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Abstract Background oscillations, reflecting the excitability of neurons, are ubiq-
uitous in the brain. Some studies have conjectured that when spikes sent by one
population reach the other population in the peaks of excitability, then informa-
tion transmission between two oscillating neuronal groups is more effective. In this
context, phase locking relationships between oscillating neuronal populations may
have implications in neuronal communication as they assure synchronous activity
between brain areas. To study this relationship, we consider a population rate model
and perturb it with a time-dependent input. We use the stroboscopic map and apply
powerful computational methods to compute the invariant objects and their bifur-
cations as the perturbation parameters (frequency and amplitude) are varied. The
analysis performed shows the relationship between the appearance of synchronous
and asynchronous regimes and the invariant objects of the stroboscopic map.

Keywords Synchronization · Phase locking · Stroboscopic map · Invariant
curves · Rotation number

1 Introduction

Since it was first reported in 1929 by Hans Berger [2], neural oscillatory activity has
been a topic of great interest and debate in neuroscience. Although its role is not
fully understood, electroencephalographic patterns evidence its importance in brain
function. In particular, oscillations have been linked to many different processes as
memory or perception [4]. Although oscillatory behaviour can occur across different
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Fig. 1 Schematic of a
neuron with different
synaptic connections. It can
be seen how axon terminals
from neighbouring neurons
contact the dendrites of the
receiving neuron

brain scales, this work will focus on oscillations generated by neuronal ensembles
or populations.

Neurons are the fundamental cells within the brain, and they basically commu-
nicate through electrical impulses [6]. Neurons integrate inputs from neighbouring
neurons across dendrites. When these inputs cause the neuron membrane potential
to reach a certain critical value or threshold, the neuron will respond with a charac-
teristic voltage change of large amplitude and short time duration (≈1 ms) known
as action potential or spike. This action potential then travels along the axon of the
neuron to the axon terminal, where its effect will be felt by the neighbouring neu-
rons (Fig. 1). Neurons can be excitatory or inhibitory, depending on the effect of the
connection (synapse) on the receiving neuron: inputs from an excitatory (inhibitory)
neuron depolarize (hyperpolarize) the membrane potential of the receiving neuron.

In this paper, we explore the oscillatory activity emerging from a neuronal net-
work consisting of a single population of excitatory neurons and a single population
of inhibitory neurons (E-I network). Under the appropriate stimulus, the firing of
the excitatory population activates the inhibitory population that, on its turn, sup-
presses the excitatory activity. Once the inhibitory effect has vanished, if the stimu-
lus remains, the excitatory neurons will fire again generating an oscillatory pattern.
The excitability of the excitatory population is not the same for all the phases of the
cycle due to the inhibitory action. Indeed, when the excitatory population receives
an external input at the phase in which the inhibition is not present, the excitatory
cells can respond effectively, while if the inhibition is present, the input might be
ignored (see Fig. 2). This mechanism, known as communication through coherence,
has been invoked to explain neural communication between brain areas [7]. In this
context, two neuronal groupswith underlying oscillatory activity communicatemuch
effectively when they are properly phase-locked so that the windows for inputs and
outputs are open at the same times. Although the functional role of the brain oscil-
lations is still unknown, a growing number of studies have recently suggested that
in several cognitive tasks (such as sensory perception, working memory, and atten-
tion), synchronized background oscillations may coordinate computations involving
different brain areas [15].
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Fig. 2 Oscillations arise
from the interaction between
the inhibition and the
excitation. We illustrate how
different phases of the
oscillation may have
different excitability
properties due to the
inhibition as suggested in
[18]

A simplified framework for studying this situation is to consider the effect of an
external oscillatory input onto anetworkmodel consistingof excitatory and inhibitory
cells showing oscillations. For such network we consider the simplest canonical
model describing the mean firing rates of the excitatory and inhibitory populations:
the Wilson–Cowan equations [20]. As the parameters of this model can be chosen
so that the system shows oscillations we can simulate the framework of interest.

