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Preface

This book commemorates the conference Nonlinear 2016: International Conference
on Nonlinear Mathematics and Physics, that took place in Sevilla, Spain, from July
7 to 10, 2016. There were delegates from many different countries in Europe and
also three other continents.

At the end of the conference, the decision was taken of writing a book to provide
the readers with a landscape of the many different fields in which nonlinear science
is being developed with great success. Contributions would not be proceedings but
present an introduction to the different subjects, provide context, and present the
state of art and certainly the own research of the authors in the field.

Although the mathematics and physics of nonlinear systems are closely inter-
twined, it has been considered convenient to divide the matter into two volumes:

• Nonlinear Systems; Volume 1. Mathematical Theory and Computational
Methods in Nonlinear Systems, edited by Victoriano Carmona-Centeno, Jesús
Cuevas-Maraver, Fernando Fernández-Sánchez and Elisabeth García-Medina

• Nonlinear Systems. Volume 2. Nonlinear Phenomena in Biology, Optics and
Condensed Matter, edited by Juan F. R. Archilla, Faustino Palmero, M. Carmen
Lemos, Bernardo Sánchez-Rey and Jesús Casado-Pascual

The present book is the second volume and it is dedicated to nonlinear physics.
This is a very large area of research including subjects as regulation and mor-
phogenesis of living systems, nonlinear hydrodynamic waves, gravitational waves,
ocean circulation, drug resistance, black holes, brain tumors, antifreeze proteins,
dark matter waves, neural communication, ionic channels, Bose–Einstein conden-
sates, charge transport in ionic crystals, acoustic metamaterials, breathers and kinks
in crystals, surface reactions, electro-polarons, repelling lattices, transition state
theory, layered media, interstitial loops, political conversations, accelerator physics,
and photonic fibers, to name a few.

Each field would require several books; therefore, in this one we only intend to
present the reader some chapters in a few different fields which can be useful to
understand how nonlinear physics is used in such different systems.
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We concentrate in some examples of three applications in biology, as protein
folding, morphogenesis, and neural communication; three chapters on optics
Bose-Eisntein condesates suppressed; and seven very different chapters in con-
densed matter, from graphene to annealing, from layered silicates to superfluid
helium, and from kinks and solitons to breathers. The outline of the book is as
follows:

1. Biology

• Protein folding in vivo: from Anfinsen back to Levinthal by Leonor Cruzeiro
………. p. 3

• Patterning, dynamics, and evolution in the ocellar complex of the fruit fly by
Daniel Aguilar-Hidalgo, Fernando Casares, and M. Carmen Lemos ……….
p. 39

• Computation of invariant curves in the analysis of periodically forced neural
oscillators by Alberto Pérez-Cervera, Gemma Huguet, and Tere M-Seara
………. p. 63

2. Optics

• Solitary waves on graphene superlattices by Francisca Martín-Vergara,
Francisco Rus and Francisco R. Villatoro ………. p. 85

• Nonlinear vortex light beams supported and stabilized by dissipation by
Angel A. Porras, Carlos Ruiz-Jiménez and Marcio, Carvalho ………. p. 111

• Spatial solitons in nonlinear photonic crystal fibers by José R. Salgueiro and
Albert Ferrando ………. p. 139

3. Crystals, metamaterials, and other condensed matter

• Nonlinear excitations in graphene and other carbon nano-polymorphs by
Sergey V. Dmitriev, Julia A. Baimova, Elena A. Korznikova, and
Alexander P. Chetverikov ………. p. 175

• A cellular automaton model for the catalytic oxidation of CO including CO
desorption and diffusion by Francisco Jiménez-Morales and M. Carmen
Lemos ………. p. 197

• Transmission of thermal phonons in superfluid helium through nonlinear
meta-interface with a solid by Yuriy A. Kosevich, Olena Yu. Tkachenko,
and Eugenii S. Syrkin ………. p. 221

• Transport properties of quodons in muscovite by F. Michael Russell……….
p. 241

• Kinks in a lattice of repelling particles by Ahmed Mehrem,
Luis J. Salmerón-Contreras, Noé Jiménez, Víctor J. Sánchez-Morcillo,
Rubén Picó, Luis M. García-Raffi, Juan F. R. Archilla, and Yuriy A.
Kosevich ………. p. 261

viii Preface



• Kinetics of Annealing: Basic Relationships and Nonlinear Effects by
Pavel A. Selyshchev and Pavel M. Bokov ………. p. 283

• Moving embedded solitons in the discrete double sine-Gordon equation by
Yaroslav Zolotaryuk and Ivan O. Starodub ………. p. 315

Chapters will provide an opportunity for the readers to understand subjects
which are normally dispersed in different journals for specialists. We expect them to
feel the fascination of nonlinear physics and its broad applicability, stimulating their
curiosity and perhaps extending their own research to unexpected territory.

Sevilla, Spain Juan F. R. Archilla
June 2017 Faustino Palmero

M. Carmen Lemos
Bernardo Sánchez-Rey
Jesús Casado-Pascual
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Protein Folding in Vivo: From Anfinsen Back
to Levinthal

Leonor Cruzeiro

Abstract In this chapter two visions of the protein folding process are confronted.
The first is based on the thermodynamic hypothesis and the second is based on
the kinetic hypothesis. Experimental results in support of each of the theories are
reviewed and in some cases re-interpreted. While the thermodynamic hypothesis
has been dominant since the 1970s, here it is argued that the experimental evidence
favours the kinetic hypothesis, particularly in what concerns folding in vivo. A spe-
cific kinetic process, designated as the VES KM, is proposed. According to the VES
KM the structure that all proteins have as they emerge from the ribosome is helical
and the first step in folding is the bending of this helix at specific amino acid sites
(i.e. the location of the bending sites depends on the protein sequence). Results from
molecular dynamics simulations on a small all-α protein demonstrate the theoretical
viability of the VES KM. The chapter ends with a discussion on the state of the art in
protein folding from the point of view of the VES KM and with proposals for future
work.

Keywords Protein folding · Kinetic hypothesis · Nascent chain · VES hypothesis

1 The Protein Folding Problem

Proteins are the macromolecules that mediate most of the processes that take place
in a living cell: they regulate the intracellular medium, pass signals from the outside
to the inside of a cell (and vice-versa), transport organelles from one region of
a cell to another, catalyze chemical reactions like the synthesis and hydrolysis of
adenosinetriphosphate (ATP) and provide basic structure. Given that even a small
protein with some sixty amino acids has approximately one thousand atoms, and thus
three thousand degrees of freedom, one main question, known as the protein folding
problem, is how each protein, after its synthesis in cells, most of the times, manages

L. Cruzeiro (B)
Centro de Ciências do Mar and Faculdade de Ciências e Tecnologia,
Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
e-mail: lhansson@ualg.pt

© Springer International Publishing AG 2018
J. F. R. Archilla et al. (eds.), Nonlinear Systems, Vol. 2, Understanding
Complex Systems, https://doi.org/10.1007/978-3-319-72218-4_1
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4 L. Cruzeiro

to reach the one three-dimensional structure it needs to have to function properly (its
native structure). In this chapter we are concernedwith two very different solutions to
the protein folding problem both of which were first proposed in the late 1960s: one
solution is known as Anfinsen’s thermodynamic hypothesis [3] (see Sect. 3) and the
other is Levinthal’s kinetic hypothesis [91] (see Sect. 4). One important message in
this chapter is that although the former has until now been themainstreamhypothesis,
there are good reasons to think that the latter will be mainstream in the future.

There are twodistinct protein folding problems [80]: one that consists of devising a
set of rules to obtain the three dimensional structure from its amino acid sequence, and
a second problem that consists of the identification of the physicalmechanisms/forces
that take a protein to its native state. The first is equivalent to building a black box
which, upon being fed the primary sequence of a protein, would turn out the full
three dimensional structure of that protein. Even if this black box leaves us ignorant
about the physical mechanisms that drive folding it will still be very useful for
progress inBiology andMedicine and for practical applications in the pharmaceutical
and biotechnological industries. On the other hand, the knowledge of the physical
mechanisms responsible for protein folding constitutes the complete answer and
should allow us to build the black box as well. Both of these protein folding problems
have been, and are being pursued by the protein folding community. Here we are
mostly concernedwith the second protein folding problemand one important purpose
of this chapter is to put forward a specific (kinetic) mechanism for protein folding
(see Sects. 4–6).

Protein folding research started in the 1950s and, since then, it has never ceased
to be the object of intensive study. It has thus generated a vast literature. It is not the
purpose of this chapter to attempt to review all of it. Indeed, there are many reviews
that describe the progress that has been made so far (see e.g. [45, 46, 48, 51, 64,
69, 83, 87, 114, 124]) but here, instead of focusing on the successes achieved in
protein folding, the remaining weaknesses will be emphasized in order to build a
case for a new (or actually, old) line of research. Therefore, newcomers to this field
should beware of the bias towards the kinetic hypothesis that permeates this whole
chapter. On the other hand, I have endeavoured to make, not a complete because that
is impossible, but rather a self-contained description of the protein folding problem.
To that end, the features of protein structure that are necessary to follow the different
protein folding theories are presented in the next section. Section3 dealswith theories
and experimental evidence related to the thermodynamic hypothesis, andSect. 4 deals
with the kinetic hypothesis, its relations to folding in vivo and the experimental data
that support it. In Sect. 5 a particular kinetic mechanism for folding is described,
which is illustrated by computer simulations reported in Sect. 6. Finally, in Sect. 7 an
evaluation of the status of the thermodynamic hypothesis andof the kinetic hypothesis
is made, and in Sect. 8 suggestions for future work within the kinetic hypothesis, as
well as predictions and suggestions of experiments capable of distinguishing between
the two hypotheses, are put forward.
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Fig. 1 Protein synthesis or amino acid polymerization. Four amino acids are shown, the first three
of which have already been polymerized. In pink are shown the atoms of the protein backbone,
with the side-chains or residues in black. Protein synthesis consists in the reaction of the carboxylic
group of one amino acid with the amine group of the amino acid that is being added, as highlighted
by the blue oval

2 Protein Structure

In this section, the essentials of protein structure are briefly described. Physically,
proteins are polymers whose units are the amino acids. The so-called primary struc-
ture of proteins consists simply of the specification of its number of the amino acids
and of their order of appearance. All amino acids have a part that is equal for all of
them (plotted in pink in Fig. 1) andwhich leads to the so-called protein backbone, and
another part, represented by Ri , i = 1, . . . , 4 in the figure, which differentiates them.
The differentiating groups Ri are the side-chains or residues of the amino acids and
can be constituted by more than one atom even if they are represented by a single
letter in Fig. 1. The green oval which circles one amino acid not yet polymerized
shows that isolated amino acids have two sides, one with an amine (NH2) group and
the other with a carboxylic (COOH) group. Protein synthesis (or polymerization),
which in cells is mediated by the ribosomes, consists in the chemical reaction of the
carboxylic group of amino acid i with the amine group of the amino acid i + 1, thus
creating the peptide bond C-N, and the peptide group (CONH) which is highlighted
by a red oval in Fig. 1. Notice that in each peptide group, the C=O (carbonyl) group
comes from amino acid i and the NH group comes amino acid i + 1 in the pro-
tein sequence. The ultimate aim in the protein folding problem consists in devising a
method to determine the shape assumed by the protein backbone from the knowledge
of its primary structure.

One remarkable feature of protein structure is its hierarchical character. Indeed,
the analysis of the known protein structures (on the 8th September 2016 there were
113586 protein structures deposited in the protein data bank (PDB) [14]) shows that
the backbone of proteins can assume two types of structures: helical (most of which
are the so-called α-helices) and β-sheets. These are known as protein’s secondary
structures and are shown in Fig. 2. Helices are stabilized by hydrogen bonds between
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Fig. 2 Protein secondary structures. The first two pictures on the left are representations of the
α-helix and the two on the right are representations of the β-sheet (see text). For each secondary
structure type, the first picture shows an atomic representation of the backbone, with the links
between atoms represented by lines (cyan being for carbon atoms, blue for nitrogen and red for
oxygen), and the second is the corresponding cartoon representation. These figures were prepared
with VMD [75]

the C=O groups of one amino acid, i , and the NH group of another amino acid,
j , forming a hydrogen-bonded chain that runs parallel to the helix axis with the
following composition: · · · H-N-C=O · · · H-N-C=O · · · H-N-C=O · · · In the case
of α-helices j = i + 4 and the helix is stabilized by three such hydrogen-bonded
chains. β-sheets, on the other hand, as can be seen in Fig. 2, are also stabilized by
the same type of hydrogen-bonded chains, but their orientation is perpendicular to
main chain axis. A third type are structures that connect the first two, like turns and
loops, which are essentially structure-less parts. The full three-dimensional structure
of proteins (designated as the tertiary structure) results from the packing of regions
with either helical or sheet structure. Some proteins are formed by more than one
unit (a unit being a chain of sequentially covalently linked amino acids as shown in
Fig. 1), in which case one can also define the quaternary structure, constituted by the
packing of the different units with respect to one another. Here we restrict ourselves
to protein monomers (i.e. proteins formed by just one unit).

Analysis of the known structures shows that all proteins fall into just four different
classes [107], as illustrated in Fig. 3: (1) mainly-α, in which most of the secondary
structure is formed by α-helices (as seen in the first picture of Fig. 3), mainly-β in
whichmost of the secondary structure is formedbyβ-sheets (as seen in secondpicture
of Fig. 3), α/β in which both α-helices and β-sheets are found in approximately equal
proportion (as seen in the third picture of Fig. 3), few secondary structures in which
most of the protein is unstructured (as seen in the fourth picture of Fig. 3). The
essence of the protein folding problem is to understand how the different amino
acid sequences determine the different protein structures. Related questions are why
proteins have a hierarchical structure and why they do not show a much greater
variety of structures. We shall come back to these questions in Sect. 7.
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Fig. 3 The four CATH protein structural classes: (first, cyan) mainly-α (PDB1BDD [68]), (sec-
ond, red) mainly-β (PDB1J08 [60]), (third, yellow) α/β (PDB1IGD [65]), and (fourth, green) few
secondary structures (PDB1AAP [76]). These figures were prepared with VMD [75]

3 Anfinsen’s Thermodynamic Hypothesis

Since the 1970s much of the efforts to solve each of the two protein folding problems
mentioned in Sect. 1 have been guided by Anfinsen’s thermodynamic hypothesis [3]
according to which the native state of a protein is the global (free) energy minimum.
Curiously, Anfinsen who, in the mid 1950s, was studying the relationship between
structure and function in enzymes, first concluded that the structure of enzymes was
irrelevant for their activity [5]! As stated by Anfinsen himself [4], he then spent
another 15years proving precisely the reverse.

Anfinsen’s experiments on protein denaturation and re-folding were the basis for
his formulation of the thermodynamic hypothesis. Indeed, Anfinsen and co-workers
showed that two proteins, namely, bovine pancreatic ribonuclease A (RNase A) and
staphylococcal nuclease, after denaturation in, respectively, 8 M urea and acid solu-
tions, could recover their native states when normal physiological conditions were
restored [3, 123]. Although the methods used to monitor the state of the proteins as
a function of the concentration of urea and of acidity were biological activity and
fluorescence emission, which could not say anything about what was happening to
the structure of the proteins as they denatured, it was assumed that when the solu-
tions were very different from the normal cellular conditions the protein structure
was completely disrupted. If so, these experiments seemed to demonstrate that the
native (biologically active) state of a protein can be reached from any initial structure
so that the amino acid sequence is the sole determinant of the native structure. The
matter was considered settled when Gutte and Merrifield were able to synthesize,
in the absence of the cellular machinery and by a solid phase method, a 124 amino
acid fragment of RNase A with an activity largely indistinguishable from the nat-
ural one [70, 100]. Anfinsen received a Nobel prize in Chemistry in 1972 “for his
work on ribonuclease, especially concerning the connection between the amino acid
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sequence and the biologically active conformation” and since then the thermody-
namic hypothesis has been the dominant guide in the search for a solution to the
protein folding problem.

In the next subsection, a critical appraisal is made of the theoretical developments
made within the thermodynamic hypothesis.

3.1 The Funnel Model and “Landscape Theory”

The first theoretical development within the thermodynamic hypothesis came from
statistical approaches within polymer physics: Dill [44] modelled a protein as a
polymer constituted by hydrophobic (H) and polar (P) amino acids (considered as
beads in a lattice) in which folding is driven by the tendency for hydrophobic beads
to cluster together, something that is opposed by entropy. The overall result was that
the number of stable compact, low energy, states is much smaller than the number of
extended, high energy, states, leading to the concept of a funnel-shaped free energy
landscape.

In lattice models the native state is, by definition, the state with the lowest energy
and the observed uniqueness of the native state corresponds to a well defined ground
state whose existence, in such models, is assumed a priori [44, 85]. However, if those
models are to obey the thermodynamic hypothesis they must possess only one, well
defined, ground state. A boost to the lattice models came from calculations with
the HP model which suggested that, as the number of amino acids increases, the
probability that a given sequence has more than one ground state decreases [47, 88].
However, recent studies in which lattices much larger than those considered before
were used, have demonstrated that the probability that an HP sequence has a unique
ground state decreases exponentially with increasing chain length [126, 127]. These
latter studies weaken the theoretical case for funnel-shaped energy landscapes and
for the thermodynamic hypothesis.

A concurrent theoretical development within the thermodynamic hypothesis bor-
rowed the concept of frustration from spin glasses [23]. In the context of protein
folding, frustration can be qualitatively defined as the impossibility for any confor-
mation to simultaneously optimize all the types of interactions present in a protein,
and the native states of proteins can be conceived as those which minimize frustra-
tion [23, 106]. While most protein sequences may not obey the principle of minimal
frustration, it has been proposed that evolution has selected the protein sequences
that possess a single, well defined state in which frustration is minimized [147].

An aspect that is shared by the two theoretical approaches mentioned above is
that the (free) energy landscape of proteins is funnel-shaped [23, 44, 45, 80, 147].
This shape is thought to provide the solution to a problem raised already in the
end of the 1960s by Levinthal [92]. Indeed, Levinthal pointed out that if a protein
with some 2000 atoms must explore the more than 10300 different conformations it
potentially can have to find its native state, it should take much longer to fold than
the time measured in re-folding experiments, which range from sub-microseconds
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to hours [98, 110] and in some cases, days [120] (in the experiments by Anfinsen it
was minutes [67]). This so-called “Levinthal paradox” was eventually solved by the
proposal that the (free) energy landscape of proteins is funnel-shaped, with unfolded
states located at the rim and the native state at the bottom of the funnel [23, 44,
45, 80]. In such a landscape, the number of available states decreases as the energy
approaches that of the native state and the second law of thermodynamicsmay suffice
to explain reproducible folding in a reasonable time. In Sect. 4 the other, very different
solution proposed by Levinthal [91, 92] is described.

Another idea that emerged from the theories described above is that hydropho-
bic interactions are the main drivers for the formation of initial compact protein
structures [48, 87]. This idea has been criticized by Ben-Naim [13] who claims that
hydrophilic forces are more important for protein folding. Ben-Naim also criticizes
the concept of free energy landscape [12] and suggests instead the use of the distri-
bution of the protein conformations (DPC) (see also [23, 51]). He points out that, in
an equilibrium process, the free energy is minimized with respect to this distribution,
which in principlemay have any form, with or withoutminima andmaxima (see [12],
p. 118). Following Ben-Naim [12, 13], instead of referring to the shape of the energy
landscape, we shall henceforth talk about the shape of the DPC at equilibrium. With
this formalism, the thermodynamic hypothesis (a well defined ground state) and a
funnel-shaped free energy landscape correspond to an equilibrium DPC with a clear
(single) peak. On the other hand, an equilibrium distribution of conformations with
n peaks of approximately equal height and area corresponds to the potential exis-
tence of more than one conformation in the same thermodynamic conditions, as first
proposed by Levinthal [91] (see Sect. 4 below). Furthermore, hierarchies of protein
motion and protein intermediates [63] lead to roughness within the corresponding
peak. Although in previous works the expression “multi-funnel free energy land-
scape” was used [32, 34, 39], in what follows we shall prefer the point of view of
the DPC at equilibrium [37, 38].

Until now, the search, in silico, for the native states of specific sequences has been
made under the umbrella of the thermodynamic hypothesis according to which the
DPChas a single dominant peakwith a clearmaximum.Most of the times, that search
consists just of looking for the minimum of the potential energy. The acknowledged
problems of determining protein structure with such a strategy are the enormous size
of protein conformational space, as first pointed out by Levinthal [92], which is very
difficult to cover in the available computer time, and inaccuracies in the force fields
which may steer proteins into non-native regions of their conformational space. The
efforts to solve these problems have led to the development of more accurate force
fields [21, 25, 29], of fast molecular dynamics (MD) programs [16, 21, 25, 29], of
efficient methods to navigate the conformational space, such as targeted MD [125],
steered MD [95], accelerated MD [71], and transition path sampling [15, 43], and
even to the building of more powerful computers [2, 129]. However, in spite of all
this progress, the protein folding problem remains a challenge.

An evaluation of the state of the art in the prediction of protein structures from
their amino acid sequence is made every two years in the Critical Assessment of
protein Structure Prediction (CASP) exercises (found at www.predictioncenter.org).

www.predictioncenter.org
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Having started in 1994 and being held every two years, the CASP exercises let groups
around the world predict, from their sequences, the structures of proteins which have
not yet been made public. The analysis of these predictions shows that while in the
first CASP exercises there was general progress in the accuracy of protein structure
prediction [18, 48], in more recent years this progress seems to be levelling off [46].
In particular, ab initio predictions in which only force fields to describe the atomic
interactions are used, and de novo prediction in which statistical distributions derived
from known protein structures are used, as well as protein structure refinement [115]
turn out to be especially challenging [124].

In spite of these difficulties, computational studies of changes in protein stability
after selected mutations have led to a few successes in the prediction of sequences
which lead to proteins with varying degrees of stability or folding rates [87] and,
in some cases, to the increase in the accuracy of structure prediction [114]. Most
importantly, using the new computer ANTON [129] and the fast program Desmond
[16], Shaw and co-workers have succeeded in making MD simulations of 12 small
proteins for up to 100 milliseconds! In these time periods, and at temperatures such
that the population of the folded state is 30% on average, they have observed that the
12 proteins unfolded and re-folded repeatedly [78, 94, 130]. These results, which are
the best numerical mimics of reversible thermal unfolding experiments, have been
thought to provide theoretical support for the thermodynamic hypothesis [78, 94,
130]. Indeed, they seem to show that, with sufficient computer time and sufficiently
accurate potentials, it is possible to fold proteins in silico.

Curiously, other simulations which started from protein structures obtained using
templates consistently deviated from the native fold, something that was considered
to be due to inaccuracies in the force field [115]. However, the fact that we can change
65%of the amino acids of a protein and,with high probability, still get another protein
with the same backbone fold as the original one [61] means that small inaccuracies
in the force field cannot matter much. Thus, let me suggest another explanation. In
most MD simulations the initial structure is either the native structure (obtained from
the PDB [14]) or a structure obtained by heating the latter (mildly or less mildly).
Although itmaynot seemso from indicators like theRMSD(with respect to the native
state) or the radius of gyration, or just visual inspection, those heated structures may
keep crucial features of the native state and will thus tend to drift back to the native
state. In the language of the DPC, although those changes take the protein away from
the center of the native peak, they do not take it outside that peak. On the other hand,
structures built from templates may not possess such hidden native features, i.e., they
start in a non-native peak of the DPC and will tend to drift towards the center of that
non-native peak, and to a structure different from the native.

In interpreting their results Shaw and co-workers [94, 115] implicitly assume that
the DPC is characterized by a main peak, corresponding to the native state. On the
other hand, a cursory study of the DPC at equilibrium which has been performed
for a total of six proteins indicates that the DPC of all of them is multi-peaked,
i.e., apart from the peak associated with the native state, there are many other peaks
corresponding to as many structures that are as stable as the native [32, 34, 37–39]
(see Sect. 4.2). These simulations indicate that the difficulty in finding the native state
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in silico is not due either to the size of the conformational space or to inaccuracies
in the protein force fields but to the real multitude of possible structures proteins can
have that are as stable as the native state, in the same thermodynamic conditions.

3.2 Experimental Evidence for the Thermodynamic
Hypothesis

The thermodynamic hypothesis was not initially based on theory but rather on the
success of Anfinsen’s re-folding experiments described above [3, 123] and of the
chemical synthesis by Gutte and Merrifield [70, 100]. Since then, innumerable stud-
ies of reversible protein unfolding of various proteins have been performed, with
other denaturing conditions like changes in ionic strength, increases or decreases
in temperature or pressure, and mutations of specific amino acids. Several types
of techniques, like hydrogen exchange, fluorescence labeling, Fourier Transform
Infrared spectroscopy, Circular Dichroism, Nuclear Magnetic Resonance and, more
recently, single molecule methods, have been applied to monitor protein states and
the results have largely been interpreted to provide extra experimental support to the
thermodynamic hypothesis [46, 48, 51, 69, 83, 98].

A critical assumption to infer the thermodynamic hypothesis from the reversible
unfolding experiments is that the denatured states of the proteins are completely
unstructured. However, what was directly monitored by Anfinsen was the biological
activity or the fluorescence emission of the proteins in the denatured states, and even
now, that other techniques that can monitor structure in a more direct way have been
used, this assumption is still far from proved [17]. While one study showed that
the dimensions of denatured proteins have a sequence size dependence that is very
similar to that of random coils [86], another study showed that the radius of gyration
of unfolded protein ensembles in which the native secondary structure is preserved
is also very similar to that of random coils [62]. Thus, both fully random structures
and structures that preserve native secondary structure are theoretically possible in
denatured states.

Another experimental finding is that the refolding times for the same protein vary
with the denaturing conditions imposed on it [109]. If denatured states corresponded
to completely random structures, all denatured ensembles would be equivalent and
the refolding times should be, on average, independent of the denaturing conditions.
The fact that refolding times for the same protein vary with the denaturing conditions
means that there is a residual structure in denatured states and that residual structure
is dependent on the denaturing conditions. Furthermore, there is, in many cases,
direct experimental evidence of residual native secondary structure in the denatured
ensemble [17, 22, 26, 116, 131, 132], something that was first envisaged by Lumry
and Eyring who suggested that reversible unfolding occurs when denaturation leads
to changes mainly to the tertiary structure, while irreversible unfolding is due to
changes in the secondary structure as well [96].
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Following theoretical studies within the funnel model that suggested that folding
times should correlate with protein sequence size [146], Plaxco and co-workers
[109] looked for correlations between the folding rates and protein characteristics
such as the thermodynamic stability of the native state, the sequence size and the
relative contact order (defined as the average sequence separation between spatially
neighbouring residues in the native state, normalized by the sequence size). The only
correlation they found was between the folding rate and the relative contact order
[109]. This finding led to the optimistic view “that a general and quantitative theory of
protein folding rates and mechanisms (as opposed to unfolding rates and thus protein
stability) may be near on the horizon” [110]. Although those expectations are yet
to be fulfilled as far as protein folding mechanisms are concerned, the prediction of
re-folding rates is arguably the part of current protein folding theories that has met
with the greatest success until now.

4 Levinthal’s Kinetic Hypothesis

As pointed out in [121] there are two types of protein stability: the thermodynamic
stability which is related to the free energy difference between the (natively) folded
and unfolded/misfolded states, and the kinetic stability which depends on how fast
the transition from native to other states is. Even if the native state of a protein
is not thermodynamically particularly stable (i.e. even if there are many alternative
conformations with approximately the same free energy), the population of the native
state and its lifetime may still be large enough for the protein to fulfill its function in
the cell if the energetic (kinetic) barrier that it must overcome to undergo a harmful
conformational change is sufficiently high. In this case, the native state will just be
one of the many kinetic traps in which the same protein may find itself, in the same
thermodynamic conditions.

For protein function it is important to ensure that a large part of the popula-
tion of cell proteins is in the native state at all times, something that requires a
strong thermodynamic stability. However, experimental data show that proteins are,
thermodynamically, only marginally stable [122, 139]. On the other hand, a high
population of natively folded states can also be achieved if, (1) after synthesis most
proteins follow a pathway that takes them to the native basin and (2) if the kinetic
barriers surrounding the native basin are sufficiently high. The kinetic mechanism
for folding described in Sect. 5 follows this second possibility.

The hypothesis that native states are only kinetic traps and that, therefore, protein
folding is a kinetic process was first put forward by Levinthal, in what constituted
his own solution [92] to the so-called “Levinthal paradox” (see Sect. 3.1). Indeed,
at the same time that Anfinsen made the experiments that led to the thermodynamic
hypothesis [3], Levinthal proposed that the native state of proteins is just one of the
many kinetic traps in which they may fall. In Levinthal’s view the time it takes for
a protein to fold is short because proteins follow specific pathways and thus explore
very few of the conformations potentially available to them [92]. Pathways are
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deterministic trajectories in conformational space and Levinthal suggested that rel-
ative pauses in those trajectories will lead to specific protein folding intermediates
which have been found inmany cases [20, 55, 56, 113, 117]. But the first experimen-
tal evidence of a protein whose native state is a kinetic trap was found by Levinthal
himself and is reported in a reference, [91], that only includes the summary (and
which, at the end, states in French that the text of the manuscript did not arrive). Ref-
erence [91] reports on experiments that show that the protein alkaline phosphatase
when synthesized and folded at 44 ◦C assumes a shape that is inactive, and when
synthesized and folded at 25 ◦C assumes a shape that is active, also when it is heated
above 44 ◦C. I.e., short as [91] is, it shows that alkaline phosphatase can have at least
two stable structures at 44 ◦C, one of which is active and another which is not.

Since this seminal work by Levinthal, direct evidence of proteins whose native
state is a kinetic trap has been accumulating [9, 66, 102, 111, 121, 137, 140]. Prions
[111, 112] are perhaps themost famous but other examples aremetamorphic proteins,
known to fluctuate between very different conformations in native conditions [140].
Also, while most papers report cases of reversible unfolding, which support the
thermodynamic hypothesis, cases of irreversible protein unfolding, which support
the kinetic hypothesis, have also been found [77, 102, 103]. Moreover, the proteins
that have been used in protein reversible unfolding studies are only a select set, which
constitute a poor representation of the whole protein universe, and the conditions
under which they unfold reversibly are far from being generic [19]. This suggests
that reversible unfolding, instead of being the norm, may rather be the exception.

One more argument in favour of the kinetic hypothesis is the aggregated state.
While reversible unfolding is found only for a small set of proteins, most proteins
when taken out of the cell and denatured, form aggregates that do not re-fold back to
the native state [19]. This shows that for most proteins the aggregated state is the true
global free energy minimum. The aggregated state was first identified in proteins
associated with misfolding diseases [111, 112] but was afterwards also found to
occur with myoglobin [58] and “it now seems to be a generic feature of polypeptide
chains” [50]. The existence of this aggregated state and the fact that in cells proteins,
most of the time, avoid falling into it, is perhaps the best argument for that the native
state is merely a kinetic trap, as first proposed by Levinthal [91].

The purpose here is to build on Levinthal’s and others perspective that protein
folding is a kinetic process [8, 20, 55, 56, 91, 136]. The specific pathway described
in Sect. 5 and illustrated in Sect. 6 includes the idea that the starting structure in a
folding process conditions the final structure, something that was not considered
by Levinthal [91, 92] and which is still absent in other proposals, like the foldon
[56]. One consequence of taking into account the starting structure is that folding
in vivo can and will tend to be fundamentally different from re-folding in vitro.
As explained in detail in Sect. 7, according to the kinetic hypothesis the only protein
foldingproblem likely to possess a unique solution is folding in vivowhich constitutes
our main interest and which is the subject of the next subsection.
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4.1 Protein Folding in Vivo

As mentioned above, most proteins, when denatured outside the cell, will not re-fold
to the native state, when brought back to buffers that are meant to mimic normal
physiological conditions [19, 119]. Instead, most proteins denatured in those in vitro
conditions aggregate. One reason why the same proteins may fold in the crowded
environment found in cells is thought to be chaperones [119]. The role usually
attributed to chaperones is solely the increase of the rate of folding, thereby pre-
venting aggregation and increasing folding efficiency. However, recent experiments
have shown that many of the proteins that under stress conditions are substrates of
the chaperones, do not require them for efficient folding in normal cellular conditions
[19]. Furthermore, there is evidence that chaperones can influence the structural out-
come of the folding process, e.g. in the absence of its own chaperones the protein
actin from plasmodium can remain incompletely folded [105]. But, in spite of many
studies, the mechanism by which chaperones assist folding remains unknown.While
a usual picture is that their substrates fold inside the chaperone cavities [119], there
is also evidence of a protein that folds outside the chaperone GROEL [27], a process
that resembles the folding process after protein synthesis by the ribosome.

While the focus in this subsection is folding in vivo, until now most experi-
ments on protein folding have been in vitro re-folding experiments [19]. In the latter
experiments, the starting point is a denatured state of a natively folded protein whose
subsequent re-folding is monitored. Just as different denaturing conditions induce
different conformational ensembles [17, 22, 26, 116, 131, 132], the structure of pro-
teins as they emerge from the ribosome may be (and probably is) very different from
those sampled in re-folding experiments. According to the thermodynamic hypoth-
esis the influence of the unfolded protein states is only on the corresponding folding
time, since the final folded structure is supposed to be always the same for a given
amino acid sequence. On the other hand, according to kinetic hypothesis, a different
starting structure will not only influence the folding time but, more importantly, it
may also lead to different final (native) structures. Thus, for the kinetic hypothesis it
is very important to know the shape of the starting structure (i.e. the structure of the
nascent chain).

Just as it was initially thought that denatured proteins were completely devoid of
structure [3, 86] it was also thought that the structure protein chains have as they
leave the ribosome is completely random. However, recent experiments of folding in
vivo have shown that this is not the case. The ribosomal exit tunnel is a tube with a
length between 80 and 100 Å and with a width between 10 and 20 Å [10] and specific
secondary structures, namely, α-helices, have been detected in different parts of it
[148]. Thus, the initial structures in cells are far from random.

The recent in vivo evidence also indicates that the ribosome’s role is not limited
to synthesis and to defining the initial structure, but it extends to the folding process
itself. Indeed,while the dimensions of the exit tunnel seem to preclude tertiary folding
inside it [143], there is plenty of evidence for tertiary folding while the nascent chain
is still tethered to the ribosome and for a determining role of the ribosome on the
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conformations sampled by the nascent chain [54, 57, 79, 84, 138, 141, 143, 145,
148]. Moreover, it has been found that when the rate of synthesis is modulated by
silent codon changes (changes in the DNA and messenger RNA sequences that do
not affect the amino acid sequence), the folding efficiency changes [104]. This direct
effect of the time it takes to synthesize a protein on its final structure is yet another
evidence that folding in vivo is a kinetic process, that the native state is a kinetic
trap and that the ribosome, apart from being a synthesizing machine, also acts like a
chaperone.

In summary, the recent experiments of folding in vivo have not only given extra
support to the kinetic hypothesis but have also indicated that, at least in some cases,
the nascent chain is helical. In Sect. 5 a specific kineticmechanism for protein folding
in vivo is described which is based on the idea that the nascent chains of all proteins
is helical.

4.2 Exploring the DPC at Equilibrium

Within the thermodynamic hypothesis, the search for the native state of a protein is
equivalent to the search for themain peak in theDPC (which inmost studies translates
to trying to find the global free energy minimum or even just the global potential
energy minimum). However, in spite of several decades of attempting to predict the
native structure in this manner, it is still not possible to do it with a sufficient degree
of accuracy, in the absence of templates [46]. One reason commonly invoked for
this failure is that, in spite of the progress made in the development of the force
fields used for protein dynamics, there are inaccuracies in those force fields [115].
However, if force fields possess a particular bias, it should be to favour the native
states, from whose knowledge they originate [21, 25, 29]. A second reason invoked
for the failure is the size of the conformational space that even a small protein can
access. The argument is that, even if the probability for the native state is much
larger than for any other state, it remains difficult to locate it among the zillions of
possible conformations. Even when using the most advanced sampling techniques
like accelerated MD [71], replica exchange [28, 74] and others [124] and with ever
more powerful computers [2, 129], it is still very difficult to find the native state with
the (computer) time available.

On the other hand, within the kinetic hypothesis, the reason for the failure to
determine the structure of the native state solely from the primary sequence, using
the thermodynamic hypothesis, ismuchmore fundamental: it is the fact that the native
state is not the onlywell defined peak in theDPC.According to the kinetic hypothesis
the DPC does not possess a dominant peak and, on the contrary, it includes numerous
peaks of similar height and width. One of these peaks corresponds to the native state
and the other peaks correspond to non-native, alternative states, kinetically separate
from the native, structurally very different from it, and yet as thermodynamically
stable as the native state. If the DPC does have this multi-peak shape then it is
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impossible to find a dominant peak, putatively corresponding to the native state,
even with the most accurate force fields and with the most powerful computers.

There are now more than hundred thousand proteins whose native structure is
known [14] and for those it is possible to compare the stability of the native structure
with the stability of other structures that they may potentially have. One advantage
of the kinetic hypothesis is that to prove it, i.e. to prove the existence of more than
one stable structure for the same protein, it is not necessary to sift through the whole
conformational space of that protein. We can take a protein whose native structure is
known and just need to show that same protein can have other, different structures,
that are as stable as the native, in the same thermodynamic conditions. This was done
in [34, 37–39] for six different proteins, two of which were common to all studies.

In [37] four proteins were selected: PDB1BDD [68], whose CATH [107] class
is mainly-α, PDB1J08 [60], a mainly-β protein, PDB1IGD [65], an α/β protein,
and PDB1AAP [76], a few secondary structures protein. These four proteins, whose
structures are displayed in Fig. 3, are representative of the four CATH classes [107]
that have been identified by analysing all the protein structures in the PDB [14]. The
coordinates for the native structures of these proteins were taken from the PDB and
for each of them, three alternative structures were built by imposing on its backbone
the shape of backbone of the other three. For example, 1BDDhas 60 amino acids [68],
and 1J08 has 58 amino acids [60]. To generate one of the alternative conformations
for the mainly-β protein 1J08, the backbone fold of the first 58 amino acids of the
mainly-α protein 1BDD was imposed onto the 58 amino acids of 1J08 and, vice
versa, to generate an alternative conformation for the mainly-α protein 1BDD, the
backbone fold of the 58 amino acids of 1J08 was imposed onto the first 58 amino
acids of 1I0S, while the remaining 2 amino acids were allowed to keep their native
fold [37]. As the class is the main distinction between protein structures in the CATH
classification scheme [107] the alternative structures created in thismanner constitute
some of the most artificial structures that can be imagined for each of the proteins.
In a single peak DPC (that is, in a funnel-shaped energy landscape) these alternative
structures should be highly unstable. However, the simulations, done in a explicit
water bath, at a temperature of 298 K, for 500 nanoseconds, show that many of them
are as stable as their native counterparts [37]. Moreover, those that are not stable, do
not evolve to the native basin but rather to other basins at least 15 Å away from the
native [37].

The results in [34, 37–39] indicate that, at least for the 6 proteins studied, theDPC,
apart from the peak corresponding to the native basin, includes at least three more
peaks corresponding to different average structures that are as stable as the native.
This happens because protein structures are stabilized by a large amount of weak
interactions and there are many structural combinations for which the intensity of
attractive interactions compensates the intensity of repulsive ones leading to the same
overall stability. It may be argued that 6 is a small number and that a more thorough
coverage of the protein universe might lead to different conclusions, particularly
since, as happens in most in silico studies, also the proteins selected in [34, 37–39]
are small proteins. However, apart from their smallness, there is nothing particularly
special about the proteins selected, and since the same potential energy functions
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apply to large proteins as well, we expect that larger proteins will have an even
greater number of conformations with a combination of interactions that leads to
the same overall energy. I.e., the atomic constitution of proteins and the nature of
their intramolecular interactions leads to that the DPC of most proteins has a multi-
peak structure, or, in the language of “energy landscapes”, we can expect that the
energy landscape of most proteins has not one funnel, but many. Although not often
reported in the literature, similar results, in qualitative terms, have been obtained by
other researchers [19, 89, 144].

If indeed the generic DPC is multi-peaked, why has this characteristic not been
detected in many other proteins? Within the kinetic hypothesis the answer is that, in
spite of all the techniques used experimentally [46, 48, 51, 69, 83, 98] and in spite of
all the advances in computer power [2, 129] and in sampling techniques [28, 71, 74,
124], only a very restricted part of the conformational space potentially available to
each protein has been explored. On the other hand, while each trajectory in [37–39]
is restricted, particularly when compared with millisecond simulations [78, 94, 115,
130], taken together, the four 500 ns trajectories generated for the four proteins cover
a larger part of the conformational space because each starts from a very different
part of the conformational space of the given protein. The non-native, alternative
structures used in [37–39] are not visited by proteins in their lifetime in cells (which
can be hours, days or years [49]) and even less in the millisecond simulations, or
less, that start from natively folded structures, or distortions thereof. In fact, what the
simulations in [37–39] also indicate is that, once folded, either natively or otherwise,
most proteins, in the absence of triggers, in normal physiological conditions, never
stray very far from that structure.

The second law of thermodynamics tells us that isolated systems tend to the
minimum of their free energies which is reached at equilibrium. But cells are not
isolated systems and are not at equilibrium. In vitro experiments are isolated systems,
so they may reach equilibrium. But the second law of thermodynamics does not
specify the time it can take for a system to reach equilibrium and does not rule out
the existence of long-lived metastable states. The thermodynamic hypothesis claims
that there is only one such long-lived state and is at odds with the results in [34,
37–39]. On the other hand, the kinetic hypothesis proposes that native states are one
of the many long-lived metastable states that a given sequence of amino acids may
take and is in agreement with those results.

In spite of the large number of articles that proclaim the funnel-shaped energy
landscape [46, 48, 51, 64, 69, 87, 114, 124], Dill, in [46], states that there is “little
experimental knowledge of protein-folding energy landscapes”. The results in [19,
34, 37–39, 89, 90, 144] and the experimental evidence described in Sect. 4.1 suggest
that the current notion of a DPC with a dominant peak (or, in another language, of a
funnel-shaped energy landscape) should be revised.
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5 A Kinetic Mechanism for Folding and the VES
Hypothesis

The specific kinetic mechanism that is the subject of this section was first described
in [34] and a preliminary (successful) feasibility test was reported in [35]. For rea-
sons that will be clear below, let us call it the VES kinetic mechanism (VES KM)
for folding. As explained in the previous section, if folding is a kinetic process,
re-folding in vitro can be substantially different from folding in vivo because of the
difference in the starting structures. Thus, it must be emphasized that the VES KM
proposed here aims at describing folding in vivo. One application of this model has
appeared in [36] and a second one is described in Sect. 6.

We can divide the VES KM into three main steps. A first step of the VES KM is
the emergence of the polypeptides from the ribosome and the assumption is that the
nascent structure of all proteins is helical. This defines the starting structure.

A second step is the bending of the initial helix at specific amino acid sites. This
bending is the structure-determining step and is assumed to be driven by quantum
vibrational excited states (VES). As explained in greater detail below, the idea is
that VES are the means by which proteins store and transport energy from active
sites, where the energy is generated, to other regions where the energy is used for
work. When the quantum VES decay, it is further assumed that the energy they
carry is released as classical kinetic energy of the same atoms that carried it, i.e.
VES are transformed into classical kicks applied to the atoms which carried that
quantum vibrational mode. In this view, protein conformational changes associated
with the early stages of folding are driven by quantum VES and will not take place
in their absence. On the other hand, the response to those initial kicks is governed
by the classical interactions included in traditional force fields such as AMBER
[25], GROMOS [29] and CHARMM [21]. From the point of view of the DPC, the
second step is also that in which the native peak is selected from among all the other
peaks, i.e. the initial atomic kick pushes the protein (or, for a larger protein which is
synthesized in sections, the protein domain) towards the conformational area of the
native peak.

The third step in the VES KM consists of a stochastic trajectory that takes the
protein from the edges of the native peak to its central area, where the DPC has a
local maximum. This third step is very similar to the diffusion claimed to take place,
from the very start, in funnel theories. Indeed, the VES KM shares with the funnel
model the idea that the folding rate is determined by this third diffusional step, the
difference being that, according to VES KM, the native structure is defined by the
first step mentioned above, which is a deterministic step driven by quantum VES.
The fact that an initial helical structure and VES have not been considered until
now may explain the lack of success in determining structures from sequence alone
[46, 124], and the fact that the final stochastic trajectory in the native basin, ruled by
the classical interactions, is the rate limiting step in folding, may explain the success
in correlating in vitro folding rates with native topologies [109].
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The hypothesis that quantumVES play a role in protein function (theVES hypoth-
esis [32]) has a long history [41, 99, 128]. Indeed, in a meeting on bioenergetics,
in 1973, and with the purpose of solving what was then described as a “crisis in
bioenergetics”, McClare proposed that energy can be stored in proteins in the form
of “excimers”, i.e. resonances between excited states [99]. In the last page of his
paper, McClare further suggests that a possible candidate for an excited state in liv-
ing systems is the first overtone of the amide I band which, as he notes, corresponds
to two quanta of the bending mode of water [99]. This suggestion was picked up
by Davydov, a Ukrainian solid state physicist, who applied it to muscle contraction
[41]. Davydov’s analytical studies [42], together with Scott and co-workers numer-
ical work [128] led to a great interest in this field in the 1980s and 1990s. The main
question then was whether VES assumed the form of solitons, as Davydov [41, 42]
and Scott andmany others thought [128], and how long the solitons lasted. Computer
simulations have shown that, at biological temperatures, VES share with solitons the
attribute of being localized but instead of moving coherently (as solitons do), they
hop stochastically from peptide group to peptide group [31, 33, 36, 40]. Further-
more, experimental evidence indicates that the lifetime of VES is a few picoseconds
[52, 72].

One important question is howVES are generated. Davydov [41, 42] assumed that
the energy released in the hydrolysis ofATP is stored in the formof amide I excitations
(that energy is sufficient to create two quanta of amide I). On the other hand, Careri
and Wyman have calculated that the binding of ions to a protein corresponds to an
energy input also sufficient to create two amide I excitations [24] and it has also been
proposed that they can be transferred from excitations of the bending mode of water
[31, 32], which resonates with the amide I mode and for which there is experimental
evidence [133]. In fact, it is not unreasonable that, apart from chemical reactions,
VES can be locally generated by the binding of ligands to proteins.

While most authors have been interested in the effect of the amide I on protein
dynamics, the VES KM proposed here focuses instead on the effect of its annihi-
lation on protein dynamics. Thus, while other authors consider a lifetime of a few
picoseconds the amide I excitation too short for the purposes they have in mind [7,
52, 72], computer simulations show that in that time scale amide I excitations can
move from the active site, where they are generated, to other regions of the protein
where they are used for work [30–32, 39, 40]. The amide I vibration consists essen-
tially in the stretching of the C=O bond of the O-C-N-H peptide group (marked with
a red oval in Fig. 1) and one assumption of the VES KM is that when the amide I
decays, its energy is converted into classical kinetic energy of the peptide group that
was excited at the moment of annihilation, something that may result in the breaking
of the hydrogen bond that connects that group to another group.

Both amide I and amide II are routinely used in the laser ablation of lesions
[53, 142], with their energy being ultimately converted to local heat. Recently, how-
ever, it has been shown that irradiation with amide I can break protein aggregates
back into soluble monomers [81, 82]. In the latter studies the effect was frequency
dependent and found to occur with amide I excitations only. As protein aggregates
are kept by hydrogen bonds, the experiments in [81, 82] indicate that amide I exci-
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Fig. 4 The right panel
shows the known native
structure of protein
PDB2HEP [14]. The left
panel shows the initial
conformation of the protein
which in the VES KM is
assumed to be an α-helix.
The amino acids whose
amide groups suffer the
initial kicks (see Sect. 5 and
text below) are highlighted
in red and green, the latter
colour signalling also the
location of the loop that
connects the two helices in
the native state

tations can lead to the breaking of hydrogen bonds and to a conformational change,
as postulated by the VES KM.

6 The Folding of a Small All-Alpha Protein

To illustrate the kinetic folding mechanism proposed in the previous section, as in
[36], a small all-α proteinwas selected from thePDB[14], namely, proteinPDB2HEP
[6]. The PDB conformation was first energy minimized with the AMBER force field
FF03SB [25] and the resulting structure is displayed in the right panel of Fig. 4. On
the left panel of this figure is the same protein in the conformation of an α-helix,
which, as explained in Sect. 5, is assumed to be the starting structure for protein
folding in vivo.

A crucial aspect of the VES KM is that the energy stored in quantum amide I
vibrations drive the first step in protein folding. While the amide I propagation is a
quantum event, a conformational change of a protein, which involves the motion of
a large number of atoms, can be considered a classical event. There is experimental
evidence that amide I vibrations canpropagate fromoneα-helix to another in a protein
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[59], and there is also experimental evidence for the use of the amide I energy to
generate a conformational change [81, 82], but there is not yet any knowledge about
the classical state that arises in a protein after the decay of an amide I excitation.
As was done in [36] also here it will be assumed that the energy released in the
annihilation of an amide I excitation is transferred to the momenta of the atoms
where the quantum excitation was originally localized, the CONH atoms of the
peptide group that was excited when the annihilation took place. Since the amide I
excitation consists essentially of the stretching of the CO bond, the direction of those
extra momenta in the CONH atoms will be the same as that of the CO bond and the
sense will be from O → C. The aim of the simulations reported in this section is to
evaluate the efficiency with which a localized kick to just four atoms of the α-helix
displayed in the left panel of Fig. 4 can bend the helix to its native shape, shown in
the right panel.

The influence on the folding efficiency, of the location of the initial kick and
of its intensity, is investigated. The locations i , where i designates the amino acid
number in the primary sequence, for the initial kicks in the CO(i)NH(i + 1) groups
are signalled by the red and green colours in Fig. 4. The amino acids in green have
i = 19, . . . , 23 and the amino acids in red have i = 15, . . . , 18 in the first helix of the
native structure (see the right panel of Fig. 4), and i = 24, . . . , 26 in the second helix.
The impulse was the same for all of the four atoms of the group CONH and its sense,
fromO→C, tended to break the hydrogen bond between the CO of CO(i)NH(i + 1)
to the NH of CO(i + 3)NH(i + 4), in the initial α-helix.

As described below, the kick that made the initial helix evolve to a structure
closest to the native state was at i = 23, and the final structure obtained can be seen
in second picture of Fig. 5. Figure5 illustrates the influence of the relative intensity of
the initial impulse (measured in multiples of the amide I energy) when the location
of the initial impulse was kept fixed at i = 23. It shows that for weaker kicks in
which the kinetic energy of the kick is n = 32 or below, the helix bends but does not
close and keeps a V-like architecture throughout the rest of the 1 ns trajectory. On the
other hand, for stronger kicks in which n > 100, the final structure is compact but
has several types of distortion with respect to the native, like longer loops, greater
twists between the helices and distortions in the helices themselves, such as even the
generation of helical bundles (not shown). Thus, Fig. 5 shows that there is a range of
energies in which the initial impulse can drive the helix to the vicinity of the native
state. Indeed, for 50 < n < 75 the final structures obtained were quite close to the
native structure (compare the middle structures in Fig. 5 with the native structure in
Fig. 4). In the structure obtained with the n = 51 kick, the loop is shifted towards the
C-end, when compared to the native structure, but the root mean square deviation
(RMSD) with respect to the native state is the lowest (close to 3 Åwhen all backbone
atoms are taken into account, see Fig. 6 and text below). On the other hand, in the
structure obtained with the n = 74 kick, the loop is in the correct place but the two
helices have a slight twist with respect to each other that is not present in the native
structure.

In Fig. 6 are compared the results of simulations in which 4 different intensities of
the initial impulses and 12 different locations for themwere considered.Also, in order
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Fig. 5 Final structures obtained after impulses of increasing intensities on the groupCO(23)NH(24)
that is shown as the atoms that stick out of the backbone at the end of the green portion. From left
to right, the total kinetic energy in the initial impulse, in units of amide I energy, is n = 32, 51, 74,
101, respectively. The green colour shows the position of the loop in the native state

to check the influence of variations in the coordinates of the atoms which is expected
in a statistical ensemble at finite temperature, 6 slightly different initial helices were
taken. Notice that if the CO bond directions vary, also the direction of the initial kick
varies and thus the 6 slightly different initial helices will also have slightly different
initial kicks, even if the kick is applied at the same peptide group with the same
intensity. A much greater difference between the trajectories obtained from each of
the 6 initial structures is, however, due to the fact that the velocities on the other
atoms, which number 688 in protein PDB2HEP [6], were different in each of the 6
trajectories and obeyed a Maxwell–Boltzmann distribution at T = 298 K. Another
very important point is that all the simulations were made in the microcanonical
ensemble (i.e. with option NTT = 0, in the AMBER package [25]). There were
two reasons for this. One reason is that the usual Langevin terms, with the default
frequency coupling to the thermal bath of 5 ps−1, lead to a fast dissipation of any
energy input and prevent conformational changes such as the bending of the initial
helix that is aimed at here. It was verified that this coupling must be reduced by a
factor of at least 10 for the conformational changes to take place. A second reason
is that Langevin dynamics or any other form of coupling to a thermal bath leads to
random variations between the trajectories which muddle the comparisons aimed at
here.

In Fig. 6 the results of 288 simulations (4 different intensities of the initial impulses
× 12 different locations × 6 different initial conditions for each of the previous) are
displayed. Each rectangle has an abscissa that goes from zero to 1 ns (the total
duration of each of the trajectories) and an ordinate that goes from 3 to 6 Å. The
lines are the RMSD, with respect to the native state, of each conformation in a
trajectory. The colours identify each of 6 different initial structures, i.e. all lines of
the same colour correspond to trajectories that start with the same initial helix, with
the same random velocities in all atoms, except for the velocities of 4 atoms in the
group CO(i)NH(i + 1)at which the initial impulse is applied. The trajectories are
only visible in the rectangles when the conformations sampled in them are within
6 Å of the native structure. Empty rectangles correspond to kick locations and/or to
kick intensities that led to conformations that were further away than 6 Å from the
native structure, throughout the 1 ns trajectory. Figure6 clearly shows that there is
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Fig. 6 In each rectangle is plotted the RMSD versus time of each conformation in a trajectory,
using the native structure as a reference. In each rectangle, time goes from 0 to 1 ns and the RMSD
is between 3 and 6 Å. I.e., when the conformations approach the native state (with RMSD smaller
or equal to 6 Å), they appear in the rectangle. All the trajectories in each row started with kicks
at the same CO(i)NH(i + 1) atoms of the helix displayed in the left panel of Fig. 4. The label in
front of each row specifies the value of i for that row. The labels n on top of each column specify
the value of the kinetic energy of the initial kick in the corresponding atoms, in units of amide I
energy. For each i and each n, i.e., for each rectangle, 6 different trajectories were run whose initial
velocities in the CO(i)NH(i + 1) atoms were equal but whose velocities for the other atoms were
different and obeyed a Maxwell–Boltzmann distribution for T = 298 K (see also text)

a minimum intensity of the kick below which it is not possible to drive to bend the
initial helix, as well as a maximum: the density of lines increases above n = 32 and
by n = 101 it has already started to decrease again. Inspection of Fig. 6 also shows
that there are many impulses capable of driving the initial helix into the vicinity of
the native state (many different pathways, in the language of the funnel model). But
not all kicks are as efficient as the others and looking for the location and intensity
that leads to the trajectories that come closer to the native, we identify the kick at
i = 23, with n = 51, as the best, since 4 of the 6 random trajectories come close
to 3 Å of the native state. Notice though that their folding times are different: the
blue and the red trajectory “fold” in less than 200 ps, while the green takes 400 ps
and the pink takes 800 ps. In decreasing order of folding efficiency, i = 23 is the
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best location for a kick, followed by i = 20 (which is hydrogen bonded to i = 23!),
followed by i = 18, 21, 22, all equally less efficient. Figure6 also shows that none
of the kicks tried lead to folding in all the 6 random initial conditions, i.e., all of the
kicks show some sensitivity to noise.

A general conclusion from these simulations is that it has been demonstrated that
a kick in just 4 covalently bonded atoms can drive the conformational change from
the initial helix to the native state of protein PDB2HEP [6]. On the other hand, it
cannot be said that the right kick, capable of surviving the noisy environment that
exists in a living cell, and capable of folding the helix in a fully reproducible manner
(i.e. for all the 6 trajectories and more), has yet been found. Another problem is that
the minimum energy of the initial kick is rather high (n = 51 amide I excitations!),
something that is expected to improve when more efficient kicks are found.

7 Discussion

The question of whether protein folding is a thermodynamic or a kinetic process
is as old as the protein folding problem. As detailed in Sect. 3, the thermodynamic
hypothesis has been the leading guide to the protein folding problem since the 1970s.
According to the thermodynamic hypothesis, the DPC has one predominant peak
and folding is a stochastic process in which proteins, in a step by step fashion, move
towards the center of that peak. In this picture, the final (native) structure is only
dependent on the protein sequence, the starting structure only influences the folding
time and the driver of protein folding is random thermal agitation.

The main arguments in favour of the thermodynamic hypothesis were outlined,
and criticized, in Sect. 3 and the case for the kinetic hypothesis was put forward in
Sect. 4. According to the kinetic hypothesis, apart from the native peak, the DPC
possesses many other peaks of similar width and height, each corresponding to a
different structure of the same protein, potentially available in normal cell conditions,
and as stable as the native.

According to Levinthal’s kinetic hypothesis the native state is reached in a repro-
ducible manner, not because it is the most probable one, but because the pathway that
takes a newly synthesized sequence to it is essentially the same every time [91, 92].
Within the specific kinetic mechanism described in Sect. 5, designated as VES KM,
the pathway is as follows. The starting structure all proteins have as they emerge
from the ribosome is helical.When this helix emerges from the ribosome, the binding
of water molecules, ions and other ligands, or a chemical reaction like the hydrolysis
of ATP, generate energy in the form of quantum vibrations (VES). These quantum
vibrations hop stochastically from peptide group to peptide group and concentrate
at specific amino acid sites in the helix, the bending sites. Once a sufficient number
of VES has accumulated at a bending site, the quantum state becomes unstable and
decays, releasing its energy in the form of kicks to the atoms of the amino acid where
it was located. The simulations reported in Sect. 6 show that such kicks can bend a
helix and produce two helices connected by a loop (see Fig. 5). Then two possibilities
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arise. Either the interactions between the side chains that are brought into contact
by the bending of the helix are globally attractive, in which case the helix bundle is
stable and the corresponding region will be mainly-α, or they are globally repulsive,
and the helices will tend to distort into extended chains which can pair up as β-sheets.
In the case of large proteins, for which synthesis suffers occasional pauses [54, 104,
145], this folding process applies to each of the regions of the protein that is succes-
sively synthesized, with the previously synthesized and folded regions influencing
those that are synthesized and folded later. Within the thermodynamic hypothesis,
such an influence of the synthesis on the native structure of the protein should not
take place because all initial structures should tend to the same final structure, in the
same thermodynamic conditions. On the other hand, in the VES KM, the pauses and
their duration will affect the three dimensional structure of the incomplete protein
and thereby may affect the folding efficiency, as is observed experimentally [104].

Protein folding is dependent on the interactions that drive folding. As mentioned
in Sect. 3.1, it has been suggested that hydrophobic interactions are the drivers of the
initial compact structures [48, 87]. Instead, the VES KM described in Sect. 5 follows
Ben-Naim who proposes that hydrophilic interactions are much more important
[13]. In particular, it is assumed that what water molecules do is to generate VES in
proteins, which they can do in two ways: one is by direct transfer of energy from the
bending mode of water to the amide I excitation of a peptide group in the protein,
something that has been observed experimentally [133], and explored as one cause
of misfolding diseases [31, 32], and a second way is by forming a hydrogen bond
with a group in a protein which leads to an energy input of the amount needed to
create an amide I excitation, something that can also happen with the binding of other
ligands [24]. Thus, the suggestion here is that the hydrophobic interactions will only
manifest themselves after two parts of the protein have been brought together by
other causes (like the bending of an helix at a specific site) and have little influence
in producing that compaction in the first place.

It should be emphasized that the VES KM includes both a kinetic step and a
thermodynamic step. The kinetic step is the bending of the initial helix at a specific
site. In terms of the DPC, this step corresponds to the selection of one of the peaks in
the DPC (in cells, the peak selected will be the native peak, most of the times). Once
a peak is selected, the diffusion towards the center of the peak is similar to what
is postulated to occur, from the very start, in the thermodynamic hypothesis. The
difference is that in the thermodynamic hypothesis the native structure is defined
by this diffusive process while in the kinetic hypothesis the selection of the peak
(the kinetic step) is the structure defining step. According to the thermodynamic
hypothesis protein misfolding should not exist. On the other hand, according to the
VES KM, misfolding should be improbable but it will occur when a non-native peak
of the DPC is selected, for instance, because the bending of the initial helix took
place at a different site.
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7.1 The DPC and Evolution

It is sometimes recognized that, given the nature of the interactions that stabilize
protein structure, it is in fact probable for their DPC to have amulti-peak shape, and it
has been suggested that does not happen for the proteins found in living cells because
evolution has led to the selection of very specific sequences whose DPC has a single
dominant peak corresponding to the native state (or, in another language, evolution
has led to the selection of sequences that have funnel-shaped energy landscapes and
are good folders) [69, 147]. In Sect. 4.2 results were described that suggest that the
DPC of most existing proteins is multi-peaked, i.e. that most proteins can assume
many, very different conformations that are as stable as the native. That being so, if
we could look at the full conformational space of real proteins, their DPCs would be
very similar to one another in that all of them would be constituted by many peaks,
some with extra structure (correspondent to rougher free energy surfaces) and others
smoother. Thus, I would argue that, except in very special cases like in polypeptides
made of a single amino acid, evolution does not and cannot mold the whole DPC of a
protein and the only thing it can do is limit the part of the conformational space that is
accessible to that protein when it folds in a cell. I.e., what evolution does is select the
sequence whose folding process in a living cell will lead to a specific final structure
capable of realizing a necessary function. As emphasized in [73] the cellular and
organismal fitness of the native state of a new protein is the really important factor
for its evolutionary selection, not the shape of its DPC (or of its energy landscape).

Ultimately what the views expressed here mean is that there is not a one to one
correspondence between an amino acid sequence and its three dimensional structure,
as assumed in the thermodynamic hypothesis. Therefore, the problem of determining
the three dimensional structure that a given sequence will adopt in normal physiolog-
ical conditions has no answer, because there is an immense number of possibilities.
I would argue that this is the main reason why the prediction of the native structure,
solely by looking for the maximum in the DPC, has met with very little success, in
spite of all the progress made so far [46]. The only question that can have a unique
answer is “What is what the three dimensional structure of a protein that has a given
sequence when this protein is synthesized by a ribosome in normal cellular condi-
tions”. For the existing proteins, the answer is the native structure and that should
be predictable from the amino acid sequence. Indeed, cells do it all the time and the
proposal is that we must apply the VES KM to understand how they do it.

7.2 Protein Structure

Proteins are very large molecules. Even a small protein, with 60 amino acids, has
approximately a thousand atoms. Since the order of magnitude of the interactions
between atoms that are close in space is similar for many of them, if their structures
were acquired from random initial conditions, in a series of steps driven by thermal
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agitation, we should expect a great variety of structures, possibly with quite a few of
them being like convoluted wool yarns. Instead, the analysis of structures in the PDB
[14] shows that all of them have a hierarchical and modular structure, in which we
can distinguish a primary structure (the polymer-like chain of the amino acids), the
secondary structure (which is already a three-dimensional arrangement of the chain
into helices or sheets), the tertiary structure (which is the full three-dimensional
structure formed by the packing of the different secondary structures) and, when
there is more than one monomer, the quaternary structure (which is the formed by
the packing of the monomers). According to the thermodynamic hypothesis this
hierarchical structure is in a sense fortuitous as it is deemed to arise, step by step,
from structures that can be completely random initially. On the other hand, in the
VES KM, the hierarchical nature of proteins is imprinted on the initial condition (all
nascent chains are helical) and on the subsequent pathway that proteins follow in
cells (starting with bending at a specific helical site). If proteins did not start from
this specific structure, and if they did not follow that specific pathway, their structure
would be much more varied.

The analysis of known protein structures has led to the identification of two main
secondary structures, namely the helix (mostly α-helix) and the β-strands (turns,
loops and random coil can be seen as essentially lack of structure, see Sect. 2). How-
ever, while the helices can exist in isolation, β-strands can only exist in association,
thus, contrary to the usual views, I would argue that there is only one fundamental
secondary structure: the helix (in its different varieties). This makes it natural for it
to be the selected initial condition for the folding events in cells. According to the
VES KM, the other secondary structures arise only as distortions of the initial helix,
which occur when, along the pathway towards the stable final (native or other) pro-
tein structure, the helices that are brought together by the bending of the initial helix
at a specific site, are unstable, wholly or in part. If two neighboring helices, or part
of them, become extended, the two extended structures can form a β-sheet, whose
chains will be linked by turns or loops. The latter can also form if one helix only,
or part of it, is unstable and becomes extended. The tertiary structure results from
a stable packing of the different modules (which can have helices, sheets or loops).
Thus, the limited variety of protein structures can be understood from the point of
view of the VES KM, as a result of a specific initial structure and of a folding path-
way that greatly limit the conformational space covered by proteins. If proteins could
indeed follow all possible pathways from all possible initial conditions they would
be able to assume a much larger variety of structures (as seems to happen in part with
prions, which are known to be differentiated in several strains related to as many
conformations [112]).

Although the notion that proteins are tightly packed and that their density resem-
bles that of solids is widespread, recent studies suggest that this too needs to be
revised [11, 93, 108, 118]. Indeed, the internal density of proteins is not uniform,
with cavities found at all depths, and many times filled with water [118]. Also, while
hydrophobic forces are often invoked as the driving forces for folding [48, 87] (see
Sect. 3.1), the conclusion from another study is that in fact hydrophobicity is far from
being optimized in protein structure [11, 108]. Finally, in [11, 108] it is concluded
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that, instead of being dense like solids, proteins are more like sponges, and should
be characterized by a fractal dimension. Also, normalized unfolding enthalpies and
heat capacities were found not to correlate with packing densities, something that
indicates that folding is not driven by van der Waals interactions. These findings
agree with the VES KM according to which folding is driven by the decay of VES,
with the classical interatomic potential only being responsible for the favourable or
unfavourable interactions between amino acid pairs that have been pushed together
(see Sects. 5 and 6).

Asmentioned above, it is thought that protein structure is controlled by hydropho-
bic interactions. On the other hand, the prediction of protein structures using tem-
plates is based on the knowledge that two proteins with just 30% of sequence homol-
ogy have a strong probability of sharing the same structure [61, 101]. I.e., it is
possible to change 70% of the amino acids of a protein and still get proteins with
the same structure as the original one. On the contrary, sometimes the mutation of a
single amino acid can lead to a substantial structural change [1, 101]. Furthermore,
the percentage of amino acids that must be conserved to maintain the same protein
structure decreases as the sequence size increases [61]. This suggests that protein
structure is controlled by a small number of amino acids. From the point of view of
the thermodynamic hypothesis it is difficult to explain how changing one amino acid
can have a stronger effect on hydrophobic (or any other) interactions than changing
70%, or more, of the amino acids. On the other hand, from the point of view of the
VES KM the amino acids that control the native structure are those at the bending
sites. Mutations at other sites may be structurally silent, but mutations that move the
bending site will have a strong structural effect. As the number of bending sites does
not grow appreciably with the sequence size, they will constitute an ever diminishing
proportion of the total number of amino acids, as observed experimentally [61].

8 Future Work

At the end of his review on the advances made in protein folding research in the last
fifty years, Dill makes a list that is a measure of the undiscovered country in this
area: “we have little experimental knowledge of protein-folding energy landscapes;
we cannot consistently predict the structures of proteins to high accuracy; we do
not have a quantitative microscopic understanding of the folding routes or transition
states for arbitrary amino acid sequences; we cannot predict a proteins propensity
to aggregate, which is important for aging and folding diseases; we do not have
algorithms that accurately give the binding affinities of drugs and small molecules to
proteins; we do not understand why a cellular proteome does not precipitate, because
of the high density inside a cell; we know little about how folding diseases happen, or
how to intervene” [46]. In the two final subsections below proposals and predictions
for future theoretical and experimental work, inspired by the VES KM, are made,
some at the level of the black box approach (see Sect. 1) and others aiming at the
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physical mechanism behind protein folding, all in order to try to clear at least a few
of the unknowns mentioned in Dill’s list.

8.1 Theoretical Projects

According to the thermodynamic hypothesis, given sufficient time, proteins should
reach their native state from any initial condition, whether it is extended or not. In
this case, it is possible to speak of the propensities for each amino acid to form an
α-helix, or a β-sheet, or a turn, etc. On the other hand, according to the VES KM
(see Sect. 5), such propensities have little meaning because the native structure of a
protein is the result of one initial condition and one pathway, which, if changed, will
lead to different conformations, with equal probability. Some specific amino acids,
like proline or glycine, may destabilize an α-helix, but most of them, in isolated
helices that are neither too short nor too long, will not. Assuming that the VES
KM is valid, what is important to determine from known protein structures are the
locations of the bending sites and the directions along which the initial helix bends
into two helices. If, for each sequence, we know how to characterize this bending
process we will know which side chains of that sequence will be brought together.
According to the VES KM it is the overall stability of those side chain interactions
that will decide whether the two-helix bundle so formed will survive much as it is, or
not. Thus, another statistics that is important from the point of view of the VES KM
is that of which such amino acid pairs are not found in neighbouring helices. Those
missing pairs can be the destabilizing pairs that lead to denaturation of the helical
bundle and to the formation of β-strands.

More generally, and if the previous statistical approach is not productive, the
theoretical exercise that can be done to find the rules for a black box approach to
protein folding is to determine the steps that, for a protein of known structure, take
the corresponding initial helix to its native state. I.e., look at the initial helix and
at the native state and, using the VES KM as a guide, try to infer the pathway that
would bring the former to the latter. The aim of such a study is to identify common
features in the folding pathways of many proteins. This is easier to do when the
native state does not stray too far from the initial helical conformation, and thus a set
of all-α proteins should be used first, preferably starting with helical hairpins like
PDB2HEP [6] and later proceeding to multi-helix bundles. Once the necessary and
sufficient folding rules have been established for all-α proteins, we can move to α/β
proteins. With some luck, the folding rules determined by following the previous
procedures will lead, in the case of α/β proteins, to helical bundles with some of the
destabilizing pairs mentioned in the preceding paragraph and will make it easier to
predict the evolution of the two unstable helices into extended chains and β-sheets.
If not, one can also use the structure with the two-helix bundle as an initial condition
in an MD simulation and verify whether the classical potentials [21, 25, 29] predict
a trajectory that turns the helices, or part of them, into β-sheets. When we know how
to fold mainly-α and α/β proteins we can look at the two other CATH [107] classes:
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mainly-β and few secondary structures. While the attempts to fold proteins, namely
at CASP exercises (see Sect. 3.1), have been made with proteins across all classes,
the VES KM suggests that a more fruitful approach may be to first restrict the search
for general rules to one particular class and follow a step by step development, as
outlined here. Furthermore, chaperones provide further restrictions to the in vivo
folding pathway, too complex to envisage at this stage. Thus, the set of proteins used
to infer protein folding rules should include only proteins able to fold in the absence
of chaperones.

In Sect. 4.2 it was suggested that the reason why non-native structures have not
been found for most proteins is that most simulations and experiments on protein
unfolding and re-folding are made in conditions that do not take proteins away from
the native basin. On the other hand, in [34, 37–39] many of the simulations started
from structures that were away from the native and did not approach the native basin.
However, it may be argued that this is because half a microsecond is not long enough
for such an evolution to take place. A stronger case for the VES KM can be built by
running this kind of simulations for longer times, like the millisecond trajectories in
[78, 94, 115, 130].

In Sect. 6 the folding of the protein PDB2HEP [6] from an initial α-helix to its
native state was achieved by specific kicks to the peptide group of just one amino
acid. One problem with these folding simulations is that the kinetic energy input was
too high, namely, an amide I state with 51 quanta was necessary to produce folding.
Althoughother simulationswith non-conservativeDavydov-ScottHamiltonians have
shown that it is indeed theoretically possible for amide I states to accumulate to similar
high quantum numbers [134, 135], it is worth to test different initial conditions, like
excitations spread on more than one site (and thus kicks to more than one amino
acid), different directions of the kick, more related to the direction of the hydrogen
bond that is broken, etc., in order to see whether lower energy kicks that can also be
efficient in folding.

Finally, from a more physical perspective, a model of the decay of quantum VES
is also an open issue and one that is critical for the assumption that the energy stored
in the quantum states is released in the form of classical kicks to specific atoms.
Thus, the development of such decay models should also be pursued.

8.2 Experimental Projects

According to the VES KM (see Sect. 5) the starting structure for folding in vivo
is always a helix while the in vitro refolding experiments start from structures that
are obtained by denaturing already folded proteins. I would suggest that the great
variety of folding rates [109] measured in in vitro experiments is a reflection of
a concomitant variety of starting structures. One prediction from the VES KM is
that the distribution of in vivo folding rates will be much more uniform than the
re-folding rates of the same set of proteins measured in vitro. A second prediction
is that, for proteins of the same class, a strong correlation will be found between the



Protein Folding in Vivo: From Anfinsen Back to Levinthal 31

in vivo folding rate and sequence size, contrary to what happens in in vitro folding
experiments [109].

As discussed in Sect. 7, following the VESKM, the helix is the primary secondary
structure in proteins (it is there from the very start) and all the other secondary
structures only arisewhen this primary structure is unstable. Thus, a third prediction
is that, for proteins of similar size, the in vivo folding rate will vary with protein class
in the following manner: all-α > mainly-α > α/β, α+β > mainly-β.

It is known that protein folding takes place concurrentlywith synthesis, and that the
folding rate influences folding efficiency [54, 57, 79, 84, 104, 138, 141, 143, 148],
which constitutes another indication that folding is a kinetic process (see Sect. 4.1).
It has also been suggested that folding can take place inside the ribosome, something
thatwould explain the pull exerted by the part of the protein that is inside the ribosome
on the part that is already outside [97]. However, the size of the exit tunnel seems to
preclude it [143] and the proposal here is that that pullmay be due to a conformational
change from a thinner helical structure (like a 3_10 helix, capable of fitting within
the inner tunnel of the ribosome) to a broader helix (like the α-helix) which can fit
within the exit tunnel.

According to the thermodynamic hypothesis the reason why the unfolding of
proteins is sometimes irreversible is protein aggregation (see also Sect. 4). If proteins
did not aggregate, it is argued, no matter what the initial conformation is, most
proteins would refold to the native state, when the native conditions are restored. On
the other hand, according to the kinetic hypothesis, proteins only refold to the native
state from very special initial conditions. The two theories can be distinguished in
another single molecule experiment. Take a protein that, after being heated to a given
unfolding temperature, aggregates when normal conditions are restored. Heat this
protein to this same temperature in a single molecule experiment. According to the
thermodynamic hypothesis this isolated protein should refold to the native statewhile
according to the kinetic hypothesis it will most probably not.

According to the VES KM, the drivers of protein conformational changes are
quantum VES (see Sect. 5). This possibility has been experimentally validated in
experiments in which irradiation of light with the amide I frequency (and only with
this frequency) was shown to revert protein aggregates back into protein monomers
[81, 82]. Other experiments of this kind, with aggregates of other proteins, will
provide further support to the VES KM.

