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Chapter 22
The Development of Intelligent  
Patient-Centric Systems for Health Care

Arturo Caronongan III, Hannah Gorgui-Naguib, and Raouf N. G. Naguib

22.1  �Introduction

Artificial intelligence (AI) is defined as ‘a field of science and engineering concerned 
with the computational understanding of what is commonly called intelligent 
behaviour and with the creation of artefacts that exhibit such behaviour’ (Shapiro 
1992). Through a vast amount of data sets as input, systems are able to perform a 
series of algorithms to produce computational models and provide a decision as an 
output. Many technology vendors have made investments towards AI to provide 
solutions and services with the use of their technology, such as Microsoft, Google, 
Apple, IBM, and Amazon to name a few (Chouffani 2016). One of the domains that 
AI has been extensively studied in is the field of health care, specifically developing 
an AI-driven healthcare system.

One of the major goals of the modern healthcare system is to offer quality health-
care services to individuals in need (Kamruzzaman et al. 2006). In order for that 
goal to be achieved, it is important to undergo a successful early diagnosis of a 
disease so that the most appropriate treatment can be administered, leading to a better 
patient outcome (Ifeachor et al. 1998; Teodorescu et al. 1998). As such, there is a 
need for AI computational models/algorithms that can aid in diagnosing, with reliable 
accuracy, a patient’s condition given a series of data.
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22.2  �Artificial Neural Networks

Artificial neural networks (ANNs) have drawn tremendous interest due to their 
demonstrated successful applications in many pattern recognition and modelling 
arenas (Rumelhart et  al. 1988), particularly in processing data for biomedicine 
(Nazeran and Behbehani 2001). Neural networks have also been demonstrated to be 
very useful in many biomedical areas, such as assisting in diagnosing diseases, 
studying pathological conditions, and monitoring treatment outcomes (Kamruzzaman 
et al. 2006).

ANNs are computational paradigms that operate with the resemblance of a bio-
logical nervous system (Sordo 2002). They are also referred to as connectionist 
systems, parallel distributed systems, or adaptive systems, because they are com-
posed of a series of interconnected processing elements that operate in parallel. 
First represented as a binary threshold function (McCulloch and Pitts 1943), the 
ANN was eventually developed into a perceptron as a practical model (Rosenblatt 
1958). The perceptron is most popularly represented as a multilayer feedforward 
system, where networks are made up of several layers of neurons. Such model 
(Fig. 22.1) is often made up of the input layer, the middle or hidden layer(s), and 
the output layer, each of which is fully connected to each other with numerical 
weights associated (Ramesh et al. 2004). One important feature of the ANN is its 
ability to learn through a training environment relying on backpropagation, where the 
neural network performs repeated adjustments of its weights to simulate learning 
(Werbos 1974).

Fig. 22.1  The artificial neural network (Ramesh et al. 2004)
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22.2.1  �Artificial Neural Networks for Diagnosis

An instance where ANNs have been applied within the medical domain is for clinical 
diagnosis (Baxt 1995), along with image analysis in radiology, data interpretation in 
intensive care settings, and waveform analyses, particularly in oncology (Naguib 
and Sherbet 2001; Ramesh et al. 2004). One example of such system is PAPNET, an 
automated neural network-based computer programme for assisted screening of Pap 
(cervical) smears (Boon et al. 1993). A Pap smear test examines cells taken from the 
uterine cervix for signs of any malignancy where a properly taken and analysed Pap 
smear can detect very early slightly abnormal squamous cells. Detected early, cervi-
cal cancer has an almost 100% chance of cure through the removal of such possible 
precancerous cells performed as an outpatient procedure (Sordo 2002). In addition, 
a Bayesian posterior probability (BPP) distribution function in a neural network 
input selection was designed to assist gynaecologists in the preoperative discrimina-
tion between benign and malignant ovarian tumours (Verrelst et al. 1998). The net-
work used data from 191 consecutive patients for training with the results from the 
neural network being validated by experienced gynaecologists. Another example is 
a neural network called ProstAsure index which can classify prostate tumours as 
benign or malignant with a diagnostic accuracy of 90%, a sensitivity of 81%, and 
a specificity of 92% (Stamey et al. 1996). Further studies in the applications of 
ANNs to prostate cancer involved the development of techniques for the analysis 
of conventional and experimental prognostic markers (Naguib and Hamdy 1998; 
Naguib et al. 1998).