In particular, we focus on oscillations of the Wilson–Cowan model arising from
a Hopf bifurcation. The periodic forcing of such bifurcation has been studied in
classical papers [9], and recently, in the neuroscience context [19]. In this work,
we aim to understand the different mechanisms which give rise to synchronous
activity between the E-I network and the external T ′-periodic input. As we study
a periodic perturbation, we consider the stroboscopic map (i.e. the time-T ′ map of
the flow) and identify an attracting invariant curve of the map, where the dynamics
on it can be understood by means of the rotation number. The rotation number
indicates the relationship between the period of the forced oscillator and the external
forcing; rational values of this magnitude correspond to synchronous regions while
irrational values correspond to asynchronous regions. Thus, assuming the existence
of an invariant curve, we compute the rotation number as the amplitude and the
frequency of the external periodic input are varied and identify the synchronous
solutions. We also identify regions where this computation fails, which correspond
to the breakdown of the invariant curve. To provide a full understanding of the
dynamics beyond the breakdown of the invariant curve, we compute the fixed points
of the map as well as their bifurcations. Bifurcations of the fixed points can be related
to the breakdown of the invariant curve. Thus, we apply powerful computational
methods [11] to compute the invariant curve and its internal dynamics, which provide
a framework that enlarges the comprehension of the dynamics generated by the
periodic forcing.

2 Mathematical Model

Aneuronal population can bemodelled as a neuronal network consisting ofNneurons
connected through synapses. If each neuron is described by a system of n differential
equations, a network of N neurons will be described by a system of N · n equations.
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Fig. 3 Schematic of a
neuronal network modelled
by the mean field model (1)

This approach, although generates very accurate results, considers a high dimen-
sional system, that requires a high computational effort to integrate it and makes
the mathematical analysis difficult. As an alternative to this approach, there exist
mean field models, which use a single variable to describe the mean activity of a
population. These models have a reduced number of equations and are suitable for
analysis. One of the most famous rate models are theWilson–Cowan equations [20]:

τe
dE

dt
= −E + (1 − reE)Se(c1E − c2I + P),

τi
dI

dt
= −I + (1 − riI)Si(c3E − c4I + Q),

(1)

where the variablesE and I correspond to the fraction of neurons of the excitatory and
the inhibitory populations respectively which are emitting an action potential at time
t. The coupling constants ci determine the strength of connexions between neuronal
populations. P and Q are the (constant) external inputs which are injected to E and
I populations, respectively (see Fig. 3). Coupling constants ci are positive, whereas
external currents P and Q can be either positive or negative depending whether its
action is excitatory or inhibitory.

Assuming that a population k is receiving an input x, the proportion of cells
which will fire as a result of this input is modelled by the response function Sk(x), a
sigmoidal function defined as:

Sk(x) = 1

1 + e−ak(x−θk)
, with k = e, i,

where the parameters θk and ak are the position of the maximum slope and the value
of this maximum slope, respectively.

Neurons have a refractory period rk during which they can not respond to external
inputs. The factor (1 − rkk) in Eq. (1), represents the proportion of neurons of the
population k which are able to be excited. In [14] it is shown how this term only
rescales the parameters on the nonlinearities Sk(x) and does not change the qualitative
behaviour of the system. For this reason, from now on, we will consider rk = 0.
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2.1 Dynamical Analysis

In this subsection we study the most important objects (critical points and limit
cycles) of system (1) and their bifurcations. Nullclines of (1), when re = ri = 0, are
given by

E = fe(I,Q) = 1

c3
[S−1

i (I) + c4I − Q],

I = gi(E,P) = 1

c2
[c1E − S−1

e (E) + P].
(2)

As it can be seen in Eq. (2), P and Q translate nullclines and thus determine their
intersection. Consequently, the name and position of the critical points of the system
will depend on the values of P and Q (Fig. 4 left). For this reason parameters P and
Q will be considered as bifurcation parameters.

