
Chapter 18
Mathematical Problem Solving
in Choice-Affluent Environments

Boris Koichu

Abstract This chapter presents a proposal for an exploratory confluence model of
mathematical problem solving in different instructional contexts. The proposed
model aims at bridging the knowledge of how problem solving occurs and the
knowledge of how to enhance problem solving. The model relies of the premise that
a key solution idea to a problem is constructed as a result of shifts of attention
stipulated by the solver’s individual resources, interaction with peers, or with a
source of knowledge about the solution. The exposition converges to the conclusion
that successful problem solving is likely to occur in choice-affluent learning envi-
ronments, in which the solvers are empowered to make informed choices of a
challenge to cope with, problem-solving schemata, a mode of interaction, an extent
of collaboration, and an agent to learn from. The theoretical argument is supported
by an example from an empirical study.

Keywords Mathematical problem solving � Shifts of attention
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18.1 Introduction

The centrality of problem solving in doing and studying mathematics is broadly
recognized in the mathematics education research community (e.g., Halmos 1980;
Mason 2016a; Schroeder and Lester 1989). Research on problem solving keeps
growing, and many approaches to translating the developed problem-solving
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frameworks and accumulated research results into recommendations for practice
have been articulated (e.g., Schoenfeld 1983, 1985; Felmer et al. 2016). In par-
ticular, the professional literature suggests various specifications of “good” math-
ematical problems (e.g., Lappan and Phillips 1998), characterizations of
problem-solving classrooms (e.g., Engle and Conant 2002; Lampert 1990;
Schoenfeld et al. 2014), and sets of principles for teaching for and through problem
solving (Cai 2010; Heller and Hungate 1985; Koichu et al. 2007a; Lester 2013;
Lester and Cai 2016; Schoenfeld 1983). In many cases, the recommendations are
presented as generalized reflections on successful classroom practices, experiments,
or series of experiments (e.g., Koichu et al. 2007a, b; Lester 2013; Schoenfeld
1992). In some cases, the recommendations are based also on theories of
problem-solving architecture (e.g., Ambrus and Barczi-Veres 2016; Clark et al.
2006) or decision making (e.g., Schoenfeld 2013).

It is indicative, however, that recent reflections of the state of the art tend to
emphasize lacunas and open questions rather than the accomplishments of
problem-solving research as a servant of mathematics instruction (Mason 2016a, b;
Lester 2013; Schoenfeld 2013; Vinner 2014). Vinner (2014), for instance, questions
the feasibility and even the relevance of problem solving for exam-oriented school
education. Mason (2016a) reminds us that a variety of factors should be taken into
account in order to make problem-solving instruction feasible in school and uni-
versity settings. In his words, “all aspects of the human psyche, cognition, affect,
behavior, attention, will and metacognition or witnessing must be involved”
(p. 110). He then characterizes a research approach attempting to isolate particular
features of problem solving as simplistic and unlikely to bring the desired change. In
the same volume (Felmer et al. 2016), Mason (2016b) suggests that the crucial yet
not sufficiently understood issue for adopting a problem-solving approach to
mathematics teaching is the when-issue, that is, the issue of “when to introduce
exploratory tasks, when to intervene, and in what way” (p. 263).

Lester (2013) acknowledges that research on mathematical problem solving has
provided some valuable information about problem-solving instruction, but argues
that the progress is slow and, generally speaking, insufficient. As one of the
explanations of “this unfortunate state of affairs” (p. 251), Lester (2013) reiterates the
claim that he and Charles made 25 years ago (Lester and Charles 1992): Research on
mathematical problem solving remains largely atheoretical. Lester (2013) then
argues that the comprehensive framework for research on problem-solving
instruction proposed by Lester and Charles (1992) is still worth pursuing.
Likewise, Schoenfeld (2013) reflects on the gains and limitations of a problem-
solving framework that he authored 30 years ago (Schoenfeld 1985). He then sug-
gests that the current challenge is to advance from a framework for examining
problem solving to a model that would specify the theoretical architecture of this
activity, i.e., would say “what matters” in problem solving (Schoenfeld 2013, p. 17),
explain “how decision making occurs within that architecture” (p. 17) and theorize
“how ideas grow and can be shared in interaction” (p. 20).