There are several systems available for the diagnosis and selection of therapeutic 
strategies in breast cancer. A neural network judged the possible recurrence rate of 
tumours correctly in 960 of 1008 cases by using data from lymphatic node-positive 
patients, based on tumour size, number of palpable lymphatic nodules, tumour hor-
mone receptor status, etc. It was reported that similar results were obtained by neu-
ral network evaluation of the parameters of the BI-RADS standardised code system 
(Baker et al. 1995). To predict metastases in breast cancer patients, an entropy maxi-
misation network (EMN) was applied (Choong 1994). EMN was used to construct 
discrete models that predicted the occurrence of axillary lymph node metastases in 
breast cancer patients, based on characteristics of the primary tumour, using a series 
of clinical and physiological features. Similarly, the prediction accuracy of artificial 
neural networks and other statistical models for predicting breast cancer survival 
was compared (Burke et al. 1995). In that study, ANNs using the backpropagation 
algorithm, compared with the TNM staging system (tumour size, number of nodes 
with metastatic disease, and distant metastases), proved to be more accurate in 
predicting the 5-year survival of 25 cases.

In addition to breast cancer, a multilayer perceptron proved to be a reliable decision 
support tool for the prognosis and the extent of hepatectomy of patients with hepa-
tocellular carcinoma (Hamamoto et al. 1995).

Using the backpropagation learning algorithm and a radial basis function 
(RBF) network, a diagnostic aid system for the serum electrophoresis procedure 
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was developed. The serum electrophoresis is a standard laboratory medical test for 
diagnosing pathological conditions, such as liver cirrhosis or nephrotic syndrome 
(Sordo 2002). Results confirmed the feasibility of the network as an architecture for 
medical diagnosis with respect to the provided input (Costa et al. 1998). Similarly, 
diagnosing bowel disease was aided with the assistance of an adaptive resonance 
theory mapping neural network using 23 features extracted from 280 inflammatory 
bowel disease instances and was used to classify as either Crohn’s disease or ulcer-
ative colitis (Cross and Harrison 1998).

22.2.2  �Assistive EEG Analysis

Neural networks have also been used in electroencephalography (EEG) analysis, 
particularly in diagnosing neurological diseases (de Haan et al. 2009). One such 
disease, epilepsy, is characterised by sudden recurrent and transient disturbances of 
mental function and/or movement of the body that result from excessive discharging 
of groups of brain cells. The detection of an abnormal EEG plays an important role 
in the diagnosis of epilepsy (Kamath et al. 2006): spikes or spike discharges are 
transient waveforms present in the human EEG and have a high correlation with 
seizure occurrence. There is a general agreement that automated spike detection is 
a well-recognised task for an ANN in a neurodiagnostic laboratory; therefore, iden-
tification and scoring of spikes in the EEG signal are necessary tasks to determine 
the diagnosis of epilepsy. Using a three-layer feedforward backpropagation (BP) 
network trained with raw EEG data yielded respectable results in detecting spikes 
during or before an onset of an epileptic seizure (Özdamar and Kalayci 1998). Raw 
EEG signals recorded from the scalp and intracranial electrodes of two epileptic 
patients were also considered, where the EEG recorded acted as an input to discrete 
time recurrent multilayer perceptrons which concluded that intracranial recordings 
provided better results in identifying spikes (Petrosian et al. 2000). A further study 
indicated that using an enhanced cosine radial basis function neural network was 
able to perform EEG classification with an extensive parametric and sensitivity 
analysis to validate the robustness of the classifier in diagnosing epilepsy (Ghosh-
Dastidar et al. 2008).

