

The proof of this lemma isn’t entirely trivial, but the general idea is that
codegeneracy maps decrease degree and satisfy the extra condition; coface maps
increase degree and are injective on edges.

We will not fully prove here that ( is Reedy. However, we can show where the
decompositions in the third axiom of Definition 4.1 come from.

Proposition 4.7 ([12, 6.68]) Every map in f 2 ( factors as f D gıh, where h 2 (�
and g 2 (C and this factorization is unique up to isomorphism.



Lecture Notes on Infinity-Properads 369

Proof (Sketch of Existence) Given a morphism f WG! K in ( we know that for all
v 2 Vt.G/, f1.v/ is a subgraph of K.

Let us consider T � Vt.G/, the subset of vertices of G such that f1.v/ D#. We
can define a graph G1 D Gf#wgw2Vt.G/ which is the graph obtained by substitution
of an edge into each w 2 T and a corolla substituted into each additional vertex.
There is then a map G! G1 which is a composition of codegeneracy maps, one for
each w 2 T. Next, define a subgraph G2 of K as G2 D f0.G1/. In other words, G2 is
the subgraph obtained by applying f0 to the edges of G1, which makes sense because
for each w 2 T the incoming edge and outgoing edge of w will have the same image
under f0. There is an isomorphism G1 ! G2 which is just the changing the names
of edges via the assignment given by f0. The vertices of G2 are in bijection with the
set Vt.G1/ n T.

It is now the case that the image of f , im. f / D G2f f1.u/gu2Vt.G/nT where
each f1.u/ has at least one vertex. Summarizing, (ignoring coloring) there exists
a factorization:

This shows the existence of the decomposition.

Example 4.8 Let us turn to an example of how we generate G1 for the example of f
below.

Notice that the vertex v is the only vertex in G which has exactly one input and one
output, and is mapped by f to the edge in K we have labeled 1. It follows then that
G1 D G.#v/ and looks like
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The subgraph G2 is now a relabeling and im. f / D G2. f1.u/; f1.x// where f1.u/ is a
corolla and f1.x/ is the appropriate partially grafted corolla.

4.3 A Segal Model Structure for Infinity-Properads

In this section, we attempt to describe a model structure for infinity-properads. In
preparing these notes, we realized the model structure is more complicated than
what we presented in the original lectures, for reasons we outline in Remarks 4.10
and 4.11.

We begin with a description of the Segal condition for a graphical set X 2 Set(
op

.
For G 2 ( , there is a natural map

XG !
Y

v2Vt.G/

XCv (1)

by using all of the (iterated outer coface) maps Cv ! G. Of course if there is an

edge e between two vertices v and w, then the two composites #e ie! Cv ! G and

#e ie! Cw ! G are equal, so (1) factors through a subspace1

consisting of those sequences .xv/ so that i�e .xv/ D i�e .xw/ whenever e is an edge
between v and w. The Segal map is

XG
�G�! X1G �

Y

v2Vt.G/

XCv :

If X D N.P/ is the nerve of a properad P, then �G is an isomorphism [12,
Lemma 7.38]. In fact, this property characterizes those graphical sets which are
isomorphic to the nerve of a properad [12, Theorem 7.42].

If we allow ourselves to work with graphical spaces instead of just graphical sets,
then we can replace the isomorphism condition on the Segal maps by a homotopy
condition (this type of idea goes all the way back to Segal [22]).

1This is not a condition when X
#

D � is a one-point set; in that case, X1G is just the product
from (1).
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Definition 4.9 A graphical space X 2 sSet(
op

is said to satisfy the Segal condition
if the Segal map

XG
�G�! X1G �

Y

v2Vt.G/

XCv

is a weak homotopy equivalence of simplicial sets between XG and X1G for each
graph G.

As in the classical cases, the Segal condition is not categorically well-behaved.
To study the homotopy theory of graphical spaces satisfying the Segal condition, we
will build a model structure which allows us to identify such graphical spaces (or,
at least those which possess an additional fibrancy condition).

Since ( is a dualizable Reedy category [12, Theorem 6.70], we know that (op

is also generalized Reedy. Hence, by Berger and Moerdijk [3, Theorem 1.6], the
diagram category sSet(

op
admits a generalized Reedy model structure.

Remark 4.10 During the lecture, we stated that we could modify this so that the
diagram category sSet(

op

disc admits a Reedy-type model structure, where the subscript
disc means that X# is discrete as a simplicial set. Indeed, there is such a model
structure: the inclusion functor sSet(

op

disc ,! sSet(
op

admits a left adjoint given by
sending X to the pushout of �0.sk0.X// sk0.X/! X, where the skeleton is taken
in the ( direction. One can then lift the model structure from sSet(

op
using [15,

11.3.2]. Unfortunately, one of the generating cofibrations is not a monomorphism,
hence this model structure on sSet(

op

disc is not cellular.
The following remark is essentially adapted from the end of [4, §3.12].

Remark 4.11 There is no model structure on sSet(
op

disc where weak equivalences are
levelwise and cofibrations are monomorphisms, as one can see by attempting to
factor (Œ# �q (Œ# �! (Œ# � as a cofibration followed by an acyclic fibration:

(Œ# �q (Œ# � � X
�� (Œ# �:

Since (Œ# �# is a set of cardinality one, the object X 2 sSet(
op

disc would satisfy 2 �
jX#j D 1.

Definition 4.12 (Segal Core Inclusions) [12, Definition 7.35] Given a graph G
with at least one vertex let Cv denote the corolla at each v 2 Vt.G/ and let (ŒCv�
denote the representable graphical set on Cv . Define the Segal core ScŒG� as the
graphical subset

where iv is an iterated outer coface map. Denote by the Segal core
inclusion.
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The reader should compare this definition with [9, Definition 2.2]. Notice
how suggestive this is in light of Definition 4.9: the map �G is exactly c� W
map.(ŒG�;�/ ! map.ScŒG�;�/ when X is fibrant. As we saw above, we cannot
guarantee the existence of a left Bousfield localization of the non-cellular category
sSet(

op

disc at the set of Segal core inclusions. Despite that, we still expect that the
following holds.

Conjecture 4.13 There is a model structure on sSet(
op

disc analogous to those given in
[9, 8.13] and [4, 5.1].

In [13], D. Yau and the authors gave a model structure on the category sProperad
of simplicially-enriched properads. The properadic nerve functor that we discussed
earlier extends to a functor

N W sProperad! sSet(
op

disc

since N.P/# is the set of colors of the simplicially-enriched properad P. One should
compare the conjectural model structure on sSet(

op

disc with the model structure on
sProperad.

Conjecture 4.14 The properadic nerve functor from simplicial properads to graph-
ical spaces,

N W sProperad! sSet(
op

disc

is the right adjoint in a Quillen equivalence.

4.4 A Diagrammatic Overview

We conclude with a diagram which was provided as a handout at our lectures.
It indicates some interconnectedness of many models of categories, operads,
properads, and props.

Quasi-categories Complete Segal Spaces Segal Categories Simplicial Categories

Quasi-operads Rezk Operads Segal Operads Simplicial Operads

Quasi-properads Segal Properads Simplicial Properads

Simplicial Props

N

Nhc

N

Nhc

N

Nhc
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The vertical uncolored adjunctions are Quillen adjunctions. The horizontal
adjunctions are Quillen equivalences;

• precise references for the top row may be found in [5], and
• the middle row is contained in [8–10].

In addition, the model structure for quasi-operads is equivalent to a model structure
for Lurie’s infinity operads [1, 7, 14]. The existence of the model structures in the
bottom two slots on the right are [11, 13].
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Lectures on Feynman Categories

Ralph M. Kaufmann

Abstract These are expanded lecture notes from lectures given at the Workshop
on higher structures at MATRIX Melbourne. These notes give an introduction to
Feynman categories and their applications. Feynman categories give a universal
categorical way to encode operations and relations. This includes the aspects of
operad-like theories such as PROPs, modular operads, twisted (modular) operads,
properads, hyperoperads and their colored versions. There is more depth to the
general theory as it applies as well to algebras over operads and an abundance of
other related structures, such as crossed simplicial groups, the augmented simplicial
category or FI-modules. Through decorations and transformations the theory is also
related to the geometry of moduli spaces. Furthermore the morphisms in a Feynman
category give rise to Hopf- and bi-algebras with examples coming from topology,
number theory and quantum field theory. All these aspects are covered.

1 Introduction

1.1 Main Objective

The main aim is to provide a lingua universalis for operations and relations in order
to understand their structure. The main idea is just like what Galois realized for
groups. Namely, one should separate the theoretical structure from the concrete
realizations and representations. What is meant by this is worked out below in the
Warm Up section.

In what we are considering, we even take one more step back, namely we provide
a theoretical structure for theoretical structures. Concretely the theoretical structures
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are encoded by a Feynman category and the representations are realized as functors
from a given Feynman category F to a target category C. It turns out, however, that
to a large extent there are constructions which pass up and down the hierarchy of
theoretical structure vs. representation. In concrete examples, we have a Feynman
category whose representations in C are say algebras. Given a concrete algebra, then
there is a new Feynman category whose functors correspond to representations of
the algebra. Likewise, for operads, one obtains algebras over the operad as functors.

This illustrates the two basic strategies for acquiring new results. The first is that
once we have the definition of a Feynman category, we can either analyze it further
and obtain internal applications to the theory by building several constructions and
getting further higher structures. The second is to apply the found results to concrete
settings by choosing particular representations.

1.1.1 Internal Applications

Each of these will be discussed in the indicated section.

1. Realize universal constructions (e.g. free, push-forward, pull-back, plus con-
struction, decorations); see Sects. 5 and 7.

2. Construct universal transforms (e.g. bar, co-bar) and model category structures;
see Sect. 8.

3. Distill universal operations in order to understand their origin (e.g. Lie brackets,
BV operators, Master Equations); see Sect. 7.

4. Construct secondary objects, (e.g. Lie algebras, Hopf algebras); see Sects. 7
and 10.

1.1.2 Applications

These are mentioned or discussed in the relevant sections and in Sect. 9.

1. Transfer to other areas such as algebraic geometry, algebraic topology, mathe-
matical physics, number theory.

2. Find out information of objects with operations. E.g. Gromov-Witten invariants,
String Topology, etc.

3. Find out where certain algebra structures come from naturally: pre-Lie, BV, etc.
4. Find out origin and meaning of (quantum) Master Equations.
5. Construct moduli spaces and compactifications.
6. Find background for certain types of Hopf algebras.
7. Find formulation for TFTs.
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1.2 References

The lectures are based on the following references.

1. With B. Ward. Feynman categories [33].
2. With J. Lucas. Decorated Feynman categories [30].
3. With B. Ward. and J. Zuniga. The odd origin of Gerstenhaber brackets, Batalin-

Vilkovisky operators and Master Equations [35].
4. With I. Galvez-Carrillo and A. Tonks. Three Hopf algebras and their operadic

and categorical background [14].
5. With C. Berger. Derived Feynman categories and modular geometry [5].

We also give some brief information on works in progress [25] and further
developments [50].

1.3 Organization of the Notes

These notes are organized as follows. We start with a warm up in Sect. 2. This
explains how to understand the concepts mentioned in the introduction. That is, how
to construct the theoretical structures in the basic examples of group representations
and associative algebras. The section also contains a glossary of the terms used in
the following. This makes the text more self-contained. We give the most important
details here, but refrain from the lengthy full fledged definitions, which can be found
in the standard sources.

In Sect. 3, we then give the definition of a Feynman category and provide
the main structure theorems, such as the monadicity theorem and the theorem
establishing push-forward and pull-back. We then further explain the concepts by
expanding the notions and providing details. This is followed by a sequence of
examples. We also give a preview of the examples of operad-like structures that are
discussed in detail in Sect. 4. We end Sect. 3 with a discussion of the connection to
physics and a preview of the various constructions for Feynman categories studied
in later sections.

Section 4 starts by introducing the category of graphs of Borisov–Manin and
the Feynman category G which is a subcategory of it. We provide an analysis
of this category, which is pertinent to the following sections as a blue print
for generalizations and constructions. The usual zoo of operad-like structures is
obtained from G by decorations and restrictions, as we explain. We also connect
the language of Feynman categories to that of operads and operad-like structures.
This is done in great detail for the readers familiar with these concepts. We end
with omnibus theorems for these structures, which allow us to provide all the three
usual ways of introducing these structures (a) via composition along graphs, (b) as
algebras over a triple and (c) by generators and relations.
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Decoration is actually a technical term, which is explained in Sect. 5. This
paragraph also contains a discussion of so-called non-Sigma, aka. planar versions.
We also give the details on how to define the decorations of Sect. 4 as decorations in
the technical sense. We then discuss how with decorations one can obtain the three
formal geometries of Kontsevich and end the section with an outlook of further
applications of this theory.

The details of enrichments are studied in Sect. 6. We start by motivating these
concepts through the concrete consideration of algebras over operads. After this
prelude, we delve into the somewhat involved definitions and constructions. The
central ones are Feynman categories indexed enriched over another Feynman
category, the C and hyp constructions. These are tied together in the fact that
enrichments indexed over F are equivalent to strict symmetric monoidal functors
with source Fhyp. This is the full generalization of the construction of the Feynman
category for algebras over a given operad. Further constructions are the free
monoidal construction F� for which strict symmetric monoidal functors from F� to
C are equivalent to ordinary functors from F. And the nc-construction Fnc for which
the strict symmetric monoidal functors from Fnc to C are equivalent to lax monoidal
functors from F.

Universal operations, transformations and Master Equations are treated in Sect. 7.
Examples of universal operations are the pre-Lie bracket for operads or the BV
structure for non-connected modular operads. These are also the operations that
appear in Master Equations. We explain that these Master Equations are equations
which appear in the consideration of Feynman transforms. These are similar to bar-
and cobar constructions that are treated as well. We explain that the fact that the
universal operations appear in the Master Equation is not a coincidence, but rather
is a reflection of the construction of the transforms. The definition of the transforms
involves odd versions for the Feynman categories, the construction of which is also
spelled out.

As for algebras, the bar-cobar or the double Feynman transformation are
expected to give resolutions. In order to make these statements precise, one needs
a Quillen model structure. These model structures are discussed in Sect. 8 and we
give the conditions that need to be satisfied in order for the transformations above
to yield a cofibrant replacement. These model structures are on categories of strict
symmetric monoidal functors from the Feynman category into a target category C.
The conditions for C are met for simplicial sets, dg-vector spaces in characteristic
0 and for topological spaces. The latter requires a little extra work. We also give a
W-construction for the topological examples.

The geometric counterpart to some of the algebraic constructions is contained
in Sect. 9. Here we show how the examples relate to various versions of moduli
spaces and how Master Equations correspond to compactifications.

Finally, in Sect. 10 we expound the connection of Feynman categories to Hopf
algebras. Surprisingly, the examples considered in Sect. 3 already yield Hopf
algebras that are fundamental to number theory, topology and physics. These are
the Hopf algebras of Goncharov, Baues and Connes–Kreimer. We give further
generalizations and review the full theory.
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2 Warm Up and Glossary

Here we will discuss how to think about operations and relations in terms of
theoretical structures and their representations by looking at two examples.

2.1 Warm Up I: Categorical Formulation for Representations
of a Group G

Let G the category with one object 
 and morphism set G. The composition of
morphisms is given by group multiplication f ı g WD fg. This is associative and has
the group identity e as a unit e D id�.

There is more structure though. Since G is a group, we have the extra structure
of inverses. That is every morphism in G is invertible and hence G is a groupoid.
Recall that a category in which every morphism is invertible is called a groupoid.

2.1.1 Representations as Functors

A representation .�;V/ of the group G is equivalent to a functor � from G to the
category of k-vector spacesVectk. Giving the values of the functor on the sole object
and the morphisms provides: �.
/ D V , �.g/ WD �.g/ 2 Aut.V/. Functoriality then
says N�.G/ � Aut.V/ is a subgroup and all the relations for a group representation
hold.

2.1.2 Categorical Formulation of Induction and Restriction

Given a morphism f W H ! G between two groups. There are the restriction and
induction of any representation �: ResGH� and IndGH�. The morphism f induces a
functor f from H to G which sends the unique object to the unique object and
a morphism g to f .g/. In terms of functors restriction simply becomes pull-back
f �.�/ WD � ı f while induction becomes push-forward, f �, for functors. These even
form an adjoint pair.

2.2 Warm Up II: Operations and Relations—Description of
Associative Algebras

An associative algebra in a tensor category .C;˝/ is usually given by the following
data: An object A and one operation: a multiplication� W A˝A! A which satisfies
the axiom of the associativity equation:

.ab/c D a.bc/
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2.2.1 Encoding

Think of � as a 2-linear map. Let ı1 and ı2 be substitution in the 1st respectively
the 2nd variable. This allows us to rewrite the associativity equation as

.� ı1 �/.a; b; c/ WD �.�.a;b/; c/ D .ab/c D a.bc/ D �.a; �.b; c// WD .� ı2 �/.a; b; c/

The associativity hence becomes

� ı1 � D � ı2 � (1)

as morphisms A ˝ A ˝ A ! A. The advantage of (1) is that it is independent
of elements and of C and merely uses the fact that in multi-linear functions one
can substitute. This allows the realization that associativity is an equation about
iteration.

In order to formalize this, we have to allow all possible iterations. The realization
this description affords is that all iterations of � resulting in an n-linear map are
equal. On elements one usually writes a1 ˝ � � � ˝ an! a1 : : : an.

In short: for an associative algebra one has one basic operation and the relation
is that all n-fold iterates agree.

2.2.2 Variations

If C is symmetric, one can also consider the permutation action. Using elements the
permutation action gives the opposite multiplication ��.a; b/ D � ı �.a; b/ D ba.

This give a permutation action on the iterates of �. It is a free action and there
are nŠ n-linear morphisms generated by � and the transposition. One can also think
of commutative algebras or unital versions.

2.2.3 Categories and Functors

In order to construct the data, we need to have the object A, its tensor powers and
the multiplication map. Let 1 be the category with one object 
 and one morphism
id�. We have already seen that the functors from 1 correspond to objects of C. To get
the tensor powers, we let N be the category whose objects are the natural numbers
including 0 with only identity morphisms. This becomes a monoidal category with
the tensor product given by addition m ˝ n D m C n. Strict monoidal functors O
from N! C are determined by their value on 1. Say O.1/ D A then O.n/ D A˝n.

To model associative algebras, we need a morphisms � W 2 ! 1. A monoidal
functor O will assign a morphism � WD O.�/ W A ˝ A ! A. If we look for
the “smallest monoidal category” that has the same objects as N and contains �
as a morphism, then this is the category sk.Surj</ of order preserving surjections
between the sets n in their natural order. Here we think of n as n D f1; : : : ; ng.
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Indeed any such surjection is an iteration of � . Alternatively, sk.Surj</ can be
constructed from N by adjoining the morphism � to the strict monoidal category
and modding out by the equation analogous to (1)W � ı id˝ � D � ı � ˝ id.

It is easy to check that functors from sk.Surj</ to C correspond to associative
algebras (aka. monoids) in C. From this we already gained that starting from say
k-algebras, i.e. C D Vectk (the category of k vector spaces), we can go to any other
monoidal category C and have algebra objects there.

2.2.4 Variations

The variation in which we consider the permutation operations is very important.
In the first step, we will need to consider S, which has the same objects as N, but
has additional isomorphisms. Namely Hom.n; n/ D Sn the symmetric group on n
letters. The functors out of S one considers are strict symmetric monoidal functors
O into symmetric monoidal categories C. Again, these are fixed by O.1/ DW A, but
now every O.n/ D A˝n has the Sn action of permuting the tensor factors according
to the commutativity constraints in C.

Adding the morphisms � to S and modding out by the commutativity equations,
leaves the “smallest symmetric monoidal category” that contains the necessary
structure. This is the category of all surjections sk.Surj/ on the sets n. Functors
from this category are commutative algebra objects, since � ı � D � if � is the
transposition.

In order to both have symmetry and not force commutativity, one formally does
not mod out by the commutativity equations. The result is then equivalent to the
category sk.Surjord/ of ordered finite sets with surjections restricted to the sets n.
The objects of Surjord are a finite set S with an order <. The bijections of S with
itself act simply transitively on the orders by push-forward.

The second variation is to add an identity. An identity in a k-algebra A is
described by an element 1A, that is a morphism � W k! A with �.1k/ D 1A. Coding
this means that we will have to have one more morphism in the source category.
Since k D 1 is the unit of the monoidal structure of Vectk, we see that we need a
morphism u W 0! 1. We then need to mod out by the appropriate equations, which
are given by �ı1� D �ı2� D id which translate to � ıu˝ id1 D � ı id1˝u D id1.

2.3 Observations

There is a graphical calculus that goes along with the example above. This is
summarized in Fig. 1. Adding in the orders corresponds to regarding planar corollas.

We have dealt with strict structures and actually skeletal structures in the
examples. This is not preferable for a general theory. Just as it is preferable to work
with all finite dimensional vector spaces in lieu of just considering the collection of
kn with matrices as morphisms.
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e
1 m+n−11 i m 1 n 1

1 n

mecon( ,e) ==oi

Fig. 1 Example of grafting two (planar) corollas. First graft at a leaf and then contract the edge

2.4 Glossary: Key Concepts and Notations

Here is a brief description of key concepts. For more information and full definitions
see e.g. [23, 39].

Groupoid A category in which every morphism is an isomorphism.
As we have seen, every group defines a groupoid. Furthermore for any category

C, the subcategory Iso.C/ which has the same objects as C but only includes the
isomorphisms of C is a groupoid.

Monoidal Category A category C with a functor ˝ W C 	 C ! C, associativity
constraints and unit constraints. That is an operation on objects .X;Y/ ! X ˝ Y
and on morphisms .� W X ! Y;  W X0 ! Y 0/ ! � ˝  W X ˝ X0 ! Y ˝ Y 0.
Furthermore a unit object 1 with isomorphisms 1˝ X ' X ' X˝ 1 called left and
right unit constraints and associativity constraints, which are isomorphisms aX;Y;Z W
X ˝ .Y ˝ Z/ ! .X ˝ Y/ ˝ Z. These have to satisfy extra conditions called the
pentagon axiom and the triangle equation ensuring the compatibilities. In particular,
it is the content of Mac Lane’s coherence Theorem that due to these axioms any two
ways to iteratively rebracket and add/absorb identities to go from one expression to
another are equal as morphisms.

A monoidal category is called strict if the associativity and unit constraints
are identities. Again, due to Mac Lane, every monoidal category is monoidally
equivalent to a strict monoidal category (see below).

An example is Vectk the category of k-vector spaces with tensor product ˝.
Strictly speaking, the associativity constraint aU;V;W acts on elements as aU;V;W..u˝
v/˝w// D u˝.v˝w/. The unit is k and the unit constraints are k˝U ' U ' U˝k.

Monoidal Functor A (lax) monoidal functor between two monoidal categories C
and D is an ordinary functor F W C ! D together with a morphisms �0 W 1D !
F.1C/ and a family of natural morphisms �2 W F.X/˝D F.Y/! F.X˝C Y/, which
satisfy compatibility with associativity and the unit. A monoidal functor is called
strict if these morphisms are identities and strong if the morphism are isomorphisms.
If the morphisms go the other way around, the functor is called co-monoidal.

Symmetric Monoidal Category A monoidal category C with all the structures
above together with commutativity constraints which are isomorphisms cX;Y W X ˝
Y ! Y ˝ X. These have to satisfy the axioms of the symmetric group, i.e. cY;X ı
cX;Y D id and the braiding for three objects. Furthermore, they are compatible with
the associativity constraints, which is expressed by the so-called hexagon equation.
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For Vectk, the symmetric structure cU;V is given on elements as cU;V .u ˝
v/ D v ˝ u. We can also consider Z-graded vector spaces. In this category, the
commutativity constraint on elements is given by cU;V .u˝v/ D .�1/deg.u/deg.v/v˝u
where deg.u/ is the Z-degree of u.

Symmetric Monoidal Functors A symmetric monoidal functor is a monoidal
functor, for which the �2 commute with the commutativity constraint.

Free Monoidal Categories There are several versions of these depending on
whether one is using strict or non-strict and symmetric versions or non-symmetric
versions.

Let V be a category. A free (strict/symmetric) category on V is a
(strict/symmetric) monoidal category V˝ and a functor | W V! V˝ such that any
functor { W V! F to a (strict/symmetric) category F factors as

(2)

where {˝ is a (strict/symmetric) monoidal functor.
The free strict monoidal category is given by words in objects of V and words of

morphisms in V. The free monoidal category is harder to describe. Its objects are
iteratively build up from˝ and the constraints, see [23], where it is also shown that:

Proposition 2.1 There is a strict monoidal equivalence between the free monoidal
category and the strict free monoidal category.
This allows us some flexibility when we are interested in data given by a category
up to equivalence.

If one includes “symmetric” into the free monoidal category, then one (itera-
tively) adds morphisms to the free categories that are given by the commutativity
constraints. In the strict case, one gets commutative words, but extra morphisms
from the commutativity constraints. As an example, regard the trivial category 1:
1˝;strict D N while 1˝symmetric;strict D S.

Skeleton of a Category A skeleton sk.C/ of a category C is a category that is
equivalent to C, but only has one object in each isomorphism class.

An example is the category of ordered finite sets FinSet and morphisms between
them with the disjoint union as a symmetric monoidal category. A skeleton for this
category is given by the category whose objects are natural numbers, where each
such object n is thought of as the set n D f1; : : : ; ng and all morphisms between
them. This category is known as the (augmented) crossed simplicial group�CS.

Underlying Discrete Category The underlying discrete category of a category C
is the subcategory which has the same objects as C, but retains the identity maps. It
will be denoted by C0. For instance S0 D N.
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Underlying Groupoid of a Category For a category C the underlying groupoid
Iso.C/ is the subcategory of C which has the same objects as C buy only retains all
the isomorphisms in C.

Comma Categories Recall that for two functors { W D ! C and | W E ! C, the
comma category .| # {/ is the category whose objects are triples .X;Y; �/ with
X 2 D, Y 2 E and � 2 HomC.|.X/; {.Y//. A morphism between such � and  is
given by a commutative diagram.

with f 2 HomD.X;X0/; g 2 HomE.Y;Y 0/. We will write .{. f /; {.g// for such
morphisms or simply . f ; g/.

If a functor, say { W V ! F , is fixed we will just write .F # V/, and given
a category G and an object X of G, we denote the respective comma category by
.G # X/. I.e. objects are morphisms � W Y ! X with Y in G and morphisms are
morphisms over X, that is morphisms Y ! Y 0 in G which commute with the base
maps to X. This is sometimes also called the slice category or the category of objects
over X.

3 Feynman Categories

With the examples and definitions of the warm up in mind, we give the definition
of Feynman categories and then discuss several basic examples. The Feynman
categories will give the operations and relations part. The concrete examples of the
structures thus encoded are then given via functors, just like discussed above.

3.1 Definition

3.1.1 Data for a Feynman Category

1. V a groupoid
2. F a symmetric monoidal category
3. { W V! F a functor.

Let V˝ be the free symmetric category on V and {˝ the functor in (2).
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3.2 Feynman Category

Definition 1 The data of triple F D .V;F ; {/ as above is called a Feynman
category if the following conditions hold.

i. {˝ induces an equivalence of symmetric monoidal categories between V˝ and
Iso.F /.

ii. { and {˝ induce an equivalence of symmetric monoidal categories between
.Iso.F # V//˝ and Iso.F # F / .

iii. For any 
 2 V, .F # 
/ is essentially small.

Condition (i) is called the isomorphisms condition, (ii) is called the hereditary
condition and (iii) the size condition. The objects of .F # V/ are called one-comma
generators.

3.2.1 Non-symmetric Version

Now let .V;F ; {/ be as above with the exception that F is only a monoidal category,
V˝ the free monoidal category, and {˝ is the corresponding morphism of monoidal
groupoids.

Definition 3.1 A non-symmetric triple F D .V;F ; {/ as above is called a non-†
Feynman category if

i. {˝ induces an equivalence of monoidal groupoids between V˝ and Iso.F /.
ii. { and {˝ induce an equivalence of monoidal groupoids Iso.F # V/˝ and

Iso.F # F /.
iii. For any object 
v in V, .F # 
v/ is essentially small.

3.3 Ops and Mods

Definition 2 Fix a symmetric monoidal category C and F D .V;F ; {/ a Feynman
category.

• F -OpsC WD Fun˝.F ;C/ is defined to be the category of strong symmetric
monoidal functors which we will call F -ops in C. An object of the category
will be referred to as an F -op in C.

• V-ModsC WD Fun.V;C/, the set of (ordinary) functors will be called V-mods
in C with elements being called a V-mod in C.

There is an obvious forgetful functor G W Ops!Mods given by restriction.

Theorem 3.2 The forgetful functor G W Ops ! Mods has a left adjoint F (free
functor) and this adjunction is monadic. This means that the category of the algebras
over the triple T D GF in C are equivalent to the category of F -OpsC.
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Morphisms between Feynman categories are given by strong monoidal func-
tors that preserve the structures. Natural transformations between them give 2-
morphisms. The categories F -OpsC and F -ModsC again are symmetric monoidal
categories, where the symmetric monoidal structure is inherited from C. E.g. the
tensor product is pointwise, .O ˝ O0/.X/ WD O.X/ ˝ O0.X/, and the unit is the
functor 1Ops W F ! C. I.e. the functor that assigns 1C 2 Obj.C/ to any object in
V, and which sends morphisms to the identity morphism. This is a strong monoidal
functor by using the unit constraints.

Theorem 3.3 Feynman categories form a 2-category and it has push-forwards
and pull-backs for Ops. That is, for a morphism of Feynman categories f , both
push-forward f� and pull-back f � are adjoint symmetric monoidal functors f� W
F -OpsC � F 0-OpsC W f �.

3.4 Details

3.4.1 Details on the Definition

The conditions can be expanded and explained as follows.

1. Since V is a groupoid, so is V˝. Condition (i) on the object level says, that
any object X of F is isomorphic to a tensor product of objects coming from V.
X ' N

v2I {.
v/. On the morphisms level it says that all the isomorphisms in
F basically come from V via tensoring basic isomorphisms of V, the commu-
tativity and the associativity constraints. In particular, any two decompositions
of X into

N
v2I {.
v/ and

N
v02I {.
0v/ there is a bijection ‰ W I $ I0 and an

isomorphism 
v W {.
v/ ! {.
v0/. This implies that for any X there is a unique
length jIj, where I is any index set for a decomposition of X as above, which we
denote by jXj. The monoidal unit 1F has length 0 as the tensor product over the
empty index set.

2. Condition (ii) of the definition of a Feynman category is to be understood as
follows: An object in .F # V/ is a morphism � W X ! {.
/, with 
 in Obj.V/.
An object in .F # V/˝ is then a formal tensor product of such morphisms, say
�v W Xv ! {.
v/, v 2 I for some index set I. To such a formal tensor product,
the induced functor assigns

N
v2V �v W

N
v Xv !

N
v 
v , which is a morphisms

in F and hence an object of .F # F /.
The functor is defined in the same fashion on morphisms. Recall that an

isomorphism in a comma category is given by a commutative diagram, in which
the vertical arrows are isomorphisms, the horizontal arrows being source and
target. In our case the equivalence of the categories on the object level says that
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any morphisms � W X ! X0 in F has a “commutative decomposition diagram”
as follows

(3)

which means that when � W X ! X0 and X0 ' N
v2I {.
v/ are fixed there are

Xv 2 F ; and �v 2 Hom.Xv;
v/ s.t. the above diagram commutes.
The morphisms part of the equivalence of categories means the following:

a. For any two such decompositions
N

v2I �v and
N

v02I0 �0v0 there is a bijection
 W I ! I0 and isomorphisms 
v W Xv ! X0 .v/ s.t. P�1 ı

N
v 
v ı�v D

N
�0v0

where P is the permutation corresponding to  .
b. These are the only isomorphisms between morphisms.

As it is possible that Xv D 1, the axiom allows to have morphisms 1 ! X0,
which are decomposable as a tensor product of morphisms 1 ! {.
v/. On the
other hand, there can be no morphisms X ! 1 for any object X with jXj � 1. If
1 is the target, the index set I is empty and hence X ' 1, since the tensor product
over the empty set is the monoidal unit.

We set the length of a morphisms to be j�j D jXj � jX0j. This can be positive
or negative in general. In many interesting examples, it is, however, either non-
positive or non-negative.

3. The last condition is a size condition, which ensures that certain colimits over
these comma-categories to cocomplete categories exist.

3.4.2 Details on the Adjoint Free Functor

The free functor F is defined as follows: Given a V-module ˆ, we extend ˆ to all
objects of F by picking a functor | which yields the equivalence of V˝ and Iso.F /.
Then, if |.X/ DNv2I 
v , we set

ˆ.X/ WD
O

v2I
ˆ.
v/ (4)

Now, for any X 2 F we set

F.ˆ/.X/ D colimIso.F#X/ˆ ı s (5)

where s is the source map in F from HomF ! ObjF and on the right hand side
or (5), we mean the underlying object. These colimits exist due to condition (iii).
For a given morphism X ! Y in F , we get an induced morphism of the colimits and
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it is straightforward that this defines a functor. This is actually nothing but the left
Kan extension along the functor {˝ due to (i). What remains to be proven is that this
functor is actually a strong symmetric monoidal functor, that is that f�.O/ W F 0 ! C
is strong symmetric monoidal. This can be shown by using the hereditary condition
(ii).

The fact that f� is itself symmetric monoidal amounts to a direct check as does
the fact that f � and f� are adjoint functors. The fact that f � is symmetric monoidal
is clear.

3.4.3 Details on Monadicity

A triple aka. monad on a category is the categorification of a unital semigroup. I.e.
a triple T on a category C is an endofunctor T W C ! C together with two natural
transformations, � W IdC ! T, where idC is the identity functor and a multiplication
natural transformation � W T ı T ! T, which satisfy the associativity equation � ı
T� D �ı�T as natural transformationsT3 ! T, and the unit equation�ıT� D �ı
�T D idT , where idT is the identity natural transformation of the functor T to itself.

The notation is to be read as follows: � ı T� has the components T.T2.X//
T.�X /!

T2X
�X! TX, where �X W T2X ! TX is the component of �.

An algebra over such a triple is an object X of C and a morphism h W TX ! X
which satisfies the unital algebra equations. h ı Th D h ı �X W T2X ! X and
idX D h ı �X W X ! X.

3.4.4 Details on Morphisms, Push-Forward and Pull-Back

A morphisms of Feynman categories .V;F ; {/ and .V0;F 0; { 0/ is a pair of functors
.v; f / where v 2 Fun.V;V0/ and f 2 Fun˝.F ;F 0/ which commute with the
structural maps {; { 0 and {˝; { 0˝ in the natural fashion. For simplicity, we assume
that this means strict commutation. In general, these should be 2-commuting, see
[33]. Given such a morphisms the functor f � W F 0-OpsC ! F 0-OpsC is simply
given by precomposing O 7! f ı O.

The push-forward is defined to be the left Kan extension LanfO. It has a similar
formula as (5). One could also write fŠ for this push-forward. Thinking geometrically
f� is more appropriate.

We will reserve fŠ for the right Kan extension, which need not exist and need
not preserve strong symmetric monoidality. However, when it does it provides an
extension by 0 and hence a triple of adjoint functors . f�; f �; fŠ/. This situation is
characterized in [50] which also gives a generalization of fŠ and its left adjoint in
those cases where the right Kan extension does not preserve strong symmetry.
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3.5 Examples

3.5.1 Tautological Example

.V;V˝; | /. Due to the universal property of the free symmetric monoidal category,
we have ModsC ' OpsC.

Example If V D G, that is V only has one object, we recover the motivating
example of group theory in the Warm Up. For a functor f W G ! H we have the

functor f˝ and the pair . f ; f˝/ gives a morphism of Feynman categories. Pull-back
becomes restriction and push-forward becomes induction under the equivalence
ModsC ' OpsC.

Given any Feynman category .V;F ; {/ there is always the morphism of Feynman
categories given by { and {˝: .V;V˝; | /! .V;F ; {/ and the push-forward along
it is the free functor F.

3.5.2 Finite Sets and Surjections: F D Surj, V D 1

An instructive example for the hereditary condition (ii) is the following. As above
let Surj the category of finite sets and surjection with disjoint unionq as monoidal
structure and let 1 the trivial category with one object 
 and one morphism id�.

1˝ is equivalent to the category N, where we think n D f1; : : : ; ng D f1gq� � �q
f1g, 1 D {.
/. This identification ensures condition (i): indeed 1˝ ' Iso.Surj/.

Condition (ii) is more interesting. The objects of .F # V) are the surjections
S � {.
/. Now consider an arbitrary morphism of Surj that is a surjection f W
S � T and pick an identification T ' f1; : : : ; ng, where n D jTj. Then we can
decompose the morphism f as follows.

(6)

Notice that both conditions (a) and (b) of Sect. 3.4.1 hold for these diagrams. This is
because the fibers of the morphisms are well defined. Condition (iii) is immediate.
So indeed Surj D .Surj; 1; {/ is a Feynman category.

1-ModsC is just Obj.C/ and Surj-Ops are commutative and associative algebra
objects or monoids in C as discussed in the Warm Up. The commutativity follows
from the fact that if � is the surjection 2! 1, as above, and �12 is the permutation of
1 and 2 in 2 D f1; 2g, which is also the commutativity constraint, then � ı �12 D � .

The functor G forgets the algebra structure and the functor F associates to every
object X in C the symmetric tensor algebra of X in C. In general, the commutativity
constraints define what “symmetric tensors” means.
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The monadicity can be read as in the Warm Up. Being an algebra over GF means
that there is one morphism for each symmetric tensor power Aˇn ! A, that on
elements is given by a1 ˇ � � � ˇ an ! a1 : : : an. This is equivalent to defining a
commutative algebra structure.

The length of the morphisms is always non-negative and only isomorphisms have
length 0.

3.5.3 Similar Examples

There are more examples in which V is trivial and V˝ ' S.
Let F D Inj the category of finite sets and injections. This is a Feynman category

in which all the morphisms have non-positive length, with the isomorphisms being
the only morphisms of length 0. If we regard .F # V/, we see that the injection
i W ; ! {.
/ is a non-isomorphism, where ; D 1 is the monoidal unit with respect
toq. By basic set theory, any other injection can be written as idq� � �qidqi � � �qi
followed by a permutation. This gives the decomposition for axiom (ii). The other
two axioms are straightforward.

Using both injections and surjections, that is F D FinSet, the category of finite
sets and all set maps, we get the Feynman category F inSet D .1;FinSet; {/.

3.5.4 Skeletal Versions: Biased vs. Unbiased

Notice that the skeletal versions of Feynman categories do give different ops,
although the categories Ops are equivalent. This is sometimes distinguished by
calling the skeletal definition biased vs. the general set definition which is called
unbiased. This terminology is prevalent in the graph based examples, see Sects. 3.7
and 4.

3.5.5 FI-modules and Crossed Simplicial Groups, and Free Monoidal
Feynman Category

We can regard the skeletal versions of the F above. For sk.Inj/ the ordinary functors
Fun.sk.Inj/;C/ are exactly the FI-modules of [9]. Similarly, for�CS the augmented
crossed simplicial group, Fun.�CS;C/ are augmented symmetric simplicial sets
in C.

In order to pass to symmetric monoidal functors, that is Ops, one can use a
free monoidal construction F �. This associates to any Feynman category F a new
Feynman category F � for which F �-OpsC is equivalent to the category of functors
(not necessarily monoidal) Fun.F ;C/, see Sect. 6.4.
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3.5.6 Ordered Examples

As in the warm up, we can consider V D 1, but look at ordered finite sets F inSetord
with morphisms being surjections/injections/all set morphisms. In this case the
automorphisms of a set act transitively on all orders. For surjections we obtain not
necessarily commutative algebras in C as ops.

3.6 Units

Adding units corresponds to adding a morphisms u W ; ! {.
/ and the modding
out by the unit constraint � ı id1˝ u D id1. An op O will take u to � D O.u/ W 1!
A D O.1/.

3.7 Graph Examples

3.7.1 Ops

There are many examples based on graphs, which are explained in detail in the next
Sect. 4. Here the graphs we are talking about are not objects of F , but are part of the
underlying structure of the morphisms, which is why they are called ghost graphs.
The maps themselves are morphisms between aggregates (collections) of corollas.
Recall that a corolla is a graph with one vertex and no edges, only tails. These
morphisms come from an ambient category of graphs and morphisms of graphs.
In this way, we obtain several Feynman categories by restricting the morphisms to
those morphisms whose underlying graphs satisfy certain (hereditary) conditions.
The Ops will then yield types of operads or operad like objects. As a preview:

Ops Graph, i.e. underlying ghost graphs are of the form

Operads Rooted trees

Cyclic operads Trees

Modular operads Connected graphs (add genus marking)

PROPs Directed graphs (and input output marking)

NC modular operad Graphs (and genus marking)

Broadhurst-Connes 1-PI graphs

-Kreimer

. . . . . .

Here the last entry is a new class. There are further decorations, which yield the
Hopf algebras appearing in [7], see [30].
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3.7.2 Non-† Feynman Categories: The Augmented Simplicial Category

If we use V D 1 as before, we can see that F D �C yields a Feynman category.
Now the non-symmetric V˝ D N and the analog of Surj and Inj will then be order-
preserving surjections and injections. These are Joyal dual to each other and play a
special role in the Hopf algebra considerations.

Another non-† example comes from planar trees where V are rooted planar
corollas and all morphisms preserve the orders given in the plane. The F -OpsC are
then non-sigma operads. Notice that a skeleton of V is given by corollas, whose in
flags are labelled f1; : : : ; ng in their order and these have no automorphisms.

3.7.3 Dual Notions: Co-operads, etc.

In order to consider dual structure, such as co-operads, one simply considers
F -OpsCop . Of course one can equivalently turn around the variance in the source
and obtain the triple: Fop D .Vop;F op; {op/. Now Vop is still a groupoid and {;˝
still induces an equivalence, but F op will satisfy the dual of (ii). At this stage, we
thus choose not to consider Fop, but it does play a role in other constructions.

3.8 Physics Connection

The name Feynman category was chosen with physics in mind.V are the interaction
vertices and the morphisms of F are Feynman graphs. Usually one decorates these
graphs by fields.

In this setup, the categories .F # 
/ are the channels in the S matrix. The external
lines are given by the target of the morphism. The comma/slice category over a given
target is then a categorical version of the S-matrix.

The functors O 2 F -OpsC are then the correlation functions. The constructions
of the Hopf algebras agrees with these identifications and leads to further questions
about identifications of various techniques in quantum field theory to this setup and
vice-versa. What corresponds to algebras and plus construction, functors? Possible
answers could be accessible via Rota–Baxter equations and primitive elements [25].

3.9 Constructions for Feynman Categories

There are several constructions which will be briefly discussed below.

1. Decoration FdecO: this allows to define non-Sigma and dihedral versions. It also
yields all graph decorations needed for the zoo; see Sect. 5.
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2. C construction and its quotient Fhyp: This is used for twisted modular operad and
twisted versions of any of the previous structures; see Sect. 6.

3. The free constructions F�, for which F�-OpsC D Fun.F ;C/, see Sect. 6. Used
for the simplicial category, crossed simplicial groups and FI-algebras.

4. The non-connected construction Fnc, whose F nc-Ops are equivalent to lax
monoidal functors of F , see Sect. 6.

5. The Feynman category of universal operations on F-Ops ; see Sect. 7.
6. Cobar/bar, Feynman transforms in analogy to algebras and (modular) operads;

see Sect. 7.
7. W-construction, which gives a topological cofibrant replacement; see Sect. 8.
8. Bi- and Hopf algebras from Feynman categories; see Sect. 10.

4 Graph Based Examples: Operads and All of the Zoo

In this section, we consider graph based examples of Feynman categories. These
include operads, cyclic operads, modular operads, PROPs, properads, their wheeled
and colored versions, operads with multiplication, operads with A1 multiplications,
etc., see Table 1. They all come from a standard example of a Feynman category
called G via decorations and restrictions [30, 33]. The category G is a subcategory
of the category of graphs of Borisov–Manin [6] and decoration is a technical term
explained in Sect. 5.4.

Caveat Although G is obtained from a category whose objects are graphs, the
objects of the Feynman category are rather boring graphs; they have no edges or
loops. The usual graphs that one is used to in operad theory appear as underlying
(or ghost) graphs of morphisms defined in [33]. These two levels should not be
confused and differentiate our treatment from that of [6].

4.1 The Borisov–Manin Category of Graphs

We start out with a brief recollection of the category of graphs given in [6]

1. A graph ( is a tuple .F(;V(; @( ; {(/ of flags F( , vertices V( , an incidence
relation @( W F ! V and an involution { W F�

( , {2( D id which exhibits that
either two flags, aka. half-edges are glued to an edge in the case of an orbit of
order 2, or a flag is an unpaired half-edge, aka. a tail if its orbit is of order one.

2. A graph morphism � W ( ! ( 0 is a triple .�V ; �F; {�/, where �V W V( ! V(0 is
a surjection on vertices, �F W F(0 ! F( is an injection and {� W F( n �F.F(0/�

is a self-pairing ({2� D id and there are no orbits of order 1). This pairs together
flags that “disappeared” from F( to ghost edges.



394 R.M. Kaufmann

Table 1 List of Feynman categories with conditions and decorations on the graphs, yielding the
zoo of examples

F Feynman category for Condition on ghost graphs Γv and additional decoration

O (Pseudo)-operads Rooted trees

OMay May operads Rooted trees with levels

O:† Non-Sigma operads Planar rooted trees

Omult Operads with mult. B/w rooted trees

C Cyclic operads Trees

C:† Non-Sigma cyclic operads Planar trees

G Unmarked nc modular operads Graphs

Gctd Unmarked modular operads Connected graphs

M Modular operads Connected + genus marking

Mnc; nc Modular operads Genus marking

D Dioperads Connected directed graphs w/o directed

loops or parallel edges

P PROPs Directed graphs w/o directed loops

Pctd Properads Connected directed graphs

w/o directed loops

D� Wheeled dioperads Directed graphs w/o parallel edges

P�;ctd Wheeled properads Connected directed graphs

P� Wheeled props Directed graphs

F1PI 1-PI algebras 1-PI connected graphs

3. These morphisms have to satisfy obvious compatibilities, see [6] or [33]. One of
these is preservation of incidence �V ı @( ı �F. f 0/ D @(0. f 0/ and ghost edges
are indeed contracted �V.@� .f // D �V@� .{�.f //.
We will call an edge f f ; {. f / ¤ f g with two vertices .@. f / ¤ @.{. f // a simple

edge and an edge with one vertex .@. f / D @.{. f // a simple loop.
As objects, the corollas are of special interest. We will write 
S D .S; f
g; @ W

S � f
g; id/ for the corolla with vertex 
 and flags S. This also explains our
notation for elements of V in general.

An essential new definition [33] is that of a ghost graph of a morphism.

Definition 4.1 The ghost graph (or underlying graph) of a morphisms � D
.�V ; �

F; {�/ is the graph Γ.�/ D .V(;F(; O{�/, where O{� is the extension of {� to
all of F( by the identity on F( n �F.F(0/.

Example 4.2 Typical examples are isomorphisms—which only change the names
of the labels—forming of new edges, contraction of edges and mergers. The latter
are morphisms which identify vertices. These identifications are kept track of by �V .
Composing the forming of a new edge and then subsequently contracting it, makes
the two flags that form the edge “disappear” in the resulting graph. This is what {�
keeps track of. The “disappeared” flags form a ghost edge and this is the only way
that flags may “disappear”. The ghost graph says that the morphism factors through
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Fig. 2 A composition of morphisms and the respective ghost graphs. The first morphism glues
two flags to an edge, the second contracts an edge. The result is a morphism in Agg

a sequence of edge formations and subsequent contractions, namely those edges in
the ghost graph, see Fig. 2.

Remark 4.3 As can be seen from these examples: The ghost graph does not
determine the morphism. All the information about isomorphisms and almost all
information about mergers is forgotten when passing from a morphism to the
underlying graph.

What the ghost graph does, however, is keep track of are edge/loop contractions
and this can be used to restrict morphisms. Further information is provided by the
connectivity of the ghost graph, especially when mapping to a corolla. In this case,
we see that mergers have non-connected ghost graphs. Likewise, if we know that
there are no mergers, then each component of the ghost graph corresponds to a
vertex v 2 V(0 .

4.1.1 Composition of Ghost Graphs Corresponds to Insertion of Graphs
into Vertices

The operation of inserting a graph Γv into a vertex v of a graph Γ1, is well defined
for a given identification of the tails of Γv with the flags Fv incident to v. The
result is the graph Γv ıv Γ1 whose vertex set is V D VΓ1 n fvg q VΓv , the flags
F D FΓ1 q FΓv n tails.Γv/ with { given by the disjoint union and @ given by the
disjoint union and the identification of Fv with the tails of Γ1.

Consider two composable morphisms and their composition:
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Now let Γi be the associated graphs of �i, i D 0; 1; 2. Decomposing, Y D
qv2VY
v , and decomposing �2 asqv2V�v one can calculate [33] that Γ0 is given by
inserting each of the Γv into the vertices v of Γ�1 D V , which we write asqvΓv ıΓ1.

Γ.�0/ D Γ.�2/ ı Γ.�1/ (7)

where the identification for the composition is given by �F
2 .

4.1.2 Symmetric Monoidal Structure

The category of graphs has a symmetric monoidal structure given by disjoint union.
The unit is the empty graph .;;;; id;; id;/ where id; W ; ! ; is the unique
morphism from the empty set to itself.

4.2 The Feynman Category G D .Crl;Agg; {/

Let Crl be the subgroupoid of corollas with isomorphisms and Agg. Agg the full
subcategory whose objects are aggregates of corollas. An aggregate of corollas is a
graph without any edges {( D id. Any aggregate of corollas is a (possibly empty)
disjoint union of corollas and vice-versa. Including corollas into the aggregates as
one vertex aggregates gives an inclusion { W Crl! Agg.

Proposition 4.4 G D .Crl;Agg; {/ is a Feynman category.
In this example the one-comma generators .F # V/ are morphisms from an

aggregate to a simple corolla 
v
Proof Looking at the definition of morphisms it follows that Crl˝ ' Iso.Agg/.
Condition (iii) is clear. For condition (ii) let � W ( ! ( 0. We will write any such
morphism this as a disjoint union of one-comma generators.

For v 2 V(0 define (v to be the restriction of ( to the vertices mapping to v.
That is (v D .V(;v D ��1V .v/;F(;v D @�1( .V(;v/; @(;v D id/. We let �v W (v !
vFv be the restriction of �, where vFv is the corolla with vertex v and its incident
flags Fv D @�1(0 .v/. ( D .�V jV(;v ; �FjFv ; {� jF(;vn.�F/�1.Fv//. It then follows that ( D
qv2V0( (v; (

0 D qv2V(0 vFv and � D qv2V(0�v . This yields the decomposition. It is
easy to check conditions (a) and (b).

Notice that forming an edge or a loop is not a morphism in Agg. However the
composition of the two morphisms, forming an edge or a loop and then subsequently
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contracting it is a morphism in Agg, see Fig. 2. One could call this a virtual or ghost
edge contractions. For simplicity we will call these simply edge or loop contractions.

4.2.1 Morphisms in Agg

1. Simple edge contraction. �F is the identity and the complement of the image �F

is given by two flags s; t, which form a unique ghost edge. The two flags are not
adjacent to the same vertex and these two vertices are identified by �V . The ghost
graph is obtained from the source aggregate by adding the edge fs; tg. We will
denote this by sıt.

2. Simple loop contraction. As above, but the two flags of the ghost edge are
adjacent to the same vertex. That is both �V and �F are identities. This is called
a simple loop contraction. We will denote this by ıst.

3. Simple merger. This is a merger in which �V only identifies two vertices v and
w. �F is an isomorphism. Its degree is 0 and the weight is 1. The ghost graph is
simply the source graph. We will denote this by vˇw.

4. Isomorphism. This is a relabelling preserving the incidence conditions. Here �V
and �F are bijections. The ghost graph is the original graph.

Typical examples of such morphisms are shown in Fig. 3.
Actually any morphism is a composition of such morphisms [33]. The relations

between these types of morphisms are spelled out below. In order to make things
canonical, we will call a morphism pure � W ( ! ( 0, if �F D id when restricted
to its image, and the vertices of ( 0 are the fibers of �V , that is �V.v/ D fw 2
V( j�V.w/ D �V .v/g. With this terminology any morphism decomposes as

� D 
 ı �m ı �c (8)

were �c is a pure contraction, �m is a pure merger, and 
 is an isomorphism.

s

t

s t
st

s t

v w
v

w

Fig. 3 The three basic morphisms in G: an edge contraction (top), a loop contraction (left), and a
merger (right). In the morphism, we give the ghost graph and label it by the standard notation. The
shaded region is for illustration only, to indicate the merger
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4.2.2 Ghost Graphs forAgg

In the case of morphism in Agg, we can say more about the morphisms that have a
fixed underlying ghost graph. First, the source of a morphism� has the same vertices
and flags as its ghost graph Γ.�/ and is hence completely determined. If the ghost
graph is connected, then up to isomorphism the target is the vertex obtained from Γ
by contracting all edges. If Γ.�/ is not connected, one needs the information of �V
to obtain the target up to isomorphism. This is due to possible vertex mergers that
are not recorded by the connected components of Γ. This information is encoded in
a decomposition Γ D qv2VΓv . The Γv D Γ.�v/ are the ghost graphs of one-comma
generators of the decomposition � D qv�v .

Stated in another fashion: in the decomposition (8), Γ.�/ fixes �c, the decompo-
sition Γ.�/ D qvΓv fixes �m.

4.2.3 Relations

All relations among morphisms in G are homogeneous in both weight and degree.
We will not go into the details here, since they follow directly from the description
in the appendix of [33]. There are the following types.

1. Isomorphisms. Isomorphisms commute with any � in the following sense. For
any � and any isomorphism 
 there are unique �0 and 
 0 with Γ.� ı 
/ D Γ.�0/
such that

� ı 
 D 
 0 ı �0 (9)

2. Simple edge/loop contractions. All edge contractions commute in the following
sense: If two edges do not form a cycle, then the simple edge contractions
commute on the nose

sıt s0ıt0 D s0ıt0 sıt (10)

The same is true if one is a simple loop contraction and the other a simple edge
contraction:

sıtıs0t0 D ıs0t0 sıt (11)

If there are two edges forming a cycle, this means that

sıtıs0t0 D s0ıt0ıst (12)

This is pictorially represented in Fig. 4.
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Fig. 4 Squares representing commuting edge contractions and commuting mergers. The ghost
graphs are shown. The shaded region is for illustrative purposes only, to indicate the merger

3. Simple mergers. Mergers commute amongst themselves

vˇw v0ˇw0 D v0ˇw0 vˇw (13)

If f@.s/; @.t/g ¤ fv;wg then

sıt vˇw D vˇw sıt; ıst vˇw D vˇwıst (14)

If @.s/ D v and @.t/ D w then for a simple edge contraction, we have the
following relation

sıt D ıst vˇw (15)

This is pictorially represented in Fig. 5.

Fig. 5 A triangle representing commutation between edge contraction and a merger followed by a
loop contraction. The ghost graphs are shown. The shaded region is for illustrative purposes only,
to indicate the merger
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4.3 Examples Based on G: Morphisms Have Underlying
Graphs

We are now ready to present the zoo of operad-like structures in a structured way
using the Feynman category G. The different Feynman categories will be obtained
by decoration and restriction. Restriction often involves the underlying ghost
graphs—to be precise, the underlying ghost graphs of the one-comma generators.
What one needs to check is that any such restriction is stable under composition
and the decorations compose, whence the term hereditary. For this it suffices to
check compositions X ! Y ! {.
/. In other words, verify that qvΓv ı Γ satisfies
a given restriction whenever Γ and the Γv are composable ghost graphs of one-
comma generators satisfying this restriction. Likewise, one also has to define how
the decorations compose and check that this gives an associative composition. The
usual way is to induce the decoration on qvΓv ı Γ whenever the decorations on
Γ and the Γv are given. This can be done in the following cases (Table 1) in a
straightforward fashion, see [33] for details. For readers unfamiliar with some of
these structures, the table may serve as a definition. We will discuss decorations,
such as roots or directions in a more general fashion in Sect. 5. For instance all these
examples have colored versions by decorating the flags with colors.

We will say that F is a Feynman category for a structure X if F -OpsC are the
X-structures in C. E.g. O is the Feynman category for operads means that O-OpsC
is the category of operads in C.

New examples can also be constructed in this fashion. The first is the 1-PI (one
particle irreducible) condition. A graph is 1PI if it is connected furthermore even
after remains connected after cutting any one edge the graph. There are more new
examples of this type coming from quantum field theory and number theory, like
the ones used in [7], see [14].

4.3.1 Push-Forwards and Pull-Backs: Non-connected Versions

There are obvious inclusion maps and forgetful maps between these categories. E.g.
C ! M, which assigns g D 0 to each vertex. Here pull-back is the restriction and
push-forward is the modular envelope. Looking at O! P, the root being “out”, the
push-forward is the PROP generated by and operad and the restriction is the operad
contained in a PROP. An examples that has been described by hand [28] is the PROP
obtained from a modular operad. For this there is the morphism P ! M, which
forgets the directions and adds genus 0 to the vertices. Another is the inclusion
M ! Mnc which under push-forward gives the non-connected versions used for
moduli spaces in [21, 35, 47].

Analogously there is an inclusion F ! Fnc for any of the candidates F with
connected graphs, where Fnc allows non-connected graphs of the same type. Even
more generally for and F there is such a non-connected version Fnc whose category
Ops is equivalent to lax monoidal functors from F, see Sect. 6.5.
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4.4 Details

4.4.1 Operad-Lingo and Notation: Composition Along Graphs, Self
Gluing, Non-self Gluing and Horizontal Composition

Let us unravel the data involved in an O 2 F -Ops. Given a one-comma generator
� W X D qi
Si ! 
T we get a morphisms O.�/ W O.X/ D N

i O.
Si/ ! O.
T/.
Here X D s.�/ is also the set of vertices of Γ.�/. If � D �c it is completely
determined by its ghost graph and for pure contractions to corollas, which have
connected ghost graphs, we can set O.Γ.�// WD O.�/. This yields usual operad-
like notations as follows. Define O.S/ WD O.
S/. Then one can use the abbreviated
notation

O.Γ/ WD O.Γ.�// W
O

O.Si/! O.T/

for the composition “along any connected graph Γ”.
For a simple edge contraction sıt W 
S ˝ 
T ! 
.Sns/q.Tnt/ we get the standard

non-self gluing pseudo operad compositions O.S/ ˝ O.T/ ! .S n s/ q .T n t/,
which is often denoted by sıt as well. In a similar manner, one obtains the May
operations � for a rooted tree whose internal edges are all incident to the root. A
simple loop contraction ıs;s0 W 
S ! 
Snfs;sg becomes the self gluing operation
O.S/! O.S n fs; s0g/; again by abuse of notation simply denoted ıs;s0 .

If ˇ W 
S q 
T ! 
SqT is a simple merger then in the usual PROP notation this
becomes the horizontal composition O.S/˝O.T/! O.SqT/ usually also denoted
by ˇ.

Finally there are the isomorphisms. These are already incorporated into the V-
Mods structure and not mentioned as structure operations in the operad-lingo. They
are pushed into the underlying notion of S-module, or V-Mods in general, on which
operads are built. Thus by using (8) we can write anyO.�/ in the usual operad-lingo.
The downside is that we have to make this decomposition first.

4.4.2 Biased and Unbiased Versions

Sending S! 
S provides an equivalence from F inSet to Crl. We see that a skeleton
of Crl is given by S. Choosing V D S, the V-Mods become S-modules. Here
usually one identifies n with f0; 1; : : : ; ng with 0 indexing the root if there is one
present.

If we fix Iso.F / D V˝ with V D S, we obtain the biased notions of operads,
etc., that is objects O.n/ with extra operations. Using V D F inSet, we get O.S/
with extra operations indexed by flags.

If there is an extra decoration, then this is part of V and the set of vertices
becomes bigger. An example is the genus marking in the modular operad case, so
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that we get O.n; g/ or O.n;m/ for Props, where n are the incoming flags and m are
the outgoing flags in the biased version and O.S; g/ and O.S;T/ in the unbiased one.

For instance, in the directed case a typical element of V is 
S;T where S are the
in-flags and T are the out flags. Hence one obtains O.S;T/ as for PROPs. Similarly
if there is a genus marking a typical element is 
S;g and hence in operad-lingo, we
get O.S; g/.

Variations If one is dealing with roots, often one uses the sets nC D f0; : : : ; ng
with the 0 being the label of the root. An isomorphism must fix the roots, so that
Aut.
n

C

/ D Sn. For operads, we then have the translation ıi WD iı0. In cyclic and
modular operads, one commonly writes O..n// for O..n � 1/C/ when using cyclic
or modular operads, but does not insist that the maps are pointed, i.e. that the label
0 is preserved, so that Aut..n// D Sn.

4.4.3 A Special Case: PROP(erad)s vs. Di-operads and Wheeled Versions

PROPs and properads are a special case. Here the generators are not only the single
edge contraction, but all multiparallel edge contractions. In the graphs, parallel
edges in the same direction are allowed. These cannot be factored into single edge
constructions, so that there are generators ıkv;w which simultaneously contract k
ghost edges of (necessarily) the same orientation between v and w.

Allowing only the single edge contractions, one arrives at di-operads. Allowing
wheels also allows to factor a multi-edge contraction and a single edge contraction
followed by single loop contractions.

4.4.4 Identities, Multiplications, etc. as Morphisms and Decorations

We will briefly describe how to incorporate these operations. Say, we want to add a
“unit” as to get the Feynman category for unital operads. Recall that for and operad
O a unit is an element � W 1C ! O.1/ which satisfies u ı1 a D a D a ıi u.

Since 1C D O.1F /, we adjoint a morphisms u W ; ! 
1
C

to the Feynman
category for operads O with source the empty graph. This can be graphically noted
by putting a u on a binary vertex of a ghost tree, whenever we want to use the
morphism u, as illustrated in Fig. 6. This does not yet constitute putting in a unit,
but rather asking for the data of an element in O.1/. This is actually what is needed in
the case of the Hopf algebra of Connes and Kreimer [14], see also Sect. 10. In order
to get a unit, we have to quotient by the relation given above. The simplest graphical

Fig. 6 Graphically adding a
morphism as marked binary
vertex of the ghost graph

u or (u)
empty

graph
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way to do this is to remove all the vertices u from the graph. Technically this is given
by an equivalence relation. If one does this, one can create a new “degenerate graph”
consisting of a lone flag, which represents any tree whose vertices are all marked by
u. This explains the notation of e.g. [41].

In this fashion, one sees that one gets an isomorphism of Feynman categories
between the Feynman category for unital May operads and that for unital operads,
see [33] for details.

Similarly, for multiplications one needs an extra morphism � W 1C ! O.2/.
Consequently, one adjoins a morphism ; ! 
2

C

. In the graphical version, the
(ghost) graphs will now have a possible decoration on 3-valent vertices by �. This
just gives a multiplication, one can then quotient out by the associativity equation.
This amounts to graphs with black and white vertices, where black indicates an
iteration of �. Here associativity induces an equivalence relation, which allows to
contract all edges of any subtree of vertices marked solely by�. A similar procedure
adds the �n for A1 multiplications as black vertices of arity n, see e.g. [26, 32, 33].

Furthermore all these kinds of extra morphisms can be collected and turned into
a decoration in the technical sense. This is detailed in [33].

4.5 Omnibus Theorems

For any of these, we have a general triple of graphs T D GF. We immediately
obtain a general theorem for all of the zoo and all new species of this kind; see
also, Sect. 5. These give the usual three ways of describing these objects (a) via
composition along graphs, (b) as algebras over a triple or (c) via generators and
relations for the morphisms.

Theorem 4.5 The biased and unbiasedOpsC are equivalent. Moreover the F -OpsC
are equivalent to algebras over the relevant triple of graphs.

Notice the usual triples of graph, see e.g. [43], match up exactly with the triples
above, when one considers the ghost graphs and their composition. Moreover, the
whole semi-simplicial structure of iterating the endofunctors, cf. [19, 43], coincides
as demonstrated in [33].

Theorem 4.6 Generators and relations description. All the examples have a gener-
ator and relations description. The generators always contain the isomorphisms, the
edge contractions sıt. If non-connected graphs are allowed, the morphisms include
the mergers ˇv;w and if loops are allowed, then they contain the loop contractions.
In the presence of decorations, these are restricted to respect the decorations (cf.
Sect. 5). The relations are the ones given above.

If one adds additional morphisms with relations, these are be included in the list.
This can be formalized using Feynman categories indexed over another Feynman
category, see [33].
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Example For instance, when adding units, the morphism u is a generator and the
relations with u are the unit relations. This way, one can, for example, get the
Feynman category for unital cyclic operads in all three definitions.

Remark 4.7 In the PROP(erad) case, which is special, the generators are not only
the simple edge contraction, but multi-edge contractions, see Sect. 4.4.3.

5 Decorating Feynman Categories FdecO

Decorations can be made into a technical definition. The details for this section
are in [30]. The basic idea is that one can decorate a Feynman category by using
elements of F -Ops. The reason this works is that in order to define a composition,
one has to give a composition for the decorations, but this is precisely the data of an
O 2 F -Ops. These decorations actually decorate the elements of V. In the graph
example above, this means that one can decorate vertices and flags.

5.1 Main Theorems

The main constructive theorem is the following.

Theorem 5.1 Given an O 2 F -Ops, then there is a Feynman category
FdecO which is indexed over F . It objects are pairs .X; dec 2 O.X// and
HomFdecO..X; dec/; .X

0; dec0// is the set of � W X ! X0, s.t. O.�/ W dec! dec0.

Remark 5.2 This theorem also works in the enriched setting, where one considers
enrichment over C, confer Sect. 6. This construction works directly for Cartesian C,
and with modifications it also works for the non-Cartesian case.

Example 5.3 All planar structures: Non-sigma operads, cyclic non-Sigma operads,
non-Sigma modular operads. Here O is Assoc, CycAssoc, ModCycAssoc. These
are actually all obtained by functoriality, see below. This recovers e.g. that the
modular envelope of CycAssoc factors through non-Sigma modular operads [42].

Theorem 5.4 (Functoriality in F and O) Given a morphism of Feynman cate-
gories f W F ! F0 and a morphisms 
 W O ! P. There are commutative squares
which are natural in O

(16)
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On the categories of monoidal functors to C, we get the induced diagram of adjoint
functors.

(17)

5.2 Terminal Objects and Minimal Extensions

Theorem 5.5 If T is a terminal object for F -Ops and forget W FdecO ! F is the
forgetful functor, then forget�.T / is a terminal object for FdecO-Ops. We have that
forget�forget�.T / D O.

Definition 5.6 We call a morphism of Feynman categories i W F ! F0 a
minimal extension over C if F-OpsC has a terminal/trivial functor T and i�T is
a terminal/trivial functor in F0-OpsC.

Example 5.7 There are two examples that appear naturally. The first is CycCom and
ModCycCom for C!M and the second is the decorated version forget�.CycAssoc/
and iO�.forget�.CycAssoc//.

Proposition 5.8 If f W F ! F0 is a minimal extension over C, then fO W FdecO !
F0decf

�

.O/ is as well. This condition has more recently been further analyzed and has
been identified as part of a factorization system in [4].

5.3 Example

5.3.1 Markl’s Non-† Modular (See Also [31])

(18)

1. The commutative square exists simply by Theorem 5.4.
2. On the left side, if 
C is final for C and hence forget�.
C/ D 
C is final for C:†.

The pushforward forget�.
C/ D CycAssoc.
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3. On the right side, if 
M is final for M and hence forget�.
M/ D 
M is final for
M:†. The pushforward forget�.
M/ D ModAssoc.

4. The inclusion i is a minimal extension. This is a fact explained by basic topology.
Namely gluing together polygons in their orientation by gluing edges pairwise
yields all closed oriented surfaces, see e.g. [46].

5. Hence iCycAssoc is also a minimal extension. which explains why indeed the
pushforward of the terminal op is up to that point still terminal. It also reflects
the fact that not gluing all edges pairwise, but preserving orientation, does yield
all surfaces with boundary.

5.4 Examples on G with Extra Decorations, Non-sigma,
Colored Versions, etc.

We now give the details on how to understand the decorations in Sect. 4 as
decorations in the technical sense. Decoration and restriction allows to generate the
whole zoo and even new species. Examples of the needed decorations are listed in
Table 2.

5.4.1 Flag Labelling, Colors, Direction and Roots as a Decoration

Recall that 
S is the one vertex graph with flags labelled by S and these are the
objects of V D Crl for G. For any set X introduce the following G-op: X.
S/ D XS.
The compositions are simply given by restricting to the target flags.

If the decoration is by d W F� ! X then d.f / D d.{�.f //. Then a natural
subcategory Fdir

decX of GdecX is given by the wide subcategory, whose morphisms

Table 2 List of decorated Feynman categories with decorating O and possible restriction

FdecO Feynman category for Decorating O Restriction

Fdir Directed version Z=2Z set Edges contain one input

and one output flag

Frooted Root Z=2Z set Vertices have one output flag

Fgenus Genus marked N

Fc�col Colored version c Set Edges contain flags

of same color

O:† Non-sigma-operads Assoc

C:† Non-Sigma-cyclic operads CycAssoc

M:† Non-sigma-modular ModAssoc

Cdihed Dihedral Dihed

Mdihed Dihedral modular ModDihed

F stands for an example based on G in the list or more generally indexed over G (see [33])
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additionally satisfy that only flags marked by elements x and Nx are glued and then
contracted; viz {� only pairs flags of marked x with edges marked by Nx. That is the
underlying ghost graph has edges whose two flags are labelled accordingly. In the
notation of graphs: X. f / D {�. f /.

If X is pointed by x0, there is the subcategory of GdecX whose objects are those
generated by 
S with exactly one flag labelled by x0 and where the restriction on
graphs is that for the underlying graph additionally, each edge has one flag labelled
by x0.

Now if X D Z=2Z D f0; 1g with the involution N0 D 1, we can call 0 “out” and 1
“in”. As a result, we obtain the category of directed graphs GdecZ=2Z . Furthermore, if
0 is the distinguished element, we get the rooted version. This explains the relevant
examples Table 2.

More generally, in quantum field theory the involution sends a field to its anti-
field and this is what decorates the lines or propagators in a Feynman graph.

5.4.2 Genus Decoration

Let N be the G-op which on objects of V has constant value the natural numbers
N.
S/ D N0. On morphisms N is defined to behave like the genus marking. That
is for � W X ! 
S, we define N.�/ W N.X/ D N0

jXj ! N0 D N.
S/ as

the concatenation N0
jXj

P

! N0
CN�.�/! N0 where N�.�/ equals one minus the Euler

characteristic of the graph underlying �. If this graph is connected this is just first
Betti number also sometimes called the genus. This coincides with the description in
[33, Appendix A]. Hence, if F is a subcategory of G, then the genus marked version
is just FdecN. Examples are listed in Table 2.

5.4.3 Assoc-Decorated, aka. Non-Sigma, aka. Non-planar

Likewise, we can regard the cyclic associative operad, CycAssoc. The pull back
of CycAssoc under forget W O ! C is the associative operad Assoc. Now
OdecAssoc D O:† is the Feynman category for non-Sigma operads. Indeed, the
elements of Assoc.
s/ are the linear orders on S, which means that we are dealing
with planar corollas as objects. Likewise, for the morphisms the condition that
�.aX/ D aY means that the trees are also planar. The story for cyclic operads is
similar CdecCycAssoc D C:†.

Things are more interesting in the modular case. In this case, we have
ModAssoc WD i�.CycAssoc/ as a possible decoration and we get the decorated
Feynman category M:† WDMdecModAssoc.. Indeed using this decoration, we recover
the definition of [42] of non-sigma modular operads, which is the special case of
a brane-labelled c/o system, with trivial closed part and only one brane color [31,
Appendix A.6]; see also [34], the appendix of [29] and [42] for details about the
correspondence between stable or almost ribbon graphs and surfaces.
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Here we can understand these constructions in a more general framework. First,
the diagram considered in [42] is exactly a diagram of Theorem 5.4. Then the
fact that the non-Sigma modular envelope of CycAssoc is terminal is obvious from
Theorem 5.5 and Proposition 5.8. The key observations are that the terminal object
of C:† pushed forward is indeed CycAssoc and that ModAssoc is the pushforward
of the terminal object of M:†. Notice CycAssoc is not a modular operad, so it is
not a valid decoration for M. This is reflected in the treatments of [31, 42]. We see
that we do get a planar aka. non-Sigma version by pushing forward Assoc.