Stimulated by the aforementioned calls, the goal of this chapter is to present a
particular proposal for an exploratory model of problem solving that would bridge
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our knowledge of how problem solving occurs with the knowledge of how to
support and enhance problem solving in instructional settings.1 The proposed
model is confluence, namely, it consolidates ideas from several conceptual and
theoretical frameworks. The consolidation is pursued by means of a strategy that is
referred to as networking theories by iterative unpacking. In brief, this strategy
consists of sequencing theoretical developments so that at each step of theorizing
one theory serves as an overarching conceptual framework, in which another the-
ory, either existing or emerging, is embedded in order to elaborate on the chosen
elements(s) of the overarching theory. Mason’s theory of shifts of attention (Mason
1989, 2008, 2010) serves as the overarching conceptual framework of the proposed
model. Throughout the chapter, the model is illustrated by consideration of a single
geometry problem, which is analyzed theoretically and then based on empirical
evidence. Thoughts about possible implications of the model are shared in the
concluding section.

18.2 The Proposed Model at a Glance

The proposed model is schematically presented in Fig. 18.1. The model is referred
to as the shifts and choices model (SCM) in the rest of the chapter.

The inner part of Fig. 18.1 concerns the process that might be termed, with
reference to Pólya (1945/1973) or Schoenfeld (1992), as a heuristic search
embedded in the planning phase of problem solving. The main query associated
with this part of the SCM is, simply stated: Where can a solution to a challenging
problem come from? A more elaborated formulation of the query is as follows:
Through which activities and resources does a problem solver construct a pathway
of shifts of attention towards an invention of a key solution idea to a mathematical
problem?

The outer part of Fig. 18.1 concerns a configuration of choices available to a
problem solver. This part of the SCM deals with the following query: What choices
is a problem solver empowered to make when constructing or co-constructing a
chain of shifts of attention towards invention of a key solution idea to a mathe-
matical problem that he or she perceives as a challenge? Among endless conscious
and unconscious choices that individuals face when solving problems on their own
or with others, the model takes into account the following: a choice of a challenge
to be dealt with, a choice of schemata for dealing with a challenge, a choice of the
mode of interaction, a choice of an extent of collaboration, and a choice of an agent
to learn from.

As Fig. 18.1 shows, a key solution idea notion is in the core of the SCM. It is a
solver-centered notion. Namely, a key solution idea is a heuristic idea that is

1In a way, this paper synthesizes and develops ideas that have been presented separately in
Palatnik and Koichu (2014, 2015) and Koichu (2015a, b, 2017).
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invented by the solver and evokes the conviction that it can lead to a full solution to
the problem. A full solution is referred to as a solution that, to the solver’s
knowledge, would be acceptable in a situation in which it is communicated.
Furthermore, Raman (2003) explains the heuristic idea notion as follows2: it is “an
idea based on informal understandings, e.g., grounded in empirical data or repre-
sented by a picture, which may be suggestive but does not necessarily lead directly
to a formal proof” (p. 322). Note that not any heuristic idea is a key solution idea.
An in-depth discussion of an idea notion is beyond the scope of this chapter. It is
sufficient to mention here that the Oxford Dictionary defines idea as “a thought or
suggestion as to a possible course of action” (https://en.oxforddictionaries.com/
definition/idea). Accordingly, a heuristic idea notion can operationally be treated as
a piece of content-level mathematical discourse (see Sfard 2007) suggestive as to a
possible way of solving the problem. An elaborated example is presented below.

The SCM relies on three premises:

1. Even when a problem is solved in collaboration, it has a situational solver: an
individual who invents and eventually shares its key solution idea.

2. A key solution idea can be invented by a situational solver as a shift of attention
in a sequence of his or her shifts of attention when coping with the problem.

3. Generally speaking, a solver’s pathway of the shifts of attention is stipulated by
choices the solver is empowered to make and by enacting the following types of
resources:

Fig. 18.1 Schematic
presentation of the proposed
model (SCM)

2See also Koichu et al. (2007a) and Liljedahl et al. (2016) for detailed discussions of approaches to
conceptualizing heuristics.
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(i) individual resources,
(ii) interaction with peer solvers who do not know the solution and struggle

in their own ways with the problem or attempt to solve it together, and
(iii) interaction with a source of knowledge about the solution or its parts,

such as a textbook, an internet resource, a teacher, or a classmate who has
already found the solution but is not yet disclosing it.