Summing up: it is hoped that this chapter will encourage other researchers to
investigate protein folding from the point of view of the VES KM. The idea is that
with present-day computers and force fields it is possible to solve the protein folding
problem in vivo, which is the only one that is solvable, i.e., it is the only one for
which there is a one to one correspondence between sequence and native state. Cells
demonstrate it repeatedly and the VES KM is at least one example of how it can be
done.
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in the Ocellar Complex of the Fruit Fly
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Abstract One of the most intriguing aspects in developing tissues is the emergence
of chemical patterns with the capability to drive cellular differentiation, provide posi-
tional information and stimuli or inhibit growth. Among these features, the study of
cell specificity driven by chemical patterns requires the coupling of positional infor-
mation mechanisms with the dynamics of complex genetic networks. In this work,
we follow such approach to study the formation of the ocellar complex in the fruit
fly Drosophila melanogaster. We present a theoretical model that fits experimen-
tal observations in both patterning and molecular regulation, and derive a simpli-
fied model, which not only recapitulates patterning features but also predicts that
differences in the size of the ocellar complex among fly species might depend on
differential biochemical regulation of an evolutionarily fixed regulatory network.
Moreover, we discuss how this regulatory network can generate sustained spatio-
temporal oscillations of some of the network’s components. We also find that these
oscillations can become highly complex in the presence of another oscillator, with
parameter-dependent regions of multi-periodic and quasiperiodic regimes.
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1 Introduction

During animal development, a fertilized egg contains an increasing number of iden-
tical pluripotent cells. This early stage, in which the embryo grows by increas-
ing the number of pluripotent cells, is followed by a period in which pluripotent
cells start a process of cellular differentiation, to build orientational body-axes, and
generate different types of tissues that will lately define organs of specific size
and shape. Organogenesis, (that combines cell differentiation, tissue patterning and
morphogenesis) has fascinated scientists from Aristotle to our days. Indeed, how a
developing organ grows to attain a specific size and shape is one of the most intrigu-
ing questions in the field of Developmental Biology as well as in the emerging fields
of Biological Physics and Mathematical and Theoretical Biology.

In order to start looking at morphogenesis from a theoretical perspective, we
have to go back exactly 100 years to 1917, when D’Arcy Thomsom rationalized
this concept in his master piece On growth and Form [37]. However, we do not
find a first formalism for a mechanism able to explain morphogenesis based on
physico-chemical grounds until 1952 in Turing’s seminal paper The Chemical Basis
of Morphogenesis [40]. In this paper, Turing introduces the idea that two coupled
biochemical species with diffusible properties, termed morphogens, can produce
spatial concentration patterns.

The theoretical implications of morphogens on tissue patterning have been
debated since Lewis Wolpert introduced the idea of positional information provided
by a concentration gradient of a chemical (the “morphogen”) that is generated by the
production and diffusion of that chemical across a developing field of cells [43]. This
idea poses that cell would use the chemical concentration of the diffusible chemical
to take decisions on, for example, different fates at distinct concentration thresholds
(french flag model [43]).

Lately, and clearly inspired by the ideas of Turing and Wolpert, many oth-
ers, starting with Meinhardt and Koch [25], have revealed the increasing variety
of morphological features that may potentially arise as an effect of morphogen
dynamics in tissues, e.g. patterning, cellular differentiation and tissue specificity,
genetic regulation, tissue growth and growth control [9, 16, 18, 21, 23, 28, 33, 41,
42].

Coming back to Wolpert’s positional information idea, we understand that a spe-
cific morphogen concentration can lead to a specific cellular fate, this is, a cell will
chose among a number of choices a particular differentiation pathway and thus a
function. But, how is this specification process performed? The idea that comes
out from the french flag model is that different morphogen concentrations trigger
different genetic programs in a cascade of switching on and off specific genes,
through intracellular biochemical (signaling) cascades, that will lately end in cellular
differentiation in a spatially patterned tissue. The network representation of
biochemical activities (including signaling cascades and gene regulatory events)
involved in generating patterned cell differentiation during development is com-
monly termed as Gene Regulatory Network (GRN) [8]. GRNs can be formed by
several interconnected genes, where the nodes represent the genes and their links
their genetic or biochemical coupling. GRNs are dynamical networks that change the
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number and activity (whether they are switched on or off) of both nodes and linkswith
developmental time.Thismakes their analysis fromboth experimental and theoretical
perspectives cumbersome. Despite the high complexity of these networks, many
authors study the dynamics of GRNs by means of simplified systems and/or the use
of evolutionary and inference algorithms [2, 5, 14, 23, 27, 36].

In this work, we report recent advances on our understanding of the develop-
ment of the ocellar complex of Drosophila, through the modeling and analysis of
its GRN, as an entry point into the development of more complex visual structures.
To do this, we will analyze, in an experimentally supported manner, the formation
of the ocellar complex as a morphogen-patterned tissue, and how an intricate GRN
leads to a compartmentalized tissue with distinct cellular fates. Later on, we will
theoreticallyminimize the patterningmodel to a simpler networkmotif that is a recur-
rent regulatory subnetwork [7], typically formed by a small number of nodes. This
simplification confirms that the ocellar region is specified as a french flag model, and
clarifies that this pattern is driven by a negative regulatory feedback, which may lead
to parameter dependent regions of stationary dynamics aswell as self-sustained oscil-
latory domains. Finally we will study these oscillations as an autonomous system,
and analyze the complex dynamics that arise when we couple this dynamical system
to another potential oscillatory network.

2 The Ocellar Complex: The Biology

The ocelli, or more precisely the ocellar complex, is a light-detecting organ widely
present in insects. It comprises three small eyelets, or ocelli, located at the vertices
of a triangular patch of cuticle on the insect’s forehead Fig. 1a, b. Ocelli and the more
conspicuous (and better studied) compound eyes were present in arthropods since, at
least, the middle Cambrian, about 500 Myrs [31]. Therefore, the ocellar complex is
an ancient component of the light-detecting system in this animal group. Each ocellus
is formed by a retina capped with a large lens. The proximity of the lens to the retinal
cells, the photoreceptors, is such that the focus of the image lieswell behind the retina.
Therefore, the image at the retina is blurred: the ocelli do not form good images, but
instead are very sensitive to light. The retinal photoreceptors are enwrapped in a
pigment layer, that shields them optically except from the light entering through the
lens, so that direction of light can be perceived. The photoreceptors connect with a
small number of large second order neurons, which then transmit the information
from the ocelli to other brain nuclei. These neurons have axons of large diameter and
thereby this transmission is very fast. The high sensitivity and fast transmission of
ocelli allow the insect to respond to sudden changes in light intensity, and is used to
ensure maneuverability and stability during flight and in triggering an escape reflex
in response to looming objects [26, 30].

The development of the ocellar complex is best understood in the higher dipteran
Drosophila melanogaster, the vinegar fly. The head of the adult fly derives from two
symmetrical (left and right) epithelial discs. During metamorphosis (the transition
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Fig. 1 Morphology of the ocellar complex. Dorsal views of the heads of a fly (a: Curtonotum
helvum) and a wasp (c: Ophion ventricosus), showing the triangular arrangement of ocellar lenses.
The close-up in b shows a detail of the ocellar complex and the linear dimension used to define the
ocellar complexmorphology. “aOC”: anterior ocellus; “pOC”: posterior ocellus; “IOC”: interocellar
distance. Codes (“NHMUK”) are specimen codes of the Natural History Museum, London, UK.
d Schematic representation of the fusion of the two eye imaginal discs, thus promoting the formation
of two posterior ocelli, left-lpOC ad right-rpOC, and one anterior ocellus, aOC. Panel taken from
[1]. Licensed under CC BY 4.0

from the larva into a flying, sexually mature adult) the two halves fuse to give rise
to the eyes, antennae, maxillary sense organs, the head capsule and, on the anterior
dorsal head capsule, the ocellar complex [24]. In each disc, the prospective ocellar
complex is genetically specified by a series of transcription factors [10–12, 17,
34]. Once specified, this territory is further subdivided into three subdomains. The
central subdomain produces the signaling molecule hedgehog (Hh), the founding
member of the Hh family of morphogens [22]. The term “morphogen”, as used
by Wolpert (see above), denotes a molecule (in this case Hh), produced locally at
a source and dispersing from it, that triggers different responses in receiving cells
depending on its concentration. This translates into cells located at different distances
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relative to the morphogen’s source (and thereby receiving different concentrations)
activating different target genes [43]. During the development of the ocellar complex,
from the central Hh-producing domain, Hh disperses. Upon binding to its membrane
receptor patched (ptc), the Hh cascade is activated, resulting in the stabilization and
activation of the Gli-type transcription factor cubitus interruptus (ci), thus increasing
the concentration of CiA, the transcriptional activator form of Ci. Otherwise, Ci is
cleaved into the transcriptional repressor form, CiR [6]. Hh signaling then activates
two major target genes. The repressor transcription factor engrailed (en) is a low
sensitivity target and therefore is only activated by maximal Hh signaling levels.
This results in En being expressed almost coincidentally with the Hh-producing cells
[3, 35]. The retinal determination gene eyes absent is a higher sensitivity target, i.e.
Hh triggers its expression also at lower concentrations, so that eya expression is
activated in cells farther away from the Hh-producing domain [3, 11]. The fact that
En represses the expression of ci causes the loss of Eya in the Hh-producing cells, as
this cells can no longer transduce Hh signal. The resulting gene expression pattern
is a central domain of Hh-producing, En-expressing cells and two adjacent domains
expressing Eya. This basic pattern prefigures the adult ocellar complex pattern (see
below). Although biologically this gene expression pattern is stable, the fact that
En is activated by and represses the Hh signaling pathway simultaneously would
turn the system unstable. Genetic experiments show that this potentially instability
is eliminated by En expression becoming fixed, once initiated, through the action of
the Delta(Dl)/Notch signaling pathway [3]. Another important issue is that of the
size of the Eya domains. These domains specify the cells that will be developing the
ocelli. The regulation of the final size of the Eya domains depend positively on Hh
signaling, but is negatively modulated by the Wnt signaling (wingless, wg) and the
transcription factor homothorax (hth): Both in wg and hth mutants, the size of the
ocelli increases [12, 29, 39]. Therefore, ocellar size depends on the balance between
Hh and Wnt/hth signaling. Genetic studies have proposed that these two domains
(the Eya/So andHh domains, (So, sine oculis; a Six2-type transcription factor)), once
established, become fixed through positive feedback loops [3, 10, 12, 17].

By the end of larval development, each (left and right) head epithelial discs show
a central Hh domain flanked by two adjacent Eya/So domains. During metamor-
phosis, the fusion of these two contralateral discs will lead to the fusion of the two
anterior Eya patches, giving rise to the anterior ocellus (aOC). The two posterior Eya
patches will remain separate and will become the (left and right) posterior ocelli.
The intervening Hh-domain will for the triangular interocellar cuticle, see Fig. 1.
The simplicity of the ocellar complex pattern (one Hh-producing domain flanked by
two Eya-expressing regions) and its genetic accessibility makes it an excellent model
to study how gene regulatory networks controlled by a morphogen (Hh) regulate
morphological patterns in animals. Recently, our groups, taking advantage of the
wealth of biological knowledge accumulated during the past years, have generated
and analyzed a complex gene regulatory model including all known interactions, see
[3] and Fig. 2. To deepen the analysis of this system, we then further simplified the
gene network model to one that still is able to recapitulate the pattern (the “3-node”
network; see [4] and Fig. 5).



44 D. Aguilar-Hidalgo et al.

CiR

Ptc

ptc

ci

Hh

en

Dl

Ptc+Hh

CiA

En

Toy

Wg

hth

eya Hth

Eya

Fig. 2 Network diagram of a GRN for the formation of the ocellar complex in the fruit fly. Round
nodes represent variables of the system. Light blue nodes show transcription factors that regulate
gene (pink nodes) expression. Rounded square nodes represent functional behaviors such as condi-
tions or constant inputs. Green and red links indicate positive and negative coupling, respectively.
Dashed lines between Hh node and both Ptc and Ptc+Hh nodes represent the binding process
between Hh and Ptc

3 GRN Models for the Formation of the Ocellar Complex

The study of morphogenetic processes requires extensive experimental research to
find the molecular components and their genetic interactions controlling
morphogenesis. In general, the integration of these components and their interac-
tions as a GRN allows a global view of the process and its analysis as a whole.
In many cases, GRNs show a high complexity revealing the holistic view of the
process they define.The further theoretical analysis of these complex networks helps
to understand the process itself, by identifying key components during the process
and/or revealing missing and unnecessary components and interactions [2, 5, 14, 23,
27, 36].

3.1 Analysis of a Complex GRN for the Formation
of the Ocellar Complex

Duringmorphogenesis of the ocellar complex, as commented above,manymolecular
components have been identified as well as some of their relations. We can represent
such components and relations in a networked manner, see Fig. 2. This network
can be then modelled using a variety of techniques to analyse its dynamics and
stability. Here, we decided to model the system as a set of kinetic equations. To
do this, we make the following considerations. First, we model the ocellar complex
in a developmental time previous to the fusion of the two eye imaginal discs, see
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above. This allows a one-dimensional representation of the ocellar complex where
the interocellar region (IOC; the domain of Hh production is flanked by two ocellar
domains (OC) and these are surrounded by the periocellar domain (POC) -this latter
the most “external” region of the ocellar complex, which would give rise to the head
cuticle surrounding the ocellar complex in the adult animal, see Fig. 1. We further
consider that the ocellar complex is symmetrical with respect to the center of the
IOC, though recent research determined that anterior and posterior ocelli are both
morphological and molecularly distinct [17]. We also consider that the source for Hh
is constant, and that tissue growth is negligible during the time of observation, so that
we can neglect convection and advection in the system. With this, we can model the
network in Fig. 2 as a system of reaction equations coupled to the spatial dynamics
of a reaction-diffusion equation in Hh, see Eqs. 1–14, with small concentration as
initial condition for all variables of the system and reflecting boundary conditions
[3].

∂t Hh = D
∂2Hh

∂x2
+ δ(x)αhh − γPtc−Hh Ptc · Hh − βHhHh (1)

∂t ptc = κ0 βptc

( (
αptc + κCiptc φ(Ci Aψ(Ci R, kCi R , nCi R), kCi A, nCi A)

)

· ψ(En, kEn−ptc, nEn−ptc) − ptc
)

(2)

∂t Ptc = θptc ptc − γPtc−Hh Ptc · Hh − βPtc Ptc (3)

∂t PtcHh = γPtc−Hh Ptc · Hh − βPtcHh PtcHh (4)

∂t ci = κ0 βci
(
αci φ(ψ(En, kEn−ci , nEn−ci ), kci , nci ) − ci

)
(5)

∂t Ci A = κ0 βCi A (θci ci − Ci A) − κCi φ(Ci Aψ(
PtcHh

Ptc
, kPH , nPH ), kCi A, nCi A)

(6)

∂t Ci R = κCi φ(Ci Aψ(
PtcHh

Ptc
, kPH , nPH ), kCi A, nCi A) − κ0 βCi R Ci R (7)

∂t en = κ0 βen

(
αen + φ(Ci Aψ(Ci R, kCi R, nCi R), kCi A, nCi A)

+ κEn φ(En, kDlEn, nEn) − en
)

(8)

∂t En = θen en − βEnEn (9)

∂t eya = κ0 βeya

(
αeya + αToy φ(Ci Aψ(Hth, kHth−eya, nHth), kCi A−eya, nCi A)

+ φ(Eya, kEya, nEya) − eya
)

(10)

∂t Eya = θeya eya − βEya Eya (11)

∂t hth = κ0 βhth
(
αhth + αWg φ(ψ(Eya, kEya−hth, nEya), kWg, nWg) − hth

)
(12)

∂t Hth = θhth hth − βHth Hth (13)

δ(x) =
{
1 if x ∈ hh − expressing cells
0 if x /∈ hh − expressing cells

(14)
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where φ(X, k, n) = Xn

kn+Xn and ψ(X, k, n) = 1 − φ(X, k, n), with X any system
variable. Themodel contains different parameter types: αX for the basal transcription
rates, βX for the degradation rates, kX for the Hill equation transcriptional regula-
tors, nX for the Hill coefficients, θX for the translation rates; γX for protein complex
formation. The non-dimensional parameters κ0, κCi , κEn and αci are used for chang-
ing the scale of different terms and D is the diffusion coefficient. Subscript X-Y, with
X and Y system variables, indicates a regulation from X to Y. Among the equations
describing the system, we can observe high non-linear coupling, which describes the
complexity in the transcriptional regulation. As an example, the formation of the
PtcHh complex, Eq. 4, requires the coupling between Hh, Eq.1, and Ptc, Eq.3, which
influences back Hh. Ptc is promoted by Eq.2, ptc, which is positively regulated by
CiA, Eq.6 and negatively by CiR, Eq.7. Additionally, equation for CiA and CiR are
negatively and positively regulated, respectively, by the ratio of bound and unbound
Ptc, PtcHh/Ptc.

For parameter choice in [3], we numerically find dynamical solutions for all the
variables of the system that qualitatively match with experimental observations, see
Fig. 3 and [3] for details. These results show the gradient formation in Hh, which
drives the shape of the rest of the variables in the system. We observe that the
negative repression of En blocks the activation of CiA and, consequently, of Eya,
forming the IOC in the region of maximum Hh concentration. Furthermore, the
mutual repression between Eya and Hth operates as a activation-repression switch,
where low concentrations of one of the two species promotes the activation of the
other.

Interestingly, this set of equations provided testable predictions for different
experiments related to the patterning effect under certain mutant conditions [3].
Among these, we observed that the IOC is lost if En concentration is reduced, for
instance, by blocking the action of Dl on en self-regulation, see [3] and Fig. 4a; and
OC is lost if Dl action is increased, see Fig. 4b. We also observed that the size of
the ocelli could be parametrically modified. One simple case is the variation of Hth
activity, see Fig. 4c, d.

This observation of parameter-dependent size prompted an interesting idea. As
commented above, the ocellar complex is present inmany different species of insects,
including different species of flies. Could it be possible the differences in size of OC
and IOC observed in different fly species are explained by the sameGRN?And, if so,
which constraints on the potential morphological evolution of the ocellar complex
may be imposed by the structure of the GRN?We will discuss these question further
in Sect. 4.

By analysing the network structure of theGRN(seeFig. 2 and the resulting pattern,
see Fig. 3), we observe that the profile of Eya expression follows that of CiA.We will
describe next how the OC/IOC pattern can also be generated by a resulting pattern in
CiA. We will describe that correct OC and IOC pattern distribution can be achieved
by a simplified GRN (3-node GRN) driven by a concentration graded Hh input.
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the concentration. Panel letter corresponds to equation number in main text
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Fig. 4 Numerical results under mutant conditions. a Spatio-temporal profile of Eya with loss of
IOC when self-activation of En is not produced, kDlEn = 2. b Spatio-temporal profile of Eya with
loss ofOCwhen self-activation of En ismore easily satisfied, kDlEn = 0.1. cDependence ofOC size
with regulation of transcription of hth, parameter αWg . d Instances of Eya for values of αWg = 1
(larger OC) and αWg = 3 (smaller OC)

3.2 The Ocellar Pattern in a Simplified 3-Node Network

The study of the GRN for the formation of the ocellar complex, Fig. 2, reveals a
subnetwork as responsible for the initial patterning of the ocellar complex that starts
from the extracellular Hh gradient and ends in the pattern of CiA. From this pattern,
themutual coupling between Eya andHth leads to the addition of the POC to the final
ocellar complex pattern. As commented above, the negative repression performed by
En is responsible for the IOC-OC distinction. Thus, we wonder whether a simplified
model, containing just the basic information of the spatial graded profile of Hh and
the negative repression from En could yield a correct CiA pattern.

We introduce a simplified 3-node GRN, see Fig. 5, that we can model as a set of
three ordinary differential equations of the reaction type with a constant in time input
of a Hh(x) spatial-dependent graded concentration profile, see Eqs. 15–17 and [4]
for details and parameters choice.



Patterning, Dynamics and Evolution in the Ocellar Complex of the Fruit Fly 49

Fig. 5 Network diagram of
a simplified GRN for the
patterning of the ocellar
complex. Round nodes
represent variables of the
system. Rounded square
node Dl represent
conditional self-activation
for En. Square node Hh
represent a constant in time
input of a spatial graded
concentration profile. Green
and red links indicate
positive and negative
coupling, respectively

Dl En CiA

Hh

PtcHh

∂t PtcHh = (αHh−PtcHh Hh(x) + αCi A−PtcHh Ci A − αEn−PtcHh En)

· Θ
(
Encrit − En

) − βPtcHh PtcHh (15)

∂t Ci A =
γPtcHh−Ci A

1+φEn−Ci A En (φPtcHh−Ci A PtcHh)nC

knCmC + (φPtcHh−Ci A PtcHh)nC
− βCi A Ci A (16)

∂t En = γCi A−En (φCi A−En Ci A)nE

knE
mE + (φCi A−En Ci A)nE

+ αEn−En En Dl(ζEn, ζt , tζEn )

− βEn En (17)

Dl(ζEn, ζt , tζEn ) =
{
Dl if En ≥ ζEn, ∀t ∈ [

tζEn , tζEn + ζt
]

0 otherwise
(18)

with Encrit = (αHh−PtcHh Hh(x) + αCi A−PtcHh Ci A)/αEn−PtcHh a spatial depen-
dent critical value for En concentration at which En switches off PtcHh effective
production, and Θ the Heaviside step function. En is self-maintained if its concen-
tration exceeds a certain threshold, ζEn , for a time interval, ζt , starting from the
time point when En reaches the concentration threshold, tζEn , (Eqs. 17 and 18). This
requirement refers to the need of integrating a protein quantity over time to trigger
some targets [15].

We find qualitative agreement with experimental profiles of Eya in numerically
simulated profiles for both large and 3-node GRN, see Fig. 6. Note that comparison
with experiments in model for the 3-node GRN is done with CiA, thus only OC and
IOC should be considered.
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Fig. 6 Comparison of experimental profiles of Eya with numerical results for Eya profile in the
model for the large GRN, and for CiA profile in the model for the 3-node GRN. Upper panel:
Experimental mean profile (N= 8, solid line) with standard deviation (dashed lines). Bottom panel:
Simulation of Eya and CiA concentration profiles corresponding to the numerical solution of the
steady-state of Eqs. 11 and 16, respectively

4 GRN Constraints to Morphological Evolution

Aswe havementioned during this chapter, the specification of cell types in space, and
the determination of the size of the resulting tissues and organs during development,
requires the organization and coupling ofmultiplemolecular species both outside and
inside cells. This complex process leads to the formation of organs of specific size and
shape. Indeed, for a given organ and species, size and shapemust be robustly resolved.
This rises the following question: What makes organs of different size an shape
among species? In principle, different genetic wiring could be responsible for such
changes, however, from an evolutionary perspective, it would be more productive to
fix genetic interactions and just tune values of biochemical interaction rates.

In previous sections, we already discussed that modification of some parameter
values that imply changes in interaction rates were responsible for changes in OC
and IOC size in our mathematical model. These results suggest that there might be
a biochemical regulation of organ size in the ocellar complex for a fixed regulatory
network.

The large network model presented in Sect. 3.1 contains far too many parameters
to perform a fine-tuned analysis on every parameter. However, in a previous work
[3], we performed a parameter sensitivity analysis from which we obtained two
important results. The first one is the identification of a subset of parameters, which
notably influence size of both OC and IOC. The second one is the finding that
randomly chosen parameters provide non-randombut patterned size distributions [3].
Parameters were chosen among specific ranges resolved in the sensitivity analysis.
Interestingly, we find the same size distributions in the 3-node network model, thus
implying that the parameters responsible for such distributions are contained within
the set of parameters of this simplified model, see Fig. 7a and [1].
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This second result would imply that ocellar size variation (ocellar width and
interocellar distance) should be restricted to the specific regions of the solutions
space predicted by the model. To try to validate this point, we measured the ocellar
width and interocellar distance in a collection of fly species in order to overlay
the experimental distribution with the numerical one. The number of measured fly
species is sufficiently large to partiallymatchwith the numerical size distribution.We
found a beautiful qualitative agreement between experimental and numerical results,
see Fig. 7b, c. Interestingly we find a quantitative positive size limit for small IOC.
This may reflect that the functional behavior for two very close ocelli is not very
different from one single fused ocellus, thus ocelli that are too close might be of very
limited functional value and therefore not evolutionary selected. We have to note,
though, that the sample of fly species is limited in size and biased towards species
closely related to Drosophila melanogaster, our genetic model. A study including a
broader sample and a larger number of species is necessary to further support that the
structure of the GRN network we have defined indeed constrains the morphological
evolvability of the ocellar complex along the predicted directions.

Once we find the agreement between the experimental and numerical size distri-
butions, we wonder whether we could identify a subset of parameters in the 3-node-
network model as responsible of the size variation. To analyze this, we first perform
a parameter normalization such that we end with non-dimensional equations. One
of the advantages of this process is that we reduce the number of parameters. We
choose the degradation rate βPtcHh as normalization rate, thus the values of the
non-dimensional parameters are relative to the degradation rate of PtcHh. The non-
dimensional version of Eqs. 15–17 reads:

∂τ P = (kMP M(x) + kCP C − kEP E) Θ
(
Ecrit − E

) − P (19)

∂τ C =
kPC

1+kEC E (ϕ1 P)nC

knCmC + (ϕ1 P)nC
− kC C (20)

∂τ E = kCE (ϕ2 C)nE

knE
mE + (ϕ2 C)nE

+ kEE E Dl(ζE , ζτ , τζE ) − kE E , (21)

with normalized parameters obtained by dividing Eqs. 15–17 by βPtcHh and
then by α0 = αhh/βPtcHh , thus τ = t βPtcHh, P = PtcHh/α0, C = Ci A/α0, E =
En/α0, kMP = αHh−PtcHh/βPtcHh, kCP = αCi A−PtcHh/βPtcHh, kCE = γCi A−En/

(α0 βPtcHh), kEP = αEn−PtcHh/βPtcHh, kPC = γPtcHh−Ci A/(α0 βPtcHh), kEE =
αEn−En/βPtcHh, kEC = φEn−Ci A α0, ϕ1 = α0 αPtcHh−Ci A, ϕ2 = α0 αCi A−En . Criti-
cal concentration for E reads Ecrit = (kMP M(x) + kCP C)/kEP , kC = βCi A/

βPtcHh , kE = βEn/βPtcHh . The function M(x) is the steady-state solution of the
reaction-diffusion equation for the morphogen M that reads:

∂τ M = d ∂2
x M − kM M + δ(x) , (22)

withM = Hh/α0, d = D/βPtcHh , kM = βHh/βPtcHh and δ(x) as referred in Eq.14.
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Then, we applied a machine learning method, Bayesian networks (BNs), to ana-
lyze the significance of the parameters in the specification of the OC and IOC size.
BNs are acyclic, directed graphs connecting series of variables linked by their con-
ditional probabilities [19]. We use BNs to compute the probability that a given set of
values for OC and IOC size falls within a given region in the size distribution space
considering the total number of parameters in the model. To perform this analy-
sis, we first define three distributions of OC and IOC according to their location
within the phenotypic space, see Fig. 8a. We thus define euclidean distances λEn and
λCi A, that relates to the IOC and OC size, respectively. These distances are measured
from each OC-IOC configuration to a control value we choose for normalization,
and that corresponds to the measures of the fruit fly Drosophila melanogaster. We
then distinguish between configurations with large IOC (λEn ≥ 0.15) and small IOC
(λEn < 0.15), and large OC (λCi A ≥ 0) and small OC (λCi A < 0), see Fig. 8a where
only positive values for λEn are shown; (nota bene: we just found a small number of
configurations with negative λEn , which could imply that the system self-constrains
to avoid configurations with two ocelli very close to each other. From an evolu-
tionary and developmental perspective this might imply that there is a limit in the
closeness of two developing ocelli, as the efficiency of their functionality might be
similar then to develop only one large ocellus, which probably reduces cost from
a thermodynamic perspective). Figure8b shows the sensitivity to the change in the
ocellar concentration patternwhenmodifying parameters around the control.We also
marked the parametric regions for OC and IOC sizes as in Fig. 8a. The application of
the BNsmethod reported a ranked subset of coupled parameters to produce a specific
size distribution of OC and IOC among the three different categories defined above,
where these categories indicate whether (i) the OC is large or small, (ii) the IOC is
large or small and (iii) the set (OC, IOC) is near or far from the reference set of OC
and IOC size that we match with the experimental case of the fruit fly Drosophila
melanogaster, see details in [1] and Fig. 8.

5 Oscillations in GRN for the Formation
of the Ocellar Complex

Oscillatory behaviors have been observed and modeled at different levels of
cellular organization [20]. These oscillations often arise due to the negative feed-
backs between regulatory proteins and, in general, they are represented by limit
cycles. Some oscillatory processes have been already modeled without their experi-
mental evidence existing even. Recently, there is a tendency to seek and attribute a
meaning to biological oscillations, although there is not unanimous agreement about
its importance. Possibly, the oscillations can emerge so that the systemsmust adapt to
persistent stimuli and, in many cases, so one might obtain important additional infor-
mation about processes that lead to evolutionary selection. It is interesting, therefore,
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to determine if the oscillations are in fact a hallmark of signaling pathways, allowing
to the cells to organize and coordinate processes at intracellular and intercellular
levels [13, 32, 38].

5.1 Analysis of Oscillations

We discussed in Ref. [4] that the network topology of both the large and the
3-node network models, introduced in Sects. 3.1 and 3.2, respectively, define net-
work topologies that can lead to oscillatory behaviors in the levels of concentration
of the nodes that form the network. To demonstrate this, we performed a Boolean
networks analysis [4]. The presence of En as a repressor of the Hh signaling path-
way establishes a negative feedback within the network that might be able to change
the system dynamics causing oscillations in the concentration of genetic species. In
principle, though our analysis with Boolean networks reveals oscillatory behaviors,
the actual network can be biochemically regulated such that the concentration of the
different genetic species reach a steady state or show oscillations. For simplicity, we
further analyze the scope of the 3-node network model in an oscillatory regime.

The 3-node network is modelled by the set of equations normalized (Eqs. 19–22).
The initial conditions for each variable and the values for all the parameters used in
the simulations are found, respectively, in Tables1 and 2. Some results that derive
from the oscillatory behavior studied show that:

(i) The model shows parameter dependent spatiotemporal oscillations (Fig. 9). In
all cases, the oscillatory states are represented by limit cycles with period-1 (one
maximum in a cycle).

(ii) An increase in the rate constant which characterizes the activation of P on C
(ϕ1) expands the oscillatory region, see Fig. 10, while an increase in the rate constant
which characterizes the repression of E on C (kEC ) reduces the oscillatory region.
Figure10 shows bifurcation diagrams for spatial dependent P concentration. The
profile of each bifurcation diagram shows an oscillatory region between two steady
regions. Points in the oscillatory region indicates maximal, times averages of, and
minimal amplitudes of oscillation.

(iii) On the other hand, the oscillation in concentration of a single variable (P) is
found in phase difference for different positions that oscillate with the same period
(Fig. 11a). We also observe a phase difference among local oscillations of the con-
centrations of the different variables (P, E and C), see Fig. 11b.

Table 1 Initial concentration
of the variables in the 3-node
network model

Variable Description Initial condition

P P concentration 10

C C concentration 0

E E concentration 0.1
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Table 2 Parameter values

Parameter Description Value

d Hh effective diffusion coefficient 0.5µm2

kM Hh effective degradation rate 0.01

α0 Hh production rate 1µM

kMP Association rate for PtcHh complex formation 1

ϕ1 PtcHh activating CiA rate 1

ϕ2 CiA activating En rate 1

kCP CiA activating PtcHh rate 0.1

kEP En repressing PtcHh rate 1

kEC En repressing CiA rate 0.99

kEE En translation rate 1

Dl En self-activation switch 1-ON, 0-OFF

ζEn En threshold for Dl activation 250

ζt Time interval with En over ζEn for Dl activation 1500

kPC Maximum CiA production rate 10000

kCE Maximum En activation by CiA 10000

kC CiA degradation rate 1

kE En degradation rate 1

kmC CiA half-maximal activation concentration 2000

kmE En half-maximal transcriptional activation 90

nC Hill coefficient for CiA transcription 2

nE Hill coefficient for En transcription 4

(iv) The period of oscillations in concentrations first increases, then passes through
a maximum value and, finally, decreases as the morphogen concentration increases
(or distance to themorphogen source decreases). The amplitude of oscillations shows
a similar behavior, see Fig. 11c, d.

5.2 Periodic Perturbation of the Oscillatory Kinetics
Observed in the Model

In the next step, we carry out a study of perturbations. The motivation for this study
is the assumption that the actual GRN is larger and more complicated than the one
modeled. We consider that in a larger network there may be unknown motifs which
also present oscillatory dynamics. These unknown motifs can, in principle, oscillate
with different frequencies to those in the 3-node network, to whichmay interact with.
In this case, the 3-node network can show more complex dynamics.
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tory region between two steady regions. The width of the oscillatory region expands for increasing
values of ϕ1

In this sense, one of the most studied mechanisms in an oscillatory system is
the coupling between an internal autonomous oscillation and an external periodic
perturbation. In general, interaction between external and internal dynamics produces
synchronization, although, in some cases, this does not happen and new complex
dynamic can appear, such as the quasiperiodic and chaotic behaviors. It is interesting,
therefore, to obtain additional information about the effect that periodic perturbations
has on intracellular kinetic oscillations in order to determine if these oscillations are
a hallmark of cellular signaling pathways.
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Fig. 11 a Phase differences in the oscillation of P concentration at different positions. b Local
phase difference in the oscillation of the concentrations of variables P , E and C (x = 35µm).
c, d Variation of the oscillation period and amplitude of the normalized P concentration as a
function of M c and position d

From Eqs. 19–21 of the 3-node network model, for a given position and stationary
morphogen concentration, we analyze the response that periodic perturbations have
on a natural state which oscillates with period-1 and f0 frequency.

In order to do this, we apply a perturbation on the rate constant of the activation
process of P on C , ϕ1, such that the perturbed parameter ϕ∗ reads

ϕ∗
1 = ϕ1(1 + A sin(2π f t)) , (23)

where A and f are normalized amplitude and frequency of perturbation (f is different
from the natural, not forced, frequency f0).

Some representative cases are shown in Fig. 12. This shows forced temporary
oscillations of C (down) and E (up) along with their corresponding Poincaré maps,
next maxima maps and Fourier spectra. Period-n (Pn) indicates oscillations with n
maxima in each cycle (see Fig. 12b for n = 2, and Fig. 12c for n = 1). A curve
of n loops corresponds to Pn oscillations in the Poincaré map. In next maxima
map, n points indicate a Pn oscillation. Fourier spectra are discrete, appearing one
fundamental frequency and its harmonics. In these cases, the system responds with



Patterning, Dynamics and Evolution in the Ocellar Complex of the Fruit Fly 59

150

100

50

100

50

100

50

0
760 800

150

0
760 800

150

0
760 800

0.0 1.0 1.00.5 1.5
0

4

8

12

0.0 1.0 1.00.5 1.5
0

4

8

12

0.0 1.0 1.00.5 1.5
0

4

8

12

403010 20
0

0

0

403010 20

403010 20

30
30

40

40

30
30

40

40

100

50

150

30
30

40

40

100

50

150

100

50

150

E

C

E

C

E

C

C

C

C

E
E

E

C
m
ax

( i
+

1)
C
m
ax

(i
+

1)
C
m
ax

( i
+

1)

time

time

time
am

pl
it

ud
e

am
pl

it
ud

e
am

pl
it

ud
e

frequency

frequency

frequency

Cmax (i)

Cmax (i)

Cmax (i)

(a)

(b)

(c)

Fig. 12 Forced oscillations for A = 0.4. Temporary series show for a f = (3/4) f0, quasiperiodic
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the natural frequency. Quasiperiodic oscillations can be also observed (see Fig. 12a):
Poincaré map shows the typical toroidal shape; next maxima map represents one
closed curve; and Fourier spectrum is discrete with several fundamental frequencies.

We can conclude that:
(a) Forced kinetics are mainly periodic or quasiperiodic. In the periodic kinetics the
system oscillates with the natural frequency f0.
(b) There is no transition to periodic oscillations with the external frequency nor
even to large perturbation amplitudes. In this case, the perturbation is relatively
inefficient.
(c) We show an amplification capability that the perturbations have on the oscilla-
tions [44].
(d) Our results agreewith those predicted by othermodels related to gene expressions
and proteins [45, 46].
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6 Summary and Perspectives

The study of the coupling between chemical patterns and gene regulatory networks by
a joint workforce of theoreticians and experimentalists is an emerging research area
within the fields ofDevelopmental Biology, Regeneration andCancer. In this chapter,
we followed this approach in the study of the ocellar complex integrating approaches
from developmental genetics, evolution and systems dynamics. We found that the
ocellar complex pattern is driven by the morphogen hedgehog (Hh), which convey
cells with positional information in a french flag model fashion, where different mor-
phogen concentration thresholds define boundaries of cellular differentiation. These
boundaries are set by the coupling of the extracellular morphogen to a complex intra-
cellular gene regulatory network, which wemodeled in a simplified one-dimensional
system of partial and ordinary differential equations. From this model, we found that
quantitative changes in parameter values seem sufficient to explain the quantitative
morphological variation found in nature, in the size of the ocellar complex constitu-
tive elements among different fly species, without the need of gene network rewiring.
Our analysis further identifies likely candidate processes to be responsible for ocellar
morphological evolution. The specificwiring of the gene regulatory network contains
a negative feedback, the topology ofwhich shows oscillatory behaviors. In themodels
presented here, we observed parameter-dependent spatio-temporal oscillations in the
ocellus region. These self-sustained oscillations are represented in the form of limit
cycles. We studied the dynamics of such oscillations coupled to a second oscillator
in the form of a harmonic perturbation to show different in silico oscillatory states,
which range in complexity from P1 to quasiperiodic states. An experimental analysis
for validating both autonomous and forced oscillations has not been explored yet.
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Computation of Invariant Curves in the
Analysis of Periodically Forced Neural
Oscillators

Alberto Pérez-Cervera, Gemma Huguet and Tere M-Seara

Abstract Background oscillations, reflecting the excitability of neurons, are ubiq-
uitous in the brain. Some studies have conjectured that when spikes sent by one
population reach the other population in the peaks of excitability, then informa-
tion transmission between two oscillating neuronal groups is more effective. In this
context, phase locking relationships between oscillating neuronal populations may
have implications in neuronal communication as they assure synchronous activity
between brain areas. To study this relationship, we consider a population rate model
and perturb it with a time-dependent input. We use the stroboscopic map and apply
powerful computational methods to compute the invariant objects and their bifur-
cations as the perturbation parameters (frequency and amplitude) are varied. The
analysis performed shows the relationship between the appearance of synchronous
and asynchronous regimes and the invariant objects of the stroboscopic map.

Keywords Synchronization · Phase locking · Stroboscopic map · Invariant
curves · Rotation number

1 Introduction

Since it was first reported in 1929 by Hans Berger [2], neural oscillatory activity has
been a topic of great interest and debate in neuroscience. Although its role is not
fully understood, electroencephalographic patterns evidence its importance in brain
function. In particular, oscillations have been linked to many different processes as
memory or perception [4]. Although oscillatory behaviour can occur across different
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Fig. 1 Schematic of a
neuron with different
synaptic connections. It can
be seen how axon terminals
from neighbouring neurons
contact the dendrites of the
receiving neuron

brain scales, this work will focus on oscillations generated by neuronal ensembles
or populations.

Neurons are the fundamental cells within the brain, and they basically commu-
nicate through electrical impulses [6]. Neurons integrate inputs from neighbouring
neurons across dendrites. When these inputs cause the neuron membrane potential
to reach a certain critical value or threshold, the neuron will respond with a charac-
teristic voltage change of large amplitude and short time duration (≈1 ms) known
as action potential or spike. This action potential then travels along the axon of the
neuron to the axon terminal, where its effect will be felt by the neighbouring neu-
rons (Fig. 1). Neurons can be excitatory or inhibitory, depending on the effect of the
connection (synapse) on the receiving neuron: inputs from an excitatory (inhibitory)
neuron depolarize (hyperpolarize) the membrane potential of the receiving neuron.

In this paper, we explore the oscillatory activity emerging from a neuronal net-
work consisting of a single population of excitatory neurons and a single population
of inhibitory neurons (E-I network). Under the appropriate stimulus, the firing of
the excitatory population activates the inhibitory population that, on its turn, sup-
presses the excitatory activity. Once the inhibitory effect has vanished, if the stimu-
lus remains, the excitatory neurons will fire again generating an oscillatory pattern.
The excitability of the excitatory population is not the same for all the phases of the
cycle due to the inhibitory action. Indeed, when the excitatory population receives
an external input at the phase in which the inhibition is not present, the excitatory
cells can respond effectively, while if the inhibition is present, the input might be
ignored (see Fig. 2). This mechanism, known as communication through coherence,
has been invoked to explain neural communication between brain areas [7]. In this
context, two neuronal groupswith underlying oscillatory activity communicatemuch
effectively when they are properly phase-locked so that the windows for inputs and
outputs are open at the same times. Although the functional role of the brain oscil-
lations is still unknown, a growing number of studies have recently suggested that
in several cognitive tasks (such as sensory perception, working memory, and atten-
tion), synchronized background oscillations may coordinate computations involving
different brain areas [15].
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Fig. 2 Oscillations arise
from the interaction between
the inhibition and the
excitation. We illustrate how
different phases of the
oscillation may have
different excitability
properties due to the
inhibition as suggested in
[18]

A simplified framework for studying this situation is to consider the effect of an
external oscillatory input onto anetworkmodel consistingof excitatory and inhibitory
cells showing oscillations. For such network we consider the simplest canonical
model describing the mean firing rates of the excitatory and inhibitory populations:
the Wilson–Cowan equations [20]. As the parameters of this model can be chosen
so that the system shows oscillations we can simulate the framework of interest.

In particular, we focus on oscillations of the Wilson–Cowan model arising from
a Hopf bifurcation. The periodic forcing of such bifurcation has been studied in
classical papers [9], and recently, in the neuroscience context [19]. In this work,
we aim to understand the different mechanisms which give rise to synchronous
activity between the E-I network and the external T ′-periodic input. As we study
a periodic perturbation, we consider the stroboscopic map (i.e. the time-T ′ map of
the flow) and identify an attracting invariant curve of the map, where the dynamics
on it can be understood by means of the rotation number. The rotation number
indicates the relationship between the period of the forced oscillator and the external
forcing; rational values of this magnitude correspond to synchronous regions while
irrational values correspond to asynchronous regions. Thus, assuming the existence
of an invariant curve, we compute the rotation number as the amplitude and the
frequency of the external periodic input are varied and identify the synchronous
solutions. We also identify regions where this computation fails, which correspond
to the breakdown of the invariant curve. To provide a full understanding of the
dynamics beyond the breakdown of the invariant curve, we compute the fixed points
of the map as well as their bifurcations. Bifurcations of the fixed points can be related
to the breakdown of the invariant curve. Thus, we apply powerful computational
methods [11] to compute the invariant curve and its internal dynamics, which provide
a framework that enlarges the comprehension of the dynamics generated by the
periodic forcing.

2 Mathematical Model

Aneuronal population can bemodelled as a neuronal network consisting ofNneurons
connected through synapses. If each neuron is described by a system of n differential
equations, a network of N neurons will be described by a system of N · n equations.
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Fig. 3 Schematic of a
neuronal network modelled
by the mean field model (1)

This approach, although generates very accurate results, considers a high dimen-
sional system, that requires a high computational effort to integrate it and makes
the mathematical analysis difficult. As an alternative to this approach, there exist
mean field models, which use a single variable to describe the mean activity of a
population. These models have a reduced number of equations and are suitable for
analysis. One of the most famous rate models are theWilson–Cowan equations [20]:

τe
dE

dt
= −E + (1 − reE)Se(c1E − c2I + P),

τi
dI

dt
= −I + (1 − riI)Si(c3E − c4I + Q),

(1)

where the variablesE and I correspond to the fraction of neurons of the excitatory and
the inhibitory populations respectively which are emitting an action potential at time
t. The coupling constants ci determine the strength of connexions between neuronal
populations. P and Q are the (constant) external inputs which are injected to E and
I populations, respectively (see Fig. 3). Coupling constants ci are positive, whereas
external currents P and Q can be either positive or negative depending whether its
action is excitatory or inhibitory.

Assuming that a population k is receiving an input x, the proportion of cells
which will fire as a result of this input is modelled by the response function Sk(x), a
sigmoidal function defined as:

Sk(x) = 1

1 + e−ak(x−θk)
, with k = e, i,

where the parameters θk and ak are the position of the maximum slope and the value
of this maximum slope, respectively.

Neurons have a refractory period rk during which they can not respond to external
inputs. The factor (1 − rkk) in Eq. (1), represents the proportion of neurons of the
population k which are able to be excited. In [14] it is shown how this term only
rescales the parameters on the nonlinearities Sk(x) and does not change the qualitative
behaviour of the system. For this reason, from now on, we will consider rk = 0.
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2.1 Dynamical Analysis

In this subsection we study the most important objects (critical points and limit
cycles) of system (1) and their bifurcations. Nullclines of (1), when re = ri = 0, are
given by

E = fe(I,Q) = 1

c3
[S−1

i (I) + c4I − Q],

I = gi(E,P) = 1

c2
[c1E − S−1

e (E) + P].
(2)

As it can be seen in Eq. (2), P and Q translate nullclines and thus determine their
intersection. Consequently, the name and position of the critical points of the system
will depend on the values of P and Q (Fig. 4 left). For this reason parameters P and
Q will be considered as bifurcation parameters.

Choosing the set of constants adequately, the Wilson–Cowan equations show
oscillatory behaviour [20]. In particular, as it can be seen in Fig. 4 (right), oscilla-
tions in the Wilson–Cowan model reproduce the oscillatory mechanism stated in the
introduction: for a strong enough input value P, the excitatory activity will increase,
activating the inhibitory cells which, in its turn, will suppress the excitatory activity
and in consequence, the inhibitory activity. Once the inhibitory effect has vanished,
the external input P –if still present–, will activate the excitatory cells again, generat-
ing an oscillatory pattern. The following set of parameters P ensures the existence
of oscillations for some (P, Q) stimulus values and for this reason they will be the
default parameters used throughout the work:

P = {c1 = 13, c2 = 12, ae = 1.3, θe = 4, re = 0, τe = 1

c3 = 6, c4 = 3, ai = 2, θi = 1.5, ri = 0, τi = 1}. (3)

As system (1) is 2-dimensional and the phase space is bounded, using Poincaré-
Bendixon theorem it is enough to require that the system has a unique unstable
critical point to guarantee the existence of a periodic orbit (oscillations). Such oscil-
lations are going to appear across Hopf, Saddle-Node on Invariant Circle (SNIC
bifurcation) and Homoclinic bifurcation [3, 12]. As a first step to find these bifurca-
tions we look for bifurcations of the critical points of the system. Thus, by defining
DX(E, I,P,Q) the Jacobianmatrix of system (1), we can look for points (E, I,P,Q)

satisfying (2) and conditions Tr DX(E, I,P,Q) = 0 for the Hopf bifurcation and
Det DX(E, I,P,Q) = 0 for the Saddle-Node bifurcation. As we are dealing with
non linear equations, the computation of the bifurcation diagram (Fig. 5) requires
computational methods for continuation of curves [17].
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Fig. 4 Left: Nullclines and phase space for the set of parameters P given in (3) and (P, Q) =
(2.5, 0). There exists a limit cycle γ and an unstable focus P1. Right: Dynamics for system (1)
over the limit cycle γ . The oscillations arise from the interactions between the excitatory inhibitory
populations

Fig. 5 Bifurcation diagram for the Wilson–Cowan system (1) as a function of external stimulii P
and Q. Parameters for system (1) are given by the set P in (3)

3 Non Autonomous Perturbation

In this sectionwewill study the effects of a T ′-periodic non-autonomous perturbation
onto theWilson–Cowan equations (1). Concretelywewill study the followingmodel:

τe
dE

dt
= −E + Se(c1E − c2I + P + Ap(t)),

τi
dI

dt
= −I + Si(c3E − c4I + Q),

(4)

where A is the amplitude of the perturbation and p(t) is the T ′-periodic function:
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p(t) = 1 + cos(
2π t

T ′ ),

modelling the activity of an external excitatory population.

3.1 The Stroboscopic Map

The stroboscopic map is the most natural approach when considering the study of
T ′-periodic perturbations. It is defined by

FA : R2 → R
2,

x → FA(x) = φA(t0 + T ′; t0, x), (5)

where φA(t; t0, x) is the solution of (4) such that φA(t0; t0, x) = x.
As it is well known, the fixed points and invariant curves of the stroboscopic

map (5) correspond to periodic and quasiperiodic solutions of system (4) respectively.
For instance, if γ (t) = φA(t; t0, x) is a solution of system (4) and [FA(x)]q = x, then
by definition φA(t0 + qT ′; t0, x) = x and therefore γ (t) is periodic of period qT ′.
Analogously, if γ (t) = φA(t; t0, x) is a periodic orbit of period T of (4) with T ′

T = p
q ,

p, q ∈ N, then

[FA(x)]q = φA(t0 + qT ′; t0, x) = φA(t0 + pT; t0, x) = x, (6)

that is, fixed points x for the map [FA(x)]q will correspond to periodic orbits of the
system (4). In the neuroscience context, relationship (6) indicates that a p:q phase
locking state has been established between the population and the perturbation. In the
Wilson–Cowanmodel this means that the neuronal population variablesE and I have
completed p revolutions in the same time that the perturbation p(t) has completed q
revolutions. By contrast, if γ (t) = φA(t; t0, x) is periodic of periodT but T

′
T /∈ Q, then

[FA(x)]n �= x ∀ n ∈ N and [FA(x)]n fills densely ΓA = {φA(t0 + nT ′; t0, x), n ∈ N}
which is an invariant curve for FA(x). So, depending on the amplitude A and the
period T ′ of the perturbation, the system in (4) can display either a p:q synchronous
regime synchronous regime or an asynchronous regime.

3.2 Computing the Rotation Number in the Perturbed
Framework

In this section we will explain how to compute the rotation number. Consider the set
of parametersP defined in (3), and let (P, Q) = (2.5, 0). As bifurcation diagram on
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Fig. 5 shows, for this set of parameters the unperturbedWilson–Cowan equations (1)
display an unstable focus P1 and an attracting limit cycle γ of period T ≈ 5.26.

When A = 0 the phase portrait described by the stroboscopic map (5) is the same
as the one generated by the unperturbed system (1). In particular, F0(P1) = P1 and
F0(γ ) ⊆ γ , ∀ T ′, that is, P1 and γ are an unstable fixed point and an attracting
invariant curve for themap (5), respectively.When applying a T ′-periodic continuous
perturbation, as both objects P1 and γ are normally hyperbolic, they will continue
existing for weak enough perturbations, and they can be studied as invariant objects
for the stroboscopicmapFA whenA �= 0. In particular, while the unstable focusP1 =
P1(A) will remain an unstable fixed point for the stroboscopic map FA, the attracting
limit cycle γ will become an attracting invariant curve ΓA. Over the invariant curve
ΓA we can define and compute the rotation number.

The rotation number is defined for any continuous orientation preserving map of
the circle

f : T → T

θ 	→ f (θ)

as

ρ = lim
n→∞

θn − θ0

n
, θn = f n(θ0). (7)

As it is well known, ρ exists and is independent of the point θ0 [1]. Moreover, if
ρ = p

q ∈ Q, the map f has, at least, one periodic point θ∗ of period q. On the other
hand, under some regularity assumptions, if q ∈ R \ Q, the map f is conjugated to a
rotation of angle ρ and the orbit of every point θ fill densely T.

In our case, one can take f := fA = FA|ΓA
and compute the rotation number as

follows: given a point x ∈ ΓA, define the angle θ between the line from P1(A) to x
and the positiveE-axis. Then, given a point x0 ∈ ΓA for xn = f An (x0), one can compute
the rotation number in (7).

When computing ρ numerically, usually the limit to infinity is substituted by a
large enough number of iterations but the convergence to ρ is very slow. We used the
methods presented in [16], which refine the computation of rotation numbers saving
computational effort and accelerating the convergence of the method.

Recall that if ρ = p
q with p, q ∈ N there exists a θ∗ such that f qA (θ∗) = θ∗, and

the corresponding point x∗ is a q-periodic orbit of FA, which turns p times around
the invariant curve ΓA. This indicates the appearance of a given p:q phase locking
regime in system (4).

In Fig. 6 we show the computation of the rotation number for some amplitude
values A and varying T ′. We observe the classical Devil’s Staircase function [1]. The
function shows intervals on the x-axis (showing the ratio T ′

T ) for which the rotation
number ρ(T ′) is constant (there exists a solution of (4) which is phase-locked to the
periodic perturbation). For small positive amplitudes, the largest intervals correspond
to the phase locked states 1:1 (ρ = 1) and 1:2 (ρ = 1

2 ) (Fig. 6 top). The phase-locked
intervals widen as the amplitude is increased (Fig. 6 bottom). The rotation number
displays a discontinuity at some values of T ′ jumping suddenly to ρ = 1 as the
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Fig. 6 Rotation number computed for different amplitudes in the perturbed Wilson–Cowan
model (4). Parameters used were the set P in (3), and (P, Q) = (2.5, 0)

amplitude is increased. As the rotation number is defined over the invariant curve
ΓA, this discontinuity may indicate a bifurcation or the breakdown of the invariant
curve appearing for non-weak amplitudes that wewill investigate in the next sections.

3.3 Bifurcation Analysis

In order to understand the dynamics that occur in system (4) depending on the period
T ′ and the amplitude A of the perturbation, we will begin by computing bifurcations
for the fixed points of the stroboscopic map (5).

Given a map depending in one parameter α ∈ R:

F : Rn × R → R
n

(x, α) → F(x, α).
(8)

If there exists (x0, α0) such that

1. F(x0, α0) = x0
2. DF(x0, α0) has eigenvalues λ with |λ| �= 1,

then x0 is called a hyperbolic fixed point and it is known that for α � α0, there exists
xα fixed point of F(xα, α) of the same topological type of x0. Otherwise, when (2)
fails we call α0 a bifurcation value.

Thus, bifurcation values of themapFmust satisfy being fixed points of themap (8)
and also a bifurcation condition ΦBIF . Mathematically,
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Fig. 7 Bifurcation diagram for the stroboscopic map FA of the perturbed Wilson–Cowan system
(4). Parameters used were the setP and (P, Q) = (2.5, 0). Two bifurcations were found: Neimark-
Sacker (green curve) and Saddle-Node (cyan curve). The solid line corresponds to a SN between
a saddle and a stable node whereas the dashed line corresponds to a SN between a saddle and an
unstable node. Constant amplitudes, for which rotation numbers in Fig. 6 were computed, were
drawn respecting the same color code. Inside the yellow area there exists a stable fixed point for
the map FA corresponding to a 1:1 phase locking relationship

G(x, α) =
{
F(x, α) − x = 0

ΦBIF(x, α) = 0.
(9)

We look for bifurcations of the fixed points of themap defined in (6) for q = 1.We
found two bifurcations of fixed points (see Fig. 7): Saddle-Node (SN) and Neimark-
Sacker (NS). At it is well known, a SN bifurcation occurs when one of the real
eigenvalues for the fixed point equals one, whereas a NS bifurcation occurs when a
fixed point has a pair of complex eigenvalues whose modulus equals one. In a 2D
system the conditions which must be satisfied at these bifurcation values are written
as

ΦSN = det(DF − Id) = 0,

ΦNS = Tr(DF) − 1 = 0,

where we denote byDF the Jacobianmatrix of themapF evaluated at the fixed point,
whose computation requires the integration of a second order variational system [17].

Computations depicted in Fig. 7 also enlight the rotation number results shown
in Fig. 6. One guesses that discontinuities on the rotation number in Fig. 6 can be
caused by the disappearance of the invariant curve (which exists for small amplitudes)
across aNeimark-Sacker bifurcation. To give a complete description of the dynamics,
besides the computation of the fixed points and its bifurcations we are going to
compute the invariant curves to check its persistence and relate its disappearance
with the discontinuities observed in the rotation number curves.
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3.4 Computation of Invariant Curves

As it was observed in Sect. 3.3, the computation of invariant curves is needed to
provide a full description of the dynamics generated by the perturbation in (4). The
framework developed in [5] allows us to compute a parameterization of the invariant
curve ΓA issuing from the unperturbed limit cycle γ . We now briefly review the
method and refer the reader to [5] for a detailed description of the method.

Given a map F : R2 → R
2 having an invariant curve ΓA, we look for a parame-

terization K : T → R
2 of this invariant curve by solving the following invariance

equation
F(K(θ)) = K(f (θ)), (10)

where K(θ) and the dynamics inside the curve f (θ) are both unknown. Differentiat-
ing (10) we find the invariance equation for the tangent bundle DK(θ):

DF(K(θ))DK(θ) = DK(f (θ))Df (θ), (11)

and imposing the invariance of the normal (stable) bundle of K(θ), denoted by N(θ),
we have the following invariance equation

DF(K(θ))N(θ) = N(f (θ))ΛN (θ), (12)

where ΛN (θ) denotes the linearised dynamics over N(θ).
In order to express in a more compact way the invariance equations (11)

and (12)we introduce thematricesP(θ) = (
DK(θ) N(θ)

)
, andΛ(θ) = Diag(Df (θ),

ΛN (θ)):
DF(K(θ))P(θ) = P(f (θ))Λ(θ). (13)

Therefore, if we express the linear map DF(K(θ)) in the basis provided by P(θ), it
becomes diagonal. Taking profit of this adapted invariant frame, a Newton method is
performed. As it is usual in Newtonmethods, we assume given the approximation for
the unknowns K(θ), f (θ), N(θ) and ΛN (θ) and we compute better approximations:

K̄(θ) = K(θ) + ΔK(θ), (14)

f̄ (θ) = f (θ) + Δf (θ), (15)

N̄(θ) = N(θ) + ΔN(θ), (16)

Λ̄N (θ) = ΛN (θ) + ΔΛN (θ). (17)

To determine the correction terms ΔK(θ), Δf (θ), ΔN(θ), ΔΛN (θ), the Newton
method performed is split in two substeps. In the first one, we look for corrections
ΔK(θ) andΔf (θ).We begin by substituting expressions (14) and (15) into the invari-
ance equation (10), and then expanding in Taylor series around K and f respectively
and neglecting quadratically small terms, we obtain
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0 = E(θ) + DF(K(θ))ΔK(θ) − DK(f (θ))Δf (θ) − ΔK(f (θ)) (18)

where E(θ) = F(K(θ)) − K(f (θ)) is the error for the approximated solution.
Writing Eq. (18) in the adapted frame provided by P(θ), that is, writing

ΔK(θ) = P(θ)ξ(θ), we obtain the following cohomological equation

η(θ) = Λ(θ)ξ(θ) − ξ(f (θ)) −
(

Δf (θ)

0

)

where η(θ) = −(P(f (θ)))−1E(θ) is the error of the approximate solution in the
adapted frame. η(θ) is a vector which has tangent and normal components, each of
them having different equations

ηT (θ) = ΛT (θ)ξT (θ) − ξT (f (θ)) − Δf (θ),

ηN (θ) = ΛN (θ)ξN (θ) − ξN (f (θ)),

where unknowns ξT and ξN , can be computed separately by means of a fixed point
method.

So far, we have find the corrections ΔK(θ) and Δf (θ). Then one can proceed
to the second substep of the Newton method. Analogously to the first substep, by
substituting the Eqs. (16) and (17) in the invariance equation (12) and applying the
same methodology as in the first substep one can find the new corrections for the
normal bundleΔN(θ) and its linearised dynamicsΔΛN (θ). See [5] for more details.

We have reviewed the principal steps of the method. Next we are going to provide
some details about the computation of the initial seeds for the Newton method in our
problem. For a small perturbation, one can use as initial seed the invariant curve for
the unperturbed system. Having an unperturbed system which displays a limit cycle
γ (t) of period T , we can define θ = t

T as an angular variable which parameterizes the
limit cycle Γ0(θ) = γ (θT). Therefore, as initial seed for the parameterization K and
the dynamics on it when A is small we will take K0(θ) = Γ0(θ) and f0(θ) = θ + T ′

T .
In order to find an initial seed for the normal bundle and its dynamics, we need to

compute the derivative of the limit cycle respect its normal bundle direction. For that
aimwe use methods in [10], which provide an analytical solution for the value of that
derivative. In particular they parameterize the stable manifoldM of the unperturbed
limit cycle γ by using an angular variable θ over the limit cycle and a variable σ

whichmoves in the transverse direction to the limit cycle. Dynamics of both variables
θ and σ are given by:

θ̇ = 1/T ,

σ̇ = λσ/T ,
(19)

where T and λ are the period and the characteristic exponent of the limit cycle γ

respectively. By using variables θ and σ we look for a parameterization for M
K(θ, σ ) such that, by (19):
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(
1

T
∂θ + λσ

T
∂σ

)
K(θ, σ ) = X(K(θ, σ )), (20)

where X is the vector field (1). Expanding K(θ, σ ) one gets:

K(θ, σ ) = K0(θ) + σK1(θ) + O(σ 2), (21)

were it is clear that K0 = Γ0, and by using (19) it is easy to see that

F(K(θ, σ )) = K

(
θ + T ′

T
, σe

λT ′
T

)
, (22)

and therefore, differentiating (22) respect to σ :

∂F(K(θ, σ ))

∂σ |σ=0
= DF(K0(θ))K1(θ) = e

λT ′
T K1(θ), (23)

and comparing expressions (23) and (12) it is clear that over the unperturbed limit

cycle, N(θ) = K1(θ) and ΛN (θ) = e
λT ′
T .

In [10] is demonstrated that to obtain K1(θ) is only necessary to compute the fun-
damental matrixΦ(t) (Φ(0) = Id), of the variational equations on the periodic γ (t).
Then, if we denote by v the eigenvector of the monodromy matrix Φ(T) associated
to the eigenvalue eλ, K1(θ) is given by K1(θ) = e−λθΦ(Tθ)v.

In order to explain rotation number discontinuities we apply this method to com-
pute invariant curves for system (4) which complete the bifurcation diagram analysis
in Fig. 7. If we fix T ′

T = 0.965 we expect to cross a SN bifurcation for an amplitude
ASN � 0.014. This is exactly what Fig. 8 shows: for a value of A = 0.01 < ASN there
exists an invariant curve whose dynamics have no crossings with the fixed points of
f (θ) = θ . By contrast for A = 0.02 > ASN two crossings appear between f A(θ) and
f (θ) = θ indicating the presence of two fixed points over the invariant curve. This
can be seen in another way when looking at the rotation number results: for A = 0.01
rotation number was different from 1, whereas it was equal to 1 for A = 0.02 which
showed fixed points.

By contrast when fixing T ′
T = 0.85 a NS bifurcation is expected to be crossed

at A � 0.062. This is exactly what Fig. 9 shows: as the amplitude is increased, the
invariant curve shrinks, but there are no crossings between the dynamics f A(θ) and
the line of fixed points. These results are consistent with rotation number results in
Fig. 6. When looking at values of ρ at T ′

T = 0.85, when A = 0.05 < ANS a rotation
number different from one appears as it is expected in an invariant curve with no
fixed points over it. By contrast, for A = 0.07 > ANS as there is no invariant curve,
rotation number calculations do not work. Nevertheless, a value for ρ(0.85) = 1 was
computed. This result is a consequence of having a fixed point dynamics calculated
assuming that an orientation preserving map is defined. So, although the dynamics
tend to a fixed point we assume that each iteration of the map gives a complete
revolution before returning to the fixed point.
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Fig. 8 (Left) Invariant curve for the stroboscopic map with different amplitudes and T ′
T = 0.965.

(Right) Dynamics f (θ) over the invariant curve

4 Dynamics of the Stroboscopic Map

Section3was devoted to the introduction of the stroboscopicmap, its invariant objects
and its bifurcations, providing techniques to compute all of them. In this section
we aim at using all the tools provided in Sect. 3 to give a full description of the
stroboscopic map dynamics for the perturbed system (4) close to the 1:1 phase-
locking area by describing the evolution of all invariant objects of the system. Finally,
will distinguish asynchronous from synchronous areas and study its implications for
neuroscience.
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Fig. 9 (Left) Invariant curve for the stroboscopic map with different amplitudes and T ′
T = 0.85.

(Right) Dynamics f (θ) over the invariant curve

4.1 Phase Space Analysis

As the bifurcation analysis in Fig. 7 shows, there exist two possible bifurcations
depending on the period T ′ and the amplitude of the perturbation: a Neimark-Sacker
(NS) and a Saddle-Node (SN) bifurcation.Moreover, a Bogdanov-Takens bifurcation
occurs at (A, T ′

T ) � (0.023, 0.9388) delimiting the NS and SN bifurcation curves.
As different bifurcations will generate different dynamics, we will present phase
portraits for the stroboscopic map at the crossing of both bifurcations in order to
provide a description of the dynamics of the system (4) close to resonance 1:1. More
precisely, we will restrict the analysis of dynamics to the range of T ′

T values that
we have shown in Fig. 7, this is from 0.8 to 1 where the rotation number presented
discontinuities.

For values of T ′ such that 0.9388 < T ′
T < 1, the phase portrait for system (4) can

be seen in Fig. 10. In region A1, the attracting invariant curve ΓA generated from
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D

Fig. 10 Dynamics when a Saddle-Node bifurcation is crossed. Fixed points and invariant curves
were computed using provided numerical methods

unperturbed limit cycle γ has no fixed points of FA, and an unstable focus P1 exists
inside ΓA. Once the Saddle-Node bifurcation (solid blue line) is crossed (region B),
there appear two fixed points on the invariant curve ΓA: a stable node P2 and a saddle
P3. The invariant curve consists of the union of the saddle P3, its unstable invariant
manifolds, and the stable node P2. When increasing the amplitude (region C), P1

becomes an unstable node (dashed gray line). If the amplitude is increased further,
P1 will coalesce with P3 in a unstable Saddle-Node bifurcation (dashed blue line)
leaving the stable node P2 as the unique fixed point (region D). As one may note it
is possible to pass from area A1 to area C, without passing from B. When entering in
the area A2 the unstable focus P1 can become an unstable node before crossing the
SN bifurcation.

For values of T ′ such that 0.8< T ′
T < 0.9388, the phase portrait for system (4) can

be seen in Fig. 11. The attracting invariant curve ΓA has no fixed points of FA, and
an unstable focus P1 exists inside ΓA (region A). As the amplitude A is increased,
this situation persists until we reach the Neimark-Sacker bifurcation (green curve),
where the curveΓA collapses withP1 and disappears whileP1 becomes a stable focus
(region B).
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Fig. 11 Dynamics when aNeimark-Sacker bifurcation is crossed. Fixed points and invariant curves
were computed using provided numerical methods

Phase space analysis performed gives a fully understanding of the dynamics for
the perturbed system (4), demonstrating the presence of a fixed point for the map
FA and thus explaining discontinuities and results for rotation number. For a given
amplitude, discontinuities in the rotation number are expected to appear for the exact
value of T ′

T for which a NS bifurcation appears.

4.2 From Synchronous to Asynchronous Behaviour

As fixed points for the stroboscopic map correspond to periodic orbits of the sys-
tem (4), the disappearance of stable fixed points across bifurcations separates the
synchronous from the asynchronous regime. Computing the bifurcation curves of
system (4) is the most natural way for delimiting and studying a given phase locking
relationship. In Fig. 12 we show the stable solutions for a synchronous and an asyn-
chronous state. It can be seen how the phase or time lag between the system and the
perturbation is constant in the synchronous regime whereas it is not the case in the
asynchronous.

As various theories suggest synchronybetweenoscillating activity of twoneuronal
populations may have very important implications in neural communication [13]. In
particular, this time lag difference may underlie a possible mechanism for selection
of transmitted information [8].
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Fig. 12 (Top) Synchronous solution of system (4) for A = 0.02 and T ′
T = 0.965. (Bottom) Asyn-

chronous solution of system (4) for A = 0.04 and T ′
T = 0.85

5 Summary

We have considered a periodic perturbation of the Wilson–Cowan equations and we
have looked for synchronous and asynchronous regimes. In particular, we have stud-
ied phase locking relationships through the rotation number. Computations of this
magnitude showed discontinuities which have been understood through the compu-
tation of the main invariant objects (fixed points and invariant curves) of the strobo-
scopic map close to the resonance 1:1. We have shown how powerful computational
methods for invariant curves provide a further understanding of the dynamics gen-
erated by a periodic perturbation. Thus, this work aims at providing powerful tools
to study interactions of brain rhythms in the brain.

Acknowledgements A.P, G.H and T.S acknowledge financial support from the SpanishMINECO-
FEDER Grants MTM2012-31714, MTM2015-65715-P and the Catalan Grant 2014SGR504.



Computation of Invariant Curves … 81

References

1. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University
Press, Cambridge (1990)

2. Berger, H.: Über das elektrenkephalogramm des menschen. Arch. Psychiat. Nerven. 87(1),
527–570 (1929)

3. Borisyuk, R.M., Kirillov, A.B.: Bifurcation analysis of a neural network model. Biol. Cybern.
66(4), 319–325 (1992)

4. Buzsáki,G.,Draguhn,A.:Neuronal oscillations in cortical networks. Science 304(5679), 1926–
1929 (2004)

5. Canadell, M., Haro, A.: Parameterization method for computing quasi-periodic reducible nor-
mally hyperbolic invariant tori. In: F. Casas, V. Martínez (eds.) Advances in Differential Equa-
tions and Applications, vol. 4, pp. 85–94. Springer, Berlin (2014)

6. Dayan, P.,Abbott, L.F.: TheoreticalNeuroscience.ComputationalModelingofNeural Systems.
MIT Press, Cambridge (2001)

7. Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal
coherence. Trends Cogn. Sci. (Regul. Ed.) 9(10), 474–480 (2005)

8. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal syn-
chronization by selective visual attention. Science 291(5508), 1560–1563 (2001)

9. Gambaudo, J.M.: Perturbation of a Hopf bifurcation by an external time-periodic forcing. J.
Differ. Equ. 57(2), 172–199 (1985)

10. Guillamon, A., Huguet, G.: A computational and geometric approach to phase resetting curves
and surfaces. SIAM J. Appl. Dyn. Syst. 8(3), 1005–1042 (2009)

11. Haro,À., Canadell,M., Figueras, J.L., Luque,A.,Mondelo, J.M.: The ParameterizationMethod
for Invariant Manifolds. Springer, Berlin (2016)

12. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly connected neural networks. In: Mardsen, J.E.,
Sinovich, L., John, F. (eds.) Applied Mathematical Sciences, vol. 126. Springer Science &
Business Media, New York (1997)

13. Niebur, E., Hsiao, S.S., Johnson, K.O.: Synchrony: a neuronal mechanism for attentional selec-
tion? Curr. Opin. Neurobiol. 12(2), 190–194 (2002)

14. Pinto, D.J., Brumberg, J.C., Simons, D.J., Ermentrout, G.B., Traub, R.: A quantitative popula-
tionmodel ofwhisker barrels: re-examining theWilson-Cowan equations. J. Comput.Neurosci.
3(3), 247–264 (1996)

15. Roberts, M.J., Lowet, E., Brunet, N.M., Ter Wal, M., Tiesinga, P., Fries, P., De Weerd, P.:
Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching.
Neuron 78(3), 523–536 (2013)

16. Seara, T.M., Villanueva, J.: On the numerical computation of Diophantine rotation numbers of
analytic circle maps. Physica D 217(2), 107–120 (2006)

17. Simó, C.: On the analytical and numerical approximation of invariant manifolds. In: Les Méth-
odes Modernes de la Mécanique Céleste. Modern Methods in Celestial Mechanics, vol. 1, pp.
285–329 (1990)

18. Tiesinga, P., Sejnowski, T.J.: Cortical enlightenment: are attentional gamma oscillations driven
by ING or PING? Neuron 63(6), 727–732 (2009)

19. Veltz, R., Sejnowski, T.J.: Periodic forcing of inhibition-stabilized networks: nonlinear reso-
nances and phase-amplitude coupling. Neural. Comput. 27(12), 2477–2509 (2015)

20. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of
model neurons. Biophys. J. 12(1), 1–24 (1972)



Part II
Optics



Solitary Waves on Graphene Superlattices

Francisca Martin-Vergara, Francisco Rus and Francisco R. Villatoro

Abstract This chapter reviews the basic theoretical aspects of the propagation of
solitary electromagnetic waves in graphene superlattices, a one atom thick sheet of
graphene deposited on a superlattice, made by several periodically alternating layers
of SiO2 and h-BN. The electronic band structure of graphene and the techniques
of band gap engineering are briefly presented. The analysis of the electronic prop-
erties of graphene superlattices by using both the transfer matrix method and the
Kronig–Penny model are summarized. The nonlinear wave equation for the vector
potential of the electromagnetic wave field is derived. This graphene superlattice
equation (GSLeq) generalizes the sine-Gordon equation (sGeq). Hence, it also has
kink and antikink solutions propagating at a constant speed. There is no closed-form
expression for their shape. A straightforward asymptoticmethod is applied in order to
analytically approximate its shape. The interactions of kinks and antikinks is studied
by using a numerical method, the Strauss–Vázquez, which is a conservative, finite
difference scheme. This numerical method is second-order accurate in both space
and time, and nonlinearly stable, exactly conserving a discrete energy. Extensive
numerical results for the kink–antikink interactions are presented as a function of a
asymptotic parameter. For small values of this parameter, the interaction is appar-
ently elastic, without noticeable radiation, being very similar to that expected for
the sGeq. For large values of the asymptotic parameter, the inelasticity of the inter-
action results in the emission of wavepackets of radiation. In summary, the whole
set of results suggest that the GSLeq behaves as a nearly integrable perturbation of
the sGeq. Consequently, graphene superlattices can be used to study nonlinear wave
phenomena with electromagnetic waves in the THz scale.

F. Martin-Vergara (B) · F. Rus · F.R. Villatoro
Dept. Lenguajes y Ciencias de la Computación, Escuela de Ingenierías Industriales,
Universidad de Málaga, Ampliación del Campus de Teatinos, 29071 Málaga, Spain
e-mail: fmarver@uma.es

F. Rus
e-mail: rusman@lcc.uma.es

F.R. Villatoro
e-mail: villa@lcc.uma.es

© Springer International Publishing AG 2018
J. F. R. Archilla et al. (eds.), Nonlinear Systems, Vol. 2, Understanding
Complex Systems, https://doi.org/10.1007/978-3-319-72218-4_4

85



86 F. Martin-Vergara et al.

Keywords Topological solitons · Kinks · Sine–Gordon equation · Nonlinear
Klein–Gordon equation · Graphene superlattices · Plasmonics · THz
electromagnetic waves

1 Introduction

Graphene is a two-dimensional (2D) allotrope of carbon isolated in 2004 by the
research group of Andre K. Geim and Konstantin S. Novoselov [18], a breakthrough
awarded with the Nobel Prize in Physics 2010. This extraordinary material has
remarkable mechanical, heat conduction, and electrical conduction properties. Some
researchers consider that it can be the future of electronic and optoelectronic silicon
industry. However, current devices are based on semiconductors, materials with a
band gap, but graphene is gapless, a semimetal. The gap is a region of forbidden
energies between the maximum energy of the valence band and minimum one of the
conduction band. Fortunately, a gap can be engineered in graphene, for example, by
placing on top of a properly selected substrate [29]. Thanks to this design transistors
and other optoelectronic devices have been developed.

The non-linear electrodynamic response of 2D electrons and holes in graphene
shows higher harmonics generation [16, 17]. The most relevant application is the
generation of terahertz (THz) radiation by using a graphene superlattice [20]. This
structure is formed by a graphene sheet deposited on periodically alternating strips
of silicon dioxide (SiO2, or any material that does not affect the band structure of
graphene) and hexagonal boron nitride (h-BN, or any other material that introduces
a band gap , like silicon carbide, SiC). The h-BN (SiC) layers are located so that its
hexagonal crystal lattice is under the hexagonal crystal lattice of graphene so a band
gap of up to 0.053 eV (0.26 eV) appears in the band structure of graphene.

Nonlinear solitary electromagnetic waves can propagate in a graphene superlat-
tice subjected to sinusoidal electromagnetic radiation if radiation frequency is much
larger than the plasma frequency, as shown by S.V. Kryuchkov and E.I. Kukhar’
[9, 12]. By using the expression for the dimensionless energy of electron in the
graphene superlattice obtained inRef. [28], the nonlinear d’Alembert equation for the
amplitude of the transversal component of the vector potential of the electromagnetic
wave field results in a sine-Gordon equation (sGeq) [10]. Such equation propagates
both cnoidal (written in terms of Jacobi elliptic functions) and sinusoidal waves.

For strongfields, a generalization of the sine-Gordon equation has beenobtained in
Ref. [11], hereon referred to asGrapheneSuperlattice equation (GSLeq), also referred
to as Kryuchkov–Kukhar equation (KKeq). This chapter presents an asymptotic
approximation to the shape function of kinks and antikinks of this equation. The
method uses an ansatz based on the corresponding solutions of the sGeq. The study
of the interactions of kinks and antikinks require the use of numerical methods.
For illustration purposes only the Strauss–Vázquez method [24] is presented. This
second-order method in space and time exactly conserves a discrete analog of the
energy of the GSLeq, being nonlinearly stable. This numerical method is used to
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assess the validity of the asymptotic solution. Finally, someexamples of kink-antikink
interactions are presented.