5.5 Kontsevich’s Three Geometries

In this framework, one can also understand Kontsevich’s three geometries [37] as
follows.

5.5.1 Com, or Trivially Decorated

The operad CycCom, the operad for cyclic commutative algebras, is the termi-
nal/trivial object in C-Ops. Thus by Theorem 5.5, we have that OdecCom D O. The
analogous statement holds for C. Indeed, there is a forgetful functor O! C and the
pull-back of CycCom is Com and hence CdecCycCom D C. Finally using the inclusion
i W C!M means that the modular envelope i�.Com/ is a modular operad. Tracing
around the trivially decorated diagram, we see that this is again a terminal/trivial
operad. Indeed this is the content of Proposition 5.8.

5.5.2 Lie, etc. or Graph Complexes

For this we actually need the enriched version.
One of the most interesting generalizations is that of Lie or in general of

Kontsevich graph complexes. Here notice that Assoc;Com and Lie are all three
cyclic operads, so that they all can be used to decorate the Feynman category for
cyclic operads. For Lie it is important that we can also work over k-Vect. Thus,
answering a question of Willwacher (Private communication), indeed there is a
Feynman category for the Lie case.

To go to the case of graph complexes, one needs to first shift to the odd situation
and then take colimits as described in detail in [33], see especially section 6.9 of
loc. cit.
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5.6 Further Applications

Further forthcoming applications will be

1. Infinity versions of the Assoc, Com and Lie and their transformations.
2. New decorated interpretation of moduli space operations generalizing those of

[27, 28].
3. The new Stolz–Teichner–Dwyer setup for twisted field theories.
4. Kontsevich’s graph complexes.
5. Actions of the Grothendieck–Teichmüller group.

6 Enrichment, Algebras, Odd Versions and Further
Constructions

6.1 Enriched Versions, Plus Construction, and Algebras over
F-Ops: Overview and Examples

There are several reasons why one would like to consider enriched versions of
Feynman categories. They are necessary to define the transforms and resolutions.
Here it is necessary to introduce signs or anti-commuting morphisms. They are
also natural from an algebra over operads point of view. We will start with this
construction.

6.1.1 The Feynman Category for an Algebra over an Operad

Recall that an algebra over an operad O in C is an object A and a morphism of
operads � W O ! End.A/. For this to make sense, one assumes that C is closed
monoidal. Then End.A/.n/ D Hom.A˝n;A/. One can simply think of C D Vect or
Set. Substitutions then give the operad structure.

Algebras as Natural Transformations Generally, given a reference target F-op
E, then for another O 2 F -OpsC we define an O-algebra relative to E as a natural
transformation of functors � W O! E.

Indeed, for instance in the operad case with E D End, we obtain �.n/ W O.n/!
Hom.A˝n;A/ which commute with compositions.

Algebras over Operads as Functors We will start with the operad case. Given a
May operad O, we will construct a Feynman category FO whose ops are algebras
over O. The data we have to encode are A 2 C and �.n/ W O.n/ ! Hom.A˝n;A/.
Now if we take VO D 1 and Iso.FO/ D S, then we see that a strict symmetric
monoidal functor � W S ! C will send n to A˝n and the 
 2 Aut.n/ D Sn to the
permutations of the factors of A˝n.
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We now add more morphisms. A morphisms from � W n ! 1 will be sent
to a morphism �.�/ W Hom.A˝n;A/. Thus, we set the one-comma generators as
O.n/ DW HomFO.n; 1/. This fixes data of the �.n/ is and vice-versa. Notice that
when adding in these morphisms, O.n/ is—and has to be—an Sn-module to fix the
pre-composition with the isomorphisms Aut.n/.

Here we assume that we can also work with enriched categories. In particular,
we need to be enriched over C if O is an operad in C, see details below.

With these one-comma generators, due to condition (ii), we get that
HomFO.n;m/ D

N
.n1;:::;nm/WP niDn O.n1/ ˝ � � � ˝ O.nm/. Here

L
is the colimit,

which we assume to exist. There is more data. In order to compose HomFO.m; 1/˝
HomFO.n;m/! HomFO.n; 1/, we need morphisms

�n1;:::;nk W O.m/˝ O.n1/˝ � � � ˝ O.nm/! O.n/ n D
X

ni (19)

These have to be compatible with the isomorphisms. This data is the composition
of a May operad and vice-versa defines a category structure on FO.

This category has a special structure, namely that

HomFO.n;m/ D
M

�Wn�m

O.�/ where O.�/ D
O

i2m
O. f�1.i// (20)

Caveats In order to obtain a Feynman category, we will need to define what an
enriched Feynman category over C is. This is straightforward if C is Cartesian. In
the non-Cartesian case, we have to be a bit more careful, see below. There we will
see that the isomorphism condition will dictate that O.1/ has only 1, that is a copy
of 1C corresponding to id as the “invertible element”. Also, the relevant notion is
that of a Feynman category indexed enriched over another Feynman category. In our
example, we are indexed enriched over a skeleton of Surj.

Clearing these up leads to the theorem:

Theorem 6.1 The category of Feynman categories enriched over E indexed over
Surj is equivalent to the category of operads (with the only iso in O.1/ being the
identity) in E with the correspondence given by O.n/ D Hom.n; 1/. The Ops are
now algebras over the underlying operad.

Remark 6.2 We can also deal with algebras over operads which have isomorphisms
in O.1/ by enlargingV. For this one needs a splitting O.1/ D O.1/iso˚ NO.1/, where
no element of NO.1/ is invertible and O.1/iso D L

g2G 1C for an index group G is
the free algebra on G. Then we enlarge V by letting 1 have isomorphisms G. The
construction is then analogous to the one above and that of K-algebras [19]. Another
way is to use lax monoidal functors, see [33].
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6.1.2 General Situation for Algebras: Plus Construction

There is a “+” construction, not unlike that for polynomial monads [2], that produces
a new Feynman category out of an old one. Inverting morphisms stemming from
isomorphisms one obtains Fhyp and there is a further reduction to an equivalent
category Fhyp;rd. Details will be provided below.

The main theorem is that enrichments of F are in 1-1 correspondence with Fhyp-
Ops.

Example 6.3 Mhyp D Fhyper, the Feynman category for hyper-operads as defined by
Getzler and Kapranov [19], whence the name. SurjC D FMayoperads, F

hyp;rd
surj D O0,

the category for operads whose O.1/, has only (multiples of) id as an invertible
element. FCtriv D Surj, Fhyp;rd

triv D Ftriv.

Definition 6.4 Let F be a Feynman category and Fhyp;rd its reduced hyper category,
O an Fhyp;rd-op and DO the corresponding enrichment functor. Then we define an
O-algebra to be a FDO-op.

6.1.3 Odd Feynman Categories over Graphs

In the case of underlying graphs for morphisms, odd usually means that edges
get degree 1, that is we use a Kozsul sign with that degree. In particular, in these
discussions, one is augmented over Ab, the category of Abelian groups. Then there
is an indexed enriched version of the Feynman categories. In order to write this
down, one needs an ordered presentation.

For graphs this amounts to adding signs in the relations Sect. 4.2.3. In particular,
the following quadratic relations become anti-commutative:

sıt s0ıt0 D � s0ıt0 sıt (21)

sıtıs0t0 D � ıs0t0 sıt (22)

sıtıs0t0 D � s0ıt0ıst (23)

Since (15) is not quadratic and hence the degree of a merger must be 0 and the
relation does not get a sign

sıt D ıst vˇw (24)

Consequently, the following quadratic relations also remain without sign

vˇw v0ˇw0 D v0ˇw0 vˇw (25)

sıt vˇw D vˇw sıt (26)

ıst vˇw D vˇwıst (27)
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Isomorphisms also naturally have degree 0 and hence there is no change in the
relevant relation:

� ı 
 D �
 0 ı �0 (28)

6.1.4 Orders and Orientations

In order to pictorially represent this, one can add decorations. This is very similar
to the construction of ordered and oriented simplices, see e.g. [46]. The first step is
to give an order on all the edges of the ghost graph. The second step is to define
orientations as orbits under even permutations. Finally one can impose the relation
that two opposite orientations differ by a sign. Algebraically, one also uses the
determinant line on the edges [19]. It is only at this last step that the enrichment is
needed. Furthermore one can push this last step into the functor, that is only regard
functors to Abelian C that take different change of orientations to sign changes.
These constructions are discussed in detail in [33].

6.1.5 Graph Examples

A list of examples is given in Table 3.

6.1.6 Suspension vs. Odd

In operad-lingo, one can suspend operads, etc. On the Feynman category side this
corresponds to certain twists. I.e. there is a twist † and a † twisted Feynman
category F† such that O 2 F -OpsC iff the suspension †O 2 F†-OpsC. For general

Table 3 List of Feynman categories with conditions and decorations on the graphs

F Feynman category for Condition on graphs C additional decoration

Codd Odd cyclic operads TreesC orientation of set of edges

Modd K-modular ConnectedC orientation on set of edges

C genus marking

Mnc;odd nc K-modular Orientation on set of edges

C genus marking

D�odd Odd wheeled dioperads Directed graphs w/o parallel edges

C orientations of edges

P�;ctd;odd Odd wheeled properads Connected directed graphs w/o parallel edges

C orientation of set of edges

P�;odd Odd wheeled props Directed graphs w/o parallel edges

C orientation of set of edges
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twistings of this type see Sect. 6.2.3. These are equivalent to the odd version if we
are in the directed case and there is a bijection between vertices and out flags,
see [35]. Even in the directed case, as explained in [35]. the odd versions are
actually more natural and yield the correct degrees in the Hochschild complex and
correct signs and Master Equations, see Sect. 7 below. A well known example for
unexpected, but correct, signs is the Gerstenhaber bracket. It is odd Poisson.

In the same vein for the bar/cobar and Feynman transforms, it is not the
suspended structures that are pertinent, but the odd structures, see Sect. 7.

6.1.7 Examples

1. Operads are very special, in the respect that their Feynman category is equivalent
to the one for their odd version.

2. The odd cyclic operads are equivalent to anti-cyclic operads.
3. For modular operads the suspended version is not equivalent to the odd versions

a.k.a. K-modular operads. The difference is given by the twist H1.Γ.�//.

6.2 Enriched Versions: Details

We can consider Feynman categories and target categories enriched over another
monoidal category, such as T op, Ab or dgVect. Note that there are two cases.
Either the enrichment is Cartesian, then we simply have to replace the free
(symmetric) monoidal category by the enriched version. There is also a more
categorical version of the definition with a condition going back to [16]. For that
definition one simply replaces all limits by indexed limits. Or, the enrichment is
not Cartesian, then we will replace the groupoid condition by an indexing just like
above.

6.2.1 Cartesian Case: Categorical Version

In [33] we proved that in the non-enriched case we can equivalently replace (ii)
by (ii0).

(ii0) The pull-back of presheaves {˝^W ŒF op; Set� ! ŒV˝op; Set� restricted to
representable presheaves is monoidal.

This then yields a definition in the Cartesian case if one replaces (iii) by the
appropriate indexed limit condition.
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6.2.2 Non-Cartesian Case Indexed Enrichment

In the non-Cartesian case, the notion of groupoid ceases to make sense. The first
option is to drop the groupoid condition and simply ask that the inclusion {˝ is
essentially surjective. This is possible and called a weak Feynman category, which
is very close to the notion of a pattern and explains that notion in more down to earth
terms. This is, however, not adequate for the bar/cobar and Feynman transforms or
the twists.

The better notion is that of a Feynman category enriched over E, indexed over
another Feynman category F. The idea is that the Feynman category FO for algebras
over an operad O is a Feynman category enriched over C indexed over Surj. The
precise definition goes via enrichment functors, which are 2-functors.

In general, we will call the enrichment category E. This is a monoidal category
and hence can be thought of as a 2-category with one object, which we denote by
E. Here the 1-morphisms of E are the objects of E with the composition being ˝,
the monoidal structure of E. The 2-morphisms are then the 2-morphisms of E, their
horizontal composition being ˝ and their vertical composition being ı. Also, we
can consider any category F to be a 2-category with the two morphisms generated
by triangles of composable morphisms.

Definition 6.5 Let F be a Feynman category. An enrichment functor is a lax 2-
functor D W F ! E with the following properties

1. D is strict on compositions with isomorphisms.
2. D.
/ D 1E for any isomorphism.
3. D is monoidal, that is D.� ˝F  / D D.�/˝E D. /

Given a monoidal category F considered as a 2-category and lax 2-functor D to
E as above, we define an enriched monoidal category FD as follows. The objects of
FD are those of F . The morphisms are given as

HomFD.X;Y/ WD
M

�2HomF .X;Y/

D.�/ (29)

The composition is given by

HomFD.X;Y/˝ HomFD. Y;Z/ (30)

D
M

�2HomF .X;Y/

D.�/˝
M

 2HomF . Y;Z/

D. / (31)

'
M

.�; /2HomF .X;Y/	HomF . Y;Z/

D.�/˝D. / (32)

L
D.ı/�!

M

�2HomF .X;Z/

D.�/ D HomFD.X;Z/ (33)
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The image lies in the components � D  ı�. Using this construction on V, pulling
back D via {, we obtain VD D VE, the freely enriched V. The functor { then is
naturally upgraded to an enriched functor {E W VD ! FD.

Definition 6.6 Let F be a Feynman category and let D be an enrichment functor.
We call FD WD .VE;FD; {E/ a Feynman category enriched over E indexed by D.

Theorem 6.7 FD is a weak Feynman category. The forgetful functor from FD-Ops
to VE-Mods has a left adjoint and more generally push-forwards among indexed
enriched Feynman categories exist. Finally there is an equivalence of categories
between algebras over the triple (aka. monad) GF and FD-Ops.

Example 6.8 The freely enriched Feynman category. The functor D is simply the
identity. This is the triple FE WD .VE;FE; {E/ where F D .V;F ; {/ is a Feynman
category and the subscript E means free enrichment.

Theorem 6.9 The indexed enriched (over E) Feynman category structures on
a given FC F are in 1-1 correspondence with Fhyp-Ops and these are in 1-1
correspondence with enrichment functors.

Example 6.10 (Twisted (Modular) Operads) Looking at F D M, we recover the
notion of twisted modular operad. There is a twist for each hyper-operad D. We
have the Feynman category MD. The triple then corresponds to MD in the notation
of [19]. What we add is the descriptions (a) and (c) mentioned in paragraph 1.3, that
is via compositions along graphs and generators and relations. Here the graphs are
actually decorated on the set of edges according to (29). To see this one decomposes
� into simple edge or loop contractions as defined in Sect. 4.

Example 6.11 Algebras over operads. In this case F D Surj and Fhyp;rd D O0. An
operad O 2 O0-OpsC then gives an enrichment functor DO of Surj. In particular
DO.n � 1/ D O.n/ as in Sect. 6.1.1.

6.2.3 Coboundaries andV-twists

Coboundaries in the sense of [19] are generalized to V-twists. Let LWV! Pic.E/,
that is the full subcategory of ˝-invertible elements of E. A twist of a Feynman
category indexed by D by L is given by setting the new twist-system to be DL.�/ D
L.t.�//�1 ˝D.�/˝ L.s.�//.

The suspension functor s is such a coboundary twist, see [19, 35]. Here L D s
with s.
.n�1/

C

/ D †2�nsignn in dg Vect for cyclic operads, or s.
n
C

/ D †1�nsignn
for operads, or in general s.
.n�1/

C

/ D †�2.g�1/Cnsignn where † is the suspension
and signn is the sign representation, see [35] for a detailed explanation.
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6.2.4 Odd Versions and Shifts

Given a well-behaved presentation of a Feynman category (generators+relations for
the morphisms) we can define an odd version which is enriched over Ab by giving
a twist. To obtain the odd versions, we use D.�/ D det.Edges.Γ.�//. In the cyclic
case, an example are anti-cyclic operads and the theory of modular operads this
twist is called K. It is not a coboundary in general. Rather up to the suspension
coboundary and the shift coboundary, this twist is a twist by H1.Γ/ in the modular
case, see [19, 35] for details.

6.3 Feynman Level Category FC, Hyper Category Fhyp and Its
Reduction Fhyp;rd

6.3.1 Feynman Level Category FC

Given a Feynman category F, and a choice of basis for it, we will define its Feynman
level category FC D .VC;FC; {C/ as follows. The underlying objects of FC are
the morphisms of F . The morphisms of FC are given as follows: given � and  ,
consider their decompositions

(34)

where we have dropped the { from the notation, 
; O
; � and O� are given by the choice
of basis and the partition Iv of the index set for X and I0

v0
for the index set of Y is

given by the decomposition of the morphism.
A morphism from � to  is a two level partition of I W .Iv0/v02I0 , and partitions of

Iv0 W .I1v0 : : : ; Ikv0v0 / such that if we set � i
v0 WD

N
v2Ii

v0
�v then  v0 D �k

v0 ı � � � ı �1v0 .
To compose two morphisms f W� !  and gW ! �, given by partitions of

I W .Iv0/v02I0 and of the Iv0 W .I1v0 : : : ; Ikv0v0 / respectively of I0 W .I0
v00
/v002I00 and the

Iv00 W .I01v00 : : : ; I0kv00v00 /, where I00 is the index set in the decomposition of �, we set the
compositions to be the partitions of I W .Iv00/v002I00 where Iv00 is the set partitioned by
.Iv0/v02I0j

v00
;jD1;:::;kv00 . That is, we replace each morphism v0 by the chain �v

0

1 ı� � �ı�v
0

k .

Morphisms alternatively correspond to rooted forests of level trees thought of as
flow charts, see Fig. 7. Here the vertices are decorated by the �v and the composition
along the rooted forest is  . There is exactly one tree �v0 per v0 2 I0 in the forest
and accordingly the composition along that tree is  0v .
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Fig. 7 The level forest picture for morphisms in FC. Indicated is a morphism from � ' N
v �v

to ‰ 'N
i‰i

Technically, the vertices are the v 2 I. The flags are the union qv qw2Iv 
w q
qv2I
v with the value of @ on 
w being v if w 2 Iv and v on 
v for v 2 I. The
orientation at each vertex is given by the target being out. The involution { is given
by matching source and target objects of the various �v . The level structure of each
tree is given by the partition Iv0 . The composition is the composition of rooted trees
by gluing trees at all vertices—that is we blow up the vertex marked by  v0 into the
tree �v0 .

6.3.2 F C-Ops

After passing to the equivalent strict Feynman category, an element D in FC-Ops is
a symmetric monoidal functor that has values on each morphism D.�/ DND.�v/
and has composition mapsD.�0˝�/! D.�1/ for each decomposition�1 D �ı�0.
Further decomposing � DN�v where the decomposition is according to the target
of �0, we obtain morphisms

D.�0/˝
O

v

D.�v/! D.�1/ (35)

It is enough to specify these functors for �1 2 .F # V/ and then check
associativity for triples.

Example 6.12 If we start from the tautological Feynman category on the trivial
categoryF D .1; 1˝; {/ then FC is the Feynman category Sur of surjections. Indeed
the possible trees are all linear, that is only have 2-valent vertices, and there is
only one decoration. Such a rooted tree is specified by its total length n and the
permutation which gives the bijection of its vertices with the set ni. Looking at
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a forest of these trees we see that we have the natural numbers as objects with
morphisms being surjections.

Example 6.13 We also have SurC D OMay, which is the Feynman category for
May operads. Indeed the basic maps (35) are precisely the composition maps � . To
be precise, these are May operads without units.

6.3.3 Feynman Hyper Category Fhyp

There is a “reduced” version of FC which is central to our theory of enrichment.
This is the universal Feynman category through which any functor D factors if it
satisfies the following restriction: D.
/ ' 1 for any isomorphism 
 where 1 is the
unit of the target category C.

For this, we invert the morphisms corresponding to composing with isomor-
phisms, see [33] for details.

6.3.4 F hyp-Ops

An element D 2 F hyp-Ops corresponds to the data of functors from Iso.F # F /!
C together with morphisms (35) which are associative and satisfy the condition that
all the following diagrams commutes:

(36)

see [33] for details.

Example 6.14 The paradigmatic examples are hyper-operads in the sense of [19].
Here F DM and Fhyp is the Feynman category for hyper-operads.

6.3.5 A Reduced Version Fhyp;rd

One may define Fhyp;rd, a Feynman subcategory of Fhyp which is equivalent to it
by letting F hyp;rd and Vhyp;rd be the respective subcategories whose objects are
morphisms that do not contains isomorphisms in their decomposition. In view of
the isomorphisms ; ! 
 this is clearly an equivalent subcategory. In particular, the
respective categories of Ops and Mods are equivalent.

The morphisms are described by rooted forests of trees whose vertices are
decorated by the �v as above—none of which is an isomorphism—, with the
additional decoration of an isomorphism per edge and tail. Alternatively, one can
think of the decoration as a black 2-valent vertex. Indeed, using maps from ; ! 
 ,
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we can introduce as many isomorphisms as we wish. These give rise to 2-valent
vertices, which we mark black. All other vertices remain labeled by �v . If there are
sequences of such black vertices, the corresponding morphism is isomorphic to the
morphism resulting from composing the given sequence of these isomorphisms.

Example 6.15 For Fhyp;rd
surj D O0, the Feynman category whose morphisms are trees

with at least trivalent vertices (or identities) and whose Ops are operads whose
O.1/ D 1. Indeed the basic non-isomorphism morphisms are the surjections n! 1,
which we can think of as rooted corollas. Since for any two singleton sets there is a
unique isomorphism between them, we can suppress the black vertices in the edges.
The remaining information is that of the tails, which is exactly the map �F in the
morphism of graphs.

Example 6.16 For the trivial Feynman category, we obtain back the trivial Feynman
category as the reduced hyper category, since the trees all collapse to a tree with one
black vertex.

6.4 Free Monoidal Construction F �

Sometimes it is convenient to construct a new Feynman category from a given one
whose vertices are the objects of F . Formally, we set F� D .V˝;F �; {˝/ where
F � is the free monoidal category on F and we denote the “outer” free monoidal
structure by �. This is again a Feynman category. There is a functor � W F � ! F
which sends �iXi 7! N

i Xi and by definition HomF�.X D �iXi;Y D �iYi/ DN
i HomF .Xi;Yi/. The only way that the index sets can differ, without the Hom-

sets being empty, is if some of the factors are 1 2 F �. Thus the one-comma
generators are simply the elements of HomF .X;Y/. Using this identification one
obtains: Iso.F�/ ' Iso.F /� ' .V˝/�. The factorization and size axiom follow
readily from this description.

Proposition 6.17 F �-OpsC is equivalent to the category of functors (not necessar-
ily monoidal) Fun.F ;C/.

Example 6.18 Examples are FI modules and (crossed) simplicial objects for the
free monoidal Feynman categories for FI and �C where for the latter one uses the
non-symmetric version.

6.5 NC-construction

For any Feynman category one can define its nc (non-connected) version. It plays
a crucial role in physics and mathematics and manifests itself through the BV
equation [35]. Namely, for the operator � in the case of modular operads to
become a differential, one needs a multiplication. This, on the graph level, is given
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by disjoint union for the one-comma generators. This amounts to dropping the
condition of connectedness. Astonishingly this works in full generality for any
Feynman category.

Let F D .V;F ; {/, then we set Fnc D .V˝;F nc; {˝/ where F nc has objects
F �, the free monoidal product. We however add more morphisms. The one-
comma generators will be HomF nc.X;Y/ WD HomF .�.X/;Y/, where for X D
�i2IXi, �.X/ D N

i2I Xi. This means that for Y D �j2JYj, HomF .X;Y/ �
HomF .�.X/; �.Y//, includes only those morphisms for which there is a partition

Ij; j 2 J of I such that the morphism factors through
N

j2J Zj where Zj

j!N

k2Ij Xk

is an isomorphism. That is  DNj2J �j ı
j with �j W Zj ! Yj. Notice that there is a
map of “disjoint union” or “exterior multiplication” given by� W X1�X2 ! X1˝X2
via id˝ id.

Example 6.19 The terminology “non-connected” has its origin in the graph exam-
ples. Examples can be found in [35], where also a box-picture for graphs is
presented. The connection is that morphisms in F nc have an underlying graph that
is disconnected and the connected components are those of the underlying F .

Proposition 6.20 ([33]) There is an equivalence of categories between F nc-OpsC
and symmetric lax monoidal functors Funlax˝.F ;C/.

Using lax-monoidal functors, is also a way to deal with algebras over operads
whose O.1/ has isomorphisms.

7 Universal Operations, Transforms and Master Equations

7.1 Universal Operations

7.1.1 Universal Operations for Operads, etc.

A well known result in operad theory is that for an operad O there is an odd Lie
bracket defined on

L
O.n/ [15]. This actually descends to coinvariants

L
O.n/Sn

[24]. For anti-cyclic operads there is again an odd Lie bracket on the coinvariantsL
O..n//Sn with lifts to the smaller coinvariants w.r.t. the cyclic groups Cn,

namely on
L

n O..n//Cn [35]. Similarly there are operations � on
L

O..n; g//Sn
for modular operads [1, 35]. Here we show that these operations can be understood
purely from the Feynman category and we can explain why exactly these operations
turn up in the Master Equations.

7.1.2 Cocompletion

Let OF be the cocompletion of F . This is monoidal with the monoidal structure given
by the Day convolution ~. If C is cocomplete then O 2 Ops factors:
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Theorem 7.1 Let 1 WD colimV| ı { 2 OF and let FV the symmetric monoidal
subcategory generated by 1. Then FV WD .FV;1; {V/ is a Feynman category. (This
gives an underlying operad of universal operations).

If E is Abelian, we say FV is weakly generated by morphisms � 2 ˆ if the
summands of the components Œ�Xj;i� generate the morphisms of FV. Here different
summands are indexed by different isomorphism classes of morphisms.

7.1.3 Example: Operads

O the Feynman category for operads, C D dgVect.
Then OO.1/ D L

n O.n/Sn and the Feynman category is (weakly) generated by
ı WD Œ

P ıi�. (This is a two-line calculation). This gives rise to the Lie bracket by
using the anti-commutator. It lifts to the non-Sigma case along the forgetfulO:† !
O and gives the pre-Lie structure on

L
n O.n/, which goes back to [15]. In [24] it

was shown that the pre-Lie structure descends to the coinvariants. In [35] it is argued
that the pre-Lie structure lives naturally on the coinvariants and lifts to the invariants.

In general these kinds of lifts are possible if there is a non-Sigma version.

7.1.4 Example: Odd/Anti-cyclic Operad

The universal operations are (weakly) generated by a Lie bracket. Œ ; � WD Œ
P

st ıst�,
(see [35]). This actually lifts to cyclic coinvariants (non-sigma cyclic operads) that
is along the map Codd;pl ! Codd. Here we also see that one cannot expect a further
lift, since the planar version for Codd still has a non discrete V.

7.1.5 The Three Geometries of Kontsevich

The endomorphism operad End.V/ for a symplectic vector space is anti-cyclic. Any
tensor product: .O˝ P/.n/ WD O.n/˝ P.n/ with O a cyclic operad and P an anti-
cyclic operad is anti-cyclic and hence has the odd Lie bracket discussed above.

Fix Vn n-dim symplectic Vn ! VnC1. For each n get Lie algebras

1. Comm˝ End.Vn/

2. Lie˝ End.Vn/

3. Assoc˝ End.Vn/

Taking the limit as n!1 one obtains the formal geometries of [10, 37].
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Table 4 Here FV and Fnt
V are given as FO for the operad O, the composition as discussed being

insertion

F Feynman cat for F;FV,Fnt
V Weak gen. subcat.

O Operads Rooted trees Fpre-Lie

Oodd Odd operads Rooted trees + orientation Odd pre-Lie

of set of edges

O:† Non-Sigma operads Planar rooted trees All ıi operations

Omult Operads with mult. B/w rooted trees Pre-Lie + mult.

C Cyclic operads Trees Com. mult.

Codd Odd cyclic operads Trees + orientation Odd Lie

of set of edges

Modd K-Modular Connected + orientation Odd dg Lie

on set of edges

Mnc;odd nc K-modular Orientation on set of edges BV

D Dioperads Connected directed graphs w/o Lie-admissible

directed loops or parallel edges

The former is for the type of graph with unlabelled tails and the latter for the version with no tails

Our construction is more general and works for any anti-cyclic operad. For
instance another family of Lie algebras can be obtained as follows, [35]. Let
Vn be a vector space with a symmetric non-degenerate form. End.V/ is a cyclic
operad. Since the PreLie operad is anti-cyclic [8], for each n we get a Lie algebra
PreLie˝ End.V/. It is not known what geometry we get when we take the limit as
n!1.

7.1.6 Further Examples

For further examples, see Table 4.

7.2 Transforms and Master Equations

There are three transforms we will consider: the bar-, the cobar transform and the
Feynman transform aka. dual transform.

7.2.1 Motivating Example: Algebras

If A is an associative algebra, then the bar transform is the dg-coalgebra given by the
free coalgebra BA D T†�1 NA together with co-differential from algebra structure.
The usual notation for an element in BA is a0ja1j : : : jan.
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Likewise let C be an associative co-algebra. The co-bar transform is the dg-
algebra &C WD Freealg.†�1 NC/ together with a differential coming from co-algebra
structure. The bar-cobar transform&BA is a resolution of A.

For the Feynman transform consider A a finite-dimensional algebra or graded
algebra with finite dimensional pieces and let LA be its dual co-algebra. Then the
dual or Feynman transform of A is FA WD & LA + differential from multiplication.
Now, the double Feynman transform FFA a resolution.

7.2.2 Transforms

These transforms take O 2 F -OpsC and transform it to an op for the odd version
of the Feynman category Fodd either in Cop or C. All these are free constructions,
which, however, also have the extra structure of an additional (co)differential. Thus
the resulting Feynman category is actually enriched over chain complexes and one
can start out there as well. Furthermore, for the (co)differential to work, we have
to have signs. These are exactly what is provided by the odd versions. In order to
be able to define the transforms, one has to fix an odd version Fodd of F, just as
in Sect. 6.1.3. This is analogous to the suspension in the usual bar transforms. In
fact, the following is more natural, see [33, 35]. The degree is 1 for each bar and in
the graph case the edges get degree 1; see Fig. 8. We can generalize the construction
of Fodd to so-called well-presented Feynman categories, see below and [33]. In this
case, we can define the transformations for elements of Ops.

The Feynman transform is of particular interest. Since the construction is free,
any V 2 Mods will yield an op. On the other hand, this need not be compatible
with the dg structure. It turns out that it is, if it satisfies a Master Equation.

The transforms are of interest in themselves, but one common application is that
the bar-cobar transform as well as the double Feynman transform give a “free”
resolution. In general, of course, “free” means co-fibrant. For this kind of statement
one needs a Quillen model structure, which is provided in Sect. 8.

a

b

c

a

b

c

a|b|c

Fig. 8 The sign mnemonics for the bar construction, traditional version with the symbols j of
degree 1, the equivalent linear tree with edges of degree 1, and a more general graph with edges of
degree 1. Notice that in the linear case there is a natural order of edges, this ceases to be the case
for more general graphs
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Remark 7.2 As before one can ask the question of how much of the structure of
these transforms can be pulled back to the Feynman category side. The answer is:
“Pretty much all of it”. We shall not discuss this here, but it can be found in [33].

7.2.3 Presentations

In order to define the transforms, we have to give what is called an ordered
presentation [33]. Rather then giving the technical conditions, we will consider the
graph case and show these structures in this case.

7.2.4 Basic ExampleG

In G the presentation comes from the following set of morphismsˆ

1. There are four types of basic morphisms: Isomorphisms, simple edge contrac-
tions, simple loop contractions and simple mergers. Call this set ˆ.

2. These morphisms generate all one-comma generators upon iteration. Further-
more, isomorphisms act transitively on the other classes. The relations on the
generators are given by commutative diagrams.

3. The relations are quadratic for edge contractions as are the relations involving
isomorphisms. Finally there is a non-homogenous relation coming from a simple
merger and a loop contraction being equal to an edge contraction.

4. We can therefore assign degrees as 0 for isomorphisms and mergers, 1 for edge or
loop contractions and split ˆ as ˆ0 qˆ1. This gives a degree to any morphism.

Up to isomorphism any morphism of degree n can be written in nŠ ways up to
morphisms of degree 0. These are the enumerations of the edges of the ghost graph.

There is also a standard order in which isomorphisms come before mergers which
come before edge contractions as in (8). This gives an ordered presentation.

In general, an ordered presentation is a set of generatorsˆ and extra data such as
the subsets ˆ0 and ˆ1; we refer to [33] for details.

7.2.5 Differential

Given a dˆ1 D
P

Œ�1�2ˆ1=� �1ı defines an endomorphism on the Abelian group
generated by the isomorphism classes morphisms. The non-defined terms are set to
zero.ˆ1 is called resolving if this is a differential.

In the graph case, this amounts to the fact that for any composition of edge
contractions �e ı �e0 , there is precisely another pair of edge contractions �e00 ı �e000
which contracts the edges in the opposite order.

This differential will induce differentials for the transforms, which we call by the
same name. We again refer to [33] for details.
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7.2.6 Setup

F be a Feynman category enriched over Ab and with an ordered presentation
and let Fodd be its corresponding odd version. Furthermore let ˆ1 be a resolving
subset of one-comma generators and let C be an additive category, i.e. satisfying
the analogous conditions above. In order to give the definition, we need a bit of
preparation. Since V is a groupoid, we have that V ' Vop. Thus, given a functor
ˆ W V! C, using the equivalence we get a functor from Vop to C which we denote
byˆop. Since the bar/cobar/Feynman transform adds a differential, the natural target
category from F -Ops is not C, but complexes in C, which we denote by Kom.C/.
Thus any O may have an internal differential dO.

7.2.7 The Bar Construction

This is the functor

BWF -OpsKom.C/ ! F odd-OpsKom.Cop/

B.O/ WD {Fodd �.{�F.O//op

together with the differential dOop C dˆ1 .

7.2.8 The Cobar Construction

This is the functor

&WF odd-OpsKom.Cop/ ! F -OpsKom.C/

&.O/ WD {F �.{�Fodd.O//op

together with the co-differential dOop C dˆ1 .

7.2.9 Feynman Transform

Assume there is a duality equivalence_WC! Cop. The Feynman transform is a pair
of functors, both denoted FT,

FTWF -OpsKom.C/ � F odd-OpsKom.C/WFT
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defined by

FT.O/ WD
(
_ ı B.O/ if O 2 F -OpsKom.C/
_ ı&.O/ if O 2 F odd-OpsKom.C/

Proposition 7.3 The bar and cobar construction form an adjunction.

&W F odd-OpsKom.Cop/ � F -OpsKom.C/ WB

The quadratic relations in the graph examples are a feature that can be general-
ized to the notion of cubical Feynman categories. The name reflects the fact that
in the graph example the nŠ ways to decompose a morphism whose ghost graph is
connected and has n edges into simple edge contractions correspond to the edge
paths of In going from .0; : : : ; 0/ to .1; : : : ; 1/. Each edge flip in the path represent
one of the quadratic relations and furthermore the Sn action on the coordinates is
transitive on the paths, with transposition acting as edge flips.

This is a convenient generality in which to proceed.

Theorem 7.4 Let F be a cubical Feynman category and O 2 F -OpsKom.C/. Then
the counit&B.O/! O of the above adjunction is a levelwise quasi-isomorphism.

Remark 7.5 In the case of C D dgVect, the Feynman transform can be intertwined
with the aforementioned push-forward and pull-back operations to produce new
operations on the categories F -OpsC. A lifting (up to homotopy) of these new
operations to C D Vect is given in [50]. In particular this result shows how the
Feynman transform of a push-forward (resp. pull-back) may be calculated as the
push-forward (resp. pull-back) of a Feynman Transform. One could thus assert that
the study of the Feynman transform belongs to the realm of Feynman categories as
a whole and not just to the representations of a particular Feynman category.

7.3 Master Equations

In [35], we identified the common background of Master Equations that had
appeared throughout the literature for operad-like objects and extended them to all
graphs examples. An even more extensive theorem for Feynman categories can also
be given.

The Feynman transform is quasi-free. An algebra over FO is dg—if and only if it
satisfies the relevant Master Equation. First, we have the tabular theorem from [35]
for the usual suspects.

Theorem 7.6 ([1, 35, 44, 45]) Let O 2 F -OpsC and P 2 F odd-OpsC for an F
represented in Table 5. Then there is a bijective correspondence:

Hom.FT.P/;O/ Š ME.limV.P˝ O//
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Table 5 Collection of Master Equations for operad-type examples

Name of F -OpsC Algebraic structure of FO Master Equation (ME)

Operad [17] Odd pre-Lie d.�/C� ı � D 0

Cyclic operad [18] Odd Lie d.�/C 1
2
Œ�;�� D 0

Modular operad [19] Odd Lie + � d.�/C 1
2
Œ�;��C�.�/ D 0

Properad [49] Odd pre-Lie d.�/C� ı � D 0

Wheeled properad [44] Odd pre-Lie + � d.�/C� ı �C�.�/ D 0

Wheeled prop [35] dgBV d.�/C 1
2
Œ�;��C�.�/ D 0

Here ME is the set of solutions of the appropriate Master Equation set up in each
instance.

With Feynman categories this tabular theorem can be compactly written and
generalized. The first step is the realization that the differential specifies a natural
operation, in the above sense, for each arity n. Furthermore, in the Master Equation
there is one term form each generator of ˆ1 up to isomorphism. This is immediate
from comparing Table 5 with Table 4. The natural operation which lives on a space
associated to an Q 2 F -Ops is denoted ‰Q;n and is formally defined as follows:

Definition 7.7 For a Feynman category F admitting the Feynman transform and for
Q 2 F -OpsC we define the formal Master Equation of F with respect to Q to be the
completed cochain ‰Q WD Q

‰Q;n. If there is an N such that ‰Q;n D 0 for n > N,
then we define the Master Equation of F with respect to Q to be the finite sum:

dQ C
X

n

‰Q;n D 0

We say ˛ 2 limV.Q/ is a solution to the Master Equation if dQ.˛/ CP
n‰Q;n.˛

˝n/ D 0, and we denote the set of such solutions as ME.limV.Q//.
Here the first term is the internal differential and the term for n D 1 is the differential
corresponding to dˆ1 , where ˆ1 is the subset of odd generators.

Theorem 7.8 Let O 2 F -OpsC and P 2 F odd-OpsC for an F admitting a Feynman
transform and Master Equation. Then there is a bijective correspondence:

Hom.FT.P/;O/ Š ME.limV.P˝ O//

8 Model Structures, Resolutions and the W-constructions

In this section we discuss Quillen model structures for F -OpsC. It turns out that
these model structures can be defined if C satisfies certain conditions and if this is
the case work for all F, e.g. all the previous examples.



428 R.M. Kaufmann

8.1 Model Structure

Theorem 8.1 Let F be a Feynman category and let C be a cofibrantly generated
model category and a closed symmetric monoidal category having the following
additional properties:

1. All objects of C are small.
2. C has a symmetric monoidal fibrant replacement functor.
3. C has˝-coherent path objects for fibrant objects.
Then F -OpsC is a model category where a morphism �WO! Q of F -ops is a weak
equivalence (resp. fibration) if and only if �WO.v/ ! Q.v/ is a weak equivalence
(resp. fibration) in C for every v 2 V.

8.1.1 Examples

1. Simplicial sets. (Straight from Theorem 8.1)
2. dgVectk for char.k/ D 0 (Straight from Theorem 8.1)
3. Top (More work, see below.)

8.1.2 Remark

Condition (i) is not satisfied for Top and so we can not directly apply the theorem.
In [33] this point was first cleared up by following [13] and using the fact that all
objects in Top are small with respect to topological inclusions.

Theorem 8.2 Let C be the category of topological spaces with the Quillen model
structure. The category F -OpsC has the structure of a cofibrantly generated model
category in which the forgetful functor to V-SeqC creates fibrations and weak
equivalences.

8.2 Quillen Adjunctions from Morphisms of Feynman
Categories

8.2.1 Adjunction fromMorphisms

We assume C is a closed symmetric monoidal and model category satisfying the
assumptions of Theorem 8.1. Let E and F be Feynman categories and let ˛WE! F
be a morphism between them. This morphism induces an adjunction

˛�WE-OpsC � F -OpsCW˛�
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where ˛�.A/ WD Aı˛ is the right adjoint and ˛�.B/ WD Lan˛.B/ is the left adjoint.

Lemma 8.3 Suppose ˛R restricted to VF-ModsC ! VE-ModsC preserves fibra-
tions and acyclic fibrations, then the adjunction .˛L; ˛R/ is a Quillen adjunction.

8.3 Example

1. Recall that C and M denote the Feynman categories whose ops are cyclic and
modular operads, respectively, and that there is a morphism iWC ! M by
including 
S as genus zero 
S;0.

2. This morphism induces an adjunction between cyclic and modular operads

i�WC-OpsC � M-OpsCW i�

and the left adjoint is called the modular envelope of the cyclic operad.
3. The fact that the morphism of Feynman categories is inclusion means that iR

restricted to the underlyingV-modules is given by forgetting, and since fibrations
and weak equivalences are levelwise, iR restricted to the underlying V-modules
will preserve fibrations and weak equivalences.

4. Thus by the Lemma above this adjunction is a Quillen adjunction.

8.4 Cofibrant Replacement

Theorem 8.4 The Feynman transform of a non-negatively graded dg F -op is
cofibrant.

The double Feynman transform of a non-negatively graded dg F -op in a
quadratic Feynman category is a cofibrant replacement.

8.5 W-construction

8.5.1 Setup

In this section we start with a quadratic Feynman category F.

8.5.2 The Category w.F; Y/, for Y 2 F

Objects The objects are the set
`

n Cn.X;Y/ 	 Œ0; 1�n, where Cn.X;Y/ are chains
of morphisms from X to Y with n degree � 1 maps modulo contraction of
isomorphisms.
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An object in w.F;Y/ will be represented (uniquely up to contraction of isomor-
phisms) by a diagram

X
t1�!
f1

X1
t2�!
f2

X2 ! � � � ! Xn�1
tn�!
fn

Y

where each morphism is of positive degree and where t1; : : : ; tn represents a point
in Œ0; 1�n. These numbers will be called weights. Note that in this labeling scheme
isomorphisms are always unweighted.

Morphisms

1. Levelwise commuting isomorphisms which fix Y, i.e.:

2. Simultaneous Sn action.

3. Truncation of 0 weights: morphisms of the form .X1
0! X2 ! � � � ! Y/ 7!

.X2 ! � � � ! Y/.

4. Decomposition of identical weights: morphisms of the form .� � � ! Xi
t!

XiC2 ! : : : / 7! .� � � ! Xi
t! XiC1

t! XiC2 ! : : : / for each (composition
preserving) decomposition of a morphism of degree � 2 into two morphisms
each of degree � 1.

Definition 8.5 Let P 2 F -OpsTop. For Y 2 ob.F / we define

W.P/. Y/ WD colimw.F;Y/P ı s.�/

Theorem 8.6 Let F be a simple Feynman category and let P 2 F -OpsTop be �-
cofibrant. Then W.P/ is a cofibrant replacement for P with respect to the above
model structure on F -OpsTop.

Here “simple” is a technical condition satisfied by all graph examples.

9 Geometry

9.1 Moduli Space Geometry

Although many of the examples up to now have been algebraic or combinatorial in
nature, there are very important and deep links to the geometry of moduli spaces.
We will discuss these briefly.
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9.1.1 Modular Operads

The typical topological example for modular operads are the Deligne–Mumford
compactifications NMgn of Riemann’s moduli space of curves of genus g with n
marked points.

These give rise to chain and homology operads. An important application comes
from enumerative geometry. Gromov–Witten invariants make H�.V/ an algebra
over H�. NMg;n/ [40].

9.1.2 Odd Modular

As explained in [35], the canonical geometry for odd modular operads is given by
NMKSV which are real blowups of NMgn along the boundary divisors [36].

On the topological level one has 1-parameter gluings parameterized by S1. Taking
the full S1 family on chains or homology gives us the structure of an odd modular
operad. That is the gluing operations have degree 1 and in the dual graph, the edges
have degree 1.

9.2 Master Equation and Compactifications

Going back to Sen and Zwiebach [48], a viable string field theory action S is a
solution of the quantum Master Equation. Rephrasing this one can say “The Master
Equation drives the compactification”, which is one of the mantras of [35].

In particular, the constructions of [36] and [21] give the correct compactification.

9.3 W-construction

In [5] we will prove the fact that the derived modular envelope defined via
the W-construction of the cyclic associative operads is the Kontsevich/Penner
compactification Mcomb

g;n .
We will also give an A1 version of this theorem and a 2-categorical realization

that gives our construction of string topology and Hochschild operations from
Moduli Spaces [27, 28] via the Feynman transform.

10 Bi- and Hopf Algebras

We will give a brief overview of the constructions of [14].
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10.1 Overview

Consider a non-Sigma Feynman category B D Hom.Mor.F /;Z/ .

Product Assume that F is strict monoidal, that is F is strict monoidal, then ˝ is
an associative unital product on B with unit id1F .

Coproduct Assume that F decomposition finite, i.e. that the sum below is finite.
Set

�.�/ D
X

.�0;�1/W�D�1ı�0
�0 ˝ �1 (37)

and �.�/ D 1 if � D idX and 0 else.

Theorem 10.1 ([14]) B together with the structures above is a bi-algebra. Under
certain mild assumptions, a canonical quotient is a Hopf algebra.

Remark 10.2 Now, it is not true that any strict monoidal category with finite
decomposition yields a bi-algebra. Also, if F is a Feynman category, then Fop,
although not necessarily a Feynman category, does yield a bi-algebra.

10.1.1 Examples

The Hopf algebras of Goncharov for multi-zeta values [20] can be obtained in this
way starting with the Joyal dual of the surjections in the augmented simplicial
category. In short, this Hopf algebra structures follows from the fact that simplices
form an operad. In a similar fashion, but using a graded version, we recover a Hopf
algebra of Baues that he defined for double loop spaces [3]. We can also recover
the non-commutative Connes–Kreimer Hopf algebra of planar rooted trees, see e.g.
[12] in this way.

Remark 10.3 This coproduct for any finite decomposition category appeared in [38]
and was picked up later in [22]. We realized with hindsight that the co-product
we first constructed on indecomposables, as suggested to us by Dirk Kreimer, is
equivalent to this coproduct.

10.1.2 Symmetric Version

There is a version for symmetric Feynman categories, but the constructions are more
involved. In this fashion, we can reproduce Connes–Kreimer’s Hopf algebra. There
is a threefold hierarchy. A bialgebra version, a commutative Hopf algebra version
and an “amputated” version, which is actually the algebra considered in [11]. A
similar story holds for the graph versions and in general.
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10.2 Details: Non-commutative Version

We use non-symmetric Feynman categories whose underlying tensor structure is
only monoidal (not symmetric). V˝ is the free monoidal category.

Lemma 10.4 (Key Lemma) The bi-algebra equation holds due to the hereditary
condition (ii).
The proof is a careful check of the diagrams that appear in the bialgebra equation.

For � ı � the sum is over diagrams of the type

(38)

whereˆ D ˆ1 ıˆ0.
When considering .�˝ �/ ı �23 ı .�˝�/ the diagrams are of the type

(39)

where � D �1 ı �0 and  D  1 ı 0. In general, there is no reason for there to be a
bijection of such diagrams, but there is for non-symmetric Feynman categories.

For simplicity, we assume that F is skeletal.

10.3 Hopf Quotient

Even after quotienting out by the isomorphisms, the bi-algebra is usually not
connected. The main obstruction is that there are many identities and that there
are still automorphisms. The main point is that in the skeletal case:

�.idX/ D
X


2Aut.X/

 ˝ 
�1 (40)

where here and in the following we assume that if 
 has a one-sided inverse then it
is invertible. This is the case in all examples.
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10.3.1 Almost Connected Feynman Categories

In the skeletal version, consider the ideal generated by C D jAut.X/jŒidX� �
jAut.Y/jŒidY � � B, this is closed under �, but not quite a co-ideal. Rescaling �
by 1
jAut.X/j , H D B=C becomes a bi-algebra. We call F almost connected if H is

connected.

Theorem 10.5 For the almost connected version H is a connected bi-algebra and
hence a Hopf-algebra.

10.4 Symmetric/Commutative Version

In the case of a symmetric Feynman category, the bi-algebra equation does not hold
anymore, due to the fact that Aut.X/ ˝ Aut.Y/ � Aut.X ˝ Y/ may be a proper
subgroup due to the commutativity constraints. The typical example is S where
Aut.n/ 	 Aut.m/ D Sn 	 Sm while Aut.n C m/ D SnCm. In order to rectify this,
one considers the co-invariants. Since commutativity constraints are isomorphisms
the resulting algebra structure is commutative.

Let Biso the quotient by the ideal defined by the equivalence relation generated
by isomorphism. That is f  g if there are isomorphisms 
; 
 0 such that f D 
 ı
g ı 
 0. This ideal is again closed under co-product. As above one can modify the
co-unit to obtain a bialgebra structure on Biso. Now the ideal generated by C D
hjAut.X/jŒidX��jAut.Y/jŒidY � is a co-ideal and H D B=C becomes a bi-algebra. We
call F almost connected if H is connected.

The main theorem is

Theorem 10.6 If F is almost connected, the coinvariants Biso are a commutative
Hopf algebra.

This allows one to construct Hopf algebras with external legs in the graph
examples. It also explains why the Connes–Kreimer examples are commutative.

10.4.1 Amputated Version

In order to forget the leg structure, aka. amputation, one needs a semi-cosimplicial
structure, i.e. one must be able to forget external legs coherently. This is always
possible by deleting flags in the graph cases. Then there is a colimit, in which all the
external legs can be forgotten. Again, one obtains a Hopf algebra. The example par
excellence is of course, Connes–Kreimer’s Hopf algebra without external legs (e.g.
the original version).
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10.5 Restriction and Generalization of Special Case:
Co-operad with Multiplication

In a sense the above examples were free. One can look at a more general setting
where this is not the case. This is possible in the simple cases of enriched Feynman
categories over Surj. Here the morphisms are operads, and B has the dual co-operad
structure for the one-comma generators. The tensor product ˝ makes B have the
structure of a free algebra over the one-comma generators O.n/ with the co-operad
structure being distributive or multiplicative over ˝. Now one can generalize to a
general co-operad structure with multiplication.

10.5.1 Coproduct for a Cooperad with Multiplication

Theorem 10.7 ([14]) Let LO be a co-operad with compatible associative multipli-
cation. � W LO.n/˝ LO.m/! LO.nC m/ in an Abelian symmetric monoidal category
with unit 1. Then B WD L

n
LO.n/ is a (non-unital, non-co-unital) bialgebra, with

multiplication � and comultiplication� given by .I˝ �/ L� :

(41)

10.5.2 Free Cooperad with Multiplication on a Cooperad

The guiding example is:

LOnc.n/ D
M

k

M

.n1;:::;nk/WP niDn

LO.n1/˝ � � � ˝ LO.nk/

Multiplication is given by � D ˝. This structure coincides with one of the
constructions of a non-connected operad in [35].

The example is the one that is relevant for the three Hopf algebras of Baues,
Goncharov and Connes–Kreimer. It also shows how a cooperad with multiplications
generalizes an enrichment of Fsurj.

This is most apparent in Connes–Kreimer, where the Hopf algebra is not actually
on rooted trees, but rather on forests. The extension of the co-product to a forest is
tacitly given by the bi-algebra equations.
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In the symmetric case, one has to further induce the natural .Sn1 	 � � � 	 Snk / o Sk
action to an Sn action for each summand. The coinvariants constituting Biso are then
the symmetric products LO.n1/Sn1 ˇ � � � ˇ LO.nk/Snk .

The following is the list of motivating examples:

Hopf algebras (co)operads Feynman category

HGont Inj
�;� D Surj� FSurj

HCK Leaf labelled trees FSurj;O

HCK;graphs Graphs Fgraphs

HBaues Injgr
�;� FSurj;odd

10.5.3 Grading/Filtration, the q Deformation and Infinitesimal Version

We will only make very short remarks, the details are in [14].
The length of an object in the Feynman category setting is replaced by a depth

filtration. The algebras are then deformations of their associated graded, see [14]. In
the amputated version one has to be more careful with the grading.

Co-operad with multiplication Operad degree � depth

Amputated version Co-radical degree C depth

Taking a slightly different quotient, one can get a non-unital, co-unital bi-algebra
and a q-filtration. Sending q! 1 recovers H .
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Moduli Spaces of (Bi)algebra Structures
in Topology and Geometry

Sinan Yalin

Abstract After introducing some motivations for this survey, we describe a
formalism to parametrize a wide class of algebraic structures occurring naturally
in various problems of topology, geometry and mathematical physics. This allows
us to define an “up to homotopy version” of algebraic structures which is coherent
(in the sense of1-category theory) at a high level of generality. To understand the
classification and deformation theory of these structures on a given object, a relevant
idea inspired by geometry is to gather them in a moduli space with nice homotopical
and geometric properties. Derived geometry provides the appropriate framework to
describe moduli spaces classifying objects up to weak equivalences and encoding
in a geometrically meaningful way their deformation and obstruction theory. As an
instance of the power of such methods, I will describe several results of a joint work
with Gregory Ginot related to longstanding conjectures in deformation theory of
bialgebras, En-algebras and quantum group theory.

1 Introduction

To motivate a bit the study of algebraic structures and their moduli spaces in
topology, we will simply start from singular cohomology. Singular cohomology
provides a first approximation of the topology of a given space by its singular
simplices, nicely packed in a cochain complex. Computing the cohomology of
spaces already gives us a way to distinguish them and extract some further
information like characteristic classes for instance. Singular cohomology has the
nice property to be equipped with an explicit commutative ring structure given by
the cup product. This additional structure can distinguish spaces which have the
same cohomology groups, illustrating of the following idea: adding finer algebraic
structures is a way to parametrize finer invariants of our spaces. In the case of
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manifolds, it can also be used to get more geometric data (from characteristic
classes and Poincaré duality for instance). Such an algebraic structure determined
by operations with several inputs and one single output (the cup product in our
example) satisfying relations (associativity, commutativity) is parametrized by an
operad (here the operad Com of commutative associative algebras). More generally,
the notion of operad has proven to be a fundamental tool to study algebras playing
a key role in algebra, topology, category theory, differential and algebraic geometry,
mathematical physics (like Lie algebras, Poisson algebras and their variants).

We can go one step further and relax such structures up to homotopy in an
appropriate sense. Historical examples for this include higher Massey products,
Steenrod squares and (iterated) loop spaces.

Higher Massey products organize into an A1-algebra structure on the cohomol-
ogy of a space and give finer invariants than the cup product. For instance, the trivial
link with three components has the same cohomology ring as the Borromean link
(in both cases, the cup product is zero), but the triple Massey product vanishes in
the second case and not in the first one, implying these links are not equivalent.

Loop spaces are another fundamental example of A1-algebras (in topological
spaces this time). When one iterates this construction by taking the loop space of
the loop space and so on, one gets an En-algebra (more precisely an algebra over the
little n-disks operad). These algebras form a hierarchy of “more and more” commu-
tative and homotopy associative structures, interpolating between A1-algebras (the
E1 case, encoding homotopy associative structures) and E1-algebras (the colimit
of the En’s, encoding homotopy commutative structures). Algebras governed by En-
operads and their deformation theory play a prominent role in a variety of topics,
not only the study of iterated loop spaces but also Goodwillie-Weiss calculus for
embedding spaces, deformation quantization of Poisson manifolds, Lie bialgebras
and shifted Poisson structures in derived geometry, and factorization homology of
manifolds [4, 20, 21, 24, 28, 32, 39, 42, 45, 46, 50, 51, 55, 61, 66, 69, 73].

The cup product is already defined at a chain level but commutative only
up to homotopy, meaning that there is an infinite sequence of obstructions to
commutativity given by the so called higher cup products. That is, these higher
cup products form an E1-algebra structure on the singular cochain complex. This
E1-structure classifies the rational homotopy type of spaces (this comes from
Sullivan’s approach to rational homotopy theory [68]) and the integral homotopy
type of finite type nilpotent spaces (as proved by Mandell [53]). Moreover, such
a structure induces the Steenrod squares acting on cohomology and, for Poincaré
duality spaces like compact oriented manifolds for example, the characteristic
classes that represent these squares (the Wu classes). This is a first instance of how
a homotopy algebraic structure can be used to build characteristic classes. Then,
to study operations on generalized cohomology theories, one moves from spaces
to the stable homotopy theory of spectra, the natural recipient for (generalized)
cohomology theories, and focuses on theories represented by E1-ring spectra (more
generally, highly structured ring spectra). In this setting, the moduli space approach
(in a homotopy theoretic way) already proved to be useful [33] (leading to a non
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trivial improvement of the Hopkins-Miller theorem in the study of highly structured
ring spectra).

However, algebraic structures not only with products but also with coproducts,
play a crucial role in various places in topology, geometry and mathematical
physics. One could mention for instance the following important examples: Hopf
algebras in representation theory and mathematical physics, Frobenius algebras
encompassing the Poincaré duality phenomenon in algebraic topology and deeply
related to field theories, Lie bialgebras introduced by Drinfeld in quantum group
theory, involutive Lie bialgebras as geometric operations on the equivariant homol-
ogy of free loop spaces in string topology. A convenient way to handle such kind
of structures is to use the formalism of props, a generalization of operads encoding
algebraic structures based on operations with several inputs and several outputs.

A natural question is then to classify such structures (do they exist, how
many equivalence classes) and to understand their deformation theory (existence
of infinitesimal perturbations, formal perturbations, how to classify the possible
deformations). Understanding how they are rigid or how they can be deformed
provides information about the objects on which they act and new invariants for
these objects. For this, a relevant idea inspired from geometry come to the mind,
the notion of moduli space, a particularly famous example being the moduli spaces
of algebraic curves (or Riemann surfaces). The idea is to associate, to a collection
of objects we want to parametrize equipped with an equivalence relation (surfaces
up to diffeomorphism, vector bundles up to isomorphism. . . ), a space M whose
points are these objects and whose connected components are the equivalence
classes of such objects. This construction is also called a classifying space in
topology, a classical example being the classifying space BG of a group G, which
parametrizes isomorphism classes of principal G-bundles. If we are interested also
in the deformation theory of our collection of objects (how do we allow our objects
to modulate), we need an additional geometric structure which tells us how we can
move infinitesimally our points (tangent spaces). To sum up, the guiding lines of the
moduli space approach are the following:

• To determine the non-emptiness of M and to compute ��M solve existence and
unicity problems;

• The geometric structure of M imply the existence of tangent spaces. The tangent
space over a given point x of M is a dg Lie algebra controlling the (derived)
deformation theory of x (deformations of x form a derived moduli problem) in a
sense we will precise in Sect. 4;

• One can “integrate” over M to produce invariants of the objects parametrized
by M. Here, the word “integrate” has to be understood in the appropriate sense
depending on the context: integrating a differential form, pairing a certain class
along the (virtual) fundamental class of M, etc.

We already mentioned [29] (inspired by the method of [2]) as an application of the
first item in the list above. In the second one, we mention derived deformation theory
and derived moduli problems, which implicitly assume that, in some sense, our
moduli space M lives in a (1-)category of derived objects (e.g. derived schemes,
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derived stacks. . . ) where tangent spaces are actually complexes. This is due to the
fact that we want to encompass the whole deformation theory of points, and this
cannot be done in the classical setting: for varieties or schemes, the tangent space
is a vector space which consists just of the equivalence classes of infinitesimal
deformations of the point. For stacks, the tangent space is a two-term complex
whose H0 is the set of equivalences classes of infinitesimal deformations, and H�1
is the Lie algebra of automorphisms of the point (infinitesimal automorphisms). But
obstruction theory does not appear on the tangent structure here, because it has to
live in positive degrees (we will go back to this remark in Sect. 4).

As a last remark about the third item in the list above, let us say that the idea of
using moduli spaces to produce topological invariants got also a lot of inspiration
from quantum field theory and string theory in the 1980s. By the Feynman path
integral approach, the equations describing the evolution of a quantum system are
determined by the minimas of a functional integral over all the possible paths of
this system, that is, by integrating a certain functional over the space of fields.
This independence from a choice of path led to the idea that one could build a
topological invariant of a geometric object by computing an integral over the moduli
space of all possible geometric structures of this kind, ensuring automatically the
desired invariance property. This is the principle underlying two important sorts
of invariants of manifolds. First, Witten’s quantization of the classical Chern-
Simmons invariant in the late 1980s [77], which provided topological invariants for
3-dimensional manifolds (including known invariants such as the Jones polynomial)
by integrating a geometric invariant over a moduli space of connections. Second,
Kontsevich’s formalization of Gromov- Witten invariants in symplectic topology
(counting pseudo-holomorphic curves) and algebraic geometry (counting algebraic
curves), defined by a pairing along the virtual fundamental class of the moduli space
(stack) of stable maps (an analogue of the fundamental class for singular objects
suitably embedded in a derived setting).

Organization of the Paper The first section is devoted to the formalism of props
and algebras over props, accompanied by relevant examples of topological or
geometric origin in Sect. 3. The third section focuses on algebraic structures up
to homotopy, defined as algebras over a cofibrant resolution of the prop, and the
fundamental theorem asserting that this notion does not rely on the choice of such
a resolution (up to an equivalence of 1-categories). This lays down the coherent
foundations to study homotopy bialgebras. We then provide a little introduction to
derived algebraic geometry and formal moduli problems in Sect. 5, without going
too far in the details (we refer the reader to [72] for a more thorough survey on
this topic), before formalizing the idea of moduli spaces of algebraic structures in
Sect. 6 as well as their most important properties. The way to recover geometrically
deformation theory and obstruction theory for such structures is explained in Sect. 6.
Section 6 describes a joint work with Gregory Ginot, merging the homotopical
and geometric theory of such moduli spaces with several features of factorization
homology (higher Hochschild (co)homology) to solve several open conjectures in
deformation theory of En-algebras and bialgebras related to quantum group theory.
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2 Parametrizing Algebraic Structures

To simplify our exposition, we will work in the base category Ch of Z-graded
cochain complexes over a field K of characteristic zero. Before stating the general
definition of a prop, let us give a few examples of algebraic structures the reader
may have encountered already.

Example 2.1 Differential graded (dg for short) associative algebras are complexes
A equipped with an associative product A ˝ A ! A. We can represent such an
operation by an oriented graph with two inputs and one output satisfying the

associativity relation

=

Common examples of such structures include algebras KŒG� of finite groups G
in representation theory, or the singular cochains C�.XIZ/ of a topological space
equipped with the cup product [ of singular simplices. In the first case we have an
associative algebra in K-modules, in the second case this is a dg associative algebra,
so the cup product is a cochain morphism determined by linear maps

[ W Cm.XIZ/˝ Cn.XIZ/! CmCn.XIZ/:

Example 2.2 In certain cases, the product is not only associative but also commu-
tative, and one call such algebras commutative dg algebras or cdgas. To represent
graphically this symmetry condition, we index the inputs of the product and

add the symmetry condition

A way to rephrase this symmetry is to say that ˙2 acts trivially on . In the

dg setting, this symmetry has to be understood in the graded sense, that is ab D
.�1/deg.a/deg.b/ba. Commutative algebras are very common objects, for instance the
singular cohomology of spaces equipped with the cup product defined previously
at the chain level, or the de Rham cohomology for manifolds. Commutative rings
also represent affine schemes in algebraic geometry or rings of functions on
differentiable manifolds. Cdgas over Q also model the rational homotopy type of
simply connected spaces.
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Example 2.3 Another example of product is the bracket defining Lie algebras
satisfying an antisymmetry condition

and the Jacobi identity

A way to rephrase the antisymmetry is to say that the action of ˙2 on

is given by the signature representation sgn2. Lie algebras appear for instance as
tangent spaces of Lie groups in differential geometry (Lie’s third theorem gives an
equivalence between the category of finite dimensional Lie algebras in vector spaces
and the category of simply connected Lie groups), in Quillen’s approach to rational
homotopy theory and in deformation theory (“Deligne principle” relating formal
moduli problems to dg Lie algebras).
In these three first examples, we see that the algebraic structure is defined only
by operations with several inputs and one single output. Such structures can be
encoded by a combinatorial object called an operad, and a given kind of algebra
is an algebra over the associated operad. We refer the reader to [49] for more details
about this formalism. However, there are more general algebraic structures involving
operations with several inputs and several outputs. We give below two fundamental
examples of these, before unwrapping the general definition of the combinatorial
structure underlying them (props).

Example 2.4 Poisson-Lie groups are Lie groups with a compatible Poisson struc-
ture, which occur in mathematical physics as gauge groups of certain classical
mechanical systems such as integrable systems. Because of the Poisson bracket,
the tangent space TeG of a Poisson-Lie group G at the neutral element e is equipped
with a “Lie cobracket” compatible with its Lie algebra structure, so that TeG forms
something called a Lie bialgebra. The compatibility relation between the bracket and
the cobracket is called the Drinfeld’s compatibility relation or the cocycle relation.
In terms of graphical presentation, we have a bracket and a cobracket

which are antisymmetric, that is, with the signature action of ˙2. These two
operations satisfy the following relations:
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Jacobi

co-Jacobi

The cocycle relation

The cocycle relation means that the Lie cobracket of a Lie bialgebra g is a cocycle
in the Chevalley-Eilenberg complex C�CE.g; �2g/, where �2g is equipped with
the structure of g-module induced by the adjoint action. Let us note that there is
an analogue of Lie’s third theorem in this context, namely the category of finite
dimensional Lie bialgebras in vector spaces is equivalent to the category of simply
connected Poisson-Lie groups [11]. Deformation quantization of Lie bialgebras
produces quantum groups, which turned out to be relevant for mathematical physics
and for low-dimensional topology (quantum invariants of knots and 3-manifolds).
This process also deeply involves other kind of objects such as Grothendieck-
Teichmüller groups, multizeta values via the Drinfeld associators [11], or graph
complexes. The problem of a universal quantization of Lie bialgebras raised by
Drinfeld was solved by Etingof and Kazhdan [16, 17]. A deformation quantization
of a Lie bialgebra g is a topologically free Hopf algebra H over the ring of formal
power series KŒŒ„�� such that H=„H is isomorphic to U.g/ (the enveloping algebra
of g)as a co-Poisson bialgebra. Such a Hopf algebra is called a quantum universal
enveloping algebra (QUE for short). The general idea underlying this process is to
tensor the K-linear category of g-modules by formal power series, equip it with
a braided monoidal structure induced by the choice of a Drinfeld associator and
an r-matrix, and make the forgetful functor from gŒŒ„��-modules to KŒŒ„��-modules
braided monoidal. Applying the Tannakian formalism to this functor, the category
of gŒŒ„��-modules is equivalent to the category of modules over the QUE algebra of
g. Deformation quantization of Lie bialgebras can be formulated in the formalism
of props and their algebras, see for instance the introduction of [14] explaining
quantization/de-quantization problems in terms of prop morphisms. Another point
of view is the prop profile approach of [57], particularly useful to relate the results
of [30] to deformation quantization of Lie bialgebras.

A variant of Lie bialgebras called involutive Lie bialgebras arose in low
dimensional topology, in the work of Goldman [35] and Turaev [75]. Given a surface
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S, one considers the K-module generated by the free homotopy classes of loops on
S. Let us note L W S1 ! S a free loop on the surface S (that is, a continuous map
which is not pointed, contrary to based loops) and ŒL� its free homotopy class. Up
to homotopy, we can make two loops intersect transversely, so we suppose that two
given loops L and K intersect only at a finite number of points, and we note L \ K
this finite set. The Lie bracket of ŒL� and ŒK� is then defined by

fŒL�; ŒK�g D
X

p2L\K
�pŒL [p K�

where L[pK is the loop parametrized by going from p to p along L, then going again
from p to p along K. The symbol �p denote a number which is�1 or 1, depending on
the way L and K intersect at p with respect to a choice of orientation. The cobracket
is then defined similarly, by considering this time the self-intersections of L (that we
can take transverse, up to homotopy):

ı.ŒL�/ D
X

p2L\L
�p.ŒL1;p�˝ ŒL2;p� � ŒL2;p�˝ ŒL1;p�/

where L1 and L2 are the two loops obtained by separating L in two parts at the self-
intersection point p. These two operations define a Lie bialgebra structure, satisfying
moreover .f; g ı ı/.ŒL�/ D 0. From the graphical presentation viewpoint, this means
that we add the involutivity relation

= 0

Links defined in the cylinder S 	 Œ0I 1� over S can be presented by diagrams of
loops on S via the canonical projection S 	 Œ0I 1�! S. Explicit quantizations of the
Lie bialgebra of loops on S have been used to produce (quantum) invariants of those
links [75] and the corresponding 3-dimensional TQFTs [64].

Ten years after, algebraic structures on free loop spaces for more general
manifolds were introduced by Chas and Sullivan, giving birth to string topology
[7], a very active field of research nowadays. In the equivariant setting, the Lie
bialgebra of Goldman and Turaev has been generalized to loop spaces of smooth
manifolds [6]. The string homology of a smooth manifold M is defined as the
reduced equivariant homology (i.e. relative to constant loops) of the free loop space
LM of M. The word equivariant refers here to the action of S1 on loops by rotation.
According to [6], the string homology of a smooth manifold forms an involutive
Lie bialgebra. Let us note that for an n-dimensional manifold, the bracket and the
cobracket of this structure are of degree 2 � n. In particular, the string homology of
a surface is isomorphic to Goldman-Turaev Lie bialgebra as a graded Lie bialgebra.
Let us note that such a structure is also related to very active research topics in
symplectic topology. Precisely, the string homology of M is isomorphic as a graded
Lie bialgebra to the contact homology of its cotangent bundle (equipped with the
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standard symplectic form) [8]. This result is part of a larger program aimed at
relating string topology and symplectic field theory.

Example 2.5 A dg Frobenius algebra is a unitary dg commutative associative
algebra of finite dimension A endowed with a symmetric non-degenerate bilinear
form < :; : >W A ˝ A ! K which is invariant with respect to the product, i.e
< xy; z >D< x; yz >.

A dg Frobenius bialgebra of degree m is a triple .B; �;�/ such that:

(i) .B; �/ is a dg commutative associative algebra;
(ii) .B; �/ is a dg cocommutative coassociative coalgebra with deg.�/ D m;

(iii) the map � W B ! B˝ B is a morphism of left B-module and right B-module,
i.e in Sweedler’s notations we have the Frobenius relations

X

.x:y/

.x:y/.1/ ˝ .x:y/.2/ D
X

. y/

x:y.1/ ˝ y.2/

D
X

.x/

.1/
mjxjx.1/ ˝ x.2/:y

The two definitions are strongly related. Indeed, if A is a Frobenius algebra, then
the pairing < :; : > induces an isomorphism of A-modules A Š A�, hence a map

� W A Š! A�
��! .A˝ A/� Š A� ˝ A� Š A˝ A

which equips A with a structure of Frobenius bialgebra. Conversely, one can prove
that every unitary counitary Frobenius bialgebra gives rise to a Frobenius algebra, so
the two notions are equivalent. In terms of graphical presentation, we have a product
of degree 0 and a coproduct of degree m presented by

and satisfying the following relations:

Associativity and coassociativity

= =

Frobenius relations

= =

In the unitary and counitary case, one adds a generator for the unit, a generator
for the counit and the necessary compatibility relations with the product and the
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coproduct. We refer the reader to [44] for a detailed survey about the role of
these operations and relations in the classification of two-dimensional topological
quantum field theories. Let us note that a variant of Frobenius bialgebras called
special Frobenius bialgebra is closely related to open-closed topological field
theories [48] and conformal field theories [19].

A classical example of Frobenius (bi)algebra comes from Poincaré duality. Let
M be an oriented connected closed manifold of dimension n. Let ŒM� 2 Hn.MIK/ Š
H0.MIK/ Š K be the fundamental class of ŒM�. Then the cohomology ring
H�.MIK/ of M inherits a structure of commutative and cocommutative Frobenius
bialgebra of degree n with the following data:

1. the product is the cup product

� W HkM ˝ HlM ! HkClM

x˝ y 7! x [ y

2. the unit � W K! H0M Š HnM sends 1K on the fundamental class ŒM�;
3. the non-degenerate pairing is given by the Poincaré duality:

ˇ W HkM ˝Hn�kM ! K

x˝ y 7! < x [ y; ŒM� >

i.e the evaluation of the cup product on the fundamental class;
4. the coproduct� D .�˝ id/ ı .id˝ �/ where

� W K!
M

kClDn

HkM ˝ HlM

is the dual copairing of ˇ, which exists since ˇ is non-degenerate;
5. the counit � D< :; ŒM� >W HnM! K i.e the evaluation on the fundamental class.