Another neurological disease that has been analysed using EEG scans is 
Alzheimer’s disease (AD). The disease onset usually takes place post 60 years old, 
and the risk of AD goes up with age, such that approximately 5% of men and women 
between ages 65 and 74 have AD and nearly half of those who are aged 85 and older 
may have the disease (Kamath et al. 2006). However, AD is not a normal part of 
ageing, and an analysis of EEG scans of patients with AD revealed abnormal fre-
quency signatures (Moretti et al. 2004). Continuous EEGs (as well as their wavelet-
filtered sub-bands) from parieto-occipital channels of ten early AD patients and ten 
healthy controls were used as input into recurrent neural networks (RNNs) for train-
ing and testing purposes (Petrosian et al. 2001). The study indicated that features 
derived from wavelet analysis, combined with the RNN approach, may be useful in 
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analysing long-term continuous EEGs for early identification of AD. In addition, 
neural network analysis combined with graph theory for the analysis of topological 
changes in large-scale functional brain networks found that the brain network 
organisation in patients with AD deviated from the optimal network structure 
towards a more random type (de Haan et al. 2009).

Developing assistive technology for patients through EEG analysis can be 
achieved through a brain-computer interface (BCI) that operates on the principle 
that non-invasively recorded cortical EEG signals contain information about an 
impending task intended by the user. That task can be identified by an ANN (Kamath 
et al. 2006), where it is imperative that the intention of the user is translated into a 
signal interpretable towards a control movement (Blanchard and Blankertz 2004) 
using either a regression or classifier algorithm (McFarland and Wolpaw 2005; 
Penny et  al. 2000). One application of a BCI involves being a patient-centric 
medium for controlling a motorised device (such as a wheelchair or a home appli-
ance) or performs computer-related tasks (e.g. moving a mouse or typing on the 
keyboard) despite being hindered by a physical disability such as paralysis. The 
design of an assistive BCI system ranges from components such as EEG amplifiers, 
a feature extractor, a pattern recognition system for the analysis of signals, and a 
mechanical interface to achieve the motor component of the task. Software for fea-
ture extraction and recognition must be optimised for rapid response, and the 
mechanical device coupled to a BCI should be easy to operate. Due to this, it is 
imperative that the algorithms used for classifying patterns through EEG signals in 
the BCI are as efficient and effective as possible. A variety of classifier algorithms 
that have been used in BCI have been described by Lotte et al. (2007) and can be 
seen in Table 22.1. Depending on the features selected, it is important to be aware 
as to which algorithm is considered as the most appropriate, depending on the 
specifications of the system’s design, particularly the features selected and its 
intended users.

22.2.3  �Imaging Towards a Patient-Centric Medium

As indicated in the previous studies, EEG analysis is useful in diagnosing diseases 
in neurology, but the main underlying foundation is being able to detect patterns in 
the EEG of patients through imaging. Imaging is an important area for the applica-
tion of ANNs (Egmont-Petersen et al. 2002), particularly in medicine, as pattern 
recognition is widely used to identify and extract important features from medical 
images (Shuttleworth et al. 2008; Jiang et al. 2010; Hilado et al. 2014). Medical 
images, such as radiographies, computed tomography (CT), and magnetic reso-
nance imaging (MRI), are some of the most used imaging input media towards 
healthcare-centric computational models using neural networks.

Using certain imaging principles such as filtering, segmentation, and edge detec-
tion techniques, cellular neural networks were able to improve the resolution in brain 
tomographies, which in turn enabled the improved detection of microcalcifications 
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in mammograms by refining the global frequency correction (Aizenberg et al. 2001). 
Another study had ANNs trained to recognise regions of interest (ROIs) correspond-
ing to specific organs within electrical impedance tomography (EIT) images of the 
thorax, where the network allowed automatic selection of optimal pixels based on 
the number of images, in which each pixel is classified as belonging to a particular 
organ (Miller 1993). ANNs have also been applied to microscope images to classify 
blood cells. Combined with the use of a neural network classifier, ROIs were 
extracted using global threshold methods, morphological filters, and connected-
component labelling for the classification of red blood cells as normal or abnormal. 
This achieved an overall average accuracy of 83% (Tomari et  al. 2014). Using a 
multispectral imaging approach, ANNs were used for automated melanoma detec-
tion (Tomatis et al. 2003). That study involved analysing lesions by a telespectropho-
tometric system prior to surgery. Through a reduction in dimension by factor analysis 
techniques, the ANN was able to achieve results of 78% sensitivity and 76% speci-
ficity for the validation set.