The contents of this chapter are as follows. Section2 briefly reviews the electronic
properties of graphene, including its gapless band structure and its gap engineering
when placed on a proper substrate. Ratnikov’s graphene superlattice is reviewed in
Sect. 3, where the corresponding dispersion relation is derived using two procedures,
a Kronig–Penney model for piecewise constant band gaps and a wavefunction over-
lapping method for a general modulation of the band gap. Both procedures result in
the same approximation to the dispersion relation for low energy electrons. It is used
in Sect. 4 to obtain the graphene superlattice equation for the nonlinear propagation
of electromagnetic waves. The solitary waves solutions of this equation are asymp-
totically approximated in Sect. 5. A conservative, finite difference, numerical method
is presented in Sect. 6, where its main properties are discussed. Section7 is devoted
to a brief summary of the numerical results obtained after an extensive analysis of the
interactions between kinks and antikinks of the GSLeq. Finally, Sect. 8 summarizes
our chapter and includes some further research to be done in the electromagnetic
propagation of nonlinear waves in graphene superlattices.

2 Graphene

Graphene is made out of carbon atoms arranged on a honeycomb lattice with a dis-
tance ã = 0.142nm between nearest neighbor carbon atoms. This hexagonal struc-
ture is not a Bravais lattice, but it can be understood as a triangular lattice with two
atoms in the unit cell (also as two overlapping triangular sublattices). Each carbon
atom has four valence electrons; in graphene, three are in sp2 hybridized orbitals
forming strong covalent bonds with neighboring atoms, and the fourth one is in a
2pz orbital forming π bonds. The electronic properties of graphene at low energies
depend only on these π electrons that move freely on the lattice. Let us briefly review
the band structure of graphene, the Dirac equation description for the carriers, and
the basis of band gap engineering [2].

2.1 Gapless Graphene

The electronic band structure of graphene was first determined in 1947 by Philip R.
Wallace [25] in order to understand graphite. The standard method to calculate the
band structure of a solid is the use of the single electron approximation introduced in
1928 by Felix Bloch.Wallace used a further simplification, the tight-binding approx-
imation (TBA), also referred to as linear combination of atomic orbitals (LCAO),
developed by Gregory H. Wannier en 1937. In the TBA, the electrons are localized
around the atoms of the lattice and electronic conduction results from the hopping of
the electrons both to nearest (nn) and next nearest neighbor (nnn) atoms. In graphene,



88 F. Martin-Vergara et al.

electrons hop in the same sublattice (to nnn atoms) with hopping energy Et ′ ≈ 0.3
eV, which it is smaller than the Et ≈ 3 eV for hopping to a nn atom (between dif-
ferent sublattices). This process is described by a 2 × 2 Hamiltonian matrix HI J (p),
where I, J ∈ {A, B} are the labels of the two sublattices, and p is the momentum
of the electrons. In graphene, both sublattices are identical, so HAA(p) = HBB(p);
additionally, the complex conjugate equalityHAB(p) = HBA(p)∗ holds by symmetry.
After taking the Fourier transform of the Hamiltonian matrix HI J (k) and applying
the Bloch theorem, the final result is given by [25]

E±(k) = ±Et

√
3 + f (k) − Et ′ f (k) , (1)

f (k) = 2 cos
(√

3 ky ã
)

+ 4 cos

(√
3

2
ky ã

)

cos

(
3

2
kx ã

)
,

where the plus sign applies to the band above the Fermi level, the conduction (π∗)
band for electrons, and the minus sign to that below the Fermi level, the valence (π )
band for holes. Figure1 shows these two bands [2].

The key feature of the graphene band structure is the appearance of Dirac points
where the π and π∗ bands touch each other in a double cone structure, referred to
as Dirac cones. Figure1 shows a zoom of one of the six Dirac cones. Strictly, only
two of the Dirac points must be shown. The carbon lattice in the coordinate space is
transformed into the reciprocal lattice in momentum coordinates. Correspondingly,
the position of the two identical carbon atoms in the unit cell transform into two
momentum points K and K ′ at the corners of the so-called Brillouin zone. The
two bands with energy closer to the Fermi level cross exactly at these points since
HAA(k) = HBB(k), hence the Dirac points are located at K and K ′. The energy
dispersion relation (1) for low energy electrons (less than ≈ 1 eV around the Fermi
energy) is approximately linear (cone shaped). Concretely, it is given by

Fig. 1 Energy spectrum of the graphene calculated from its dispersion relation. Reproduced with
permission from [2]. Copyright (2009) by the American Physical Society
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E±(k) ≈ ±� υF (x) |k|, (2)

where k is the momentum measured relatively to either K or K ′ Dirac points, and
the± sign corresponds to the conduction and valence bands, respectively. This linear
dispersion relation differs from the parabolic dispersion usual in solid-state physics,
where the energy E(k) = |k|2/(2m∗), withm∗ the effective electron mass. In such a
case, the speed υ = k/m∗ = √

2 E/m∗ changes substantially with energy. Instead,
the linear dispersion relation (2) corresponds to massless quasiparticles propagating
with the Fermi speed υF (x) in graphene. This fact explains its very high electrical
and thermal conductivities.

The energy dispersion (2) resembles the energy of ultra-relativistic particles, like
massless neutrinos. In fact, the quasiparticles in graphene behave as massless, chiral,
Dirac fermions, as discovered byWallace [25]. They mimick the physics of quantum
electrodynamics formassless fermions, except that theymovewithFermi speedυF =
3 Et ã/2 � 1 × 106 m/s, i.e. 300 times smaller than the speed of light in vacuum.
The appearance of the Dirac equation in graphene electronics can be explained as
illustrated in Fig. 2 [4, 6]. The low energy quasiparticles have a momentum localized
around a Dirac point, hence they have a (valley) pseudospin ξ , given by ξ = +1 for
the K point (sublattice A) and ξ = −1 for the K ′ point (sublattice B). They also
have a chirality η defined by the normalized projection of this pseudospin onto the
momentum, given by η = +1 (= −1) for the conduction band, E > EF , in the K
(K ′) point and η = −1 (= +1) for the valence band, E < EF , in the K (K ′) one; i.e.
electrons (holes) are right- (left-)handed near K point and left- (right-)handed near
K ′ one. Since the origin of the Dirac cones is the crossing of two bands associated
to the π electrons, when a quasiparticle cross the Fermi level it cannot leave the
original band, so it cannot change its chirality. Accordingly, a helicity (or absolute
chirality) can be defined and fixed for each quasiparticle: they are right-handed for
η = +1 and left-handed for η = −1. In analogy with massless neutrinos, graphene
quasiparticles have one-half pseudospin and fixed helicity, being governed by the
massless Dirac equation. And their wavefunction has four components labelled by
(ξ, η), grouped into two pseudospinors labelled by ξ .

Fig. 2 Relation between
band index λ = ξ η,
pseudospin ξ , and chirality η

in graphene. Reproduced
with permission from [6].
Copyright (2011) by the
American Physical Society

0

η = −1

η = −1 η = +1

η = +1
conduction
band

band
valence

K K’(ξ = +1) (ξ = −1)

(λ = +1)

(λ = −1)

en
er
gy

momentum



90 F. Martin-Vergara et al.

The electronic structure for low momentum quasiparticles is governed by the
Dirac equation H(p) Ψ (x) = E Ψ (x), with Hamiltonian

H(p) = υF p · σ = υF (px σx + py σy) ,

where p = −i � � is the momentum operator (pi = −i � ∂i ), and σi are the Pauli
matrices

σ0 =
(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Hence the Dirac-like Hamiltonian is given by

H =
(

0 −i � υF (∂x − i ∂y)
i � υF (∂x + i ∂y) 0

)
. (3)

In momentum space, the two-component pseudospinors for the momentum around
K and K ′ are given by the Ψ±,K (k) and Ψ±,K ′(k), respectively, where the ± signs
correspond to the eigenenergies E = ±υF |k|.

2.2 Gapped Graphene

Graphene is gapless, but, fortunately, there are several routes to induce and control
the appearance of a gap in graphene. The most practical is the interaction with a
substrate having a honeycomb lattice in close alignment to that of the graphene. The
mismatch led to a moiré pattern that breaks the symmetry between the graphene
sublattices, i.e. the two carbon atoms in the unit cell, causing HAA(k) �= HBB(k);
consequently, the π and π∗ bands do not cross at the K and K ′ points, a gap opens,
and the quasiparticles adquire an effectivemass. TheDiracHamiltonian for graphene
changes to H + m∗ υF σz , with an energy spectrum at Dirac points given by

E±(k) ≈ ±� υF

√
|k|2 + (m∗)2 , (4)

featuring a band gap of Eg = 2m∗ υ2
F at charge neutrality. This value is the energy

required to create an electron-hole pair.
A band gap opens in graphenewhen properly aligned over a substrate of hexagonal

boron nitride (hBN). The honeycomb lattice of hBN is isomorph of that of graphene,
but with boron and nitrogen atoms occupying the A and B sublattices; in fact, hBN
has a large band gap of 5.97eV due to the different onsite energy of the B and N
atoms. Graphene on hBN is three times less rough than on silicon dioxide (SiO2),
so it was originally proposed as a better substrate; moreover, for a random crystal-
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lographic orientation of the graphene to this substrate no appreciable gap opening
is measured [3]. However, when the hexagonal lattices of both materials are close
to their orientational alignment, the natural 1.8% mismatch acts and a gap opens;
ab initio calculations estimate a maximum gap of 53 meV [5]. This gap was first
experimentally measured in 2012 [27]. Unfortunately, the gap measured in other
experiments, even with a fine control of the angular alignment of both crystals, show
a large variability and the values are usually smaller than 20meV. The source of
this intriguing conundrum has been recently explained [8]. The application of the
theory of electronic many-body exchange interactions explain the observed gaps as
a result of carbon atom relaxation and electron-electron interactions. Moreover, the
electron-electron interactions introduce a variation of the Fermi velocity [26].

There are other routes to engineering a band gap in graphene, achieving values
from about 10meV up to 2.3eV, as reviewed in Ref. [7]. In relation with the graphene
superlattice discussed in this chapter, themost relevant is the large bandgap that opens
when graphene is grown epitaxially on silicon carbide (SiC), of up to 300meV, with
good parabolic energy bands [29]. Let us emphasize that other routes have also been
used in the design of graphene superlattices. For example, the tunable gap up to
250meV appearing in bi- and trilayer graphene with broken sublattice symmetry.
The gap induced by periodic modulation of the electronic structure due to molecular
adsorption onto a graphene sheet, with generates band gaps of up to 206meV. And
even the use of graphene nanoribbons, that result in the largest measured band gap
of about 2.3eV in a 7-hexagon width graphene nanoribbon [7].

3 Graphene Superlattices

The spatial modulation of the band gap in graphene can be attained by placing a
sheet on a substrate fabricated from different dielectrics, i.e. using a graphene super-
lattice (GSL). Current literature presents a large number of proposals, but in this
chapter only the GSL introduced in 2009 by Pavel V. Ratnikov [21] is considered. A
one-dimensional (1D) graphene superlattice given by a graphene monatomic layer
deposited on a strip substrate combined from SiO2 (or any other dieletric not affect-
ing the band structure of graphene) and hBN (or any other substrate that gaps the
graphene, like SiC). The simplicity of the manufacture and control of the periodicity
of Ratnikov’s GSL is accompanied by the easy calculation of the band structure.

3.1 Piecewise Constant Gap Modulation

Figure3 shows Ratnikov’s GSLwith a piecewise constant modulation of the parame-
ters of the superlattice. The band structure can be calculated by using of the transfer
matrix method [21]. Here, we will use a Kronig–Penney model based on Dirac equa-
tion [15]. Recently, the variation of the Fermi velocity due to electron-electron
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Fig. 3 Top: graphene layer on the striped substrate composed of silicon oxide and hexagonal
boron nitride. Bottom: schematic diagram showing the electronic energy spectrum in graphene SL.
Reproduced with permission from [15]. Copyright (2012) by the American Physical Society

interactions in graphene on hBN has been taken into account by several authors
[14, 22]. We also consider it in this section.

The massless fermion quasiparticles are subjected to a position-dependent band
gap and band shift in the superlattice period l. Hence, the electronic structure for low
momentum quasiparticles is governed by the Dirac-like Hamiltonian

H = υF (x) (px σx + py σy) + Δ(x) σz + V (x) σ0

=
(

V (x) + Δ(x) −i � υF (x) (∂x − i ∂y)
i � υF (x) (∂x + i ∂y) V (x) − Δ(x)

)
, (5)

where Δ(x) is the half-width of the band gap, and V (x) is the shift of the forbidden
band center in the gapped graphene with respect to the Dirac point in the gapless
graphene. The l-periodic functions Δ(x) and V (x) are incorporated into Eq. (5) as
a scalar potential and a time-like vector potential, respectively. For simplicity, it is
assumed that Δ(x), V (x), and υF (x) are piecewise-constant functions.

The solution of the Dirac equation HΨ (x, y) = E Ψ (x, y), thanks to transla-
tion invariance in the y direction, can be separated into Ψ (x, y) = exp(i ky y) Ψ (x),
where the two-component pseudospinor function Ψ (x) satisfies the differential
equation

i
dΨ

dx
= h(x) Ψ (x) , (6)
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with

h(x) = σ−1
x σy ky + σ−1

x σ0
V (x) − E

� υF (x)
+ σ−1

x σz
Δ(x)

� υF (x)

= i σz ky + σx
V (x) − E

� υF (x)
− i σy

Δ(x)

� υF (x)

=
⎛

⎜
⎝

i ky
V (x) − E − Δ(x)

� υF (x)
V (x) − E + Δ(x)

� υF (x)
−i ky

⎞

⎟
⎠ . (7)

The Bloch’s theorem states that the solution of the Eq. (6) in the l-period holds
Ψ (l) = exp(i k l) Ψ (0), where k is the Bloch wave vector determined by the disper-
sion relation of the graphene superlattice, to be calculated as follows. The formal
solution of Eq. (6) is

Ψ (x) = T(x; x0) Ψ (x0) , T(x; x0) = exp (−i (x − x0) h(x)) , (8)

where h(x) is constant when both points x and x0 belong to the same space-
homogeneous region, i.e. either h(x) = h(0+) for 0 < x0 < x < a, with Δ(x) =
V (x) = 0, and υF (x) = υF,0a , or h(x) = h(l−) for a < x0 < x < l, with Δ(x) =
Δ0, V (x) = V0, and υF (x) = υF,al .

The solution of Eq. (6) in the l-period is given by

Ψ (l) = T(l; 0) Ψ (0) = T(l; a)T(a; 0) Ψ (0) .

The exponential of the matrix h(x) can be easily calculated taking into account that

h2(x) = K 2(x) σ0 , K 2(x) = (V (x) − E)2 − Δ2(x)

(� υF (x))2
− k2y . (9)

Hence, all even powers of the matrix h are proportional to σ0, while all odd powers
are proportional to h itself. Therefore, a straightforward calculation shows that

T(x; x0) = σ0 cosα(x) − i h(x)
sin α(x)

K (x)
, (10)

where α(x) = (x − x0) K (x). In matrix form we have

T(a; 0) = exp(−i a h(0+))

=

⎛

⎜
⎜
⎝

cos(kx a) + ky
kx

sin(kx a) i sin(kx a)
E

� υF,0a kx

i sin(kx a)
E

� υF,0a kx
cos(kx a) − ky

kx
sin(kx a)

⎞

⎟
⎟
⎠ ,



94 F. Martin-Vergara et al.

where

kx = K (0+) = 1

� υF,0a

√
E2 − (� υF,0a ky)2 ,

and, similarly,

T(l; a) = exp(−i ā h(l−))

=

⎛

⎜
⎜
⎝

cos(qx ā) + ky
qx

sin(qx ā) −i sin(qx ā)
V0 − E − Δ0

� υF,al qx

−i sin(qx ā)
V0 − E + Δ0

� υF,al qx
cos(qx ā) − ky

qx
sin(qx ā)

⎞

⎟
⎟
⎠ ,

where ā = l − a, and

qx = K (l−) = 1

� υF,al

√
(V0 − E)2 − Δ2

0 − (� υF,al ky)2 .

Note that for (V0 − E)2 − Δ2
0 < (� υF,al ky)2, the wave number qx is imaginary, and

in such a case usually qx is replaced by i |qx |.
The dispersion relation for the graphene superlattice is obtained from the Bloch

condition exp(i k l) Ψ (0) = T(l; a)T(a; 0) Ψ (0), by equating the real part of the left-
hand side and the trace of the right-hand side, i.e. 2 cos(k l) = Tr(T(l; a)T(a; 0)),
resulting in

cos(k l) = cos(kx a) cos (qx ā)

+ E V0 − E2 − υF,0a υF,al (� ky)2

�2 υF,0a υF,al kx qx
sin(kx a) sin (qx ā) . (11)

This dispersion relation is a transcendental equation for the energy E(k, ky) since
kx ≡ kx (E, ky) and qx ≡ qx (E, ky). Its solution requires numerical methods.

The detailed analysis of the dispersion relation (11) is outside the scope of this
chapter. Let us summarize the main results [1, 15, 21] in the case that the Fermi
level is between the conduction and valence bands at any V0 (valid for hBN, but
not for SiC without external dc bias). When V0 = 0, the conduction and valence
bands are located symmetrically with respect to E = 0, as in the gapless graphene.
As V0 increases, these bands gradually shift up, and the gap width at the center
(k = ky = 0) increases until a critical value V0 = Vc is reached; then the superlattice
becomes gapless with two extra Dirac points appearing in symmetric positions on
the ky-axis. Further increase of V0 results in formation of new additional cone-like
Dirac points which originate from ky = 0.

In order to perform further analytical calculations, the dispersion relation (11)
must be approximated by using some reasonable hypothesis. For low energy excita-
tions, usuallya E 
 � υF,0a , and ā E 
 � υF,al ; in such a case kx 
 ky andqx 
 ky ,
so the carriers propagate like in a periodic planar array formed by parallel nanowires;
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i.e. they only move along the gapped graphene strips, but do not move between the
gapless graphene strips [21, 28]. In such a case, the cosine and sine functions in
Eq. (11) can be linearized yielding

cos(k l) = 1 + a ā

�2 υF,0a υF,al

(
E V0 − E2 − υF,0a υF,al (� ky)

2
)

. (12)

The solution of this quadratic equation on the energy results in

E(k, ky) = Ew ±
√

Γ 2 − υF,0a υF,al �
2 k2y + ϒ2 (1 − cos(k l)) . (13)

where

Ew = V0

2
, Γ 2 = V 2

0

4
, ϒ2 = υF,0a υF,al �

2

a ā
. (14)

3.2 General Periodic Gap Modulation

Figure4 shows an arbitrary periodic modulation of the band gap for the Ratnikov’s
GSL, as considered in Ref. [11]. The Dirac equation for the electrons in the GSL is
given by (

υF (px σx + py σy) + Δ(x) σz
)

Ψ = E Ψ , (15)

where Δ(x) is an l-periodic function, not necessarily piecewise constant; for sim-
plicity we have taken V (x) = 0 and υF (x) constant. The solution of Eq. (15) can be
expanded in a linear combination of two-component pseudospinors given by

Ψ (x, y) = exp(i ky y)
∑

n

an ψn(x − n l) , (16)

whose coefficients an are determined by the Bloch theorem as an = exp(i n k l). Let
us assume that the energy Ew of the electrons at the central gapless region in the

Fig. 4 Scheme of a general
periodic modulation of the
band gap of the graphene
superlattice
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potential wells behaves as if there is no superlattice, i.e. the Dirac equation reduces
to υF px σx ψn = Ew ψn . Substracting this equation to Eq. (15) results in

∑

n

an Ĥψn = (E(k) − Ew)
∑

n

an ψn , (17)

where

Ĥ =
(

Δ(x) −i � υF ky
i � υF ky −Δ(x)

)
, ψn =

(
ψn,A

ψn,B

)
. (18)

Since Ĥ2 = (Δ2(x) + (� υF ky)2) σ0, the multiplication of both sides of Eq. (17) by
Ĥ yields

(Δ2(x) + (� υF ky)
2)

∑

n

an ψn,i = (E(k) − Ew)2
∑

n

an ψn,i . (19)

The dispersion relation is given by

∑

n

an Wn = (
(E(k) − Ew)2 − (� υF ky)

2
) ∑

n

an Sn , (20)

where

Sn = S−n =
∫ l

0
ψn,i (x − n l) ψn,i (x) dx ,

Wn = W−n =
∫ l

0
Δ2(x) ψn,i (x − n l) ψn,i (x) dx .

The dispersion relation (20) is equivalent to Eq. (11) in the piecewise constant case.
Let us approximate the dispersion relation (20) down to the same order of Eq. (13).

It is sufficient to neglect all the overlaps except those between the neighboring wave-
functions as follows

∑

n

an Sn =
∑

n

ei n k l Sn = 1 + 2
∞∑

n=1

Sn cos(n k l) ≈ 1 + 2 S1 cos(k l) ,

∑

n

an Wn =
∑

n

ei n k l Wn = a0 W0 + 2
∞∑

n=1

Wn cos(n k l) ≈ W0 + 2W1 cos(k l) .

Under this hypothesis, the dispersion relation (20) simplifies to

(E(k) − Ew)2 − (� υF ky)
2 ≈ W0 + 2W1 cos(k l)

1 + 2 S1 cos(k l)

≈ W0 − 2 (W0 S1 − W1) cos(k l) , (21)
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whose solution yields

E(k) = Ew ±
√

Γ 2 + (� υF ky)2 + ϒ2 (1 − cos(k l)) , (22)

where
Γ 2 = W0 − 2 (W0 S1 − W1) , ϒ2 = 2 (W0 S1 − W1) . (23)

4 Electromagnetic Waves

The graphene superlattice energy spectrum is nonadditive so there is a dependence of
charge carrier motions along orthogonal directions. An electromagnetic (EM) wave
normally incident on the GSL introduces an asymmetry in the charge carriers and a
dc current component orthogonal to the superlattice axis emerges [13]. As a result
nonlinear effects appear and the EMwave is described by a nonlinear Klein–Gordon
equation first obtained by Sergey V. Kryuchkov and Egor I. Kukhar’ [11].

For simplicity, let us consider that the EM field has a constant vector potential
A = (Ax , 0, 0) along the graphene superlattice axis. An electron current density arise
in the conduction band along the same axis given by

jx = −e
∑

p

f (p, t) Vx (p) , (24)

where the electron velocity Vx (p) = ∂E(p)/∂ px = (1/�) ∂E(k)/∂k is calculated
from either Eq. (13) or (22), and f (p, t) is the nonequilibrium distribution function
that solves the kinetic Boltzmann equation with a term taking into account the EM
field action. The collisionless regime is enough under the assumption that the char-
acteristic scale of variation of the electromagnetic field is large in comparison with
the de Broglie wavelength of the electron and with the period of the superlattice,
and that the characteristic time of the variation of the EM field is much less than the
free transit time of the electrons. In such a case, f (p, t) = f0(p), the equilibrium
distribution function. Hence Eq. (24) reduces to

jx = −e
∑

p

f0
(
p − e

c
A

)
Vx (p) , (25)

where the change of variables p′ = p − (e/c)A, results in

jx = −e
∑

p′
f0(p′) Vx

(
p′ + e

c
A

)
. (26)

In order to simplify the analysis, let us assume that the electron gas is nonde-
generate. This condition requires low temperatures θ 
 Γ , and that the chemical
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potential μ is such that exp((Γ − μ)/θ) � 1. Both conditions are equivalent to [11]

θ Γ

n0 �2 (υF )2
� 1 .

This condition holds for typical values of the GSL parameters, i.e. n0 = 1010 cm−2,
Γ = 0.13 eV, and υF = 108 cm/s, under low temperatures within the range 10 K

 θ 
 103 K.

For a nondegenerate electron gas, the summation over the momentum in Eq. (26)
yields

jx = −e n0
w0

ϒ2 l

�

sin α

2
√

Γ 2 + ϒ2 (1 − cosα)
, (27)

where n0 is the surface concentration of the charge carriers, w0 ≈ 0.12nm is the
width of the graphene sheet, and α = e l Ax/(� c) is the dimensionless potential of
the EM field.

The nonhomogeneous wave equation for the vector potential A, i.e.

∂2A
∂t2

− c2 ∇2 A = 4π

c
j , (28)

after the substitution of Eq. (27), yields a nonlinear Klein–Gordon equation for the
normalized potential α given by

∂2α

∂t2
− c2

∂2α

∂y2
+ ω2

pl b
2 sin α

√
1 + b2 (1 − cosα)

= 0 , (29)

where b = ϒ/Γ is a geometrical parameter, andωpl is the plasma frequency given by

ω2
pl = 2π n0 e2 l2 Γ

w0 �2
.

Hereafter, Eq. (29) is referred to as graphene superlattice equation.

5 Kinks and Antikinks

Equation (29) is a Klein–Gordon equation with periodic nonlinearity, in analogy
to the sine-Gordon, hence it has kink and antikink solutions. In order to study
these solutions by using asymptotic and numerical methods, it is convenient to start
with a nondimensionalization. By making the change of variables t ′ = ωpl b t , y′ =
ωpl b y/c, and u = α, then Eq. (29) yields
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∂2u

∂t2
− ∂2u

∂ y2
+ dG(u)

du
= 0, (30)

where the primes have been dropped and

dG(u)

du
= sin u

√
1 + b2 (1 − cos u)

. (31)

The nonlinear potential G(u) can be written as

G(u) = 2

b2

(√
1 + b2 (1 − cos u) − 1

)
,

= 2 (1 − cos u)

1 + √
1 + b2 (1 − cos u)

, (32)

where the constant of integration has been selected in order that it reduces to the
potential of the sGeq, i.e. G(u) = 1 − cos u, for b = 0.

Equation (30) is Lorentz invariant (with c = 1). Hence, a solitary wave solution
with speed v can be obtained by applying a Lorentz boost to a static solution u(y),
i.e.u(y, t) = u((y − v t)/

√
1 − v2). The static solution solves theNewton’s equation

given by
d2u

dy2
= dG(u)

du
, (33)

which reduces to a first-order differential equation of motion given by

1

2

(
du

dy

)2

= G(u). (34)

The static solutionswithfinite energy such thatu(+∞) �= u(−∞) are called topolog-
ical. Such solutions can be split into topological sectors according to their asymptotic
behaviour at y → ±∞. The potential G(u) has infinite minima at ǔn = 2π n, and
maxima at ûn = (2 n + 1) π , with n ∈ Z.

A kink in topological sector n, also referred to as either n-kink or (n, n + 1)-
solution, is a static solution monotonically connecting the asymptotic values 2π n,
and 2π (n + 1); similarly, an antikink in topological sector n, also referred to as n-
antikink or (n, n − 1)-solution monotonically connects the asymptotic values 2π n,
and 2π (n − 1). The position y0 of the kink (antikink) is that of the inflection point
ûn (ûn−1). Hence, the n-kink, or (n, n + 1)-solution, of Eq. (34) can be written in
integral form as

∫ u

ûn

dũ
√
2G(ũ)

=
∫ y

y0

d ỹ, ǔn < u < ǔn+1. (35)
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It is widely known that the 0-kink of the sGeq, viz. G(u) = 1 − cos u, is given by

∫ u

π

dû
√
2 (1 − cos û)

= log tan
u

4
= y − y0, 0 < u < 2π, (36)

whose inversion results in

uk,0(y) = 4 arctan(exp(y − y0)). (37)

Consequently, the n-kink of the sGeq is given by uk,n(y) = 2π n + uk,0(y), and its
n-antikink by ua,n(y) = 2π n − uk,0(y).

For the GSLeq, Eq. (35) reads as

∫ u

ûn

√
1 + √

1 + b2 (1 − cos ũ)

2
√
1 − cos ũ

dũ = y − y0, (38)

whose left-hand side results in a cumbersome expression written in terms of the
elliptic integral of the first kind and the complete elliptic integral of the third kind;
apparently, its inversion function cannot be written using known analytical functions.

5.1 One Asymptotic Approximation to the 0-Kink

The 0-kink of the Kryuchkov–Kukhar equation can be formally expanded as a power
series in b2, such that the leading-order term is the 0-kink of the sGeq. Instead of
using Eq. (38), it is better to use Eq. (34) since the asymptotic expansion is regular.
The idea is the substitution of

u(y) = u0(y) + u1(y) b
2 + u2(y) b

4 + O(b6), (39)

into the ordinary differential equation

du

dy
=

√
4 (1 − cos u)

1 + √
1 + b2 (1 − cos u)

, u(0) = π, (40)

and formally equate powers of b2. The leading-order results in

du0
dy

= √
2 (1 − cos u0(y)), u(0) = π, (41)

whose solution is Eq. (37), i.e.
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u0(y) = 4 arctan(exp(y)). (42)

The next order yields

du1(y)

dy
− sin u0(y)√

2 (1 − cos u0(y))
= 1

4
√
2

√
(1 − cos u0(y))3, u1(0) = 0,

(43)

whose solution is

u1(y) = −1

2
sech(y) tanh(y). (44)

Iterating this procedure by means of using a computer algebra software likeWolfram
Mathematica, the result is

u(y) = 4 arctan(exp(y))

− b2

2
sech(y) tanh(y)

+ 7 b4

96
(5 + cosh(2 y)) sech3(y) tanh(y)

− b6

2560
(1003 + 276 cosh(2 y) + 41 cosh(4 y)) sech5(y) tanh(y)

+ b8

20643840
sech8(y) (8979355 sinh(y) + 1077279 sinh(3 y)

+ 376019 sinh(5 y) + 46159 sinh(7 y)) + O(b10). (45)

Note that high-order terms can be easily calculated if required.

5.2 Another Asymptotic Approximation to the 0-Kink

Inspired by the 0-kink of the sGeq, let us introduce the ansatz

u(y) = 4 arctan(exp(v(y))), (46)

into Eq. (40) in order to obtain

dv

dy
=

√
2

1 +
√
1 + 2 b2 sech2(v)

, v(0) = 0, (47)
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where the identity

cos(4 arctan(z)) = z4 − 6 z2 + 1

(z2 + 1)2
,

has been used.
Another asymptotic expansion for the 0-kink of the GSLeq can be obtained by

introducing into Eq. (47) the expansion of v(y) in powers series of b2 given by

v(y) = v0(y) + v1(y) b
2 + v2(y) b

4 + O((b6). (48)

The leading-order results in

dv0(y)

dy
= 1, v(0) = 0, (49)

whose solution is v0(y) = y, as expected. The next order yields

dv1(y)

dy
= 1

4
sech2(v0(y)), v1(0) = 0, (50)

whose solution is

v1(y) = −1

4
tanh(y). (51)

Iterating this procedure, the result is

v(y) = y − b2

4
tanh(y) + b4

96

(
10 + 11 sech2(y)

)
tanh(y)

− b6

1920

(
168 + 104 sech2(y) + 223 sech4(y)

)
tanh(y)

+ b8

215040
(20592 + 12760 sech2(y) + 8254 sech4(y)

+ 33469 sech6(y)) tanh(y) + O(b10), (52)

to be introduced into Eq. (46) in order to obtain the 0-kink of the Kryuchkov–Kukhar
equation.

Figure5 shows the kink solution approximated by the asymptotic analysis using
Eqs. (46) and (52) for b = 0, 0.25, 0.50, 0.75, and 1.00; note that, due to the limited
graphical resolution, the plots of the asymptotic solution (45) effectively coincide
with those shown in this figure. The left plot in Fig. 5 uses the normalized coordinate
y′ (where the omitted primes are recovered) given by y′ = ωpl b y/c; the parameter
b does not influences the solution up to the graphical resolution. In order to highlight
the difference, it is necessary to return to the non-normalized y coordinate; the axis
of the right plot in Fig. 5 uses the coordinate y′/b (in fact c y′/(ωpl b)with c = 1 and



Solitary Waves on Graphene Superlattices 103

y

u(
y)

0

1

2

3

4

5

6

7
0.10
0.25
0.50
0.75
1.0

y/b
-10 -5 0 5 10 -10 -5 0 5 10

u(
y)

0

1

2

3

4

5

6

7
0.10
0.25
0.50
0.75
1.0

Fig. 5 Kink asymptotic solution calculated using Eqs. (46) and (52) for b = 0.10, 0.25, 0.50, 0.75,
and 1.0. See the main text for further explanation

ωpl = 1). The plots show that the solution sharpens as the geometrical parameter
grows, starting with the widest one for b = 0, the kink of the sGeq.

6 Numerical Method

The analysis of the kink-antikink interaction in the SGLeq requires the use of
numerical methods. The initial value problem for Eq. (30) with given initial con-
ditions u(x, 0), and ∂u(x, 0)/∂t , using the nonlinear potential (31), can be solved
numerically by either finite difference, finite element, pseudospectral, or spec-
tral methods. Let us consider in this chapter the widely used Strauss–Vázquez
method [24], originally developed for solving nonlinear Klein–Gordon equations
like Eq. (30). Let us discretize the spatial interval y ∈ [−L , L] with a uniform mesh
with nodes y j = −L + j Δy, for j = 0, 1, . . . , M , where Δy = 2 L/M , and the
time tm = m Δt , for m = 0, 1, . . ., using a fixed time step Δt . The numerical solu-
tion umj ≈ u(y j , tm) is obtained by the Strauss–Vázquez method given by

um+1
j − 2umj + um−1

j

Δt2
− umj+1 − 2umj + umj−1

Δy2
+ G(um+1

j ) − G(um−1
j )

um+1
j − um−1

j

= 0 . (53)

This finite difference scheme is second-order in space and time, being nonlinearly
stable since it exactly conserves a discrete energy. The analytical energy conserved
by Eq. (30) is given by

E(u) =
∫ (

1

2

(
∂u

∂t

)2

+ 1

2

(
∂u

∂y

)2

+ G(u)

)

dy , (54)
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where each term in the integrand is bounded by E(u) forG(u) ≥ 0.Aftermultiplying
of Eq. (53) by (um+1

j − um−1
j )/2 results that the following discrete energy

Em = Δy

2

∑

j

(
um+1
j − umj

Δt

)2

+ Δy

2

∑

j

(
um+1
j+1 − um+1

j

Δy

)2 (
umj+1 − umj

Δy

)2

+ Δy
∑

j

G(um+1
j ) + G(umj )

2
, (55)

is conserved; concretely, Em = Em−1.Hence, the scheme is nonlinearly stable, Em =
E0, for m = 1, 2, . . .. For the numerical validation of the method the conservation
of the discrete momentum [19] given by

Pm = −Δy
∑

j

(
um+1
j+1 − um+1

j−1

2Δy

) (
um+1
j − umj

Δt

)

, (56)

has also been considered. The linear stability condition for the method (53), for
G(u) = 0, is given by (

Δt

Δy

)2

< 1 + Δt2

4
.

which holds under the CFL condition, Δt/Δy < 1.
The numerical method (53) is implicit, so a nonlinear system of equations must be

numerically solved at each time step; we use Newton’s method with a relative error
in infinity norm small than 10−12 as stopping condition. This Newton’s tolerance
influences the conservation properties of the energy and momentum. Figure6 shows
the conservation of the energy Em and momentum Pm invariants for b = 0.9, with
a kink–antikink solution, both with v = 0.5, as initial condition, Δy = 0.005, and

t

E
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-E
(0
)
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-2
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2
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t
0 5 10 15 20 25 30 0 5 10 15 20 25 30

P
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(0
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10-10

-3
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-1

0

1

2
dy=0.005, dt=0.0001

Fig. 6 Conservation of the discrete energy (Em − E0 in the left plot) and momentum (Pm − P0

in the right one) for a kink–antikink solution of Eq. (30) with v = 0.5, b = 0.9, Δy = 0.005, and
Δt = 0.0001
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Δt = 0.0001. Both energy and momentum are well conserved, with an accuracy of
the order of O(10−10). Similar results are obtained for other values of b, including
b = 0, cf. the sGeq.

7 Results for the Kink-Antikink Interaction

The interaction of kink and antikink for the sGeq results in the exact kink-antikink
solution. The GSLeq is nonintegrable, so the corresponding solution should be
obtained by means of either asymptotic or numerical methods. In the second case,
the initial condition to be used is uka,n(y) = uk,n(y − y0) + ua,n(y + y0), where the
asymptotic approximation uk,0(y) for the 0-kink of the GSLeq given by Eqs. (46)
and (42) is used. This solution is a good approximation when the kink and antikink
are well separated.

Figure7 shows two three-dimensional views of the interaction of a kink and an
antikink for b = 0.5, and Fig. 8 shows snapshots of this interaction at times t = 0, 50,
80, 120, 150, and 180. Our numerical simulations indicate that there is no noticeable

Fig. 7 Three-dimensional
plots of the collision between
a kink and a antikink of the
GSLeq for v = 0.5, Δy=0.1,
Δt=0.01, and b=0.5. The top
and bottom plots are the
same but from different
views
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Fig. 8 Snapshots of the
interaction between a kink
and a antikink of the GSLeq
for v = 0.5, Δy = 0.1,
Δt = 0.01, and b = 0.5

difference between the solution in the cases with b ∈ [0, 1) up to the graphical res-
olution of these figures. The interaction proceeds as follows. The kink moves from
the left to the right approaching the antikink that moves from the right to the left.
The plots show no visible radiation before, during, or after the interaction. During
the collision the amplitude of the solution decreases down to zero, transforming the
kink-antikink solution with positive amplitude into a antikink-kink solution with
negative amplitude. In this process the kink (antikink) transforms into an antikink
(kink) with opposite velocity. The collision is not exactly elastic for b > 0, as it is
for b = 0 (sGeq). Very small radiation wavepackets are generated at the interaction
region.

Figure9 shows a vertical axis zoom of the same snapshots shown in Fig. 8 in
order to illustrate the inelastic interaction between the kink and the antikink for
b > 0. The radiation wavepackets emitted by the collision kink and the antikink
are symmetrical in shape with respect to the interaction point; they have the same
amplitude and speed, but opposite in direction of propagation. They also move faster
than the speed of the kink and the antikink. The wavepackets are not self-similar,
as in other nonlinear evolution equations [23]. Asymptotic methods can be applied
to study in the detail the shape and characteristics of the radiation generated in the
collision, but a detailed analysis is outside the scope of the chapter. Our results also
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Fig. 9 Zooms in the vertical
axis of the plots shown in
Fig. 8. The parameters of the
simulation are exactly the
same
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Fig. 10 Error difference
between the asymptotic
approximation for
Δt = 0.0001, and the
numerical solution as
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0.2, 0.5, and 0.9, for the
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v = 0.5 at t = 30
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indicate that no critical velocity is observed in the inelastic interaction of GSLeq;
the existence of a critical speed occurs in the φ4 Klein–Gordon equation, where over
this velocity the kink-antikink pair annihilates.

Figure10 shows the errors between the kink-antikink solution for Δy = 0.0001,
taken as a good approximation to the exact solution, and the numerical solution for
Δy = 0.1, 0.05, 0.01, and 0.005, both evaluated at t = 30 for v = 0.5. Fitting the
data in Fig. 10 by a line shows that the slope is approximately equal to 2, as expected
by the second-order accuracy of Strauss–Vázquez method.
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Table 1 Error between asymptotic approximation and numerical solutions for t ∈ [0, 30] for a
kink-antikink solution, both with velocity v = 0.5, as a function of Δy and Δt , for b = 0, 0.2, 0.5,
and 0.9. See the main text for further explanation

Δy

b Δt 0.1 0.05 0.01 0.005 0.001

0 0.01 1.95 × 10−2 4.86 × 10−3 1.57 × 10−4 * *

0.001 1.95 × 10−2 4.71 × 10−3 1.94 × 10−4 4.82 × 10−5 1.57 × 10−6

0.0001 1.95 × 10−2 4.90 × 10−3 1.94 × 10−4 4.85 × 10−5 1.95 × 10−6

0.2 0.01 1.89 × 10−2 4.71 × 10−3 1.46 × 10−4 * *

0.001 1.89 × 10−2 4.71 × 10−3 1.88 × 10−4 4.63 × 10−5 1.14 × 10−6

0.0001 1.89 × 10−2 4.71 × 10−3 1.88 × 10−4 4.67 × 10−5 1.55 × 10−6

0.5 0.01 1.41 × 10−2 1.87 × 10−3 6.70 × 10−5 * *

0.001 1.42 × 10−2 1.87 × 10−3 6.48 × 10−5 6.67 × 10−5 6.73 × 10−5

0.0001 1.42 × 10−2 1.90 × 10−3 6.48 × 10−5 6.66 × 10−5 6.73 × 10−5

0.9 0.01 2.05 × 10−2 1.57 × 10−2 1.54 × 10−2 * *

0.001 2.05 × 10−2 1.57 × 10−2 1.54 × 10−2 1.54 × 10−2 1.54 × 10−2

0.0001 2.05 × 10−2 1.57 × 10−2 1.54 × 10−2 1.54 × 10−2 1.54 × 10−2

Table1 shows the error between the asymptotic approximation given by Eqs. (46)
and (52), and the numerical solution at t = 30 for a kink-antikink solution with
velocity v = 0.5. Several grid sizes, Δy = 0.1, 0.05, 0.01, 0.005, and 0.001, and
time steps,Δt = 0.01, 0.001, and 0.0001, for b = 0, 0.2, 0.5, and 0.9 have been used
in Table1; the asterisks are combinations of the grid size and time step that do not
hold the CFL condition, so the corresponding simulations have not been executed.
The solution is dominated by the error in the spatial discretization, as shown in
Table1, being practically independent of the time step. For low values of b, the error
decreases as Δy does. For large values of b, the accuracy of the asymptotic solution
decreases and the error becomes independent ofΔy. The low error of the asymptotic
approximation for b ≤ 5 validates the asymptotic solution.

8 Summary

The nonlinear propagation of electromagnetic waves in Ratnikov’s graphene super-
lattice under the incidence of normal irradiation has been studied. These superlattices
are made by depositing a sheet of graphene on a periodically alternating layers of
SiO2 and h-BN (or SiC). The superlattice electronic spectrum is calculated by two
methods and approximated for low energy carriers. An external electromagnetic
wave introduces an asymmetry in the charge carriers and an electric field orthogonal
to the superlattice axis emerges. A nonlinear Klein–Gordon equation similar to the
sine-Gordon equation describes the propagation of this electromagnetic waves. This
equation has kink and antikink solutions with no known closed-form expression. An
analytical asymptotic approximation and a conservative, finite difference numerical
scheme are presented. Extensive numerical results for the kink–antikink interactions
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show that the interaction is nearly elastic, but radiation appears for large values of
the geometrical parameter of the superlattice. The whole set of results suggests that
graphene superlattices are useful devices to study nonlinear wave phenomena with
electromagnetic waves in the THz scale.

Further research is in progress. The nearly integrability of the graphene super-
lattice equation suggests that perturbation methods based on the inverse scattering
transform for the sineGordon equation can be successfully used to approximate kink,
antikink and kink-antikink solutions. Also direct perturbations based on multiple
scales will be considered. In order to recommend the best method for the numer-
ical solution of the graphene superlattice equation, a comparison with other finite
difference, finite element, pseudospectral, and spectral methods is required.
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Nonlinear Vortex Light Beams Supported
and Stabilized by Dissipation

Miguel A. Porras, Carlos Ruiz-Jiménez and Márcio Carvalho

Abstract We describe nonlinear Bessel vortex beams as localized and stationary
solutions with embedded vorticity to the nonlinear Schrödinger equation with a dis-
sipative term that accounts for the multi-photon absorption processes taking place
at high enough powers in common optical media. In these beams, power and orbital
angular momentum are permanently transferred to matter in the inner, nonlinear
rings, at the same time that they are refueled by spiral inward currents of energy and
angular momentum coming from the outer linear rings, acting as an intrinsic reser-
voir. Unlike vortex solitons and dissipative vortex solitons, the existence of these
vortex beams does not critically depend on the precise form of the dispersive non-
linearities, as Kerr self-focusing or self-defocusing, and do not require a balancing
gain. It has been shown that these beams play an important role in “tubular” filamen-
tation experiments with powerful, vortex-carrying Bessel beams, where they act as
attractors in the beam propagation dynamics. Nonlinear Bessel vortex beams pro-
vide indeed a new solution to the question of the stable propagation of ring-shaped
vortex light beams in homogeneous self-focusing Kerr media. A stability analysis
demonstrates that there exist nonlinear Bessel vortex beams with single or multiple
vorticity that are stable against azimuthal breakup and collapse, and that the mech-
anism that renders these vortexes stable is dissipation. The stability properties of
nonlinear Bessel vortex beams explain the experimental observations in the tubular
filamentation experiments.
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1 Introduction

Self-trapping of optical beams in nonlinear media has been one of the main subjects
studied in nonlinear optics [27, 30]. There is a particularly strong and sustained
interest in self-trapped beams with embedded vorticity, tubular beams or vortex soli-
tons, carrying orbital angular momentum, [12] first introduced theoretically in [23,
24], and in the problem of achieving the stability of these vortex-carrying structures
[12, 21]. Their applications have provided new fields of research in information
encoding, quantum entanglement, all-optical data-processing [20], optical trapping
[10, 11], and several forms of angular momentum transmission from light to matter,
e.g., to micro- and nano-particles, Bose–Einstein condensates or atoms [4, 29, 53].

Amajor issuewithmultidimensional solitons is their stability [25]. The ubiquitous
self-focusing cubic nonlinearity gives rise to critical collapse in two dimensions [6,
17, 52],which destabilizes the solitons families.Vortex solitons are particularly prone
to the instability initiated by azimuthal perturbations, which breaks their cylindrical
symmetry, splitting it into fragments [12, 21]. Stabilization of vortex solitons was
shown to be possible with specifically designed or “tailored” nonlinearities, such as
cubic and quintic ones with opposite signs [34, 44], or nonlocal nonlinearities [55].
Nonetheless, real-world applications involve a detailed pursuit for materials, such as
liquid CS2 (in the case of the cubic-quintic nonlinearity) [16], or lead-doped glass
(for the thermal nonlocal nonlinearity case) [45]. A comparable issue is the search
for stable vortex solitons in dissipative systems, frequently modeled by complex
Ginzburg–Landau equations with cubic and quintic nonlinearities, which support
stable dissipative solitons and vortex solitons [2, 5, 22, 26, 31].

In this chapter we shall consider a homogeneous, nonlinear self-focusing Kerr
media, and approach the problem of achieving stationary and stable propagation of
vortex beams from a different perspective, reporting the existence of stable vortex
beams in standard optical materials [40, 43]. In the context of the research on the phe-
nomenon of filamentation induced by powerful laser pulses [9, 51], Ref. [41] reported
the existence of light beams that can propagate with unchanged transversal intensity
pattern, including any attenuation, in self-focusing Kerr media while their power is
being continuously dissipated into matter via multi-photon absorption, eventually
ionizing the medium. Multi-photon absorption of different orders takes place in air,
water, silica, and other ordinary dielectric media. It occurs as a collapse-arresting
mechanism that plays an essential role in filamentation [8, 9, 18, 36, 38, 49]. These
light beams, originally called “nonlinear unbalanced Bessel beams”, are character-
ized by their conical geometry and the capability of transporting infinite power. They
then possess an intrinsic power reservoir that in these beams flows permanently from
the outer rings, where the beam is linear Bessel-like, towards the nonlinear central
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lobes, where most of the power losses due to multi-photon absorption take place,
replenishing them.A fundamental difference from complexGinzburg–Landau-based
models is the absence of any gain term in order to balance out the nonlinear losses,
and yet, that the propagation persists. Physically realizable versions of these nonlin-
ear Bessel beams with finite amount of power have been shown to play a crucial role
in various experiments [35–37], particularly in the filamentation induced by ultra-
short pulsed (linear) Bessel beams [37, 38], where the nonlinear Bessel beams act
as attractors in the nonlinear propagation [42].

It has recently been shown [19, 40] that the above nonlinear Bessel beam is only
the fundamental member of an infinite family of vorticity-carrying nonlinear Bessel
beams with arbitrary integer topological charge s. Throughout this chapter we will
refer to these beams as nonlinear Bessel vortex beams (nonlinear BVBs). In them,
both angular momentum and power move permanently in a spiral towards the core
of the beam, from the outer reservoirs towards the inner, more intense rings sur-
rounding the vortex, where they are transferred to matter. Multiphoton absorption,
or coincident absorption of M photons of angular momentum �s, can be used effi-
ciently as a procedure of optical pump of angular momentum [29, 53]. Differently
from other vortex-carrying beams, as standard vortex solitons, they may exist in
common transparent dielectric as optical glasses, liquid and gases at high enough
powers. Nonlinear BVBs have subsequently been realized in experiments, and have
been employed for laser-powered material processing [54].

In the first part of this chapter we review the properties of nonlinear BVBs, their
structure and the refilling mechanism that allows the stationary propagation with
dissipation. By means of numerical simulations, we also show that nonlinear BVBs
are attractors of the dynamics of linear Bessel beams. For each ideal (infinite power),
linear BVB introduced in the nonlinear medium, there is a specific, ideal, nonlin-
ear BVB that governs the dynamics: the one conserving the value of the vorticity
(topological charge), the cone angle and the linear beam’s inward power flux [40].

Observed in experiments of filamentation with vortex-carrying Bessel beams,
three different propagation regimes in the so-called Bessel zone after the generating
axicon have been reported to exist [54]. Under certain conditions, usually associated
with large cone angles, a steady or tubular filamentation regime is observed, which is
identified as a nonlinear BVB. Under other conditions, however, azimuthal breakup
takes place, and rotating filaments, or non-rotating, disordered filaments have been
observed [19, 54].

These observations suggest that stable nonlinear BVBs may exist. In the second
part of this chapter we review our research on the stability properties of nonlinear
BVBs and demonstrate that there indeed exist nonlinear BVBs of any topological
charge presenting complete stability against azimuthal breakup and collapse alike
in self-focusing Kerr media with nonlinear absorption [43]. Also, a standard analy-
sis of the linearized equations for small perturbations predict stability, subsequently
verified directly in numerical simulations of the propagation of randomly perturbed
nonlinear BVBs. The linear-stability analysis is also used to demonstrate that the
stability is imposed by the nonlinear absorption effect. Its stabilizing action was
previously pointed out for zero-vorticity beams affected by radial and temporal per-
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turbations [37, 42] and light bullets [39], but not for nonlinear BVBs under azimuthal
breaking. In the stability analysis we give priority to themost destabilizing cubic self-
focusing, since this nonlinearity cannot by itself support any stable2D patterns. Yet,
analog results are easily obtained for more general nonlinearities, as their particu-
larities (such as the order of the multi-photon absorption or the form of the Kerr
nonlinearity) do not critically affect the existence of nonlinear BVBs [19, 40, 41].

The study carried out for the stable case using the previously explained linear
analysis and later diagnostic numerical simulations of the nonlinear propagation
allow us to propose a common explanation for the experimentally observed phenom-
ena [54].Tubular, rotary and speckle-like dynamical regimes in the Bessel region are
detected after the axicon [54]; and in all the three cases, there exists an attracting
nonlinear BVB that determines the dynamics: as in the ideal case, it is the nonlinear
BVB with equal topological charge, cone angle, and inward power flux as the linear
Bessel beam that would form in the zone of the axicon’s focus, centered in the Bessel
zone, under linear conditions of propagation. This fact is confirmed by the numerical
observation that the dynamics in the Bessel zone develops as would do the instabil-
ity, if any, of that specific nonlinear BVB. If the stability analysis gives out a stable
dynamic regime for the attracting BVB, then a tubular regime is observed; the same
applies if its instability is not strong enough to arise over the Bessel distance. Oth-
erwise, the azimuthal symmetry breaking leading to rotary or speckle-like regimes
perceived in the Bessel zone closely mimics the one observed in the development of
the instability of the nonlinear BVB, which acts in this case as an unstable, chaotic
attractor.

2 On the Dynamics of Bessel Vortex Beams in Self-focusing
Media with Multiphoton Absorption

To illustrate how nonlinear BVBs arise spontaneously in optical media, we first
analyze the propagation of high-order (vortex-carrying) Bessel beams [14, 15], or
linear Bessel vortex beams (linear BVBs for short), at sufficiently high intensities,
typically of the order of TW/cm2, in a (linearly) transparent dielectric.Weassume that
the propagation is suitably modeled by the nonlinear Schrödinger equation (NLSE)
with cubic, and possibly quintic, dispersive nonlinearities, and a dissipative term
that accounts for nonlinear power losses associated with multi-photon absorption
processes at these high intensities. For the light beam E = A exp[−i(ωt − kz)] of
angular frequency ω and linear propagation constant k = (ω/c)n, n and c being the
linear refractive index and the speed of light in vacuum, respectively, and of complex
envelope A, this NLSE reads as

∂A

∂z
= i

2k
Δ⊥A + i f (|A|2)A − β(M)

2
|A|2M−2A , (1)
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whereΔ⊥ = ∂2
r + (1/r)∂r + (1/r2)∂2

ϕ is the transversal Laplace operator, (r,ϕ) are
polar coordinates in the transversal plane, β(M) > 0 is theM-photon absorption coef-
ficient, and the term f (u) ≡ k(n2u + n4u2)/n, n2 and n4 being nonlinear refractive
indexes, includes dispersive nonlinearities (cubic and quintic in this case). Themulti-
photon number M is given by the light wavelength and the medium chosen [9]. As
an example, in air M values go from 3 to 8 for a wavelength spanning 248–800nm
[38, 49].

Linear Bessel beams are, in the paraxial form implicit in Eq. (1), the solutions
A(r,ϕ, z) ∝ Js(

√
2k|δ|r)eisϕeiδz of Eq. (1) when all nonlinear terms are neglected,

where δ = −kθ2/2 < 0 is the shortening of the axial component of the wave vector
because of the conical structure, θ = √

2|δ|/k is the cone angle of the Bessel beam,
and s = ±1,±2 . . . is the topological charge of the vortex at r = 0. To facilitate the
study of the nonlinear propagation of a linear BVB of given cone angle, we introduce
dimensionless variables

ρ ≡ kθr = √
2k|δ|r, ζ ≡ |δ|z, Ã ≡

(
β(M)

2|δ|
) 1

2M−2

A , (2)

with which Eq. (1) rewrites as

∂ Ã

∂ζ
= iΔ⊥ Ã + i f̃ (| Ã|2) Ã − | Ã|2M−2 Ã , (3)

where the transversal Laplace operator is now Δ⊥ ≡ ∂2
ρ + (1/ρ)∂ρ + (1/ρ2)∂2

ϕ, and

f̃ (u) ≡ α2u + α4u2, with

α2 ≡ kn2
n|δ|

(
2|δ|
β(M)

) 1
M−1

, α4 ≡ kn4
n|δ|

(
2|δ|
β(M)

) 2
M−1

, (4)

are givenby themediumcharacteristics for afixedvalue of the cone angle and the light
wavelength. In water at 527nm, for example, with the values n = 1.33, n2 = 2.7 ×
10−16 cm2/W, n4 � 0, M = 4 and β(4) = 2.4 × 10−36 cm5/W 3 [37], and with typi-
cal cone angles θ = 3◦, 2◦, 1◦, 0.5◦, we get respectivelyα2 � 0.76, 1.31, 3.30, 8.31,
and we can assume α4 � 0. Similar values are obtained for other media at other
wavelengths, and are therefore considered below. In these dimensionless vari-
ables, the linear BVB solution of Eq. (3) without nonlinear terms is written as
b0 Js(ρ) exp(isϕ) exp(−iζ), where b0 determines its amplitude.

The existence of nonlinear BVBs is suggested by the following numerical simu-
lations. Solving the NLSE in Eq. (3) with the linear BVB Ã(ρ,ϕ, 0) = b0 Js(ρ)eisϕ

as initial condition at the entrance plane ζ = 0 of the medium, we observe that it is
not completely absorbed, as would occur to a plane wave or to a Gaussian beam; on
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the contrary, it transforms spontaneously into a nondiffracting and non-attenuating
beam. This fact was originally predicted and observed for the fundamental (vortex-
less) Bessel beams a decade ago [37, 41], but this phenomenon is seen here to occur
also with BVBs [19, 40]. In Fig. 1a–d, the radial profiles of intensity are represented
at different propagation distances. For simplicity, a medium with negligible Kerr
nonlinearity (α j = 0) is first considered. Once the propagating beam passes through
a stage of strong absorption, a final steady state with a vortex is reached. This non-
diffracting and non-attenuating final beam does not require Kerr non-linearities for
its stationarity, as vortex solitons. The beam maintains its radial profile despite it is
experiencing nonlinear losses per unit length given by

N (∞) = 2π
∫ ∞

0
dρρ| Ã|2M . (5)

As seen in Fig. 1e, these losses reach a positive constant value in the final steady
regime. In Fig. 1a–d, we observe that the transformation into the final state starts in
the central lobes and spreads conically along the cone z = r/θ (or ζ = ρ/2 in our
dimensionless variables) on propagation. The formation of a stationary state with
similar characteristics also takes place in self-focusing and self-defocusing media,
α2 > 0 and α2 < 0, as seen more concisely in Fig. 2a, b, with the only significant
difference that central lobes of the final beam state are compressed or widened by
the action for the respective Kerr nonlinearities. In all cases, the final beam state
is a nonlinear BVB, whose intensity profile is depicted in the example of Fig. 1 by
dashed lines, and whose properties will be studied in the next section.

3 Nonlinear BVBs Supported by Nonlinear Losses

As described in Refs. [19, 40], we search for nonlinear stationary solutions of the
NLSE (1) whose intensity profile does not depend on the propagation coordinate z
of the form

A(r,ϕ, z) = a(r)eiφ(r)eisϕeiδz , (6)

whereφ(r) and a(r) > 0 are the radial phase and amplitude profiles to be determined,
and δ is a constant. We do not initially assume that this constant is negative. In
dimensionless variables the above Ansatz is

Ã(ρ,φ, ζ) = ã(ρ)eiφ(ρ)eisϕei sgn(δ)ζ , (7)

where sgn(δ) is the sign of δ. Substituting Eq. (7) in the NLSE (3) and separating
real and imaginary parts we obtain the following ordinary differential equations for
the amplitude and phase:
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(e)

(c) (d)

(a) (b)

Fig. 1 a–d Radial intensity profiles at different propagation distances ζ when a linear BVB with
topological charge s = 1 and amplitude parameter b0 = 3 is introduced into a medium with four-
photon absorption (M = 4) with negligible Kerr nonlinearity (α2 = 0,α4 = 0). The gray lines
represent the initial linear BVB and the dashed lines the final nonlinear vortex beam with equal
cone angle, topological charge and b0 = 1.6. e Nonlinear power losses per unit length in Eq. (5) as
a function of distance ζ. A previous version of this figure was published by the authors in [40]

d2ã

dρ2
+ 1

ρ

dã

dρ
−

(
dφ

dρ

)2

ã + f̃ (ã2)ã − sgn(δ)ã − s2

ρ2
ã = 0 , (8)

d2φ

dρ2
+ 1

ρ

dφ

dρ
+ 2

dφ

dρ

dã

dρ

1

ã
+ ã2M−2 = 0 . (9)
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Fig. 2 Nonlinear dynamics of the intensity profile of the same linear BVB as in Fig. 1 introduced
in a a saturable self-focusing medium with α2 = 2, α4 = −1 and in b a saturable self-defocusing
medium with α2 = −2, α4 = 1 with four photon absorption. A previous version of this figure was
published by the authors in [40]

Physically valid solutions must obey the boundary condition of localization, i.e.,
ã(ρ) → 0 as ρ → ∞. In addition, around the vortex the amplitude is very small,
and therefore the nonlinear effects are negligible; we then will demand the boundary
condition a(ρ) � b0 Js(ρ) about the vortex, or, in other words, that the beam behaves
as a linear BVB of a certain amplitude b0. Since Js(ρ) � ρ|s|/(2|s||s|!) for ρ → 0
[33], we can also write this boundary condition as

ã(ρ) � b0
2|s||s|!ρ

|s| for ρ → 0. (10)

In absence of dissipation, this problem has solution with sgn(δ) = 1 for a dis-
crete spectrum of values of b0, which constitute the family of vortex solitons [12]
characterized by strongly localized transversal profiles around the vortex, and with
sgn(δ) = −1 for continuous values of b0 from 0 to ∞, which are called nonlinear
Bessel beams in transparent media. In this case, only the amplitude equation (8) is
usually written because a constant phase satisfies Eq. (9) [12]. When absorption is
included, there exists no solution with sgn(δ) = +1, i.e., the vortex solitons family
does not survive dissipation effects [50]. However, with sgn(δ) = −1, solutions to
this problem still exist with a continuous spectrum of values of b0 up to a maximum
value, b0,max, which constitute the family of nonlinear BVBs in Kerr nonlinear media
with nonlinear absorption [19, 40].

Some cases of intensity radial profiles ã2(ρ) are shown in Fig. 3 (solid curves)
and are compared to the linear BVB with the same vortex core (same b0). At low
amplitude (small b0), the nonlinear BVB has a linear behaviour at any radius ρ.When
b0 increases up to b0,max, it decreases gradually the contrast of the rings, and the rings
near the center are narrower (broader) in self-focusing (self-defocusing) media. In
all cases, the outer rings at ρ → ∞ decay in amplitude as ρ−1/2 and oscillate at the
same radial frequency as those of the linear BVB. In self-focusing or self-defocusing
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(a)

(b)

(d)

(e)

(c) (f)

Fig. 3 For α2 = α4 = 0, and M = 4, intensity profiles of nonlinear BVBs with s = 2 and
a b0 = 1.7, b b0 = 1.82 and c b0 = 1.896. For α2 = 0.5, α4 = −0.25 and M = 4, intensity pro-
files of nonlinear BVBs with s = 2 and d b0 = 1.8, e b0 = 2.15 and f b0 = 2.237. The dotted
curves represent linear BVBs with s = 2 and the same b0 as the nonlinear BVBs. Reproduced with
permission from [40]. Copyright (2014) by The Optical Society of America

media, these outer rings are therefore radially shifted with respect to those of the
linear BVB in order to match the compressed or enlarged inner rings.

These examples also illustrate that typical values of b0 corresponding to intensities
where the joint effect of the self-focusing and nonlinear absorption plays an essential
role are of the order of unity. For instance, withM = 4, s = 1,α2 = 3.30 andα4 = 0,
values b0 = 1.2 and 1.6 respectively belong to nonlinear BVBs with cone angle
θ = 1◦ and peak intensities 0.77 TW/cm2 and 1.16 TW/cm2 in water at 527nm [37].

Therefore, these nonlinear BVBs can propagate without any diffraction and any
attenuation while their energy and angular momentum are continuously transferred
tomatter nonlinearly viamultiphoton absorption. As pointed out above, the existence
of these beams does not critically depend on the specific dispersive nonlinearities or
on the order of multiphoton absorption. Only the details of the transversal structure
and the specific maximum value b0,max for existence depend on the choices of s, α2,
α4 (or other dispersive nonlinearities), and multi-photon order M .



120 M. A. Porras et al.

4 Stationary Propagation of Nonlinear BVBs with
Nonlinear Absorption: Energy and Angular Momentum
Transfer to Matter

The energy and angular momentum transferred continuously to matter is contin-
uously replenished from an intrinsic reservoir of energy and angular momentum,
which sustains the stationary propagation. To study this mechanism, we note that
integration of Eq. (9) in ρ leads to

− 2πρ
dφ

dρ
ã2 = 2π

∫ ρ

0
dρρã2M , (11)

or−F(ρ) = N (ρ) for short. This relation indicates that the nonlinear power losses in
any circle of radius ρ, N (ρ), are replenished by an inward power flux F(ρ) crossing
its circumference and coming from a power reservoir at large radial distances, as
is illustrated in Fig. 4. Essentially, this is the mechanism of stationarity of nonlinear
BVB, which is attainable only in beams transporting infinite power—the reservoir—
as conical beams, and as originally proposed in Ref. [41]. This mechanism has some
peculiarities with nonlinear BVBs [40]. If we write the complex envelope of a light
beam (not necessarily stationary) in the form Ã = ãeiΦ , the NLSE in Eq. (3) gives
the continuity equation

1

2
∂ζ ã

2 + ∇⊥ · j = −ã2M (12)

for the intensity ã2, where the transversal current of the intensity is given by j =
ã2∇⊥Φ, and ∇⊥ is the transversal gradient. The general condition for stationarity of
the intensity pattern is then

− ∇⊥ · j = ã2M , (13)

expressing in differential form, and by reason of the divergence theorem, that the
nonlinear power losses in any finite region of the transversal plane are compensated
by an inward power flux through its contour. Equation (9) is the same as Eq. (13) for
beamswith radially symmetric intensity ã2 and phaseΦ = φ(ρ) + sϕ − ζ. For these
beams j = ã2(dφ/dρuρ + s/ρuϕ), and Eq. (11) is obtained by integrating Eq. (13)
over a circle of radius ρ.

Figure4 shows the intensity (first column), phase (second column) and the inten-
sity current (third column) for formerly known stationary beams and for a nonlinear
BVB. For linear BVBs (and also for vortex solitons) in transparent media (first row),
the intensity current j = (ã2s/ρ)uϕ is azimuthal and solenoidal (∇⊥ · j = 0). For the
fundamental (vortex-less) nonlinear Bessel beam (second row), the intensity current
in the transversal plane j = (ã2dφ/dρ)uρ is radial inwards with a divergence that
equals the nonlinear losses density ã2M . For the present nonlinear BVBs (third row),
the intensity current has both azimuthal and radial inwards components, resulting
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Fig. 4 Intensity profiles (first column), phase profiles (second column) and intensity current (third
column) of the linear BVB with s = 1, and b0 = 1.666 (first row), of the vortex-less (s = 0) non-
linear Bessel beam with M = 4, α2 = α4 = 0 and b0 = 1.174 (second row) and of the nonlinear
BVB with s = 1, M = 4, α2 = α4 = 0 and b0 = 1.666 (third row). The normalized cartesian
coordinates in the transversal plane are ξ = √

2k|δ|x and η = √
2k|δ|y in the transversal plane.

A previous version of this figure was published by the authors in [40]

in a permanent inwards spiral transporting power from the intrinsic power reservoir
towards the inner rings, where most of dissipation of energy into matter takes place.

A similar situation occurswith the angularmomentum.The nonlinearBVBcarries
axial orbital angular momentum of density given by [12] L = ã2∂Φ/∂ϕ = sã2.
The angular momentum is then proportional to the topological charge s and to the
intensity. As the intensity, the angular momentum density remains stationary, but is
permanently flowing spirally with a current

sj = sã2
(
dφ

dρ
uρ + s

ρ
uϕ

)
(14)

proportional to the current of the intensity. The angular momentum current replen-
ishes their losses sã2M due to the nonlinear absorption process according to the
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continuity equation −∇⊥ · (sj) = sã2M for the angular momentum. Also, integra-
tion over a circle of radius ρ leads to

− 2πρs
dφ

dρ
ã2 = 2π

∫ ρ

0
dρρsã2M , (15)

which is analogous to Eq. (11) for the energy, and expressing that the radial flux of
angular momentum through any circle of radius ρ replenishes their nonlinear losses
within that circle when transferred to the material medium.

5 Asymptotic Behavior at Large Distances

The asymptotic behavior of nonlinear BVBs at large radii is also determined by their
non-diffracting and non-attenuating properties in media with nonlinear absorption.
As will be clear in Sect. 6, this asymptotic behavior is of fundamental importance to
understand the nonlinear dynamics of linear BVBs introduced in the medium. At the
vortex core the nonlinear BVB behaves as the linear BVB Ã � b0 Js(ρ)eisϕe−iζ , or
what is the same [33],

Ã � 1

2

[
b0H

(1)
s (ρ) + b0H

(2)
s (ρ)

]
eisϕe−iζ . (16)

The Hänkel beam H (1)
s (ρ)eisϕe−iζ carries power spirally outwards and the Hänkel

beam H (2)
s (ρ)eisϕe−iζ spirally inwards. Both have the same amplitude in the linear

BVB, so there is no net transport of power in the cross section [48]. In the nonlinear
BVB, however, these components do not have equal amplitudes [41]. Asymptotically
at large ρ the complex amplitude behaves as the “unbalanced” Bessel beam

Ã(ρ,φ, ζ) � 1

2

[
boutH

(1)
s (ρ) + binH

(2)
s (ρ)

]
eisϕe−iζ , (17)

as illustrated in the example of Fig. 5a, where the two interfering high-order Hänkel
beams have different amplitudes |bout| and |bin|. From the equivalent asymptotic
expressions H (1,2)

s (ρ) � √
2/(πz) e±i[ρ−(π/2)(s−1/2)] at large ρ [33], the condition that

the inward radial flux −F(ρ) = −2πρã2dφ/dρ = 2πρIm[ Ã(∂ Ã�/∂ρ)] equals the
total nonlinear power losses N (∞) leads to the relation

|bin|2 − |bout|2 = N (∞) , (18)

between bin and bout. It then follows that |bin| > |bout| for any nonlinear BVB in a
mediumwith dissipation. The values of these amplitudes can easily be extracted from
the numerically evaluated radial profiles of intensity of nonlinear BVBs as follows.
Using the same asymptotic expressions, the radial intensity at large ρ behaves as
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Fig. 5 a Amplitude of the nonlinear BVB with M = 4, α2 = α4 = 0, l = 3 and b0 = 1.9 (solid
curve), its asymptotic linear unbalanced Bessel beam (UBB) (dashed curve), and its Hänkel inward
and outward components (dotted curves). b and c The values of the outward and inward amplitudes,
|bout| and |bin|, as functions of the amplitude b0 of nonlinear BVBs of the indicated values of s
in material media with the indicated values of α2, α4, and M = 4. The curves end at b0,max for
each value of the charge s, indicated as vertical dashed lines. A previous version of this figure was
published by the authors in [40]

ã2 � 1

2πρ

{|bout|2 + |bin|2 + 2|bout||bin| cos [2ρ + κ]
}

, (19)

with κ = −πs − π/2 + arg(bout/bin). Thus, 2πρã2 represents harmonic oscillations
of contrast C = 2|bin||bout|/(|bin|2 + |bout|2) about the central value R = |bin|2 +
|bout|2. These properties are readily obtained from the numerically evaluated radial
profiles of nonlinear BVBs, and from C and R, the amplitudes |bin| and |bout| are
obtained as

|bin|2 = R

2

(
1 +

√
1 − C2

)
, |bout|2 = R

2

(
1 −

√
1 − C2

)
. (20)

These amplitudes are plotted as functions of b0 in Fig. 5b, c for nonlinear BVBs of
different charges in different media. It is numerically found that bin and bout are real
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quantities in absence of dispersive nonlinearities, and also that arg bin = −arg bout
with dispersive nonlinearities as self-focusing or self-defocusing.

6 Propagation of Bessel Vortex Beams in Nonlinear Media
Revisited: The “Selection Problem”

In the numerical simulations of propagation of linear BVBs, as in Fig. 1, we observe
that one of the nonlinear BVBs studied previously is formed spontaneously, acting
thus as an attractor of the nonlinear dynamics. The nonlinear BVB has always the
same cone angle and topological charge as the input linear BVB. The so-called
“selection problem”is the determination of the precise amplitude or intensity of the
final BVB, i.e., the determination of the parameter b0 of the final nonlinear BVB,
say b0(∞). This problem arose for the first time in Ref. [36] and remained unsolved
for the vortex-less case. In the numerical simulation of Fig. 1, for example, the linear
BVB with b0(0) = 3 is attracted by the nonlinear BVB with b0(∞) = 1.60.

Figure6 summarizes the results of a large number of similar numerical simula-
tions, and unveils the law underlying the selection of the final nonlinear BVB, i.e., the
value of b0(∞). Figure6a depicts the pairs [b0(0), b0(∞)] of the input linear BVB
and final nonlinear BVB extracted from these simulations for s = 0, 1 with a partic-
ular cone angle and medium (particular values of α and M). The attracting nonlinear
BVB tends to match that with the maximum amplitude that the medium can support
when the intensity of the input linear BVB is extremely high. On the other side, the
selected nonlinear BVB does not differ substantially from the launched beam at low
enough intensities.

The solution of the selection problem arises from the evaluation of the inward
and outward amplitudes, bin(∞) and bout(∞) of the nonlinear BVB attractor with
b0(∞), represented in Fig. 6b, c for the respective cases with s = 0 and s = 1. As
seen, |bin(∞)| is given by the identity function as a function of b0(0). Taking into
account that for the linear BVB introduced in the medium |bin(0)| = b0(0), we can
then conclude that the amplitude of the asymptotic inward Hänkel component is
a conserved quantity during the nonlinear wave propagation. In fact, the inward
Hänkel beam behaves like a linear beam that carries the power from its reservoir
at large radial distances, and therefore is not involved in the nonlinear absorption
effects taking place in the inner rings. Thus, given the amplitude of the input linear
BVB determined by b0(0), the attracting nonlinear BVB is that with b0(∞) whose
inward component equals b0(0), that is,

|bin(∞)| = b0(0) . (21)

Therefore, given a material medium and cone angle (M ,α2 andα4) and a topological
vorticity or charge s, graphs such as those in Fig. 5b, c for the amplitude of the inward
Hänkel component can be obtained from the radial profiles of the nonlinear BVBs of
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(a)

(b)

(c)

(d)

Fig. 6 a and b Values of the amplitude b0(∞) of the attracting nonlinear BVB as a function of
the amplitude b0(0) of the input linear BVB for s = 0 and s = 1 in a medium and cone angle such
that α2 = 0.5 and α4 = −0.25 and M = 4, obtained by solving numerically the NLSE in Eq. (3).
c and d For the respective cases with s = 0 and s = 1, the black curves represent the amplitudes
|bin(∞)| and |bout(∞)| of the inward and outward Hänkel components of the attracting nonlinear
BVB with the amplitude b0(∞) (gray curves). As a function of b0(0), |bin(∞)| is then found to be
the identity function, i. e., |bin(∞)| = b0(0). Previous versions of figures c and d were published
by the authors in [40]

different amplitudes supported by the medium. The nonlinear BVB attractor can be
obtained from these graphs as one whose amplitude of the inward Hänkel component
coincides with the amplitudes b0 of the linear BVB that is launched in the medium.
These conclusions are drawn here with ideal, linear or nonlinear BVBs, but they will
be seen in Sect. 8 to hold the same in actual settings with finite-power versions of
these beams.
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7 Stability of Nonlinear BVBs

It is well known that vortex solitons are prone to azimuthal breaking instability in
self-focusing Kerr media [12]. Only in specifically tailored media, as specific sat-
urable, cubic-quintic nonlinearities [34, 44], or nonlocal Kerr nonlinearities [55],
stable vortex solitons have been reported to exist. Stability of some nonlinear BVBs
is suggested by the above simulations of the propagation of linear BVBs attracted by
a specific nonlinear BVB. Also, nonlinear BVBs have been observed to be sponta-
neously formed in experiments under specific conditions associated with large cone
angles [54], which further supports the existence of stable nonlinear BVB in media
such as glasses.

In this section we perform a linear-stability analysis of the nonlinear BVBs and
find there exists a subset of them that is stable against radial and azimuthal pertur-
bations. The results from the stability analysis are corroborated by direct numerical
simulations of the propagation of perturbed nonlinear BVBs. For simplicity, in this
section we only consider the more destabilizing self-focusing (positive) cubic non-
linearity and dissipation, but, as the existence of nonlinear BVBs, similar results
regarding stability or instability are readily seen to hold with more general disper-
sive nonlinearities. We will then write α ≡ α2, and consider α4 = 0.