Choosing the set of constants adequately, the Wilson–Cowan equations show
oscillatory behaviour [20]. In particular, as it can be seen in Fig. 4 (right), oscilla-
tions in the Wilson–Cowan model reproduce the oscillatory mechanism stated in the
introduction: for a strong enough input value P, the excitatory activity will increase,
activating the inhibitory cells which, in its turn, will suppress the excitatory activity
and in consequence, the inhibitory activity. Once the inhibitory effect has vanished,
the external input P –if still present–, will activate the excitatory cells again, generat-
ing an oscillatory pattern. The following set of parameters P ensures the existence
of oscillations for some (P, Q) stimulus values and for this reason they will be the
default parameters used throughout the work:

P = {c1 = 13, c2 = 12, ae = 1.3, θe = 4, re = 0, τe = 1

c3 = 6, c4 = 3, ai = 2, θi = 1.5, ri = 0, τi = 1}. (3)

As system (1) is 2-dimensional and the phase space is bounded, using Poincaré-
Bendixon theorem it is enough to require that the system has a unique unstable
critical point to guarantee the existence of a periodic orbit (oscillations). Such oscil-
lations are going to appear across Hopf, Saddle-Node on Invariant Circle (SNIC
bifurcation) and Homoclinic bifurcation [3, 12]. As a first step to find these bifurca-
tions we look for bifurcations of the critical points of the system. Thus, by defining
DX(E, I,P,Q) the Jacobianmatrix of system (1), we can look for points (E, I,P,Q)

satisfying (2) and conditions Tr DX(E, I,P,Q) = 0 for the Hopf bifurcation and
Det DX(E, I,P,Q) = 0 for the Saddle-Node bifurcation. As we are dealing with
non linear equations, the computation of the bifurcation diagram (Fig. 5) requires
computational methods for continuation of curves [17].
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Fig. 4 Left: Nullclines and phase space for the set of parameters P given in (3) and (P, Q) =
(2.5, 0). There exists a limit cycle γ and an unstable focus P1. Right: Dynamics for system (1)
over the limit cycle γ . The oscillations arise from the interactions between the excitatory inhibitory
populations

Fig. 5 Bifurcation diagram for the Wilson–Cowan system (1) as a function of external stimulii P
and Q. Parameters for system (1) are given by the set P in (3)

3 Non Autonomous Perturbation

In this sectionwewill study the effects of a T ′-periodic non-autonomous perturbation
onto theWilson–Cowan equations (1). Concretelywewill study the followingmodel:

τe
dE

dt
= −E + Se(c1E − c2I + P + Ap(t)),

τi
dI

dt
= −I + Si(c3E − c4I + Q),

(4)

where A is the amplitude of the perturbation and p(t) is the T ′-periodic function:
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p(t) = 1 + cos(
2π t

T ′ ),

modelling the activity of an external excitatory population.

3.1 The Stroboscopic Map

The stroboscopic map is the most natural approach when considering the study of
T ′-periodic perturbations. It is defined by

FA : R2 → R
2,

x → FA(x) = φA(t0 + T ′; t0, x), (5)

where φA(t; t0, x) is the solution of (4) such that φA(t0; t0, x) = x.
As it is well known, the fixed points and invariant curves of the stroboscopic

map (5) correspond to periodic and quasiperiodic solutions of system (4) respectively.
For instance, if γ (t) = φA(t; t0, x) is a solution of system (4) and [FA(x)]q = x, then
by definition φA(t0 + qT ′; t0, x) = x and therefore γ (t) is periodic of period qT ′.
Analogously, if γ (t) = φA(t; t0, x) is a periodic orbit of period T of (4) with T ′

T = p
q ,

p, q ∈ N, then

[FA(x)]q = φA(t0 + qT ′; t0, x) = φA(t0 + pT; t0, x) = x, (6)

that is, fixed points x for the map [FA(x)]q will correspond to periodic orbits of the
system (4). In the neuroscience context, relationship (6) indicates that a p:q phase
locking state has been established between the population and the perturbation. In the
Wilson–Cowanmodel this means that the neuronal population variablesE and I have
completed p revolutions in the same time that the perturbation p(t) has completed q
revolutions. By contrast, if γ (t) = φA(t; t0, x) is periodic of periodT but T

′
T /∈ Q, then

[FA(x)]n �= x ∀ n ∈ N and [FA(x)]n fills densely ΓA = {φA(t0 + nT ′; t0, x), n ∈ N}
which is an invariant curve for FA(x). So, depending on the amplitude A and the
period T ′ of the perturbation, the system in (4) can display either a p:q synchronous
regime synchronous regime or an asynchronous regime.