Using a variety of image processing algorithms, a cardiovascular image analysis 
software package, named Segment, was used in MRI, CT, single-photon emission 
computer tomography (SPECT), and positron emission tomography (PET) for the 
analysis of automated segmentation of the left ventricle, myocardial viability analy-
sis, and quantification of MRI flow (Heiberg et  al. 2010). The image processing 
algorithms used ranged from ROI analysis, automated segmentation, flow quantifi-
cation, linear analysis, and image fusion. The user interface of Segment is displayed 
in Fig. 22.2, while Fig. 22.3 shows an overview of the Segment system.

22.2.4  �Towards Assistive Drug Administration and Patient 
Care

In developing patient-centric systems, it is important that we take into consideration 
studies that involved the development or analysis of drugs administered to patients. 
It is also important to evaluate and determine the parameters needed for utmost 
patient care by selecting the most effective treatment options given the patient’s 
circumstances (Sordo 2002).

Digoxin (DGX) is a drug widely used for treating various cardiovascular dis-
eases, such as congestive cardiac failure and symptomatic alterations of the heart 
rate such as auricular fibrillation and paroxysmal supraventricular tachycardia, by 
improving the effective behaviour of the heart and by relaxing the heartbeat. 
However, the main drawback of using this drug is the possibility of intoxication in 
the patient. A study used ANNs to determine a patient’s risk of digoxin intoxication 
(Camps-Valls and Martin-Guerrero 2006). The study had patients classified as 
patients with high risk of intoxication (DGX levels >2 ng/mL) and patients with low 
risk of intoxication (DGX levels <2 ng/mL). Two hundred and fifty-seven patients 
were included and monitored in the study. Data collected included anthropometrical 
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data of the patient (age, sex, height, and total body weight), renal function parameters 
(creatinine level and creatinine clearance), indicators of existing interaction with 
other drugs (treatment with amiodarone), daily dosage, and the administration rate 
(times per week). The study used a multilayer perceptron trained by the eigensys-
tem realisation algorithm (ERA) (Gorse et al. 1997) which improved results of the 
classical backpropagation learning algorithm, compared to other neural approaches, 
such as radial basis function neural networks (RBFNNs) and one-class one-network 
(OCON) neural networks (Camps-Valls et al. 2003).

In anaesthesia, designers have employed ANNs in order to measure and provide 
more quantitative information to surgical teams in relation to the depth of the drugs 
administered (Robert et al. 2002a, b). The variety of features used to quantify the 
state of consciousness and effectiveness included traditional EEG measures (power 
in delta, theta, alpha, and beta bands), features derived from bispectra, mutual infor-
mation (MI), and nonlinear dynamic (chaos) models of the EEG signal (Ortolani 
et al. 2002; Zhang and Roy 2001; Zhang et al. 2001). In addition, another study 
presented an approach based on MI to predict response during isoflurane anaesthe-
sia (Huang et al. 2003). The MI of EEG recorded from four cortical electrodes was 
computed from 98 consenting patients prior to incision during isoflurane anaesthe-
sia of different levels. The system was able to correctly classify purposeful response 
with an average accuracy of 91.84% of the cases.