These three possibilities are intended to embrace all frequent situations of
problem solving in instructional settings. Needless to say, the possibilities can be
employed separately or can complement each other in problem solving.

18.3 Elaboration on the Elements of the Proposed Model

Discussion of the elements of the SCM in this section is supported by consideration
of the two-circle problem (Fig. 18.2). The reader is invited to approach it before
continuing reading.

18.3.1 Invention of a Key Solution Idea as a Shift
of Attention

Mason’s theory of shifts of attention had initially been formulated as a conceptual
tool to dismantle constructing abstractions (Mason 1989) and was then extended to
the phenomena of mathematical thinking and learning (Mason 2008, 2010).
Palatnik and Koichu (2014, 2015) adapted the theory as a tool for analyzing insight
problem solving. To characterize attention shifts, Mason (2008) considers what
attended to by an individual and how it is attended to. To address the “how”
question, he distinguishes five different ways of attending or structures of attention.

According to Mason (2008), holding the wholes is the structure of attention
where a person is gazing at the whole without focusing on particulars. This is what
probably happens when a reader flashes a glance at Fig. 18.2. Discerning details is
a structure of attention in which one’s attention is caught by a detail that becomes
distinguished from the rest of the elements of the attended object. For example,
one’s attention can be caught by the segments EF and GH or by triangle MEF in
Fig. 18.2. Mason (2008) suggests that “discerning details is neither algorithmic nor
logically sequential” (p. 37). Recognizing relationships between the discerned
elements is a development from discerned details that often occurs automatically: It
refers to specific connections between specific elements. Say, for instance, that
when gazing at the central part of Fig. 18.2, one notices that segments EF and GH
look equal and can be considered sides of a quadrilateral EFHG. The perceiving
properties structure of attention is different from the recognizing relationships
structure in a subtle but essential way. In the words of Mason (2008): “When you
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are aware of a possible relationship and you are looking for elements to fit it, you
are perceiving a property” (p. 38). In our example, one can draw the segments EG
and FH. The perceived property would be “EFHG is a rectangle.” Finally, rea-
soning on the basis of perceived properties is a structure of attention in which
selected properties are attended to as the only basis for further reasoning. For
example, one might consider what needs to be proved for sides EG and FH in order
to prove that EFHG is a rectangle (see Fig. 18.3).

Palatnik and Koichu (2014, 2015) added a “why” question to Mason’s “what”
and “how” questions about attention: Why do individuals make shifts from one
object of attention to another in the way that they do? One way of addressing this
question is related to the obstacles embedded for the solver in attending to a
particular object and to continuous evaluation of potential gains and losses of the
choice to keep attending to the object or shift the attention to another one.

Two extrinsic circles are given. From the center of each circle, two tangent segments to another circle 
are constructed. The points of intersection of the tangent lines with the circles define two chords, EF
and GH (see drawing). Prove that EF = GH. 

Fig. 18.2 The two-circle problem (translated from Sharygin and Gordin 2001, No. 3463)

Fig. 18.3 Auxiliary construction for the two-circle problem
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For example, one can try proving that EFHG is a rectangle by applying the
available schemata associated with the rectangle notion, such as: it is enough to
prove that EFHG is a parallelogram with a right angle, so let’s try proving first that
EF = FH. To prove this conjecture, it is enough to prove that DEKG ffi DFLH and
so on. (The reader is invited to check that this reasoning line is not particularly
productive). At some point one can decide that enough attention has been given to
EFHG and consider another object. A shift is likely to be mediated by mathematical
resources within the reach for the solver. Our imaginary solver might think: “What
else can be done? How can the congruency of two segments be proved? Maybe, it is
worth including the segments into some pair of triangles and prove that they are
congruent. Are EFM and GHN congruent? Apparently not. Should I stop consid-
ering EF and GH for a while and focus on their halves, EP and GQ?” Such a shift
may seem trivial (especially if one knows the solution), but in fact it is not.