3.2 Computing the Rotation Number in the Perturbed
Framework

In this section we will explain how to compute the rotation number. Consider the set
of parametersP defined in (3), and let (P, Q) = (2.5, 0). As bifurcation diagram on
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Fig. 5 shows, for this set of parameters the unperturbedWilson–Cowan equations (1)
display an unstable focus P1 and an attracting limit cycle γ of period T ≈ 5.26.

When A = 0 the phase portrait described by the stroboscopic map (5) is the same
as the one generated by the unperturbed system (1). In particular, F0(P1) = P1 and
F0(γ ) ⊆ γ , ∀ T ′, that is, P1 and γ are an unstable fixed point and an attracting
invariant curve for themap (5), respectively.When applying a T ′-periodic continuous
perturbation, as both objects P1 and γ are normally hyperbolic, they will continue
existing for weak enough perturbations, and they can be studied as invariant objects
for the stroboscopicmapFA whenA �= 0. In particular, while the unstable focusP1 =
P1(A) will remain an unstable fixed point for the stroboscopic map FA, the attracting
limit cycle γ will become an attracting invariant curve ΓA. Over the invariant curve
ΓA we can define and compute the rotation number.

The rotation number is defined for any continuous orientation preserving map of
the circle

f : T → T

θ 	→ f (θ)

as

ρ = lim
n→∞

θn − θ0

n
, θn = f n(θ0). (7)

As it is well known, ρ exists and is independent of the point θ0 [1]. Moreover, if
ρ = p

q ∈ Q, the map f has, at least, one periodic point θ∗ of period q. On the other
hand, under some regularity assumptions, if q ∈ R \ Q, the map f is conjugated to a
rotation of angle ρ and the orbit of every point θ fill densely T.

In our case, one can take f := fA = FA|ΓA
and compute the rotation number as

follows: given a point x ∈ ΓA, define the angle θ between the line from P1(A) to x
and the positiveE-axis. Then, given a point x0 ∈ ΓA for xn = f An (x0), one can compute
the rotation number in (7).

When computing ρ numerically, usually the limit to infinity is substituted by a
large enough number of iterations but the convergence to ρ is very slow. We used the
methods presented in [16], which refine the computation of rotation numbers saving
computational effort and accelerating the convergence of the method.

Recall that if ρ = p
q with p, q ∈ N there exists a θ∗ such that f qA (θ∗) = θ∗, and

the corresponding point x∗ is a q-periodic orbit of FA, which turns p times around
the invariant curve ΓA. This indicates the appearance of a given p:q phase locking
regime in system (4).

In Fig. 6 we show the computation of the rotation number for some amplitude
values A and varying T ′. We observe the classical Devil’s Staircase function [1]. The
function shows intervals on the x-axis (showing the ratio T ′

T ) for which the rotation
number ρ(T ′) is constant (there exists a solution of (4) which is phase-locked to the
periodic perturbation). For small positive amplitudes, the largest intervals correspond
to the phase locked states 1:1 (ρ = 1) and 1:2 (ρ = 1

2 ) (Fig. 6 top). The phase-locked
intervals widen as the amplitude is increased (Fig. 6 bottom). The rotation number
displays a discontinuity at some values of T ′ jumping suddenly to ρ = 1 as the
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Fig. 6 Rotation number computed for different amplitudes in the perturbed Wilson–Cowan
model (4). Parameters used were the set P in (3), and (P, Q) = (2.5, 0)

amplitude is increased. As the rotation number is defined over the invariant curve
ΓA, this discontinuity may indicate a bifurcation or the breakdown of the invariant
curve appearing for non-weak amplitudes that wewill investigate in the next sections.

