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Preface

The purpose of this book is to promote the use of mathematical optimization and
operations research methods in rail transportation. We do so by describing the state
of the art in 13 chapters that were contributed by leading scholars. For practitioners,
these success stories give an impression of what is currently possible, and they give
an inspiration for new applications. For researchers, the chapters provide an up-to-
date reference and a broad survey of the field, although we can and do not make any
claim of complete coverage.

There is a significant gap between what can be done and has successfully been
tested in laboratory experiments, and what has actually been implemented in prac-
tice. This is startling considering the historical development of mathematical opti-
mization, in which railway applications always played a central role. Tolstoĭ’s early
work on the transportation problem dealt with rail transport of salt, cement, and
other goods in the Soviet Union (see Толстой [17]). The Max-Flow Min-Cut Theo-
rem by Ford and Fulkerson [4] aimed at the military interdiction (disruption) of the
Western Soviet and Eastern European railway systems. The article of Charnes and
Miller [2] on the optimization of railway freight train movements is the first refer-
ence to a set covering model, whose use in large-scale applications was propelled by
the influential F.A.S.T.ER competition of the Italian Operational Research Society
AIRO and the Italian railway company Ferrovie dello Stato SpA (see, for instance,
Caprara et al. [1]). The recoverable robustness concept of Liebchen et al. [10] was
initially developed for timetabling and train platforming problems.

On the other hand, industrial installations appeared only recently. The system
DONS (Designer of Network Schedules, see Hooghiemstra et al. [5]) is used by
the Dutch infrastructure manager ProRail and the train operator Nederlandse Spoor-
wegen (NS) to compute countrywide timetables with the CADANS algorithm by
Schrijver and Steenbeck [16], and routings through the main stations with the STA-
TIONS algorithm by Zwaneveld [19]. The 2006 timetable constructed by DONS led
to an increase in annual profits of 40 million Euros per year (see Kroon et al. [8]).
This spectacular success won the prestigious INFORMS Franz Edelman Award for
Achievement in Operations Research and the Management Sciences. NS was also a

v



vi Preface

pioneer in crew optimization with the system TURNI (see Kroon and Fischetti [7]).
This was followed by Deutsche Bahn as well as the Swedish Statens Järnvägar (see
Kharraziha et al. [6]) and by Trenitalia with the system DS-OPT [3]. The optimiza-
tion kernel RotOR is used by DB Fernverkehr AG in order to optimize the rotations
of its ICE high-speed trains (see Reuther [14]). However, integrated and standard-
ized resource planning systems such as ivu.rail (see Scholz [15]) just emerged. Much
better established is the use of simulation systems such as OpenTrack [13] or
RailSys [18] for capacity and service reliability assessment. Concerning optimal
real-time traffic control, a system to dispatch trains was in operation in the Milano
underground system in 2007 (see Mannino and Mascis [11]). A semi-automatic dis-
patching system controlling trains in the Lötschberg base tunnel, which is operated
by the Swiss BLS, is in operation since the end of 2007 (see Montigel [12]). Fi-
nally, dispatching systems for main lines are in operation in Italy since 2011 (see
Lamorgese and Mannino [9]).

There are several reasons for the slow penetration of the railway sector by math-
ematical optimization methods, including monopolistic structures and problems in
the transfer from academia to the industry. The main reason, however, was a lack
of algorithms that were capable of dealing with the large, complex, and highly inte-
grated planning challenges that are typical for the railway industry. But this situation
has changed.

With this book we intend to give proof that optimization methods are now able
to keep some of the long-standing promises. Mathematical optimization can pro-
vide better use of capacity, improved efficiency, reduced infrastructure and operat-
ing costs, improved reliability, and more punctuality.

These potentials will be demonstrated in a collection of 13 chapters by leading
experts in the field, covering almost the entire planning process. The methods de-
scribed in these chapters are in most cases either already implemented and “up and
running” or pilot installations. Indeed, the gap between theory and practice is now
mostly in the practical implementation and their engineering.

The structure of the book is visualized in Fig. 1. There are three main clusters
of articles, corresponding to the classical stages of the planning process: strategic,
tactical, and operational. These clusters are further subdivided into five parts which
correspond to the main phases of the railway network planning process: network as-
sessment, capacity planning, timetabling, resource planning, and operational plan-
ning. The time-frame ranges from long-term strategic decisions on infrastructure
and slots via mid-term tactical planning on the timetable and short-term allocation
of resources to real-time operations support. Simulation is at the start to identify the
needs and at the end to assess the results, and maybe identify new needs, such that
the process starts all over.

The individual planning tasks can differ between passenger (♂♂) and freight (I)
railways, and therefore most articles have an application focus. There are also differ-
ent levels of technical maturity presented, ranging from already established indus-
trial standards (e.g., in crew scheduling and train dispatching) to academic proofs
of concept. In many chapters the authors tried to explicitly point out the degree of
operational readiness that has been achieved.
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Strategical

Tactical

Operational

1 Simulation

2 Capacity Assessment

3 Network Design

4 Train Routing

5 Robust Timetabling

6 Event Scheduling

7 Track Allocation

8 Blocking

9 Shunting

10 Rolling Stock

11 Crew Scheduling

12 Dispatching

13 Delay Propagation

Network
Assessment

Infrastructure
Management

Timetabling

Vehicle&Crew
Management

Traffic
Management

Network
Assessment

Infrastructure
Management

Timetabling

Vehicle & Crew
Management

Traffic
Management

Fig. 1: The book’s railway network of contents

We now briefly summarize the contents of each of the five parts of the book.
The first part on network assessment addresses the micro-macro approach in rail-

way optimization. Mathematical models work on a coarsening of the original prob-
lem. Data is first aggregated to a macro level, while the solutions are later evaluated
for real-world feasibility on a micro model. Simulation is the main tool to do that,
and two chapters describe it. Chapter 1 is an overview of the state of the art in sim-
ulation methods with a focus on scheduling and train allocation. Simulation is not
only useful to generate data for optimization, it can itself use optimization and be a
part of an optimization loop.

Chapter 2 addresses the operational feasibility of timetables. Stability is assessed
by using algebraic approaches and the outputs can be exploited to identify the need
of new infrastructure enhancements.

The second part deals with decisions about the track infrastructure. The solution
of these problems is crucial for the success of a railway because they have long-
term implications. Chapter 3 is about long-term investments in infrastructure, while
Chapter 4 is about the master structure of the freight transportation system.

The third part is devoted to timetabling. The timetable is the interface between
the railway and the customers. Its structure is decided on a tactical level with a mid-
term time horizon, in both passenger and freight rail. The classical way to approach
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timetabling is via the PESP model, which is a main object of study in railway
optimization. Researchers try to include more and more aspects, such as robustness.
There are periodic and nonperiodic versions of timetabling, for pax (more periodic)
and freight trains (less periodic). Chapter 5 summarizes the state of the art in the
classical PESP and the high level of understanding that has been reached. Chapter 6
discusses models for the robust case in order to deal with delays, both for periodic
and non-periodic designs. Chapter 7 is on the freight version of the problem, which
is called track allocation, and which is intrinsically non-periodic.

The fourth part is on the allocation of vehicle and crew resources to implement
the timetable. Vehicles and crews account for the major part of the variable costs
of a railway. Chapter 8 is on the organization of the structure of freight transport
at Deutsche Bahn. It is decided what, how, and which type of goods is transported.
Chapter 9 deals with the concrete process of constructing the formation of freight
trains. This process, called shunting, is indeed a major challenge in freight rail op-
erations.

Chapter 10 addresses the passenger side. As opposed to freight transport, which
focuses on cars, the train is the center of attention in passenger rotation planning.
Finally, trains need crews, and these are planned in Chapter 11.

The fifth part is fully operational. Unforeseen obstacles ranging from bad weather
to the disruption of tracks can impede the implementation of a plan, and it is the task
of dispatching to get the service back on the track. Decisions must be taken in real
time, dealing with all aspects of railway operation in an integrated way. Chapter 12
addresses the basic problem of train dispatching, which has been subject to substan-
tial mathematical advances. Dispatching systems based on mathematical methods
are more and more becoming an industrial standard. Spread of delays is a major
problem in passenger railways, whose difficulty stems from the way how trains in-
teract in a railway network. Chapter 13 discusses approaches to tackle and mitigate
these effects.

We dedicate this book to the memories of Alberto Caprara and Leo Kroon, who
left us far too early. Their pioneering contributions to railway optimization will re-
main an inspiration for future generations, and keep them alive in our hearts and
minds forever.

Berlin, Germany Thomas Schlechte
Berlin, Germany Torsten Klug
Berlin, Germany Markus Reuther
Oslo, Norway Carlo Mannino
Rome, Italy Leonardo Lamorgese
Berlin, Germany Ralf Borndörfer
19 September 2017
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In Memoriam of Alberto Caprara
(1968–2012)

written by Valentina Cacchiani and Paolo Toth

On April 21, 2012, our colleague and very dear friend Alberto Caprara unexpectedly
and immaturely passed away in a mountaineering accident at “Corno alle Scale” (an
Apennine mountain close to Bologna). Born in Ivrea (Italy) on January 9, 1968, Al-
berto earned his M.S. degree “cum laude” in Electronic Engineering in 1991 from
the University of Bologna, and received his Ph.D. degree in “Control System En-
gineering and Operational Research” in 1996 from the University of Bologna. Al-
berto spent his academic and scientific career in the Operations Research group
of the Department of Electronics, Computer Science and Systems (DEIS), Faculty
of Engineering of the University of Bologna. He was an assistant professor from
1996 to 2001 and an associate professor from 2001 to 2005. In 2005 he became
a full professor. Alberto’s 100 scientific papers (many of which published in pres-
tigious journals as INFORMS Journal on Computing, Mathematics of Operations
Research, Mathematical Programming, Operations Research, Transportation Sci-
ence) concerned the definition of mathematical models and the design, implemen-
tation, and analysis of exact and approximate algorithms for the solution of Com-
binatorial Optimization problems, and their application to real-world Transporta-
tion, Logistics, Computational Biology, and Railway Optimization problems. His
works blended very application-oriented products with academic Operations Re-
search methodologies, and significantly contributed to advance the state of the art in
the fields he tackled. His research activity included the following problems: Crew
Scheduling and Rostering in railway companies, Set Covering, Train Timetabling,
Chvatal-Gomory cuts, Train Platforming, Sorting by Reversals, Knapsack and Bin
Packing, Sequence Alignment, Packing of Cycles and Cuts in undirected graphs,
Train Unit Assignment, Robust Optimization. Alberto was awarded several prizes,
among which:

Special thanks to Juan José Salazar Gonzalez for providing the photo. xxi
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• in 1992 the “Francini” prize of AEI (Italian Electrical and Electronic Society)
for the best Italian M.S. Dissertation in Electronic Engineering;

• in 1997 the “George B. Dantzig Dissertation Award” of INFORMS for the best
Ph.D. Dissertation on Operations Research applications;

• in 2000 the “1999 Best Paper Award” of the Journal of Combinatorial Opti-
mization.

Alberto was member of the editorial boards of the journals Operations Research,
Mathematical Programming C, Operations Research Letters, and co-editor of Op-
tima (the Newsletter of the Mathematical Programming Society) from 2002 to 2010.
He delivered several plenary lectures at international conferences and acted as Pro-
gram Chairman of the Workshop ATMOS 2011 (Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems). Alberto was a hard-working per-
son and a dedicated scientist, whose exceptional career touched many of our lives.
He is widely recognized for his outstanding professional, ethical, and scientific stan-
dards that have inspired all who had contact with him. Alberto always wished to
tackle the most difficult problems (both in research and sport) and performed all his
activities with enthusiasm and passion. Along his career, Alberto demonstrated his
profound academic and human abilities and helped with a lot of professional care
younger researchers to grow and become experts in the commonly studied fields.



In Memoriam of Leo G. Kroon
(1958–2016)

written by Erwin Abbink and Dennis Huisman

On September 14, 2016, Leo G. Kroon unexpectedly passed away. A gifted mathe-
matician and scientist, Leo Kroon was the world leader in timetable modeling and a
scientist who exemplified how to bridge theory and practice. Leo worked as a Pro-
fessor of Quantitative Logistics at the Rotterdam School of Management (RSM),
Erasmus University, and as a Logistics Consultant at Netherlands Railways (NS).
He received his master’s in mathematics cum laude from the Free University in
Amsterdam and obtained his PhD in 1990 at the Erasmus University.

Professor Kroon was foremost interested in railways and worked since 1996 part-
time at NS. Leo pioneered in developing a group of practical researchers and student
at NS, who worked with “rolled-up sleeves” to solve real-world problems like the
labor discussion on variation in crew schedules. Leo had a great ability to present
even the most complex problems very clearly. The work of him, his colleagues, and
(PhD) students often led to successful implementations in practice at Netherlands
Railways in the areas of timetabling, rolling stock scheduling and crew scheduling.

Leo (co-)authored over 100 papers on mathematical optimization models for
planning and real-time optimization, in journals like Operations Research, Trans-
portation Science, Transportation Research B, and Interfaces. He was also asso-
ciate editor of the journal Transportation Science. Furthermore, Leo has been the
promoter of over a dozen PhD students, of which 10 worked on railway-related
topics. Twice, he won the PhD Supervisor Award of the national transport research
institute TRAIL. Furthermore, five of Leo’s PhD students won the RAS student pa-
per competition. Leo had a leading role in many international collaborations: he
was the project leader for RSM for the EU-funded projects in railways AMORE,
ARRIVAL, and ONTIME. He found great joy in organizing the international 2015
CASPT conference in Rotterdam with a team of his (PhD) students, colleagues, and
his dearly beloved wife, Cisca.

Leo and his team received many acknowledgments for their work, including the
2008 INFORMS Franz Edelman Award presented to the NS for model-based con-
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tributions to the 2007 NS timetable; the 2008 ERIM Impact Award and best paper
award at the 2011 World Congress on Railway Research (theme “Even more trains,
even more on time”); and 2013 Strategic University Relationship (SUR) collabora-
tion with IBM. As a result of his work, not only scientists benefit but also millions
of passengers in the Netherlands have a better train schedule, resulting in a higher
punctuality and a higher customer satisfaction score. Leo will be remembered as
a brilliant and erudite researcher who was committed to his students, PhD candi-
dates, and colleagues he worked with. He was honest, humble, and gifted with a
subtle sense of humor. He leaves a big void in our community, but will live on in
our minds and in his students’ future work in optimization for railways.



Chapter 1
Simulation of Rail Operations

Giorgio Medeossi and Stefano de Fabris

Abstract From the long-term design of new infrastructure to the validation of
timetables planners need accurate and reliable support tools that allow understand-
ing the effect of their decisions. Microscopic simulation has gradually become
widespread, since it allows considering not only the characteristics of infrastruc-
ture, signalling and rolling stock, but also human factors. In spite of this success
and of the increasing quality of commercial simulation software, the setting up of
a simulation requires time and accuracy to ensure that all elements are represented
correctly.

1.1 Introduction

Simulation of railway networks has a long tradition, starting many decades ago in
railway laboratories, where models in the scale 1:87 were used to reproduce net-
works and control them using realistic interlocking systems. The growth in the
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calculating capacity of computers, the creation of graphical user interfaces and the
relative simplicity of the basic rules of train traffic have led to the development of
simulation tools. Simulation tools were first able to simulate relatively small net-
works considering all trains in a deterministic way. These tools were mainly used
to support infrastructure planning and especially to estimate infrastructure capac-
ity. More recently, the further increase in the performance of computers and the
possibility of an automatic import of infrastructure layouts and timetables widened
the application spectrum of micro-simulators to large nodes and to more detailed
stochastic stability evaluations.

Compared to a deterministic simulation, the stochastic one presents the great
advantage of considering also variability in process times, while increasing the pre-
cision of the outputs.

Stochastic micro-simulators can reproduce most processes involved in rail traffic
and comprehend not only its deterministic aspects, but also human factors. This is
particularly relevant in order to simulate traffic under realistic conditions, consid-
ering variability at borders, various driving styles and stop times. Obviously, the
possibility of obtaining realistic results is strictly related to the quality of the input
data used to model stochastic phenomena, which have to be accurately calibrated.

This chapter starts with a brief description of the different types of simulations,
followed by its typical application fields. Then a sort of step-by-step guide presents
how to set up a simulation model, followed by a brief presentation of the most
useful outputs. The chapter is concluded by an explanation of the most important
weaknesses of simulations.

1.2 Types of Simulation

A simulation is deterministic if all parameters are defined by the user and do not
contain any random components; thus, two runs of a deterministic simulation gen-
erate the same outputs. Deterministic models are used to represent real systems
which are too complex to be evaluated analytically. In stochastic simulations ran-
dom components are introduced to better represent one or more phenomena. Since
stochastic simulations are used to evaluate the behaviour of a system with some
random factors, results of a single simulation run have no statistic relevance; as a
consequence, multiple simulations must be performed. Deterministic simulations
support timetable planning or the design of new infrastructures, while stochastic
models allow timetable robustness or stability analysis.

A simulation is static if it is time-independent. A dynamic simulation model
shows how a system evolves over time. Railway simulation models are dynamic,
since they are explicitly built to study traffic evolution in a given time interval.

In continuous simulation models, the value of state variables changes continu-
ously in time, therefore it is calculated with analytic continuous resolution of state
equations. In discrete-event simulation models, state variables are calculated only
when an event occurs, independently from the time-span between two successive
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events (next-event time). Railway simulators are continuous when the time-step at
which the state variables are calculated has a fixed duration, while more simplified
models use pre-defined process and event times in a discrete approach.

Macro-simulation models use a simplified infrastructure model to reduce compu-
tational time and therefore allow simulations of larger networks. Micro-simulation
models offer a description of infrastructure which reproduces the functionality of
interlocking, safety and block systems.

In a standard asynchronous simulation, trains with highest priority are simulated
first, and conflicts among them solved with a first-come-first-served strategy; the
resulting infrastructure occupations are stored. Then the process is repeated for each
priority group, more and more saturating the time-windows which are still unused.
Therefore, no conflict among trains with different priority is possible: high-priority
services are never forced to brake or stop by conflicts with low-priority trains.

On the other hand in synchronous simulations all trains are calculated together,
considering the constraints given by the interlocking and signalling system and the
behaviour of drivers. As a result, a synchronous simulation reproduces operations
as they are in reality, including the consequences of traffic conflicts: a faster train
might be forced to brake behind a lower-priority one, and its driver would follow
the braking curve as allowed by the Automatic Train Protection (ATP) system.

Because of these characteristics, the approach that reproduces railway operations
in highest detail is dynamic, synchronous, microscopic and stochastic. These models
are also the most flexible and widely-used in commercial simulation software. Thus,
we consider only this approach in the following.

1.2.1 Simulation Tools

A number of synchronous micro-simulation models have been presented in the last
years. Since all models use the same approach, solving the motion equation of trains
which are moving together on a microscopic network with respect to interlocking
and safety system functionality, differences between models are mainly in the flex-
ibility to represent different technologies, in the capability to receive automatic in-
puts or to generate specific outputs.

The EU funded project Optimal Networks for Train Integration Management
across Europe (ON-TIME) recently published an “Assessment of State-of-Art of
Train Timetabling” [9], which gives a comprehensive overview on the various com-
mercial simulation software.

The most widely-used commercial software at a global level are OpenTrack
[10], RailSys [14], RAILSIM X and RTC [13]. Although there is an overlap area
in their use, each tool has a different basic philosophy, which makes each of them
more suitable for specific applications.

OpenTrack [10] is a simulation tool developed at the Institute for Transport
Planning and Systems (IVT) of the ETH Zurich and now supplied and refined by
OpenTrack Railway Technology Ltd. [10] is used by railways, the railway supply
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industry, consultancies and universities in a significant number of different coun-
tries. Additionally [10] features the calculation of power and energy consumption
of train services. The key strength of OpenTrack [10] compared to the other tools
is the extreme flexibility in defining the infrastructure (simply as nodes and edges
using the so-called “double-vertex graph”) and the interlocking and signalling sys-
tems. Instead of directly implementing a set of national systems, the tool features
a few standardized signals whose characteristics can be customized by the user to
model accurately their functions. As a result, basically all signalling systems world-
wide can be represented, and specific signals can be inserted to influence the be-
haviour of drivers, making it very realistic. Moreover, at present OpenTrack [10]
appears as the tool with the most complete set of stochastic components to represent
drivers’ behaviour.

RailSys [14] is a comprehensive signal-berth simulation package, which also
has modules that facilitate infrastructure management, timetable construction and
possession planning. The software database structure allows simple storing of very
large models, which is reflected by its use by many infrastructure operators. The
model features a timetable construction system and an automatic slot search al-
gorithm, see Hauptmann [3]. Refined simulation techniques to prevent deadlocks,
a number of input and output capabilities and the presence of variable process
and event times made this tool suitable for large-network stochastic simulations,
see Rudolph and Demnitz [11].

RAILSIM X developed by SYSTRA, appears as relatively similar to RailSys
[14], but is extremely focused on the US market. It is formed by several modules,
which go far beyond the pure simulation of operations, or simplify some of its most
common uses:

• the design and analysis of rail and rapid transit signal systems.
• the analysis of the loads, potentials and regenerative braking receptivity on DC

and AC power systems.
• calculating of safe braking distances for “worst case” signal design purposes.
• the development of models, along with the design and modification of signal

systems.
• the automotification of signal clearing time (minimum supportable headway)

processing for fixed block wayside and/or cab signal/Automatic Train Control
(ATC) designs.

RAILSIM X is used in particular by passenger rail, light rail and metro operators
in the US.

Rail Traffic Controller [13] developed by Berkeley Simulation, is the simula-
tion software used by most freight operators in the US to reproduce operations on
complex networks, also when formed by long single-track lines that can be used as
alternative routes for trains depending on traffic conditions, see RTC [13]. Instead
of using fixed (or multiple, but pre-selected) itineraries, RTC [13] is able to dispatch
trains on the network, finding a deadlock-free routing to their destination. This abil-
ity has made RTC [13] a standard trusted by all stakeholders in the US in particular
for estimating the capacity of networks considering a set of delay cases as input.
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1.3 Application Fields

Basically, simulation can be used to reproduce rail operations under all conditions.
However, it has a few weaknesses that make it more difficult or less accurate to use
for certain studies. On the other hand, while a commercial software is a single tool,
the way it is used varies based on the goals of the simulation. With a state-of-the-art
commercial simulation software it is possible to run:

1. Single train runs, in which a single train is running on the network.
2. Deterministic simulations, in which all trains are running based on their

timetable, and no human factor or variability is inserted.
3. Stochastic simulations, in which standard distributions of initial delays, dwell

times and/or train performances are inserted. Stochastic simulation have to
be run for a statistically relevant number of iterations in order to obtain
statistically-relevant data.

4. Advanced stochastic simulations, in which the input distributions are derived
from real data. This links the results to the existing data, but at the same time
allows comparing real world data with simulation to validate the model, and
simulated scenarios among them to forecast reliability.

While (1) is only useful to verify running times, (2)–(4) can be used separately or
combined, each to support the specific stages of railway planning.

1.3.1 Simulation to Calculate the Running Times

The most basic use of simulation is to calculate the run times of single trains. His-
torically, this has been the first use of rail simulation and appears still important
when designing a timetable. However, accurate run time calculators are now inte-
grated in most timetable planning tools; thus, microscopic simulators are normally
not deployed for this task. On the other hand, compared to run times estimated by
macroscopic timetable planning tool (such as Viriato), microscopic simulation
tools deliver more accurate results in particular in complex stations; however, these
differences are normally negligible in timetable planning, in which margins have to
be included to consider the human factors, which are significantly higher.

1.3.2 Simulation to Verify a Timetable

A deterministic simulation can be run to verify the feasibility of a timetable on
the network. In this case, the entire line or region, or a small portion of it can be
simulated. Simulating only the critical area appears sufficient if the planners ex-
pect no conflict outside of it; this condition can be reasonably identified on lines by
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simply checking the timetable graph. A deterministic simulation using train perfor-
mance reduced to a realistic value (and thus a maximum 95–96%) using the tech-
nical dwell times—and not the planned dwell times—can be run as first step. If
the timetable appears feasible, a second deterministic test in worse conditions could
be run. Different approaches are used by practitioners, with the common goal of
creating more stressful conditions for the timetable without setting up a stochastic
simulation. The most common ones—often used also in combination—are: reduc-
ing the performances of trains by 3–5%, obtaining slower trains and thus testing
the capacity of the timetable to work also when drivers are not able to exploit the
rolling stock at its maximum; increasing the dwell times by a few seconds at each
stop; increasing the route release time; this test leads to longer blocking times and
allows identifying conflicts that might occur under normal conditions as an effect of
the normal variability of train movements.

1.3.3 Simulation to Estimate Capacity

Estimating the capacity of a line or station is one of the most common tasks of rail-
way planning. As stated in the UIC leaflet on capacity “Capacity as such does not
exist”, being a function of “the way the infrastructure is utilized” (see International
Union of Railways (UIC) [4]), which is defined at least by the service concept to be
operated in it. Synchronous simulation is more demanding, requiring a relatively de-
tailed timetable, which also includes train routings. Once a timetable is created and
simulated, the capacity is not yet estimated, since the simulation only reproduces
operations with the timetable itself. Different methods are deployed in practice:

1. In an iterative process, the impossibility of adding trains to an existing timetable
is shown, normally by displaying the resulting timetable graph, in which the
conflicts caused by the additional train are highlighted. Although this method
does not lead to an explicit estimation of capacity, but of the residual of the
given timetable, it is broadly applied. In fact, the frequency and service pattern
of pre-existing passenger trains often lead to a nearly-fixed timetable, which is
described and documented by the planner. If this demonstration is considered
as valid, evaluating the residual capacity in terms of number of trains that can
be added appears correct. Obviously, considering some (or most) services as
fixed reduces the total capacity, since the timetable typically contains time that
cannot be used by trains.

2. The well-known method described in the already-mentioned UIC 406 leaflet
(see International Union of Railways (UIC) [4]) overcomes this limitation by
proposing the compression of the timetable followed by an evaluation of the
total and residual capacity simply based on percentages of the total time. It is a
procedure that can be easily performed in microscopic simulation tools. Some
of them (such as RailSys [14]) feature a module to automatically estimate
the capacity using this method, while in others the slots can be iteratively ap-
proached until a conflict is displayed; then the capacity can be estimated. This
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approach has the advantage of being widely accepted and easily reproducible.
However, the coefficients used to obtain the maximum usable capacity do not
consider the effect of technologies that have a beneficial aspect on the usable
capacity, such as the continuous ATP systems, nor the impact of the human
factors, which vary a lot.

3. To fill this gap it is necessary to use stochastic simulation. It allows obtaining
the reliability figures corresponding to a certain timetable, operated under real-
istic conditions and taking into account the behaviour of drivers, also related to
the signaling and ATP systems installed. Medeossi [7] proposed a method that
combines the compression with stochastic simulations. In the first step a key
part of the real timetable—such as a peak hour—is compressed as explained
in the previous paragraph. The compressed hour is the “basic period” of the
timetable: it is repeated, ensuring that no buffer time is provided between the
last train of a period and the first of the following one and thus obtaining a
dense timetable that covers the entire peaks or the entire day. Obviously, the
obtained interval has a specific value, which is normally not as simple as 60 or
30 min, and it is not realistic to operate such a timetable. Buffer times can then
be gradually added by increasing the headway times among trains by a given
amount of time. The results are obtained running a set of stochastic simulations
at each increase of buffer time and then calculating the corresponding reliabil-
ity figures. Since buffer times are directly proportional to the capacity, at each
increase of them corresponds a certain capacity: thus, the result is a capacity vs
reliability curve that shows how the reliability of the line (or station) decreases
at increasing traffic density.

1.3.4 Simulation of Yards

Microscopic simulations, and in particular the most flexible tools such as
OpenTrack [10] can be used to represent in detail all shunting moves within
yards. However, compared to operations in terminals, in yards the times for cou-
pling and decoupling trains and moving switches have to be estimated on field,
while the effective speed appear by far more important than the speed limit, the
signalling system and the other characteristics that are accurately represented by
simulation tools. Moreover, the output statistics of simulation tools are normally
not very useful for the goals of these studies. As a result, other tools such as Villon
appear more suitable in this field, see Kavička et al. [5].
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1.3.5 Simulation to Support the Definition of Infrastructure
Improvements

While estimating the capacity appears sometimes more a theoretical than a practical
question, the quantitative evaluation of the benefits of infrastructure improvements
is a very common task for planners. An improvement may lead to the increase
of capacity, reliability and/or train performances (and thus a reduction of running
times). To obtain the combined capacity and running time benefits, a similar ap-
proach to capacity estimation is used, starting from the construction or adaptation
of the timetable. This step is extremely important, since the shorter running times
allowed by the speed-up are not exploited if not considered in the timetable. The
study continues as a regular capacity estimation: while the effects on capacity can
be estimated using deterministic simulations, only the stochastic simulation allows
estimating the impact on reliability.