In a while, the solver might consider EP and GQ to be the sides of the
right-angle triangles MEP and NGQ. The solver can then perceive the following
property: DMEP�DMCN and DNGQ�DNAM. There is a gap, however, between
perceiving a property and choosing it as the only basis for further reasoning. Indeed,
the solver should somehow realize that the triangle similarity can help in proving
that two segments are equal. If our imaginary solver arrives this far, she has a good
chance of inventing a key solution idea to the problem. One such idea consists of
the observation that EP and GQ can be expressed through the same elements, R,
r and MN, based on the aforementioned triangle similarities. This idea can be
developed into a full solution to the problem: EP ¼ r�R

MN from the first similarity and
GQ ¼ r�R

MN from the second similarity, consequently, EF = GH, QED.
The presented imaginary scenario suggests how the process of inventing a key

solution idea can be seen in terms of the solver’s shifts of attention. Generally
speaking, the solver attends to the objects embedded in the problem formulation
and mentally manipulates them by applying available schemata. The process is goal
directed, but particular shifts can be sporadic. However, it should be noted that the
presented scenario is neither complete nor compelling. More should be done in
order to realistically characterize one’s problem solving process as a chain of shifts
of attention. In particular, the specificity of problem solving in socially different
educational contexts should be considered. This is done in the next three
subsections.

18.3.2 Shifts of Attention in Individual Problem Solving

The lion’s share of the data corpus that underlies the development of the foremost
problem-solving frameworks (e.g., Schoenfeld 1985; Carlson and Bloom 2005)
consists of cases of individual problem solving. Carlson and Bloom (2005) consider
four phases in individual problem solving by an expert mathematician: orientation,
planning, executing, and checking. The model also includes a sub-cycle,
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“conjecture-test-evaluate,” and operates with various problem-solving attributes
(this notion is due to Schoenfeld 1985), such as conceptual knowledge, heuristics,
metacognition, control, and affect. Generally speaking, Carlson and Bloom’s
framework offers a kit of conceptual tools that can be used for producing thick
descriptions of individual problem solving. These tools enter the SCM as tools for
addressing “how” and “why” questions about the shifts of attention.

For example, when our imaginary problem solver individually coped with the
two-circle problem, she first directed her attention to proving that a particular
quadrilateral is a rectangle and then shifted her attention to proving the similarity of
two pairs of triangles. The pre- and post-stages of the shift can be described as two
“conjecture-test-evaluate” sub-cycles within the planning phase. The shift itself can
be characterized in terms of her mathematical, heuristic, and affective resources.

18.3.3 Shifts of Attention When Interaction with Peers Is
Available

While studying problem-solving behaviors in small groups of students, Clark et al.
(2014) extended Carlson and Bloom’s (2005) framework by introducing two new
categories/codes. They termed them questioning and group synergy. The former
category was introduced in order to give room in the data analysis to various
questions (for assistance, for clarification, for status, and for direction) that the
participants had asked. The latter category appeared to be necessary in order

to capture the combination and confluence of two or more group members’
problem-solving moves that could only occur when solving problems as a member of a
group. … A key characteristic of this group synergy code is that it leads to increased group
interaction and activity, sometimes in unanticipated and very productive ways. (Clark et al.
2014, p. 10–11)

Indeed, when a possibility to collaborate with peers is available to problem
solvers, their shifts of attention can be stipulated by inputs of the group members,
especially when the inputs are shared in some common problem-solving space in a
non-tiresome way. Peer interaction can increase one’s chances to produce a key
solution idea, but can also be overwhelming or distracting. In particular, when
nobody in a group knows how to solve the problem, the other members’ inputs of
potential value are frequently undistinguishable for the solver from inputs of no
value.

Schwartz et al. (2000) deeply explored the cognitive gains of two children who
failed to solve a problem individually, but who improved when working in peer
interaction. They distinguished between the two-wrongs-make-a-right and two-
wrongs-make-a-wrong phenomena. The mechanisms of co-construction behind the
two-wrongs-make-a-right phenomenon were the mechanisms of disagreement,
hypothesis testing, and inferring new knowledge through challenging and con-
ceding. These mechanisms might be involved in those cases of collaborative
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problem solving in which group synergy led the participants in Clark et al.’s (2014)
study to “very productive ways” (p. 11) of solving the given problems. To further
explore the phenomenon of group synergy, it seems necessary to me to acknowl-
edge that the above mechanisms can become active on condition that at least
sometimes solvers shift their attention from an object that they are exploring to an
object attended to by a peer.

Consider as an example once more the two-circle problem, but this time based
on real data. The data were collected from a two-year experiment conducted in a
class of 17 regular (i.e., not identified as gifted) 10th grade students. During the
experiment, many difficult problems were offered to the students to solve over the
course of 5–7 days for each problem in an environment combining classroom work
and work from home. The work from home was supported by an online discussion
forum at Google+. The forum devoted to the two-circle problem was active for
4 days and contained 230 entries. Three different solutions were finally produced,
including the one presented in Sect. 18.3.1. An excerpt from the beginning of the
forum is presented in Fig. 18.4.