ANNs were also used to monitor kidney patients who undergo cyclosporine A 
(CyA) treatment (Camps-Valls et  al. 2003). CyA is still the drug of choice for 

Fig. 22.2  User interface of Segment: A cardiovascular image analysis software package (Heiberg 
et al. 2010)
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Fig. 22.3  Overview of the Segment software package and the transaction analysis between inter-
faces (Heiberg et al. 2010)
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immunosuppression in renal transplant recipients. The study had two objectives: (a) 
the prediction of CyA trough levels to determine CyA blood concentration from 
previous values by following a time series methodology and (b) the prediction of 
CyA level class. Due to high inter- and intra-subject variability, non-uniform sam-
pling, and nonstationarity of the time series, the prediction task is well known to be 
intricate. The study consisted of 57 patients, where the population was randomly 
assigned to two groups: 39 patients (665 patterns) were used for training the models 
and 18 patients (427 patterns) for their validation. The root-mean-square error 
(RMSE) was used as a measure of precision. Blood levels were accurately predicted 
with an error margin of 20% through the one-way analysis of variance (ANOVA) 
method by using the mean of the absolute prediction error to compare the precision 
of the models, with the best results being obtained by using the profile-dependent 
support vector regression (PD-SVR) for prediction and support vector machines 
(SVM) for classification.

In addition to cardiovascular imaging as mentioned in the previous section, 
ANNs can also be used for the development of prosthetic heart valves (Morsi and 
Das 2006), which are commonly used to replace natural heart valves and are also 
widely used in ventricular assist devices (VAD) in total artificial hearts (TAH). Fluid 
flow phenomena, particularly in vitro velocity profiles, shear stresses, regurgitation, 
and energy losses, contribute to the clinical success of any valve design (Morsi et al. 
2001). Thus, the optimisation of the valve leaflet or wall stress development patterns 
relies on various parameters (Lin et al. 2004). Moreover, if a prosthetic heart valve 
is to be used, valve-related problems, such as blood cell damage, thrombus forma-
tion, calcification, and infection, as well as valve durability, need consideration.

Several numerical techniques, such as arbitrary Lagrangian-Eulerian (ALE), fic-
titious domain/mortar element (FD/ME), and immersed boundary (IB), have been 
examined to solve the problem (fluid-structure) sequentially. The solution of fluid 
forces is obtained using the conservation of law of mass and momentum equations, 
and then the structural solution follows for each time step. In all the methods men-
tioned, the deformation of the mesh poses a formidable computational task, particu-
larly in the case of complex geometric problems involved in cardiovascular 
application (an example of the solution procedure can be seen in Fig. 22.4). The 
development of a neural network model can be used as an approach to deal with the 
optimisation issues mentioned using a dataset of fluid variables, structure variables, 
tube diameter, leaflet thickness, Reynolds number, and so forth and can be used as 
input parameters to an ANN model, with an estimation of the heart valve leaflet 
deflection with time as an output variable (Morsi and Das 2006).

22.3  �Hidden Markov Models in Patient-Centric Analysis

Aside from ANNs in general, hidden Markov models (HMMs) can also be used in 
analysing circumstances beneficial towards a patient-centric system. An HMM is a 
statistical model in which the system being modelled is assumed to be a Markov 
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process with hidden states (Cooper and Lipsitch 2004). The outputs of the hidden 
states are observable and are represented as probabilistic functions of the state. A 
general approach to estimating parameters of continuous-time Markov chains from 
discretely sampled data was used in analysing hospital-acquired infections (Ross 
and Taimre 2007). Hospital-acquired infections caused by transmissible nosocomial 
pathogens have been widely studied due to the detrimental effects of the infections, 
resulting in possible loss of life, as well as in high demands on healthcare resources. 
Reports state that 1 in 10 patients admitted to a hospital will acquire a nosocomial 
infection, resulting in approximately 5000 deaths and costs amounting to one bil-
lion pounds per annum (Inweregbu et al. 2005), with reports of nosocomial infec-
tions being continually on the rise. Focus has thus turned on developing strategies 
for limiting the occurrence of such infections through improved hygiene practices 
among healthcare workers, selective antibiotic use, and isolation (human-human 
distancing) strategies. In their study using HMMs, Cooper and Lipsitch (2004) 
developed a methodology which was combined with a new stochastic model for the 
transmission of hospital-acquired infections—one which accounts for dynamic bed 
occupancy—providing a method for estimating the parameters of such systems. 
In the study, particular attention was given to modelling dynamic bed occupancy as 

Fig. 22.4  Tri-leaflet heart configurations for closed and open valves (Morsi and Das 2006; Morsi 
2014)
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a necessary parameter in predicting patients who may begin exhibiting symptoms of 
hospital-acquired infections.