The linear-stability analysis applied to our case will be the usual one [12], where
we take a nonlinear BVB plus a small perturbation as

Ã = Ãs + ε
[
um(ρ)eiκζ+imϕ + v�

m(ρ)e−iκ�ζ−imϕ
]
eisϕ−iζ , (22)

being Ãs = ãeiφeisϕ−iζ a nonlinear BVB, ε an arbitrary small amplitude of per-
turbations with eigenmodes [um(ρ), vm(ρ)] and integer winding number m. Valid
solutions um(ρ), vm(ρ) to our system must comply with the usual boundary con-
ditions um ∼ ρ|s+m| and vm ∼ ρ|s−m| for ρ → 0, as well as vanishing for ρ → ∞.
Substituting the above Ansatz in Eq. (3) gives the following linearized equations:

(
H+ f
− f � −H �−

)(
um
vm

)
= κ

(
um
vm

)
, (23)

where
f ≡ [αã2 + i(M − 1)ã2M−2]e2iφ , (24)

and

H± ≡ d2

dρ2
+ 1

ρ

d

dρ
− (s ± m)2

ρ2
+ 1 + (2αã2 + iMã2M−2). (25)

If there exists an eigenvalue κI ≡ Im{κ} < 0, then an instability will develop. In this
case, it is expected to manifest itself in a weakly perturbed BVB through the breakup
of the first ring (the brightest), and perhaps the secondary rings too, and the number
of fragments resulting from this breakup is expected to coincide with the winding
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number m of the mode with the largest growth rate. Also, several unstable modes
with similar growth rate may compete, or induce different number of fragments in
different rings. The analysis of Eqs. (22) and (23) for all integers m = 0, 1, 2 . . .

covers all type of weak perturbations, since these equations result from introducing
a nonlinear BVB plus a general perturbation, i.e., Ã = Ãs + εp(ρ,ϕ, ζ), into the
NLSE, linearizing, expanding p in azimuthal harmonics, and solving the equations
for each harmonic [12].

We solved the problem in Eq. (23) numerically, as done previously for radial per-
turbations (m = 0) to the fundamental nonlinear Bessel beam [37, 41, 42]. Weaker
localization and the structured radial profile of the nonlinear BVBs make the numer-
ical procedure used to solve Eq. (23) more difficult when compared to other cases,
such as the vortex solitons in the complexGinzburg–Landaumodel [2, 5, 22, 31].We
transform it into an algebraical eigenvalue problem of a 2N × 2N matrix by intro-
ducing a discretization in a radial grid of step h and N points, so that the largest radius
is Nh, with boundary conditions u ∼ ρ|s+m|, v ∼ ρ|s−m| for ρ → 0, and u, v = 0 at
ρ = Nh. Stability or instability is inferred from the spectrum of 2N eigenvalues in
the double limit h → 0, N → ∞. For fixed truncation radius Nh, no substantial dif-
ference between the eigenvalues is found provided that the nonlinear BVB profile is
adequately sampled (e.g., h = 0.1, N = 2000 and h = 0.2, N=1000). We then focus
on increasing truncation radius Nh by fixing h and increasing the number of points
N , since important differences are found. In case of instability with low growth rate
|κI |, these differences arise because the associated eigenmode u, v presents the slow
exponential decay ∼ eκI ρ/2 [37], so that it is only adequately replicated by the trun-
cated system if Nh is much larger than 2/|κI |. In other terms, the minimum reliable
growth rate obtainable from the truncated system is |κI | � 2/Nh. Specially devel-
oped routines for sparse matrices were used to calculate the eigenvalues of matrices
up to 32 000 ×32 000 in order to increase accuracy for the minuscule growth rates
involved, sampling our system with N = 16 000 points. These technical details are
explained to stress that proving stability with this method requires, strictly speaking,
to infer the limit N → ∞.

Figure7a, b display results for the growth rates of unstable modes of nonlinear
BVBs with s = 1, two choices of b0 and varying α, and Fig. 7c–f illustrate how these
results are obtained. For all m, the growth rates computed with finite N behave as
almost straight lines that tend to cut the horizontal axis at certain positive values ofα,
but this behavior is interrupted when the growth rate is comparable to the minimum
reliable value 2/Nh, as seen in Fig. 7c, d for the two modes with higher growth
rate or leading to instability down to lower values of α. For high values of α, no
difference is observed with increasing N , and these values are attributed to a genuine
instability of the corresponding nonlinear BVB in the limit N → ∞. In Fig. 7e, f we
plot the detailed behavior of the growth rate in the region of small α where relevant
differences with N are observed. The growth rate is seen to converge to positive
values for some α, but is observed to approach zero for the smallest values of α. The
insets of Fig. 7e, f indicate an approximate decay 1/N for the particular values of α
where convergence to a positive value is not observed. Similar behavior is observed
for all other relevant modes m. Up to the limit of our computational capability, we
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Fig. 7 a and bGrowth rates of unstable perturbation modes of the indicated nonlinear BVBs. c and
d The same but evaluated with h = 0.2, N = 1000, 2000, 4000, 8000 and 16000 from the lighter
to the darker curves. e and f Zoom of the region where the growth rate depends appreciably on N .
N = 1000 (circles), 2000 (squares), 4000 (up triangles), 8000 (down triangles), 16000 (rhombuses).
The insets plot the growth rates as functions of N for particular values of α, suggesting a decay of
the growth rate as ∼ 1/N . A previous version of this figure was published by the authors in [43]

can then say that there exist nonlinear BVBs in Kerr media that are stable against all
type of small perturbations, as shown in Fig. 7a, b; here, for M = 4 and s = 1 these
are nonlinear BVBs with α � 1.1 for b0 = 1.2, and with α � 1 for b0 = 1.6.

Direct numerical simulations of the NLSE in Eq. (3) were also carried out using
a split-step Fourier method. In all cases, nonlinear BVBs with an initial perturbation
made up of random noise have their rings broken into fragments moving along cir-
cular trajectories if unstable. Comparing Fig. 8 with Fig. 7b, it can be verified that the
number of fragments is exactly equal to the winding numberm of the unstable mode
with the highest instability growth rate. The higher this rate is, the earlier the BVB
will break up. On a special note, a mode competition can be seen in Fig. 8b, where
the internal ring splits into two parts and the external ones into four, in agreement
with the existence of two almost equally unstable perturbation eigenmodes.

If stability is predicted by our model, as for α = 1 in Fig. 7a, our simulations (ran
up to ζ = 300) show that the nonlinear BVB squanders the initial perturbation and
keeps its structure throughout the whole propagation, as illustrated in Fig. 9a, b. For
unstable nonlinearBVBs, the development of the instability into large perturbations is
not generally determined by the number of rotating portions in the small-perturbation
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Fig. 8 For M = 4, s = 1 and b0 = 1.6, the transverse intensity distributions | Ã|2 of the initially
perturbed vortex with a α = 2.2 at ζ = 100, b α = 2.8 at ζ = 45, and c α = 4 at ζ = 15. The
numbers of fragments into which the unstable vortices split are exactly predicted by the linear-
stability analysis. A previous version of this figure was published by the authors in [43]

regime, as known for the case of usual vortex solitons [12]. This can be readily seen
in the following examples: Fig. 7a for α = 3 predicts the single circulating fragment
that indeed appears in Fig. 9c. This fragment breaks afterwards into two circulating
fragments observed in Fig. 9d. Also, Fig. 7a for α = 6 predicts the two circulating
fragments that are shown in Fig. 9e. These two fragments decay at longer propagation
distances into several randomly located, non-rotating splinters that emerge and wane
during the propagation, as illustrated in Fig. 9f. For further purposes, we have also
plotted in Fig. 9g–i the peak intensity in the course of propagation for the three
perturbed nonlinear BVBs considered. For α = 3, instability leads to quasi-periodic
oscillations that are damped after the secondary splitting. For the more unstable case
with α = 6, where the filaments are non-rotating and disordered, the behavior of the
peak intensity indicates an endless chaotic regime continuously fed by the reservoir.

Stable nonlinear BVBs with multiple vorticity (|s| > 1) have their existence
demonstrated in Fig. 10, which sum up the results of the linear-stability analysis
for cases s = 2 and s = 3. A similar outcome is forecasted to ensue for s > 3. Note
that the stabilization of vortices with s > 1 is achieved for the first time with this
setup, as previously attempts failed [1, 3, 7, 13, 28, 32, 46, 47, 56].

The mechanism behind vortex stability in the current system can be envisaged
from a deeper observation of Fig. 10. In it, we also plot the instability growth rates
for nonlinear BVBs in the completely transparent medium after setting all dissipative
terms in the equations to zero in our model. As expected, all nonlinear BVBs are
now unstable. The BVB intensity profiles obtained with andwithout dissipation in all
cases shown in Fig. 10 are almost identical, aside that with dissipation the contrast of
the radial oscillations is a bit smaller than unity. However, the beams in the medium
without dissipation are unstable, and the beams in the medium with dissipation
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Fig. 9 For M = 4, s = 1 and b0 = 1.2, the transverse intensity distributions, | Ã|2, of the initially
perturbed BVB with α = 1 at propagation distances a ζ = 10 and b ζ = 300, with α = 3 at propa-
gation distances c ζ = 40 and d ζ = 96, and with α = 6 at e ζ = 23 and f ζ = 93. The results in a,
b corroborate the stability, and the results in c–f demonstrate the secondary breakup of fragments
produced by the primary instability. g–i Peak intensity in the three respective cases with α = 1, 3
and 6 as functions of the propagation distance

and with α � 1 are stable. In this respect, we note that stabilization is reported
to occur in Refs. [19, 54] when the cone angle increases (i.e., α decreases), and
qualitatively explained as inefficient nonlinear wave mixing or suppressed growth of
the modulation instability at these cone angles. The results presented in Fig. 10 from
the linear-stability analysis quantify how using large cone angles help stabilize the
system, with and without dissipation. Besides the quantification of the effect, it also
demonstrates that the stabilization is never complete without taking dissipation into
consideration. This means, in other words, that the mere increase of the cone angle
does not produce, by itself, completely stable nonlinear BVBs without dissipation.
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(a) (b)

Fig. 10 For M = 4, growth rates of the most unstable modes of nonlinear BVBs with s = 2 and
s = 3 (solid curves), and of their nonlinear BVB counterparts with the same parameters in the
absence of absorption (dashed curves). A previous version of this figure was published by the
authors in [43]

8 Tubular, Rotating, and Speckle-Like Dynamical Regimes
of Filamentation from Axicon-Generated Nonlinear
Bessel Vortex Beams

All preceding results regard to ideal, linear or nonlinear, conical beams in the sense
that they transport infinite power. We now consider the experimental implications of
these results in experiments that generate actual Bessel beams with finite power and
their nonlinear counterparts. In most of these arrangements, a Gaussian beam with
intrinsic vorticity s crosses an axicon [19, 38, 42], or equivalent device to create a
conical beam [54]. The nonlinear medium is usually placed close or immediately
after the axicon, so that we can model the optical field at the entrance plane of the
medium by A(r,ϕ, 0) = √

IG exp(−r2/w2
0) exp(−ikrθ) exp(isϕ) [19, 54], where√

IG and w0 are the amplitude and width of the Gaussian beam, and θ the cone
angle imprinted by the axicon. With our variables the input optical field reads as
ÃG(ρ,ϕ, 0) = bG exp(−ρ2/ρ20) exp(−iρ) exp(isϕ), where amplitudes, transversal
and axial lengths scale as specified in Eq. (2). If propagation after the axicon were
linear, then a finite-power version of the linear BVB ÃB � bB Js(ρ) exp(isϕ) would
form at the axicon focus, with intensity b2B = πρ0e−1/2b2G . The focus is placed at
ρ0/4 in our dimensionless axial coordinate, half of the Bessel distance ρ0/2 (w0/2θ
and w0/θ, respectively, in physical units).

With this arrangement, quasi-stationary and rotary regimes of nonlinear propaga-
tion after the axicon have been described in Ref. [19], and quasi-stationary, rotary
and speckle-like (chaotic) regimes in Ref. [54]. In these studies, the quasi-stationary
evolution of the system is related with the emergence of a nonlinear BVB, suppos-
edly stable; and in Ref. [19] the rotary evolution of the system is hypothesized to be
associated with either an unstable nonlinear BVB, or with nonexistence of a station-
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ary state in the specific experimental configuration. In neither case the corresponding
nonlinear BVB was identified, so that these conjectures were not verified.

Recent investigation for the vortex-less case (s = 0) [42] has shown that the
dynamics of the nonlinear propagation after the axicon is determined in the Bessel
zone by the fundamental (s = 0) nonlinear Bessel beam with amplitude |bin| = bB .
This means that, in the vortex-less situation, the law of conservation of the amplitude
of the inward Hänkel component, described in Sect. 6, holds also in actual settings
with finite power, but is reinterpreted here by stating that the nonlinear BVB that acts
as an attractor in the Bessel zone is that with the same cone angle and with amplitude
|bin| equal to that of the linear Bessel beam that would emerge at the axicon focus
in linear propagation. It has been further verified that if this fundamental nonlinear
Bessel beam is stable, the system smoothly develops into it about the center of the
Bessel zone and decays afterwards. On the other hand, if the nonlinear BVB is not
stable, an unstable regime characterized by the signatures of the evolvement of the
instability forms in the Bessel zone.

The same conclusion appears to be valid for the nonlinear BVB of arbitrary
topological charge (s 
= 0), as supported by the extensive numerical simulations
carried out. The dynamics in the Bessel zone is also determined by the nonlinear
BVB with b0 so that the amplitude of the inward Hänkel component is |bin| = bB ,
and its cone angle and vorticity s are the same as those from its linear counterpart. The
complete agreement between the prediction obtained from the stability analysis for
a specific nonlinear BVB and the observed azimuthal-symmetry-breaking dynamics
in the Bessel zone demonstrates it.

Three particularly significant examples are displayed in Fig. 11. These are three
illuminating Gaussian beams, respectively with bG = 0.0402 (left), 0.0341 (center)
and 0.030 (right), all of themwith an intrinsic single vortex s = 1 and ρ0 = 400. The
Bessel amplitudes yielded under linear propagationwould then be, in this order, bB =
1.11, 0.94 and 0.829. These illuminating beams are chosen such that the attracting
nonlinear BVBs in respective nonlinear media with M = 4 and α = 1, 3 and 6, and
with |bin| = bB , are characterized by b0 = 1.2 in all three cases.

Under these conditions, Fig. 7a obtained from our analysis, and the numerical
simulations of the propagation of the perturbed respective nonlinear BVBs in Fig. 9,
predict instability for α = 3 and 6, with inverse growth rates, or characteristic length
of development of the instability, much shorter than the length of the Bessel zone,
ρ0/2. On the contrary, for α = 1 stability is predicted in Figs. 7a and 9.

As seen in Fig. 11a, b, the stable nonlinear BVB with α = 1 is smoothly formed
about the axicon focus (ρ0/4 = 100), followed by a smooth decay towards the end of
the Bessel zone. The propagation thus resembles the robust propagation of the stable
nonlinear BVB in Fig. 9a, b, only limited by the finite power of the reservoir, which
depleted at the end of the Bessel zone. The evolution of the instability leading to the
azimuthal breakup can be clearly observed in Fig. 11c, d for α = 3 and Fig. 11e, f
for α = 6. The dynamics within the Bessel zone starts from the regime of small
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perturbations predicted by our linear-stability analysis in Fig. 7a, and then proceeds
to the regime of large perturbations regime seen in Fig. 9c, d for α = 3 and Fig. 9e, f
for α = 6. At α = 3, a rotatory regime with initially one fragment that later breaks
into two is observed, as in the development of instability in Fig. 9c, d. At α = 6,
a rotatory regime with initially two fragments later breaks into randomly placed
non-rotating spots, indicating a stronger instability, also as in the development of
instability in Fig. 9e, f. The behavior of the peak intensity in the central part of the
Bessel zone is plotted in Fig. 11g–i in the three representative examples studied. In all
them, the peak intensity reproduces the dynamics also observed in the development
of the instability, if any, triggered by noise of the respective nonlinear BVBs plotted
in Fig. 9g–i.

When compared to the quasi-stationary and rotary regimes described numerically
in [19], the similarity is remarkable. A strong parallel can also be established with the
quasi-stationary, rotary and speckle-like regimes described experimentally in [54].
When subjected to the linear-stability analysis procedure, the previously mentioned
representative examples admit a unified interpretation in terms of the stability or
instability properties of a particular nonlinear BVB: that conserving the topological
charge, the cone angle, and with amplitude b0 satisfying the condition |bin| = bB .
The existence and uniqueness of a single nonlinear BVB satisfying the condition
|bin| = bB is ensured considering that for a given M , α and s, |bin| is a strictly
growing function of b0 taking all values between |bin| = 0 and |bin| = ∞, as seen in
Fig. 5b, c.

It is possible, for example, to study more in depth the experimental phenomena
of the quasi-stationary, rotating and speckle-like regimes reported in Fig. 4 of [54].
Based on the values of thematerial constants, cone angles and three pulse energies,we
can characterize the three attracting nonlinear BVBs as those determined by M = 5,
s = 3, α = 14.89, and b0 = 0.368, 0.822 and 1.644. Through the stability analy-
sis we obtain, respectively, the largest dimensionless growth rates in each case as
0.026, 0.245 and 0.784, or, multiplying by |δ|, 2.48cm−1, 23.4cm−1 and 74.9cm−1

in physical units. The different observed behaviors can be understood when we com-
pare the length of the Bessel zone (∼ 0.072cm), with the associated characteristic
lengths of the instability development, or inverse growth rates: 0.402cm, 0.043cm
and 0.013cm. In the first case the instability had not yet the opportunity to develop; in
the second case the rotating filaments observed correspond to the azimuthal primary
break in the nonlinear BVB instability; and in the third case the random filaments
observed correspond to a completely developed nonlinear BVB instability.

Lastly, the existence of truly stable nonlinear BVBs demonstrated in this work
guarantees the existence of a regime of tubular-beam propagation. The only limi-
tation on this regime comes by the limited quantity of power that can be stored in
the reservoir, whose exhaustion will delimit the Bessel zone. Thus, the stable vor-
tex tubules can be increased endlessly by incrementing the power supplied to the
reservoir, for example, through the increase of ρ0.
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(a)

(b)

(c)

(d)

(e)

(f)

(g) (h) (i)

Fig. 11 Normalized intensity profiles at the propagation distances indicated in the panels forα = 1
(left), α = 3 (center), and α = 6 (right), in a medium characterized by a four-photon absorption,
produced by axicons illuminated by Gaussian beams with ρ0 = 400 and carrying a vortex of charge
s = 1 in their center, but with the different amplitudes bG = 0.0402 (left), 0.0341 (center) and
0.030 (right). The respective linear Bessel amplitudes are bB = 1.11, 0.94 and 0.829. These values
are chosen such that all three nonlinear BVBs with s = 1 and |bin| = bB in samples with the
corresponding values of α and M , have the same b0 = 1.2, which can be identified using the
method explained in Sect. 5 or in Ref. [40]. g–i Peak intensity as a function of the propagation
distance in the central part of the Bessel zone for the three cases. This figure is to be compared
with Fig. 9 and illustrates that the dynamics in the Bessel zone duplicates that in the development
of instability, if any, of each nonlinear BVB

9 Summary

In this chapter we have reviewed the properties of nonlinear BVBs, nonlinear conical
beams that propagate without any change, including any attenuation, in homoge-
neous Kerr media with nonlinear absorption. These beams form narrow and (ideally)
infinitely long tubes of light where energy and orbital angular momentum can be
transmitted to matter, yet the energy and angular momentum of the nonlinear BVB
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are uninterruptedly renovated by inward spiral currents arriving from a reservoir at
large radius. Nonlinear BVBs emerge naturally in the propagation of linear BVBs at
intensities at which multi-photon absorption are significant.

Though a linear-stability analysis we have demonstrated that nonlinear BVBsmay
be stable against azimuthal symmetry breaking and collapse. These stable vortices
can havemultiple vorticities, and do not requirematerialswith specific nonlinearities.
They can propagate robustly in usual dielectrics like water, air, or optical glasses at
high enough intensities, typically tens of TW/cm2 in gases or a fraction TW/cm2

in condensed matter. It is then not surprising that, contrary to previous settings,
these vortices have been observed before their stability is demonstrated. The proof
of stability has major implications in these experiments with powerful pulsed Bessel
beams and their applications. The tubular filamentation regime, for instance, is only
limited by the quantity of power stored in the reservoir (and depleted at the end of
the Bessel zone), and as such can be enlarged by simply increasing the amount of
power of the illuminating beam.

From the stability analysis anddiagnostic numerical simulationswehave extracted
simple basal laws that govern the propagation of powerful Bessel beams in nonlinear
media, that apply both in ideal situations with infinite power and in actual experi-
ments. We have shown that the propagation is in all cases determined by a nonlinear
BVB attractor. We have identified it as the nonlinear BVB preserving the cone angle,
the topological charge and the inward component of the power flux of the Bessel
beam. We point out that attractors are not necessarily stable attractors, as is well-
known in the field of nonlinear and chaotic dynamical systems. The tubular, rotating
and speckle-like (chaotic) regimes observed in experiments are just manifestations
of the stability/instability properties of the attracting nonlinear BVB. Understand-
ing these laws is of fundamental importance for improving the applications of these
powerful nonlinear Bessel beams.
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Economía y Competitividad No. MTM2015-63914-P.
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Spatial Solitons in Nonlinear Photonic
Crystal Fibers

José R. Salgueiro and Albert Ferrando

Abstract This chapter aims to review themost relevant results on solitons in nonlin-
ear solid-core photonic crystal fibers since their introduction about fifteen years ago.
These include fundamental solitons and vortices, as well as vector systems of two
fundamental, vortex or mixed components. Also other related systems as solitons in
double-core photonic crystal fibers will be reviewed. The presentation will describe
the mode families as well as their stability properties. The work is intended to be a
comprehensive document on the field and provide a fast update to the reader as well
as the necessary sources for a further detailed documentation.

Keywords Photonic crystal fibers · Spatial solitons · Vortices · Vector solitons
Discrete symmetry · Nonlinear modes

1 Introduction

Photonic crystals have recently brought new possibilities to waveguiding and con-
trol of light. They are structures with a periodic variation of the dielectric function
that lead to the possibility of existence of band gaps, i.e. regions of the frequency
spectrum for which light is unable to propagate, analogously to the energy band
gaps characteristic of the periodic atomic structures of solids [24]. Band gaps appear
because of Bragg reflections produced in the periodic structure and are the key of a
tight localization of light around defects in the structure. In such a way light can be
forced to propagate along designed paths avoiding scattering losses even for strong
bends in contrast to the case of conventional waveguides. The application of this
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technique to optical fibers leaded to the Bragg fiber [61], which was a multilayer
structure presenting an air core and a cladding formed by a periodic structuremade of
concentric cylinders of alternate refractive indices. Light of frequency in the bandgap
keeps inside the core as it cannot propagate through the cladding.

More recently the photonic crystal fiber (PCF) was proposed. It also presents a
periodic structure and is formed by an array of air holes which run parallel to the
fiber axis with a central defect. This defect can be an air hole of a different diameter
than the rest (hollow core fibers) or the absence of such an air hole (solid core fibers).
This type of fibers reached a great interest as very intriguing and useful properties
were found [28, 43]. Among them we can mention the strong monomode character
of the fiber despite of the light frequency even for large values of the core radius, the
possibility of designing the zero-dispersion point adjusting the geometrical parame-
ters, or the capability of actuate on their birefringence properties also establishing
the proper geometrical parameters. Since their introduction, PCFs have gone through
successive improvements in their fabrication processes and have reached an increased
number of functionalities [44, 45] to become key components of a number of today’s
technologies as frequency comb systems [57] or high power fiber lasers [62].

Very interesting applications arise when considering nonlinear materials. Partic-
ularly in the case of solid-core PCFs, since light is strongly localized inside the
core, the observation of nonlinear effects is possible at relative low powers. In such
a way PCFs are the basis of, for instance, supercontinuum generation systems [43,
56] which can now operate with fs pulses of few nanojoules (nJ), in contrast to the
milijoule (mJ) typical pulse energy necessary when conventional fibers are used. A
selective filling of the holes of the fiberwith a liquid, which can even show a nonlinear
behavior, creating infiltrated PCFs, also brings new possibilities and applications as
properties can be easily tuned by the type of liquid and the geometrical distribution
of filled holes [3, 42, 58].

Self-trapping nonlinear mechanism as the optical Kerr effect, linked to the third
order susceptibility, contribute to the localization allowing the existence of modes
in the form of spatial solitons. In such a case, the PCF matrix has proved to be
determinant for the stability properties of those nonlinear modes. In fact, it was
demonstrated the existence of stable fundamental solitons [15] which are known
to be unstable in homogeneous Kerr media, where they suffer from spreading or
collapse upon propagation. Also, concerning optical vortices—higher order states
with a phase dislocation at its center around which phase changes linearly as 2lθ ,
being θ the azimuthal angle and l the winding number or vorticity—the PCF lattice
also contributes to enhance their stability. Unlike homogeneous Kerr media where
those states break-up due to the azimuthal instability into a number of fundamental
solitons that fly off the main ring and subsequently they collapse, in PCFs non-
collapsing states do exist under a power threshold and, additionally, the distance
at which states do break up can be also made quite long [16, 50]. This effect of
stabilization by a periodic mediumwas also observed in other systems as for instance
in square lattices [2, 59].

The discrete symmetry characterizing PCFs conditions the shape of the modes
they are able to support. For linear systems—or nonlinear at low power—modes
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must belong to the symmetry group characterizing the PCF structure. For instance,
in the common case of a hexagonal-lattice PCF this group is C6v which implies the
invariance under rotations ofπ/3 radians plus reflections respect to the cartesian coor-
dinate axes. However, for moderately high power, when nonlinear effects dominate,
modes with less symmetry belonging to a subgroup of the lattice symmetry group
are possible. Even, for very high power, completely asymmetric solutions may arise.
Nonlinear systems with discrete symmetry are of great interest due to the enhanced
stability properties they present respect to their homogeneous counterparts [18, 38].
PCFs, as discrete systems, also share the properties mentioned above and limitations
in the mode spectrum do arise. For instance, cluster-like solutions are restricted to
those with some particular numbers of clusters (three or six for a hexagonal lattice)
or vortex solutions are restricted to those with vorticity l ≤ 2 [17].

Additionally, there are other guiding nonlinear systems that present similarities
with PCFs due to the discrete rotational symmetry of their structures. Because of
their equivalent rotational properties, the symmetry analysis of their nonlinear mode
spectrum can be performed in the same way as in PCFs. Thus, most of the main
results obtained for PCF modes can be straightforwardly translated to other similar
nonlinear waveguides with the same symmetry properties. An example is provided
by Bessel lattices in which higher-order Bessel beams are able to optically induce
an azimuthal modulation of the refractive index [25]. This modulation permits the
implementationof a rotational discrete symmetry of evenorder atwill. In this case, the
same classification scheme found for PCFs applies and the set of potential nonlinear
solutions follows identical rules. Another example is provided by a system of two-
dimensional coupled nonlinear waveguide arrays [7–9, 30, 31, 35, 36, 55]. When
the geometry of the waveguide array implements a discrete rotational symmetry,
the classification of nonlinear modes follows the same symmetry rules that will be
described here for spatial solitons in PCFs. The classification of soliton solutions
in circular arrays of nonlinear waveguides provides an excellent example of this
feature [8].

More complex systems based on the nonlinear PCF were proposed and studied
with the aim of enhancing the stability properties of the optical modes. For instance,
vector systems of two or more mutually incoherent components interacting via the
nonlinearity. For the case of a Kerr-type nonlinearity two-component fundamental
modes stable in a particular region of the domain were found [51]. The PCF plays
an important role in the stability of such modes as they are known to be unstable in
homogeneous media [33]. Also vector modes with vortex components were found
fully stable [47] or with enhanced stability respect to the scalar counterpart.

Finally, other interesting related systems are multi-core PCFs where two or more
close defects are introduced into the periodic matrix creating devices similar to
directional couplers [6, 29]. This multicore arrangement produces a decrease in the
symmetry of the lattice and consequently restricts the modal solutions allowed to
exist. For example in dual-core PCFs with a hexagonal lattice, two close defects are
present and so the original C6v symmetry is reduced to C2v at moderate power. For
higher power, however, more asymmetric solutions may exist, breaking the global
and even the local symmetry of each core. Optical modes containing fundamental
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states in each of the cores have been found [51] as well as states combining two
vortices or fundamental states and vortices [54].

In the following sections we will review the main results on nonlinear solid core
PCFs as concerns the existence and stability of fundamental modes and first order
vortices. Next section is devoted to the classification of solutions according to their
symmetry properties. In Sect. 3 we deal with the fundamental solitons and vortices in
PCFs. Next, Sect. 4 will describe and analyze vector systems with two fundamental
soliton components, as well as those containing vortices in one or both components.
Finally, in Sect. 5 the dual-core system is reviewed, also in the case of presenting
fundamental fields in both cores as well as in the case where at least one of the cores
contains a vortex.

2 Optical Modes with Discrete Symmetry

The optical modes of a fiber made, partially or totally, of a nonlinear material in
the scalar approximation are given by the eigenfunctions of the nonlinear Helmholtz
operator in the two transverse dimensions (x̃, ỹ). It is assumed that both the fiber
refractive and nonlinear indices are invariant along the axial direction z̃. Because of
the axial invariance, the eigenfunctions of the linear Helmholtz operator also have to
be eigenfunctions of the axial translational operator. When the nonlinearity depends
on the modulus of the electric field exclusively this condition is also fulfilled by
the whole nonlinear non-paraxial Helmholtz operator. Axial translational symmetry

requires that modes have to present the form E(x̃, ỹ, z̃) = φ(x̃, ỹ) exp
(
i β̃ z̃

)
, where

β̃ is the propagation constant or effective index describing the evolution of the wave
along the fiber axis. In this way, the amplitudes of the optical modes of a nonlinear
fiber must fulfill the following nonlinear eigenvalue differential equation:

{
∇̃2 + k2

[
ε (x̃, ỹ) + εNL (|φ|)]

}
φ (x̃, ỹ) = β̃2φ (x̃, ỹ) , (1)

where ∇̃ = (∂/∂ x̃, ∂/∂ ỹ) is the transverse Laplace operator, k is the wavenumber
related to the frequency ω as k = ω/c, c being the vacuum speed of light, ε (x̃, ỹ)
is the linear dielectric function and εNL (|φ|) its nonlinear counterpart which, as
mentioned, depends exclusively on the modulus of the field. For the current sym-
metry analysis, the nonlinear dielectric function εNL can include different types
of nonlinearities provided they depend on |φ|. For example, for the standard case
of a Kerr nonlinearity εNL (|φ|) = γ2 |φ|2, where γ2 is the nonlinear parameter of
the Kerr medium, related to the standard nonlinear index n2 by the simple rela-
tion γ2 ≈ cε0εn2, where ε0 is the vacuum permittivity and ε is the linear dielectric
constant of the material. In general, both γ2 and n2 can depend on the transverse
coordinates (x̃, ỹ), thus indicating that the distribution of nonlinear material in the
fiber can be transversally inhomogeneous, although it has to be z̃-independent to
ensure axial translation invariance.
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In the paraxial approximation, the 3D non-paraxial Helmholtz equation is reduced
by means of a decomposition in a fast and slow varying functions on the axial
coordinate. That is, we write E as E(x̃, ỹ, z̃) = Ũ (x̃, ỹ, z̃) exp (−ik0na z̃)−−na is an
arbitrary reference index that we take as that of the material in the holes−−in such a
way the axial second derivative of the envelope Ũ is neglected in the 3D Helmholtz
equation, giving rise to a Schrödinger-like equation for the function Ũ . We consider
a Kerr nonlinearity and a PCF structure made of two materials, one of index na
in the holes and other of index ns for the rest of the structure (the substrate). We
normalize the original spatial coordinates and the field Ũ as x = k(2δ)1/2 x̃ , y =
k(2δ)1/2 ỹ, z = kδz̃, and U (x, y, z) = (γ /δ)1/2Ũ (x̃, ỹ, z̃), where k = k0na is the
wavenumber in the holes and δ = ns − na is the PCF index contrast. In this way, we
obtain the paraxial equation in its canonical dimensionless form:

i
∂U

∂z
= ∇2U + [

1 + W (x, y)
(
1 + |U |2)]U, (2)

where W (x, y) describes the PCF structure taking value 1 in the substrate and
0 in the holes. For the calculation of modes we require the solutions to be of the
form U (x, y, z) = u(x, y) exp (−iβz), where β is the paraxial propagation con-
stant. The relation with the non-paraxial propagation constant in Eq. (1) is simply
β̃ = k (1 + βδ). The eigenvalue equation for modes is:

∇2u + [
1 + W (1 + u2)

]
u = βu. (3)

The field u(x, y) describing the profile of the mode is in general a complex function
as modes may include a transversal phase distribution. It is the case of the vortex
states showing a phase dislocation at the center of the fiber core and presenting
a linear distribution of phase exp (ilθ), where l is an integer number and θ the
azimuthal coordinate. Equation (3) is solved for the different systems considered in
the subsequent sections using numerical methods as those described in Ref. [53],
and the solutions obtained can be classified by means of their propagation constant
β and their power flux in the axial direction ẑ,

P =
∫

A
|u|2dx dy, (4)

where A stands for the transversal plane of the PCF.

2.1 Linear System

The classification of solutions of the non-paraxial eigenvalue Eq. (1) or, equivalently,
of its paraxial counterpart [Eq. (3)] in terms of rotational discrete symmetries, typical
for a PCF, is standard in the linear case. If the linear refractive index presents a
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rotational symmetry of order N , so that, ε (xt ) = ε [R (θN ) xt ], where xt = (x, y)�
and R (θN ) is the 2D matrix rotation of angle θN = 2π/N , then the solutions of the
linear eigenvalue equation [Eq. (1)] have to be eigenfunctions of the discrete rotation
operator aswell. In terms of the structure functionW in the paraxial equation [Eq. (3)]
the invariance requirement is the same: W (xt ) = W [R (θN ) xt ]. From now on, we
will refer to the symmetry properties of the non-paraxial equation [Eq. (1)] and the
field φ but all properties apply analogously to its paraxial counterpart [Eq. (3)].

Let us define the rotation operator acting on the field amplitude φ as GN∈CN ,
being CN the point group of finite rotations of N th order. Thus, by definition, taking
into account that φ is a scalar (and not a vector) field, it is transformed as:

GNφ [xt ] = φ [R (θN ) xt ] . (5)

The eigenfunctions of this operator have to fulfill the eigenvalue condition,

GNφ [xt ] = ηφ [xt ] , (6)

where ε is the group operator eigenvalue, which in principle is complex. Since the
discrete rotation operator is cyclic, so that the application of N consecutive discrete
rotations of N order leave the function unaltered, this implies that the complex
eigenvalue η fulfills the condition ηN = 1. Thus the eigenvalue is a root of unity of
order N . All the root of unity can be classified according to a discrete number m and
represented by pure phase complex numbers:

ηm = exp

(
i
2π

N
m

)
, (7)

where m = −N/2, . . . ,+(N/2 − 1) if N is even and m = − (N − 1) /2, . . . ,+
(N − 1) /2, if N is odd. The group operator commutes with the linear differential
operator in Eq. (1)−−let us refer to it as L0−−since the Laplace operator is invariant
under any rotation and, by hypothesis, ε (xt ) is invariant, so that [L0,GN ] = 0 for
all the elements of the discrete rotation group. This ensures that the eigenstates of L0

have to be simultaneously eigenstates of GN as well, and so the PCF linear modes
admit a classification in terms of the discrete number m:

L0

∣∣∣β̃2
n ;m

〉
= β̃2

n

∣∣∣β̃2
n ;m

〉
and ĜN

∣∣∣β̃2
n ;m

〉
= exp

(
i
2π

N
m

) ∣∣∣β̃2
n ;m

〉
. (8)

In systems with discrete rotational symmetry modes cannot be eigenstates of the
orbital angularmomentum (OAM)operator L̂ z . However, they are instead eigenstates
of the discrete rotation operator ĜN . The number m plays the role of l, the eigen-
value of the OAM operator, for these states. It can be proved that the number m can
be interpreted as a pseudomomentum, or Bloch momentum, for Bloch waves in the
angular coordinate [10]. Consequently it is natural to refer to it as the orbital angular
pseudomomentum (OAPM) of a given mode. Unlike l, OAPM is conserved during
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propagation since it is a “good quantum number”, i.e.,
[
L0, ĜN

]
= 0. For exam-

ple, for a typical hexagonal PCF, for which N = 6, all eigenfunctions in the scalar
approximation can be labelled using two numbers, the OAPMm = 0,±1,±2, 3 and
nr = 0, 1, 2, . . . , the radial quantum number that gives the number or radial nodes
of the corresponding eigenfunction φm,nr . In Fig. 1 we provide a representation of
the characteristic spectrum of modes for an hexagonal PCF in the scalar approx-

m6= 0

m6= +1 m6= -1

m6= +2 m6= -2

m6= 3

Fig. 1 Typical amplitude (left pictures) and phase (right pictures) of modes with highest effective
index according to their OAPM for an hexagonal PCF.Modes withm6 = 0 andm6 = 3 are singlets,
modes with |m6| = 1, 2 form degenerate doublets (the group order has been included explicitly as
a subindex). Inset upper left: roots of unity for N = 6, classifying the modes of the hexagonal PDF
in terms of the OAPM m
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imation according to this classification. In the mathematical language of discrete
group theory, the OAPM m is univocally connected to the so-called character of
a representation that classifies the six representations of the point group C6, and
includes all discrete rotations of 6th order [22]. In this way, each solution with a
given m belongs to the corresponding representation of the group C6 labelled by m.
The interpretation of m as the OAPM of an angular Bloch mode makes it, however,

easier to interpret physically. The commutation relation
[
L0, ĜN

]
= 0 guarantees

that if a solution belongs to a given representation, i.e. it has a well defined OAPM
m, propagation will not modify its OAPM. Thus, the solution will remain in this
representation indefinitely as the symmetry is not broken [10].

Along with discrete rotational symmetries, PCFs can enjoy mirror symmetries.
Mirror symmetries are reflection symmetries, so that the structure remains unchanged
after a reflection with respect to a given axis. For example, the hexagonal PCF with
round holes, besides being invariant underπ/3 rotations, is invariant under reflections
with respect to the x and y axes. Mathematically, for the hexagonal PCF this means
that ε (−x, y) = ε (x,−y) = ε (x, y). In general, we would write ε (xt ) = ε (Rαxt ),
where Rα represents a mirror reflection with respect to the axis rα . This fact has
further restrictions on PCFmodes. When we include mirror symmetry and rotational
symmetry together, PCF modes must lie in the representations of the group C6v

instead of just C6. This fact means that modes, besides being eigenmodes of the
discrete rotation operator as in Eq. (8) have to be eigenmodes of the mirror reflection
operator: R̂αφ [xt ] = φ [Rαxt ] = σαφ [xt ]. Since two consecutive reflections with
respect the same symmetry axis leave the function unaltered we have σ 2

α = 1, which
implies that the only allowed eigenvalues for the mirror operator are σα = ±1. Since
Rα is a symmetry of L0, so that [L0, Rα] = 0, their eigenvalues σα are also used to
classify PCF modes together with the OAPMm. In general, for a PCF with extended
symmetry CNv including mirror reflections, we will have, complementing Eq. (8),

L0

∣∣∣β̃2
n ;m, σα

〉
= β̃2

n

∣∣∣β̃2
n ;m, σα

〉
. (9)

For example, for the case of the hexagonal PCF whose modes are represented in
Fig. 1, the singlet mode with m = 3 is also an eigenmode of the reflection operators
R̂x and R̂y with eigenvalues σx = +1 and σy = −1, respectively. This property is
immediately obtained by direct observation of its phase. In the case of singlets,
modes have to be eigenmodes of the reflection operator themselves. In the case of
doublets, mirror symmetry transform modes among themselves but preserving the

representation [22]. For example, for the hexagonal PCF R̂x,y

∣∣∣β̃2
n ;m = + |m|

〉
=∣∣∣β̃2

n ;m = − |m|
〉
.
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2.2 Nonlinear System

The classification of modes in the linear case is standard and is based on the same
principles as that of electrons in electronic crystals. However, the situation changes
when we consider the nonlinear term in the eigenmode Eq. (1) or (3). According to
Eq. (1), a nonlinear solution φnl can be considered as an eigenmode of the opera-

Fig. 2 Characteristic form for the amplitude (left pictures) and phase (right pictures) of stationary
nonlinear modes of a system with discrete rotational symmetry of order N = 6 but owning lower
order symmetry (N = 2, 3). (a) The two single-dimensional representations of C2 with m2 = 0, 1.
(b) The one single-dimensional representation of C3 (with m3 = 0) and the one two-dimensional
(with m3 = ±1) representations of C3. Roots of unity are also shown for each case
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tor L (φnl) = L0 + k2εNL (|φnl|) generated by itself. This implies that a solution φnl

appears self-consistently−−and simultaneously−−as generating a nonlinear modula-
tion of the refractive index through the term εNL (|φnl|) and as an eigenmode of the
full operator L (φnl) generated by itself. This two-fold role requires a compatibility
between the symmetry of the solution and that of the medium [20]. The main result
is that for a given order N of the discrete rotational symmetry of the system, for
example that of the structural functionW in Eq. (3), the solutions can only belong to
a representation of the original group CN or to some of its subgroups. Interestingly
enough, the subgroups of a given point groupCN can be easily determined by decom-
posing its order N in prime factors. So that, the C6 group associated to an hexagonal
PCF has C3 and C2 as nontrivial subgroups since 6 = 3 × 2. On the contrary, for
example, C5 has no nontrivial subgroup since 5 is only divisible by 1. For this argu-
ment, the identity group (no rotational symmetry at all) is obviously a subgroup of
all point groups. In this way, we expect the nonlinear modes of the Eq. (1) or (3) to
be classified according to the representations of the original symmetry group C6, as
in the linear case in Fig. 1. But also we expect nonlinear modes to exist with lower
symmetry corresponding to the subgroups C3 and C2, as in Fig. 2. According to the
roots of unity for N = 2 and N = 3, the allowed values for the OAPM in both cases
are m2 = 0, 1 and m3 = 0,±1 (for the sake of clarity we indicate the order of the
group as a subindex of the OAPM).

When mirror reflections are included in the nonlinear analysis, the previous argu-
ments also remain. For example, if we consider C6v instead of the pure point group
C6 we can obtain solutions belonging to the representations of the subgroups C3v

and C2v.

3 Nonlinear Modes in Solid-Core Photonic Crystal Fibers

Solid-core PCFs are fibers whose transverse structure is given by a 2D periodic distri-
bution of holes in a dielectric medium (usually silica), which extend along the entire
fiber length [see Fig. 3a]. This periodic modulation of the linear dielectric constant is
most times hexagonal. It can be also square but the PCF fabrication process makes
the hexagonal geometry easier to produce. So, a solid-core PCF can be considered a
particular case of a 2D photonic crystal with an important peculiarity, which is the
presence of a defect, in this case the absence of the central hole at the fiber symmetry
axis. The central defect, or PCF core, is the region where light can be localized in
the transverse plane. The surrounding periodic lattice is known as the PCF cladding,
following standard fiber optics terminology and is characterized by the lattice period
(or pitch) � and the hole radius a [see Fig. 3b]. So that, PCF linear guided modes
are mostly confined in the solid core region and present the rotational symmetry
dictated by the 2D structure of the photonic crystal cladding. For an hexagonal lat-
tice, this symmetry is C6 since the core center is located at the symmetry axis of
finite rotations. Thus, all linear PCF modes have to classify according to the repre-
sentations of this group and they, in fact, present the symmetry features of modes in
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Fig. 3 a Typical structure for a solid-core PCF. b Three examples of the family of fundamental
solitons of a nonlinear (Kerr) PCF for three increasing values of power (� = 23µm and a = 4µm).
c Nonlinear effective index contrast (Δ) vs normalized power (γ ) of two families of fundamental
solitons corresponding to a hole radius of a = 4µm and a = 8µm

Fig. 1. Numerical modeling of a realistic solid-core PCF showed that this structure
supported a fundamental mode belonging to the m = 0 representation of C6 [13]
as well as higher order modes of vortex type belonging to the |m| = 1 representa-
tion of that group [12]. Those calculations are performed by solving the full-vector
Maxwell’s equation, so that they include the two polarization degrees of freedom
for every mode. In order to compare to our previous mode classification, valid for a
scalar field, we have to duplicate the dimension of every representation. Thus, the
fundamental mode with m = 0, as well as the other scalar singlet with m = 3, have
to appear as a polarization doublet whereas the eigenmodes with |m| = 1, 2 must
form degenerate quadruplets. Indeed, the full-vector calculation in Ref. [12] shows
a polarization doublet for the fundamental mode and an almost degenerate quadru-
plet for the vortex-like solutions with |m| = 1. Fourth-fold degeneracy is broken by
polarization mixing terms inherent to a full-vector description, absent in the scalar
case. This breaking is small and not relevant unless an accurate determination of
the propagation constant is required, such as in the calculation of the group velocity
dispersion of the mode [11, 12].
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3.1 Fundamental Modes

Spatial solitons in the fundamental representation of C6 were found to exist in PCFs
by assuming a nonlinear response of the Kerr type in the dielectric [15]. These
nonlinear modes are characterized by an OAPMm6 = 0 as the fundamental mode of
a linear PCF. The main difference, as in any nonlinear soliton solution, comes from
the fact that both its propagation constant and shape change with power. This is in
clear contrast with a purely linear solution, for which a modification in power only
produces a global rescaling of the mode by a constant factor, but it leaves its shape
unaltered. A family of fundamental spatial solitons of a Kerr PCF−−parametrized by
power−−is thus obtained, as shown in Fig. 3b. In Fig. 3c it is represented the nonlinear
effective index contrastΔ−−defined as the difference between the effective refractive
index of the nonlinear fundamental mode with respect to its linear counterpart−−in
terms of the normalized power of the solution.Normalized power is obtained dividing
power by a characteristic area of the mode A0, γ = Pn2/A0, n2 being the nonlinear
refractive index. The nonlinear index [Fig. 3c] contrast is a monotonically increasing
function of the power, as expected for a bright soliton in a self-focusingKerrmedium,
and it branches out from a linear solution, which is always existing. Higher powers
correspond to more localized solutions, as clearly seen in Fig. 3b. These solutions
are stable below a critical power value γc. Above this value, the soliton experiences
an instability similar to that of the Townes’ soliton in an homogenous medium [15].
Fundamental spatial solitonswere found experimentally in related nonlinear systems,
such as optically induced square lattices with no defect [19]. Analogously to what
happens in PCFs, they belong to the m4 = 0 fundamental representation of C4.

3.2 Vortex Modes

More complicated phase structures owning nonzero OAPM have been also found in
periodic lattices. Prediction of these vortex soliton states was made in the framework
of the discrete nonlinear Schrödinger equation [34] as well as in the continuous
nonlinear Schrödinger equation [60]. In optically-induced square lattices with no
defect, optical vortices have been experimentally demonstrated [18, 37]. Since the
order of symmetry of the square lattice is N = 4, symmetry requirements determine
that vortex solutionswith fourth-fold symmetry can only have anOAPMofm4 = ±1.
In a PCF, which can be considered as a photonic lattice with a defect, prediction of
vortex solutions localized at the fiber core was reported a bit later [16]. Our previous
symmetry analysis in Sect. 2 states that for a hexagonal PCF nonlinear solutions
can exist realizing the full symmetry of the system (N = 6) or that of its subgroups
(N = 3, N = 2 or N = 1). Vortex solutions realizing the full symmetry can only
exist in representations defined by an OAPM of m6 = ±1,±2. In Fig. 4 (pictures c,
d) the amplitude (modulus) and phase of such vortex solutions are represented. The
amplitude clearly exhibits the N = 6 symmetry of the PCF cladding. The profile of
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Fig. 4 Examples of nonlinear modes of the PCF with different symmetry. Images A, B: amplitude
of two nodal solutions of symmetry N = 2. Images C1, C2: modulus and phase of a full symmet-
ric vortex (N = 6 symmetry). Images D, E: two cluster-vortex solutions with symmetry N = 3
(modulus). Images F, G: cluster-vortex solutions of symmetry N = 1 (modulus). Labelling letters
correspond to points in Fig. 6

Fig. 5 Phase profile of a
vortex soliton solution with
OAPM m6 = +1 at a fixed
radius. Reprinted with
permission from [16].
Copyright (2004) by the
Optical Society of America
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the phase evaluated along a circle of fixed radius centered at the origin (Fig. 5) shows
the typical 2π slope of an optical vortex−−indicating that the solution has an OAPM
of m6 = +1−−along with a slight modulation. When the linear phase dependence
is subtracted from the total phase, we can clearly appreciate the additional N = 6
modulation introduced by the discrete rotational symmetry.

Nonlinear soliton PCFmodes having lower symmetry, in this case of order N = 2,
have been also found [14]. These solutions present nodal lines, characteristic of
solutions in the representation of theC2 rotation group as showed previously in Fig. 2.
Twoexamples of these nodal solitons−−or dipole solitons as they are also known−−are
represented in Fig. 4 (images a and b). Their amplitude is clearly invariant under
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Fig. 6 Power versus propagation constant for different nonlinear mode families of the PCF. O1 and
O2 are bifurcation points. Labelling letters correspond to examples in Fig. 4. Insets are two zoomed
areas of the main plot for a better clarity. Parameters: � = 10, a = 4, na = 0, ns = 1. Reprinted
with permission from [50]. Copyright (2009) by Springer

N = 2 rotations. Their phase indicated that both solutions have an OAPM ofm2 = 1
since their phase change π radians under a 180◦ rotation. Both modes are, however,
non-degenerate. The explanation can be also given in terms of symmetry. These two
modes present different symmetry properties under mirror reflections R̂x and R̂y .
The one labelled A is

∣∣m2 = 1; σx = +1, σy = −1
〉
whereas the one labelled B is∣∣m2 = 1; σx = −1, σy = +1

〉
.

In Fig. 6 it is plotted the dependence of the propagation constant (horizontal axis)
to the power (vertical axis) for different vortex-mode families. Nodal solitons are
described by lines containing points A and B whereas vortex solitons correspond
to line containing point C. In the linear case, at zero power, all three solutions are
degenerate and superposition principle holds. This means that linear nodal solutions
can be obtained simply by linearly combining vortex solutions and vice versa. How-
ever, when nonlinearity is switched on (power increases) this argument no longer
holds. Nodal soliton and vortex soliton solutions now belong to representations of
the different groups C2 and C6 respectively, and so they are no longer degenerate.
The splitting becomes more obvious as we increase the power. In this sense, one can
see that nonlinearity breaks the original symmetry of the system C6 into that of its
subgroupC2. As power is increased we can also appreciate (Fig. 6) the gap generated
between the two nodal solutions with the same OAPM (m2 = 1). This gap indicates
that the different behavior under the reflection symmetries R̂x and R̂y puts these
solutions in two different representations of the group C2v (discrete π−rotations
plus mirror reflections) and thus they cannot appear degenerated. At large power,
however, the gap closses again because both modes become more localized and stop
feeling the effects of the PCF structure.
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In the same way, vortex soliton solutions owning discrete rotational symmetry of
order N = 3 can be found in a hexagonal PCF, as shown in Fig. 4e, f [54]. Unlike
dipole solitons, tripole-shaped vortices cannot be obtained as a linear combination
of the C6 symmetric vortex and anti-vortex linear solutions with m6 = ±1. So they
do not branch out from a linear solution but they appear above a certain power
threshold, bifurcating from the C6 branch (Fig. 6). The two solutions in Fig. 4e, f are
non-degenerated despite they have identical OAPM (m3 = +1) and so they bifurcate
at different points O1 and O2. Here, the breaking of the degeneracy is due to the
particular form of the amplitude profiles, which present a different distribution of the
intensity maxima respect to the hexagonal lattice of the cladding.

Finally, for high enough power fully asymmetric solutions may appear which
belong to the trivial subgroupC1. They appear as solutions in the form of quadrupoles
[Fig. 4g, h] and branch from the vortex with C1 symmetry at a pseudobifurcation
[1, 21]. Both types of quadrupoles are not either degenerated due to the different
distribution of amplitude respect to the PCF structure and they join to the symmetric
vortex branch.

The PCF structure introduces an increase of stability in vortex modes. In homo-
geneous media they are known to suffer from the collapsing instability for large
power or at least the azimuthal instability which breaks the mode into a number
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power for a vortex soliton. Reprinted with permission from [50]. Copyright (2009) by Springer



154 J.R. Salgueiro and A. Ferrando

of fundamental solitons which may also collapse afterwards. The PCF is able to
suppress collapse and to partially suppress the azimuthal instability [16, 50], rising
the propagation distance up to that at which the modes may survive before breaking
up. In Fig. 7 the two different scenarios are shown: break up and further collapse
[Fig. 7a] and break up with the fundamental solitons kept oscillating inside the core
[Fig. 7b]. In this latter case, the surviving distance is larger as mode power is lower.
For low powers this distance may reach large values making the modes virtually
stable [Fig. 7c, d].

4 Vector Solitons in PCF

Vector solitons constitute another interesting system which extend the possibilities
and applications of the single (or scalar) solitons. It is composed of two or more
beams which propagate colinearly and interact incoherently via the nonlinear terms
[27]. This incoherent interaction is usually achieved using beams with orthogonal
mutual polarizations or presenting different frequency. The modelling can be carried
out using a equation similar to Eq. (3) for each of the components with added terms
to account for cross coupling among components. Considering a two-component
system and naming as u(x, y) and v(x, y) the field envelopes of such components
and β1 and β2 their respective propagation constants, wewill use the followingmodel
of two coupled equations:

∇2u + nau + W (x, y)
(
δ + u2 + µv2

) = β1u (10)

∇2v + nav + W (x, y)
(
δ + v2 + µu2

) = β2v. (11)

where, as was stated above, δ = ns − na is the difference between the indices in
the substrate and the holes and W(x,y) describes the PCF network with the central
defect. The parameter µ is the coupling coefficient and accounts for the interaction
between both components. Every beam is consequently influenced by its own’s power
(self modulation term) as well as by the other’s power (cross modulation term). The
scenario can be initially described as one intense beam which creates a waveguide
and the other low-power beam is forced to propagate as the optical mode of such
waveguide. The description under these circumstances would be made dropping the
cross-modulation term in Eq. (10) and the sef-modulation term in Eq. (11). However,
if the second beam is also intense enough, it modifies the waveguide itself creating
the bounded two-component system which should be described using all the terms.

Typical values for the coupling parameter depend on the mechanism responsible
for the nonlinearity and the material anisotropy [27]. For instance, for a nonlinearity
derived from molecular orientation µ ≤ 7, while for nonresonant Kerr-type nonlin-
earitiesµ ≥ 2/3. Relevant cases areµ = 2/3 for beamswith orthogonal polarization
and µ = 2 for beams of different frequency.
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The existence of the external potential of the PCFmakes the systemnon-rescalable
in contrast to the case of nonlinear homogeneousmedia,where one of the propagation
constants as well as the parameter δ could be dropped from the equations by means
of a proper rescaling of the coordinates and fields [33]. In the present case the index
difference δ has to be maintained in the model (in contrast to the scalar case) and a
rescaling of such parameter would allow dropping one of the propagation constants.
Anyway, the study will be made in terms of one of the propagation constants, say
β2, assigning a fixed value to the other one, and assuming that such a restriction will
not introduce important changes or loss of generality.

4.1 Fundamental Vector Solitons

The simplest case is that of considering two coupled fundamental beams [51]. If
power of one of the beams approaches zero we have the scalar case studied in the
previous sections. In Fig. 8a we show the power curves, calculated using the expres-
sion (4), of both solutions, one for v = 0 (labelled P1), which is an horizontal line
as propagation constant remains at a fixed value, and the other for u = 0 (labelled
P2) which describes the scalar family parametrized by β2. For both nonvanishing
components there is a family of vector solitons (Ptotal) which bifurcates from the
scalar solitons at points O1 and O2. This means the vector solution exists only for
values of β2 between such bifurcation points. Close to point O1 component v domi-
nates and component u is close to zero while close to point O2 the opposite situation
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takes place [see labelled A and B in Fig. 8b]. Also, curve Ptotal describing the vector
solitons is under curves P1 and P2 (power smaller than the components) for µ > 1
whereas it is over them (power larger than individual components) for µ < 1.

Letting β1 change it is possible to build the existence domain for vector solitons
in the plane (β1,β2) as shown in Fig. 9. Shaded area corresponds to the existence of
the vector soliton solutions and the limiting lines constitute the points where one of
the components vanishes and so they can be termed bifurcation lines.

The stability of the vector solitons can be studied by the matrix stability criterion
[39, 40, 51]. Themethod consists in evaluating the number and signof the eigenvalues
of thematrix Schrödinger operators. Those eigenvalues can be obtained by numerical
computation of a linearized spectral problem. Additionally, a simplification of the
problem is possible in the neighborhood of the bifurcation points, i.e. close to the
limiting lines shown in Fig. 9. Computations can be carried out analytically using
perturbation series expansions [39, 41, 60].

According to the generalized matrix stability criterion the boundaries between
zones where solutions are stable and those where they are unstable fulfill the con-
dition det (D) = 0, were D is the matrix of derivatives Di j = ∂Pi/∂β j , Pi and β j

being the power and propagation constant of the components i and j respectively.
Those indices take values 1 (referring to component u) and 2 (referring to com-
ponent v). According to this, the result shown in Fig. 9 is obtained after applying
the above criterion to the numerically calculated solutions. The stability condition
allows determining the boundary line separating the regions of different shading
colour. A set of few simulations using a standard beam propagation method (BPM)
applied to solutions of both regions allowed determining that solutions belonging to
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the region close to the apex (dark colour shading) are stable while those in the light
colour shading are unstable. The boundary changes curvature depending whether
the coupling parameter is smaller or larger than unity. Besides, in the case µ > 1,
the boundary line approaches asymptotically to the bifurcation curves, as can be
analytically demonstrated [51]. The stability criterion, able to provide a result on
the stability in terms of the slopes of the power curves, is somehow analogous to
the Vakhitov-Kolokolov criterion useful for determining the stability of the scalar
fundamental solitons [27].

4.2 Vortex Vector Solitons

Another case of vectorial system takes place when at least one of the components is a
vortex. In such a case, the fields u(x, y) and v(x, y) describing both components are
complex numbers as happened in Sect. 3 for the scalar case. Two different cases may
be considered: a combination of a fundamental soliton with a vortex or the combina-
tion of two vortices. A related, though different, case would be the combination of
two scalar first order solitons (dipoles) which is a system lacking angular momentum
and does not require a complex field to be described.

Vortex vectorial systems, fundamental-vortex as well as double-vortex, have
proved to be more stable than single-component vortices in homogeneous nonlinear
media [48]. Besides, taking into account that the PCF matrix also increased stabil-
ity of fundamental scalar and vortex solitons, as was demonstrated above, one may
wonder about the stability of vortex vectorial states in the PCF matrix, as it con-
cerns the azimuthal instability as well as the collapsing instability. In the following
the main general families of vector-vortex solutions are described and classified and
their stability properties analyzed.

In Fig. 10 it is shown a simplified power diagram with the basic solution types.
The complete diagram should contain additional lines representing variants of those
families with slightly different configuration as will be described below. The study
is made in terms of the propagation constant of the second component (β2), keeping
β1 fixed (β1 = 1). Thin dashed lines represent the scalar solutions fromwhich vector
ones bifurcate. Those corresponding to a single component soliton (first component)
present a constant power (horizontal lines) since β1 remains fixed. The ones with
the soliton at the second component are basically the same already classified and
presented in Fig. 6, i.e. single dipoles (SD) and single vortices with doughnut shape
(SV) or tripole shape (ST).

The rest of the lines constitute vectormodes bifurcating from the scalar ones at two
bifurcation points, atwhich one of the respective components vanishes. Consequently
those modes exist for a particular range of values of β2. In the figure they are plotted
families of solutionswithout vorticity (thick dashed lines) in the formof combinations
of a fundamental state and a dipole (FD), as well as combinations of two dipole states
(DD). Continuous lines correspond to solutions showing vorticity. Thin continuous
lines describe combinations of a fundamental soliton and a vortex with a doughnut
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PCF structure (transversal plane). Parameters: � = 10, r = a = 4, na = 0, δ = 1.0, µ = 0.4 and
β1 = 1. Reprinted with permission from [47]. Copyright (2016) by IOP Publishing

shape (FV) or tripole shape (FT). On the other hand thick continuous lines represent
the double-vortex modes with a doughnut shape (DV) or tripole shape (DT).

There exist different families of the same type which are not shown in the simpli-
fied diagram of Fig. 10. For instance, the double-dipole modes may have two similar
components with the lobes facing inter-hole spaces, similar to those shown in Fig. 4a
(the family actually shown in Fig. 10), or two components with lobes facing holes of
the PCF, as those shown in Fig. 4b. Also, there exists a state with one different type
of dipole at each component. In such a case, the family presents a higher power and
the second bifurcation point is suppressed, existing for an unlimitted value of β2,
although power saturates al large β2 [47]. On the other hand there exist two different
families of fundamental-dipole (FD) modes which lack angular momentum and are
real-valued fields presenting the shape shown in Fig. 11 (cases a and b).

Concerning fundamental-vortex solitons, in Fig. 11c, d, e some examples are pre-
sented. Family c is a C6v-symmetric state while families d and e present a reduced
symmetry of the subgroup C3 and so they bifurcate from the FV family at a higher
power.

Next, the double-vortex family (DV), when power rises, goes through a pseudobi-
furcation as happened in the scalar case, ensuing a symmetry breaking and originating
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Fig. 11 Examples of vector modes combining a fundamental soliton at the first component with
a dipole (cases a, b), doughnut-shaped vortex (c) or tripole-shaped vortex (d, e). Top images
correspond to the first component, bottom images are the second component. Reprinted with
permission from [47]. Copyright (2016) by IOP Publishing

asymmetric solutions with a quadrupole shape which belong to the trivial subgroup
C1. Additionally, there also exist double-vortex modes with a tripole shape (DT)
presenting the symmetry of the subgroup C3. These tripoles may present the lobes
located at the same place for both components or out of place, being one component
rotated a multiple of π/3 respect to the other. This second possibility may only take
place for a weak coupling (low value of µ) and the state bifurcates from the dough-
nut DV families instead from the scalar ST ones as happens for the states with both
components in place. A more detailed discussion is found in Ref. [47].

An interesting thing is the stability of the different vector solutions. Unlike
the double-fundamental modes studied in Sect. 4.1 it is not possible to apply the
Vakhitov-Kolokolov criterion as such criterion is only valid when considering fun-
damental states (see Chap.2 in Ref. [27]). Because of that we studied stability numer-
ically by direct simulation using a BPM algorithm. As for the case of scalar modes,
there are three different scenarios depending on the family considered as well as
power or propagation constant of themodes: full stability, decay due to the azimuthal
instability and collapse. In order to quantify the stability degree in the two latter cases,
different states were propagated and the maximum amplitude recorded at each prop-
agation step. Bymeans of a further analysis it is possible to evaluate the break-up and
collapsing distances by examining the points at which maximum amplitude changes
by a fraction of the initial value. For the case of azimuthal break-up we chose a
fraction of 0.05 (5%) while for detecting collapse we chose a fraction of 100.

Double-dipole states proved to be strongly unstable so we will focus on the rest
of modes. For FD, FV and FT, however, depending on the propagation constant
β2 all three scenarios are possible. In Fig. 12a it is plotted the maximum amplitude
versus propagation constant for different instability cases: for FD modes, a break-up
case (A1) and a collapsing case (A2). For FV states, a direct collapse (A5) and two
azimuthal decays, one maintained indefinitely (A3) and another one followed by a
collapse (A4). On the other hand, in Figs. 12b, c the decay and collapse distances
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are plotted versus propagation constant. For any of those families a small band of
stability exists (shaded region). Also there exists an interval where modes break-up
but do not collapse (β2 on the left of the vertical dashed lines). For larger values of
β2 modes do collapse.

Concerning double-vortex solutions it is not possible to find full stable states in
contrast to what happened in the case of FV modes. Nevertheless, stability changes
quite a lot with the value of the propagation constant as it dramatically increases
at low values of β2. At this point an important issue arises. Both components may
present the same vorticity sign or opposite sign, these latter being the so called
hidden vorticity (HV) modes. The stability properties are strongly dependent on
this property in such a way that HV modes reach a high maximum of stability for a
particular value ofβ2 close to the low limit. The stronger stability ofHV solutionswas
already observed in other systems as nematic media [23] or in the context of Bose-
Einstein condensates [5]. Finally, a comparison of the stability properties among
the different double-vortex families shows that no big differences exist. This means
that the PCF matrix has a marginal influence on the stability of these kind of states
as already was demonstrated for other discrete-symmetric systems like waveguide
arrays [8, 34].
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5 Nonlinear Dual-Core PCF

An interesting system, easy to implement in a PCF matrix and with very interesting
properties and applications is the multi-core PCF, i.e. a PCF structure with a number
of close defects. This system constitutes a set of coupled waveguides, and a proper
design can lead to devices useful to perform operations like broadband directional
coupling or polarization splitting [26, 29, 46, 63]. The most simple case, when only
two close defects are considered, resembles the two-waveguide nonlinear directional
coupler [1]. The modes of the system are, however, conditioned by the discrete
symmetry of the PCF. Again, the system may have different stability properties
depending on the power and type of the light beams launched into the system. In this
section we review themost relevant results of the nonlinear dual-core PCF describing
the different types of modes and their stability properties.

5.1 Fundamental Solitons in Dual-Core PCF

For a linear system, when a fundamental beam is launched into one of the cores, a
beating between both cores takes place as is usual in a directional coupler, in such
a way that light periodically passes from one core to each other. A complete power
transfer takes place if the coupler is symmetric, i.e.made of two identicalwaveguides,
as is the present case. Nonlinear regime brings new and useful properties coming
from a different modal structure respect to the linear counterpart [4, 49].

To describe the dual-core system we use the same model as for the single core
[Eq. (3)] but now the function W (x, y) describes the PCF matrix with both defects
(value one in the substrate and zero in the holes). The numerical solution leads to the
different modes which come as families parametrized by the propagation constant
β, and are characterized by the power given by Eq. (4). Three different types of
fundamental modes, i.e. with a single hump at each core, are found. On one hand
the usual symmetric and antisymmetric modes, also characteristic of linear couplers
(Fig. 13, cases a and b). In Fig. 14 we show the power diagram for such modes.
Power curves start at points on the horizontal axis, at values corresponding to the
propagation constant of the linear modes (the symmetric mode is the fundamental),
and power rises with the propagation constant in a similar fashion as happened for
the single core PCF. At a particular power threshold there appears a new mode, an
asymmetric one (Fig. 13, case c) bifurcating from the symmetric mode at point O1

(Fig. 14). This mode exists because of the nonlinearity, as it requires a symmetry
breaking in the dual-core PCF structure, and is the key of its switching properties.

Considering the system nonlinear and launching a fundamental beam into one of
the cores, transference of the power to the second core is suppressed if the launched
beam has a power over a specific threshold. The explanation for this fact relies in the
fact that over the bifurcation point the symmetric mode turns into unstable, appearing
the new asymmetric mode which is however stable.
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Fig. 13 Examples of the modes symmetric (left), antisymmetric (center) and asymmetric (right)
of the nonlinear dual-core coupler (β = 3.95). Images show the amplitude profile of the modes.
Labels A, B and C correspond to points in Fig. 14. Parameters: � = 2, a = 0.75, na = 0, δ = 5
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dual-core PCF coupler. O1 is the bifurcation point for the asymmetric mode. Inset: enlargement of
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In Fig. 15 we present the switching curve of the coupler. It was built carrying out a
set of numerical simulations using the standard beam propagation method. First, the
system is simulated as linear. A fundamental mode of the linear single-core PCF is
launched into one of the cores and the distance where the whole power is transferred
to the second core (beat length) was evaluated. For the particular parameters taken
for our system it was zb = 21.23. Then simulations are carried out in a nonlinear
regime, launching beams of different power Pin into one of the cores and letting them
propagate for the beat distance zb. At that point, output power (Pout ) at the excited
core is evaluated for every beam. The fraction of light remaining in the excited core
Pout/Pin is plotted against input power in Fig. 15.We see the curve raises from almost
zero to one at the point where Pin overpasses the power threshold. This means that
power goes from a total transfer to the second core to completely remain in the first
one. Besides, the large slope of the curve means the change of state takes place
sharply and this means a fast change of the status at the triggering point.



Spatial Solitons in Nonlinear Photonic Crystal Fibers 163

Fig. 15 Switching curve:
ratio of output power to input
power for the excited
waveguide of a beat length
zb. Reprinted with
permission from [49].
Copyright (2005) by the
Optical Society of America

0 2 4 6 8 10
Pin

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P ou
t / 

P in

5.2 Vortices in Dual-Core PCF

Now we turn to consider solutions with phase dislocations centered on one or both
defects of the dual-core PCF matrix [54]. As happened with the single-core PCF this
brings additional complexity to the system modeling as now we have to consider
complex-evaluated fields. The model is the same as the one described in Sect. 3.2 but
now the symmetry properties of the solutions to seek are different. In fact, the original
symmetry of the single-core PCF described by the group C6v is reduced to that of the
group C2v, and so the solutions must remain invariant under rotations of π radians or
reflections respect to the coordinate axes. Nevertheless, this symmetry can be broken
by the nonlinear effect if power is large enough (trivial subgroup C1). Taken this into
account we were able to find different types of symmetric and asymmetric solutions
containing vortices in one or both cores. Besides, as in the case of the single-core
PCF, there are also first-order solutions without any angular momentum, which in
this case present the form of symmetric or asymmetric dipoles.

We have classified the different solutions in four main types for convenience. In
Fig. 16 we show a simplified power diagram showing them. There exist first order
solutions exempt of any vorticity with the shape of double-dipoles (dashed curve in
Fig. 16) that we label as DD. Such line is actually made of four close-together lines
since four different types of double-dipoles exist [see Fig. 17a–d].We name solutions
in Figs. 17a, b as bounding (b) and antibounding (a) regarding the molecular orbital
theory, since they are respectively characterized by a high and a low field density
in the inter-core region. The other two families of solutions [Fig. 17c, d] are named
parallel (p) and crossed (x) because they present both dipoles with same and opposite
sign distribution respectively.

For large enough power asymmetric dipoles appear (unbalanced power of both
cores) as a consequence of a spontaneous symmetry breaking (SSB). We label these
solutions asAD. Two types of such solutionswere found [Fig. 17e, f] showing respec-
tively a dipole with lobes facing inter-hole spaces or facing holes of the PCF respec-
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Fig. 17 a–dDifferent types of double-dipoles (DD) in the dual-core PCF: bounding (a), antibound-
ing (b), parallel (c) and crossed (d). d–f Examples of asymmetric dipoles (AD). Reprinted with
permission from [54]. Copyright (2009) by the Optical Society of America
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tively. These solutions bifurcate from twoof theDD solutions as shown in the zoomed
power diagram shown as an inset in Fig. 16 (curves labelled AD1 and AD2).

A second main family of solutions is that of the symmetric double-vortex modes.
These solutions present a vortex field at each of the cores that may show different
amplitude and phase distribution. These solutions are purely nonlinear as double
dipoles are non-degenerated (even in the linear regime) due to the symmetry reduction
induced by the double-core structure in contrast to the case of a single-core PCF.
Consequently they cannot be combined to form a stationary state. In a nonlinear
regime, however, an asymmetric combination of a bounding or antibounding double-
dipole with a parallel or crossed double-dipole, respectively as real and imaginary
part of the field amplitude, is possible to form such kind of solutions.

At moderate power, there exist symmetric vortices with the shape of a double-
vortex with a doughnut shape (curve labelledDV in Fig. 16). We found four different
types of such solutions (there are actually four close-together curves as shown in the
inset of Fig. 16). They can be of bounding or antibounding type depending whether
they are formed by a b or a double-dipole and also both cores can present the same
(+) or opposite (-) vorticity depending on the phase structure. Then we name those
solutions as b+, b−, a+ and a−. They bifurcate from the DD families as shown in
Fig. 16 (inset).

At higher power, as happened in single core PCF, solutions with field distribution
in the form of double-tripoles or even double-quadrupoles appear. Some examples
of possible solutions are shown in Fig. 18. They are two types of double-tripoles and
two of double-quadrupoles which are C2v-symmetric. Any other combinations are
not allowed at moderate power due to the reduced symmetry of the dual-core PCF.
Interestingly, the point at which double-tripoles arise is a pseudobifurcation [21]
point as the emergent solutions are actually asymmetric. The case of the double-
quadrupole modes is similar but, as in the case of the single-core PCF, they appear
at larger power because the quadrupole itself does not present the symmetry of the
PCF matrix.

Finally there is a main family of solutions that we name as asymmetric vortices
(labelled AV in Fig. 16) and can be of two different types: single-vortex modes (SV),
i.e. modes with negligible power in one of the cores [see examples in Fig. 19 (cases
F1, F2 and G)], and vortex-fundamental modes (VF) or combinations of a vortex in
one of the cores and a fundamental field in the other [examples are in Fig. 19 (cases
H1, H2 and I)]. At low power it describes a SV mode which bifurcate from one
of the asymmetric dipole families (Fig. 16, inset). At a specific power threshold it
goes through a complicated pseudobifurcation where different vortex-fundamental
[including doughnut (VF) and tripole (TF) shaped ones] as well as single-tripole (ST)
families originate (see Ref. [54] for a detailed description). For even larger power,
the SV and VF families (doughnut shaped) originate modes with quadrupole shape:
single quadrupoles and quadrupole-fundamental states.

An interesting point is the fact that the existence of symmetric DVs and SVs
solutions suggests the existence of asymmetric DVs that could be generated from
the symmetric DV via spontaneous symmetry breaking (bifurcation). However, it is
not posible to find such solutions and this is again explained because of the reduced
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Fig. 18 Different shaped examples of DVs in the dual-core PCF: double-vortices (images labelled
A, D), two types of double-tripoles (images C1 and C2) and two types of double-quadrupoles
(images E1 and E2). Letters correspond to points in Fig. 16. Reprinted from [54]. Copyright (2009)
by the Optical Society of America

Fig. 19 Different examples of single vortices (image G), including single tripoles (images F1 and
F2), and combinations of a vortex (including tripole-shaped) and a fundamental state (images H1,
H2 and I) in the dual-core PCF. Letters correspond to points in Fig. 16. Reprinted from [54].
Copyright (2009) by the Optical Society of America

symmetry of the dual-core PCF, producing DDmodes which are nondegenerated. In
fact, the existence of a stationary vortex requires a specific power ratio between the
real and the imaginary part. On the other hand, an asymmetric mode also requires
a particular ratio between power carried by each core and both conditions cannot
be satisfied simultaneously to form an asymmetric DV stationary solution. The only
possibility is a combination of a vortex in one of the cores and a field without phase
structure in the other one.

The stability of the different families of stationary states can be studied by numer-
ical simulations using the standard beam propagationmethod [32, 52, 54]. The states
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Fig. 20 Intensity at the maximum for different families of DVs (continuous lines) and SVs (dashed
lines). DVs correspond to powers P = 34.4 (a), P = 30.1 (b), P = 27.9 (c), P = 5.8 (d). SVs
correspond to P = 27.3 (e), P = 15.8 (f), P = 15.1 (g) and P = 2.76 (h). Reprinted from [54].
Copyright (2009) by the Optical Society of America

are basically unstable and the results show the existence of two different scenarios.
Modes characterized by a power over a threshold undergo collapse after a particular
propagation distance. The larger the power the shorter the distance to which they
collapse as it can be seen in Fig. 20 [cases a, b, e and f corresponding to DV and
SV states]. Interestingly, the collapse distance depends on the power or propagation
constant and not so much on the type of family considered. In fact, families with
power distribution in both cores (DV and VF) present a collapse threshold about
P ∼ 30 while those families with power mainly in one of the cores (like SV or ST)
present a threshold around P ∼ 15.75. At any of the former cases β ∼ 0.88. This is
approximately the point at which tripole solutions originate and consequently such
tripole solutions are unstable and do collapse.