Evidently, the forum participants are still far from any productive heuristic idea.
Some of them are at the orientation stage and, generally speaking, are occupied by
creating initial drawings. Maya and Shira begin to develop the direction that
“EFHG is a rectangle,” which, as we know, is a dead end. The excerpt is suggestive
about the following phenomena: The students independently choose different
objects of attention (e.g., a kite-looking quadrilateral, a pair of triangles) and then
share what they do. Sometimes the attempts to get somebody’s attention are suc-
cessful, and sometimes they are not. The students occasionally choose to explore
the same object together. The excerpt is also suggestive about the aforementioned
mechanisms of productive peer interaction.

How can such interactions influence an individual pathway of shifts of attention?
Let me address this question with particular focus on one student, Maya. According
to the teacher, Maya has neither been an active student in a classroom nor a
successful student in terms of mathematics exams. However, Maya was one of the
most active participants in the two-circle problem forum. She initiated six out of 34
discussion threads, replied to 17 threads, uploaded two drawings and a scanned
hand-written solution. Based on her reflective questionnaire, we know that she
devoted about 5 h to the problem during 4 days and that for about 3 h she worked
outside the forum. A part of the Maya’s devious pathway of shifts of attention is
presented on Fig. 18.5.

The key solution idea of Maya was similar to the idea presented in Sect. 18.3.1,
but she considered different pairs of similar triangles, DKNL�DGNH and
DKML�DEMF (see Fig. 18.3). To prove their similarity, Maya first proved that
KL EFk kGH. This was the major challenge for her. She then concluded the proof by
consideration of proportions stemming from these similarities, in conjunction to a
proportion based on the “bridging” pair of similar triangles, DMAK �DNCK.

Maya was a situational problem solver in the group. It is of note that Maya’s
interactions with the peers were mostly around the objects of attention chosen by
her. She switched her attention to the objects suggested by the other students only
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Teacher (Day 1, 04:37): Good week, everybody! Today we begin to work on the third task of the project 
[posts the two-circle problem]. Good luck! [one “like”]

Shira (Day 1, 22:14): Look guys if you understand anything [in the drawing on the right side]. But this 
is, in general, the direction that I took :-) [two “likes”]

Zila (Day 1, 22:16): The truth is that I also thought about this way as the beginning, but how can you 
develop it?

...

Zila (Day 1, 23:49): How the quadrilateral (looks 
like a kite at Shira’ drawing), you said that it is a 
parallelogram?

Shira (Day 2, 07:22): I think it does not matter 
what the drawing looks like. 
I just did not draw exactly :-). But this is, in 
general, the direction, and you’re invited to 
continue :-)

Maya (Day 2, 19:11): I began working on the exercise only now and your auxiliary construction is exactly 
what I drew, even without looking! ̂ ______^ [this sign roughly means “I am proud of myself”]. I thought 
to use the segment between the centers and the distance from the center of the circle, I’ve not really 
begun, just a sort of conjecture :) [one “like”]

Zila (Day 2, 19:12): [Maya], did you reach the conclusion that this is a parallelogram (there is a good 
chance that it is!)

Maya (Day 2, 19:27): So far I’ve drawn a sketch, and I’ll begin thinking in a moment. 

Shira (Day 2, 21:20): The teacher, Maya, and I talked by phone for about 15 min about the exercise and 
thought and thought and got something. We first understood that the key points are those points that 
define the given arcs. So, the auxiliary construction should be from them or they should be included in 
two triangles so that it will be possible to prove their congruence. [one “like”]

Teacher (Day 2, 21:26): Excellent. It is worth adding to your previous ideas. . .

Maya (Day 2, 21:40): I invented this idea with Shira! In general, the idea is to get to the rectangle EFHG. 
I thought about how to prove the congruence of triangles EKG = FLN [six “likes”].

Zila (Day 2, 21:42): Maya, they are congruent.

Maya (Day 2, 21:52): How???

Zila (Day 2, 21:53): According to the calculation of the angles.

Zila (Day 2, 21:53): Or, in fact, they are not.