HMMs have also been used for predicting body trajectories for cancer progres-
sion, where conditional probabilities of clinical data were modelled using HMM 
techniques (Ohlsson et al. 2001). In that study, each potential body site was encoded 
by an N-letter code, and a disease trajectory was described in terms of a string of 
letters. Patient database records were then represented by start- and endpoints 
through the architecture illustrated in Fig. 22.5. The approach was explored using 
pathological data for non-Hodgkin lymphoma, augmented with an artificial data-
base generated according to observed distributions in the clinical data. For the 
HMMs, a Bayesian approach was taken using the hybrid Monte Carlo method, pro-
ducing an ensemble of models rather than a single one. In addition, Simöes (2010) 
made use of an emission probability value for detecting possible aberrations that 
could occur during cancer progression. In this study, an additional value was placed 
between the transition of states to represent the possibility of mutations occurring 
from one phase to another and which are undetected in laboratory procedures. A 
representation of the study is shown in Fig. 22.6.

As mentioned previously, administering drugs to patients is one of the important 
procedures in patient care; however, it is important to take note of possible adverse 
drug reaction as it is one of the leading causes of injury or death among patients 
undergoing medical treatments. This is due to adverse reactions not being thoroughly 
identified prior to a drug being made available on the market. Sampathkumar et al. 
(2014) developed an HMM-based system for mining online healthcare fora and 
extracting reports of adverse drug side effects (some of which are given in Table 22.2) 
from messages to use them as early indicators to assist in post-marketing drug sur-
veillance. The system’s architecture is presented in Fig. 22.7. The study also made 
use of an annotated dataset which was used in the training and validation of the 
HMM-based text mining system illustrated in Fig. 22.8. The results from a tenfold 
cross-validation of the manually annotated dataset yielded on average an F-score of 
0.76 from the HMM classifier, compared to 0.575 from the baseline classifier. 

Fig. 22.5  Standard HMM architecture developed by Ohlsson et al. (2001). (S and E denote start 
and end state, respectively, while the delete, main, and insert states are marked as d, m, and i)
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Furthermore, the study also managed to discover some novel adverse side effects, 
using the aforementioned computational models, which could potentially be classified 
as adverse drug reactions.

22.4  �Conclusions: Challenges in Developing Intelligent 
Patient-Centric Systems

The future potential success of AI in the development of patient-centric intelligent 
systems is directly related to the careful consideration and design of the theories and 
architectures involved in any such system. As described, developing applications 
towards patient-centric procedures is a well-appraised challenge in the domain of 
AI. As ANNs and HMMs are non-application-specific computational models, vari-
ous theoretical and application research studies have been attained, all with varying 
degrees of success. Nevertheless, the challenge lies in which part of the classifica-
tion process the ANN or HMM is to be applied. It is clear that their nonlinear repre-
sentation abilities can address highly complex problems, and it is this attribute 
which should be further exploited through their usage to address a single element in 
the overall automated classification process.

In terms of designing intelligent systems, in particular, that cater towards the 
healthcare industry, there continues to be a need for novel approaches that apply the 
complexities of hospital operations and offer much needed productivity gains in 
resource usage and providing services to patients. Despite improvements in technology 

Fig. 22.6  HMM 
architecture developed by 
Simöes (2010). (s values 
mark a stop state and the e 
represents emission values 
between states)
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and the translation of numerous studies from labs to daily use in hospitals and medical 
practices, the health research community still faces one of the greatest challenges in 
relation to effective AI adoption. Issues, such as those presented by big data, neces-
sitate the development of novel computational techniques to handle the large volumes 
of data available, along with their variability and velocity, with efficiency and in the 