The second scenario takes place under the above mentioned collapsing threshold.
Modes donot collapse but after somepropagation distance they develop the azimuthal
instability. This means the phase structure is destroyed and the vortices break into
fundamental solitons which remain spinning inside the core. Again, the break-up
distance depends on power in such a way that the larger the power is the shorter the
distance at which modes decay [see Fig. 20 cases c, d, g and h]. At low power, close
to the linear limit, modes may propagate for a quite long distance before decaying.
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6 Conclusions

The main results on nonlinear solid-core photonic crystal fibers were reviewed as
it concerns mode classification and their stability properties. The study includes a
discussion on discrete symmetry systems and the use of such symmetries to predict
and classify the different solution families, in a linear as well as a nonlinear regime.
The first considered system was a single core PCF and it was demonstrated that
fundamentalmodes aswell as vortexmodes can be found stable (fundamentalmodes)
or virtually stable (vortices) in contrast to the homogeneous media case. Next, a
vector two-component system was studied. In this case, systems of two fundamental
components or a fundamental component and a vortex are found to be fully stable
under certain power conditions. Double-vortex systems, though not fully stable, also
improve their stability respect to their scalar counterparts. Finally the case of a dual-
core PCF is studied, revealing the effects that a reduction of the symmetry has on
the solutions and demonstrating that an efficient switching operation is posible using
this structure which constitutes a directional coupler.
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Abstract This review summarizes recent developments in the numerical investiga-
tions of nonlinear dynamics of graphene, carbon nanotubes, and fullerenes. Discrete
breathers (DBs) or, synonymously, intrinsic localized modes are discussed together
with the nonlinear delocalised vibrationalmodes (DVM). These nonlinear excitations
are expected to considerably affect physical and mechanical properties of sp2 carbon
nanomaterials, for example, their thermal and electrical conductivity, defect nucle-
ation and healing, etc. Our knowledge of the DB properties in carbon nanomaterials
is insufficient for designing a setup for their reliable experimental observation, that is
why numerical studies in this area are of crucial importance today. It is indicated that
the results obtained bymolecular dynamics method significantly depend on the inter-
atomic potentials, making verification of these results by first-principle modelling
indispensable. Finally, the associated challenges and prospects on the future study
of nonlinear excitations in graphene and other carbon nanomaterials are discussed.
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1 Introduction

Graphene is the well-known two-dimensional (2D) crystal in the form of carbon
monolayer composed of sp2-hybridized atoms with many intriguing properties. For
instance, it has lightweight, high electrical and thermal conductivity [11, 14], it is
heat-resistant [9, 74, 81, 99], demonstrates highly tunable surface area [100], high
mechanical strength [66] and chemical stability [4, 77, 80]. Applications in many
diverse areas have been pointed out for graphene, such as photonics and optoelectron-
ics, flexible electronics, spintronics, sensors, energy generation and storage, biomed-
ical applications, composite materials to name a few [38, 77]. Since its successful
exfoliation in 2004 the interest in graphene research has increased exponentially. In
fact, graphene is closely related to other sp2-carbon allotropes discovered earlier,
such as carbon nanotubes [48] and fullerenes [65].

In the present review, nonlinear dynamics of sp2-carbon allotropes is discussed
with the emphasis on the spatially localized vibrational modes called discrete
breathers (DBs) (also often termed as intrinsic localised modes, ILMs) and large-
amplitude delocalized vibrational modes (DVMs).

DBs are time-periodic and spatially localized excitations which generally exist
in the presence of spatial discreteness and nonlinearity [3, 17, 32, 39, 92]. Energy
can be localized in a system through the excitation of a DB for much longer times
compared to thermal fluctuations. Remarkably, such localised nonlinear vibrations
have been also observed experimentally in various physical systems [13, 40, 82,
83]. Nevertheless, most of the results which are known for DB existence in various
crystals are obtained by the atomistic simulation methods [18, 43, 44, 50, 55, 56,
84, 90, 91, 96, 98]. DBs can be pinned to the lattice or they can be mobile [28, 31,
43, 44, 57, 58, 76].

Properties of nonlinear vibrationalmodes should be discussed in relation to the lin-
ear phonon spectrum: DBs can have frequencies above the phonon spectrum or they
can emerge within a gap, if it exists. In the latter case they are called gap DBs. DBs
with frequencies above the gapless phonon spectrum have been successfully excited
in graphene [33, 34, 98]. Application of homogeneous strain can produce a gap in
the phonon spectrum of graphene and to make the existence of gap DBs possible [6,
33, 34, 51, 98]. Other carbon and hydrocarbon nanostructures can also support DBs.
They have been found in carbon nanotubes [35, 54, 86, 90, 91], graphene nanorib-
bons [61, 64], and in hydrogenated graphene [8, 18, 59, 68, 89]. Fullerenes can also
support long-lived nonlinear vibrational modes [84], though such modes cannot be
classified as DBs, because DBs exist in the structures with translational symmetry.
Examples of nonlinear excitations in carbon and hydrocarbon nanostructures are
shown in Fig. 1.

Moving DBs transport relatively large portions of energy contributing to thermal
conductivity. On the other hand, playing the role of scattering centers for phonons,
they can reduce thermal conductivity. Furthermore, DBs can interact with the lattice
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Fig. 1 Nonlinear vibrational modes in carbon nanostructures: a DB in unstrained graphene, b DB
in graphane (fully hydrogenated graphene). Reproduced with permission from [18], copyright by
APS. c DB at the edge of stretched graphene nanoribbon. Reproduced with permission from [61],
copyright by EPLA

defects [28, 58, 94] or even take part in defect nucleation [91]. Thus it can be
concluded that DBs can play an important role in the mechanics and physics of
materials. In order to better understand the characteristics of DBs in graphene and
their effect on its physical properties it is necessary to summarize the simulation data
presented in the literature to date.

Numerical studies of DBs in graphene are conducted by two different methods:
molecular dynamics (MD), that relies on empiric interatomic potentials, and density
functional theory (DFT), which takes into account electronic structure. It was shown
that the results of MD simulations are very sensitive to the choice of the interatomic
potentials.

In the present review, the major progresses made in the investigations of DBs in
graphene and other carbon nano-polymorphs is summarized.

2 Numerical Approaches to Simulate DBs in Carbon
Nanomaterials

Most of the results on the DB properties in graphene and other carbon nano-
polymorphs have been obtained to date with the use of the molecular dynamics
method. Different interatomic potentials were used for the simulation of DBs by
molecular dynamics: Brenner [15], standard set of interatomic potentials developed
by Savin [87], Tersoff [67], AIREBO [93], LCBOP [72], and CBOP [73]. It was
shown that not only stability and lifetime of DBs in graphene, but their very exis-
tence, depend on the potential used, as it will be described in Sect. 3. This is because
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the interatomic potentials are typically fitted to the linear properties of solids such as
their elastic moduli and phonon dispersion curves. They are also fitted to the binding
energies whose values depend only on the depth of the interatomic potential but not
on its profile. On the other hand, DBs are essentially nonlinear vibrational modes
and their properties depend sensitively on the potential profile.

The DFT method is more accurate because it does not require the use of a phe-
nomenological interatomic potential. The disadvantage of themethod is that it is very
demanding to the computational resources, especially when it is applied to a dynam-
ical problem. Therefore, the low dimensional crystals, such as 1D carbon chains [22,
23] or 2Dgraphene [70, 71], aremore suitable forDFT simulations. Up to date, only a
fewDFT studies on DBs in graphene [70, 71] and graphane [18, 19] have been done.
It was shown that there is no qualitative differences between MD and DFT results
for gap DB in strained graphene [51, 71]. At the same time, for DB in graphane
modelled in the frame of DFT, a monotonous decrease of frequency with amplitude
was observed [18], while in MD simulations a non-monotonous dependence was
found [68].

Finding proper initial conditions is a very important problem in atomistic simu-
lations of DBs in crystals. Very often DBs are excited by applying initial deviations
to a few atoms. This method works well for highly localized DBs, e.g., for DB in
graphane localized on a single hydrogen atom or for gap DB in strained graphene
localized on two carbon atoms. There exist several systematic approaches for DB
excitation. One relies on the effect of modulational instability of a zone-boundary
mode leading (in some cases) to the energy localization in the form of DBs [16,
50, 60, 98]. Another one starts with the investigation of DVM frequency-amplitude
dependence. If frequency of DVMwith increase in its amplitude leaves phonon spec-
trum, one can try to obtain a spatially localized mode (i.e., DB) by superimposing a
bell-shape function on the DVM [12, 63].

3 Delocalized Vibrational Modes in Graphene

Chechin with co-authors have reported the four DVMs in unstrained graphene [20]
with in-plane displacements of atoms, as presented in Fig. 2a–d. These modes have
been found with the use of the group-theoretical approach developed in [21]. They
are symmetry-dictated exact solutions to the equations of atomic motion regardless
the type of interatomic potentials and regardless themode amplitude. Onemore quite
obvious DVM is shown in Fig. 2e. Here the two differently colored sublattices vibrate
out-of-phase in the direction normal to the graphene sheet.

DVMs are interesting for at least two reasons. Firstly, they can be modulation-
ally unstable and the modulational instability in some cases can result in spon-
taneous energy localization in the form of DBs [60, 98]. For instance, the DVM
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Fig. 2 a–d Four DVMs with atoms moving in plane. Dotted lines show the primitive translational
cells of these dynamical structures. Reproduced with permission from [20], copyright by Institute
for Metals Superplasticity Problems of RAS. e DVM with two sublattices (colored differently)
vibrating out-of-phase in the direction normal to the graphene sheet

shown in Fig. 2a has been used in [98] for excitation of DBs as the result of modula-
tional instability. Secondly, those DVMs whose frequency leaves phonon spectrum
with increasing amplitude, can be used for setting initial conditions to excite DBs
by superimposing bell-shaped functions to achieve spatially localized vibrations
[12, 63].

We point out that consideration of different nonlinear excitations in crystal and
their interconnection is a new trend in the study of nonlinear lattice dynamics [95].
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4 Discrete Breathers in Graphene

Several types of DBs in graphene have been identified. They include the hard-type
anharmonicity DBs in unstrained graphene with in-plane [33, 34, 98] and out-of-
plane [12, 46, 47] atomic vibrations, as well as the soft-type anharmonicity gap DBs
in strained graphene [51]. Localized defect modes in graphene have been studied
in [85]. Moving wrinklon (the region where two or more wrinkles merge into one)
was modelled with the Savin potential in [62].

4.1 In-Plane, Hard-Type Anharmonicity DBs in Unstrained
Graphene

For the first time, DB in graphene was reported in [98] by MD simulations with the
use of the Brenner interatomic potential [15]. In this work, DBs were excited through
the modulational instability of the zone-boundary DVM shown in Fig. 2a, that lead
to spatial energy localization in the form of DBs. Figure3 shows the example of
temporal evolution of the displacements of the two atoms in the vicinity of DB.
Until 0.8ps, the atoms vibrate following the initial mode, although the amplitude
gradually increases. The vibration maintains high amplitude between 0.8 and 1.3ps,
and becomes random after 1.3ps [98]. The frequency of the localized vibration
exceeds the upper edge of the phonon band and this clearly indicates the excitation
of the DB in graphene. The hard-type anharmonicity DBs in unstrained graphene
were found to be unstable [33, 34].

Fig. 3 Displacements as the functions of time for the atoms aA and bB [see inset in (a)] belonging
to the energy-localized area that appeared in the graphene sheet after the development of modula-
tional instability of the zone-boundary DVM. Reproduced with permission from [98], copyright
by EPLA
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Lately, even more localised modes were found in unstrained graphene. For exam-
ple, in [41] the authors have found the defect nonlinear vibrationalmodes. The authors
call these modes DBs but actually they are not DBs because they are localized on the
lattice defects. The Tersoff interatomic potential used in their study supports a stable
artifact defect in the form of one valence bond longer than the others. Frequencies
of the defect modes lie above the phonon band and grow with the amplitude [41].

4.2 In-Plane, Soft-Type Anharmonicity DBs in Strained
Graphene

4.2.1 Effect of Strain on Phonon DOS of Graphene

As indicated above, gap DBs can be found if there is a gap in the phonon spectrum
of the structure. For graphene, a wide gap in the phonon spectrum can be induced by
application of certain homogeneous elastic strain [7, 10, 30, 51]. Examples of the
phonon density of states (DOS) for graphene at different strain levels are shown in
Fig. 4a (for details see [51]). The whole spectrum is divided into phonons oscillating
in-plane (shaded) and out-of-plane (not shaded). Note that the x (y) axis is along the
zigzag (armchair) direction. It is seen that the gap in the shaded phonon spectrum
is wider than that in the DOS including all frequencies. In [5] the strain map was
presented with the regions where the appearance of the gap in the phonon spectrum
takes place [regions 1a and 1b marked with dots and vertical hatching in Fig. 4b].
Inset in the gray area shows phonon DOS for unstrained graphene. Width of the gap

Fig. 4 a Effect of the elastic deformation on the phonon DOS of graphene: (i) εyy = 0.1,
(ii) εyy = 0, (iii) εyy = −0.1, at fixed εxx = 0.3, εxy = 0; (i’) εxx = 0.2, (ii’) εxx = −0.05,
(iii’) εxx = −0.08, at fixed εyy = 0.2, εxy = 0. DOS for in-plane (out-of-plane) phonons are shaded
(not shaded). b Stability range of flat graphene in the plane of strain components (εxx , εyy) for
εxy =0. Inset shows phonon DOS for unstrained graphene. Reproduced with permission from [5],
Copyright by World Scientific
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depends on the strain value. The widest gap (3.96THz) can be found for εxx = 0.4
and εyy =-0.1 near the border of the stability region of flat graphene [30]. In this
case graphene sheet is under tension along the zigzag direction [right bottom corner
of the stability region in Fig. 4b]. Gap DBs were excited in graphene under this type
of homogeneous strain [51]. For stretching along y direction quite wide gap can also
be found (e.g., for εxx =-0.05 and εyy = 0.1), but no reports on gap DBs in graphene
are known for this type of homogeneous strain.

4.2.2 Gap DBs and Their Clusters in Strained Graphene

The pioneering work on gap DBs in graphene is [51], where the existence of gap
DBs was shown by MD simulations with the standard set of interatomic potentials
developed by Savin [87]. Homogeneous elastic strain εxx = 0.3 and εyy =-0.1 was
applied to graphene to open a sufficiently wide gap in the phonon spectrum. The y-
components of displacements of the two atoms in the center of DB are shown in (a)
as the functions of time. The stroboscopic picture of atomic motion in the vicinity of

Fig. 5 a y-component of displacement for the two atoms in the center of DB in strained graphene
as the function of time. b Stroboscopic picture of atomic motion in the vicinity of gap DB. c Phonon
DOS of graphene under homogeneous strain εxx = 0.3, εyy = −0.1, εxy = 0. DOS for in-plane
(out-of-plane) phonons are shaded (not shaded). Dots connected with the line show the dependence
of DB frequency on its amplitude A
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Fig. 6 Results of ab initio simulations for gap DB in strained graphene. a, b Electron density
distribution in the vicinity of the DB when distance between atoms A and B is maximal and
minimal, respectively. c Frequency of the DB as the function of amplitude

the gap DB is presented in Fig. 5b, while DOS at the considered strain level is shown
in (c). As it can be seen from (c), frequency of the DB ranges from 27 to 32THz and
lies within the phonon DOS decreasing with increasing amplitude (dots connected
with the line). On the other hand, DB frequency lies in the gap of shaded DOS. DB
lifetime is large because the DB with in-plane oscillations does not interact with the
out-of-plane phonon modes even though it has frequencies of these modes. In the
work [51], DB was excited by initial shift of just two atoms connected by valence
bond along the armchair (y) direction.

Gap DBs in strained graphene have been also studied with the use of the DFT
approach [69–71]. In Fig. 6a,b the electron density distribution in the vicinity of
the DB is shown when distance between atoms A and B is maximal and minimal,
respectively. In (c) the dependence of DB frequency as the function of its amplitude
is presented. This dependence is in qualitative agreement with the result of MD
simulations [51] shown in Fig. 5c. Both methods predict soft type anharmonicity DB
with frequency decreasing with increasing amplitude.

Interestingly, ab initio results for DB in graphane (fully hydrogenated graphene)
[18] agree qualitatively with the MD results [68] only for small DB amplitudes.
First principle method predicts monotonic decrease of the DB frequency with its
amplitude, while MD produces a non-monotonic dependence.

Clusters of gap DBs in strained graphene also should be mentioned [6]. Different
clusters of DBs including two, three, and four DBs were considered [see Fig. 7a]. It
was shown that DB clusters can have very long lifetime of hundreds and thousands
of oscillation periods. DBs in the clusters can exchange by their energy which is
very important because they can localize a larger amount of energy than single DB.
As an example, in Fig. 7b,c time evolution of amplitudes and frequencies of two
DBs composing DB cluster B is presented. Time is normalized by the DB oscillation
periodΘ . DB amplitude slowly decreases and frequency increases with time because
of the energy radiation in the form of the small-amplitude phonons. Till t/Θ = 660
a quasi-periodic energy exchange between DBs can be seen. At this time a burst of
energy is emitted by the DB cluster because its frequency crosses the upper edge of
the out-of-plane phonon DOS. DBs survive till t/Θ = 1200.
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Fig. 7 a Clusters of gap DBs in graphene under strain εxx = 0.3, εyy = −0.1, εxy = 0. Arrows
show the direction of initial displacement for the atoms applied to excite the DB clusters. b, c
Dependence of DB amplitudes and frequencies on dimensionless time in the cluster B that includes
two DBs. Here Θ is the DB oscillation period. Reproduced with permission from [6], copyright
by EPLA

4.2.3 Gap DBs at the Edge of Strained Graphene Nanoribbon

Strained graphene nanoribbons with the edges parallel to the armchair direction sup-
port gap DBs localized at the edges [61, 64]. Stroboscopic picture of the atomic
motion for such DB is presented in Fig. 1c. DB is mainly localized on four car-
bon atoms. Its frequency lies in the gap induced by the nanoribbon stretching and
decreases with increasing amplitude. This modelling was done with the use of the
Savin interatomic potential [87].

4.2.4 Gap DB Assisted Energy Transport in Ac Driven Graphene

Energy transport assisted by gap DBs excited in strained graphene by ac driving of
a zigzag atomic row has been studied recently [37]. The simulation setup based on
the Savin interatomic potential [87] is presented in Fig. 8a. Atomic rows parallel to
the x axis are numbered by the index n. For driven atomic rows displacements of the
atoms change in time according to the harmonic law
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Fig. 8 a Simulation setup for investigation of the energy transport in strained graphene assisted by
the gap DB excited by the ac driving of the zigzag atomic row. b Normalized power of the energy
source as a function of the driving frequency ω for different driving amplitudes A. Both graphs
reproduced with permission from [37], copyright by APS

Δy0(t) = Δy−1(t) = Asin(2πωt), (1)

where Δy represents the displacement of atoms from their equilibrium positions in
y direction, A is the amplitude in Angstrom and ω is the frequency in THz. The
problem is quasi-one-dimensional since atoms move only along y axis. The driven
zigzag atomic row can be regarded as the energy source fromwhich the energy can be
given or not given to the lattice depending on the parameters of driving (A and ω). In
Fig. 8b the power of the energy source P normalized to the squared driving amplitude
is given as a function of the driving frequency for different driving amplitudes.

It can be seen that, as expected, power is nonzero in the acoustic band, 0 < ω <

19THz, and in the optic band, 35 < ω < 40THz. This is because driving at these
frequencies produces phonons that carry energy along the crystal. It is also important
to note that for small driving amplitudes, A < 0.02Å, normalized power of the source
is amplitude independent. This is because the energy density of a linear phonon with
frequency ω and amplitude A is proportional to ω2A2. For larger driving amplitudes
the nonlinearity comes into play and this scaling does not work anymore. The most
interesting is the appearance of non-zero power region within the gap of phonon
DOS, 19 < ω < 35THz, induced by the homogeneous strain εxx = 0.3, εyy = −0.1,
εxy = 0 applied to graphene sheet. Phonons with such frequencies do not exist and
to clarify the mechanism of energy transfer within this frequency range the time
evolution of the displacements of atoms is shown in Fig. 9. In (a) the driven atom n =
0 vibrating with the prescribed amplitude A = 0.01Å and frequency ω = 26.7THz
is shown. Note that this frequency is within the gap of phonon DOS. Then shown are
displacements of the atoms (b) n = 1 and 2, (c) n = 3 and 4, (d) n = 5 and 6, (e)
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Fig. 9 Time evolution of y
displacements for a driven
atom, n = 0, b atoms n = 1
and 2, c atoms n = 3 and 4,
d atoms n = 5 and 6, e atom
n = 30. Driving amplitude is
A = 0.01Å and frequency is
ω = 26.7THz, which is
within the gap of phonon
DOS. Curves for odd (even)
atoms are shown in black
(red). Reproduced with
permission from [37],
copyright by APS

(a)

(b)

(c)

(d)

(e)

n = 30. Black (red) lines show the displacements for the odd (even) atoms. It can
be clearly seen that a DB is excited on the atom with n = 1 whose amplitude varies
quasi-periodically from zero up to a relatively large value of 0.15 Å. Other atoms
have much smaller maximal amplitudes. In response to the DB amplitude variation,
due to the anharmonicity effect, a low-frequency phonon is excited at the frequency
of DB amplitude modulation. This can be seen in (e) where the displacement of the
atom relatively far away from the DB (n = 30) is presented.

It can be concluded that in the case of driving frequency within the phonon gap
the energy is transported by the phonons excited by the DB having quasi-periodically
varying amplitude. The phonon frequency is relatively low because it is equal to the
period of DB amplitudemodulation. The effect of energy transfer to the lattice driven
at frequencies outside the phonon band is known as supratransmission [42, 49, 52].
The well-accepted belief is that the supratransmission effect can be observed only if
the driving amplitude is above a threshold value and that the energy carriers are mov-
ing DBs. In contrast to this, in the study [37] it was found that the supratransmission
takes place even at small driving amplitudes and that the energy is transported by the
low-frequency phonons excited by the standing DB with varying in time amplitude.
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4.3 Out-of-Plane DBs in Unstrained Graphene

Very recently, in the works by Hizhnyakov et al. [46, 47], it has been shown that
graphene modelled with the AIREBO potential supports DBs with the atomic dis-
placements normal to the graphene plane. For excitation of such breathers lateral
displacements were applied to a few carbon atoms. It was shown that the transverse
DBs have frequencies inside the phonon band but they survive for a very long time
because their frequencies are above the out-of-plane phonon frequencies and they
weakly interact with the in-plane phonons.

In the work [12] the attempt to excite transverse DBs in unstrained graphene has
been made with the use of the Savin and AIREBO potentials. A systematic approach
for excitation of DBs was employed. This approach begins with the analysis of the
amplitude-frequency dependence of the transverse DVM shown in Fig. 2e. The result
is presented in Fig. 10 by open circles for the Savin potential and by filled squares for
the AIREBO potential. Strikingly, the results are qualitatively different. In the case
of Savin potential the DVM shows the soft-type anharmonicity since its frequency
bifurcates from the upper edge of the out-of-plane phonon DOS (shown by the
horizontal dashed line) and decreases with increasing amplitude. There is no chance
to get a transverse localized vibrational mode by applying a bell-shaped function
upon this DVM because its frequency is within the out-of-plane phonon DOS. On
the other hand, for the AIREBO potential the DVM frequency bifurcates from the
upper edge of the out-of-plane phonon DOS (shown by the horizontal dotted line)
and increases with increasing amplitude. One can try to get a localized vibrational
mode by applying a bell-shaped function upon this DVM. In [12] three different

Fig. 10 Frequency as the
function of amplitude for
DVM modelled with the
Savin potential (open circles)
and AIREBO potential
(filled squares) as well as for
the three types of transverse
DBs modelled with the
AIREBO potential.
Reproduced from [12] with
kind permission of The
European Physical Journal
(EPJ). Copyright by Springer
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transverse DBs were excited by choosing three different positions for the center of
the bell-shaped function, see Fig. 11. The DBs of type I, II, and III are centered on
(a) an atom, (b) at the center of a hexagon, and (c) at the center of a valence bond,
respectively.

In Fig. 12 the displacements normal to the graphene sheet are shown as the func-
tions of time for the transverse DBs of type (a) I, (b) II, and (c) III. For each case,
shown are the atoms having the largest, second largest, and third largest vibration
amplitudes.

From the results of the studies [12, 46, 47] it can be concluded that different
interatomic potentials can give qualitatively different results. Thus, the AIREBO
potential supports transverse DBs in graphene, while the Savin potential does not. It
is also worth pointing out that application of bell-shaped functions on DVMs, whose
frequencies at large amplitudes lie outside the phonon band, is a convenient and
systematic method of excitation of DBs.

Existence and stability of transverse DBs have been analyzed in frame of the 1D
Fermi-Pasta-Ulam model placed in 3D space [53].

Fig. 11 Three different locations of the bell-shaped function center used to obtain the transverse
DBs localized on a atom (type I), b center of a hexagon (type II), and c center of a valence bond
(type III). Reproduced from [12] with kind permission of The European Physical Journal (EPJ).
Copyright by Springer

(a) (b) (c)

Fig. 12 Displacements normal to the graphene sheet as the functions of time for the transverse
DBs of type a I, b II, and c III. The three curves show for each case the atoms having largest, second
largest, and the third largest vibration amplitudes. Reproduced from [12] with kind permission of
The European Physical Journal (EPJ). Copyright by Springer
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5 Nonlinear Excitations in Other Carbon Nanopolymorphs

Firstly we discuss DBs in diamond, which is 3D crystalline carbon polymorph. DBs
in Si and Ge modelled with the Tersoff potential have been reported long ago in
the work [96] and confirmed later by Hizhnyakov et al. [47]. Covalent crystals Si
and Ge have the same crystal lattice with diamond but the first attempt to find DBs
in diamond using the Tersoff potential failed [96]. However, DBs in diamond were
successfully excited employing themore advancedLCBOPpotentialwhich describes
the bond orientation and switching-off effects more accurately [45, 47]. According
to the results obtained in Refs. [45, 47], DBs in diamond have frequencies above the
top of the phonon spectrum in the range from approximately 40 to 42.5THz.

In the recent work [75] standing DBs and DB clusters (double and triple) were
studied in diamond using the AIREBO interatomic potential, see Fig. 13a. Single
DB can be excited by applying initial shifts to a pair of nearest atoms along the
valence bond in the opposite directions. DB is highly localized on this pair of atoms
oscillating out-of-phase, while the neighboring atoms oscillate with one order of
magnitude lower amplitudes. DB frequency is above the top of the phonon spectrum
and increases with the oscillation amplitude. Two different mechanisms of energy
exchange between DBs in the DB clusters were revealed. In the cluster of two DBs
the quasi-periodic energy exchange between DBs takes place when they oscillate
with a phase shift, as shown in Fig. 13c by plotting DB kinetic energy averaged over
DB oscillation period as the function of time. For comparison, in (b) the in-phase
DBs do not show energy exchange. Another mechanism of energy exchange between
DBs was detected in the clusters of three DBs, as shown in (d,e,f). Here at about
1.3ps one of DBs (B1) ceases to exist giving most of its energy to DBs B2 and B3.

We now turn to the discussion of DBs in carbon nanotubes [35, 54, 86, 90, 91].

Fig. 13 a DB clusters in diamond. b, c Kinetic energy averaged over DB oscillation period as the
function of time for the cluster of two DBs. In (b) the two DBs vibrate in-phase and no energy
exchange between them takes place. In (c) there is a phase shift between two DBs and a quasi-
periodic energy exchange between them can be clearly seen. d, e, f Same as in (b, c) but for the
cluster of three DBs. At about 1.3ps one of DBs (B1) ceases to exist giving most of its energy to
the two other DBs. Reproduced with permission from [75], copyright by Elsevier
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In the work [54], where the Brenner potential was used, DBs were found in the
(12, 0), (10, 0), and (8, 0) zigzag carbon nanotubes but not in (7, 7), (6, 6), and
(5, 5) armchair nanotubes. In the later work [90] it was shown that DBs exist in
carbon nanotubes with a chiral angle less than or equal to 30o but they do not exist in
nanotubes with a chiral angle greater than or equal to 41o. Doi and Nakatani, using
the Brenner potential, have demonstrated that DBs in zigzag and armchair carbon
nanotubes have frequencies above the phonon spectrum and they are unstable [35].

A very important discovery has been made in the work by Shimada et al. [91]
where it was demonstrated that a DB can trigger formation of the 5-7-5-7 defect
(Stone-Wales defect) in carbon nanotube under tension. This work suggests that DBs
can contribute to structure evolution in crystalline solids. The Stone-Wales defect
has also been investigated in fullerenes [78, 79] and graphene [9].

Nonlinear twisting mode has been identified in carbon nanotube by Savin and
Kivshar [85].

Nonlinear low-frequency vibrational modes of carbon nanoscrolls have been
analysed in [88]. In particular, the anomalously high coefficient of radial thermal
expansion (two orders of magnitude higher than in diamond) has been explained.

The nonlinear dynamics of nanoclusters composed of C60 fullerene molecules has
been analyzed [84]. It has been shown that such nanostructures support long-lived
highly localized nonlinear vibrational modes, which resemble discrete breathers in
simple nonlinear lattices. In these localized modes, the vibrational energy density
is localized at a single C60 molecule. The lifetime of such nonlinear excitations at
room temperature exceeds tens of picoseconds. That is why the C60 nanoclusters
demonstrate anomalously slow thermal relaxation when the temperature gradient
decays in accord with a power law, thus violating the Cattaneo-Vernotte law of
thermal conductivity.

DFT simulations of the structure and stability of 1D carbon chains have been
addressed in [22, 23]. The carbon chain (carbyne) can exist in two different modifi-
cations: cumulene with double chemical bonds between its atoms, and polyyne with
alternation of single and triple bonds. It was found that above 11.2% tensile strain
softening of the zone-boundary mode atomic vibrations takes place. Freezing of this
soft mode leads to displacive structural phase transition.

6 Summary and Future Challenges

Graphene is a very importantmaterial in nanoscience today because of its unusual and
promising properties for applications. In the present review, the nonlinear dynamics
of graphene and other carbon nanostructures have been discussed.

DBs in different crystals can localize energy of order of 1 eV, in some cases they
can move along crystal lattice [28, 31, 43, 57, 58], can interact with each other [57]
and with lattice defects [28, 58, 94]. DBs can help to overcome potential barriers for
defect migration [1, 36] or formation [91]. DBs and other nonlinear excitations can
contribute to the transport of electric charge [2, 24–27] and energy [29, 31] and to
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affect thermal conductivity [97]. In view of this, it is evident that nonlinear excitations
in carbon nanomaterials can play important role in various processes and thus require
further investigations: theoretical, numerical and experimental. The following key
points are suggested for future studies of DBs in carbon nanomaterials.

Most of the studies on DBs in graphene are based on MD simulations, which are
strongly dependent on the interatomic potential used. Careful DFT simulations of
DBs and DB clusters in graphene at zero and finite temperatures are urgently needed
to check the validity of MD results. Simultaneously, more MD simulations should
be conducted in order to improve the accuracy of the interatomic potentials and to
achieve a better agreement with DFT results.

To date, the effect of DBs on electronic, thermal, mechanical and other physical
properties of graphene and other carbon nanostructures is not clear. Such studies can
provide insight into, for example, the interplay between DBs and lattice defects or
into defect nucleation mechanisms, energy transport in carbon nanostructures.

Probably the most important unsolved issue is experimental observation of DBs
in carbon nanomaterials. Learning more about DB properties will help to design
experimental setup for direct or indirect detection of DBs.
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A Cellular Automaton Model for the
Catalytic Oxidation of CO Including CO
Desorption and Diffusion

Intermittent Oscillations in a Cellular Automaton
Model for a Surface Reaction

Francisco Jiménez-Morales and M. Carmen Lemos

Abstract The oxidation of carbon monoxide (CO) on a catalyst surface is studied
with a cellular automaton (CA) model previously introduced in [22]. We expand
the model in order to include the effects of CO desorption and diffusion. Both
processes are considered probabilistic with probabilities p1 and p2, respectively.
In this chapter we will observe that CO desorption widens the range of the thermal
relaxation parameter γ for which the reaction shows an oscillatory behavior. In the
range (0.009 < p1 < 0.015) and near the CO poisoned state (0.30 ≤ γ < 0.35), the
surface reaction shows intermittent oscillatory behaviors in which the regular quasi-
periodic oscillations are interrupted by bursts of CO and O coverage. CO diffusion
smooths that intermittent behavior with a reduction in the number of bursts and
increases the time during which the reaction oscillates quasiperiodically.

Keywords Cellular automaton · Surface reaction · Oxidation of CO · Oscillatory
behavior · Intermittency

1 Introduction

1The oxidation of CO on catalytic metal, type Pt, Pd, Rh or Ir, is probably the most
studied reaction of heterogeneous catalysis. Besides its industrial applications, due
to its relevance in the issues of improvement in the quality of the air in order to
decrease the CO2(gas) emitted in the atmosphere, the interest in this reaction is also
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theoretical. Catalytic systems are systems formed by many particles which operate
far from thermodynamic equilibrium. In these systems one can see a great variety
of nonlinear phenomena as kinetic phase transitions, formation of spatio-temporal
patterns, bistability, hysteresis, and many oscillatory and chaotic behaviors [36].

Since the beginning of the century, studies based on lattice-gas models [30], along
withmore detailedmolecular information and realistic input energetics obtained from
density functional theory combined with experiments employing surface science
methods, have provided a better knowledge of some aspects of the reaction [17, 25,
27, 28, 31, 32, 34, 42]. However, a better understanding of the nonlinear phenomena
which occur in the reaction and, in particular, the oscillatory behavior, is fully far
from reached.

One of the early developed models which describes the catalyzed oxidation reac-
tion of CO is the well-known model proposed by Ziff, Gulari, and Barshad (ZGB
model) [44]. In the ZGB model this chemical reaction proceeds via Langmuir–
Hinshelwood (LH) mechanism. Previous studies [13, 14] have established that LH
is the dominant mechanism for this reaction. Hence, before the reaction can take
place, both CO and O2 molecules in the gas phase have to be adsorbed on the cat-
alytic surface. If a CO molecule is in the neighborhood of an atomic oxygen O they
react to form carbon dioxide (CO2).

Ziff et al. [44] employed Monte Carlo simulations on a square lattice and with
regard to the fractionofCOmolecules in the gas phase, yCO , they found three different
zones: (i) poisoning of the catalyst by oxygen for yCO < y1 = 0.389; (ii) poisoning of
the catalyst byCO for yCO > y2 = 0.525 and (iii) a reactive state for y1 < yCO < y2.
The transition at y1 is a second-order kinetic phase transition (a continuous one at low
CO pressure) whereas the transition at y2 is of first order (a discontinuous one at high
CO pressure), because the CO2 production rate changes discontinuously. It should
be noted that the continuous transition at low pressure (oxygen poisoned phase) has
not been experimentally observed in real systems because oxygen does not impede
the adsorption of CO [12, 15, 19].

The simplicity of the ZGB model allows the inclusion of many other physical
processes such as diffusion of CO and desorption of adsorbates from the surface.
Recently,COdesorption andcoadsorptionwithO, oxygen repulsion and the existence
of impurities in the gas have been incorporated [3–5]. Initial researches into the effects
of COdesorption and diffusion from the catalytic surfacewere done by several author
[1, 2, 12, 18], who found that when both effects are present the desorption is the
dominant effect. It was also estimated that when the CO desorption probability p1 is
above a critical value pc ≈ 0.039 the system no longer exhibits a first-order kinetic
phase transition, that is, carbon monoxide poisoned phase disappears.

On the other hand, most models proposed to describe oscillatory behaviors in
CO oxidation involve nonlinearities of different nature. For example, there are
models in which the catalyst temperature can stay at a value different from the
room temperature. This is due to the reaction heats generated on the catalytic surface
where the reaction taking place, can spread on this surface more quickly than the
heat dissipated to the room, which results in an increase in the catalyst temperature.
These oscillations are called thermokinetic —so that they can be distinguished from
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the isothermal ones, in which the temperature of the surface is constant— and are
produced by a strong nonlinear dependence on the reaction rate on surface
temperature. These changes in temperature in a reaction can be taken into account
just by means of the addition of an equation describing the time surface temperature
change. Similar models have been used by us to study the influence of a periodic
perturbation on the room temperature in Refs. [9, 10, 21].

The most frequently used methods to model kinetics of catalytic reactions have
been the conventional kinetic equations obtained through mean-field theory by using
different closure approximations, (see the paper of Dickman [11], one of the pio-
neering authors in the modeling of CO oxidation by mean-field approximations),
and the Monte Carlo (MC) method (both the static method and the dynamic one,
named kinetic Monte Carlo (KMC)) [43]. A recent review of the kinetic modeling
of heterogeneous catalytic systems by KMC can be seen in [40].

Techniques of cellular automaton (CA) have also shown to be efficient tools
for simulating the behavior of catalytic systems. A cellular automaton is a class
of spatially and temporally discrete system, characterized by local interaction and
synchronous dynamical evolution. The CA allows parallel processing without any
difficulty, and this fact substantially reduces the computation time. The CA approach
offers a way to follow the dynamical evolution of the surface reaction and can keep
track of all themicroscopic degrees of freedom. Systemswithmany discrete elements
that interact locally, such as a chemical reaction, can be modeled using a CA [6, 7,
29, 41]. We proposed a CA to study the oscillatory behavior in the catalytic CO
oxidation, including the surface temperature as a variable [9, 10, 21, 22]. The results
from CA simulations showed different chaotic and quasiperiodical regimes.

In the present work we study how CO desorption and diffusion processes affect to
the thermokinetic oscillations observed in [22]. The rest of the chapter is organized as
follows: In Sect. 2 we review our original CA model and include in it new transition
rules. In Sect. 3 we report our main results, and finally in Sect. 4 some conclusions
are summarized.

2 The Model

2The surface of the catalyst is represented as a two-dimensional square lattice of
size L × L with periodic boundary conditions. Each lattice cell can be in one of the
following states: an empty site, �, a site occupied by an adsorbed oxygen O(ads)
atom or a site occupied by an adsorbed carbon monoxide CO(ads) molecule, where
(ads) indicates that the species is adsorbed on the surface. We consider four different
physicochemical processes: (i) the adsorption of CO(gas) andO2(gas) on the surface,
(ii) the reaction of both molecules CO(ads) and O(ads) to produce CO2(gas), (iii) the
desorption of CO(ads) molecules, and (iv) the diffusion of CO(ads) molecules.

2This section modifies with permission content from previous publications by the authors given in
Refs. [9, 22], copyright by AIP, Ref. [10], copyright by APS and Ref. [21], copyright by Elsevier.



200 F. Jiménez-Morales and M. C. Lemos

A schematic representation of all the processes is given by the equations:

CO(gas) + � −→ CO(ads) (1)

O2(gas) + 2 · � −→ 2O(ads) (2)

CO(ads) + O(ads) −→ CO2(gas) + 2 · � (3)

CO(ads) −→ CO(gas) + � (4)

CO(ads)i + � j −→ CO(ads) j + �i (5)

We start by describing in a more detailed way the processes involved in the model
and, subsequently, we will explain the simulations carried out with the CA.

2.1 Adsorption and Reaction Processes

The main assumption for modeling the adsorption processes (Eqs. 1, 2), is that the
gas molecules of carbon monoxide CO(gas) and oxygen O2(gas) move randomly
over the surface and if there are free sites on the lattice they are adsorbed to become
CO(ads) and O(ads). The carbon monoxide molecules will need only one free lattice
cell whereas the oxygenmolecule needs two available sites because it is also assumed
that the gaseous oxygen molecule dissociates into two O(ads). The reaction process
(Eq.3) is modeled considering that if an O(ads) atom is in the neighborhood of a
CO(ads) molecule the reaction occurs, the sites previously occupied are freed and a
CO2(gas) is formed.

The adsorption and reaction processes form the Langmuir–Hinshelwood (LH)
mechanism. A schematic picture of the LH mechanism is shown in Fig. 1. The
rate constants, ki , for each one of three kinetic mechanisms named above (i=1,
adsorption of CO; i = 2, adsorption of O2; i = 3 reaction), are chosen to follow the
Arrhenius form:

ki = Ai exp

(
− Ei

kBT

)
, (6)

where Ai are the pre-exponential factors which are constant for each chemical reac-
tion, kB is the Boltzmann constant, T denotes the absolute temperature of the sur-
face, and Ei are the activation energies of each one of the three elemental processes.
These activation energies correspond to the action of the substrate and in the model
we assume that are not dependent on the coverage of the surface.
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Fig. 1 The
Langmuir–Hinshelwood
(LH) mechanism: Gaseous
molecules of CO(gas) and
O2(gas) collide randomly
and are adsorbed on the
surface with reaction rates k1
and k2, respectively. Upon
adsorption the O2(gas)
molecule dissociates into
two O(ads) atoms, each one
residing on an adjacent
surface site, and if a CO(ads)
molecule is in the
neighborhood, the reaction
takes place and the CO2
molecule is desorbed

O2

CO k1

k2
CO2

2.2 CO Desorption Process

Equation4 represents the CO desorption process. After the adsorption and reaction
processes have taken place, the non-reacting CO(ads) molecules are allowed to be
desorbed with a probability p1, whereas the O(ads) atoms are considered immobile.
This assumption is motivated by the fact that CO(ads) desorption takes place at a
much lower temperature than the desorption of O(ads). The adsorption energies of
O2 are higher than those of CO. Therefore, O desorption takes place at a much higher
temperature, and under most reaction conditions, the desorption of O can usually be
neglected. These higher adsorption energies also indicate that the adsorbed O atoms
are less mobile than the CO molecules [39].

2.3 CO Diffusion Process

The diffusion process of CO(ads) is represented by Eq.5. Our diffusion algorithm is
as follows:
(a) For each CO molecule adsorbed at site “i” a square box of size r × r around it is
selected.
(b) If there is an empty site � j inside that box at site “j”, then the CO(ads) molecule
can move to that empty place with a probability p2.

In our diffusion process only one CO(ads) molecule is allowed to move once in
each time step and the O(ads) atoms are considered immobile. Diffusion of CO(ads)
molecules on a surface is a very complex process [26] that, as the CO desorption
process, may depend in principle on many other parameters, such as the surface tem-
perature, the absorbate coverage and other properties of the surface. These depen-
dencies are not considered in our simplified model. However, we will see below that,
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as in other models [18], when both diffusion and desorption processes are present
the dominant effect is due to the desorption process. After the CO desorption and
diffusion processes are both completed, the adsorption and reaction processes begin
again.

2.4 The Effect of the Surface Temperature

The different chemical processes alter the surface temperature T of the catalyst. In
our model we include the following equation to account for the variation of T :

dT

dt
= −γ (T − TB) +

5∑
i=1

hini , (7)

where γ is the relaxation rate of T towards the room temperature TB , hi are related to
the rates with which the reaction heats are generated in the processes (1)–(5), and ni
is the number of processes of type i that takes place per unit area (see Refs. [23, 24]
for more details). The interplay among the chemical processes and the variation of
the surface temperature is therefore the main mechanism that generates oscillations
and thermal instabilities.

2.5 Cellular Automaton Implementation

As stated before the surface of the catalyst is discretized as a square lattice of 256 ×
256 cells that can be in three different states: empty, O(ads) and CO(ads). To
maintain the stoichiometry of the chemical reaction the lattice is also divided into
non-overlapping blocks of four cells, a Margolus block, and the transition rules are
applied to the whole block rather than to a single cell. The CA transition rules can
be seen in Fig. 2 which shows the different initial states, the possible outcomes and
their probabilities in terms of the gas concentration of carbon monoxide yCO and gas
concentration of oxygen yO = 1 − yCO . This CA approach to simulate the oxidation
of carbon monoxide over a catalyst surface was originally proposed by Mai and
Niessen [29]. Nevertheless, in the Mai and Niessen CA model the carbon monoxide
and oxygen concentration, yCO and yO , are independent of the temperature. On the
contrary in the model studied here both are functions of the surface temperature T .

A schematic graph of the CA algorithm including the effects of CO desorption and
diffusion and how these processes alter the surface temperature is shown in Fig. 3.

The values of the parameters used in our simulations are the same as the ones
reported by Lagos et al. [20] —for the case of small surface to volume ratio—.
Hence, we assume CO adsorption and CO-O reaction as unactivated processes,
O2 adsorption being the only energetic process. We also consider that the rate of
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Fig. 2 Cellular automaton (CA) transition rules for the adsorption and reaction processes of the
CO+O2 reaction. A denotes a CO(ads)molecule, B anO(ads) oxygen atom and � any occupied site.
The transition probabilities of CA depend on the initial state of the cells, on the statistical weights of
the individual configurations, which are taken as classical, and on the mole fractions of the gaseous
reactants, yCO and yO , where yO = 1 − yCO . In themodel, yCO is defined as yCO = k1/ (k1 + k2),
where ki = Ai exp[−Ei/(kBT )]. For each initial state, the sum of all transition probabilities is
normalized to 1. Reproduced with permission from [22]. Copyright (2004) by AIP Publishing LLC
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Fig. 3 The different steps of
the CA model.
a The adsorption processes,
which include the production
of CO2, alter the temperature
of the surface, which in turns
modifies the different
adsorption probabilities.
b CO desorption process
modifies the surface
temperature.
c CO diffusion process
favors the production of
CO2. After CO desorption
and diffusion processes are
both completed, the
adsorption and reaction
processes begin again

CO2
Diffusion

CO

T
Desorption

CO

T, CO2

Adsorption
Reaction

CO,O

(a)

(b)

(c)

reaction heat for O2 adsorption is twice the value of that of the CO adsorption,
and that the rate of reaction heat for CO2 is negligible, both are minor simplifica-
tions. Consequently, the original CA model [22], without CO desorption nor diffu-
sion, generates time oscillatory behavior for the following values [23, 24] of the set
of parameters {Ai , Ei , hi , TB}: A1 = 5 × 10−2 s−1, A2 = 4 × 105 s−1, A3 = 1
s−1, E1 = 0, E2/kB = 6 × 103 K, E3 = 0, h1 = 150Ks−1, h2 = 300Ks−1, h3 = 0,
TB = 300K as environment temperature. The same set of values have been taken
here and, in addition, we have assumed that the rate of reaction heat of the diffusion
process is h5 = 0, and that the one corresponding to CO desorption is opposite to
that of CO adsorption, i.e., h4 = −h1.

3 Results

The study of the effects of COdesorption and diffusion is done in terms of the thermal
relaxation parameter γ , the CO desorption probability p1, and the CO diffusion
probability p2. Quasiperiodic behaviors in the original CAmodel [22] were observed
in a range of values of the γ parameter: γmin ≤ γ ≤ γmax (with γmin = 0.10 and
γmax = 0.27). For γ < γmin the reaction shows an aperiodic regime and for lower
γ a state poisoned by oxygen. Finally, for γ > γmax there is a state poisoned by
CO. Now, including a probability p1 of desorption for the CO(ads) molecules, the
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poisoning of the surface with CO will happen at higher values than γmax , and the
range at which the quasiperiodic behavior is observed widens. From the whole set
of parameters {γ, p1, p2}, we have studied some cases.

3.1 No Diffusion {γ = 0.30, p1, p2 = 0}

To see clearly how the CO desorption affects the oscillatory behavior of the surface
reaction, we take values of the γ parameter around and slightly above the value γmax .
At this region if there is not desorption or p1 is very low (p1 ≤ 0.009) the reaction
is poisoned by CO at TB = 300 K, whereas the oscillatory behaviors are found for
0.009 < p1.

Figure4A shows typical Poincaré maps of the production rate of CO2, R, versus
the surface temperature for three different values of p1 = 0.015, 0.025, and 0.030,
with γ being equal to 0.30. For these values of p1 the production rate R oscillates
quasiperiodically, and R increases its value as p1 grows. The desorption of CO(ads)
molecules creates vacant sites inside the surface where the reaction can occur; there-
fore, increasing p1 favors the reaction rate R. But a further increase of p1, remaining
γ = 0.30, as can be seen in Fig. 4B, reduces the formation of CO2 as more CO
molecules escape from the surface. Therefore there is a critical value pc which may
depend on the thermal relaxation parameter γ . Figure4C shows the mean value of
R versus p1 for two values of γ . In this figure we can observe that for γ = 0.30 the
critical value is located in the range 0.030 < pc < 0.035. This critical value is lower
than the value of pc = 0.039 obtained in Ref. [2] using Monte Carlo simulations.

Figure5 shows the time series of T , R, nO, and nCO for γ = 0.30 and
p1 = 0.025. For this value of γ similar oscillations are observed in a broad range of
the CO desorption probability 0.015 ≤ p1 ≤ 0.8 (Fig. 4). At this value of the thermal
relaxation parameter, γ = 0.30, when the CO desorption probability p1 is increased,
the surface reaction goes from a CO poisoned state (if p1 ≤ 0.009) to a reactive state
which displays quasiperiodic oscillations if p1 ≥ 0.015. But at the transition region
between these two states, (0.009 < p1 < 0.015) a new oscillatory behavior has been
found.

Figure6 shows the time series for γ = 0.30 and p1 = 0.011. It can be seen that
initially and during a transient time, the surface reaction oscillates in a quasiperiodic
regime but, afterwards, nCO grows rapidly (and nO decreases) up to a high concen-
tration value of nCO (a low concentration value of nO) that decays abruptly (whereas
nO increases). These intermittent bursts have a lower frequency than the frequencies
of the quasiperiodic oscillations. Without CO desorption (p1 = 0) the surface would
be poisoned by CO, but now the surface recovers the reactive state.

To characterize this behavior, Fig. 7 shows the autocorrelation function
C(t) = (N − t)−1 ∑N

i=1 xi xi+t for the variables T , R, nCO, and nO . Figure7a is
for the case of quasiperiodic oscillations where it can be seen that C(t) also shows
oscillations that persist on time. In the case of the intermittent behavior, Fig. 7b, the
autocorrelation functions of T and R show oscillations that decay in a few time steps,
whereas that C(t) for nCO and nO decay linearly with time.
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Fig. 4 The production rate
of CO2 (R) versus the
surface temperature for
different values of the
desorption probability p1.
A (a) 0.015, (b) 0.025, and
(c) 0.030.
B (a) 0.030, (b) 0.035, (c)
0.500, and (d) 0.800. For A
and B γ = 0.30.
C The average production
rate 〈R〉 versus p1 for two
different γ parameters (0.28
and 0.30). Introducing a
small probability of
desorption (p1 ≤ 0.03)
increases the average value
of R. But as p1 is further
increased the production of
CO2 diminishes linearly with
p1
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Fig. 7 Autocorrelation function C(t) of T , R, nCO, and nO for a Quasiperiodic oscillation at
γ = 0.30 and p1 = 0.025, and b intermittent oscillation at γ = 0.30 and p1 = 0.011

For comparison between these two behaviors, Fig. 8 shows log-log plots of the
corresponding power spectrum S( f ) versus the frequency. For the quasiperiodic
behavior, Fig. 8a, the main contributions to S( f ) are observed at the frequencies
f1 = 0.21246Hz and f2 = 0.36278Hz. For the intermittent behavior, Fig. 8b, the
surface temperature and R power spectra, S( f ), shows a Lorentzian spectrum around
f = 0.20792Hz. For nCO and nO , the main contribution to S( f ) is located in the
region of low frequencies where S( f ) shows a decaying power law of the type 1/ f 2.
This intermittency can be considered to consist of two characteristic states, the regular
and quasiperiodic oscillation, and the irregular bursts.

The phenomenon of intermittency is one of themechanisms proposed for the onset
of chaos. Therefore, transitions to chaos can take place according to three possible
scenarios. Thefirst is the Feigenbaum route [16],where the chaos is reached bymeans
of bifurcations involving period doubling. Other onset to chaos is the intermittency
route [33]. The name comes from the peculiar manner in which the chaos interrupts
along the temporal evolution of the system: at the time series, regular behaviors
(periodic basically) alternate with disordered bursts more or less short, producing an
orbit that presents periods of chaos interspersed with periods of regular oscillations.
A third scenario is the Ruelle–Takens–Newhouse route [35], in which the appearance
of quasiperiodic behavior precedes the emergence of a strange attractor.

The results obtained from our model focus on the phenomenon of intermittency.
The basic notion is that intermittency is essentially characterized by an apparently
random switching back and forth between two (or perhaps more) different types
of behavior. Pomeau and Manneville [33] proposed three types of intermittency



210 F. Jiménez-Morales and M. C. Lemos

10-1
101
103
104
106

 0.001  0.01  0.1

S(
f)

f

T

10-7

10-5

10-3

10-1

101

 0.001  0.01  0.1

S(
f)

f

R

10-5

10-4

10-2

100

101

 0.001  0.01  0.1

S(
f)

f

nCO

10-5

10-4

10-2

100

101

 0.001  0.01  0.1

S(
f)

f

nO

10-1

101

103

105

 0.001  0.01  0.1

S(
f)

f

T
10-7

10-5

10-3

10-1

 0.001  0.01  0.1

S(
f)

f

R

10-5

10-2

101

 0.001  0.01  0.1

S(
f)

f

nCO
10-5

10-2

101

 0.001  0.01  0.1

S(
f)

f

nO

(a)

(b)

Fig. 8 Log-log plot of the power spectrum S( f ) of T , R, nCO, and nO. aQuasiperiodic oscillations
(γ = 0.30 and p1 = 0.025). b Intermittent behavior (γ = 0.30 and p1 = 0.011). The dashed line
is 1/ f 2



A Cellular Automaton Model for the Catalytic Oxidation … 211

according to how a periodic orbit can lose its stability. These types (type I, II and III)
are characterized by the changes in the Floquet multipliers [36] at the bifurcation
point (the point of instability).

In type I-intermittency, the limit cycle Floquet multiplier crosses the unit circle
along the real axis at the point +1. In this case a periodic state (a point fixed) is
destroyed by a cycle fold (a saddle-node) and succeeded by chaos. The saddle-
node is the bifurcation point. It is interesting to note that, during the bursts, the
amplitudes of the motion are stable (on the average). Type I-intermittency has been
seen particularly in systems that also show the Feigenbaum route.

In type II-intermittency, two Floquet multipliers form a complex conjugate
pair crossing the unit circle. Here, the imaginary part indicates the presence of a
second frequency (incommensurate) in the behavior of the system.Thefirst frequency
corresponds to the original limit cycle, which disappears at the bifurcation point. At
the instability point, the limit cycle associated with the second frequency becomes
unstable, and we observe burst of two-frequency behavior mixed with intervals of
chaotic behavior. Thus, type II-intermittency is a type of Hopf bifurcation point. This
intermittency is very difficult to observe in experimental studies.

In type III-intermittency, the limit cycle Floquet multiplier crosses the unit circle
along the real axis at the point −1, and, then, a type of subcritical period-doubling
bifurcation takes place. The amplitude of the subharmonic behavior (it is not stable)
created at the bifurcation point grows, while the amplitude of the motion associated
with the original period decreases.

Since the paper of Pomeau andManneville, the classification of the intermittencies
has been extended to other types, as for example on-off intermittency. This behavior
has been observed, e.g., in coupled chaos systems [8]. The phenomenon refers to the
situation where, at least, one variable of the system exhibits two different states in
its time evolution. One is the “off” state where the variable remains constant, and
the other is the “on” state where the variable temporarily burst out of the “off” state.
One interesting result is that on-off intermittency obeys a power law 1/ f 3/2.

For homogeneous catalytic systems, the three routes to chaos can be experi-
mentally identified in the well-known Belousov-Zabotinsky reaction. However, in
heterogeneous catalytic systems it is more difficult to follow and analyze the emer-
gency of chaos because, among other factors, the region of experimental parameters
where the transition to chaotic behavior can take place is very small.

Slinko et al. [38] presented the result of both experimental and theoretical studies
of the transition to chaos via type-I intermittency scenario in the case of CO oxidation
on a zeolite-supported Pd catalyst. Their work was the first qualitative proof which
showed that scenario for oscillating CO oxidation on a supported catalyst under
normal pressure conditions. By using the analysis of the Fourier power spectra with
COconcentrations, they could identify the route to chaos according to I-intermittency
by a power law 1/ f .

From the outcomes derived from the CA model, we can say that the inclusion of
CO desorption process causes the transition to chaos by means of some new type of
intermittency. The exponent 2 in the power law indicates that the system dynamic
shows strong correlations, but also has a random component. However, we need



212 F. Jiménez-Morales and M. C. Lemos

to clarify what type of intermittency we have observed. We have not knowledge
of any theoretical or experimental results similar to those obtained here. Only the
works of Slinko et al. simulating the CO oxidation over Pd zeolite catalysts at high
pressures and under isothermal conditions, presented studies of the transition to
chaos according to type-I [38] or on-off [37] intermittencies.

3.2 No Diffusion {γ, p1 = 0.011, p2 = 0}

Taking now a fixed value of the CO desorption probability located in the intermit-
tent region, the reactive state of the surface can be studied in terms of the thermal
relaxation parameter, γ . Figure9 plots time series of T and nCO for different values
of γ . Five different regimes can be observed:
(i) Poisoned state by O for γ < 0.005.
(ii) A noisy and chaotic behavior for low values of γ , in the range 0.005 ≤ γ < 0.15.
(iii) Regular and quasiperiodic oscillations in the range 0.15 ≤ γ < 0.30.
(iv) Intermittent behavior in the range 0.30 ≤ γ < 0.35. In this range of parameters
a purely chaotic state cannot be excluded, although it has not been found yet.
(v) Poisoned state by CO for high values of γ ≥ 0.35.
The poisoning of the surface by O or CO occurs at room temperature, TB = 300K ,
while in oscillatory regimes the surface temperature fluctuates around a value greater
than room temperature, that is, T > TB .

The inclusion of the CO desorption effect has made the CA model much richer
than the previous CA model without it [22].

3.3 Diffusion {γ = 0.30, p1 = 0.012, p2}

The inclusion of a diffusion probability for CO(ads) molecules, p2, in the model
does not affect quantitatively the range of the γ parameter at which the reaction
shows oscillatory behaviors, but produces a small increase in the rate of CO2 pro-
duction, R. COdiffusion reduces the number of intermittent bursts. The quasiperiodic
oscillations, which were only seen as a transient phenomena when CO diffusion
probability was equal to zero, now are recovered as p2 increases. Figure10 shows the
time series of the surface temperature and CO concentration for different values of
the CO diffusion probability p2. The parameter r , the radius of the neighborhood for
CO diffusion process, is set to r = 2. For all the figures the CO desorption probability
is p1 = 0.012 and the thermal relaxation parameter γ = 0.30.

To grasp the shape of the attractor of the system, Fig. 11 shows time delayed
pictures of the surface temperature and the production rate of CO2. These Poincarè
maps, which represent plots T (t + 7) versus T (t) and R(t + 7) versus R(t), show
the evolution from intermittent oscillations to quasiperiodic one as p2 is increased.
For p2 = 0.05 quasiperiodical oscillations are only observed.
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of the γ parameter, with the CO desorption probability being fixed at the value p1 = 0.011. For
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Fig. 11 Time delayed pictures of the surface temperature, T , and the production rate of CO2, R, for
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3.4 Distribution of the Adsorbed Species on the Surface

CA model allows to follow the temporal and spatial evolution of the system, a pos-
sibility that mean-field models do not offer. Thus, we can observe several spatio-
temporal periodic and chaotic structures which are generated as the surface reaction
takes place. Although the goal of our study is to analyze the temporal evolution of
the system without stopping to observe the distribution of the adsorbed particles on
the surface, in other problems the information that is extracted from the spatial struc-
tures is the key to understanding the behavior of the reaction. Therefore, to complete
our study, we include snapshots of the (256 × 256) lattice when the system exhibits
oscillatory behaviors. Figure12 shows a set of snapshots of the surface for different
values of the parameters. Each pixel in the figure represents the average value of the
concentrations of CO and O, 〈nCO〉 and 〈nO〉. The color palette have been selected
in order to clearly distinguish the chemical front of both chemical reactants.

Intermediate values of the concentration is colored in pink for O and red for
CO. E (dark green) stands for a state with a concentration of 0.5, which means
a site where CO2 is produced. In the case of a quasiperiodic behavior, Fig. 12a,
there is a homogeneous state in which any structure can be seen. As the thermal
relaxation parameter γ and the CO desorption probability p1 are increased the spatial
homogeneity is lost.

3.5 Shannon Entropy

In order to characterize the different kinds of behavior that are observed as the
parameters γ and p1 are changed, we use the Shannon entropy S defined as:

S(p1, γ ) = −
N∑
i

fi ln fi , (8)

where fi is the frequency of a given value of the concentration of CO, and N is
the number of non-void c-bins. We have taken N = 100. The procedure to obtain
S(p1, γ ) is as follows:
(i) The reaction is let to evolve during 1000 time steps.
(ii) Afterwards during another t = 5000 time steps the concentration of CO is mea-
sured.
(iii) At each time step the corresponding c-bin is increased in one unit so that at the
end there will be ni .
(iv) The frequency of each c-bin is thus given by fi = ni/t .

If the concentration has a unique value the entropy will be 0. For a periodic
behavior, the value of S(p1, γ ) will be nonzero but low. The maximum value of
S(p1, γ ) will be reached for a chaotic state in which every fi = 10−2.
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Fig. 12 Snapshots of spatial structures generated by the CAmodel for different values of γ , p1, and
p2. Each pixel is an average concentrations of CO and O. E stands for a concentration of 0.5. a γ =
0.25, p1 = 0, p2 = 0. b γ = 0.30, p1 = 0.012, p2 = 0. c γ = 0.31, p1 = 0.012, p2 = 0. d γ =
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g γ = 0.30, p1 = 0.012, p2 = 0.03. h γ = 0.30, p1 = 0.013, p2 = 0.04. i γ = 0.335, p1 =
0.013, p2 = 0.01

Figure13 shows the Shannon entropy for the entire set of parameters p1 and γ .
Black and white colors correspond to a periodic or fixed point behavior that occurs
when the surface is poisoned either by CO or O. The colored regions blue, green and
pink correspond to periodic oscillatory behaviors, while cyan color corresponds to
quasiperiodic behaviors. It can be observed that the most complex region (the red
one) is located at the border between the quasiperiodic region and the poisoned one.

4 Summary

We have presented here simulations of a cellular automaton (CA) model for the
surface chemical reaction of CO and O that includes the effects of desorption and
diffusion of adsorbed CO molecules. Each one of these processes are considered
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probabilistic with probabilities p1 (for COdesorption) and p2 (for COdiffusion). The
model also includes the surface temperature as a dynamic variable so that the different
behaviors can be described in terms of three control parameters {γ, p1, p2}, keeping
fixed the remaining parameters of the model. CO desorption widens the range of the
γ parameter at which the reaction shows quasiperiodic oscillatory behaviors. The
coupling between the thermal effects and CO desorption shows a new intermittent
oscillatory behavior at the border between the quasiperiodic oscillatory state and
the CO poisoned state in the range of parameters 0.30 ≤ γ < 0.35, and 0.009 <

p1 < 0.015. The inclusion of CO diffusion only reduces the number of intermittent
bursts. Intermittent behavior was already identified for oscillating CO oxidation over
a zeolite-supported Pd catalyst [38].

The flexibility of the CA model allows us to take into account new effects in a
simple and straightforward way. In this sense it is worth to investigate the effect
of considering a long range reactivity (larger values of the diffusion parameter r ),
the dependence on CO desorption and diffusion processes on the surface coverage,
and the assumption of CO adsorption and CO2 as activated processes, among other
topics.
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Transmission of Thermal Phonons in
Superfluid Helium Through Nonlinear
Meta-Interface with a Solid

Yuriy A. Kosevich, Olena Yu. Tkachenko and Eugenii S. Syrkin

Abstract The transmission of thermal phonons through the two-dimensional
ultrathin layer of impurity atoms adsorbed at the interface of a solid with super-
fluid helium is discussed. The resonance interaction of the incident from superfluid
helium phonons with the damped oscillations of the intermediate layer is analyzed.
It is shown that this interaction results in the significant enhancement of the heat
flux through such meta-interface compared with the heat flux through the atomi-
cally clean interface. The anharmonic phenomena in the intermediate atomic layer
increase the heat flux via the nonlinear phonon transmission through the interface
between superfluid helium and the solid and contribute to the dissipative properties of
the interface monolayer. It is emphasized that for the parameters of the intermediate
ultrathin atomic layer under consideration the enhancement of the heat flux caused
by the surface phonon absorption can reach two or three orders of magnitude.
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1 Introduction

P.L. Kapitza has discovered in 1941 that in the presence of a heat flux through the
interface between superfluid helium and a solid the jump in temperatures between
these two media is established [13]. The magnitude of the finite temperature discon-
tinuity is proportional to the surface density of the heat flux and the corresponding
coefficient, the Kapitza thermal boundary resistance, which is also called the inter-
facial thermal resistance or thermal boundary resistance, has the temperature depen-
dence T−3. The interfacial thermal resistance describes the ability of the interface to
resist the heat flow through the boundary and the thermal resistance is finite even at
atomically perfect interfaces. Later it was discovered that such temperature disconti-
nuity takes place not only at the superfluid helium - solid interface, but at solid-solid
interfaces as well [36]. Therefore the understanding of the nature and basic principles
of the thermal boundary resistance at low temperature is decisive for technological
applications because it is important to know how the interfaces between thematerials
in use influence the thermal properties of the device. For example, the knowledge
of the thermal resistance of semiconductor thin films is extremely useful in creating
various microelectronic and optoelectronic devices like quantum cascade lasers or
light-emitting diodes [26]. Below we describe the main principles of the existing
explanations of the interfacial thermal resistance.

1.1 The Interfacial Thermal Resistance

Generally, if temperatures of the two materials are different, phonons with higher
energy which are incident from the hotter material, cause the energy transfer from
the hotter to the cooler material. The reverse process, when the energy is transmitted
through the boundary via the phonons with lower energy, also occurs. Consequently,
the net heat flux Q through the interface between the two media is thought to occur
as a result of the transfer of phonons across it. The two theoretical models that are
widely used for the studies of the thermal properties of interfaces are the acoustic
mismatch model (AMM) and the diffuse mismatch model (DMM).

The acoustic mismatchmodel has been elaborated by I.M.Khalatnikov [14, 15] in
order to understand and describe the thermal resistance phenomenon at the superfluid
helium -solid boundaries. The theory developed in [14, 15] is based on the idea that
phonon transmission is equivalent to the transmission of dispersionless plane acoustic
waves. Besides it is assumed in this model that the interface is perfectly flat and the
contact is perfectly rigid. The transmission coefficient is obtained by solving the
acoustic reflection/transmission problem at the interface between two media with
different acoustic properties and respectively with mismatched acoustic impedances
[acoustic mismatch model (AMM)]. The AMM was later applied to the solid-solid
interfaces [27]. The AMM makes possible the qualitative explanation of the main
features, including temperature dependence, of the heat exchange between superfluid
helium and a solid.
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The alternative diffuse mismatch model has been developed in order to describe
the phonon transmission under the condition of strong scattering [36]. OriginalDMM
assumes that phonons are scattered both elastically and diffusively at the boundary
between isotropic solids. The probability of the phonon emission into the media
in contact is proportional to the phonon density of states in each of the media.
In other words, the mismatch of the phonon density of states controls the thermal
resistance within the frame of DMM. The extension of DMM to anisotropic media
and experimental demonstration of the role of anisotropy were performed in Refs.
[8, 12, 32]. The influence of the phonon dispersion on the diffusive mechanism of
the phonon transport across the interfaces was analyzed in Ref. [9].

The explanations of the finite temperature discontinuity at the interface within
AMM and DMM have a number of similarities, but the discrepancies between them
are clearly visible aswell [36]. BothAMMandDMMdonot account for the influence
of electrons on heat transport in the system, so they can be applied only if at least one
of the materials under the study is insulator, because for the metal - metal interfaces
thermal energy is mainly carried by electrons and the electron scattering plays an
important role in the origin of the thermal boundary resistance. Also the possible
dependencies of the transmission probabilities on temperatures on the either side
of the interface are considered to be negligible in these models. In the DMM, the
calculation of the transmission probabilities from both media are not required, and
the full information about the heat-transfer properties of the interface can be obtained
in the studies of the heat flow from one material to another without exploring the
inverse process. The main difference between the acoustic and diffuse mismatch
models is that in the former the phonon inelastic and non-specular reflection does
not exist because the interface is believed to be smooth, which allows to assume that
at low temperature phonons obey the long-wave acoustic law of propagation and are
reflected specularly at the interface. On the other hand, the latter model takes into
account the strong diffuse scattering at imperfect interfaces at elevated temperatures.

It is well known that if the materials have very different physical properties, e.g.
the electronic or acoustic properties, the energy of the incident quasiparticles will be
reflected and scattered at the interface between them. The purpose of the proposed
by Swartz and Pohl [36] DMM was to establish the influence of the strong diffuse
scattering on the interface resistance. In the DMM, the probability of the phonon
transmission is proportional to the phonon density of states in the material into
which elastic wave propagates and is determined by the principle of detailed balance.
Such property takes place because the important feature of the phonon scattering is
that the wave vectors of outgoing and propagating across the interface phonons are
independent on the wave vectors of the incident phonons - the correlations between
them are destroyed by diffuse surface scattering. Therefore, in this model one can say
about the mismatch between the densities of phonon states. Moreover, the change
in pressure does not induce conspicuous modification of the significant difference
between the phonons densities of states in liquid helium and in the solid, whichmakes
the results of the DMM weakly dependent on pressure. Nevertheless, the value of
the boundary resistance obtained within the DMM does not match on the whole the
experimental data. This value also does not match the results of the AMM, and the
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difference between them depends on the kind of the materials under consideration.
In general, the diffuse mismatch model gives the interfacial resistance which is lower
than that given by the acoustic mismatch model, and the value of the experimentally
measured interfacial thermal resistance usually lies between the values given by the
acoustic and diffuse mismatch models [36].

It should also be mentioned that for the simulations and modeling of the heat flow
and calculations of the interfacial thermal resistance under different conditions, the
molecular dynamics approach is often used for the liquid-solid boundaries, solid-
solid boundaries, and the interfaces between semiconductor thin films [35]. For
example, this approach allows to study the interfacial thermal transport in cases
when the wave-like nature of phonons is important and no speculations about the
origin of the phonon scattering are required [26].

According to the Khalatnikov theory, there are two ways for the transfer of heat
through the interface between superfluid helium and a solid: by the transmission
through (and emission by) the interface of thermal phonons and of thermal rotons.
Here phonons and rotons are named as thermal because the respective oscillations of
the helium atoms and the crystall lattice are caused by temperature-induced fluctu-
ations, and they carry the heat energy flowing from the hotter medium to the cooler
one and in the opposite direction (counterflow) [28]. At low temperature (much
below the λ-point) there is almost no contribution of rotons in liquid helium to the
heat flow, so the first mechanism is assumed to be the main in the Khalatnikov the-
ory [14, 15]. Resistance to the heat transfer is explained by the strong mismatch of
the longitudinal acoustic impedances of liquid helium Z1 = ρ1vl and of the solid
Z2 = ρ2cl , Z1 � Z2, due to which the transmission of acoustic thermal phonons
across the superfluid helium - solid interface is strongly suppressed. Here ρ1,2 and
vl , cl are the densities and velocities of longitudinal (compression) acoustic waves
in liquid helium and in the solid, respectively. The acoustic impedance has the value
that depends only on the macroscopic properties of the material. It describes the
ability of the material to pass or to resist the propagation of long acoustic waves. It
is defined by the ratio of the sound pressure to particle velocity in a plane wave [28],
in analogy with the electric impedance which is determined by Ohm’s law.

The interfacial thermal resistance R relates the heat flux Q per area A (the flux
per unit area) of the boundary between two media and the difference of materials
temperatures ΔT at the interface:

R = AΔT

Q
. (1)

Instead of the resistance, the inverse value which is called the thermal boundary
conductance is also introduced: G = 1/R.

The unidirectional heat flux frommedium 1 tomedium 2 in the acoustic mismatch
model is written as:

Q1,2 =
∑

k

n(ω, T1)�ω(k)v(1)
z D(ω, θ) . (2)
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Here n(ω, T1) is a number of phonons in the energy state at temperature T1 given
by the Bose–Einstein statistics, D(ω, θ) is the probability of phonon transmission
through the interface as a function of frequency ω(k) and incidence angle θ , T1 is
temperature of media 1, v(1)

z is normal to the interface component of phonon group
velocity in material 1, v(1)

z = v(1) cos θ , k is wave vector. For two materials in contact
with the same temperature, the heat flux from the first medium to the second one is
compensated by the counterflow from the second medium to the first one, and the
net heat flux is zero. However, if there is no thermal equilibrium between the two
media, the net heat flux from medium 1 to medium 2 can be found as a difference of
the direct and reverse energy fluxes:

Q1→2 = Q1,2 − Q2,1 . (3)

In the acoustic mismatch model, the phonons are considered as plane acoustic
waves which transmit elastically (without change of frequency) across the interface,
and the transmission probability D is defined by the ratio of the transmitted and
incident acoustic phonon energies. In the case of normal phonon incidence, the energy
transmission coefficient (probability) for the net heat flux through the interface can
be written in terms of bulk acoustic impedances:

D = 4Z1Z2

(Z1 + Z2)
2 . (4)

If we have an interface between two strongly mismatched media like super-
fluid helium and the solid with Z2 � Z1, the energy transmission probability is
D = 4Z1/Z2 � 1. In general, the transmission probability has rather complicated
dependence on the incidence angle and frequency of the incident phonons. In order
to find the heat flux through the boundary, the sum in (2) is taken over all wavevec-
tors and the allowed incidence angles. The result presented by Khalatnikov is the
following:

Q = ρ1vl
ρ2

16π5

15

T 3F

(2π�ct )3
ΔT , (5)

where ct � vl is the velocity of transverse acoustic waves in the solid, the function
F depends on the acoustic properties of the helium and the solid, and its value has
the order of unity [15].

Therefore, the acoustic mismatch model allows to explain qualitatively the main
features of the results observed by Kapitza and provide the quantitative numerical
value of the heat flux through the liquid helium - solid boundary, and, consequently,
of the interfacial thermal resistance.
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1.2 Theory Modifications

However, it was discovered later that the value of the heat flux in the experiments is
significantly higher (up to 2 or 3 orders of magnitude) than the value (5) predicted by
the acoustic mismatch model, and the thermal resistance does not indicate a strong
dependence on the pressure [36]. Therefore the additional factors are required to be
taken into account to describe the experimentally observed heat transfer through the
superfluid helium - solid interface. The proposals to bring together the theoretical
calculations and experimental results include, for example, the account for the phonon
damping, caused by the presence of defects in the near-surface area of the solid [4,
31], and for the presence of a layer of solid helium with a few-atomic thickness on
the interface with the solid [30].

In the papers [40, 41], it was observed the enhancement of the heat flux due
to near-surface absorption in the solid of the thermal acoustic phonons, incident
from liquid helium, which is caused by resonance excitation of the damped surface
Rayleighwaves at the liquid helium -metal interface. For the liquid helium - tungsten
single crystal interface, it was shown that within a narrow cone of incidence angles,
which is limited by a critical angle beyond which no phonon transmission into the
solid is possible without taking into account some additional factors, there exist only
bulk longitudinal and transverse waves with small coefficients of the acoustic energy
transmission [40]. But for the range of incidence angles beyond the critical cone, the
resonant absorption of the Rayleigh waves takes place and their contribution to the
net energy transfer can be comparable with the contribution of bulk acoustic waves
for the incidence angles below the critical value. The measured phonon transmission
coefficients for the liquid helium - copper single-crystal interface were compared
with the values computed within the dissipative acoustic theory, which takes into
account the dissipation processes in the medium, and very good agreement between
theoretical and experimental results was obtained [41]. Essentially, the method used
byZinov’eva et al. allows the studies of the surfacemodes as such, whichmade it pos-
sible to demonstrate experimentally the propagation of the Rayleigh surface waves
and the pseudosurface (leaky) waves in the (001) and (111) surfaces of acoustically
anisotropic copper single crystal [41]. As it was revealed in the studies of the energy
transmission coefficient through the liquid helium - polycrystalline gold interface
[34], the enhancement of sound absorption in the polycrystal leads to the increase in
heat flux through the boundary due to the extension of the range of the allowed inci-
dence angles up to π/2. In other words, it was shown that the enhanced scattering of
sound by irregularities in the solid, which increases the acoustic (sound) attenuation
in polycrystalline gold, also increases the interfacial thermal conductance between
liquid helium and polycrystalline material.

Contribution of the damping of the surface Rayleigh wave by conduction elec-
trons to the heat transfer through the liquid helium - metal interface was described
by Andreev [5]. The calculations were performed in the two limits: when electron
mean free path is significantly shorter and when it is much larger than the phonon
wavelength. Only in the last case, the notable additional thermal flux has the same
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order ofmagnitude as the total heat flux obtained in theKhalatnikov theorywithin the
acoustic mismatch model. Furthermore, it was predicted that the damping of surface
Rayleigh waves by electrons decreases and the Kapitza resistance correspondingly
increases in the superconducting metal, in comparison with that in the same metal in
normal state. All these predictions were confirmed experimentally [40]. In general,
damped surface Rayleigh waves provide certain contribution to the heat flux through
the liquid helium - solid interface, however this contribution does not change the
order of the value of the Kapitza resistance.