A natural question after looking at all these examples is the following: can we
extract a common underlying pattern, analogue to representation theory of groups or
to operad theory, which says that an algebraic structure of a given kind is an algebra
over a corresponding combinatorial object? A formalism that include algebras
over operads as well as more general structures like Lie bialgebras and Frobenius
bialgebras? We answer this question with the following definition, originally due
to MacLane [52]. A ˙-biobject is a double sequence fM.m; n/ 2 Chg.m;n/2N2
where each M.m; n/ is equipped with a right action of ˙m and a left action of ˙n

commuting with each other.

Definition 2.1 A prop is a˙-biobject endowed with associative horizontal compo-
sition products

ıh W P.m1; n1/˝ P.m2; n2/! P.m1 C m2; n1 C n2/;
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associative vertical composition products

ıv W P.k; n/˝ P.m; k/! P.m; n/

and maps K ! P.n; n/ which are neutral for ıv (representing the identity
operations). These products satisfy the exchange law

. f1 ıh f2/ ıv .g1 ıh g2/ D . f1 ıv g1/ ıh . f2 ıv g2/

and are compatible with the actions of symmetric groups.
Morphisms of props are equivariant morphisms of collections compatible with

the composition products.
A fundamental example of prop is given by the following construction. To any
complex X we can associate an endomorphism prop EndX defined by

EndX.m; n/ D HomCh.X
˝m;X˝n/:

The prop structure here is crystal clear: the actions of the symmetric groups are the
permutations of the tensor powers, the vertical composition is the composition of
homomorphisms and the horizontal one is the tensor product of homomorphisms.

Definition 2.2 A P-algebra on a complex X is a prop morphism P! EndX.
That is, a P-algebra structure on X is a collection of equivariant cochain morphisms

fP.m; n/! HomCh.X
˝m;X˝n/gm;n2N

commuting with the vertical and horizontal composition products. Hence the formal
operations of P are sent to actual operations on X, and the prop structure of P
determines the relations satisfied by such operations.

Remark 2.3 MacLane’s original definition is more compact: a prop P in a closed
symmetric monoidal category C as a symmetric monoidal category enriched in C,
with the natural integers as objects and the tensor product˝ defined bym˝n D mC
n. A morphism of props is then an enriched symmetric monoidal functor. An algebra
over a prop is an enriched symmetric monoidal functor P! C, and a morphism of
algebras is an enriched symmetric monoidal transformation (see also [82, Section
2.1] for the colored case).

There is an adjunction between the category of ˙-biobjects and the category of
props, with the right adjoint given by the forgetful functor and the left adjoint given
by a free prop functor. Briefly, given a ˙-biobject M, the free prop F.M/ on M is
defined by

F.M/.m; n/ D
M

G2Gr.m;n/
.
O

v2Vert.G/
M.jIn.v/j; jOut.v/j//Aut.G/

where
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• The direct sums runs over the set Gr.m; n/ of directed graphs with m inputs, n
outputs and no loops;

• The tensor products are indexed by the sets Vert.G/ of vertices of such graphs G;
• For each vertex v of G, the numbers jIn.v/j and jOut.v/j are respectively the

number of inputs and the number of outputs of v;
• These tensor products are mod out by the action of the group Aut.G/ of

automorphisms of the graph G.

We refer the reader to [23, Appendix A] for more details about this construction.
Moreover, there is an obvious notion of ideal in a prop P, defined as a ˙-biobject
I such that i ıv p 2 I for i 2 I and p 2 P, and i ıh p 2 I for i 2 I and p 2 P. This
means that each prop admits a presentation by generators and relations, something
particularly useful to describe an algebraic structure. For instance, all the operations
A˝n ! A on an associative algebra A induced by the algebra structure are entirely
determined by a product A ˝ A ! A and the associativity condition. Actually, the
graphical presentations we gave in the examples above are exactly presentations of
the corresponding props by generators and relations ! For instance, if we denote by
BiLie the prop of Lie bialgebra, we have

BiLie D F.M/=I

where M.2; 1/ D sgn2˝K. , M.1; 2/ D sgn2˝K. and M.m; n/ D 0 for

.m; n/ … f.2; 1/; .1; 2/g (recall here that sgn2 is the signature representation of ˙2).
The ideal I is generated by the graphs defining the relations in Example 4 (Jacobi,
co-Jacobi, cocycle relation). A Lie bialgebra g is then the datum of a prop morphism

fBiLie.m; n/! HomCh.g
˝m; g˝n/gm;n2N:

According to the presentation of BiLie by generators and relations, this prop
morphism is completely determined by its values on the generators. That is, we
send the generator to a cochain map Œ; � W g˝ g! g, the generator to

a cochain map ı W g! g˝ g, and the graphs of I to zero. This implies that Œ; � is a
Lie bracket, ı a Lie cobracket and they satisfy moreover the cocycle relation.

Actually, for a wide range of algebraic structures, a well defined grafting
operation on connected graphs is sufficient to parametrize the whole structure.
Such a grafting is defined by restricting the vertical composition product of props
to connected graphs. The unit for this connected composition product �c is the
˙-biobject I given by I.1; 1/ D K and I.m; n/ D 0 otherwise. The category of
˙-biobjects then forms a symmetric monoidal category .ChS

K
;�c; I/.

Definition 2.4 A dg properad .P; �; �/ is a monoid in .ChS
K
;�c; I/, where �

denotes the product and � the unit. It is augmented if there exists a morphism of
properads � W P ! I. In this case, there is a canonical isomorphism P Š I ˚ P
where P D ker.�/ is called the augmentation ideal of P.



Moduli Spaces of (Bi)algebra Structures in Topology and Geometry 451

Morphisms of properads are morphisms of monoids in .ChS
K
;�c; I/.

Properads have also their dual notion, namely coproperads:

Definition 2.5 A dg coproperad .C; �; �/ is a comonoid in .ChS
K
;�c; I/.

As in the prop case, there exists a free properad functor F forming an adjunction

F W ChS
K

� Properad W U

with the forgetful functor U. There is an explicit construction of the free properad
analogous to the free prop construction, but restricted to connected directed graphs
instead of all directed graphs. Dually, there exists a cofree coproperad functor
denoted Fc.�/ having the same underlying ˙-biobject. There is also a notion of
algebra over a properad similar to an algebra over a prop, since the endomorphism
prop restricts to an endomorphism properad. Properads are general enough to
encode a wide range of bialgebra structures such as associative and coassociative
bialgebras, Lie bialgebras, Poisson bialgebras, Frobenius bialgebras for instance.

Remark 2.6 There is a free-forgetful adjunction between properads and props [76].

3 Homotopy Theory of (Bi)algebras

We already mentioned before the natural occurrence of “relaxed” algebraic struc-
tures, like A1-algebras or E1-algebras, in various situations where a given
relation (associativity, commutativity) is satisfied only up to an infinite sequence of
obstructions vanishing at the cohomology level. More generally, one can wonder
how to set up a coherent framework to define what it means to “relax” a P-
algebra structure, encompassing in particular the previous examples. Moreover, we
will see later that deformation theory of differential graded P-algebras can not
be defined without working in the larger context of P-algebras up to homotopy
(or homotopy P-algebras). This is due to the fact that the base category Ch itself
manifests a non trivial homotopy theory. A natural way to define homotopy P-
algebras is to resolve the prop P itself by means of homotopical algebra. For this,
we recall briefly that Ch has all the homotopical properties needed for our purposes,
namely, it forms a cofibrantly generated symmetric monoidal model category. We
refer the reader to Hirschhorn [40] and Hovey [41] for a comprehensive treatment
of homotopical algebra and monoidal model categories. The ˙-biobjects form a
category of diagrams in Ch and inherit thus a cofibrantly generated model structure
with pointwise weak equivalence and fibrations (the projective model structure). The
free prop functor allows to transfer the projective model structure of ˙-biobjects
along the free-forgetful adjunction:

Theorem 3.1 (cf. [23, Theorem 5.5]) The category of dg props Prop equipped
with the classes of componentwise weak equivalences and componentwise fibrations
forms a cofibrantly generated model category.
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Remark 3.2 According to [59], the similar free-forgetful adjunction between ˙-
biojects and dg properads equips dg properads with a cofibrantly generated model
category structure with componentwise fibrations and weak equivalences.
Hence we can define homotopy algebras over props as follows:

Definition 3.3 A homotopy P-algebra is a P1-algebra, where P1
�! P is a

cofibrant resolution of P.
Homotopy algebra structures appear naturally in plenty of topological and geometric
situations, especially for transfer and realization problems:

• Transfer problems: given a quasi-isomorphism X
�! Y, if Y forms a P-algebra,

then X can not inherit a P-algebra structure as well (since this is not a strict
isomorphism) but rather a P1-algebra structure. In the converse way, a choice

of quasi-isomorphism X
�! H�X from a complex to its cohomology allows to

transfer any P-algebra structure on X to a P1-algebra structure on H�X. That
is, the data of a big complex with a strict structure can transferred to a smaller
complex with a bigger structure up to homotopy.

• Realization problems: A P-algebra structure on the cohomologyH�X is induced
by a finer P1-algebra structure on X, which consists in a family of higher
operations on cochains.

Let us name a few applications of such ideas:

• A1-structures (associative up to homotopy) appeared very early in the study
of loop spaces and monoidal categories (Stasheff’s associahedra), and the A1-
structure induced on the singular cohomology of a topological space by the
cochain-level cup product gives the higher Massey products. Such products are
topological invariants, for instance the triple Massey product differentiate the
Borromean rings from the trivial link, even though their respective cohomologies
are isomorphic as associative algebras.

• E1-structures (commutative up to homotopy) on ring spectra play a key role
to encode cohomological operations in stable homotopy theory. Realization
problems for such structures have been the subject of a consequent work by
Goerss-Hopkins [33], following the idea of [2] to study the homotopy type of
the moduli space of all realizations on a given spectrum by decomposing it
as the limit of a tower of fibrations, and determining the obstruction groups
of the corresponding spectral sequence (which turns out to be André-Quillen
cohomology groups).

• The E1-structure on singular cochains classifies the homotopy type of nilpotent
spaces (see Sullivan over Q, Mandell over Z and Fp).

• L1-structures (Lie up to homotopy) encode the deformation theory of various
algebraic, topological or geometric structures, a striking application being
Kontsevich’s deformation quantization of Poisson manifolds [46].

• In string topology, the homology of a loop space ˝M on a manifold M is
equipped with a natural Batalin-Vilkovisky algebra (BV-algebra) structure [7].
On the other hand, the Hochschild cohomology of the singular cochains on M
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is also a BV-algebra (extending the canonical Gerstenhaber algebra structure).
In characteristic zero, when M is a simply connected closed manifold, both are
known to be isomorphic as BV-algebras [18]. It turns out that this structure lifts
to a BV1-structure on Hochschild cochains (a result called the cyclic Deligne
conjecture). Homotopy BV-algebras are related not only to string topology but
also to topological conformal field theories and vertex algebras [26].

• Homotopy Gerstenhaber algebras, or equivalently E2-algebras, are the natu-
ral structures appearing on Hochschild complexes by Deligne’s conjecture,
which has been generalized to the existence of EnC1-algebra structures on
higher Hochschild complexes of En-algebras. These results have applications to
deformation quantization but also to factorization homology of manifolds and
generalizations of string topology [32]. The proof of Deligne’s conjecture relies
on a transfer of structures combined with an obstruction theoretic method. Let us
note that a bialgebra version of this conjecture obtained recently in [30] relies in
particular on this “transfer+obstruction” method in the case of E3-algebras and
has applications to open problems in quantum group theory.

Moreover, homotopy algebra structures are the structures controlled by the coho-
mology theories of algebras, when one works in the dg setting. For instance, the
Hochschild complex of a dg associative algebra A controls (in a sense we will
precise later) not the strict algebra deformations but the A1 deformations of A.

However, there is a quite obvious problem in the definition of homotopy algebra
we gave above. Indeed, it relies a priori on the choice of a resolution. For instance,
two homotopy P-algebras could be weakly equivalent for a certain choice of P1
but not for another choice. In order to make sense of this notion and of the various
deformation theoretic, transfer and realization problems in which it naturally arises,
we have to prove an invariance result for the homotopy theory of homotopy P-
algebras:

Theorem 3.4 ([79, Theorem 0.1]) A weak equivalence ' W P1 �! Q1 between
cofibrant props induces an equivalence of .1; 1/-categories

'� W .Q1 � Alg; q� isos/
�! .P1 � Alg; q� isos/;

where .P1 � Alg; q � isos/ is the .1; 1/-category associated to the category of dg
P1-algebras with quasi-isomorphisms as weak equivalences.
In the case of algebras over operads, this result is already known by using classical
methods of homotopical algebra. A weak equivalence ' W P ! Q of dg operads
induces an adjunction

'Š W P1 � Alg � Q1 � Alg W '�;

where '� is the functor induced by precomposition P1 ! Q1 ! EndX and
'Š is a certain coequalizer. The functor '� is a right Quillen functor since weak
equivalences and fibrations of algebras over operads are determined in complexes,



454 S. Yalin

so this is a Quillen adjunction. One can then prove that the unit and the counit of this
adjunction are weak equivalences, hence the desired result (a Quillen equivalence
induces an equivalence of the associated .1; 1/-categories. We refer the reader to
[22, Chapter 16] for a detailed proof of this result. This method completely fails in
the case of algebras over props for two reasons:

• Algebras over props are a priori not stable under all colimits, so the left adjoint
'Š does not exist in general;

• There is no free P-algebra functor, hence no way to transfer a model category
structure from the one of cochain complexes (and by the previous point, the first
axiom of model categories already fails).

To overcome these difficulties, one has to go through a completely new method
based on the construction of a functorial path object of P-algebras and a corre-
sponding equivalence of classification spaces proved in [78], then an argument
using the equivalences of several models of .1; 1/-categories [79]. The equivalence
of Theorem 3.4 is stated and proved in [79] as an equivalence of hammock
localizations in the sense of Dwyer-Kan [12].

Theorem 3.4 means that the notion of algebraic structure up to homotopy is
coherent in a very general context, and in particular that transfer and realization
problems make sense also for various kinds of bialgebras. Two motivating examples
are the realizations of Poincaré duality of oriented closed manifolds as homotopy
Frobenius algebra structures at the cochain level, and realizations of the Lie
bialgebra structure on string homology at the chain level. Let us note that an explicit
realization has been recently obtained in [9] (with interesting relationships with
symplectic field theory and Lagrangian Floer theory), using a notion of homotopy
involutive Lie bialgebra which actually matches with the minimal model of the
associated properad obtained in [5] (see [9, Remark 2.4]). However, classification
and deformation theory of such structures, as well as the potential new invariants
that could follow, are still to be explored.

4 Deformation Theory and Moduli Problems in a Derived
Framework

Geometric Idea A common principle in algebraic topology and algebraic geome-
try is the following.

• In order to study a collection of objects (or structures) equipped with an
equivalence relation, one construct a space (classifying space in topology, moduli
space in geometry) whose points are given by this collection of objects and
connected components are their equivalence classes.

• The set of equivalence classes is not enough. Indeed, understanding the deforma-
tion theory of these objects amounts to studying the infinitesimal deformations
(formal neighbourhood) of the corresponding points on the moduli space. For
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this, one needs the existence of some tangent structure, thus the existence of a
geometry on such a moduli space.

• The deformation theory of a given point is then described by the associated
formal moduli problem, which consists, roughly speaking, of a functor from
augmented Artinian cdgas to simplicial sets with nice gluing properties, so that
its evaluation on an algebra R is the space of R-deformations of this point.

• One would like an algebraic description of this deformation theory in terms
of deformation complexes and obstruction theory. For this, one has to move in
the derived world and use Lurie’s equivalence theorem between formal moduli
problems and dg Lie algebras. The corresponding dg Lie algebra is called the
tangent Lie algebra.

In the two sections below, we describe some key ideas to work out the construction
above in a derived framework, and motivate the necessity to introduce these
additional derived data.

4.1 Derived Algebraic Geometry in a Nutshell

A usual geometric approach to moduli problems is to build an algebraic variety,
scheme, or stack parameterizing a given type of structures or objects (complex
structures on a Riemann surface, vector bundles of fixed rank. . . ). However,
the usual stacks theory shows its limits when one wants to study families of
objects related by an equivalence notion weaker than isomorphisms (for instance,
complexes of vector bundles) and capture their full deformation theory on the
tangent spaces. Derived algebraic geometry is a conceptual framework to solve such
problems, that can be seen as a homotopical perturbation or thickening of algebraic
geometry [74].

Recall that as a ringed space, a usual scheme is a couple .X;OX/, where X
is a topological space and OX a sheaf of commutative algebras over X called
the structural sheaf of the scheme. That is, schemes are structured spaces locally
modelled by commutative algebras. From the “functor of points” perspective,
schemes are sheaves Aff ! Set on the category Aff of affine schemes, which
is the opposite category of the category ComK of commutative algebras: they
are functors ComK ! Set satisfying a gluing condition (also called descent
condition) with respect to a specified collection of families of maps in ComK called
a Grothendieck topology on ComK. The notion of Grothendieck topology can be
seen as a categorical analogue of the notion of covering of a topological space,
and like sheaves on a topological space, we want sheaves on a given category
to satisfy a gluing condition along the “coverings” given by this Grothendieck
topology. Stack theory goes one step further, replacing Set by the 2-category of
groupoids Grpd. Stacks are then functors ComK ! Grpd satisfying a 2-categorical
descent condition (gluing on objects of the groupoids and compatible gluing on
sets of isomorphisms between these objects). A motivation for such a complicated
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generalization of scheme theory is to handle all the interesting moduli problems that
cannot be represented by a moduli space in the category of schemes, due to the fact
that the families of objects parametrized by this moduli problem have non trivial
automorphisms (consider for instance fiber bundles on a variety).

To give a geometric meaning and good properties for such moduli spaces, one
has to go further and work with geometric stacks, a subcategory of stacks which can
be obtained by gluing (taking quotients of) representable stacks along a specified
class P of maps. An important example of Grothendieck topology is the étale
topology. In this topology, the geometric stacks obtained by choosing for P the class
of étale maps are the Deligne-Mumford stacks, and the geometric stacks obtained
by choosing for P the class of smooth maps are the Artin stacks. To satisfy the
corresponding conditions forces the points of such a stack to have “not too wild”
automorphism groups: the points of a Deligne-Mumford stack have finite groups of
automorphisms (the historical example motivating the introduction of stack theory is
the moduli stack of stable algebraic curves), and Artin stacks allow more generally
algebraic groups of automorphisms (for example a quotient of a scheme by the
action of an algebraic group).

A derived scheme is a couple S D .X;OX/, where X is a topological space and
OX a sheaf of differential graded commutative algebras over X, such that t0S D
.X;H0OX/ (the zero truncation of S) is a usual scheme and the H�iOX are quasi-
coherent modules overH0OX . That is, derived schemes are structured spaces locally
modelled by cdgas. Using the “functor of points” approach, we can present derived
geometric objects in the diagram

where CDGAK is the1-category of non-positively graded commutative differential
graded algebras, Set the category of sets, Grpds the (2-)category of groupoids and
sSet the1-category of simplicial sets (1-groupoids).

• Schemes are sheaves ComK ! Set over the category of affine schemes (the
opposite category of ComK) for a choice of Grothendieck topology.

• Stacks are “sheaves” ComK ! Grpd for a 2-categorical descent condition, and
landing in groupoids allows to represent moduli problems for which objects have
non-trivial automorphisms.

• Higher stacks are “sheaves up to homotopy” ComK ! sSet, and landing in
simplicial sets allows to represent moduli problems for which objects are related
by weak equivalences instead of isomorphisms.
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• Derived stacks are “sheaves up to homotopy” CDGAK ! sSet over the 1-
category of non-positively graded cdgas (in the cohomological convention) with
a choice of Grothendieck topology on the associated homotopy category. They
capture the derived data (obstruction theory via (co)tangent complexes, non-
transverse intersections, K-theoretic virtual fundamental classes [72, Section 3])
and convey richer geometric structures (shifted symplectic structures for instance
[60]).

It is important to be precise that, to get derived stacks with geometric properties,
we have to restrict to a sub-1-category of these, called derived Artin stacks.
Derived 1-Artin stacks are geometric realizations of smooth groupoid objects in
derived affine schemes, and derived n-Artin stack are recursively defined as the
geometric realization of smooth groupoid object in derived n � 1-Artin stacks.
An alternate way is to define n-Artin stacks as smooth n-hypergroupoid objects
in derived affine schemes [63]. This is the natural generalization, in the derived
setting, of the geometric stacks we mentionned earlier: we obtain them by gluing
representables along smooth maps, and this gluing is defined as the realization
of a (higher) “groupoid-like” object. Such stacks are also said to be n-geometric.
Derived Artin stacks admit cotangent complexes, an associated obstruction theory
and various properties for which we refer the reader to [72]. Concerning in
particular the obstruction theory, the cotangent complex of a derived n-Artin stack
is cohomologically concentrated in degrees � � 1I n�. If the derived Artin stack X
is locally of finite presentation, then it admits a tangent complex (the dual of the
cotangent complex in the 1-category Lqcoh.X/ of quasi-coherent complexes over
X) cohomologically concentrated in degrees Œ�nI1Œ. The geometric meaning of
the cohomological degree is the following: at a given point x of X, the cohomology
of the tangent complex in positive degrees controls the obstruction theory of x
(extensions of infinitesimal deformations to higher order deformations), the 0th-
cohomology group is the group of equivalence classes of infinitesimal deformations,
and the cohomology of the tangent complex in negative degrees controls the (higher)
symmetries of x (the homotopy type of its automorphisms is bounded by n). This last
part generalizes to derived geometry the idea of the usual theory of algebraic stacks,
that we have to control the automorphisms of the points to get a nice geometric
object.

Remark 4.1 Derived Artin stacks satisfy the “geometricity” condition for a derived
analogue of the class of smooth maps. Similarly, one can define derived Deligne-
Mumford stacks by a geometricity condition for a derived analogue of the class of
étale maps.

To illustrate this homotopical enhancement of algebraic geometry, let us give
some interesting examples.

Example 4.1 Let X and Y be two subvarieties of a smooth variety V . Their
intersection is said to be transverse if and only if for every point p 2 X \ Y, we
have TpV D TpX C TpY where Tp is the tangent space at p. This means that X \ Y
is still a subvariety of V . Transverse intersections are very useful:
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• In algebraic topology, to define the intersection product ŒX�:ŒY� D ŒX \ Y� on
the homology H�M of a manifold M (classes being represented by submanifolds
X;Y of M).

• In algebraic geometry, classes represented by subvarieties are called algebraic
classes, and the formula of the intersection product above equip algebraic classes
with a ring structure. This is called the Chow ring.

It is thus natural to ask what happens when intersections are not transverse. The idea
is to deform X to another subvariety X0 and Y to another subvariety Y 0 such that X0
and Y 0 intersect transversely, and to define ŒX�:ŒY� D ŒX0\Y 0�. The drawback is that
X \ Y is not a geometric object anymore but just a homology class.

Another natural question is to count multiplicity (in some sense, the “degree of
tangency”) of non transverse intersections. For example, consider X D f y D 0g a
line tangent to Y D f y � x2 D 0g the parabola in the affine plane, and look at the
intersection point p D .0; 0/ of X and Y. If we deform this situation to a generic
case by moving the line along the parabola, the line intersects the parabola at two
distinct points. This means that the multiplicity of p is 2. In general, the multiplicity
of the intersection of two subvarietiesX and Y at a generic point p is given by Serre’s
intersection formula

I. pIX;Y/ D
X

i

.�1/idimOV ;p.Tor
OV ;p

i .OX;p;OY;p//

D dim.OX;p ˝OV ;p OY;p/C correction terms

where OV;p is the stalk of OV at p, and OX;p;OY;p are OV;p-modules for the structures
induced by the inclusions X ,! V;Y ,! V . In certain cases, the multiplicity is
determined by the dimension of OX;p ˝OV ;p OY;p, but in general this is not sufficient
and we have to introduce correction terms given by the derived functors Tor with no
geometric meaning.

Non transverse intersections have a natural geometric construction in derived
geometry. The idea is to realize X \ Y as a derived scheme by using a derived fiber
product

X 	hV Y D .X \ Y;OX	hVY D OX ˝L

OV
OY/

where ˝L is the left derived tensor product of sheaves of cdgas and˝L

OV
is the left

derived tensor product of dg OV -modules. Then

I. pIX;Y/ D
X

i

.�1/idim.H�iOX	hVY/;

that is, the intersection number naturally and geometrically arises as the Euler
characteristic of the structure sheaf of the derived intersection. In a sentence, the
transversality failure is measured by the derived part of the structure sheaf.
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Example 4.2 Another kind of application is Kontsevich’s approach to Gromov-
Witten theory in symplectic topology and algebraic geometry (which has also
applications in string theory). On the algebraic geometry side, the problem is the
following. When we want to count the intersection points of two curves in P

2,
we use intersection theory on P

2 and Bezout theorem. More generally, one could
wonder how to count rational curves of a given degree in P

N that intersect a given
number of points p1; � � � ; pn, or replace PN by a more general variety X. The idea to
address this question is to define a moduli space of such curves and do intersection
theory on this moduli space. But for this, one has to define a moduli space with good
geometric properties, a constraint that leads to the notion of stable map. Let C be
a curve of genus g and degree d with marked points p1; � � � ; pn. A stable map is a
map f W C! X satisfying an additional “stability condition” we do not precise here.
Counting rational curves of genus g and degree d in X passing through n fixed points
x1; � � � ; xn of X amounts to count such stable maps, and this defines the Gromov-
Witten invariants of X. A classical idea is to define an invariant by integrating some
function on the appropriate moduli space (via intersection theory). Here, this is the
moduli space of stable maps Mg;n.X; d/. In the case X D P

n, this is a smooth and
compact Deligne-Mumford stack. In the general case of a smooth proper variety, the
moduli space Mg;n.X; d/ is not smooth anymore and this is a major trouble.

Indeed, we would like to define Gromov-Witten invariants by

GWd.x1; � � � ; xn/ D
Z

Mg;n.X;d/
ev�1 Œx1� [ � � � [ ev�n Œxn�

D < ŒMg;n.X; d/�; ev
�
1 Œx1� [ � � � [ ev�n Œxn� >

where evi WMg;n.X; d/! X; f 7! f .pi/ is the evaluation map at the ith marked point
of curves, the class Œxi� is the cohomology class associated to the homology class of
the point xi by Poincaré duality, and<;> is the Poincaré duality pairing. Intuitively,
the class ev�1 Œxi� represents curves in X whose ith marked point coincide (up to
deformation of the curve) with xi, that is, equivalences classes of curves passing
through xi. The product ev�1 Œx1�[� � �[ev�n Œxn� then correspond to equivalence classes
of curves passing through x1; � � � ; xn, and counting such curves amounts to pair it
along the fundamental class ŒMg;n.X; d/� of Mg;n.X; d/. And this is the problem:
there is no such thing as a “‘fundamental class of Mg;n.X; d/”, since Mg;n.X; d/ is
not smooth.

Briefly, Kontsevich’s idea is to see Mg;n.X; d/ as a “derived space” (i.e. equipped
with a differential graded structure sheaf), that is, to make Mg;n.X; d/ formally
behave like a smooth space by replacing the tangent spaces by tangent complexes.
Then one associates to its dg sheaf a “virtual fundamental class” ŒMg;n.X; d/�vir ,
generalizing the fundamental class of smooth objects to singular objects (by taking
the Euler characteristic of this dg sheaf in K-theory, and sending this K-theory
virtual class to a class in the Chow ring of Mg;n.X; d/, thanks to the existence of
a Chern character). This allows to properly define

GWd.x1; � � � ; xn/ D< ŒMg;n.X; d/�
vir; ev�1 Œx1� [ � � � [ ev�n Œxn� > :
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Example 4.3 Another very interesting application is the possibility to define a
derived version of character varieties. Let M be a smooth manifold and G a Lie
group (or an algebraic group). We know that a G-local system on M is given by a
G-bundle with flat connection, and those bundles are equivalent to representations
�1M ! G by the Riemann-Hilbert correspondence. The variety of G-characters of
M is defined by

LocG.M/ D Hom.�1M;G/=G

where G acts by conjugation. This is the moduli space of G-local systems on M.
Character varieties are of crucial importance in various topics of geometry and
topology, including

• Teichmüller geometry: for a Riemann surface S, the variety LocSL2 .S/ contains
the Teichmüller space of S as a connected component.

• Low dimensional topology: for dim.M/ D 3, the variety LocG.M/ is related
to quantum Chern-Simons invariants of M (there are various conjectures about
how the properties of LocG.M/ could determine the behaviour of the 3-TQFT
associated to G and M and associated invariant such as the colored Jones
polynomial).

However, this is generally a highly singular object, and one would like to apply
the principle shown in the previous example: treat this singular object as a smooth
object in a derived framework. To formalize this idea, one defines a derived stack

RLocG.M/ D Map.Betti.M/;BG/

where Betti.M/ is the Betti stack of M, BG is the derived classifying stack of M and
Map is the internal mapping space in the 1-category of derived stacks [72]. This
new object satisfies the following important properties:

• Its zero truncation gives the usual character variety

T0RLocG.M/ D LocG.M/:

• The tangent complex over a point computes the cohomology of M with coeffi-
cients in the associated G-local system.

• There is a nice new geometric structure appearing on such objects, which
is typically of derived nature: it possesses a canonical 2 � dim.M/-shifted
symplectic structure [60]. Briefly, shifted symplectic structures are the appro-
priate generalization of symplectic structure from smooth manifolds to derived
stacks. Here, since tangent spaces are complexes, differential forms come with
a cohomological degree in addition to their weight. An n-shifted symplectic
structure is a cohomology class of degree n in the de Rham complex of closed
2-forms satisfying a weak non-degeneracy condition: for every point Spec.K/!
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X, it induces a quasi-isomorphism TX=K
�! LX=KŒ�n� between the tangent

complex and the shifted cotangent complex.

If X is a smooth manifold, a 0-shifted symplectic structure on X is a usual symplectic
structure. Let us note that in the case of a surface, the 0-shifted symplectic form
RLocG.M/ restricts to Goldman’s symplectic form on the smooth locus of LocG.M/
[34], so this is really an extension of Goldman’s form to the whole moduli space.

Finally, to come back to the main topic of our survey and to motivate a bit the
use of homotopy theory for moduli spaces of algebraic structures, let us see on a
very simple example what happens if we build such a space with usual algebraic
geometry:

Example 4.4 Let V be a vector space of dimension n, and let us consider a basis
fe1; �; eng of V . An associative product on V is a linear map � W V ˝ V ! V
satisfying the associativity condition, hence it is determined by its values on the
basis vectors

�.ei; ej/ D
nX

kD1
ckijek;

where the ckij’s satisfy moreover a certain set of relations R determined by the
associativity of�. We can build an affine scheme whose K-points are the associative
algebra structures on V: its ring of functions is simply given by A D KŒckij�=.R/.
But we would like to classify such structures up to isomorphism, hence up to base
change in V . For this, we have to mod out by the action of GLn on V . In order to have
a well defined quotient of Spec.A/ byGLn, we take the quotient stack ŒSpec.A/=GLn�
as our moduli space of associative algebra structures up to isomorphisms.

Now let R be an associative algebra with underlying vector space V , which
represents a K-point of V (given by the orbit of the action of GL.V/ on R). Then
the truncated tangent complex TR of ŒSpec.A/=GLn� over the orbit of R is given by
a map

d W gl.V/! TRSpec.A/;

where gl.V/ is the Lie algebra of GL.V/ (the Lie algebra of matrices with
coefficients in V) sitting in degree �1, and TRSpec.A/ is the tangent space of
Spec.A/ over R, sitting in degree 0. This map is the tangent map of the scheme
morphism

� W GL.V/! Spec.A/

which sends any f 2 GL.V/ to f :R, the action of f on R, defined by transferring
the algebra structure of R along f . This is what one should expect for the tangent
complex: two associative algebra structures are equivalent if and only if they are
related by the action of GL.V/ (also called action of the “gauge group”). We then
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get H�1TR D Endalg.R/ (the Lie algebra of algebra endomorphisms of R, tangent
to Autalg.R/) and H0

TR D HH2.R;R/ the second Hochschild cohomology group of
R. Let us note that this computation is a very particular case of [80, Theorem 5.6].
The group HH2.R;R/ classifies equivalence classes of infinitesimal deformations of
R. In particular, if HH2.R;R/ D 0 then the algebra R is rigid, in the sense that any
infinitesimal deformation of R is equivalent to the trivial one.
The construction above has two main drawbacks. First, the tangent complex does not
give us any information about the obstruction theory of R, for instance, obstruction
groups for the extension of infinitesimal deformations to formal ones. Second, in the
differential graded case this construction does not make sense any more, and gives
no way to classify structures up to quasi-isomorphisms.

4.2 Derived Formal Moduli Problems

Formal moduli problems arise when one wants to study the infinitesimal deforma-
tion theory of a point x of a given moduli space X (variety, scheme, stack, derived
stack) in a formal neighbourhood of this point (that is, the formal completion
of the moduli space at this point). Deformations are parametrized by augmented
Artinian rings, for example KŒt�=.t2/ for infinitesimal deformations of order one, or
KŒt�=.tn/ for polynomial deformations of order n. The idea is to pack all the possible
deformations of x in the datum of a deformation functor

DefX;x W ArtaugK
! Set

from augmented Artinian algebras to sets, sending an Artinian algebra R to the set
of equivalence classes of R-deformations of x, that is, equivalence classes of lifts

(where the morphism Spec.K/ ! Spec.R/ is induced by the augmentation
R ! K). These are nothing but the fiber of the map X.R/ ! X.K/ induced
by the augmentation R ! K and taken over the base point x. Later on, several
people realized that one could use Lie theory of dg Lie algebra to describe these
deformation functors. Precisely, given a dg Lie algebra g, we consider the functor

Defg W ArtaugK
! Set

R 7�! MC.g˝K mR/
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where mR is the maximal ideal of g and MC.g˝K mR/ is the set of Maurer-Cartan
elements of the dg Lie algebra g ˝K mR, that is, elements x of degree 1 satisfying
the Maurer-Cartan equation dxC 1

2
Œx; x� D 0. The functor Defg is a formal moduli

problem called the deformation functor or deformation problem associated to g.
This characterization of formal moduli problems arose from unpublished work
of Deligne, Drinfed and Feigin, and was developed further by Goldman-Millson,
Hinich, Kontsevich, Manetti among others. Defining deformation functors via dg
Lie algebras led to striking advances, for instance in the study of representations of
fundamental groups of varieties [36, 67] and in deformation quantization of Poisson
manifolds [46].

It turned out that all known deformation problems related to moduli spaces
in geometry were of this form, which led these people to conjecture that there
should be a general correspondence between formal moduli problems and dg Lie
algebras. However, there was no systematic recipe to build a dg Lie algebra from
a given moduli problem (the construction above is the converse direction of this
hypothetical equivalence), and even worse, different dg Lie algebras could represent
the same moduli problem. Moreover, the obstruction theory associated to a moduli
problem, given by the positive cohomology groups of its Lie algebra, has no natural
interpretation in terms of the deformation functor. Indeed, deformation theory is
actually of derived nature. For instance, if we want to study the extension of
polynomial deformations of order n to order nC 1, we have to study the properties
of the natural projection KŒt�=.tnC1/ ! KŒt�=.tn/ and under which conditions
the induced map X.KŒt�=.tnC1// ! X.KŒt�=.tn// is surjective, or bijective. This
projection actually fits in a homotopy pullback (not a strict pullback) of augmented
dg Artinian algebras (not augmented commutative algebras in K-modules)

where � is of cohomological degree 1 (not 0). If we could define formal moduli
problems in this dg setting, we would like to apply the formal moduli problem Xx,
associated to a given point x of a moduli space X, to the diagram above to get a fiber
sequence

Xx.KŒt�=.t
nC1//! Xx.KŒt�=.t

n//! X.KŒ��=.�2//

and study the obstruction theory by understandingX.KŒ��=.�2// in an algebraic way.
These problems hint towards the necessity to introduce some homotopy theory

in the study of formal moduli problems. For this, one replaces augmented Artinian
algebras Artaug

K
by augmented dg Artinian algebras dgArtaug

K
, and sets Set by

simplicial sets sSet:
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Definition 4.2 A derived formal moduli problem is a functor F W dgArtaug
K
! sSet

from augmented Artinian commutative differential graded algebras to simplicial
sets, such that

1. We have an equivalence F.K/ ' pt.
2. The functor F sends quasi-isomorphisms of cdgas to weak equivalences of

simplicial sets.
3. Let us consider a homotopy pullback of augmented dg Artinian algebras

and suppose that the induced maps H0C! H0D and H0B! H0D are surjective.

Then F sends this homotopy pullback to a homotopy pullback of simplicial sets.
Formal moduli problems form a full sub-1-category noted FMPK of the 1-
category of simplicial presheaves over augmented Artinian cdgas. To make explicit
the link with derived algebraic geometry, the formal neighbourhood of a point x in
a derived stack X (formal completion of X at x) gives the derived formal moduli
problem Xx controlling the deformation theory of x. Given an Artinian algebra R
with augmentation � W R! K, the homotopy fiber

Xx.R/ D hofib.X.�/ W X.R/! X.K//

taken over the K-point x is the space of R-deformations of X, and equivalence
classes of R-deformations are determined by �0Xx.R/. In particular, applying Xx

to the homotopy pullback

we get a homotopy fiber sequence of spaces

Xx.KŒt�=.t
nC1//! Xx.KŒt�=.t

n//! X.KŒ��=.�2//;

hence a fiber sequence

�0Xx.KŒt�=.t
nC1//! �0Xx.KŒt�=.t

n//! �0Xx.KŒ��=.�
2// Š H1gXx ;
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where gXx is the tangent Lie algebra of the formal moduli problem Xx. We can take
equivalently the cohomology of the shifted tangent complex TX;xŒ�1� of the stack X
at x.

Remark 4.3 Actually, as proved in [37], for any derived Artin stack X locally
of finite presentation (so that we can dualize the cotangent complex to define
the tangent complex), there exists a quasi-coherent sheaf gX of OX-linear dg Lie
algebras over X such that

gX ' TX=KŒ�1�

in the1-category Lqcoh.X/ of quasi-coherent complexes over X, where TX=K is the
global tangent complex of X over K. Pulling back this equivalence along a point
x W Spec.K/ ! X, we get a quasi-isomorphism gXx ' TX;xŒ�1�. The sheaf gX thus
encodes the family of derived formal moduli problems parametrized by X which
associates to any point of X its deformation problem (the formal completion of X at
this point).
The rigorous statement of an equivalence between derived formal moduli problems
and dg Lie algebras was proved independently by Lurie in [50] and by Pridham in
[62]:

Theorem 4.4 (Lurie, Pridham) The1-category FMPK of derived formal moduli
problems over K is equivalent to the1-category dgLieK of dg Lie K-algebras.
Moreover, one side of the equivalence is made explicit, and is equivalent to the nerve
construction of dg Lie algebras studied thoroughly by Hinich in [38]. The homotopy
invariance of the nerve relies on nilpotence conditions on the dg Lie algebra. In
the case of formal moduli problems, this nilpotence condition is always satisfied
because one tensors the Lie algebra with the maximal ideal of an augmented
Artinian cdga. In this article, what we will call moduli problems are actually derived
moduli problems.

4.2.1 Extension to L1-Algebras

Certain deformation complexes of interest are not strict Lie algebras but homotopy
Lie algebras, that is L1-algebras. There is a strictification theorem for homotopy Lie
algebras (more generally, for dg algebras over any operad when K is of characteristic
zero), so any L1-algebra is equivalent to a dg Lie algebra, but this simplification of
the algebraic structure goes with an increased size of the underlying complex, which
can be very difficult to make explicit. This is why one would like the theory of
derived formal moduli problems to extend to L1-algebras, and fortunately it does.
There are two equivalent definitions of an L1-algebra:

Definition 4.5

(1) An L1-algebra is a graded vector space g D fgngn2Z equipped with maps lk W
g˝k ! g of degree 2 � k, for k � 1, satisfying the following properties:
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• lk.: : : ; xi; xiC1; : : :/ D �.�1/jxijjxiC1jlk.: : : ; xiC1; xi; : : :/
• for every k � 1, the generalized Jacobi identities

kX

iD1

X


2Sh.i;k�i/
.�1/�.i/lk.li.x
.1/; : : : ; x
.i//; x
.iC1/; : : : ; x
.k// D 0

where 
 ranges over the .i; k � i/-shuffles and

�.i/ D iC
X

j1<j2;
. j1/>
. j2/

.jxj1 jjxj2 j C 1/:

(2) An L1-algebra structure on a graded vector space g D fgngn2Z is a coderivation

Q W OSym��1.gŒ1�/ ! OSym��1.gŒ1�/ of degree 1 of the cofree cocommutative

coalgebra OSym��1.gŒ1�/ such that Q2 D 0.

The bracket l1 is actually the differential of g as a cochain complex. When the
brackets lk vanish for k � 3, then one gets a dg Lie algebra. The dg algebra C�.g/
obtained by dualizing the dg coalgebra of (2) is called the Chevalley-Eilenberg
algebra of g.

A L1 algebra g is filtered if it admits a decreasing filtration

g D F1g � F2g � : : : � Frg � : : :

compatible with the brackets: for every k � 1,

lk.Frg; g; : : : ; g/ 2 Frg:

We suppose moreover that for every r, there exists an integer N.r/ such that
lk.g; : : : ; g/ � Frg for every k > N.r/. A filtered L1 algebra g is complete if
the canonical map g! limrg=Frg is an isomorphism.

The completeness of a L1 algebra allows to define properly the notion of Maurer-
Cartan element:

Definition 4.6

(1) Let g be a dg L1-algebra and � 2 g1, we say that � is a Maurer-Cartan element
of g if

X

k�1

1

kŠ
lk.�; : : : ; �/ D 0:

The set of Maurer-Cartan elements of g is noted MC.g/.
(2) The simplicial Maurer-Cartan set is then defined by

MC�.g/ D MC.g Ő˝�/;
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where ˝� is the Sullivan cdga of de Rham polynomial forms on the standard
simplex�� (see [68]) and Ő is the completed tensor product with respect to the
filtration induced by g.

The simplicial Maurer-Cartan set is a Kan complex, functorial in g and preserves
quasi-isomorphisms of complete L1-algebras. The Maurer-Cartan moduli set of g
is MC.g/ D �0MC�.g/: it is the quotient of the set of Maurer-Cartan elements of
g by the homotopy relation defined by the 1-simplices. When g is a complete dg
Lie algebra, it turns out that this homotopy relation is equivalent to the action of
the gauge group exp.g0/ (a prounipotent algebraic group acting on Maurer-Cartan
elements), so in this case this moduli set coincides with the one usually known for
Lie algebras. We refer the reader to [80] for more details about all these results. The
notion of Maurer-Cartan space allows to define the classical deformation functor of
g given by

MC.g/ W ArtK ! Set

R 7�!MC.g˝ mR/

and the derived deformation functor or derived formal moduli problem of g given
by

MC�.g/ W dgArtaugK
! sSet

R 7�! MC�.g˝ mR/

(which belongs indeed to FMPK). By [80, Corollary 2.4], the tensor product
MC�.g ˝ mR/ does not need to be completed because R is Artinian. To see why

Theorem 3.3 extends to L1-algebras, let � W L1 �! Lie be a cofibrant resolution
of the operad Lie. This morphism induces a functor p� W dgLie! L1 � Alg which
associates to any dg Lie algebra the L1-algebra with the same differential, the same
bracket of arity 2 and trivial higher brackets in arities greater than 2. This functor
fits in a Quillen equivalence

pŠ W L1 � Alg � dgLie W p�;

where the left adjoint is a certain coequalizer (see [22, Theorem 16.A]), and Quillen
equivalences induce equivalences of the corresponding1-categories, so we have a
commutative triangle of1-categories
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where and Q send a Lie algebra, respectively an L1-algebra, to its derived formal
moduli problem. The maps p� and  are weak equivalences of 1-categories, so
Q W L1 � Alg ! FMPK is a weak equivalence of1-categories as well (here, by

weak equivalence we mean a weak equivalence in the chosen model category of
1-categories, say quasi-categories for instance).

4.2.2 Twistings of L1-Algebras

We recall briefly the notion of twisting by a Maurer-Cartan element. The twisting of
a complete L1 algebra g by a Maurer-Cartan element � is the complete L1 algebra
g� with the same underlying graded vector space and new brackets l�k defined by

l�k.x1; : : : ; xk/ D
X

i�0

1

iŠ
lkCi.�; : : : ; �„ ƒ‚ …

i

; x1; : : : ; xk/

where the lk are the brackets of g. The twisted L1-algebra g' is the deformation
complex of ', that is, the derived formal moduli problem of g' controls the
deformation theory of '. To see this, let us define another kind of Maurer-Cartan
functor

QMC�.g˝�/ W dgArtaugK
! sSet

R 7�! MC�.g˝ R/:

We replaced the maximal ideal mR in the definition of the deformation functor by
the full algebra R. That is, the functor QMC�.g˝�/ sends R to the space of R-linear
extensions of Maurer-Cartan elements of g. Then, for every augmented dg Artinian
algebra R one has

MC�.g' ˝ mR/ D hofib.MC�.g˝ R/! MC�.g/; '/

where the map in the right side is induced by the augmentation R ! K and the
homotopy fiber is taken over the base point '. That is, the space MC�.g' ˝ mR/ is
the space of R-linear extensions of ' as Maurer-Cartan elements of g˝ R.

5 Moduli Spaces of Algebraic Structures

5.1 First Version: A Simplicial Construction

We refer the reader to [40, Chapter 16, Chapter 17] and [24] for some prerequisites
about simplicial mapping spaces in model categories. We use this notion of
simplicial mapping space and the model category structure on props to define our
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moduli spaces. Let us define a first version of this moduli space as a simplicial set.
This was originally defined in the setting of simplicial operads [65], and can be
extended to algebras over differential graded props as follows (see [82]):

Definition 5.1 Let P1 be a cofibrant prop and X be a cochain complex. The
(simplicial) moduli space of P1-algebra structures on X is the simplicial set P1fXg
defined in each simplicial dimension k by

P1fXgk D Morprop.P1;EndX ˝˝k/;

where .EndX ˝˝k/.m; n/ D Hom.X˝m;X˝n/˝˝k.
The Sullivan algebras ˝k gather into a simplicial commutative differential graded
algebra˝� whose faces and degeneracies induce the simplicial structure on P1fXg.
The functor .�/˝˝� is a functorial simplicial resolution in the model category of
props [81, Proposition 2.5], so this simplicial moduli space is a homotopy mapping
space in this model category. In particular, this means that this simplicial set is a Kan
complex whose points are the P1-algebra structures P1 ! EndX and 1-simplices
are the homotopies between such structures (the prop EndX˝˝1 forms a path object
of EndX in the model category of props). The later property implies that

�0P1fXg D ŒP1;EndX�Ho.Prop/
is the set of homotopy classes of P1-algebra structures on X. So our simplicial
moduli space has the two first properties one expects from a moduli space: its
points are the objects we want to classify and its connected components are the
equivalence classes of these objects. Moreover, the fact that this is a homotopy
mapping space implies that it is homotopy invariant with respect to the choice of a
cofibrant resolution for the source, that is, any weak equivalence of cofibrant props

P1
�! Q1 induces a weak equivalence of Kan complexes

Q1fXg �! P1fXg:

So this is a well defined classifying object for homotopy P-algebra structures on X.
Another interesting homotopy invariant is the classification space of P1-

algebras, defined as the nerve NwP1 � Alg of the subcategory whose objects are
P1-algebras and morphisms are quasi-isomorphisms of P1-algebras. By [12, 13],
this classification space admits a decomposition

NwP1 � Alg ' uŒX�2�0NwP
1

�AlgWLHwP1 � Alg.X;X/:

Here the product ranges over weak equivalence classes of P1-algebras, and
WLHwP1�Alg.X;X/ is the classifying complex of the simplicial monoid of zigzags

of weak equivalences X
� � �! X in the hammock localization (or equivalently in

the simplicial localization) of P1 � Alg in the sense of Dwyer-Kan, i.e. the self
equivalences of X in the 1-category of P1-algebras. Let us note that when P1
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is an operad and X is a cofibrant P1-algebra, this space is equivalent to the usual
simplicial monoid hautP

1

.X/ of self weak equivalences of X. This means that the
classification space of P1-algebras encodes symmetries and higher symmetries of
P1-algebras in their homotopy theory. Homotopy invariance of the classification
space for algebras over props is a non trivial theorem:

Theorem 5.2 ([78, Theorem 0.1]) Let ' W P1 �! Q1 be a weak equivalence
between two cofibrant props. The map ' gives rise to a functor

'� W wQ1 � Alg! wP1 � Alg

which induces a weak equivalence of simplicial sets

N'� W NwQ1 � Alg
�! NwP1 � Alg:

Moreover, it turns out that the simplicial moduli space defined above gives a local
approximation of this classification space, precisely we have the following result:

Theorem 5.3 ([82, Theorem 0.1]) Let P1 be a cofibrant dg prop and X be a
cochain complex. The commutative square

is a homotopy pullback of simplicial sets.
This homotopy fiber theorem has been applied to study the homotopy type of
realization spaces in [83] in terms of derivation complexes and to count equivalence
classes of realizations (of Poincaré duality for example).

The reader has probably noticed that we used the following property to define
our simplicial moduli space: tensoring a prop by a cdga componentwise preserves
the prop structure. This allows us to extend the definition of this moduli space and
make it a simplicial presheaf of cdgas

Map.P1;Q/ W R 2 CDGAK 7! MapProp.P1;Q˝ A/:

Moreover, the notion of classification space defined above in the sense of Dwyer-
Kan can also be extended to a simplicial presheaf. For this, we use that for any
cdga R, the category ModR is a (cofibrantly generated) symmetric monoidal model
category tensored over chain complexes, so that one can define the category P1 �
Alg.ModR/ of P1-algebras in ModR. The assignment

A 7! wP1 � Alg.ModR/
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defines a weak presheaf of categories in the sense of [1, Definition I.56]. It sends a
morphism A ! B to the symmetric monoidal functor � ˝A B lifted at the level of
P1-algebras. This weak presheaf can be strictified into a presheaf of categories (see
[1, Section I.2.3.1]). Applying the nerve functor then defines a simplicial presheaf
of Dwyer-Kan classification spaces that we note NwP1 � Alg. The simplicial
presheaf NwChK associated to A 7! ModA is the simplicial presheaf of quasi-
coherent modules of [74, Definition 1.3.7.1]. The constructions above then make
the following generalization of Theorem 4.3 meaningful:

Proposition 5.4 ([30, Proposition 2.13]) Let P1 be a cofibrant prop and X be a
chain complex. The forgetful functor P1 � Alg ! ChK induces a homotopy fiber
sequence

P1fXg ! NwP1 � Alg!NwChK

of simplicial presheaves over cdgas, taken over the base point X.

5.2 Second Version: A Stack Construction and the Associated
Deformation Theory

If P is a properad with cofibrant resolution .F.s�1C/; @/ �! P for a certain
homotopy coproperad C (see [58, Section 4] for the definition of homotopy
coproperads), and Q is any properad, then we consider the total complex gP;Q D
Hom˙.C;Q/ given by homomorphisms of˙-biobjects from the augmentation ideal
of C to Q. In the case Q D EndX we will note it gP;X. By [59, Theorem 5], it
is a complete dg L1 algebra whose Maurer-Cartan elements are prop morphisms
P1 ! Q. This L1-structure was also independently found in [54, Section 5], where
it is proved that such a structure exists when replacing our cofibrant resolution above
by the minimal model of a K-linear prop (and its completeness follows by [54,
Proposition 15]). In [81], we prove a non trivial generalization of this result at the
level of simplicial presheaves:

Theorem 5.5 ([81, Theorem 2.10,Corollary 4.21]) Let P be a dg properad

equipped with a minimal model P1 WD .F.s�1C/; @/ �! P and Q be a dg properad.
Let us consider the simplicial presheaf

Map.P1;Q/ W R 2 CDGAK 7! MapProp.P1;Q˝ A/

where CDGAK is the category of commutative differential graded K-algebras and
Q˝A is the componentwise tensor product defined by .Q˝A/.m; n/ D Q.m; n/˝A.
This presheaf is equivalent to the simplicial presheaf

QMC�.Hom˙.C;Q// W A 2 CDGAK 7! MC�.Hom˙.C;Q/˝ A/

associated to the complete L1-algebra Hom˙.C;Q/.
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In the case Q D EndX, we get the simplicial presheaf which associates to A the
moduli space of P1-algebra structures on X ˝ A. Let us note that Map.P1;Q/ can
be alternately defined by

A 7! MapProp.ModA/.P1 ˝ A;Q˝ A/;

where MapProp.ModA/ is the simplicial mapping space in the category of props in dg
A-modules. In the case Q D EndX, we have Q ˝ A Š EndModA

X˝A where EndModA
X˝A is

the endormorphism prop of X ˝ A taken in the category of A-modules. That is,
it associates to A the simplicial moduli space of A-linear P1-algebra structures
on X ˝ A in the category of A-modules. This theorem applies to a large class
of algebraic structures, including for instance Frobenius algebras, Lie bialgebras
and their variants such as involutive Lie bialgebras, as well as the properad Bialg
encoding associative and coassociative bialgebras.

Under additional assumptions, we can equip such a presheaf with a stack
structure:

Theorem 5.6 ([81, Corollary 0.8])

(1) Let P1 D .F.s�1C/; @/ �! P be a cofibrant resolution of a dg properad P and
Q be any dg properad such that each Q.m; n/ is a bounded complex of finite
dimension in each degree. The functor

Map.P1;Q/ W A 2 CDGAK 7! MapProp.P1;Q˝ A/

is an affine stack in the setting of complicial algebraic geometry of [74].

(2) Let P1 D .F.s�1C/; @/ �! P be a cofibrant resolution of a dg properad P
in non positively graded cochain complexes, and Q be any properad such that
each Q.m; n/ is a finite dimensional vector space. The functor

Map.P1;Q/ W A 2 CDGAK 7! MapProp.P1;Q˝ A/

is an affine stack in the setting of derived algebraic geometry of [74], that is, an
affine derived scheme.

In the derived algebraic geometry context, the derived stack Map.P1;Q/ is not
affine anymore whenever the Q.m; n/ are not finite dimensional vector spaces.
However, we expect these stacks to be derived n-Artin ind-stacks for the Q.m; n/
being perfect complexes with finite amplitude n, using the characterization of
derived n-Artin stacks via resolutions by Artin n-hypergroupoids given in [62].

We denote by TMap.P
1

;Q/;x' the tangent complex of Map.P1;Q/ at an A-
point x' associated to a properad morphism ' W P1 ! Q ˝e A. As we
explained before in Sect. 4, non-positive cohomology groups of the deformation
complex correspond to negative groups of the tangent complex, which computes
the higher automorphisms (higher symmetries) of the point, and the positive part
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which computes the obstruction theory. Adding some finiteness assumptions on the
resolution P1, we can make explicit the ring of functions of this affine stack:

Theorem 5.7 ([81, Theorem 0.14]) Let P be a dg properad equipped with a

cofibrant resolution P1 WD ˝.C/
�! P, where C admits a presentation C D

F.E/=.R/, and Q be a dg properad such that each Q.m; n/ is a bounded complex
of finite dimension in each degree. Let us suppose that each E.m; n/ is of finite
dimension, and that there exists an integer N such that E.m; n/ D 0 for mC n > N.
Then

(1) The moduli stack Map.P1;Q/ is isomorphic to RSpecC�.Hom˙.C;Q//, where

C�.Hom˙.C;Q// is the Chevalley-Eilenberg algebra of Hom˙.C;Q/.
(2) The cohomology of the tangent dg Lie algebra at a K-point ' W P1 ! Q is

explicitly determined by

H�.TMap.P
1

;Q/;x' Œ�1�/ Š H�.Hom˙.C;Q/'/:

This theorem applies to a wide range of structures including for instance Frobenius
algebras, Lie bialgebras and their variants such as involutive Lie bialgebras, and
associative-coassociative bialgebras.

5.3 Properties of the Corresponding Formal Moduli Problems
and Derived Deformation Theory

Before turning to formal moduli problems, a natural question after reading the
previous section is the following: how are the tangent complexes of our moduli
spaces related to the usual cohomology theories of well-known sorts of algebras
such as Hochschild cohomology of associative algebras, Harrison cohomology
of commutative algebras, Chevalley-Eilenberg cohomology of Lie algebras, or
Gerstenhaber-Schack cohomology of associative-coassociative bialgebras (intro-
duced to study the deformation theory of quantum groups [27]). It turns out that
these tangent Lie algebras do not give exactly the usual cohomology theories, but
rather shifted truncations of them. For instance, let us consider the Hochschild
complex Hom.A˝>0;A/ of a dg associative algebra A. This Hochschild complex
is bigraded with a cohomological grading induced by the grading of A and a weight
grading given by the tensor powers A˝�. It turns out that the part Hom.A;A/ of
weight 1 in the Hochschild complex is the missing part in g'Ass;A (the L1-algebra
of Theorem 5.7, where ' W Ass ! EndA is the associative algebra structure of A).
There is also a “full” version of the Hochschild complex defined by Hom.A˝�0;A/.
These three variants of Hochschild complexes give a sequence of inclusions of three
dg Lie algebras

Hom.A˝�0;A/Œ1� � Hom.A˝>0;A/Œ1� � Hom.A˝>1;A/Œ1�:
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All of these have been considered in various places in the literature, but without
comparison of their associated moduli problems. For the full complex, it is known
that it controls the linear deformation theory of ModA as a dg category [43, 61].

The same kind of open question arises for other cohomology theories and their
variants, and one of the achievements of our work with Gregory Ginot [30] was to
describe precisely the moduli problems controlled by these variants and how they
are related in the general context of P1-algebras.

The formal moduli problem P1fXg' controlling the formal deformations of a
P1-algebra structure ' W P1 ! EndX on X is defined, on any augmented dg
Artinian algebra R, by the homotopy fiber

P1fXg'.R/ D hofib.P1fXg.R/! P1fXg.K//

taken over the base point ', where the map is induced by the augmentation R! K.
The twisting of the complete L1-algebra Hom˙.C;EndX/ by a properad morphism
' W P1 ! EndX is the deformation complex of ', and we have an isomorphism

g'P;X D Hom˙.C;EndX/
' Š Der'.˝.C/;EndX/

where the right-hand term is the complex of derivations with respect to ' [59,
Theorem 12], whose L1-structure induced by the twisting of the left-hand side is
equivalent to the one of [54, Theorem 1]. Section 4.2.2 combined with Theorem 5.5
tells us which formal moduli problem this deformation complex controls:

Proposition 5.8 ([30, Proposition 2.11]) The tangent L1-algebra of the formal
moduli problem P1fXg' is given by

g'P;X D Hom˙.C;EndX/
':

In derived algebraic geometry, a Zariski open immersion of derived Artin stacks
F ,! G induces a weak equivalence between the tangent complex over a given
point of F and the tangent complex over its image in G [74]. It is thus natural to
wonder more generally whether an “immersion” of an 1-category C into another
1-category D induces an equivalence between the deformation problem of an
object X of C (which should be in some sense a tangent space of C at X) and
the deformation problem of its image in D, in particular an equivalence of the
corresponding tangent dg Lie algebras when such a notion makes sense. Here the
word “immersion” has to be understood as “fully faithful conservative1-functor”,
that is, a fully faithful1-functor C ! D such that a map of C is an equivalence
if and only if its image in D is a weak equivalence. In the case of1-categories of
algebras over props, Proposition 5.4 tells us that the formal moduli problemP1fXg'
is the “tangent space” over .X; '/ to the Dwyer-Kan classification space of the1-
category of P1-algebras, with associated tangent L1-algebra g'P;X . In this setting,
we can thus transform the intuition above into a precise statement:
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Theorem 5.9 ([30, Theorem 2.16]) Let F W P1 � Alg ! Q1 � Alg be a fully
faithful and conservative1-functor inducing functorially in A, for every augmented
Artinian cdga A, a fully faithful and conservative1-functor F W P1�Alg.ModA/!
Q1 � Alg.ModA/. Then F induces an equivalence of formal moduli problems

P1fXg'  Q1fF.X/gF.'/;

where F.'/ is the Q1-algebra structure on the image F.X; '/ of X; ' under F,
hence an equivalence of the associated L1-algebras

g'P;X  gF.'/Q;F.X/:

Proposition 5.4 also hints towards the fact that g'P;X does not control the
deformation theory of homotopy automorphisms of .X; '/ in the infinitesimal neigh-
bourhood of id.X;'/, but should be closely related to it, since classification spaces
decompose into disjoint unions of homotopy automorphisms. These homotopy
automorphisms form a derived algebraic group [21], and as for underived algebraic
groups, one can associate Lie algebras to such objects. Indeed, as explained in [21],
given a moduli functor F and a point x 2 F.K/, the reduction of F at x is the functor
Fx defined by the homotopy fiber

Fx.R/ D hofib.F.R/! F.K//

where the map is induced by the augmentation of R and the homotopy fiber is taken
over the base point x. A point x of F.K/ such that the reduction of F at x is a formal
moduli problem (called an infinitesimal moduli problem in [21, Definition 4.5]) is
called formally differentiable [21, Definition 4.10], so there is a tangent Lie algebra
of F at x defined as the Lie algebra of the formal moduli problem Fx. In the case of
derived algebraic groups, the neutral element is a formally differentiable point and
the Lie algebra of a derived algebraic group is the Lie algebra of its reduction at
the neutral element. This is the natural extension to a derived framework of the well
known Lie algebra of a Lie group. Consequently, there should be a homotopy fiber
sequence of L1-algebras relating Lie.hautP

1

.X; '// to the tangent L1-algebra g'P;X
of P1fXg' .

Let us make explicit a bit the construction of derived algebraic groups of
homotopy automorphisms. Given a complex X, its homotopy automorphism group
is denoted haut.X/. Given a P1-algebra .X; '/, its homotopy automorphism group
in the1-category of P1-algebras is denoted hautP

1

.X; '/. In the general case, it
is defined by Dwyer-Kan’s hammock localization LHwP1..X; '/; .X; '//, since we
do not have a model category structure on the category of P1-algebras. However
in the particular case where P1 is an operad, it turns out that this construction is
equivalent to the usual simplicial monoid of homotopy automorphisms of .X; '/
in the model category of P1-algebras (the simplicial sub-monoid of self weak
equivalences in the usual homotopy mapping space MapP

1

�Alg.X;X/).
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Remark 5.10 What we mean here by a homotopy automorphism is a self weak
equivalence, not the homotopy class of a strict automorphism.
The derived algebraic group haut.X/ of homotopy automorphisms of X is defined
by the strictification of the weak simplicial presheaf

R 7! hautModR.X ˝ R/;

where hautModA is the simplicial monoid of homotopy automorphisms in the
category of A-modules. The derived algebraic group hautP

1

.X; '/ of homotopy
automorphisms of .X; '/ is defined by the strictification of the weak simplicial
presheaf

R 7! hautP
1

.X ˝ R; ' ˝ R/ModR

where hautP
1

.X ˝ R; ' ˝ R/ModR is the simplicial monoid of homotopy automor-
phisms of .X ˝ R; ' ˝ R/ 2 P1 � Alg.ModR/. The reduction of hautP

1

.X; '/
at id.X;'/ associates to any augmented dg Artinian algebra R the space of R-linear
extensions of homotopy automorphisms living in the connected component of
id.X;'/, that is, homotopy isotopies. Finally, the deformation complex of ' in the
1-category of props and the deformation complex of homotopy isotopies of .X; '/
in the1-category of P1-algebras are related by the expected fiber sequence:

Proposition 5.11 ([30, Proposition 2.14]) There is a homotopy fiber sequence of
L1-algebras

g'P;X ! Lie.hautP
1

.X; '//! Lie.haut.X//:

Moreover, we can make explicit Lie.hautP
1

.X; '// as a slight modification g'
C

PC;X

of g'P;X, which consists in adding a component Hom.X;X/ to g'P;X (we refer to [30,
Section 3]):

Theorem 5.12 ([30, Theorem 3.5]) There is a quasi-isomorphism of L1-algebras

g'
C

PC;X
' Lie.hautP

1

.X; '//:

The conceptual explanation underlying this phenomenon is that g'P;X controls the

deformations of the P1-algebra structure over a fixed complex X, whereas g'
C

PC;X
controls deformations of this P1-algebra structure plus compatible deformations
of the differential of X, that is, deformations of the P1-algebra structure up to
self quasi-isomorphisms of X. This is the role of the part Hom.X;X/ appearing for
instance in Hochschild cohomology. For instance, given an associative dg algebra A,

the complex g'
C

AssC;A
Š Hom.A˝>0;A/Œ1� computes the Hochschild cohomology of

A and the complex g'Ass;A Š Hom.A˝>1;A/Œ1� is the one controlling the formal
moduli problem of deformations of A with fixed differential. The full shifted
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Hochschild complex Hom.A˝�0;A/Œ1/ controls the linear deformations of the dg
category ModA.

For an n-Poisson algebra A (Poisson algebras with a Poisson bracket of degree
1 � n), we have the same kind of variants of L1-algebras: the full shifted Poisson
complex CHPoisn.A/Œn� [3], the deformation complex CH.�>0/

Poisn
.A/Œn� introduced by

Tamarkin [71] which is the part of positive weight in the full Poisson complex, and
the further truncation CH.�>1/

Poisn
.A/Œn�. In [30, Section 6], we solve the open problem

to determine which deformation problems these L1-algebras control:

Theorem 5.13 Let A be an n-Poisson algebra.

(1) The truncation CH.�>1/
Poisn

.A/Œn� is the deformation complex g'Poisn;R of the formal
moduli problem Poisn1fAg' of homotopy n-Poisson algebra structures deform-
ing '.

(2) Tamarkin’s deformation complex controls deformations of A into dg-Poisn-

algebras, that is, it is the tangent Lie algebra g'
C

PoisCn ;A
of hautPoisn.A/.

Remark 5.14 We conjecture that the L1-algebra structure of the full shifted Poisson
complex CH�Poisn.A/Œn� controls the deformations of ModA into En�1-monoidal dg
categories. This should have interesting consequences for deformation quantization
of n-shifted Poisson structures in derived algebraic geometry [4, 73].

6 Gerstenhaber-Schack Conjecture, Kontsevich Formality
Conjecture and Deformation Quantization

6.1 En-Operads, Higher Hochschild Cohomology and the
Deligne Conjecture

Recall that an En-operad is a dg operad quasi-isomorphic to the singular chains
C�Dn of the little n-disks operad. We refer the reader to [24, Volume I] for a
comprehensive treatment of the construction and main properties of the little n-disks
operads. These En-operads satisfy the following properties:

• There is an isomorphism H�E1 Š Ass, where Ass is the operad of associative
algebras.

• For n � 2, there is an isomorphism H�En Š Poisn where Poisn is the operad of
n-Poisson algebras.

• For n � 2, the En-operads are formal, i.e. there is a quasi-isomorphism of operads

En
�! Poisn:

Modulo a technical assumption satisfied in particular by C�Dn, this formality
holds over Q [25].
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The formality of the little n-disks operad has a long story of intermediate formality
results (for n D 2 over Q in [70], for n � 2 over R in [45, 47], finally an intrinsic
formality result over Q in [25]). This formality is the key point to prove Deligne
conjecture, which states the existence of a homotopy Gerstenhaber structure (that
is, the E2-algebra structure) of the Hochschild complex with product given by the
usual cup product. This result provided in turn an alternative method for deformation
quantization of Poisson manifolds [45, 46, 69, 70].

The cohomology theory of En-algebras is called the higher Hochschild cohomol-
ogy or En-Hochschild cohomology:

Definition 6.1 The (full) En-Hochschild complex of an En-algebra A is the derived
hom CH�En

.A;A/ D RHomEn
A .A;A/ in the category of (operadic) A-modules over En.

Given an ordinary associative (or E1) algebra A, the category of (operadic) A-
modules over E1 is the category of A-bimodules, so one recovers the usual
Hochschild cohomology. Moreover, the aforementioned Deligne conjecture gener-
alizes to En-algebras:

Theorem 6.2 (see [32, Theorem 6.28] or [21, 51]) The En-Hochschild complex
CH�En

.A;A/ of an En-algebra A forms an EnC1-algebra.
The endomorphisms HombiModA.A;A/ of A in the category biModA of A-bimodules
form nothing but the center Z.A/ of A. Deriving this hom object gives the Hochschild
complex, and the Hochschild cohomology of A satisfies HH0.A;A/ D Z.A/. One
says that the Hoschchild complex is the derived center of A, and the result above
can then be reformulated as “the derived center of an En-algebra forms an EnC1-
algebra”. This sentence has actually a precise meaning, because higher Hochschild
cohomology can be alternately defined as a centralizer in the 1-category of En-
algebras. We refer the reader to [51] for more details about this construction.
Associated to an En-algebra A, one also has its cotangent complex LA, which
classifies square-zero extensions of A [21, 51], and its dual the tangent complex
TA WD HomEn

A .LA;A/ Š RDer.A;A/.

Theorem 6.3 (see [21, 51]) The shifted tangent complex TAŒ�n� of an En-algebra
is an EnC1-algebra, and is related to its En-Hochschild complex by a homotopy fiber
sequence of EnC1-algebras

AŒ�n�! TAŒ�n�! CH�En
.A;A/:

6.2 From Bialgebras to E2-Algebras

A bialgebra is a complex equipped with an associative algebra structure and a
coassociative coalgebra structure, such that the product is a coalgebra map and
equivalently the coproduct is an algebra map. That is, bialgebras are equivalently
algebras in coalgebras or coalgebras in algebras. Their cohomology theory is the
Gerstenhaber-Schack cohomology [27], intertwinning Hochschild cohomology of
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algebras and co-Hochschild cohomology of coalgebras. Such structures naturally
occur in algebraic topology (homology or cohomology of an H-space, for instance
loop spaces), Lie theory (universal enveloping algebras, cohomology of Lie groups),
representation theory (group rings, regular functions on algebraic groups, Tannaka-
Krein duality), quantum field theory (renormalization Hopf algebras, AdS/CFT
formalism). . . Here we are going to focus on their prominent role in quantum
group theory, [10, 11, 16, 17, 27, 56, 57]. As explained in Example 4, deformation
quantization of Lie bialgebras produce quantum groups, whose categories of
representations are particularly well behaved (modular tensor categories) and used
to produce topological invariants via 3-TQFTs [64]. It turns out that bialgebras
are deeply related to En-algebras, via the natural occurrence of En-structures in
deformation quantization and representation theory of quantum groups for instance,
leading people to investigate the relationship between these two kinds of structures
to understand various related problems on both sides. A hope in particular was to
establish some equivalence between their respective deformation theories, maybe
even their homotopy theories. One of the first goals of [30] was to embody this long-
standing hope in a precise mathematical incarnation. A first crucial step is to relate
bialgebras to a “half-restricted” kind of E2-coalgebras by the following equivalence
of1-categories:

Theorem 6.4 ([30, Theorem 0.1])

(1) There exists a bar-cobar adjunction

Benh
E1
W E1 � Alg0�con.dgCogconil/ � E1 � Cogconil.dgCogconil/ W ˝enh

E1

inducing an equivalence of1-categories between nilpotent homotopy associa-
tive algebras in conilpotent dg coalgebras (0-connected conilpotent homotopy
associative bialgebras) and conilpotent homotopy coassociative coalgebras in
conilpotent dg coalgebras.

(2) The equivalence above induces an equivalence of .1; 1/-categories

E1 � Algaug;nil.dgCogconil/ � E1 � Cogconil;pt.dgCogconil/

between nilpotent augmented conilpotent homotopy associative bialgebras
and pointed conilpotent homotopy coassociative coalgebras in conilpotent dg
coalgebras.