1.3.6 Simulation to Estimate the Robustness of a Timetable

Robustness is the ability of a system to withstand parameter variations or changes
in the operational conditions. The estimation of robustness is a typical application
of stochastic simulation, in which not only the real variability of process times, but
also standard ones can be used as input. Different measures can be used to assess
the robustness of a timetable; the most common are:

• the number of conflicts, which has the advantage of being easily estimated
and understood. On the other hand, there is no direct proportionality between
this number and the effect of the conflicts themselves on operations, which is
strongly related to the running time margins inserted in the timetable and the
ATP/ATC system installed on the line.

• the propagation of delays, which can be measured as the difference between
delays at the beginning and at the end of train journeys. It appears as the explicit
measure of robustness as the capacity of the system to recover delays.

• the punctuality or delays. These measures should be used only to compare two
scenarios, which are simulated using the same input delays; when a comparison
is not possible, the propagation of delays appears preferable.

1.3.7 Simulation to Evaluate the Impact of Maintenance or
Construction Works

Track closures or slow speed sections are easily inserted in simulation models. They
can then be simulated deterministically when the goal is to decide how to adapt a
timetable, and stochastically to estimate the reduction of the reliability due to the
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works once a timetable is defined. The stochastic simulation of temporary single
track sections requires particular attention due to the risk of deadlock that might
occur when multiple trains are scheduled on it at the same time. In fact, while sim-
ulation easily dispatches conflicts between two trains, the presence of a third one
might lead to deadlocks if it is not possible to solve it in two steps. Besides dead-
locks, the dispatching criteria used by the simulation tools might give priority to
lower-priority trains, leading to an unrealistic distribution of delays.

1.3.8 Simulation to Estimate Ex-ante the Punctuality of a
Timetable

This appears as one of the most recent and complex uses of the advanced stochastic
simulation, since it requires highest accuracy and at-the-same time appears inter-
esting for the operators in particular on complex or heavily utilized networks. The
result is that running these simulations requires time and experience since it is nec-
essary to verify its accuracy. This simulation always requires a careful validation,
since it is necessary to verify that the model is able to reproduce operations realis-
tically also under their normal variability. The validation is obtained comparing the
results of the simulation of existing operations with the corresponding real opera-
tional data. The comparison can be conveniently made using the same performance
indicators, measuring points and aggregation of courses that are used for the output.
A combination of punctuality and mean delay gives a good synthesis of the quality
of operations: the former is the most easily understood by practitioners, but it might
be quite sensitive to small changes in the operational conditions: a train with 179 s
delay is considered on time, while one with 181 s is late. On the other hand, the
mean delay is more stable, but less easily connected to the performance measures
used in real operations. It must be noticed that the lower is the punctuality thresh-
old the higher is the residual error; as a result it appears easier to obtain a 1% error
in punctuality at 5 s than a 5% error at 1 s. After this validation the results of test
scenarios are compared to the reference one, and punctuality is always presented as
variation from the reference scenario and not as absolute rates.

1.4 Setting up a Simulation Model

More and more operators own the microscopic model of their network, in several
cases already prepared for simulation or even available to the public. However, if the
model is not available or validated, or a different tool has to be used, it is necessary
to carefully create or check the model before running the simulations. Figure 1.1
shows a typical workflow for a simulation study.
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Create the infrastructure 
model Create the rolling stock

Create the itineraries of 
trains Import the timetable

Check the error

Deterministic simulation

Goal of the study

turnaround times

Group trainsGroup stations

Stochastic parameters for 
each group

Quality-check: Compare 
reality and simulations

Stochastic simulation

Fig. 1.1: Workflow of a simulation study

1.4.1 Defining the Simulation Area

This simple step appears very important, since choosing properly the simulation
area allows including all elements that might have an impact on the outputs by at
the same time limiting the time required to set up the model.

No fixed criteria exists for the definition of the simulation area; however there
are a few “rules of thumbs”:

• On the analysis line(s), consider the entire section between two important sta-
tions. This section is further extended to the next station when the first (or last)
station is not a terminal one.

• On all lines diverging from the analysis line(s), consider the section to the first
station. However, there is no need to simulate a branch line if its trains start/end
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at the junction station without any possible conflict with the analysis line(s). The
same criteria applies to the other lines converging in the first and last station of
the analysis line(s).

• At least the peak hour(s) should be simulated. To allow all planned trains at
the beginning of the peak hour to be simulated, the simulation should start at
least a complete running time on the line before the peak hour. Similarly, it is
important to simulate at least 1 h after the end of the peak. This means that if
a line has a running time of 2 h, and the peak hour is 7–9, the simulation time
should be at least 5–10.

• Although normally less dense than the morning peak, the evening peak often
shows higher delays. Thus, it appears important to simulate it, too.

1.4.2 Creating the Infrastructure Model

To obtain the highest precision, a microscopic simulation model contains all charac-
teristics of the real world that have an influence on train movements and dynamics.
On the other hand, since simulation and especially infrastructure modeling are quite
time-consuming, parameters which have a very limited influence could be ignored,
in order to obtain results more efficiently.

Regarding the line alignment, gradients have to be considered in detail if they
are significant for train dynamics (normally >5%). While in many running time
calculation software mean gradients for longer sections are used, each gradient has
to be modeled, especially when heavy freight trains are considered. The combination
of low adhesive weight and wet rails reduces significantly freight train acceleration
also if the ramp is just some hundred meters long. Tunnel position and kind (single
or double-track, smooth or rough) are also to be inserted into the model, since their
additional resistance significantly affects train resistance even at low speed (V >
60 km/h).

On heavy railway lines, a detailed description of curve radii can be strongly sim-
plified considering mean curves on longer sections or adding the curve resistance to
the gradients obtaining a total resistance due to line alignment.

The interlocking and block system have to be modelled in high detail, compre-
hending the complete station layout with all track circuits and all signals with their
respective aspects associated to the possible routes. Also the way routes are released
has to be modelled, considering overlaps and release groups or other technical pa-
rameters, including release times or interdependencies among routes which are not
simply identified when creating the track layout.

1.4.3 Characteristics of the Rolling Stock

Inserting the characteristics of rolling stock is significantly less time-consuming,
since the required data set is limited, and includes: number, weight, length, position
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of locomotives and coaches, adhesion weight, tractive effort vs speed curve, and
description of braking as function of Braking Weight Percentage (BWP) or as decel-
eration intervals.

The same characteristics should be inserted for all ATP/ATC systems under
which the train operates if they influence the braking behaviour of drivers (such
as the European Train Control System (ETCS) Level 2).

The coefficients of resistance formulas are given as default in the simulation
tools and can be customized only when the specific ones are available. This subject
is extensively described by Wende [15]; the book also includes the coefficients to be
used for several types of locomotives, trailers and multiple units considering both
the Davis and Strahl & Southoff formulas. Besides these basic parameters, others
have a significant influence but neither often available nor easy to estimate:

• Adhesion: apart from the adhesion weight, the adhesion in expressed as % in
motion equation. While recent trains in normal condition can have a 120%, a
value used as default in OpenTrack [10],

• Acceleration/deceleration delay: the former is the time a train takes to accelerate
again after a braking action; it is quite limited on short EMUs higher for loco-
hauled passenger trains and even longer on freight trains. The latter is the time
following receipt of the signal information before the operator applies the brake
and the brake curve can be applied in calculations. It includes a behavioural
and a deterministic component, very limited on trains with electric brakes but
significant on long freight trains, in which the air pressure takes several seconds
to propagate over the entire train. On a long freight train this time can measure
nearly 30 s, see Wende [15].

• Correct deceleration on gradients: this parameter allows representing the in-
crease/decrease of braking deceleration on gradients. A value of about 0.01 m/s2

can be considered as a good approximation. For long freight trains it is nec-
essary to consider that they are not able to keep a constant speed on slopes,
and are required to use the so-called “sawtooth method” (“Sägezahnmethode”),
see Schweizerische Eisenbahn [12]. In lack of a specific setting in the software
it can be simulated calculating the corresponding average speed or using a series
of coasting signals.

• Minimum time to hold speed: when the distance between two stops, or a sec-
tion with higher maximum speed is short, drivers do not reach the maximum
possible speed to immediately brake strongly, but keep a more gentle profile.
This practice, can be simulated defining the minimum time the train has to keep
its maximum speed before braking. The result is that it reaches the maximum
speed it can keep for the given time, keep it and then brake. The effect of this
parameter is shown in red in Fig. 1.2.

• Coasting: it takes place before braking when the tractive effort is equal to zero
and the train is decelerating due to resistance. Some operators promote the use
of coasting as an energy-saving measure on early running trains. As demon-
strated in Medeossi et al. [8], it is defined as a time interval, in which a train has
a deceleration similar to the deceleration caused by train resistance. The dura-
tion of coasting depends on the length and speed of the section and the actual
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delay of the train and is strongly related to the behaviour of the driver. Due
to this variability, unless specifically suggested and defined by the operator or
measured on field, it appears quite difficult to accurately model coasting in the
existing commercial software. The combined effect of coasting and minimum
time to hold speed is shown in green in Fig. 1.2.
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Fig. 1.2: Impact of the “Minimum time to hold speed” (in red) and the coasting (in
green) on the speed profile of a train

1.4.4 Running and Checking the Correctness of a Simulation
Model

The correctness of a model has to be verified accurately before running the simula-
tion. In the experience of the author even the “official” models of the operators are
not completely free from errors. The model can be verified simply based on experi-
ence by checking a few aspects of the simulation output of the existing timetable (if
available) and lead to a validation report:

• Verify the speed-distance diagrams of at least one example train per line. Are
the distances and speed limits correct? Do trains reach their maximum speed?
Are acceleration and deceleration similar to their expected rates?

• Run a complete simulation and watch the animation: do all trains use the correct
itinerary? Are the stopping positions correct? Are entrance orders in junction
stations correct? Are the routes released and blocked as expected?

• On the timetable graph, check the blocking times: do they correspond to the
position and aspects of signals?
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• On the timetable graph, identify the conflicts and give an explanation to each of
them. Are they simply due to the difference between planned and simulated be-
haviour of trains? (The conflicts due to early-running trains are a typical issue.)

• In a table containing the delays of all trains at all stations check all deviations
from the schedule higher than a certain threshold; find them in the graphic
timetable and explain them.

1.4.5 Inserting the Stochastic Phenomena

The initial delays, the stop times and the running times are considered as the primary
variability sources. The initial delays represent the distribution of departures for
each train from its first station within the simulation area. After this first departure,
trains move along their route according to their running time distribution, and stop at
stations for a variable time according to the stop time distributions. If these data are
estimated accurately, and the simulation model correctly represents the interactions
among trains, the departure distribution at each following station is quite similar
to the real ones. It is, in principle, possible to model the behaviour of each train
separately, especially when the distributions are derived from real data using a tool
like TRENO. On the other hand, besides the difficulty in manually editing real world
data when necessary, this would lead to a simulation whose results are extremely
linked to the existing timetable. A good compromise can be reached grouping trains
and stations with similar characteristics, as:

• Trains with same category and origin and destination (O/D) form one group.
• Stations are grouped based on the number of passengers boarding and alighting.

The largest ones are kept separated.
• Peak hours are defined for line sections and direction and train category sepa-

rately. This allows setting a peak hour in the morning for local services towards
a certain regional hub, but not in the opposite direction, nor for the long-distance
trains.

As a result, each train group has a distribution of initial delays plus one of dwell
time for each station category; each for peak and off-peak hours.

1.4.5.1 Initial Delays

When defining the expected initial delays for a new timetable on the basis of the past
data collected at each station, it is important to exclude all major perturbations and
all secondary delays (delays due to traffic conflicts). Some researchers use interlock-
ing data and sophisticated mathematical models to identify primary and secondary
delays, see Yuan and Hansen [16]. However, these methods require using blocking
times collected at block sections of the network, which, currently, are not stored in
most countries.
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If such accurate methods for filtering out secondary delays cannot be used, a
rough filtering process developed by Medeossi et al. [8] can be deployed with the
goal of defining a realistic initial delay distribution (removing the effects of con-
flicts with arriving trains) rather than analysing conflicts in detail based on track oc-
cupation. The method uses only train passing data, automatically collected at each
timetabling point by the train describers, which identify trains at their first station
and then keep track of progress along the route. This simple model is relatively
accurate for use in simple stations where complex conflict chains hardly occur. In
other cases, for example at large stations, it introduces higher—but in the author’s
experience, still acceptable—initial delays.

The method consists of two steps. First, major perturbations are simply filtered
out by excluding all delays greater than 600 s (5 min). An extensive analysis of major
stations in Italy showed that more than 99% of delays due to passengers alighting
and boarding or other “normal” phenomena are lower than 5 min. Therefore, this
threshold can be used to filter out breakdowns that can be excluded in timetable
planning. (The 5-min threshold would need to be reconsidered for application in
another context or country.) Second, the conflicts between arriving and departing
trains are identified using a mesoscopic model at each relevant station. This process
uses data of station arrival and departure times for each train as well as the sequence
of signals the train has passed and the corresponding times. All trains with departure
delays are checked using these data to determine if a conflicting movement took
place. In case of a conflict, the record is simply excluded from the data set.

1.4.5.2 Dwell Times

A precise estimation of stop times appears normally more important than that of
initial delays, especially if entire train courses are simulated. At the same time it
appears less important on freight lines, as well as on single-track lines, where the
stopping times are more influenced by the crossings than by the passengers board-
ing and alighting. Stop time variability includes two phenomena affecting trains at
stations: departure imprecision and dwell time variability. Departure imprecision
occurs if a train, which arrived early or punctually at a station, does not depart
punctually although all passengers are already on board. Departure imprecision is
generally short for regional trains, with mean values between 10 and 20 s, while it is
often more than 30 s for long-distance trains. The dwell time depends on the number
of passengers boarding or alighting, the presence of late-arriving passengers and on
the physical layout of the train-set. The two phenomena must be considered sepa-
rately to model stop time variability correctly. This process is complicated because,
often, the only data available are arrival and departure times. A detailed stop time
calculation model was proposed by Longo and Medeossi [6], based on a previous
work by Buchmueller et al. [2]. The model can also be used to estimate the effect of
an increased demand or different rolling stock, but it requires a set of measures to be
collected manually at some stations. However, in most studies it is quite demanding
to collect those inputs, so a simpler method was developed by Medeossi et al. [8].
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The method is valid for services operated with a frequency greater than every 10 min
and uses two assumptions to divide the measured stop time into different parts:

1. For late-running trains, the stop time has no departure imprecision and consists
only of the dwell time.

Da > 0 ⇒ Td −Ta = Ts = Tdw

2. On early-running trains, the stop time includes both dwell time and departure
imprecision.

Da < 0 ⇒ Td −Ta = Ts = Tdw +Tdv,

where

Da = Arrival delay Ts = Stop time

Ta = Arrival time Tdw = Dwell time

Td = Departure time Tdv = Departure variability.

The same operational data collected at all stations used for defining the initial
delays can be used as input to estimate Td and Tdw. Thus, the dwell time Tdw is the
measured dwell time of late arriving trains, while the departure variability Tdv is the
departure distribution of the early-arriving ones.

In large stations, where the planned stop time is significantly higher than the
minimum dwell time, it is more accurate to separate early- and late-arriving trains
at a different threshold to avoid obtaining a dwell time distribution than partially
includes waiting for the departure time.

Although this separation appears extremely easy, it is not supported by most
commercial simulation tools. In such cases the user is forced to use only one of
the two distributions. A quick analysis of real world data allows deciding which
to use: when the variability of dwell times is high, the distribution of dwell times
should be used, but if the number of passengers boarding and alighting is limited
a fixed dwell time plus a distribution of departure times appears more accurate. It
must be noticed that this way of considering the dwell times appears not correct for
services with frequencies higher than 10 min, in which passengers arrive at stations
independently from the expected train departure time. In fact, if a certain train is
slightly delayed there will be more passenger waiting for it and, thus, its dwell time
will increase, further boosting its delay. This would be represented considering a
delay-dependent dwell time function, which is at the moment not implemented in
any commercial software.

1.4.5.3 Train Performances

The estimation of the variability of running times to be used in simulations is more
complex. It is modeled through one or more performance parameters in the simula-
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tion tools. The performance parameters represent the way drivers drive during one
or more phases of motion (braking, acceleration, etc.): they are inserted in the mo-
tion equation as factors that reduce the maximum performances of the train. During
acceleration, the performance parameter reduces the tractive effort of the locomo-
tive; during cruising it reduces the speed limit while during braking it reduces the
deceleration. The estimation of performance parameters is by far more complex than
that of the initial delay and stop time distribution. It requires to find the performance
parameter that splits the motion into five or six phases and reproduces the measured
running time at best. A method for the estimation of the set performance parameters
was presented by Medeossi et al. [8] and is based on train event recorder or GPS log
files; more recently Bešinović et al. [1] presented a method to use track circuit logs
instead.

While these algorithms lead to very accurate results, they cannot be used for
simulations, because commercial software only uses one performance parameter
for the entire motion. Since the best parameter is the one that leads to the same
running time between two stations, it could be obtained by simply estimating the
distribution that fits at best the running times as recorded in the train describer data.

Train performance parameters are normally between 90 and 98%, with the lower
end more common on stopping trains and values quite close to the upper limit for
high-speed services. Energy-efficient driving policies have a significant impact on
running times, so we suggest analysing a set of GPS or train event recorder logs to
evaluate whether or not to model it explicitly, obviously depending on the function-
alities provided by the simulation tool.

1.4.6 Incidents

The simulation allow users to examine the impact of disturbances (called “incident”)
in the infrastructure, rolling stock and schedule systems. Incidents can either be
operational failures or operational problems (which allow operations to continue
but at a reduced speed or capacity). Examples of the first type of incident include
signal failures and broken tracks; examples of the second include slow orders or
unplanned train delays. Incidents can be combined into sets of incidents that can be
applied during the simulation.

Given the relative detail required to model them, incidents are normally inserted
to reproduce specific disturbances and not the normal stochastic behaviour; an ex-
ception is represented by a few specific cases in which they are used to represent the
systematic interaction of operations with external elements, such as a traffic light on
tram operations. Since the set of possible (real) incidents is extremely wide, and the
frequency of each extremely low, it is not possible to draw general criteria to define
the most significant incidents to be tested on a railway line. Moreover, since most
commercial simulation tools are not able to automatically cancel partial or complete
train courses, the impact of serious breakdowns can only be simulated by manually
and gradually modifying the timetable to reproduce these decisions. The possibility
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to control dispatching in simulations using an ad-hoc external tool, as possible, for
instance in OpenTrack [10], opens a broad spectrum of applications, since it is
possible (at least in theory) to simulate the correct impact of a much broader set of
incidents with very limited manual interventions.

1.4.7 Output

One of the key advantages of microscopic simulations is that it can log the virtual
movements of trains on the infrastructure at each integration step. This huge quantity
of data can be displayed and aggregated in several ways to obtain the statistics or
diagrams.

1.4.7.1 Animation

The animation of trains running on the network is not only an impressive output
for the decision-makers; it is also plays a key role for the users of the tool. In fact,
it allows the planner to understand and show what happens in the virtual network,
and in particular the routes each train takes, the aspect of signals it encounters, the
reason of conflicts, etc.

1.4.7.2 Timetable Graph

The timetable graph is a space-time diagram that represents the planned and/or ac-
tual movements of trains. A train moving along the line is represented by a line,
whose inclination is proportional to the speed of the train. It is the most common
technical diagram in railways and the most efficient to view operations along a line,
identifying the conflicts and estimating their effect. A qualitative impression of the
usage of a line is easily obtained by adding the blocking times to the timetable graph,
giving one of the most easily-comprehensible outputs of deterministic capacity es-
timations. The graphic timetable can also be used in stochastic simulation, to show
the effects on operations of an example delay scenario, obviously with no statistical
meaning.

1.4.7.3 Diagrams

Diagrams such as speed vs. distance or time, acceleration, power consumption, etc.
can be used to show how a train runs on its itinerary, also showing the effect of a
different train set or speed profile.
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1.4.7.4 Statistics of Occupation

These statistics show the physical occupation or the blocking time of a certain in-
terlocking element or block section. The blocking times represent the time in which
the interlocking and signaling system keep the element blocked for a train; they
are normally used as an output of deterministic simulation to identify the usage of
critical sections in the peak hours or to show the theoretical headway time on it.
The occupations represent the time in which an element is physically occupied by a
train: they are useful when analyzing the usage of station tracks.

1.4.7.5 Delay Statistics

All outputs listed previously mainly refer to deterministic simulations and do not
allow aggregating the results of stochastic simulations. As a result, the most impor-
tant output of stochastic simulations are the statistics of delays. An advantage of
simulations is that reliability of operations can be measured using exactly the same
indicators used in real operations. Since they can be measured for all trains and at
all stations, the user can decide how to group the trains and where to measure them
in order to limit the number of tables and graphs inserted in reports. Punctuality is
normally measured as it is in reality, and thus at terminal or important stations, while
the mean delay—which is not frequently used in official figures of operators and is
more sensitive to slight timetable or infrastructure changes—can also be meaningful
if measured at other locations. A classic example is the simulation of small infras-
tructure improvements whose effect might be negligible if it is measured only at the
nearest large station.

1.4.8 Evaluating the Quality of a Simulation Model

Evaluating the quality of the model means comparing it with the reality to ob-
tain a quantitative measure of the differences between simulation and reality. Since
the reality is always influenced by stochastic factors, this comparison should be
made comparing the real collected data with the stochastic simulation of the same
timetable. Obviously, simulations will use the initial delays, as input, dwell times
and train performances taken from the same set of collected data.

Once a model is checked for its errors in the deterministic simulation, it must be
briefly checked for errors again when running a stochastic one, at least considering
a couple of iterations. The goal of this check is to understand whether delays occur
and were propagated correctly. In fact, there might be errors in the distributions
of dwell times, but also in the settings of the signalling system, whose effect is
negligible under deterministic conditions. This check is performed on the graphic
timetable, simply pointing out the conflicts and trying to investigate their origin and
consequences.
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Now it is possible to run a full set of stochastic simulations. The higher the num-
ber of iterations is, the less will be aggregated for the analysis of results and the
higher is variability of operations on the line. Fifty iterations (corresponding to the
working days of about 2 months) appears as a good number in normal conditions.

To allow an effective comparison of reality and simulation it is important to con-
sider a limited, but comprehensive set of indicators. In the experience of the Authors
a combination of mean delays and punctuality at 3 or 5 min allows easily identifying
the differences that would be relevant in the “official” performance regime, by at the
same time mitigating their episodic sensitivity towards small variations with mean
delay. Moreover, the mean delay allows appreciating changes also for very low de-
lays. Trains are normally grouped by OD pairs and category, and can be measured in
a set of locations. In order to allow the user understanding the differences between
model and reality it appears important not to further aggregate them in this phase.

Based on the resulting differences, the user can decide to improve the model and
run it again. A simulation model that was checked for errors might still represent
the reality very poorly in particular if for some reason the stochastic parameters are
not accurate.

The residual error is the accuracy of the model; since no fixed rule exists, it ap-
pears very important to set the goal based on the level of detail that is required in the
study as a whole. Generally 1–2% punctuality and 20 s mean delay difference appear
satisfying. Again, it appears more important to meet this goal or a slightly lower one
most measuring stations than on the average value. Similarly, having the same trend
in reliability along a line in simulation and reality appears more important than the
strict compliance with a given threshold.

Figure 1.3 shows a comparison between simulation and reality considering mean
delays (above) and punctuality (below). Apart from the absolute differences and the
lack of some measuring points in the real world data, the fact that the two curves
follow the same trend proves the quality of the model.

1.5 Weaknesses of Simulation

At present, microscopic simulations are the most accurate way to mimic rail op-
erations, since infrastructure, the interlocking and safety systems as well as train
movements are represented in considerable detail. However, even models that are
already quality checked at both a deterministic and stochastic level contain some
systematic errors. These errors are partially due to the impossibility to represent
stochastic phenomena with the parameters of the motion equation and partially to
the synchronous nature of simulations. It is paramount for the user to be aware of
these limitations to estimate the accuracy he can obtain.
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Fig. 1.3: Residual error of simulation as mean delay (above) and punctuality at 3′

(below) for a group of IC trains

1.5.1 Stochastic Nature of Inputs Not Fully Modeled

If the deterministic inputs are set up correctly, the theoretical residual model er-
ror is negligible, but the error becomes higher because the stochastic behaviour of
some of the inputs is not recognized in the simulation. The traction characteristics
of trains, and, hence, the journey times are not perfectly represented using conven-
tional equations as they vary for instance depending on the mechanical condition of
the equipment, the voltage being supplied and the rail adhesion.

Moreover, using the described simplified methods to calculate and apply delays
and the station dwell time variability does not fully represent the reality; in addi-
tion the operational data used as input often contain a measure error, since they are
derived from track circuit logs.

Driving variability is an important issue that is hard to fully reflect in simulations,
in particular concerning the parts of motion in which the behaviour of drivers is more
variable such as coasting or braking. Some models do not even have the capability
to take this into account, while others consider them only deterministically.
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1.5.2 Dispatching

In microscopic simulation models a dispatching algorithm needs to be provided
(equivalent to a modern traffic management system), which can reschedule trains on
the basis of the current traffic status. However, in some simulation packages, instead
of this being a realistic control algorithm working at a network level, dispatching
is based on the resolution of single traffic conflicts based simply on a weighted
FIFO (first in-first out). At each signal it is possible to select a criterion: the priority
of trains, the delay of trains or their expected waiting time or the pre-reservation
distance, which is the user-defined time or distance that a train can reserve a block
section before passing the corresponding signal. Although these criteria correctly
reproduce wide sets of possible decisions they do not fit well with the very different
practical rules used by traffic controllers, who are often in a better position to foresee
the consequences of their decisions. Another weakness in traffic management can be
found in the selection of alternative routes. When a conflict is found, the simulator
searches in a pre-defined itinerary list (with decreasing priority) for an itinerary
which is still free and blocks it. The itinerary is changed, even if the pre-defined one
is released few seconds later and if other conflicts are caused by the new choice.
Although this method to assign trains to routes is not realistic, experience gained
with a wide range of topologies shows that normally it does neither lead to deadlocks
nor to a significant increase in unrepresentative delays—although of course in some
circumstances it might.

The track change at stations is not realistically representable with the existing
algorithms, since it works with the above-mentioned principle to change the route. A
change of platform forces all passengers to move, often just some minutes before the
train’s departure. Sometimes this is practicable and sometimes it is not, depending
on a number of factors including the passenger numbers and the distance between
platforms.

In heavily utilized terminal stations the platform change of one train can cause
another change to a second train scheduled to use that platform. Case studies have
shown that realistic results in terms of delay per train can often be obtained using the
pre-defined platforms, although the real track allocation process is not reproduced.

1.5.3 Effectively Modeling Seriously Delayed Trains

Seriously delayed trains represent a particular challenge for dispatchers, since a de
facto new slot has to be inserted, also trying to minimize the impact on other trains.
Moreover, if such trains are freight services, overtaking may have to be managed. If
they are long-distance passenger services, platforms have to be allocated at terminal
stations, and it is necessary to decide whether the train set maintains the planned
turnaround (delaying the outbound service) or not.

From the simulation’s point of view, the problem appears as a combination of the
above issues regarding complex the dispatching on lines and the platform allocation.
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With the lookforward rules as currently applied in many simulation packages, it is
impossible to ensure that simulations represent such phenomena without generating
inappropriately high waiting times for other services.

1.5.4 Modeling Major Disruptions

As mentioned in the Sect. 1.4.6, at present, simulators do not cancel services auto-
matically, often leading to unrealistically high output delays if simulating significant
initial delays or disruptions. A further issue with simulating major disruptions is that
the reallocation of rolling stock and train crew becomes a critical part of the prob-
lem. No microscopic simulations deal with these currently and ignoring it can lead
to simulators significantly understating the impact on the performance of particular
scenarios.