3.3 Bifurcation Analysis

In order to understand the dynamics that occur in system (4) depending on the period
T ′ and the amplitude A of the perturbation, we will begin by computing bifurcations
for the fixed points of the stroboscopic map (5).

Given a map depending in one parameter α ∈ R:

F : Rn × R → R
n

(x, α) → F(x, α).
(8)

If there exists (x0, α0) such that

1. F(x0, α0) = x0
2. DF(x0, α0) has eigenvalues λ with |λ| �= 1,

then x0 is called a hyperbolic fixed point and it is known that for α � α0, there exists
xα fixed point of F(xα, α) of the same topological type of x0. Otherwise, when (2)
fails we call α0 a bifurcation value.

Thus, bifurcation values of themapFmust satisfy being fixed points of themap (8)
and also a bifurcation condition ΦBIF . Mathematically,
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Fig. 7 Bifurcation diagram for the stroboscopic map FA of the perturbed Wilson–Cowan system
(4). Parameters used were the setP and (P, Q) = (2.5, 0). Two bifurcations were found: Neimark-
Sacker (green curve) and Saddle-Node (cyan curve). The solid line corresponds to a SN between
a saddle and a stable node whereas the dashed line corresponds to a SN between a saddle and an
unstable node. Constant amplitudes, for which rotation numbers in Fig. 6 were computed, were
drawn respecting the same color code. Inside the yellow area there exists a stable fixed point for
the map FA corresponding to a 1:1 phase locking relationship

G(x, α) =
{
F(x, α) − x = 0

ΦBIF(x, α) = 0.
(9)

We look for bifurcations of the fixed points of themap defined in (6) for q = 1.We
found two bifurcations of fixed points (see Fig. 7): Saddle-Node (SN) and Neimark-
Sacker (NS). At it is well known, a SN bifurcation occurs when one of the real
eigenvalues for the fixed point equals one, whereas a NS bifurcation occurs when a
fixed point has a pair of complex eigenvalues whose modulus equals one. In a 2D
system the conditions which must be satisfied at these bifurcation values are written
as

ΦSN = det(DF − Id) = 0,

ΦNS = Tr(DF) − 1 = 0,

where we denote byDF the Jacobianmatrix of themapF evaluated at the fixed point,
whose computation requires the integration of a second order variational system [17].

Computations depicted in Fig. 7 also enlight the rotation number results shown
in Fig. 6. One guesses that discontinuities on the rotation number in Fig. 6 can be
caused by the disappearance of the invariant curve (which exists for small amplitudes)
across aNeimark-Sacker bifurcation. To give a complete description of the dynamics,
besides the computation of the fixed points and its bifurcations we are going to
compute the invariant curves to check its persistence and relate its disappearance
with the discontinuities observed in the rotation number curves.
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3.4 Computation of Invariant Curves

As it was observed in Sect. 3.3, the computation of invariant curves is needed to
provide a full description of the dynamics generated by the perturbation in (4). The
framework developed in [5] allows us to compute a parameterization of the invariant
curve ΓA issuing from the unperturbed limit cycle γ . We now briefly review the
method and refer the reader to [5] for a detailed description of the method.

Given a map F : R2 → R
2 having an invariant curve ΓA, we look for a parame-

terization K : T → R
2 of this invariant curve by solving the following invariance

equation
F(K(θ)) = K(f (θ)), (10)

where K(θ) and the dynamics inside the curve f (θ) are both unknown. Differentiat-
ing (10) we find the invariance equation for the tangent bundle DK(θ):

DF(K(θ))DK(θ) = DK(f (θ))Df (θ), (11)

and imposing the invariance of the normal (stable) bundle of K(θ), denoted by N(θ),
we have the following invariance equation