In part (1), the notation 0 � con means 0-connected, that is dg bialgebras concen-
trated in positive degrees. In part (2), the notation aug; nil stands for augmented
and nilpotent. A typical example of such a bialgebra is the total complex of the
symmetric algebra over a cochain complex. The notation pt stands for pointed
coalgebras, that is, a coalgebra C equipped with a counit � W C ! K and a
coaugmentation e W K! C such that � ı e D idK. More generally, one can wonder,
working in a given stable symmetric monoidal1-category (not necessarily cochain
complexes), under which conditions a bar-cobar adjunction induces an equivalence
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of1-categories between algebras over an operad and conilpotent coalgebras over
its bar construction [20]. Theorem 6.3 solves this conjecture of Francis-Gaitsgory
[20] in the case where the base category is the category of conilpotent dg coalgebras,
respectively the category of pointed conilpotent dg coalgebras.

Remark 6.5 This example is also interesting with respect to the conditions imposed
on the ground symmetric monoidal 1-category in [20], since the categories
considered here are a priori not pronilpotent in the sense of [20, Definition 4.1.1].
Using Koszul duality of En-operads and an 1-categorical version of Dunn’s
theorem [31, 51], we deduce from these equivalences the precise and long awaited
relationship between homotopy theories of bialgebras and E2-algebras. The correct
answer to this problem needs an appropriate notion of “cobar construction for
bialgebras”, which intertwines a bar construction on the algebra part of the structure
with a cobar construction on the resulting E2-coalgebra:

Theorem 6.6 ([30, Corollary 0.2]) The left adjoint of Theorem 0.1(2) induces a
conservative fully faithful1-functor

Q̋ W E1 � Algaug;nil.dgCogconil/ ,! E2 � Algaug

embedding augmented nilpotent and conilpotent homotopy associative bialgebras
into augmented E2-algebras.
By Theorem 5.12, this “immersion” of1-categories induces equivalences of formal
moduli problems between the moduli problem of homotopy bialgebra structures
on a bialgebra B and the moduli problem of E2-algebra structures on its cobar
construction Q̋ B. Moreover, at the level of formal moduli problems controlling
homotopy isotopies of B and homotopy isotopies of Q̋ B, the tangent L1-algebras
can be identified respectively with the shifted Gerstenhaber-Schack complex of B
and the shifted (truncated) higher Hochschild complex (or E2-tangent complex) of
˝B as L1-algebras:

Theorem 6.7 ([30, Theorem 0.6]) Let B be a pointed conilpotent homotopy
associative dg bialgebra. Let ' W Bialg1 ! EndB be this homotopy bialgebra
structure on B (where Bialg is the prop of associative-coassociative bialgebras) ,
and let Q̋ ' W E2 ! End Q̋B be the corresponding E2-algebra structure on its cobar
construction Q̋ B.
(1) There is a homotopy equivalence of formal moduli problems

Bialg1fBg' ' E2f Q̋ Bg
Q̋'
:

This homotopy equivalence induces a quasi-isomorphism of L1-algebras

g'Bialg;B
�! g

Q̋'
E2; Q̋B:
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(2) There is a homotopy equivalence of formal moduli problems

BialgC1fBg'
C ' EC2 f Q̋ Bg Q̋'

C

:

This homotopy equivalence induces a quasi-isomorphism of L1-algebras

C�GS.B;B/Œ2�
�! T Q̋ .B/

between the shifted Gerstenhaber-Schack complex of B and the (truncated) E2-
Hochschild complex or E2-tangent complex of Q̋ .B/.

The L1 structure on the E2-Hochschild complex T Q̋ .B/ is the one induced by the
E3 structure on T Q̋ .B/Œ�2� (see Theorem 6.3 ). Proving that the higher Hochschild
complex of the cobar construction of a bialgebra is a deformation complex of
this bialgebra is important, since it allows to reduce questions of deformations of
bialgebras to those of E2-structures for which more tools are available.

6.3 Gerstenhaber-Schack Conjecture

At the beginning of the 1990s, Gerstenhaber and Schack enunciated (in a wrong
way) a conjecture [27] characterizing the structure of the complex controlling the
deformation theory of bialgebras, which remained quite mysterious for a while. It is
a dg bialgebra version of the Deligne conjecture. In [27, Section 8], we extended the
equivalences of Theorem 6.7 to an equivalence of homotopy fiber sequences of E3-
algebras, getting a much stronger version of the longstanding Gerstenhaber-Schack
conjecture for the different versions of the Gerstenhaber-Schack and E2-Hochschild
complexes:

Theorem 6.8 (Generalized Gerstenhaber-Schack Conjecture [30, Corollary
0.7])

(1) There is an E3-algebra structure on C�GS.B;B/ and a unital E3-algebra structure
on Cfull

GS .B;B// such that the following diagram

is a commutative diagram of non-unital E3-algebras with vertical arrows being
equivalences.

(2) The E3-algebra structure on C�GS.B;B/ is a refinement of its L1-algebra
structure controlling the deformation theory of the bialgebra B.
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Let us note that the upper fiber sequence of part (1) is the fiber sequence of
Theorem 6.3. In particular, the E3-algebra structure on the deformation complex of
dg bialgebra B comes from the E3-algebra structure on the E2-Hochschild complex
of Q̋ B given by the higher Deligne conjecture.

6.4 Kontsevich Formality Conjecture and Deformation
Quantization of Lie Bialgebras

Let us first recall briefly how deformation quantization of Poisson manifolds
works in Kontsevich’s work [46]. We fix a finite dimensional Poisson manifold M,
and we consider two complexes one can associate to such a manifold. First, the
Hochschild complex CH�.C1.M/;C1.M//, second, the complex of polyvector

fields Tpoly.M/ D
�L

k�0
Vk

� T.M/Œ�k�
�
Œ1� where � T.M/ is the space of

sections of the tangent bundle on M. The Poisson structure we fixed on M is
the datum of a bivector ˘ 2 V2

� T.M/ satisfying the Maurer-Cartan equation,
that is, a Maurer-Cartan element of weight 2 in the Lie algebra of polyvector
fields Tpoly.M/Œ1� (equipped with the Schouten-Nihenjuis bracket). To get the
equivalent definition of Poisson manifold as a manifold whose ring of functions
is a Poisson algebra, set f f ; gg D ˘.df ; dg/. A well known theorem called the
Hochschild-Kostant-Rosenberg theorem (HKR for short) states that the cohomology
of CH�.C1.M/;C1.M// is precisely Tpoly.M/. In [46], Kontsevich proved that
there exists a L1-quasi-isomorphism

Tpoly.M/Œ1�
�! CH�.C1.M/;C1.M//Œ1�

realizing in particular the isomorphism of the HKR theorem. We did not use
the notion of L1-quasi-isomorphism before, let us just say briefly that it is
a quasi-isomorphism of cdgas between the Chevalley-Eilenberg algebra of
Tpoly.M/Œ1� and the Chevalley-Eilenberg algebra of CH�.C1.M/;C1.M//Œ1�.
In particular, it is determined by an infinite collection of maps Tpoly.M/Œ1� !
�k.CH�.C1.M/;C1.M//Œ1�/ for k 2 N, whose first map is the HKR quasi-
isomorphism.

Remark 6.9 An L1-quasi-isomorphism of dg Lie algebras is actually equivalent to
a chain of quasi-isomorphisms of dg Lie algebras.
This formality theorem then implies the deformation quantization of Poisson
manifolds by the following arguments. First, noting gŒŒ„��C D L „gnŒŒ„��, one
proves that the Maurer-Cartan set MC.Tpoly.M/ŒŒ„��C/ is the set of Poisson algebra
structures on C1.M/ŒŒ„�� and that the Maurer-Cartan set MC.Dpoly.M/ŒŒ„��C/ is
the set of 
„-products, which are associative products on C1.M/ŒŒ„�� of the
form a:b C B1.a; b/t C : : : (i.e these products restrict to the usual commutative
associative product on C1.M/). Second, an L1-quasi-isomorphism of nilpotent
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dg Lie algebras induces a bijection between the corresponding moduli sets of
Maurer-Cartan elements, so there is a one-to-one correspondence between gauge
equivalence classes of both sides. Consequently, isomorphism classes of formal
Poisson structures on M are in bijection with equivalence classes of 
„-products.

Kontsevich builds explicit formality morphisms in the affine case M D R
d,

with formulae involving integrals on compactification of configuration spaces and
deeply related to the theory of multi-zeta functions. An alternative proof of the
formality theorem for M D R

d due to Tamarkin [69], relies on the formality of
E2-operads (hence on the choice of a Drinfeld associator) and provides a formality
quasi-isomorphism of homotopy Gerstenhaber algebras (that is E2-algebras)

Tpoly.R
n/
�! CH�.C1.Rn/;C1.Rn//:

His method works as follows:

• Prove the Deligne conjecture stating the existence of an E2-algebra structure on
the Hochschild complex;

• Transfer this structure along the HKR quasi-isomorphism to get an E2-quasi-
isomorphism between CH�.C1.Rn/;C1.Rn// with its E2-algebra structure
coming from the Deligne conjecture, and Tpoly.Rn/.

• By the formality of E2, this means that we have two E2-structures on Tpoly.Rn/,
the one coming from the Deligne conjecture and the one coming from the Pois2-
structure given by the wedge product and the Schouten-Nijenhuis bracket. One
proves that Tpoly.M/ has a unique homotopy class of E2-algebra structures by
checking that it is intrinsically formal (precisely, the Aff .Rn/-equivariant Pois2-
cohomology of Tpoly.Rn/ is trivial).

This “local” formality for affine spaces is then globalized to the case of a general
Poisson manifold by means of formal geometry [46, Section 7].

In the introduction of his celebrated work on deformation quantization of Poisson
manifolds [46], Kontsevich conjectured that a similar picture should underline
the deformation quantization of Lie bialgebras. Etingof-Kazhdan quantization (see
[11, 16, 17]) should be the consequence of a deeper formality theorem for the
deformation complex Def .Sym.V// of the symmetric bialgebra Sym.V/ on a vector
space V . This deformation complex should possess an E3-algebra structure whose
underlying L1-structure controls the deformations of Sym.V/, and should be formal
as an E3-algebra. Then this formality result should imply a one-to-one correspon-
dence between gauge classes of Lie bialgebra structures on V and gauge classes of
their quantizations. In [30], we solved this longstanding conjecture at a greater level
of generality than the original statement, and deduced a generalization of Etingof-
Kadhan’s deformation quantization theorem. Here we consider not a vector space,
but a Z-graded cochain complex V whose cohomology is of finite dimension in
each degree. By the results explained in Sect. 6.3, we know the existence of such
an E3-algebra structure (interestingly coming from the higher Hochschild complex
of Q̋ Sym.V/). It remains to prove the E3-formality of Def .Sym.V// by proving
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the homotopy equivalence between two E3-structures on the Gerstenhaber-Schack
cohomology of Sym.V/: the one transferred from Def .Sym.V//, and the canonical
one coming from the action of Pois3 (giving an E3-structure via the formality

E3
�! Pois3). Indeed, the cohomology of Def .Sym.V// (which is precisely the

Gerstenhaber-Schack complex of V) is explicitly computable, and given by

H�GS.Sym.V/; Sym.V// Š OSym.H�VŒ�1�˚ H�V_Œ�1�/

where OSym is the completed symmetric algebra and H�V_ is the dual of H�V as
a graded vector space. This symmetric algebra has a canonical 3-Poisson algebra
structure induced by the evaluation pairing between H�V and H�V_. In the spirit
of Tamarkin’s method, we have to use obstruction theoretic methods to show that
Def .Sym.V// is rigid as an E3-algebra. We thus get a generalization of Kontsevich’s
conjecture (originally formulated in the case where V is a vector space):

Theorem 6.10 (Kontsevich formality conjecture [30, Theorem 0.8]) The deforma-
tion complex of the symmetric bialgebra Sym.V/ on a Z-graded cochain complex
V whose cohomology is of finite dimension in each degree is formal over Q as an
E3-algebra.
We prove it by using in particular the relationship between Gerstenhaber-Schack
cohomology and E2-Hochschild cohomology and the higher HKR-theorem for the
latter [3]. We then obtain a new proof of Etingof-Kazhdan quantization theorem
from the underlying L1-formality given by our E3-formality. Indeed, this formality
induces an equivalence of the associated derived formal moduli problems, in
particular we have an equivalence of Maurer-Cartan moduli sets (suitably extended
over formal power series in one variable). On the right hand side, the Maurer-
Cartan moduli set is identified with equivalence classes of homotopy Lie bialgebra
structures on the cochain complex VŒŒ„��. On the right hand side, it is identified with
deformation quantization of these Lie bialgebras (formal deformations of Sym.V/
as a homotopy dg bialgebra). Moreover, what we get is actually a generalization of
Etingof-Kazhdan quantization to homotopy dg Lie bialgebras:

Corollary 6.11 ([30, Corollary 0.9]) The L1-formality underlying Theorem 5.9
induces a generalization of Etingof-Kazdhan deformation quantization theorem to
homotopy dg Lie bialgebras whose cohomology is of finite dimension in each degree.
In the case where V is a vector space, this gives a new proof of Etingof-Kazdhan’s
theorem.
This result encompasses the case of usual Lie bialgebras, because if V is concen-
trated in degree 0, then homotopy Lie bialgebra structures on V are exactly Lie
bialgebra structures on V .

Remark 6.12 Actually, what we prove in [30] is even stronger. We get a sequence of
E3-formality morphisms for the three variants of the Gerstenhaber-Shack complex
[30, Theorem 7.2], indicating that important variants of deformation quantization
like [15] should also follow from such E3-formality morphisms.



Moduli Spaces of (Bi)algebra Structures in Topology and Geometry 485

Acknowledgements The idea of writing such a survey originates in the inaugural 2-week program
at the mathematical research institute MATRIX in Australia called Higher Structures in Geometry
and Physics, which took place in June 2016. The author gave a talk at this program about moduli
spaces of algebraic structures and their application to the recent paper [30]. The present article is
somehow a (largely) extended version of his talk, which will be eventually part of a Proceedings
Volume devoted to this workshop. The author would like to thank the MATRIX institute for
supporting this program, the organizers of this programme for inviting him, and all the participants
for their interest and for the very enjoyable atmosphere during the 2 weeks spent there. Last but
not least, kangaroos are very much thanked for their natural awesomeness.

References

1. Anel, M.: Champs de modules des catégories linéaires et abéliennes, PhD thesis, Université
Toulouse III - Paul Sabatier (2006)

2. Blanc, D., Dwyer, W.G., Goerss, P.G.: The realization space of a˘ -algebra: a moduli problem
in algebraic topology. Topology 43, 857–892 (2004)

3. Calaque, D., Willwacher, T.: Triviality of the higher Formality Theorem. Proc. Am. Math. Soc.
143(12), 5181–5193 (2015)

4. Calaque, D., Pantev, T., Toen, B., Vaquié, M., Vezzosi, G.: Shifted Poisson structures and
deformation quantization, J. Topology 10, 483–484 (2017)

5. Campos, R., Merkulov, S., Willwacher, T.: The Frobenius properad is Koszul. Duke Math. J.
165(15), 2921–2989 (2016)

6. Chas, M., Sullivan, D.: Closed string operators in topology leading to Lie bialgebras and higher
string algebra. In: The Legacy of Niels Henrik Abel, pp. 771–784. Springer, Berlin (2004)

7. Chas, M., Sullivan, D.: String Topology (1999). Preprint. arXiv:math/9911159
8. Cieliebak, K., Latschev, J.: The role of string topology in symplectic field theory. In: New

Perspectives and Challenges in Symplectic Field Theory. CRM Proceedings of Lecture Notes,
vol. 49, pp. 113–146. American Mathematical Society, Providence, RI (2009)

9. Cieliebak, K., Fukaya, K., Latschev, J.: Homological algebra related to surfaces with boundary
(2015). Preprint. arXiv:1508.02741

10. Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathe-
maticians, vols. 1, 2, Berkeley, CA, 1986, pp. 798–820. American Mathematical Society,
Providence, RI (1987)

11. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected
with Gal.Q=Q. Algebra i Analiz 2, 149–181 (1990). English translation in Leningrad Math. J.
2 (1991), 829–860

12. Dwyer, W.G., Kan, D.: Function complexes in homotopical algebra. Topology 19, 427–440
(1980)

13. Dwyer, W.G., Kan, D.: A classification theorem for diagrams of simplicial sets. Topology 23,
139–155 (1984)

14. Enriquez, B., Etingof, P.: On the invertibility of quantization functors. J. Algebra 289(2), 321–
345 (2005)

15. Enriquez, B., Halbout, G.: Quantization of quasi-Lie bialgebras. J. Am. Math. Soc. 23, 611–
653 (2010)

16. Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras I. Sel. Math. (N. S.) 2(1), 1–41 (1996)
17. Etingof, P., Kazdhan, D.: Quantization of Lie bialgebras. II, III. Sel. Math. (N.S.) 4(2), 213–

231, 233–269 (1998)
18. Félix, Y., Thomas, J.-C.: Rational BV-algebra in string topology. Bull. Soc. Math. France 136,

311–327 (2008)



486 S. Yalin

19. Fjelstad, J., Fuchs, J., Runkel, I., Schweigert, C.: Topological and conformal field theory as
Frobenius algebras. In: Categories in Algebra, Geometry and Mathematical Physics. Contem-
porary Mathematics, vol. 431, pp. 225–247. American Mathematical Society, Providence, RI
(2007)

20. Francis, J., Gaitsgory, D.: Chiral Koszul duality. Sel. Math. New Ser. 18, 27–87 (2012)
21. Francis, J.: The tangent complex and Hochschild cohomology of En-rings. Compos. Math.

149(3), 430–480 (2013)
22. Fresse, B.: Modules Over Operads and Functors. Lecture Notes in Mathematics 1967. Springer,

Berlin (2009)
23. Fresse, B.: Props in model categories and homotopy invariance of structures. Georgian Math.

J. 17, 79–160 (2010)
24. Fresse, B.: Homotopy of operads and Grothendieck-Teichmuller groups I and II. Math-

ematical Surveys and Monographs (to appear). AMS. http://math.univ-lille1.fr/~fresse/
OperadHomotopyBook/

25. Fresse, B., Willwacher, T.: The intrinsic formality of En-operads (2015). Preprint.
arXiv:1503.08699

26. Galvez-Carillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky algebras. J. Noncom-
mut. Geom. 6, 539–602 (2012)

27. Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups, and algebraic defor-
mations. In: Deformation Theory and Quantum Groups with Applications to Mathematical
Physics (Amherst, MA, 1990). Contemporary Mathematics, vol. 134, pp. 51–92. American
Mathematical Society, Providence, RI (1992)

28. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop
spaces (1994). Preprint. arXiv:hep-th/9403055

29. Ginot, G., Halbout, G.: A formality theorem for poisson manifolds. Lett. Math. Phys. 66, 37–64
(2003)

30. Ginot, G., Yalin, S.: Deformation theory of bialgebras, higher Hochschild cohomology and
formality (2016). Preprint. arXiv:1606.01504

31. Ginot, G., Tradler, T., Zeinalian, M.: Higher hochschild homology, topological chiral homol-
ogy and factorization algebras. Commun. Math. Phys. 326(3), 635–686 (2014)

32. Ginot, G., Tradler, T., Zeinalian, M.: Higher Hochschild cohomology of E-infinity algebras,
Brane topology and centralizers of E-n algebra maps (2014). Preprint. arXiv:1205.7056

33. Goerss, P.G., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured Ring
Spectra. London Mathematical Society Lecture Note Series, vol. 315, pp. 151–200. Cambridge
University Press, Cambridge (2004)

34. Goldman, W.M.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54,
200–225 (1984)

35. Goldman, W.M.: Invariant functions on Lie groups and Hamiltonian flows of surface group
representations. Invent. Math. 85(2), 263–302 (1986)

36. Goldman, W.M., Millson, J.: The deformation theory of representations of fundamental groups
of compact Kähler manifolds. Publ. Math. IHES 67, 43–96 (1988)

37. Hennion, B.: Tangent Lie algebra of derived Artin stacks, to appear in J. für die reine und
angewandte Math., published online (2015). DOI 10.1515/crelle-2015-0065

38. Hinich, V.: DG coalgebras as formal stacks. J. Pure Appl. Algebra 162, 209–250 (2001)
39. Hinich, V.: Tamarkin’s proof of Kontsevich formality theorem. Forum Math. 15, 591–614

(2003)
40. Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and

Monographs, vol. 99. American Mathematical Society, Providence, RI (2003)
41. Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American

Mathematical Society, Providence, RI (1999)
42. Kapustin, A.: Topological field theory, higher categories, and their applications. In: Proceed-

ings of the International Congress of Mathematicians, vol. III, pp. 2021–2043. Hindustan Book
Agency, New Delhi (2010)

http://math.univ-lille1.fr/~fresse/OperadHomotopyBook/
http://math.univ-lille1.fr/~fresse/OperadHomotopyBook/
http://dx.doi.org/10.1515/crelle-2015-0065


Moduli Spaces of (Bi)algebra Structures in Topology and Geometry 487

43. Keller, B., Lowen, W.: On Hochschild cohomology and Morita deformations. Int. Math. Res.
Not. IMRN 2009(17), 3221–3235 (2009)

44. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. London Mathe-
matical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2003)

45. Kontsevich, M.: Operads and motives in deformation quantization, Moshé Flato (1937–1998).
Lett. Math. Phys. 48(1), 35–72 (1999)

46. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–
216 (2003)

47. Lambrechts, P., Volic, I.: Formality of the little N-disks operad. Mem. Am. Math. Soc. vol.
230, no. 1079. American Mathematical Society, Providence, RI (2014)

48. Lauda, A.D., Pfeiffer, H.: Open-closed strings: two-dimensional extended TQFTs and Frobe-
nius algebras. Topol. Appl. 155, 623–666 (2008)

49. Loday, J-L., Vallette, B.: Algebraic Operads. Grundlehren der mathematischen Wis-
senschaften, vol. 346. Springer, Berlin (2012)

50. Lurie, J.: Derived Algebraic Geometry X (2011). http://www.math.harvard.edu/~lurie/
51. Lurie, J.: Higher Algebra (2017). http://www.math.harvard.edu/~lurie/
52. MacLane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965)
53. Mandell, M.A.: Cochains and homotopy type. Publ. Math. IHES 103, 213–246 (2006)
54. Markl, M.: Intrinsic brackets and the L-infinity deformation theory of bialgebras. J. Homotopy

Relat. Struct. 5(1), 177–212 (2010)
55. May, J.P.: The Geometry of Iterated Loop Spaces. Springer, Berlin (1972)
56. Merkulov, S.: Prop profile of Poisson geometry. Commun. Math. Phys. 262, 117–135 (2006)
57. Merkulov, S.: Formality theorem for quantization of Lie bialgebras. Lett. Math. Phys. 106(2),

169–195 (2016)
58. Merkulov, S., Vallette, B.: Deformation theory of representation of prop(erad)s I. J. für die

reine und angewandte Math. (Crelles Journal) 634, 51–106 (2009)
59. Merkulov, S., Vallette, B.: Deformation theory of representation of prop(erad)s II. J. für die

reine und angewandte Math. (Crelles Journal) 636, 125–174 (2009)
60. Pantev, T., Toen, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Inst. Hautes Études

Sci. Publ. Math. 117, 271–328 (2013)
61. Preygel, A.: Thom-Sebastiani and Duality for Matrix Factorizations, and Results on the Higher

Structures of the Hochschild Invariants. Thesis (Ph.D.), M.I.T. (2012)
62. Pridham, J.P.: Unifying derived deformation theories. Adv. Math. 224, 772–826 (2010)
63. Pridham, J.P.: Presenting higher stacks as simplicial schemes. Adv. Math. 238, 184–245 (2013)
64. Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum

groups. Invent. Math. 103(3), 547–597 (1991)
65. Rezk, C.W.: Spaces of algebra structures and cohomology of operads, Thesis, MIT (1996)
66. Shoikhet, B.: Tetramodules over a bialgebra form a 2-fold monoidal category. Appl. Categ.

Struct. 21(3), 291–309 (2013)
67. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective

variety. Publ. Math. IHES 80, 5–79 (1994)
68. Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47,

269–331 (1977)
69. Tamarkin, D.: Another proof of M. Kontsevich formality theorem (1998). Preprint.

arXiv:math/9803025
70. Tamarkin, D.: Formality of chain operad of little discs. Lett. Math. Phys. 66, 65–72 (2003)
71. Tamarkin, D.: Deformation complex of a d-algebra is a (d+1)-algebra (2000). Preprint.

arXiv:math/0010072
72. Toën, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153–240 (2014)
73. Toën, B.: Derived Algebraic Geometry and Deformation Quantization. ICM Lecture (2014).

arXiv:1403.6995v4
74. Toën, B., Vezzosi, G.: Homotopical algebraic geometry II. Geometric stacks and applications.

Mem. Am. Math. Soc. 193(902), x+224 (2008)

http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/


488 S. Yalin

75. Turaev, V.G.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. École
Norm. Sup. 24(6), 635–704 (1991)

76. Vallette, B.: A Koszul duality for props. Trans. Am. Math. Soc. 359, 4865–4943 (2007)
77. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–

399 (1989)
78. Yalin, S.: Classifying spaces of algebras over a prop. Algebr. Geom. Topol. 14(5), 2561–2593

(2014)
79. Yalin, S.: Simplicial localization of homotopy algebras over a prop. Math. Proc. Cambridge

Philos. Soc. 157(3), 457–468 (2014)
80. Yalin, S.: Maurer-Cartan spaces of filtered L

1

algebras. J. Homotopy Relat. Struct. 11, 375–
407 (2016)

81. Yalin, S.: Moduli stacks of algebraic structures and deformation theory. J. Noncommut. Geom.
10, 579–661 (2016)

82. Yalin, S.: Function spaces and classifying spaces of algebras over a prop. Algebr. Geom.
Topology 16, 2715–2749 (2016)

83. Yalin, S.: Realization spaces of algebraic structures on chains. Int. Math. Res. Not. 2018, 236–
291 (2018)



Embedding Calculus and the Little Discs
Operads

Victor Turchin

Abstract This note describes recent development in the study of embedding spaces
from the manifold calculus viewpoint. An important progress that has been done was
the discovery and application of the connection to the theory of operads. This allows
one to describe embedding spaces as certain derived operadic module maps and to
produce their explicit deloopings.

1 Manifold Functor Calculus, Little Discs Operads,
Embedding Spaces

Manifold calculus appeared as a tool to study spaces of embeddings between
manifolds [12, 26]. This is also a very nice application of the operad theory. The
main operad that appears is the little disks operad. The calculus itself was invented
by Goodwillie and Weiss.

Assume that we have a smooth manifold M. We can consider the category
O.M/ of open subsets of M, and then we can look at the functors O.M/ !
Top in both the covariant and the contravariant case. The functors are supposed
to be isotopy invariant, so that the functor should send isotopy equivalences to
homotopy equivalences. The functor calculus provides a sequence of polynomial
approximations. In the covariant case, we have a tower T0F ! T1F ! T2F ! � � � ,
all of which come with a map to F. The TkF is the kth polynomial approxi-
mation. For the contravariant case all the arrows go in the opposite direction,
T0F  T1F � � � .

There is a version of this calculus which is so-called “context-free.” Consider
the category Manm of all smooth manifolds of dimension m. The morphisms are
codimension 0 embeddings. Then we similarly study functors Manm ! Top.
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Definition 1 A covariant functor F W Mann ! Top is polynomial of degree k if
for any manifold M and for any collection of closed and pairwise disjoint subsets
A0; : : : ;Ak, the cubical diagram assigning to S � f0 : : : kg the space

S 7! F.M n
[

i2S
Ai/;

is homotopy cocartesian.
As example, in case k D 2 we get the cube

One of the main properties of being polynomial is that one can build the value of
the functor on M out of its value on smaller pieces.

Here are a few examples. The functor M 7! M	k is polynomial of degree k. If
you take the functor M 7! M	2, this is not linear. Indeed, for the diagram

the colimit will be .MnA0/2 [ .MnA1/2, but this is not M2. But if you do this in the
three dimensional cube, then M2 D .MnA0/2 [ .MnA1/2 [ .MnA2/2, which shows
that the functor is indeed quadratic.

For the functor F.M/ D M	k we can actually describe explicitly the kth polyno-
mial approximation. In this case TiF.M/ D f.x1; : : : ; xk/ 2 M	kj#fx1; : : : ; xkg � ig,
where # denotes the cardinal of a set. So this functor is not homogeneous.

As another example, can take M 7! M	k=˙k, this is polynomial of degree k.
Or

�M
k

�
, the unlabeled configuration spaces of k points, this is also polynomial of

degree k. Or you could take the spherical tangent bundle of M, or M 7! M 	 A,
these functors are linear.

For the contravariant functors the definition is dual: similar cubes must be
homotopy cartesian instead of cocartesian. Linear examples would be M 7!
Maps.M;A/ or M 7! � .p/ where p is a functorial bundle EM ! M. So the first
example is a trivial example of the second.

Another example would be immersions of M in some larger dimension space N,
because this is equivalent to sections of a certain fiber bundle, formal immersions,
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� .p;M/. Here to any manifold M we assign a fibration pWEM ! M, where EM is
the space of triples

.m; n; ˛ W TmM! TnN/

with ˛ a monomorphism. Smale proved his famous immersion theorem, that
Imm.S2;R3/ is connected, which follows from seeing the sphere as the union of
disks and then seeing that the obtained square is homotopy cartesian.

As another example of a degree k functor, one has M 7! Maps.M	k;A/ (we
could also ask for ˙k-equivariance if A is acted on by ˙k).

The good news is that there is a theorem by Goodwillie and Klein saying that the
map Emb.M;N/! Tk Emb.M;N/ is .1 � mC k.n �m � 2//-connected, provided
n � m > 2 [11]. In other words, the Taylor tower becomes closer and closer to the
initial space of embeddings.

Now let us recall the operadic interpretation appearing in the context free
setting [2, 23]. Consider the full subcategory Disc�k � Manm of manifolds with
objects disjoint unions of up to k disks. Then according to Weiss, the kth Taylor
approximation is described as follows

TkF.M/ D holim
Disc
�k#M

F:

In other words, it is the homotopy right Kan extension

The category Manm is monoidal and enriched in topological spaces. Thus one
can consider the topological operad End.Dm/ of endomorphisms of Dm. Its kth
component is the space of embeddings of a disjoint union of k disks into a disk.
In the little disks operad, the embeddings should be just translation and scaling.
Here we allow all transformations. One can easily see that this operad is equivalent
to the framed discs operad B fr

m .k/.

Theorem 1 (Boavida de Brito–Weiss [2], T. [23])

TkF.M/ D hRmod�kEnd.Dm/.Emb.�;M/;F.�//

So if a functor is contravariant, the sequence fF.1/;F.X/;F.X˝2/;F.X˝3/; : : :g
becomes a right module over End.X/, that abusing notation we denote by F.�/.
As a particular example, Emb.�;M/ is also a right module. In the above formula
we look at the space of derived maps of truncated up to arity k right modules. For
k D 1 we get a formula similar to factorization homology.
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Just as a remark, if we look at the initial definition, one gets [23]

holim
Disc
�k#M

F Š hRmod�k
End.Dm/ı

.Emb.�;M/ı;F.�//;

where ı means “with the discrete topology”. Thus Theorem 1 was to understand the
continuous version of the same result.

One can also consider functors from manifolds to chain complexes. In this case
one also gets the enriched version:

Theorem 2 (Boavida de Brito–Weiss [2])

TkF.M/ D hRmod�k
C
�

Bfr
m
.C�.Emb.�;M//;F.�//:

An interesting space of embeddings is the space Emb.Sm; Sn/, and assuming n�m �
2 this has the same�0 as Emb@.Dm;Dn/. So it would be interesting to study the space
of embeddings of disks and the calculus of the closed disk in general.

The functor calculus in the closed case works similarly, we should just change
the category Disc to eDisc, whose objects are disjoint unions of discs and one anti-
disc Sm�1 	 Œ0; 1/. Using this idea together with Arone, we showed that the Taylor
tower on a closed disc can be expressed in terms of maps of truncated infinitesimal
bimodules. Notice that here we use the usual (non-framed) operad of little discs.
Informally speaking we can do so because the disc is parallelizable.

Theorem 3 (Arone–T. [1])

TkF.D
m/ Š hInfBim�kBm

.Bm;F.�//:

So what are infinitesimal bimodules over an operad? We have so-called infinitesimal
left action. The structure is Abelian, you can only insert in one input. The right
action is just usual, since the right action is also unital, we can insert only in one of
the inputs. For more details, see [1].

Given a functor F on the category eDisc, we get an infinitesimal bimodule F.�/
whose kth component is F

��
Sm�1 	 Œ0; 1/� tQk D

m
�
. The left action comes from

the embeddings of discs in the collar component Sm�1 	 Œ0; 1/. Now the inclusion
of operads Bm ! Bn induces an infinitesimal Bm-bimodule structure on the target.

As a corollary, we get the following.

Corollary 1 (Arone–T. [1])

TkEmb@.Dm;Dn/ Š hInfBim�kBm
.Bm;Bn/:

Here Emb@ is the homotopy fiber of Emb@.Dm;Dn/ ! Imm@.Dm;Dn/ Š
˝mVm.R

n/.
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The right-hand side of the equation above is the derived mapping space between
Bm and Bn in the category of infinitesimal bimodules over Bm. Now the question
is, what about the derived mapping space between these objects in the category of
operads? We can also look at the truncated case, where we look at the category of
truncated operads with no more than k inputs. We can study this algebraic structure.

Theorem 4 (Dwyer–Hess [7], Boavida de Brito–Weiss [3], Ducoulombier–T. [5])

TkEmb@.Dm;Dn/ Š ˝mC1 hOper�k.Bm;Bn/

The second talk/section is devoted to different proofs of this result. One should
mention that only the second one (by Boavida de Brito and Weiss) appeared already
as a preprint.

For Dwyer–Hess, they proved it first for m D 1 [6]. They don’t consider the
case of truncation, i.e. they only look at the case k D 1. Boavida and Weiss
understand the truncated case, and we (Ducoulombier and I) also do the truncated
case. However, our approaches are very different. They don’t use our theorem from
above, but Dwyer–Hess and Ducoulombier and I, we do use it. This really becomes
a theory of operads, not calculus.

The rational homology and homotopy groups can be computed for the embedding
spaces. The main reason that things work nicely is the relative formality of the little
disks operad.

Theorem 5 (Tamarkin [22], Kontsevich [15], Lambrecht–Volić [16], T.–
Willwacher [25], Fresse–Willwacher [9]) The map of operads C�Bm ! C�Bn of
singular chains is rationally formal if and only if n �m ¤ 1.
So what does the statement mean? The claim is that we can find a zigzag of
equivalences of maps of operads from the morphism C�Bm ! C�Bn to the induced
map H�Bm ! H�Bn. An equivalence is a commutative square, which in every
degree for both source and target, induces an isomorphism on homology.

What is the homology of the little disks operad? This is a theorem of Fred Cohen,
it’s either the associative operad whenm D 1 or it’s the Poisson operad (with bracket
of degree m � 1) for m � 2. What is Bm.2/? It’s a configuration space of two
disks and is homotopy equivalent to an .m� 1/-sphere. The degree 0 class gives the
product and the degree m� 1 class gives the bracket of the Poisson structure, which
disappears when you map to Bn.2/ Š Sn�1, n > m.

The formality theorem together with the operadic approach to the manifold
calculus outlined above allows one to compute the rational homology and homotopy
groups of embedding spaces. Recall the categories Fin of finite sets and Fin� of
pointed finite sets. It is easy to see that a contravariant functor from Fin is the same
thing as the right module over the commutative operad Com; and a contravariant
functor from Fin� is the same thing as an infinitesimal bimodule over Com. Thus in
particular for n � 2, H�Bn is a right and infinitesimal bimodule over H0Bn D Com
and can be viewed as both Fin and Fin� module.
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Given a topological space (respectively, pointed space) X and a cofunctor
L from Fin (respectively Fin�) to chain complexes, Pirashvili defines the
higher order Hochschild homology HHX.L/ [18]. In the operadic language
HHX.L/ D H.hRmodCom.C�.X	�/;L// (respectively HHX.L/ D H.hInfBimCom

.C�.X	�/;L//). For a smooth m-manifold M let Emb.M;Rn/ denote similarly the
homotopy fiber of Emb.M;Rn/ ,! Imm.M;Rn/.

Theorem 6 (Arone-T. [1]) Let n � 2m C 2 and let M be a smooth m-manifold.
Then

H�.Emb.M;Rn/;Q/ ' HHM.H�Bn/;

(this is the non-pointed version of higher Hochschild homology);

H�.Emb@.D
m;Dn/;Q/ D HHSm.H�Bn/

(here and below is the pointed version) and

��.Emb@.Dm;Dn//˝Q D HHSm.��Bn ˝Q/:

Together with G. Arone we describe HHSm.��Bn˝Q/ as the homology of a graph-
complex obtained as the invariant space of the modular closure of the L1 operad.

In the recent work of Fresse–T.–Willwacher [10] using the delooping result
Theorem 4, we improve the last statement of the theorem above to the range
n � m > 2, i.e. the whole range in which the manifold calculus works. Another
crucial point that we use is the strong Hopf statement of the relative little discs
formality: the map of operads C�Bm ! C�Bn is formal in the category of Hopf
operads—operads in coalgebras (over Q). In particular, in our graph-complex we
can see a cycle which corresponds to the Haefliger trefoil [13, 14] appearing when
m D 4k�1, n D 6k. This knot is the only one in codimension> 2, which is trivial as
immersion and has infinite order. So it’s known that �0.Emb.Sm; Sn// is an Abelian
group for n �m > 2 of rank at most one. This is a generator which is not torsion.

The result that we obtained in [10] is in fact deeper than mere computations of
the rational homotopy groups. We showed the theorem

Theorem 7 (Fresse–T.–Willwacher [10]) For n � m � 3 (respectively n � m �
2), hOper.Bm;Bn/ (respectively hOper�k.Bm;Bn/) is n�m� 1-connected and its
rational homotopy type is described by the L1 algebra of homotopy biderivations
of the map H�.Bm/! H�.Bn/ (respectively, truncated to � k).
Essentially all the rational information is encoded by this homology map H�Bm !
H�Bn of Hopf operads. These are maps of (truncated) Hopf operads, so we need
cofibrant and fibrant replacements for these guys. Hopf cofibrant essentially means
cofibrant in chain complexes; Hopf fibrant means all components of the operad are
fibrant coalgebras. Then we look at maps which are derivations of both structures:
operadic composition and levelwise for the coalgebra structure. At the limit when
k!1, we need codimension three. The problem is that the maps between stages in
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the tower don’t become higher and higher connected when codimension is 2, but the
projective limit of groups doesn’t commute with tensoring with rational numbers.

2 Delooping Results

The goal of this section/talk is to give insight into different proofs of Theorem 4. Let
me reiterate that only the proof of Boavida de Brito–Weiss [3] already appeared.1

Their approach will be explained at the very end. Both Dwyer-Hess [7] and
Ducoulombier-T. [5] use Corollary 1 in their proof. In fact we prove a purely
operadic statement Theorem 9 below, which together with Corollary 1 implies
Theorem 4.

Before going any further let us consider the special case m D 1, for which
the result described by Corollary 1 is really due to Dev Sinha [21]. Indeed, B1 is
naturally equivalent to the associative operad Ass. In fact, Bn is equivalent to a
certain operad Kn, called Kontsevich operad,2 and we have a zigzag of equivalences
of operad maps

An infinitesimal bimodule over Ass is a cosimplicial object, and hInfBimAss.Ass;
Kn/ D hTotKn.�/. Thus we recover Sinha’s theorem:

TkEmb@.D1;Dn/ Š hTotk Kn.�/; k � 1:

For m D 1, Theorem 4 was first proved by Dwyer and Hess [6] and then I gave a
different proof [24]. It was obtained as a combination of Sinha’s theorem and the
following result. Given a map of operads Ass ! O, the sequence O.�/ becomes a
cosimplicial object.3 Moreover, provided O.0/ Š O.1/ Š 
,

hTotO.�/ Š ˝2 hOper.Ass;O/: (1)

All this business is actually related to Deligne’s Hochschild cohomology conjecture
(now theorem), that on the Hochschild complex of an associative algebra one gets
an action of the operad of chains on little squares. Afterward, McClure and Smith
generalized this to the topological setting showing that for any multiplicative operad

1By the time of the latest revision, the proof of Ducoulombier and Turchin appeared in [5].
2This operad was invented by D. Sinha.
3In this case O is called a multiplicative operad.
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O, the space hTotO.�/ admits an explicit B2-action [17]. The result (1) is an explicit
delooping (conjecturally to this action).

Let me give a brief sketch of ideas of Dwyer and Hess’ proof for the case m D 1.
They prove a theorem

Theorem 8 (Dwyer–Hess [6]) Let M1 ! M2 be a morphism of monoids in a
monoidal model category with unit 1 and satisfying natural axioms. (Thus M2 gets
an induced structure of an M1-bimodule.) Then, provided the mapping space from 1
to M2 is contractible, we get an equivalence of spaces

hBimM1 .M1;M2/ Š ˝ hMon.M1;M2/:

The two spaces above are derived mapping spaces respectively of bimodules and
monoids.

So how does this help to prove (1)? We can consider a map of operads P ! Q.
Operads are monoids in the category of symmetric sequences with respect to the
ı product. (Dwyer and Hess considered non-symmetric operads, then we have just
sequences of spaces.) So Q becomes a bimodule over P, and then hBimP.P;Q/ Š
˝ hOper.P;Q/, provided Q.1/ Š 
.4 We take P D Ass, and we obtain that

hBimAss.Ass;O/ Š ˝ hOper.Ass;O/: (2)

Now we need a second delooping, which is the following statement:

hTotO.�/ Š ˝ hBimAss.Ass;O/ (3)

provided that O.0/ Š 
. This delooping takes place always when O is an Ass-
bimodule endowed with a map Ass! O. To prove this delooping from Theorem 8,
we consider the following monoidal model category: right modules over Ass with
tensor product .P�Q/.n/ DFiCjDn P.i/	Q. j/. Then monoids with respect to this
structure are Ass-bimodules, and bimodules over the monoid Ass in this category
are cosimplicial objects.

My proof of the case m D 1 also proceeds in the same two steps (2), (3) by
providing explicit cofibrant replacement for Ass, see [24].

Now for high dimensions.

Theorem 9 (Dwyer–Hess [7], Ducoulombier–T. [5])

1. If Bm ! O is an operad map and O.0/ Š O.1/ Š 
, then

hInfBim�kBm
.Bm;O/ Š ˝mC1 hOper�k.Bm;O/:

4This statement is also true in the setting of coloured operads [20].



Embedding Calculus and the Little Discs Operads 497

2. If Bm ! M is a Bm-bimodule map and M.0/ Š 
, then

hInfBim�kBm
.Bm;M/ Š ˝m hBim�kBm

.Bm;O/:

So the second one implies the first one by the Dwyer-Hess-Robertson theorem. This
has more implications than to the study of embeddings. Let me give some motivation
for this result and then the ideas of the proofs.

We can consider any space of maps MapsS@.D
m;Dn/, where these maps avoid

certain multisingularity S, for example triple intersections or something like that.
For these spaces, it’s a difficult question whether the Goodwillie tower converges.
Still we can apply the theorem, and get the delooping of the corresponding Taylor
towers.

Consider the sequence fMapsS.tkDm;Dn/; k � 0g. This is a Bm-bimodule
under Bm. Therefore the tower T� for the corresponding space MapsS@.D

m;Dn/ can
also be delooped in this way. As a more concrete example, one could look at
Imm.`/

@ .D
m;Dn/—the space of immersions which avoid `-self intersections. One has

an obvious inclusion Imm.`/

@ .D
m;Dn/ ,! Imm@.Dm;Dn/. We denote its homotopy

fiber space by Imm
.`/

@ .D
m;Dn/. Let B.`/n .k/ be the space of collections of k labeled

open disks which can overlap but no ` of them have a common point. The collection

B.`/n .�/ is a bimodule over Bn. Then the tower T� of the space Imm
.`/

@ .D
m;Dn/ is

described as follows

TkImm
.`/

@ .D
m;Dn/ Š hInfBim�kBm

.Bm;B
.`/
n / Š ˝m hBim�kBm

.Bm;B
.`/
n /:

Note that in these examples the spaces MapsS@.D
m;Dn/, Imm.`/

@ .D
m;Dm/,

Imm
.`/

@ .D
m;Dn/ are naturally acted on by Bm. We conjecture that this action is

compatible with the delooping of their towers. One should also mention that for
embedding spaces Emb fr

@ .D
m;Dn/, Emb@.Dm;Dn/ we have not just an action of Bm

but also of BmC1. Where does this come from? Morally speaking, it comes from the
fact that we can make knots small and pull ones through the others. This action was
rigorously defined by Budney [4].

The approach of Dwyer–Hess to this theorem, they are using the fact that
Bm Š Ass˝ � � � ˝ Ass„ ƒ‚ …

m

, the Boardman–Vogt tensor product [8]. They use this

decomposition and apply iteratively Theorem 8. How exactly it works I don’t know.
It is probably technical, that’s why they are slow in writing it down.

Our approach is more direct, and the proof is very similar to my proof of the
second delooping (3) in the case m D 1, with an explicit cofibrant replacement. For
any operad P (doubly reduced P.0/ Š P.1/ Š 
), and any P-bimodule map
P! M, we construct a natural map

Maps�.˙P.2/; hBimP.P;M//! hInfBimP.P;M/
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and we write down when this is an equivalence. Then we check that for the little
disks this condition is satisfied.

Our approach works for the truncated case as well. In Dwyer–Hess, it is more
difficult. One has to look at the tensor product of truncated operads and then it is not
clear how well it works.

Now let us discuss the approach of Boavida de Brito and Weiss. How do they
prove that Emb.Dm;Dn/ Š ˝mC1 hOper.Bm;Bn/.

Their result is weaker and stronger. Their approach can not be applied to other
spaces like non-.`/-equal immersions or spaces avoiding a given multisingularity,
but it’s stronger because their deloopings respect the action of the little disks. We
have Emb@.Dm;Dn/, which is mapped to˝mVm.R

n/, the m-loop space on the Stiefel
manifold Vm.R

n/. By the Smale-Hirsch principle, Imm@.Dm;Dn/ Š ˝mVm.R
n/,

which is also equivalent to the linear approximation T1 Emb@.Dm;Dn/. Thus we
have a map Tk Emb@.Dm;Dn/! ˝mVm.R

n/. There is also a natural map Vm.R
n/!

hOper.Bm;Bn/. The theorem of Boavida de Brito and Weiss is:

Theorem 10 The sequence

Tk Emb@.Dm;Dn/! ˝mVm.R
n/! ˝m hOper�k.Bm;Bn/

is a fiber sequence.
In particular for n � m > 2, they get

Emb@.D
m;Dn/ Š ˝m hofib.Vm.R

n/! hOper.Bm;Bn//: (4)

Theorem 4 is an obvious consequence of the theorem above, when we take the
homotopy fiber of the first map, we get ˝mC1, as stated. Notice that in the fiber
sequence

Emb@.Dm;Dn/! ˝mVm.R
n/! ˝m hOper.Bm;Bn/;

both maps respect the Bm-action. Therefore, the delooping (4) is compatible with
the Bm-action.5

To give an idea of the techniques that Boavida de Brito-Weiss are using, the
crucial things are configuration categories. They don’t need M to be smooth, and
they define Con.M/, as a topological category. The objects of the category are the
disjoint union of embeddings of k labeled points to M, Emb.k;M/. If x 2 Emb.k;M/
and y 2 Emb.`;M/, then Mor.x; y/ D f. j; ˛/g where j W k ! ` and ˛ is a reverse
exit path from x to y ı j, meaning if points collided at some point of a path, they
remain collided until the end. One has a natural functor from Con.M/ ! Fin that
remembers only the set of points. Now the theorem is the following.

5There is still a question why the delooping Emb@.Dm;Dn/Š ˝mC1 hOper.Bm;Bn/ is compatible
with Budney’s BmC1-action. (Obviously it is compatible when restricted on Bm.)
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Theorem 11 If n � m � 3, there is a homotopy Cartesian square

where � is the space of sections of E! M where E D f.m; n; ˛/g where m is in M,
n is in N, and ˛ is in hMapFin.Con.TmM/;Con.TnN//, which you’ll see in a second
is equivalent to hOper.Bm;Bn/.
So what do they consider? They take the nerve of the category Con.M/, this is
a simplicial space, and the nerve of Fin. Then we need to consider the Rezk
model category structure on simplicial spaces [19], a.k.a. homotopy theory of
homotopy theories. The fibrant objects are complete Segal spaces. They work in
the overcategory, the space of maps in this model category of objects over N� Fin.
There are two important statements.

Proposition 1 When we apply the above construction to embeddings of discs
Emb@.Dm;Dn/, we get the space hMapFin

�

.Con@.Dm/;Con@.Dn// which is con-
tractible.6

Notice that the map Emb@.Dm;Dn/ ! hMapFin
�

.Con@.Dm/;Con@.Dn// factors
through the space of topological embeddings, which is contractible by the Alexander
trick. The statement of the proposition above is a “calculus version” of this trick.

Proposition 2 One has hMapFin.Con.Rm/;Con.Rn// Š hOper.Bm;Bn/.
The nerve N� Con.Rm/ of the configuration category over N� Fin is equivalent
to a certain simplicial space CBm constructed from the operad Bm. If we have a
sequence of maps of sets, we can assign to this a level tree. So once we have an
operad O, we can construct a simplicial space CO over N� Fin. That’s essentially
the idea of this construction that simplicial spaces over N� Fin are some kind of
leveled dendroidal spaces and thus are equivalent to operads. In particular they
show that for any pair of operads O1, O2 with O1.0/ Š O2.0/ Š 
, one gets
hMapFin.CO1 ;CO2 / Š hOper.O1;O2/.

Acknowledgements The author/speaker is grateful to Gabriel C. Drummond-Cole for his amaz-
ing ability of simultaneous tex-typing during the lectures. The final version of this note is a
slight improvement of his. The author/speaker is also grateful to P. Hackney and M. Robertson
for organizing the conference and the MATRIX institute for providing support and base for this
conference.

6The construction is slightly different in the case when we have boundary, that’s why instead of
Fin we get pointed sets Fin

�

, the base point corresponding to the points escaping to the boundary.
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16. Lambrechts, P., Volić, I.: Formality of the little N-disks operad. Mem. Am. Math. Soc.

230(1079), viii+116 (2014)
17. McClure, J.E., Smith, J.H.: Cosimplicial objects and little n-cubes. I. Am. J. Math. 126(5),

1109–1153 (2004)
18. Pirashvili, T.: Hodge decomposition for higher order Hochschild homology. Ann. Sci. Ecole

Norm. Sup (4) 33(2), 151–179 (2000)
19. Rezk, C.: A model for the homotopy theory of homotopy theory. Trans. Am. Math. Soc. 353(3),

973–1007 (2001)
20. Robertson, M.: Spaces of Operad Structures. Preprint. arXiv:1111.3904
21. Sinha, D.: Operads and knot spaces. J. Am. Math. Soc. 19(2), 461–486 (2006)
22. Tamarkin, D.E.: Formality of chain operad of little discs. Lett. Math. Phys. 66(1–2), 65–72

(2003)
23. Turchin, V.: Context-free manifold calculus and the Fulton-MacPherson operad. Algebr. Geom.

Topol. 13(3), 1243–1271 (2013)
24. Turchin, V.: Delooping totalization of a multiplicative operad. J. Homotopy Relat. Struct. 9(2),

349–418 (2014)
25. Turchin V., Willwacher, T.: Relative (non-)formality of the little cubes operads and the

algebraic Cerf lemma. To appear in Amer. J. Math. (2018)
26. Weiss, M.: Embeddings from the point of view of immersion theory. I. Geom. Topol. 3, 67–101

(1999)
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Automorphisms of Trees: Subgroups
and Dynamics

Adrien Le Boudec
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Abstract These are notes of a lecture series delivered during the program Winter
of Disconnectedness in Newcastle, Australia, 2016. The exposition is on several
families of groups acting on trees by automorphisms or almost automorphisms,
such as Neretin’s groups, Thompson’s groups, and groups acting on trees with
almost prescribed local action. These include countable discrete groups as well as
locally compact groups. The focus is on the study of certain subgroups, e.g. finite
covolume subgroups, or subgroups satisfying certain normality conditions, such as
commensurated subgroups or uniformly recurrent subgroups.

1 Introduction

The main Gaa theme on which these notes are based is the study of certain discrete
and locally compact groups defined in terms of an action on a tree by automorphisms
or almost automorphisms. Notorious examples of groups under consideration here
include the finitely generated groups introduced by R. Thompson, as well as
Neretin’s groups.

This text is supposed to be accessible to people not familiar with the topic,
and is organized as follows: Sect. 2 introduces basic results about groups acting on
trees, and sketches the proof of Tits’ simplicity theorem for groups satisfying Tits’
independence property. In Sect. 3 we define the notion of almost automorphisms of
trees and draw a brief survey about these groups. Section 4 concerns a family of
groups acting on trees defined by prescribing the local action almost everywhere.
It is shown that this construction provides locally compact groups with somehow
unusual properties. Finally the focus in Sect. 5 is on the study of uniformly recurrent
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subgroups of countable groups having a so called micro-supported action on a
Hausdorff topological space. Several classes of groups encountered in other sections
of this text fall into that framework, but this class of groups is actually much larger.

We should warn the reader that these notes do not contain new results. Instead,
they constitute an accessible introduction to the topic, and to recent developments
around the groups under consideration here. Some of the theorems given here are
proved in these notes, but most of them are stated without proofs, and we tried
to indicate as much as possible references where the reader will be able to find
complements and proofs of the corresponding results.

Finally the author would like to mention that Stephan Tornier should be credited
with the existence of this text, for taking notes during the lectures and writing a
substantial part of this text.

2 Groups Acting on Trees and Tits’ Simplicity Theorem

In this section we recall classical results about groups acting on trees and outline a
proof of Tits’ simplicity theorem. For complements on groups acting on trees, the
reader is invited to consult [36, 40, 44].

2.1 Classification of Automorphisms and Invariant Subtrees

Throughout, T denotes a simplicial tree and Aut.T/ its automorphism group. To
begin with, there is the following classical trichotomy for automorphisms of trees.

Proposition 1 Let g 2 Aut.T/. Then exactly one of the following holds:

(1) There is a vertex fixed by g.
(2) There are adjacent vertices permuted by g.
(3) There is a bi-infinite line along which g acts as a non-trivial translation.

Automorphisms of the first two kinds are called elliptic, and automorphisms of
the third kind are called hyperbolic.

Proof Set kgk WD minfd.v; gv/ j v 2 V.T/g and

min.g/ WD fv 2 V.T/ j d.v; gv/ D kgkg:

If kgk D 0 then (1) holds. Now assume kgk > 0. Let s 2 min.g/ and let t 2 V.T/
be the vertex which is adjacent to s and contained in the geodesic segment Œs; gs�. If
gt 2 Œs; gs� then either gt D s and gs D t and (2) holds. Otherwise,

S
m2Z gmŒs; gs�

is a geodesic line and (3) holds. ut
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Definition 1 Let g 2 Aut.T/ be hyperbolic. The bi-infinite line along which g acts
as a translation is called the axis of g, and is denoted Lg. The endpoints of g are the
two ends of T defined by Lg.

With the classification of automorphisms of trees at hand we now turn to groups
acting on trees. First, we record the following lemma.

Lemma 1 Let g; h 2 Aut.T/ by hyperbolic such that Lg and Lh are disjoint. Then
gh is also hyperbolic and Lgh intersects both Lg and Lh.

Proof The situation presents itself as in Fig. 1.
Consider ˛ D Œx; y�. Then .gh/˛\˛ D f yg. Thus gh is hyperbolic and ˛ � Lgh.ut
We derive the following proposition. For a group G acting on T by automor-

phisms, we denote by Hyp.G/ the set of hyperbolic elements of G.

Proposition 2 Let G act on T and assume that Hyp.G/ ¤ ;. Then there is a unique
minimal G-invariant subtree, which is given by

X D
[

g2Hyp.G/

Lg:

Proof Let g 2 Hyp.G/ and h 2 G. Then hgh�1 2 Hyp.G/ and Lhgh�1 D h.Lg/.
Hence X is G-invariant; it is a subtree by the previous lemma. As to minimality, let
Y be a G-invariant subtree. Then for y 2 V.Y/ and g 2 Hyp.G/we have Œ y; gy� � Y.
Hence Y \ Lg ¤ ; and Y has to contain Lg. ut
Definition 2

(a) A subtree X � T is called a half-tree if X is obtained as one of the components
resulting from removing some edge of T (Fig. 2).

Fig. 1 Disjoint lines of
hyperbolic elements

Fig. 2 Definition of half-tree

ehalf-tree half-tree
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(b) An action of a group G on T is

(1) minimal if there is no proper G-invariant subtree,
(2) lineal if there is a G-invariant, bi-infinite line and Hyp.G/ ¤ ;.
(3) of general type if there are g1; g2 2 Hyp.G/ with no common endpoints.

2.2 Classification of Actions on Trees

In the following, fixing amounts to stabilizing point-wise and stabilizing amounts to
stabilizing set-wise. Let G act on T. Then exactly one of the following happens.

(1) There is a vertex or an edge stabilized by G.
(2) The action is lineal.
(3) There is exactly one end fixed by G.
(4) The action is of general type.

An example of a lineal action is the action of Z on its standard Cayley graph.
An example of case (3) is given by the action of a Baumslag-Solitar group BS.1; n/,
n � 2, on its Bass–Serre tree.

Proposition 3 Let G act minimally and of general type on T. Then

(1) for every half-tree X of T there is g 2 Hyp.G/ with Lg � X;
(2) every non-trivial normal subgroup N E G acts minimally of general type.

Proof For (1), let X be a half-tree in T. Then there is g 2 Hyp.G/ such that Lg\X ¤
;, since otherwise there would be a proper invariant subtree in the complement of
X by Proposition 2. Now if h 2 Hyp.G/ has no common endpoints with g, it is a
simple verification that there must exist n 2 Z such that gnhg�n has its axis inside
X. This shows (1).

Statement (2) is obtained by using the classification of group actions on trees.
Details are left to the reader. ut

2.3 Tits’ Simplicity Theorem

Let G act on T and let X be a (finite or infinite) geodesic in T. Further, let �X W
T ! X denote the closest point projection on X, and FixG.X/ the fixator of X in G
(Fig. 3).

Fig. 3 Closest point
projection
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Given x 2 V.T/, let G.x/ be the permutation group induced by the action of
FixG.X/ on ��1X .x/. We have a morphism

'X W FixG.X/ ,!
Y

x2X
G.x/:

Definition 3 Retain the above notation. The group G satisfies Tits’ independence
property if 'X is an isomorphism for all X.

The following lemma is the core of the proof of Tits’ theorem. For the proof, we
refer the reader to Tits’ original article [44].

Lemma 2 (Commutator Lemma) Let G act on T, g 2 Hyp.G/ and X WD Lg.
Assume that 'X is an isomorphism. Then

FixG.X/ D fŒg; h� j h 2 FixG.X/g:

We now state Tits’ simplicity theorem. Given a group G acting on T, we denote
by GC the subgroup of G generated by fixators of edges: GC WD hFixG.e/ j e 2
E.T/i. Clearly GC is a normal subgroup of G.

Theorem 1 Let G � Aut.T/ act minimally and of general type on T. If G satisfies
Tits’ independence property, then GC is either abstractly simple or trivial.

Proof Assume that GC is non-trivial and let N E GC be non-trivial. Two
applications of Proposition 3 show that N acts minimally and of general type on T.

Let e 2 E.T/. We show that FixG.e/ � N. By Tits’ independence property and
for symmetry reasons it suffices to show that FixG.X1/ � N, where X1 is one of the
two half-trees defined by e. According to Proposition 3, there exists a hyperbolic
element g 2 Hyp.N/ with Lg � X1. Applying Lemma 2 to this element g, we obtain

FixG.Lg/ D ŒFixG.Lg/; g� � N;

where the last inclusion follows from the fact that N is normal in G. This finishes
the proof as FixG.X1/ � FixG.Lg/. ut
Remark 1 This result has been generalized in various directions. See for instance
Haglund–Paulin [20], Lazarovich [24] for cube complexes and Caprace [10] for
buildings. Whereas the above generalizations vary the space, there is also work of
Banks–Elder–Willis [4] and Möller–Vonk [31] for trees.

3 Almost-Automorphisms of Trees

In this section we draw a brief survey about groups of almost-automorphisms of
trees, and discuss some recent results.
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3.1 Definitions

For d; k � 2 let Td;k the rooted tree in which the root has degree k and the other
vertices have degree d C 1. The level of a vertex is its distance from the root. For
instance T3;2 looks as in Fig. 4.

Fix a bijection between the vertices of Td;k and finite words that are either empty
or of the form xy1y2 � � � yj, where x 2 f0; : : : ; k� 1g and yi 2 f0; : : : ; d� 1g. Further,
let Xd;k WD @Td;k denote the boundary of the tree Td;k. Given �; � 0 2 Xd;k, we set
d.�; � 0/ WD d�N.�;�0/ where N.�; � 0/ D supfm � 1 j �m D � 0mg and �m; � 0m denote the
mth letter in the word �; � 0 respectively. This turns .Xd;k; d/ into a compact metric
space homeomorphic to a Cantor set.

Remark 2 Note that there is a one-to-one correspondence between proper balls in
Xd;k and vertices of level at least one, in which a vertex v 2 V.Td;k/ corresponds to
set of ends of Td;k hanging below v.

Remark that any element of Aut.Td;k/ induces a homeomorphism of Xd;k, and
the action of Aut.Td;k/ on Xd;k is faithful and by isometries. The notion of almost
automorphisms is a natural generalization of the one of automorphisms, and goes
back to Neretin [32].

Definition 4 An element g 2 Homeo.Xd;k/ is an almost-automorphism of Td;k if
there is a partition Xd;k D B1 t � � � t Bn of Xd;k into balls, such that for every
i 2 f1; : : : ; ng there is 	i > 0 so that dist.gx; gy/ D 	id.x; y/ for all x; y 2 Bi.

We denote by AAut.Td;k/ the set of all almost-automorphisms of Td;k, which
is easily seen to be a subgroup of Homeo.Xd;k/. For an example of an almost-
automorphism, consider Fig. 5

Remark 3 We record the following facts about AAut.Td;k/.

(1) Aut.Td;k/ is clearly a subgroup of AAut.Td;k/.
(2) In the case k D 2, one may check that the group AAut.Td;2/ coincides with

the topological full group ŒŒAut.TdC1/; @TdC1��, where TdC1 is a non-rooted
regular tree of degree .dC 1/. This corresponds to Neretin’s original definition
[32] (although the terminology “topological full group” was not used there).
Similarly, one can embed the group Aut.TdC1/ into AAut.Td;k/ for arbitrary k.

Fig. 4 The tree T3;2
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Fig. 5 An almost-automorphism

Remark that the group Aut.Td;k/ is naturally a topological group, which is totally
disconnected and compact. The proof of the following fact is left to the reader.

Proposition 4 The group AAut.Td;k/ admits a group topology which makes the
inclusion of Aut.Td;k/ continuous and open.

Henceforth we implicitly consider AAut.Td;k/ equipped with this topology.

Definition 5 (Higman–ThompsonGroup) Let Vd;k be the set of g 2 Homeo.Xd;k/

for which there is a partition Xd;k D B1 t � � � t Bn such that gjBi is a homothety and
g.wix/ D wg.i/x for every wix 2 Bi where wi is the vertex defining Bi.

By a theorem of Higman (previously obtained by Thompson in the case d D k D
2), the group Vd;k is finitely presented and has a simple subgroup of index at most
two. One may check without difficulty that the group AAut.Td;k/ is generated by its
two subgroups Vd;k and Aut.Td;k/. Since Vd;k is finitely generated and Aut.Td;k/ is
compact, this implies in particular that AAut.Td;k/ is a compactly generated group.

Remark 4 It readily follows from the definitions that the group Vd;k is dense
in AAut.Td;k/. Moreover Vd;k \ Aut.Td;k/ is exactly the group of finitary auto-
morphisms of Td;k, which is an infinite locally finite group. Since Aut.Td;k/ is
compact open in AAut.Td;k/, this subgroup must be commensurated in Vd;k. See
also Theorem 4(3) and the questions following it.

3.2 Some Results About AAut.Td;k/

This paragraph further illustrates interesting properties satisfied by the groups
AAut.Td;k/.

(1) The group AAut.Td;k/ is (abstractly) simple [22], and therefore belongs to
the class of non-discrete, totally disconnected, compactly generated locally
compact simple groups. The study of this class of groups recently received
much attention, and we refer the reader to [12–14]. Note that the list of known
examples of groups within this class is still quite restricted (see the introduction
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of [14]). Note also that a stronger simplicity result for AAut.Td;k/ has recently
been obtained in [43].

(2) The group AAut.Td;k/ coincides with the group of abstract commensurators of
the profinite group Aut.Td;k/ [11]. Here, given a profinite group G, the group of
commensurators of G is

Comm.G/ D f f W U Š�! V j U;V �o Gg= ;

where  identifies isomorphisms which agree on some open subgroup of G.
(3) The structure of subgroups of AAut.Td;k/ remains largely mysterious. On the

one hand, the flexibility of the action of AAut.Td;k/ on Xd;k readily implies
that AAut.Td;k/ has “many” subgroups. On the other hand, it is very much
unclear whether there are “large” discrete subgroups in AAut.Td;k/. A striking
illustration of a restriction on discrete subgroups is given by the following result
from [3].

Theorem 2 (Bader–Caprace–Gelander–Mozes) The group AAut.Td;k/ does
not admit lattices.

For background and motivation for the problem of studying the existence of
lattices in locally compact simple groups, we refer the reader to the introduction
of [3]. Interestingly, the proof of Theorem 2 relies on finite group theoretic
arguments, such as the study of subgroups of finite symmetric groups with a
given upper bound on the index.

Other locally compact simple groups without lattices appear in Sect. 4
(Theorem 5). See also Remark 8.

(4) The group AAut.Td;k/ is compactly presented [25], and actually satisfies
a stronger finiteness property, see Sauer–Thumann [39]. We mention that,
although an upper bound has been obtained in [25], the Dehn function of the
group AAut.Td;k/ is not known.

3.3 Commensurated Subgroups of Groups
of Almost-Automorphisms of Trees

The goal of this section is to report on recent work concerning the study of
commensurated subgroups of groups of almost automorphisms of trees, carried out
in collaboration with Ph. Wesolek. For the proofs of the results mentioned in this
section and for complements, we refer to the article [28].

Definition 6 Let G be a group. Two subgroups H;K � G are commensurable if
H \ K has finite index in both H and K. The subgroup H is commensurated if
gHg�1 is commensurable with H for all g 2 G.
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Example 1

(1) Any normal subgroup is commensurated.
(2) Finite and finite index subgroups are commensurated.
(3) SL.n;Z/ � SL.n;Q/ is commensurated.
(4) Fundamental example: any compact open subgroup U � G of a totally

disconnected locally compact group G is commensurated.

Shalom-Willis classified the commensurated subgroups of S-arithmetic sub-
groups in certain simple algebraic groups [41]. For instance, in SL.n;Z/ (n � 3)
every commensurated subgroup is finite or of finite index.

Theorem 3 ([28]) Let H � AAut.Td;k/ be commensurated. Then either H is finite,
H is compact open or H D AAut.Td;k/.

Remark 5 In Theorem 3, the conclusion cannot be strengthened to H itself being
compact open in the second case, see [28, Ex. 4.4] for examples of non-closed
commensurated subgroups.

One of the interests in studying commensurated subgroups is the fact that it
provides information about possible embeddings into locally compact groups.

Corollary 1 Any continuous embedding of AAut.Td;k/ into a totally disconnected
locally compact group has closed image.

Remark 6 There are natural generalizations of AAut.Td;k/ considered by Caprace–
de Medts [11] for which Corollary 1 is not true, see [28, p. 25].

We now turn our attention to the family of Thompson’s groups. For a pleasant
introduction to these groups, we refer the reader to the notes [9].

Let d D k D 2. The group V2;2 (see Definition 5) is known as Thompson’s
group V . Thompson’s group T is the subgroup of Homeo.S1/ consisting of those
homeomorphisms which are piecewise linear, have slopes in 2Z, all breakpoints at
dyadics and only finitely many breakpoints in total. Finally, we let F denote the
stabilizer of 0 2 S

1 in T. There are natural embeddings F � T � V � AAut.T2;2/.

Theorem 4 ([28])

(1) Every commensurated subgroup of F is normal.
(2) Every commensurated subgroup of T is either finite or equal to T.
(3) Every commensurated subgroup of V is locally finite or equal to V.

We have seen in Remark 4 that there is an infinite and locally finite commen-
surated subgroup in Thompson’s group V . The above theorem raises the question
whether there exist other (non-commensurable) commensurated subgroups in V .
Thanks to the process of Schlichting completion, a related question is the following:
Are there locally compact groups other than AAut.T2;2/ into which Thompson’s
group V embeds densely?

Corollary 2 Every embedding of Thompson’s groups F or T into a locally compact
group has discrete image.
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Remark 7 If we denote respectively by HomeoC.Œ0; 1�/ and HomeoC.S1/ the
groups of orientation-preserving homeomorphisms of the interval and the circle,
endowed with their natural Polish topology, it is an exercise to check that Tompson’s
groups F and T are dense respectively in HomeoC.Œ0; 1�/ and HomeoC.S1/.
Therefore F and T do appear as dense subgroups in some Polish groups, but cannot
appear as dense subgroups in some locally compact groups by Corollary 2.

4 Groups Acting on Trees with Prescribed Local Actions

In this section we study examples of locally compact groups acting on trees,
satisfying properties rather similar to groups of almost-automorphisms of trees from
Sect. 3. We may think of them as analogues of groups of almost-automorphisms of
trees, but more rigid and much smaller in a sense to be made precise. The reference
for this section is [26].

4.1 Definitions

Let d � 3 and Td denote the d-regular tree. Fix a set ˝ of cardinality d. Fix a map
c W E.Td/! ˝ such that cv W E.v/! ˝ is a bijection for every vertex v 2 V.Td/,
where E.v/ is the set of edges around v. Given g 2 Aut.Td/ and v 2 V.Td/ we
obtain a permutation 
.g; v/ D cgv ı g ı c�1v 2 Sym.˝/.

Definition 7 (Burger–Mozes [8]) Let F � Sym.˝/. Define

U.F/ D fg 2 Aut.Td/ j 8v 2 V.Td/ W 
.g; v/ 2 Fg:

We collect the following properties of U.F/, the proof of which are left to the
reader.

(1) U.F/ is a closed subgroup of Aut.Td/, which is discrete if and only if the action
F Õ ˝ is free.

(2) U.f1g/ is vertex-transitive, and therefore a cocompact lattice in U.F/.
(3) U.F/ satisfies Tits’ property (Definition 3).
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(4) U.F/C (the subgroup generated by fixators of edges in U.F/) has index two in
U.F/ if and only if the permutation group F is transitive and generated by its
point stabilizers. In this case, U.F/C is transitive on geometric edges.

From now on, we assume F � Sym.˝/ to be transitive.

Definition 8 (Bader–Caprace–Gelander–Mozes) For F � Sym.˝/, set

G.F/ WD fg 2 Aut.Td/ j 
.g; v/ 2 F for all but finitely many v 2 V.Td/g:

Note that G.F/ is a subgroup of Aut.Td/. In contrast to U.F/, the group G.F/
is not closed in Aut.Td/. One may actually check that G.F/ is a dense subgroup of
Aut.Td/.

It can be shown that there is a unique group topology on G.F/ such that the
inclusion of U.F/ into G.F/ is continuous and open (see for instance [26, p. 7]).

With respect to this topology, the action of G.F/ on the tree is continuous but
not proper. More precisely, we have the following:

Proposition 5 Let b 2 V.Td/. Then the stabilizer G.F/b is an increasing union of
compact open subgroups.

Proof Let m � 1.

Set Km.b/ D fg 2 G.F/b j 8v 62 B.b;m/ W 
.g; v/ 2 Fg. Then Km.b/ is a
subgroup of G.F/. Moreover it is a compact open subgroup as it contains the fixator
of B.b;m/ in U.F/ as a finite index subgroup. Since G.F/b DSm�1 Km.b/, the
statement follows. ut
Definition 9 Let F � F0 � Sym.˝/. Set G.F;F0/ WD G.F/\ U.F0/.

Note that U.F/ � G.F;F0/ � U.F0/ whence G.F;F0/ is open in G.F/. For
proofs of the following results, we refer the reader to [26].

(1) The group G.F;F0/ satisfies a weak Tits’ property.