In the paper [1], it was shown that surface roughness of a solid can increase the heat
transfer and leads to the change in the pressure dependence of the interfacial thermal
resistance. Physical conditions required for the geometrical-resonance scattering of
thermal phonons in superfluid helium on the rough surface were studied in the recent
paper by Ramiere et al. [33]. In this work the dependence of geometrical-resonance
phonon scattering mechanisms on the surface roughness in the case of the interface
of ultrahigh purity between single crystal silicon and superfluid helium were studied
experimentally. It was shown that definite surface roughness values exist which
are felt by incident phonons and which ensure the dominance of the geometrical-
resonance scattering. It was also observed that the effect of the presence of a solid
layer of helium at the interface results in the sharp drop in the Kapitza resistance at
the solidification pressures. This decrease occurs due to the presence of transverse
modes in the emerging surface layer of solid helium and in bulk silicon.

The heat transfer through the superfluid helium-solid interface is also affected by
sound attenuation in thin surface layer in a solid, which leads to the possibility of
the transmission into the solid of the thermal phonons in superfluid helium, that are
incident at transcritical angles [16]. Moreover, a number of experimental [7, 37–39]
and theoretical [2, 3] studies of the contribution of inelastic phonon processes to the
heat flow through the superfluid helium - solid boundary were performed. In several
works the directmeasurementswere carried out of the energy and angular distribution
of the emitted by a solid phonons in superfluid helium. It was observed that the two
channels exist, which were named as acoustic and background channels, of phonon
transfer through the boundary with different ranges of emission angles. The acoustic
channel exists in a narrow cone of incidence angles and is well described by the
acoustic mismatch theory, while in the background channel almost all incidence
angles are possible and phonon energy transfer through this channel is significantly
higher than that through the acoustic channel. The increase in the background phonon
emission from the heated solid to superfluid helium was considered to be a result of
inelastic phonon processes at the interface. In the theoretical studies of the phonon
transformation at such boundary, it was shown that there can be four inelastic three-
phonon processes. The increase in the heat flux through the superfluid helium-solid
boundary is related mainly with the inelastic process in which one phonon from
the solid transforms into two phonons in the liquid. The effect of the two other
processes, namely of the transformation of one phonon in the liquid into one phonon
in the solid and one phonon in the liquid, and of the transformation of one phonon in
the solid into one phonon in the solid and one phonon in the liquid, is significantly
lower. Furthermore, it was conjectured that these inelastic phonon processes give



228 Yu. A. Kosevich et al.

even greater contribution to the heat flux than elastic process in the solid heated
up to 5K. However, their influence decreases with decreasing the temperature and
therefore they cannot explain the experimental values of the background radiation.
All the proposed mechanisms are certainly important, but they still do not provide a
satisfactory agreement between the experiment and theory.

2 Reflection and Transmission of an Elastic Wave
at the Interface Between Two Media

One of the possible ways for implementing the significant phonon emission in liquid
helium by the surface of a solid with an absorbed non-dissipative monolayer is to
weaken the coupling of the monolayer with the solid surface [11]. But it should be
noted that the used in Ref. [11] method for calculation of the heat exchange between
liquid helium and the solid predicts an excessive enhancement in the heat transfer
arising from the presence of the non-dissipative dynamic transition layer. This excess
heat flux is related with the failure to account for the “response reaction” of liquid
helium to the oscillations of the weakly-coupled interface layer [24]. More rigorous
approach requires exact calculation of the energy reflection coefficient R for the
longitudinal phonons, incident from liquid helium, as a function of frequency ω

and angle of incidence θ . With the neglect of acoustic losses in superfluid helium,
the phonon energy transmission coefficient from the helium into the solid is equal
to D(ω, θ) = 1 − R(ω, θ). The reflection R and transmission D coefficients take
proper account for the dynamic interaction of the liquid helium with the surface
layer.

In the present work, the resonance interaction of elastic waves with a dissipative
homogeneous atomic monolayer, adsorbed on the liquid helium-solid interface, is
studied. The interface layer is considered to have an internal dynamical degree of
freedom, which is related with its weak coupling with the solid, see [6, 17, 21,
22, 24]. It is shown that the account for the dissipation in the interface monolayer
considerably affects the phonon transport through the interface of the two different
condensed media by means of the substantial extension of the range of transcritical
angles of incidence, in which the transmission of thermal phonon energy through the
liquid helium-solid interface is possible. In the absence of the dissipation, the cone
of incidence angles, in which the transfer of phonon energy occurs, is limited by the
small angle of total internal reflection. Such restriction is caused by large difference
of sound velocities in liquid helium and in a solid, vl � cl , i.e. because of the strong
mismatch of acoustic impedances. It is clear that substantial extension of the allowed
interval of the incidence angles will result in considerable increase of the heat flux
through the interface.

We consider transfer of phonons between the media 1 and 2. The liquid helium
is regarded as medium 1 and we describe it as a continuous isotropic inviscid-liquid
medium, themedium 2we describe as “isotropic”model of the silicon crystal. There-
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fore we introduce the scalar ϕ(1), ϕ(2) and vector ψ (2) potentials, which satisfy equa-

tions ofmotion ϕ̈(1) = v2l Δϕ, ϕ̈(2) = c2l Δϕ, ψ̈
(2) = c2t Δψ , where vl is sound velocity

in helium, cl and ct are velocities of longitudinal and transverse acoustic waves in the
solid. Then the longitudinal and transverse particle (elastic) displacements in liquid
helium and in the solid can be decomposed in general as:

u(1,2) = gradϕ(1,2) + curlψ (1,2) . (6)

Since only longitudinal waves can propagate in superfluid helium, the vector
potential ψ (1) is zero, whereas both the scalar and vector potentials are nonzero in
the solid:

ϕ(1) = eik1(cos θ z+sin θx)−iωt + reik1(− cos θ z+sin θx)−iωt , (7)

ψ(1) = 0 , (8)

ϕ(2) = dle
ikl (cos θl z+sin θl x)−iωt , (9)

ψ(2) = dte
ikt (cos θt z+sin θt x)−iωt . (10)

Here r is the refection amplitude of the longitudinal (sound) wave in liquid helium
which is incident on the interface, dl,t are the transmission amplitudes for longitu-
dinal and transverse acoustic waves in the solid, k1 = ω/vl , kl,t = ω/cl,t are bulk
wavenumbers for the corresponding waves in the media 1 and 2, ω is a frequency of
the incident phonons, θ and θl,t are the incidence angle in helium and propagation
angles of longitudinal and transverse elastic waves in the solid, respectively; all the
angles are measured from the normal to the interface between the media. The values
of the reflection and transmission amplitudes give the information about the portion
of the acoustic wave energy that is reflected, transmitted or absorbed due to discon-
tinuity between the media and the presence of the dissipative adsorbed layer. In the
present study, the role of the discontinuity is played by the boundary between two
acoustically mismatched media.

We assume that the two-dimensional adsorbedmonolayer with an internal dynam-
ical degree of freedom is placed in the plane z = 0 at the interface between liquid
helium (z < 0) and the isotropic solid (z > 0), and phonons are incident from the
helium in the xz plane. The dynamical boundary conditions for the elastic displace-
ments u(1,2)

i and bulk stresses σ
(1,2)
ik in the media 1 and 2 are obtained by equating to

zero the variation of the surface free energy, see [6, 20–22],

Fs = 0.5A(1)
ik (u(s)

i − u(1)
i )(u(s)

k − u(1)
k ) + 0.5A(2)

ik (u(s)
i − u(2)

i )(u(s)
k − u(2)

k ) , (11)

together with the bulk equations of motion ρ(1,2)üi = ∂σ
(1,2)
ik /∂xk , which results in

the following set of discontinuity equations for the elastic stresses and displacements
at the interface plane z = 0:
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σ (1)
zz − σ (2)

zz = −ρs
∂2

∂t2
u(s)
z , (12)

− σ (2)
zx = −ρs

∂2

∂t2
u(s)
x , (13)

σ (1)
zz = A(1)

zz

(
u(s)
z − u(1)

z

)
, (14)

σ (2)
zz = A(2)

zz

(
u(2)
z − u(s)

z

)
, (15)

σ (2)
zx = A(2)

zx

(
u(2)
x − u(s)

x

)
. (16)

Here u(s)
i is the elastic displacement of the absorbed interface monolayer, ρs is the

positive surface mass which is equal to the total mass of the absorbed atoms per unit
area of the interface, A(1,2)

ik is the tensor of force constants describing the interlayer
elastic interaction between the atoms of the interface monolayer and the contacting
continuous media [6, 20–22]. It should be noted that A(2)

ik is in general a complex
tensor which accounts for the dissipation caused by the coupling of the adsorbed
monolayer with the solid [17, 23]:

A(2)
ik = A′(2)

ik − iωB(2)
ik , (17)

where B(2)
ik is a tensor of the dissipative constants of the adsorbed monolayer, similar

in some sense to the viscosity tensor in bulk of a solid [25].
In terms of the vector and scalar potentials, the elastic displacements in the con-

tacting media (1) and (2) can be written as the following:

u(1)
z = ∂ϕ(1)

∂z
, (18)

u(2)
z = ∂ϕ(2)

∂z
+ ∂ψ(2)

∂x
, (19)

u(1)
x = ∂ϕ(1)

∂x
, (20)

u(2)
x = ∂ϕ(2)

∂x
− ∂ψ(2)

∂z
. (21)

Elastic displacements for longitudinal and transverse waves in adsorbed mono-
layer have the form:

u(s)
z = u0ze

ik1 sin θx−iωt , (22)

u(s)
x = u0xe

ik1 sin θx−iωt . (23)
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Using the boundary conditions (12)–(16) and the form of the bulk displacements
(18)–(21), the expressions for the reflection r and transmission dl,t amplitudes for
longitudinal and transverse waves in Eqs. (7)–(10) and the values of the surface
displacements (22) and (23), caused by the incident wave, can be obtained:

r = 1
Δ

[
α
(
2ρ2c2t k

2
x − ρ2c2t k

2
l − i A(2)

zz kl cos θl
)
β− − αA(2)

zz k1k
2
l ρ2×

× (
c2l − 2c2t sin

2θl
) (−ρ1k1v2l + i A(1)

zz cos θ
)+

+ (
ω2ρskxγl − 2A(2)

zx ρ2c2t kxkl cos θl
) ×

× {
kxγtβ− + 2A(2)

zz ρ2c2t k1kxkt cos θt
(−ρ1k1v2l + i A(1)

zz cos θ
)} ]

,

(24)

dl = − iαA(1)
zz A

(2)
zz ρ2v2l k

3
1 cos θ

Δ
, (25)

dt = −2i A(1)
zz A

(2)
zz ρ1k31v

2
l cos θ

Δ

(−ω2ρsγl + 2ρ2A
(2)
zx c

2
t kl cos θl

)
, (26)

u0x = 2A(1)
zz A

(2)
zz A

(2)
zx ρ1ρ2v2l c

2
t kxkt k

3
1 cos θ

Δ
(kt cos 2θt − 2kl cos θl) , (27)

u0z = 2i A(1)
zz v

2
l k

3
1ρ1 cos θ

Δ

[
α

{
2ρ2c

2
t k

2
x − ρ2c

2
l k

2
l − i A(2)

zz kl cos θl
}+

+kxγt
{
ω2ρsγl + 2A(2)

zx ρ2c
2
t klkx cos θl

} ]
,

(28)

Δ =
[
α
(
2ρ2c

2
t k

2
x − ρ2c

2
t k

2
l − i A(2)

zz kl cos θl
)
β+ − αA(2)

zz k1k
2
l ρ2×

× (
c2l − 2c2t sin

2θl
) (

ρ1k1v
2
l + i A(1)

zz cos θ
)+

+ (
ω2ρskxγl − 2A(2)

zx ρ2c
2
t kxkl cos θl

) ×
× {

kxγtβ+ + 2A(2)
zz ρ2c

2
t k1kxkt cos θt

(
ρ1k1v

2
l + i A(1)

zz cos θ
)} ]

.

(29)

Here the following notations are used to simplify the above expressions:

γl = (2ρ2klc
2
t cos θl + i A(2)

zx ) , (30)

γt = (2ρ2ktc
2
t cos θt + i A(2)

zz ) , (31)

α = −ω2ρskt (ktρ2c
2
t cos 2θt + i A(2)

zx cos θt ) + A(2)
zx ρ2k

2
t c

2
t cos 2θt , (32)

β{+,−} = ±A(1)
zz ρ1v

2
l k

2
1 − ρsω

2k1
(±ρ1v

2
l k1 + i A(1)

zz cos θ
)

, (33)

kx = k1 sin θ = kl sin θl = kt sin θt . (34)
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Equation (34) reflects the conservation law of the tangential to the interface compo-
nent of the phonon momentum.

We neglect the bulk dissipation of thermal phonons in superfluid helium and in
the solid, and, therefore, the transmission coefficient of the acoustic energy or the
transmission probability through the interface is equal to D = 1 − R = 1 − |r |2,
where R = |r |2 is the reflection coefficient for the acoustic energy of the phonon,
incident from liquid helium on the silicon surface. This is also validwhen the acoustic
losses in the solid are taken into account [41], but we neglect them because our
calculations show that the dissipation in the adsorbed monolayer has much stronger
effect on the transmission of thermal phonons through the interface.

The parameters, that are used in the expressions for the boundary conditions and
which characterize the adsorbed monolayer, are expressed in terms of the macro-
scopic parameters of the media 1 and 2 as follows:

A(1)
zz = ρ1v

2
l /a , (35)

A(2)
zz =

√
ρ1v2l ρ2c2l /6a(1 − i(ω/ωmax )b

(2)) , (36)

A′(2)
zx =

√
ρ1v2l ρ2c2l /24a(1 − i(ω/ωmax )b

(2)) , (37)

ρs = 6a
√

ρ1ρ2 , (38)

where b(2) is a dimensionless reduced dissipative parameter of the 2D adsorbed
monolayer, cf. Eq. (17), ωmax = vlπ/a is the maximum acoustic phonon frequency
in liquid helium, a ≈ 3Å is the interatomic spacing in liquid helium and the assumed
thickness of the interface layer. The parameter b(2) determines the quality factor
of the oscillations of the adsorbed atoms, Q ≈ ωmax/(ωb(2)), and its value can be
deduced from the data on the sliding friction at incommensurate monolayer coverage
of the solid surface by the corresponding atoms, see, e.g., Ref. [29]. The value of
the coupling constant A(1)

zz is taken to be close to the value of the effective interpar-
ticle force constant in liquid helium. The value of the coupling constant A′(2)

zz (and
of A′(2)

zx ) is taken larger than A(1)
zz but weaker than the effective interparticle force

constant in the solid: A(1)
zz � A′(2)

zz � ρ2c2l /a. Such values of the coupling constants
ensure the possibility of resonance enhancement of phonon transmission through the
interface with the weakly-bonded intermediate ultrathin layer [19, 21, 22], see also
the discussion of resonance phonon transmission at the end of this section.

In the absence of the dissipation in the interface layer and without dissipative
effects in the solid, which result in the absorption of the surface Rayleigh waves,
phonon transmission through the interface can be realized only for the angles of
incidence up to the critical one which is defined as θcr = arcsin(vl/ct ) ≈ 0.048 rad
for transverse wave. The total phonon reflection takes place for θ > θcr (for trans-
critical incidence angles) as it is described by the vector model of the solid for the
interaction between phonons in liquid helium and the boundary of the solid with a
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Fig. 1 Energy transmission coefficient as a function of the angle of incidence θ and frequency ω

of the phonon incident from liquid helium onto an atomically clean silicon surface

dynamical non-dissipative surface layer. This effect can be clearly seen in Figs. 1
and 2, where the energy transmission coefficient as a function of the angle and
frequency of an incident phonon is given for “optimal” coupling parameters described
above, which realize high transmission coefficient in the presence of the dynamical
interface layer. As one can see in these figures, the total reflection takes place at
the liquid helium - solid interface, both with and without dynamical non-dissipative
impurity monolayer, at the critical angle of incidence for longitudinal waves, with
the value θl = arcsin(vl/cl) ≈ 0.03 rad.

Here liquid helium is considered to have the density ρ1 = 0.125g/cm3, sound
(longitudinal wave) velocity vl = 240m/s and zero transverse wave velocity. In the
isotropic silicon crystal, the longitudinal and transverse elastic wave velocities are
cl = 8km/s and ct = 5km/s, respectively, and the density is ρ2 = 2.33g/cm3. There-
fore, the acoustic impedance of liquid helium is very small in comparison with the
acoustic impedance of the silicon crystal, and the resonance vibration frequency

ω0 =
√
A′(2)

zz /ρs of the dynamical interface monolayer is determined only by the
coupling constant between the absorbed monolayer and the solid [22].

The account for the dissipation in the interface layer leads to the decrease of the
reflection coefficient R for transcritical incidence angles. This results in the transfer
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Fig. 2 Energy transmission coefficient as a function of the angle of incidence θ and frequency ω

of a phonon incident from liquid helium onto a silicon surface with a dynamical non-dissipative
impurity monolayer

of the energy of thermal phonons from superfluid helium into the solid, mediated by
the dissipation in the interface layer. Since we can safely neglect phonon losses in
superfluid helium, the transmission coefficient for the transcritical incidence angles
coincides with surface absorption A = 1 − R.

In Fig. 3 we show the dependence of the surface absorption coefficient A = 1 − R
as a function of the reduced dissipative parameter b(2) and frequency ω for thermal
phonons in superfluid helium, incident on the interface at the transcritical angle
θ = 0.06 rad. As one can see in this figure, there is no more phenomenon of the
total wave reflection for transcritical incidence angles in the presence of interface
adsorbed monolayer with the dissipative dynamics. With the increase of the dissi-
pative parameter beyond the one that realizes the maximal surface absorption, the
value of the transmission coefficient D = A decreases, thus the introduction of the
dissipative parameter b(2) larger than that in the absorption peak does not lead to fur-
ther increase in the non-reflective properties of the interface. This feature is related
with the property that under certain conditions the surface absorption can reach the
magnitude close to unity for the transcritical incidence angle, when A ≈ 1. This
phenomenon is similar to the predicted earlier anomalous (total) absorption of bulk
acoustic wave by a monolayer of the atoms with dissipative dynamics, adsorbed on
a free surface of a crystal [17]. Figure3 shows that when the dimensionless dissipa-
tive parameter b(2) is close to that corresponding to maximal absorption, the sharp
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Fig. 3 Surface absorption A as a function of frequency ω and dimensionless reduced dissipative
parameter b(2) of the dynamical adsorbed monolayer for the phonons in superfluid helium, incident
on the interface at the transcritical angle θ = 0.06 rad

increase in the surface absorption at the liquid helium-solid interface is clearly seen.
This feature demonstrates the high sensitivity of the heat-transfer properties of the
superfluid helium - solid boundary to small variations in dissipative properties of the
adsorbed monolayer. It is interesting that the changes in surface absorption occurring
after the reaching by b(2) of the absorption peak in Fig. 3 are not so dramatic in con-
trast to the changes in the absorption before the peak reaching for the same interval
of values of the dissipative parameter b(2), and the decay in surface absorption with
the increase of b(2) beyond the peak value is moderate.

In order to realize the high transmission through the interface of two strongly
mismatched media, the impedance of the thin intermediate layer for the longitudinal

waves, Z0 =
√

ρs A′(2)
zz , must satisfy the acoustic transparency condition [21, 22]:

Z0 = √
Z1Z2 , (39)

see also Eqs. (36) and (38). As one can see in Eq. (39), the impedance Z0 is indepen-
dent on the thickness of the interfacial layer. The acoustic transparency condition
is analogous to the condition for the anti-reflective coating in optics: n0 = √

n1n2,
where n0 is the refractive index of the intermediate layer, n1,2 are the refractive
indexes for the two media in contact [10].
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2.1 Heat Transfer Trough the Liquid Helium-Solid
Meta-interface

The net heat flux from liquid helium to the solid through the unit area is defined as

W =
∫

n (�ω/kBT )�ωvl cos θD(ω, θ)
d3k

(2π)3
. (40)

The thermal conductance G(T ) is correspondingly given by:

G(T ) =
∫

∂n (�ω/kT )

∂T
�ωvl cos θD(ω, θ)

d3k

(2π)3
, (41)

where n is the Bose–Einstein distribution, D(ω, θ) = 1 − |r(ω, θ)|2 is the phonon
transmission coefficient through the interface between two media. The transmission
coefficient has a complex dependence on the frequency and angle of incidence, and
the integration over them is required. For instance, in resonance with the natural
vibrations of the adsorbed non-dissipative monolayer the transmission coefficient is
a function of the angle of incidence and for the normal incidence is defined only by
the acoustic impedances of the two media and interface layer [22]:

D = 4Z1Z2Z2
0

(Z1Z2 + Z2
0)

2
. (42)

This equation shows that the transmission coefficient indeed reaches unity, D = 1,
under the condition (39).

The integral over the frequencies in Eq. (41) is taken up to a maximum oscillation
frequency of phonons in liquid heliumωmax = vlπ/a, and the integral over incidence
angles is taken from zero up to π/2. In Figs. 4 and 5 we show the ratio of the
conductance Gimp in the presence of the interface layer to the conductance Gpure in
the case of the atomically clean liquid helium - silicon interface. Here Fig. 4 shows
the ratio for the non-dissipative dynamical adsorbed monolayer, and Fig. 5 shows the
ratio for the adsorbed monolayer with dissipative dynamics.

As one can see in these figures, there is a significant increase of the ratio of the
conductances, by 3 orders of magnitude close to the characteristic “resonance” tem-
perature and by 2 orders of magnitude above this temperature, in the presence of the
adsorbed monolayer with dissipative dynamics, while the adsorbed monolayer with-
out dissipative processes in it gives an increase up to one order of magnitude in the
resonance. This effect characterizes the interface with the adsorbed monolayer with
dissipative dynamics as the meta-interface, which has anomalously high absorption
properties. Figures4 and 5 also show that the temperature of themaximumof the con-
ductances ratioGimp/Gpure (the “resonance” temperature) is below 2K, when liquid
helium is superfluid, both for dissipative and non-dissipative interface layer. So, even
at higher temperatures than the “resonance” one there is no quantitative coincidence
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Fig. 4 Ratio of the
conductances Gimp/Gpure
as a function of temperature
in the presence of
non-dissipative dynamical
adsorbed monolayer on the
silicon surface

Fig. 5 Ratio of the
conductances Gimp/Gpure
as a function of temperature
in the presence on the silicon
surface of the dissipative
dynamical adsorbed
monolayer with b(2) = 0.05

0

of the heat-transfer properties for the interfaces with dissipative dynamical adsorbed
monolayer and without it. At the same time, for the non-dissipative interfacial mono-
layer of adsorded atoms the ratio of the conductances Gimp/Gpure is close to unity
for temperatures approximately above 5K, thus identifying the absence of the effect
of the presence of the adsorbed monolayer as the media are being heated. The main
factors of the strong influence of the dissipative meta-layer on the heat transfer is the
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weak coupling of the monolayer with the solid, A(1)
zz � A′(2)

zz � ρ2c2l /a, in combi-
nation with the large surface mass ρs > mHe/a2, where mHe is a mass of helium-4
atom, and the transfer of thermal phonon energy through the meta-interface at tran-
scritical incidence angles, which is not possible in the case of absence of dissipation
in the monolayer and in the solid.

It is clear that for a significant increase in the thermal phononflux through the inter-
face, anharmonic phenomena start to play a considerable role in vibrational dynamics
of the adsorbed monolayer. Generally, the large thermally-excited mean-square fluc-
tuations of atomic displacements 〈u⊥(T )2〉 and 〈u‖(T )2〉 in the weakly-coupled with
a solid monolayer generate nonlinear phonon transmission at the multiple (second
and third) harmonics - for the transmission from liquid helium to the solid, and at the
sub-harmonic (one-half and one-third) frequencies - for the transmission from the
solid to liquid helium [18]. These nonlinear effects can be described, respectively,
by the additional cubic, ∝ (u(s)

z − u(2)
z )3, and quartic, ∝ (u(s)

z − u(2)
z )4, anharmonic

terms in the surface free energy (5), describing the nonlinear coupling of the
adsorbed monolayer with the solid, see also [18]. Apparently these effects, caused
by the anharmonic intermediate ultrathin layer, increase the thermal phonon transfer
across the interface between two media with very different vibrational spectra and
strong mismatch of acoustic impedances and contribute to the dissipative properties
of the interface monolayer. The presence of the dynamical anharmonic atomic layer
at the meta-interface between two media with very different acoustic impedances,
including the boundary between the liquid helium and a solid, also leads to the non-
reciproci ty of the transmission of thermal phonons across the interface: the heat flux
through the interface with a given temperature difference depends on the polari t y
of the difference.

3 Summary

The interface thermal resistance observed by P. L. Kapitza for the superfluid helium
- solid body boundary still remains the interesting subject to study. Two fundamental
theories - the acoustic mismatch model and the diffuse mismatch model - do not
able to provide enough qualitative and quantitative agreement with the experimental
data and between each other. Therefore, this problem gives an origin for the plenty
of theoretical and experimental works on the properties of the interfaces between
two media in order to improve the proposed models and extend them to explore not
only the interface between liquid helium and a solid, but other interfaces between
different materials as well. The considerable attention in these studies is dedicated to
the account of various additional factors, processes and conditions which might have
influence on the dependence of the thermal boundary conductance on temperature
and pressure.

We show that the dynamics of the ultrathin adsorbed monolayer with an inter-
nal degree of freedom at the superfluid helium - solid interface results in signifi-
cant increase of the transmission of thermal phonons through the interface. Such
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enhancement of phonon transmission occurs due to the presence of dissipation in
the dynamics of the meta-interface atomic monolayer, which makes possible the
transmission of the energy of thermal phonons from superfluid helium to the solid
at all angles of incidence, including the transcritical incidence angles, and due to the
nonlinear phonon transmission through the interface at multiple harmonics and at
sub-harmonic frequencies, which contributes in turn to the dissipative properties of
the adsorbed monolayer.
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Transport Properties of Quodons
in Muscovite and Prediction
of Hyper-Conductivity

F. Michael Russell

Abstract The study of intrinsic localised modes in layered crystals has been
advanced by the discovery that crystals of muscovite mica can naturally record small
perturbations to the lattice after the crystal has grown but is still at high temperature.
This led to the discovery of two types of nonlinear lattice excitations created by
energetic atomic collisions that propagate great distances in flat sheets of atoms of
potassium sandwiched between mirror silicate layers. One type, called a quodon, is
stable and propagates along atomic chains without lateral spreading. The second type
spreads laterally in the sheet about chain directions. It has recently been shown that
quodons can trap and carry a positive charge at temperatures up to at least 500 ◦C. As
the charge is transported in absence of an applied electric field it has infinite charge
mobility. This leads to the prediction of lossless transmission of electricity at ele-
vated temperatures, called hyper-conductivity. Here, studies are reported that show
quodons can couple to holes and electrons. The strength of the coupling depends on
the chemical composition of the crystals. Electrons are strongly coupled to quodons
in calcium-rich crystals of muscovite, sometimes called brittle-mica. In crystals with
negligible Ca only holes are bound strongly. This indicates that the transport prop-
erties of muscovite can be modified by local doping. Lastly, a third type of track
recording process has been found in which a gas decorates the paths of energetic
mobile lattice excitations. The most probable source of the gas is argon from the
decay of 40K.
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1 The Study of Lines in Crystals of Muscovite

The discovery in 1963 that black lines in natural crystals of muscovite held informa-
tion relating to cosmic rays led to a study of the behaviour of nonlinear lattices when
subject to energetic disturbances at atomic scales. After over fifty years, sometimes
working alone but progressively with collaborators, the studies led to the prediction
of infinite charge mobility in muscovite and to the possibility of transporting elec-
tricity without loss at any temperature up to 500 ◦C. The first definitive step in this
protracted study began in 1967 with the finding of Tracks in mica caused by electron
showers [8]. Since charged leptons left tracks it was expected that positrons emitted
from the decay of the radioactive isotope 40K of potassium in muscovite should also
leave tracks. By 1985 this had been verified and led, by 1988, to unusual properties
of Positive charge transport in layered crystalline solids [10]. This was followed in
1989 by the Identification and selection criteria for charged lepton tracks in mica [9].
The observation in 1993 of tracks in mica associated with nuclear recoils from 40K
decay, which were inconsistent with a relativistic particle origin, indicated the pos-
sible existence of stable, highly-localised, mobile nonlinear lattice excitations later
to be called quodons [19]. In an attempt to explore what kinds of excitation might
occur in a chain of nonlinear interacting particles in 1995 a mechanical analogue
was constructed employing dipole-dipole interactions of magnets. It demonstrated
the creation of a mobile, localised, discrete-particle oscillatory excitation that prop-
agated for over 500 particle-magnets before being extinguished by air-friction. This
analogue was the means by which the experimental study of the lines in muscovite
crystals linked in to the extensive body of theoretical and numerical work on soli-
tons, kinks and breathers or bions [4]. It also introduced a connection to experimental
work done by a distant relative, namely Scott-Russell, on his ‘Wave of translation’
[22]. The propagation of positive charge in a layered crystal, with possible relevance
to the layered high Tc superconductors, prompted a study in 1996 of Anharmonic
excitations in high Tc materials [17]. In 1997 the first of several extensive numerical
studies of the properties of chains of discrete nonlinear interacting particles began
with Moving breathers in a chain of magnetic pendulums [20]. The fact that the
potassium atoms were held in place between tightly bound silicate layers suggested
on-site potentials were important. Theoretical studies of possible intrinsic localised
modes in anharmonic lattices in 1D and 2D arrays of discrete particles with on-site
potentials pointed to quodons behaving like breathers. This led in 1998 to Localised
moving breathers in a 2D hexagonal lattice [5]. This prompted further study in 2001
of Breathers in cuprate-like superconductor lattices [21]. The reality of these elu-
sive excitations, the quodons, was demonstrated in 2007 by Evidence for moving
breathers in a layered crystal insulator at 300K [18]. Measurements on long tracks
of quodons, some more than 20 cm in length, showed that they created secondary
quodons when scattered by crystal dislocations. These secondary quodons always
started with minimal track width but, while propagating, the width jumped to that
typical of the parent quodon. The reason for this was unclear. To investigate if there
was sufficient energy in the nuclear recoil of 40K to create A supersonic crowdion in



Transport Properties of Quodons in Muscovite and Prediction … 243

mica a study was made of the charge states in the decay of 40K [1, 2]. This led by late
2015 to the realisation that quodons resulting from 40Kdecay are always created in the
presence of either a hole or an electron. This suggested that quodons might trap and
carry either a hole or an electron. If it held a positive charge, or hole, then magnetite
was precipitated on the track; if it was an electron then epidote was formed. However,
for over 30years there was an unexplained anomaly in the measured widths of the
tracks of positrons as they slowed down. The early measurements had indicated that
the width of a track progressively increased to amaximum but then rapidly decreased
as the positron came to rest. The puzzle was why the track width should decrease as
the positron came to rest, since it was the presence of a positive charge that triggered
the recording process. This was resolved in 2015when it was found that the end of the
decoration on a track was not determined bymotion of the charge but by the mechan-
ical properties of the lattice. The precipitation of magnetite forming the decoration
proceeded in the directions of lattice weakness. Since it had been found, by studying
the tracks of positrons in mica, that the recording process precipitated magnetite in
the presence of a positive charge, the similarity of widths of quodon and positron
tracks provided, in early 2015, evidence for Charge coupling to anharmonic lattice
excitations in a layered crystal at 800K [13]. Exploring the consequences of this
finding it was realised that the transport of charge by quodons inmuscovite in absence
of an applied electric potential across the crystal indicated infinite charge mobility,
which led by April 2016 to the Prediction of hyper-conductivity at the Nolineal 2016
meeting. At that meeting a small group of participants decided to attempt to validate
the prediction by an experiment. It is now clear that hyper-conductivity is fundamen-
tally different from super-conductivity although both involve the unique properties
of layered crystals. The background to the present work and a brief historical account
is given in the book entitled Quodons in Mica [14, 15].

2 The Decoration on Tracks of Quodons and Charged
Particles with Magnetite

The study of the properties of quodons and other non-linear lattice excitations in
crystals of muscovite changed significantly during early 2015 when implications of
the similarity of the extent of decoration on the tracks of quodons and slow moving
positrons were re-examined [11]. The decoration with the black mineral magnetite
takes the form of nanometre thick ribbons of variable width. Measurements on 40K
positron tracks show that the average rate of energy loss is less than 5 × 104 eV/cm
or about one ionisation event per 10 micron of track length. Since the tracks are
continuous the perturbation triggering the recording process must depend on elec-
tronic and not ionisation events, so is localised to less than 1 nm of the flight path.
Measurements had shown that the width of positron tracks was proportional to the
lattice perturbation and the decoration process magnifies this by a factor of about 104

thereby making the tracks visible. This lateral magnification of the initial lattice per-
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Fig. 1 Shape of typical
positron track decorated with
the mineral magnetite. Plot
of the width of decorated
tracks of positrons as they
slow down compared with
the average width of quodon
tracks. This shows that
recording process responds
to quodons to the same
degree as for nearly stopped
positrons

turbation was found to be independent of the speed of the positrons in a given crystal.
The amount of magnetite precipitated on the tracks varies from one crystal to another
but the distribution along a track is, on average, the same. This is shown in Fig. 1.
Was this similarity of track widths of slow moving positrons and quodons a property
of the recording process or did it imply that a quodon perturbs the lattice to the same
degree as a slow moving positron? When the idea of a quodon was first proposed,
it was assumed that the excitation only involved relative motions of atoms within a
small moving envelope [16]. Certainly, large amplitude oscillatory displacements of
atoms within a quodon could create local changes in crystal potentials. Did the fact
that in Fig. 1 the horizontal band of average width of decoration on quodon tracks
intersected the measured width distribution curve of positrons have any significance?
Might it imply that quodons could trap and carry a positive charge? If true, then it
would be quite significant but there was a problem with this suggestion that hindered
further study. It was known that the thickness of the ribbons of magnetite, normal to
the (001)-plane, delineating tracks was approximately constant so the width of dec-
oration should indicate the energy loss per unit length of track. The measured widths
confirmed this relationship over most of the length of tracks of positrons except
for the last part of less than about 0.5mm from the supposed final rest position of
a positron. The measurements indicated that in this region the extent of decoration
decreased rapidly as a positron slowed to rest. This was at variancewith the presumed
cause of decoration, namely, the time during which a moving charge could influence
a unit cell electronically to create a nucleation site. This dependence on dwell-time
implied that the decoration should reach amaximumwhen a positron stopped and not
while it was still moving. The resolution of this problem came from an unexpected
direction involving chemical analyses of sheets of mica showing unusual patterns of
decoration, which are now examined.
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Fig. 2 Sheet used to study
composition changes within
a single sheet of 12 × 12 cm
size and 0.5mm thickness.
The chemical analysis of the
areas A, B and C is given in
Table1. The Fe content is
high but there is surprisingly
little variation of Fe between
the different areas

In some crystals of muscovite the sensitivity of the recording process differs
markedly in different regions of a sheet, as shown in Fig. 2. During the period
when the recording process operates the hydrostatic pressure on a crystal should
be isotropic and externally applied stresses applied to a crystal would not influence
adjacent sheets inside a crystal differently. This variability of recording is unlikely
to be due to a change of structure as the distribution of magnetite decoration was
different in adjacent sheets cleaved from the same crystal, which showed no grain
boundaries or fractures. The most probable local variable would be slight changes in
the composition of a crystal. This was explored for the sheet shown in Fig. 2, which
gave the results shown in Table1.

The numbers in each column are the percentage by weight for the listed elements,
the last column giving the sum-total. There are two main findings from this analysis.
Firstly, all crystals showing magnetite decoration of tracks have a surprisingly high
concentration of Fe. Secondly, there are only small differences in composition of the
regions A, B and C. Might this point to catalytic involvement of a trace element in
the recording process, such as sulphur plays in some photographic emulsions? The
clear region A has lower Fe and Al and higher Si and K, these atoms being close to
the K-sheets. Evidence for the reduced sensitivity of the recording process in B-type
regions showingmultiple ‘dot-like’ decorationswas shownby the fading and eventual
extinction of the decoration on tracks of quodons and muons as they entered such
regions.When a positron is moving in the crystal the decoration follows the sequence
of nucleation sites. However, when it comes to rest and annihilates it leaves a static
permanent positive charge, which can trigger a lower sensitivity recording process.
The ensuring accretion of magnetite strains the lattice locally so that the growth of
decoration is determined by the mechanical properties of the crystal, proceeding in
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Table 1 Table showing the chemical analysis of sections of a sheet showing different sensitivities
for recording disturbances to the crystal. The most notable result of this analysis is that all the
sheets showing decoration of tracks have about the same high concentration of Fe. The amount
of Fe deposited in the decoration of tracks out of the total Fe content of muscovite ranges from
less than 10−6 to about 10−4 for the most extensive decoration on fans. The regions of the first
row-block correspond to the sample in Fig. 2. The last three row-blocks are for different crystals
showing features of tracks decorated with magnetite. In sheets showing heavy decoration on fans,
which are the tracks of laterally spreading kinks created in atomic cascades, there is significant
substitution of Mg for Al (Table after Prof. J. G. Fitton from Edinburgh University)

Sample
name

SiO2 Al2O3 Fe2O3 MgO Na2O K2O TiO2 MnO LOI
∑

Region B Stars & dots Mica-01 44.89 31.73 6.45 0.85 0.10 10.353 0.275 0.077 5.00 99.73

Mica-01 44.92 31.73 6.45 0.84 0.06 10.352 0.277 0.079 5.00 99.71

Mica-01 44.98 31.68 6.45 0.85 0.09 10.356 0.275 0.078 5.00 99.76

Region C Quodons, etc. Mica-02 45.54 31.16 6.44 0.93 0.08 10.489 0.269 0.075 4.89 99.88

Mica-02 45.58 31.08 6.45 0.91 0.10 10.500 0.272 0.074 4.89 99.86

Mica-02 45.56 31.13 6.45 0.91 0.10 10.491 0.273 0.075 4.89 99.88

Clear region Faint, good Mica-03 45.92 31.18 6.20 0.86 0.04 10.620 0.257 0.072 4.43 99.59

Mica-03 45.95 31.11 6.21 0.89 0.03 10.615 0.261 0.072 4.43 99.58

Mica-03 45.95 31.13 6.20 0.89 0.06 10.616 0.264 0.073 4.43 99.62

Heavy fans Mica-04 46.02 31.04 6.21 0.88 0.04 10.648 0.254 0.084 4.69 99.87

Mica-04 46.04 31.02 6.21 0.89 0.02 10.658 0.257 0.082 4.69 99.87

Mica-04 46.10 31.04 6.21 0.89 0.04 10.666 0.255 0.084 4.69 99.98

Good quodon tracks Mica-05 46.26 29.89 6.39 1.53 n.d. 10.816 0.539 0.050 4.46 99.92

Mica-05 46.24 29.92 6.39 1.49 n.d. 10.817 0.533 0.050 4.46 99.89

Mica-05 46.26 29.88 6.39 1.51 n.d. 10.818 0.538 0.049 4.46 99.89

Mica-06 45.97 30.73 6.28 1.26 n.d. 10.571 0.367 0.048 4.16 99.40

Mica-06 45.93 30.68 6.30 1.29 n.d. 10.572 0.369 0.047 4.16 99.35

Mica-06 46.00 30.74 6.29 1.28 n.d. 10.579 0.361 0.048 4.16 99.46

directions of lattice weakness. This is illustrated in Fig. 3. Deducting this part from
the tracks showed that the rest position of a positron is at the maximum width of
track. The corrected plot for the width of track of positrons as a function of distance
from the stopping point is shown in Fig. 4.

This resolution of the decoration problem showed that the decoration caused by
a quodon moving at near sonic speed matched that of an individual positron as it
slowed to rest. Once it was realised that a quodon behaved as if it carried a positive
charge it was then logical to consider how it might have trapped a charge. An analysis
of the changes of charge states of potassium and daughter atoms in the several decay
channels is shown in Table2. In the dominant decay channel emitting electrons the
recoil atom is positively charged. Only some of these decays will create a quodon
because the component of momentum in a chain direction might be insufficient to
form a quodon. In these cases, the energy is likely to be radiated as phonons leaving
a stationary positive charge to trigger the magnetite recording process. This would
account for the high volume-density of dots.
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Fig. 3 The left hand side of the picture shows typical quodon tracks in the middle of the sheet,
random damage spots at the upper right top and a region at the left containing many small dots
of decoration; the sheet is 14 cm wide. The middle picture is an enlargement of an 8mm wide
part of the dot region. The right land side diagram shows a single dot and its relationship to the
principal crystal directions. Quodons propagate in the red-line directions and the black-lines show
the directions of lattice weakness. The dot region has reduced recording sensitivity but nucleation
sites are provided by stationary positive charges. The two main sources of stationary positive
charges are from the emission of an electron and rarely from annihilation of positrons. Precipitation
on a single nucleation site proceeds in directions of lattice weakness, which are easily revealed in
‘percussion figures’ caused by striking a sheet with a dull point

Fig. 4 Plot of the width of
decoration with magnetite on
tracks of positrons and
quodons after allowing for
the decoration due to
annihilation of the positron
leaving a stationary positive
charge. The decoration
extends mainly in the
directions of lattice
weakness

Until the recording processes are better understood there will continue to be some
unexplained effects. For example, in many of the dots in Fig. 2 the central region is
apparently not decorated and appears as a clear area. These undecorated areas might
indicate significant damage to the lattice that interferes with the decoration process,
perhaps by the presence of an electron. Themeasured thickness of the epidote ribbons
shows that they extend over at least two unit cells in the direction normal to the (001)-
plane. This hints at possible pathways for Fe ions to migrate slowly between adjacent
K-sheets. It is very likely that such migration occurs because of the concentration of
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Table 2 Table of decay channels for 40K. The last row in the second column in the table shows
that the dominant decay channel leaves a single positive charge on the recoiling atom as it starts to
create a quodon. Reprinted with permission from [1]. Copyright (2015) by Springer

Decay Beta- EC1 EC1+CEa EC2b Beta+
Intensity 89.25% 10.55% 0.001% 0.2% 0.001%

T (keV) 1311.07 1460 1460 1504.69 483.7

Emitted charged particle e− None Shell e− e− (Auger) e+

Recoil from ν + e− Gamma Shell e− ν ν + e+

Max Recoil (eV) 42 29.2(M) 49.7(M) 31.1(M) 10

Daugther Ca++ Ar+ Ar++ Ar++ Ar

Max V (km/s) 14.4 12(M) 15.7(M) 12.2(M) 7

Ionization of daughter (eV) 50.6 27.7 40.8 40.8 15.8

�q (e) +1 0 +1 +1 −1
aSubset of EC1 when the gamma is delivered to a shell electron
(M) Monochromatic
bDirect decay to Ar ground state, with recoil from 1504.69keV neutrino emission;
3keV Auger e− emitted later
EC: electron capture; CE: conversion electron; T : energy available excluding rest masses
Ionization energy of K+ 31.6eV

magnetite on tracks in one sheet with adjacent sheets being devoid of any decorated
tracks. Accretion of magnetite on tracks to create the final widths will be a slow
process relative to the creation and initial decoration of nucleation sites. Table2
also shows that the rare emission of a positron leaves a negative charge at the site
of creation of a quodon. The track of a positron can be recorded by decoration
with magnetite but the negative charge on a quodon, instead of decorating with
magnetite, can cause the track to be decorated with the clear mineral epidote in
crystals containing some calcium. In so-called ‘brittle micas’ there can be up to 1%
of Ca in the K sheets. Using convergent beam electron diffraction techniques, it
has been shown that, contrary to magnetite decoration, the epidote delineating the
quodon track is not intrusive between the silicate layers [19]. Instead, it replaces
the muscovite structure to give ribbons of epidote of 3.4 nm thickness, normal to
the (001)-plane, that are geometrically compatible with the surrounding muscovite.
Large crystals containing significant amounts of Ca occur much less frequently than
those with little Ca, such as those showing strong staining with magnetite.

3 Absence of Identifiable Electron Tracks

Although quodon tracks decorated with magnetite are associated with electron emis-
sion from 40K there is no evidence for electrons leaving their paths decorated with
magnetite or epidote. Nor do they leave any identifiable track decorated with another
mineral. There are several contributing reasons for this absence. Electrons do not
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show axial or planar channelling. When emitted they experience diffraction scat-
tering but, in contrast to positrons, the angular distribution in the (001)-plane does
not include peaks in chain directions. Instead, the probability for an electron propa-
gating in a chain direction rapidly tends to zero. It is probable that the two record-
ing processes are effective in proximity to the K-sheets because that is the plane
of easiest cleavage. However, the progressive accretion of magnetite on the initial
nucleation sites of quodon tracks arising from electron emission, leading to ribbon
widths of order 1mm, could conceal any short-range electron tracks emerging from
the K-decay site. Despite these uncertainties the absence of evidence for tracks due
to electrons in crystals of low Ca content suggests that they are less likely to be
transported in the K-sheets than holes.

4 Migration of Argon from 40K Decay

Surprisingly, a third decoration process has been found. Table2 shows that about
10% of the decays of 40K leave Argon. For many years this fact was ignored; being
a noble element perhaps it migrated out of the crystals. When examining sheets of
muscovite visually it often helps to observe them at near grazing angle against awhite
background. Sometimes the magnetite ribbons are close to a cleaved face and then
appear brightly coloured because of interference of the reflected light. It was under
such conditions that the sheet shown in Fig. 5 was observed. It shows regions where
the lattice has been cleaved by a transparent intrusion, compatible with migration

Fig. 5 Pictures of the same sheet, the left by transmission and the right by reflection. The pictures
show that there is distortion of the crystal structure both in the vicinity of magnetite ribbons and
elsewhere where nucleation sites have been generated. The magnetite ribbons are built from unit
cells of magnetite that are intrusive between the silicate layers. That leaves voids of small volume
at the edges of the ribbons. At high temperature argon atoms could migrate to those voids. Later
uplift to the Earth’s surface would reduce the hydrostatic pressure causing distortion of the crystal
structure
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of argon. The intrusive magnetite decoration forces the silicate layers apart, thereby
creating small volume voids at the edges of the magnetite ribbons. These would
be suitable spaces for mobile argon atoms to accumulate. Later, the argon in these
voids that is initially under high pressure would cause the silicate layers to be forced
apart as the hydrostatic pressure on crystals is reduced by their uplift to the Earth’s
surface. This accounts for the visible distortion of the sheets near ribbons as seen by
reflection, which is too large to be attributed to the distortion due only to the ribbons.

5 Creation of Secondary Quodons

A notable property of quodons with track widths indicative of a positive charge is
their ability to create secondary quodons. The distance between successive secondary
quodon tracks is random, consistent with scattering at dislocations. It is assumed that
since quodons can propagate more than 109 atoms in a crystal at high temperature
they are not scattered by point defects such as interstitials, atomic substitutions or
vacancies. Usually, at a scattering event there is no change in width of their track,
indicating that the charge is not lost. However, the secondary quodons usually are
createdwith no charge, as evidenced by theminimal decoration of their tracks, as seen
in Fig. 6. It is consistentwith the triggermechanism for precipitation ofmagnetite that
the minimal decoration sections arise from local variation of the crystal potentials
due to the large amplitude of atomic movements within a quodon. After travelling
random distances from their point of creation a sudden increase in their track width
indicates capture of a charge. This property of creating secondary quodons limits the
type of excitation that constitutes a quodon. The large number, of up to about 100,
secondary quodons generated by a primary quodon of maximum available energy
of 42 eV points to a minimum energy for creation of a quodon of about 0.4 eV.
Crowdions are a possible candidate for quodons but require about 27 eV for their
creation. Assuming the nuclear recoil motion following decay of 40K is in random
directions then 2% (as calculated by the author) of the observed tracks could be due
to crowdions. Lastly, the secondary excitations do not show the properties exhibited
by kink-like excitations that create the fan-shaped patterns associated with atomic
cascades [12]. The oscillatory nature of the internal motions of atoms in a quodon
can transfer momentum to a secondary quodon in either the forward or backward
direction. The secondary quodons are all connected to the primary track by weakly
decorated tracks consistent with no trapped positive charge. The distance travelled
before a charge is trapped is variable. Figure6 shows secondary quodons arising
from a primary quodon moving horizontally. This is consistent with the inability to
subdivide the single charge on the primary quodon, so a secondary quodon is created
neutral. It is interesting that a very small minority of quodon tracks lie in directions
of chains with atomic spacing of 0.9 nm but the majority move in chain directions
with 0.54 nm spacing.
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Fig. 6 Photograph of secondary quodons created by scattering of a primary quodon. The primary
is moving horizontally. Since the charge on a quodon cannot be subdivided the secondary quodons
are created without a charge but may trap one in flight

6 Re-examination of the Ejection Experiment

The experiment reported in 2007, designed to detect the ejection of atoms from a
crystal by inelastic scattering of quodons at a crystal face, assumed that quodonswere
overall charge-neutral [18]. It is well known that atoms evaporated from a surface are
usually neutral. However, the potassium sheets consist of cations and thus there was
uncertainty about the ionisation state of ejected atoms so it was decided to introduce a
region between the crystal and the detector to create a plasma through which ejected
particles must travel to reach the detector. This would increase the probability for
ionising ejected atoms that could then trigger the charge-sensitive channel- plate
detector. The experimental arrangement is shown in diagrammatic form in Fig.7.

A low activity source (1) of alpha particles from 241Am irradiated one edge of a
crystal of muscovite mica (3). This source and the crystal were held in a Faraday
cage that is connected to the detector (4), also in a Faraday cage, via a voltage
source. The purpose of the voltage source was to attract and focus positive ions to
the detector and discriminate against electrons from field emission or other sources.
Some positive ions from the low intensity plasma were detected and formed the
background count-rate of the detector. It was also observed that UV radiation from
an ionisation vacuum gauge contributed to the background count-rate. This effect
was eliminated by introducing a multiple plate light-baffle between the gauge and
the target chamber. The experiment looked for changes in the count-rate that could
be attributed to effects arising from the alpha irradiation of the remote front edge of
the crystal.
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Fig. 7 Arrangement of the experiment for demonstrating ejection of ions from a remote crystal
edge with the alpha source at position (1). To investigate the relationship between the alpha flux
hitting the crystal and the detected count-rate the source was moved to position (2) where it could
be rotated below a small hole in the metal plate supporting the crystal

By chance the supply of argon gas to the vacuum system to create a plasma ceased
during a detection run. Fortunately, the vacuum pressure gauge readings were stu-
diously recorded at the start and end of each run alongwith other parameters. The fact
that the detector continued to record the arrival of charged atoms when the pressure
was far too low to support a plasma went unnoticed. That is, the ejected particles
must have had a positive charge when ejected. Only later, after the evidence from
track-width data for quodons carrying charge was recognised, was the implication
of the earlier experiment data appreciated. It showed that irradiation of one edge of a
crystal caused ionised atoms to be ejected from a remote edge that was in a principal
crystal direction from the irradiated edge.

Of course, there might be other ways for ions to leave a remote edge other than
via quodon scattering. What was needed was evidence that the count-rate of ejected
ions was proportional to the number of alphas irradiating the crystal with all other
variables fixed. In particular, the geometry of the crystal holder, the detector and the
alpha particle source had to remain unchanged. This would eliminate changes in the
electric potential field distribution between the crystal edge and the detector. To this
end the experiment was modified by moving the alpha source away from position
(1) to position (2), still within the Faraday cage. The alpha source was mounted
on the end of a metal rod that was inside a fixed metal tube, thereby causing no
changes in geometry as the rod was rotated. The flux of alphas hitting the crystal
then could be varied by rotating the rod holding the source under a hole in the metal
support for the crystal. In this way, the flux could be varied from zero to a maximum
value without changing any other parameter affecting the experiment. A sketch of
the source arrangement and a plot of the measured count-rate as a function of the
angle of rotation of the source is shown in Fig. 8 for one complete rotation.

There were three possible origins of charge on the ejected ions. One was the two
positive charges of the alphas as they penetrated the crystal. The second source was
the local ionization of the crystal by the alphas creating atomic cascades. The third
sourcewas the residual positive charge that was distributed through the crystal arising
from the annihilation of the positrons from 40K decay. The distance from the point of
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Fig. 8 Drawing showing the
construction of the enclosed
alpha source that can be
rotated within a Faraday
cage to vary the flux of
alphas irradiating the crystal.
The plot shows the number
of charged particles detected
in regular 7min intervals vrs
the rotation angle and the
expected variation from the
geometry. The background
count rate was 3 in the same
time interval

entry to the crystal of the alphas to the crystal edge was about 3mm. This exceeds by
about three orders of magnitude the range of alphas in the crystal and of the zone of
ionisation created by atomic cascades. The detection of charged particles leaving the
crystal showed that charge must have moved through the crystal of muscovite. As
muscovite is an excellent electrical insulator the charge must have been transported
through the crystal by some kind of mobile anharmonic lattice excitation. The energy
and momentum needed to eject particles from the crystal could only come from the
scattering of the alphas in the crystal. This result, combined with the evidence from
widths of tracks of positrons and quodons in muscovite crystals, points to the current
being carried by quodons.
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7 Long Range Transport of Charge at Elevated
Temperatures

The great lengths of the tracks of quodons decorated with magnetite or epidote, typi-
cally exceeding 10 cm, showed the tight binding of holes and electrons, respectively,
to the an-harmonic lattice excitations forming quodons. This is remarkable as the
tracks are formed when the crystals are at temperatures exceeding 500 ◦C [3]. More-
over, the crystals are formed under natural conditions and thus contain many defects,
such as interstitials, vacancies, atomic substitutions, radioactive decay products, ion-
isation from cosmic ray particles and dislocations. It is apparent that quodons are
remarkably stable entities. Their recorded tracks show that they exist in the layered
structure of muscovite, in crystals containing a high concentration of Fe and vari-
able amounts of Ca. However, the crystals used in the ejection and charge transport
experiments contained only modest amounts of Fe and no detectable Ca. Hence,
the recording process was not functional. This suggests that it is mainly the layered
structure that allows the existence of quodons. In each of the experiments there was
evidence for the transport of charge through crystals of muscovite in the absence
of an applied electric field across the crystal. This is indicative of infinite charge
mobility at temperatures above ambient.

8 The Influence of Chemical Doping on the Recording
Process

The first indication of useful information in the ‘staining’ seen in muscovite crystals
were the long black lines that lay in random directions. Within the realm of known
physics at that time, in 1963, muons were the most likely cause. Conclusive evidence
for muons came only slowly. Measurements showed that they deviated slightly in a
random way from straight paths, which was consistent with scattering. If they were
the tracks of muons then they must be relativistic. With this assumption it was then
possible to determine their energy spectrum. It was found to be similar to the known
spectrum found from measurements made in underground particle detectors. Muons
can be either negatively charged or positively for anti-muons. If positively charged
then they should experience channelling in a crystal.When channellingwas taken into
account the corrected energy spectrumwas consistent with the known spectrum. This
was the first indication that the recording process precipitating magnetite responded
to a moving positive charge. This was later confirmed by studying the decay products
of 40K. If the magnetite tracks were of electrons then the duration of the recording
phase would be about 105 times shorter, because of the ratio of emitted electrons to
positrons, indicating a recording period of order hours to days instead of hundreds of
years.On the basis that geological processes are usually slow– except for earthquakes
– the longer timescale was the more probable. This conclusion was later shown to
be correct by observation of the unique diffraction scattering pattern of positrons in
muscovite.
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Fig. 9 Micrograph of muon tracks in muscovite showing fan-shaped decorations of lattice excita-
tions created by nuclear scattering of the muons. These energetic scattering events create atomic
cascades fromwhichmobile nonlinear lattice excitations emerge. The quasi-2-dimensional structure
of muscovite enhances the range of propagation of the excitations far beyond the range of typical
discrete-particle shock-waves observed in molecular dynamic modelling studies of 3-D crystals.
The portion of the sheet shown is 12mm wide

There were three early indicators of possible stable lattice excitations capable
of propagating great distances in muscovite crystals. In order of finding, firstly, in
1965, therewere the fan-shaped patterns associatedwith nuclear scattering ofmuons.
These are seen branching off from muon tracks in the micrograph shown in Fig. 9.
Their range is typically 1mm.Molecular dynamic studies of nuclear scattering events
have given clear evidence for super-sonic discrete-particle shock waves in uniform
crystals. An example is shown in Fig. 10.

Secondly, found in 1974, was the contiguous array of magnetite decorated tracks
lying in atomic chain directions with a single track of a relativistic muon that is not in
a chain direction. This is shown in Fig. 11. Either themuon intersected the contiguous
array of unknown origin or, more probably, the array was created subsequent to a
nuclear scattering of the muon dumping energy and momentum into the lattice.

The third indicator, in 1991, was the observation of clear tracks originating from
the sites of 40K decays that had emitted positrons in the opposite direction to the
clear tracks. The material forming the clear tracks was identified as the mineral epi-
dote [19]. This was the pivotal finding in defining a quodon because it identified
a source of mobile lattice excitations that occurred throughout mica crystals. The
physical properties of the source, the decay of 40K, was well understood. It showed
that the type of excitation that led to the fan-shaped patterns seen in Fig. 9were funda-
mentally different from quodons. Although a supersonic discrete-kink like excitation
describes some of the features of fans a detailed understanding of the excitation has
yet to be achieved.

The quodons resulting from positron emission are created in the presence of a
negative charge on the recoiling argon atom. A significant difference between tracks
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Fig. 10 Molecular dynamic study of a 5 keV impact to an atom in a crystal of gold. The figure
shows a 2-atom thick slice through the atomic cascade, which stops obscuration of the shock-
waves by the surrounding atoms in the crystal. The discrete-particle nature of the shock-waves,
seen as irregular rings around the chaotic core, shows that only two adjacent atoms in a chain in
the direction of energy propagation are involved in the lattice perturbation. These shock-waves are
laterally dispersive in most uniform materials but in a quasi-2-dimensional layered crystal they are
restricted in the direction normal to the layers. This enables the disturbance to propagate further in
the layers, accounting in part for the large range of the fans. Reproduced from [6] after Ref. [7].
Licensed under CC BY-SA 3.0

Fig. 11 This sheet shows the creation of multiple quodon tracks following a nuclear scattering
event of a relativistic muon. The muon track lies at 8◦ to the horizontal and passes across the sheet.
The sheet is 125mm wide
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decorated with epidote and those with magnetite is that the quodons creating epi-
dote tracks appear unable to create secondary epidote tracks. Different epidote tracks
can have different widths, which suggests that the width might be influenced by the
quodon energy. However, each epidote track is of constant width. Although crys-
tals with a high calcium content can show epidote tracks triggered by quodons and
positron tracks decoratedwithmagnetite they usually do not showquodon tracks dec-
orated with magnetite. This suggests that in Ca-rich crystals holes are weakly bound
to quodons. This might account for the absence of secondary quodon tracks deco-
rated with magnetite arising from epidote tracks. In contrast to the creation of holes
by annihilation of positrons, few free electrons are created near the K-sheets. This
would reduce the probability for secondary quodons from epidote tracks capturing
an electron and creating a secondary epidote track, as observed. It is unlikely that the
epidote ribbons are dendritic growths in a meta-stable phase because of the apparent
absence of secondary epitaxial ribbons in other crystal lattice directions. The lack of
evidence for short sections of epidote tracks in magnetite decorated quodon tracks
suggests that the ability of quodons to hold a negative charge is limited in crystals
with low Ca content. A working hypothesis is that quodons are more tightly bound
to holes than to electrons in crystals with low Ca content. Conversely, in Ca rich
crystals electrons are bound more tightly than holes to quodons. The crystals used
in the alpha irradiation experiments had low Ca content.

9 Polarisation and Residual Space Charge

The transport of charge by quodons in a layered crystal requires injection of sufficient
energy and momentum to create quodons. This can be achieved by irradiating the
surface of a cable containing suitable layered material with ions or neutral atoms.
This method was used in the experiment in which ions, the alphas, were injected
in the side of the crystal. Alternative methods might be found in the future. If ions
are used, such as alpha particles, then charge is coupled to the material. This will
cause a polarisation of the material. One result of this could lead to the build-up of
voltage across the material. To estimate the possible significance of such an effect
the arrangement and parameters of the ejection experiment is considered. The crystal
was 7mm wide, 1.5mm thick and the dielectric constant of muscovite is about 8,
giving a capacitance of about 1 × 10−13 F. The transport of one unit of charge by a
quodon without loss by ejection causes a voltage difference of about 10−6 V. If 100
alphas per second impinge on the crystal and each alpha creates 10 quodons then the
voltage across the crystal would increase at a rate of about 7V/h. Each experimental
run lasted about 24 h so a voltage of order 150V might arise. However, this simple
calculation assumes that no charge is removed or lost from the cable or crystal. In
the ejection experiment charge was removed by the ejected particles.

In muscovite the decay of potassium leads to a distributed build-up of charge. The
charge state of the daughter nucleus allows two routes: the dominant one yields a
positive charge at the decay site and the minor one a positive charge by annihilation
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of emitted positrons. The rate is about 5 × 105 decays per day in 1 cc of muscovite.
These positive charges occur in or near the potassium sheets. However, about 90%
of these decays result in emitted energetic electrons. These eventually are distributed
throughout the lattice as they are not concentrated in the potassium sheets by dif-
fraction scattering. Although this causes nulling of the overall space charge it does
not change the concentration distribution of holes in or near the potassium sheets,
which are within reach of quodons. Consequently, about 90% of quodons are created
with a positive charge and there is a good probability for secondary quodons, which
are created without charge, to capture a positive charge in flight. Quodons resulting
from external irradiation might be created with a charge. If the irradiation is with
energetic particles capable of causing ionisation in atomic cascades then they could
trap charges of either sign. As the majority of quodons are created in collisions in
cascades with energies below that needed for ionisation they are most likely to trap
a positive charge from any residual reservoir during their flight. This highlights the
desirability of creating a reservoir of holes or electrons by doping of the layered
material.

10 Evidence for Infinite Charge Mobility in Muscovite

These findings were presented at the Nolineal16 meeting held at Seville.
June 7–10, 2016. The most important point came from the re-examination of the
ejection experiments. It showed that charge could be carried through a crystal at near
sonic speed by quodons in absence of an applied electric potential across the crystal.
That was evidence for infinite charge mobility. In principle, it is a simple step to
combine the know properties of quodons – ability to propagate great distances in
imperfect crystals at high temperatures and transport of charge at near sonic speed
– to the near loss-free transmission of electricity. In normal electrical conductors
electrons and holes move or drift at relatively slow speed. This ranges from about
a millimetre/sec in copper, several meters/sec in semiconductors, to a kmetre/sec in
carbon nanotubes. In muscovite with quodons the speed is about 3.5 km/s at any tem-
perature up to 500 ◦C. The only other know examples of infinite charge mobility are
low and high temperature superconductors. It is to be expected that the observation
of infinite charge mobility in the layered crystal muscovite will be of some interest in
those studying high Tc superconductors (HTSC). To differentiate the apparent ability
of quodons to transmit electricity at high temperatures and without loss in a perfect
crystal from HTSC the term ‘hyper-conductivity’ was introduced. Certainly, there
is an overlap with HTSC in that layered crystal structures are imperative in both
cases. It led to a small group of people gathered round a white-board in the Group
of Applied Physics at the University of Seville. They were discussing the possibility
of verifying the evidence for infinite charge mobility in muscovite by an alternative
procedure to counting individual ions by making a direct measurement of charge
transported through a natural crystal. The safest way to design such a test was to
build upon the earlier experiments using alpha particles to provide the energy and
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momentum needed for quodons and, additionally, a source of positive charges. The
main unknown aspects in the design were the efficiency of creation of quodons and
their efficiency of capture of a positive charge. This would determine the likely mag-
nitude of any current that might pass through a crystal. The only way forward was to
use the most sensitive current meter available at the University, which was a Keith-
ley pico-amp meter. Although muscovite is a common mineral, and huge amounts
are mined each year, small crystals of good habit are scarce. Several crystals were
obtained by FMR from National Museums and by private purchase and one was sent
to the Seville group.

Conclusion

The study of black lines and patterns in natural crystal of muscovite involved delving
into multiple disciplines including cosmology, geology, nuclear physics, chemistry,
solid-state physics, mathematics and numerical modelling. Sometimes the study had
to await new developments in technology, especially in computing, and in assimilat-
ing new discoveries, such as channelling and intrinsic localised modes. There have
been occasional tantalising diversions, like estimating the rate of fusion of hydrogen
isotopes by quodons in a hypothetical layered matrix loaded with hydrogen. The
main objective was to understand the origin of the lines and what they showed about
anharmonic lattices and the excitations that could exist and propagate in layered crys-
tals. It was the properties of layered structures that held the greatest interest because,
in contrast to natural crystals, there is no limit to the composition and structure of
sequentially deposited thin films or monatomic layers. With hindsight the strong
coupling between electronic charge and anharmonic excitations should have been
recognised earlier. Nevertheless, it led to evidence for infinite charge mobility and
the prediction of hyper-conductivity in muscovite. In particular, it has set a critical
test for verification of these phenomena. If a current is observed to flow in a crystal
of muscovite, which has not been previously irradiated, by creation of quodons then
the current should initially be large and then decay in time towards a finite limiting
value. The source of the initial burst of current is the build-up and storage of charge
from decay of 40K. The asymptotic current stems from any charge introduced to the
crystal in the creation of quodons that might involve ionisation of the crystal. If alpha
particles are used then they will each contribute two positive charges.
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Abstract A lattice of repelling particles is a good model for studying certain
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we study theoretically and experimentally the generation and propagation of kinks
in such kind of systems. We propose a simple experimental setup consisting in an
array of pendulums, having magnets at the extreme, i.e., that form a set of coupled
magnetic dipoles. We excite pulses at one boundary of the system and demonstrate
the existence of transient-kinks, whose dynamics are in very good agreement with
the theoretical predictions given by the α-FPU equation. The peculiarities of the
experimental system allows to study a broad range of phenomena. On one hand,
by the effect of the finite size of the magnets, the model captures the dynamics of
different inverse power law inter-particle interactions, ranging from the monopole
limit to the dipole interaction. On the other hand, we propose the use of an external
substrate potential at the bottom of the lattice that mimics the substrate potential of
a crystal. Thus, the results obtained in the experimental setup can be extrapolated to
other systems described by this equation.

Keywords Repulsive forces · Magnetic pendula · Kinks

1 Introduction

Matter is formed by basic units, atoms, that interact via repulsive forces and form
ordered states called lattices. These repulsive forces are the results of Coulomb
interactions and short range repulsive forces due to the Pauli exclusion principle of
many body systems [13]. Therefore, the study of such kind of systems from different
points of view gives an insight to the properties of solid state physics, the part of
physics that describes atoms and ions organized in ordered lattices called crystals.We
are dealing with non-contact forces that provide the coupling between neighboring
particles, fixed in some positions or sites by the potential of the rest of the lattice in the
mean field approximation. This coupling allows the propagation of perturbations in
the form of phonons, or elementary excitations of the lattice. But we are not restricted
to work at atomic scale to find in nature examples of such kind of systems and
coupling among entities. For example, in Ref. [24] it is presented a system of trapped
interacting particles that form an ionic crystal. Such crystals – that can be considered
as a particular form of condensed matter- are formed by charged particles confined
by external electromagnetic potentials (Paul or other traps) [24], and interacting by
means of the Coulomb repulsion. The process of crystallization requires a lowering
in temperature that is achieved by laser cooling techniques. Different crystallization
patterns have been observed by tuning the shape and strengths of the traps. Crystals
of trapped ions have been subject of great attention as a possible configuration to
perform quantum computation [23]. Crystallization of a gas of confined electrons,
known as a Wigner crystal, has also been predicted and observed [8, 16].

When these systems are perturbed at their boundaries, waves propagate through
them and due to the lattice periodicity strong dispersion appears when wavelengths
are of the order of the lattice period. The linear dispersion relation for low amplitudes
and some nonlinear characteristics of wave propagation have to be determined in
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order to characterize wave propagation. For example, it has been experimentally
determined in an electrically charged, micrometer-sized dust particles immersed in
the sheath of a parallel plate rf discharge in helium in a rf plasma [10], where the
waves are excited by transferring the momentum from a laser to the first particle
in the chain. One of the effects that appear due to the nonlinearity of interparticle
interactions is the generation of harmonics.

But this is not the only case of perturbation of the propagation we can study. In
charged-coupled lattices of particles there is another bestiarium formed as a conse-
quence of the excitation of intense compact pulses at one boundary of the system,
giving rise to solitons, breathers, kinks, quodons, crowdions... All of them are solu-
tions of the equations that govern the dynamics of the system based on the nonlinear
character of the interactions and they behave as particle-like perturbations traveling
along the lattice.

In recent decades, the solitary wave theory has become a very active area of
research due to its importance in many branches of mathematics and physics, such
as nonlinear optics, acoustics, plasmas and fluid mechanics. In particular, kinks have
been extensively studied during the recent years because they transport energy at
supersonic speeds [2–4]. In ionic crystals kinks are also natural carriers of electric
charge [6]. One example of this kind of materials is mica muscovite. The tracks are
recorded within the cation layer of potassium ions which form a two-dimensional
hexagonal lattice. Some of these tracks can be explained by the passage of swift
particles as positrons, pions, antimuons and protons which are secondary particles to
neutrino collisions or products of radioactive decay. But there are also many tracks
along the close packed directions of this lattice that cannot be produced by charged
particles and are attributed to some vibrational entities called quodons because of
their quasi one-dimensional character [1]. Their existence has also been shown exper-
imentally in [26]. These quodons are triggered by the radioactive disintegration of
potassium isotopes where the recoil of the nucleus in some cases has the necessary
energy to start the propagation of a perturbation that travels along a lattice direction
formed by a chain of potassium ions that lies in the (001)-plane [5].

Many studies have been done about kink propagation in different media
[14, 18, 25]. Peyrard et al. [20] described and discussed subsonic kinks in a mono-
atomic chain where they showed the discreteness effects on non-topological kink
soliton dynamics in nonlinear lattices. Savin et al. [28] studied moving topologi-
cal solitons (kinks and antikinks) in the nonlinear Klein-Gordon chain by using the
pseudo-spectral method. Pnevmatikos, Flytzanis and Remoissenet [21] studied prop-
agation of kinks and solitons analytically and numerically in a nonlinear diatomic
chain with cubic and quartic interaction potential. The book “Waves called solitons:
concepts and experiments” by Remoissenet [25] describes examples of many simple
experimental realizations of nonlinear lattices in which kinks, in particular, can be
observed.

In this work we pay attention to lattices of nonlinear oscillators coupled to the
nearest neighbours by repulsive interactions. Specifically, we study a 1D chain of
particles periodically distributed that interacts via repulsive Coulomb-type forces.
Our purpose is the experimental study of kinks in a mechanical analogue of a chain
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of repulsive particles: a chain of magnetically coupled pendulums. The system is
analogous to that of [27], but here, in addition to the action of gravity, a magnetic
substrate potential was added, i.e., making a mechanical analogue of the Frenkel–
Kontorova model. The modeling of repulsive interactions with finite-size magnetic
dipoles allows the experimental study of different functions for the repulsive interac-
tion. We study the excitation and propagation of kinks with and without the substrate
potential, and compare the experimental results with analytical and numerical ones.
Good agreement was obtained, showing that it is possible to build up and measure
certain properties in simple macroscopic analogues of microscopic systems.The the-
oretical results are based in the work [12] and the experimental results have been
obtained from the work [17].

2 The Physical Model

Our theoretical model consists of an infinite chain of identical particles with mass
m aligned along the x-axis. Each particle interacts with its nearest neighbors via
a repulsive potential, Vint . In the absence of perturbations, every mass has a fixed
equilibrium position being the interparticle distance a. An external potential, Vext,
can be added to the lattice. In condensed matter, this external potential comes from
the action of the other atoms or ions in the crystal. These extra forces can be provided
by a periodic on-site potential and/or forces keeping the boundary particles at fixed
positions. Then, the equation of motion is written as

Mün = V ′
int (un+1 − un) − V ′

int (un − un−1) − V ′
ext , (1)

where un represents the displacement of the n-th particle measured with respect to
its equilibrium position as shown in Fig. 1, M is the mass of the particle and V ′

i is
the derivative of the potential Vi . Therefore, the rhs of the equation is the sum of
the forces on the particle n by the nearest neighbors at n + 1 and n − 1 and by a
substrate potential which can be produced by the rest of the lattice or an external
cause. In the limit of small displacements, the interaction force between particles can
be approximated linearly with respect to the distance, r , i.e., V ′(r) = κr where κ is

+ + + + + + + + +

Fig. 1 The lattice of repelling coupled particles. The lattice constant is a. An external force applied
in the boundaries is necessary to keep the system stable
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a constant. In this limit, Eq. (1) represents a system of coupled harmonic oscillators.
However, in general the potentials in physical systems are anharmonic.Chains of non-
linearly coupled oscillators with different types of anharmonic potentials have been
extensively studied in the past, e.g., the celebrated cases of the α-FPU lattice, where
V ′
int(r) = κ1r + κ2r2 (cubic potential), theβ-FPU latticewhere V ′

int(r) = κ1r + κ3r3

(quartic potential), the Toda lattice, with V ′
int(r) = exp(−r) − 1 or the granular lat-

tice, with V ′
int(r) = κr3/2.

In this work, we consider interparticle forces that decrease with an inverse-power
law of the distance. The equation of motion for the particle n is then written in the
form:

ün = − 1

(1 + un+1 − un)α
+ 1

(1 + un − un−1)α
− V ′

ext , (2)

The particular value of the exponent α bring us different types of interactions: α = 2
corresponding to repulsive monopoles as in the case of electrically charged particles,
e.g. in ion coulomb crystals [24] or dusty plasma crystals [19], α = 4 corresponding
to repulsive dipoles, e.g., in the interaction between distant magnetic dipoles [27], or
in general any other non-integer power [18]. In the following, we present a system
allowing to model different values of the exponent of the power-law, α.

3 The Lattice of Repelling Magnets

First, consider two magnetic dipoles, with magnetic moments m1 and m2. The inter-
action potential energy between them is given by the exact relation [11]:

Vint = μ0

4π

(
m1 · m2

r3
− 3

(m1 · r12) (m2 · r12)
r5

)
, (3)

where r12 is the vector joining the centers of the dipoles, i.e., from the magnet 1
to the 2, and r = |r12|. This relation implies that, in general, the force depends on
the angle between the dipoles. In the particular case when the dipole moments are
equal in magnitude, parallel to each other and perpendicular to r (dipoles in the same
plane), the force on the second magnet takes the simpler form

F1,2 = −∇2Vint = 3μ0

4π

m2

r4
r̂12, (4)

where m = |m1| = |m2|, μ0 is the permeability of the medium and r̂12 is the unitary
vector in the direction from the center of magnet 1 to the center of magnet 2. The
force on the first magnet is just the opposite. In the chain of magnetic dipoles, this
is the force between two neighboring oscillators at equilibrium positions, i.e., with
r = a.
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In the case of the perturbed chain the distance between centers of nearest neighbors
becomes a dynamic variable, rn(t). Assuming small displacements, i.e., a small angle
between the dipole moments, we can use rn+1(t) = a + un+1 − un in Eq. (4) to
describe the interaction between two neighboring oscillators. The modulus of the
force on the n + 1 magnet due to the n magnet is

Fn,n+1 = 3μ0m2

4π

1

(a + un+1 − un)
4 . (5)

This equation for the small-angle forces is a crude approximation and exact expres-
sions can be found in Ref. [27]. However, since our aim is to obtain simple analytical
expressions based on the FPU equation, Eq. (9), we will keep this degree of accuracy.
The validity of this approximation to describe our setup will be tested in the next sec-
tions when the predictions are compared with the experimental results. Comparing
with the equation of motion shown in Eq. (2), we identify α = 4.