DF(K(θ))N(θ) = N(f (θ))ΛN (θ), (12)

where ΛN (θ) denotes the linearised dynamics over N(θ).
In order to express in a more compact way the invariance equations (11)

and (12)we introduce thematricesP(θ) = (
DK(θ) N(θ)

)
, andΛ(θ) = Diag(Df (θ),

ΛN (θ)):
DF(K(θ))P(θ) = P(f (θ))Λ(θ). (13)

Therefore, if we express the linear map DF(K(θ)) in the basis provided by P(θ), it
becomes diagonal. Taking profit of this adapted invariant frame, a Newton method is
performed. As it is usual in Newtonmethods, we assume given the approximation for
the unknowns K(θ), f (θ), N(θ) and ΛN (θ) and we compute better approximations:

K̄(θ) = K(θ) + ΔK(θ), (14)

f̄ (θ) = f (θ) + Δf (θ), (15)

N̄(θ) = N(θ) + ΔN(θ), (16)

Λ̄N (θ) = ΛN (θ) + ΔΛN (θ). (17)

To determine the correction terms ΔK(θ), Δf (θ), ΔN(θ), ΔΛN (θ), the Newton
method performed is split in two substeps. In the first one, we look for corrections
ΔK(θ) andΔf (θ).We begin by substituting expressions (14) and (15) into the invari-
ance equation (10), and then expanding in Taylor series around K and f respectively
and neglecting quadratically small terms, we obtain
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0 = E(θ) + DF(K(θ))ΔK(θ) − DK(f (θ))Δf (θ) − ΔK(f (θ)) (18)

where E(θ) = F(K(θ)) − K(f (θ)) is the error for the approximated solution.
Writing Eq. (18) in the adapted frame provided by P(θ), that is, writing

ΔK(θ) = P(θ)ξ(θ), we obtain the following cohomological equation

η(θ) = Λ(θ)ξ(θ) − ξ(f (θ)) −
(

Δf (θ)

0

)

where η(θ) = −(P(f (θ)))−1E(θ) is the error of the approximate solution in the
adapted frame. η(θ) is a vector which has tangent and normal components, each of
them having different equations

ηT (θ) = ΛT (θ)ξT (θ) − ξT (f (θ)) − Δf (θ),

ηN (θ) = ΛN (θ)ξN (θ) − ξN (f (θ)),

where unknowns ξT and ξN , can be computed separately by means of a fixed point
method.

So far, we have find the corrections ΔK(θ) and Δf (θ). Then one can proceed
to the second substep of the Newton method. Analogously to the first substep, by
substituting the Eqs. (16) and (17) in the invariance equation (12) and applying the
same methodology as in the first substep one can find the new corrections for the
normal bundleΔN(θ) and its linearised dynamicsΔΛN (θ). See [5] for more details.

We have reviewed the principal steps of the method. Next we are going to provide
some details about the computation of the initial seeds for the Newton method in our
problem. For a small perturbation, one can use as initial seed the invariant curve for
the unperturbed system. Having an unperturbed system which displays a limit cycle
γ (t) of period T , we can define θ = t

T as an angular variable which parameterizes the
limit cycle Γ0(θ) = γ (θT). Therefore, as initial seed for the parameterization K and
the dynamics on it when A is small we will take K0(θ) = Γ0(θ) and f0(θ) = θ + T ′

T .
In order to find an initial seed for the normal bundle and its dynamics, we need to

compute the derivative of the limit cycle respect its normal bundle direction. For that
aimwe use methods in [10], which provide an analytical solution for the value of that
derivative. In particular they parameterize the stable manifoldM of the unperturbed
limit cycle γ by using an angular variable θ over the limit cycle and a variable σ

whichmoves in the transverse direction to the limit cycle. Dynamics of both variables
θ and σ are given by:

θ̇ = 1/T ,

σ̇ = λσ/T ,
(19)

where T and λ are the period and the characteristic exponent of the limit cycle γ

respectively. By using variables θ and σ we look for a parameterization for M
K(θ, σ ) such that, by (19):
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(
1