(a) There exist natural sufficient conditions on the permutation groups F and
F0 so that G.F;F0/ is virtually simple.

(2) The group G.F;F0/ is compactly generated but not compactly presented.
(3) The group G.F;F0/ has asymptotic dimension one. This may be compared with

the fact that AAut.Td;k/ has infinite asymptotic dimension.
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4.2 Lattices

We now turn to the study of lattices in the family of groups G.F;F0/. Recall that
if G is a locally compact group, a lattice � in G is a discrete subgroup of finite
covolume, i.e. such that G=� carries a G-invariant finite measure.

We will state two different results, showing that the existence of lattices in the
groupsG.F;F0/ strongly depends on the properties of permutation groupsF and F0.

To this end, consider four permutation groups F � F0 and H � H0 such that
F � H and F0 � H0. These conditions ensure the inclusion G.F;F0/ � G.H;H0/.

Proposition 6 Retain the above notation. Assume that H \ F0 D F and H0 D HF0.
Then G.F;F0/ is a closed cocompact subgroup of G.H;H0/.

If in addition the action F Õ ˝ is free, then G.F;F0/ is a cocompact lattice in
G.H;H0/.

For a proof of Proposition 6, see [26, Corollary 7.4].

Example 2 An example as in Proposition 6 is d D 7, F D C7, F0 D Alt7, H D D7
and H0 D Sym7, where C7 and D7 denote respectively the cyclic and dihedral group
acting transitively on seven elements.

In another direction, we now provide sufficient conditions on F;F0 which prevent
the existence of lattices in the group G.F;F0/.

Definition 10 Let G be a group. A subgroup H � G is said to be essential in G if
H intersects non-trivially every non-trivial subgroup of G.

The following criterion, the proof of which may be found in [26], provides
sufficient conditions which prevent the existence of a lattice in a locally compact
group.

Proposition 7 Let G be a locally compact group with Haar measure �. Suppose
there are sequences of compact open subgroups .Um/m2N and .Km/m2N such that

(1) .Um/m2N is a neighbourhood basis of 1 2 G.
(2) Um is an essential subgroup of Km for every m 2 N.

(3) �.Km/
m!1����!1.

Then G does not admit lattices.
Using this criterion we show that certain G.F;F0/ do not contain lattices. For

F � Sym.˝/ and a 2 ˝ , we denote by Fa the stabilizer of a in F.

Theorem 5 ([26]) Let F � F0 � Sym.˝/ and a 2 ˝ . Assume that

(1) Fa � F0a is essential, and
(2) jF0aj < ŒF0a W Fa�

d�1.

Then G.F;F0/ does not admit a lattice.
We point out that there are examples of groups G.F;F0/ satisfying Theorem 5

and which are moreover (virtually) simple.
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Example 3 Let q Š 1 .mod 4/ be a prime power. Let˝ D P
1.Fq/ be the projective

line over the finite field Fq, F D PSL.2; q/ and F0 D PGL.2; q/. Set a WD 1 2
P
1.Fq/. Then F0a D Fq ÌF

	
q and Fa D Fq ÌF

	;2
q , where we only take the squares in

the multiplicative group. To see that Fa is essential in F0a, consider the short exact
sequence

1! F
	;2
q ! F

	
q ! C2 ! 1:

The assumption q Š 1 .mod 4/ implies that �1 is a square in F
	
q , and hence this

short exact sequence does not split. Therefore, F	;2q is essential in F
	
q and hence so

is Fa � F0a. For the second condition, compute jF0aj D q.q� 1/ < 2q D ŒF0a;Fa�
d�1

as d D qC 1.

Proof (Theorem 5) We construct .Um/m2N and .Km/m2N as in Proposition 7. For
m � 1 and a fixed vertex v0 2 V.Td/ we set

Um D fg 2 U.F/ j gjB.v0;m/ D idg

and

Km D
8
<

:
g 2 G.F;F0/

ˇ
ˇ
ˇ
ˇ
ˇ̌

g D id on B.v0;m/

.g; v/ 2 F0 for v 2 S.v0;m/

.g; v/ 2 F for d.v; v0/ � mC 1

9
=

;
:

Note that by definition of the topology, .Um/ is a basis of neighbourhoods of the
identity. It is easy to see that Km is a subgroup of G.F;F0/, which admits a semi-
direct product decomposition Km D UmC1 Ì

Q
S.v0;m/

F0a. Moreover since Fa is
essential in F0a, and since being essential ascends to finite direct products, it follows
that Um D UmC1 Ì

Q
S.v0;m/

Fa is essential in Km. Furthermore,

�.Km/ D �.UmC1/jF0ajjS.v0;m/j D �.UmC1/jF0ajd.d�1/
m�1

where, with the normalization �.U1/ WD 1, we have

�.UmC1/ D �.U1/ŒU1 W UmC1��1 D ŒU1 W UmC1��1:

Furthermore, we have

ŒU1 W UmC1� D jFajjB.v0;m/j D jFajd
.d�1/m�1

d�2 :

Combined with the assumption jF0aj < ŒF0a W Fa�
d�1 this implies, �.Km/!1. ut

Remark 8 Although the proofs of the absence of lattices in the groups AAut.Td;k/
(Theorem 2) and in some of the groups G.F;F0/ (Theorem 5) are very different,
they share the same phenomenon that the absence of lattices is actually detected in
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some open locally elliptic subgroup of the ambient group. It would be interesting
to know whether there exist compactly generated simple locally compact groups G
not having lattices but such that all open locally elliptic subgroups O � G do have
lattices.

5 Micro-Supported Actions and Uniformly Recurrent
Subgroups

In the previous sections we studied the structure of subgroups of particular families
of groups acting on a tree by automorphisms or almost automorphisms, such as
the groups AAut.Td;k/ and Thompson’s groups (Sect. 3), or the groups G.F;F0/
(Sect. 4). Yet another way to study the subgroups of a given group G is to view them
as a whole by considering the Chabauty space of G, and to study the G-action on it.
Here we will focus on the study of this action from the point of view of topological
dynamics, through the notion of uniformly recurrent subgroups (URS).

The goal of this section is to give an account of joint work with N. Matte Bon
[27]. The situation there is the study of URS’s of a countable group G acting by
homeomorphisms on a Hausdorff space X (with no further assumption). When
all rigid stabilizers of this action are non-trivial (see Sect. 5.3 for the relevant
terminology), many properties of rigid stabilizers are shown to be inherited by
uniformly recurrent subgroups. This allows us to prove a C�-simplicity criterion
based on the non-amenability of rigid stabilizers. When the dynamics of the action
of G on X is sufficiently rich, we obtain sufficient conditions ensuring that uniformly
recurrent subgroups of G can be completely classified. This situation applies to
several classes of groups which naturally come equipped with a micro-supported
action; among which examples of groups encountered previously in our lectures
such as Thompson’s groups and the (countable) groups G.F;F0/ of Sect. 4; as well
as branch groups, groups of piecewise projective homeomorphisms of the real line
[30] and topological full groups.

5.1 Uniformly Recurrent Subgroups

In this section G will always be a countable group. Let Sub.G/ be the Chabauty
space of all subgroups of G, viewed as a subset of f0; 1gG. When f0; 1gG is equipped
with the product topology, the set Sub.G/ is a closed subset of f0; 1gG, and hence is
a compact space. Note that the conjugation action of G on Sub.G/ is an action by
homeomorphisms.

The study of G-invariant (ergodic) probability measures on the space Sub.G/,
called (ergodic) Invariant Random Subgroups (IRS) after [1], has recently received
particular attention. In the next two lectures we deal with their topological counter-
parts:
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Definition 11 (Glasner–Weiss [18]) A Uniformly Recurrent Subgroup (URS) of G
is a minimal closed G-invariant subset of Sub.G/.

Here minimal means that there is no proper non-emptyG-invariant closed subset.
This is obviously equivalent to the fact that every G-orbit is dense. We will denote
by URS.G/ the set of URS’s of G.

Example 4

(1) If N 2 Sub.G/ is a normal subgroup of G, then fNg is a URS of G. The URS
associated to the trivial subgroup will be called the trivial URS.

(2) More generally if H 2 Sub.G/ has a finite conjugacy class, then fHg j g 2 Gg
is a URS of G.

From the dynamical point of view, these examples of URS’s present very few
interest, and we will look after significantly different URS’s.

Remark 9

(1) If H 2 URS.G/ is countable, we claim that Hmust consist of a finite conjugacy
class, i.e. H is of the form of Example 4. Indeed, being a countable compact
space, H must have an isolated point by the Baire category theorem. Now the
set of isolated points is an open G-invariant subset of H, so it must be the entire
H by minimality. Hence H is both compact and discrete, whereby H is finite.
By minimality G must act transitively on H, hence the claim.

In particular if G has only countably many subgroups, then every URS
is finite. This is for instance the case when every subgroup of G is finitely
generated.

(2) Even “small” groups like the lamplighter group Z2 oZ may have many URS’s
[18].

Proposition 8 (Glasner–Weiss) Let G be a countable group, and G Õ X a
minimal action of G by homeomorphisms on a compact space X. Then the closure
of the image of the map

Stab W X ! Sub.G/; x 7! Gx

contains a unique URS. This URS is called the stabilizer URS of G Õ X, and is
denoted SG.X/.

For a proof of Proposition 8, see [18, Proposition 1.2].
We insist on the fact that the map Stab W X ! Sub.G/, x 7! Gx need not be

continuous. This is for instance the case in the following example, which shows that
a non-free action may plainly have a trivial stabilizer URS.

Example 5 Consider the action of the free group F2 on the boundary @T4 of its
standard Cayley graph. Then SF2 .@T4/ is trivial. Equivalently, for every g 2 F2,
there is a sequence .gn/ of conjugates of g such that .hgni/ converges to the trivial
subgroup in Sub.F2/.
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The following example describes explicitly a URS of Thompson’s group V
(defined in Sect. 3).

Example 6 Consider Thompson’s group V acting on the boundary of the rooted
binary tree T2;2, and set H D fV�;0 j � 2 @T2;2g, where

V�;0 D fg 2 V j g fixes a neighbourhood of �g:

Then H is a URS of V . Actually H is the stabilizer URS SV.@T2;2/ associated to the
action V Õ @T2;2.

5.2 C�-Simplicity

One of the motivations for investigating URS’s comes from the recently discovered
connection with simplicity of reduced C�-algebras, as we shall now explain. We
shall mention that this may not be seen as the only motivation, and we believe that
the notion of URS’s is interesting in itself.

Let `2.G/ be the Hilbert space of square summable complex valued functions on
G. Then G acts on `2.G/, giving rise to the left-regular representation 	G W G !
U.`2.G//. Recall that the reduced C�-algebra C�red.G/ of G is by definition the
closure in the operator norm of linear combinations of operators 	g, g 2 G.

Definition 12 A group G is C�-simple if C�red.G/ is simple, i.e. C�red.G/ has no non-
trivial 2-sided ideal.

For a pleasant introduction to the problem of C�-simplicity and its historical
development, we refer the reader to de la Harpe’s survey [17].

Recall that every countable group admits an amenable normal subgroup Rad.G/
containing all amenable normal subgroups, called the amenable radical of G.

Proposition 9 (Paschke–Salinas [35]) Let G be a countable group. IfRad.G/ ¤ 1,
then G is not C�-simple.

The study of the C�-simplicity of countable groups started with the result of
Powers that the non-abelian free groupF2 is C�-simple [37]. The methods employed
by Powers have been largely generalized and many classes of groups have been
shown to be C�-simple. In the following result we mention a few of these results,
and refer to [17] for more references.

Theorem 6 After modding out by the amenable radical, the following groups are
C�-simple:

1. Linear groups [5, 7, 38].
2. Acylindrically hyperbolic groups [15]. This generalizes the case of free products

[35], Gromov-hyperbolic groups [16], relatively hyperbolic groups [2], mapping
class groups and Out.Fn/ [6].

3. free Burnside groups of sufficiently large odd exponents [34].
4. Tarski monsters [7, 21].
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In the sequel a URS H 2 URS.G/ is said to be amenable if every H 2 H is
amenable.

Theorem 7 (Kalantar–Kennedy [21], Breuillard–Kalantar–Kennedy–Ozawa
[7], Kennedy [23]) For a countable group G, the following are equivalent:

(1) G is C�-simple.
(2) G acts freely on its Furstenberg boundary.
(3) G admits no non-trivial amenable URS.

5.3 From Rigid Stabilizers to Uniformly Recurrent Subgroups

Let G be a countable group, and let X be a Hausdorff space on which G acts
faithfully by homeomorphisms.

Definition 13 Let U � X be a non-empty open subset of X. The rigid stabilizer of
U is the set of elements of G supported inside U:

GU D fg 2 G j g D id on XnUg:

Definition 14 The action G Õ X is micro-supported if the rigid stabilizer GU is
non-trivial for any non-empty open subset U � X.

Examples of countable groups admitting a micro-supported action are Thomp-
son’s groups (and many of their generalizations), branch groups (Sect. 5.5), or
groups of piecewise projective homeomorphisms of the real line (Sect. 5.6). We refer
to [27] for more examples.

For H 2 Sub.G/ we denote by C.H/ � Sub.G/ the conjugacy class of H. If
H 2 Sub.G/ belongs to a non-trivial URS of G, then the closure of C.H/ does not
contain the trivial subgroup in the Chabauty space Sub.G/. In order to study URS’s,
it is then natural to study the subgroups of G whose conjugacy class closure does
not contain the trivial subgroup.

Theorem 8 ([27]) Let G be a countable group of homeomorphisms of a Hausdorff
space X. Given H 2 Sub.G/, at least one of the following happens:

(1) The closure of C.H/ in Sub.G/ contains the trivial subgroup.
(2) There exists U � X open and non-empty such that H admits a subgroup A � H

which surjects onto a finite index subgroup of GU.

Note that the first condition in Theorem 8 is intrinsic to G, in the sense that it
does not depend on the space X, while the second condition is defined in terms of
the action of G on X.

We deduce the following result, which says that many properties of rigid
stabilizers associated to one action G Õ X are inherited by all uniformly recurrent
subgroups of G.
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Corollary 3 If for every non-empty open subset U � X the rigid stabilizer GU

is non-amenable (resp. non-elementary amenable, contain F2,. . . ) then the same is
true for every non-trivial URS of G.

Theorem 8 will follow from the following technical statement. In the sequel we
fix G and X as in Theorem 8.

Proposition 10 Fix z 2 X and H 2 Sub.G/. Then at least one of the following
happens:

(1) f1g is contained in the closure of C.H/.
(2) There is a neighbourhoodW � X of z in X such that for every K 2 C.H/, there

exist an open subset U � X, a finite index subgroup � �f.i. GU and a subgroup
A � K such that:

(a) A D id on W.
(b) A leaves U invariant and for every � 2 � there is a 2 A so that a D �

when restricted to U.

The above Proposition (for arbitrary z and W, and taking K D H) implies
Theorem 8 because � is then a quotient of A � H. The rest of this paragraph is
devoted to the proof of Proposition 10.

Lemma 3 Let H 2 Sub.G/. Then the following are equivalent:

(1) C.H/ does not contain the trivial subgroup in its closure.
(2) There exist a finite set P 2 Gnf1g all of whose conjugates intersect H.

Proof The sets fH � G j H\P D ;g form a basis of the trivial subgroup in Sub.G/,
when P ranges over finite subsets of non-trivial elements. ut
Lemma 4 Suppose X has no isolated points and let g1; : : : ; gn 2 Homeo.X/ be
non-trivial. Then there are (non-empty) open U1; : : : ;Un � X such that U1; : : : ;Un,
g1.U1/; : : : ; gn.Un/ are pairwise disjoint.

For a proof of Lemma 4, see [27, Lemma 3.1].

Lemma 5 (B.H. Neumann) Assume that a group� can be written� D Sn
iD1 �i�i

as a finite union of cosets of subgroups �i, i 2 f1; : : : ; ng. Then at least one of the
�i has index at most n in �.

For a proof of Lemma 5, see [33, Lemma 4.1].
As a consequence of Lemma 5, if � D Sn

iD1 Yi is a finite union of arbitrary
subsets Yi � �, then putting �i D h�ı�1; �; ı 2 Yii, we obtain that at least one of
the �i has index at most n in �.
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We now go into the proof of Proposition 10. For the sake of simplicity we will
only give the proof for K D H. As noted above, this is enough to obtain Theorem 8.

Proof (Proposition 10) Assume (1) does not hold. We prove (2). By Lemma 3
there is P D fg1; : : : ; gng � Gnf1g so that gPg�1 intersects H for all
g 2 G. Then Lemma 4 yields U1; : : : ;Un � X open and non-empty so that
U1; : : : ;Un; g1.U1/; : : : ; gn.Un/ are disjoint. Let L be the subgroup generated by the
subgroups GUi for i 2 f1; : : : ; ng. Then L D GU1 	 � � � 	 GUn . By definition of P
we may write L D Sn

iD1 Yi, where Yi D fg 2 L j ggig�1 2 Hg. By Lemma 5 there
is l � 1 such that �l D h�ı�1; �; ı 2 Yli has finite index in L. Now consider for
�; ı 2 Yl the element a�;ı D .�gl��1/.ıglı�1/ 2 H. Set A D ha�;ı j �; ı 2 Yli. Let
� W L! GUl be the canonical projection. Then � D �.�l/ has finite index in GUl .

Lemma 6 For all �; ı 2 Yl the element a�;ı leaves Ul invariant and coincides with
�ı�1 on Ul.

Proof The statement follows from the definition of U1; : : : ;Un and the fact that ı; �
are supported in

Sn
iD1Ui. We leave the details to the reader. ut

This lemma yields the conclusion because A will map onto � . ut
Although we did not use it here, the existence of a neighbourhood W in

Proposition 10 which is uniform for all conjugates of H is important for other
applications. As we shall now briefly explain, we are able to say more on URS’s
of G if the action of G on X enjoys additional properties.

Definition 15 The action G Õ X is extremely proximal if for every closed subset
C ¨ X, there is x 2 X so that for every neighbourhood U of x, there is g 2 G such
that g.C/ � U.

Example 7

(1) Assume that G has an action on a locally finite tree T which is minimal and of
general type. Then the action of G Õ @T is extremely proximal.

(2) The action of Thompson’s group F on S
1 is extremely proximal.

(3) The action of Thompson’s group V on @T2;2 is extremely proximal.

The conclusion of the following result is much stronger than the one of
Theorem 8 for the reason that we obtain some information about subgroups of non-
trivial URS’s, whereas Theorem 8 only deals with their subquotients.

Theorem 9 ([27]) Suppose G Õ X is extremely proximal. Let H 2 URS.G/ be
non-trivial, and let H 2 H. Then there is a non-empty open subset U � X and a
finite index subgroup � of GU such that Œ�; � � � H.

If we strengthen again the assumption on the dynamics of the action of G on X,
we obtain sufficient conditions ensuring that the stabilizer URS of the action of G
on X (see Proposition 8) is actually the only URS of G, apart from the points f1g
and fGg. This statement applies for example to Thompson’s groups T and V , and
to the groups G.F;F0/ under appropriate assumptions on the permutation groups F
and F0. See [27] for the proof.



520 A. Le Boudec

Theorem 10 ([27]) Let X be a compact space, and G Õ X a minimal and extremely
proximal action. Suppose that for every U � X and � �f.i. GU, there is an open
subset V � X with GV � Œ�; � �, and that point stabilizers Gx (x 2 X) are maximal
subgroups of G. Then the only URS’s of G are f1g, fGg and SG.X/.

We shall now explain the applications of these results to several classes of groups.
We refer the reader to [27] for more applications.

5.4 Thompson’s Groups

Recall that Thompson’s group F is the group of piecewise axC b homeomorphisms
of the interval Œ0; 1�, with finitely many pieces which are intervals with dyadic
rationals endpoints, and where a 2 2Z and b 2 ZŒ1=2�. Thompson’s group T
admits a similar description as group of homeomorphisms of the circle S

1 [9], and
Thompson’s group V has been defined (as group of homeomorphisms of the Cantor
set) in Sect. 3.

Theorem 11 (Classification of URS’s of Thompson’s Groups [27])

(1) The URS’s of F are the normal subgroups of F. (Apart from the trivial subgroup,
these are precisely the subgroups of F containing the commutator subgroup.)

(2) The URS’s of T are f1g, fTg and ST.S1/.
(3) The URS’s of V are f1g, fVg and SV.@T2;2/.

Since the stabilizer URS associated to the action V Õ @T2;2 is non-amenable
(see Example 6), by Theorem 7 we deduce the following result.

Corollary 4 Thompson’s group V is C�-simple.
It is a notorious open question to determine whether Thompson’s group F is

amenable. In 2014, Haagerup and Olesen [19] proved that in case Thompson’s group
T is C�-simple, then Thompson’s group F must be non-amenable. Theorem 11
shows that the problems of C�-simplicity of T and non-amenability of F are actually
equivalent, and that it is also equivalent to the C�-simplicity of F. We refer to
[27] for details (see also the references given there for some partial converse of the
Haagerup–Olesen result previously obtained by Bleak–Juschenko and Breuillard–
Kalantar–Kennedy–Ozawa).

5.5 Branch Groups

In this paragraphT will be a rooted tree, and Aut.T/will be the automorphism group
of T. For a subgroup G � Aut.T/ and a vertex v 2 V.T/, we define

RistG.v/ D fg 2 G j g is supported inside the subtree below vg:

Furthermore, for m � 1, we set RistG.m/ D hRistG.v/ j v is at level mi.
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Definition 16 A group G is a branch group if G acts transitively on each level of T
and RistG.m/ has finite index in G for all m � 1.

Many well-studied examples of branch groups are amenable, e.g. the Grigorchuk
group and the Gupta-Sidki group. But non-amenable branch groups also exist:

Theorem 12 (Sidki–Wilson [42]) There are finitely generated branch groups
containing the free group F2.

The following result shows that the class of branch groups satisfies the following
strong dichotomy.

Theorem 13 ([27]) A countable branch group is either amenable or C�-simple.

5.6 Piecewise Projective Homeomorphisms of R

The group PSL.2;R/ acts by Mobius transformations on the projective line P
1.R/.

Let A � R be a subring of R, and define H.A/ to be the group of homeomorphisms
of R which are piecewise PSL.2;A/, with finitely many pieces, the endpoints of the
pieces being endpoints of hyperbolic elements of PSL.2;A/.

The recent interest in these groups comes from the work of Monod [30], who
showed that they provide new examples answering the so-called von Neumann-Day
problem:

Theorem 14 (Monod) If A is a dense subring of R (e.g. A D ZŒ
p
2�) then H.A/ is

non-amenable and does not contain free subgroups.
Lodha and Moore have then found a finitely presented subgroup G0 � H.R/

which remains non-amenable [29].

Theorem 15 ([27]) Retain the assumption of Theorem 14. Then the group H.A/ is
C�-simple. Moreover the Lodha-Moore group G0 is C�-simple.

We shall mention that, although the conclusion of Theorem 15 on the groupH.A/
is formally stronger than the one of Theorem 14, the non-amenability of the group
H.A/ is used in an essential way in the proof of Theorem 15.

It was a question of de la Harpe [17] whether there exist countable C�-simple
groups without free subgroups. This question has been answered in the positive by
Olshanskii and Osin [34]. The examples given there are finitely generated, but not
finitely presented. Theorem 15 provides the first examples of finitely presented C�-
simple groups without free subgroups.
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Normal Subgroup Structure of Totally
Disconnected Locally Compact Groups

Colin D. Reid

Abstract The present article is a summary of joint work of the author and Phillip
Wesolek on the normal subgroup structure of totally disconnected locally compact
second-countable (t.d.l.c.s.c.) groups. The general strategy is as follows: We obtain
normal series for a t.d.l.c.s.c. group in which each factor is ‘small’ or a non-abelian
chief factor; we show that up to a certain equivalence relation (called association),
a given non-abelian chief factor can be inserted into any finite normal series; and
we obtain restrictions on the structure of chief factors, such that the restrictions are
invariant under association. Some limitations of this strategy and ideas for future
work are also discussed.

1 Introduction

A common theme throughout group theory is the reduction of problems concerning
a group G to those concerning the normal subgroup N and the quotient G=N,
where both N and G=N have some better-understood structure; more generally,
one can consider a decomposition of G via normal series. This approach has been
especially successful for the following classes of groups: finite groups, profinite
groups, algebraic groups, connected Lie groups and connected locally compact
groups. To summarise the situation for these classes, let us recall the notion of chief
factors and chief series.

Definition 1 Let G be a Hausdorff topological group. A chief factor K=L of G
is a pair of closed normal subgroups L < K such that there are no closed normal
subgroups of G lying strictly between K and L. A descending chief series for G is a
(finite or transfinite) series of closed normal subgroups .G˛/˛�ˇ such that G D G0,
f1g D Gˇ, G	 DT˛<	 G˛ for each limit ordinal and each factor G˛=G˛C1 is chief.
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First, on the existence of chief series (or a good approximation thereof):

• Every finite group G has a finite chief series.
• Every profinite group has a descending chief series with finite chief factors.
• Every algebraic group has a finite normal series in which the factors are Zariski-

closed and either abelian or a semisimple chief factor.
• Every connected Lie group has a finite normal series in which the factors are in

the following list:
connected centreless semisimple Lie groups; finite groups of prime order; Rn,

Z
n or .R=Z/n for some n.

We can also choose the series so that all factors are chief factors, except
possibly for some occurrences of Zn or .R=Z/n.

• Every connected locally compact group G has a descending series in which
the factors come from connected Lie groups. G has a unique largest compact
normal subgroup K, and all but finitely many factors of the series occur below K.
(This can be generalised to the class of pro-Lie groups; see for example [7]. The
fact that connected locally compact groups are pro-Lie is a consequence of the
Gleason–Yamabe theorem.)

Second, on the structure of the factors occurring in such a series:

• A finite chief factor is a direct product of copies of a simple group.
• A chief factor that is a semisimple algebraic group is a direct product of finitely

many copies of a simple algebraic group.
• A chief factor that is a semisimple Lie group is a direct product of finitely many

copies of an abstractly simple connected Lie group.
• Finite simple groups, simple connected Lie groups and simple algebraic groups

have been classified.

So given a group G in the above well-behaved classes, there exists a decompo-
sition of G into ‘known’ groups. Moreover, it turns out that the non-abelian chief
factors we see up to isomorphism are an invariant of G (not dependent on how we
constructed the series).

Given the success of this approach to studying connected locally compact groups,
one would hope to obtain analogous results for totally disconnected, locally compact
(t.d.l.c.) groups. The ambition is expressed in the title of a paper of Pierre-Emmanuel
Caprace and Nicolas Monod: ‘Decomposing locally compact groups into simple
pieces’ [4]; similar approaches can also be seen in previous work of Marc Burger
and Shahar Mozes [3] and of Vladimir Trofimov (see for instance [15]). We will not
attempt to summarise these articles here; instead, we will note some key insights in
[4] that are relevant to the project at hand.

1. It is advantageous to work with compactly generated t.d.l.c. groups, i.e. groups
G such that G D hXi for some compact subset X. The advantage will be
explained in Sect. 2 below. In this context, and more generally, it is no great
loss to restrict attention to the second-countable (t.d.l.c.s.c.) case, that is, t.d.l.c.
groups that have a countable base for the topology.
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2. The class of t.d.l.c.s.c. groups includes all countable discrete groups. We cannot
expect to develop a general theory of chief series for all such groups, and in any
case, such a theory would lie beyond the tools of topological group theory. So
instead, it is useful to have methods to ignore or exclude discrete factors.

3. Although compact groups are relatively well-behaved, in a given t.d.l.c.s.c.
group there are likely to be many compact normal factors, and the tools for
analysing them are of a different nature than those for studying the ‘large-scale’
structure of t.d.l.c. groups. Thus, as with the discrete factors, it is useful to find
ways to ignore or exclude compact factors.

4. Given closed normal subgroups K and L of a locally compact group G, their
productKL is not necessarily closed. In particular,KL=L need not be isomorphic
to K=.K \ L/.

5. To accommodate the previous point, the authors introduce a generalisation of
the direct product, called a quasi-product (see Sect. 4.1 below). They show that
compactly generated chief factors (as long as they are not compact, discrete or
abelian) are quasi-products of finitely many copies of a topologically simple
group.

6. A topologically simple group S can have dense normal subgroups; this fact
turns out to be closely related to the existence of quasi-products of topologically
simple groups that are not direct products.

Points (2) and (3) above immediately suggest a modification to the definition of
chief series. We will restrict attention here to finite series; this will turn out to be
sufficient for the analysis of compactly generated t.d.l.c.s.c. groups.

Definition 2 Let G be a t.d.l.c. group. An essentially chief series is a series

f1g D G0 < G1 < � � � < Gn D G

of closed normal subgroups of G, such that for 1 � i � n, the factor GiC1=Gi is
either compact, discrete, or a chief factor of G.

With point (5), there are two important caveats:

(a) A chief factor of a compactly generated t.d.l.c.s.c. group need not be itself
compactly generated.

(b) Non-compactly generated chief factors can be quasi-products of finitely or
infinitely many topologically simple groups, but they are not necessarily of this
form.

These caveats are an important contrast with the situation of connected locally
compact groups and account for much of the difficulty in developing a complete
theory of normal subgroup structure for t.d.l.c. groups. In particular, we see that an
essentially chief series does not by itself lead to a decomposition into simple factors,
even if one is prepared to ignore all compact, discrete and abelian factors.

Based on the observations and results of Caprace–Monod, Burger–Mozes and
Trofimov, the author and Phillip Wesolek have started a project to analyse the normal
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subgroup structure of t.d.l.c.s.c. groups by means of chief factors. Our proposed
programme is as follows:

1. Obtain an essentially chief series for compactly generated t.d.l.c.s.c. groups.
2. Find a way to handle non-abelian chief factors that is independent of the choice

of normal series, in other words, obtain ‘uniqueness’ or ‘invariance’ results.
3. Analyse (recursively) the chief factor structure of chief factors of t.d.l.c.s.c.

groups. Try to ‘reduce’ to simple groups and low-complexity characteristically
simple groups. Here ‘low-complexity’ means elementary with decomposition
rank �.G/ � ˛, where ˛ is some specified countable ordinal; it will turn out
that a natural threshold to take here is ˛ D !C 1. (See Sect. 5 below for a brief
discussion of decomposition rank.)

4. Develop a structure theory for the low-complexity characteristically simple
t.d.l.c. groups and how these are built out of compactly generated and discrete
groups. The most important case here appears to be the class of elementary
t.d.l.c.s.c. groups of decomposition rank 2.

5. Find general properties of classes of topologically simple t.d.l.c. groups. Some
general results have been obtained for compactly generated topologically
simple groups: see [5]. In generalising from the compactly generated case, it
is likely that some kind of non-degeneracy assumption must be made at the
level of compactly generated subgroups to obtain useful structural results.

The goal of the rest of this article is to give an overview of progress made in
this project to date. In this summary, some arguments will be sketched out for
illustration, but for the full details it will be necessary to consult the articles [11, 12]
and [13]. We focus for the most part on points (1)–(3) above; in the last section,
some ideas for further work will be presented.

2 Compactly Generated Groups

2.1 The Cayley–Abels Graph

A finitely generated group G has a Cayley graph: this is a connected, locally finite
graph� on whichG acts vertex-transitively with trivial vertex stabilisers. Moreover,
� is unique up to quasi-isometry.

Herbert Abels [1] showed that something similar is true for compactly generated
t.d.l.c. groups G. Our strategy for obtaining an essentially chief series for G will be
to use induction on the degree of the corresponding graph; to obtain the right notion
of degree for this induction, we must be careful with the definition of graph we use
(especially for the quotient graph; see Definition 4 below).

Definition 3 A graph � is a pair of sets V� (vertices) and E� (edges) together
with functions o W E� ! V� and r W E� ! E� such that r2 D idE� . (Given
e 2 E� , we do not require r.e/ ¤ e.) An automorphism ˛ is a pair of bijections
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˛V and ˛E on V� and E� such that o ı ˛E D ˛V ı o and r ı ˛E D ˛E ı r. (When
clear from the context, we will omit the subscripts V and E.) Define t.e/ WD o.r.e//.

Given v 2 V� , the degree deg.v/ of v is defined to be jo�1.v/j; � is locally
finite if every vertex has finite degree. The degree of the graph � is deg.� / WD
supv2V� deg.v/.
� is simple if t.e/ ¤ o.e/ for all e 2 E� and the map e 7! .o.e/; t.e// is

injective on E� . In this case, we can simply regard E� as a symmetric binary
relation on V� , identifying each edge with the pair .o.e/; t.e//.

Let G be a compactly generated t.d.l.c. group. A Cayley–Abels graph for G is a
graph � equipped with an action of G by automorphisms such that:

(i) � is connected and locally finite;
(ii) G acts transitively on V� ;

(iii) For each x 2 V� [ E� , the stabiliser Gx is a compact open subgroup of G.

Theorem 1 (Abels [1]) Let G be a compactly generated t.d.l.c. group.

(i) For every compact open subgroup U of G, there is a simple Cayley–Abels graph
with vertex set G=U;

(ii) Any two Cayley–Abels graphs are quasi-isometric.

Recall that by Van Dantzig’s theorem, every t.d.l.c. group has a base of
identity neighbourhoods consisting of compact open subgroups, so Theorem 1(i)
in particular ensures the existence of a Cayley–Abels graph for G.

The following lemma is a more detailed version of Theorem 1(i); we give a proof
here as an illustration of the advantages of working with compact open subgroups.
(The proof of Theorem 1(ii) is entirely analogous to that for Cayley graphs of finitely
generated groups.)

Lemma 1 Let G be a compactly generated t.d.l.c. group, let U be a compact
open subgroup of G and let A be a compact symmetric subset of G such that
G D hU;Ai.
(i) There exists a finite symmetric subset B of G such that

BU D UB D UBU D UAU:

(ii) For any subset B satisfying part (i), then G D hBiU and the coset space G=U
carries the structure of a simple locally finite connected graph, invariant under
the natural G-action, where gU is adjacent to hU if and only if .gU/�1hU �
UBU nU.

Proof

(i) The product of compact sets is compact, by continuity of multiplication. Thus
UAU is a compact set. On the other hand, U is an open subgroup of G; thus G
is covered by left cosets of U and finitely many suffice to cover UAU. That is,
we have UAU � S

b2B1 bU such that B1 is a finite subset of G. Moreover, we
see that UAU is itself a union of left cosets of U; since the cosets partition G,
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we can in fact ensure UAU D S
b2B1 bU. Now take B D B1 [ B�11 ; it is easily

verified that B satisfies the required equations.
(ii) Since BU D UAU, we have A 2 hU;Bi; since G D hU;Ai, it follows that

G D hU;Bi. Since BU D UB and B is symmetric, we have hU;Bi D hBiU.
Now define a simple graph � with vertex set G=U and edges specified by the
given adjacency relation. Note that gU is adjacent to hU if and only if g�1h 2
UBUnU; in particular, we see that no vertex is adjacent to itself. Since UBUnU
is a symmetric set, we have g�1h 2 UBU n U if and only if h�1g 2 UBU n U,
so the adjacency relation is symmetric.

We let G act on G=U by left translation. To show that G acts on the graph, it
is enough to see that it preserves adjacency: given distinct vertices gU and hU,
we note that .xgU/�1xhU D Ug�1x�1xhU D Ug�1hU, so .gU; hU/ is an edge
if and only if .xgU; xhU/ is. The action of G is clearly also vertex-transitive.
The graph is connected because xbU is either equal or adjacent to xU for all
b 2 B, and we have G D hBiU. To show that � is locally finite, it suffices to
see that o�1.U/ is finite: specifically, we see that o�1.U/ D f.bU;U/ j b 2 Bg,
and hence jo�1.U/j � jBj.

ut
Define the degree deg.G/ of a compactly generated t.d.l.c. group G to be the

smallest degree of a Cayley–Abels graph of G. We can imagine the degree as
analogous to ‘dimension’ or ‘number of generators’, depending on context.

The key difference between Cayley–Abels graphs and Cayley graphs is that
vertex stabilisers are not necessarily trivial. In particular, it is useful to consider
the action of a vertex stabiliser on the edges incident with that vertex.

Definition 4 Let G be a group acting on a graph � . Define the local action of G at
v to be the permutation group induced by the action of Gv on o�1.v/.

The quotient graph � =G is the graph with vertex set V D fGv j v 2 V� g, edge
set E D fGe j e 2 E� g, such that o.Ge/ D G.o.e// and r.Ge/ D G.r.e//.

If the action of G is vertex-transitive, we can refer to ‘the’ local action on �
without reference to a specific vertex, since the action of Gv on o�1.v/ will be
permutation-isomorphic to the action of Gw on o�1.w/.

Cayley–Abels graphs are well-behaved on passing to quotients. Moreover, we
have good control of the degree.

Proposition 1 (See [12, Proposition 2.16]) Let G be a compactly generated t.d.l.c.
group, let � be a Cayley–Abels graph for G and let K be the kernel of the action of
G on � . Let H be a closed normal subgroup of G.

(i) � =H is a Cayley–Abels graph for G=H.
(ii) We have deg.� =H/ � deg.� /, with equality if and only if the local action of

H is trivial. In particular, deg.G=H/ � deg.G/.
(iii) Suppose that the local action of H on � is trivial. Then H \ K is a compact

normal subgroup of G and H=.H \ K/ is a discrete normal factor of G.
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Proof (sketch) For (i), one can show that the vertex Hv of � =H has stabiliser
GvH=H, which is a compact open subgroup of G, and that the graph is locally finite
(see proof of part (ii)). The other conditions are clear.

For (ii), given v 2 V� , we have a surjection � from o�1.v/ to o�1.Hv/, since
o�1.Hv/ D Ho�1.v/. Thus deg.Hv/ � deg.v/, with equality if and only if � is
injective. We see that � is injective if and only if different edges incident with v lie
in different H-orbits, which occurs if and only if H has trivial local action.

For (iii), we observe that for all v 2 V� , then Hv fixes every edge incident
with v, and hence every vertex adjacent to v. Since � is connected, it follows by
induction on the distance from v that Hv fixes every w 2 V� and hence also every
edge of � . Thus H \ Gv D Hv D H \ K. Clearly H \ K is normal; it is compact
since K is compact; the equality H \ K D H \ Gv shows that H \ K is open in H.
Thus H=.H \ K/ is discrete. ut
Remark 1 It remains an outstanding problem to classify non-discrete t.d.l.c. groups
G with deg.G/ D 3, that is, non-discrete groups that act vertex-transitively with
compact open stabilisers on a graph of degree 3. One can show (see for instance
[6, Theorem 8.A.20]) that all such groups arise as G D eG=D, where eG is a group
acting on a regular tree T of degree 3 with the same local action, D is a discrete
normal subgroup with trivial local action, and � arises as the quotient graph T=D.
Moreover, it can be seen that there is a groupeG � H � Aut.T/, such that H has the
same orbits on directed edges as eG does and H is in the following list:

U.C2/; U.Sym.3//ı; U.Sym.3//;

where C2 is a point stabiliser in Sym.3/, U.F/ denotes the Burger-Mozes universal
group with local action F (see [3]), and U.F/ı is the stabiliser of an end in U.F/.
(Note that U.Sym.3//ı has local action C2.) So the structure of t.d.l.c. groups of
degree 3 in principle reduces to understanding the subgroup structure of these three
specific groups. At present, the least well-understood of these is U.C2/.

2.2 Existence of Essentially Chief Series

We now reach our first goal, to show the existence of essentially chief series for
compactly generated t.d.l.c.s.c. groups. In fact, given what is already known in the
connected case, the result holds for all compactly generated locally compact groups.

Theorem 2 (See [12, Theorem 1.3]) For every compactly generated locally com-
pact group G, there is a finite series

f1g D G0 < G1 < G2 < � � � < Gn D G

of closed normal subgroups of G, such that each GiC1=Gi is compact, discrete or a
chief factor of G.
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Cayley–Abels graphs are used via the following lemma.

Lemma 2 (See [12, Lemma 3.1]) Let G be a compactly generated t.d.l.c. group
and � be a Cayley–Abels graph for G. Let C be a chain of closed normal subgroups
of G.

(i) Let A DSH2C H. Then deg.� =A/ D minfdeg.� =H/ j H 2 Cg.
(ii) Let D DTH2C H. Then deg.� =D/ D maxfdeg.� =H/ j H 2 Cg.
Proof For (i), it is enough to show that there exists H 2 C such that A has trivial
local action on � =H. This amounts to showing that there is some H 2 C such that
Hv and Av have the same orbits on o�1.v/, in other words Av D Av;1Hv, where Av;1
is the subgroup of A fixing every edge in o�1.v/. The existence of a suitable H 2 C
follows from the finiteness of the quotient A=Av;1.

For (ii), given Proposition 1, we can assume D D f1g without loss of generality.
It is then enough to show that there exists H 2 C that has trivial local action on � ,
in other words, such that H \ Gv � Gv;1. We see that Gv;1 is an open subgroup of
the compact group Gv; since C is a chain of subgroups with trivial intersection, it
follows by a compactness argument that indeed H\Gv � Gv;1 for some H 2 C. ut
Proof (Sketch Proof of Theorem 2) We will only consider the case when G is totally
disconnected. Proceed by induction on deg.G/; let � be a Cayley–Abels graph of
smallest degree.

By Lemma 2(i) plus Zorn’s lemma, there is a closed normal subgroup A that
is maximal amongst closed normal subgroups such that deg.� =A/ D deg.� /. By
Proposition 1, there is a compact normal subgroup K of G such that K � A and A=K
is discrete, and � =A is a Cayley–Abels graph for G=A.

By the maximality of A, we see that any closed normal subgroup of G that
properly contains A will produce a quotient graph of � =A of smaller degree. By
Lemma 2(ii), every chain of non-trivial closed normal subgroups of G=A has non-
trivial intersection. By Zorn’s lemma, there is a minimal closed normal subgroup
D=A of G=A; in other words, D=A is a chief factor of G. We then have deg.� =D/ <
deg.� =A/, so deg.G=D/ < deg.G/. By induction, G=D has an essentially chief
series. We form an essentially chief series for G by combining the series for G=D
with the G-invariant series 1 � K � A < D we have obtained for D. ut

Lemma 2 and Proposition 1 also easily lead to chain conditions on closed normal
subgroups, which are independently useful for understanding normal subgroup
structure in t.d.l.c. groups.

Theorem 3 (See [12, Theorem 3.2]) Let G be a compactly generated locally
compact group and let .Gi/i2I be a chain of closed normal subgroups of G.

(i) For K D S
i Gi, there exists i such that K=Gi has a compact open G-invariant

subgroup.
(ii) For L D T

i Gi, there exists i such that Gi=L has a compact open G-invariant
subgroup.
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3 Equivalence Classes of Chief Factors

We have just seen that a compactly generated t.d.l.c.s.c. group G has an essentially
chief series. However, the proof is non-constructive, and in general there could be
many different essentially chief series without any natural choice of series. To obtain
canonical structural properties of G, we wish to establish properties of essentially
chief series that do not depend on the choices involved. In particular, we would like
to say that the same factors always appear up to equivalence. In the process, we will
obtain tools that are valid in a much more general setting; in particular, compact
generation will not play a large role in this section.

In fact, many of the results in this section are naturally proved in the context
of Polish groups, that is, topological groups G such that as a topological space, G
is completely metrizable and has a countable dense set. A locally compact group
is Polish if and only if it is second-countable; here we see the main technical
motivation for our focus on t.d.l.c.s.c. groups as opposed to more general t.d.l.c.
groups.

Let K and L be closed normal subgroups of a t.d.l.c.s.c. (more generally, Polish)
group G. Consider the following normal series for G:

f1g � .K \ L/ � K � KL � GI

f1g � .K \ L/ � L � KL � G:

We want to think of these two series as having the same factors up to reordering.
Specifically, K=.K \ L/ corresponds to KL=L and L=.K \ L/ to KL=K.

In a discrete group, in fact K=.K \ L/ is isomorphic to KL=L and L=.K \ L/ is
isomorphic to KL=K, by the second isomorphism theorem. This is not true in the
locally compact context.

Example 1 Let G D ZŒ 1
2
� 	 Z2, let K D f.x; 0/ j x 2 ZŒ 1

2
�g and let L D f.�y; y/ j

y 2 Zg. Then K \ L is trivial and KL D G. We see that K Š ZŒ 1
2
� and L Š Z, but

KL=L Š Q2 and KL=K Š Z2.
We must therefore relax the notion of isomorphism to obtain a suitable equiva-

lence relation on the chief factors.
On the other hand, there is a similarity between K=.K \ L/ and KL=L that is not

captured by group isomorphism, namely that the map

' W K=.K \ L/! KL=LI k.K \ L/ 7! kL

is a G-equivariant map with respect to the natural actions. In particular, we can
exploit the fact that the image KL=L is a normal subgroup of G=L.
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3.1 Normal Compressions

Definition 5 A normal compression of topological groups is a continuous homo-
morphism  W A ! B, such that  is injective and  .A/ is a dense normal
subgroup of B. For example, there are natural normal compressions Z ! Z2 andL

Sym.n/!Q
Sym.n/.

An internal compression in a topological group G is a map

' W K1=L1 ! K2=L2I kL1 7! kL2;

where K1=L1 and K2=L2 are normal factors of G such that K2 D K1L2 and L1 D
K1 \ L2.

Given the ambient group G, we can also just say that K2=L2 is an internal
compression of K1=L1, as the map ' is uniquely determined; given a normal
compression  W A! B, we will also simply say that B is a normal compression of
A when the choice of  is clear from the context or not important.

The equations K2 D K1L2 and L1 D K1\L2 are exactly what is needed to ensure
' is well-defined and injective with dense image; in other words, every internal
compression is a normal compression. Conversely, in the class of t.d.l.c.s.c. groups
(more generally, Polish groups), it turns out that every normal compression can be
realised as an internal compression.

Let  W A ! B be a normal compression. Then there is a natural action � of B
on A, which is specified by the equation

 .�.b/.a// D b .a/b�1I a 2 A; b 2 B:

Write A Ì B for the semidirect product formed by this action. It is easily seen that
AÌ B is a group; what is less clear is that the action of B on A is jointly continuous,
so that the product topology on A Ì B is a group topology. The joint continuity
in this case follows from classical results on the continuity of maps between Polish
spaces; see for example [8, (9.16)].

Proposition 2 ([11, Proposition 3.5]) Let  W A ! B be a normal compression
where A and B are t.d.l.c.s.c. groups (Polish groups). Then A Ì B with the product
topology is a t.d.l.c.s.c. group (respectively, a Polish group).

Here is an easy application.

Corollary 1 Let  W A ! B be a normal compression where A and B are Polish
groups. Let K be a closed normal subgroup of A. Then  .K/ is normal in B.

Proof We can identify K with the closed subgroupK	f1g of the semidirect product
G D AÌ B. By Proposition 2, G is a Hausdorff topological group; in particular, the
normaliser of any closed subgroup is closed. Thus NG.K/ is closed in G. Moreover,
NG.K/ contains both A and .B/, so NG.K/ is dense in G and hence NG.K/ D G. In
particular, K is preserved by the action of B on A, so that  .K/ is normal in B. ut
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We can use the semidirect product to factorise the normal compression map.
We also see that the normal compression is realised as an internal compression of
normal factors of the semidirect product.

Theorem 4 ([11, Theorem 3.6]) Let  W A ! B be a normal compression where
A and B are Polish groups. Let  W A ! A Ì B be given by a 7! .a; 1/ and
� W A Ì B! B be given by .a; b/ 7!  .a/b.

(i)  D � ı ;
(ii)  is a closed embedding;
(iii) � is a quotient homomorphism and A ! ker�I a 7! .a�1;  .a// is an

isomorphism of topological groups.

Corollary 2 Let  W A ! B be a normal compression where A and B are Polish
groups. Then  is realised as an internal compression
� W A=f1g ! .A Ì B/= ker� .
In the context of t.d.l.c.s.c. groups, instead of factorising the normal compression

through A Ì B, we can factorise through .A Ì U/=�, where U is a compact open
subgroup of B and � D f.w�1;  .w// j w 2 Wg, where W is a compact open
subgroup of A such that  .W/ is normal in U. This allows us to be obtain tighter
control over the relationship between A and B.

Theorem 5 ([13, Theorem 4.4]; see also [5, Proposition 5.17]) Let  W A ! B
be a normal compression where A and B are t.d.l.c.s.c. groups. Let U be a compact
open subgroup of B. Then there is a t.d.l.c. group C and continuous homomorphisms
˛ W A! C and ˇ W C! B with the following properties:

(i)  D ˇ ı ˛;
(ii) ˛ is a closed embedding and C D ˛.A/eU with eU Š U;
(iii) ˇ is a quotient homomorphism, kerˇ is discrete, and every element of kerˇ

lies in a finite conjugacy class of C.

As an example application, the following can be deduced from Theorem 5
together with standard properties of amenable groups.

Corollary 3 (See also [13, Proposition 5.6]) Let  W A ! B be a normal
compression where A and B are t.d.l.c.s.c. groups. Then A is amenable if and only if
B is amenable.

3.2 The Association Relation and Chief Blocks

We now define a relation that will provide the promised equivalence relation on
chief factors.
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Definition 6 Say K1=L1 is associated to K2=L2 (write K1=L1  K2=L2) if the
following conditions are satisfied:

(i) K1L2 D K2L1;
(ii) Ki \ L1L2 D Li for i D 1; 2.

Note that if K1=L1 and K2=L2 are associated, then K=L is an internal compression
of both of them, where K D K1K2 and L D L1L2.

The centraliser CG.K=L/ of a normal factor K=L is

CG.K=L/ WD fg 2 G j 8k 2 K W Œg; k� 2 Lg:

In particular, CG.K=L/ is a closed normal subgroup of G such that L � CG.K=L/.
Using the fact that centralisers of (not necessarily closed) subsets of Hausdorff

groups are closed, it is easy to see that the association relation preserves centralisers.
For non-abelian chief factors, the converse holds.

Proposition 3 ([11, Proposition 6.8]) Let K1=L1 and K2=L2 be normal factors of
the topological group G.

(i) If K1=L1  K2=L2, then CG.K1=L1/ D CG.K2=L2/.
(ii) If CG.K1=L1/ D CG.K2=L2/ and if K1=L1 and K2=L2 are non-abelian chief

factors of G, then they are associated.

Corollary 4 Association defines an equivalence relation on the non-abelian chief
factors of a topological group.

Given a non-abelian chief factor K=L, define the (chief) block a WD ŒK=L� to
be the class of non-abelian chief factors associated to K=L. Define also CG.a/ D
CG.K=L/.

At this point, the benefit of the additional abstraction of chief blocks is not clear.
However, we will see in the rest of the article that chief blocks, and more generally
sets of chief blocks, can usefully be manipulated in a way that would be awkward
to do directly at the level of chief factors.

Association exactly characterises the uniqueness of occurrences of chief factors
in normal series:

Theorem 6 ([11, Proposition 7.8]) Let G be a Polish group, let

f1g D G0 � G1 � � � � � Gn D G

be a finite normal series for G, and let a be a chief block of G. Then there is exactly
one i 2 f1; : : : ; ng for which there exist Gi�1 � B < A � Gi with A=B 2 a.
Specifically, Gi is the lowest term in the series such that Gi — CG.a/.

We write BG for the set of chief blocks of G. Note that BG comes equipped with
a partial order: we say a � b if CG.a/ � CG.b/. Equivalently, we have a < b if in
every finite normal series .Gi/ that includes representatives Gi=Gi�1 and Gj=Gj�1 of
a and b respectively, then Gj > Gi.
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3.3 Robust Blocks

Given a compactly generated t.d.l.c.s.c. group, it would be tempting to infer that
every possible chief block is represented as a factor in every essentially chief series.
However, this is not true: there can be infinitely many compact and discrete chief
factors up to association, yet only finitely many of them will be represented in any
given essentially chief series. We need to exclude compact and discrete factors in a
way that is invariant under association.

Compactness and discreteness themselves are not invariant under association,
even amongst non-abelian chief factors. However, there is a related property that is
invariant.

Definition 7 The quasi-centre QZ.G/ of a topological group G is the set of all
elements x 2 G such that CG.x/ is open in G. A t.d.l.c.s.c. group G is quasi-discrete
if its quasi-centre is dense.

Discrete factors of a t.d.l.c.s.c. group are certainly quasi-discrete. Profinite chief
factors are direct products of finite simple groups, so they are also quasi-discrete
(see for instance [14, Lemma 8.2.3]).

In a t.d.l.c.s.c. group (more generally, in any Polish group), a closed subgroup has
countable index if and only if it is open; in particular, an element is quasi-central if
and only if its conjugacy class is countable. It also follows from second-countability
that every dense subgroup contains a countable dense subgroup. Consequently, a
t.d.l.c.s.c. group is quasi-discrete if and only if it has a countable dense normal
subgroup. Given a normal compression  W A ! B, if A has a countable dense
normal subgroup D, then  .D/ is a countable dense subnormal subgroup of B,
which does not allow us to conclude directly that B is quasi-discrete. However,
quasi-discreteness is sufficiently well-behaved under normal compressions that the
following holds.

Theorem 7 (See [13, Theorem 7.15]) Let a be a chief block of a t.d.l.c.s.c. group
G. Then either all representatives of a are quasi-discrete, or none of them are.

It now makes sense to define a class of chief blocks that excludes quasi-discrete
chief factors.

Definition 8 A chief factor K=L of a t.d.l.c.s.c. group is robust if it is not quasi-
discrete; equivalently, QZ.K=L/ D f1g. We say a chief block a is robust if all
(equivalently, some) of its representatives are robust.

Because robust chief factors cannot be associated to compact or discrete chief
factors, we obtain the following corollary of Theorems 6 and 7.

Corollary 5 Let G be a compactly generated t.d.l.c.s.c. group and let

f1g D A0 � A1 � � � � � Am D G and f1g D B0 � B1 � � � � � Bn D G

be essentially chief series for G. Then the association relation induces a bijection
between fAi=Ai�1 robust j 1 � i � mg and fBj=Bj�1 robust j 1 � j � ng.
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Consequently, the set Br
G of robust blocks of G is finite, and each robust block is

represented exactly once in the factors of any given essentially chief series.

3.4 Canonical Representatives of Chief Blocks

We now obtain canonical representatives for the chief blocks. To discuss the
relationship between normal subgroups and chief blocks, it will be useful to define
what it means for a normal subgroup or factor to cover a block:

Definition 9 Let G be a t.d.l.c.s.c. group, let a be a chief block and let K � L be
a closed normal subgroup of G. Say K=L covers a if there exists L � B < A � K
such that A=B 2 a. We say K covers a if K=f1g does.

Note that by Theorem 6, given any chief block a and normal factor K=L, there
are three mutually exclusive possibilities:

• L covers a, which occurs if and only if L — CG.a/;
• G=K covers a, which occurs if and only if K � CG.a/;
• K=L covers a, which occurs if and only if L � CG.a/ and K — CG.a/.

In particular, CG.a/ is the unique largest normal subgroup of G that does
not cover a. Thus we obtain a canonical representative for a, the uppermost
representative:

Proposition 4 ([11, Proposition 7.4]) Let a be a chief block of a Polish group G.
Then G=CG.a/ has a unique smallest closed normal subgroup Ga=CG.a/. Given any
A=B 2 a, then Ga=CG.a/ is an internal compression of A=B.

For the existence of an analogous lowermost representative, there would need to
be a smallest closed normal subgroup K of G such that K covers a, in other words,
K — CG.a/. An easy commutator argument shows that the set K of closed normal
subgroups K such that K — CG.a/ is closed under finite intersections. However, in
general we cannot expect K to be closed under arbitrary intersections. Consider for
instance the situation when G is a finitely generated non-abelian discrete free group
and G=N is an infinite simple group. Then a D ŒG=N� is covered by every finite
index normal subgroup and G is residually finite, so K has trivial intersection; yet
the trivial group clearly does not cover a.

We say a is minimally covered if there is in fact a least elementGa of K, in other
words, K is closed under arbitrary intersections. The normal factor Ga=CGa.a/ is
then the lowermost representative of a.

Proposition 5 ([11, Proposition 7.13]) Let a be a minimally covered block of a
Polish group G. Then Ga has a unique largest closed G-invariant subgroup CGa.a/.
Given any A=B 2 a, then A=B is an internal compression of Ga=CGa.a/.

One can picture a minimally covered block a as a kind of bottleneck in the lattice
L of closed normal subgroups of G. More precisely,L is partitioned into a principal
filter and a principal ideal: every closed normal subgroup K of G satisfies exactly
one of the inclusions K � Ga or K � CG.a/.
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In contrast to the situation for discrete groups, we find that as soon as we restrict
to robust blocks of compactly generated groups, we do in fact obtain a lowermost
representative. This is not so surprising when one considers that the minimally
covered property is essentially a chain condition on closed normal subgroups, and
that just such a chain condition is provided by Theorem 3.

Proposition 6 ([12, Proposition 4.10]) Let a be a robust block of a compactly
generated t.d.l.c.s.c. group G. Then a is minimally covered.

To summarise the situation for compactly generated t.d.l.c.s.c. groups: to any
t.d.l.c.s.c. group G we have associated two canonical finite sets of chief factors,
namely the uppermost representatives and the lowermost representatives of the
robust blocks. Moreover, given an arbitrary chief factor K=L of G, then either K=L
is quasi-discrete, or else K=L interpolates between the lowermost and uppermost
representatives of the corresponding block a D ŒK=L�, in the sense that we have
internal compressions

Ga=CGa.a/! K=L! Ga=CG.a/:

The minimally covered property will also be important later, when studying
blocks of characteristically simple groups (in particular, those groups that arise as
chief factors of some larger group).

Normal compressions respect several of the properties of non-abelian chief
factors discussed so far.

Theorem 8 (See [11, §8]) Let  W A ! B be a normal compression of t.d.l.c.s.c.
groups. Then there is a canonical bijection e W BA ! BB such that, for a; b 2
BA:

(i) a � b if and only if e .a/ � e .b/;
(ii) a is robust if and only if e .a/ is robust;
(iii) a is minimally covered if and only if e .a/ is minimally covered.

Corollary 6 Let K1=L1 and K2=L2 be associated non-abelian chief factors of a
t.d.l.c.s.c. group G. ThenBK1=L1 andBK2=L2 are canonically isomorphic as partially
ordered sets, in a way that preserves the robust blocks and the minimally covered
blocks.

4 The Structure of Chief Factors

We now turn our attention from the existence and uniqueness of chief factors, to
the structure of a chief factor H D K=L as a topological group in its own right.
Alternatively, we are interested in the structure of t.d.l.c.s.c. groups H that are
(topologically) characteristically simple, meaning that a non-trivial subgroupN of
H that is preserved by every automorphism of H as a topological group is necessarily
dense in H.
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Recall that our ambition in this article is “decomposing groups into simple
pieces”. Accordingly, we will not attempt to decompose further a t.d.l.c.s.c. group
H that is topologically simple, that is, such that every normal subgroup is dense.
If H is a chief factor of a t.d.l.c.s.c. group G that is not topologically simple, then
H has a non-trivial lattice of closed normal subgroups and we can investigate the
action of G on this lattice. (Analogously, if H is a characteristically simple group,
we can investigate the action of Aut.H/ on the lattice of closed normal subgroups.)
Of course, we can take advantage of the fact that canonical structures arising from
the collection of normal subgroups, such as the partially ordered set BH of chief
blocks of H, or the subset Bmin

H of minimally covered blocks, must also be preserved
by automorphisms of H. However, here we run into the difficulty that the strong
existence results we have so far for (minimally covered) chief factors only apply to
compactly generated t.d.l.c.s.c. groups, and there is no reason for H to be compactly
generated, even if G is.

In this section, we will focus attention on the situation where H has at least
one minimally covered block. In Sect. 6 we will see that in fact, we can ensure the
existence of minimally covered blocks of H quite generally, even without compact
generation, as long as H has sufficient ‘topological group complexity’.

4.1 Quasi-Products

Apart from being topologically simple, the tamest normal subgroup structure we can
hope for in H is that H resembles a direct product of topologically simple groups, in
that it has a (finite or countable) collection fSi j i 2 Ig of closed normal subgroups,
each a copy of a topologically simple group S, such that H contains the direct sum of
the Si as a dense subgroup. However, even in this situation, the copies of Si may be
combined in a more complicated way than a direct product. (For one thing, the direct
product of infinitely many non-compact groups is not even locally compact.) We
now introduce a definition of quasi-product, generalising the definition of Caprace–
Monod in order to account for possibly infinite sets of quasi-factors.

Definition 10 Let G be a topological group and let S be a set of non-trivial closed
normal subgroups of G. Given I � S, define GI WD hN 2 Ii.
.G;S / is a quasi-product (or that G is a quasi-product of S ) if GS D G and

the map

d W G 7!
Y

N2S

G

GSnN
I g 7! .gGSnN/N2S

is injective. We then say S is a set of quasi-factors of G.
We have already seen a general situation in which quasi-products occur. The

following is an easy consequence of the way normal compressions factor through
the semidirect product:
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Corollary 7 Let  W A! B be a normal compression of Polish groups and let G D
AÌ B. Then G is a quasi-product of two copies of A, namely A1 D f.a; 1/ j a 2 Ag
and A2 D f.a�1;  .a// j a 2 Ag. We have G D A1 	 A2 abstractly if and only if  
is surjective.

Quasi-products are straightforward to identify in the case of centreless groups.

Lemma 3 (See [11, Proposition 4.4]) Let G be a topological group and letS be a
set of closed normal subgroups of G. Suppose the centre Z.G/ is trivial. Then G is a
quasi-product if and only if GS D G and any two distinct elements ofS commute.

We can now state the Caprace–Monod structure theorem for compactly generated
characteristically simple t.d.l.c. groups.

Theorem 9 ([4, Corollary D]) Let G be a topologically characteristically simple
locally compact group. Suppose that G is compactly generated and neither compact,
nor discrete, nor abelian. Then G is a quasi-product of finitely many copies of a
compactly generated topologically simple group S.

Remark 2 It is unknown if the conclusion of this theorem can be improved to say
that G is a direct product of copies of S. It would be enough to show that there
is no normal compression  W S ! T into a t.d.l.c.s.c. group where Z.T/ D f1g
and  .S/ ¤ T. Note that given any such normal compression, T would itself be
compactly generated and topologically simple, but clearly not abstractly simple. So
the question of whether such characteristically simple groups are necessarily direct
products of simple groups is closely related to the open question of whether every
compactly generated topologically simple t.d.l.c.s.c. group is abstractly simple.

Away from the case of compactly generated characteristically simple groups,
there are many more possibilities for quasi-products; examples are given in [4,
Appendix II]. If we allow infinitely many quasi-factors, there is a general con-
struction. Notice that if .Gi/i2N is a sequence of non-compact t.d.l.c.s.c. groups,
then

Q
i2N Gi cannot be locally compact. However, given a choice of compact open

subgroups of Gi, there is a natural way to obtain a locally compact quasi-product of
.Gi/i2N.

Definition 11 Let .Gi/i2N be a sequence of t.d.l.c.s.c. groups, and for each i let Ui

be a compact open subgroup of Gi. The local direct product P WD L
i2N.Gi;Ui/

is the set of functions from N to tGi (with pointwise multiplication) such that
f .i/ 2 Gi for all i and f .i/ 2 Ui for all but finitely many i. There is a natural inclusion
 WQi2N Ui ! P; we give P the unique group topology that makes  continuous and
open.

It is easily seen that the local direct product is a t.d.l.c.s.c. group, and that it
is a quasi-product with the obvious factors. In general, the isomorphism type ofL

i2N.Gi;Ui/ is sensitive to the choice of Ui as well as Gi. So there will be many
different local direct products of copies of a given group. Nevertheless, all local
direct products of copies of a given t.d.l.c.s.c. group occur as chief factors:

Proposition 7 Let .Si/i2N be a sequence of copies of a fixed topologically simple
t.d.l.c.s.c. group S, and for each i let Ui be a compact open subgroup of Si
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(no consistency is required in the choice of Ui). Then
L

i2N.Si;Ui/ occurs as a
chief factor of a t.d.l.c.s.c. group.

Proof (sketch) Let F be the group of permutations of N of finite support, equipped
with the discrete topology. It is easily verified that F admits an action on P DL

i2N.Si;Ui/ given by setting . f :g/.i/ D g. f�1.i// for f 2 F, g 2 P and i 2 N.
(Here we exploit the fact that P is not sensitive to the choice of any finite subset
of the compact open subgroups Ui.) Moreover, the semidirect product G WD P Ì F
with this action of F is a t.d.l.c.s.c. group with the product topology. We see that the
intersection

T
i2N CG.Si/ is trivial, where Si is regarded as a subgroup of P in the

natural way. Thus given a non-trivial closed normal subgroup K of G, then ŒK; Si� ¤
f1g for some i, which implies that K � Si for that i and hence K � P. Thus P is
the smallest non-trivial closed normal subgroup of G; in particular, P=f1g is a chief
factor of G. ut

To some extent, the local direct product can also be used as a model of an
arbitrary t.d.l.c.s.c. quasi-product.

Theorem 10 ([11, Proposition 4.8] and [13, Corollary 6.20]) Let .G;S / be a
quasi-product such that G is a t.d.l.c.s.c. group and let U be a compact open
subgroup of G. Then S is countable. Moreover, there is a canonical normal
compression

 W
M

N2S
.N;N \ U/! G

such that  restricts to the identity on each N 2 S.

4.2 Extension of Chief Blocks

If H has a closed normal subgroup S that is non-abelian and topologically simple,
then in particular H has a chief factor, namely S=f1g. Clearly S=f1g is the lowermost
representative of its block, so the corresponding block is minimally covered.

If H is a chief factor of some larger group G, say H D K=L, we can think of it
as the chief factor of G ‘generated’ by a chief block of K (namely, the block of K
corresponding to S). This situation can be generalised to talk about how chief blocks
of a closed subgroup K of G form chief blocks of G.

Definition 12 Let G be a Polish group, let H be a closed subgroup of G and let
a 2 BH . Say that b 2 BG is the extension of a to G, and write b D aG, if for every
normal factor K=L of G, then K=L covers b if and only if .K\H/=.L\H/ covers a.

Extensions of blocks are unique, when they exist. Extensions are also transitive:
given H � R � G, and a 2 BH , we have aG D .aR/G whenever either side of this
equation makes sense. It is not clear in general which blocks extend from which
subgroups. However, extensions of minimally covered blocks are better-behaved.
Write Bmin

G for the set of minimally covered blocks of G.
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The following extendability criterion will be useful later.

Lemma 4 Let G be a Polish group, let K be a closed subgroup of G and let a 2
Bmin

K . Then a extends to G if and only if there is b D aG 2 Bmin
G such that Gb \ K

covers a and CG.b/\ K does not cover a.

Proof Suppose a extends to G, with b D aG. Let K be the set of closed normal
subgroups of G that cover b. Then L\K covers a for all L 2 K; since a is minimally
covered,

T
L2K L \ K covers a; hence

T
L2K L covers b. Thus b is minimally

covered. Certainly Gb \ K covers a and CG.b/\ K does not cover a.
Conversely, suppose there exists b 2 Bmin

G such that Gb\K covers a and CG.b/\
K does not cover a. Let L be a closed normal subgroup of K. If L covers b, then
L � Gb, so L\ K � Gb \ K, and hence L\ K covers a. If L does not cover b, then
L � CG.b/, so L\K � CG.b/\K, and hence L\K does not cover a. Thus b is the
extension of a to G. ut

If H is normal in G, the extendability criterion is always satisfied.

Proposition 8 ([11, Proposition 9.8]) Let G be a Polish group, let K be a closed
normal subgroup and let a 2 Bmin

K . Then a extends to a minimally covered block
b WD aG of G. The lowermost representative Gb=CGb.b/ of b is formed from the
following subgroups of K:

Gb D hgKag�1 j g 2 GiI CGb.b/ D Gb \
\

g2G
gCK.a/g

�1:

Corollary 8 Given a Polish group G and a closed normal subgroup K, there is a
well-defined map � W Bmin

K ! Bmin
G given by a 7! aG.

Since K is normal in G, we have an action of G on Bmin
K by conjugation. We can

describe the structure of � using the partial order on Bmin
K together with conjugation

action of G.

Theorem 11 ([13, Theorem 9.13]) Let G be a Polish group, let K be a closed
normal subgroup and let a; b 2 Bmin

K . Then aG � bG if and only if there exists
g 2 G such that g:a � b.

4.3 Three Types of Chief Factor

Let G be a Polish group with K a closed normal subgroup of G, let � W Bmin
K ! Bmin

G
be the extension map and fix c 2 Bmin

G . There are three possibilities for ��1.c/:

1. ��1.c/ is empty;
2. ��1.c/ is a non-empty antichain (in other words a 6< b for all a; b 2 ��1.c/):

then 8a; b 2 ��1.c/ 9g W g:a D b.
3. ��1.c/ is non-empty and not an antichain: then 8a; b 2 ��1.c/ 9g W g:a < b.
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Now let K=L be a non-abelian chief factor of the Polish group G. We may as
well pass to G=L, in other words we may assume L D f1g and K is a minimal
closed normal subgroup of G. Then c D ŒK=f1g� 2 Bmin

G .
We still have a map � W Bmin

K ! Bmin
G . But now, since K is itself a chief factor,

we have aG D c for every a 2 Bmin
K . So ��1.c/ D Bmin

K , and hence Bmin
K has one of

the forms (1), (2), (3) described above.

Definition 13 Let H (D K=L) be a topologically characteristically simple Polish
group (for instance, a chief factor of some Polish group). We say H is of:

1. weak type if Bmin
H D ;;

2. semisimple type if Bmin
H is a non-empty antichain;

3. stacking type if Bmin
H has a non-trivial partial order.

Note that the types are completely determined by the internal structure of H: we
no longer need to refer to the ambient group.

We recall moreover that if K1=L1 and K2=L2 are associated non-abelian chief
factors, then Bmin

K1=L1
Š Bmin

K2=L2
as partially ordered sets. So all representatives of a

chief factor are of the same type, and it makes sense to talk about the type of a chief
block.

To justify the terminology, we note that ‘semisimple type’ chief factors do indeed
break up into topologically simple pieces:

Proposition 9 Let H be a Polish chief factor of semisimple type. Then H is a quasi-
product of copies of a topologically simple group.

Proof Without loss of generality we may suppose H is a minimal non-trivial closed
normal subgroup of some ambient group G. Let a 2 Bmin

H and let K D Ha. Note
that ŒK;K� also covers a, so we must have K D ŒK;K�.

Let g 2 G and suppose that K covers g:a. Then the lowermost representative L
of g:a is a subgroup of K. It follows that every subgroup that covers a, also covers
g:a; this is only possible if g:a � a. Since Bmin

H is an antichain, we must have
a D g:a. In particular, we see that M D CK.a/ does not cover g:a for any g 2 G,
so M �Tg2G CH.g:a/. On the other hand

T
g2G CH.g:a/ is a proper G-invariant

subgroup of H; by minimality we conclude that M is trivial. Thus K=f1g 2 a, in
other words K is a minimal non-trivial closed normal subgroup of H.

The minimality of K ensures that, whenever g 2 G is such that gKg�1 ¤ K,
then K \ gKg�1 D f1g. Since both K and gKg�1 are normal in H, it follows that
in fact ŒK; gKg�1� D f1g. Moreover, since H is a minimal non-trivial closed normal
subgroup of G, we must have H D hS i where S D fgKg�1 j g 2 Gg. Since H is
non-abelian and characteristically simple, Z.H/ D f1g. Since distinct elements of
S commute, we conclude by Lemma 3 that .H;S / is a quasi-product. In particular
H is a quasi-product of copies of K and there is an internal compression from K to
H=C, where C D hS n Ki. We see that H=C is a representative of a, so H=C has
no proper non-trivial closed normal (equivalently,H-invariant) subgroups and hence
is topologically simple. By Corollary 1, every non-trivial closed normal subgroup
of K has dense image in H=C. It can then be seen [11, Proposition 3.8] that every
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non-trivial closed normal subgroup of K contains the derived group of K; since K is
topologically perfect, we conclude that K is topologically simple. ut

At this level of generality, weak type does not give us much to work with. As far
as we know, a characteristically simple Polish group could be very complicated, but
nevertheless not have any minimally covered blocks. The situation is different in the
class of t.d.l.c.s.c. groups, as we will see in Sect. 6: here we have a precise notion
of complexity, and we can control the structure of high-complexity chief factors via
essentially chief series of compactly generated open subgroups.