The above expressions for the forces between magnetic dipoles are valid for loop
currents or magnets of negligible dimensions. Expressions for finite sizemagnets can
be found in the literature [7] and are in general lengthy and cumbersome. Gilbert’s
model for the magnetic field of magnets used here results in approximate but simple
expressions for the forces [9]. For cylindrical magnets of length h with their magnetic
moments parallel and their axis perpendicular to the line joining the centers, the force
on magnet 2 due to the adjacent magnet 1 is expressed as

F1,2 = μ0m2

2πh2

(
1

r2
− r(

r2 + h2
)3/2

)
r̂12 , (6)

where the magnetic moment is m = πhR2m, being m the magnetization and R the
radius of the cylindrical magnet.

In the limit h � r , Eq. (6) reduces to Eq. (4), i.e. magnets with small dimensions
compared to their separation interact via dipolar forces, i.e., α = 4. In the opposite
limit h � r , the interaction law approaches to a Coulomb-type force, i.e., α = 2 for
parallel magnets close to each other. In general, the interaction law of magnets can
be approached well by an inverse-law with any given exponent that ranges between
monopole and dipole cases. Therefore, the chain of repelling magnets allows the
modeling of different physical situations just by adequately choosing the geometry
of the system.

Thus, we built a chain of coupled magnets as a mechanical analogue of our
lattice of particles coupled by repulsive forces. The experimental setup is shown
in Fig. 2. An analogue experimental system was presented by M. Russell [27]. The
chain consists of 53 identical cylindrical neodymium magnets (Webcraft GmbH,
DE, magnet type N45), with mass M = 2 g, arranged in a one-dimensional periodic
lattice. The radius and length of the magnets was R = 2.5 mm and h = 14 mm,
respectively. Themagnetswere orientedwith the closest poles being those of the same
polarity, therefore producing a force that is repulsive. The value of the magnetization
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was m = 1.07 × 106 A/m. The magnets were attached to a rigid bar which allows
the rotation in the sagittal plane around a fixed T-shaped support, being each magnet
actually a pendulum as shown in Fig. 2b. The length of the vertical bars was L = 100
mm, and the lattice constant, i.e., the distance between supports (and therefore the
distance betweenmagnets at equilibrium)was a = 20mm.The supportwas specially
designed to minimize the effects of friction by using additional pairs of concentric
rings magnets which keep the oscillators levitating on air, with just one contact point,
as shown in Fig. 2c. This system allows the minimization of the friction: strong
torque forces appear at the bearings of the pendulums due to non perfect alignment.
Using the quasi-levitation system the chain remains aligned to one single axis, the
losses are negligible and, therefore, the experimental setup can be considered quasi-
conservative.

The effect of each pendulum is to introduce an additional external force to the
dynamics of the chain, corresponding to −V ′

ext in Eq. (2).The restoring potential
due to gravity is Vext = MgL(1 − cos θn), being θn the angle formed by a mag-
net with respect to its vertical equilibrium position and un = L sin(θn) is the hor-
izontal displacement variable. For small θn , un � Lθn and the potential becomes
Vext � 1

2MgLθ2
n = 1

2MΩ2
0u

2
n with Ω0 = √

g/L the frequency of small oscillations.
The force on the pendulum n is then approximated by a linear force Fext(un) =
−V ′

ext(un) = −MΩ2
0un . For small oscillations, the interaction potential between two

magnets at n + 1 and n becomes also harmonic Vint(un+1 − un) = 1
2κ(un+1 − un)2

for some coupling constant κ .
All magnets oscillate freely except the outermost boundary magnets. The last

magnet was fixed, and the first one was attached to the excitation system. The driving

(a)

(b) (c)

Fig. 2 a Scheme of the lattice of coupled particles with the harmonic restoring force. b The
experimental setup: an array of pendulums, having magnets at the extreme, that form a set of
coupled magnetic dipoles. c A detail of the concentric rings magnets which keep the oscillators
levitating on airwith only one contact point. Reproduced from [17]. Licensed underCC-BY-NC-ND
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(a)

(b)

Fig. 3 a The scheme of the chain with added periodic substrate. The force between chain magnets
and substrate magnets is repulsive. b The experimental setup showing on the top the moving-
pendulummagnets and in the bottom the fixed-substrate magnets. Reproduced from [17]. Licensed
under CC-BY-NC-ND

system consisted of a electrodynamic loudspeaker (Fostex-L363) connected to an
audio amplifier (Europower EPS2500) excited by an arbitrary function generator
(Tektronix AFG-2021). The first magnet was fixed to the loudspeaker’s diaphragm
as shown in Fig. 2, and it was forced with different pulsed excitations using a specific
waveform with variable amplitude. The motion of the chain was recorded by using
a GoPro-Hero3 camera. The camera was placed at proper distance from the chain in
order to track the motion of a certain number of magnets. In this work, 18 magnets
were recorded simultaneously. Then, each pendulum was optically tracked using
image post-processing techniques. We considered the traveling wave regime, by
ignoring the reflected wave using a temporal window in the analysis of the recorded
video. The duration of each record was about 3.5 s and the camera resolution was set
to 960p at a frame rate of 100 frames per second, i.e., a sampling frequency of 100Hz
for the measured displacement waveforms. Videos were post-processed with Matlab
using standard image tracking techniques to detect the movement of the magnets
obtaining finally a waveform for the position of each magnet.

In this system we have studied the propagation of kinks under two different con-
figurations:

1. Harmonic substrate potential: In the first configuration, aweak harmonic poten-
tial is introduced due to the restoring force of the pendulum as shown in Fig. 2a.
The length of the pendulums was designed to present a small resonating fre-
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quency and, therefore, V ′
ext is extremely weak if compared to the repulsive forces

between magnets. However, the existence of the pendulum introduces a restoring
force and the unique stable state corresponds to un = 0. As we will show, this
has implications in the formation of kinks.

2. Periodic substrate potential: In the second case, a set of fixed magnets were
added at the bottom of the chain, as shown in Fig. 3, being each fixed magnet at
a distance of 15mm to the chain and with the polarity vertically inverted with
respect to themoving-magnets. The dimensions of the fixedNdFeBmagnets were
Rfix = 4 and hfix = 12.5 mm with same magnetization as the moving ones
(Webcraft GmbH, DE, magnet type S-04-13-N). All magnets were placed on
non-magnetic support to prevent any interaction with the magnetic field pro-
duced by the system. The effect of this extra magnetic repulsive field is that, in
addition to the weak restoring gravity forces, it produces strong repulsive mag-
netic forces, introducing a strong periodic substrate potential, Vext, if compared to
the repulsive forces between magnets. The inclusion of this substrate introduces
periodic restoring forces with multiple stable states as un = ±n: the oscillators
can be at rest at different lattice positions. The situation is represented in Fig. 3a.

Thus, just by modifying the geometry of the system, e.g. the distance between
the substrate magnets to the chain, the intensity of V ′

ext can be modified, allowing
the current experimental setup to be a mechanical analogue of different nonlinear
lattices, ranging from the FPU lattices to the Frenkel–Kontorova ones.

4 Dispersion Relations

The dispersion relation of the lattice is derived for small amplitude waves. It can
be obtained analytically by using the Taylor expansion of the α power law in the
equation of motion Eq. (2), neglecting the nonlinear terms and assuming a solution
in the form of un = exp[i(ωt − qn)], where q is the wave number and ω is the
angular frequency. Then, the dispersion relation is written as

ω2 = ω2
0 + ω2

c sin
2
(q
2

)
, (7)

where ω0 is the lower cut-off frequency, and ωc = 2 c0, with c20 = κ/M , where κ

is the coupling constant, being a measure of the stiffness of the interaction poten-
tial. If there is no substrate potential, i.e., ω0 = 0, the phonon frequencies are not
bounded from below, and the dispersion relation is called acoustic. In this case c0 is
the sound phase and group velocity, that is, the velocity for the long-wavelenght limit
q → 0 and the maximum frequency becomes ωc = 2 c0, being therefore a coupling
frequency. For the system of interest in this chapter, ω0 	= 0, the phonon frequencies
are bounded from below and the dispersion relation is called optical, the highest
cut-off frequency becomes ωtop = (ω2

0 + ω2
c )

1/2. Figure4 shows the dispersion rela-
tion for the two configurations, with weak and strong substrate potential. It can be
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Fig. 4 Dispersion relation in case of the setup with/without substrate. (line-Dashed) Analytically
presented by Eq.7 ω2 = ω2

0 + ω2
c sin

2(q/2). The frequency in Hz is given by f = ω/2π . The
experimental data with error bars (circles) for the case with weak harmonic substrate potential and
(squares) for the casewith stronger periodic substrate potential. Analytical results are represented by
the continuous line for the weak harmonic substrate potential and (− · −) for the stronger periodic
substrate potential. Reproduced from [17]. Licensed under CC-BY-NC-ND

observed the existence of high and low cut-off frequencies: both dispersion rela-
tions are optical. For the weak substrate potential case, the low cut-off frequency
is ω0 = √

g/L where L is the pendulum length and the gravitational acceleration
g = 9.8m/s2. In the case of the strong substrate potential, the low cut-off can be eval-
uated by measuring the forces of the magnetic dipoles along the axis of the chain.
However, for cylindrical magnets of finite dimensions it can become cumbersome
and it was estimated experimentally from the dispersion relations. In particular, in
the case of the unique action of the gravity (weak substrate potential) the low cut-off
frequency presented a value corresponding to f0 = ω0/2π = 1.6Hz. In the second
case, with the strong substrate potential, it was increased up to 6.5 Hz. The high
cut-off frequencies were respectively 18 and 19.1Hz. In Fig. 4 we present the exper-
imental data together with the solution given by Eq. (7) where the values ω0 and c2

were set to the corresponding experimental values in each case. A good agreement
between the experiments and the theoretical curves is observed. Then, this system
presents strong dispersion arising from the two sources, first, the lattice discreteness
and, second, the substrate potential, that can be easily tuned by the modification of
the geometry of the proposed setup.
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5 Approximate Analytical Solution

It is well-known that the interaction of strong dispersion and nonlinearity of a system
leads to the emergence of nonlinear localized traveling waves. However, Eq. (2) has
no analytical solution. Therefore, we present approximate analytical solutions that
capture themain dynamical features of the lattice, in particular, looking for solution of
kinks. Approximate solutions can be obtained assuming a small strain |un±1 − un|
in comparison with the lattice constant a. Under this approximation the equation
of motion reduces to the well-known FPU equation. Using the FPU equation many
solutions for nonlinear localizedwaves have been proposed in the past. Kosevich [14]
obtained a model based on a FPU equation with a cubic plus quartic nonlinearity.
Poggi and Ruffo [22] derived an exact solution of the FPU corresponding to Lennard-
Jones interaction forces. Recently, Archilla, Kosevich et. al [3] obtained the FPU
equation for a cubic plus quartic nonlinearity from the expansion of the Coulomb
potential. In all these cases, the authors relied on a FPU equation to extract analytical
solutions for kinks. For a weak substrate potential, Eq. (2) is a generalized form of
the equation of motion presented by Archilla et al. [4]. Replacing the forces by their
Taylor expansion and neglecting cubic and higher order terms, the leading equation
in the general case of a inverse power law is

ün = c20

[
(un+1 − 2un + un−1) − 1 + α

2
(un+1 − un)

2 + 1 + α

2
(un − un−1)

2
]

− Ω2
0un, (8)

where c0 = √
α is the normalized long wavelength phonon velocity in the absence

of substrate, i.e., the speed of sound. In the case of monopolar interaction (α = 2) it
leads to

ün = c20

[
(un+1 − 2un + un−1) − 3

2
(un+1 − un)

2 + 3

2
(un − un−1)

2

]
− Ω2

0un,

(9)
and for dipolar interaction, α = 4, the FPU takes the form

ün = c20

[
(un+1 − 2un + un−1) − 5

2
(un+1 − un)

2 + 5

2
(un − un−1)

2

]
− Ω2

0un .

(10)
This equations show that the nonlinearity for the case of dipolar interaction is
increased, with respected to the monopolar interaction.

The on-site potential restoring force −V ′
ext is in general a nonlinear function.

However, for small displacements, as considered here, it can be linearized as−V ′
ext =

−Ω2
0un , where Ω0 is the normalized frequency of oscillation of a particle due to the

external potential. If the on-site potential term is neglected (no external forces acting
on the chain), Eq. (9) reduces to the celebrated α-FPU equation.

Following our purpose of obtaining approximate analytical solutions that describe
the main dynamical features of our system, let us neglect the weak on-site potential
term. Defining the strain as vn = un − un−1, we obtain the motion equation of the
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strain for α = 2 as

v̈n = − 1

(1 + vn−1)
2 + 2

(1 + vn)
2 − 1

(1 + vn+1)
2 , (11)

where vn = 0 corresponds to an unperturbed bond. Kinks can be excited by forcing
the lattice with a half-wave perturbation. That can be done producing a sinusoidal
displacement of the particle at one of the boundaries during half of the period that
returns to the equilibrium position after finishing the pulse. For describing a kink
profile traveling to the right, the following ansatz is introduced [14, 15]:

vn =
⎧⎨
⎩

− A
2 [1 + cos (qn − ωt)] if − π < 2π

3 n − ωt < π

0 otherwise.
(12)

where A represents the kink strain amplitude. The displacements of the particles in the
lattice corresponds to compressed bonds, so vn is a variable that takes negative values,
being its maximum value |vn|max = A corresponding to the maximal compression
of a bond. Looking at Eq. (12) we realize that for such a pulsed excitation q it is
not strictly speaking the wavenumber and ω the frequency, but we will adopt this
terminology for being the used one in the literature.

Equation (12) with q = 2π/3 is an exact solution of the α − β FPU lattice [15].
This particular value of q is known in the literature as the magic wavenumber. For a
givenwavenumber and taking into account the relationλ = 2π/q weobtain solutions
where an integer value of bonds (λ) and particles (λ − 1), i.e., the kink core, are in
motion. The first case is themagic wavenumber λ = 3 (q = 2π/3) where 2 particles
are moving at a given time. The other important mode correspond to λ = 2 (q = π),
referred here and beyond as the π -mode, when only one particle is moving at a given
time. This mode is the limit where only one particle is moving at a given time and it
corresponds to a hard-spheres potential with zero radius. This is therefore a reference
mode and real systems can only approximate it at high energies.

6 Harmonic Substrate Potential

6.1 Transient Kinks

Using the weak substrate potential configuration, as shown in Fig. 2a, experimental
results were obtained driving the chain at the first oscillator with a pulsed waveform
excitation (half-sinusoidal wave). The obtained temporal waveforms for the displace-
ment and the compression are shown in Fig. 5a, b for a strain amplitude A = 0.15.
This figure shows the experimental results using the magnetic chain and the numer-
ical simulations using Eq. (2) with an inverse power law close to the dipole iteration
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(a) (b)

Fig. 5 a Kink profile in time, un , measured at n = 23. Numerical solution of Eq. (2) including
the harmonic substrate (solid line), and experimental data (back dots). b Corresponding compres-
sion −vn+1 = un − un+1. Parameters α � 3.6 and approximate substrate harmonic potential with
frequency f0 = Ω0/2/pi1.5Hz

type, α = 3.6, and a harmonic substrate potential with f0 = Ω0/2π = 1.5Hz. The
experimental data are in good agreement with the numerical simulation. It can be
observed the formation of a kink at the front of the displacement wave (Fig. 5a),
leading to a compression soliton as it is clearly observed in Fig. 5b. Then, after about
0.3 s, it can be seen the effect of the restoring force of the pendula: as the unique
stable state is un = 0, the chain relaxes to its initial position and no exact kink can be
formed. After the kink passes, a phonon tail is observed, being its arrival time given
by the linear dispersion relations.

Although the kinks in a chain with a linear restoring force are not stable, the wave-
front of these transient kinks obeys the analytical solution (12). The profile of the kink
in space is shown in Fig. 6. Here, we show the numerical and experimental solutions,
and the analytical solution of the FPU equation with α = 2, i.e., Eq. (12). First, it
can be observed that kinks can be excited in the experimental lattice for the temporal
window analyzed. The experimental data are in good agreement with the numerical
simulation and the analytic solution for a wavenumber q ≈ 2π/4. The number of
bonds in the numerical and analytical solutions can be obtained by fitting the profile
to and it is λ ≈ 4.5, while the number of particles in motion is λ − 1 ≈ 3.5. Thus, in
the experimental data, the number of bonds and number of particles in motion seem
to increase from themagic wavenumber kinks λ = 3. This can be caused by the effect
of the weak harmonic potential, the separation from the α − β-FPU equation due to
large displacements, and to the magnetic force, for which the long range interaction
and the multiple neighbors interaction must be taken into account. Research on the
subject is underway and will be published elsewhere [4].
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(a)

(b)

Fig. 6 a Kink profile in space, un , for pendulums ranging from n = 23, 33 of a chain of N = 53
magnets. Analytic solution using Eq. (12) q = 2π/3 (solid line), numerical simulation Eq. (2) (back
dots), and experimental data (circles). b Corresponding strain vn = un − un−1. Parameters α � 3.6
and approximate substrate harmonic potential with f0 = 1.5Hz. Reproduced from [17]. Licensed
under CC-BY-NC-ND

6.2 Kink Velocity

The characterization of the kink velocity has been previously studied inArchilla et al.
[2] where they used the Rotating Wave Approximation (RWA) to introduce the rela-
tion between the kink velocity V and the excitation amplitude A. When we substitute
the ansatz of Eq. (12) into (11), we generate multiple terms with different frequen-
cies. Following the RWA we select only terms up to the first harmonic, neglecting
higher harmonics. We obtain the frequency ω as a function of the amplitude A as

ω = 1

(1 − A)3/4
ωc sin

(q
2

)
, (13)

where ωc = 2c0 = 2
√

α, and from this Eq. (13) we can calculate the kink velocity
V as:
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Fig. 7 Normalized kink
velocity, V/c0, versus kink
amplitude, A. RWA solution
q = [π, 2π/3] (dashed
lines), simulations of the
chain for different inverse
power laws (gray lines) and
experimental data (markers).
We tracked the pendula
n = 25, 26, 27.
Experimental data obtained
with a weak harmonic
potential and theoretical
curves for a system without
substrate as given by
Eq. (14). Reproduced from
[17]. Licensed under
CC-BY-NC-ND
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Therefore, kinks are supersonic. Figure7 shows the kink velocity V versus its ampli-
tude A. Two cases are shown, first q = π which means that only one particle is
moving and magic wavenumber q = 2π/3 when two particles are in motion. The
experimental results are also shown in Fig. 7 for a range of amplitudes ranging from
A = [0.07, 0.5]. First, it can be seen that increasing the excitation amplitude makes
the kink to propagate faster, being its speed always supersonic. Second, for the mea-
sured amplitude range, the experimental data for the transient kinks are compatible
with the magic wavenumber q = 2π/3 solution and not with the π -mode as stated
above. Third, the effect of the exponent of the inverse power law is to increase the
sound speed in the system without substrate, which is c0 = √

α. Finally, as can be
clearly seen in the Taylor expansion of the FPU Eq. (8), increasing α at the par-
ticle interaction also increases the nonlinearity of the system. This leads to higher
kink velocity values for the dipole interaction than for the purely Coulomb (mono-
pole) interaction, being the family of supersonic solitons strongly dependent on the
exponent of the inverse power law α.

6.3 Old Age Solution: Breathers

The kink solution is only valid for the initial transient. If the substrate potential Vext

introduces a linear restoring force with no periodicity in space, the unique stable
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Fig. 8 Space-time profiles for transient solution. aDisplacement and b compression−vn = un−1 −
un of the transient solution including a harmonic restoring force with characteristic frequency
f0 = 1.5Hz

state is un = 0, and, therefore, the kink cannot be formed in the old-age solution.
The transient process is shown in Fig. 8 for the displacement and for the compression
−vn = un−1 − un respectively. It can be observed that at the beginning of the chain
the kink solution is similar to those obtained in the measurements. However, for
longer distances the kink degenerates in other nonlinear waves. For old-age solution,
we obtain other nonlinear localized excitation traveling at the kink front. The solution
is shown in Fig. 9a–c for the dipole case, α = 4. Simulations show that the nature of
the dynamics of the system do not depend substantially on the exponent of the inverse
power law. First, for a weak harmonic potential, similar to the effect of the pendula
in the experiments, i.e. with a characteristic frequency of f0 = 1.5Hz, we observe a
large transient. Then, the kink disaggregates: the core of the kink transforms gradually
into a breather-like localized state. The old-age solution is shown in Fig. 9a, where
a stable localized nonlinear wave is observed and propagates at supersonic speed.
This localizedwave is internally composed of three internal solitonic oscillations that
travel inside the core of the breather faster than the breather itself. Simulations show
that this nonlinear localized mode is stable. Once formed, the breather composed by
this three solitonic waves propagates thousand of lattice units.

The dynamics of these localized nonlinear waves is linked to the substrate poten-
tial. Figure9b shows the space-time profile of the old-age solution for a different
harmonic substrate with characteristic frequency of f0 = 3.5 Hz. The transient from
the kink to the breather is shortened, and also its width. Because of the shortening
of the breather, its composing internal waves are more evident. Finally, the solution
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Fig. 9 Space-time profiles for the compression−vn = un−1 − un of the old-age solution including
a harmonic restoring force with characteristic frequencies of a f0 = 1.5 Hz, b f0 = 3.5 Hz and c
f0 = 10 Hz

including a high frequency substrate, f0 = 10 Hz, is shown in Fig. 9c, where it can
be observed that the breather frequency remarkably increased.

In this case, a single packet of energypropagates supersonically through the lattice.
The localization also depends on the substrate potential and the strain amplitude of
the localizedwave, ranging from22 lattices units for the low frequency substrate to 10
to the high frequency one. The internal dynamics shows that the core of the localized
state is formed by three internal oscillations. The corresponding displacement is
shown in Fig. 10a–c, where the localized waves are also clearly observed. After the
wave passes, the harmonic potential force the lattice to oscillate around un = 0,
therefore, no kink can be formed in the old-age solution.
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Fig. 10 Space-time profiles for the displacements vn of the old-age solution including a harmonic
restoring force with characteristic frequencies of a f0 = 1.5 Hz, b f0 = 3.5 Hz and c f0 = 10 Hz

7 Periodic Substrate Potential

The experimental results previously shown were obtained including a weak on-site
potential due to the gravity restoring force that brings pendulums to their equilibrium
position in the chain. The smallness of this force compared to the magnetic repulsive
interaction allows us to neglect the effect of the substrate potential for the transient
solution observed in the experiments, i.e., the low cut-off frequency of the dispersion
relation is near zero.

Amore realistic model of condensed matter, with multiple stable states at un = n,
can be obtained using the current experimental setup by including a strong and
periodic substrate potential using the configuration shown in Fig. 3. A set of fixed
magnets is placed periodically at x = (n + 1/2)a, being the vertical separation h =
15mm. The chain is excited under the same conditions than in the previous study. The
simulatedwaveforms are shown in Figs. 11 and 12 for the strain and the displacement,
respectively. First, it can be observed that with a periodic substrate force V ′

ext =
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Fig. 11 Space-timeprofiles for the compression−vn = un−1 − un of the old-age solution including
a periodic restoring force with characteristic frequencies of a f0 = 1.5 Hz, b f0 = 6.5 Hz and c
f0 = 10 Hz

Ω2
0 sin 2πun , with a characteristic frequency of f0 = Ω0/2/pi = 1.5 Hz, a kink is

formed that travels at supersonic speed, meaning at a speed both larger than the
maximum group velocity of the phonons in the system with substrate, but also larger
than the sound speed in the system without substrate. Behind the kink it is also
observed a phonon radiation tail that oscillates at the characteristic frequency of the
periodic substrate. It is worth noting here the strong differences in the dynamics of
the nonlinear localized waves generated between systems using a harmonic restoring
force or a periodic substrate potential, even when both small-amplitude frequency
of the substrates are equal. If this frequency is increased, i.e., for stronger substrate
potentials, the kinks are still observed, as shown for f0 = 6.5 Hz in the space-time
strain and displacement plots in Figs. 11b and 12b respectively, and in Figs. 11c
and 12c for a strong substrate interaction with f0 = 10 Hz. Here, the dynamics are
essentially similar to the one obtained for a realistic potentials of mica muscovite in
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Fig. 12 Space-time profiles for the displacements un of the old-age solution including a periodic
restoring force with characteristic frequencies of a f0 = 1.5 Hz, b f0 = 6.5 Hz and c f0 = 10 Hz

Ref. [4], showing that the periodic substrate potential is a necessary factor to obtain
stable kinks in latices.

8 Conclusions

Chains of particles coupled by repulsive forces allow the study of certain properties
of condensed matter at a bigger scale. In particular, we have built a system of coupled
pendulums that opens the possibility to perform experimental studies that at atomic
scale become extremely difficult or unpractical. The study of such kind of systems
have several advantages. The first one is that, after some assumptions, it is possible to
approximate the corresponding equation of motion to the celebrated FPU equation,
i.e., it allows us to obtain analytical approximate solutions. The second one is that
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the complete equation is numerically integrable, giving a accurate approximation of
the exact dynamics to guide the experiments.

In this chapter, we focus the study on kinks and localized nonlinear excitations in
repulsive lattices with substrate potentials. Such type of system admits a mechanical
analogue that can be studied in the laboratory and, exciting it conveniently, allows
the study a broad range of nonlinear localized waves. In particular, we presented
here a system consisting of a chain of repulsive oscillators coupled magnetically.
The effect of the finite size of the magnets allows the modeling of different repulsive
interactions, following all of them the inverse power law with the distance. Thus,
just by modifying the geometry of the chain we can study repulsive interactions
of monopolar (Coulomb type), dipolar or non-integer power type. Moreover, we
have presented the dynamics that emerges from the different nature of the substrate
potential.

If the substrate potential is purely harmonic, i.e., the restoring force is linear, as
in the case of long pendulums, we show that kinks can exist only for a short time,
and after a transient, supersonic breathers are formed. The dynamics of the system is
deeply related with the fact that every pendulum is subjected to a restoring force, the
gravity, for which the unique stable state corresponds to the displacement un = 0.
The situation is completely different if we include a periodic substrate potential that
allowsmultiple stable states in the chain. In this case,we report the generation of kinks
that travel at supersonic speed through the lattice. It is worth noting here that in the
chain ofmagnets a periodic substrate potential can be introduced simply by including
a set of fixedmagnets that adds repulsive periodic forces, muchmore intense than the
corresponding to the restoring force due to gravity, i.e., that dominates the dynamics
of the system.
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Kinetics of Annealing: Basic Relationships
and Nonlinear Effects

Pavel A. Selyshchev and Pavel M. Bokov

Abstract The thermal annealingof radiation-induced interstitial clusters is analysed,
taking into account the nonlinear feedback between the defect density, the rate of
annealing, and the temperature (thermal-concentration feedback). The discussion
covers isothermal and isochronous annealing regimes, a change in cluster size distri-
bution during the annealing, and the travelling wave of annealing. It is shown that the
thermal-concentration feedback leads to a stronger than exponential dependence of
the number of annealed defects on time, and is the mechanism of the self-sustained
annealing and its propagation. Furthermore, the travelling wave of annealing can
be unstable with respect to oscillations of the propagation rate and the temperature
profile. The reason for this instability is the preheating of an as yet un-annealed area
of metal.

Keywords Thermal annealing · Radiation-induced clusters · Thermal-
concentration feedback · Self-sustained annealing · Travelling wave of annealing

1 Introduction

It is well known that the degradation of materials due to irradiation reduces the
operating life of nuclear facilities [19]. Radiation affects materials in many ways,
but the main reason for their degradation is radiation-induced defects, which cause
changes in material microstructure and properties. One of the most common and
efficient ways of recovering radiation damaged metals is by thermal annealing [4].
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The state of the metal after irradiation is metastable because the irradiated sample
is an open system far from thermodynamic equilibrium [14]. The flux of high-energy
particles produces different types of defects (both point- and extended ones, such as
dislocation loops) in the crystal lattice. A thermal generation of these defects is
impossible because they require a large amount of energy for their formation. For
example, as a result of the creation of one interstitial atom, the energy of the crystal
increases by a few electronvolts; subsequent formation of interstitial loops and voids
requires hundreds and thousands of electronvolts for each loop or void [2, 7, 19].
Further formation of radiation defects leads to an even higher growth of the athermal
energy of the crystal, caused by the creation of defects.

After irradiation, the radiation-induced material condition starts to relax towards
equilibrium. The crystal structure of themetal begins to recover as a result of the ther-
mal decomposition of extended low-mobile defects and due to the diffusion of point
defects. Since all aforementioned processes are thermally activated, the relaxation
rate depends strongly on temperature. Therefore, the set of relaxation processes lead-
ing to the restoration of the original properties of the metal is referred to as annealing
whereas annealing of a given class of defects means their disappearance. For defects
to anneal, each of them should be provided with a certain amount of energy, referred
to as the activation energy, Ea. At low temperatures defects with a low activation
energy are annealed, e.g. interstitial atoms, while at higher temperatures defects with
a higher Ea are annealed. For clusters of defects, if the process is not limited by the
migration of particles in a crystal with the subsequent recombination, this energy
is the binding energy of the defects in the cluster. For clusters of interstitial atoms
in metals the binding energy can reach several electronvolts [11, 19]. In the case
of a large binding energy of a cluster, its thermal decomposition becomes unlikely,
and the annealing of the cluster is determined by the recombination with mobile
vacancies.

If the temperature of the crystal is too low, then the probability for a defect to
obtain an amount of energy comparable to the activation energy is very small, and
annealing does not occur, i.e. defects of this type, despite the fact that they are not in
equilibrium, remains stable at this temperature. The state of themetal after irradiation
is therefore metastable, although essentially non-equilibrium. This is schematically
shown in Fig. 1.

In addition, annealing of radiation-induced defects is one of the few ways of
obtaining information about the characteristics of these defects. Two types of thermal
annealing experiments are usually performed: isothermal ones, in which a sample is
kept at a constant temperature for some, usually long, periods of time; and isochro-
nous ones, when the sample is subjected to different increasing temperature values
during the same period of time.

In the case of isochronous experiments, defects with increasing activation energy
are annealed sequentially and six stages (of annealing) are usually distinguished
[4]. These stages are identified based on a change of physical characteristics that
are sensitive to defects of the crystal, for example, conductivity or hardening. The
interpretation of annealing stages is not unequivocal [4, 7]. Stage I is associated with
the recombination of Frenkel pairs, located at small distances from each other due
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Fig. 1 Schematic of an irradiation-damaged material in a metastable state

to the mobility of the interstitial atoms. Stage II is associated with the movement
of interstitial atoms to more distant sinks (such as dislocations, pores, formations
of a second phase, dislocation loops, external surfaces, grain boundaries). Stage III
is associated with the processes of decay of clusters, for example, the release of
interstitial atoms from impurity traps (e.g. complexes of interstitial and impurity
atoms), which could be formed in the crystal either during the irradiation or at
Stage I. Stage IV corresponds to the beginning of the migration of vacancies to
sinks and the formation of clusters of vacancies. In Stage V the recrystallization
processes occur which involve an intensive migration of defects to the surface of the
material, and other restructuring. Stage VI is detected in the range 0.33–0.45 of the
melting temperature for bcc and 0.4–0.53 for fcc crystals when studying the change
of strength characteristics in the process of annealing of irradiated metals. This stage
is linked to the annealing of hardening radiation defects; the activation energy of the
process is close to the activation energy of recrystallization of the metal. Annealing
of a small fraction (not more than 10%) of increase in yield strength occurs at a lower
temperature than that of Stage V.

As a rule, in order to identify the activation energies of a particular process (migra-
tion of a defect or its decay), the temperature at which a change in a particular char-
acteristic happens is used. Of no less importance but, because of the difficulties of
interpretation, much less frequently used, is the dynamics of changes of this char-
acteristics, which reflects the transformation in the structure of radiation damage
(change in the density of different types of defects).

The kinetics of annealing of each defect class at a given temperature is a multi-
stage and complex process since the result of annealing depends essentially on the
microstructure of the metal and on the structure of defects created by the irradiation,
as well as on their interaction.

Defects can interact directly, for example through deformation fields, or indirectly,
due to the thermal-concentration feedback between the metal temperature and the
rate of their annealing [13, 14]. Since the energy of irradiated material is the sum
of two components: a thermal one, which corresponds to the temperature of the
material, and an athermal one, which is stored in radiation-induced defects, then
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upon annealing the latter is converted into heat and the temperature of the material
increases. In turn, the temperature increase leads to the acceleration of annealing
of defects (mainly due to the exponential dependence of the diffusion of mobile
defects on temperature), which causes a further increase in temperature. As a result,
a feedback between the rate of annealing of radiation defects, the generation of
heat accompanying the annealing, and the temperature, is established. Under certain
conditions, this feedback leads to the development of a self-sustained annealing
which can significantly alter its overall kinetics. In particular, it can lead to the
development of self-oscillations [18] of temperature and of defect density and to
propagation of annealing travelling waves [3, 14, 16].

2 Homogeneous Annealing of Defects of a Single Type

For a better understanding of phenomena taking place in the processes of annealing,
let us consider a single-stage annealing of defects of a single type. If the initial dis-
tribution of temperature and of defects over the sample are uniform, a homogeneous
annealing of defects will take place. This means that the rate of annealing is equal at
any point of space, the density of defects decreases but remains homogeneous, and
any fluxes of defects and energy are absent.

2.1 Isothermal Annealing

Consider defects of a given type, k. The evolution of their density (defectsm−3), nk ,
is described, in the case of isothermal annealing, by the equation

dnk
dt

= −nk
τk

. (1)

Given an initial value nk,0, the density of defects thereby decreases monotonically
according to the exponential law

nk = nk,0 exp (−t/τk) , (2)

with a characteristic time τk , which depends on temperature. For instance, in the case
of an activation process, the characteristic time is given by the Arrhenius law

1

τk
= βk

0 exp

(
− Ea,k

kBT

)
, (3)



Kinetics of Annealing: Basic Relationships and Nonlinear Effects 287

where βk
0 is a parameter which depends on the properties of the material, Ea,k is the

activation energy of annealing, T is the absolute temperature and kB is the Boltzmann
constant.

If the annealing of defects of different types is not linked via a common kinetics,
it may be described with a few activation processes; in which case the concentration
of defects of each type monotonically decreases according to the exponential law.
As a rule, defects of different types are annealed at different temperatures, which
correspond to their respective activation energies.

2.2 Isochronous Annealing

The evolution of the defect density in isochronous annealing is described by (1), but
the temperature does not remain constant, and increases with time. We will consider
two regimes of temperature change: stepwise and continuous.

In the first regime, starting at the time t0 and continuing until t1 the temperature
is maintained constant and equal to T1, then it abruptly rises to T2, and is again kept
constant during the time interval from t1 to t2, etc. During the time interval from t j−1

to t j , the temperature is equal to Tj . In this case, the dependence of the density of
defects on time has the form

nk(t) = nk,0

[
j∏

i=1

exp

(
ti−1 − ti
τk(Ti )

)]
exp

(
t j − t

τk(Tj )

)
, for t > t j , (4)

where t j is the time of a temperature increase which is closest to, but not exceeding, t .
From the structure of (4) we see that, due to the Arrhenius dependence of the lifetime
on temperature, the rate of annealing and the number of annealed defects of this type
have a sharp maximum for a certain temperature: for the early low-temperature
“steps” the annealing rate is negligibly small and the corresponding exponent in (4)
is almost equal to one. However, at steps with high temperature, nothing is left to
anneal. Therefore, a characteristic of the material sensitive to this type of defects
should display a drastic change. It may enable us to identify the activation energy
corresponding to this annealing stage, and the type of the annealed defects.

In the second regime the temperature increases linearlywith time: T (t) = T0+Ṫ t .
The decrease in the density of defects is now described by the following expression

nk(t) = nk,0 exp

(
−βk

0 Ea,k

kBṪ

[
−ex

x
+ Ei (x)

])∣∣∣∣
x=−a2

x=−a1

,

where a1 = Ea,k/kBT0, a2 = Ea,k/kB
(
T0 + Ṫ t

)
and Ei (x) is a special function

called the exponential integral and is defined by the Cauchy principal value of the
integral [12]:
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Ei (x) = −v.p.
∫ ∞

−x

e−ξ

ξ
dξ = v.p.

∫ x

−∞
eξ

ξ
dξ , x > 0 . (5)

2.3 Adiabatic Annealing: The Thermal-Concentration
Feedback

An isothermal annealing requires heat removal to accompany the process. Otherwise
the change of the temperature leads to a change of the characteristic annealing time,
which turns to be time-dependent. In this case two equations are required to describe
the annealing kinetics: one for the concentration (1) and one for the temperature:

ρc
dT

dt
= θk

nk
τk

. (6)

Here ρ is the material density, c is the specific heat capacity and the product ρc is the
volumetric heat capacity; θk is the energy released by the annealing of one defect.

The system of Eqs. (1) and (6) has an integral which represents the conservation
of the total energy of the material, E0:

ρcT + θknk = E0 . (7)

After introducing dimensionless defect density (v), temperature (w), time (t̄) and the
dimensionless parameter α, which is the ratio of heat release to activation energy:

v = nk
nk,0

, w = kBT

Ea,k
, t̄ = βk

0 t and α = kBθknk,0
ρcEa,k

,

we obtain, instead of (1) and (6), the system:

dv

dt̄
= −ve−1/w , (8)

dw

dt̄
= αve−1/w , (9)

subject to the initial conditions

v(t̄ = 0) = v0 = 1 ,

w(t̄ = 0) = w0 .

The energy conservation relationship (7) can be rewritten as

αv + w = αv0 + w0 = w∞ , (10)
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where v∞ = v(t̄ → ∞) = 0 and w∞ = w(t̄ → ∞) = αv0 + w0 = α + w0.
Substituting αv from (10) to (9) and solving the resulting differential equation,

one obtains a relationship between w and t̄ :

t̄ = Ei

(
1

w

)
− Ei

(
1

w0

)
+ e1/w0

[
Ei

(
1

w0
− 1

w∞

)
− Ei

(
1

w
− 1

w∞

)]
. (11)

The growth of temperature with time, as described by (11), is illustrated in Fig. 2
for parameter values corresponding to aluminium: T0 = 300K, Ea,k/kB = 5 802K,
θknk,0/ρc = 180K and βk

0 = 107 s−1. The temperature dependence on time has a
shape of the smoothed step function. A rapid (faster than exponential) temperature
growth is observed in the beginning. The rate of annealing thereby increases, reaches
themaximum and starts to decrease: the temperature slowly approaches its stationary
value w∞. The temperature value at the inflection point, w∗, is a positive solution of
the quadratic equation

w2
∗ + w∗ − w∞ = 0 . (12)

The maximum rate of temperature increase is achieved at the inflection point t̄∗ =
t̄(w∗) and is

(
dw/dt̄

) |t̄=t̄∗ = w2∗e−1/w∗ . The temperature growth can therefore be
approximated with a linear function in the vicinity of the inflection point (recall that
at the inflection point (d2w/dt̄2)|t̄=t̄∗ = 0 and the second order term vanishes):

w(t̄) = w∗ + w2
∗e

−1/w∗
(
t̄ − t̄∗

)
.

For typical parameters ofmetals (heat capacity, heat conductivity, energyof formation
and migration of defects) the difference between w∞ and w∗ does not exceed 20%,
i.e. the temperature quickly approaches a value close to the maximum and after that
it practically does not change.

The dependence of defect density on time is a vertically flipped and scaled version
of the temperature curve (see Fig. 2, the left graph). This is expected from the energy
conservation relationship described by (7) and (10).

The initial (t̄ → 0) growth of dimensionless temperature (and, accordingly, the
reduction in defect density) can be approximated by the exponential dependence

w(t̄) = w0 +
(

w∞ − w0

w∞ − w0 − w2
0

)(
−1 + et̄/τ̄0

)
, (13)

with characteristic time τ̄0 :

τ̄0 =
(

w2
0

w∞ − w0 − w2
0

)
e1/w0 . (14)

The terminal (t̄ → ∞) part of temperature growth (and of corresponding defect
decay) can be approximated by the dependence
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Fig. 2 Homogeneous adiabatic annealing of irradiation defects for a material with parameters
corresponding to aluminium (presented for dimensionless variables). The left graph illustrates the
dependence of defect density on time. The right graph shows the dependence of the material tem-
perature on time, as well as the approximations for t̄ → 0 and t̄ → ∞, shown with dotted and
dashed lines respectively, and the inflection point, w∗

w(t̄) = w∞
(
1 − w∞ − wb

w∞
e−(t̄−t̄b)/τ̄∞

)
, (15)

with characteristic time
τ̄∞ = e1/w∞ , (16)

where parameters t̄b and wb are defined from an additional condition that for some,
sufficiently large t̄b, w

(
t̄b

) = wb.
The ratio between τ̄∞ and τ̄0 depends on the initial temperature and the amount

of energy stored in defects. If the stored energy is small, the characteristic times
are comparable and the accelerating annealing of defects is not observed. In this
case the process is described by the more gradually growing part of the curve above
the inflection point. Otherwise τ̄∞ � τ̄0: for instance, for activation energy Ea,k =
0.3 eV with initial and final temperatures 300 and 600K respectively, τ̄∞/τ̄0 ≈ 104.

2.4 Influence of Energy Dissipation

When the energy dissipation is taken into account, Eq. (6), and correspondingly
Eq. (9), are transformed to

ρc
dT

dt
= θk

nk
τk

− ρc
T − Te

τh
or

dw

dt̄
= αve−1/w − h (w − we) ,
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where Te is the environment temperature, τh is the characteristic time of heat transfer,
we is the dimensionless environment temperature and h = (βk

0τh)
−1. Equations (1)

and (8) do not change.
If the annealed sample transfers heat to the surrounding environment, its total

energy is not preserved and relation (7) is not satisfied. Accordingly, Eqs. (7) and
(10) are replaced by

dT

dt
= θk

ρc

nk
τk

− T − Te
τh

or
d (αv + w)

dt̄
= −h (w − we) , (17)

which describe the decrease of the total energy of the sample. As a rule, in practice
the annealing temperature is kept constant, at least for a fixed period of time, so one
may assume that T0 = Te (and w0 = we, respectively).

Depending on the ratio between the energy dissipation and the energy release
during the annealing of defects, the process occurs in different ways. Indeed, if
the heat removal dominates and the density of defects decreases slowly during the
annealing, the temperature of the sample remains constant and approximately equal
to Te ≈ T0. The density of defects decreases in accordance with the exponential
law (3) with a characteristic time τk(T0). Conversely, if the heat removal is low,
then the total energy of a material during the annealing process remains constant,
the temperature begins to rise, the annealing self-accelerates due to the thermal-
concentration feedback, and exponential decrease in the concentration changes to a
more rapid, step-like one. The growth of temperature happens in a similar way, it
reaches a maximum value and begins to decrease. The density of defects continues
to gradually decrease at a lower rate in accordance with a decrease in temperature.

Thereby, if the thermal-concentration feedback is activated, almost all defects
are annealed during the time within which the contribution of the heat removal
is negligible. This time is significantly smaller than τk(T0), because the time of
annealing depends on the temperature exponentially.

3 Heterogeneous Annealing of Defects of a Single Type

Inhomogeneous distribution of temperature and of defects mainly causes the heat
flux; as a first approximation, the diffusion of defects can be neglected because of
their low mobility. Taking into account the thermal conductivity, and considering for
simplicity a one-dimensional geometry, (6) and (9) take the form

ρc
∂T

∂t
= θk

nk
τk

+ κ
∂2T

∂x2
or

∂w

∂ t̄
= αve−1/w + χ

∂2w

∂x2
, (18)

where κ is the thermal conductivity coefficient and χ = κ/(ρcβk
0 ). Instead of (10)

we have
∫∫∫

(αv + w) dV = w∞V, where V is the volume of the sample.
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Even if the initial temperature distribution and the density of defects are uniform, it
may cease to be so because of the loss of stability. Let v̂(t̄) and ŵ(t̄) be homogeneous
solutions of (8) and (9); and δv(x, t̄) and δw(x, t̄) be their inhomogeneous perturba-
tions, which we present in the form: δv(x, t̄) = δv(t̄)ei kx and δw(x, t̄) = δw(t̄)ei kx ,
where i = √−1 is the imaginary unit and k is the wavenumber (spatial frequency).
Substitution of w(x, t̄) = ŵ(t̄) + δw(x, t̄) and v(x, t̄) = v̂(t̄) + δv(x, t̄) to (8) and
(18) yields

∂δv

∂ t̄
= −e−1/ŵδv(t̄) − v̂

ŵ2
e−1/ŵδw(t̄) , (19)

∂δw

∂ t̄
= αe−1/ŵδv(t̄) +

(
αv̂

ŵ2
e−1/ŵ − χk2

)
δw(t̄) . (20)

Coefficients of the linear system (19)–(20) are bounded functions of time since
0 ≤ v̂(t) ≤ 1 by definition, w0 ≤ ŵ(t) ≤ w∞, 0 ≤ e−1/ŵ ≤ 1 and 0 ≤ v̂e−1/ŵ/ŵ2 ≤
v0/w2

0. This allows us to assess the stability of v̂(t) and ŵ(t) (the evolution of small
perturbations) locally near some point in time, by “switching on” the perturbation at
this time point and assuming the coefficients of the equations being constant. Then,
a damping ratio λ satisfies the equation

λ2 +
(
e−1/ŵ − αv̂

ŵ2
e−1/ŵ + χk2

)
λ + χk2e−1/ŵ = 0 . (21)

The uniform distribution of temperature and of defect density during the anneal-
ing process will be asymptotically stable, and the perturbed distribution is stable if
Re (λ) < 0, i.e. when the condition

(
1 − αv̂/ŵ2

)
e−1/ŵ + χk2 > 0 is fulfilled. As

expected, the thermal conductivity stabilizes the uniform distribution: the instability
develops primarily with regard to the long-wave perturbation. The spatial structure
of the evolving perturbation will be determined by the shape of the annealed sample
and the conditions at its boundary. For k = 0 the bifurcation value of w coincides
with the inflection value w∗ obtained for isothermal homogeneous annealing (condi-
tion (12)). Thus, the instability of the uniform distribution should be expected when
a large amount of energy is stored in defects and the thermal energy is low.

4 Annealing Wave as a Result of Thermal-Concentration
Feedback

In this section we consider a travelling wave of annealing, which may arise due to
the thermal-concentration feedback [15]. We assume an ideal situation where the
temperature of the metal, in which the wave is initiated, is equal to absolute zero.
Formally this means that the relaxation time approaches infinity, and the defects are
in a stationary state. This assumption is crucial for a mathematical description of the
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travelling wave regime, because, as a result of annealing, the system transits from
one stationary state to another.1 A similar model of travelling waves was applied to
describe combustion waves (chemical reactions) [17, 20, 21].

Consider for simplicity the annealing dynamics of defects of a single type, and
infinite one-dimensional geometry. The evolution of defect density n (the index k is
omitted) and of absolute temperature T is described by a system of equations:

∂n

∂t
= − n

τ(T )
, (22)

ρc
∂T

∂t
= κ

∂2T

∂x2
+ θ

n

τ(T )
. (23)

Here, as in previous sections, x is the spatial variable, t is time, ρc denotes the
volumetric heat capacity of the material, κ is the thermal conductivity coefficient and
θ is the thermal energy released in the annealing of one defect. The characteristic
lifetime of defects, τ , depends on temperature according to the Arrhenius equation:

1

τ(T )
= β0 exp

(
− Ea

kBT

)
, (24)

where Ea is the activation energy of the transition from a metastable state to equi-
librium, kB is the Boltzmann constant and β0 is the pre-exponential factor.

If we neglect the energy dissipation then, due to annealing, the density of defects
decreases to zero, and the homogeneous distribution of temperature establishes with
a value given by the energy conservation:

T∞ = θn0
ρc

. (25)

Such a distribution may settle in the process of homogeneous spontaneous annealing
of defects along with the ordinary thermal conductivity. This is a slow process, it is
realized under conditions in which a thermal-concentration feedback is not activated.

Otherwise, the development of thermal-concentration instability causes a rapid2

process of defect annealing, referred to as travelling wave, in which the density of
defects and the temperature are almost constant throughout the sample and sharply
change in a narrow region, we will call it the annealing zone, that moves with a
constant speed. In this zone the density of defects falls to zero, and the temperature
value increases to T∞.. This is depicted in Fig. 3.

Since the annealing takes place in a narrow region of space, we can assume that
it occurs on a surface that we will refer to as annealing front. Let us define the speed

1In a real life situation the temperature of the material is positive and the radiation-damaged crystal
is not in a stationary state, since the lifetime of the defects is finite.
2The assumption of a sharp dependence of the annealing rate on temperature for the Arrhenius
function (24) means a greater value of the activation energy Ea.
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Fig. 3 Schematic of annealing wave. The wave propagates from the annealed material on the left to
the damaged material on the right with a constant speed u. Temperature and defect density profiles
at a given time t (solid line) and previous time (t − Δt) (dashed line) are presented in orange and
black, respectively. The density of defects and the temperature are constant throughout the sample
except for the annealing zone

of the annealing front, u, as a volume of damaged material in which the defects are
annealed per unit time per unit surface. To determine u we use the coordinate system
in which the annealing front is at rest, i.e., we introduce a new independent variable
s = x − ut . Then (22) and (23) transform to ordinary differential equations:

−u
dn

ds
= − n

τ(T )
, (26)

−uρc
dT

ds
= κ

d2T

ds2
+ θn

τ(T )
, (27)

subject to the boundary conditions:

s → −∞ : n = 0, T = T∞,

s → +∞ : n = n0, T = 0.

As was already discussed, the annealing of defects happens in a narrow zone in
the vicinity of the front. In this zone the temperature changes from the finite value T∞
on the annealed side of the material – from the annealing zone the heat is transferred
by the thermal conduction – to a value equal to zero on the side of the un-annealed
damaged material, where the thermal equilibrium is reached. A rapid change of the
temperature gradient on a short spatial interval means a greater contribution of the
thermal conduction. For this reason, the contribution of the advective heat flow (i.e.
the term on the left-hand side of (27)) is small3 when compared with the contribution
of the thermal conduction, and a simplified equation

3The temperature difference is small in the annealing zone since, due to the strong dependence of
the annealing rate on temperature, the bulk of defects are annealed at a maximum temperature T∞
[21].
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κ
d2T

ds2
+ θn

τ(T )
= 0 (28)

can be considered in the annealing zone. Turning T into the independent variable
and making the substitution κdT/ds = ζ , gives

ζ
dζ

dT
+ κ

θn

τ(T )
= 0. (29)

Integrating (29) from 0 to T∞ yields the heat flux from the annealing front:

κ
dT

ds
=

√
2κθ

∫ T∞

0

n

τ(T )
dT . (30)

The total amount of heat released as a result of annealing per unit time and removed
by the heat conduction, is equal to the energy stored in defects, which carried by the
flow of un-annealed substance (in our coordinate system, the material moves with a
speed equal to the speed of the annealing front). Therefore, we can write

√
2κθ

∫ T∞

0

n

τ(T )
dT = θn0u , (31)

from which we obtain the speed of the annealing front

u =
√
2κ

θ

∫ T∞

0

n

τ(T )
dT . (32)

Formula (32) indicates that the speed of the annealing wave depends on the integral
of the rate of heat production and, thereby, is associated with the activation energy
and other kinetic characteristics of the material with defects.

Numerical estimations presented in [15] show that the speed of the annealingwave
varies, depending on the model parameters, in the range from a few centimetres
to a few meters per second. These assessments are highly inaccurate because of
approximations used in the evaluationof the integral in (32).Nevertheless, accounting
for the thermal-concentration feedback provides a correct description of physical
phenomena, demonstrates the possibility in principle of the annealing wave and
gives the correct qualitative dependence.

Accounting for the energy dissipation leads to the violation of conservation of
enthalpy in the system; after the passage of the annealing wave the temperature
will drop to an ambient value. The annealing wave will have the form of a moving
peak with a steep front and a more gentle descent, caused by the heat sink, unlike
the sigmoid (smoothed step) shape that occurs in a system without energy dissipa-
tion [9]. Therefore, the material will be subjected to an elevated temperature in a
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narrower spatial region and for a shorter time, which can, to some extent, prevent
the temperature-induced phase and structural transformations in the material and,
consequently, changes of its properties during the annealing process.

5 The Kinetics of Accumulation and of Annealing
of Interstitial Clusters: Basic Equations

Interstitial clusters are created in the process of irradiation of a material with high-
energy particles. They significantly affect the mechanical and physical properties
of the material as they act as stoppers for the moving of dislocations, and they
redistribute the flows of point defects. Clusters can be created directly in cascades
[1] and emerge both heterogeneously and homogeneously. With further irradiation
the clusters grow and their size distribution changes. As a rule, there is a tendency for
the formation and growth of one ormoremaxima of the distribution [7, 8]. Therefore,
after the termination of irradiation, the material contains clusters of a certain size.

With the cessation of the irradiation begins decomposition of clusters. However,
since the activation energy of their decay may be quite large, a high-temperature
annealing is required for a more effective dissolution of clusters and the recovery of
material properties.

Consider an ensemble of clusters of different sizes, each consisting of several
interstitial atoms. It is known that with the exception of bi- and tri-interstitials, the
interstitial clusters are dislocation loops, which can slide under the action of applied
stress, but do not show a diffusion mobility. Clusters can grow and decompose. The
growth of the clusters is associated with the merger of mobile, usually small clusters
or with their absorption by large immobile clusters. Thermal decay of a cluster
requires not only for the corresponding bonds to be broken, but also the possibility
of withdrawal of parts of the disintegrated cluster to some distance from each other.
For this reason it is most likely for the cluster to emit single interstitial atoms lying
on the edge of the loop. In addition to the decay of the cluster, reduction of its size
is caused by the absorption of vacancies by the cluster, i.e. the recombination of
mobile vacancies with one of the atoms of the cluster. In the case of decay the total
number of interstitial atoms (both free and included in the cluster) is preserved, while
one interstitial atom disappears at each act of recombination. Therefore, even if the
density of vacancies is maintained constant, the decay and recombination should be
considered independently and described in the kinetic equations by different terms.
Interstitial atoms are also irreversibly absorbed by various sinks: dislocations, grain
boundaries, etc. The thermal emission of interstitial atoms by the sinks is negligible
because of their high formation energy.

Let us write kinetic equations for the density of clusters of different sizes.Wewill,
in accordance with experimental data, assume that clusters containing more than m
interstitial atoms are unstable and are not formed. The value of m depends on the
type and dose of radiation and on the properties of irradiated material. Therefore,
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clusters of maximum size contain m interstitial atoms; hence m cluster types and m
equations for their density are considered.

Clusters containing k interstitial atoms will be, for the sake of brevity, called k-
clusters, their density will be denoted by nk . In these notations n1 = ni is the density
of interstitial atoms. We assume that the cluster size may decrease as a result of the
successive emission of one interstitial atom or capture of one vacancy: for example,
a k-cluster is formed when a (k + 1)-cluster emits an interstitial atom. In the kinetic
equations given below, the first process is described by the term (−nk/τk), and the
second one by (−γknknv). The decay of the cluster consisting of two interstitial
atoms leads to the appearance of two unbound interstitial atoms.

The growth of a cluster occurs through sequential inclusions of interstitial atoms:
for example, a k-cluster is formed when an interstitial atom is attached to a (k − 1)-
cluster. This is described in the kinetic equations by the term (αk−1nk−1ni).

Radiative generation of interstitial atoms, vacancies or (in a cascade irradiation)
their small clusters is described by the corresponding terms, which are assumed to be
specified and dependent on characteristics of both radiation and irradiated material
(the masses of its constituent atoms and bonds between them). In the equations
written below, the generation of Frenkel pairs with a constant rate K is assumed.

Therefore the system of equations describing the radiation-induced kinetics of
vacancies and interstitial clusters takes the form

dnv
dt

= K − nv − nev
τv

− γ1ninv −
m∑

k=2

γknknv ,

dni
dt

= −2α1n
2
i −

m−1∑
k=3

αknkni − γ1ninv + γ2n2nv − ni
τi

+ 2
n2
τ2

+
m∑

k=3

nk
τk

,

dn2
dt

= −α2n2ni + n3
τ3

+ γ3n3nv + α1n
2
i − n2

τ2
− γ2n2nv, (33)

...

dnm−1

dt
= −αm−1nm−1ni + nm

τm
+ γmnmnv + αm−2nm−2ni − nm−1

τm−1
− γm−1nm−1nv ,

dnm
dt

= αm−1nm−1ni − nm
τm

− γmnmnv .

Here nv is the density of vacancies, αk is the growth rate coefficient of a k-cluster
and γk is the coefficient of vacancy recombination with k-clusters (both αk and γk
depend on temperature); τ−1

v = zvρdDv and τ−1
i = ziρdDi are the inverse lifetimes

of vacancies and of interstitial atomswith respect tomoving to sinks; ρd is the density
of these sinks, zi is the preferential interstitial absorption; Dv = D0

v exp(−Ev
m/kBT ),

Di = D0
i exp(−E i

m/kBT ) are diffusion coefficients and Ev
m, E

i
m are migration ener-

gies of vacancies and of interstitial atoms, respectively. nev = n0v exp(−Ev
f /kBT )

is the density of vacancies at a thermal equilibrium, Ev
f is the energy of vacancy

formation, and N is the number of lattice sites per unit volume of the crystal.
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It is known [13, 15] that the interdependence between temperature, rate of anneal-
ing and concentration of defects can significantly modify the kinetics of annealing
and results in the emergence of qualitatively new regimes. The activation of the
thermal-concentration feedback in the irradiated crystal leads to the development of
self-oscillations of the crystal temperature and of the defect density [13]. In the case
of annealing, this interdependence gives rise to an annealing wave [15]. Accounting
for the thermal-concentration feedback in the kinetics of cluster density evolution (as
during irradiation and during annealing after irradiation) leads to the need to extend
the system (33) with an equation for the temperature variation:

ρc
∂T

∂t
= κ

∂2T

∂x2
+ θini

τi
+ θvnv

τv
−

m∑
k=2

θknk
τk

+ (θi + θv) γ1ninv

+
m∑

k=2

(θi + θv − θk) γknknv .

(34)

Here θi and θv are the energies released in absorption by a sink of an interstitial atom
and of a vacancy, respectively, their values are approximately equal to the energies
of formation of the respective defects. θk is the thermal energy required to activate
the emission of an interstitial atom by a k-cluster, its magnitude is approximately
equal to the binding energy of an interstitial atom in a k-cluster.

At the annealing stage it is often possible to neglect the growth of the cluster
because in this case, the irradiation is absent and the density of the interstitial atoms
is negligibly small. The density of vacancies during annealing can be set equal to the
density of thermal vacancies nev, which remains constant for a fixed temperature. Then
one can disregard the energy release associated with the disappearance of vacancies
in the process of recombination of vacancies with interstitial atoms within the cluster
since a new vacancy is immediately generated instead of a disappeared one at the
expense of this energy.

In such a case the system (33) and (34) simplifies, equations become linear and
take the form

dni
dt

= −γ1nin
e
v + γ2n2n

e
v − ni

τi
+ 2

n2
τ2

+
m∑

k=3

nk
τk

,

dn2
dt

= −n2
τ2

− γ2n2n
e
v + n3

τ3
+ γ3n3n

e
v , (35)

...

dnm−1

dt
= −nm−1

τm−1
− γm−1nm−1n

e
v + nm

τm
+ γmnmn

e
v ,

dnm
dt

= −nm
τm

− γmnmn
e
v ,
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and

ρc
∂T

∂t
= κ

∂2T

∂x2
+ θini

τi
−

m∑
k=2

θknk
τk

+ θiγ1nin
e
v +

m∑
k=2

(θi − θk) γknkn
e
v . (36)

By introducing new effective lifetimes of clusters which take the recombination
into account, the annealing of clusters can be formally seen as their decay.

Using (33) we obtain for the decline of the full number of interstitial atoms, both
unbound and bound in clusters, in the process of annealing the following expression

d

dt

(
m∑

k=1

knk

)
= −

m∑
k=1

γknkn
e
v − ni

τi
, (37)

which shows that the decrease of interstitial atoms is due to all the processes of
recombination and movement of the unbound interstitial atoms to sinks. The decline
in the total number of clusters, including interstitial atoms, is described by the formula

d

dt

(
m∑

k=1

nk

)
= −γ1nin

e
v − ni

τi
+

m∑
k=2

nk
τk

, (38)

the decrease in the number of clusters consisting of k or more atoms is determined
by the number of k-clusters

d

dt

(
m∑

k=1

nk

)
= −γknkn

e
v − nk

τk
.

As will be shown below, if the decay of clusters is predominant, and the role of
recombination is negligible, the kinetics of annealing is determined by the clusters
with the greatest lifetimes. On the contrary, with the dominance of recombination,
the effective lifetime depends weakly on the cluster size, especially for large clusters.

6 Estimation of Kinetic Coefficients

Formation and accumulation of clusters depend on the kinetic coefficients. The latter
are functions of the cluster size. For example, the probability of emission of an
interstitial atom by a cluster is proportional to the number of atoms which occupy
the edge of the dislocation loop.

Obtaining of kinetic coefficients is a difficult problem, because they depend on
material properties, on the physical processes occurring in the material, as well as
on the irradiation conditions. Without claiming to be its comprehensive solution, we
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estimate the kinetic coefficients that describe the formation and decay of clusters
(interstitial dislocation loops) in solids.

Let us clarify the definition of values to be used in future. The energy of formation
of a defect (vacancies, Ev

f , interstitial atoms E i
f , or k-cluster, E

k
f ) is the difference

between the energies of the crystal with and without the defect. The binding energy
of a k-cluster, Eb

k , is the difference between the energies of the crystal containing the
k-cluster and the crystal containing k interstitial atoms which are far away from each
other. If the crystal contains several defects, it is assumed that the distance between
them is large enough to neglect their interaction; in other words, a material with a not
very high defect density is considered. The binding energy of the interstitial atoms
of a k-cluster, Eb1

k , is the difference between the energies of the crystal containing
the k-cluster and the crystal with a (k − 1)-cluster and the interstitial atom that is
far away from that (k − 1)-cluster. The energy of cluster formation is not only the
interaction energy between the atoms which form the cluster: it also includes the
interaction energy of atoms of the cluster with atoms of the crystal which surround
the cluster. The considered energies satisfy the following relations

Ek
f = Ek−1

f + E i
f + Eb1

k ,

Ek
f = kE i

f + Eb
k , (39)

Eb
k =

k∑
j=2

Eb1
j .

A negative value of the binding energies, Eb1
j and Eb

k , means that the k-cluster is
unstable with respect to the decomposition into k interstitial atoms or with respect
to the emission of the interstitial atom, respectively.

At the thermal equilibrium state the probability of growth of the k-cluster (k →
k+1) is equal to the probability of the thermal-stimulated decay of the (k+1)-cluster.
Therefore, we can write αknekn

e
i = nek+1/τk+1, fromwhat follows that the growth rate

coefficient of the k-cluster is

αk = nek+1

nekn
e
i

1

τk+1
. (40)

The values of the equilibrium densities of vacancies, of interstitial atoms and of
their k-clusters are given by: nvi = N exp(−Ev

f /kBT ), nei = N exp(−E i
f/kBT ) and

nek = (N/k) exp(−Ek
f /kBT ) respectively, where Ev

f , E
i
f , and Ek

f are their respective
energies of formation; N is the number of lattice sites per unit volume of the crystal.

Substituting the expression for the equilibrium densities in (40), we obtain the
relation connecting the growth rate coefficient of the k-cluster with the lifetime of
the (k + 1)-cluster:

αk = 1

τk+1

k

N (k + 1)
exp

(
− Ek+1

f − Ek
f − E i

f

kBT

)
or αk = 1

τk+1

k

N (k + 1)
exp

(
− Eb1

k+1

kBT

)
.

(41)
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The decay of the cluster happens due to the emission of one atom from the edge
of the dislocation loop and its moving to a distance which is approximately equal to
the radius of the dislocation core. To leave the cluster, the atom must overcome the
potential barrier which is equal to its binding energy with the cluster. (It is supposed
that only the peripheral atoms may come out). Thus, the lifetime of the cluster
increases as its binding energy grows. In this case, the lifetime of the k-cluster can
be represented as

τk = A(k) exp
(
Eb1
k /kBT

)
. (42)

The pre-exponential factor is equal to the lifetime of the cluster with zero binding
energy. It is proportional to the time of moving of an atom from the dislocation loop
at a distance of the order of the radius of the dislocation core by means of diffusion
and is inversely proportional to the fraction of edge atoms: A(k) = (k/kL) r20/Di,

where r0 is the radius of the dislocation core and kL is the number of edge atoms of
the dislocation loop. This number can be represented as kL = (2/a)

√
kπΩ/b, where

a is the interatomic distance (period of the crystal lattice), Ω is the atomic volume
and b is the Burgers vector. Thus, the expression for the lifetime of the cluster takes
the form:

τk = ar20
2Di

√
bk

πΩ
exp

(
Eb1
k

kBT

)
= ar20

2Di

√
bk

πΩ
exp

(
Ek
f − Ek−1

f − E i
f

kBT

)
.

The binding energy Eb1
k = Ek

f − Ek−1
f − E i

f depends on the difference between
the energies of formation of the k- and (k − 1)-cluster. Let us write this difference
of energies as a function of the changing of energy of links between atoms of the
cluster and changing of the linear tension energy at the edge of the dislocation loop
(the magnitude of this energy is equal to the elastic energy of the dislocation loops
[5]).

The energy of the linear tension on the edge of the dislocation loop is given by
EL = 2πRμb2, where μ is the shear modulus. The radius of the loop, R, is a
function of the number of its atoms k: R = √

kΩ/(πb). Then the binding energy of
an interstitial atom and k-cluster becomes Eb1

k = μbσ(
√
k − √

k − 1) − Ei1 − E i
f .

Here Ei1 is the energy of the broken links as a result of the separation of an atom; σ =√
4πΩb is a parameter introduced to render formulas less cumbersome. Both Ei1

and E i
f do not depend on the cluster size. LetC = C (T ) = exp

[−(Ei1 + E i
f)/kBT

]
then the lifetime of the cluster as a function of its size is

τk = abr20
Diσ

√
kC exp

⎡
⎣μbσ

(√
k − √

k − 1
)

kBT

⎤
⎦ . (43)

Using (41) we get the coefficient of the rate of cluster growth:
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αk = Diσ
√
k

N (k + 1)abr20
C−2 exp

⎡
⎣−

2μbσ
(√

k + 1 − √
k
)

kBT

⎤
⎦ . (44)

The lifetime of a cluster increases and the coefficient of the rate of cluster growth
decreases as the size of the cluster (dislocation loop) grows.

The growth of a cluster may be represented as two consecutive processes: the
diffusion (αd

k ), and the reaction (αr
k). Since these processes are separated in time,

their rates satisfy the ratio:

1

αk
= 1

αd
k

+ 1

αr
k

→ αk = αd
kα

r
k

αd
k + αr

k

.

Let us consider αr
k and αd

k in more detail.
The application of Smoluchowski’s relation yields

αd
k = 4πR(k) (Di + Dk) ,

where Dk is the diffusion coefficient of the k-cluster; for interstitial loops it can be
set equal to zero. To determine it we use the Arrhenius relation:

αr
k = S(k) (Di + Dk)

a
exp

(
− E i

a

kBT

)
,

where S (k) = 2πR(k)b is the active surface that absorbs defects and E i
a is the

activation energy of the attaching interstitial atoms to the cluster. This energy barrier
is related to the deformation of the neighbouring atomic planes when the interstitial
atom attaches to the cluster (to the dislocation loop).

After corresponding substitutions, the coefficient of the rate of cluster growth
takes the form:

αk = (Di + Dk) σ
√
k

(Di + Dk) σ
√
k + a exp

(
E i
a/kBT

) . (45)

Comparing the obtained expression with (44), we get the activation energy of the
joining of interstitial atoms to the cluster as a function of k:

E i
a = kBT ln

[
(Di + Dk) σ

√
k

(
Nr20C

2b

Diσ

(k + 1)3/2

k
e
2μbσ

(√
k+1−√

k
)
/kBT − 1

)]
. (46)

The activation energy increases with increasing k, at large k it grows like ln(k).
The recombination rate coefficient, γk , characterizes the rate of recombination of

a vacancy with an interstitial atom or a k-cluster. To obtain γk , let us take into account
that the process of capture of an interstitial atom by a cluster is similar to the process
of capture of a vacancy. The dependence of activation energy of the recombination,
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Ev
a , on k coincides with E i

a as a function of k up to the ratio of dilatational volumes,
but has the opposite sign:

Ev
a = −kBT

ΔVv
ΔVi

ln

[
(Di + Dk) σ

√
k

(
Nr20C

2b

Diσ

(k + 1)3/2

k
e
2μbσ

(√
k+1−√

k
)
/kBT − 1

)]
,

(47)
where ΔVv and ΔVi are dilatational volumes of a vacancy and of an interstitial
atom, respectively. The negative sign of activation energy is caused by the fact that
the recombination decreases the tension of the elastic field near the edge of the
dislocation loops.

Since the recombination as well as the growth of the cluster can be represented
by a sequence of processes of diffusion and reaction, carrying out a similar argument
for the recombination rate coefficient of vacancies with an interstitial atom of the
k-cluster we obtain

γk = (Dv + Dk) σ
√
k

(Dv + Dk) σ
√
k + a exp

(
Ev
a /kBT

) , (48)

where the activation energy of recombination is described by (47). This relation
shows that the recombination rate coefficient, γk , increases as the number of atoms
in the cluster, k, grows.

Thus, we obtained all the coefficients describing the kinetics of growth and decay
of interstitial clusters. As the size of the cluster increases, the lifetime of the cluster
grows, the growth rate coefficient decreases and the recombination rate coefficient
increases. Therefore, starting from a certain m, the cluster growth rate becomes
negative (cluster decays). The m-cluster for which the growth rate equals zero is
determined by the relationship:

αmnmni = nm+1

τm+1
+ γm+1nm+1nv . (49)

The growth rate as a function of k has a sharp peak at some k = k∗. Depending
on the physical characteristics of the metal, the values of k∗ lie in the range between
2 and 10. According to [1], the cascade irradiation can form small clusters with a
number of atoms both smaller and bigger than k∗. Clusters having a size of the order
of k∗ quickly grow to a size of m, near which αk varies slightly (αk ≈ αm), and
k-clusters with k < k∗ decay. Therefore, if αk∗ is large, we can assume that only
interstitial atoms and m-clusters are formed in a cascade. This will be used in the
future.

The expressions for the kinetic coefficients are simplified for a large size of the
clusters:

τk = Cτ

√
k , αk = Cα

√
k

k + 1
, γk = Cγ

k
√
k

k + 1
,

where Cτ ≈ 7 × 102 s, Cα ≈ 2 × 1010 m3 s−1, Cγ ≈ 7 × 104 m3 s−1.
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The resulting formulas for the kinetic coefficients are approximate. They are
obtained for an elastic medium assuming a perfect geometric shape of dislocation
loops and equal average binding energy for atoms at the edge of the cluster. Account-
ing for the crystal structure of thematerial, the structure and size of the bonds between
atoms in the core of the dislocation, dislocation kinks and jogs leads to the fact that
the probability of the emission of atoms by a cluster is not the same for each atom.
A change of cluster size due to the absorption or emission of an atom can lead to a
significant change in the structure of the dislocation loop edge, including a noticeable
change in the probability of thermal emission of weakly bound atoms. The conse-
quence of the aforementioned is a local nonmonotonicity of generally monotonic
dependence of the kinetic coefficients on the size of the cluster. As shown below,
this can significantly change the size distribution of the clusters.

7 Evolution of Cluster Size Distribution
in the Process of Annealing

As follows from (37), the total number of interstitial atoms, both unbound and bound
in clusters, decreases monotonically during the annealing process. Of no less impor-
tance is the change of cluster distribution in size associated with the annealing.
Indeed, the decay of each cluster is accompanied by the emission of an interstitial
atom, which leads to a decline in the number of large clusters and the growth of small
ones.

Let us consider the kinetics of cluster decay, when the recombination can be
neglected and the lifetime of a cluster of a certain size, for example of a k ′-cluster,
is much longer than the lifetimes of larger clusters, i.e. τk ′ � τk for k ′ < k ≤ m.
Using this difference in lifetimes, one can build two approximations. The first one
is for time periods shorter than the minimum lifetime of clusters with k > k ′. In this
case, the decay of k ′-clusters can be neglected. Then, as a result of decomposition of
larger clusters, the density of k ′-clusters monotonically increases by the total density
of larger clusters, i.e. to nk ′,tot = ∑m

k≥k ′ nk .
On the contrary, at times greater than the lifetime of k ′-clusters (i.e. for t > τk ′),

the larger clusters can be considered to have disintegrated and their density assumed
to be zero. Along with this, the density of the k ′-clusters decreases exponentially
from the value nk ′,tot .

Consequently, the density of k ′-clusters increases rapidly, reaches a maximum
value then decreases monotonically to zero. The change in the distribution of cluster
sizes (i.e. over k) produces a maximum close to k ′. Hence at long times, which are
typical for the study of annealing, it is possible to restrict the consideration to clusters
with large lifetimes, the size of which is less than a certain finite size. The distribution
of size for this type of clusters has several maxima.

In order to understand the way the distribution in size of clusters evolves, let us
consider as an example the decay of clusters consisting of k and k + 1 interstitial
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atoms with densities n1 and n2, respectively. Equations describing the annealing
(decay) of the two types of clusters have the form

dn1
dt

= −n1
τ1

+ 2
n2
τ2

,

dn2
dt

= −n2
τ2

.

(50)

Consider a case when τ1 �= τ2. Then the change in the density of each type of cluster
is described by equations

n2 = n2,0e
−t/τ2 , (51)

n1 = n1,0e
−t/τ1 + τ1n2,0

τ2 − τ1

(
e−t/τ2 − e−t/τ1

)
, (52)

where n1,0 and n2,0 are the initial (for t = 0) densities of clusters. If the inequality
τ2n1,0 < τ1n2,0 is satisfied, then the change of density n1 in time has a maximum as
illustrated in Fig. 4 on the left. The maximum value of n1 is

nmax
1 =

{
τ2

τ1

[
1 − n1,0

n2,0

(
τ2

τ1
− 1

)]}−τ2/(τ2−τ1)

×
{
n1,0 + τ1n2,0

τ2 − τ1

([
τ2

τ1

(
1 − n1,0

n2,0

(
τ2

τ1
− 1

))]−τ1/τ2

− 1

)}
.

(53)

The time at which nmax
1 is achieved is

tmax = τ1τ2

τ2 − τ1
ln

(
τ2

τ1

[
1 − n1,0

n2,0

(
τ2

τ1
− 1

)])
.

If τ1 � τ2 then nmax
1 ≈ n1,0 + n2,0, in accordance with our previous discussions.

Otherwise (i.e. when τ2n1,0 > τ1n2,0) density n1 decreases monotonically as shown
in Fig. 4 on the right.

Approximations for long and short times can be easily obtained from (52). If
τ1 � τ2 then n1 ≈ (n1,0 + n2,0) exp(−t/τ1). In the case when τ2n1,0 > τ1n2,0
then, for short times t � τ1, we get an exponential decay n1 = n1,0 exp(−t/τ1)
with the characteristic time τ1. At long times t � τ2 we get an exponential decay
n1 = (τ1/τ2)n2,0 exp(−t/τ2) with a characteristic time τ2. In the opposite case,
τ2n1,0 > τ1n2,0, and for t � τ1, the value of n1 decreases exponentially with the
characteristic time τ2: n1 = (τ1/τ2)n2,0 exp(−t/τ2).

In the case of clusters with a greater number of different sizes, the kinetics of their
decay for a large time is determined by the clusters with relatively long lifetimes. The
change in the density of these clusters exhibits the same features as were observed
above. This is illustrated with examples given in Fig. 5, which shows the kinetics
of the decay of clusters consisting of ten or less atoms. It is specifically these long-
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Fig. 4 Normalized densities of clusters consisting of k- and (k + 1)-interstitial atoms (n1 and n2,
respectively), as functions of time for initial densities n1,0 = n2,0 = 1, and lifetimes τ1 = 1 s and
τ2 = 0.2 s (left), and τ1 = 0.2 s and τ2 = 1 s (right)

Fig. 5 The kinetics of the decay of clusters consisting of ten or less atoms with the correspond-
ing normalized densities n10, n9, . . . , n1. Lifetimes of all clusters are equal to 1 s, except for the
5-cluster with τ5 = 100 s. Initial values of all nk are equal to one.Maxima are observed for n5(t) and
for n1(t), i.e. for clusters with the longest lifetime (5-cluster) and for interstitial atoms, respectively

lived clusters that are most prevalent in the material and are responsible for the
modifications of its properties.