T
∂θ + λσ

T
∂σ

)
K(θ, σ ) = X(K(θ, σ )), (20)

where X is the vector field (1). Expanding K(θ, σ ) one gets:

K(θ, σ ) = K0(θ) + σK1(θ) + O(σ 2), (21)

were it is clear that K0 = Γ0, and by using (19) it is easy to see that

F(K(θ, σ )) = K

(
θ + T ′

T
, σe

λT ′
T

)
, (22)

and therefore, differentiating (22) respect to σ :

∂F(K(θ, σ ))

∂σ |σ=0
= DF(K0(θ))K1(θ) = e

λT ′
T K1(θ), (23)

and comparing expressions (23) and (12) it is clear that over the unperturbed limit

cycle, N(θ) = K1(θ) and ΛN (θ) = e
λT ′
T .

In [10] is demonstrated that to obtain K1(θ) is only necessary to compute the fun-
damental matrixΦ(t) (Φ(0) = Id), of the variational equations on the periodic γ (t).
Then, if we denote by v the eigenvector of the monodromy matrix Φ(T) associated
to the eigenvalue eλ, K1(θ) is given by K1(θ) = e−λθΦ(Tθ)v.

In order to explain rotation number discontinuities we apply this method to com-
pute invariant curves for system (4) which complete the bifurcation diagram analysis
in Fig. 7. If we fix T ′

T = 0.965 we expect to cross a SN bifurcation for an amplitude
ASN � 0.014. This is exactly what Fig. 8 shows: for a value of A = 0.01 < ASN there
exists an invariant curve whose dynamics have no crossings with the fixed points of
f (θ) = θ . By contrast for A = 0.02 > ASN two crossings appear between f A(θ) and
f (θ) = θ indicating the presence of two fixed points over the invariant curve. This
can be seen in another way when looking at the rotation number results: for A = 0.01
rotation number was different from 1, whereas it was equal to 1 for A = 0.02 which
showed fixed points.

By contrast when fixing T ′
T = 0.85 a NS bifurcation is expected to be crossed

at A � 0.062. This is exactly what Fig. 9 shows: as the amplitude is increased, the
invariant curve shrinks, but there are no crossings between the dynamics f A(θ) and
the line of fixed points. These results are consistent with rotation number results in
Fig. 6. When looking at values of ρ at T ′

T = 0.85, when A = 0.05 < ANS a rotation
number different from one appears as it is expected in an invariant curve with no
fixed points over it. By contrast, for A = 0.07 > ANS as there is no invariant curve,
rotation number calculations do not work. Nevertheless, a value for ρ(0.85) = 1 was
computed. This result is a consequence of having a fixed point dynamics calculated
assuming that an orientation preserving map is defined. So, although the dynamics
tend to a fixed point we assume that each iteration of the map gives a complete
revolution before returning to the fixed point.
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Fig. 8 (Left) Invariant curve for the stroboscopic map with different amplitudes and T ′
T = 0.965.

(Right) Dynamics f (θ) over the invariant curve

4 Dynamics of the Stroboscopic Map

Section3was devoted to the introduction of the stroboscopicmap, its invariant objects
and its bifurcations, providing techniques to compute all of them. In this section
we aim at using all the tools provided in Sect. 3 to give a full description of the
stroboscopic map dynamics for the perturbed system (4) close to the 1:1 phase-
locking area by describing the evolution of all invariant objects of the system. Finally,
will distinguish asynchronous from synchronous areas and study its implications for
neuroscience.
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Fig. 9 (Left) Invariant curve for the stroboscopic map with different amplitudes and T ′
T = 0.85.

(Right) Dynamics f (θ) over the invariant curve

4.1 Phase Space Analysis

As the bifurcation analysis in Fig. 7 shows, there exist two possible bifurcations
depending on the period T ′ and the amplitude of the perturbation: a Neimark-Sacker
(NS) and a Saddle-Node (SN) bifurcation.Moreover, a Bogdanov-Takens bifurcation
occurs at (A, T ′

T ) � (0.023, 0.9388) delimiting the NS and SN bifurcation curves.
As different bifurcations will generate different dynamics, we will present phase
portraits for the stroboscopic map at the crossing of both bifurcations in order to
provide a description of the dynamics of the system (4) close to resonance 1:1. More
precisely, we will restrict the analysis of dynamics to the range of T ′

T values that
we have shown in Fig. 7, this is from 0.8 to 1 where the rotation number presented
discontinuities.