As major disruptions represent a significant proportion of total train lateness,
this seriously limits the usefulness of microscopic simulations to estimate delays
ex-ante. Thus, the possibility to control simulations using external tools and the
integration of realistic dispatching algorithms are a key area for development of
microscopic simulation packages if they are to meet more fully the needs of railway
operators and planners.
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1. Bešinović N, Quaglietta E, Goverde RMP (2013) A simulation based opti-
mization approach for the calibration of dynamic train speed profiles. J Rail
Transp Plann Manage 3(4):126–136. ISSN: 2210-9706. https://doi.org/10.1016/
j.jrtpm.2013.10.008 (cited on page 17)

2. Buchmueller S, Weidmann U, Nash A (2008) Development of a dwell time
calculation model for timetable planning. Comput Railw XI 105–114. https://
doi.org/10.2495/CR080511 (cited on page 15)

3. Hauptmann D (2000) Automatische und diskriminierungsfreie Ermittlung von
Fahrplantrassen in beliebig großen Netzen spurgeführter Verkehrssysteme, Ger-
man. PhD thesis, TU Hannover. Eurailpress. ISBN: 978-3-7771-0287-0 (cited
on page 4)

4. International Union of Railways (UIC) (2004) Website of UIC, Capacity (UIC
code 406). uic.org (cited on page 6)
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Chapter 2
Capacity Assessment in Railway
Networks

Nikola Bešinović and Rob M. P. Goverde

Abstract Capacity assessment is essential for densely utilized railway networks. To
guarantee stable operations, it is necessary to evaluate the capacity occupation and
determine possible infrastructure bottlenecks. This requires accurate microscopic
models that incorporate detailed infrastructure characteristics, signalling and in-
terlocking logic, train characteristics, and driver behaviour. This chapter presents
capacity assessment models based on a novel algebraic approach that builds on ac-
curate running and blocking time computations. The capacity assessment should be
undertaken on corridors, station areas, and networks, and as such, support a bet-
ter understanding of the existing timetable constraints and possible infrastructure
investments.
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2.1 Introduction

Passenger and freight railway traffic have increased considerably worldwide over
the past two decades, and this trend is expected to continue, see [53]. Many rail-
way networks are already exploited to their maximum capacity and extra measures
are needed to satisfy the growing demand. The ON-TIME project has diagnosed
multiple capacity issues in several European countries including France, Italy, the
Netherlands, Sweden, and the UK, see [37].

The possible implications of a capacity assessment could be constructing new in-
frastructure, improving the existing one, or using the existing one more efficiently.
Upgrading the infrastructure may achieve these objectives, but is very costly and
time-consuming. Therefore, more efficient planning of services may be more ap-
propriate. Thus, understanding railway capacity is important to identify the most
effective actions.

Various approaches for capacity assessment can be found in the literature and
in practice. For example, RMCon [42] and Jensen et al. [25] deployed simulations
for this purpose. Schwanhäußer [45, 46] introduced a queuing theory approach for
evaluating the capacity. The extensions of this approach are given in [5, 24, 55–57].
Krueger [26] and Lai and Barkan [27] proposed parametric modelling. Analytic
approaches based on optimization models for capacity assessment are presented in
[6, 7, 34]. However, none of these models consider a timetable with its scheduled
arrival and departure times as an input for the capacity assessment.

Based on extensive practical experience, it has been concluded that timetable
structures are required to understand the interactions in a dense and complex railway
network. Therefore, timetable structures should be used to determine the required
infrastructure in terms of numbers of platforms or tracks [36]. Mackie and Preston
[32] and Eliasson and Börjesson [11] also stressed the necessity of timetables for
estimating the social benefit of railway investment appraisals. In particular, explicit
timetable decisions (e.g., train orders and connections) are required assumptions
for the analysis. Otherwise, the results will be arbitrary and scenarios will not be
comparable.

This chapter describes the main (timetable-based) methods for capacity assess-
ment that are based on timetable compression. Particularly, we focus on timetable-
based models that consider infrastructure and rolling stock as given and fixed. In
addition, the chapter is oriented towards deterministic models for assessing the level
of capacity occupation, rather than the maximum (theoretical) capacity. For the lat-
ter, we refer to [9]. Section 2.2 introduces the relevant terminology and aspects of
railway capacity research. Section 2.3 presents the compression methods, the basics
of blocking time theory, and states the limitations of existing applications. These
form the basis for the description of advanced tools for capacity assessment on the
different infrastructure levels of corridors (Sect. 2.4), nodes (Sect. 2.5) and networks
(Sect. 2.6). Finally, Sect. 2.7 discusses approaches for improving capacity and gives
directions for further development.
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2.2 Railway Capacity and Blocking Times

In order to discuss railway capacity, it is important to first give some definitions.
Railway capacity is highly complex and depends on multiple factors. The theoretical
capacity of railway lines and station layouts is defined as the maximum number of
train paths (i.e., time-distance infrastructure slots) on the infrastructure in a given
time window and represents an upper limit for infrastructure capacity. It usually
assumes a homogeneous traffic where all trains are identical and optimally spaced
throughout the time period, see [51].

The practical capacity of railway infrastructure is defined as the maximum num-
ber of train paths on the infrastructure in a given time window given the traffic
pattern, operational characteristics or timetable structure. Practical capacity thus de-
pends on the mix of train services with different characteristics.

Capacity occupation is defined as the amount of time that the train paths from a
given timetable structure in a given time window occupy the infrastructure. Com-
monly, capacity occupation is expressed in minutes. Moreover, the capacity occupa-
tion rate (expressed in %) is defined as the ratio of capacity occupation to the given
time window. It provides an indication of how a timetable may perform. Other mea-
sures for quantifying railway capacity found in the literature like the number of
passengers over a given time window and amount of goods over a given time win-
dow. Table 2.1 gives an overview of the terminology commonly found in railway
capacity research.

Table 2.1: Used terminology in railway capacity research

Term Synonyms

Theoretical capacity Design capacity, see [50]
Absolute capacity, see [7]
Capacity throughput, see [8, 48]

Practical capacity Achievable capacity, see [50]
Effective capacity, see [17]

Capacity occupation Infrastructure occupation, see [51]
Occupancy time, see [52]
Consumed capacity, see [19]
Capacity utilization, see [15]
Carrying capacity, see [23]
Used capacity, see [1]

Capacity occupation rate Utilization rate, see [28]

Railway capacity depends on various aspects that can be categorized in three
groups: infrastructure, rolling stock, and traffic. Infrastructure is defined by the
railway layout (single-track, double-track, number and length of platform tracks),
distance between stations, track speed limits (depending on curves, grades and
switches), and the signalling system (block lengths, number of signalling aspects,
train protection). For example, Goverde et al. [18] showed the influence of var-
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ious signalling systems on the capacity occupation. Rolling stock characteristics
are, among others, train composition (multiple unit or locomotive hauled wagons),
length, maximum speed, and traction and braking characteristics. Capacity also de-
pends on traffic management and operational rules like dominant train type (pas-
senger, freight or mixed), use of tracks (unidirectional/bidirectional), mix of train
services with different characteristics (speed, stopping pattern, frequency), train se-
quences, dwell times and connections in stations, see [49]. UIC [52] explained that
capacity depends on the way the infrastructure is utilized which is represented in
the capacity balance of the number of trains, the average speed, the traffic hetero-
geneity, and stability. A detailed analysis of different aspects affecting capacity can
be found in [2, 20, 29, 44, 47], while an empirical comparison of different capacity
assessment methods can be found in [43].

Due to the high complexity of capacity assessment, railway infrastructure is often
decomposed and assessed independently, see [39]. We distinguish different infras-
tructure segments such as nodes, line sections (corridors) and networks. A node is a
track layout with switches and multiple route possibilities. A node may be a small
station with only a few platform tracks and limited interlocking areas, but also a
big station with higher number of tracks and more complex interlockings, and may
serve as a terminal for train lines. In addition, a junction can be considered as a node,
which includes only interlocking but does not provide train stopping possibilities.
A line section is a railway line between two nodes with a fixed number of parallel
tracks and no switches. A line section can have one or more parallel tracks and the
sequence of trains cannot change. Trains on a line section are usually separated by
a block system, where each block can be allocated to at most one train. A corri-
dor represents a longer railway line that consists of multiple line sections. Finally, a
network is an area of various interconnected corridors which are considered at once
during the capacity assessment.

2.2.1 Blocking Times

The concept of blocking times (see [39]) is closely related to capacity assessment
and the basis for the remainder of this chapter. A resource represents a subset of
infrastructure elements that can be exclusively allocated to a single train at a given
time. In practice, this is a block section or an interlocking route section including one
or more switches or crossings. A train route defines a set of consecutive resources
that can be used by a train to traverse from one point to another (e.g., between two
stations). A (time-distance) train path extends the train route with the time the route
is used.

The blocking time of a resource is the time during which the resource is solely
dedicated to a single train and cannot be used by any other. The blocking time con-
sists of an approach, running and clearing time, corresponding to the train running
time from the approach signal to the point located train length away the signal at
the end of the block. In addition, the blocking time includes setup and release times
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of the route and signals, as well as the driver sight and reaction time before the
approach signal. Figure 2.1 illustrates a blocking time computation for a single re-
source (i.e., block section) of a running train.

Approach signal

Sight and reaction time

Approach time

Running time

Clearing time
Release time

Sight
distance 
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length

Tim
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Distance
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Block
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Fig. 2.1: Blocking time for a running train over a block section defined by two
signals and the corresponding approach signal

The successive blocking times over a train route form a blocking time stairway,
which can be computed for all train paths of a given timetable. Generally, a timetable
consists of arrival and departure times at nodes, defining scheduled running time,
which includes running time supplement. For computing blocking times, we need
running times over each resource, which are obtained by computing an exact train
time-distance speed profile corresponding to a feasible dynamic speed profile for a
given scheduled running time. Figure 2.2 illustrates the conversion from timetable
departure/arrival times to a train dynamic speed profile and blocking time stairway.
The modelling details of the conversion are presented in [4].

Blocking time stairways are applied to compute minimum headways. The mini-
mum headway time hi js between trains i and j on a corridor or node z is computed as

hi jz = max
k∈Ri jz

( fik − s jk),
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Tim
e

Distance

Fig. 2.2: Macroscopic to microscopic conversion: from time-distance line to block-
ing time stairway between two stations on a single track with five block sections

where Ri jz are the resources used by both i and j in corridor or node z, and s jk and
fik are the associated start time and end time of the blocking time for resource k, re-
spectively. We assume that i precedes j and both stairways have the same reference,
namely, time 0. If z is a corridor, then we obtain the minimum line headway time be-
tween the two trains; and if it is a node, then it is a minimum station headway time.
The resource that defines a minimum headway time is called a critical resource,
such as, the critical block between two compressed blocking time stairways is the
block where the stairways touch each other.

2.3 Existing Methods in Practice

In Europe, the two most common analytic approaches for capacity assessment are
based on the timetable compression method. Timetable compression is the process
of shifting train paths to each other as much as possible, bringing them to the time
distance of minimum headway times. The total time needed for operating such a
compressed timetable is the capacity occupation. Here, the minimum headway time
is the minimum time separation between two train paths that provides conflict-free
train runs. The first method has been proposed by the International Railway Associa-
tion UIC—the UIC 406 capacity method [51]. The second method is the British Ca-
pacity Utilization Index (CUI) method, see [13]. Meanwhile, in the US, a timetable
compression method has not been applied yet, see [40].

2.3.1 UIC 406 Capacity Method

The UIC 406 capacity method is based on the blocking time theory. Originally,
UIC [51] described a method for evaluating capacity of line sections. In the 2nd
edition, UIC [52] expanded the approach to the capacity assessment of nodes. The
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method requires a timetable and a division of the network into line sections and
nodes. The original purpose of the UIC 406 capacity method was to measure the
capacity occupation of a given timetable, which is achieved by compressing the
train blocking time stairways. In addition, the method has been used for assessing
practical capacity. This has been done by adding extra trains in the timetable, called
timetable enrichment.

The UIC 406 capacity method intends to standardize evaluations for obtaining
comparable examination results by defining recommended values for the capacity
occupation rate of a line section, see [51]. The recommended capacity occupation
rates have been proposed only for double tracks and are distinguished between (a)
dedicated suburban passenger traffic, dedicated high-speed lines, and mixed traffic
lines and (b) peak period and daily period. Suggested capacity occupation rates are
85% and 70% for dedicated suburban traffic (peak and daily period), while they
are 75% and 60% for dedicated high-speed lines and mixed traffic lines. UIC [52]
proposed some preliminary ranges for nodes, but these still have to be confirmed.
It is assumed that these occupation rates would guarantee stable services with re-
spect to small disturbances. These recommendations were based on the practices
among European Infrastructure Managers (IMs) at the time, but highly depend on
the infrastructure layout, the way it is utilised, and the typical size of delays. Rec-
ommended capacity occupation rates are referred to as saturation rates (see [2]),
while a corridor that reaches these rates is called a saturated corridor.

If a corridor is not saturated yet, additional trains may be added. This is done
through an iterative process. First, the capacity occupation is computed by timetable
compression. If the rate is smaller than the saturation rate, the timetable is enriched
by one or more trains. Then, the capacity occupation rate is reassessed. These it-
erations are repeated until the corridor has been saturated. In addition, enriching
can be used to determine a corridors’ theoretical capacity. For further details on the
enrichment process, see [9, 25].

2.3.2 CUI Method

The CUI is the measure based exclusively upon the headway norms in nodes, given
as Timetable Planning Rules, see [35]. Similar to UIC 406, the CUI method builds
on a network decomposition into line sections that are evaluated separately by com-
pressing the timetable for each infrastructure segment. A line section for CUI is
always determined by two neighbouring nodes, while it may be longer for the UIC
406 method. The method does not consider an exact infrastructure occupation based
on blocking times, which makes it less accurate than the UIC 406 method. Thus, we
refer to CUI method as to a normative capacity assessment. A further comparison
between UIC 406 and CUI may be found in [33, 37].
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2.3.3 Open Challenges

Recently, Lindner [30] evaluated the UIC 406 capacity method. The 2nd edition UIC
[52] improved on his observations partially. One of the main remaining limitations
of the UIC 406 method is the capacity assessment in nodes. It proposes to decom-
pose a node in switch areas and (platform) track areas, and evaluate each segment
independently. More recently, Rotoli [43], gave a descriptive simplified approach for
evaluating nodes by using this decomposition and assuming a general node layout.
Such a node decomposition may not consider all route dependencies and leads to
underestimated capacity occupation. Section 2.5 introduces an analytic model that
overcomes this issue.

A second limitation is due to the network decomposition to line sections which
causes certain train dependencies to be neglected and result again in an underes-
timated capacity occupation. Third, the lengths of the decomposed line sections
affect the resulting capacity occupation significantly. To overcome these challenges,
we propose a network model for capacity assessment that preserves microscopic
details of the infrastructure and all train dependencies (Sect. 2.6). Fourth, the given
saturation rates represent a rough guideline rather than an exact values to follow.
These rates are highly dependent on the infrastructure layout, train characteristics
and level of service; and they may vary significantly for different national networks.
However, additional research is necessary to achieve better insight.

Armstrong et al. [3] proposed a solution for the limitation of the CUI method,
which is mainly applicable on line sections, by an extension for assessing the ca-
pacity in nodes. However, due to the coarser level of detail, CUI is a less accurate
and rather cumbersome method that is difficult to apply to complex nodes. Follow-
ing the timetable planning requirements defined by European IMs (see [38]), we
encourage using the UIC 406 capacity method for further capacity analyses.

2.4 Capacity Assessment of Corridors

The compression method is quite easy to apply and should allow a natural deploy-
ment. However, only the capacity assessment of corridors is straightforward. To
that purpose, various analytical and simulation models have been developed. Lan-
dex [28] extended the UIC 406 method to single tracks, while Abril et al. [1] applied
it on double-track corridors. Čičak et al. [8] proposed an approach for theoretical ca-
pacity of single track lines using a normative compression method. Abril et al. [2]
and Pouryousef et al. [40] are suggested for further reading on implementations of
capacity assessment for corridors in Europe and the USA.

Simulation tools are most commonly used for detailed timetable analyses as
described in this chapter. However, only a few of them incorporate a compres-
sion method explicitly to evaluate the capacity use of a given timetable, such as
RailSys [54], and EGTRAIN, see [41].
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2.5 Capacity Assessment of Nodes

In this section, we describe the max-plus automata model for capacity assessment
in nodes and give a numerical example (Sect. 2.5.1). Max-plus automata combine
properties of the heaps-of-pieces theory and max-plus algebra, and were introduced
by Gaubert and Mairesse [12]. The max-plus algebra is a mathematical technique to
model and analyse discrete event dynamic systems (DEDS) such as railway systems.
We refer to [15, 22] for more details on max-plus algebra applied to railways.

One of the main advantages of max-plus automata is the ability to explicitly
model the infrastructure resources and the blocking times of these resources corre-
sponding to blocking time stairways. This is exactly what is required to compute the
capacity occupation of a set of resources by a given set of train paths. Differently
from the general max-plus algebra, in the max-plus automata, both the start and end
time of each resource by each train are taken into account.

We assume a given timetable with assigned train routes (i.e., a route plan) and
corresponding blocking time stairways for the trains. In this section, we view a
blocking time stairway of a single train as a piece. Note that a piece may represent
a complete or partial train route through a node. For example, a train route may
consist of multiple pieces. Graphically, we may picture a compressed timetable as a
heap of all blocking time stairways stacked on each other, i.e., a heap-of-pieces.

2.5.1 Max-Plus Automata Model

A max-plus algebra is a semiring over Rmax = R∪{ε = −∞}, equipped with the
two binary operations maximum (⊕) and addition (⊗). For a,b ∈Rmax the max-plus
operations are defined as

a⊕b = max(a,b) and a⊗b = a+b.

The element ε = −∞ is the neutral element for ⊕ and absorbing for ⊗. The element
e = 0 is the neutral element for ⊗. Many properties of max-plus algebra are similar
to conventional algebra. The scalar max-plus operations are extended to matrices
in a standard way. Let Rn×n

max be the set of n× n matrices with elements in Rmax.
Then, for any matrices A = (ai j), B = (bi j) ∈ R

n×n
max matrix addition ⊕ and matrix

multiplication ⊗ are defined as

[A⊕B]i j = ai j ⊕bi j = max(ai j,bi j),

[A⊗B]i j =
n⊕

k=1

aik ⊗bk j = max
k=1,..,n

(aik +bk j).

A max-plus automaton is a tuple H = (T,R,M,s, f ). Here, T is a finite set of tasks
that represent all train routes l ∈ T , while R is a finite set of resources that can be
block sections or track sections (as defined in Sect. 2.2.1). Also, M is a function that
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maps a task to the resources it uses. Formally, M is a morphism T → R
R×R
max defined

uniquely by a finite family of matrices M(l), l ∈ T . We define si(l) and fi(l) as the
start and end time of resource i used by task l, respectively. Further, these construct
the corresponding R-dimensional row vectors s(l) and f (l). In other words, the task
l represents a (partial) train route, while vectors s(l) and f (l) depict the upper and
lower contour of the corresponding blocking time stairway. We also assume that
each stairway starts at time 0.

The matrix M(l) represents the blocking time stairway, which also equals the
capacity occupation, of a task l and is defined as

Mi j(l) =

⎧
⎨

⎩

e, for i = j, i /∈ R(l),
f j(l)− si(l), for i, j ∈ R(l),
ε , otherwise.

(2.1)

A matrix element Mi j(l) gives the time difference between the end time of the re-
source j and start time of the resource i. If a resource is not used, we assign e, if
i = j, and ε elsewhere.

We define a route plan w as an ordered sequence of tasks by successive trains
w = l1 · · · ln, where l1, . . . , ln ∈ T . Then, tasks from the route plan are added one by
one to the heap-of-pieces by which the occupation is computed sequentially as

M(w) = M(l1 · · · ln) = M(l1)⊗·· ·⊗M(ln).

Thus, matrix M(w) defines the capacity occupation used by all train routes in w
compressed together. Moreover, we define x(e) as an empty schedule of length |R|.
Then an upper contour x(w) of schedule w is given as

x(w) = M(w)⊗ x(e).

In general, schedule w represents a given train mix (number and types of trains
with corresponding routes). For practical reasons, the first train may be added as
an additional train at the end of the sequence. The start time of this final train is
the end point of the capacity occupation. In case of a periodic timetable, adding
this first train from the next period is required, as it determines the earliest possible
time to schedule the next period, which completes a full cycle. This will guarantee a
necessary separation between the last train of the current period and the first of the
next one. To do so, let a be the first task in a schedule of tasks w. Then the capacity
occupation μ(w) of a schedule w is computed as

μ(w) = min
i∈R(a)

(xi(wa)− ( fi(a)− si(a))) , (2.2)

where wa is the schedule for one period w with an additional train route a that
belongs to the next period. We use an added train route a to determine the earliest
possible start of the next period. Here, x(wa) represents the capacity occupation
including repeated train a. However, as mentioned, the actual occupation is defined
until the start time of a, so we subtract the occupation time of a from x(wa), that is,
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the difference f (a)− s(a). Next, the capacity occupation μ(w) is defined between
the start time of each element of the first train in w and a. Accepting that w starts
at 0, then μ can take the minimum value of the vector x(wa)− ( f (a)− s(a)). So,
(2.2) computes the occupation μ of a node for a given route plan w that specifies an
ordered sequence of blocking time stairways l ∈ T . Note that the model complexity
depends on the route choices and not on the station layout complexity, so the set R
can be limited to the set of used resources in the given route plan.

2

1 4
3

b

a

c

Fig. 2.3: Example 1: simple node infrastructure with trains a, b and c

Consider the following example for computing the capacity occupation of the
node presented in Fig. 2.3. Consider three trains a, b, and c, timetable w1 = abc and
resources r = 1, ..,4. Trains a and c use resources {1,3,4}, while b uses {4,2,1}. Note
that the order of resources defines the direction of each train. The train blocking
times are given in the blocking stairways (in seconds) as follows:

Route r s(r) [s] f (r) [s]

a [0,ε ,25,40] [40,ε ,60,75]
b [80,25,ε ,0] [140,100,ε ,35]
c [0,ε ,35,100] [50,ε ,120,160]

Figure 2.4 shows individual train routes, i.e., pieces, of a, b and c. Each piece is
physically connected in reality. However, it does not have to be connected in a two-
dimensional plot since the horizontal axis reports all resources in the node (Fig. 2.3)
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Fig. 2.4: Train routes: a—red, b—green and c—yellow
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and more, these resources can be ordered randomly. So, if a train route does not use
a resource, a gap in a piece may be observed. For example, resource 2 is not used
by train route a.

The corresponding matrices M for train routes a, b and c are defined by applying
(2.1) as follows

M(a) =

⎡

⎢⎢⎣

40 ε 60 75
ε e ε ε
15 ε 35 50
0 ε 20 55

⎤

⎥⎥⎦ , M(b) =

⎡

⎢⎢⎣

60 20 ε −45
115 75 ε 10
ε ε e ε

140 100 ε 35

⎤

⎥⎥⎦ , M(c) =

⎡

⎢⎢⎣

50 ε 120 160
ε e ε ε
15 ε 85 125
−50 ε 20 60

⎤

⎥⎥⎦ .

The matrix M for a trains ab is computed as

M(ab) = M(a)⊗M(b) =

⎡

⎢⎢⎣

215 175 60 110
115 75 ε 10
190 150 35 85
175 135 20 70

⎤

⎥⎥⎦ .

Matrix M(ab) defines the capacity occupation of ab, representing that a is im-
mediately followed by b. Similarly, train route c is added to the route plan as
M(abc) = M(ab)⊗M(c). The upper contour of the route plan abca is then computed
as x(abca) = M(abca)⊗x(e) = (375,175,395,410)T . And the capacity occupation
for the route plan abc is then computed using (2.2) as

μ(abc) = min(x(abca)− ( f (a)− s(a))) = min

⎛

⎜⎜⎝

⎡

⎢⎢⎣

375
175
395
410

⎤

⎥⎥⎦−

⎡

⎢⎢⎣

40
ε
35
35

⎤

⎥⎥⎦

⎞

⎟⎟⎠= 335[s],

where the minimum is taken over the vector entries. Figure 2.5 shows the final result.

2.5.2 Satisfying Additional Timetable Constraints

Since the max-plus automata model takes train routes in temporal order and com-
presses them one by one, some additional modelling is necessary to properly rep-
resent certain train interactions. In particular, we propose procedures needed for
modelling train overtaking and connections due to passenger transfers or train cou-
pling/decoupling. Meanwhile, constraints for a train turning in a terminal station do
not request any extra modelling.

Overtaking of a slower train and/or a lower priority one is applied as a common
measure for reducing capacity occupation in the planning phase, and alleviating
train delays during operations. If a train is overtaken in a node, then the train route
is partitioned in an inbound route and an outbound route. The inbound route is a
train route from the node entry point to the platform track, while the outbound route
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Fig. 2.5 Capacity occupation
for a route plan w1 = abc.
The upper contour x(abca) is
showed by the blue line. The
capacity occupation μ(w) is
presented with a double arrow
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runs from the platform track to the exit from the node. Coupling or decoupling of
trains can be treated similarly.

A timetable often includes constraints that represent traffic requirements such as
passenger transfers, which are not necessarily related to the infrastructure limita-
tions. In other words, connecting trains often use a dedicated infrastructure. In order
to maintain the timetable dependency in the max-plus automata model, additional
modelling is necessary to keep the two trains together. To do so, train routes of these
trains are modelled as a single task.

2.6 Capacity Assessment in Networks

Capacity assessment of railway networks is not a general practice yet. CAPRES is a
railway network capacity assessment tool based on saturation of a periodic timetable
with extra train paths, see [31]. PETER is an analytical tool for evaluating the ca-
pacity occupation rate and stability of a periodic timetable on the network level
based on max-plus algebra, see [15, 16]. These models are based on a macroscopic
network description and were originally developed for normative headway times,
like the CUI. On the other hand, KABAN is a microscopic capacity assessment tool
built on a detailed modelling of infrastructure, periodic timetable and train routes,
which also applies max-plus algebra to compute the capacity occupation, see [10].
However, due to the high level of details, KABAN is limited only to small-sized
networks. This section focuses on the general max-plus algebra modelling such as
used in PETER. For similar approaches, see also [21, 22]. Note that instead of using
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normative headway times, we also explain how to deploy the results of capacity as-
sessments of corridors and nodes as input to the network capacity assessment. This
provides improved accuracy similar to UIC 406 over the CUI method and allows
evaluating large-scale national networks.

When considering large-scale networks, the microscopic detail of the capacity
assessment of corridors and nodes is aggregated into a macroscopic model that con-
nects all the corridors together at the nodes. For the capacity assessment at corridor
level, the train paths were split in parts and tackled separately over the successive
line sections. At the network level, the successive train paths must again be con-
sidered as a whole. Likewise, existing interactions in nodes between various train
paths over successive or crossing corridors must be regarded at the network level as
well. Since the resources were already taken into account at the corridor and node
level, the network model can be formulated using only time constraints. Instead, for
a normative capacity assessment, the events can be any arrival, departure or passing-
through events in the network which are connected by minimum running and dwell
times or normative minimum headway times. Moreover, on the network level other
operational constraints can be taken into account, such as passenger transfers and
rolling stock connections.

In general, the network model consists of event times at nodes and precedence
constraints between them, which represent the interconnection structure of the vari-
ous trains. Before an event time may occur, it must satisfy all precedence constraints
which take the form

xi ≥ ai j + x j,

where xi and x j are two event times and ai j ≥ 0 is the minimum time duration from
event time x j to event time xi. This precedence constraint is very general and can be
used to define a directed acyclic graph (DAG) with the event times as the nodes and
the minimum time durations as the arc weights between the nodes. The minimum
time durations may correspond to minimum line or station headway times, or to
scheduled activities between events such as the aggregated running time between
nodes or a minimum dwell or transfer time in a node (see Fig. 2.6). A critical path
between two nodes in a graph represents the longest path between the two nodes,
that is, the path with the highest sum of weights. A critical path algorithm over the
DAG then finds the earliest occurrence times of all the events in the network which
correspond to a compressed timetable with all precedence constraints respected.
Finding a critical path in DAG can be done by any shortest path algorithm after
negating the weights.

For periodic timetables, it is more convenient to consider periodic event times
and assess the network capacity occupation in a basic timetable period. For this,
an event i represents a triple i = (Ei,Li,Si), where Ei is the event type (arrival or
departure), Li is the associated train line and Si the station. Denote by xi(k) the
event time of a periodic event i in timetable period k. So, the event time of an event
i in the first period is xi(1), in the second period it is xi(2), and so on. If the events
occur on time with a scheduled cycle time T , then xi(k + 1) = xi(k)+ T . Now the
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Fig. 2.6 Modelling timetable
constraints in a network in-
cluding event times (dots),
runs, stops and transfers (solid
arcs), and minimum headway
times (dashed arcs)

precedence constraints can be written as

xi(k) ≥ ai j + x j(k−mi j),

for all predecessor events j of i, where ai j is the same for each period and mi j is a
non-negative integer indicating the period shift between the two events. For exam-
ple, event j is scheduled mi j periods before event i. Mostly, mi j ∈{0,1}, correspond-
ing to two events that are scheduled in the same period (mi j = 0) or in successive
periods (mi j ≥ 1), so that the time separation crosses a period boundary. Any sched-
uled activity that covers more than one period can be split in parts with dummy
events, so in the sequel we assume mi j ∈ {0,1}.