Maya (Day 2, 22:01): Hhhhhhhh... I am sitting already for two hours on this exercise. . . . If it would be 
that simple, I’d already be successful.

Fig. 18.4 An excerpt from the beginning of the two-circle problem forum at Google+

and the radii (with Shira) Points defining arcs and 
Possible similarity of and , and Similarity of and , and 

(Meirav’s idea, which appears to be a dead-end for Maya) return to Return to Arcs 
and , chords and , similarity of and , and ??? solution

Fig. 18.5 Maya’s pathway of shifts of attention in solving the two-circle problem
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occasionally. Interestingly, Maya never explicitly acknowledged that the ideas
published on the forum had helped her. However, some steps in her solution can be
traced back to the ideas suggested and explored by the other participants.3

18.3.4 Shifts of Attention When Interaction with a Solution
Source Is Available

The option to interact with a source of knowledge about a key solution idea to a
problem can drastically change a pathway of one’s shifts of attention, up to the
point that the entire process can stop being a problem-solving process and become a
solution-comprehending process. The proposed model seeks to encompass only the
situations in which a solution source can be present as a provider of cues to the
solution or as a convenient storage of potentially useful facts, but not as a source of
telling the solution. Such situations are common, for instance, when a teacher
orchestrates a classroom problem-solving discussion by favoring some of the stu-
dents’ ideas over the others. In this way, the problem is usually solved before the
bell rings. A danger in this situation, however, is that solvers may be deprived of
inventing the solution themselves or being misled by a deceptive feeling, such as
“we solved the problem with the teacher, so next time I will be able to do so alone.”

When a source of knowledge about the solution is present but does not give the
solution, the solver may attempt to extract it from the source (e.g., see questions for
assistance and questions for direction in Clark et al. 2014). In some cases, one’s
shifts of attention may occur as a straightforward result of such attempts. In other
cases, a shift may occur as a result of a conflict that emerges when more knowl-
edgeable and less knowledgeable interlocutors assign different meanings to the
same assertions (cf. Sfard 2007 for commognitive conflict).

For example, the assertion “triangle similarity is a good idea” can either pass
unnoticed in the group discourse or be a trigger for solvers to shift their object of
attention. The effect of the assertion would depend on who it has come from, a
regular member of the group or a teacher or a peer who acts as if she has already
solved the problem. In one case, the assertion can be perceived as “it is possible that
similarity helps”; in another, “I’ve tried it and it helped”; and in yet another, “this is
the direction approved by the authority.” In any case, the perceived meaning of the
assertion does not necessarily match the intended meaning. In line with Sfard
(2007), one can suggest that a conflict of meanings can either hinder the commu-
nication or help the solver to progress.

Let me illustrate this suggestion by an additional excerpt from the two-circle
problem forum. This time I focus on an episode from the fourth day of the forum,
when Maya announced that she solved the problem. As one can see (Fig. 18.6),

3Unfortunately, there is no room in this chapter for presenting the entire story and the method of its
SCM-driven analysis. It will be done elsewhere (Koichu and Harris, in preparation).
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when Maya announced her success, she was perceived by the classmates as a source
of knowledge about the solution. This fact essentially shaped the interaction. The
students did not ask Maya to share the full solution—they knew that this would be
against the rules of the forum—but they sought direction. Meirav asked for a hint.
Alina inquired about a particular solution step. Zila assumed the role of translator of
Maya’s ideas. Interestingly, the situation is not as festive as it probably looks. First,
when Maya actually published her solution, it appeared to have a logical flaw. She
succeeded in producing a mathematically valid proof only after polishing her rea-
soning in interaction with two forum participants. Second, the hint provided by
Maya in response to Meirav’s request sounds as if the theorem of Thales might
help, but this was not the case. Neither Maya nor other students used this theorem.
Apparently, “Thaleses” was an informal tag for the idea “use proportions.” Third,
Zila’s suggestion that Maya used “the theorems about tangent line and triangle
similarity” was not helpful at best and misleading at worst. Maya indeed used these
theorems, but not in proving that KL EFk kGH.

The point is that interaction with a source of knowledge about the solution
affected the students’ pathways of shifts of attention. It seems that an interplay of
different meanings assigned to the same statements (e.g., “Thaleses”) was an
indispensable characteristics of such an interaction.