The most interesting of the three types (and in some sense the generic type, at
least in t.d.l.c.s.c. groups) is stacking type. If K is a minimal closed normal subgroup
of G of stacking type, then K has a characteristic collection

N D fKa j a 2 Bmin
K g

of closed normal subgroups, such that for all A;B 2 N (including the case A D B),
there exists g 2 G such that A < gBg�1. To put this another way, we have
a characteristic collection C of chief factors of K (specifically, the lowermost
representatives of elements of Bmin

K ), such that for every pair A1=B1;A2=B2 2 C,
then a G-conjugate of A1=B1 appears as a normal factor of the outer automorphism
group of A2=B2 induced by K.

4.4 Examples of Chief Factors of Stacking Type

To see that stacking type chief factors occur naturally in the class of t.d.l.c.
groups, we consider a construction of groups that act on trees, fixing an end. This
construction and generalisations will be discussed in detail in a forthcoming article.

Let T! be a tree (not necessarily locally finite) in which every vertex has
degree at least 3, with a distinguished end ı. We define Aut.T!/ to be the group
of graph automorphisms that fix ı, equipped with the usual permutation topology
(equivalently, the compact-open topology). Then there is a function f from VT! to
Z with the following properties:

(a) For every edge e of the tree, we have j f .o.e//� f .t.e//j D 1;
(b) We have f .t.e// > f .o.e// if and only if e lies on a directed ray towards ı.

Thus f .v/ increases as we approach ı. The function f is unique up to an additive
constant; its set f f�1.i/ j i 2 Zg of fibres is therefore uniquely determined. The
fibres are the horospheres centred at ı, and the sets fv 2 VT! j f .v/ � ig for i 2 Z

are the horoballs centred at ı.
We also have an associated partial order on VT!: say v � w if there is a path

from v to w in the direction of ı, in other words, a path v0v1 : : : vn, with v D v0 and
w D vn, such that f .vi�1/ < f .vi/ for 1 � i � n.
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Now let G be a topological group acting faithfully and continuously on T!, such
that G fixes ı. For each vertex v 2 VT!, define the rigid stabiliser ristG.v/ of v to
be the subgroup of G that fixes every vertex w such that w 6< v (including v itself).
Let Gi D hristG.v/ j v 2 f�1.i/i. Note that given w 2 VT! such that f .w/ < i, then
there exists v 2 f�1.i/ such that w < v and hence ristG.w/ � ristG.v/. In particular,
we have Gi � GiC1 for all i 2 Z. Since G preserves the set of horospheres, for
every g 2 G, there exists j such that f .gv/ D f .v/C j for all v 2 VT!, and hence
gGig�1 D GiCj for all i 2 Z. Thus E D S

i2ZGi is a closed normal subgroup of
G. Under some fairly mild assumptions, E is actually a minimal non-trivial normal
subgroup of G; in particular, E is a chief factor of G.

Proposition 10 Let G and E be as described above. Suppose that:

(a) For all v 2 f�1.0/, the group ristG.v/ is topologically perfect and does not fix
any end of T! other than ı;

(b) There exists h 2 G and v 2 VT! such that f .hv/ ¤ f .v/.

Then E is a minimal non-trivial normal subgroup of G.

Proof Condition (a) ensures that E is non-trivial. Let K be a non-trivial closed
subgroup of E, such that K is normal in G. We must show that K D E.

Condition (b) in fact ensures that h has hyperbolic action on T, with ı as one of
the ends of the axis of h. Without loss of generality f .hv/ D f .v/Cj for all v 2 VT!,
where j > 0. Consequently G0 is not normal in G, and indeed E D S

n�0 hnGih�n
for any given i 2 Z. Note also that f .gv/ D f .v/ for all g 2 E.

Let v 2 VT! be such that v is not fixed by K. There is then n 2 Z such that
f .hn�1v/ < 0 but f .hnv/ � 0. Let w 2 VT! be such that hn�1v < w � hnv and
f .w/ D 0. Then hnv is not fixed by K, say khnv ¤ hnv. We see that kw ¤ w but
f .kw/ D f .w/, and hence ristG.w/ and ristG.kw/ have disjoint support. In particular,
y and kzk�1 commute for all y; z 2 ristG.w/. Given y; z 2 ristG.w/, we therefore
have

Œ y; z� D Œ y; z.kz�1k�1/� D Œ y; Œz; k�� 2 K:

Since ristG.w/ is topologically perfect, we conclude that ristG.w/ � K. Since
hn�1v < w, we see that ristG.hn�1v/ � ristG.w/ � K; by conjugating by powers of
h, it follows that ristG.hmv/ � K for all m 2 Z.

Since ristG.w/ does not fix any end of T!, we see that K does not preserve the
axis of h. In particular, we could have chosen v to lie on the axis of h. Let us assume
we have done so.

Now let w0 2 VT! be arbitrary. Then for n sufficiently large (depending on w0)
we have w0 � hnv, and hence ristG.w0/ � ristG.hnv/ � K. So ristG.w0/ � K for
every vertex w0, and hence K D E. ut

It is clear that E is not of semisimple type, so to obtain a chief factor of stacking
type, it suffices to impose conditions to ensure the existence of a minimally covered
block of E. We leave the details to the interested reader.
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Example 2 Let T! be a regular locally finite tree of degree d � 6 with a
distinguished end ı. Let G be the subgroup of Aut.T/, such that the local action
at every vertex is the alternating group Alt.d/ of degree d. Then for each v 2 VT,
the rigid stabiliser ristG.v/ is an iterated wreath product of copies of Alt.d�1/. The
subgroup E described in Proposition 10, which in this case is actually the set of all
elliptic elements of G, is then a chief factor of G of stacking type.

Considering the above example, one might still imagine that stacking type chief
factors, by virtue of being characteristically simple, are ‘built out of topologically
simple groups’ in an easily-understood way. The following much more general
construction, which is inspired by the construction of Adrien Le Boudec in [9],
should strike a cautionary note for any attempt to reduce the classification of chief
factors to the topologically simple case.

Example 3 Let T! be a tree with a distinguished end ı, such that every vertex has
a countably infinite set of neighbours. We set a colouring function 
 W ET! ! N,
such that 
 ı r D 
 , there is a ray towards ı in which every edge has the colour 1,
and at every vertex v, 
 restricts to a bijection cv between the set t�1.v/ of in-edges
and N. Given h 2 Aut.T!/, the local action of h at v is a permutation of N given
by 
.h; v/ D c�1hv ı h ı cv .

Let P be a transitive t.d.l.c.s.c. subgroup of Sym.N/ in the permutation topology,
and let U be a compact open subgroup of P. Define E.P;U/ to consist of all elements
h of Aut.T!/ such that 
.h; v/ 2 G for all v 2 VT! and 
.h; v/ 2 U for
all but finitely many vertices. We see that E.P;U/ is a subgroup of Aut.T!/. At
the moment it is not locally compact, but we can rectify this by choosing a new
topology.

Let v 2 VT and consider the stabiliser E.U;U/v of v in E.U;U/. It is
straightforward to see that E.U;U/v is a closed profinite subgroup of Aut.T!/.
Moreover, there is a unique group topology on E.P;U/ so that the inclusion of
E.U;U/v is continuous and open; this topology does not depend on the choice of v.
We now equip G D E.P;U/ with this topology, and see that G is a t.d.l.c.s.c. group.

Regardless of the choice of P and U, the group G acts transitively on the vertices
of v, and for each horosphere f�1.i/, the fixator f�1.i/ is a closed subgroup of Gi of
G that is quasi-product of the rigid stabilisers of vertices in f�1.i/. In particular, we
see that for all i 2 Z, we have Gi=Gi�1 ŠL

j2N.P;U/. In turn, every element of G
with elliptic action on T! can be approximated in the topology of G by elements
of
S

i2ZGi. Thus E D S
i2ZGi is a closed subgroup of G consisting of all elliptic

elements of G. We see that E.U;U/v � E, so E is open, and in fact G Š E Ì Z as a
topological group.

Suppose now that P is topologically perfect. It then follows that ristG.v/ is
topologically perfect, and hence E is a chief factor of G by Proposition 10.

Given a t.d.l.c.s.c. group P, then P occurs as a transitive subgroup of Sym.N/
provided that P does not have arbitrarily small compact normal subgroups. There
are also many examples of topologically perfect t.d.l.c.s.c. groups; a general
construction is to take the normal closure of Alt.5/ in G o Alt.5/, where G is
some given t.d.l.c.s.c. group. So the conditions on P for Example 3 to produce a
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chief factor are quite weak, and by no means ensure that P has a well-understood
(sub-)normal subgroup lattice. At the same time, a local direct product of copies
of P appears as a normal factor of the chief factor E. So we have effectively
buried the subnormal subgroup structure of P inside a chief factor E of another
t.d.l.c.s.c. group. One can also take the resulting group E, set P2 D E, and repeat
the construction, iterating to produce increasingly complex chief factors.

5 Interlude: Elementary Groups

To introduce the right notion of topological group complexity for the next section,
we briefly recall the class of elementary t.d.l.c.s.c. groups and their decomposition
rank, as introduced by Wesolek. For a detailed account, see [16]; a more streamlined
version is also given by Wesolek in these proceedings.

We will write G D lim�!Oi as a shorthand to mean that G is a t.d.l.c.s.c. group,
formed as an increasing union of compactly generated open subgroups Oi.

Definition 14 The class E of elementary t.d.l.c.s.c. groups is the smallest class of
t.d.l.c.s.c. groups such that

(i) E contains all countable discrete groups and second-countable profinite groups;
(ii) Given a t.d.l.c.s.c. group G and K E G such that K;G=K 2 E, then G 2 E;

(iii) Given G D lim�!Oi such that Oi 2 E, then G 2 E.

Notice that if G is in the class S of compactly generated, non-discrete,
topologically simple t.d.l.c.s.c. groups, then G is not elementary. More generally, an
elementary group cannot involve a group from S, meaning that if G is elementary,
then we cannot have closed subgroups K E H � G such that H=K 2 S. It
is presently unknown if the converse holds. A candidate for a counterexample is
the Burger–Mozes universal group U.C2/ acting on the 3-regular tree mentioned
in Remark 1; one can show that U.C2/ is non-elementary, but it is not clear if it
involves any groups in S.

Elementary groups admit a canonical rank function, taking values in the count-
able successor ordinals, called the decomposition rank �.G/ of G. It will suffice
for our purposes to recall some properties of how this rank behaves.

Write !1 for the set of countable ordinals; for convenience, if G is not elementary
we will define �.G/ D !1. We also define the discrete residual Res.G/ of a t.d.l.c.
group G to be the intersection of all open normal subgroups of G.

Theorem 12 (See [16, §4.3]) There is a unique mapping � W E ! !1 with the
following properties:

(i) �.1/ D 1;
(ii) If G ¤ 1 and G D lim�!Oi, then �.G/ D supf�.Res.Oi//g C 1.
Theorem 13 Let G be a t.d.l.c.s.c. group.
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(i) If  W H ! G is a continuous injective homomorphism, then �.H/ � �.G/.
([16, Corollary 4.10])

(ii) If K is a closed normal subgroup of G, then �.G=K/ � �.G/ � �.K/C�.G=K/.
([10, Lemma 6.4])

(iii) If K is a closed normal cocompact subgroup of G, then �.K/ D �.G/.
([13, Lemma 3.8])

Of particular interest is the class fG 2 E j �.G/ D 2g. These are the non-trivial
t.d.l.c.s.c. groups G such that, for every compactly generated open subgroup O of G,
thenO is residually discrete. In fact, in this situation O is a SIN group, that is, O has a
basis of identity neighbourhoods consisting of compact open normal subgroups; this
was shown in [4, Corollary 4.1]. Clearly both profinite groups and discrete groups
have rank 2; we also note that this class includes the quasi-discrete groups.

Lemma 5 If G is a non-trivial t.d.l.c.s.c. group such that QZ.G/ is dense, then
�.G/ D 2.
Proof Let O be a compactly generated open subgroup of G and let U be a compact
open subgroup of O. Since QZ.O/ D QZ.G/\ O is dense in O and O is compactly
generated, we can choose a finite subset A of QZ.O/ such that O D hA;Ui. The
group V DTa2A CU.a/ is then an open subgroup of U. Since U is a profinite group,
there is a base of identity neighbourhoods consisting of open normal subgroupsW of
U. Given W � V such that W is U-invariant, we see that W is centralised by hAi and
hence W is normal in O. Thus O has a base of identity neighbourhoods consisting
of open normal subgroups. In particular, Res.O/ D f1g and hence �.Res.O// D 1.
Since O was an arbitrary compactly generated open subgroup of G, it follows that
�.G/ D 2 as claimed. ut

It follows from Theorems 5 and 13 that normal compressions preserve the rank.

Proposition 11 ([13, Proposition 5.4]) Let  W A ! B be a normal compression
where A and B are t.d.l.c.s.c. groups. Then �.A/ D �.B/.
Proof By Theorem 13, we have �.A/ � �.B/. On the other hand, by Theorem 5
we have a closed embedding ˛ W A ! C and a quotient map ˇ W C ! B, such
that ˛.A/ is a cocompact normal subgroup of C. It then follows by Theorem 13 that
�.B/ � �.C/ D �.A/, so in fact �.A/ D �.B/. ut

In particular, given a chief block a, the rank of any representative of a is the same
as the rank of its uppermost representative. So given a block a 2 BG, one can define
�.a/ WD �.K=L/ for some/any representative K=L of a.

Corollary 9 Let G be a compactly generated t.d.l.c.s.c. group.

(i) Let a be a chief block of G such that �.a/ > 2. Then a is robust, and hence
minimally covered.

(ii) Suppose that �.G/ is infinite. Then there exist n 2 N and robust blocks
a1; : : : ; ak of G satisfying

�.G/ � �.a1/C �.a2/C � � � C �.ak/C n:
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Proof Part (i) follows from Lemma 5; part (ii) follows from Theorem 13 together
with the existence of essentially chief series, noting that every factor of such a series
that is not a robust chief factor has rank 2, and also that nC ˛ D ˛ whenever n 2 N

and ˛ is an infinite ordinal. ut

6 Building Chief Factors from Compactly Generated
Subgroups

6.1 Regional Properties

Unlike connected locally compact groups, t.d.l.c.s.c. groups are not necessarily
compactly generated. However, we can always write a t.d.l.c.s.c. group G as
G D lim�!Oi, where the groups Oi are open and compactly generated. In some
situations we can hope to extract features of G from properties that hold for a
sufficiently large compactly generated open subgroup. Such properties will then
appear in any increasing exhaustion of G by compactly generated open subgroups
Oi, independently of the choice of sequence .Oi/, and we can potentially use
the structure of compactly generated groups to describe that of non-compactly
generated groups. In this section, our aim is to use this approach to obtain chief
factors of G.

Definition 15 A property P of t.d.l.c.s.c. groups holds locally in G if every
sufficiently small compact open subgroup of G has the property. The property is
a local property if, whenever G has the property, then every open subgroup of G
also has it. For example, compactness is a local property.

A property P of t.d.l.c.s.c. groups holds regionally in G if every sufficiently
large compactly generated open subgroup has the property; that is, there is a
compact subset X such that, whenever X � O � G and O is a compactly generated
open subgroup of G, then O has P. The property is a regional property if the
following happens: given G and H are compactly generated t.d.l.c.s.c. groups such
that G is open in H, if G has the property, then so does H.

Some remarks on possibly controversial terminology are in order.

Remark 3 In topology, it is usual to use ‘local’ to refer to (small) open sets. In
classical group theory, ‘local’ more often refers to finitely generated subgroups.
Both notions are important in the theory of t.d.l.c. groups (with ‘compactly gener-
ated’ instead of ‘finitely generated’). To avoid overloading the word ‘local’, we have
chosen ‘regional(ly)’ to have the meaning ‘pertaining to compactly generated (open)
subgroups’. For example, the property that every compactly generated subgroup is
compact, which is unfortunately rendered as ‘locally elliptic’ in the literature, would
instead be ‘regionally compact’ or ‘regionally elliptic’.

Remark 4 Many authors define local properties to be such that G has the property
if and only if some open subgroup or subspace has it. However, it is useful here
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to distinguish between properties that are inherited ‘downwards’ (if G has it,
then so does an open subgroup) from those that are inherited ‘upwards’ (regional
properties).

The distinction between local and regional properties is neatly illustrated by
elementary decomposition rank: given a countable ordinal ˛, then ‘�.G/ � ˛’
is a local property whereas ‘�.G/ � ˛’ is a regional property. We also see by
Theorem 12 that for any ordinal˛, we have �.G/ � ˛C1 if and only if �.H/ � ˛C1
for all compactly generated open subgroups H of G.

The following is a surprisingly powerful example of a regional property.

Definition 16 Say a compactly generated t.d.l.c.s.c. group G has property RF if
there exists a Cayley–Abels graph � for G such that the action of G on � is faithful.

Lemma 6 RF is a regional property.

Proof We see that G has RF if and only if there is a compact open subgroup U
of G such that

T
g2G gUg�1 D f1g. Suppose that this is the case and that G occurs

as an open subgroup of the compactly generated t.d.l.c.s.c. group H. Then U is a
compact open subgroup of H, and we have

T
h2H hUh�1 � T

g2G gUg�1 D f1g.
Thus H has RF. ut

We define a t.d.l.c.s.c. group G to be regionally faithful if some (and hence
any sufficiently large) compactly generated open subgroup has RF. Note that this
allows, for example, G to be any discrete group, so the class of all regionally faithful
groups is not so well-behaved. However, as long as the quasi-centre is not too large,
we can use the regionally faithful property to obtain minimal non-trivial closed
normal subgroups.

Definition 17 Say a t.d.l.c.s.c. group G has property M if QZ.G/ is discrete
(equivalently: G has a unique largest discrete normal subgroup) and every chain
of non-trivial closed normal subgroups of G=QZ.G/ has non-trivial intersection.

Lemma 7 M is a regional property, and regionally M groups have M. In a
group G withM, every non-trivial closed normal subgroup of G=QZ.G/ contains a
minimal one.

Proof Let G be a t.d.l.c.s.c. group, such that some compactly generated open
subgroup O of G has M. We must show that G has M.

We note first that QZ.G/ \ O D QZ.O/; since O is open, this ensures that
QZ.G/ is discrete. Moreover, the group G=QZ.G/ has a compactly generated open
subgroup isomorphic to O=QZ.O/. So we may assume QZ.G/ D QZ.O/ D f1g.

Let C be a chain of non-trivial closed normal subgroups of G. For each K 2 C,
we see that K is non-discrete, since any discrete normal subgroup of G would be
contained in QZ.G/. In particular, K \ O ¤ f1g. Thus fK \ O j K 2 Cg is a
chain of non-trivial closed normal subgroups of O; since O has M, the intersectionT

K2C K \ O is non-trivial, and hence L DTK2C K is non-trivial. Thus G has M.
The last conclusion follows by Zorn’s lemma. ut
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Proposition 12 Let G be a t.d.l.c.s.c. group. Suppose that QZ.G/ D f1g and G is
regionally faithful. Then G hasM; in particular, G has a minimal non-trivial closed
normal subgroup.

Proof Let O be a compactly generated open subgroup of G; choose O sufficiently
large that O acts faithfully on some Cayley–Abels graph � . Then QZ.O/ D f1g,
so O has no non-trivial discrete normal subgroups. Let C be a chain of non-trivial
closed normal subgroups of G. Then for each K 2 C, we see that K is not discrete,
and therefore has non-trivial local action on � . By Lemma 2, the intersection L DT

K2C K also has non-trivial local action on � ; in particular, L ¤ f1g. Thus O has
M, showing that G is a regionally M group. Hence G has M by Lemma 7. ut

Here we have a situation where we first obtain minimal normal subgroups
regionally, and then conclude that we have minimal normal subgroups globally.
More work is required to obtain an analogous result for chief factors that are
not necessarily associated to minimal normal subgroups. The key ingredients are
robustness (recall Sect. 3.3) and extension of chief blocks (recall Sect. 4.2), and the
use of the decomposition rank (as described in Sect. 5) to ensure the existence of
robust blocks of compactly generated open subgroups.

6.2 Regionally Robust Blocks

As we saw in Sect. 4.2, we can always extend minimally covered blocks from
normal subgroups. Remarkably, many blocks extend from open subgroups, and
moreover can be detected from compactly generated open subgroups.

Definition 18 Let G be a t.d.l.c.s.c. group and let a 2 BG. Say a is a regional block
if there exists H � G and b 2 BH such that H is compactly generated and open,
and a D bG. If b is robust, we say a is regionally robust. Write Brr

G for the set of
regionally robust blocks of G.

Note that regional blocks manifest ‘regionally’, because if a 2 H extends to
G, then it certainly extends to any H � O � G, including when O is compactly
generated and open. If G itself is compactly generated, then every block is regional
and ‘regionally robust’ just means ‘robust’.

Here is the main theorem of this section.

Theorem 14 (See [13, §8]) Let G be a t.d.l.c.s.c. group.

(i) Every regionally robust block of G is minimally covered and robust, and there
are at most countably many regionally robust blocks of G.

(ii) Let H � G, such that H is either open in G or closed and normal in G, and let
a 2 Brr

H . Then a extends to a regionally robust block of G.
(iii) Let N be a closed normal subgroup of G. Then every regionally robust block

G=N lifts to a regionally robust block of G.
(iv) Let K=L be a chief factor of G such thatBrr

K=L ¤ ;. Then ŒK=L� is a regionally
robust block of G.
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As a corollary, we observe that in any t.d.l.c.s.c. group G, a sufficiently complex
normal factor (in the sense of elementary decomposition rank) covers a regionally
robust block, and that sufficiently complex chief factors cannot be of weak type.

Corollary 10 Let G be a t.d.l.c.s.c. group. Let K=L be a normal factor of G such
that �.K=L/ > ! C 1.
(i) There exists L � B < A � K such that A=B is a chief factor of G and ŒA=B� is

regionally robust. If K=L is non-elementary, then A=B can also be chosen to be
non-elementary.

(ii) Suppose K=L is a chief factor of G. Then K=L is of semisimple or stacking type.

Proof Since �.K=L/ > ! C 1, there must be a compactly generated open subgroup
H of K=L such that �.H/ is infinite. It follows by Corollary 9 that H has a robust
block a. By Theorem 14, a extends to a regionally robust block of K=L and then to a
regionally robust block of G=L; this block in turn lifts to a regionally robust block b
of G. We see that b is covered by K=L, in other words, there exists L � B < A � K
such that A=B is a chief factor of G and ŒA=B� is regionally robust.

If K=L is non-elementary, we can chooseH to be non-elementary; by Corollary 9,
a can be chosen to be non-elementary; it then follows that �.b/ D !1, so A=B is non-
elementary.

Now suppose K=L is a chief factor of G. We have seen that K=L has a
regionally robust block, that is, Brr

K=L is non-empty; since regionally robust blocks
are minimally covered, it follows that K=L is not of weak type. Thus K=L must be
of one of the remaining two types, that is, semisimple type or stacking type. ut

We will now sketch the core part of the proof of Theorem 14, which is to prove
the following statement:
.
/ Let G be a t.d.l.c.s.c. group, let O be a compactly generated open subgroup

of G and let a be a robust block of O. Then a extends to G.

Lemma 8 Let H be a quasi-discrete t.d.l.c.s.c. group and let A=B be a non-trivial
normal factor of H. Then QZ.A=B/ > 1.

Proof We see that H=B is quasi-discrete, so we may assume B D f1g. Suppose
QZ.A/ D f1g. We see that QZ.H/ \ A is quasi-central in A, so QZ.H/ \ A D f1g.
Thus QZ.H/ and A commute. But QZ.H/ is dense in H, so A is central in H. In
particular A is abelian, so QZ.A/ D A, a contradiction. ut
Proof (Sketch Proof of .
/) For brevity we will write HO WD H \O.

Case 1: G is compactly generated.
Let .Gi/

n
iD0 be an essentially chief series for G. There must be some i such that

GO
iC1=GO

i covers a. By Lemma 8, GO
iC1=GO

i cannot be quasi-discrete, so GiC1=Gi

cannot be quasi-discrete. Thus GiC1=Gi is a robust, hence minimally covered, chief
factor of G. Set b D ŒGiC1=Gi�.

Let N=C be the uppermost representative of b. Since N � GiC1, we see that NO

covers a. On the other hand C centralises GiC1=Gi, so in particular CO centralises
GO

iC1=GO
i , and hence CO cannot cover a.
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Let I=J be the lowermost representative of b. Both I=J and NO=CO map
injectively to N=C; moreover QZ.N=C/ D f1g D QZ.I=J/ since b is robust. In
particular, I=J is not discrete.

The subgroup IOJ=J is non-trivial, so IOC=C is non-trivial. Since QZ.N=C/ D
f1g, it follows that IOC=C does not commute with the open subgroup NOC=C of
N=C. One can deduce that IO — CO.a/. Apply Lemma 4 to conclude b D aG.

Case 2: G is not compactly generated.
We can write G as G D lim�!Oi where O1 D O. By Case 1, ai extends to some

block ai WD aOi of Oi. Set D WD S
n�1

T
i�n COi.ai/. (In other words, D is the ‘limit

inferior’ of the centralisers COi.ai/.)
Observe that D\On D Ti�n COi.ai/ for all n. It follows that D is a closed normal

subgroup of G, and that DO does not cover a. In fact, one sees that D is the unique
largest closed normal subgroup of G such that DO does not cover a.

Letting N range over the closed normal subgroups of G, the property ‘NO covers
a’ is closed under arbitrary intersections (since a is minimally covered). So there is
a smallest closed normal subgroup M such that MO covers a.

We deduce that MD=D is the unique smallest non-trivial closed normal subgroup
of G=D. Set b WD ŒMD=D� and observe that M is the least closed normal subgroup
that covers b, whilst D D CG.b/. We conclude by Lemma 4 that b D aG. ut

7 Some Ideas and Open Questions

In this last section, we discuss some possible further directions for research into the
normal subgroup structure of t.d.l.c.s.c. groups, in particular focusing on the gaps
left by the results presented in the previous sections.

7.1 Elementary Groups of Small Rank

We have seen that G is a t.d.l.c.s.c. group and K=L is a normal factor such that
�.K=L/ > ! C 1, then K=L covers a (regionally robust) chief factor of G. As a
complement to such a result, we would like to be able to say something about normal
or characteristic subgroups of G when �.G/ � ! C 1.

For certain ranks �.G/, we can always produce a proper characteristic subgroup
of G. We will use the following fact:

Lemma 9 ([13, Proposition 3.10]) Let G be a t.d.l.c.s.c. group and let .Ri/ be an
increasing sequence of closed subgroups of G. Suppose NG.Ri/ is open for all i.
Then
�.
S

Ri/ D sup �.Ri/C ",
where " D 1 if sup �.Ri/ is a limit ordinal and " D 0 otherwise.
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Proposition 13 (See also [13, Proposition 3.18]) Let G be an elementary
t.d.l.c.s.c. group, G D lim�!Oi. Then exactly one of the following occurs:

(i) �.G/ D 	C 1 where 	 is a limit ordinal;
(ii) R DSRes.Oi/ is a closed characteristic subgroup of G, which does not depend

on the choice of .Oi/, such that �.G/ D �.R/C 1 and �.G=R/ D 2.
Proof Note that given K � H � G, then Res.K/ � Res.H/. In particular,S

Res.Oi/ is an increasing union of subgroups, so R is a closed subgroup of G.
Moreover, given a compactly generated open subgroup O of G, then Oi � O
eventually, so Res.Oi/ � Res.O/. Thus R is the closure of the union of all
discrete residuals of compactly generated open subgroups of G; in particular, R is
characteristic and does not depend on the choice of .Oi/.

We now have

�.G/ D supf�.Res.Oi//g C 1 and �.R/ D supf�.Res.Oi//g C ";

the latter by Lemma 9, where " D 0 unless sup �.Res.Oi// is a limit ordinal. If (i)
holds, then supf�.Res.Oi//g D 	 is a limit ordinal, so �.R/ � �.G/ and (ii) does not
hold. So from now on we may assume (i) fails, that is, �.G/ D ˛C2 for some ordinal
˛, and aim to show that (ii) holds. In this case, we see that supf�.Res.Oi//g D ˛C1
is not a limit ordinal, so �.R/ D ˛ C 1, in other words, �.G/ D �.R/C 1.

Certainly R < G, so �.G=R/ > 1. To show �.G=R/ D 2, it is enough to see
that every compactly generated open subgroup of G=R is a SIN group. Let O=R
be a compactly generated open subgroup of G=R. Then for i sufficiently large,
O � OiR, so O=R is isomorphic to a subgroup of a quotient of Oi=Res.Oi/. By [4,
Corollary 4.1], Oi=Res.Oi/ is a SIN group; subgroups and quotients of SIN groups
have SIN, so O=R is a SIN group. This completes the proof of (ii). ut

The following corollary follows easily.

Corollary 11 Let G be a non-trivial elementary t.d.l.c.s.c. group. Let

L D f˛ 2 !1 j ˛ D 2 or ˛ is a limit ordinalg:

(i) There is a non-trivial closed characteristic subgroup R of G such that �.R/ 2 L
and �.G/ < �.R/C !.

(ii) Suppose that G is characteristically simple. Then �.G/ 2 L.

For t.d.l.c.s.c. groups G with �.G/ � !C1, we can split into three cases: �.G/ D
2, �.G/ D ! C 1 and 2 < �.G/ < !. (Recall that the rank is never a limit ordinal.)

• If �.G/ D 2, then G D lim�!Oi where Oi has arbitrarily small open normal
subgroups. Many characteristically simple groups are of this form, and �.G/ D 2
is implied by several natural conditions on t.d.l.c.s.c. groups.
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• If 2 < �.G/ < ! then G has finite rank, and we obtain a finite characteristic
series

G D R0 > R1 > � � � > Rn D 1

such that �.Ri�1=Ri/ D 2.
• If �.G/ D !C 1, then G D lim�!Oi where each Oi has finite rank (but �.Oi/! !

as i ! 1), and so Oi admits a characteristic decomposition as in the previous
point. Perhaps G can be studied by comparing these characteristic series across
different Oi.

Problem 1 Develop a theory of normal/characteristic subgroups for t.d.l.c.s.c.
groups with �.G/ D 2.

This class includes all profinite and discrete second countable groups, so what
one hopes for are theorems that relate the more general situation to profinite/discrete
groups in an interesting way. The discrete case is too wild to deal with directly, but
at least in the profinite case, we know what the characteristically simple groups are.

Problem 2 Find examples of characteristically simple t.d.l.c.s.c. groups with
�.G/ D ! C 1, without using a ‘stacking’ construction.

There are known examples of non-discrete topologically simple groups of rank
2, but reaching rank ! C 1 is more difficult. By a ‘stacking’ construction, we
mean a construction similar to that of Sect. 4.4; similar constructions can be used
to produce weak type chief factors of rank ! C 1, but only because one obtains
a characteristically simple group in which every chief factor is abelian. More
interesting would be to find an example of a characteristically simple group of rank
! C 1 that has non-abelian chief factors, but such that none of those chief factors
are minimally covered.

7.2 Well-Foundedness of Stacking Chief Factors

If we have a subnormal chain K0 E K1 E � � � E Kn (n � 1) of closed subgroups
of some ambient t.d.l.c.s.c. group, then any minimally covered block a 2 Bmin

K0
will

extend to Kn. Let ai D aKi and let �i WBmin
Ki�1
!Bmin

Ki
be the extension map.

As the following proposition shows, we cannot produce essentially different
semisimple type factors by extending chief blocks from subnormal subgroups; all
we are doing is increasing the number of copies of the simple group and possibly
normally compressing those copies.

Proposition 14 (See [11, Proposition 9.21]) If an is of semisimple type, then so is
a, and ��1i .ai/ is an antichain for all i.

Once we are beyond rank !C1, we also cannot produce a weak type chief factor.
In other words, beyond this stage, the only way to increase the complexity of the
chief factor via extensions from subnormal subgroups is to produce chief factors of
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stacking type, and moreover to ‘stack’ the blocks repeatedly (meaning that ��1i .ai/
has a non-trivial partial order).

Given constructions like Sect. 4.4, we can certainly form n-fold stacking factors
for every n. Perhaps this can be continued transfinitely. However, for any given
stacking type chief factor, we might hope that we can reduce it to topologically
simple groups and groups of rank at most ! C 1. We thus have a well-foundedness
question.

Question 1 Suppose that G DW G0 is a topologically characteristically simple
t.d.l.c.s.c. group. If G0 is abelian, elementary with rank at most ! C 1, or of
semisimple type, we stop. Otherwise, we find a chief factor G1 WD K=L of G0
that is regionally robust. Continuing in this fashion produces a sequence G0;G1; : : :
of l.c.s.c groups. Is it the case that any such sequence halts in finitely many steps?
What about in the case that the group G is also elementary?

We do not know the answer even for elementary t.d.l.c.s.c. groups. In this case,
to prove well-foundedness it would be enough (assuming �.Gi/ > ! C 1 and Gi is
of stacking type) for every regionally robust chief factor GiC1 of Gi to be such that
�.GiC1/ < �.Gi/. All elementary examples we know of have this property.

7.3 Contraction Groups

On ‘large’ stacking type chief factors K=L, the ambient groupG has non-trivial local
dynamics, which in particular imply the existence of a non-trivial contraction group.

Definition 19 For ˛ 2 Aut.G/, con.˛/ WD fx 2 G j ˛n.x/! 1 as n!1g.
Given g 2 G, con.g/ WD fx 2 G j gnxg�n ! 1 as n!1g.

Proposition 15 Let G be a t.d.l.c.s.c. group and let K=L be a chief factor of stacking
type, such that �.K=L/ > ! C 1. Then there exists g 2 G and L < A C K such that
gAg�1 < A and A=gAg�1 is non-discrete. Moreover, for any such g and A, we have
con.g/\ A — L.

We appeal to the following observation due to George Willis:

Lemma 10 (Willis) Let H be a t.d.l.c. group, let ˛ 2 Aut.H/ and let D be a closed
subset of H such that ˛.D/ � D and

T
n�0 ˛.D/ D f1g. Then D \ con.˛/ is a

neighbourhood of the identity in D.

Proof Let U be a compact open subgroup of H, let U� D T
n�0 ˛�n.U/ and let

U�� D Sn�0 ˛�n.U�/.
Let V be a compact open identity neighbourhood in H. We see that ˛m.D/\U is

a decreasing sequence of closed sets with intersection f1g. By the compactness of U,
we have ˛m.D/\U � V for m sufficiently large, showing that ˛m.D/\U � con.˛/.
On the other hand, given x 2 D \ U��, then for n sufficiently large, ˛n.x/ 2 U� �
U, and hence ˛mCn 2 V . Thus D \U�� � con.˛/.
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Now let V D ˛�1.U/, write Yi D ˛i.D/ \ U and let m be such that Ym � V .
Let y 2 Ym. Then y 2 V D ˛�1.U/, so ˛.y/ 2 U. But we also have ˛.y/ 2
˛mC1.D/ � ˛m.D/, so in fact ˛.y/ 2 Ym. Thus ˛.Ym/ is a subset of Ym; in particular,
˛n.Ym/ � U for all n � 0. It follows that Ym � U�, and hence ˛�m.Ym/ � U��.
Now ˛�m.Ym/ D D\ ˛�m.U/ is an identity neighbourhood in D contained in U��,
and hence in D \ con.˛/. ut
Remark 5 It can in fact be shown (Willis, private communication) that in the above
lemma, D \ con.˛/ is compact and open in D and that D \ con.˛/ D D \ U�� for
any tidy subgroup U.

Proof (of Proposition 15) Since �.K=L/ > ! C 1, there exists a 2 Brr
K=L. Let

A=L D .K=L/a. Since K=L is of stacking type, there must exist g 2 G such that
gAg�1 < A, and moreover A=gAg�1 covers a. So A=gAg�1 cannot be discrete.

Now suppose g 2 G and L < A C K are such that gAg�1 < A and A=gAg�1
is non-discrete. Let M D T

n2Z gnAg�n. Then M is normal in K and A=M is not
discrete. Let D D A=M, let H D K=M and let ˛ be the automorphism of H induced
by conjugation by g. Then ˛ acts on H in the manner of Lemma 10, so conK=M.g/
contains an open (in particular, non-trivial) subgroup of A=M.

By [2, Theorem 3.8], we have conK=M.g/ D conK.g/M. So in fact conK.g/\A —
M and in particular con.g/\ A — L. ut

We observe from the proof that M.con.g/ \ A/ is an open subgroup of A. Using
the fact that A=L D .K=L/a, we obtain the following.

Corollary 12 Let A, g and M be as in the proof Proposition 15. Then
A D Mhk.con.g/\ A/k�1 j k 2 Ki.
Note that we are not claiming that the group hk.con.g/ \ A/k�1 j k 2 Ki is

closed, but nevertheless the abstract product Mhk.con.g/\ A/k�1 j k 2 Ki suffices
to obtain every element of A.

It is tempting to speculate that the entirety of a stacking type chief factor is
accounted for by contraction groups, as follows:

Question 2 In the situation of Proposition 15, do we in fact have

K D Lhcon.h/\ K j h 2 Gi‹

More generally, it would be useful to develop a dynamical approach to stacking
type chief factors, analogous to the theory developed for compactly generated
topologically simple groups with micro-supported action. Here is a sketch of how
one might proceed:

Given a stacking type chief factor K=L, let L be the set of upward-closed subsets
of the partially ordered set Bmin

K=L; notice that L is a complete bounded distributive
lattice under the operations of intersection and union. By Priestley duality, there is
an associated ordered topological space X, which is a profinite space in which Bmin

K=L
is embedded as a dense set of isolated points.
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Problem 3 Recall for all a; b 2 Bmin
K=L, there exists g 2 G such that g:a < b.

Reinterpret this as a property of (ordered) topological dynamics of the action of
G=K on X n Bmin

K=L, and use these dynamics to obtain further restrictions on the
structure of G or its contraction groups as topological groups.

A t.d.l.c. group G is anisotropic (or pointwise distal) if con.g/ D f1g for
all g 2 G. This is a property that is clearly inherited by closed subgroups; by
[2, Theorem 3.8] it is also inherited by quotients. However, as it is a ‘pointwise’
property, it in no way prevents G from having complicated dynamics globally.

The class of anisotropic t.d.l.c.s.c. groups is mysterious at present. For example,
there are topologically simple anisotropic groups G, but it is unknown if a
topologically simple anisotropic group G can be in S, or more generally, whether
G can be non-elementary.

Nevertheless, the essential role of contraction groups in stacking type shows that
if anisotropic groups can be non-elementary or achieve large decomposition ranks,
then topologically simple groups are the major source of complexity. We have found
a potentially non-trivial situation where we really can break a t.d.l.c.s.c. group into
topologically simple pieces (plus low rank pieces).

Proposition 16 Let G be an anisotropic t.d.l.c.s.c. group.

(i) Every chief factor of G of rank greater than ! C 1 is of semisimple type.
(ii) Let K=L be a normal factor of G such that �.K=L/ > !2 C 1 (or K=L non-

elementary).
Then there is L � B < A � K such that A=B is a chief factor of G, �.A=B/ �
!2 C 1 (respectively, A=B is non-elementary) and A=B is a quasi-product of
copies of a topologically simple group.

Proof

(i) Let K=L be a chief factor of G of rank greater than ! C 1. Then K=L is not
of weak type by Theorem 14, and it is not of stacking type by Proposition 15.
Thus K=L must be of semisimple type.

(ii) Now let K=L be a normal factor of G such that �.K=L/ > !2C 1. Then there is
a compactly generated open subgroup H of K=L of rank at least !2C 1; if K=L
is non-elementary, we can choose H to be non-elementary. By Corollary 9, H
has a chief factor R=S such that �.R=S/ � !2 C 1 (respectively, R=S is non-
elementary). The corresponding block of H then lifts via Theorem 14 to a block
a of G, with �.a/ � �.R=S/ � !2 C 1. We see that K=L covers a, so there
exists L � B < A � K such that A=B such that A=B 2 a. By part (i), A=B
is of semisimple type, that is, A=B a quasi-product of copies of a topologically
simple group.

ut
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For the remainder of this section we define a notion of curvature on metric
spaces and consider the basics of isometries on these space. We then give a short
introduction to lattices and provide elementary examples. We finish with a rough
intuition for symmetric spaces. This intuition is not meant to be a definition, but
instead places future results in context.

In Sect. 2 we standardise the notation we will be using for graphs and specifically
trees. We then provide some results on tree lattices. In Sect. 3 we define a general
polyhedral complex and see how previous examples fit this mould. We then explore
results related to buildings which are an important example. Finally in Sect. 4 we
present examples of polyhedral complexes which have received recent attention in
the literature.

1.1 Models of Metric Spaces

In this section we introduce the concept of metric spaces. We then define three
fundamental examples of metric spaces. These are the unique n-dimensional
Riemannian manifolds with constant sectional curvature 1, 0 and �1. In later
sections, we will compare arbitrary metric spaces with these to define a notion of
curvature in a general geodesic metric space. We suggest [10] as a very complete
reference for this section.

Definition 1 Suppose .X; d/ is a metric space. A geodesic segment is a function
� W Œa; b� � R! X such that for all s; t 2 Œa; b� we have

d.�.s/; �.t// D js� tj: (1)

A geodesic ray is a function � W Œa;1/ ! X such that for all s; t 2 Œa;1/ Eq. (1)
holds. A geodesic line is a function � W .�1;1/ ! X such that for all s; t 2
.�1;1/ Eq. (1) holds.

Remark 1 We will often refer to a geodesic segment, ray or line by just geodesic
when the context is clear. We also identify a geodesic � with its image in X.

Example 1 Here we provide the examples of the three unique n-dimensional
Riemannian manifolds with constant curvature 1, 0 and �1 respectively. Instead of
defining the metric explicitly, it is equivalent to describe the geodesics in the space,
as they determine the metric.
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• Let Sn denote the unit sphere in R
n with the induced Euclidean metric. Then

all geodesics are arcs of great circles. If two points are not antipodal then there
is a unique geodesic connecting them. Alternatively there are infinitely many
geodesics between two antipodal points.

• Let En denote n-dimensional Euclidean space. We make the distinction between
E
n and R

n; En is not equipped with a vector space structure, nor is there a fixed
origin. This allows us to work in a coordinate free manner. The geodesics in
Euclidean space are straight lines.

• Let Hn denote n-dimensional real hyperbolic space. There are two models of
hyperbolic space that we will use when convenient.

– Consider the half plane model

U D fz 2 C W ℑ.z/ > 0g

for H
2. Then geodesics take the form of vertical lines or segments of

semicircles perpendicular to the Real axis. These are shown in Fig. 1.
– An alternative model H2 is the Poincaré disk D. This is given by

D D fx 2 C W jxj < 1g:

Geodesics in the disk are either diameters or arcs of circles perpendicular to
the boundary of the unit disk. These are shown in Fig. 2. There is an isometry
U! D which wraps the Real axis into a circle with endpoints meeting at the
point at infinity.

· i

Im

Re

Fig. 1 Geodesics in the upper half plane model of hyperbolic space
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Fig. 2 Geodesics in the
Poincaré disk model of
hyperbolic space

1.2 Curvature Condition and Isometries

Given the spaces with constant sectional curvature described above we describe
a notion of curvature in a general geodesic space. We focus on spaces with non-
positive curvature. As we will see later, these spaces appear naturally in many
settings. Again, [10] is a good reference for this section.

Definition 2 For a metric space .X; d/ we define the following:

• We say .X; d/ is geodesic if any two points can be connected by a geodesic. Note
that we do not require this geodesic to be unique.

• A geodesic triangle �.x1; x2; x3/ between points x1; x2; x3 2 X is a union

[
fŒxi; xj� W i; j 2 f1; 2; 3gg

where Œxi; xj� is a geodesic from xi to xj. A comparison triangle �.Nx1; Nx2; Nx3/ for
�.x1; x2; x3/ in E

2 is a union of geodesics

[
fŒNxi; Nxj� W i; j 2 f1; 2; 3gg

where ŒNxi; Nxj� is the unique geodesic between points Nxi; Nxj 2 E
2 which are chosen

to satisfy d.xi; xj/ D d.Nxi; Nxj/. If p 2 Œxi; xj� � �.x1; x2; x3/, then a comparison
point for p is the unique Np 2 ŒNxi; Nxj� with d. Np; Nxi/ D d. p; xi/.
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x1

x2

x3

x̄1

x̄2

x̄3

Fig. 3 On the left we have a triangle in a CAT.0/ space and on the right a comparison triangle in
Euclidean space

• We say�.x1; x2; x3/ satisfies the CAT.0/ inequality if for any p; q 2 �.x1; x2; x3/
we have

d. p; q/ � d. Np; Nq/:

Note that satisfying the CAT.0/ inequality is independent of choice of compari-
son triangle (see Fig. 3).

• We call X a CAT.0/ space if every geodesic triangle in X satisfies the CAT.0/
inequality.

Remark 2 Similarly we can define CAT.�1/ and CAT.1/ by comparing with H
2

and S
2 respectively. Because the sphere has finite diameter and so geodesics have

finite length, to show a space is CAT.1/ it only makes sense to compare triangles
with diameters less than 2� [10, Part II]. It can also be seen that CAT.�1/ implies
CAT.0/ and CAT.0/ implies CAT.1/ [10, Theorem 1.12].

Example 2 It is easy to see that En is CAT.0/ for all n 2 N. More generally a
normed vector space is CAT.0/ if and only if it is an inner product space, for a proof
see [10, Proposition 1.14]. This shows that any Banach space that is not a Hilbert
space is not CAT.0/.

Proposition 1 Suppose X is a CAT.0/ metric space. Then there exists a unique
geodesic between any two distinct points.

Proof The following argument is presented pictorially in Fig. 4. Suppose x1 and x2
are two points and �1 and �2 are two geodesics from x1 to x2. Then for any p1 2 �1
there exists a unique p2 2 �2 such that d.x1; p1/ D d.x1; p2/. We will show p1 D p2.

Consider the triangle�.x1; p1; x2/which is given by �1[�2. Taking a comparison
triangle�.Nx1; Np1; Nx2/ we must have

d.Nx1; Np1/C d.Nx2; Np1/ D d.Nx1; Nx2/:



566 A. Thomas

x1 x2
p1•
•
p2

x̄1 x̄2p̄1 = p̄2
•

Fig. 4 Two geodesics between two distinct points form a geodesic triangle which we can compare
with a comparison triangle in Euclidean space. We see that the two geodesics must be equal

This can only happen if Np1 is on the unique geodesic from Nx1 to Nx2. This shows
�.Nx1; Np1; Nx2/ is in fact a line. Taking a comparison point Np2 for p2, we must have
Np2 D Np1. Applying the CAT.0/ inequality we have

d. p1; p2/ � d. Np1; Np2/ D 0:

This shows �1 � �2. A symmetric argument gives the reverse containment and so
we must have equality.
We now define a natural way to compare metric spaces. From this we will be able to
generate automorphism groups of a metric space. We consider examples and state
some elementary results.

Definition 3 An isometry ' W X1 ! X2 is a surjective map between metric space
.X1; d1/ and .X2; d2/ such that

d1.x; y/ D d2.'.x/; '.y//:

It is easy to see that the set of isometries X ! X forms a group under composition.
Denote the group of isometries of X by Isom.X/.
It is not hard to see that an isometry is in fact a homeomorphism and that the
existence of an isometry between two spaces is an equivalence relation which we
call isometric.

Example 3 In all of the following examples Isom.X/ is in fact a Lie group. More
details can be found in [10, Theorem 2.4].

• For X D Sn we have Isom.Sn/ D O.n/ where

O.n/ D fA 2 GL.n;R/ W AAt D Idg

is the orthogonal group.
• Since all isometries of Euclidean space are compositions of translations and

rotations, we have Isom.En/ D O.n/ Ë R
n.

• For X D U, denote the orientation preserving isometries of U by IsomC.U/.
Then

IsomC.U/ D PSL.2;R/;
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which is the projective special linear group. The action is by Möbius transforms.
That is, if

�	
a b
c d


�
2 PSL.2;R/

and z 2 U, then

�	
a b
c d


�
z D azC b

czC d
:

This action is transitive on the unit tangent bundle.

Example 4 Examples of elements in IsomC.U/. These are also examples of ele-
ments which are in the distinct classes outlined in Theorem 1 below. We recommend
[27] as a reference for hyperbolic space and its isometries.

• z 7! � Nzjzj2 D
�1
z
D
�	

0 1

�1 0

�

z.

Note that this isometry fixes the point i.

• z 7! zC 1 D
�	
1 1

0 1


�
z.

This isometry shifts the whole upper half plan to the right. It fixes one point in
the boundary which is the point at infinity.

• z 7! 2z D
" p

2 0

0 1p
2

!#

z. This isometry is a dilation away from the origin. It

fixes two points on the boundary; namely the point at infinity and 0. It acts as a
translation along the imaginary axis.

The next theorem shows that the properties exhibited in the previous example
classify isometries of U. We will soon see that this classification extends beyond
hyperbolic space.

Theorem 1 ([10]) Let ' be an orientation preserving isometry of the upper half
plane. Then exactly one of the following holds:

• ' fixes at least one point in U, in this case we call ' elliptic;
• ' is not elliptic and fixes precisely one point on the boundary, in this case we call
' parabolic,

• ' is not elliptic and fixes precisely two points on the boundary, in this case we
call ' hyperbolic.
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Furthermore ' is either elliptic, parabolic or hyperbolic if its trace is less than 2,
equal to 2 or greater than 2 respectively.
To extend the previous result to more general spaces we need an appropriate
definition of boundary.

Definition 4 Let X be a complete CAT.0/ space. Call two geodesic rays �1 and �2
equivalent if there exists a constant K � 0 such that d.�1.t/; �2.t// � K. We define
the visual boundary @X of X to be the collection of equivalence classes of rays.

Example 5 Standard examples of visual boundaries.

• Since there are no geodesic rays in S2 we have @S2 D ¿;
• Two rays in E

2 are equivalent if and only if they are parallel. It follows that
the visual boundary @E2 D S1. Note that there is a natural topology on the
visual boundary of a CAT.0/ space that makes this identification with the circle
a homeomorphism.

• In U we have two rays �1 and �2 equivalent if and only if they are asymptotic.
Therefore the visual boundary of U is the real axis union a point at infinity.

Theorem 2 ([10]) Suppose X is a complete CAT.0/ space with ' an isometry of
X. Defining elliptic, hyperbolic and parabolic as in Theorem 1, we have one of the
following:

• ' is elliptic;
• ' is parabolic;
• ' is hyperbolic.

The following result is a useful consequence of the CAT.0/ condition which we will
refer to later.

Proposition 2 Suppose a group G acts by isometries on a CAT.0/ space X. Then:

1. if G has a bounded orbit, for example if G is finite, then G fixes a point in X.
2. the fixed set of G in X, denoted XG, is convex.

Proof (Proof of 2) Let g 2 G, x; y 2 XG and � be the geodesic between x and y. If
� ¤ g � � pointwise, then we contradict uniqueness of geodesics in CAT.0/ spaces.
Therefore � � XG and XG is convex. This argument can be seen as a diagram in
Fig. 5.

Fig. 5 If the fixed point set
of a group element is not
convex, then X does not have
unique geodesics

x= g · yx = g · y
g

g · g
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1.3 Lattices

In this section we introduce the concept of a lattice. This will be important for later
sections and is the focus of many results. Lattices can be thought of as discrete
approximations to non-discrete groups and so many results mentioned will be
exploring how close this approximation can be. Results on the generalities of lattices
can be found in [34].

Definition 5 Let G be a locally compact group with Haar measure �. A lattice in
G is a subgroup � � G so that

• � is a discrete subgroup of G.
• � has finite covolume, that is �.G=� / <1:
A lattice � is cocompact (or uniform) if G=� is compact, and otherwise is non-
cocompact (or nonuniform).
Lattices were originally studied in the setting of Lie groups. As tools, they have
provided a large number of rigidity results. It is in recent work, which we will
discuss later, that the study of lattices in groups which are not necessarily Lie groups
has been explored. This is still an active area of research with many open problems.
For a survey which includes many open problems and questions see [21].

For the following examples a vague notion of fundamental domain is used. If
a group G acts on a space X, then the fundamental domain of this action is a set
whose interior contains precisely one point of each orbit, usually with some other
nice topological conditions.

Example 6 The following are examples of lattices.

• Let � D Z
n � R

n D G with group structure given by addition. The Haar
measure � on G is the usual Lebesgue measure. Then � is clearly discrete and
G=� is the n-torus. Thus � is a cocompact lattice in G. It can be shown that
any lattice in R

n is isomorphic to Z
n and hence is cocompact. Figure 6 gives a

diagram of the fundamental domain for this action in the case of n D 2.

Fig. 6 The fundamental
domain for Z2 acting on R

2
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Fig. 7 The fundamental domain for � D SL.2;Z/ acting on U. The domain is a triangle with a
corner at infinity

• Let � D SL.2;Z/, G D SL.2;R/. The following also applies to projective
special linear groups. For the sake of avoiding cosets we restrict our attention to
the special linear groups.It is clear that � is a discrete subgroup of G.

Theorem 3 � is a non-cocompact lattice in G.
Set K D SO.2;R/ D StabG.i/. Then G=K can be identified with U by the map
g 7! g.i/ and action of � on U induces a tessellation. Now � is generated by

u D
	
1 1

0 1



and v D

	
0 1

�1 0


:

The fundamental domain of � is a triangle with one vertex at 1, see Fig. 7. It
can be shown that � is a nonuniform lattice as this triangle has finite area. It can
also be shown U=� D .G=K/=� is a modular surface.

The group � D SL.2;Z/ in the previous example is a first example of an arithmetic
group. Roughly speaking, an arithmetic group is commensurable to integer points.
The next result gives a restriction on which groups can appear as lattices in Lie
groups.

Theorem 4 ([32]) If G is a higher rank semisimple Lie group, for example SL.n;R/
for n � 3, then every lattice in G is arithmetic.

1.4 Symmetric Spaces

Roughly, a symmetric space is a Riemannian Manifold with a “highly transitive”
isometry group such that the stabiliser at each point contains an element with
derivative �1. The spaces S

n, En and H
n are all examples of symmetric spaces.

Symmetric spaces are used to study Lie groups and their lattices. There is a current
research focus to use trees, buildings, and other polyhedral complexes to study other
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locally compact groups and their lattices, for example SLn.Qp/, SLn.Fq..t/// and
Kac-Moody groups. These two methods of study can be seen as analogues. By
comparing the two situations, we gain insights into classical Lie groups from the
non-Lie group setting. In the other direction, insights from the Lie group setting can
be applied to locally compact groups, even if the techniques used to prove results are
vastly different. We give two references for more information concerning symmetric
spaces. We give [26] as a standard reference and [19] as an almost self-contained
treatment of the nonpositive curved case.

The following result was proved by Weil [42, 43] for Lie Groups and has recently
been generalised. The proof uses the Rips complex whereas the proof for Lie groups
relied on the differential structure of a Lie group.

Theorem 5 ([22, Theorem 1.1]) If G is a compactly generated locally compact
group and � is a cocompact lattice in G, then � is topologically locally rigid.

2 Graphs and Trees

The automorphism group of a regular tree is a standard example of a locally compact
group outside the realm of Lie groups. They are quite simple to define, yet there are
many interesting results for which they are the focus. In this section we define these
groups and consider some results concerning lattices.

2.1 Graphs and Notation

Graphs are versatile tools for generating interesting examples of groups and then
studying them as well as being of interest on their own. For example, automorphism
groups of trees and their subgroups will the be the subject of many results
concerning lattices in locally compact groups. We will also consider right-angled
buildings which are encoded by graphs. The following definition is to ensure
notation is standard. There are many introductory texts on graphs.

Definition 6 A graph X consists of a vertex set VX, an edge set EX with an
involution e 7! e such that e ¤ e, and maps i; t W EX ! VX such that for all
e 2 EX, i.e/ D t.e/ and t.e/ D i.e/. We call Ne the ghost edge of e and often omit it
in diagrams (Fig. 8). For a given graph X we define the following:

• A path is a sequence of edges e1; : : : ; en so that t.ei/ D i.eiC1/ (see Fig. 9).
• A reduced path is a path where eiC1 ¤ ei.
• We say X is connected if any two vertices are connected by a path.
• We say X is a tree if X is a connected and any two vertices are connected by a

unique path (Fig. 10).
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t(ē) = i(e) t(e) = i(ē)

e

ē

Fig. 8 An edge with its ghost edge

i(e1) e1 e2 e3 e4 e5 t(e5)

Fig. 9 A path in a graph

Fig. 10 A finite tree with ghost edges omitted

• If X is a tree, then we call X regular with degree n if ji�1.v/j D n for all v 2 VX.
In general we call ji�1.v/j the degree of v. We denote by Tn the unique infinite
regular tree of degree n.

• We can view X as a metric space with the path metric. We identify edges with the
unit interval and have length 1. The distance between two vertices is the length
of a shortest path between them.

• A graph automorphism � is a pair of bijections �V W VX ! VX and �E W EX !
EX such that �V commutes with t and i and �E commutes with the involution
e! Ne. If X is a tree, �V completely determines �E and so we identify � with �V .

• The set of ends of a tree is the set of geodesic rays originating from a fixed vertex
v. It is an exercise to show that this definition is independent of choice of v and
corresponds to the visual boundary.

It is an exercise to show that a graph is CAT.0/ if and only if it is a tree. This can
be done by recalling that CAT.0/ spaces have unique geodesics. We can classify
tree automorphisms using Theorem 2. It is an exercise to show that trees have no
parabolic isometries.
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v1 v2

r

Fig. 11 A depiction of the action of an automorphism of a tree which fixes a vertex r and but
swaps the vertices v1 and v2

(v) h2(v)v h

u h(u) h2(u)

Fig. 12 A depiction of the action of a hyperbolic automorphism h of T3

Elliptic automorphisms can be viewed as automorphisms of rooted trees. If �
fixes a vertex r, then we can view � as an automorphism of the tree with root r. See
Fig. 11 for a depiction of this action. If � flips an edge, that is �.e/ D e, then we
can subdivide e into two edges. Now � fixes a new vertex which was originally the
midpoint of e. A group� acts without inversions on a tree T if for all e 2 ET and for
all g 2 � , ge ¤ e. This can always be achieved by subdividing edges if necessary.
This is the same as taking a barycentric subdivision of each edge as described in
Fig. 25.

The other type of automorphism of a tree is hyperbolic. If an automorphism h
is hyperbolic, then h translates along a bi-infinite geodesic between the two distinct
points in the boundary which are fixed by the automorphism. See Fig. 12 for more
information.

2.2 Tree Lattices

If T is a locally finite tree, that is the degree of each vertex is finite, then
Aut.T/ is totally disconnected and locally compact. Assume that Aut.T/ acts
without inversions, then vertex stabilisers in Aut.T/ are precisely maximal compact
open subgroups. They can be realised as the projective limit of finite groups by
considering the action of the stabiliser on balls of increasing radius centred at the
fixed vertex. For a complete reference on lattices in trees we recommend [4].

Proposition 3 We have the following results concerning lattices in Aut.T/. We use
T=� to the denote the quotient of T by the action of � .
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• A subgroup � � Aut.T/ is discrete if and only if � acts on T with finite
stabilisers.

• If � is discrete, then:

1. � is a cocompact lattice if and only if the quotient T=� is finite.
2. � is a non-cocompact lattice if and only if T=� is infinite and

X 1

j Stab� .v/j <1;

where this series is the sum over representative vertices v from every � -orbit
on T. This assumes that Aut.T/ acts cocompactly on T.

Theorems 6 and 7 highlight the different behaviours exhibited by lattices in Lie
groups and lattices in Aut.T/. Theorem 6 shows that for a given measure on SL2.R/,
we are limited by how closely we can approximate by lattices.

Theorem 6 ([37, Theorem 5]) If � is any lattice in G D SL2.R/ and � is the
standard Haar measure on G, then �.G=� / � �

21
. More generally for any Haar

measure � on G, there exists " > 0, dependent on �, such that for all lattices
� � G, �.G=� / � ".
Theorem 7 is in direct contrast with Theorem 6 by not only saying that there exist
lattices with arbitrarily small covolume in Aut.T/, but they can also be chosen to
be in different commensurability classes. We say that two subgroups H1 and H2 of
a group G are commensurable if there exists g 2 G such that gH1g�1 \ H2 has
finite index in gH1g�1 and H2. In particular conjugate lattices are commensurable.
Being commensurable is an equivalence relation on subgroups of G and hence we
can define commensurability classes.

Theorem 7 ([20, Corollary 1.2]) Let G D Aut.Tm/; m � 3, then for every
r > 0, there exists uncountably lattices in G of covolume r, all in different
commensurability classes.
A key tool for studying tree lattices is Bass-Serre Theory. The fundamental theorem
of Bass-Serre theory gives a correspondence between groups acting on trees without
inversion and graphs of groups. See [36] for more information.

Example 7 Using Bass-Serre theory, we can describe certain lattices in Aut.T3/
using graphs of groups.

• Let � be the fundamental group of the edge of groups in Fig. 13. Then � is
equal to C3 
 C3, where 
 denotes the free product, and � is a cocompact lattice
in Aut.T3/, acting with quotient a single edge.

C3
{1}

C3

Fig. 13 An edge of groups which gives a lattice in Aut.T3/
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C3

{1}

C2

C2

C4

C4

C8

C8

C16

C16

C16
· · ·

Fig. 14 A graph of groups which gives a non-cocompact lattice in Aut.T3/

• The subgroup of Aut.T3/ determined by the graph of groups shown in Fig. 14 is
a lattice which is not cocompact. Checking the condition of Proposition 3 part 2,
we have

X 1

j�vj D
1

3
C 1

2
C 1

4
C 1

8
C 1

16
C � � � <1:

3 Polyhedral Complexes

Polyhedral complexes are a geometric construction which can be used to study
classes of groups. There are many ways this can be done. In this section we
will focus on buildings which are geometric objects that can be associated to
certain groups. Results show that they essentially determine the group that they
are associated to. We will see that infinite trees where each vertex degree at least 2,
which are precisely the buildings of dimension 1, behave differently to buildings of
higher dimension. Along the way we will define some geometric tools that can be
used to study more general polyhedral complexes and state how these tools can be
applied to the study of buildings. We finish the section by comparing results in the
different classes of groups we have seen thus far.

3.1 The Definition of a Building

We define buildings from the view of polyhedral complexes. This is one of many
ways one can define a building. Once we have reached the definition and given
some elementary examples we will provide a short history of their development.
The theory of buildings is very developed and is deeper than presented here. For
more information we suggest [29].

For this section let Xn denote either Sn, En, or Hn. For the following definition a
polytope is a finite intersection of half spaces. We say a polytope is simple if each
vertex is adjacent to precisely n � 1 edges. This is equivalent to the link of each
vertex, as seen in Fig. 17 and Definition 10, being an n � 1 simplex.
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Fig. 15 Triangles for the triples of integers .2; 2; 2/, .3; 3; 3/ and .4; 4; 4/ in S
2, E

2, H
2

respectively Here we are using the Poincaré disk model of hyperbolic space

Definition 7 A Coxeter polytope P in X
n is a convex simple compact polytope

contained in X
n such that for any two codimension 1 faces Fi;Fj of P, either Fi and

Fj are disjoint or they meet at dihedral angle �
mij

, where mij � 2 is an integer.

Example 8 Suppose p; q; r are integers at least 2. If �
p C �

q C �
r is greater than � ,

equal to � , or less than � , then there exists a triangle in S
2, E2 or H2 respectively

with interior angles �
p ;

�
q ;

�
r . For explicit examples see Fig. 15.

Theorem 8 ([17]) Let P be a Coxeter polytope. For each codimension 1 face Fi let
si be the reflection of Xn in the hyperplane supporting Fi. Then the reflection group
W WD hsii � Isom.Xn/ is a Coxeter group. Moreover, W is a discrete subgroup of
Isom.Xn/ and the action of W tessellates Xn by copies of P.

Definition 8 A spherical, Euclidean or hyperbolic polyhedral complex X is a CW-
complex where each n-cell is metrised as a convex, compact polytope in S

n, En or
H

n respectively, such that the metrics agree on intersections of closed cells.

Example 9 The following are examples of polyhedral complexes:

• The geometric realisation of a graph with the path metric has each 1-cell metrised
as Œ0; 1� � E

1.
• Tessellations of Xn by regular polygons.

Consider a path, that is a continuous image of the closed interval, between two points
in a polyhedral complex. This path must intersect with finitely many polytopes. Call
the path a string if the intersection with each polytope is a geodesic in that polytope.
We can define a length for each string by summing up these the lengths of the
geodesics which union to the whole string. The taut string metric can be defined by
taking the infimum of lengths of strings between any two points.

Theorem 9 ([8, Theorem 1.1]) If a polyhedral complex X has finitely many
isometry types of cells, then X is a geodesic metric space when equipped with the
taut string metric.
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s0 s1

P

Fig. 16 An apartment in a rank 1 Euclidean building

Definition 9 Let P � X
n be a Coxeter polytope and W D W. p/ be the group

generated by reflections in its codimension 1 faces. A building of type W, �, is
a polyhedral complex which is a union of subcomplexes, called apartments, each
isometric to the tessellation of Xn induced by the action of W. Each copy of P in �
is called a chamber. We require that the following axioms hold:

• Any two of the chambers are contained in a common apartment.
• Given any two apartments A1, A2, there is an isometry A1 ! A2 which fixes

A1 \ A2 pointwise.

A building is spherical, Euclidean or hyperbolic as Xn is Sn, En or Hn respectively.
It is common for a Euclidean building to be referred to as an affine building. The
rank, or dimension, of the building is defined to be n.

Example 10 We have the following examples of buildings:

• Take X D E, P D Œ0; 1� and W D hs0; s1i D hs0; s1js20 D s21 D 1i Š D1. Then
building of type W is a tree without leaves, such as T3. Apartments are copies
of the line tessellated by unit intervals, and chambers are edges in the tree. An
apartment with the action of W is given in Fig. 16.

• Take X
2 D E

2, P D Œ0; 1� 	 Œ0; 1� and

W D hs1; s2; s3; s4i D hs1; s3i 	 hs2; s4i Š D1 	 D1:

A building of type W is a product of trees, and the chambers are Euclidean
squares. For a given vertex in the product we can define a graph which captures
the local structure at that vertex. We call this graph the link of v. It has a vertex
for each 1 dimensional face incident to v. Two vertices are connected by an edge
if the are part of the same 2 dimensional face. For example, take v 2 T3 	 T3
which is shown in Fig. 17. Then v is incident to precisely six edges. Forming
vertices for each of these edges and connecting them by an edge if they form part
of a square, we see that the link of v is precisely the complete bipartite graph with
six vertices K3;3, see Fig. 22. Conversely, any simply connected square complex
such that the link of each vertex is a complete bipartite graph is a product of trees,
see [11].

• For p � 5 and q � 2 define the building Ip;q to be the unique simply connected
hyperbolic polygonal complex (2-dimensional polyhedral complex) in which all
faces (2-cells) are regular right angled hyperbolic p-gons, and the link of every
vertex is Kp;q. Ip;q is a building of type W where W D hreflections in faces of Pi
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Fig. 17 A vertex with v the
product T3 	 T3 with all
chambers incident to v

and P is the regular right-angled hyperbolic p-gon. One apartment is a tessellation
of H2. This example is referred to as Bourdon’s building and was first studied in
[6]. It is the first example of a hyperbolic building. It is locally a product space,
but not globally a product.

3.2 Original Motivation for Buildings and Bass-Serre Theory

Buildings were originally developed to study reductive algebraic groups over non-
archimedean local fields. Examples include SLn.Qp/ and SLn.Fq..t///. Given such
a group G.F/, the affine building for G.F/ is analogous to the symmetric space
for a Lie group. The building has a set of chambers G.F/=I, where I is an Iwahori
subgroup of G.F/. The subgroup I is a compact open subgroup of G.F/ and is
analogous to a Borel subgroup of an algebraic group. If G D SLn.Qp/, then

I D

8
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

0

B
B
B
B
BB
B
B
@

Z
	
p Zp : : : : : : Zp

pZp Z
	
p

:::
:::

: : :
:::

::: Z
	
p Zp

pZp : : : : : : pZp Z
	
p

1

C
C
C
C
CC
C
C
A

2 G

9
>>>>>>>>=

>>>>>>>>;

:

Apartments of the affine building associated to G.F/ are tessellations of Euclidean
space induced by the action of the associated affine Weyl group W. In the case when
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s0

s1 s2

• 0

Fig. 18 The action of S3 Ë Z
2 on R

2

G D SLn.Qp/ and W D S3 Ë Z
2, W is generated by three reflections in Euclidean

space. Their action is demonstrated pictorially Fig. 18.
Vertices of the building for G.F/ are cosets in G.F/ of maximal compact

subgroups of G.F/. The group G.F/ acts chamber transitively on its building with
compact stabilisers.

It is not the case that every building is associated to a group in the way we
have described. When the building is associated to a group, Tits showed that in
this setting, the group is essentially determined by the building.

Theorem 10 ([41]) If � is an irreducible (not a product) spherical building of
dimension at least 2, or an irreducible Euclidean building of dimension at least
3, then � is the building for some G.F/. Moreover, Aut.�/ D G.F/ Ì Aut.F/.

There are many differences between affine buildings of rank 1 and buildings of
higher rank. This is especially prominent when studying the groups for which the
building is associated to. Part of the motivation for Bass-Serre theory was the study
of this special case. This can be done since the affine building for a rank 1 group is
by definition a tree.

Example 11 The following are properties of rank 1 groups that can be shown using
Bass-Serre theory. More details can be found in [36].

• Ihara’s Theorem. We can decompose SL2.Qp/ into the amalgamated free product

SL2.Qp/ Š SL2.Zp/ 
I SL2.Zp/:

If � D Tp is the building associated to SL2.Qp/, then the result can be seen by
noting that �=SL2.Qp/ is the edge of groups Fig. 19.

• Set

� D SL2.FqŒt�/ � G D SL2.Fq..t
�1///:
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SL(Zp) SL(Zp)I

Fig. 19 An edge of groups which represents the action of SL2.Qp/ on Tp

SL2(q)
G1

G1

G2

G2

G3

G3

G4

G4

G5

G5
· · ·

Fig. 20 The graph of groups for a non-cocompact lattice in SL2.Fq..t�1///, where �a is given by
Eq. (2)

The graph of groups for � has edge and vertex groups given by

�a D
� 	

a b
0 a�1


ˇˇ
ˇ
ˇ a 2 F

�
q ; b 2 FqŒt�; deg.b/ � n

�
; (2)

and is shown in Fig. 20. It can show that � is a non-cocompact lattice in G.

3.3 Gromov’s Link Condition

We briefly explored the link of a vertex when considering a product of trees. In
that setting we gave a sufficient condition for a polyhedral complex to be a product
of trees. The sufficient condition was that the link of each vertex was a complete
bipartite graph. We now formalise this notion of link and state more results that
show how global structure can be inferred from local structure.

Definition 10 Let X be a polyhedral complex and v 2 VX. The link of v, denoted
by Lk.v;X/, is the spherical polyhedral complex obtained by intersecting X with a
small sphere centred at v.
Although the link is a local structure, Theorem 11, also known as Gromov’s link
condition, shows how one can imply global structure from local structure.

Theorem 11 ([10]) Let X be a simply connected polyhedral complex.

1. If X is Euclidean, then X is CAT.0/ if and only if Lk.v;X/ is CAT.1/ for each
v 2 VX.

2. If X is hyperbolic, then X is CAT.�1/ if and only if Lk.v;X/ is CAT.1/ for each
v 2 VX.

There are two cases where it is easy to check whether vertex links are CAT.0/:

• When X has dimension 2, Lk.v;X/ is a graph with edge lengths given by angles
in X. An example where X is the built from squares in R

2 is given in Fig. 21.
In this setting Lk.v;X/ is CAT.1/ if and only if each embedded cycle has

length at least 2� . Similarly, if X is a product of trees or Bourdon’s building, then
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Fig. 21 We have a link of a vertex v 2 Z
2 which is the 1-skeleton of a polyhedral complex which

is a tessellation of R2 by the unit squares. The link is the graph given by the circle. We can assign
lengths of �

2
to each edge

Fig. 22 The link of a vertex in the product of two regular trees of degree 3 is a complete bipartite
graph with six vertices. All the edges have length �

2
and so the length of the shortest cycle is 2�

Lk.v;X/ is the complete bipartite graph with edge lengths �
2

. Using Theorem 11
we can show that products of trees and Bourdon’s building are CAT.0/.