The earliest occurrence of an event time is now obtained by

xi(k) = max
j

(
ai j + x j(k−mi j)

)
, (2.3)

where j ranges over the predecessors of i. This can be formulated conveniently in
max-plus algebra. Let x(k) =

(
x1(k), . . . ,xn(k)

)′
, and collect the minimum activity

and headway times in two matrices A0 and A1, with [Ami j ]i j = ai j and fill the empty
entries by ε = −∞ indicating that there is no direct precedence relation from event
j to i. If there are parallel arcs between the same events with the same period shift,
then only the maximum arc weight has to be added to the matrix. The recursive
equation (2.3) can now be written for all events together as x(k) = A0 ⊗x(k)⊕A1 ⊗
x(k−1), where k ranges over the successive timetable periods. It is a straightforward
result from max-plus algebra theory that any max-plus system can be reformulated
as a purely first-order system of the form

x(k) = A⊗ x(k−1),

where A = A∗
0 ⊗A1, with the Kleene star operator A∗ = A0 ⊕A1⊕ . . .⊕An−1 and the

powers are understood in the max-plus algebra, e.g., A2 = A⊗A, see [22]. For sim-
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plicity, we assume that A is irreducible, meaning that it corresponds to a strongly-
connected precedence graph defined by n nodes and an arc ( j, i) with arc weight ai j

for all entries ai j �= −∞. For the general results see [15].
The main result from the max-plus algebra approach is that the network capacity

occupation equals the eigenvalue λ of the system matrix A. The eigenvalue problem
is defined as

A⊗ v = λ ⊗ v, (2.4)

where v is an eigenvector corresponding to the eigenvalue λ . The eigenvector v
represents a compressed timetable allowing the railway system to operate with cycle
time λ . To see this, we write (2.4) in conventional form as

max
j

(
ai j + v j

)
= λ + vi. (2.5)

Considering v as a timetable vector in some period, then the left-hand side gives the
earliest occurrence time for event i in the next period and the right-hand side says
that this occurrence time is exactly λ after the previous event time vi. If G(A) is
strongly connected, then the eigenvalue λ is unique (see [14, 22]), and so (2.5) holds
for each vi with the same λ . Since the ai j are the minimum activity and headway
times, v is the compressed timetable, and λ is the network capacity occupation.

A critical circuit is a circuit in the precedence graph with the maximum ratio
of total arc weight to the number of arcs in the circuit, which equals λ . To obtain
a stable timetable that can cope with delays, the timetable must be operated with
a period length T > λ . The events on the critical circuit also identify the critical
activities and headways in the network, similar to the critical blocks in the capacity
assessment of corridors. Figure 2.7 shows a large network where the critical circuit
is the traffic over a partial single-track line. Efficient algorithms are available for
solving the max-plus eigenvalue problem, and in particular graph algorithms based
on the critical circuit, see [14, 22].

2.7 Conclusions and Future Developments

Railway capacity research plays an important role in railway planning and opera-
tions. In this chapter, we gave an overview of methods for railway capacity assess-
ment, with the focus on deterministic timetable-based models. We first presented
common methods based on timetable compression, UIC 406 and CUI. The CUI is
a normative method, while the UIC 406 model considers a higher level of detail
that allows more accurate estimation of capacity occupation. We also described the
existing and advanced models for assessing different infrastructure segments inde-
pendently like corridors and nodes, but also whole networks.

The benefit of capacity assessment is manifold. First, evaluating existing or
new timetables to determine capacity occupation will provide insight into the ex-
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Fig. 2.7: Critical circuit in a large network (PETER)

pected level of service. Second, the infrastructure bottlenecks can be determined in
a network. Third, capacity assessment may suggest possible improvements in traf-
fic management like using alternative train routes that are more efficient. Fourth,
proposing the most attractive and beneficial infrastructure projects based on capac-
ity assessment is particularly valuable to infrastructure managers and governments
in allocating available funds most efficiently. Fifth, the impact of scheduled con-
struction and maintenance works on traffic can be estimated.

The future development of capacity assessment models should stay in line with
the existing compression method, the UIC 406. To make it a standard evaluation
tool and apply it internationally, additional research on capacity saturation rates and
required levels of service for punctuality and regularity is essential. The network
models should gain more attention, as only these are able to incorporate all interac-
tions occurring in a timetable. In addition, it is necessary to maintain the high level
of accuracy by transforming data from micro to macro models.
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8. Čičak M, Mlinarić TJ, Abramović B (2012) Methods for determining through-
put capacity of railway lines using coefficients of elimination. PROMET-Traffic
Transp 16(2):63–69. https://doi.org/10.7307/ptt.v16i2.575 (cited on pages 27,
32)

9. Delorme X, Gandibleux X, Rodriguez J (2009) Stability evaluation of a railway
timetable at station level. Eur J Oper Res 195(3):780–790. https://doi.org/10.
1016/j.ejor.2007.06.062 (cited on pages 26, 31)

10. Ekman J (2011) Kaban-a tool for analysis of railway capacity. In: Computa-
tional methods and experimental measurements XV, pp 693–702. WIT Press,
Ashurst. https://doi.org/10.2495/cmem110611 (cited on page 37)

11. Eliasson J, Börjesson M (2014) On timetable assumptions in railway investment
appraisal. Transp Policy 36:118–126. https://doi.org/10.1016/j.tranpol.2014.08.
008 (cited on page 26)

12. Gaubert S, Mairesse J (1999) Modeling and analysis of timed Petri nets us-
ing heaps of pieces. IEEE Trans Autom Control 44:683–697. https://doi.org/10.
1109/9.754807 (cited on page 33)

13. Gibson S, Cooper G, Ball B (2002) Developments in transport policy: the
evolution of capacity charges on the UK rail network. J Transp Econ Policy
36(2):341–354. https://jstor.org/stable/20053906 (cited on page 30)

14. Goverde RMP (2005) Punctuality of railway operations and timetable stability
analysis. PhD thesis. Delft University of Technology. UUID: a40ae4f1-1732-
4bf3-bbf5-fdb8dfd635e7 (cited on page 40)

15. Goverde RMP (2007) Railway timetable stability analysis using max-plus sys-
tem theory. Transp Res B Methodol 41(2):179–201. https://doi.org/10.1016/j.
trb.2006.02.003 (cited on pages 27, 33, 37, 40)

16. Goverde RMP (2010) A delay propagation algorithm for large-scale railway
traffic networks. Transp Res Part C Emerg Technol 18(3):269–287. https://10.
1016/j.trc.2010.01.002 (cited on page 37)

https://doi.org/10.1111/mice.12207
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1016/j.ejor.2015.03.020
https://doi.org/10.1016/j.ejor.2015.03.020
https://doi.org/10.1016/j.trb.2005.09.004
https://doi.org/10.1016/j.trb.2005.09.004
https://doi.org/10.7307/ptt.v16i2.575
https://doi.org/10.1016/j.ejor.2007.06.062
https://doi.org/10.1016/j.ejor.2007.06.062
https://doi.org/10.2495/cmem110611
https://doi.org/10.1016/j.tranpol.2014.08.008
https://doi.org/10.1016/j.tranpol.2014.08.008
https://doi.org/10.1109/9.754807
https://doi.org/10.1109/9.754807
https://jstor.org/stable/20053906
https://doi.org/10.1016/j.trb.2006.02.003
https://doi.org/10.1016/j.trb.2006.02.003
https://10.1016/j.trc.2010.01.002
https://10.1016/j.trc.2010.01.002


2 Capacity Assessment in Railway Networks 43

17. Goverde RMP, Hansen IA (2013) Performance indicators for railway timeta-
bles. In: 2013 IEEE international conference on intelligent rail transporta-
tion (ICIRT). IEEE, New York, pp 301–306. https://doi.org/10.1109/icirt.2013.
6696312 (cited on page 27)

18. Goverde RMP, Corman F, D’Ariano A (2013) Railway line capacity consump-
tion of different railway signalling systems under scheduled and disturbed
conditions. J Rail Transp Plann Manage 3(3):78–94. https://doi.org/10.1016/
j.jrtpm.2013.12.001 (cited on page 27)

19. Hansen IA, Pachl J (2014) Railway timetabling & operations: analysis, mod-
elling, optimisation, simulation, performance evaluation. Eurailpress, Ham-
burg. ISBN: 978-3-7771-0462-1 (cited on page 27)

20. Harrod S (2009) Capacity factors of a mixed speed railway network. Transp Res
Part E Logist Transp Rev 45(5):830–841. https://doi.org/10.1016/j.tre.2009.03.
004 (cited on page 28)

21. Heidergott B, de Vries R (2001) Towards a (max,+) control theory for public
transportation networks. Discrete Event Dyn Syst 11(4):371–398. https://doi.
org/10.1023/A:1011225209640 (cited on page 37)

22. Heidergott B, Jan Olsder G, van der Woude J (2014) Max Plus at work: model-
ing and analysis of synchronized systems: a course on Max-Plus algebra and its
applications. Princeton University Press, Princeton. ISBN: 978-0-691-11763-8
(cited on pages 33, 37, 39, 40)

23. Hu J, Li H, Meng L, Xu X (2013) Modeling capacity of urban rail transit net-
work based on bi-level programming. In: 2013 joint rail conference. American
Society of Mechanical Engineers. https://doi.org/10.1115/jrc2013-2429 (cited
on page 27)

24. Huisman T, Boucherie RJ, van Dijk NM (2002) A solvable queueing
network model for railway networks and its validation and applications
for the Netherlands. Eur J Oper Res 142(1):30–51. https://doi.org/10.1016/
s0377-2217(01)00269-7 (cited on page 26)

25. Jensen LW, Landex A, Nielsen AO, Kroon LG, Schmidt M (2017) Strategic as-
sessment of capacity consumption in railway networks: framework and model.
Transp Res Part C Emerg Technol 74:126–149. ISSN: 0968-090X. https://doi.
org/10.1016/j.trc.2016.10.013 (cited on pages 26, 31)

26. Krueger H (1999) Parametric modeling in rail capacity planning. In Simula-
tion conference proceedings, 1999 Winter. vol 2. IEEE. Phoenix, AZ, pp 1194–
1200. https://10.1109/wsc.1999.816840 (cited on page 26)

27. Lai Y-C, Barkan C (2009) Enhanced parametric railway capacity evaluation
tool. Transp Res Rec J Transp Res Board 2117:33–40. https://doi.org/10.3141/
2117-05 (cited on page 26)

28. Landex A (2009) Evaluation of railway networks with single track operation
using the UIC 406 capacity method. Netw Spat Econ 9(1):7–23. https://doi.org/
10.1007/s11067-008-9090-7 (cited on pages 27, 32)

29. Lindfeldt A (2015) Railway capacity analysis: methods for simulation and eval-
uation of timetables, delays and infrastructure. PhD thesis, KTH Royal Institute
of Technology. ISBN: 978-91-87353-65-9 (cited on page 28)

https://doi.org/10.1109/icirt.2013.6696312
https://doi.org/10.1109/icirt.2013.6696312
https://doi.org/10.1016/j.jrtpm.2013.12.001
https://doi.org/10.1016/j.jrtpm.2013.12.001
https://doi.org/10.1016/j.tre.2009.03.004
https://doi.org/10.1016/j.tre.2009.03.004
https://doi.org/10.1023/A:1011225209640
https://doi.org/10.1023/A:1011225209640
https://doi.org/10.1115/jrc2013-2429
https://doi.org/10.1016/s0377-2217(01)00269-7
https://doi.org/10.1016/s0377-2217(01)00269-7
https://doi.org/10.1016/j.trc.2016.10.013
https://doi.org/10.1016/j.trc.2016.10.013
https://10.1109/wsc.1999.816840
https://doi.org/10.3141/2117-05
https://doi.org/10.3141/2117-05
https://doi.org/10.1007/s11067-008-9090-7
https://doi.org/10.1007/s11067-008-9090-7
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Chapter 3
Aggregation Methods for Railway
Network Design Based on Lifted Benders
Cuts

Andreas Bärmann and Frauke Liers

Abstract Rail freight traffic in Germany has experienced significant growth rates
over the last decade, and recent forecasts expect this tendency to continue over the
next 20 years due to the increases in national and international trade. Internal predic-
tions of Deutsche Bahn AG, the most important German railway enterprise, assume
a mean increase of 2% per year for rail freight traffic until 2030. At this pace, the
German railway network in its current state would reach its capacity limit way be-
fore this date. As investments into the network infrastructure bear a very high price
tag, it is crucial to use the available budget in the most efficient manner. Further-
more, the large size of the networks under consideration warrants the development
of efficient algorithms to handle the complex network design problems arising for
real-world data. This led us to the development of network aggregation procedures
which allow for much shorter solution times by compressing the network informa-
tion. More exactly, our framework works by clustering the nodes of the underlying
graph to components and solving the network design problem over this aggregated
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graph. This kind of aggregation may either be used as a quick heuristic, or it can
be extended to an exact method, e.g. by iterative refinement of the clustering, The
latter results in a cutting plane algorithm, which also introduces new variables with
each refinement. This idea developed in Bärmann et al. (Math Program Comput
7(2):189–217, 2015) is extended in this chapter such that it is able to incorporate
the costs for routing flow through the network via lifted Benders optimality cuts.
Altogether, our algorithm can be seen as a novel kind of Benders decomposition
which allows to shift variables from the subproblem to the master problem in the
process. Computations on several benchmark sets demonstrate the effectiveness of
the approach.

3.1 Introduction

Rail freight traffic in Germany has seen high growth rates between 2001 and 2011,
only shortly interrupted by the economic crisis in 2009, as can be seen from Fig. 3.1.
The total amount of goods transported on the German railway network has risen
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Fig. 3.1: Development of rail freight traffic in Germany between 2001 and 2015 in
mega-tonnes (Mt) of transported goods per year; source: [17]

from 291 Mt of transported goods to 375 Mt in these years, which means a total
increase by 29% or an average increase of 2.6% per year in this time. Experts in
the field speak of a mere “renaissance” of rail freight traffic, making the decline in
earlier decades almost forgotten. On the one hand, this development is explainable
by an overall increase in freight traffic, which is due to the role of Germany as an ex-
porting and also as a freight transit country. Furthermore, ecological considerations
gave rise to political incentives aiming at the shift from road transport to rail trans-
port. In the years since 2011, however, there has mainly been a sideways trend in
the transportation figures. This can be attributed to the fact that line capacities in the
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German rail freight network are already exhausted in many regions. Along several
of its main corridors, congestions and resulting delays are part of daily business;
in extreme cases, transportation orders have to be rejected entirely due to insuffi-
cient capacities. In order to improve this situation, and to allow for the growth of
rail freight traffic to continue over the years to come, it will be necessary to invest
decisively in higher track capacities, using different available measures. This is the
only way to ensure that a significant part of the projected increase in freight traffic
overall can be transported along the railway network instead of contributing to road
traffic.

Our industry partner Deutsche Bahn AG has put much effort into a reliable fore-
cast for the demand potential in rail freight transportation until 2030. The data pre-
sented here is the current basis for infrastructure planning at Deutsche Bahn AG,
and we therefore use it for our computational experiments in this chapter. Figure 3.2
shows the growth in demand between 2010, the base year of our study and the target
year 2030 according to the internal demand forecast by GSV, which is their depart-
ment for traffic prognosis, simulation and optimization. Note that the figure is a joint
presentation for freight traffic and long-distance passenger traffic.

Fig. 3.2: Visualization of the GSV forecast for the growth in transportation demand
until the year 2030; source: [9], see also [3]. (a) Joint growth in freight traffic and
long-distance passenger traffic on the main transportation corridors between 2010
and 2030. (b) Expected bottlenecks in the German railway network in 2030 without
the creation of new capacities on the links
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The projected demand increases between 2010 and 2030 can be seen in Fig. 3.2a.
The links are coloured in grey, a thicker line represents a higher utilization of the link
in the base year 2010. The expected utilization of the links in the target year 2030 is
superimposed in green, with a thicker line representing a higher growth in demand.
It is clearly visible that there are certain corridors on which GSV expects a high
increase in transportation demand. Figure 3.2b shows the locations in the railway
network where this increase is expected to lead to bottlenecks if network capacities
are not increased. In order to avoid a decreasing punctuality and an increase of
denied route reservations, it will be necessary to construct new links and to upgrade
existing links.

From a mathematical point of view, the expansion of the railway network leads
to a large-scale multi-commodity network design problem on a graph with 1600
nodes and 3600 origin-destination pairs. Together with the requirement to accom-
pany the choice of links to upgrade with a detailed schedule for the implementation
of the upgrades, the task becomes very challenging. This was the motivation to de-
velop a decomposition approach called multiple-knapsack decomposition in [2]. It
works by an efficient decomposition along the timescale, and the above paper re-
ports very favorable results in an extensive case study conducted on the above data.
In the present chapter, we develop a different solution approach which works by
aggregation of the spacial dimension of the network to shrink the size of the op-
timization problem. This reflects the fact that a microscopic representation of the
German railway network leads to a graph that is about 10 times bigger than the
macroscopic representation used in the above study. In contrast to techniques such
as Lagrangean relaxation, which solve local subproblems exactly, aggregation is a
coarsening process that ensures a global view on the problem.

There are several examples for the profitable use of aggregation in railway sys-
tems. In [15], a micro-macro transformation for railway networks is presented that
is used to solve the track allocation problem. An extensive case study on this ap-
proach is given in [5]. In [6], the authors introduce a column generation procedure
with a coarsened pricing-problem and successfully apply their method to optimal
rolling-stock planning in railway systems. In [7], the authors propose a two-level
approach for the generation of railway timetables which is based on a decomposi-
tion of the railway network into areas with high traffic density and areas with low
traffic density.

We are only aware of two previous applications of aggregation to network design
problems. These are [8], where a multi-level tabu search for the problem is devel-
oped, and [4], where iterative aggregation is applied to the planning horizon in a
network design problem with time-dependent demand. Further literature on the use
of aggregation in mixed-integer programming can be found in [1].

In this chapter, we extend the idea of [1] for an iterative aggregation scheme for
network design problems. It works by clustering the nodes in the graph to compo-
nents in order to reduce the size of the network design problem and thus the neces-
sary computation time. Via adaptive refinement of the clustering, this approach can
be made an exact algorithm for the problem. The original version of this algorithm
is for the case of network design without routing costs, i.e. it only considers the costs
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for upgrading the links but not those for routing flow in the network. However, the
consideration of routing costs is an important requirement, not only in the problem
context considered here, to come to efficient routing patterns for the given demand.
We show how to integrate routing costs into the existing framework by introducing
additional cutting planes. These will take the form of lifted Benders optimality cuts.

Aggregation techniques in combination with Benders decomposition have mostly
been considered so far as a means to shrink the scenario tree for stochastic program-
ming problems. Publications like [10, 13, 18] may serve as a reference here. In
[14], the authors investigate a Benders decomposition scheme with an aggregated
mixed-integer linear subproblem, which is used to determine an optimal expansion
of power generation capacities in an electricity supply system. In [16], a Zipkin-like
node aggregation scheme is proposed in the context of network design problems.
Under quite restrictive aggregation rules (cf. [19]), it is possible to solve the problem
via a Benders approach and to establish error bounds on the obtained solution. The
idea for a general purpose Benders algorithm for aggregated formulations can be
found in [11]. The authors propose a Benders master problem that is an aggregated
version of the original problem with additional variables modelling the coupling be-
tween the coarse and the fine decision space. The original problem functions as the
Benders subproblem in this approach. Branching on the original problem variables
ensures an exact algorithm. However, computational results are not available yet.

Our approach is differs from the above in that we will integrate the routing costs
of the arcs into the basic aggregation scheme by incorporating an additional sub-
problem. Its task is to calculate the component-wise routing cost of feasible solu-
tions and to pass this information to the master problem via a lifted Benders optimal-
ity cut. The main difference to the algorithm in [11] is that the subdivision between
the master problem and the subproblem does not stay fixed in our approach. Our al-
gorithm can be described as a novel kind of Benders decomposition which allows to
shift variables from the subproblem to the master problem in the process—an idea
that can be generalized beyond the application to network design. The algorithm in
its present form is able to solve the network design problem in its single-commodity,
single-period form. An extension to more general network design problems is a
worthwhile goal for future research.

The rest of this chapter is organized as follows. In Sect. 3.2, we review the ag-
gregation scheme developed in [1]. Then we derive our extension of this approach
to include routing costs in Sect. 3.3. Our computational results in Sect. 3.4 show the
effectiveness of the method for instances derived from the railway network design
problem described above. In Sect. 3.5, we give our conclusions on the presented
algorithm and outline directions for further research.

3.2 Basic Aggregation Scheme

In this section, we give a short review of the aggregation algorithm for network de-
sign problems from [1]. We state the algorithm as well as our extension of it for a
very basic setting, namely a canonical single-commodity variant of the problem. On
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the one hand, this problem is already NP-complete, and on the other hand, the algo-
rithmic framework developed for this basic problem can be generalized to broader
classes of network design problems. Results presented in [1] demonstrate that a
straightforward extension to multi-commodity problems is possible.

We consider a symmetric directed graph G = (V,A) with a set of nodes V and a
set of arcs A. Each arc a ∈ A possesses initial arc capacities ca ≥ 0. They may be
increased by installing a module with an additional capacity of Ca at a price of ka per
unit which is available in integral multiples. This is modelled by variable ya ∈ Z+.
Let δ−

v be the set of arcs entering node v and δ+
v be the set of arcs leaving node v.

The flow on arc a shall be represented by variable xa, and it incurs a routing cost fa

per unit on this arc. The aim is to determine a feasible routing of a specified demand
vector d ∈ R

|V | that minimizes the total cost of routing and capacity expansion. A
mixed-integer programming (MIP) formulation is given by

min ∑
a∈A

faxa + ∑
a∈A

kaya

subject to ∑
a∈δ+

v

xa − ∑
a∈δ−

v

xa = dv (∀v ∈V )

xa ≤ ca +Caya (∀a ∈ A)

xa ≥ 0 (∀a ∈ A)

ya ∈ Z
+ (∀a ∈ A).

(3.1)

The first set of constraints is referred to as the flow conservation constraints, while
the second set are the capacity constraints. For the rest of this section, we assume
f = 0, i.e. we consider the case without routing costs. The extension to non-zero f
will be part of Sect. 3.3. The main algorithmic idea of [1] is a decomposition of the
problem which—from a bird’s eye view—can be stated as follows:

1. Partition the node set of the graph into components, i.e. choose an initial aggre-
gation.

2. Master problem: Solve the network expansion problem over the aggregated
graph.

3. Subproblem: Check the feasibility of the network upgrade w.r.t. the original
graph.

4. (a) In case of feasibility: Terminate and return the feasible network expansion.
(b) In case of infeasibility: Refine the partition and go to Step 2.

In the next two subsections, we give the definition of the master and the subproblem
as well as an explanation of their interplay.

3.2.1 The Aggregation Master Problem

The term aggregation as it is used in the following refers to clustering the nodes
of a directed graph G = (V,A) into subsets. The aggregated graph Gϕ = (Vϕ ,Aϕ)
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is defined by a surjective clustering function ϕ : V → {1, . . . ,k}, k ∈ N. Its node
set Vϕ = {V1, . . . ,Vk} is a partition of V into k components with Vi := ϕ−1(i) for
i = {1, . . . ,k}. Its arc set Aϕ contains a directed arc from Vi ∈ Vϕ to Vj ∈ Vϕ for each
arc (u,v) ∈ A with i = ϕ(u) �= ϕ(v) = j, i.e. u and v belong to different components.
Note that G as well as Gϕ are allowed to contain multiple arcs between the same
two nodes.

The master problem of the aggregation algorithm then is Problem (3.1) applied to
some aggregation Gϕ of G, which is done as follows. The aggregated demand vector
dϕ is defined via dϕ(Vi) = ∑v∈Vi

dv for all i = 1, . . . ,k, i.e. the demand of a component
is the net demand of the nodes it contains. The capacity cϕ(a) and the installable
module of an arc a ∈ Aϕ are those of the corresponding original arc. In order to
simplify the notation, we identify a component Vi ∈ Vϕ with its index i, especially
defining di := dϕ(Vi), and identify each arc a ∈ Aϕ with the corresponding original
one in A. The master problem with respect to Gϕ can then be stated as

min ∑
a∈Aϕ

kaya

subject to ∑
a∈δ+

i

xa − ∑
a∈δ−

i

xa = di (∀i ∈ Vϕ)

xa ≤ ca +Caya (∀a ∈ Aϕ)

xa ≥ 0 (∀a ∈ Aϕ)

ya ∈ Z
+ (∀a ∈ Aϕ).

(3.2)

Note that the flow conservation constraint for component i ∈ Vϕ arises as the sum
of the original flow conservation constraints belonging to the nodes v ∈Vi. Further-
more, the capacity constraint for some arc a ∈ A of the original problem (3.1) is part
of the aggregated problem (3.2) if and only if a ∈ Aϕ holds. This applies similarly
to the summands in the objective function. Therefore, the master problem is a re-
laxation of the original network expansion problem, and its optimal value w.r.t. an
arbitrary clustering function ϕ provides a lower bound for the optimal value of the
latter.

By construction of the master problem, a feasible solution naturally translates
to a (not necessarily feasible) solution for the original problem by performing two
steps: First, all upgrade decisions (y-variables) corresponding to arcs within any of
the components are set to zero. Second, the induced flows (x-variables) within the
components are computed by solving a maximum-flow problem. This extendibility
test is the purpose of the subproblem, which is derived next.

3.2.2 Definition of the Subproblem and Graph Disaggregation

The solution of the master problem (3.2) induces new demands within the aggre-
gated components. The purpose of the subproblem is to validate whether these de-
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mands can be routed without additional capacity upgrades inside the components.
This validation decomposes into separate subproblems for each component. An ex-
ample of this situation is depicted in Fig. 3.3.

Fig. 3.3: Illustration of the subproblem for some component of Gϕ . (a) Induced
demands for component {8,9,12,15}. (b) The associated feasibility subproblem

Figure 3.3a shows part of the solution of the master problem which induces a new
demand vector within some component of the aggregated graph. The corresponding
subproblem for this component is depicted in Fig. 3.3b.

Checking the feasibility of a network expansion involves the solution of a
maximum-flow problem within each component as follows. Let Hi = (Vi,Ai) be
the subgraph of G = (V,A) induced by component Vi of the partition of V according
to ϕ . The nodes Vi of Hi have an original demand of dv, v ∈ Vi. The optimal flows
of the master problem induce new demands within Hi as each flow xa on an arc
a = (u,v) ∈ Aϕ with u ∈ Vi and v ∈ Vj changes the demand of u to d̄u := du − xa

and that of v to d̄v := dv + xa. By introducing artificial nodes s as super source and
t as super sink, the check whether a feasible flow exists can be formulated as the
following single-source maximum-flow problem:

max ∑v∈V+
i

zv

subject to ∑
a∈δ+

v

xa − ∑
a∈δ−

v

xa =

⎧
⎨

⎩

−zv, if v ∈V +
i

zv, if v ∈V−
i

0, otherwise
(∀v ∈Vi)

xa ≤ ca (∀a ∈ Aϕ)

zv ≤ |d̄v| (∀v ∈V +
i ∪V−

i )

xa ≥ 0 (∀a ∈ Aϕ)

zv ≥ 0 (∀v ∈V +
i ∪V−

i ).

(3.3)
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Here, V +
i ,V−

i ⊆ Vi are the nodes with positive (resp. negative) induced demand d̄v.
Variable zv for v ∈V +

i then models the flow from the super source s to node v, while
zv for v ∈ V−

i is the flow from node v to the super sink t. If the maximum s-t-flow
attains a value of ∑v∈V+

i
d̄v, the induced demands within component Vi are feasible,

otherwise they are infeasible.
A feasible component Vi requires no further examination in the current iteration.

An infeasible subproblem can occur for two reasons. It either suggests that the initial
capacities within the associated component are not sufficient to route the demands
induced by the master problem solution. In this case, it was not justified to neglect
the capacity limitations within the component. Or the algorithm might not be able
to prove that all upgrade decisions are already optimal. Whenever an infeasible sub-
problem is encountered, the partition is refined in order to consider additional arcs in
the master problem. This arc set is chosen as a minimum s-t-cut that limits the flow.

Updating the master problem (3.1) is done by disaggregating an infeasible com-
ponent along this minimum cut. Without loss of generality, let Vk be an infeasible
component and let V 1

k , . . . ,V
l
k be the components into which Vk disaggregates. We

define a new clustering function ψ : V → {1, . . . ,k + l − 1} with ψ(v) = ϕ(v) if
v /∈ Vk and ψ(v) = k + i if v ∈ V i

k ⊂ Vk. In the next iteration of the algorithm, the
master problem is solved for the resulting aggregated graph Gψ . The algorithm ter-
minates as soon as all subproblems are feasible.

3.2.3 Properties and Implementations of the Aggregation Scheme

In [1], it was shown that the above algorithm always yields the optimal solution to
the original problem within a finite number of iterations.

Theorem 3.1 ([1]). For f = 0 and k ≥ 0 in Problem (3.1), the aggregation scheme
always terminates after a finite number of iterations and returns an optimal solution
to the network expansion problem for the original graph.