18.3.5 Shifts of Attention and Choices That Problem Solvers
Are Empowered to Make

The argument presented in the previous subsections can be condensed into the
following sentence: One’s pathway of shifts of attention when solving a mathe-
matical problem is essentially stipulated by choices that he or she is empowered to
make. At a glance, this sentence echoes a description of a problem-solving process
offered by Poincaré (1908/1948): A problem-solving process consists of a
multi-stage pathway of conscious and unconscious steps towards the minimalistic

Maya: I succeeeeeded!!!!!!!!! And the teacher was right—it is so simple that I’d like to die. When I 
saw that I got nothing from [consideration of] this rectangle [ on Fig. X.3], I stopped and 
changed the direction. I went to proportions and solved the problem in several theorems, but anyway 
the long way towards the rectangle helped me to prove that KL is parallel to GH and to EF, and this is 
what helped me with the proportions. I’ll now organize everything and upload the solution ☺.

Meirav: But I’ve tried a lot of times to find some parallelograms and it did not work out. A hint?

Maya: Look at Thaleses…

Meirav: Thanks!! 

Alina: How did you prove that is parallel to and ?

Zila: She used the theorems about tangent lines and triangle similarity. Is it right? 

Maya: Oh, it took years….

Fig. 18.6 Interactions with Maya as a source of knowledge about the solution
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choice of a “proper” combination of ideas out of a huge number of possible
combinations. Let us recall however that the Poincaré description concerns only the
choices of solution steps and applies to mathematicians. Accordingly, it concerns
problem solving having very specific characteristics: The choice of a problem is
made by its solver, the solver has immensely rich mathematical resources and is
confident in his or her mathematical ability, and has virtually unlimited time and
motivation for pursuing the problem. Few of these characteristics hold for mathe-
matical problem solving in instructional settings, but let me argue that Poincaré’s
idea of choice can usefully be stretched.

Let us come back to the case of Maya once more. This time I wish to summarize
the choices available to Maya when solving the Two-Circle Problem. As the pre-
sented excerpts suggest, Maya acted in a situation in which she could choose her
solution moves. Moreover, she was empowered to make many additional choices
such as whether to attempt to solve the given problem, follow problem-solving ideas
of her peers, or merely ignore the challenge, as some of her classmates did; whether
to work independently or with her peers; who to communicate with and when; which
ideas to respond to and when; which and whose ideas to include into her own
reasoning line; which ideas to share and how; and how much time to devote to the
problem. It seems that only two choices were not up to Maya: Which problem to
solve and when. In the described episode, these choices have been made for her.

The presented situation was particularly rich with opportunities for the students
to choose. It is possible to recall or imagine instructional situations in which a
configuration of choices available to the problem solvers would be different and
include more or less choices. In fact, any instructional situation involving problem
solving can be thought of in terms of choices that mathematics teachers empower
their students to make, either intentionally or not.

18.4 Pedagogical Uncertainty and Choice-Affluent
Environments

The diversity of choices involved in problem solving in instructional settings is
immense, as are the diversity of individual pathways of shifts of attention. Being
aware of this, we must acknowledge a fundamental role of pedagogical uncertainty:
We can never know in advance which pathways of the shifts of attention the students
construct when solving problems; thus, we will probably never be able to formulate
universal recommendations as to how to organize a problem-solving classroom so
that it would fit the individual needs and traits of each student. In the other words, we
can probably never produce a satisfactory answer to Mason’s (2016b) “when”
question, which he posits as the question of problem-solving instruction: “when to
introduce exploratory tasks, when to intervene, and in what way” (p. 263). In yet
other words, there are probably no configuration or configurations of teaching
decisions that would be optimal for enhancing problem solving for all.
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There is an alternative, however, to the perennial search for such configurations
of decisions. Its roots can be traced to seminal work of Dewey (1938/1963), who
substantiated the idea that students must be involved in choosing what they learn
and how. I term this alternative as constructing choice-affluent learning environ-
ments. By a choice-affluent learning environment, I mean an environment in which
students can at different times choose the most appropriate (1) challenge to pursue,
from solving a difficult problem to comprehending a worked-out example;
(2) mathematical tools and schemata for dealing with the challenge; (3) extent of
collaboration, from being actively involved in exploratory discourse with peers of
their choice to being independent solvers; (4) a mode of interactions, that is,
whether to talk, listen, or be temporarily disengaged from the collective discourse,
as well as whether to be a proposer of an idea, a responder to the ideas by the others,
or a silent observer; and (5) agent to learn from, that is, the opportunity choose
whose and which ideas are worthwhile of their attention.