Table 22.2  Mined side effects of drugs from different sources using HMM (Sampathkumar et al. 
2014)

Drug 
name Prescribed for

Common ADRs in 
drug package 
inserts

Common ADRs 
mined from 
medications.com

Novel side-effects 
mined from 
medications.com

Lisinopril High blood 
pressure 
(hypertension), 
congestive heart 
failure, improve 
survival after a 
heart attack

Headache, 
dizziness, cough, 
fatigue, rash, 
diarrhea, nausea, 
cramps

Cough (12.57%), 
dizziness (2.77%), 
headache (1.81%), 
fatigue (1.49%), 
cramps (1.38%), 
diarrhea (0.96%), 
nausea (0.75%), 
rash (0.43%)

Hearing loss 
(0.53%), hair loss 
(0.53%), shingles 
(0.43%), fits 
(0.32%)

Prednisone Allergic disorders, 
skin conditions, 
ulcerative colitis, 
arthritis, lupus, 
breathing disorders

Anxiety, dizziness, 
depression, 
insomnia, headache, 
nausea, moon face, 
elevation in blood 
pressure, behavioral 
and mood changes, 
weight gain

Anxiety (5.57%), 
insomnia (3.15%), 
depression (2.97%), 
dizziness (2.41%), 
mood swings 
(2.41%), weight 
gain (1.86%), 
nausea (1.3%), 
moon face (1.11%)

Hives (1.3%), acid 
reflux (0.37%), 
avascular necrosis 
(0.37%), dry 
mouth (0.37%)

Singulair Asthma, allergic 
rhinitis

Upper respiratory 
infection, fever, 
headache, 
pharyngitis, cough, 
abdominal pain, 
diarrhea, influenza, 
rhinorrhea, sinusitis

Headache (2.02%), 
infection (1.12%), 
cough (1.12%), 
fever (0.90%), 
diarrhea (0.45%), 
sinusitis (0.45%), 
inflammation 
(0.45%)

Seizure (6.28%), 
depression 
(3.59%), 
nightmares 
(3.36%), 
aggression 
(2.91%), mood 
swings (2.02%), 
suicide (1.35%), 
suicidal thoughts 
(0.9%)

Topamax Seizures, migraine 
headaches

Anorexia, 
paresthesia 
(tingling), fatigue, 
nervousness, weight 
decrease, 
somnolence, 
dizziness, infection, 
flushing, 
psychomotor 
slowing, difficulty 
with memory

Tingling (5.64%), 
weight toss 
(4.14%), memory 
loss (3.76%), 
numbness (2.26%), 
dizziness (2.26%), 
tired (1.88%), 
sleepy (1.13%)

Hair loss (3.01%), 
depression 
(2.26%), stress 
(1.88%), aches 
(1.88%), anxiety 
(1.13%), diarrhea 
(1.13%), dry 
mouth (1.13%), 
itching (1.13%)
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least amount of processing time. There are cases when instantaneous and accurate 
results may be important in the immediate diagnosis and treatment of patients. 
Another issue exists where the use of technology should not go against the design of 
effective human-computer interfaces. Humans should be able to better interact with 
the data, and communication could be integrated with the flow of information, despite 
the presence of complex computational models integrated within such systems 
(Khanna et al. 2013).

Fig. 22.7  System architecture of the mining system for adverse drug reactions (Sampathkumar 
et al. 2014)

Fig. 22.8  Resulting HMM obtained from the training set (Sampathkumar et al. 2014)
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Nonetheless, the presence of AI in healthcare applications has been shown to be 
beneficial in providing more sophisticated techniques in aiding physicians with per-
forming various clinical tasks and allowing hospitals to accommodate and discover 
new means of servicing patients to provide better treatments and health care proce-
dures. From assistive technology to data analytics, patient-centric systems have 
continued to evolve, and with the help of research in the field of health care, such 
applications will produce more sophisticated techniques that can improve patient 
care and produce a wider array of treatment approaches for handling disease.
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