The referenced paper also proposes three different implementations of the ap-
proach. The first one is a sequential version (named SAGG), in which master prob-
lem and subproblem are solved in an alternating fashion. In each iteration, the net-
work expansion master problem is solved to optimality, beginning with a trivial ag-
gregation of the graph to a single node. In case of feasibility of all subproblems, the
algorithm terminates. It has the obvious drawback that only very limited information
is retained when moving from one iteration to the next. To overcome this problem,
the authors of [1] propose the integration of the aggregation scheme into a branch-
and-bound framework (named IAGG). For each solution candidate found at a node
in the branch-and-bound tree, the subproblem is solved in order to check for feasi-
bility. A feasible solution may be accepted as the new incumbent, while each infea-
sible solution is cut off via the cutting planes representing the disaggregation of the
infeasible components. They also consider a hybrid of the two approaches (named
HAGG), which begins by solving a few iterations sequentially before switching to
branch-and-bound. They also present several more enhancements to make the algo-
rithm more efficient.
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Finally, Bärmann et al. [1] observe a very close relation of their algorithm to
Benders decomposition.

Theorem 3.2 ([1]). Let ϕ be a clustering function according to a given network
graph G. For disaggregation of G along a minimal cut, the primal constraints intro-
duced to the master problem (3.1) in the proposed aggregation scheme strictly imply
the Benders feasibility cut obtained from the corresponding subproblem (3.3).

This result is the basis for the algorithm developed in the next section. It shows
that the Benders feasibility cuts can be replaced by the primal cuts of the aggre-
gation scheme to obtain tighter relaxations. Doing so implies passing from a static
subdivision between master problem and subproblem, as is the case in traditional
Benders decomposition, to a dynamic subdivision. This dynamic element will al-
low us to derive lifted Benders optimality cuts to incorporate the routing costs into
the master problem. Altogether, this approach can be described as a hybrid between
aggregation and Benders decomposition.

3.3 Integration of Routing Costs via Lifted Benders Cuts

The aggregation scheme presented in Sect. 3.2 is an exact method for the solution of
network design problem (3.1) when there are no routing costs, i.e. f = 0. For non-
zero f , it is straightforward to consider the routing costs of the arcs in the aggregated
graph in the objective function of the master problem. However, this neglects the
routing costs arising within the components of the aggregation, which means a loss
of information. The scheme still delivers feasible solutions in this case, but they need
not be optimal any more. Therefore, we now derive an extension of the aggregation
scheme from [1] which projects the routing costs within each component Vi ∈ Vϕ
onto the arcs of the master problem graph Aϕ . This can be achieved by introducing
an additional subproblem which evaluates the costs for a feasible routing within
a component and reformulates them as a cutting plane to be added to the master
problem.

A suitable adaptation of the aggregation master problem (3.1) for a given clus-
tering function ϕ is as follows:

min ∑
a∈Aϕ

faxa + ∑
a∈Aϕ

kaya +Φ(x,y)

subject to ∑
a∈δ+

i

xa − ∑
a∈δ−

i

xa = di (∀i ∈ Vϕ)

xa ≤ ca +Caya (∀a ∈ Aϕ)

xa ≥ 0 (∀a ∈ Aϕ)

ya ∈ Z+ (∀a ∈ Aϕ).

(3.4)
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This new master problem directly includes the routing costs of the arcs in Aϕ in
the objective function. The routing costs within the components of the aggregated
graph are incorporated via a piecewise-linear cost function Φ . This function Φ is not
incorporated directly, but is iteratively underestimated via Benders cutting planes
which project the term ∑a∈A\Aϕ faxa onto variables xa for a ∈ Aϕ and ya for a ∈ A.
This procedure is described in the following.

Let (x̄, ȳ) be a solution to the master problem (3.4) which can be extended to
a feasible solution to the original problem (3.1) in the sense of Sect. 3.2.2, i.e. we
are able to find a feasible routing within the components. In this case, the routing
costs arising within the components are given as the optimal value of the following
minimum-cost flow problem:

min ∑
a∈A\Aϕ

faxa

subject to ∑
a∈δ+

v \Aϕ

xa − ∑
a∈δ−

v \Aϕ

xa = d̄v (∀v ∈V )

xa ≤ c̄a (∀a ∈ A\Aϕ)

xa ≥ 0 (∀a ∈ A\Aϕ),

(3.5)

where d̄v := dv −∑a∈δ+
v ∩Aϕ

x̄a + ∑a∈δ−
v ∩Aϕ

x̄a for v ∈ V are the induced node de-
mands, and where c̄a := ca +Caȳa are the arc capacities within the components.

From the dual to Problem (3.5), we can derive Benders optimality cut for the
current solution (x̄, ȳ). It is given by:

min ∑
v∈V

d̄vαv − ∑
a∈A\Aϕ

c̄aβa

subject to αv −αw −βa ≤ fa (∀a = (v,w) ∈ A\Aϕ)

βa ≥ 0 (∀a ∈ A\Aϕ)

(3.6)

with dual variables α for the flow conservation constraints and β for the capacity
constraints. Whenever the current underestimation of the component-wise routing
costs Φ(x̄, ȳ) within the master problem is lower than the optimal value of Sub-
problem (3.6), we can introduce a Benders optimality cut to update function Φ . By
back-substitution for d̄ and c̄, this cut can be stated as:

∑
v∈V

ᾱvdv − ∑
a∈A\Aϕ

β̄aca

+ ∑
a=(v,w)∈Aϕ

(ᾱw − ᾱv)xa − ∑
a∈A\Aϕ

(Caβ̄a)ya ≤ Φ(x,y),
(3.7)

given a dual optimal solution (ᾱ, β̄ ). The interpretation of this cutting plane is that a
given suboptimal solution with respect to the original problem can be improved by
rerouting the flow in the master problem graph or by creating new capacities within
the components.
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The procedure starts with a coarse, possibly trivial underestimation of Φ . Adding
a violated optimality cut of the form (3.7) to the master problem then yields a better
estimate for the routing costs within the components. The main idea is to iterate this
until either no more violated optimality cuts exist or until the induced flow within
any of the components becomes infeasible. In the first case, we know that we have
found an optimal solution, as the master problem is a relaxation of the original prob-
lem. In the latter case, one could use a Benders feasibility cut to cut off the infeasible
solution. However, we already know that they are dominated by the cutting planes
produced by the aggregation scheme. Therefore, we perform a disaggregation step
which updates the distribution of the arcs between master problem and subproblem
and restart the method.

As [1] show, the aggregation scheme is most effective when it is integrated into a
branch-and-bound procedure. The important consideration in the presence of rout-
ing costs is to guarantee the global validity of the optimality cuts. As long as no
disaggregation is performed after starting the branch-and-bound phase of the al-
gorithms, this is no problem as the method then behaves like ordinary Benders
decomposition. After a disaggregation step, however, the cutting plane has to be
modified as the graph corresponding to the master problem grows while the compo-
nents shrink. The arcs moving from inside the components to the master graph are
no longer valued in Benders dual subproblem (3.6). In the extreme case of complete
disaggregation, this subproblem is empty with an optimal value of zero.

The solution is a suitable lifting of the optimality cuts obtained from Subprob-
lem (3.6). We add the primal routing cost of all arcs that have passed to the master
problem after the root node to the left side of (3.7). If ϕ is the clustering function
corresponding to the initial aggregation and ψ is the clustering function describing
the current state of aggregation at a node within the branch-and-bound tree, the new
optimality cut reads as follows:

∑
v∈V

ᾱvdv − ∑
a∈A\Aψ

β̄aca + ∑
a∈Aψ\Aϕ

faxa

+ ∑
a=(v,w)∈Aψ

(ᾱw − ᾱv)xa − ∑
a∈A\Aψ

(Caβ̄a)ya ≤ Φ(x,y).
(3.8)

A solution produced within the branch-and-bound procedure can then be ac-
cepted as feasible if no violated cutting plane of the form (3.8) exists. This can
be checked via the optimality cuts already added to the master problem. Let (x̄, ȳ)
be the current solution candidate, let Φ̄ be the estimate of the routing costs within
the components according to the initial clustering ϕ and let Φ(x̄, ȳ) be the actual
value of the routing costs within the components according to the current clustering
ψ . If

Φ̄ − ∑
a∈Aψ\Aϕ

fax̄a = Φ(x̄, ȳ)

holds, the cost estimate is correct, and the solution may be accepted. Otherwise, we
add the cutting plane from Eq. (3.8) and reject the solution. Altogether, this leads to
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a hybrid algorithm between the original aggregation scheme and Benders decompo-
sition. Note that a trivial but powerful heuristic within the branch-and-bound process
is to “repair” a solution that has been cut off by (3.8) by providing the actual value
of Φ for the routing costs within the components. If its correct cost is still better
than that of the best solution found so far, it can be retained and becomes the new
incumbent.

The following theorem states the correctness of the proposed method, for which it
is possible to give a very general proof. It shows that the method can be generalized
to a Benders decomposition that allows shifting variables from the subproblem to
the master problem in the process—an approach that might be beneficial in broader
problem contexts as well.

Theorem 3.3 (Correctness of the Aggregation Scheme with Routing Costs). For
k ≥ 0 and f such that G does not contain negative cycles, the sequential, the inte-
grated and the hybrid version of the algorithm are all finite and return an optimal
solution to the network expansion problem (3.1) for the original graph G.

Proof. The correctness of cutting plane (3.8) can be proved in a very general set-
ting. Consider the following optimization problem with variables x ∈ Rn and y ∈ Rm

for n ≥ 0 and m ≥ 1 as well as vectors b and c and matrices A and B of suitable
dimensions:

min cT x+dT y

subject to Ax+By ≤ b

x ≥ 0

y ≥ 0.

Now, assume that the x-variables are projected out of the problem. Let ȳ be a choice
of variables y such that a feasible solution (x̄, ȳ) exists for this problem. In this case,
Benders optimality cut for an optimal dual solution ᾱ according to ȳ is of the form

Φ(x,y) ≥−ᾱT b+(BT ᾱ)T y.

We now consider the situation that part of the x-variables are shifted from the
subproblem to the master problem. Without loss of generality, we assume that this
is done for the first p variables x1 ∈ R

p, while the remaining vector of variables
x2 ∈ R

m−p remains in the subproblem. Let A = (A1,A2) and c = (c1,c2) be the
corresponding subdivision of the constraint matrix and the objective function. If
x1 had been part of the master problem from the start, the corresponding Benders
optimality cut would have taken the form

Φ(x,y) ≥−ᾱT b+(BT ᾱ)T y+(AT
1 ᾱ)T x1.

Now, we would like to show that the addition of its lifted version

Φ(x,y) ≥−ᾱT b+(BT ᾱ)T y+(AT
1 ᾱ)T x1 + cT

1 x1
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to the master problem leads to a correct estimation of the subproblem cost after
moving x1 from the subproblem to the master problem. This is exactly what happens
in the aggregation scheme when the graph is disaggregated in the course of the
branch-and-bound process. Let Φ̄ be the current estimate for the subproblem cost
according to the initial division of the variables, let x̄2 be a feasible completion to
the partial solution (x̄1, ȳ), and let Φ(x̄, ȳ) be the corresponding value of the shrunk
subproblem. If

Φ̄ − cT
1 x̄1 = Φ(x̄, ȳ)

holds, we know that Φ̄ is the exact value for the cost of the initial subproblem
incurred by solution x̄ in the initial master problem. Thus, Φ̄ = cT

1 x̄1 +Φ(x̄, ȳ) is the
correct objective value of the y-variables within the original problem. In the case

Φ̄ − cT
1 x̄1 < Φ(x̄, ȳ),

we have underestimated the cost of solution (x̄, ȳ) and thus add the lifted optimality
cut to correct the estimation.

It remains to show that all the optimality cuts that have been added to the master
problem before reintroducing variables x1 remain valid. In other words, we never
overestimate the objective value of a solution. This can be seen as follows. The
optimality cut that would have been calculated for ȳ without reintroducing variables
x1 dominates all the cutting planes that have been added so far in the point ȳ. Thus,
the corresponding cost estimate Φ̂ is at least as high as Φ̄ . Let x̂ = (x̂1, x̂2) be the
optimal completion calculated by the subproblem according to the initial division of
the variables. Then we have

Φ̄ ≤ Φ̂ = cT
1 x̂1 + cT

2 x̂2 ≤ cT
1 x̄1 + cT

2 x̄2.

This leads to

Φ̄ − cT
1 x̄1 ≤ cT

2 x̄2 = Φ(x̄, ȳ),

which proves the claim.
It is now easy to see the correctness of the proposed aggregation scheme. It is

finite because disaggregation can only occur until reaching the original graph and
because there is only a finite number of extreme points from which non-dominated
optimality cuts can be derived. The optimality of the returned solution follows from
three facts. Firstly, the non-negativity of k ensures the boundedness of the master
problem. Secondly, the feasible completability of the master problem solution is
always ensured by disaggregation of infeasible components. Thirdly, the absence of
negative circles in G with respect to f ensures that both Benders primal and dual
subproblem are always feasible. This completes the proof.

The above reasoning does not only show the correctness of the proposed aggrega-
tion scheme with lifted optimality cuts, but also introduces the idea of a generalized
Benders decomposition. In the traditional Benders decomposition, the splitting of
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the variables between master and subproblem remains fixed. Following the outline
in the proof of Theorem 3.3, it is possible to convert Benders decomposition from a
pure row generation scheme into a row-and-column-generation scheme. It is an in-
teresting line for future research to assess the potential of such a method in general.

3.4 Computational Results

We present computational experiments for the above aggregation scheme on a set of
benchmark instances which are derived from a real-world railway network expan-
sion problem. Note that the instances we use are based on the real-world data for the
railway network design investigated in [2], where the problem is solved via decom-
position along the time axis. As the aggregation scheme in its current form is still
only capable to solve single-period, single-commodity network design problem, we
have used the original data to create test instances that match this (simpler) problem,
and which exhibit a similar capacity usage on the links of the network. The idea of
the chapter is to lay the algorithmic foundation to solve network design problems
on much larger graphs than currently possible—a microscopic representation of the
German railway network is about ten times bigger than the macroscopic represen-
tation for which the problem can be currently solved. A detailed case study for the
expansion of the German railway network on the original data can be found in the
paper cited above.

We begin by describing the instances used to test our aggregation scheme as well
as the computational setup before we present its results.

3.4.1 Test Instances

The test instances originate from a joint project with our industry partner Deutsche
Bahn AG on the expansion of the German railway network. They consist of an
instance describing the problem on the Germany-wide network as well as a col-
lection of subnetworks of it. The characteristics of these instances are described in
Table 3.1. As can be seen, the instances vary in size from 62 nodes for the smallest
network up to 1620 nodes for the complete German network. The seven subnet-
works are composed of one to three German federal states. Together they cover the
complete Germany instance with a small overlap at the borders.

The original project consisted in determining an optimal expansion of the given
railway network to accommodate the demand pattern fore-casted for 2030. For the
use in this chapter, the instances were adapted to fit the single-commodity problem
setting considered here by balancing the actual multi-commodity demands, i.e. by
calculating the net demand of each node.



62 Andreas Bärmann and Frauke Liers

Table 3.1: Layout of the railway networks under consideration

Network Involved federal states #Nodes #Arcs

SH-HA Schleswig-Holstein, Hamburg 62 200
B-BB-MV Berlin, Brandenburg, Mecklenburg-Vorpommern 185 592
HE-RP-SL Hessen, Rheinland-Pfalz, Saarland 214 720
NRW Nordrhein-Westfalen 251 814
BA-BW Bayern, Baden-Württemberg 246 778
NS-BR Niedersachsen, Bremen 369 1180
TH-S-SA Thüringen, Sachsen, Sachsen-Anhalt 389 1288
Deutschland The entire German instance 1620 5162

The initial capacities of each instance were then scaled by a constant factor in
order to obtain different percentages of initial demand satisfaction l, which was
done by solving an auxiliary network flow problem. Consequently, the parameter l
indicates which portion of the demand can be routed given the initial state of the
network. Varying these initial capacities has a significant impact on the solution
time and the solvability in general and is therefore an important parameter for the
forthcoming analysis.

To assess the influence of the routing costs on the performance of the aggre-
gation algorithms, we introduce a parameter σ to describe their magnitude. The
routing cost fa of an arc a ∈ A is then given by fa = σka, i.e. it is chosen to be
proportional to its expansion cost. This is motivated by the instances from railway
network expansion, where both the expansion cost and the routing cost are propor-
tional to the length of the corresponding arc. Parameter σ takes values within the
set {0,10−5,10−4,10−3,10−2} to which we refer as the cases of no, small, medium,
high, and very high routing costs respectively.

Finally, the instances have been filtered in order to exclude “too easy” and “too
hard” instances. The upper bound is given by the original time limit of 10 h, while
the lower bound was chosen as 100 s to account for the overhead of the aggregation
scheme that does not pay off on trivial instances. This is done in both cases exclud-
ing and including routing costs to enable a unified presentation and to account for
the fact that the aggregation schemes entail a larger overhead in the latter case and
start to pay off on somewhat more difficult instances.

3.4.2 Computational Setup

For the case without routing costs, we use the implementations SAGG, IAGG and
HAGG of the aggregation scheme from [1], see Sect. 3.2.3. For the case including
routing costs, we have implemented our extension of the aggregation in two dif-
ferent variants. The first one, denoted by IAGGB, clusters the nodes of the original
graph into a single component and directly proceeds to the branch-and-bound phase.
The second version, called HAGGB, disaggregates the graph in a sequential fash-
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ion until the first feasible solution is found before switching to branch-and-bound.
They are generalizations of the algorithms IAGG and HAGG respectively. All the
aggregation schemes have been implemented via the C++-API of the MIP solver
Gurobi Gurobi Optimization, Inc. [12]. For the aggregation schemes operating
within a branch-and-bound procedure, it was necessary to adjust Gurobi’s parame-
ter settings, which involves a more aggressive cutting plane generation, a focus on
improving the bound and downscaling the frequency of the heuristics. Additionally,
dual reductions had to be disabled in order to guarantee correctness as these algo-
rithms use lazy cuts. The different aggregation methods are compared to Gurobi’s
default branch-and-bound algorithm under standard parameter settings. These ref-
erence solution times are denoted by MIP.

All computational experiments were carried through on a queuing cluster of Intel
XeonTM E5-2690 v2 3.00 GHz computers with 24 MB cache and 128 GB RAM,
using version 5.6.3 of Gurobi Gurobi Optimization, Inc. [12]. Each job was run
on four cores and with a time limit of 10 h.

3.4.3 Results Without Routing Costs

We begin our experiments with a comparison of IAGG, SAGG and HAGG for the
case without routing costs. The results are presented as a performance diagram in
Fig. 3.4.

We see that methods IAGG and HAGG both solve the same percentage of in-
stances fastest. However, IAGG is able to solve all instances under consideration
within the given time limit while HAGG still solves about 90% of them. Implemen-
tation SAGG is clearly not competitive.

The overall best of the three algorithms, IAGG, is now compared to MIP on the
same set of instances. Figure 3.5 shows the corresponding performance diagram.
It shows that IAGG clearly outperforms MIP as it solves more than 90% of the
instances fastest. Furthermore, it is able to solve all the instances, while MIP only
solves somewhat less than 60% of them. A detailed summary of the computation
times is given in Table 3.2. It confirms that IAGG solves almost all the instances
faster than MIP, sometimes significantly faster, while it is not decisively slower on
the few others.

3.4.4 Results with Routing Costs

In the following, we present our results for the extended aggregation scheme pro-
posed in this chapter. We compare the two implementations IAGGB and HAGGB on
the same railway network instances, this time including routing costs as described
in Sect. 3.4.1. We did not implement a sequential variant corresponding to SAGG
as the high number of necessary optimality cuts is likely to render this approach
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Fig. 3.4: Performance profile comparing the three basic aggregation schemes on
railway instances
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Fig. 3.5: Performance profile comparing MIP and IAGG on railway instances
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Table 3.2: Solution times [s] for MIP and IAGG on the railway instances with initial
demand satisfaction of l percent – best-performing method for each instance in bold

Instance l MIP IAGG

B-BB-MV 0.5 1353.06 199.33
B-BB-MV 0.55 209.06 218.97
BA-BW 0.3 ∞ 8234.56
BA-BW 0.4 1231.68 19.63
BA-BW 0.45 ∞ 13.89
BA-BW 0.5 15.06 8.48
Deutschland 0.7 ∞ 6898.27
Deutschland 0.75 ∞ 65.08
HE-RP-SL 0.4 ∞ 5742.33
HE-RP-SL 0.45 ∞ 2786.14
HE-RP-SL 0.5 2336.17 73.03
HE-RP-SL 0.55 2909.57 33.08
NRW 0.6 ∞ 8378.55
NRW 0.65 5730.42 497.96

Instance l MIP IAGG

NRW 0.7 140.04 24.31
NRW 0.75 224.81 18.79
NS-BR 0.5 12,003.63 3035.58
NS-BR 0.55 ∞ 24,310.02
NS-BR 0.6 1404.99 1826.26
NS-BR 0.65 75.39 24.73
TH-S-SA 0.4 ∞ 29,243.07
TH-S-SA 0.45 ∞ 4176.81
TH-S-SA 0.5 ∞ 210.66
TH-S-SA 0.55 ∞ 1167.42
TH-S-SA 0.6 1842.68 81.69
TH-S-SA 0.65 133.27 52.72
TH-S-SA 0.7 40.28 20.12
TH-S-SA 0.75 39.30 13.06

even more uncompetitive. Figure 3.6 shows the performance diagrams of the two
aggregation schemes under consideration for different choices of the routing cost
parameter.

We see that HAGGB performs consistently better from medium-scale routing
costs on. For small routing costs, IAGGB might be preferred as it solves more in-
stances in total, which shows that this case is closely related to the case without
routing costs. Note that about 7% of these computations were not finished due to
numerical difficulties within Gurobi Gurobi Optimization, Inc. [12] which might
have been induced by the Benders cutting planes. When we compare the victorious
aggregation scheme HAGGB to MIP in the following, the corresponding instances
are treated as unsolved for HAGGB.

Figure 3.7 shows four performance diagrams comparing HAGGB and MIP for
the different choices of the routing cost parameter.

We see that HAGGB is able to solve a majority of the instances fastest in all the
cases with clear advantages for small, medium, and high routing costs. We also rec-
ognize the same tendency as for the scale-free networks with 100 nodes which lets
MIP catch up for higher routing costs, although it is somewhat concealed by the nu-
merical problems affecting HAGG especially in Fig. 3.7a. The decreasing difficulty
of the instances for higher routing costs can be seen from the increasing percentage
of instances solved by MIP within the time limit, and MIP increases the share of
instances that it solves fastest.

A complete summary of the computation times of MIP and HAGGB is given in
Table 3.3, where instances causing numerical difficulties are marked by “−”. Note
that the varying number of instances for each magnitude of the routing costs is due
to our filter criterion for overly easy or hard instances. It supports the observations
from the performance diagrams by underlining the strong performance of HAGGB
on most instances. The aggregation scheme is largely favoured up to high routing
costs and still competitive for very high routing costs.
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Fig. 3.6: Performance profiles comparing methods IAGGB and HAGGB on the rail-
way instances for different sizes of the routing costs. (a) Small routing costs. (b)
Medium routing costs. (c) High routing costs. (d) Very high routing costs
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Fig. 3.7: Performance profiles comparing methods MIP and HAGGB on the railway
instances for different sizes of the routing costs. (a) Small routing costs. (b) Medium
routing costs. (c) High routing costs. (d) Very high routing costs
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Table 3.3: Solution times [s] of MIP and HAGGB on railway instances with varying
values of l for different sizes of the routing costs – best-performing method for each
instance in bold

Instance l MIP HAGGB

B-BB-MV 0.5 731.89 507.45
B-BB-MV 0.55 198.20 128.31
B-BB-MV 0.65 3.71 10.08
BA-BW 0.35 ∞ ∞
BA-BW 0.4 742.08 14.83
BA-BW 0.45 ∞ 51.96
BA-BW 0.55 143.55 7.46
Deutschland 0.75 ∞ 330.56
HE-RP-SL 0.4 ∞ ∞
HE-RP-SL 0.45 ∞ 5107.47
HE-RP-SL 0.5 566.04 33.23
HE-RP-SL 0.55 775.01 324.97
HE-RP-SL 0.6 5.75 −
NRW 0.65 12,329.86 2471.76
NRW 0.7 169.42 −
NRW 0.75 139.36 41.54
NS-BR 0.5 5441.22 436.49
NS-BR 0.55 ∞ 5396.39
NS-BR 0.6 2709.92 440.91
NS-BR 0.65 16.18 −
NS-BR 0.7 1.06 −
TH-S-SA 0.4 31,210.83 −
TH-S-SA 0.45 ∞ 21,752.85
TH-S-SA 0.5 4650.49 701.91
TH-S-SA 0.55 ∞ −
TH-S-SA 0.6 1712.90 1142.46
TH-S-SA 0.65 118.79 130.10
TH-S-SA 0.8 23.13 23.07

(a) Small routing costs

Instance l MIP HAGGB

B-BB-MV 0.5 1368.97 768.31
B-BB-MV 0.55 170.00 189.91
B-BB-MV 0.65 3.48 8.68
BA-BW 0.4 4017.62 18.50
BA-BW 0.45 ∞ 109.89
BA-BW 0.5 16.69 5.20
Deutschland 0.7 ∞ 29,928.14
Deutschland 0.75 ∞ 252.88
Deutschland 0.8 12.83 104.11
HE-RP-SL 0.4 ∞ 722.55
HE-RP-SL 0.45 ∞ 2723.46
HE-RP-SL 0.5 802.73 20.17
HE-RP-SL 0.55 2729.76 44.23
NRW 0.65 2417.67 1322.88
NRW 0.7 345.11 49.77
NRW 0.75 120.20 30.49
NS-BR 0.5 ∞ 3715.65
NS-BR 0.55 4701.26 4137.90
NS-BR 0.6 3117.81 327.65
NS-BR 0.65 121.52 22.70
TH-S-SA 0.4 ∞ 9072.72
TH-S-SA 0.45 ∞ 18,781.02
TH-S-SA 0.5 2929.61 2321.07
TH-S-SA 0.55 ∞ ∞
TH-S-SA 0.6 2220.04 627.63
TH-S-SA 0.65 176.76 118.90
TH-S-SA 0.8 17.52 17.42

(b) Medium routing costs

Instance l MIP HAGGB

B-BB-MV 0.5 1565.10 521.98
B-BB-MV 0.55 84.64 120.58
B-BB-MV 0.65 2.44 8.27
BA-BW 0.3 ∞ 14,012.36
BA-BW 0.4 310.06 13.57
BA-BW 0.55 246.18 7.69
BA-BW 0.75 0.51 6.79
Deutschland 0.75 ∞ 1323.57
Deutschland 0.8 9.15 −
Deutschland 0.85 4.50 −
HE-RP-SL 0.4 ∞ 791.89
HE-RP-SL 0.45 ∞ 5197.57
HE-RP-SL 0.5 101.34 25.20
HE-RP-SL 0.55 1911.69 38.96
HE-RP-SL 0.75 0.63 −
NRW 0.5 ∞ 16,212.22
NRW 0.6 ∞ 28,241.39
NRW 0.65 2019.42 4258.36
NRW 0.7 1000.37 193.74
NRW 0.75 105.39 11.95
NS-BR 0.5 8044.32 375.19
NS-BR 0.55 ∞ 4925.51
NS-BR 0.6 917.58 212.88
TH-S-SA 0.4 ∞ 7607.41
TH-S-SA 0.45 8199.26 11,189.70
TH-S-SA 0.5 ∞ 426.97
TH-S-SA 0.55 6519.13 ∞
TH-S-SA 0.6 772.52 257.78

(c) High routing costs

Instance l MIP HAGGB

B-BB-MV 0.45 7428.37 449.29
B-BB-MV 0.5 319.19 117.30
BA-BW 0.4 101.13 15.57
BA-BW 0.45 4313.88 368.54
BA-BW 0.5 ∞ 24,318.80
BA-BW 0.55 87.34 −
BA-BW 0.6 79.90 2263.22
BA-BW 0.7 116.79 29.06
BA-BW 0.75 0.59 13.45
Deutschland 0.75 3248.31 −
Deutschland 0.8 92.13 −
Deutschland 0.85 24.95 −
Deutschland 0.9 1.48 −
HE-RP-SL 0.4 ∞ 161.92
HE-RP-SL 0.45 3493.37 231.90
HE-RP-SL 0.5 1161.44 53.22
HE-RP-SL 0.55 78.38 24.58
HE-RP-SL 0.65 1.18 9.43
HE-RP-SL 0.75 0.82 5.13
NRW 0.5 ∞ 1565.48
NRW 0.6 1599.58 1068.06
NRW 0.65 565.79 2165.09
NRW 0.7 56.02 194.42
NRW 0.9 0.21 −
NS-BR 0.5 1803.06 528.92
NS-BR 0.55 493.40 32.17
NS-BR 0.6 257.26 29.58
NS-BR 0.85 0.13 2.85
TH-S-SA 0.4 ∞ 2861.21
TH-S-SA 0.45 251.13 206.33
TH-S-SA 0.5 3796.55 132.21
TH-S-SA 0.55 4524.58 64.43
TH-S-SA 0.6 628.44 79.17

(d) Very high routing
costs
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3.5 Conclusion

Altogether, we have shown once more that aggregation is a powerful means to re-
duce the solution times of network design problems without sacrificing the opti-
mality of the obtained result. Moreover, we saw that the basic idea from [1] can be
extended to different problem settings occurring in real-world problem instances. In
this case, this entails the incorporation of routing costs, which we did using lifted
Benders optimality cuts. The computational results show that the resulting algo-
rithm can help to make traditional branch-and-bound-based algorithm much more
efficient. The method works very well on single-commodity network design prob-
lems, which can be seen from the drastic reductions in solution time on many in-
stances. A direction for future research is the further generalization of the approach
to multi-commodity network design. An efficient extension might be achieved via
an additional aggregation of the demand vector and finding a trade-off between the
use of Benders feasibility cuts, which add fewer information, and our aggregation
cuts, which add more information, but also let the linear system grow faster.
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Chapter 4
Freight Train Routing

Torsten Klug

Abstract This chapter is about strategic routing of freight trains in railway trans-
portation networks with mixed traffic. A good utilization of a railway transportation
network is important since in contrast to road and air traffic the routing through
railway networks is more challenging and the extensions of capacity are expen-
sive and long-term projects. Therefore, an optimized routing of freight trains have a
great potential to exploit remaining capacity since the routing has fewer restrictions
compared to passenger trains. In this chapter we describe the freight train routing
problem in full detail and present a mixed-integer formulation. Wo focus on a strate-
gic level that take into account the actual immutable passenger traffic. We conclude
the chapter with a case study for the German railway network.
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4.1 Introduction

Rail transport volume in Germany has been increasing for years, while a correspond-
ing expansion of the infrastructure is rather reluctant, since construction projects are
always capital-intensive and long-term projects. Being a transition country in cen-
tral Europe, Germany faces great traffic challenges in the next years. In particular,
this applies for the rail freight transportation sector. Recent estimates assume an in-
crease up to 80% by 2025 IFMO-Studie [16]. Therefore, it is necessary to analyze
the existing network to estimate and make the best use of the available capacity. In
this context, the major German railroad company, Deutsche Bahn AG (DB), uses
a simplified (macroscopic) transport network for the rail freight train routing at a
strategic planning level. The major aim is to determine routes for freight trains by
taking into account the available railway infrastructure and the already planned and
invariant passenger traffic.