• X is a cube complex, that is, each n-cell is metrised as a unit cube in E
n.

Here, links are spherical simplicial complexes with all angles �
2

. Figure 21
demonstrates this.

A simplicial complex is flag if whenever it contains the 1-skeleton of a simplex,
it contains that simplex. The following results can be shown using Theorem 11.

Theorem 12 ([23]) An all-right spherical simplicial complex is CAT.1/ if and only
if it is flag.

Theorem 13 ([16, 17, 33]) Euclidean buildings are CAT.0/, hyperbolic buildings
are CAT.�1/.
Theorem 14 ([9]) Let X be a CAT.0/ polyhedral complex. Then Aut.X/ contains
no parabolic isometries.
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3.4 Comparisons of Results

Here we compare analogous results for groups acting on trees, higher-dimensional
complexes and Lie groups.

3.4.1 Quasi-Isometries

Quasi-isometries play a fundamental role in geometric group theory. Often the
notion of isometry is too exact, for example a group may have two different Cayley
graphs, generated from different generating sets, which may not be isometric.
However, the graphs will be quasi-isometric and so results shown about groups
from their Cayley graphs will be quasi-isometric invariants. Properties such as
hyperbolicity, growth rate and amenability are preserved by quasi-isometry.

Definition 11 Suppose f W X1 ! X2 is a function between metric spaces .X1; d1/
and .X2; d2/. We say f is a quasi-isometry if there exists constants A � 1 and B;C �
0 such that:

• For all x, y 2 X1

1

A
d1.x; y/� B � d2. f .x/; f .y// � Ad1.x; y/C BI

• For each y 2 X2 there exists x 2 X1 such that

d2. f .x/; y/ � C:

It is an exercise to show that the existence of a quasi-isometry between two spaces
is an equivalence relation and so it makes sense to talk about metric spaces as being
quasi-isometric.

Quasi-isometries can be seen as preserving the coarse metric structure as the
following examples suggest.

Example 12 Here we give examples of quasi-isometric spaces. The different
examples we give are from different quasi-isometry classes.

• The metric spaces R
2 and Z

2 are quasi-isometric, with .x; y/ 7! .bxc; byc/ a
quasi-isometry;

• If T and T 0 are infinite regular trees with degree at least 3, then T and T 0 are
quasi-isometric;

• All compact metric spaces are quasi-isometric, in particular they are quasi-
isometric to a single point.

The previous example demonstrates that there are many quasi-isometric rank 1
buildings which are not isometric, namely trees. The following result shows that
this property is not shared with Euclidean buildings of higher rank.
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Theorem 15 ([28]) Suppose �1 and �2 are two quasi-isometric Euclidean build-
ings with dimension at least 2. Then �1 and �2 are isometric.
It was also shown in [28] that the above result holds for symmetric spaces of
rank at least 2 and for nilpotent simply connected Lie groups. The two results are
shown using a single proof. This is in contrast with the next result which requires a
proof which differs greatly from the proof for symmetric spaces. The proof utilises
conformal analysis on the visual boundary

Theorem 16 ([7, 45]) If X and Y are any two hyperbolic buildings of dimension 2
such that X and Y are quasi-isometric, then X and Y are isometric. For example, Ip;q
is quasi-isometric to Ip0;q0 if and only if p D p0 and q D q0.

3.4.2 Lattices

The structure of lattices contained within a group has been an active research area.
In the case of Lie groups, these lattices are residually finite [46]. Residually finite
groups have ample normal subgroups. This is a strong contrast to the following
result.

Theorem 17 ([11]) There exist simple uniform lattices in the automorphism group
of a product of trees.
The proof of the theorem uses some ideas and techniques from the study of lattices
in Lie groups, for example the normal subgroup theorem, via Property (T), see [5].
It can also be shown that, unlike in other cases, a uniform tree lattice is virtually
free.

The original motivation for Kazhdan’s Property (T) was to show that lattices in
higher rank Lie groups are all finitely generated. If we instead consider the case of
lattices in other groups the situation is quite different. We have the following result
for the rank 1 case.

Theorem 18 ([4]) Non-uniform tree lattices (including lattices in groups whose
building is a tree) are never finitely generated.

If dim.X/ � 2, the situation for lattices in Aut.X/ is mixed. In some situations,
for example an eA2 building or a triangular hyperbolic building (that is, chambers
are hyperbolic triangles), then Aut.X/ has Property (T), hence lattices in Aut.X/ are
finitely generated, see ([3, 15] and [47]). On the other hand, in [40] it is shown that
if a non-uniform lattice � � Aut.Ip;q/ has a strict fundamental domain (that is, there
exists a subcomplex Y � Ip;q containing exactly one point from each � -orbit), then
� is not finitely generated.

The case of products of trees is still unknown. If � is an irreducible non-uniform
lattice on a product of trees is � finitely generated? Any known examples of such a
lattice is either an arithmetic group or a Kac-Moody group. All of these are finitely
generated.



584 A. Thomas

4 More Examples of Polyhedral Complexes

In this section we consider specific examples of combinatorial objects which have
yielded interesting group actions. Some of these examples will be specific types
of buildings while another will be a polyhedral complex with a slightly weaker
homogeneity condition than that of a building.

4.1 Right-Angled Coxeter Groups, Their Davis Complexes
and Associated Buildings

The automorphism group of a right-angled building has recently been shown to have
interesting properties which contrast with the results we have seen so far.

4.1.1 Right-Angled Coxeter Groups and Davis Complexes

Let � be a finite simplicial graph with vertex set S. The associated right-angled
Coxeter group W� is

W� D
˝
Sj s2 D 18s 2 S; st D ts if s and t are adjacent in �

˛
:

Example 13 Examples of right angled Coxeter groups associated with graphs:

• Suppose � consists of two disconnected vertices. Then

W� D
˝
s; tj s2 D t2 D 1˛ Š D1:

Note that this group is infinite.
• If � is the complete graph on n vertices, then

W� D
˝
s1; : : : ; snj s2i D 1; sisj D sjsi 8i; j

˛ Š .C2/n:

In contrast with the case when � is given by two disconnected vertices, this
group is finite.

We can consider the Cayley graph Cay.W� ; S/. Recall that this is the graph with
vertex set W� and directed edges of the form .w;ws/ for w 2 W� and s 2 S. For
each edge .s; t/ in � we get a square in Cay.W� ; S/. For each triangle in � we get a
cube in Cay.W� ; S/. For each Kn in � we get a 1-skeleton of n-cube in Cay.W� ; S/.
These ideas are shown in Figs. 23 and 24. In general, for each Kn in � we get a
1-skeleton of an n-cube in Cay.W� ; S/.
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ts

sww

tswtw = wts

Fig. 23 If we take an edge in � , we get a square in the Cayley graph of the right-angled Coxeter
group associated to �

ts

u

w ws

wt

wu

wst

wsu

wtu wstu

Fig. 24 If we take a triangle in � , we get a cube in the Cayley graph of the right-angled Coxeter
group associated to �

Recall that a graph is CAT.0/ if and only if it is a tree. Since trees have no cycles
we see that the Cayley graph Cay.W� ; S/ is CAT.0/ if and only if � has no edges.
This is equivalent to W� begin isomorphic to a free product of copies of C2.

By identifying each n-cube with Œ0; 1�n in R
n, we can fill in the cubes of

Cay.W� ; S/ and realise Cay.W� ; S/ as a CAT.0/ space. The fact that the resultant
space is CAT.0/ follows from considering the link of each vertex. It is not hard to
see that these are all flag. Applying Theorem 11, one can prove Theorem 19.

Theorem 19 ([17]) If � a finite simplicial graph with vertex set X, then
Cay.W� ; S/ is the 1-skeleton of a CAT.0/ cubical complex.

The resulting space is the Davis complex for W� . For any Coxeter system .W; S/
the Davis complex˙ is a piecewise Euclidean, CAT.0/, finite dimensional, locally
finite, contractible, polyhedral complex on which W acts cocompactly with finite
stabilisers. In particular, W is a cocompact lattice in Aut.˙/. For more information
we suggest [17] as a reference.

For a general Coxeter system .W; S/, let � be the graph with vertex set S, an
edge labelled mij between each pair of vertices si; sj, where .sisj/mij D 1. We call
� the Coxeter graph of .W; S/ and say that � is flexible if it has a non-trivial label
preserving automorphism � that fixes the star of some vertex. Theorem 20 shows
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that flexible is equivalent to the automorphism group of the Davis complex being
non-discrete.

Theorem 20 ([25]) Let � be the Coxeter graph of a Coxeter system .W; S/. Let ˙
be the Davis complex of .W; S/. Then Aut.˙/ is non-discrete if and only if � is
flexible.
Theorems 21 and 22 highlight differences between the Lie and non-Lie cases. They
are in contrast with Theorems 6 and 18. The conditions on ˙ are technical and left
out.

Theorem 21 ([39]) For certain ˙ with non-discrete G D Aut.˙/, there exists a
sequence of uniform lattices .�n/ with � .G=�n/ �! � .G=�1/ for �1 a non-
uniform lattice. Moreover, �1 is not finitely generated.

Theorem 22 ([44]) For certain ˙ with non-discrete G D Aut.˙/, G admits
uniform lattices of arbitrarily small covolume.

4.1.2 Right-Angled Buildings

Now that we have a notion of a right-angled Coxeter system, a natural question to
ask is what this extra structure brings to the setting of buildings. In this section we
state some results with this in mind.

Theorem 23 ([2, 24]) Given any right angled Coxeter system .W� ; S/ and a
collection of cardinalities fqs W s 2 Sg each of at least 2, there exists a unique
building of type .W� ; S/ such that each panel of type s has qs chambers incident.

Remark 3 The apartments in the above building are copies of the barycentric
subdivision of the Davis complex for W� . An overview of a barycentric subdivision
is given in Fig. 25. The automorphism group of this building is locally compact if
each qs is finite, it is non-discrete if W� is infinite and there exists qs; qt � 3 with
st ¤ ts. They are also a source of simple groups as shown in Theorem 24.

Theorem 24 ([12]) The automorphism group of a right-angled building is virtually
simple.
Theorem 25 shows that a right-angled building is a CAT.0/ space.

Theorem 25 ([16, 17, 33]) A right-angled building � of type W� is a CAT.0/
space. The following are equivalent:

• � can be equipped with a piecewise metric so it is CAT.�1/ and hence Gromov
hyperbolic.

• W� is word hyperbolic;
• � contains no non-empty squares; that is, if � contains a 4-cycle, then it contains

a diagonal.

Corollary 1 Suppose W� is word hyperbolic and � is a uniform lattice in a right
angle building of type W� . Then � is finitely-generated linear group.
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Fig. 25 Here we have the
barycentric subdivision of a
square. The original square is
shown in blue. For each face
of the square there exists a
unique point, called the
barycentre, which is fixed by
every isometry of the face.
This can easily be seen as ‘the
middle’ of each face. For
each chain of faces
F1 � F2 � � � � , we take the
convex hull of the barycentres
of each face. We then split
our square into the union of
the hulls to obtain a simplicial
complex

Proof (Proof Idea) The proof uses Agol’s Theorem, see [1], which states that if a
group acts properly, discontinuously and cocompactly on a Gromov hyperbolic cube
complex, then it is linear.
Compare Burger-Mozes groups acting on products of trees which are certainly
linear, since finitely generated linear groups are residually finite.

Recall that a tree is regular if each vertex has degree n. A tree is bi-regular of
degrees n1 and n2 if each vertex has degree n1 or n2 and if u and v are adjacent
vertices with degree of v is n1, then the degree of u is n2. For n1; n2 � 2, Denote the
unique infinite bi-regular tree of degrees n1 and n2 by Tn1;n2 .

Theorem 26 ([38]) If Aut.�/ is non-discrete where � is a right-angled building,
then for each r > 0 there exists uncountable many commensurability classes of
lattices in Aut.�/ with covolume r.

Proof (Proof Idea) Promote groups acting on Tqs;qt to complexes of groups acting on
�. This takes uniform (respectively, non-uniform) lattices in Aut.Tqs;qt / to uniform
(respectively, non-uniform) lattices in Aut.�/ whilst preserving covolume.

Remark 4 Caution should be used with this technique. Unlike the case of graphs
of groups, not every complex of groups comes from a group action. This is
demonstrated in Fig. 26.

There is a sufficient condition for complexes of groups to be developable, that is
local groups embed into fundamental groups. A complex of groups is developable
if and only if the complex of groups has a universal cover on which its fundamental
group acts inducing the complex of groups.

For more information on complexes of groups we suggest [10].
Recently in [18] the concept of universal groups acting on trees with prescribed
local action has been extended to groups acting on right-angled buildings. Then
the authors find examples of simple totally disconnected locally compact groups.
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Fig. 26 A complex of groups
which does not come from a
group action. The
fundamental group of this
triangle is ha; b; cjaba�1 D
b2; cac�1 D a2; bcb�1 D
c2i: However, this group is
trivial. So none of the groups
at each vertex or edge embed
into the fundamental group

〈a,b|aba−1 = b2〉

〈c,a|cac−1 = a2 〈〉 b,c|bcb−1 = c2〉
〈c〉

〈a〉 〈b〉

To define a universal group acting on a tree, one starts by labelling the edge set
of the tree. For a building, the authors adopt a combinatorial point of view of �.
It’s a graph with vertex set the chambers and an edge of colour s between any two
chambers which meet in a panel of type s. Now an apartment is a copy of the Cayley
graph for W� with generators S. An s-panel is a complete subgraph on qs vertices.
The labelling they choose for each s-panel is a finite subgroup Fs � Sym.qs/.

4.2 Kac-Moody Buildings

Here we give a short mention of Kac-Moody groups and associated buildings. These
groups can be thought of as infinite dimensional Lie groups. Alternatively, they also
behave like arithmetic groups. Suppose � is a minimal Kac-Moody group over Fq.
That is, � has a presentation with generating set which are the root subgroups

U˛ Š .Fq;C/

and commutator relations. Then � has a Weyl group W, which is a Coxeter group
with presentation

hS W s2i D 1, .sisj/mij D 1i;

where mij 2 f2; 3; 4; 6g[ f1g. Note that by convention mij D1 means the sisj has
infinite order.

Now � has twin Iwahori subgroups IC and I�. We can define two buildings�C
and �� of type W such that �˙ has chambers�=I˙ and apartments isomorphic to
copies of the Davis complex of W. Then� acts on �C 	��.

Theorem 27 ([14, 35]) With � as above we have; for q large enough:

• � is a non-uniform lattice in Aut.�C 	 ��/. This generalises SLn.FqŒt; t�1�/,
which is an irreducible lattice in SLn.Fq..t/// 	 SLn.Fq..t�1///.
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• The stabiliser of v 2 �C in � is a non-uniform lattice in Aut.��/. This
generalises the Nagao Lattices SLn.FqŒt�/ in SLn.Fq..t�1///.

Theorem 28 ([13]) If the Weyl group W is 2-spherical, that is if mij is finite for all
i and j, infinite, non-affine and q is sufficiently large depending on W, then � mod
out by its finite centre is abstractly simple.

Remark 5 Compare Theorem 28 with the example given by the universal Burger
Mozes lattices.

4.3 .k; L/-Complexes

Here we define a complex which is a generalisation of many of the geometric
structures we have seen previously. Preliminary results hint that this is a promising
setting for results. A .k;L/-complex is defined by choosing a k-gon for which all
2-dimensional faces will be isometric to and graph L which describes how the faces
are glued together at each vertex. The resulting structure are still homogeneous in
the sense that the link at each vertex is the same.

Definition 12 A .k;L/-complex is a simply connected polyhedral complex where
each 2-dimensional cell is a regular k-gon and the link of each vertex is the graph L.

Example 14 The product of trees Tm 	 Tn is a .4;Km;n/-complex.
It is interesting to ask for which pairs .k;L/ do there exist .k;L/-complexes and,
given existence, is any such complex unique. The following results are progress
towards an answer.

Theorem 29 ([2]) Provided .k;L/ satisfy the Gromov link condition, there exists at
least one .k;L/-complex.

Theorem 30 ([2, 24]) There exist uncountably many .6;K4/-complexes which are
not pairwise isomorphic.

Definition 13 For a vertex v in a graph L, define St.v/ to be the subgraph containing
v and all vertices linked to v by an edge. For an edge e in L, define St.e/ to be the
collection of edges which share an endpoint with e.

A graph L is vertex (respectively edge) star transitive if for all u; v 2 VL
(respectively EL), every isomorphism St.u/ ! St.v/ extends to an automorphism
of L.

Theorem 31 ([30]) If .k;L/ satisfies the Gromov link condition, k � 4 and L is
vertex star transitive and edge star transitive, then there exists a unique .k;L/-
complex.

Example 15 There are examples of pairs .k;L/, where L is vertex star transitive
and edge star transitive but the associated .k;L/-complex is not a building. Possible
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Fig. 27 A well known
example of an odd graph,
namely the Peterson graph

choices for L include complete bipartite graphs and odd graphs. For a well known
example of an odd graph see Fig. 27.
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A Survey of Elementary Totally
Disconnected Locally Compact Groups

Phillip Wesolek

Abstract The class of elementary totally disconnected locally compact (t.d.l.c.)
groups is the smallest class of t.d.l.c. second countable (s.c.) groups which contains
the second countable profinite groups and the countable discrete groups and is
closed under taking closed subgroups, Hausdorff quotients, group extensions, and
countable directed unions of open subgroups. This class appears to be fundamental
to the study of t.d.l.c. groups. In these notes, we give a complete account of the
basic properties of the class of elementary groups. The approach taken here is more
streamlined than previous works, and new examples are sketched.

1 Introduction

In the general study of totally disconnected locally compact (t.d.l.c.) groups, one
often wishes to avoid discrete groups and compact t.d.l.c., equivalently profinite,
groups. For example, considering finitely generated groups as lattices in themselves
is unenlightening, and the scale function on a profinite group is trivial. However,
non-discreteness and non-compactness are often not enough by themselves. For
example, every finitely generated group is a lattice in a non-discrete t.d.l.c. group
simply by taking a direct product with an infinite profinite group. We thus wish to
study t.d.l.c. groups that are ‘sufficiently non-discrete.’

What we mean by ‘sufficiently non-discrete’ is that there is a suitably rich
interaction between the topological structure and the large-scale structure of the
group in question. With this in mind, let us consider examples. Certainly discrete
groups have weak interaction between topological and large-scale structure, since
they have trivial topological structure. The profinite groups have the opposite
problem: they have local structure but trivial large-scale structure. On the other hand,
compactly generated t.d.l.c. groups which are non-discrete and topologically simple
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Fig. 1 Interaction between
large-scale structure and
topological structure

have a rich interaction between topological and large-scale structure; examples of
these include the Neretin groups, Aut.Tn/C for Tn the n-regular tree, the simple
algebraic groups, and many others. Thinking further, it is clear that abelian groups
and compact-by-discrete groups have much weaker interaction between topological
and large-scale structure than that of the aforementioned simple groups, so these
groups should be collected with the profinite groups and discrete groups (Fig. 1). At
this point, it seems natural to conclude that any ‘elementary’ combination of groups
with weak interaction should again have weak interaction. We thus arrive to the
central definition of these notes:

Definition 1 The class of elementary groups is the smallest class E of t.d.l.c.s.c.
groups such that

(i) E contains all second countable profinite groups and countable discrete groups.
(ii) E is closed under taking closed subgroups.

(iii) E is closed under taking Hausdorff quotients.
(iv) E is closed under taking group extensions.
(v) If G is a t.d.l.c.s.c. group and G D S

i2N Oi where .Oi/i2N is an �-increasing
sequence of open subgroups of G with Oi 2 E for each i, then G 2 E. We say
that E is closed under countable increasing unions.

The operations (ii)–(v) are often called the elementary operations.

Remark 1 We restrict to the second countable t.d.l.c. groups. This is a mild and
natural assumption which makes our discussion much easier. Any notion of being
‘elementary’ must be ‘regional’ in the sense that it reduces to compactly generated
subgroups, and compactly generated groups are second countable modulo a compact
normal subgroup. Generalizing our notion of elementary groups to the non-second
countable setting thus adds little to the theory.

In these notes, we explore the class of elementary groups. In particular, the class
is shown to enjoy strong permanence properties and to admit a well-behaved, ordinal
valued rank function. This rank function, aside from being an important tool to study
elementary groups, gives a quantitative measure of the level of interaction between
topological and large scale structure in a given elementary group.

Remark 2 The primary reference for these notes is [15]; the reader may also wish to
consult the nice survey of Cesa and Le Maître [5]. The general approach developed
in these notes is different from that of [15]. Our approach follows that of [16]; in loc.
cit., the class of elementary amenable discrete groups is studied, but the parallels are
obvious.
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2 Preliminaries

For G a t.d.l.c. group, we shall use U.G/ to denote the set of compact open
subgroups of G. For K a subgroup of a group G, we use hhKiiG to denote the normal
subgroup generated by K in G. When clear from context, we drop the subscript. If
H is an open subgroup of G, we write H �o G. If H is a closed subgroup of G
such that G=H is compact in the quotient topology, we say that H is a cocompact
subgroup and write H �cc G. It is a classical result that cocompact closed subgroups
of compactly generated t.d.l.c. groups are themselves compactly generated.

2.1 Ordinals

Ordinal numbers are used frequently in these notes; Kunen [8] contains a nice
introduction to ordinal numbers and ordinal arithmetic. Recalling that a well-order
is a total order with no infinite descending chains, the easiest definition of an ordinal
number is due to J. von Neumann: Each ordinal is the well-ordered set of all smaller
ordinals with 0 WD ;. For example, 2 D f0; 1g and 3 D f0; 1; 2g. Ordinal numbers
are in particular well-orders themselves. For example, 2 is the two element well-
order, and the first transfinite ordinal is ! WD N. The second transfinite ordinal,
! C 1, is the well-order given by a copy of N followed by one point. The first
uncountable ordinal is denoted by !1. An important feature of !1, which is often
used implicitly, is that there is no countable cofinal subset. That is to say, there is
no countable sequence of countable ordinals .˛i/i2N such that supi2N ˛i D !1. We
stress that !1 is much larger than any countable ordinal. Ordinals such as !! or
!!

!
are still strictly smaller than !1. Indeed, one can never reach !1 via arithmetic

combinations of countable ordinals.
Given ordinals ˛ and ˇ, the ordinal ˛ C ˇ is the well-order given by a copy

of ˛ followed by a copy of ˇ. Observe that the well-orders 1 C ! and ! C 1

are thus not equal, since the former is order isomorphic to ! while the latter is
not, hence addition is non-commutative. Multiplication and exponentiation can be
defined similarly. We shall not use ordinal arithmetic in a complicated way. The
reader is free to think of ordinal arithmetic as usual arithmetic keeping in mind that
it is non-commutative.

Ordinals of the form ˛ C 1 for some ordinal ˛ are called successor ordinals.
A limit ordinal is an ordinal which is not of the form ˛ C 1 for some ordinal ˛.
The ordinals !, ! C !, and !1 are examples of limit ordinals. We stress that our
definition implies 0 is a limit ordinal.

An important feature of ordinals is that they allow us to extend induction
arguments transfinitely. Transfinite induction proceeds just as the familiar induction
with one additional step: One must check the inductive claim holds for limit ordinals
	 given that the claim holds for all ordinals ˛ < 	. In the induction arguments in
these notes, the limit case of the argument will often be trivial.
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2.2 Descriptive-Set-Theoretic Trees

We will require the notion of a descriptive-set-theoretic tree. This notion of a tree
differs from the usual graph-theoretic definition; it is similar to the notion of a rooted
tree used in the study of branch groups. The definitions given here are restricted to
the collection of finite sequences of natural numbers; see [7, 2.A] for a general
account.

Denote the collection of finite sequences of natural numbers by N
<N. For

sequences s WD .s0; : : : ; sn/ 2 N
<N and r WD .r0; : : : ; rm/ 2 N

<N, we write s v r
if s is an initial segment of r. That is to say, n � m and si D ri for 0 � i � n.
The empty sequence, denoted by ;, is considered to be an element of N<N and is an
initial segment of any t 2 N

<N. We define the concatenation of s with r to be

sar WD .s0; : : : ; sn; r0; : : : ; rm/:

For t D .t0; : : : ; tk/ 2 N
<N, the length of t, denoted by jtj, is the number of

coordinates; i.e. jtj WD kC 1. If jtj D 1, we write t as a natural number, as opposed
to a sequence of length one. For 0 � i � jtj � 1, we define t.i/ WD ti. For an infinite
sequence ˛ 2 N

N, we set ˛ �nWD .˛.0/; : : : ; ˛.n � 1//, so ˛ �n2 N
<N for any

n � 0.

Definition 2 A set T � N
<N is a tree if it is closed under taking initial segments.

We call the elements of T the nodes of T. If s 2 T and there is no n 2 N such that
san 2 T, we say s is a leaf or terminal node of T. An infinite branch of T is a
sequence ˛ 2 N

N such that ˛ �n2 T for all n. If T has no infinite branches, we say
that T is well-founded.

For T a well-founded tree, there is an ordinal valued rank, denoted by �T , on the
nodes of T defined inductively as follows: If s 2 T is terminal, �T .s/ WD 0. For a
non-terminal node s,

�T.s/ WD sup f�T.r/C 1 j s @ r 2 Tg :

The reader is encouraged to verify that this function is defined on all nodes of a
well-founded tree. The rank of a well-founded tree T is defined to be

�.T/ WD supf�T.s/C 1 j s 2 Tg:

When T is the empty tree, �.T/ D 0, and for all other well-founded trees, it is easy
to verify that �.T/ D �T.;/C 1. We thus see that �.T/ is always either a successor
ordinal or zero. We extend � to ill-founded trees by declaring �.T/ D !1 for T an
ill-founded tree.

There is an important, well-known relationship between the rank �T on the nodes
of T and the rank � on well-founded trees; we give a proof for completeness. For T a
tree and s 2 T, we put Ts WD fr 2 N

<N j sar 2 Tg. The set Ts is the tree obtained by
taking the elements in T that extend s and deleting the initial segment s from each.
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Lemma 1 Suppose that T � N
<N is a well-founded tree and s 2 T. Then

(1) �T.s/C 1 D �.Ts/ and
(2) �.T/ D supf�.Ti/ j i 2 Tg C 1.
Proof Fixing s 2 T, we first argue by induction on �Ts.r/ that �Ts.r/ D �T .sar/.
For the base case, �Ts.r/ D 0, the node r is terminal in Ts. The node sar is thus
terminal in T, hence �T.sar/ D 0.

Suppose that the inductive claim holds for all r 2 Ts with �Ts.r/ < ˇ and say
that �Ts.r/ D ˇ. We now deduce that

�Ts.r/ D supf�Ts.t/C 1 j r @ t 2 Tsg
D supf�T.sat/C 1 j sar @ sat 2 Tg
D supf�T.t/C 1 j sar @ t 2 Tg
D �T.sar/

where the second equality follows from the inductive hypothesis. Our induction is
complete.

Taking r D ;, we deduce that �Ts.;/ D �T .s/. Therefore, �.Ts/ D �Ts.;/C 1 D
�T.s/C 1, which verifies .1/. Claim .2/ follows from .1/.

3 Elementary Groups and Well-Founded Trees

Classes defined by axioms, such as E, are often studied via induction on the class
formation axioms. In the case of E, this approach has the unfortunate side-effect
of cumbersome and technical proofs. We thus begin by characterizing E in terms
of well-founded descriptive-set-theoretic trees. This gives an elegant and natural
approach to the class of elementary groups.

To motivate our characterization, consider a game in which a friend builds a
t.d.l.c.s.c. group and asks you to determine if it is or is not elementary. Since
your friend built the group, there must be some way in which the group can be
disassembled. You could thus, in principle, devise a general strategy to disassemble
the group which halts exactly when the group is elementary.

Our characterization will be exactly such a strategy. Our decomposition strategy
will alternate between eliminating discrete quotients and passing to compactly
generated open subgroups. These operations will “undo” the closure properties .iv/
and .v/. A priori, there are other elementary operations that must also be “undone.”
It will turn out that it is indeed enough to only consider .iv/ and .v/. (This is
unsurprising in view of [10].)
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3.1 Decomposition Trees

Eliminating discrete quotients is accomplished by taking the discrete residual.

Definition 3 For a t.d.l.c. group H, the discrete residual of H is

Res.H/ WD
\
fO j O Eo Hg:

The discrete residual is a closed characteristic subgroup of H. The quotient
H=Res.H/ also has a special structure. A t.d.l.c. SIN group is a t.d.l.c. group which
admits a basis at 1 of compact open normal subgroups; note that t.d.l.c. SIN groups
are elementary.

Proposition 1 ([3, Corollary 4.1]) For G a compactly generated t.d.l.c. group, the
quotient G=Res.G/ is a SIN group.

To reduce to compactly generated open subgroups, we define a second operation.
Let G be a t.d.l.c.s.c. group and U 2 U.G/. Fix � a choice of a countable dense
subset of every closed subgroup of G; we call � a choice function for G. Formally,
� is a map that sends a closed subgroup H � G to a countable dense subset fhigi2N
of H; the axiom of choice ensures such a � exists. If L is a closed subgroup of
G, then the restriction of � to closed subgroups of L obviously induces a choice
function for L. We will abuse notation and say that � is a choice function for L.

For H � G closed and n 2 N, we now define

R.U;�/n .H/ WD hU \H; h0; : : : ; hni

where the h0; : : : ; hn are the first n C 1 elements of the countable dense set of H
picked out by � . For each n 2 N, the subgroup R.U;�/n .H/ is a compactly generated
open subgroup of H. Furthermore, R.U;�/n .H/ � R.U;�/nC1 .H/ for all n, and

H D
[

i2N
R.U;�/i .H/:

The subgroups R.U;�/n .H/ thus give a canonical increasing exhaustion of H by
compactly generated open subgroups.

We now define a tree T.U;�/.G/ and associated closed subgroups Gs of G for each
s 2 T.U;�/.G/. Put

• ; 2 T.U;�/.G/ and G; WD G.
• Suppose we have defined s 2 T.U;�/.G/ and Gs � G. If Gs ¤ f1g and n 2 N,

then put san 2 T.U;�/.G/ and set

Gsan WD Res
�
R.U;�/n .Gs/

�
:
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Definition 4 For G a t.d.l.c.s.c. group, U 2 U.G/, and � a choice function for G,
we call T.U;�/.G/ the decomposition tree of G with respect to U and � .

The decomposition tree is always non-empty, and the subgroup associated to any
terminal node is the trivial group. We make one further observation; the proof is
straightforward and therefore left to the reader. Recall that Ts is the tree below the
node s in the tree T; precisely, Ts D fr 2 N

<N j sar 2 Tg. For a decomposition tree
T.U;�/.G/, we shall write T.U;�/.G/s, instead of the more precise .T.U;�/.G//s, for the
tree below s.

Observation 1 For any s 2 T.U;�/.G/, T.U;�/.G/s D T.Gs\U;�/.Gs/. Further, for
r 2 T.Gs\U;�/.Gs/, the associated subgroup .Gs/r is the same as the subgroup Gsar

associated to sar 2 T.U;�/.G/.

Remark 3 By classical results in descriptive set theory, the choice function � can
indeed be constructed in a Borel manner using selector functions; see [7, (12.13)].
The advantage of using selector functions to produce � is that the assignment
G 7! T.U;�/.G/ is Borel, when considered as a function between suitable parameter
spaces. This allows for further descriptive-set-theoretic analysis of the class of
elementary groups. See [16] for an example of such an analysis in the space of
marked groups.

The decomposition tree plainly depends on the choices of compact open sub-
group U and choice function � , so there is no hope the decomposition tree outright
is an invariant of the group. However, a decomposition tree comes with an ordinal
rank, and this rank is a group invariant. That is to say, the rank of a decomposition
tree does not depend on the choices of compact open subgroup and choice function.

Proposition 2 Suppose that G is a t.d.l.c.s.c. group, U 2 U.G/, and � is a choice
function for G. Suppose additionally that H is a t.d.l.c.s.c. group, W 2 U.H/, and ı
is a choice function for H. If  W H ! G is a continuous, injective homomorphism,
then

�.T.W;ı/.H// � �.T.U;�/.G//:

Proof We induct on �.T.U;�/.G// simultaneously for all G, U 2 U.G/, and � a
choice function for G. The base case is obvious since �.T.U;�/.G// D 1 implies
G D f1g. We may also ignore the case of �.T.U;�/.G// D !1, since the proposition
obviously holds here.

Suppose �.T.U;�/.G// D ˇ C 1. For each i, the subgroup R.W;ı/i .H/ is compactly

generated, so there is n.i/ with  
�
R.W;ı/i .H/

�
� R.U;�/n.i/ .G/. We thus have that

 .Hi/ D  
�

Res
�
R.W;ı/i .H/

��
� Res

�
R.U;�/n.i/ .G/

�
D Gn.i/:

The map  thereby restricts to  W Hi ! Gn.i/. Lemma 1 and Observation 1 imply

�
�
T.Gn.i/\U;�/.Gn.i//

� D � �T.U;�/.G/n.i/
� � ˇ:
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Applying the inductive hypothesis, we deduce that

�
�
T.Hi\W;ı/.Hi/

� � � �T.Gn.i/\U;�/.Gn.i//
�
:

Therefore,

�.T.W;ı/.H// D supi2N �
�
T.Hi\W;ı/.Hi/

�C 1
� supi2N �

�
T.Gn.i/\U;�/.Gn.i//

�C 1
� �.T.U;�/.G//;

so �.T.W;ı/.H// � ˇ C 1. This finishes the induction, and we conclude the
proposition.
Proposition 2 ensures that the rank of a decomposition tree is indeed a group-
theoretic property.

Corollary 1 For G a t.d.l.c.s.c. group, U;W 2 U.G/, and � and ı choice functions
for G, �.T.U;�/.G// D �.T.W;ı/.G//. In particular, T.U;�/.G/ is well-founded for
some U and � if and only if T.U;�/.G/ is well-founded for all U and � .

In view of Corollary 1, we make a definition.

Definition 5 For a t.d.l.c.s.c. group G, the decomposition rank of G is

�.G/ WD �.T.U;�/.G//

for some (any) U 2 U.G/ and � a choice function for G.
Decomposition trees are a strategy to disassemble t.d.l.c.s.c. groups. Requiring

the resulting decomposition tree to be well-founded is the obvious halting condition
for this decomposition strategy. With this in mind, we define the following class:

Definition 6 The class WF is defined to be the class of t.d.l.c.s.c. groups G with
�.G/ < !1. Equivalently, WF is the collection of t.d.l.c.s.c. groups with some
(equivalently every) decomposition tree well-founded.

Our goal is to show that indeedWF D E, verifying that well-founded decomposi-
tion trees exactly isolate the elementary groups; the notation “WF” will be discarded
after establishing WF D E. We shall argue for E � WF by verifying that WF
satisfies the same closure properties; the next section will make these verifications.
The converse inclusion will be an easy induction argument.

3.2 The Class WF

Our analysis of the class WF is via induction on the decomposition rank, so we
first establish a computation technique for the rank. This technique allows us to
avoid discussing decomposition trees. To establish this technique, let us first recast
Proposition 2; our restatement also gives a first closure property of WF.
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Proposition 3 Suppose that G and H are t.d.l.c.s.c. groups. If  W H ! G is a
continuous, injective homomorphism, then �.H/ � �.G/. In particular, if H � G,
then �.H/ � �.G/, so WF is closed under taking closed subgroups.

Proposition 4 Suppose G 2 WF is non-trivial.

(1) If G DSi2N Oi with .Oi/i2N an�-increasing sequence of compactly generated
open subgroups of G, then �.G/ D supi2N �.Res.Oi//C 1.

(2) If G is compactly generated, then �.G/ D �.Res.G//C 1.
Proof For .1/, fix U 2 U.G/ and a choice function � for G. For each i, there is n.i/
such that Oi � R.U;�/n.i/ .G/, since Oi is compactly generated. Therefore,

Res.Oi/ � Res
�
R.U;�/n.i/ .G/

�
D Gn.i/;

and Proposition 2 implies �.Res.Oi// � �.Gn.i//. We conclude that

sup
i2N

�.Res.Oi//C 1 � sup
j2N

�.Gj/C 1 D �.G/:

On the other hand, .Oi/i2N is an exhaustion of G by open subgroups, so for each
j, there is n. j/ with R.U;�/j .G/ � On. j/. Therefore, Gj � Res.On. j//, and applying
Proposition 2 again,

�.G/ D sup
j2N

�.Gj/C 1 � sup
i2N

�.Res.Oi//C 1:

Hence, �.G/ D supi2N �.Res.Oi//C 1, as required.
Claim .2/ now follows immediately from .1/ by taking the sequence .Oi/i2N with

Oi D G for all i.
We now begin in earnest to verify that WF satisfies the same closure properties

as E. A t.d.l.c. group G is residually discrete if Res.G/ D f1g. From the definition
of a decomposition tree, we see that any decomposition tree for such a group has
rank at most 2. We thus deduce the following proposition:

Proposition 5 All residually discrete groups are elements of WF. In particular, all
second countable profinite groups and countable discrete groups are elements of
WF.

We next consider countable unions; we prove a slightly more general result for
later use.

Proposition 6 Suppose G is a t.d.l.c.s.c. group and .Oi/i2N is an �-increasing
exhaustion of G by compactly generated open subgroups. If �.Res.Oi// < !1 for all
i, then G 2 WF. In particular,WF is closed taking countable increasing unions.

Proof Fix U 2 U.G/ and � a choice function for G. Via Observation 1, the tree
T.U;�/.G/ is well-founded exactly when T.Gj\U;�/.Gj/ is well-founded for all j 2 N.
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For each j 2 N, there is i 2 N such that R.U;�/j .G/ � Oi, since R.U;�/j .G/ is compactly
generated. We deduce that Gj � Res.Oi/. Proposition 3 now ensures that �.Gj/ <

!1, and thus, T.Gj\U;�/.Gj/ is well-founded. We conclude that G 2 WF.
We now turn our attention to quotients and group extensions. Our arguments

here require several preliminary results. The first observation is immediate from the
relevant definitions.

Observation 2 If G is a t.d.l.c. SIN group and L E G, then G=L is a t.d.l.c. SIN
group.
Let us also note an easy fact about the discrete residual.

Lemma 2 If G is a compactly generated t.d.l.c.s.c. group and L E G, then
Res.G=L/ D Res.G/L=L.

Proof Let � W G ! G=L be the usual projection map. For every open normal
O E G=L, the subgroup��1.O/ is an open normal subgroup ofO. Hence, Res.G/ �
��1.Res.G=L//, and we deduce that Res.G/L=L � Res.G=L/.

Conversely, the group .G=L/=.Res.G/L=L/ is a quotient of the SIN group
G=Res.G/. Observation 2 ensures .G=L/=.Res.G/L=L/ is a SIN group and therefore
residually discrete. We conclude that Res.G=L/ � Res.G/L=L, verifying the
proposition.
A non-trivial permanence property of t.d.l.c. SIN groups will be needed. The
argument requires the following easy application of the Baire category theorem,
which we leave as an exercise: Every element of a discrete normal subgroup of a
t.d.l.c.s.c. group has an open centralizer.

Lemma 3 If G is a compactly generated t.d.l.c. group and N Ecc G is a SIN group,
then G is a SIN group.

Proof Fix U 2 U.G/ and form the subgroup UN. Since N is a SIN group, we may
find W 2 U.N/ with W � U and W E N. The normal closure J WD hhWii of W in
UN is generated by U-conjugates of W, and thus J � U. Since N is cocompact in
G, UN has finite index in G, so NG.J/ has finite index in G. Letting g1; : : : ; gn list
left coset representatives for NG.J/ in G, we see that

\

g2G
gJg�1 D

n\

iD1
giJg

�1
i :

Defining K WD Tg2G gJg�1, it follows that K 2 U.N/ and that K E G.
Passing to G=K, the image �.N/ is normal and discrete in G=K where � W

G ! G=K is the usual projection. The subgroup N is compactly generated, since
cocompact in a compactly generated group, hence the subgroup �.N/ is finitely
generated. Moreover, since each generator of �.N/ has an open centralizer, �.N/
has an open centralizer. Say that Q �o �.U/ centralizes�.N/. Clearly,Q E Q�.N/,
and using that �.N/ is cocompact in G=K, we additionally see that Q�.N/ has finite
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index in G=K. Just as in the previous paragraph, there is L �o Q with L E G=K. It
now follows that ��1.L/ is an open normal subgroup of G contained in U.

We conclude that inside every compact open subgroup U of G, we may find a
compact open normal subgroup of G. That is to say, G is a SIN group.

Our final subsidiary result is important outside the immediate application,
because it allows one to go from a closed normal subgroup to an open subgroup
with the same rank.

Proposition 7 ([11, Lemma 2.9]) If G 2 WF with N Ecc G closed and non-trivial,
then �.G/ D �.N/.
Proof Fix .Oi/i2N a countable �-increasing exhaustion of G by compactly gener-
ated open subgroups of G and put Ni WD N \ Oi. Each Ni is open in N, and since
Ni Ecc Oi, it is also compactly generated. Proposition 3 ensures N 2 WF, and in
view of Proposition 4, we infer that

�.N/ D sup
i2N

�.Res.Ni//C 1:

We now consider the groupOi=Res.Ni/. The subgroupNi=Res.Ni/ is a SIN group
via Proposition 1, and it is cocompact in Oi=Res.Ni/. Lemma 3 thus implies that
Oi=Res.Ni/ is also a SIN group, hence Oi=Res.Ni/ is residually discrete. It now
follows that Res.Oi/ D Res.Ni/. Applying Proposition 4 again, we conclude that

�.G/ D sup
i2N

�.Res.Oi//C 1 D sup
i2N

�.Res.Ni//C 1 D �.N/;

verifying the lemma.
We are now prepared to show WF is closed under taking quotients; the proof is

an instructive illustration of the utility of Proposition 7.

Proposition 8 If G 2 WF and L E G is closed, then G=L 2 WF with �.G=L/ �
�.G/.

Proof Fix U 2 U.G/ and fix .Oi/i2N an�-increasing exhaustion of G by compactly
generated open subgroups such that U � O0.

We induct on �.G/ for the proposition. The case of �.G/ D 1 is obvious, and
it will be convenient to take �.G/ D 2 as the base case. Proposition 4 ensures that
Res.Oi/ D f1g for all i, and in view of Proposition 1, we deduce that each Oi is a
SIN group. Since the class of SIN groups is stable under taking Hausdorff quotients,
Oi=Oi \ L is also a SIN group for all i 2 N. On the other hand, G=L is the union of
the increasing sequence .OiL=L/i2N, and since OiL=L ' Oi=Oi \ L, each term of
the sequence is a SIN group. Proposition 5 now ensures each OiL=L is in WF, so we
conclude that G=L 2 WF via Proposition 6. From Proposition 4, we deduce further
that �.G=L/ � 2.

Let us now suppose that �.G/ D ˇC1with ˇ > 1. In view of Proposition 4, each
Ri WD Res.Oi/ has rank at most ˇ. Furthermore, it cannot be the case that Ri D f1g
for all i, since then G has rank two. Throwing out finitely many Oi if needed, we
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may assume each Ri is non-trivial. Each Ri is then a non-trivial cocompact normal
subgroup of URi, so Proposition 7 implies �.URi/ D �.Ri/. Applying the inductive
hypothesis, we infer that

URi=URi \ L ' URiL=L

has rank at most ˇ for each i. As RiL=L is a closed subgroup of URiL=L, we deduce
further that �.RiL=L/ � ˇ, via Proposition 3.

The quotient G=L is the increasing union of the compactly generated open
subgroupsWi WD OiL=L. Lemma 2 shows that Res.Wi/ D RiL=L, so our work above
implies �.Res.Wi// � ˇ. Applying Proposition 6, we deduce that G=L 2 WF, and
via Proposition 4, �.G=L/ � ˇ C 1, completing the induction.

We next show WF is closed under forming group extensions; our proof is inspired
by a similar argument in [10].

Proposition 9 ([12, Lemma 7.4]) Suppose

f1g ! N ! G! Q! f1g

is a short exact sequence of t.d.l.c.s.c. groups. If N and Q are members ofWF, then
G 2 WF with

�.G/ � �.N/C �.Q/:

In particular,WF is closed under group extensions.

Proof We induct on �.Q/ for the proposition. The base case, �.Q/ D 1, is obvious,
so we suppose �.Q/ D ˇ C 1.

Let � W G ! Q be the projection given in the short exact sequence, fix .Oi/i2N
an �-increasing exhaustion of G by compactly generated open subgroups, and put
Wi WD �.Oi/. The sequence .Wi/i2N is an exhaustion of Q by compactly generated
open subgroups. Fix i 2 N, form R WD Res.Oi/, and put M WD RN. The group
M=N is a closed subgroup of Res.Wi/, hence �.M=N/ � ˇ via Proposition 3. The
inductive hypothesis implies M 2 WF with �.M/ � �.N/ C ˇ, and since R � M,
a second application of Proposition 3 ensures that �.R/ � �.N/ C ˇ. In view of
Propositions 4 and 6, we conclude that G 2 WF with �.G/ � �.N/ C ˇ C 1,
verifying the inductive claim.

3.3 The Return of Elementary Groups

We now argue that WF is exactly the class of elementary groups. Our argument will
have the added benefit of showing that some of the elementary operations used to
define E are redundant.



A Survey of Elementary Totally Disconnected Locally Compact Groups 605

Definition 7 The class E � is the smallest class of t.d.l.c.s.c. groups such that the
following hold:

(i) E � contains all second countable profinite groups and countable discrete
groups.

(ii) E � is closed under taking group extensions of second countable profinite or
countable discrete groups. That is, if G is a t.d.l.c.s.c. group and H E G is
a closed normal subgroup with H 2 E � and G=H profinite or discrete, then
G 2 E �.

(iii) If G is a t.d.l.c.s.c. group and G D S
i2N Oi where .Oi/i2N is an �-increasing

sequence of open subgroups of G with Oi 2 E � for each i, then G 2 E �.

Obviously E � is contained in E. It turns out this containment is indeed an equality.

Theorem 1 E D WF D E �.

Proof Since E � � E, it suffices to show the inclusions E � WF � E �. For the
first inclusion, since E is defined to be the smallest class such that certain closure
properties hold, it is enough to show that WF satisfies the same properties. That
WF contains the profinite groups and discrete groups is given by Proposition 5.
The class WF is closed under taking closed subgroups, Hausdorff quotients, and
countable increasing unions via Propositions 3, 8, and 6, respectively. Proposition 9
ensures WF is closed under forming group extensions.

For the second inclusion, we argue by induction on �.G/. If �.G/ D 1, then
G D f1g is plainly in E �. Suppose H 2 E � for all H 2 WF with �.H/ � ˇ and
consider G 2 WF with �.G/ D ˇ C 1. Fix .Oi/i2N an �-increasing exhaustion
of G by compactly generated open subgroups. In view of Proposition 4, each Oi

is such that �.Res.Oi// � ˇ, so the inductive hypothesis implies Res.Oi/ 2 E �.
The quotient Oi=Res.Oi/ is a SIN group via Proposition 1. We may then fix W E
Oi=Res.Oi/ a compact open normal subgroup. Letting � W Oi ! Oi=Res.Oi/ be the
usual projection, Res.Oi/ is a cocompact normal subgroup of ��1.W/, and as E � is
closed under extensions of profinite groups, we deduce that ��1.W/ 2 E �. On the
other hand, the quotient Oi=�

�1.W/ is discrete. As E � is closed under extensions
of discrete groups, we can conclude that Oi 2 E �. It now follows that G 2 E �,
completing the induction.

As an immediate consequence, we obtain a simpler characterization of elemen-
tary groups.

Corollary 2 The class of elementary groups is the smallest class E of t.d.l.c.s.c.
groups such that the following hold:

(i) E contains all second countable profinite groups and countable discrete
groups.

(ii) E closed under taking group extensions of second countable profinite or
countable discrete groups; that is, if G is a t.d.l.c.s.c. group and H E G is
a closed normal subgroup with H 2 E and G=H profinite or discrete, then
G 2 E.
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(iii) If G is a t.d.l.c.s.c. group and G D S
i2N Oi where .Oi/i2N is an �-increasing

sequence of open subgroups of G with Oi 2 C for each i, then G 2 E.

We note a second consequence, which is quite useful in the study of elementary
groups.

Corollary 3 If G is a non-trivial compactly generated elementary group, then G
has a non-trivial discrete quotient.

Proof Via Theorem 1, G is a member of WF, and Proposition 4 implies �.G/ D
�.Res.G//C1. We conclude that Res.G/ Œ G, and thus, G has a non-trivial discrete
quotient.

4 Examples and Non-examples of Elementary Groups

We conclude with a discussion of examples and non-examples. In particular, we
will exhibit a family of examples with unboundedly large finite rank and compactly
generated examples with transfinite rank.

4.1 Non-examples

Our motivation to form the class of elementary groups is to make precise the class
of groups with weak interaction between topological and large-scale structure. The
groups which surely have strong interaction between topological and large-scale
structure are the compactly generated t.d.l.c.s.c. groups which are non-discrete and
simple. Our notion of an elementary group excludes these simple groups.

Proposition 10 If G is a compactly generated t.d.l.c.s.c. group that is non-discrete
and topologically simple, then G is not elementary.

Proof Since G is topologically simple and non-discrete, it has no non-trivial discrete
quotients. In view of Corollary 3, that G is compactly generated ensures that it is
non-elementary.

We note that there are many compactly generated t.d.l.c.s.c. groups that are
topologically simple and non-discrete. For the n-regular tree Tn with n � 3, work
of Tits [14] shows that there is an index two closed subgroup of Aut.Tn/, denoted
by AutC.Tn/, that is topologically simple, compactly generated, and non-discrete.
The projective special linear groups PSLn.Qp/ where Qp is the p-adic numbers and
n � 2 are further examples; cf. [1, 6]. There are in fact continuum many compactly
generated t.d.l.c.s.c. groups that are topologically simple and non-discrete by work
of Smith [13].
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4.2 Finite Rank Examples

Our construction requires a couple of general notions. A group is called perfect if
it is generated by commutators; a commutator is an element of the form Œg; h� WD
ghg�1h�1 for group elements g and h. We also require the notion of a local direct
product.

Definition 8 Suppose that .Gi/i2N is a sequence of t.d.l.c. groups and suppose that
there is a distinguished compact open subgroup Ui � Gi for each i 2 N. The local
direct product of .Gi/i2N over .Ui/i2N is defined to be

(

f W N!
G

i2N
Gi j f .i/ 2 Gi, and f .i/ 2 Ui for all but finitely many i 2 N

)

with the group topology such that
Q

i2N Ui continuously embeds as an open
subgroup. We denote the local direct product by

L
i2N .Gi;Ui/.

The following property of local direct products is an easy consequence of the
definitions; we leave the proof to the reader.

Proposition 11 If .Gi/i2N is a sequence of elementary groups with Ui a distin-
guished compact open subgroup for each i, then

L
N
.Gi;Ui/ is an elementary group.

We are now ready to construct our groups. Let A5 be the alternating group on five
letters and let S be an infinite finitely generated perfect group. Form H WD SŒ5� Ì A5
where A5 Õ SŒ5� by shift and fix a transitive, free action of H on N.

Lemma 4 The normal subgroup of H generated by A5 equals H.

Proof Identify S with the copy of S in SŒ5� supported on 0 and take a 2 A5 so that
a.0/ ¤ 0. For g; h 2 S � SŒ5�, the element aga�1 has support disjoint from both g
and h, hence aga�1 commutes with both g and h. An easy calculation now shows
that Œh; Œg; a�� D Œh; g�. Since Œg; a� 2 hhA5ii, we deduce that Œh; Œg; a�� 2 hhA5ii. The
group hhA5ii thus contains all commutators of S, and since S is perfect, S � hhA5ii.
It now follows that hhA5ii D H.

Starting from the group H, we inductively define compactly generated elemen-
tary groups Ln with a distinguished Kn 2 U.Ln/ such that hhKnii D Ln. For the base
case, n D 1, define L1 WD H and K1 WD A5. The group L1 is compactly generated,
K1 is a compact open subgroup of L1, and hhK1ii D L1, via Lemma 4.

Suppose we have defined a compactly generated group Ln with a compact open
subgroup Kn such that hhKnii D Ln. Let .Lin/i2N and .Ki

n/i2N list countably many
copies of Ln and Kn and form the local direct product

L
i2N.Lin;Ki

n/. Taking the
previously fixed action of H on N, we have that H Õ

L
i2N.Lin;Ki

n/ by shift, so we
may form

LnC1 WD
M

i2N
.Lin;K

i
n/ Ì H:
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The group LnC1 is a t.d.l.c. group under the product topology, and KnC1 WD KN

n ÌA5
is a compact open subgroup. Letting X be a compact generating set for L0n and F be
a finite generating set for H in LnC1, one verifies that X 	Qi>0 K

i
n [ F is a compact

generating set for LnC1. It is easy to further verify that hhKnC1iiLnC1 D LnC1. This
completes our inductive construction.

Proposition 12 For each n � 1, Ln 2 E with �.Ln/ � nC 1.
Proof In view of Proposition 11, an easy induction argument verifies that Ln 2 E
for all n � 1. For the lower bound on the rank, we argue by induction on n. For
the base case, L1 D H is non-trivial and discrete. Since the trivial group has rank 1,
Proposition 4 implies that �.L1/ D 2.

Suppose the inductive hypothesis holds up to n and consider LnC1. We first
compute Res.LnC1/. Consider O Eo LnC1. Since KN

n is a compact open subgroup of
LnC1, the subgroup O must contain

KŒk;1�n WD f f W N! Kn j f .0/ D � � � D f .k/ D 1g

for some k 2 N. Since H acts transitively on N and O is normal, O indeed contains
KN

n . Recalling that hhKniiLn D Ln, we conclude that

M

i2N
.Lin;K

i
n/ D hhKN

n iiLnC1 � O:

It now follows that Res.LnC1/ DLi2N.Lin;Ki
n/.

In view of Proposition 4, �.LnC1/ D �.Res.LnC1// C 1, because LnC1 is
compactly generated. The group Ln admits a continuous injection into Res.LnC1/,
so

�.Res.LnC1// � �.Ln/ � nC 1

via Proposition 3 and the inductive hypothesis. We conclude that �.LnC1/ � nC 2,
and the induction is complete.

It is indeed the case that �.Ln/ D n C 1 for all n � 1; one can devise a proof
of this using the computation of the rank of a quasi-product given in [11]. The set
fLn j n � 1g is thus a family of elementary groups with members of arbitrarily
large finite decomposition rank. From this family, we obtain a first example of an
elementary group with transfinite rank.

Corollary 4 The group G WDLn�1.Ln;Kn/ is elementary with �.G/ � ! C 1.
Proof For each n � 1, there is a continuous injection Ln ,! G. Via Proposition 3,
nC 1 � �.G/ for all n � 1, so ! � �.G/. Since the decomposition rank is always a
successor ordinal, we conclude that ! C 1 � �.G/.
Remark 4 The examples above demonstrate a strategy for finding examples of
higher rank. Suppose that we have H 2 E with rank ˛ and suppose that we construct
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a compactly generated G 2 E for which H ,! Res.G/. Applying Proposition 4, we
then have that �.G/ � ˛ C 1. The problem, of course, is finding the group G. We
stress that one should not expect general embedding theorems which produce such a
G. Indeed, there are groups in E which do not embed into any compactly generated
t.d.l.c.s.c. group; see [4].

4.3 Compactly Generated Elementary Groups with Transfinite
Rank

We here describe a technique which produces compactly generated elementary
groups with transfinite rank. We omit proofs as they are somewhat technical; the
full details of the construction will appear in a later article. The construction is
inspired by ideas from [2, 9, 13], and the reader familiar with [9] and the theory of
elementary groups can likely fill in the proofs.

Let T be the countable regular tree and fix ı an end of T. We orient the edges of
T such that all edges point toward the end ı. The resulting directed graph is denoted
by T, and we call ı the distinguished end of T. Given a countable set X, a coloring
of T is a function c W ET! X such that for each v 2 VT,

cv WD c �inn.v/W inn.v/! X

is a bijection. The set inn.v/ is the collection of directed edges with terminal vertex
v. We call the coloring ended if there is a monochromatic directed ray which is a
representative of the distinguished end ı; we shall always assume our colorings are
ended. The coloring allows us to define the local action of g 2 Aut.T/ at v 2 VT:


.g; v/ WD cg.v/ ı g ı c�1v 2 Sym.X/:

The local action allows us to isolate the groups we wish to consider. It shall be
convenient to make a definition: A t.d.l.c.s.c. permutation group is a pair .G;X/
where G is a t.d.l.c.s.c. group and X is a countable set on which G acts faithfully
with compact open point stabilizers. We stress that X is assumed to be infinite.

Definition 9 Suppose that .G;X/ is a t.d.l.c.s.c. permutation group with U 2 U.G/
and color the tree T by X. We define the group EX.G;U/ � Aut.T/ as follows:
EX.G;U/ is the set of g 2 Aut.T/ such that 
.g; v/ 2 G for all v 2 VT and that

.g; v/ 2 U for all but finitely many v 2 VT.

It is easy to verify that EX.G;U/ is an abstract group. With more care, one can
also identify a natural t.d.l.c.s.c. group topology on EX.G;U/. One first verifies
that the vertex stabilizer EX.U;U/.v/ is compact in the topology on Aut.T/. The
group Aut.T/ is given the topology of pointwise convergence; this topology is not
locally compact, since the tree is locally infinite. One then argues for the following
proposition:
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Proposition 13 For .G;X/ a t.d.l.c.s.c. permutation group and U 2 U.G/, there
is a t.d.l.c.s.c. group topology on EX.G;U/ such that the inclusion EX.U;U/.v/ ,!
EX.G;U/ is continuous with a compact open image for any v 2 VT.

The resulting t.d.l.c.s.c. group EX.G;U/ yields the desired examples.

Theorem 2 Suppose that .G;X/ is a transitive t.d.l.c.s.c. permutation group. If G
is compactly generated and elementary, then EX.G;U/ is compactly generated and
elementary with

�.EX.G;U// � �.G/C ! C 2

for any non-trivial U 2 U.G/.
Take G any infinite finitely generated group with a non-trivial finite subgroup U

such that U has a trivial normal core in U. Letting X WD G=U and G Õ X by left
multiplication, the pair .G;X/ is a t.d.l.c.s.c. permutation group. Theorem 2 now
implies that EX.G;U/ is elementary with rank at least ! C 2. (It is indeed the case
that EX.G;U/ has rank exactly ! C 2.)

Applying Theorem 2 repeatedly allows us to build elementary groups with even
larger rank.

Corollary 5 For each 0 � n < !, there is a compactly generated elementary group
Ln with �.Ln/ � ! � nC 2.
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The Scale, Tidy Subgroups and Flat
Groups

George Willis

Abstract These notes discuss the scale, tidy subgroups, subgroups associated with
endomorphisms and flat groups on totally disconnected locally compact (t.d.l.c)
groups. The first section discusses the structure theory of subgroups which are
minimizing for an endomorphism and introduces the scale of an endomorphism.
The second section discusses the applications and properties of the scale function.
Section 3 discusses other subgroups which may be associated with endomorphisms
in a unique way. Section 4 discusses flat groups of automorphisms, the flat rank and
various results about flat groups. The final section discusses the geometry of t.d.l.c
groups.

1 Subgroups Tidy for an Endomorphism

1.1 Introduction

A group G is locally compact if it has a locally compact topology such that the
group operations are continuous. Locally compact groups have a structure theory;
there exists a short exact sequence

G0 ,�! G � G=G0

where G0 is the connected component of the identity and G=G0 is totally discon-
nected [21].

Notes prepared by John J. Harrison.

G. Willis (�)
University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
e-mail: george.willis@newcastle.edu.au

© Springer International Publishing AG, part of Springer Nature 2018
D.R. Wood et al. (eds.), 2016 MATRIX Annals, MATRIX Book Series 1,
https://doi.org/10.1007/978-3-319-72299-3_26

613

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72299-3_26&domain=pdf
mailto:george.willis@newcastle.edu.au
https://doi.org/10.1007/978-3-319-72299-3_26


614 G. Willis

If G is a connected locally compact group and N is a neighbourhood of the
identity, then there exists a compact normal subgroup U contained in N such that
G=U is a Lie group [20]. In other words, connected groups are approximated by Lie
groups. This was the solution to Hilbert’s fifth problem.

Matrix groups over a locally compact field are important examples of locally
compact groups. Every topological field is either connected or totally disconnected,
and the group SL.n;F/ is connected or totally disconnected depending on whether F
is. The connected locally compact fields are R and C. Every totally disconnected
topological field is either discrete or non-discrete. The non-discrete totally dis-
connected locally compact fields are the p-adics and their finite extensions, which
have characteristic zero, and the formal Laurent series over finite fields, which have
positive characteristic [8].

The focus of these notes is non-discrete totally disconnected locally compact
groups.

1.2 Totally Disconnected Groups

From now on, suppose that G is a totally disconnected locally compact group
and that N is a neighbourhood of the identity. Then there exists a compact
open subgroup O contained in N [12]. This subgroup is not necessarily normal.
We denote by COS .G/ the set of compact open subgroups of G. The compact
open subgroups are also called 0-dimensional groups because they have inductive
dimension equal to zero.

All compact metrizable totally disconnected spaces are homeomorphic to a
Cantor set [14]. There are therefore no topological invariants–such as dimension–
which are useful for distinguishing them.

Definition 1 Let G be a totally disconnected locally compact (t.d.l.c.) group. An
endomorphism is a continuous homomorphism on G. The set of endomorphisms on
G form a semi-group under composition, denoted by End.G/. An automorphism on
G is an endomorphism which is a bijection with a continuous inverse. The group of
automorphisms on G is denoted by Aut.G/.

1.3 Endomorphisms and Minimizing Subgroups

Suppose that ˛ is an endomorphism of G and that U is a compact open subgroup.
Then the set ˛.U/ \ U is open in the subspace topology on ˛.U/ and ˛.U/ is
compact. Hence Œ˛.U/ W ˛.U/\U� is finite. The following definition was made for
automorphisms in [23, 24] and for endomorphisms in [27].
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Definition 2 Suppose that ˛ is an endomorphism on a t.d.l.c. group G. The scale of
˛ is

s.˛/ D minfŒ˛.U/WU \ ˛.U/� W U 2 COS .G/g:

A compact open subgroup U is said to be minimizing for ˛ if

s.˛/ D Œ˛.U/ W U \ ˛.U/�:

Suppose that ˛ is an endomorphism of G. For each compact open subgroup U, let

UC D fx 2 U W 9fxngn2N � U with x0 D x and ˛.xnC1/ D xn 8n 2 Ng

and let

U� D fx 2 U W ˛.x/ 2 U 8n 2 Ng:

Lemma 1 Suppose that ˛ is an automorphism of G and that U is a compact open
subgroup of G. Then

UC D
\

k�0
˛k.U/

and

U� D
\

k�0
˛�k.U/

Remark 1 These expressions for U� and UC are usually given as the definition in
the case of automorphisms. The fact that endomorphisms may lack an inverse is
why the definitions must be changed to accommodate endomorphisms.
In the above context, note that ˛ expands UC and contracts U�. See Fig. 1 for an
illustration of an automorphism ˛ with s.˛/ D 3 and s.˛�1/ D 2. The figure is not
accurate for endomorphisms which may have range much thinner than U.

The following characterisation of minimising subgroups in terms of their struc-
ture is given in [27].

Theorem 1 (The Structure ofMinimising Subgroups) A compact open subgroup
U of a locally compact totally disconnected group is minimizing for an endomor-
phism ˛ if and only if it satisfies:

(TA) U D UCU�.
(TB1) UCC DSn�0 ˛n.UC/ is closed.
(TB2) The sequence of integers Œ˛nC1.UC/ W ˛n.UC/� is constant.
When these conditions are satisfied s.˛/ D Œ˛.UC/ W UC�.
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U

α(U)

U+
α(U+)

U−

α(U−)

Fig. 1 Illustration of an automorphism ˛ with s.˛/ D 3 and s.˛�1/ D 2

Remark 2 The property (TB2) is not needed if ˛ is an automorphism.

Remark 3 It is immediate from the definition that ˛.UC/ � UC. It follows that
UCC is a subgroup for this reason.

Remark 4 One problem with working with endomorphisms instead of automor-
phisms is the fact that if ˛ is an endomorphism, then ˛.A \ B/ is in general not
necessarily equal to ˛.A/ \ ˛.B/.

It is immediate that UC, U� and UCC are subgroups, that ˛.UC/ � UC, and
˛.U�/ � U�, UC and U� are all closed.

Definition 3 Let G be a totally disconnected locally compact group and let ˛ be an
endomorphism on G. A compact open subgroup U is called tidy above for ˛ if it
satisfies (TA) and tidy below for ˛ if it satisfies both (TB1) and (TB2). If U is both
tidy above and tidy below for ˛, then it is simply called tidy.

The motivation for the names ‘tidy above’ and ‘tidy below’ comes from a tidying
procedure. Given any compact open subgroup U, the tidying procedure produces a
tidy compact open subgroup. There are two steps to the procedure. The first step
produces a compact open subgroup, V , which is tidy above. The second step takes
this tidy above subgroup and produces a new compact open subgroup, W, which is
both tidy above and tidy below. Each step of the tidying process reduces the index,
so that

Œ˛.U/ W ˛.U/ \ U� � Œ˛.V/ W ˛.V/ \ V� � Œ˛.W/ W ˛.W/ \W�:

If U and V are tidy subgroups for an endomorphism ˛, then they have the same
index,

Œ˛.U/ W ˛.U/ \U� D Œ˛.V/ W ˛.V/ \ V�:

Lemma 2 (Tidying Procedure Part One) Let ˛ be an endomorphism on G and
let U be a compact open subgroup in G. Then there exists a natural number n such
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that

V D Un D
n\

kD0
˛n.U/ D fu 2 U W ˛�k.u/ 2 U for 0 � k � ng

is tidy above.

Proof We suppose that ˛ is an automorphism, and only give the proof in that case.
We first note that each U�n is open, because it is a finite intersection of open
subgroups. Recall that

UC D
\

k�0
˛k.U/

and

U� D
\

k�0
˛�k.U/:

Let

Uk D
\

0� j�k
˛j.U/

and see Fig. 2 for an illustration of these sets. Then

˛.UC/ D
\

0� j�k
˛.Uj/:

(That this modest claim fails for endomorphisms is one reason that definitions and
arguments must be modified.) Furthermore, f˛.Uj/g1jD0 is a decreasing sequence of
compact open subgroups. Since ˛.UC/U is an open neighbourhood of ˛.UC/, there
must be a natural number n such that ˛.Un/ � UCU.

Since ˛.Un/ � ˛.UC/U, if y is in ˛.Un/, then y D zu, for some z in ˛.UC/ and
u in U. Then u D z�1y is in ˛.Un/ D TnC1

j�1 ˛j.U/, which implies that u is in UnC1.
In fact, ˛.Un/ � ˛.UC/UnC1.

In order to complete the proof, we will prove the claim that

˛l.Un/ D ˛l.UC/UnCl

for all non-negative integers l. We do so by induction.

˛lC1.Un/ D ˛.˛l.UC/UnCl/

D ˛lC1.UC/˛.UnCl/
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U

Unαn(U)

αn+1(U) Un+1

Fig. 2 Illustration of the subsets Un D T
0�j�n ˛

j.U/

D ˛lC1.UC/˛.UC/UnClC1

D ˛lC1.UC/UnClC1:

Let y be an element of our compact open subgroup V D Un and let

Cj D fz 2 VC W ˛j.y/ 2 ˛j.z/Vjg ¤ ¿:

Note that Cj is compact, and that CjC1 is contained within Cj for all natural
numbers j. Now choose some z contained in the intersection

T
j�0 Cj. Observe that

z is in VC, and that z�1y is in V , for all j � 0. This implies that z�1y is in V�.

2 Scale of an Endomorphism

Recall Definition 2, which states that if G is a t.d.l.c. group, then the scale of ˛ is

s.˛/ D minfŒ˛.U/WU \ ˛.U/� W U 2 COS .G/g:



The Scale, Tidy Subgroups and Flat Groups 619

The scale defines a function from the endomorphisms of the group to the natural
numbers. The scale of an endomorphism is 1 if and only if there exists a compact
open subgroup U such that ˛.U/ is a subgroup of U.

The scale of an endomorphism ˛ satisfies

s.˛n/ D s.˛/n (1)

for all integers n. The proof of this fact is a consequence of the following lemma,
which is [27, Proposition 16].

Lemma 3 Suppose that U is a compact open subgroup which is tidy for an
endomorphism ˛ on a t.d.l.c. group G. Then U is tidy for ˛n for every natural
number n. Furthermore,

s.˛n/ D Œ˛n.UC/ W UC�:

To deduce (1) observe that

s.˛n/ D Œ˛n.UC/ W UC�

D
n�1Y

kD0
Œ˛kC1.UC/ W ˛k.UC/�

D Œ˛.UC/ W UC�n;

because fŒ˛kC1.UC/ W ˛k.UC/�g is constant.
Another characterisation of the scale, known as Møller’s spectral radius formula,

may be derived from (1). This formula asserts that for any endomorphism ˛

s.˛/ D lim
n!1Œ˛

n.U/ W ˛n.U/\U�
1
n (2)

where U is any compact open subgroup, not necessarily minimizing. (This formula
is analogous to the spectral radius of a bounded linear operator T

�.T/ D lim
n!1 kT

nk 1n :/

Proof (Möller’s Formula) Since (2) holds when U is tidy, by (1), it suffices to show
that the limn!1Œ˛n.U/ W ˛n.U/ \ U�

1
n is independent of U. For this, it suffices to

show that the limit is the same for any compact open subgroup V containing U. To
do this, consider

Œ˛n.V/ W ˛n.U/\ U� D Œ˛n.V/ W ˛n.U/�Œ˛n.U/ W ˛n.U/\U� (3)

D Œ˛n.V/ W ˛n.V/ \ V�Œ˛n.V/\ V W ˛n.U/\ U�: (4)
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Note that, since ˛ is an endomorphism on G,

Œ˛n.V/ W ˛n.U/� � ŒV W U�

and

Œ˛n.V/ \ V W ˛n.U/\ U� D Œ˛n.V/\ V W ˛n.V/ \U�Œ˛n.V/\ U W ˛n.U/\U�

� ŒV W U�2:

Note further that all indices are greater than or equal to one. Hence (3) and (4) imply
that

ŒV W U��1Œ˛n.V/ W ˛n.V/\ V� � Œ˛n.U/ W ˛n.U/\U�

� ŒV W U�2Œ˛n.V/ W ˛n.V/\ V�

Therefore,

lim
n!1Œ˛

n.V/ W ˛n.V/\ V�
1
n D lim

n!1Œ˛
n.U/ W ˛n.U/\U�

1
n :

ut
Rögnvaldur Möller originally derived this formula from an alternative graph-
theoretic characterisation of tidy subgroups and the scale he established in [16].

Automorphisms No further multiplicativity or submultiplicativity properties hold
for the scale in general. More can be said for automorphisms.

Theorem 2 Suppose that ˛ is an automorphism on G. Then U is minimizing for ˛ if
and only if it is minimizing for ˛�1 and �.˛/ D s.˛/=s.˛�1/ where � W Aut.G/!
.R;	/ is the modular function.
Proof Let U be any compact open subgroup of G and m be the Haar measure on G.
Then by definition of the modular function

�.˛/ D m.˛.U//

m.U/

D m.˛.U//

m.˛.U/ \U/
	 m.˛.U/\ U/

m.U/

D Œ˛.U/ W ˛.U/ \ U�

ŒU W ˛.U/ \U�

D Œ˛.U/ W ˛.U/\ U�

Œ˛�1.U/ W ˛�1.U/\U�
:
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Choosing U minimizing for ˛ gives �.˛/ � s.˛/
s.˛�1/

, and choosing U minimizing

for ˛�1 gives that s.˛/
s.˛�1/

� �.˛/. Hence U is minimizing for ˛ if and only if it is

minimizing for ˛�1 and

�.˛/ D s.˛/

s.˛�1/
:

ut
The Braconnier topology on Aut.G/ is the topology with base elements

N1.K;O/ D f˛ 2 Aut.G/ W ˛.K/ � Og; and

N2.K;O/ D f˛ 2 Aut.G/ W ˛�1.K/ � Og
ranging over all compact subsets K in G and open subsets O in G. This topology is
formally stronger than the compact open topology, which is the topology with base
formed from the sets N1.K;O/, but these two topologies are equal in many cases.
The compact open topology is not in general a group topology, because the inverse
mapping may fail to be continuous for it, and the Braconnier topology remedies that
difficulty.