Measurements and calculations have shown that the binding energy of clusters is
often quite large, 2 to 3eV per interstitial atom. Therefore the lifetime of the cluster
will remain quite large even for temperatures close to the melting point. In this
case, the annealing of the clusters will occur mainly due to thermal recombination
of vacancies with interstitial atoms within the clusters. As shown above, the values
of the recombination rate coefficients, and consequently, the effective lifetimes of
clusters with similar sizes are close, especially for large clusters. In this case, one
can assume that γk+1 ≈ γk = γ , 1/τ = γ nev and we obtain for the density of the
clusters
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n2 = n2,0 exp
(−γ nevt

)
, (54)

n1 = (
n1,0 + γ nevn2,0

)
exp

(−γ nevt
)

. (55)

Function n1(t) has a maximum if condition n2,0 > n1,0 is satisfied.

8 Self-Sustained Annealing of Radiation-Induced Defects

In the process of annealing of the interstitial atoms and their complexes [3], as well as
of interstitial clusters, the energy stored by the crystal as a result of their formation
is converted into heat. Since all the kinetic coefficients depend exponentially on
temperature, the thermal-concentration nonlinear feedbackmay emerge, thus leading
to the self-sustained propagation of defect annealing.

Consider a situation where the crystal contains only m-clusters and their lifetime
is much longer than the lifetimes of the all clusters of smaller size. This means that
we can assume that a m-cluster immediately decays into m interstitial atoms, which
are absorbed by the sinks. The system (35)–(36) can therefore be simplified and
written in the form:

∂nm
∂t

= − nm
τm(T )

,

cρ
∂T

∂t
= κ

∂2T

∂x2
+ θ

nm
τm(T )

,

nm−1 = nm−2 = · · · = n2 = ni = 0 ,

(56)

where θ = mθi − Eb
m = mθi − ∑m

k=1 θk .
The resulting system is, up to notations, the same as (22)–(23), hence we will

omit index m for the sake of brevity. However, when simulating annealing in real
life, it is not possible to set the temperature of the irradiated sample to zero. This is
of fundamental importance, as in this case the state of the sample before annealing
is not stationary: there is spontaneous thermal annealing with a slow but nonzero
rate – that is known as the “cold-boundary problem” (for detail see [20] and the
references therein). Under this condition the system of equations (56) does not have
a travellingwave solution. A perturbation (i.e. an increase in temperature), created on
the boundary, propagates through the sample due to thermal-concentration feedback
but its magnitude gradually reduces because of the spontaneous annealing of defects.
The study of such a process requires the use of numerical methods.

This numerical study should be performed for a specific finite geometry and
prescribed initial and boundary conditions. As before, we select, for the sake of sim-
plicity, an one-dimensional geometry and consider a finite sample of length L . We
are looking for the distribution of the density of defects n and of the temperature
T over x ∈ [0, L] as functions of time t , i.e. n(t, x) and T (t, x). The evolution
of these quantities for t ≥ 0 is described by the coupled set of Eq. (56) with the
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temperature-dependent lifetime given by the Arrhenius relationship (24). This math-
ematical problem can be classified as a reaction-diffusion system in the limit where
the defect diffusion coefficient is set to zero.We consider a thermally isolated system
and apply the homogeneous Von Neumann boundary conditions4

∂T

∂x

∣∣∣∣
x=0

= ∂T

∂x

∣∣∣∣
x=L

= 0 . (57)

We assume that there is some prescribed distribution of defects and temperature at
the initial moment t = 0. In this study the initial density of defects is chosen to be
equal to n0 over the whole interval:

n (t = 0, x) = n0 , x0 ≤ x ≤ L . (58)

The initial temperature is T0 > 0 everywhere except for a narrow near-surface layer
of size x0 at the left boundary, where the temperature is increased to T1 > T0:

T (t = 0, x) =
{
T1, 0 ≤ x ≤ x0 ;
T0, x0 ≤ x ≤ L .

(59)

The geometry of the problem and initial distributions of the defect density and of the
temperature are schematically presented in Fig. 6.

The non-linear problem (24), (56)–(59) was solved numerically by applying both
the Crank–Nicolson and the Implicit Euler finite difference schemes. These discreti-
sation schemes result in a system of nonlinear equations, which was solved with
Newton iterations at each time step. The Jacobian matrix used in the Newton method
was obtained analytically and the system of linear equations was also analytically
reduced to a tridiagonal form, which can be efficiently solved with the Thomas
algorithm.

Calculations were performed for materials with characteristics of aluminium and
steel. Geometrical parameters were chosen as follows: L = 10 cm and x0 = 1mm.
However, in order to investigatemechanisms and features of a self-sustained radiation
defect annealing propagation, the parameters were varied in wide ranges.

The numerical studies have shown, that depending on material properties and
initial conditions (temperature and defect density values) the self-sustained annealing
can proceed in two different regimes. In the first regime the annealing front, soon
after some initial transient, propagates at a constant speed and both temperature and
defect density have smooth, monotonic sigmoid-shaped profiles that almost do not
vary with time. This regime was observed, for instance, in the case of aluminium,
when T0 is set to a room temperature of 300K and the temperature of the preheated
layer T1 = 700K. The temperature and defect density profiles in this case are shown

4In principle the same zero flux condition across the borders holds for the density of defects. But
this condition is satisfied automatically because we consider a problem in which the diffusion of
defects is negligibly small.
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Fig. 6 Geometry of the problem (bottom) and initial temperature and defect density distributions
(top)

Fig. 7 Example of self-sustained annealing propagation with monotonic temperature, (top) and
defect density (bottom) profiles. The defect density after multiplying by a constant factor θ/cρ is
reported. Material parameters correspond to aluminium

in Fig. 7 for initial 2.5 s. Note that in the figure the defect density is reported after
multiplying by a constant factor θ/ρc. The resulting quantity has a physical meaning
of the temperature increase of an isolated piece of material after all the defects
have been annealed. Other parameters used in the example are Ea/kB = 6 383K,
θn0/ρc = 256K, κ = 220Wm−1 K−1 and β0 = 1 × 107 s−1.

In the second regime, the self-sustained annealing propagates at a speed which
oscillates around some average value that lies in a range from one to several centime-
tres per second. Along with this, a substantial deviation of the temperature profile
from the sigmoid shape occurs in a narrow annealing zone. The temperature experi-
ences periodic and, generally, non-harmonic oscillations, during which it can exceed
its asymptotic value, T∞. The shape of the defect density profile does not change
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Fig. 8 Example of pulsing self-sustained annealing propagation with temperature (top) and nor-
malised defect density (bottom) profiles dependent on time and space. The defect density after
multiplying by a constant factor θ/cρ is reported. Material parameters correspond to steel

so drastically: it remains essentially sigmoid-like although its tilt slightly oscillates.
Such behaviour of the temperature and of the defect density in the annealing zone
may apparently be associated with an instability caused by the pre-heating of the
non-annealed material. Since the majority of defects is annealed at a temperature
almost equal to T∞, in first approximation, the wave propagation can be considered
step by step. Namely, due to the energy release in the process of defect annealing, a
non-annealed region adjacent to the front is heated up to a temperature value close
to T∞ with a subsequent annealing of defects in this area. Then the adjacent non-
annealed layer warms up, etc. If the front moves with a constant speed, the depth of
the heated layer must be constant. However, if, as the result of a fluctuation, more
defects are annealed, then more energy is released and a larger area warms up, which
leads to a further increase in the number of annealed defects and a loss of stability
of the annealing propagation.

A mathematical justification for a similar instability was given, for example in [6,
10], where the Evans function method was employed to examine the linear stability
problem. It has been shown that the solution, which corresponds to the travelling
wave, becomes unstable as the result of a Hopf bifurcation. The Hopf bifurcation
develops via a Bogdanov–Takens bifurcation, and leads to oscillations in the shape
of the travelling wave. However, our results for the propagation of defect annealing
show development of oscillations only for the temperature part of the travelling wave
and for the speed of wave propagation.

The oscillating regime of annealing propagation was observed for a material with
the parameters of steel. T0 is set to a room temperature of 300K again and the
temperature of the preheated layer T1 = 450K. The remaining parameters used in
this example are Ea/kB = 15 090K, θn0/ρc = 175K, κ = 74.5Wm−1 K−1 and
β0 = 6.4 × 1016 s−1. The temperature and defect density profiles for the first 3 cm
and 1s, calculated in this case, are shown in Fig. 8. In this figure one can clearly see
oscillations of the front speed and temperature.
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Fig. 9 Dependence of the annealing propagation speed on space (left) and the corresponding spatial
Fourier spectra (right) for different values of initial temperature, T0. Graphs on the top correspond
to T0 = 330K, graphs in the middle—T0 = 340K, and graphs in the bottom—T0 = 350K

It is therefore of interest to study the dependence of the frequency of speed oscil-
lations on the initial temperature of the material T0, which was varied in the range
from 300 to 375K with steps of 10–20K. In each calculation the parameters of iron
were used, and graphs of the annealing front speed as functions of time, u(t) and
of space, u(x), were built. Also, spatial and temporal spectra of the velocity were
obtained by applying the discrete Fourier transform.

The results of the calculations corresponding to the different initial temperature
values of 330, 340 and 350K, are presented in Fig. 9 for spatial, and in Fig. 10
for temporal dependencies, respectively. In these figures the temporal and spatial
intervals are chosen to reveal the structure of the oscillations, and the initial point of
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Fig. 10 Dependence of the annealing propagation speed on time (left) and the corresponding
frequency spectra (right) for different values of initial temperature, T0. Graphs on the top correspond
to T0 = 330K, graphs in the middle—T0 = 340K, and graphs in the bottom—T0 = 350K

the interval—to minimize the influence of initial and boundary conditions. As one
can see on the graphs, in the studied temperature interval, as the initial temperature
grows, the frequency of oscillation slightly increases but the number of harmonics
with significant amplitudes decreases. Temporal oscillations have a more complex
structure than spatial ones, what is reflected in the number of significant harmonics
observed in the graphs.
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9 Summary

The analysis of thermal annealing of radiation-induced defects is of both funda-
mental and practical importance to the radiation material science. Annealing is an
effective way to repair materials from radiation-induced damage. Additionally, it can
be used to determine what kinds of defects are present in the metal, and obtain their
characteristics.

Annealing is a complex, multi-step process, which involves the ensemble of
defects of different types, as well as their interactions. A key role in the kinetics
of annealing is played by clusters with relatively long lifetimes. Their accumulation
in the metal during the process leads to a change in the cluster size distribution, and
makes a major contribution to the duration of annealing.

Depending on the temperature regime of the annealing process, one distinguishes
between isothermal and isochronous annealing. The properties of their kinetics
depend on non-linear interactions and feedbacks, which are intrinsic to the metal
microstructure. One of these interactions occurs due to the redistribution of fluxes of
point defects between sinks (clusters, dislocations, etc.). This redistribution happens
because the rate of absorption of point defects by clusters (in other words the rate
of growth of clusters) depends on the size of the cluster. The redistribution of fluxes
leads to the acceleration of the growth of big clusters and the deceleration of the
growth of small ones. Preference in the absorption of interstitial atoms compared to
the absorption of vacancies also depends on the size of the cluster. In general, big
clusters can grow by virtue of the dissolution of small ones, due to these interactions.
This leads to the appearance of several strong maxima in the size distribution of
clusters.

Another nonlinear interaction is thermal-concentration feedback. This leads to a
stronger than exponential dependence of the number of annealed defects on time,
and is the mechanism of propagation of self-sustained annealing. The profile of
the propagation depends on the annealing conditions and the state of the metal at
the beginning of the annealing. Depending on the conditions, the propagation of
annealing may be impossible, or the profile of propagating annealing may look like
a smooth step, or the rate of propagation and the profile of annealing may oscillate
in time and space. The reason for the development of the more complex propagation
regime is an instability which is connected with the preheating of an as yet un-
annealed area of metal.
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Moving Embedded Solitons in the Discrete
Double Sine-Gordon Equation

Yaroslav Zolotaryuk and Ivan O. Starodub

Abstract The soliton mobility in the discrete double sine-Gordon (DDbSG) equa-
tion is investigated. This equation is used as a model of various physical applica-
tions, including the arrays of small Josephson junctions. In particular, it describes the
array of asymmetric three-junction superconducting quantum interference devices
(SQUIDs) with one junction in one arm of the SQUID and two junctions in another
arm of it. TheDDbSG equation is investigated both in the hamiltonian limit and in the
presence of dissipation and dc bias. The existence of perfectly localized embedded
solitons that can propagate with some selected values of velocity has been demon-
strated numerically with the help of the pseudo-spectral method. The embedded
soliton existence diagram is constructed on the parameter plane. The signatures of
the embedded solitons on the current-voltage curves of the array are discussed.

Keywords Kinks · Embedded solitons · Josephson junctions · Peierls–Nabarro
potential · Discreteness · Discrete sine-Gordon equation · Discrete double
sine-Gordon equation · Discrete nonlinear Klein–Gordon equation

1 Introduction

Solitons are ubiquitous in nature [46]. According to the standard mathematical def-
inition, solitons have three crucial properties. They are (i) spatially localized, (ii)
propagate with the constant shape and velocity and (iii) collide elastically. This is
true for the systems that are integrable with the inverse scattering transform method.
If the system is non-integrable, in the continuum case the first two conditions are usu-
ally fulfilled, but the condition (iii) normally is not. If we turn to discrete systems, the
condition (ii) holds or not depending on the type of the solitary waves and depending
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Fig. 1 Velocity spectrum for kinks in the typical continuous Klein–Gordon equation (left) and its
discrete analogue (right)

on the system properties. If one takes topological solitons, their mobility in discrete
media is generally suppressed [41]. The reason for this is the resonance between
the topological soliton and the linear spectrum of the system. More precisely, for
any topological soliton velocity a plane wave with the same phase velocity can be
excited. This does not happen in the continuous systems, where solitons and phonons
occupy different velocity sectors. The supersonic acoustic solitons in the lattices with
anharmonic intersite interaction usually do not have this resonance problem, because
their speed exceeds the speed of phonons [24].

Since the early numerical studies of the topological soliton mobility in discrete
media [41] researches have focused their efforts on the different ways to obtain free
discrete soliton motion. Apart from the discrete integrable systems [38], two main
paths have been undertaken in that direction.

In the first case, the main focus has been made on finding conditions when the
Peierls–Nabarro (PN) barrier becomes zero [25, 30, 49]. This can be achieved, for
example, by the special discretization of the continuous system [7, 18, 32, 47, 48].

Another direction, towhich the present article also belongs, is to find exact solitary
travelling-wave solutions that propagate freely along the lattice. In the pioneering
paper by Schmidt [45] a discrete nonlinear Klein–Gordon (DNKG) class model has
been constructed with an exact localized kink solution in the explicit form for one
value of velocity. This approach has been generalized in [23]. Later it has been
demonstrated that in many discrete kink-bearing systems there exist exact moving
topological solitons. This has been shown first numerically in [1, 44] for the Peyrard–
Remoissenet model [40], and later for the double-Morse model [31]. Later a number
of more rigorous analytical results have followed [19, 39]. The main result of this
research can be briefly summarized by Fig. 1.

Suppose there is a kink-bearing nonlinear Klein–Gordon model utt − v20uxx +
V ′(u) = 0 with the potential V (u) that has at least two equivalent minima, and its
discrete analogue ün − v20(un+1 − 2un + un−1) + V ′(un) = 0. Then, if the topologi-
cal solitons of these equations are considered, the former has the continuous velocity
spectrum v ∈ [−v0, v0], while the velocity spectrum of the latter is discrete. An
important point is that the velocities of the discrete nonlinear Klein–Gordon model
may be non-zero. Further extension of these results have been made on the discrete
models with anharmonic inter-particle interactions [5, 6, 57], where moving super-
sonic kinks were found. The existence of non-topological discrete moving solitons
was reported in [34, 36].
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These moving solitons that exist for some selected values of velocity are discrete
embedded solitons. According to the initial definition [16], embedded solitons are
solitons that exist despite the resonance with the linear spectrum of the underlying
system. Moving lattice solitons fit perfectly into this definition because they exist
despite the fact that for any soliton velocity a linearwavewith the same phase velocity
can be excited. Apart from the discrete media, they also exist in various continuous
systems like the sine-Gordon [15] and the double sine-Gordon equations [10] with
the fourth order (uxxxx ) dispersion term. This term drastically changes the linear
dispersion law and, as a result, the resonance between the soliton, moving with any
velocity, and the linear waves becomes unavoidable. Also, the models with nonlocal
dispersion, where the second order dispersion term uxx is replaced by the term Ûu
with Û being some integral operator, can support embedded solitons [2–4].

In this articlewe are going to study the properties of embedded solitons in the array
of Josephson junctions that is described by the discrete double sine-Gordon equation.
Also we will demonstrate how these solitons can be observed experimentally.

The article is organized as follows. The next section the model and the equations
of motion are described. In the Sect. 3 the static and dynamic properties of embedded
solitons in the hamiltonian limit are investigated. The Sect. 4 is focused on the soliton
motion in the presence of dissipation and external bias. Discussions and conclusions
are given in the last section.

2 Discrete Double Sine-Gordon Equation

Discrete double sine-Gordon (DDbSG) equation is written as

φ̈n − κ (φn+1 − 2φn + φn−1) + 2

1 + 2η

(
η sin φn + sin

φn

2

)
= 0 , n = 1, 2, . . . .

(1)
It emanates from the discrete nonlinear Klein–Gordon (DNKG) type Hamiltonian

H =
N∑

n=1

[
φ̇2

n

2
+ κ

2
(φn+1 − φn)

2 + V (φn)

]
, (2)

V (φ) = 2

1 + 2η

[
η(1 − cosφ) + 2

(
1 − cos

φ

2

)]
. (3)

The dot in Eq. (1) denotes the differentiationwith respect to time, κ is the discreteness
constant and η is the shape parameter that controls the on-site potential V (φ). If
0 ≤ η ≤ 1/2 the potential V has only one minimum in the interval −2π < φ ≤ 2π
with V (0) = V (4π) = 0. If η > 1/2 a pair of local minima appear for φ = ±π .
They remain local for any η > 0, i.e. V (2π) > V (0). The discrete sine-Gordon
(DSG) equation is restored in two limits, η = 0 and η = +∞. In the former case
the DSG equation is 4π -periodic while in the latter case it is 2π−periodic. There
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Fig. 2 Schematic view of
the SQUID array. White
colour stands for the
superconducting electrodes
and the insulating barriers
are marked by grey.
Reproduced with permission
from [56]. Copyright (2015)
by American Physical
Society

rl
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exists a number of physical systems that can be modelled by the double sine-Gordon
(DbSG) equation, including ultrashort optical pulses that propagate in degenerate
media [20], spin waves in superfluid 3He [33], nonlinear waves in the XY model
with piezoelectric coupling [43], asymmetric arrays of Josephson junctions (JJs) [37],
arrays of the superconductor-ferromagnet-superconductor (SFS) or superconductor-
ferromagnet-insulator-superconductor (SFIS) junctions [26, 27], etc. The adequate
description of the last two systems requires an essentially discrete approach while
for the rest it was sufficient to work with the continuum DbSG equation. Properties
of the continuous DbSG equation have been studied extensively in [17].

Let us focus on the asymmetric array of JJs, first introduced in [37]. The elemen-
tary cell of such an array is an asymmetric three-junction SQUID (superconducting
quantum interference device) with two junctions in its left arm and one junction in
its right arm, as shown in Fig. 2. The elementary cell of this array is asymmetric,
but the whole array is not, because it remains mirror-symmetric with respect to the
center of any one-junction or two-junction arm. Generally, it is well-known that any
periodic chain of two alternating elements · · · − A − B − A − B − · · · is mirror-
symmetric. For the more detailed scheme one might consult the original paper [37].
The dynamics of each junction is described by the Josephson phases, φ(l,r)

n (t). They
are the phase difference between the phases of the wave-functions of the supercon-
ducting electrodes of the junction. The superscripts l and r stand for the left and right
arms of the SQUID, respectively. If the loop size is small the single phase difference
φn = φ(l)

n = φ(r)
n can be introduced [37]. The array is studied within the resistively

and capacitively shunted junction model (the RCSJ-model)[8]. Based on this model
and with the help of the Kirchhoff laws and the Josephson laws [8] the equations of
motion of such an array have been derived in Ref. [37]. The physical meaning of the
parameters κ and η of Eq. (1) is as follows:

Discreteness constant κ: is responsible for the inductive coupling between the cells
of the array and equals κ = Φ0

2π L Ic
, where Φ0 = π�

e is the magnetic flux quantum,

L J is the elementary cell inductance and Ic = I (r)
c + I (l)

c
2 with I (l,r)

c being the
critical currents through the left and right arms of the cell, respectively.
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Asymmetry parameter η: The ratio η = I (r)
c

I (l)
c

> 0 of the critical currents that
describes the left-right asymmetry of the SQUID.

At this point the physical meaning of the limits η → 0 and η → +∞ can be
explained. In the former case the left arm of the SQUID dominates as I (r)

c → 0,
while in the latter case only the right arm works, I (l)

c → 0. In both cases we arrive
to the standard JJ array where the left-right asymmetry of the elementary cell dis-
appears. The SFS or SFIS junction array consists of the parallel small junctions
and is similar to the standard JJ array [50, 51, 53], but its current-phase relation has
an additional second-harmonic term: Is(φ) = I (c)

1 sin φ + I (c)
2 sin 2φ. The respective

equations of motion for this systemwill be again the DDbSGEwhich can be reduced
to the Eq. (1) after the elementary substitution φ → 2φ.

If the dissipative effects due to the normal electron flow are taken into account,
the term αφ̇n should be added to the l.h.s of Eq. (1). Introduction of the uniformly
applied dc bias is achieved by the constant term in the r.h.s. of that equation. More
details will be given in Sect. 4. The physical meaning of the soliton in the JJ arrays
is the following [8, 50]: it carries the magnetic flux quantum and is also known in
the literature as fluxon or Josephson vortex.

The dispersion law has the form typical for the discrete nonlinear Klein–Gordon
equations:

ωL(q) =
√
1 + 4κ sin2

q

2
. (4)

Note that it depends solely on the coupling constant κ and does not depend on the
asymmetry parameter η. In fact, the dispersion law for the standard DSG equation
has exactly the same form.

The boundary conditions will be specified in the next sections.

3 Hamiltonian Limit

In this section we study the soliton mobility in the hamiltonian limit α = 0 of the
non-driven array γ = 0. Therefore, the system is described by the DDbSG Eq. (1).

3.1 Sliding Velocities

We are interested in the topological travelling wave (TW) solutions that propagate
along the lattice with the constant shape and velocity:

φn(t) = φ(n − vt) ≡ φ(z) , z ≡ n − vt . (5)
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Thus, the TW solution must satisfy the differential-delay equation with the advance
and delay terms:

v2φ′′(z) − κ [φ(z + 1) + φ(z − 1) − 2φ(z)] + V ′[φ(z)] = 0 . (6)

This equation is to be solved numericallywith the help of the pseudo-spectralmethod,
developed in [21, 22, 28]. The unknown solution

φ(z) � φ0(z) +
k∑

n=0

cn sin

(
2πn

L
z

)
, (7)

is represented as a superposition of the initial approximation φ0(z) and the Fourier
series. The purpose of the function φ0(z) is also to satisfy the anti(kink) boundary
conditions. The problemwill be solved on the finite domain z ∈ [−L/2, L/2], where
the residue φ(z) − φ0(z) is supposed to be antisymmetric. This is what we need if
we study the annular JJ array, for which the periodic boundary conditions (with L
being the length of the lattice) is a natural situation. If we are interested in the local-
ized solution on the infinite interval, the solution (7) is an excellent approximation,
provided the characteristic width of the solitary wave ∼ μ−1 
 L and the number
of modes k in the expansion is large enough. The expansion (7) is substituted into
Eq. (6) and the interval z ∈ [−L/2, L/2] is broken into k collocation points. Con-
sequently, the differential equation (6) turns into the nonlinear algebraic equation
for the set of coefficients ci , i = 1, 2, . . . k, which can be solved with the Newton
iteration method.

We are interested in the localized solutions with decaying tails

φ(z) →
{

0 , z → −∞
4π Q , z → +∞ ,

(8)

where Q is the topological charge.
Numerical solution of Eq. (6) yields the following results. There exist two types

of TW solutions. The first one is the partially delocalized bound state of the soliton
with the non-decaying oscillating planewave asymptotics, also known as nanopteron
[11]. These solutions appear to be the natural consequence of the resonance that takes
place between the soliton and the plane waves (4). In other words, for any soliton
moving with some velocity v there exist at least one plane wave with the same phase
velocity v because there is always at least one root of the equation

vq − ωL(q) = 0 . (9)

The reason of this behaviour of the roots of Eq. (9) is based on the existence of the
gap in the linear spectrum (4). If such gap is absent, as it happens for the acoustic
chains with anharmonic interaction and without the on-site potential, there will be no
real roots of Eq. (9) except the trivial one q = 0 (provided the soliton is supersonic
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(|v| > 1). As a result, discrete acoustic supersonic solitons exist as exact solutions of
acoustic lattices and form a one-parametric family of solutions [22, 24]. The second
type of solutions are localized moving solitons (8) that exist for some selected values
of v.

The well-known conventional discrete models like DSG or discrete φ4 equation
have only nanopterons [13, 41]. However, in theDDbSG equation there exists at least
one velocity for which the TW solution has no oscillating tail. These are embedded
solitons which are known to exist in a number of discrete systems [1, 31, 39, 44,
45]. Embedded soliton existence is clearly demonstrated in Fig. 3, where we present
the results of the numerical solution of Eq. (6). In that figure the dependence of the
amplitude A of the plane wave in the nanopteron tail is plotted as a function of the
soliton velocity. In the panel (a) the A(v) functions are given for fixed discreteness
κ = 0.4 and for the different values of the asymmetry. In the panel (b) the asymmetry
is fixed to η = 0.75 while the discreteness is varied. The clear result is a very sharp
minimum at certain value of velocity. Note that there is no such minima for the curve
1 in the panel (a). With high degree of certainty we can claim that A = 0 at this
velocity. In addition, we have done calculations with other values of the period L
in the Fourier expansion (7) and this velocity value does not depend on L . Further
on it will be referred to as the sliding velocity, because the soliton slides along the
lattice without causing any radiation. The insets in the panels (a) and (b) show the
soliton profiles at the sliding velocity (marked by black) as well as the nanopteron
profileswith oscillating tails (marked by red). In the panel (c) the parameter values are
fixed to η = 5, κ = 1. Here the existence of three embedded solitons with different
velocities is demonstrated. The shapes of these solitons are given in Fig. 4. The
fastest one [see Fig. 4a, b] looks very much similar to those in the insets of Fig. 3a,
b. Note that its velocity profile φ′(z) has only one maximum. The second solution,
shown in Fig. 4c, d, has three inflexion points in the core of the soliton profile and
the velocity profile has two maxima and one minimum between them. Finally, the
slowest soliton is presented in Fig. 4e, f and its velocity profile is even more complex.
It has threemaxima, two big ones and the small one in between them.We shall briefly
comment on these solutions. The asymmetry parameter value η = 5 means that we
are quite close to the 2π DSG limit of (3). In other words, the local well in the
potential V (φ) at φ = 2π is very deep and very close to the global minimum at
φ = 0. Then the solutions, presented in Fig. 4 can be treated as being very close to
the bound states of two solitons in the ordinary DSG model, first reported in [41]
and later investigated numerically by the pseudospectral method in [1, 44]. They
exhibit the same structural properties, including the oscillations in the centre of the
φ′(z) profile. Numerical simulations [56] with the embedded solitons, obtained by
the pseudo-spectral method have shown their dynamical stability.

Yet another observation can be made from Fig. 3. Everywhere away from the
sliding velocity the dependences A(v) have rather shallow minima separated by the
sharp maxima. Especially well these maxima can be seen in the panel (a). In fact,
they are not maxima but the singularities that appear because the numerical scheme
is not able to find a solution with the appropriate wavelength. This is a consequence
of the boundary conditions and these singularities depend on the length L . For the
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Fig. 3 a Dependence of the
tail amplitude A on the
moving soliton velocity
κ = 0.4, η = 0.26 (curve 1,
red), η = 0.27 (curve 2,
blue) and η = 0.28 (curve 3,
black). The inset shows the
soliton profile for
v = 0.192302 (red) and
v = 0.1992 (black).
Respective position of these
solutions on the A(s) curve
are marked by ◦; b The same
for the fixed η = 0.75 and
κ = 0.5 (black,1), κ = 0.45
(2, blue) and κ = 0.4 (3,
red), the soliton profiles
shown in the inset
correspond to v = 0.4219
(black) and v = 0.4 (red);
c The same for η = 5, κ = 1.
The length of the interval is
L = 30 for all cases

(a)

(b)

(c)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Profiles of the embedded solitons that correspond to the zeroes of the A(s) dependence in
Fig. 3c. The soliton velocities are v = 0.806421 (a, b), v = 0.581933 (c, d) and v = 0.35 (e, f)

velocity that lies between the two adjacent singularities the nanopteron solution
has a certain fixed number of small-amplitude wavelength that fit into the interval
[−L/2, L/2]. The wavelength equals 2π/q where the wavenumber q is the root
of Eq. (9). In the case of several roots there exist several nanopteron solutions with
different wavelengths.

Finally, we discuss the dependence of the embedded soliton velocity on the system
parameters as well as existence diagram on the parameter plane (η, κ). These depen-
dencies are given in Fig. 5. The dependence of the sliding velocity vk (k = 1, 2, . . .)
on the asymmetry parameter η for two different values of κ is plotted in Fig. 5a.
For the larger κ the soliton velocity is larger, which is no surprise because less dis-
crete lattices sustain more mobile kinks. As we have learned from the Figs. 3c and 4,
the velocity spectrum for the fixed parameter values can have more than one sliding
velocity. Therefore, all existing sliding velocities have been plotted in Fig. 5a for both
values of κ . The black lines correspond to κ = 1 and the red ones to κ = 0.5. The
difference between the different branches that belong to the same κ is demonstrated
in Fig. 4. The dependencies vk(η) do not fall down to the zero velocity but terminate
at some fixed velocity value. Such behaviour is in complete accordance with the
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(a) (b)

Fig. 5 (Left) The value of the sliding velocity vk (k = 1, 2, 3) as a function of the asymmetry
parameter η for different values of the coupling constant: κ = 1 (black) and κ = 0.5 (red). Different
markers correspond to the different velocity branches vk . The solid lines are the guides for an eye.
(Right) The existence diagram on the parameter plane (κ, η). One sliding velocity exists in the
green area, two sliding velocities exist in the red area and there is no sliding velocities in the white
area. All results were obtained for L = 30

results of Ref. [1] where the bottom limit for the value of the kink sliding velocity
has been established. According to this criterion, an embedded soliton cannot exist
if for its velocity value v the Eq. (9) has more than one root. It is easy to see that for
κ = 1 there is only one root if v > 0.2444. Otherwise, for the smaller values of v
there are three or more roots, but never one. The lowest sliding velocity value for all
three branches is in good accordance with v � 0.24. Similarly one can observe good
accordance for κ = 0.5, where the lowest bond is v � 0.1906.

Suppose one parameter of the pair (η, κ) is fixed and we slowly increase another
one. Then, for some critical parameter value, an embedded soliton appears. This is
illustrated in Fig. 3a, where small change of η causes a sudden appearance of the
sliding velocity. Therefore, it is possible to draw a curve on the (η, κ) plane, that
separates the areawhere no embedded soliton is possible (either because the coupling
is too weak to support soliton motion or η is too small so that we are effectively in
the DSG limit) from the area, where at least one embedded soliton exists. These
areas are shown by white and green in Fig. 5b, respectively. If both η and κ are large
enough, two embedded solitons can exist, as shown by the red section of the upper
right corner of the existence diagram. For very large values of η and for small κ the
existence diagram may look more complex. This is because for the small values of κ

there exist many disjointed intervals on the velocity axis, where Eq. (9) has only one
root. Thus, it is possible that several solitons with different sliding velocities coexist.
As a result, the existing diagram for η � 1, κ 
 1 may look more complex than just
the green-white borderline.
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3.2 Static Properties

Taking into account the results on the previous subsection, it is necessary to discuss
the application of the well-known concept of the Peierls–Nabarro (PN) potential
to this problem. It is well known that the PN potential models the influence of the
lattice on the topological soliton mobility [13]. For weakly discrete lattices the PN
potential can be introduced perturbatively, see, for example, [29] or the references
in the review [13]. As a result, the discrete equation that is governed by the DNKG
hamiltonian of the type (2) is approximated by the newtonian equation of motion
Ms Ẍc + V ′

P N (Xc) = 0, where Ms is the soliton mass, Xc(t) is its center of mass,
and VP N (X) = VP N (X + 1) is the PN potential, which is, obviously, periodic.

The PN barrier is defined as

ΔEP N =
∣∣∣∣ max

X∈[0,1] VP N (X) − min
X∈[0,1] VP N (X)

∣∣∣∣ , (10)

It is the amount of energy, required for the soliton to travel one lattice site. The
dependence of the PN barrier on the asymmetry parameter η is presented in Fig. 6. It
appears that the dependence has a clear minimum and the value of ΔEP N decreases
significantly comparing to the DSG limit (η = 0). This decreasing constitutes several
orders of magnitude. The PN barrier never disappears completely, however can be
barely visible on the graph, as for κ = 0.5, η ∈ [0.12, 0.14]. It is important to note
that near the minimum of ΔEP N (η) the static kink solutions undergo a transition,
coined in [31] as stability switching. Within this transition the PN potential gradually
changes, as shown in the left inset of Fig. 6. As η increases, its minima transfer
from the half-integer values of X to the integer values of X . Inside this transition a
new local minima appears for X = n, n ∈ Z. It becomes deeper as η increases. At
some point both the minima at n and n + 1/2 become equivalent. Eventually the
minima at the half-integer value of X becomes the main one. This transition means
that the stationary kink state which is centred between the sites (shown in the right
inset by ◦) loses its stability and the site-centred state (shown in the right inset by
�) becomes the minimum of the total lattice energy. The respective kink solutions
undergo a cascade of the pitchfork bifurcations, for details see [31].Multiple stability
switchings for the DNKG models with the Peyrard–Remoissenet potential [40] and
with the double-Morse potential [31] have been reported. There is an interesting
observation (reported in [23, 31, 44] as well as in this article), that states that if
the static DNKG model supports stability switching then the respective dynamical
equation supports embedded solitons. No rigorous proof of this fact is known so far.

Thus, we see that the possibility of the free soliton motion is possible despite the
non-zero PN barrier. Moreover, the minima of the PN barrier, seen in Fig. 6 lie in the
white area of the existence diagram Fig. 5b.
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Fig. 6 Height of the Peierls–Nabarro potential as a function of the asymmetry parameter η for
κ = 0.25 (blue) and κ = 0.5 (red). The left inset demonstrates the shape of the PNpotential VP N (X)

for the selected values of η and for the value of κ . The right inset shows the static soliton profiles
that are local minima of the total energy at κ = 0.5, η = 0.122 (red,◦) and η = 0.135 (black, �)

4 Dissipative Dynamics

Now we focus on more physically realistic situation when, the dissipation and exter-
nal dc-bias are present. In that case the equations of motion (1) for the array should
be complemented by the two following terms:

Dissipative term αφ̇n: takes into account the current of normal electrons across
the junction.

Dc bias γ : takes into account external dc current, which is applied to each cell of
the array.

As a result we shall work with the dissipative and biased DDbSG equation

φ̈n − κ (φn+1 − 2φn + φn−1) + 2

1 + 2η

(
η sin φn + sin

φn

2

)
+ αφ̇n = γ,

n = 1, 2, . . . , N . (11)

The circular array is to be considered, thus, the boundary conditions read φn =
φn+N + 4π Q, where Q is the total topological charge, i.e., the total number of kinks
and anti-kinks trapped in the ring.

The current-voltage characteristics (CVCs) provide the necessary information
about the JJ array dynamics and are accessible through experimental measurements.
The average voltage drop is defined as
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V̄ = 1

N

N∑
n=1

lim
t→∞

1

t

∫ t

0
φ̇n(t

′)dt ′ . (12)

Since Eq. (11) is dissipative, we are going to deal with its attractor solutions. If there
is a solution that corresponds to the soliton with certain Q that moves along the array
with the constant velocity v, on the large times t � α−1 the Josephson phase φn(t)
will receive the 4π Q increment every time the soliton passes the nth junction. As a
result, this soliton will produce the average voltage drop V̄ = 4Qπv/N . Apart from
the circular array one can consider the linear JJ array. The boundary conditions will
be different, but the main physics will be the same. The soliton will travel along the
array, bounce from the boundary and travel back with the velocity −v and with the
opposite topological charge. As a result, the phase φn(t) should receive the increment
8π Q after each visit of the site n by the soliton. The average voltage drop will be
two times larger comparing to the circular array case, V̄ = 8Qπv/N .

The numerically obtained CVCs are given in Fig. 7. The coupling constant and the
array sizewere fixed to κ = 0.5 and N = 30, respectively, whilewe have changed the
asymmetry parameter η and the damping constant α. For the sake of brevity, we have
chosen the system parameters in such a way that there is only one sliding velocity or
no such velocities at all. Also, we have restricted ourselves to the one-soliton case
Q = 1.

First we briefly recall the results of the continuum approximation [56]. In this
approximation one can take the exact one-soliton solution [14, 17] φ(x, t) = 2π +
4 arctan

{
(1 + 2η)−1/2 sinh

[
(x − vt)/(1 − v2)1/2

]}
of the continuous double sine-

Gordon equation φt t − φxx + 2
1+2η

(
η sin φ + sin φ

2

) = 0. Then the energy balance
approximation [46] has to be applied. Its main point states that the total power
V̄cγ , applied to the soliton is compensated by the dissipation, V̄cγ = −Pdiss . The
dissipative losses Pdiss = −α

∫ +∞
−∞ φ2

t dx can be easily calculated when the exact
soliton solution is plugged in. As a result the following equation for the average
voltage drop V̄c is obtained:

V̄c = √
κ
4πv∞

N
= √

κ
4π

N

[
1 + Φ2(η)

(
4α

πγ

)2
]−1/2

, (13)

Φ(η) = 1 + 1√
2η(2η + 1)

arctanh

√
2η

1 + 2η
.

This formula is very similar to the well-known McLaughlin–Scott result for the
soliton motion in the ordinary long JJ [35]. It is reduced to the McLaughlin–Scott
formula in the both limits: η → 0 and η → ∞. The continuum version is plotted
here mainly as a reference point, but appears to work surprisingly well even in this
strongly discrete case.

Nowwe focus on the principal differences between the solitonmobility in discrete
and continuous media. The numerically computed CVCs are shown in Fig. 7 by the
different markers while the solid line corresponds to the CVC (13), obtained from
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the continuum approximation. The soliton velocity in the continuous JJ is defined
uniquely by the ratio γ /α and, as one can see in the CVCs in Fig. 7, the respective
characteristics are continuous functions that pass through the origin. There are two
main differences in the discrete case:

(i) the CVCs do not pass through the origin;
(ii) one continuous branch is replaced by the cascade of roughly parallel branches.

The first difference is the natural consequence of the discreteness, because some
finite bias is always needed to overcome the lattice pinning. The second difference is
caused by the boundary conditions and by the soliton coupling with the linear modes
of the lattice. It has been observed in JJ arrays many times both experimentally
[52, 54] and theoretically [12, 51, 55]. This issue has been partially discussed for
the hamiltonian limit in Sect. 3.1. If the system is dissipative, the moving solitons
becomeattractors.Whilemoving along the lattice, the soliton excites the linearmodes
and forms a bound state that propagates with the same velocity. The wavelength of
the linear mode is given by Eq. (9). Because of the periodic boundary conditions
the phase locking in the array would occur if the finite number of the Josephson
phase oscillations fit into one cycle of the soliton journey along the array. The phase
locking means that the system settles on the periodic attractor that corresponds to
the soliton that restores its shape and position completely after travelling around the
array. In other words, a certain number of the linear modes wavelength should be
fitted in the array. Each of the different branches of the CVC in Fig. 7 corresponds
to the different number of these wavelengths. This can be observed in the inset in
the panel (a) of that figure. One can easily see that soliton profiles that correspond to
the different branches have different number of oscillations. The oscillations of the
A(s) dependence in Fig. 3 have the same nature.

Now we discuss how the embedded solitons manifest themselves on the current-
voltage dependencies. It appears that there exists a significant difference between
the CVCs of the array if the system supports embedded soliton and when it does
not. In Fig. 7a the case of η = 0.1 is considered, and, according to Sect. 3.1, in the
hamiltonian limit for this value of the asymmetry parameter there is no embedded
solitons. On the contrary, for η = 0.3 [Fig. 7b], η = 0.6 [Fig. 7c] and for η = 1.5
[Fig. 7d] there exist one embedded soliton with the sliding velocity v = 0.296835,
v = 0.399493 and v = 0.469944, respectively. For details see Fig. 5. In the first case
[panel (a)] the CVC branches are distributed almost uniformly. In the case of η = 0.3
a small gap opens, but only for α = 0.02. In the panel (c) and panel (d) one can
easily spot the significant gap V −

I V I ≤ V ≤ V +
I V I which will be called inaccessible

voltage interval (IVI). This inaccessible interval appears to be more pronounced as η

increases or when α is decreased. Moreover, if α is decreased significantly, its lower
boundary, equals zero. The upper boundary, V +

I V I tends to the value 4πv/N , which
is the voltage drop produced by the embedded soliton (marked by the red vertical
line). We have further reduced α and computed the detuning ε = |4πv1/N − V +

I V I |.
The value of this detuning parameter decreases with the decreasing of dissipation.
For the lowest value of dissipation which we have used in our numerical analysis,
α = 0.005, the detuning value reached ε ∼ 10−3.
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(a)

(b)

(d)

(c)

Fig. 7 CVCs for κ = 0.5, N = 30, α = 0.05 (black �), α = 0.02 (red ◦), α = 0.01 (blue �) and
η = 0.1 (a), η = 0.3 (b), η = 0.6 (c) and η = 1.5 (d). The blue solid lines correspond to the
respective CVC in the continuum limit. The red vertical lines in b–d are given by 4πv/N , where
v is the sliding velocity for the respective value of η. The inset in the panel a shows the different
configurations of φ̇n at α = 0.05. The configuration corresponding to the branch on the right is given
by �, while ⊕ corresponds to the branch on the left. The inset in the panel d shows the details of
CVCs in the neighbourhood of the sliding velocity for α = 0.02 (⊕), α = 0.01 (�) and α = 0.005
(Δ). Reproduced with permission from [56]. Copyright (2015) by American Physical Society
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These results can be summarized as follows. If in the hamiltonian limit the SQUID
array supports the embedded soliton that moves with velocity v, in the weakly driven
and weakly dissipative array the system can sustain a regime of soliton that moves
with the velocity close to v. Thus, the average voltage drop in this limit is defined by
the sliding velocity and is far from zero. If the system does not support embedded
solitons, its behaviour in the limit α → 0, γ → 0 is different: the CVC ends up close
to the origin, as shown in Fig. 7a. Of course, it cannot exactly pass through the origin
due to discreteness.

Finally, we remark on the character of the dynamics that takes place when the
soliton travels around the array. The CVCs of the array appear to be almost vertical
(with the small bend at the low voltage end). As the zero voltages are approached,
the length of the branches decreases and they become more horizontal. However,
there exist some isolated branches that fall out of the general picture. For example,
in the panel (c) one can observe an isolated branch with V̄ ∼ 0.07 ÷ 0.1 for the
dissipation value α = 0.05. A small isolated branch for α = 0.02 can be observed
in the panels (c) at V̄ ∼ 0.05 and (d) (at V̄ ∼ 0.05 ÷ 0.13). In order to understand
the nature of the dynamics that correspond to the different CVC branches we have
calculated the largest Lyapunov exponent of the system as a function of the dc bias
γ . The Benettin algorithm [9] was used. Three branches from the current-voltage
dependence for α = 0.05, given in Fig. 7c, have been investigated. Two branches lie
just below the IVI gap (one is isolated and another one is approximately vertical)
and one branch is situated just above the IVI with the voltages V̄ ∼ 0.16 ÷ 0.18. All
three branches have been traced from the top to the bottom and the largest Lyapunov
exponent has been plotted as a function of the bias current in Fig. 8. The black line (1)
corresponds to the branch just above the IVI. Since for the non-bounded trajectories of
the autonomous systems there is always a zero Lyapunov exponent, we conclude that
soliton dynamics on this branch is regular. The Lyapunov exponent for the isolated
branch is zero approximately for its vertical part and becomes positive when the
branch becomes strongly tilted. Finally, the vertical branch (the closest to the origin)
has regular dynamics in its upper part and then undergoes complex transitions from
chaotic dynamics to regular and back.

5 Summary

In this article we have discussed the properties of discrete embedded solitons in the
double sine-Gordon lattice. The respective equation belongs to the class of discrete
nonlinear Klein–Gordon (DNKG) equations and is used to model a number of wave
phenomena in condensedmatter physics. In particular, the array of asymmetric three-
junction SQUIDs with two junctions in its left arm and one junction in its right arm is
described by the DDbSG equation. If these arms are equivalent, the array is described
by the standard DSG equation. The asymmetry parameter η = I (r)

c /I (l)
c is introduced

as a measure of how far the system is from the DSG equation. The DSG equation is
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Fig. 8 Largest Lyapunov exponent as a function of bias for three branches of the current-voltage
dependence, given in Fig. 7c. The parameters are: κ = 0.5, α = 0.05 and η = 0.6. Different lines
correspond to the different branches of the CVC. See text for details. Reproduced with permission
from [56]. Copyright (2015) by American Physical Society

restored in the limits η = 0 and η = +∞. The DDbSG equation also describes the
array of SFS ans SFIS junctions [26, 27].

In the hamiltonian limit it was possible to identify the set of soliton velocities
(so-called sliding velocities), for which free propagation is possible. These propa-
gating solitons exist despite the obvious resonance with the phonons of the system
and, thus, belong to the class of embedded solitons. We have calculated the PN bar-
rier as a function of the discreteness constant and the asymmetry parameter η. The
PN barrier appears to be nonzero, however, its dependence on the system parame-
ters is non-monotonic with a clear minimum as a function of η. Thus, free soliton
propagation is not directly connected with the existence of the PN barrier. This
non-monotonicity is attributed to the phenomenon of the stability switching [31].
The stability switching is the alteration of the kink ground-state from the inter-site
centred to the site-centred configuration (and back) when the coupling constant or
some shape parameter is varied. It does not happen for the DSG equation and for
the discrete φ4 model. As far as we know, all DNKG-type models that have sta-
bility switching also support moving embedded solitons. We are not aware of any
mathematically rigorous proof of this fact and, therefore, consider it as a prospective
direction of the future research.

For the biased and damped DDbSG equation we have shown how the mov-
ing embedded solitons manifest themselves on the current-voltage curve (CVC) of
the array. The main signature of the embedded soliton motion in the array is the
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forbidden interval of voltages. The upper boundary of this interval equals approxi-
mately 4πv∗/N , where v∗ is the embedded soliton velocity.

The bound states of two or more topological solitons of the DSG equation also
behave like moving embedded solitons [1, 41, 44]. They have been observed experi-
mentally in the circular JJ array [42]. The parameter η connects two DSG equations,
one with the nonlinear term sin(φ/2) (at η = 0) and another one with sin φ (at
η = +∞). Thus, in the limit η = +∞ the bound state of two DSG solitons that
connects 0 and 4π , gradually transforms into one embedded soliton of the DDbSG
equation as η is decreased. Therefore, the embedded solitons of the DDbSG equation
is a continuation of the DSG two-soliton bound state that persists into the domain of
finite values of η.

Acknowledgments The authors acknowledge the support from the Ukrainian State Grant for Fun-
damental Research No. 0117U00236.

References

1. Aigner, A., Champneys, A., Rothos, V.: A new barrier to the existence of moving kinks in
Frenkel–Kontorova lattices. Phys. D 186(3–4), 148–170 (2003)

2. Alfimov, G.L., Korolev, V.G.: On multikink states described by the nonlocal sine-Gordon
equation. Phys. Lett. A 246, 429–435 (1998)

3. Alfimov, G.L., Eleonsky, V.M., Lerman, L.M.: Solitarywave solutions of nonlocal sine-Gordon
equations. Chaos 8, 257–271 (1998)

4. Alfimov, G.L., Medvedeva, E., Pelinovsky, D.E.: Wave systems with an infinite number of
localized traveling waves. Phys. Rev. Lett. 112, 054103 (2014)

5. Archilla, J.F.R., Kosevich, Y.A., Jimenez, N., Sanchez-Morcillo, V.J., Garcia-Raffi, L.M.:Mov-
ing excitations in cation lattices. Ukr. J. Phys. 58, 646–656 (2013)

6. Archilla, J.F.R.,Kosevich,Y.A., Jimenez,N., Sanchez-Morcillo,V.J.,Garcia-Raffi,L.M.:Ultra-
discrete kinks with supersonic speed in a layered crystal with realistic potentials. Phys. Rev. E
91, 022912(12) (2015)

7. Barashenkov, I.V., Oxtoby, O.F., Pelinovsky, D.E.: Translationally invariant discrete kinks from
one-dimensional maps. Phys. Rev. E 72(3), 035602(R) (2005)

8. Barone, A., Paterno, G.: Physics and Applications of the Josephson Effect. Wiley, New York
(1982)

9. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for
smooth dynamical systems and for hamiltonian systems; a method for computing all of them.
part 1: theory. Meccanica 15(1), 9–20 (1980)

10. Bogdan, M.M., Kosevich, A., Maugin, G.A.: Soliton complex dynamics in strongly dispersive
medium. Wave Motion 34, 1–26 (2001)

11. Boyd, J.P.: A numerical calculation of a weakly non-local solitary wave: the φ4 breather.
Nonlinearity 3, 177 (1990)

12. Braun, O., Hu, B., Zeltser, A.: Driven kink in the Frenkel–Kontorova model. Phys. Rev. E
62(3), 4235–4245 (2000)

13. Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep.
306(1–2), 2–108 (1998)

14. Campbell, D.K., Peyrard, M., Sodano, P.: Kink-antikink interactions in the double sine-Gordon
equation. Phys. D 19, 165–205 (1986)

15. Champneys, A., Kivshar, Y.S.: Origin of multikinks in dispersive nonlinear systems. Phys. Rev.
E 61, 2551–2554 (2000)



Moving Embedded Solitons in the Discrete … 333

16. Champneys, A., Malomed, B., Yang, J., Kaup, D.: Embedded solitons: solitary waves in reso-
nance with the linear spectrum. Phys. D 152–153, 340–354 (2001)

17. Condat, C.A., Guyer, R.A., Miller, M.D.: Double sine-Gordon chain. Phys. Rev. B 27, 474–494
(1983)

18. Dmitriev, S.V., Kevrekidis, P.G., Yoshikawa, N.: Discrete Klein–Gordon models with static
kinks free of the Peierls–Nabarro potential. J. Phys. A Math. Gen. 38, 7617–7627 (2005)

19. Dmitriev, S.V., Khare, A., Kevrekidis, P.G., Saxena, A., Hadžievski, L.: High-speed kinks in a
generalized discrete φ4 model. Phys. Rev. E 77, 056603 (2008)

20. Dodd, R.K., Bullough, R.K., Duckworth, S.: Multisoliton solutions of nonlinear dispersive
wave equations not soluble by the inverse method. J. Phys. A Math. Gen. 8(7), L64 (1975)

21. Duncan, D., Eilbeck, J., Feddersen, H., Wattis, J.: Solitons on lattices. Phys. D 68, 1–11 (1993)
22. Eilbeck, J.C., Flesch, R.: Calculation of families of solitary waves on discrete lattices. Phys.

Lett. A 149, 200 (1990)
23. Flach, S., Zolotaryuk, Y., Kladko, K.: Moving lattice kinks and pulses: An inverse method.

Phys. Rev. E 59(5), 6105–6115 (1999). https://doi.org/10.1103/PhysRevE.59.6105
24. Friesecke, G.,Wattis, J.A.D.: Existence theorem for solitary waves on lattices. Commun.Math.

Phys. 161, 391 (1994)
25. Gochev, I.G.: Contribution to the theory of plane domain walls in a ferromagnet. Sov. Phys.

JETP 58, 115–119 (1983)
26. Goldobin, E., Koelle, D., Kleiner, R., Buzdin, A.: Josephson junctions with second harmonic

in the current-phase relation: properties of ϕ junctions. Phys. Rev. B 76, 224523 (2007)
27. Golubov, A.A., Kupriyanov, M.Y., Il’ichev, E.: The current-phase relation in Josephson junc-

tions. Rev. Mod. Phys. 76, 411–469 (2004)
28. Hochstrasser, D., Mertens, F.G., Büttner, H.: An iterative method for the calculation of narrow

solitary excitations on atomic chains. Phys. D 35, 259 (1989)
29. Ishimori, Y.,Munakata, T.: Kink dynamics in the discrete sine-Gordon system.A perturbational

approach. J. Phys. Soc. Jpn. 51, 3367 (1982)
30. Jensen, M., Bak, P., Popielewicz, A.: Pinning-free soliton lattices and bifurcation in a discrete

double-well model: exact results. J. Phys. A Math. Gen. 16, 4369–4375 (1983)
31. Karpan, V.M., Zolotaryuk, Y., Christiansen, P.L., Zolotaryuk, A.V.: Discrete kink dynamics in

hydrogen-bonded chains: the one-component model. Phys. Rev. E 66(6), 066603 (2002)
32. Kevrekidis, P.G.: On a class of discretizations of Hamiltonian nonlinear partial differential

equations. Phys. D 183, 68–86 (2003)
33. Maki, K., Kumar, P.: Magnetic solitons in superfluid 3He. Phys. Rev. B 14, 118–127 (1976)
34. Malomed,B.A., Fujioka, J., Espinosa-Cern,A.,Rodrguez,R.F.,Gonzlez, S.:Moving embedded

lattice solitons. Chaos 16(1), 013112 (2006)
35. McLaughlin, D.W., Scott, A.C.: Perturbation analysis of fluxon dynamics. Phys. Rev. A 18(4),

1652 (1978)
36. Melvin, T.R.O., Champneys, A.R., Kevrekidis, P.G., Cuevas, J.: Radiationless traveling waves

in saturable nonlinear schrödinger lattices. Phys. Rev. Lett. 97, 124101 (2006)
37. Nishida, M., Kanayama, T., Nakajo, T., Fujii, T., Hatakenaka, N.: Bound fluxon pair in one-

dimensional squid array. Phys. C 470, 832–834 (2010)
38. Orfanidis, S.J.: Discrete sine-Gordon equations. Phys. Rev. D 18, 3822–3827 (1978)
39. Oxtoby, O., Pelinovsky, D.E., Barashenkov, I.V.: Travelling kinks in discrete φ4 models. Non-

linearity 19, 217–235 (2006)
40. Peyrard, M., Remoissenet, M.: Solitonlike excitations in a one-dimensional atomic chain with

a nonlinear deformable substrate potential. Phys. Rev. B 26, 2886 (1982)
41. Peyrard, M., Kruskal, M.D.: Kink dynamics in the highly discrete sine-Gordon system. Phys.

D 14, 88 (1984)
42. Pfeiffer, J., Schuster, M., Abdumalikov Jr., A.A., Ustinov, A.V.: Observation of soliton fusion

in a Josephson array. Phys. Rev. Lett. 96, 034103(4) (2006)
43. Remoissenet, M.: Non-linear excitations in a compressible chain of dipoles. J. Phys. C Solid

State 14(11), L335 (1981)

https://doi.org/10.1103/PhysRevE.59.6105


334 Y. Zolotaryuk and I. O. Starodub

44. Savin, A.V., Zolotaryuk, Y., Eilbeck, J.C.: Moving kinks and nanopterons in the nonlinear
Klein–Gordon lattice. Phys. D 138(3–4), 265–279 (2000)

45. Schmidt, V.H.: Exact solution in the discrete case for solitons propagating in a chain of harmon-
ically coupled particles lying in double-minimum potential wells. Phys. Rev. B 20, 4397–4405
(1979)

46. Scott, A.C.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford
Texts in Applied and Engineering Mathematics (Book 8). Oxford University Press, Oxford
(2003)

47. Speight, J.: A discrete system without a Peierls - Nabarro barrier. Nonlinearity 10, 1615–1625
(1997)

48. Speight, J.M.,Ward, R.S.: Kink dynamics in a novel discrete sine-Gordon system. Nonlinearity
7, 125 (1994)

49. Speight, M., Zolotaryuk, Y.: Kinks in dipole chains. Nonlinearity 19(6), 1365–1382 (2006)
50. Ustinov, A.V.: Solitons in Josephson junctions. Phys. D 123(1–4), 315–329 (1998)
51. Ustinov, A.V., Cirillo, M., Malomed, B.A.: Fluxon dynamics in one-dimensional Josephson-

junction arrays. Phys. Rev. B 47, 8357–8360 (1993)
52. Ustinov, A.V., Cirillo, M., Larsen, B.H., Oboznov, V.A., Carelli, P., Rotoli, G.: Experimental

and numerical study of dynamic regimes in a discrete sine-Gordon lattice. Phys. Rev. B 51,
3081–3091 (1995)

53. van der Zant, HSJ, Orlando, T.P., Watanabe, S., Strogatz, S.H.: Kink propagation in a highly
discrete system: observation of phase locking to linear waves. Phys. Rev. Lett. 74(1), 174–177
(1995)

54. Watanabe, S., Strogatz, S.H., vanderZant,H.S.J.,Orlando,T.P.:Whirlingmodes andparametric
instabilities in the discrete sine-Gordon equation: experimental tests in Josephson rings. Phys.
Rev. Lett. 74, 23 (1995)

55. Watanabe, S., van der Zant, H.S.J., Strogatz, S.H., Orlando, T.P.: Dynamics of circular arrays
of Josephson junctions and the discrete sine-Gordon equations. Phys. D 97, 429–470 (1996)

56. Zolotaryuk, Y., Starodub, I.O.: Fluxon mobility in an array of asymmetric superconducting
quantum interference devices. Phys. Rev. E 91, 013202 (2015)

57. Zolotaryuk, Y., Eilbeck, J.C., Savin, A.V.: Bound states of lattice solitons and their bifurcations.
Phys. D 108, 81 (1997)



Index

A
Absorption, surface, 234
Absortion (multi-photon), 112
Acoustic transparency, 235
Action potential, 64
Activation, 46
Activation energy, 284, 285, 287, 288, 290,

293, 295, 296, 302
Activation energy of recombination, 303
Activation energy of the attaching interstitial

atoms, 302
Activator, 43
Adiabatic annealing, 288
Aggregate (protein), 13, 14, 19, 20, 28, 31
Alpha particles, 251
Amplitude, reflection, 229
Amplitude, transmission, 229
Analogue, 242
Angular momentum, 112
Anharmonic potential, 265
Annealing front, 294, 295, 308, 311
Annealing stages, 284–287
Annealing wave, 292, 294, 295, 298, 310
Annealing zone, 293–295, 309, 310
Annihilation (VES), 19
Annihilation of positrons, 245, 252
Antikink–Kink, 85, 98, 99, 104, 108
Approximate analytical solution, 271
Arrhenius dependence, 286, 287, 293, 302,

308
Asynchronous regime, 69, 79
Athermal energy, 284, 285
Atoms, ejected, 251
Attenuation, acoustic sound, 226
Attractor, 112
Autocorrelation function, 205
Axon, 64

Azimuthal instability, 140

B
Band gap, 85–87, 91, 92, 95, 139
Basal transcription rates, 46
Bayesian networks, 54
Beam propagation method, 156, 159, 162,

166
Beat length, 162
Bessel beams, 112, 141
Bessel lattice, 141
Bessel vortex beams, 114, 116
Bessel vortex beams (asymptotic behavior),

122
Bessel vortex beams (propagation in nonlin-

ear media), 124
Bessel vortex beams (stability), 126
Bessel vortex beams (stationary propagation

with nonlinear absorption), 120
Bessel vortex beams (tubular, rotating, and

speckle-like), 131
Bifurcation, 209
Bifurcation line, 156
Bifurcation point, 152, 155, 161
Binding energy, 284, 298, 300, 301, 304, 306
Bloch theorem, 88, 93, 95
Bloch wave, 144
Bogdanov-Takens, 77
Bogdanov-Takens bifurcation, 310
Boolean networks, 55
Bragg fiber, 140
Bragg reflection, 139
Breather-like localized state, 276
Breathers, 242, 275
Brittle mica, 248
Burgers vector, 301

© Springer International Publishing AG 2018
J. F. R. Archilla et al. (eds.), Nonlinear Systems, Vol. 2, Understanding
Complex Systems, https://doi.org/10.1007/978-3-319-72218-4

335



336 Index

C
Carbon nanopolymorphs, nonlinear excita-

tions in, 189
Catalytic systems, 198, 199
Cellular automaton, 199
Chain of identical particles, 264
Chain of magnetically coupled pendulums,

263
Chain of nonlinearly coupledoscillators, 265
Chain of repulsive particles, 263
Chain, 1D, 263
Chain, mono-atomic, 263
Channel, acoustic, 227
Channel, background, 227
Channelling of positrons, 249
Chaos, 112
Chaperones (protein folding), 14, 30
Charge mobility, 254
Charge mobility, infinite, 258
Charge, tracks of positive, 250
Charge, transport of, 254
Charged-coupled lattices, 263
Cladding, 148
Cluster of defects, 284, 285, 296–300, 303–

307, 313
Cluster size distribution, 296, 304
Coating, anti-reflective, 235
Collapse, 112
Composition of mica, 245
Conductance, thermal boundary, 224
Contact order (protein folding), 12
Cosmic rays and muscovite, 242
Coulomb interaction, 262, 275
Coupling coefficient, 154
Crank-Nicolson finite-difference, 308
Critical angle, 226
Critical Assessment of protein Structure Pre-

diction (CASP), 10, 30
Cross modulation, 154
Crystals, 262
Crystals, Wigner, 262
Cut-off frequency, high, 269
Cut-off frequency, low, 269

D
D’Alembert equation, 86
Decay of clusters, 285, 299, 300, 303–306
Decoration in mica, 244
Degradation rates, 46, 52
Denaturation (protein), 7, 12, 29
Denatured states (protein folding), 11
Dendrites, 64

Desorption, 198
Devil’s Staircase, 70
Diffusion coefficient, 46
Dilatational volume, 303
Dipolar interaction, 271
Dipole, 157
Dirac equation, 87, 89–91, 95, 96
Dirac points, 88, 90, 92, 94
Discrete breathers, 176
Discrete breathers, hard type, 180
Discrete breathers, numerical approaches,

178
Discrete breathers, soft type, 182
Discrete double sine-Gordon equation, 317
Discrete sine-Gordon equation, 318
Discrete symmetry, 140, 142
Dislocation, 285, 296, 301, 304
Dislocation core, 301, 304
Dislocation loop, 284, 285, 296, 299–304
Dispersion relation, 263, 269
Dissipation, 112
Dissipation of energy, 290, 291, 293, 295
Dissipative acoustic theory, 226
Distribution of protein conformations

(DPC), 9, 10, 15–18, 24–26
Double sine-Gordon equation, 318
Doughnut, 157
Dual-core, 161
Dynamic degree of freedom, internal, 228

E
Effective index, 150
Ejected atoms, 251
Ejection by quodons, 251
Elastic displacements, 229
Elastic waves, 228
Electromagnetic waves, 85, 86, 97, 108
Energy dissipation, 290, 291, 293, 295
Energy transmission coefficient, 225
Epidote, 243
Epitaxial ribbons in mica, 257
Equation Dirac, 90
Equation, d’Alembert, 86
Equation, Dirac, 87, 89, 91, 95, 96
Equation, Klein-Gordon, 97, 98, 103, 107,

108
Equation, Kryuchkov–Kukhar, 86, 100, 102
Equation, Ratnikov, 87, 91, 95, 108
Equation, sine-Gordon, 85, 86, 98, 108
Equilibrium density, 300
Evolution (protein folding), 8, 26
Exponential integral, 287, 289
External potential, 264
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F
Fan-shaped patterns, 255
Faraday cage, 252
Feedback, 41
Fermi level, 88, 89, 94
Fermi velocity, 91
Fiber, hollow core, 140
Fiber, solid core, 140
Filamentation, 112
Floquet multipliers, 211
Fluxon, 319
Fly, 41, 46
Folding (protein), 3–9, 12–15, 18, 20, 21,

24–31
Force between magnetic dipoles, 266
Formation energy, 284, 289, 296–298, 300,

301
Fourier power spectra, 211
Fourier spectrum, 59
FPU equation, 265, 271
FPU lattice, 272
French flag model, 40
Frenkel pair, 284, 297
Frenkel-Kontorova, 263, 269
Frequency, 58, 59, 205, 209
Front of annealing wave, 294, 295, 308, 311
Frustration (protein folding), 8
Fullerene, nonlinear excitations in, 190
Fundamental mode, 150
Fundamental vector soliton, 155

G
Gene regulatory network, 40, 41, 43
Granular lattice, 265
Graphene, 86, 87, 108
Graphene superlattice, 85, 87, 97, 108
Graphene, delocalized vibrational modes in,

178
Graphene, discrete breather in, 176
Graphene, gap discrete breathers in, 183
Graphene, out of plane discrete breathers in,

187
Group representation, 146
Growth rate coefficient, 297, 300, 303

H
Harmonic substrate potential, 268
Heat flux, 222
Helium, superfluid, 222
Helmholtz equation, 143
Helmholtz operator, 142
Heterogeneous annealing, 291

High cut-off frequency, 269
Hill coefficient, 46
Hole, 243
Hollow core fiber, 140
Homoclinic bifurcation (Fix Points), 67
Homogeneous annealing, 286, 292
Hopf bifurcation, 67, 310
Hydrophobic (protein folding), 8, 9, 25, 28
Hyper-conductivity, 243, 258

I
Impedance, acoustic, 224
Implicit-Euler finite-difference, 308
Infinite charge mobility, 258
Instability, 292, 293, 310, 313
Instability, azimuthal, 140, 153, 157
Instability, collapsing, 153, 157
Interaction, dipolar, 271
Interaction, monopolar, 271
Interface, 222
Interfacial thermal resistance, 222
Intermediates (protein folding), 9, 13
Intermittency, 209, 211
Interstitial atom, 284, 285, 296–307, 313
Intrinsic localized modes, 176
Intrusion in mica, transparent, 249
Invariant curve, 69, 70
Inverse-power law forces, 265
Irradiation, 283–285, 296–299, 303
Isochronous annealing, 284, 287, 313
Isothermal annealing, 284, 286, 288, 292,

313
Isothermal conditions, 212

J
Josephson junctions, 318

K
Kapitza thermal boundary resistance, 222
Kerr effect, 140
Kerr effect (optical), 112
Kerr nonlinearity, 142
Kerr, nonresonant, 154
Kinetic trap (protein folding), 12, 13, 15
Kink, 272, 278
Kink velocity, 274
Kink, supersonic, 263, 274
Kink, transient, 275
Kink–Antikink, 85, 98, 99, 104, 108
Klein-Gordon equation, 97, 98, 103, 107,

108
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Klein–Gordon model, discrete nonlinear,
316

Kronig–Penney model, 85, 87, 91
Kryuchkov–Kukhar equation, 86, 100, 102

L
Langmuir-Hinshelwood mechanism, 198,

200
Laplace operator, 142
Lattice of repelling magnets, 265
Lattice weakness directions, 246
Lattice, FPU, 272
Lattice, granular, 265
Lattice, hexagonal, 148
Lattice, Toda, 265
Lattices, 1D, 262, 264
Lattices, charged-coupled, 263
Level, Fermi, 88, 89, 94
Levinthal (paradox), 9, 12
Lifetime of cluster, 299–307, 313
Lifetime of defect, 287, 293, 308
Lifetime of vacancy, 297
Linear-stability, 112
Localized state, breather-like, 276
Lorentz invariant, 99
Low cut-off frequency, 269

M
Magic wavenumber, 272
Magnetic dipoles, force between, 266
Magnetite, 243
Matrix stability criterion, 156
Maxwell, equations, 149
Meta-interface, 236
Mica muscovite, 263
Mica, brittle, 248
Mica, composition, 245
Migration of Fe ions in mica, 247
Mirror symmetry, 146
Mismatch model, acoustic, 222
Mismatch model, diffuse, 222
Mobility of charge, 254
Mobility, infinite charge, 258
Mode, fundamental, 150
Mode, optical, 142
Mode, vortex, 150
Model, Kronig–Penney, 85, 87, 91
Molecular orientation, 154
Momentum, orbital, 144
Mono-atomic chain, 263
Monopolar interaction, 271
Monte Carlo simulations, 205

Morphogen, 40–42, 52, 56, 58
Multi-core PCF, 161
Multi-photon absorption, 112
Muons, energy spectrum, 254
Muons, nuclear scattering, 255
Muscovite, mica, 263

N
Nanopteron, 320
Nearest neighbor coupling, 264
Neimark-Sacker bifurcation, 72
Neuronal population, 65
Neurons, 64
Newton method, 104
Nonlinear absortion, 112
Nonlinear modes, 148
Nonlinear Optics, 112
Nonlinear oscillators, 263
Nonlinear Schrödinger equation, 112
Nonlinear waves, 276
Nonlinearity, 271
Nonlinearly coupled oscillators, chain of,

265
Nonresonant Kerr nonlinearity, 154

O
Ocellar complex, 41
Old-age solution, 275
On-site potential, 264
Optical Kerr effect, 112
Optical mode, 142
Optoelectronic, 86
Orbital angular momentum, 144
Oscillations, 64
Oscillators, nonlinear, 263
Oscillators, nonlinearly coupled, 265
Oscillatory behaviors, 54, 55

P
Paradox (Levinthal), 9, 12
Parameter sensitivity, 50
Paraxial approximation, 143
Particles, alpha, 251
Pendulum effect, 267
Pendulums, magnetically coupled, 263
Periodic substrate potential, 268, 278
Phase dislocation, 143, 163
Phase locking, 69, 70, 79
Phonon, thermal, 224
Phonon velocity, 271
π -mode, 272
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Pitch, 148
Poincaré map, 58, 205
Points, Dirac, 88, 90, 92, 94
Polarisation, 257
Positive charge, tracks of, 250
Positron, annihilation, 245, 252
Positrons, 243
Positrons, channelling, 249
Potential, anharmonic, 265
Potential, external, 264
Potential, on-site, 264
Potential, substrate, 263
Probability of transmission, 225
Propagation constant, 143, 154
Propensities (protein folding), 29
Protein, 46, 49, 54, 59
Protein folding (CASP), 10, 30
Protein folding (chaperones), 14, 30
Protein folding (contact order), 12
Protein folding (denatured states), 11
Protein folding (DPC), 15, 26
Protein folding (frustration), 8
Protein folding (funnel model), 8
Protein folding (hydrophilic interactions),

25
Protein folding (hydrophobic interactions),

9, 25, 28
Protein folding (intermediates), 13
Protein folding (kinetic hypothesis), 4, 12,

17, 24
Protein folding (kinetic mechanism), 18
Protein folding (kinetic trap), 12, 13, 15
Protein folding (landscape theory), 8
Protein folding (lattice model), 8
Protein folding (propensities), 29
Protein folding (simulations), 21, 30
Protein folding (thermodynamic hypothe-

sis), 4, 7, 11, 17, 24
Protein folding (VES hypothesis), 18, 19
Protein folding (VES KM), 18, 20
Protein folding (in vivo), 14
Protein structure (α-helix), 5, 6, 14, 20, 21,

27, 29–31
Protein structure (β-sheet), 5, 6, 25, 27, 29
Protein structure (β-strands), 27, 29
Protein structure (classes), 6
Protein structure (primary), 5, 27
Protein structure (quaternary), 6, 27
Protein structure (secondary), 5, 27
Protein structure (sponges), 28
Protein structure (stability), 12, 16
Protein structure (tertiary), 6, 27
Pseudobifurcation, 153, 165

Pseudomomentum, 144
Pseudospinors, 89, 90, 95

Q
Quasiperiodic oscillations, 59, 212
Quodons, 242
Quodons, ejection by, 251
Quodons, secondary, 250

R
Radiation-induced defects, 283–285, 313
Ratnikov equation, 87, 91, 95, 108
Rayleigh waves, surface, 226
Reaction-diffusion equation, 45, 52
Recoil from beta decay, 255
Recombination of defects, 284, 296–299,

302–304, 306
Recombination rate coefficient, 302, 303,

306
Reflection symmetry, 146
Refractory period, 66
Relativistic muons, tracks of, 254
Repelling magnets, lattice of, 265
Repressor, 43
Repulsive interaction, 263
Reservoir of charge, 258
Resistance, interfacial thermal, 222
Restoring gravitational force, 267
Ribosome (protein folding), 5, 14, 15, 18,

24, 26, 31
Rotation number, 70
Roton, thermal, 224
Routes to chaos, 211

S
Saddle-Node bifurcation (Fix Points), 67
Scalar approximation, 145
Secondary quodons, 250
Self modulation, 154
Self-action effects, 112
Self-focusing, 112
Self-sustained annealing, 286, 307–309, 313
Shannon entropy, 216
Silicon crystal, 228
Simulations (protein folding), 4, 10, 11, 16,

17, 19, 21, 22, 24, 29, 30
Sine-Gordon Equation, 85, 86, 98, 108
SNIC, 67, 72
Solid core fiber, 140
Soliton, discrete, 316
Soliton, embedded, 317
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Soliton, lattice, 317
Solitons, 315
Solitons, dipole, 151
Soliton, spatial, 140
Soliton, topological, 316
Soliton, vector, 154
Soliton, vector fundamental, 155
Soliton, vector vortex, 157
Spatial soliton, 140
Spectrum of muons, 254
Speed of annealingwave, 293, 295, 308–312
Speed of sound, 271
Spike, 64
Sponges (protein structure), 28
SQUID, 318
Stability, 41, 44, 159, 292, 310
Stability (linear analysis), 112
Stability, criterion, 156
Stages of annealing, 284–287
Staining in muscovite, 254
Strauss-Vazquez method, 85, 86, 103, 107
Stroboscopic map, 69
Structure (protein), 5, 26
Substrate potential, 263
Substrate potential, harmonic, 268
Substrate potential, periodic, 268, 278
Superlattice, graphene, 85, 87, 97, 108
Supersonic kink, 263, 274
Surface roughness, 227
Switching curve, 162
Symmetry breaking, 112, 161, 163, 165
Symmetry, discrete, 140, 142
Symmetry group, 141
Symmetry, mirror, 146
Symmetry, reflection, 146
Symmetry, rotational, 144
Symmetry, translational, 142
Synapse, 64
Synchronous regime, 69, 79

T
Tensor of force constants, 230
Theorem, Bloch, 88, 93, 95
Thermal annealing, 284, 307, 313
Thermal-concentration feedback, 285, 291–

293, 295, 298, 307, 313
Thermodynamic hypothesis (protein fold-

ing), 7, 11
Toda lattice, 265

Topological charge, 112
Topology, 55
Total internal reflection, 228
Townes’ soliton, 150
Track width, 244
Tracks of relativistic muons, 254
Transcriptional regulation, 46
Transient kink, 275
Transparent intrusion in mica, 249
Transport of charge, 254
Travelling wave, 286, 292, 293, 307, 310
Tripole, 157

V
Vacancy, 284, 285, 296–298, 300, 302, 303,

306, 313
Vakhitov-Kolokolov criterion, 157
Vector soliton, 154
Vector soliton, fundamental, 155
Vector soliton, vortex, 157
Vector systems, 141
Velocity, Fermi, 91
Velocity, kink, 274
Velocity, phonon, 271
VES (annihilation), 19
VES hypothesis (protein folding), 18, 19
VES KM (protein folding), 18–20, 24–31
Vibrational excited states (VES), 18
Vortex, 140, 163
Vortex beams, 112
Vortex mode, 150
Vortex solitons, 112
Vortex stability, 112
Vortex vector soliton, 157

W
Wave of annealing, 292, 294, 295, 298, 310
Wavenumber, magic, 272
Waves, electromagnetic, 85, 86, 97, 108
Weakness, lattice directions, 246
Width, track, 244
Wigner Crystals, 262
Wilson–Cowan equations, 66

Z
Ziff–Gulari–Barshad model, 198
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