The routing of freight trains is quite different from passenger trains since depar-
ture and arrival time windows are less strict and routes are not limited by several
intended intermediate stops. Nevertheless, passenger and freight trains in Germany
share the same infrastructure to a large extent. Therefore, the railway system has to
be considered as a whole including passenger transport and infrastructure.

The problem we discuss in this chapter lies in between well studied problems in
the planning process of railway transportation systems. On the one end are prob-
lems concerning the infrastructure, i.e., network design, capacity assessment, and
long term traffic forecasts. These are topics on a strategic level with a macroscopic
scale of the transportation network and the traffic flows. On the other end are prob-
lems like line planning, track allocation and timetabling that provide information
on the passenger transportation with an accurate schedule of trains. In these cases
the networks are very detailed, for instance, a station is described by several tracks
and platforms instead of a single node. However, the solvable problem size are very
different. In the case of network design, it is possible to consider the entire German
railway network, while state-of-the-art timetabling approaches are able to solve in-
stance for corridors or notable smaller subnetworks.

The freight train routing problem (FTRP) is investigated from a strategic perspec-
tive, calculating the routes in a macroscopic transportation network. In this context
“macroscopic” means that complex structures are aggregated into fewer elements
and the departure and arrival times of freight trains are approximated. The prob-
lem has a strategic character, since it asks only for a rough routing through the
network without precise timings, i.e., in particular most of the input data consists
only of coarse estimates. The day is partitioned into a small number of time slices,
which reflects different traffic situations over the day, for instance, a higher utiliza-
tion by passenger trains or constructions sites that affects the capacity of a track.
The freight trains are given by origin destination pairs together with a departure
time and train type for each train. The train type defines the driving characteristics
of a train. A standard model day is considered with the assumption that the demand
is equal to the day before and after. The actual timetable for passenger trains is
mapped to the macroscopic network and given by the number of trains per track
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and time slice. Since the actual schedule of the freight trains on a track is not part
of the problem the congestion is measure by a nonlinear function. The main part of
this measure is the CR-function, which will be described in Sect. 4.2.2. The task is
to find a route for each train in the transportation network. The determined routes
should minimize the sum of all expected delays and the subordinate criteria run-
ning time and length. Capacity limitations of the arcs are implicitly handled by the
congestion function, i.e., potential conflicts of trains using the same infrastructure
element result in larger congestion values. Hence, by minimizing the capacity con-
gestion function we directly aim to produce timetables where the probabilities of
delays are smaller.

It follows a short review of the related literature. A formal description of the
problem will be given in Sect. 4.2. In Sect. 4.3 a solution approach by mixed-integer
programming is presented. A summary of computational results will be discussed
in Sect. 4.4. Finally, Sect. 4.5 conclude the chapter and discuss promising further
developments.

A similar and closely related problem is considered in Cacchiani et al. [8], where
passenger trains are given as fixed and freight trains have to be scheduled as well.
The main difference is that in contrast to our problem formulation the level of de-
tail is higher, i.e., the time windows for departure and arrival are discretized with a
much higher granularity, and, as a consequence, more specific capacity restrictions
are given. On the other hand, the network size that can be handled by this approach
is much smaller compared to the results in this chapter; the authors present compu-
tational results for several corridors and some major stations of the Italian railway
network.

Many recent contributions from research concentrate on the subsequent step, the
timetabling or track allocation which assumes inter alia freight train routes as an
input, see Chaps. 6 and 7. Caimi [9] presents a top-down approach and uses it to
handle the complete Swiss network by an a-priori decomposition of the network
into different zones. In contrast to that, Schlechte et al. [25] presents a bottom-up
approach to define a macroscopic railway model based on microscopic simulations.
A similar approach can be found in Kettner et al. [20]. There an automated gener-
ation of macroscopic data from a microscopic basis is described for the Austrian
Federal Railways (ÖBB). Extensive literature surveys on train timetabling problems
and railway track allocation can be found in Cordeau et al. [10] and in the more
recent ones Lusby et al. [24] and Cacchiani and Toth [7]. The authors of Bussieck
et al. [6], Huisman et al. [15], and Gorman [14] give an overview on optimization in
public railway transportation.

Besides the special application context, our problem has similarities to the
broader class of network design problems, see Balakrishnan et al. [3] for a gen-
eral survey. A network design problem tested on the German railway network is
presented in Chap. 3. A framework for a general class of network design problems
is presented by Kim and Barnhart [21] and applied to the blocking problem in rail-
road traffic in the US; see Barnhart et al. [4]. Integrated service network design for
rail freight transportation in the US is considered in Zhu et al. [27], Ahuja et al. [2],
and Jha et al. [18].
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Recent developments for the freight train routing of single cars is presented in
Chap. 8. Small customers order only 1–5 cars instead of complete train with more
than 20 cars. In such cases it is too expensive to pull these groups of cars each
by a single locomotive through the network. Instead, the cars are only pulled to
the next classification yard. There they are grouped with the cars from other cus-
tomers, and then as new trains pulled to the next classification yard. There the trains
are disassembled, and the cars are again re-grouped with others until each car has
reached its final destination. This problem gives rise to a natural network design
question, i.e., where are the classification yards located and how to route between
them. Fügenschuh et al. [11, 13] discuss the whole system of single wagon freight
transportation, show the positive effect of bundling cars, and compare the problem
to other freight transportation concepts mentioned in the literature, e.g., the railroad
blocking problem in the US or Canada.

The railroad blocking problem can be formulated as a very large-scale, multi-
commodity, flow-network-design and routing problem with billions of decision vari-
ables; see Jha et al. [18] and Barnhart et al. [4]. Ahuja et al. [2] presents an algo-
rithm using an emerging technique known as very large-scale neighborhood search
to support major US railway companies that transfers millions of cars over its net-
work annually. The authors report that their heuristic approach is able to solve the
problem to near optimality using 1–2 h of computer time on a standard workstation
computer.

Modeling railway capacity is technically very complex and hence the prediction
of congestion and waiting times is a major challenge. Nevertheless, the crucial re-
lation is that there is almost no waiting time, as long the mixture of allocated trains
can be handled by the infrastructure capacity. Once the capacity limit is reached,
congestion starts and smooth operation is not possible anymore. The closer it gets
to the capacity limit, the more delay occurs for each train. As soon as the number of
trains goes further beyond the capacity limit, the average delay for each train grows
even faster. There are many different ways to model and compute capacity values
for tracks. For a survey on this complex issue we refer to Abril et al. [1] and the
references therein. For a recent account of the theory we refer the reader to Chap. 2.

The approach we chose to model the functional relationship between the number
of trains passing a certain infrastructure is to introduce a capacity restraint (CR)
function. These functions are designed to give a reasonable measure of the expected
average delay. One of the earliest appearances of CR-functions in the literature is
due to Irwing and Cube [17]. Wohl [26] uses CR-functions to describe the travel
performance or travel time and delay as a function of the flow using properties of
the infrastructure and its capacity during the trip distribution and assignment phases
of a travel forecasting process. Most applications of CR-functions are tailored to
road traffic. Only recently, Lieberherr and Pritscher [23] and Borndörfer et al. [5]
use CR-functions in railway transport.

In the case of road traffic, Köhler et al. [22] presents a theoretical analysis of the
mathematical aspects of flow dependent cost functions. A major difference is that in
road traffic the routing is decentralized, arbitrarily partitionable, and assumed to be
selfish. In contrast to that railway systems are centralized and we are aiming for a



4 Freight Train Routing 77

system optimum. In addition, the train flow cannot be partitioned arbitrarily and thus
the routing and timetable is a more rigid system in comparison to the flow of cars.

4.2 The Freight Train Routing Problem

In this section we formally describe the problem, hereafter referred to as the Freight
Train Routing Problem (FTRP) and model the problem as a time slice expanded
graph.

4.2.1 Transportation Network

The transportation network is a directed graph Ĝ = (V̂ , ˆA ) in which V̂ and ˆA are
the node set and the arc set, respectively. Each node v ∈ V̂ represents a station, a
junction or some other infrastructure element where a train can start, branch or end.
Each arc a ∈ ˆA represents a connecting railway track. For convenience, for each
node v ∈ V̂ , we will let δ+(v)⊆ ˆA denote the set of arcs leaving v, and δ−(v)⊆ ˆA
denote the set of arcs entering v.

The day is partitioned into a small number of time slices. Let S be the set of time
slices, where τs denotes the time span of the time slice s ∈S . The starting time and
end time of a time slice s is denoted as s and s, respectively. They are arranged in
a cyclic order, such that a train at the end of the day (last time slice) can continue
at the beginning of the day (first time slice). The end time of a time slice is always
equal to the start time of the next time slice, the only exception is the last time slice
which ends at 86,400 s and the next time slice starts at 0 s. For simplicity in notation,
we identify the start time of the first slice with the end time of the last time slice.

The trains are classified into a set of standard train types T . With these defini-
tions we can define the arc parameters as follows. For each arc a ∈ A , we have:

la: length of the arc in meters;
τt,a: running time in seconds depending on the train type t ∈ T ;
κs

a: approximated number of trains that could use arc a within time slice s ∈ S ;
ρs

a: number of passenger trains traversing arc a within time slice s ∈ S .

A route in the graph is denoted as p, where the corresponding set of nodes and
arcs are denoted as Vp and Ap, respectively. Furthermore, each arc a ∈ Ap is as-
signed to a time slice. Let sp(a) be the assigned times slice and Sp = (s1,s2, . . . ,sk)
be the sequence of time slices used by route p, where s1 is the time slice the route
starts and sk is the time slice the route ends. For a route p we allow only time slice
sequences Sp = (s1,s2, . . . ,sk) such that for all i, j ∈ {1, . . . ,k}, si �= s j and si = si+1
hold.
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Then the running time of route p for train type t and departure time τdep is de-
fined by

τp(t,τdep) = sk − τdep + ∑
a∈Ap:

sp(a)=sk

τt,a,

The running time of a route is not only the sum of the arc running times. It is
possible that a route uses only one arc or even no arc at all within a time slice. A train
using this route will simply wait the remaining time of the time slice duration. But
this waiting time is part of route running time. The difference of the time span of the
time slice and the running times of used arcs within the time slice is called transit
time, since it is the time spend to transit to the next time slice. The definition of the
running time and the restriction on the time slice sequence of a route implies that a
route is no longer than a day.

The length of a route is independent from the time slices and is defined by

l(p) := ∑
a∈Ap

la.

4.2.2 Freight Train Demand and Objective

The freight train demand is given by a set of trains R. For each train r ∈ R, we
have: origin node; destination node; τdep

r departure time; and tr train type.
The constraints of the problem are determined by the definition of a feasible

routing. It is required that the routes are not far apart from the shortest and fastest
paths. Therefore, the running time and length of a possible routing is restricted to
a multiple of the fastest or shortest path. The so-calculated maximum length and
maximum running time of a routing for request r is denoted as Δ r

dist and Δ r
time,

respectively. A route p for r ∈ R is called feasible if

1. it starts at the origin node;
2. ends at the destination node;
3. has a length less than or equal to Δ r

dist;
4. has a running time less than or equal to Δ r

time;
5. the sum of arc running times for each time slice is less than or equal to the time

slice duration.

Constraint (5) implies that each arc must traversed completely within one time slice.
It is forbidden to traverse a fraction of an arc in one time slice and the remaining
part in the next slice.

The objective function has two components; the routing cost which enclose the
routes lengths and running times and the total congestion cost.
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For each arc a∈A we define the congestion cost as follows: Let n be the number
of trains on an arc, then the congestion cost is defined as:

τ

(
1+α

(
n

κγ

)β
)
, α,β ∈ [0,∞[, γ ∈]0,∞[,

where the running time τ and the capacity κ depends on the arc. This function is
an undamped variant of the CR-function presented in Lieberherr and Pritscher [23].
In this work, a justification for the exponential growth of the CR-function is also
given. The shape of the CR-function can be controlled by the parameters α,β ,γ .
The multiple of the running time that a train is penalized, if the capacity is reached,
is defined by α . We choose α = 1, which means we must pay the running time of
a train if we reach the capacity. The capacity is scaled with γ and could be used to
keep an amount of reserve capacity. Since we do not want to keep any capacity, we
choose γ = 1. This simplifies the CR-function to

τ
(

1+
( n

κ

)β
)
.

The rapidness of penalization is controlled by β : a large value for β means a big
slope near the capacity; a small value leads to a moderate slope. Since the running
time is already part of the routing cost, we take only the surplus as congestion cost

f (n) = τ
( n

κ

)β
. (4.1)

We use function (4.1) to estimate the congestion on each arc. A small example for
one arc and a set of curves for different values of β is shown in Fig. 4.1. We scale
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Fig. 4.1: CR-functions with arc capacity k = 10, average running time τ = 1 and
β ∈ {2,4,7,15}
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the different objective function components with λtime,λdist,λwait for the running
time, the length and the congestion cost, respectively. Thus, the objective function
is defined as follows:

f (P) := λtime

[

∑
r∈R

τpr(tr,τ
dep
r )

]
+λdist

[

∑
r∈R

l(pr)

]
+λwait

[

∑
s∈S

∑
a∈A

τa

(
ns

a

κs
a

)β
]
,

where for each arc a: τa is the average running time over all train types; ρs
a is the

number of passenger trains ρs
a; and ns

a is the number of freight trains from the actual
routing P . The routing P contains a feasible route pr ∈ P for each train p ∈ P .

To summarize we give a compact definition of the FTRP as follows:

Definition 4.1. Given an transportation network Ĝ = (V̂ , ˆA ), a set of time slices
S , a set of train types T , arc length la, arc running times τt,a, arc passenger traffic
ρs

a, arc capabilities κs
a, and a set of trains R with an origin and destination node

and the tuple (τdep
r ,Δ r

dist,Δ r
time) for each request r ∈ R. The task is to find a feasible

routing for each train P such that f (P) is minimized.

It is important to notice that the capacities of the arcs are not constraints. The
capacities are only considered by the cost function. If the cost function is linear then
the problem decompose into routing problems for single freight trains.

4.2.3 Time Slice Expanded Graph

To model the problem we construct a time slice expanded graph G. Many real-world
problems have been formulated as time-space network models, see Kennington and
Nicholson [19] for a survey.

For each node v ∈ V̂ and for each arc a ∈ ˆA we have a copy for each time
slice s ∈ S in G. Thus, the time expanded graph G contains |S | =: L copies of the
original graph Ĝ. To connect the subgraphs of different time slices in G further arcs
are added as follows: Let vs1 ,vs2 , . . .vsL be the nodes in G for node v ∈ V̂ and the
time slices s1, . . . ,sL. For each node v ∈ V̂ the arcs (vsi ,vsi+1) for i = 1, . . . ,L−1 and
(vsL ,vs1) are added to G. The so added arcs are called transition arcs. We denote the
nodes and arcs of the time slice expanded graph G by V and A . The arc set of G
can be partitioned into

A = As1 ∪̇ As2 ∪̇ . . . ∪̇AsL ∪̇ As1,s2 ∪̇ As2,s3 ∪̇ . . . ∪̇ AsL−1,sL ∪̇ AsL,s1 ,

where As ⊆ A is the set of arcs within times slice s and As1,s2 ⊂ A is the set of
transition arcs from time slice s1 to time slice s2. The same partition by time slices
is used for the nodes of G:

V = Vs1 ∪̇ Vs1 ∪̇ . . . ∪̇ VsL .
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The lengths, running times, passenger traffic and capacities of non-transition arcs
are taken from Ĝ. Whereas, a transition are has an unlimited capacity and the length,
running time, and passenger traffic are zero. Since the time slice of an arc is de-
scribed by the time slice expanded graph structure we omit the time slice subscript
for all arc parameters.

For each request or ∈V is the origin node in the time slice expanded graph. Since
the arrival time slice of a train is not restricted, we have a destination node for each
time slice. The set of destination nodes of request r is denoted by Dr ⊂ V .

The running time of a route p with train type t and departure time τdep in terms
of the time slice expanded graph is defined as follows:

τp(t,τdep) := sk − τdep
r + ∑

a∈Ap∩Ask

τt,a

The following Example 4.1 demonstrates the construction of the graph and the
definition of a route in G.

Example 4.1. The graph Ĝ = (V̂ , ˆA ) on the left contains the running times. In this
example there are equal for all trains. All time slices have a time span of 10 min. On
the right hand side is the time slice expanded graph G = (V ,A ) of Ĝ. Each slice
(Vs,As) is a copy of Ĝ. And the copies are cyclic connected by transition arcs.

In the following the route for each train is listed. The numbers above the arcs are
the arc running times and the numbers below are the transition times.
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Train 1: 8s1 4s1 5s1 6s1 1s1

3 2 2 1

Train 2: 7s2 4s2 5s2 5s3 6s3 8s3

7 2
1

2 1

Train 3: 2s1 2s2 2s3 8s310 10
5

Train 4: 1s4 3s4 3s1 7s1
2

8
6

Thus we get the values in the table where; the second column is the sum of the
arc running times; the second column is the sum of the transition times; and the
last column is the sum of running times and transition times which defines the path
running time.

Arc running time Transit time Route running time

Train 1 8 0 8
Train 2 12 1 13
Train 3 5 20 25
Train 4 8 8 16

4.3 MIP Formulation and Solution

In this section, we formulate the FTRP as a MINLP model. In order to solve the
problem we linearize the nonlinear capacity restraint function and discuss the pre-
solving that reduce the problem size to a manageable size.

4.3.1 MIP Formulation

Based on the time slice expanded graph we model the FTRP as a multi-commodity
arc flow problem. Therefore, we introduce a binary decision variable xr

a for each arc
a ∈ A and each r ∈ R. The variable equals one if and only if train r uses arc a,
otherwise the variable is zero. Whenever a train switches to the next time slice and
the running time is less than the time span of the time slice, the train has to wait
until the time slice ends. Therefore, we introduce continuous variables zr

s for each
train r ∈R and time slice s∈S which represent the difference between the running
time of the train and the time slice time span.

The objective function contains the total nonlinear congestion cost for each arc
and the sum of all running times and lengths. λtime,λrunning,λlength are the normal-
ized cost factors of each part. τa is the average running time of this arc considering
all train types, i.e., τa = ∑t∈T τt,a

|T | .
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The nonlinear objective function is defined as follows:

min λwait ∑
∀a∈A

τa

(
∑r∈R xr

a +ρa

κa

)β

︸ ︷︷ ︸
congestion cost

+λtime ∑
r∈R

∑
a∈A

xr
aτtr ,a

︸ ︷︷ ︸
running time

+λlength ∑
r∈R

∑
a∈A

xr
ala

︸ ︷︷ ︸
length

We define a flow balance function for train r ∈ R as follows:

b(v) =

⎧
⎪⎨

⎪⎩

1 if v ∈ or

−1 if v ∈ Dr

0 otherwise

.

The constraints are

∑
a∈δ+(v)

xr
a − ∑

a∈δ−(v)

xr
a = b(v) ∀r ∈ R ∀v ∈ V (4.2)

∑
a∈As

τtr ,axr
a ≤ τs ∀s ∈ S ∀r ∈ R (4.3)

∑
a∈A

laxr
a ≤ Δ r

dist ∀r ∈ R (4.4)

∑
a∈A

τtr ,axr
a + ∑

s∈S

zr
s ≤ Δ r

time ∀r ∈ R (4.5)

τs ∑
a∈As,s+1

xr
a − ∑

a∈As

τtr ,axr
a ≤ zr

s ∀s ∈ S ∀r ∈ R (4.6)

xr
a ∈ {0,1} ∀a ∈ A ∀r ∈ R

zr
s ≥ 0 ∀s ∈ S ∀r ∈ R

We have the common flow constraints (4.2) for each train: the outflow must be
one at the origin; the inflow must be one at exactly one of the destination nodes
in the time slice expanded graph; and at the remaining nodes, flow conservation is
required. A train must change to the succeeding time slice if the running time is
larger than the time span of the time slice (4.3). Constraints (4.4) and (4.5) handle
the length and running time restrictions. The waiting time to switch a slice zr

s is part
of the running time. The constraints (4.6) ensure that the variables zr

s are set to the
difference of time span and running time of the corresponding time slice only if the
train switch to the succeeding time slice.

4.3.2 Solving the FTRP

The mixed-integer nonlinear programming (MINLP) model contains a binary vari-
able for each arc and train. In terms of the considered instances of DB this amounts
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to up to 25 million binary variables. Setting up such a model consumes an enormous
amount of computer memory and solving such a model takes a daunting amount of
time. In the following we describe our efforts to reduce the resource demand. We
focus on presolving; that is, we only generate those parts of the model that are re-
ally necessary because they contain an optimal solution, and remove all the others.
Furthermore we describe the linearization of the nonlinear objective function that
transforms the MINLP to a MILP (mixed-integer linear program).

4.3.3 Presolving

For the preprocessing we try to identify, for each train, arcs and nodes that cannot
be part of a feasible solution.

Obviously, all ingoing arcs of the origin node and all outgoing arcs of destination
nodes can be ignored. The running time restriction is less than 24 h for all trains.
Thus, we can assume that a train cannot enter its starting time slice again by running
through all four time slices. This means all transition arcs into the starting time slice
of a train will also be ignored.

The major part of the preprocessing is to reduce the network for a train to the
subset of arcs and nodes that are elements of a path from the origin to one of the
destination nodes and observe the length and running time restrictions. To find the
relevant arc and node subsets we construct a shortest path tree from the origin node
and one tree from the destination node in Ĝ. We can stop in the leafs of the tree if
the distance from the root to the leaf is larger than the length restrictions. Hence,
for each node, we check if the distance from the origin node plus the distance to the
destination node is less than the length restriction. If the sum is less than the length
restriction, then the node could be in a feasible solution. Otherwise the node cannot
be contained in a feasible path without violating the length restriction. The feasible
arcs and nodes for Ĝ can then be transferred to the time slice expanded graph G,
since a shortest path in Ĝ remains a shortest path in the copies of each slice. A
transition arc is feasible if its head and tail node are feasible.

In case of the running time we have to consider one time slice of the time slice
expanded graph after another. If the feasible nodes are determined then the arcs
could be checked easily. We restrict our discussion to the nodes. From the fastest
path trees of Ĝ we get for each node the minimum running time from the origin and
to the nearest destination, respectively. A node in the time slice expanded graph can
only be feasible if the corresponding node is feasible for Ĝ. Thus, we could restrict
the feasible nodes set in the time slice expanded graph to the copies of such nodes.

For each slice the following procedure is executed: We have a set of possible
starting nodes and an available amount of time to reach the destination. For the
departure time slice the set of starting nodes consists only of the origin node. Fur-
thermore, the available amount of time is the value of the running time restriction.
A node v in the current time slice is feasible, if and only if the available amount of
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time is larger than or equal to the fastest running time, i.e., the sum of the fastest
running time from one of the starting nodes to the node v and the fastest running
time from the node v to the destination. Both running times, from a starting node
and to the destination node, are provided by fastest path trees of Ĝ.

If one slice is finished, the set of starting nodes for the next slice is given by
the set of nodes, that are adjacent to feasible nodes of the preceding time slice, i.e.,
connected by a transition arc. The available amount of time for the next time slice
is the available amount of time of the current time slice minus its time span. The
procedure terminates if the available amount of time is less than the time slice and
therefore no time would be left for the next slice. Thus, we get a significant reduction
of flow variables by identifying for each train its relevant subset of arcs.

Since the length and running time bounds are rather strict with 150% of the
shortest and fastest path, respectively, the reductions of variables is significant. With
this procedure the instance set in Borndörfer et al. [5] could be reduced to about 5%
of the original problem size.

4.3.4 Linearization

In order to solve the FTRP with standard MIP solvers we linearize the nonlinear
terms of the objective function. We apply the linearization technique used in Fügen-
schuh et al. [12]. Since we are not allowed to split trains, the total number of trains
traversing an arc a is always integer. Hence, we need only the function values for
feasible integer input values. We introduce for each arc a an artificial continuous
variable ya. Without loss of generality we assume that the total number of trains per
arc is bounded by some value N. Then the constraints

Γ a
1 (m)

(

∑
r∈R

xr
a +ρa

)
+Γ a

2 (m) ≤ ya ∀a ∈ A ∀m ∈ {1, . . . ,N}

describe the convex hull of all feasible integer points. Γ a
1 (m) is the slope and

Γ a
2 (m) the y-intersection of the linear function through the points (m, f (m)) and

(m−1, f (m−1)). The slope is defined by

Γ a
1 (m) = fa(m)− fa(m−1) =

ατa

κβ
a

(
(m+ρa)

β − (m−1+ρa)
β
)

and the y-intersection by

Γ a
2 (m) = fa(m)−Γ a

1 (m)m
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An example of this linearization is depicted in Fig. 4.2. The transformed cost func-
tion is:

min λwait ∑
∀a∈A

ya

︸ ︷︷ ︸
congestion cost

+λtime ∑
r∈R

∑
a∈A

xr
aτtr ,a

︸ ︷︷ ︸
running time

+λlength ∑
r∈R

∑
a∈A

xr
ala

︸ ︷︷ ︸
length
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Fig. 4.2: Linearization of a CR-function where only integer points are interesting

4.4 Computational Results

In this section we give a short summary of the computational results presented
in Borndörfer et al. [5].

The industrial partner provided data for the entire macroscopic railway network
of Germany and a corresponding freight train demand forecast. The transportation
network Ĝ is constructed from a given base graph with additional turning restric-
tions. These restrictions ensure that a route across a node in the macroscopic net-
work can be mapped to a feasible route in the microscopic network. Turning restric-
tions are integrated into the directed graph Ĝ such that they are implicitly encoded
by the graph structure, see Borndörfer et al. [5] for more details. In general the arcs
are directed, but two opposite arcs share the same attributes and their capacity as
well.

The train set R is generated from real-world data collected in 2010. We consider
four types of freight trains with varying speeds. One can distinguish between four
basic loads which are given by the typical distribution of passenger trains during the
day: morning rush hour, midday, evening rush hour, and night. Therefore four time
slices will be enough to determine the capacity on a strategic level for the freight
train routes.