Examples show that the scale function s W Aut.G/ ! N need not be continuous
with respect to the Bracconier topology on Aut.G/ and discrete topology on N.

Question 1 Is there a topology on Aut.G/, or possibly End.G/, such that the scale
is continuous? Is there a topology on End.G/ with Aut.G/ an open subgroup?
The second of these questions is motivated by the fact that the group of invertible
operators on a normed space is open in the semigroup of all endomorphisms.

Inner Automorphisms
Each x 2 G determines an inner automorphism˛x W y 7! xyx�1. The homomorphism
G ! Aut.G/, x 7! ˛x induces a function on G called the scale on G, which is also
denoted by s.

Theorem 3 The scale s W G ! N is continuous with respect to the given topology
in G and the discrete topology on N.
The next theorem gives much more precise information.

Theorem 4 Suppose that x 2 G and let U be a compact open subgroup tidy for x.
Then U is tidy for every y 2 UxU and s.y/ D s.x/.

Proof In the first instance, let u be an element of U. Consider y D xu and let u D
u�uC for some u� 2 U� and uC 2 UC. Then

.xu/2 D xuxu

D xu�uCxu�uC

D .xu�x�1/xuC.xu�x�1/xuC:
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But xu�x�1 is in U�, since conjugation by x shrinks u�. Hence,

.xu/2 D u0�xvxu0C
D u0�.xv�x�1/x2.x�1vCx/u0C
D u00�x2u00C

for u0�; u00� 2 U� and u0C; u00C 2 UC and some v D v�vC, where v� 2 U� and
vC 2 UC. A similar calculation shows that, more generally, if y D u1xu2 2 UxU
and n � 0, then.u1xu2/n D u00�xnu00C for some u00˙ 2 U˙. Hence,

Œ ynUy�n W ynUy�n \U�

D Œ.u1xu2/nU.u1xu2/�n W .u1xu2/nU.u1xu2/�n \ U�

D Œ.u�xnuC/U.u�xnuC/�1 W .u�xnuC/U.u�xnuC/�1 \ U�

D Œu�xn.uCUu�1C /xnu�1� W u�xn.uCUu�1C /xnu�1� \ U�

D Œu�xnUx�nu�1� W u�xnUx�nu�1� \ U�

D ŒxnUx�n W xnUx�n \ U�

D s.xn/:

Hence, by Möller’s spectral radius formula,

s.y/ D lim
n!1Œ y

nUy�n W ynUy�n \U�1=n D s.x/:

The n D 1 case of the calculation then shows that

Œ yUy�1 W yUy�1 \U� D s.x/ D s.y/

and so U is minimizing for y. ut

2.1 An Application of the Scale Function

Define, for G a non-discrete totally disconnected locally compact group,

Per.G/ D fx 2 G W hxi is compactg:

Theorem 5 Per.G/ is a closed subset of G.
The theorem answers a question posed by Karl Heinrich Hofmann that was
motivated by the following considerations. When G is discrete Per.G/ is clearly
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closed. However Per.G/ is not always closed when G is connected. For example,
translations can be approximated by rotations in the affine group of the plane.

Lemma 4 Suppose that G is a totally disconnected locally compact group. Let x be
an element of Per.G/. Then,

s.x/ D 1 D s.x�1/:

Proof The quantity s.hxi/ is finite because the scale is continuous and the image of
a compact set must therefore be finite. But since

s.xn/ D s.x/n;

the finiteness of the image implies that s.x/ D 1. A similar argument shows that
s.x�1/ D 1. ut

Now suppose that x is in Per.G/. Choose U tidy for x. Then xUx�1 D U and
x D yu for some y in Per.G/ and u in U. Hence yUy�1 D U and it follows that

hxi � hyiU � hyiU; which is compact.

ut

2.2 The Scale and Tidy Subgroups for Homomorphisms

Question 2 Do the concepts of scale and tidy subgroup extend to homomorphisms
� W G! H?
The answer is ‘probably not’—the scale is analogous to the eigenvalues of a linear
transformation T W V ! V . There is no concept of eigenvalue for linear maps
between different vector spaces. Here is a related question.

Question 3 Suppose that � W G! H and 
 W H ! G are homomorphisms.
Is s.� ı 
/ D s.
 ı �/?
The following special case asks for an analogue of singular values. Let G and H be
self-dual abelian t.d.l.c. groups, with G W OG ! G and H W OH ! H isomorphisms.
Let � W G! H be a homomorphism and put 
 D G ı O� ı �1H . Is s.� ı
/ D s.
 ı�/?

3 Subgroups Associated with Endomorphisms

3.1 Minimising Subgroups and Their Associates

We begin by recalling the following from Sect. 1.
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Theorem 6 (The Structure ofMinimising Subgroups) A compact open subgroup
U of a locally compact totally disconnected group is minimizing for an endomor-
phism ˛ if and only if it is tidy.

Definition 4 A compact open subgroupU of a locally compact totally disconnected
group is tidy for an endomorphism ˛ if it satisfies:

(TA) U D UCU�.
(TB1) UCC D Sn�0 ˛n.UC/ is closed.
(TB2) The sequence of integers Œ˛nC1.UC/ W ˛n.UC/� is constant. (This property

is only needed for endomorphisms)

where

UC D fx 2 U W 9fxngn2N � U with x0 D x and ˛.xnC1/ D xn 8n 2 N

and

U� D fx 2 U W ˛n.x/ 2 U 8n 2 Ng:

There may be many subgroups that are tidy for a given endomorphism ˛. For
example, if ˛ 2 Aut.G/ and U is tidy for ˛, then so are ˛n.U/ and

Tn
kD0 ˛k.U/ for

every integer n. The associated subgroups UC, U�, UCC, and U�� may depend on
the choice of tidy subgroup U.

Other subgroups of G may be associated with a given endomorphism ˛ in a
unique way.

Definition 5 (The Parabolic and Levi Subgroups) Suppose that G is a totally
disconnected locally compact group and let ˛ be an endomorphism on G. Define

• the parabolic subgroup to be

!
par.˛/ D fx 2 G j f˛n.x/gn2N is pre-compactg ;

• the anti-parabolic subgroup to be the subgroup

 
par.˛/ D ˚x 2 G j 9fxng1nD0 pre-compact with x0 D x and ˛.xnC1/ D xn

�
; and

• the Levi subgroup to be the intersection of the parabolic subgroup and the anti-
parabolic subgroup:

lev.˛/ D !
par.˛/ \  

par.˛/:

It may be checked that these are subgroups of G but an argument using a subgroup
tidy for ˛ shows more.
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Theorem 7
!
par.˛/,

 
par.˛/ and lev.˛/ are closed subgroups of G.

Proof (Sketch of the Proof That
!
par.˛/ is Closed) Show that

!
par.˛/ \ U D U�,

which is closed. A classical lemma of Bourbaki implies that U is closed. ut
Definition 6 Suppose that ˛ 2 End.G/. Define

• the contraction subgroup to be

!
con.˛/ D fx 2 G j ˛n.x/! 1 as n!1g ;

• the iterated kernel to be

ker1.˛/ D fx 2 G j 9n � 0 with ˛n.x/ D 1g ; and

• the anti-contraction subgroup to be

 
con.˛/ D ˚x 2 G j 9fxng1nD0 such that xn ! 1 and ˛.xnC1/ D xn

�
:

Clearly, ker1.˛/ � !
con.˛/ and is a normal subgroup of G. Furthermore,

!
con.˛/ � V�� and

 
con.˛/ � VCC for every subgroup V tidy for ˛. When ˛ is

an automorphism, we have that
 
con.˛/ D !

con.˛�1/. The contraction subgroup for
˛ will be denoted by con.˛/ in this case. It is related to the scale of ˛�1.

Theorem 8 (Baumgartner and Willis, Jaworski) Suppose that ˛ is an automor-
phism on G. Then

con.˛/ D
\
fU�� 2 COS .G/ j U is tidy for ˛g ; and

s.˛�1jcon.˛// D s.˛�1/:

Remark 5 Theorem 8 was established for metrisable groups in [3] and the metris-
ability condition removed in [13]. The second part of the theorem implies in
particular that, if s.˛�1/ > 1, then the contraction subgroup for ˛ is not trivial.

Question 4 Extend this result to endomorphisms. There will need to be two

theorems. One for
!
con.˛/ and one for

 
con.˛/, e.g.

s.˛j
!

con.˛/
/ D sG.˛/:

Remark 6 Since this lecture was delivered, results about the contraction and
anti-contraction subgroups that extend Theorem 8 to endomorphisms have been
established by T. Bywaters, H. Glöckner and S. Tillman.
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Definition 7 The nub subgroup for the endomorphism ˛ on a totally disconnected
locally compact group G is

nub.˛/ D
\
fU 2 COS .G/ j U is tidy for ˛g :

The following was established in [3], although the nub terminology was not used.

Theorem 9 (Baumgartner and Willis) Let ˛ 2 Aut.G/. Then, the following are
equivalent:

• nub.˛/ D f1g;
• con.˛/ is closed; and
• if U is tidy above for ˛, then U is tidy for ˛.

Since nub.˛/ D nub.˛�1/, it follows as well from the theorem that con.˛�1/ is
closed whenever nub.˛/ is trivial.

Example 1 Let F be a finite group and put G D FZ. Then G is a compact t.d.l.c.
group. Define ˛ 2 Aut.G/ by

˛. f /n D fnC1; . f 2 FZ/:

Then nub.˛/ D G.
Note that, in the example,

con.˛/ D f f 2 G j 9N 2 Z such that fn D 1 if n � Ng

and is dense in G. Moreover, con.˛/ \ con.˛�1/ is equal to the subgroup of
functions with finite support, which is also dense.

It may be shown that nub.˛/ is also the largest closed subgroup of G on which
the restriction of ˛ is ergodic. This fact extends a result due to Aoki in the 1980’s
who proved for t.d.l.c. groups a conjecture of Halmos that any locally compact group
for which there is an ergodic automorphism must be compact. The method of tidy
subgroups allows this to be proved in a few lines.

Another characterisation of the nub is that

nub.˛/ D .con.˛/ \ par.˛�1//

D ˚x 2 G W ˛n.x/! 1 as n!1; f˛�n.x/g1nD0 is precompact
��
:

The structure of nub subgroups may be described in some detail, see [26, 27].
Among the results is that con.˛jnub.˛// is dense in nub.˛/, and con.˛jnub.˛�1// is
dense in nub.˛�1/. Their intersection may fail to be dense however.

It may happen that con.˛/ is closed. That is the case when G is a p-adic Lie
group for example, see [3]. A key example is a restricted product with shift which,
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for some given finite group F, is the group

G D f f D . fn/n2Z W fn 2 F; 9N such that fn D 1 for all n � Ng

with the shift automorphism on G defined by

˛. f /n D fnC1; .n 2 Z/:

The shift automorphisms satisfies con.˛/ D G, which is closed. The structure of
general closed contraction groups may be described, see [10].

Theorem 10 (Glöckner and Willis) Let G be a t.d.l.c. group and ˛ 2 Aut.G/.
Suppose that con.˛/ D G. Then

• G D N 	 T, where N and T are ˛-invariant, N is a divisible subgroup of G and
T a torsion subgroup;

• N is isomorphic to the direct sum of a finite number of nilpotent p-adic Lie groups
for primes p dividing s.˛�1/; and

• T has a composition series

T0 D f1g G T1 G � � � G Tj G � � � G Tr�1 G Tr D T

of closed ˛-invariant subgroups such that TjC1=Tj is isomorphic to a restricted
product with shift.

4 Flat Groups of Automorphisms

Analogies with linear algebra are suggested by, or have motivated, several of the
ideas seen so far. The ‘spectral radius’ formula is one of the ideas suggesting an
analogy between the scale and eigenvalues of a linear transformation; and the fact
that the methods of linear algebra apply to all linear transformations and not just
invertible ones was one reason for thinking that the characterisation of subgroups
minimising for automorphisms would extend to endomorphisms.

How the method of tidy subgroups might extend to more than one automorphism
simultaneously is also suggested by this analogy. Finding a subgroup tidy for an
endomorphism is the analogue of finding a Jordan basis for a linear transformation,
which essentially can only be done when the linear transformations commute.
On the other hand, when two linear transformations do share a common Jordan
basis, they commute modulo upper triangular matrices. The following results were
suggested by these observations and established in [25].

Theorem 11 Let f˛1; : : : ; ˛kg � Aut.G/ be a commuting set of automorphisms
of the t.d.l.c. group G. Then there is U 2 COS .G/ that is tidy for every ˛ in
h˛1; : : : ; ˛ki.
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Theorem 12 Suppose, for some ˛; ˇ 2 Aut.G/, that there is U 2 COS .G/ that is
tidy for every � 2 h˛; ˇi. Then s.Œ˛; ˇ�/ D 1, that is, ˛ and ˇ commute modulo the
uniscalar elements in h˛; ˇi.
Remark 7 It is important that these results refer to groups of automorphisms. It is
not automatically the case that, if ˛ and ˇ share a common tidy subgroup U, then
U is tidy for every � 2 h˛; ˇi. This complicates the proof of the first theorem and
means that the hypothesis of the second theorem needs to be strictly stronger than
that ˛ and ˇ should share a common tidy subgroup.

Example 2 Let G D Q
d
p and define ˛; ˇ 2 Aut.G/ by

˛.x1; : : : ; xd/ D p.x1; : : : ; xd/

and ˇ.x1; x2; : : : ; xd/ D . px1; p2x2; : : : ; pdxd/:

Then U D Z
d
p is tidy for every � 2 h˛; ˇi. However,

V D ˚.z1; : : : ; zd/ 2 U j zi � zj .mod p/; i; j 2 f1; : : : ; dg�

is tidy for ˛ and ˇ, and indeed for every � in the semigroup generated by ˛ and ˇ,
but not for every � 2 h˛; ˇi.
Proof (d=2) In this case,

V D f.z1; z2/ 2 Z
2
p W z1 � z2 .mod p/g

and

˛.V/ D ˚. pz1; pz2/ 2 Z
2
p W z1 � z2 .mod p/

� � V

because pz1 � pz2 � 0 .mod p/. We also have

ˇ.v/ D f.pz1; p2z2/ W z1 � z2 .mod p//g � V:

Hence, V is tidy for ˛ and ˇ, VC D f0g, V� D V and V�� D G for both ˛ and ˇ.
We also have that s.˛/ D 1 D s.ˇ/, s.˛�1/ D p2 and s.ˇ�1/ D p3. Hence V is tidy
for ˛ and ˇ. Moreover, if � D ˛mˇn, m; n � 0, then �.V/ � V , so that V is tidy.

The subgroup V is not minimizing for ˛ˇ�1 however. Calculation shows that

V \ ˛ˇ�1.V/ D f.w1;w2/ 2 Z
2
p W wi � 0 .mod p/g D pZ2p:

Œ˛ˇ�1.U/ W pZ2� D p2;
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which is larger than the corresponding index found for U,

Œ˛ˇ�1.Z2p/ W ˛ˇ�1.Z2p/\ Z
2
p� D Œ˛ˇ�1.Z2p/ W Z2p� D p:

It may also be seen that V is not tidy for ˛ˇ�1, for

VC D
1\

k�0
.˛ˇ�1/k.V/ D pZ2p and

V� D
1\

k�0
.˛ˇ�1/�k.V/ D pZp ˚ f0g; so that

VCV� D pZ2p ¤ V and V is not tidy above:

ut

4.1 Flat Groups and the Flat-Rank

Definition 8 A subgroup H � Aut.G/ is flat if there is U 2 COS .G/ that is tidy
for every ˛ 2H. The uniscalar subgroup of the flat group H is

H1 D
˚
˛ 2H j s.˛/ D 1 D s.˛�1/

�
:

H1 is a subgroup because ˛ 2 H1 if and only if ˛.U/ D U for any, and hence
all, subgroups tidy for H.

Theorem 13 Suppose thatH � Aut.G/ is finitely generated and flat, and let U be
tidy forH. ThenH1 GH and there is r 2 N such that

H=H1 Š Z
r:

1. There is d 2 N such that

U D U0U1 : : :Ud;

where for every ˛ 2H: ˛.U0/ D U0 and,
for every j 2 f1; 2; : : : ; dg, either ˛.Uj/ � Uj or ˛.Uj/ � Uj.

2. For each j 2 f1; 2; : : : ; dg there is a homomorphism �j W H ! Z and a positive
integer sj such that

Œ˛.Uj/ W Uj� D s
�j.˛/

j ;
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where

Œ˛.Uj/ W Uj� D
(
Œ˛.Uj/ W Uj�; if Uj � ˛.Uj/;

ŒUj W ˛.Uj/�
�1; if Uj � ˛.Uj/:

3. For each j 2 f1; 2; : : : ; dg,

eUj WD
[

˛2H
˛.Uj/

is a closed subgroup of G.
4. The natural numbers r and d, the homomorphisms �j W H ! Z and positive

integers sj are independent of the subgroup U tidy for ˛.

Remark 8 The numbers s
�j.˛/

j are analogues of absolute values of eigenvalues for ˛

and the subgroupseUj DS˛2H ˛.Uj/ are the analogues of common eigenspaces for
the automorphisms in H.

Example 3 (A) Take G D Q
d
p, and ˛; ˇ as before. Take U D Z

d
p as a tidy subgroup.

The number of factors will be d. How do we obtain the factors? Note that

U˛C;UˇC D f0g
U˛�;Uˇ� D U�:

Choose ˛ˇ�1, then

˛ˇ�1.z1; � � � ; zd/ D .z1; p�1z2; : : : ; p1�dzd/:

Calculating the factoring of U determined by ˛ˇ�1 we obtain

U˛ˇ�1C D U; U˛ˇ�1� D Zp ˚ f0g;

which identifies one factor but not the others. To separate out these factors choose,
for each i 2 f1; : : : ; dg the element � D ˛iˇ�1. Then

U�C D f0g˚
�
Zp
�d�iC1

; U�� D
�
Zp
�i˚f0g and U�C\U�� D f0g˚ Zp„ƒ‚…

i

˚f0g:

We see that generators alone are insufficient to separate all the factors in Theo-
rem 13.1 but they can be separated by using additional elements. That is the strategy
of the proof of Theorem 13.
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Example 4 Let G D SL.n;Qp/ and let H be subgroup of the diagonal matrices in
G. Let ˛h.x/ D hxh�1. Then:

• r D n � 1;
• d D n.n� 1/;
• �j are roots of H; and
• eUj are root subgroups of G.

Definition 9 The number r appearing in the theorem is the rank of the flat groupH.
The maximum rank of any flat group of inner automorphisms of the t.d.l.c. group G
is the flat-rank of G.

Example 5

• Let G D Q
d
p Ì h˛; ˇi. Then G has flat-rank 2.

• Let G D SL.n;Qp/. Then G has flat-rank n� 1.
• Let G D AAut.T/ be the group of almost automorphisms of the regular tree T.

Then G has infinite flat-rank.

4.2 Further Results About Flat Groups

The theorem on finitely generated flat groups can be applied to show that a flat group
of automorphisms contains uniscalar elements when the group is not abelian. The
following is established in [19].

Theorem 14 Let G be a t.d.l.c. group. Then,

• Every finitely generated nilpotent subgroup of Aut.G/ is flat.
• Every polycyclic group subgroup of Aut.G/ is virtually flat, that is, has a flat

subgroup of finite index.

The subgroup of upper triangular matrices in SL.n;Z/ is nilpotent and is non-abelian
when n � 3. Hence, if n � 3 and � W SL.n;Z/ ! G is a homomorphism with
G a t.d.l.c. group, then there is an upper triangular T such that �.T/ is uniscalar.
Further work using deep theorems about SL.n;Z/ and a theorem about groups that
commensurate in bounded fashion deduce from this that �.SL.n;Z// normalises
a compact open subgroup of G, see Remark 10 below. For details and additional
references see [19].

5 T.d.l.c. Groups and Geometry

In this section we only consider automorphisms of t.d.l.c. groups. The aim is to
survey actions of t.d.l.c. groups that may be viewed as geometric.
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5.1 Symmetric Spaces Modulo a Compact Open Subgroup

Many groups have geometric representations that aid understanding of the group.
Semi-simple real Lie groups, for example, act on a real symmetric space [11] and
semi-simple Lie groups over a totally disconnected locally compact field may be
represented as acting on a simplicial complex called an affine building and also
on a related simplicial complex called a spherical building [2, 9]. In the case
when the group has rank 1, e.g., SL.2;Qp/, the affine building is a tree and the
spherical building is the set of ends of the tree. Other examples of t.d.l.c. groups,
such as Kac-Moody groups [22], also act on buildings and on the boundary of
the building. Automorphism groups of buildings are themselves t.d.l.c. groups and
which then come with their own natural geometric representation. They, and their
closed subgroups, are a rich source of examples of t.d.l.c. groups.

The so-called 1-skeleton of an affine building is a graph and path length then
defines a metric on the set of vertices of this graph. As a metric space, it contains
geometric ‘flats’, which are subsets quasi-isometric to Z

r for some r. This number r
is the geometric rank of the building. In many cases of groups acting on a building,
such as Kac-Moody groups, the group also has an algebraic rank. Under certain
hypotheses, it may be shown that the geometric rank of the building, the algebraic
rank of the group and the flat-rank are all equal, see [5].

Example 6 The group SL.2;Qp/ has flat-rank 1 and acts on the regular tree with
valency pC 1. Trees have geometric rank equal to 1.

Vertex stabilisers for this action are maximal compact subgroups of SL.2;Qp/.
Indeed, there is v 2 V.T/ such that stabG.v/ D SL.2;Zp/, which is one of the maxi-
mal compact subgroups of SL.2;Zp/. The homogeneous space SL.2;Qp/=SL.2;Zp/

may thus be identified with the SL.2;Qp/-orbit of v, which is one of two such orbits
in V.T/. Note that any compact subgroup of a t.d.l.c. group is contained in an
open compact subgroup, so that these maximal compact subgroups are open and
the quotient topology on SL.2;Qp/=SL.2;Zp/ is discrete.

5.2 Cayley-Abels Graphs

Suppose that G is a compactly generated t.d.l.c. group and let U 2 COS .G/. A
graph, � .K;U/, may be defined by choosing a compact, symmetric generating set,
K, for G and setting

V.� / D G=U and E.� / D ˚.gU; hU/ 2 V.� /2 j h�1g 2 UKU
�
:

Then � .K;U/ is a locally finite graph and the translation action of G on � is
by graph automorphisms. This action is transitive and vertex stabilisers are all
conjugates of U.
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Any graph on which G acts vertex-transitively and with compact open vertex
stabilisers is called a Cayley-Abels graph for G. Hence � .K;U/ is a Cayley-Abels
graph. The graphs � .K;U/ are not unique and depend on the choices of K and U.
All Cayley-Abels graphs for G are quasi-isometric however, see [1, 15, 17].

The Cayley-Abels graph guarantees that every compactly generated t.d.l.c. group
acts on a locally finite connected graph. This graph is not canonical however because
there may be many non-isomorphic Cayley-Abels graphs. On the other hand, the
automorphism group of any locally finite connected graph � is totally disconnected
when equipped with the topology of uniform convergence on compact sets. The
vertex stabilisers will be compact open subgroups of the automorphism group
and so � is a Cayley-Abels graph for its automorphism group. There is thus an
equivalence between compactly generated t.d.l.c. groups and closed subgroups of
automorphism groups of connected locally finite graphs.

Example 7

• Let � be a regular tree. Then G D Aut.� / is a t.d.l.c. group and � is a Cayley-
Abels graph for G.

• The group PSL.n;Qp/ acts on a Bruhat-Tits building of rank n�1. The 1-skeleton
of this building is not a Cayley-Abels graph for the group because the action is
not transitive. However, the building is quasi-isometric to a Cayley-Abels graph
because vertex stabilisers are compact and there are only finitely many orbits for
the G-action.

Remark 9 In many examples, the orbit H:v � � .K;U/ of a flat subgroup H � G is
quasi-isometric to Z

r, where r is the flat-rank of H. However, this only holds when
H1, the uniscalar subgroup in H, is compact.

5.3 Actions on Sets of Subgroups of G

The set COS .G/ is a discrete metric space with the metric defined by

d.U;V/ D log .ŒU W U \ V� ŒV W U \ V�/ :

For each ˛ 2 Aut.G/ the map U 7! ˛.U/ is an isometry of COS .G/ and the map
Aut.G/! Isom.COS .G// is a homomorphism.

Subgroups tidy for ˛ may be characterised as those whose ˛-orbit is a straight
line in COS .G/, see [4].

Proposition 1

U is tidy for ˛ 2 Aut.G/

” d.˛m.U/; ˛n.U// D jm � nj d.U; ˛.U// for every m � 0:
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The relationship between Cayley-Abels graphs and the metric G-space COS .G/
is seen in the following.

Proposition 2 The function  W � .K;U/! COS .G/ defined by

 .xU/ D xUx�1; xU 2 V.� .K;U//;

is bounded with respect to the geodesic distance on � .K;U/ and is injective if and
only if NG.U/ D U.

Remark 9 points out that if H � G is flat with rank r, then there is an H-orbit
in � .K;U/ that is quasi-isometric to Z

r if and only if the uniscalar subgroup of H
is compact. On the other hand, H-orbits in COS ..G// are always quasi-isometric
to Z

r if H is flank with rank r. The following, proved in [6], goes in the opposite
direction.

Theorem 15 (Baumgartner, Schlichting, Willis) Suppose that all balls in the
metric space COS .G/ are finite. Let H � Aut.G/ be such that the H-orbit
f˛.U/ j ˛ 2Hg is quasi-isometric to Zr. ThenH is virtually flat.

Question 5 Does the conclusion of Theorem 15 hold for all t.d.l.c. groups, rather
than just those for which all balls in COS .G/ are finite?

Remark 10 The answer to this question is ‘yes’ in the flat-rank 0 case, see [7, 18].
In other words, if

˚
d.U; hUh�1/ W h 2 H

�
is bounded for some U 2 COS .G/, then

there is V 2 COS .G/ such that hVh�1 D V for every h 2 H. This is one of the
additional theorems used in [19] that was referred to in the comments following
Theorem 14.

The Space of Directions

Definition 10 The ray generated by ˛ 2 Aut.G/ and based at U 2 COS .G/ is the
sequence f˛n.U/g1nD0. An automorphism ˛ on G moves towards infinity if for any
pair V � W 2 COS .G/ there is n � 1 such that ˛n.V/ 6� W.

It may be seen that ˛ moves towards infinity if and only if s.˛/ > 1. A
pseudometric may be defined on all rays f˛n.U/g1nD0 such that ˛ moves towards
infinity. Identifying rays that are distance 0 apart and completing with respect to the
metric yields the space of directions, see [4].

Example 8 Let G D Aut.T/, with T a regular tree. Then the space of directions is
the set of ends of the tree with all distinct points being distance 2 apart.

The space of directions is computed in a number of cases in [4] and is seen to
be a familiar space in many well-known examples. However, it is also seen that it
can be quite complicated. An example is given in [4] where the space of directions
is isometric to the set of Borel subsets on Œ0; 1� with the metric d.A;B/ D m.A4B/,
where m is the Lebesgue measure and two sets are identified if they differ on a set of
measure 0. It might be of interest to know the space of directions for groups whose
geometric structure is not well understood.
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Question 6 What is the space of directions for Neretin’s group?

The Chabauty Space

Definition 11 Let G be a locally compact group. The Chabauty space, SUB.G/, is
the set of all closed subgroups of G equipped with the topology generated by the
subsets

NK;O.C/ D fD 2 SUB.G/ j D \ K � CO; C \ K � DOg ;
where K � G is compact and O � G is a neighbourhood of 1.

The set SUB.G/ is a compact topological space and the action of Aut.G/ on G
induces a natural action on SUB.G/ by homeomorphisms.

We use the following lemma in the proof of the next theorem.

Lemma 5 Let O be a neighbourhood of 1. Let ˛ 2 Aut.G/, suppose that U is tidy
for ˛ and let U0 D UC \ U� D T

j2Z ˛j.U/ be the largest ˛-invariant subgroup
of U. Then there is a non-negative integer N such that ˛n.U�/ � U0O for all natural
numbers n � N.

Proof The sequence f˛n.U�/gn�0 of compact subgroups of U� decreases U0. Since
U0O is an open neighbourhood of U0, there is N such that ˛N.U�/ � U0O. ut
Proposition 3 Let ˛ 2 Aut.G/ and suppose that U 2 COS .G/ � SUB.G/ is tidy
for ˛. Then ˛n.U/! UCC with respect to the Chabauty topology in SUB.G/.

Proof Let K � G be compact and let O � G be an open neighbourhood
of 1. Consider NK;O.UCC/. We will find a natural number M such that ˛n.U/ 2
NK;O.UCC/ whenever n � M.

Now, K \ UCC is a compact subgroup of UCC. We have UCC D Sk�0 ˛k.UC/
and UC is relatively open in UCC. Hence there is a k such that ˛k.UC/ � K\UCC.
Hence,

K \ UCC � ˛k.UC/ � ˛n.U/ for all n � k: (5)

Choose N as in Lemma 5, so that ˛n.U�/ � U0O for every n � N. Then we have

n � N H) ˛n.U/ D ˛n.UC/˛n.U�/ (6)

� ˛n.UC/O � UCCO:

Equations (5) and (6) imply that, if n � max.k;M/, then

K \ UCC � ˛n.U/O and K \ ˛n.U/ � UCCO;

i.e. ˛n.U/ 2 NK;O.UCC/ and so ˛n.U/! UCC as n!1. ut

Acknowledgements We would like to thank Stephan Tornier, who prepared some of the figures
used in these lecture notes.
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Introduction to Quantum Invariants of
Knots

Roland van der Veen

Abstract By introducing a generalized notion of tangles we show how the algebra
behind quantum knot invariants comes out naturally. Concrete examples involving
finite groups and Jones polynomials are treated, as well as some of the most
challenging conjectures in the area. Finally the reader is invited to design his own
invariants using the Drinfeld double construction.

1 Introduction

The purpose of these three lectures is to explain some of the topological motivation
behind quantum invariants such as the colored Jones polynomial. In the first lecture
we introduce a generalized notion of knots whose topology captures the ribbon Hopf
algebra structure that is central to quantum invariants. The second lecture actually
defines such algebras and shows how to obtain quantum invariants from them. As an
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example we discuss the colored Jones polynomial and present a couple of intriguing
conjectures related to it. The final lecture is about constructing new examples of
such algebras and invariants using the Drinfeld double.

Although the prerequisites for these lectures are low the reader will probably
appreciate the lectures most after having studied some elementary knot theory. Knot
diagrams and Reidemeister moves up to the skein-relation definition of the Jones
polynomial should be sufficient. Beyond that a basic understanding of the tensor
product is useful. Finally if you ever wondered why and how things like the quantum
group Uqsl2 arise in knot theory then these lectures may be helpful.

To illustrate the nature of the algebras at hand recall that the colored Jones poly-
nomial is closely related to Uqsl2, the quantized enveloping algebra of sl2. Following
[8] Uqsl2 is the algebra generated by 1;E;F;H defined by the following operations
and relations. Our purpose is to demystify and motivate such constructions from a
topological/knot theoretical viewpoint.

HE � EH D 2E �.E/ D E˝ q
H
2 C 1˝ E S.E/ D �Eq�H

2 �.E/ D 0

HF � FH D �2F �.F/ D F ˝ 1C q� H
2 ˝ F S.F/ D �qH

2 F �.F/ D 0

EF � FE D ŒH� �.H/ D H ˝ 1C 1˝ H S.H/ D �H �.H/ D 0 Œx� D q
x
2 � q� x

2

q
1
2 � q� 1

2

R D q
H˝H
4

1X

nD0

qn.n�1/=4
Œn�Š

.q
1
2 � q� 12 /n.En ˝ Fn/ ˛ D q

H
2

The N-colored Jones polynomial arises out of this algebra using the N-
dimensional irreducible representation �N W Uqsl2 ! Mat.N 	 N/ defined by
the matrices. For a more detailed description see lecture 2.

�N.E/ D

0

B
B
B
BB
B
B
@

0 ŒN � 1� 0 0 0 : : :

0 0 ŒN � 2� 0 : : : 0

0 0 0 : : : 0 0

0 0 : : : 0 Œ2� 0

0 : : : 0 0 0 Œ1�

: : : 0 0 0 0 0

1

C
C
C
CC
C
C
A

�N.F/ D

0

B
BB
B
B
B
B
@

0 0 0 0 0 : : :

Œ1� 0 0 0 : : : 0

0 Œ2� 0 : : : 0 0

0 0 : : : 0 0 0

0 : : : 0 ŒN � 2� 0 0

: : : 0 0 0 ŒN � 1� 0

1

C
CC
C
C
C
C
A
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�N.H/ D

0

B
B
B
B
B
BB
@

.n � 1/=2 0 0 0 0 : : :

0 .n � 3/=2 0 0 : : : 0

0 0 .n � 5/=2 : : : 0 0

0 0 : : : �.n � 5/=2 0 0

0 : : : 0 0 �.n � 3/=2 0

: : : 0 0 0 0 �.n � 1/=2

1

C
C
C
C
C
CC
A

We will explain how the topology of knots or rather tangles leads one to consider
such algebraic structures, known as ribbon Hopf algebras. Next we will show how
one can design ribbon Hopf algebras at will using Drinfeld’s double construction.
Again emphasizing that the double construction too is directly forced on us by the
topological problems we want to solve: i.e. finding invariants of knots.

Our exposition is meant to complement the literature rather than being exhaus-
tive. We chose not to say anything about quantum field theory, which of course is
one of the main driving forces of the subject. Our main sources are Ohtsuki [8],
Etingof and Schiffmann [1] and Kauffman [6]. Much of this work is inspired by
conversations with Dror Bar-Natan.

2 Lecture 1: Tangles as a Ribbon Hopf Algebra

The goal of this lecture is to present tangles in a rather non-standard way that will
allow us to define many algebraic operations on them. These operations turn out to
be the operations that one can do on the tensor algebra of a ribbon Hopf algebra
such as Uqsl2. To find out what that algebra should do we turn to topology to watch
and listen what the tangles have to tell us.

2.1 rv-Tangles

Loosley following Kauffman [6] and Bar-Natan we work with a version of rotational
virtual tangles, abbreviation rv-tangles. To make sure the algebra comes out
unmangled our set up is rather abstract. Instead of relying on diagrams in the plane1

we prefer working with ribbon graphs with some decorations modulo the usual
Reidemeister relations viewed locally. Recall that a ribbon graph is a graph together
with a cyclic orientation on the half-edges around each vertex.

Definition 1 An rv-ribbon graph is a ribbon graph G with a labelling of both
vertices and edges by integers satisfying the following requirements. The degree
one vertices (called ends) are required to come in pairs one labelled Ci and one

1This is the main difference with Kauffman’s approach.
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Fig. 1 (Left) The two fundamental rv-ribbon graphs from which all rv-tangles are built by disjoint
union and multiplication. The first is the˙ crossing X˙ij and the second is an edge ˛ri with rotation
number r. (Right) the usual way of depicting the fundamental graphs in the plane, here the rotation
number r is 2

Fig. 2 The equivalence relations (Reidemeister moves)

�i < 0, the set of absolute values of end labels is denoted IG. Each internal vertex
is labelled˙1.

Two key examples of rv-ribbon graphs are the˙ crossing and the edge shown in
Fig. 1 (left). The two figures on the right show the interpretation in terms of planar
diagrams of knots we have in mind. We think of the edge labels as rotation numbers,
often arising from taking a braid closure (rotation number ˙1). Edge label 0 will
often be omitted for clarity. We define two operations on rv-ribbon graphs, disjoint
union and multiplication. Together they suffice to build any graph we need. Disjoint
union is simply disjoint union of graphs, where we assume the labels of the ends are
all distinct. Multiplication is more interesting (Fig. 2).

Definition 2 For i; j 2 IG and k … IG define mij
k .G/ to be the rv-ribbon graph

obtained from rv-ribbon graph G by merging the edge that ends inCi with the edge
that ends on �j. The edge label for the new edge is the sum of the labels of the
merged edges and the remaining ends �i;Cj are renamed �k;Ck respectively.

With these definitions in place we can turn to the tangles we are interested in.
See Fig. 3 below to see the multiplication in action to build a diagram of a knot.

Definition 3 An rv-tangle is an rv-ribbon graph obtained from multiplying finitely
many crossings and edges as in Fig. 1. rv-tangles are considered up to the equiva-
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Fig. 3 (Right) The trefoil knot as a long knot (one component usual tangle). (Left) The seven
fundamental rv tangles that can be assembled to produce the rv-tangle corresponding to the usual
trefoil on the right. (Middle) An intermediate stage where we already multiplied ends C1 with
�2 calling everything 1, then multiplied with component 3 and then with 4. The newly made
connections are dotted and are abstract (not in the plane!)

lences R0;R1;R2;R3 as shown below. R0 is relabeling of the ends (multiplication
by an edge labelled 0).

Larger tangles are understood to be equivalent if they contain equivalent factors.
rv-tangles are meant as a language for dealing with diagrams of ordinary knots
and tangles more efficiently. To interpret rv-tangles we should view the four-valent
vertices as crossings, with sign as indicated. The edges are a disjoint union of
straight paths in the graph that go from end�i toCi and are directed this way. These
straight paths are the components of the tangle, by straight we mean that it takes the
second right (straight on a roundabout) at every crossing. The integers on the edges
are supposed to represent the rotation number of a tangent vector as it runs from
one vertex to the next. Not all rv-tangles correspond to usual tangle diagrams as the
crossings may be connected in ways that are impossible in the plane. However all
usual tangle diagrams without closed components are included. In particular knots
can be studied as one component tangles. Also, two usual tangles are equivalent
(regular isotopic) if and only if the corresponding rv-tangles are.

Theorem 1 (Kauffman, Bar-Natan) Two usual oriented tangles without closed
components are regular isotopic if and only if the corresponding rv-tangles are
equivalent.

We emphasize that in our set up the crossings in an rv-tangle are connected
abstractly, not necessarily in the plane. This is like Kauffman’s rotational virtual
tangles [6] but without the need to explicitly discuss ‘virtual crossings’. Even if the
reader is only interested in usual tangles in the plane, the language of rv-tangles is
still an elegant and effective way to encode such. As an additional bonus we will see
that it brings out the algebra very naturally.
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As a first example we write an algebraic description for the trefoil knot viewed as
a 1-component tangle (long knot) T by multiplying together three crossings X and
one edge containing a negative rotation ˛�1 to take into account the partial closure
of the braid. See Fig. 3.

T D m171 ı m161 ı m151 ı m141 ım131 ı m121 .XC15 t XC62 t XC37 t ˛�14 /

2.2 Operations on Tangles

The goal of this section is to show that the set of linear combinations of rv-tangles
has all the algebraic operations and relations that are valid in the tensor algebra of a
ribbon Hopf algebra. Instead of defining ribbon Hopf algebras we will dive right in
and list two operations and some natural relations between them. The names of the
relations reflect the algebraic structure intended.

The easiest one is tensor product of two rv-tangles, it is just another name for
disjoint union considered above. We also have already seen multiplication mi;j

k . Both
these operations satisfy a form of associativity, let’s write out what that means for
m. Given three components labelled i; j; k it does not matter whether we first connect
i to j and the result to k or first connect the j to k and then connect i to the result. In
formulas: mr;k

x ı mi;j
r D mi;r

x ı mj;k
r . Here we called the intermediate result r and the

end result x.
Next there is also the unit operation �i which is disjoint union with a new edge

labelled 0 with ends labelled ˙i assuming the label i had not been used before.
Dually there is a co-unit operation �i that deletes the component i. More interestingly
there is the co-multiplication�i

j;k that takes component i and doubles it. By this we
mean it replaces component i with two new components j; k running parallel to i
(with the same rotation numbers on parallel edges). Finally there is the antipode
operation Si which roughly speaking reverses the orientation of all the arrows on
component i.

To give precise definitions of the operations mentioned we show explicitly what
they do to the generators and extend them multiplicatively, see Fig. 4.

By multiplicativity we mean the following. For the co-unit it means �i.mab
i / D

�bt�a. For the co-product it means that first multiplying two components i; j calling
the result k and then doubling that component calling the results x; y is the same as
first doubling i and j calling the results i0; i00 and j0; j00 and then multiplying i0; j0 and
i00; j00 calling the results x and y. In formulas�k

x;y ımi;j
k D mi00 ;j00

y ımi0;j0
x ı�j

j0;j00 ı�i
i0;i00 .

The algebra looks complicated but the pictures are really simple!
Multiplicativity for the antipode Si is actually anti-multiplicativity, because if we

reverse a component built out of many segments, the order of the segments gets
reversed! Sk ı mi;j

k D mj;i
k ı Sj ı Si.

The operations listed above are precisely those of a Hopf algebra and the
following relations hold between them. First there is co-associativity: it does
not matter if you split component x calling the results i; r and then split r into
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Fig. 4 The operations on the generators

components j; k or do it the other way around: first split x into r; k and then split
r into i; j. In formulas�r

j;k ı�x
i;r D �r

i;j ı�x
r;k. Be careful that we really keep track

of the order of the two components coming out of �.
Even more striking is the following relation between all the operations we have:

Take a component i double it to get components j; k, reverse k and multiply j with k,
what do you get? The band spanned by j; k may be retracted and all that is left is a
little component, called x, without any internal vertices! This is the same as deleting
component i and putting back a single edge called x with label 0. In formulas mj;k

x ı
Sk ı�i

j;k D �x�i.
We should also check that the operations described actually work on equivalence

classes of rv-tangles. Doing the operation on two rv-tangles should always yield
the same result (Exercise!).

The following relation is closely related to the R3 move. For any tangle T with
component i:

myj
w ımxk

z Xẋy t�i
jk.T/ D mjy

w ı mkx
z Xẋy t�i

kj.T/

It looks complicated but a picture makes it obvious (Exercise!).
The famous Drinfeld element is Uk D mji

k ı Sj.XCij /, see Fig. 5 for a picture.

For any tangle Tj it satisfies mji
kUj t Ti D mij

kUj t S2i .Ti/. The inverse of Uk is
U�1k D mji

k ıS�1j .X
�1
ij /. Here inverse means that mij

k .U
�1
i tUj/ D ˛0k D mji

k .U
�1
i tUj/

Some more relations are mjr
x m

ks
y �

i
jk.Ui/tmbc

r m
ad
s XCab t XCcd D Ux tUy The same

relation holds when we replace each Uh by Sh.Uh/. Also �j.Uj/ D ˛0j . The element

Wk D mij
k S.Ui/ t Uj commutes with everything and satisfies Sk.Wk/ D Wk. There

exists a square root Vk of Wk, this is called the ribbon element satisfying the same
equations as Wk does. How does the ribbon element relate to ˛k?

At this point at least some of the symbols in Uqsl2 should look more familiar. In
the next lectures we will focus more on the algebras and how they lead to invariants
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Fig. 5 The rv-graph corresponding to the Drinfeld element Uk (left). The second picture shows
the same Drinfeld element as a usual tangle drawn in the plane. The third picture shows the square
of the Drinfeld element mij

kUi t Uj again drawn as a usual tangle in the plane. Finally the last
picture shows a more abstract version of this square where we allow ourselves a more schematic
representation of the rotation numbers involved using abstract curls (not crossings!). One of the
main points of rv-tangles is to not let the plane hold us back and let the algebra and topology mix
freely

of tangles and knots. Looking back we emphasize that although strange looking, our
presentation of knot theory is cleaner and more precise than the standard one.

2.3 Exercises

Exercise 1 Draw an rv-tangle diagram for a figure eight knot 41 (viewed as a long
knot).

Exercise 2 Apply Si to the top-left diagram in Fig. 2 and show you get the same as
the third diagram on the same row of the figure.

Exercise 3 Draw diagrams to interpret the relations at the end of the lecture
topologically.

Exercise 4 What happens to the R-matrix of Uqsl2 when we set q D 1, h D 0?
Look up what the universal enveloping algebra of a Lie algebra is. Do you recognise
anything?

Exercise 5 (Skein Relation) First show that the matrix for �2.R/ with respect to
the basis x˝ x; x˝ y; y˝ x; y˝ y of C2 ˝ C

2 is

�2.R/ D

0

B
B
B
@

q
1
4 0 0 0

0 q� 14 q
1
4 � q� 34 0

0 0 q� 14 0

0 0 0 q
1
4

1

C
C
C
A
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Let P be the matrix for the linear transformation that sends a˝b to b˝a. The skein
relation is:

q
1
4PR � q�

1
4 .PR/�1 D .q 1

2 � q�
1
2 /I

3 Lecture 2: Quantum Invariants and Hopf Algebras

In this lecture we define the algebraic counterpart of the rv-tangles and their
operations. The rough idea is to have a copy of some algebra correspond to each
component of our tangle. This leads us to define quantum invariants of tangles. In
particularUqsl2 is such an algebra and we will show how to obtain the colored Jones
polynomial from it. Finally some of the most beautiful and challenging conjectures
involving the Jones polynomial are mentioned.

Recall that an algebra is a vector space A together with a bilinear, associative
multiplication map m W A 	 A ! A. Good examples of algebras to keep in mind
are the group algebra of a finite group CG and the universal enveloping algebra
of a Lie algebra U.g/. Elements in both algebras are defined to be formal linear
combinations of products.

3.1 Quantum Knot Invariants

Given an algebra A and a set I define a bigger algebra AI to be the algebra generated
by elements ai for a 2 A; i 2 I such that aia0i0 D a0i0ai if i ¤ i0 and satisfy the same
relations as a; a0 2 A would if i D i0. Really AI is just a tensor product

N
i2I Ai where

all Ai are isomorphic to A. We prefer the subscripts because they are more flexible
about the ordering of the tensor factors and we can write the tensor product as a
formal product. One should think of the set I as the index set IG of some rv-ribbon
graph G. For I D ; we define AI D C.

To really make the connection to the topology of the last lecture we need to
define a multiplication map on AI . For i; j; k … I define mi;j

k W AI[fi;jg ! AI[fkg as
follows. mi;j

k .x/ is the result of moving all factors ai in x to the left and then replacing
all subscripts i; j by k. Notice that by making both subscripts i; j equal to k we are
effectively multiplying the elements with subscript i with those of subscript j.

Definition 4 Suppose A is an algebra. By a quantum knot invariant Z we mean a
way of assigning to each rv-tangle T an element Z.T/ 2 AIT where IT is the set of
end-labels of T, in such a way that

mij
kZ.T/ D Z.mij

kT/ Z.T t T 0/ D Z.T/Z.T 0/ T  T 0 ) Z.T/ D Z.T 0/
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Since multiplication can be done either algebraically or topologically, finding a
quantum invariant comes down to finding suitable values for the fundamental rv-
tangles: crossing Z.Xi̇j / and edge with rotation Z.˛i/. By suitable we mean all the
equivalences R0 � R3 from Fig. 2 should be satisfied. Notice that each of these
becomes an explicit equation in terms of the values of the fundamental tangles. For
example on of the equations implied by R2 is

mik
i ımjl

j .X
C
ij t X�kl / D ˛0i t ˛0j

It should be noted that the usual quantum Reshetikhin-Turaev quantum invariants
such as Jones, HOMFLY, Kauffman etc come from taking our notion of quantum
knot invariant and composing it with a representation. However separating the
representation from the invariant itself may clarify some issues. For future reference
or perhaps as a definition (!) of ribbon Hopf algebra we state the following
theorem [8]:

Theorem 2 Any ribbon Hopf algebra A with R-matrix R and ribbon element ˛ gives
rise to a quantum knot invariant sending the crossing to R and the edge with a single
rotation to ˛.

One goal of these lectures is to introduce the Drinfeld double construction. This
is a recipe for constructing a ribbon Hopf algebra and hence a knot invariant starting
with a much simpler algebra, a Hopf algebra. In this way we can construct our
own invariants instead of only focusing on the well known ones like the Jones
polynomials.

For now let’s focus on the particular algebra A D Uq.sl2/, which happens to
be a ribbon Hopf algebra. It yields the Jones polynomial as follows. Define Z by
Z.XC12/ D R and Z.˛/ D ˛ referring to the formulas at the very beginning of the
first lecture. Here we interpret En˝Fn as En

1F
n
2 and do not worry about convergence

issues.

Definition 5 If Z is the quantum invariant corresponding to the algebraA D Uq.sl2/
as above then the N-colored Jones polynomial of knot K, notation JN.KI q/ is
defined as 1

N Tr�N.Z.K0//. Here �N is its N-dimensional representation given in the
first lecture and K0 is 1-component rv-tangle whose closure is K.

To get a feel for this construction let’s get our hands dirty and make an attempt
to compute the 2-colored Jones polynomial of the trefoil knot T using the tangle
description from the last lecture:

T 0 D m151 ı m575 ı m565 ı m141 ı m131 ı m121 .XC15 t XC62 t XC37 t ˛�14 /

The formula should thus be J2.TI q/ D
1

2
Tr�2Z.T

0/ D Tr�2 m
17
1 ı m161 ı m151 ı m141 ı m131 ı m121 .Z.X15/Z.X26/Z.X37/Z.˛4/�1/
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Now the representation �2 extends to tensor products as �2.a˝ b/ D �2.a/˝ �2.b/
or in other words �2.aibj/ D �2.a/i�2.b/j. Recall that

�2.E/ D
	
0 1

0 0



�2.F/ D

	
0 0

1 0



�2.H/ D

	
1 0

0 �1



Therefore �2.˛/ D �2.qH=2/ D
 
q
1
2 0

0 q� 12

!

Also since �2.E/2 D �2.F/2 D 0

it suffices to only keep the first two terms of the complicated series for Rij D
Z.XCij /. What remains is Rij D q

HiHj
4 .1 C .q

1
2 � q� 12 /EiFj/ Before applying

the multiplications we find the invariant for the four disjoint tangles to be:
Z.XC15/Z.X

C
62/Z.X

C
37/Z.˛

�1
4 / D

q
H1H5
4 .1C vE1F5/q

H6H2
4 .1C vE6F2/q

H3H7
4 .1C vE3F7/q�

H4
2 D D

Here we set v D q
1
2 � q� 12 and only include the terms that are non-zero when

applying �2. The variables mostly commute because they have different subscripts
(are on different components), this will change once we start multiplying (joining
components). Already now we should be careful that H1E1 D E1H1 D 2E1. All but
the last multiplication are really easy. For example m121 means we should move all
subscripts 1 to be left of the subscripts 2 and then change all 1 or 2 subscripts to 1.
The same works for the next two m131 and m141 , we obtain:

W D m575 ı m565 ı m141 ı m131 ı m121 .D/ D

q
H1H5
4 .1C vE1F5/q

H5H1
4 .1C vE5F1/q

H1H5
4 .1C vE1F5/q�

H1
2

To be able to carry out the last step m151 we have to move all subscripts 5 to
the right of the subscripts 1. The powers of q can be moved using the relations

qcHE D q2cEqcH and qcHF D q�2cFqcH, (Exercise!). For example E5F1q
H5H1
4 D

q
H5H1
4 �H5

2 C H1
2 C1E5F1.

For clarity let us write out W D P8
jD1Wj into eight terms Wj and compute m151

for each term individually. The first term is W1 D q
H1H5
4 q

H5H1
4 q

H1H5
4 q�

H1
2 . Since only

H is involved we may move the first term to the far right without cost and then set

H5 to H1 to get m151 W
1 D q

3H21
4 �H1

2 . Taking the trace in the �2 representation our
term gives

Tr�2.m
15
1 W

1/ D .1C q/q
1
4
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Next we work with W2 D q
H1H5
4 vE1F5q

H5H1
4 q

H1H5
4 q�

H1
2 . It suffices to bring the

q-powers to the middle, the E1;F1 to the left and the E5;F5 to the right. We find

Tr�2m151 W
2 D Tr�2vE1q

H1H5
4 C H5

2 q
H5H1
2 CH1q�

H1
2 F5j1D5

D Tr�2vE1q
H21
4 CH1F1 D vq 3

4 .qC q�1/

Applying Tr�2m151 to the remaining six terms W3; : : :W8 and summing should
yield the 2-colored Jones polynomial of the trefoil knot, i.e the ordinary Jones
polynomial. There are easier ways of getting the same result but those tend to hide
what is going on, making them of less use for serious applications such as the ones
below. The technique illustrated here can be carried out even for Z itself without
applying any representation.

3.2 Conjectures on the Colored Jones Polynomial

We pause our account of quantum invariants to illustrate the depth and lure of the
subject by stating a few famous conjectures on the asymptotics of the colored Jones
polynomial: The modularity conjecture, the AJ-conjecture and the slope conjecture.
Each connects the Jones polynomial to an apparently completely different field.
There may be more natural perspectives on these conjectures from quantum field
theory but our purpose here is mainly to state some challenging problems in a
concise way.

Recall our notation for the N-colored Jones polynomial of knot K is JN.KI q/. It
is always a Laurent polynomial in q1=2.

The Modularity Conjecture is a radical generalization of the volume conjecture
[5] connecting the Jones polynomial to hyperbolic geometry. Or perhaps more
fundamentally to SL.2;C/ Chern-Simons theory. We take for granted the amazing
facts that many knots allow a unique hyperbolic (finite volume complete) metric
on their complement in the three-sphere. Such knots are called hyperbolic. By
uniqueness (Mostow Rigidity) any property of the metric is a topological invariant
of our knot K. Denote by VolK the volume of the complement with respect to that
metric. Also denote the field generated by the traces of the holonomy representation
of the knot group into PSL.2;C/ D IsomC.H3/ by FK . It is known as the trace field
of K and is always a number field.

Modularity Conjecture [9] Consider a hyperbolic knot K. Define J W Q=Z! C

by J. rs / D Js.KI e 2�s /. For any a; b; c; d 2 Z with ad � bc D 1 and any sequence
.Xn/ 2 Q going to infinity with bounded denominators, there exist �. ac /;Aj.

a
c / 2 C
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such that

J. aXnCb
cXnCd /

J.Xn/
n!1

	
2�

hn


 3
2

e
VolK
hn

1X

jD0
Aj

�a
c

�
h j
n

where hn D 2�

XnC d
c

and Aj.
a
c /;�

2c. ac / 2 FK.e
2�a
c /.

Another interesting conjecture is the AJ-conjecture. Define the function J�.KI q/ W
N ! ZŒq

1
2 ; q� 12 � by sending N to JN.KI q/. It was shown that J�.KI q/ satisfies a q-

difference equation (recursion) in the following sense. Define operators OM and OL on
functions on N by . OLf /.N/ D f .NC1/ and . OMf /.N/ D qNf .N/. Then there is a non-
commutative polynomial OA. OM; OL; q/ in OM; OL with coefficients in ZŒq

1
2 ; q� 12 � such

that OAJ�.KI q/ D 0 as a function. Up to some unimportant factors this polynomial OA
is unique so the following conjecture makes sense:

AJ Conjecture [2, 3] Setting q D 1 in OA yields the SL.2;C/ A-polynomial of the
knot K.

Roughly speaking the A-polynomial is a plane curve in C
2 specifying which

values M;L for eigenvalues of the peripheral subgroup of the knot group can be
extended to a representation of the knot group into SL.2;C/.

Finally the slope conjecture makes a connection with an apparently different field
of low-dimensional topology: essential orientable surfaces in the knot complement.
Viewed in the knot exterior an essential surface ˙ may end on the boundary of
the knot in a certain homology class a�C b	. Note that the surface may intersect
the torus boundary in several disjoint components, it does not have to be a Seifert
surface. In that case we say that ˙ has slope a

b . According to the slope conjecture
some slopes of surfaces are detected by the degree of the colored Jones polynomial.
More precisely it is known that for sufficiently large N there is a p 2 N and quadratic
polynomialsQ0; : : : ;Qp�1 (all dependent on the knot) such that for all 0 � r � p�1
we have deg JN.KI q/ D Qr.N/ whenever N D r mod p.

Slope Conjecture [4]
For any knot K the leading coefficient of Qr is the slope of an essential surface in
the complement of K.

3.3 Exercises

Exercise 1 Let A be the algebra of complex valued 2	 2 matrices, End.C2/. Write
out all the equations one needs to solve for a 4 	 4 matrix Z.Xij/ and a 2 	 2 matrix
Z.˛i/ to obtain a quantum invariant in A.

Exercise 2 Compute the 2-colored Jones polynomial of the trefoil using the
formulas at the beginning of lecture 1 and the topological description of the trefoil.
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Exercise 3 The universal enveloping algebra of a Lie algebra g is defined to be the
vector space spanned by formal non-commutative products of Lie algebra elements
modulo the relations ŒX;Y� D XY � YX for any X;Y 2 g. What operations make the
universal enveloping algebra into a Hopf algebra?

Exercise 4 Prove the identities qcHE D q2cEqcH and qcHF D q�2cFqcH.

Exercise 5 Find out how the volume conjecture is a special case of the modularity
conjecture.

4 Lecture 3: Drinfeld Double

The goal of the last lecture is to show how new quantum invariants may be
constructed from Hopf algebras. Hopefully this will inspire the reader to look
for interesting and useful invariants beyond the usual ones. We will illustrate the
technique by working out the case of the group algebra of a finite group CG
carefully. The construction is known as the Drinfeld double construction. It may
seem foreign at first but is actually very natural in the sense that its algebraic
structure is forced on us by topology. Not the other way around as it often appears.

4.1 Hopf Algebras

An important example of a Hopf algebra is the group algebra of a finite group CG
and another example is its dual, the functions on G, say Fun.G/. One instance of
the Drinfeld double is D.G/ D CC Ì Fun.G/. In the final lecture we will see
that the resulting quantum invariant counts the number of representations of the
fundamental group of the knot complement into G. If one hopes to understand
invariants like colored Jones that relate to representations of the fundamental group
into G D SL.2;C/ it is a good idea to first understand similar invariants for G finite.

A definition of a Hopf algebra is given below. Notice that in the context of tangles
we also had multiplication m, a unit component �, doubling of a component �,
reversal S of a component and deletion of a component �. They satisfied certain
natural relations and those are precisely the axioms for Hopf algebras. Notice
however that no notion of crossing is present here.

Definition 6 A Hopf algebra is an algebra H together with for any set I algebra
morphisms �i W HItfig ! HI and�i

jk W HI ! HItf j;kg, and an anti-algebra morphism
S W HI ! HI . Satisfying the following axioms:

a. �i
ij ı�i

ik D �k
jk ı�i

ik

b. �i ı�i
ij D �j ı�i

ij D idi

c. mij
i ı Si ı�i

ij D mij
i ı Sj ı�i

ij D 1i�i
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In our running example of the group algebra (which is the vector space with
basis the group elements), the multiplication is multiplication in the group extended
linearly to the whole space. The unit is the unit in the group and �i

jk.gi/ D gjgk
for all g 2 G. Again this definition is extended linearly to the whole of CG. The
co-unit is defined for g 2 G by �i.gi/ D 0 if g ¤ 1 and gi.1i/ D 1. The antipode Si
is defined by Si.gi/ D g�1i . When i ¤ z we set �i

jk.gz/ D gz and �i.gz/ D gz and
Si.gz/ D gz. In this case all the axioms listed are easy to check (Exercise!).

The complex valued functions on G, with pointwise multiplication also form
a Hopf algebra called Fun.G/ (Exercise!). The Hopf algebra structure can be
described conveniently in terms of the basis of delta functions. For each g 2 G define
the delta function ıg 2 Fun.G/ by ıg.h/ D 0 if g ¤ h and 1 if g D h. The co-unit
is defined by �i.ı

g
i / D ıg.1/. The co-product is defined by �i

jk.ı
g
i / D

P
gDab ı

a
j ı

b
k

and Si.ı
g
i / D ıg

�1

i . As before, when i ¤ z the functions�i
jk and �i and Si send ıgz to

itself and are extended linearly.
Alternatively we can describe Fun.G/ as the dual space CG�. The basis dual to

the basis fggg2G of CG is the basis fıggg2G of delta functions. The co-multiplication
in Fun.G/ is just the transpose of the multiplication in CG and the dual of the
multiplication in Fun.G/ is the comultiplication in CG.

The group algebra itself is a little too simple to accommodate our rv-tangle
language. In particular there is no natural candidate element in CGf12g for the
crossing X12 to map to. In the final lecture we will combine CG with its dual
Fun.G/ to make a bigger algebra where we can represent crossings and all the other
properties of rv-tangles. This construction works for any Hopf algebra and is known
as the Drinfeld double construction. The more involved quantum group Uqsl2 also
comes out of this construction in a natural way. Perhaps more importantly it allows
you to design your own knot invariant!

4.2 Drinfeld Double

Before introducing the Drinfeld double construction let us recall two crucial
properties of rv-tangles. First and foremost there is a notion of crossing, the
fundamental tangle Xi̇j satisfying a couple of natural algebraic properties. First we
know what happens when we double one of the components, this was included in
our definition of �i

jk. In formulas (draw the pictures!)

�i
xyX
C
ij D mjz

j X
C
y;j t XCxz

�j
xyX
C
ij D miz

i X
C
i;x t XCzy

myj
w ı mxk

z Xẋy t�i
jk.T/ D mjy

w ı mkx
z Xẋy t�i

kj.T/

(1)

The last line is not included in the definition of � but is a rather simple compat-
ibility between the crossing and the doubling of a component. A direct algebraic
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consequence of these three relations is the Reidemeister R3 relation or Yang-Baxter
equation (Exercise!)

mi;x
i mj;y

j mk;z
k XCij t XCxk t XCyz D mk;x

k mj;z
j m

i;y
i XCjk t XCix t XCyz (2)

To find a knot invariant Z we start with an unknown algebra A and assume Z already
intertwines t and mij

k . Applying Z to the above equations then yields algebraic
equations we would like to solve.

The main idea of the Drinfeld double construction is to start with Eqs. (1) and (2)
and a candidate solution and find the algebra in which that candidate solution
actually solves the equation. In this way we really let the topology decide what
the algebra should be and make sure the answer Rij D Z.XCij / is nice to begin with.

Drinfeld’s idea is to start with any Hopf algebra H and form D.H/ D H� ˝ H.

Definition 7 Define the Drinfeld Double of a Hopf algebra H to be the vector space
H� ˝ H with the following properties: Writing elements � ˝ h 2 D.H/ as �h we
assume that the Hopf algebra rules from H or H� are still valid when either  D 1

or h D 1. Define a coproduct and counit as follows:

�i
jk. ihi/ D �i

jk. i/�
i
jk.hi/ �i. ihi/ D �i. i/�i.hi/

The book [1] is a useful reference for the following theorem.

Theorem 3 Let fhng be a basis for H and f�ng the dual basis of H�. If Rij DP
n �

n
i h

n
j 2 D.H/fijg satisfies Eq. (1) then the multiplication in D.H/must be defined

as follows:

�h g D
X

n;m

. 1;n1 .S1h
1;m
1 / 3;n3 .h3;m3 //� 2;nh2;mg

where �2
23�

1
12.x1/ D

P
n x

1;n
1 x2;n2 x3;n3 for any x. Also the antipode must be S.�h/ D

S.h/S�1.�/
Let us see what the Drinfeld double D.CG/ of the group algebra is. It is the

vector space Fun.G/˝CG. Elements in this space will be written as sums of formal
products �g where � 2 Fun.G/ and g 2 G. To write down the product rule explicitly
we first compute �2

23�
1
12.g1/ D g1g2g3 and �2

23�
1
12.ı

a
1/ D

P
rstDa ı

r
1ı

s
2ı

t
3. Since

S.g/ D g�1 the product rule becomes

ıahıbg D
X

rstDb

.ır.h�1/ıt.h//ıaıshg D ıaıhbh�1hg

because we can solve s D r�1bt�1 and the delta functions tell us that r D h�1 and
t D h.
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As an illustration of the theorem we derive the above product rule directly from
imposing the Yang-Baxter relation. Write Rij DPg2G ı

g
i gj then Eq. (2) reads:

X

f ;g;h

ı
f
1ı

g
1 f2ı

h
2g3h3 D

X

a;b;c

ıb1ı
c
1ı

a
2c2a3b3

Since ıxıy D ıx.y/ıx the equation simplifies to

X

f ;h

ı
f
1f2ı

h
2 f3h3 D

X

a;c

ıc1ı
a
2c2a3c3

Comparing terms in the first and third component we must have f D c and fh D ac
and hence a D fhf�1. From the second component we find f ıh D ı fhf

�1
f exactly

the product rule prescribed by the Drinfeld double.
To get a full quantum invariant we must also find the value of the rotation ˛.

Referring to the first lecture we start by computing the Drinfeld element U DP
g g
�1ıg D P

g ı
gg�1. We also need to compute S.U/ D P

g ı
g�1g D U. We

have seen that ˛2 D US.U/ so we may take ˛ D U.
We now consider a representation � W D.CG/ ! End.CG/ defined by

�.�h/.a/ D �.hah�1/hah�1 for any a 2 CG. The reader should check that
�.xy/ D �.x/�.y/ (Exercise!). In this representation the crossing is sent to the
following map �.Rij/ 2 End.CGfijg/.

�.Rij/.aibj/ D
X

g

�.ıg/i�.g/j.aibj/ D
X

g

ıg.a/ai.gbg
�1/j D aigjbjg

�1
j

Presenting a knot as the closure of a braid ˇ D Q

 we get a map �.ˇ/ 2

End.CGf1;2;:::;ng/. Using the standard basis fgig any basis element g11g
2
2 : : : g

n
n of

CGf1;2;:::;ng gets sent by �.ˇ/ to some other element in such a way that we can
mark the arcs of the braid diagram with group elements such that the basis element
is below and the image is on top and at each crossing the incoming under-arc gets
conjugated by the upper arc to produce the outgoing under-arc. Taking the trace of
�.ˇ/ sums over the initial basis elements and forces the output at the top to be equal
to the input. This is precisely the setup for the Wirtinger presentation of the knot
group. Hence we see that Tr�.ˇ/ D #frepresentations of �1.S3 � K/ into Gg.

4.3 Uqsl2 as a Drinfeld Double

Coming back to our initial object of interest Uqsl2 we would like to show how
what we learned so far helps to demystify the formulas we started with. So far we
studied finite groups, to make the connection to Lie groups and their algebras we
should replace the group ring CG by the universal enveloping algebra U.g/. This
is the algebra of formal monomials of Lie algebra elements modulo the relations
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ŒX;Y� D XY�YX. Roughly the idea is that every element of a Lie group is generated
by elements exp.X/, where X 2 g. Such exponentials naturally produce sums of Lie
algebra elements that we may interpret in U.g/.

Focusing on g D sl2 with generators E;F;H its universal enveloping algebra
U.sl2/ is the algebra with 1 generated by E;F;H subject to the relations HE�EH D
2E and HF � FH D �2F and EF � FE D H (compare to the formulas in lecture
1). The natural way to turn this into a Hopf algebra is to set the coproduct to be
�ijk.Xi/ D Xj C Xk and �.X/ D 0 and S.X/ D �X for X D E;F or H.

To understand how Uqsl2 arises from this simple setup we restrict ourselves to
the Lie subalgebra b generated by E;H only. By the same formulas the universal
enveloping algebra U.b/ is still a Hopf algebra. We claim its Drinfeld double
D.U.b// is almost isomorphic to U.sl2/. The only difference is that in D.U.b//
one gets generators H;E and H� and E�. It is natural to identify F with E� but to
get U.sl2/ one has to quotient out by the additional relation H� D H.

Already this Drinfeld double gives an interesting knot invariant, it produces the
Alexander polynomial of a knot (Exercise!).

To get the quantized enveloping algebra Uqsl2 we follow the same procedure, but
we use a modified version of U.b/ called Uq.b/. Its relations are HE�EH D 2E as

before but with a modified coproduct �.H/ D H1 C H2 and �.E/ D E1q
H2
2 C E2,

with q D eh. This may seem arbitrary but there are not many possibilities if one
wants a co-associative� that equals the usual one setting q D 1.

Applying the double construction to this modifiedUq.b/ yields Uqsl2 after setting
H� D H. The form of the R-matrix R should now be recognizable as consisting of
dual basis Fn and basis En. The coefficients are there to normalize properly [1].

4.4 The Dual of Uqsl2

In our finite group examples the dual of the group algebra CG was Fun.G/. In the
context of Lie groups and algebras it still makes sense to talk about the functions
on the group but it is easier if one only allows nice functions. For G D SL.2/
we consider the polynomial functions on G. These are all generated by the matrix
elements. In this way we see that Fun.SL.2// D CŒa; b; c; d�=.ad � bc D 1/.

CG� is supposed to be isomorphic to Fun.G/ and in our present example there is
at least a way to pair the equivalentU.sl2/ in a non-degenerate way with Fun.SL.2//.
Given X 2 sl2 and f 2 Fun.G/ we consider f�2.X/, i.e. evaluation of f on the
representation of X as a 2 by 2 matrix.

Instead of deforming the Lie algebra we consider deforming the dual matrix
group. This gives a different perspective on Uqsl2 or rather it dual. To find a natural
way of deforming Fun.SL.2// we call on one of the essential properties of SL.2/
namely its action on the plane. This sends a vector with coordinates .x; y/ to a new
vector in the plane with coordinates .ax C by; cx C dy/. Manin [7] proposed to
first deform the functions on the plane, that is CŒx; y�. His idea was that any such
deformation will naturally lead to a deformation of the symmetries of the plane
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SL.2/. All we need to do is insist that the deformed SL.2/ still acts as symmetries
of the deformed plane.

Calling on quantum mechanics a natural way to view a pair of coordinates is as
position z and momentum p of a single particle on a line. These coordinates naturally
deform to a pair of non-commuting variables Z;P satisfying the Heisenberg
commutation relation ZP � PZ D �ih. Setting x D eZ and y D eP we find
(Exercise!) that yx D qxy with q D e�ih and absorbing the factor �i into h we find
our desired quantum plane, or rather the functions on it form the following algebra:
Funq.C2/ D Chx; yi=.yx D qxy/. Here the angled brackets mean non-commuting
polynomials in x; y.

With this preparation we can carry out Manin’s proposal and ask what commuta-
tion relations a; b; c; d need to satisfy so that the quantum plane is preserved. Since
.x; y/ satisfy yx D qxy we require .ax C by; cx C dy/ to satisfy the same relation:
.cxC dy/.axC by/ D q.axC by/.cxC dy/. Assuming a; b; c; d commute with x; y
and q is a scalar we can compare coefficients of x2 on the left and right hand side to
find ca D qac.

To get more commutation relations we also require the transposed action (on row
vectors) to be preserved so .x; y/ gets sent to .ax C cy; cx C dy/. This yields the
additional relation .bx C dy/.axC cy/ D q.axC cy/.bxC dy/. The reader should
check that these requirements yield the following six relations: ba D qab, ca D qac,
dc D qcd, db D qbd and cb C qda D qad C q2bc and bc C qda D qad C q2cb.
Assuming q2 ¤ 1 the last two are equivalent to bc D cb and ad�q�1bc D da�qbc.
We recognize this last equation as statement about the deformed determinant. It
expresses the fact that ad � q�1bc is a central element so we may quotient out by
the relation ad � q�1bc D 1 to obtain Funq.SL.2// D

ha; b; c; di=.baD qab; dc D qcd; db D qbd; dc D qcd; bc D cb; ad � q�1bc D 1/

Viewing the a; b; c; d as deformed matrix elements we may still use the same duality
pairing with �2 of Uqsl2 to see that the two deformations are compatible and actually
dual. Our arguments with the quantum plane are just another way of describing and
motivating the Drinfeld double construction. In the end it all comes down to the
same non-commutative geometry, whose applications to low-dimensional topology
and other fields are endless.

4.5 Exercises

Exercise 1 Prove that both the group algebra of a finite group and its dual are Hopf
algebras.

Exercise 2 Compute the Alexander polynomial of the trefoil by looking at the
quantum invariant coming from the Drinfeld double of U.b/ with the usual Hopf
algebra structure.
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Exercise 3 Show that the q-determinant ad � q�1bc in the last section is indeed
central. What is the right notion of q-trace here?

Exercise 4 Find an interesting Hopf algebra and use the Drinfeld double construc-
tion to produce your own quantum invariant!

5 Epilogue

The purpose of these notes was to introduce quantum invariants, show that they
connect to interesting parts of mathematics and convince the reader to construct
their own invariants. Hopefully our discussion of Uqsl2 makes the generators and
relations we started with look less arbitrary. Much more can be said for example
in terms of deformation quantization of Poisson-Lie groups but it is also important
to note that the field of quantum invariants is still young. The simple things always
come last and we’re not there yet.
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