For values of T ′ such that 0.9388 < T ′
T < 1, the phase portrait for system (4) can

be seen in Fig. 10. In region A1, the attracting invariant curve ΓA generated from
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D

Fig. 10 Dynamics when a Saddle-Node bifurcation is crossed. Fixed points and invariant curves
were computed using provided numerical methods

unperturbed limit cycle γ has no fixed points of FA, and an unstable focus P1 exists
inside ΓA. Once the Saddle-Node bifurcation (solid blue line) is crossed (region B),
there appear two fixed points on the invariant curve ΓA: a stable node P2 and a saddle
P3. The invariant curve consists of the union of the saddle P3, its unstable invariant
manifolds, and the stable node P2. When increasing the amplitude (region C), P1

becomes an unstable node (dashed gray line). If the amplitude is increased further,
P1 will coalesce with P3 in a unstable Saddle-Node bifurcation (dashed blue line)
leaving the stable node P2 as the unique fixed point (region D). As one may note it
is possible to pass from area A1 to area C, without passing from B. When entering in
the area A2 the unstable focus P1 can become an unstable node before crossing the
SN bifurcation.

For values of T ′ such that 0.8< T ′
T < 0.9388, the phase portrait for system (4) can

be seen in Fig. 11. The attracting invariant curve ΓA has no fixed points of FA, and
an unstable focus P1 exists inside ΓA (region A). As the amplitude A is increased,
this situation persists until we reach the Neimark-Sacker bifurcation (green curve),
where the curveΓA collapses withP1 and disappears whileP1 becomes a stable focus
(region B).
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Fig. 11 Dynamics when aNeimark-Sacker bifurcation is crossed. Fixed points and invariant curves
were computed using provided numerical methods

Phase space analysis performed gives a fully understanding of the dynamics for
the perturbed system (4), demonstrating the presence of a fixed point for the map
FA and thus explaining discontinuities and results for rotation number. For a given
amplitude, discontinuities in the rotation number are expected to appear for the exact
value of T ′

T for which a NS bifurcation appears.

4.2 From Synchronous to Asynchronous Behaviour

As fixed points for the stroboscopic map correspond to periodic orbits of the sys-
tem (4), the disappearance of stable fixed points across bifurcations separates the
synchronous from the asynchronous regime. Computing the bifurcation curves of
system (4) is the most natural way for delimiting and studying a given phase locking
relationship. In Fig. 12 we show the stable solutions for a synchronous and an asyn-
chronous state. It can be seen how the phase or time lag between the system and the
perturbation is constant in the synchronous regime whereas it is not the case in the
asynchronous.

As various theories suggest synchronybetweenoscillating activity of twoneuronal
populations may have very important implications in neural communication [13]. In
particular, this time lag difference may underlie a possible mechanism for selection
of transmitted information [8].
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Fig. 12 (Top) Synchronous solution of system (4) for A = 0.02 and T ′
T = 0.965. (Bottom) Asyn-

chronous solution of system (4) for A = 0.04 and T ′
T = 0.85

5 Summary

We have considered a periodic perturbation of the Wilson–Cowan equations and we
have looked for synchronous and asynchronous regimes. In particular, we have stud-
ied phase locking relationships through the rotation number. Computations of this
magnitude showed discontinuities which have been understood through the compu-
tation of the main invariant objects (fixed points and invariant curves) of the strobo-
scopic map close to the resonance 1:1. We have shown how powerful computational
methods for invariant curves provide a further understanding of the dynamics gen-
erated by a periodic perturbation. Thus, this work aims at providing powerful tools
to study interactions of brain rhythms in the brain.
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