We considered 33 instances (1 east, 18 south, 13 west) from networks of three
important geographical areas; see Fig. 4.3. The complete macroscopic graph of Ger-
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(a) (b) (c)

Fig. 4.3: Macroscopic infrastructure graphs for three geographical areas of Ger-
many. (a) South. (b) East. (c) West

Table 4.1: Instance size of the considered transportation network

Instance # Nodes # Arcs Length (m) Running time (s)

Min Avg Max Min Avg Max

East 1935 3599 62 10,067 121,527 3 403 4899
South 3350 6583 72 8955 121,811 2 349 5466
West 4479 8874 24 6366 106,285 1 250 5466

Table 4.2: Variety of the instances

Instance Train types # Trains Train departure slice

5–9 9–16 16–20 20–5

East 3 437 69 89 46 233
South 4 300–700 36–84 54–132 41–104 162–394
West 4 300–600 39–99 74–154 37–76 136–315

The second column is the number of train types followed by the number of trains. The last four
columns depict the number of trains that depart in each time slice

many has 1620 nodes and 5162 arcs. The given demand forecast contains 3389
trains. For each area we retain only the trains where the origin and the destination
node within the corresponding area. All other trains are ignored for this area. For
each area we create several instances with an increasing number of trains that are
randomly selected from the pool of possible trains. Instances for the same area and
with the same number of trains differ in the subsets of randomly selected trains.
Table 4.1 contains the magnitude and characteristics of the networks. The number
of nodes and arcs in this table are the sizes of the transportation network Ĝ. The
arc lengths are given in meters, arc running times in seconds. By construction Ĝ



88 Torsten Klug

contains several auxiliary nodes and arcs to integrate the turning restriction. Since
for almost all arcs the length and running times are zero, these kind or arcs are not
considered by the calculation of the minimum, maximum and average in Table 4.1.
Since in the macroscopic network longer track sections are aggregated and areas
with a lot of junctions are not, there is a large variety in the arc lengths from below
100 m to more than 100 km. The same applies for the running times.

The variety in the number of trains and the distribution over the four time slices is
presented in Table 4.2. Most trains start at night from 20 o’clock to 5 o’clock where
the network is hardly utilized by passenger traffic. For all experiments, the cost
values were set to λwait = 1000,λtime = 0.028,λlength = 0.002, the solver running
time limit was set to 6 h and the MIP optimality tolerance to 0.01%. As mentioned
in the presolving section the problem size could be reduced to 2%, 5% or 10% of the
original problem size depending on the allowed detour factor for the routes lengths
and running times. Thus, the instances become manageable for a state of the art
MILP solver.

The carried out experiments comprise a variation of the length and running time
restrictions and different values for β = [2,4,7,15]. The results are compared with
a shortest path routing of the freight trains. For all but two of the instances a gap
below 0.1% could be reached within the 6 h time limit.

The results show that already for small length and running time restrictions the
distribution over the network can be optimized and balanced using the presented
MIP model. As you could expect an increase of length and running time limits leads
to a better utilization of the network and decrease the number trains that are routed
above the capacity limit of an arc.

Table 4.3 give an impression of the network utilization and demonstrates the po-
tential of the model to provide more balanced solutions. The result are averaged over
the instances of the corresponding area. The running times and length are rounded to
the nearest integer, whereas the capacity values are rounded to two decimal places.

Table 4.3: Comparison of the solution in which each train takes the shortest path
and the solution with CR-function defined by β = 4 and a detour factor of 1.5

Shortest path 1.5

Instance Length Time Over capacity Length Time Over capacity

(km) (h) # Arcs # Trains (km) (h) # Arcs # Trains

East 41,473 434 17 40 42,277 442 2 3
South 49,249 522 48.05 80.77 53,937 574 11.11 13.33
West 37,086 381 70.77 112.77 40,209 421 11.00 12.69
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4.5 Conclusion

In this chapter we present the FTRP and propose a MINLP model based on a time
slice expanded graph formulation of the problem. An algebraic approximation of
the delays of the trains by capacity restraint functions leads to a nonlinear model.
We reduced the MINLP to a mixed-integer linear model by piecewise linear ap-
proximation and we were able to tackle large-scale instances with state-of-the-art
MILP solvers by utilizing several graph preprocessing techniques. The experiments
conclude that CR-functions are a reasonable tool to penalize waiting times and to
provide a balanced solution for the requested distribution of the traffic through a
macroscopic railway network.
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Chapter 5
Robust Train Timetabling

Valentina Cacchiani and Paolo Toth

Abstract Nowadays railway systems are highly affected by disturbances, occurring
in daily operations, and causing train delays and passenger inconvenience. Not only
they negatively affect the passengers satisfaction, but they also cause additional op-
erational costs, since the planned schedule needs to be modified in real-time. Train
timetabling is a particularly critical phase in railway system management, since,
in real-time operations, all the changes applied to the planned timetable impact on
platform assignment, rolling stock circulation and crew scheduling. Therefore, in
the strategic planning, it is an important issue to determine robust timetables, i.e.,
timetables that “perform well” under disturbances, avoiding delay propagation as
much as possible. In this chapter, we present state-of-the-art methods that achieve
robust timetables, and discuss their advantages and drawbacks.
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5.1 Introduction

Train timetables are determined in a planning phase. Traditionally, the goal of this
phase (called nominal problem) was to derive efficient train schedules, i.e., to have a
service with high frequency and short waiting and travel times, while no importance
was given to the effects that a “tight” schedule could have on real-time operations
(i.e., long travel times due to delays, missed train connections). Recently, robustness
has received increasing attention in the literature and in real-world applications for
the optimization of a railway system. The aim of robustness is to determine timeta-
bles that “perform well” under disturbances, avoiding delay propagation as much as
possible. It is crucial to provide a good quality service to the passengers, by running
trains with high punctuality and short travel times, in order to attract the passengers
to use this transportation mode. Railway networks are more and more utilized and
traffic congestion inevitably causes delays, that not only affect the passengers, but
also the freight trains. When a delay occurs, the planned train schedule can become
infeasible and has to be changed in real-time, causing operational costs as well as
inconvenience to the passengers. Furthermore, changes in the train schedule most
likely imply changes to the platform assignment, rolling stock circulation and crew
schedules.

For these reasons, train timetabling turns out to be one of the most critical phases
in the optimization of a railway system. In addition, at an operational level, train de-
lays often cause delay propagation, thus making the entire train schedule ineffective.
Robust train timetabling calls for deriving, in the planning phase, train schedules
that show a good trade-off between efficiency and robustness, so as to simplify and
make smooth the actions to be executed in real-time, while maintaining a good qual-
ity service to the passengers. More precisely, robust train timetabling aims at deter-
mining timetables that, on one hand, optimize the nominal objective (e.g., minimize
the total passenger travel time, or, in a competitive market, minimize the changes to
the timetables requested by different train operators) and, on the other hand, min-
imize delay propagation that can occur at the operational level, while respecting
all the nominal constraints (e.g., infrastructure capacity, minimum travel and dwell
times, safety, connections, etc.).

In this chapter, we present state-of-the-art methods to derive robust train timeta-
bles. For a complete survey on the nominal and robust train timetabling problems,
we refer the reader to Cacchiani and Toth [9]. In Sect. 5.2, we describe the Nom-
inal Train Timetabling Problem (TTP) and the Robust Train Timetabling Prob-
lem (RTTP). Section 5.3 is devoted to present recent effective methods to solve
RTTP. We conclude this overview with some comments on computational results in
Sect. 5.4 and open perspectives in Sect. 5.5.
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5.2 Problem Description

We first briefly introduce the nominal TTP, as its description is helpful for a better
understanding of the robust TTP.

5.2.1 Nominal TTP

Traditionally, two versions of TTP have been studied, namely the periodic and the
non-periodic problems, also known as cyclic and non-cyclic TTP, respectively. In
the former, each train is operated in a cyclic way, based on a period of usually 1 h:
this is very useful for the passengers, as they can easily memorize the train schedule.
However, it is not always doable to build a periodic schedule, especially in a com-
petitive market where several train operators access the same railway infrastructure.
In this case, non-periodic TTP is the most appropriate version. Even though the
latter is known as non-periodic, train schedules are repeated in the same way ev-
ery day. For this reason, mathematical models for periodic TTP can also be applied
to non-periodic TTP and vice versa. In both problems, given a railway network,
characterized by a set of stations and a set of tracks connecting them, one needs to
schedule arrivals and departures of trains at the stations, while respecting minimum
travel and stopping times, headway times and track capacity constraints (related to
overtaking and crossing of trains that must be avoided due to the structure of the
railway network).

We report in Sects. 5.2.1.1 and 5.2.1.2, respectively, two formulations of the nom-
inal TTP, that are later modified to take into account robustness issues. We refer the
reader to Lusby et al. [29] and Cacchiani and Toth [9] for recent surveys on TTP,
to Cacchiani et al. [12] for a tutorial on the non-periodic version of TTP and to
Liebchen [26] for its periodic version.

5.2.1.1 Periodic TTP

The most well-known model for the periodic TTP is the Periodic Event Schedul-
ing Problem (PESP) model, introduced by Serafini and Ukovich [35]. Let P be the
cycle time (e.g., 1 h). Let G = (N,A) be the so-called constraint graph, i.e., G is a
directed graph with a node set N, corresponding to the event set (i.e., the arrivals
and departures at the stations of the trains that have to be scheduled), and an arc
set A, where arc (i, j) corresponds to a cyclic constraint imposed on events i and
j and represents a process. For each event i ∈ N, we introduce an integer variable
vi ∈ {0, . . . ,P−1}, representing the time instant at which event i takes place. Each
cyclic constraint deals with a pair of events i, j ∈ N, and with a time window, which
imposes, respectively, lower and upper bounds li j and ui j on the time interval be-
tween the two events. By introducing a binary variable pi j, with pi j = 1 if v j < vi

and pi j = 0 otherwise, we can write the PESP model as follows:
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minF(v)

li j ≤ (v j − vi)+Ppi j ≤ ui j, (i, j) ∈ A (5.1)

vi ∈ {0, . . . ,P−1}, i ∈ N

pi j ∈ {0,1}, (i, j) ∈ A,

where F(v) represents, for example, the passenger travel time (e.g. F(v) =

∑(i, j)∈A(v j − vi + Ppi j − li j). Constraints (5.1) are used to model the feasibility
of the solution, i.e., they impose to satisfy minimum travel and stopping times,
headway times and track capacity constraints, but also passengers transfers between
connecting trains.

5.2.1.2 Non-periodic TTP

The formulation we describe for the non-periodic TTP was proposed in Caprara et
al. [13], and is then enhanced to derive robust solutions in Cacchiani et al. [11].
This model is used in the context of a competitive market, in which several train
operators ask for scheduling trains according to their preferred timetables, and the
infrastructure manager has to change “as little as possible” these timetables to obtain
an overall feasible schedule. If no feasible schedule can be derived, train cancella-
tions are allowed.

Let T be the set of all trains to be scheduled. Let G = (V,A) be a time-space
graph: nodes in set V represent time instants at which some train can arrive at and
depart from a station. In addition, V includes an artificial source node σ and an
artificial terminal node τ . The arc set A is partitioned into sets A1, . . . ,A|T |, one
for each train t ∈ T . These arcs represent either the travel or the stop of a train,
or correspond to artificial arcs connected to σ and τ . Each arc a ∈ A is assigned a
profit pa which takes into account the priority given to the train by the train operator,
and the penalties due to potential timetable changes that need to be performed to
obtain a feasible timetable. We introduce, for each train t ∈ T and each arc a ∈ At a
binary variable xa equal to 1 if, and only if, arc a is selected in an optimal solution.
We denote by C the (exponentially large) family of maximal subsets C of pairwise
arcs which are incompatible due to headway time or track capacity violation. The
corresponding Integer Linear Programming (ILP) model reads:

max ∑
t∈T

∑
a∈At

paxa (5.2)

∑
a∈δ+

t (σ)

xa ≤ 1, t ∈ T, (5.3)

∑
a∈δ−

t (v)

xa = ∑
a∈δ+

t (v)

xa, t ∈ T,v ∈V \{σ ,τ}, (5.4)
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∑
a∈C

xa ≤ 1, C ∈ C , (5.5)

xa ∈ {0,1}, a ∈ A. (5.6)

The goal is to maximize the sum of the arc profits, thereby minimizing the
changes to the preferred timetables. Constraints (5.3) impose to choose at most one
path, which corresponds to a timetable, for each train (note that train t is cancelled
if the corresponding left-hand side of (5.3) is equal to zero). Constraints (5.4) re-
quire that the arcs are selected to form a path in graph G (i.e., a timetable) for each
scheduled train. Finally, constraints (5.5) are used to ensure that the obtained train
schedules respect the headway time and track capacity constraints.

As mentioned above, a mathematical model for the periodic TTP can also be
adapted to the non-periodic TTP. This is what is done, for example, in Fischetti et al.
[20], where the PESP model is adapted to take into account penalties for modifying
the given preferred timetables provided by the train operators.

5.2.2 Robust TTP

Finding robust yet efficient solutions to optimization problems is a major practical
issue. Roughly speaking, a TTP solution is considered to be robust if it avoids de-
lay propagation as much as possible. A common and practical way to obtain robust
timetables is to introduce, in the planning phase, buffer times that can absorb possi-
ble delays occurring at the operational level. Buffer times correspond to empty time
slots, inserted in the schedule of the trains, to mitigate delay propagation. RTTP
calls for determining where the buffer times should be inserted and how long they
should be to guarantee a good trade-off between the nominal efficiency and the delay
resistance.

The elements that come into play in the RTTP are the same as in the TTP. We are
given a railway network, with a set of stations and tracks connecting them, and a set
of trains to be scheduled on the network, while satisfying constraints on the travel
and stopping times of the trains, as well as headway times between consecutive
trains and track capacity constraints. As opposed to the TTP, the RTTP has two
objectives that are in contrast with each other, namely efficiency and robustness of
the solution.

Several works from the literature consider to have on input a feasible timetable
for the trains and propose methods that allow to improve the timetable robustness
(see, e.g., Kroon et al. [25], Fischetti et al. [20]). Other works, on the contrary,
propose methods to build a robust timetable from scratch (see, e.g., Cacchiani et al.
[11]). Robustness can be achieved by applying various techniques. In Sect. 5.3, we
give an overview of the state-of-the-art methods.
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5.3 Robustness in Train Timetabling

The seminal work presented in Soyster [36], which can be referred to as strict ro-
bustness and was later extended in Ben-Tal and Nemirovski [2], introduces a first
approach to deal with the uncertain data present in a mathematical model. This
method calls for determining a solution that is feasible for all the considered sce-
narios, with the goal of minimizing the worst-case performance of a solution. These
methods tend to be overconservative, as they require to find a solution that is fea-
sible for all the considered scenarios. In Ben-Tal and Nemirovski [3, 4], ellipsoidal
uncertainties are considered in order to try to limit overconservative solutions. In
Bertsimas and Sim [5, 6], a new concept of robustness is introduced. The uncer-
tainties of the data are represented by letting each coefficient assume a value in an
interval centered in its nominal value. The number of coefficients that can simulta-
neously take their worst-case value is limited: in particular, their method requires
to define a robust model such that its optimal solution is feasible for every change
of at most Γi coefficients in each row i of the constraint matrix. The parameters Γi

are used to determine the quality of robustness of the solution: basically, if Γi = 0
then constraint i corresponds to the nominal constraint, while Γi = n (where n is
the number of variables) corresponds to the strict robustness described in Soyster
[36]. Even though this method overcomes most of the drawbacks of the previous
approaches, it is not suitable for the TTP, since most of the coefficients of the cor-
responding model are used to define the “structure” of the problem, and the number
of uncertain coefficients in each row is very small, as discussed in Fischetti and
Monaci [19].

Several models and algorithms, which are very effective for deriving robust solu-
tions to the TTP, have been recently defined. In the following sections, we describe
the most relevant ones. We start by describing, in Sect. 5.3.1, an alternative method
to robust optimization, i.e., stochastic programming, applied to the TTP. New ro-
bustness concepts, namely recoverable robustness, recovery to optimality, and light
robustness, presented for general Mixed Integer Linear Programming (MILP) prob-
lems, and effectively used for the RTTP, are described in Sects. 5.3.2, 5.3.3, 5.3.4,
respectively. Finally, in Sect. 5.3.5, we describe a Lagrangian-based approach to de-
rive good quality heuristic solutions to the RTTP, which also has the advantage of
being a simple modification of an effective method for the nominal problem.

5.3.1 Stochastic Programming

One of the first methods used to improve the robustness of a timetable is based on
the stochastic programming method [8]. In Kroon et al. [25], a two-stage stochastic
model is applied to a given cyclic timetable of NS Reizigers, the main operator of
passenger trains in the Netherlands, with the aim of minimizing the weighted delays
of the trains. In the following, we assume that the period (cycle) is of 1 h. The first
stage of the model consists of the timetabling part, while the second stage consists
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of a simulation part for evaluating the robustness of the timetable under construc-
tion. The key idea is to handle, in the second stage, a set of delay scenarios, and to
determine, in the first stage, a timetable such that the average weighted sum of the
delays in all these scenarios is minimized. Therefore, the first stage corresponds to
the deterministic part of the model, while the second stage manages the stochasticity
that depends on the specific scenario. Time supplements are variables, introduced in
the first stage, that can be allocated to specific processes with the aim of absorbing
disturbances occurring in the scenarios of the second stage.

The timetabling part of the model is very similar to the PESP model described
in Sect. 5.2.1.1, but the cyclic orders of the trains are taken as fixed in the given
timetable, i.e., variables pi j are given parameters. In addition, the event time vari-
ables are not restricted to be in the interval {0, . . . ,P−1}, but can take any integer
value: this is allowed to avoid restrictions for the event times (e.g., an event planned
at time 0 could only move forward if the event times were restricted in {0, . . . ,P}).
The constraints to impose the time duration of the processes can be expressed as
follows:

li j + si j = v j − vi + pi jP, (i, j) ∈ A,

where si j represents the amount of time supplement that is allocated to process
(i, j) ∈ A. As in the PESP model, an upper bound can be imposed on the process
duration:

v j − vi + pi jP ≤ ui j, (i, j) ∈ A,

which is equivalent to limit the time supplement of this process. Since the event time
variables are not restricted in the interval {0, . . . ,P− 1}, but the timetable must be
cyclic, the following constraints are added to the model:

0 ≤ ve2 − ve1 ≤ P−1,

where e1 and e2 are, respectively, the first and the last events in an hour on the
same part of infrastructure. Finally, in order to appropriately allocate the time sup-
plements, Q disjoint subsets A1, . . . ,AQ of processes are selected, and each subset
Aq is connected with a global amount of time supplement Sq to be allocated to the
processes in Aq:

∑
(i, j)∈Aq

si j ≤ Sq, q = 1, . . . ,Q.

The simulation part of the model is based on R independent realizations, each
corresponding to a single day, of the timetable operated under selected stochastic
disturbances. Each realization covers H consecutive hours. It is assumed that the
orders of the events are the same in the realizations as planned in the timetable, i.e.,
the simulation part of the model does not include traffic control decisions. A process
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(i, j) with pi j = 0 has vi < v j, thus it is planned within a single hour. On the contrary,
a process (i, j) with pi j = 1 has v j < vi: since it is clearly impossible that the process
ends before it started, it is assumed that, if process (i, j) starts in hour h of realization
r, then it ends in hour h + 1 of the same realization. Let ṽi,r,h be the realized event
time of event i of realization r in hour h, and δi j,r,h be the disturbance of process
(i, j) of realization r in hour h. The following constraints are imposed to respect the
minimum process times when disturbances occur:

li j +δi j,r,h ≤ ṽ j,r,h+pi j − ṽi,r,h, (i, j) ∈ A,r = 1, . . . ,R,h = 1, . . . ,H. (5.7)

Let Ed and Ea be, respectively, the departure and the arrival event sets. Further-
more, constraints are imposed that link the departure event times with the corre-
sponding realized event times:

vi +hP ≤ ṽi,r,h, i ∈ Ed ,r = 1, . . . ,R,h = 1, . . . ,H, (5.8)

i.e., a realized event cannot take place before its planned time. In addition, con-
straints are used to compute the delays of arrival events in all the realizations:

ṽi,r,h − (vi +hP) ≤ Di,r,h, i ∈ Ea,r = 1, . . . ,R,h = 1, . . . ,H,

where Di,r,h is a non-negative variable representing the delay of arrival event i of
realization r in hour h. The average weighted sum (with weights wi, i ∈ Ea) of the
delays is minimized in the objective function of the model:

min ∑
i∈Ea

R

∑
r=1

H

∑
h=1

wiDi,r,h/(|Ea|RH). (5.9)

Weight wi can be chosen, for example, based on the number of passengers that reach
their destination with the arrival event i. Note that, in the objective function (5.9),
an approximation is used: instead of considering the expected weighted delays of
the trains, a random sample of R independent vectors of disturbances is considered.
We refer the reader to Fischetti et al. [20] and Meng and Zhou [30] for other ap-
plications of stochastic programming in the TTP. In particular, Fischetti et al. [20]
proposes two alternative stochastic programming models, called “fat” and “slim”,
respectively. The fat model has one variable for each event in each delay scenario,
thus it becomes very time consuming to solve. The slim model has just one copy
of the original variables, and additional variables which take into account the un-
absorbed delay and whose sum is minimized in the objective function. This model
has much less variables than the fat one. In Meng and Zhou [30], a rolling horizon
approach, based on stochastic programming, is developed.

One drawback of the Stochastic Programming methods is that they require to
know probabilities on the delay scenarios, that are not easily available. In addition,
the size of these models increases rapidly with the number of the considered scenar-
ios. However, they have the advantage of embedding the evaluation of the realization
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timetables, and become suitable for the periodic TTP, in which the time horizon for
the planned timetable is usually short.

5.3.2 Recoverable Robustness

Recoverable robustness was introduced in Liebchen et al. [27] and applied in the
TTP context. It integrates the notion of robustness and recoverability (i.e., delay
management) into a common framework. The key idea is that recovery actions can
be used to recover (i.e., to make feasible) a plan through limited changes in every
likely scenario. Therefore, besides the nominal problem and the set of likely scenar-
ios, one needs to define a set of recovery algorithms. A solution is recovery-robust if,
in all the situations that may occur in the set of considered scenarios, one can recover
the solution, by means of one of the given recovery algorithms. This is a two-stage
approach that overcomes the drawbacks of the stochastic programming and strict ro-
bustness methods: the former becomes quickly intractable for large-scale instances,
while the latter is too conservative for the TTP.

In the TTP, typical recovery actions consist of delaying events or cancelling con-
nections: the former causes delay propagation, while the latter limits it but affects
the passengers. Other recovery actions correspond to cancelling train services or
rerouting trains. We describe the model, presented in Liebchen et al. [27], which
takes into account the recovery actions of delaying events and cancelling connec-
tions. The model considers the nominal problem, which is formulated by using the
PESP model, a set of delay scenarios taking into account small disturbances, and
limited recovery possibilities (delaying events, i.e., propagating delays through the
network, and cancelling passenger connections to avoid delay propagation) that al-
low to make the scenarios feasible through a limited effort. The latter feature is what
mainly distinguishes the recoverable robustness approach from the stochastic pro-
gramming model proposed by Kroon et al. [25]. In particular, additional variables
and constraints are introduced to model and limit the accepted recovery actions.

The authors consider the periodic version of the TTP and the PESP model (see
Sect. 5.2.1.1). A set S of likely scenarios, defined by train delays, is considered.
Similar to the stochastic programming model, described in Sect. 5.3.1, variables
vi (i ∈ E), representing the event times of the planned timetable, and variables ṽis

(i ∈ E, s ∈ S), representing the event times of the realized timetable of a specific sce-
nario s, are introduced. Besides the classical PESP constraints (5.1) that are used to
model the feasibility of the planned timetable, constraints that ensure the timetable
feasibility for all the scenarios in S are imposed (see (5.7)), as well as constraints
that require the departure realized events to be not earlier than the planned ones
(see (5.8)). In addition, constraints are imposed to model the recovery action of
event delaying. In particular, let λ1 and λ2 be two variables to be minimized in the
objective function. The constraints read as follows:

∑
i∈Ea

wi(ṽis − vi) ≤ λ1 (5.10)
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ṽis − vi ≤ λ2, i ∈ Ea. (5.11)

Constraint (5.10) limits the weighted sum of the delays of all the arrival events (with
weights based on the number wi of passengers that reach their final destination with
the arrival event i ∈ Ea). Constraints (5.11) limit the delay for each arrival event
separately, i.e. they ensure that no passengers will experience a delay larger than λ2.

Let AT F be the subset of transfer arcs, i.e., of the arcs modelling the transfer of
passengers from one train to another one at the same station. To model the recovery
action of cancelling connections, additional binary variables xs

i j are introduced for
each transfer arc (i, j) ∈ AT F and each scenario s ∈ S: variable xs

i j assumes value 1
if transfer (i, j) is cancelled, and 0 otherwise. The following additional constraints
are enforced:

ṽ js − ṽis +Mxs
i j ≥ li j, s ∈ S,(i, j) ∈ AT F ,

with xs
i j ∈ {0,1}, and with M a large positive constant. To limit connection cancel-

lations, one can impose a maximum number of such cancellations, which can be
weighted based on the number gi j of passengers travelling along the arc. Let λ3

be a variable to be minimized in the objective function. The constraints limiting
connection cancellations can be written as:

∑
(i, j)∈ATF

gi jx
s
i j ≤ g3λ3.

The considered objective function

min ∑
(i, j)∈A

gi j(v j − vi)+g1λ1 +g2λ2 +g3λ3

calls for minimizing the weighted sum of the passenger travel times (i.e., it maxi-
mizes the efficiency of the solution), and recovery costs, represented by the recovery
actions consisting of delaying events and canceling connections.

Recoverable robust approaches to the TTP are proposed in Caprara et al. [14],
Cicerone et al. [15, 16], D’Angelo et al. [17]. In Caprara et al. [14], a recoverable
robust method, in which the only recovery action consists of propagating the delay
over the given network, is proposed. It is applied to the Train Platforming Prob-
lem (TPP) that considers a railway station and a set of trains whose entry and exit
points at the station are specified, and calls for assigning each of these trains a stop-
ping platform, an arrival path from its entry point to the platform and a departure
path from the platform to its exit point. In Cicerone et al. [15] complexity results
are derived for special classes of recoverable robust TTPs. In Cicerone et al. [16],
recoverable robust models are presented for shunting and timetabling problems: in
particular, the recoverable robust TTP on corridors is studied, and the price of ro-
bustness is analyzed. In D’Angelo et al. [17], the recoverable robust TTP on tree
networks is studied.

The main advantage of the recoverable robustness is that it combines robustness
and delay management, thus overcoming the drawbacks of strict robustness and
stochastic programming. However, the recovery algorithms have to be included in
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the optimization model, and, therefore, only limited recovery actions can be taken
into account.

5.3.3 Recovery-to-Optimality

The concept of recovery-to-optimality is proposed in Goerigk and Schöbel [22] (see
also Goerigk and Schöbel [21]), and applied to the non-periodic TTP. The goal is
to determine a solution that can be recovered to an optimal solution with small
recovery costs. In particular, the goal is to minimize either the sum or the maximum
of the recovery costs. To this aim a distance function, which represents the recovery
costs, is defined. In the TTP, a distance function can be, for example, the increase in
the passenger travel times from one timetable to another one.

Recovery-to-optimality is a two-stage approach that combines recoverable ro-
bustness and stochastic programming. In the first stage, a solution has to be found,
and it can be recovered when the scenario realizes (second stage). With respect to
recoverable robustness, in which a set of recovery actions are chosen, recovery-to-
optimality replaces these actions with the notion of the distance function measur-
ing the recovery costs. Furthermore, in recovery-to-optimality, an optimal solution,
with respect to a feasible solution in recoverable robustness, has to be determined.
Recovery-to-optimality has similarities with stochastic programming too: however,
on one hand, no probability distribution is needed, and, on the other hand, the objec-
tive function is not the sum of the nominal objective and the recovery costs. Indeed,
optimality of the second stage variables is imposed as a hard constraint.

In Goerigk and Schöbel [22], a setting similar to the one in Liebchen et al. [27] is
considered: the nominal problem is formulated as an adaptation of the PESP model
to the non-periodic case, and a set of scenarios corresponding to train delays are
considered. However, the goal in Goerigk and Schöbel [22] is to minimize the max-
imum recovery costs to determine an optimal solution for all the considered scenar-
ios instead of to just determine a feasible solution. This is achieved by minimizing,
for all the scenarios, the maximum distance (recovery costs) of the optimal solution
from the solution of the nominal problem.

Let X be the decision space, d the distance function, S the scenario set and
Opt(s) the set of optimal solutions to the problem corresponding to scenario s ∈
S. We use x(s) to specify one optimal solution of scenario s ∈ S. The recovery-
to-optimality model, when the goal is to minimize the worst case costs over all
scenarios, reads:

minsup
s∈S

d(x,x(s))

x(s) ∈ Opt(s), s ∈ S,

x ∈ X . (5.12)
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Let s̄ correspond to the nominal scenario and F to the set of feasible solutions.
Constraint (5.12) can be replaced by x ∈ F (s̄) to guarantee nominal feasibility.