How feasible are choice-affluent environments in school reality? One example of
such an environment, an asynchronous problem-solving forum characterized by
exploratory discourse, was presented above. An additional example involving
engagement of students in long-term mathematics research projects has been pre-
sented elsewhere (Palatnik and Koichu 2015; Koichu 2017). Furthermore, it can be
argued that even a lesson in a classroom that has a time constraint can be a
choice-affluent environment.

For example, one characteristic of what Liljedahl (2016) termed the thinking
classroom is the use of vertical surfaces (e.g., whiteboards or blackboards) as media
that substitute for notebooks or working sheets that traditionally lie on the student
desks. In such a classroom, students are given time to solve mathematical problems
in a small group while standing and writing on the vertical surfaces instead of
sitting and writing in their notebooks. Accordingly, students all have access not
only to the content of the whiteboard of their own small groups, but can also see
what is written on the other groups’ whiteboards. I had a chance4 to observe the
following phenomenon in such a lesson: When a small group felt that they were in
progress, they paid little attention to the work of the other groups. But when the
students felt that they were stuck, some of them looked over the other groups’ work
without directly interacting with the members of these groups with the hope of
getting a useful cue or evaluating their progress in comparison with the other
groups’ progress. In this way, they got what can be called non-intrusive assistance.
Furthermore, the students engaged themselves in interactions exactly when they
needed them and not when the teacher decided for them that they needed them. In
terms of the definition of a choice-affluent environment, the students in Peter
Liljedahl’s class were empowered to make choices (2), (3), and (5) above.

4I thank Peter Liljedahl for the opportunity to attend such a class during my visit to Simon Fraser
University in 2016.
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18.5 Concluding Remarks

Developing a model of mathematical problem solving that would be applicable to
different educational contexts is motivated by several causes. First, with few
exceptions, the existing problem-solving frameworks utilize different conceptual
tools for exploring problem solving in socially different educational contexts.
Second, the foremost frameworks (Carlson and Bloom 2005; Schoenfeld 1985) are
comprehensive within the problem-solving contexts within which they have
emerged, but it is sometimes difficult to apply them to additional contexts. Third,
the central issue of connecting our knowledge of how problem solving occurs and
how to enhance this activity in instructional settings is still underdeveloped (e.g.,
Schoenfeld 2013).

In this chapter, a particular way of constructing a model of mathematical
problem solving is presented. The proposed model capitalizes on the Mason’s
(1989, 2008, 2010) theory of shifts of attention (which was initially developed for
other reasons) and consideration of choices that problem solvers are empowered to
make. Hence, the model has been named the shifts and choices model, or the SCM.
In fact, the model is a confluence and embeds theoretical tools from the existing
problem-solving frameworks and theories. As mentioned, the model is only
exploratory. Its use as a research tool is stipulated by the availability of research
methodologies for identifying shifts of attention in socially different
problem-solving contexts. In part, such methodologies are available from past
research, but they should be further developed. The use of the model as a peda-
gogical tool depends on further unpacking the mechanisms underlying the choices
that problem solvers make in different instructional situations and on research on
how a teacher’s decisions affect these choices. Little research has been conducted in
this direction so far.5

Furthermore, the choice-affluent learning environment notion is introduced in
this chapter. It is important to note that I do not argue for the claim that the more
choices that are left to the students, the better. I rather argue for being aware of the
fundamental role of pedagogical uncertainty related to Mason’s (2016b) “when”
question, for being aware of configurations of choices that we, mathematics
teachers, inevitably create for our students and for being aware of the complexity
and sensitivity of the student pathways of shifts of attention when they are engaged
in problem solving.

I choose to end this chapter by mentioning some of the questions that I have had
a tendency to ask myself as a mathematics educator ever since I have begun looking
at my own lessons through the lenses provided by the SCM: What student choices
do I tend to support? What student choices am I aware of? How do my students
choose what they choose? How can I support the desirable choices without

5A study by Flowerday and Schraw (2000) on teachers’ beliefs about instructional choices is an
exception and a useful step towards understanding how teachers construct choices for their
students.
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choosing for the students? Which choices should I leave to the students? To what
extent were my lessons during the last week choice affluent? My best hope in
relation to this chapter is that some of the readers would find some of these
questions worth thinking about.
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