A sampling algorithm is proposed in Goerigk and Schöbel [22] to derive
recovery-to-optimality robust solutions. A discrete set of scenarios {s1, . . . ,sN} ⊆ S
is considered and the optimal solution xi for each scenario si (i = 1, . . . ,N) is com-
puted. Then, the solution x∗ ∈ X minimizing the distance to the obtained optimal
solutions {x1, . . . ,xN} is determined by solving a location problem. In particular, if
the goal is to minimize the worst case costs, one needs to determine x∗ such that

max
i=1,...,N

d(x∗,xi)

is minimal.
In Goerigk and Schöbel [22], the non-periodic TTP is modelled by an event-

activity network, i.e., a directed graph G = (V,A). The node set V consists of depar-
ture and arrival events, while the set of arcs is used to represent either the travelling
of a train from one station to another, or the stopping of a train at a station, or the
transfer of passengers from one train to another at the same station, or the headway
constraints between trains. This graph is very similar to the constraint graph pre-
sented in Sect. 5.2.1.1. The model used for the TTP is an adaptation of the PESP
model to the aperiodic case.

A relevant difference that distinguishes recovery-to-optimality from other robust-
ness methods for the TTP is that recovering a solution to optimality may also mean
to let events take place earlier than in the nominal timetable. Clearly, rescheduling
events in the timetable to occur earlier by changing, for example, the train departures
cannot be done within a short-time horizon, because this would cause confusion for
the passengers. Therefore, this approach is useful for long-term disruption scenar-
ios. An example of practical application is provided in Goerigk and Schöbel [22],
and reported here: the railway company plans a major construction area for modern-
izing some tracks, but it is not yet decided which part of the tracks should be under
work. In particular, three different scenarios are possible. Therefore, the timetable
to be determined should be as close as possible to each of the optimal ones in the
three scenarios, in order to keep the recovery costs as small as possible.

5.3.4 Light Robustness

In Fischetti and Monaci [19], a general heuristic scheme for robustness, called light
robustness, is proposed. Instead of requiring feasibility of the solution in all the
considered scenarios (as in strict robustness), slack variables are introduced that
allow to relax the feasibility constraints. The goal is to minimize the sum of the slack
variables, while imposing a limit on the worsening of the nominal objective function
value. Light robustness is applied to the TTP in Fischetti et al. [20]. The idea is to
improve the robustness of the timetable while imposing a maximum increase of
the solution cost with respect to the nominal one. This is achieved by imposing a
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constraint on the objective function value to be not larger than a given percentage of
the nominal one, and by requiring a certain protection level, i.e., a buffer time, for
the events (departures and arrivals of trains). This protection level is allowed to be
violated and the goal is to minimize the total violation.

The authors adapt the PESP model to the non-periodic TTP. Similar to what
is done in Kroon et al. [25], all the trains have to be scheduled and all the event
precedences are fixed according to a given nominal timetable. The constraints used
to improve the robustness of the timetable read as follows:

v j − vi + γi j ≥ li j +Δi j, γi j ≥ 0 ∀(i, j) ∈ A

where variable vi (with i ∈ N) represents the time instant of event i, li j (with
(i, j)∈ A) is a given parameter specifying the minimum time difference between the
two consecutive events i and j, γi j and Δi j are, respectively, the slack variables and
the required protection level parameters with respect to uncertainty in the process
durations. Slack variables are used to relax the constraints on the solution feasibility
under uncertainties. In particular, γi j takes a strictly positive value if the correspond-
ing robust constraint is violated. The objective function of the light robust model
then becomes:

min ∑
(i, j)∈A

γi j.

To find a good compromise between the robustness of the solution with respect
to uncertainties and the quality of the solution with respect to the objective function
(i.e., the efficiency of the solution), a constraint on the maximum worsening δ of
the objective function value with respect to the optimal nominal solution value F∗

is imposed:

F(v) ≤ (1+δ )F∗.

In this way, the light robust model calls for finding the most robust solution
among those which are “not too far” from the optimal solution of the nominal prob-
lem.

Light robustness for the TTP is also applied in Goerigk et al. [23]: in particular,
the authors consider robust timetable information, i.e., how to identify a path that
will bring the passengers to the planned destination even in the case of delays. They
analyze both the concepts of strict and light robustness. The latter calls for finding
a path with “reasonable length”, i.e. its length should not exceed the length of a
nominal optimal path by “too much”. The performance of strict and light robustness
are evaluated according to the “price of robustness”, showing that light robustness
is more promising.

A slight extension of the light robustness approach is proposed in Liebchen et al.
[28]: delay resistant timetables are computed by considering an objective function
which takes into account the nominal objective and a simplified delay management
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objective, that counts the expected number of missed connections, while considering
a strict no-wait policy and fixed driving times.

In Schöbel [33], the so-called generalized light robustness is introduced for con-
tinuous problems: it extends the concept of light robustness to arbitrary optimization
problems and arbitrary uncertainty sets. In the generalized light robust counterpart
formulation, the objective is to minimize a given norm of the grade of infeasibility of
a solution. The original concept of light robustness turns out to be a special case of
the generalized light robustness concept, in which the norm is chosen as the 1-norm
of the slack variables. It is shown that the obtained robust counterpart is compu-
tationally tractable for several types of uncertainty sets including polyhedral and
ellipsoidal sets. In addition, the author discusses how the concept of generalized
light robustness can be used to control the trade-off between the nominal quality
and the robustness of a solution, and shows how all Pareto solutions with respect to
nominal quality and robustness can be determined.

The concept of light robustness is very effective in the TTP context. In Fischetti et
al. [20], the light robustness method is compared with two stochastic programming
models (fat and slim), described in Sect. 5.3.1 on the studied application of the non-
periodic TTP. The light robustness approach turns out to be, on one hand, the fastest
one and, on the other hand, accurate in terms of quality of the robust solutions
obtained (it usually produces good results that are only slightly worse than those
obtained with the slim model).

5.3.5 Lagrangian Robustness

The methods described in the previous sections are all based on the PESP model,
directly applied to the periodic TTP or adapted to the non-periodic case. In this
section, we present a method that is based on the model described in Sect. 5.2.1.2 for
the non-periodic case. This method for deriving robust solutions to TTP is proposed
in Cacchiani et al. [11]. Many of the approaches developed to introduce robustness
lead to a significant change in the problem formulation with respect to the nominal
case. This causes often major changes of the associated software and a much larger
computational effort. On the contrary, the method proposed in Cacchiani et al. [11]
is derived as a simple modification of an existing method for the nominal TTP (see
Caprara et al. [13], Cacchiani et al. [10]). Despite its simplicity, it turns out to be
very effective compared to other robust methods for the TTP.

This approach is related to bi-objective optimization Ehrgott [18]. Indeed, the
objective function consists of two terms that appear to be in contrast: on one hand,
the goal is to maximize the efficiency of a solution (i.e., the nominal objective)
and, on the other hand, to maximize its robustness (i.e., the buffer times between
pairs of departures or arrivals). The model proposed in Cacchiani et al. [11] consists
of the model for the nominal TTP with a different objective function, namely a
weighted sum of efficiency and robustness. The idea is to solve, in a heuristic way,
the modified model by an iterative approach that improves efficiency in the first
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iterations and robustness in the following ones. A key feature of the method is that
it derives many heuristic solutions, that can then be evaluated so as to choose the
subset showing the best trade-off between efficiency and robustness. Therefore an
approximated Pareto front is obtained for the bi-objective problem.

The method consists of a heuristic algorithm based on Lagrangian optimiza-
tion: these algorithms approximately solve a Lagrangian relaxation of the studied
problem through an iterative Lagrangian optimization scheme (e.g., a subgradient
optimization procedure), and iteratively apply a heuristic algorithm driven by the
Lagrangian costs in order to obtain a good quality feasible solution to the problem.

To deal with robustness a simple modification of this Lagrangian optimization
scheme is applied. It consists of two features:

• the problem formulation is modified through the introduction of artificial pa-
rameters intended to “control” the solution robustness;

• the weight of the control parameters is changed during the Lagrangian opti-
mization process to progressively increase the importance of robustness. This
leads to the determination of a set of heuristic solutions that have a different
trade-off between robustness and efficiency. This is another major advantage of
this method, as it allows a decision maker to select among a large set of solu-
tions.

The Lagrangian robustness method consists of inserting buffer times correspond-
ing to longer stops of trains at the stations (train travel times are taken as fixed), so
as to reduce delay propagation: short delays can be absorbed by these idle time
slots and feasibility of the planned timetable can be retained. To this aim, an arti-
ficial prize is assigned to the arcs of the time-space graph that represent a longer
stop of a train at a station with a stopping time not greater than a maximum given
value M (15 min in Cacchiani et al. [11]). In this way, stops longer than the min-
imum ones will be inserted in the planned timetable, but efficiency will be also
preserved. Efficiency corresponds to the maximization of the timetable profits, i.e.,
to the construction of timetables that are as close as possible to those preferred by
the train operators. Other efficiency measures could also be considered. With re-
spect to the light robustness approach, it is not necessary to fix the protection level
a priori: indeed, this is determined on the fly by the approach itself. In addition, it
is not imposed to have a maximum worsening of the solution value with respect to
the nominal one: solutions with different levels of worsening are obtained by the
Lagrangian robustness approach.

To deal with robustness, model (5.2)–(5.6) is modified by considering the new
objective function

max ∑
t∈T

∑
a∈At

paxa +Fk ∑
t∈T

∑
a∈At

bt
axa

and constraints (5.3), (5.4), (5.5), and (5.6), where Fk is a weighting factor
dynamically-updated according to the iteration counter k, and bt

a ≥ 0 is a parameter
giving an additional profit depending on the amount of buffer time associated with
arc a for train t, corresponding to the stop of t at a station. Both Fk and bt

a are
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the control parameters used to implement robustness. In particular, Fk depends on
the subgradient iteration counter k: it starts with a small value (0.1) and then it
is increased, in a non-linear way (up to 2.0), so as to concentrate on efficiency in
the first iterations and on robustness later on (see Cacchiani et al. [11] for further
details). Parameter bt

a is used to determine where buffer times should be placed,
i.e. which are the most critical bottlenecks (in space and time) of the timetable. In
Cacchiani et al. [11], the optimal distribution of buffers proposed in Kroon et al.
[25] is used to assign proper prizes to the arcs:

bt
a := min{qt

a,M} · (1− e−λ p)(len(t)− p). (5.13)

In (5.13), qt
a is the number of minutes of buffer used by train t for arc a (i.e., the

number of minutes for which t stops at the station corresponding to arc a above
the minimum stopping time), M is the maximum value for considering the buffer a
useful one, λ is a parameter (set to 3 in Cacchiani et al. [11]), len(t) is the number
of stations visited by train t, and p is the position of arc a for train t along its path.
Roughly speaking, buffer times are favored especially in the “middle” of the train
path: indeed, it turns out that buffer times may be unused in the very beginning of
the train path because the probability to face a delay in the early sections is low, nor
in its very end since it may be too late for the buffer times to be useful.

The Lagrangian robustness method is obtained as a simple modification of the
Lagrangian heuristic algorithm for the nominal TTP. The Lagrangian-based heuris-
tic algorithm for the nominal TTP proposed in Caprara et al. [13], which is taken
as basis for the robust algorithm, relaxes constraints (5.5) in a Lagrangian way: the
resulting Lagrangian problem calls for determining a set of maximum Lagrangian
profit paths (i.e., timetables) for the trains, where the Lagrangian profit takes into
account both the original profit and the penalties for the relaxed constraints (i.e., for
the conflicting trains). Violated constraints of type (5.5) are dynamically added to
the pool of active constraints. A subgradient optimization procedure is applied to
derive near-optimal Lagrangian multipliers. A heuristic algorithm, combined with a
local search procedure, is iteratively executed during the subgradient optimization
procedure to obtain a good feasible solution to the nominal TTP.

As in the nominal algorithm, constraints (5.5) are relaxed in a Lagrangian way,
and a subgradient optimization procedure is applied. Also in this case, the La-
grangian relaxation calls for determining a set of maximum Lagrangian profit paths
for the trains, which now additionally takes into account, for each train and each arc
corresponding to a train stop, the prize Fkbt

a. At each iteration of the subgradient
procedure, the same heuristic algorithm as in the nominal case, based on the new
Lagrangian profits, is executed.

The Lagrangian robustness method derives many heuristic solutions, each char-
acterized by an efficiency quality and a robustness level. Among the obtained so-
lutions, it is useful to select “Pareto optimal” ones that have a different trade-off
between robustness and efficiency. Thus, different efficiency thresholds (e.g., 99%,
95% and 90%) are considered with respect to the best nominal objective value.
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Among the solutions that respect these efficiency values, the “most robust” ones are
chosen, based on the following sum, defined in Fischetti et al. [20]:

∑
(i, j)∈E

max{0,wi j(Δ − (v j − vi − li j))}, (5.14)

which evaluates that a solution is robust if, for each pair of trains, there is “enough
time” (at least Δ time units) between the departure/arrival time instants (v j, vi ∈ E)
at each station that they both visit. In (5.14), E is the set of all the pairs of events
occurring at the same station, wi j := wi + w j is the weight of the pair of events vi

and v j ∈ E, where wi := (1− e−λ p)(len(t)− p), already used in (5.13), and Δ is
the protection level. For each efficiency threshold, the solution having the smallest
value of (5.14) is selected. If no solution found is above the efficiency threshold, the
one with the highest efficiency is selected. The selected solutions are then proposed
to the decision maker. Other selection criteria are also possible, and the decision
maker is allowed to choose among a set of different solutions.

Other bi-criteria approaches are proposed in Schlechte and Borndörfer [32],
Schöbel and Kratz [34] and Bešinović et al. [7]. In Schlechte and Borndörfer [32],
a model with exponentially many variables is proposed, including the bi-objective
of efficiency (i.e., number of feasible scheduled trains) and robustness maximiza-
tion. The model is solved by applying column generation and a hybrid method
which combines a weighted sum and an ε-constraint approaches. In Schöbel and
Kratz [34], Pareto optimal timetables are derived for the non-periodic robust TTP.
In Bešinović et al. [7], a micro-macro hierarchical framework is developed to derive
robust solutions for the periodic TTP. Microscopic and macroscopic models interact
iteratively to generate a set of timetables that are feasible at the microscopic level.
Then, a number of different delay scenarios are generated, each one characterized
by a random delay for each train: on each of these scenarios, a local search pro-
cedure is applied, that tries to eliminate conflicts by retiming trains. The quality of
each timetable is evaluated based on the nominal cost and on the robust cost, which
takes into account the unresolved conflicts and the time to absorb the delays.

A main advantage of the Lagrangian robustness is that it has been derived as a
simple modification of an existing method. Despite of that, as shown in Cacchiani et
al. [11], the obtained solutions often dominate those computed by light robustness
and the computing times are generally shorter. However, light robustness can im-
pose an efficiency threshold to be achieved, while Lagrangian robustness allows the
method itself to derive appropriate solutions, without guaranteeing to provide ade-
quately efficient solutions. Another main advantage of the Lagrangian Robustness is
that, in relatively short computing times, it obtains several solutions, among which
a decision maker can choose the best one, also according to additional objectives.
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5.4 Comments on the Computational Results

Although it is very hard to make a computational comparison of the described meth-
ods, since each one has been applied to different real-world instances, we have tried
to analyze the advantages and drawbacks of each method. It is clear that there is no
“best robust method”, but each one can be appropriate for specific TTP applications,
and all of them can be classified as state-of-the-art methods for the RTTP.

5.4.1 Validation Tool

A major issue of the RTTP is how to assess the quality of the determined robust so-
lutions. In Stochastic Programming, validation is carried out inside the model itself,
since the different timetable realizations are considered within the model. On the
contrary, the authors of Fischetti et al. [20] developed an external validation tool,
which is a simulation-based validation module that is independent of the optimiza-
tion model itself. Its main advantage is that it can be applied to evaluate solutions
determined with different methods and it can be used to compare them. The valida-
tion tool estimates the total cumulative delay of the trains, while assuming limited
recovery actions in response to delays. In particular, the tool assumes that train can-
cellations are not allowed, and all the train precedences are fixed. It takes a TTP
solution and considers one delay scenario at a time. It updates the given timetable
to make it feasible under the occurred perturbation, and computes the total delay
incurred. The average total delay across all the scenarios is finally computed, and
used as a measure of the robustness of the solution. The validation tool consists of a
Linear Programming model and is very similar to the simulation part of the Stochas-
tic Programming model described in Sect. 5.3.1. It has the advantage of analyzing
many different scenarios in short computing times. The validation tool is also used
in Cacchiani et al. [11] to evaluate the robustness of the selected solutions, and to
compare the results with those reported in Fischetti et al. [20].

Validation can also be achieved through optimization methods, such as delay
management integer programming models (see, e.g., Schachtebeck and Schöbel
[31], Bauer and Schöbel [1]), as in Liebchen et al. [28]. However, as observed in
Fischetti et al. [20], the complexity of such models grows rapidly as soon as com-
plex decisions can be made.

5.4.2 Real-World Instances

In this section we want to provide an overview of the real-world instances consid-
ered by the robust methods described in the previous sections. This is not meant to
compare the methods each other. For each method, we specify the studied railway
network (network or corridor), the size of the instances solved and the time horizon.
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In Kroon et al. [25] (stochastic programming) instances, provided by NS
Reizigers, representing the northern part of North-Holland in the Netherlands
are studied. The timetable is cyclic with a cycle time of 60 min. Almost all train
lines are operated twice per hour with a cycle time of 30 min. The authors consider
420 h of timetable operations split into R = 20 independent days of H = 21 h each.

In Liebchen et al. [27] (recoverable robustness), although models for the TTP are
presented, instances of train platforming are tested. Recoverable robustness applied
to the TTP is tested in Cicerone et al. [16]: the authors consider corridors of the
Italian railway network with up to 54 stations and 291 trains in a time horizon of
1 day.

In Goerigk and Schöbel [22] (recovery-to-optimality) an instance based on the
intercity train network of the German IC/ICE railway system is considered. The
corresponding event-activity network contains 379 activities and 377 events. The
time horizon is 8 h.

In Fischetti et al. [20] (light robustness) corridors of the Italian railway system
are considered, with up to 48 stations and 127 trains, in a time horizon of 1 day.

In Cacchiani et al. [11] (Lagrangian robustness) corridors of the Italian railway
system and realistic instances obtained by combining two or more instances are
considered, with up to 102 stations and 1000 trains, in a time horizon of 1 day.

5.4.3 Practical Considerations

The application of optimization techniques to derive robust timetables is still very
limited in railway companies. Traditionally, in practice, time supplements are added
to the minimum travel times in the construction of the train timetables: this can be
viewed as a sort of basic robust measure against delay propagation. However, time
supplements are assigned to the trains independently of the timetables of the other
trains and of the bottlenecks of the network. Optimization methods allow one to
better allocate buffer times and to produce timetables that can better absorb delays.
We report the main reasons why, in our opinion, these methods are still not applied
in practice.

First of all, robustness is in contrast to efficiency in terms of capacity utilization
of the railway network and of minimum travel times. Railway operators and infras-
tructure managers need to focus mainly on the income of the company and therefore
to have a high utilization of the network. Consequently, robustness becomes a sec-
ondary goal. However, as a consequence of the high utilization of the network, de-
lays are more frequent and punctuality plays a crucial role to convince passengers to
use railways as a mode of transport. Moreover, the costs, such as crew salary or pas-
senger reimbursement, due to the real-time rescheduling of the trains when delays
occur, are very relevant. This means that we can expect robustness to become more
and more relevant also from a practical point of view. This is also testified by the
recent European Projects in which robustness in railways has been investigated (see,
e.g., ARRIVAL [37] and ON-TIME [38]). In addition, robustness can be introduced
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when the timetables are constructed in the planning phase: therefore, the optimiza-
tion methods can be easily applied, since the corresponding computing times do not
need to be very short. Furthermore, embedding robustness in the planning process
can also be achieved by simple modifications of existing methods Cacchiani et al.
[11].

Robustness is a relatively recent concept and more results might be needed before
effective research methods (even demonstrated on real-world instances) can become
“real-life practice”. In the past few years, several railway companies have started us-
ing more advanced tools for timetable planning, a topic that has been deeply studied
in the literature since many years. Therefore, we will hopefully see a similar trend
for what concerns robust timetabling.

Finally, it is not straightforward to assess the quality of the robust timetables. In-
deed, the results are very much related to the considered delay scenarios. However,
it is not always possible to have reliable historical data for generating appropriate
delay scenarios and it is not easy to completely reproduce the real-life situations.
Nevertheless, the methods described in this chapter show that significant improve-
ments can be achieved on real-world instances and we believe that an effort should
be made to make them applied in railway companies.

5.5 Conclusions and Open Perspectives

The methods described in the previous sections are very effective in producing ro-
bust timetables. They have all solved real-world instances of significant size and
have reduced delay propagation. However, the application of optimization tech-
niques to derive robust timetables is still very limited in railway companies. As
mentioned in Sect. 5.4.3, this could be mainly due to the difficulty of showing the
practical effectiveness of the methods. Beside making optimization approaches for
robust train timetabling applied in real-life practice, further improvements can still
be achieved in several directions. Sustainability of railway systems is one of the
main factors that play a role nowadays in the achievement of an advanced rail-
way system: it includes several aspects such as reducing environmental impact,
improving energy efficiency (see, e.g., Goverde et al. [24] and ON-TIME [38]),
becoming more customer-driven, maximizing the system capacity, etc. All these el-
ements characterize the performance of a railway system and it would be important
to take them into account when the timetabling problem is solved. All the described
methods tackle the so-called disturbances, i.e., relatively small delays, as it is often
over-conservative to consider large-scale disruptions, such as track unavailability
or rolling stock breakdowns, when building robust timetables. However, in con-
gested railway systems, these situations occur very commonly and it would improve
the system reliability to take them into account already in the timetabling planning
phase. Finally, the integration of more planning phases, such as train platforming,
rolling stock circulation, crew scheduling, when determining the train timetables,
would definitely improve the quality of the efficiency of the entire system.
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Chapter 6
Modern Challenges in Timetabling

Laura Galli and Sebastian Stiller

Abstract Timetabling is a central step in the planning of public transport and impor-
tant for the quality of service. Thereby, it also faces requirements like punctuality,
cost efficiency, flexibility and minimization of travel time. We show the state-of-
the-art techniques and their extensions to new challenges, in particular, multi-period
timetables and robustness. We conclude with a case study from the Italian Railways
that shows the effectiveness of our robustness methods.
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6.1 Introduction

Timetabling is a planning phase of public transport usually between line planning
and vehicle scheduling. Among its results one may find the arguably most prominent
outcome of planning and optimization in public transport, namely, the timetable
published to the users. In addition timetabling also determines the timing for events
that are important for the technical functioning of the system. The assignment of
trains to tracks in the stations can also be part of the timetabling problem.

Timetabling problems in public transport are mostly considered on a level of
some abstraction. For example driving events are considered with fixed driving
times. Acceleration and deceleration dynamics are not explicit in the optimization
model. Further, for timetabling models that omit some details of the underlying in-
frastructure are used. These models are mesoscopic in the sense that they are still
more detailed than macroscopic models that only have cities or stations as nodes of
the networks.

Many real-world problems require events to be scheduled periodically. For these
problems the events are given in groups together with a period. After the timing for
the first event in a group is planned, it has to be repeated periodically for the other
events in that group.

The underlying mathematical problem is of course not confined to public trans-
port but occurs, e.g., in production planning or CPU scheduling.

While traditionally timetables have been constructed by human experts, today
it is clear that timetabling is a task to be carried out by means of mathematical
optimization. The main challenges for optimization in timetabling can be grouped
into three areas:

• Versatility and comprehensiveness of the optimization model.
• Optimization with respect to disturbances in operations.
• Integration of timetabling with other planning steps.

In this chapter we give topical examples for the first two areas. In Sect. 6.2 we
show how periodic timetabling can be extended to the multi-period case, and in
Sect. 6.3 we present a quite general mathematical framework for robust timetabling.
In Sect. 6.3 we also present a case study to test the effectiveness of our robust
mathematical framework using real-world instances from the main Italian Railway
Infrastructure Manager.

6.2 Periodic Timetabling with Multiple Periods

6.2.1 Aperiodic Timetabling

In timetabling we are given a set of n events for which we have to choose planned
times ti, i ∈ [n]. Typically in public transport, these are departure and arrival events
at stations or specific points on the network, e.g., a switch or a section of a track.
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The times must be chosen to respect a set of scheduling constraints and opti-
mize an objective function. Typical constraints are headway constraints, minimum
or maximum dwell times, and minimal driving times (minimal driving times are of-
ten specified as a percentage of the technical driving time, e.g., 107%. Confer [17]
for details on technical and planned driving times.) Constraints can also refer to the
maximal or minimal transfer time of passengers who make a connection in their
travel. This bounds the time between arrival of one train and departure of another at
the same station.

Usually, the objective is to minimize the sum of travel times of all passengers.
In case, driving times are fixed, this amounts to minimizing the sum of the transfer
and waiting times over all connections weighted by the number of passengers on a
connection.

A second important objective is to minimize the rolling stock. In an indirect way
this can be attained by including waiting times at stations and turn-around times at
endpoints of a line in the objective to be minimized (cf. [8] for details).

In such a basic, aperiodic model all constraints and the objective can be expressed
by bounds on differences of planned event times: t j − ti ≥ �i j. In such a simple
timetabling model all constraints and the objective are linear in the variables t, and
the problem can be solved easily, e.g., by a linear program.

Still, some constraints are naturally of an alternating form: Consider a headway
constraint of 5 min between two trains A and B that pass the same switch. Then
either train A has to clear the switch 5 min before train B enters it or train B has
to clear the switch 5 min before train A enters it. Thus, there are two constraints
that can be expressed in the form t j − ti ≥ 5 of which exactly one must be fulfilled.
As a consequence, even simple aperiodic timetabling models involve combinatorial
decisions, by means of which they often pose NP-hard optimization problems.

A similar effect arises for transfer times. Connecting passengers will use the first
train on a line they can connect to. But, before the timetable is fixed it is not clear
which train on a line is first after passengers have arrived from the other line. Thus,
the cost function also involves a combinatorial decision, namely, which train of the
line to connect to.

6.2.2 Periodic Timetabling

Many railway systems and other public transport providers around the world oper-
ate periodic or almost periodic timetables. That means for a certain stretch of time
during a day all events are planned to recur periodically or with a slight, negligible
jitter.

Probably the most important reason for periodic timetabling is the dependability
for the customer. Even in times where online information about transport is ubiqui-
tous, it is a relieve to know that there is a bus every 4 min, so one can go ahead with
one’s errants without worrying about when to catch the bus.
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Prima facie, periodic timetabling can be modeled by a small add-on to aperiodic
timetabling. In such a model we roll out all the recurring events of the planned times-
pan as if they are independent aperiodic events, and construct the suitable aperiodic
timetabling instance. We write tai as the time of the ith recurrence of the periodic
event a and Pa for its period. Adding simple linear equalities enforces periodicity
for the timing of related events tai for all i: ta0 + i ·Pa = tai.

This approach preserves the polynomial solvability of a linear program but con-
tains a variable for each recurrence of a periodic event, which in some instances
makes the model rather large.

Still, as most timetabling models require combinatorial decisions anyway, a more
compact, combinatorial model stands to reason: the Periodic Event Scheduling
Problem. The beauty of this model is that it covers decisions on which trains goes
first on a switch, or to which train of a line one connects, and the periodicity of the
events with the same, natural tool.

6.2.3 The PESP

The standard mathematical optimization model for periodic timetabling is called Pe-
riodic Event Scheduling Problem (PESP). It was introduced by Serafini and Ukovich
in [15].

In the PESP we are given a global period P, a finite set of events i ∈ V , each of
which periodically recurs after P time units, and a set of periodic, pairwise prece-
dence constraints. The goal is to periodically schedule the events, i.e., to determine
for each event i ∈V an offset πi, meaning that for every integer k a realization of the
periodic event i occurs at time πi +kPi. A pair of periodic precedence constraints for
periodic events a and b has the form

�(a,b) ≤ πb −πa + k(a,b)P ≤ u(a,b).

A typical example of such a pair of constraints is the dwell time of a train at a
station. Consider πa as the periodic arrival time of a periodically recurring train and
πb as its periodic departure time.

For example, an ICE train from Berlin to Basel arrives at Braunschweig πa min-
utes past the hour and departs towards Hanover πb minutes past the hour. Or the
subway line U2 in Berlin arrives at station Stadtmitte every 10 min, always πa min-
utes past the full 10 min.

By the pair of constraints the input parameter �(a,b) models the minimum dwell
time of the train at the station and u(a,b) a hard upper bound on this dwell time.

For a given solution (π,k) to a PESP instance the values π are called potentials
and the values of the terms x(a,b) = πb −πa + k(a,b)P are called periodic tensions. A
PESP instance naturally gives rise to a directed graph G(V,A) where potentials live
on the nodes, and constraints and tensions live on the arcs. For example, the tension
x(a,b) is on the directed arc from a to b. We assume w.l.o.g. that G is connected.
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The objective function of a PESP is the minimization of a weighted sum of these
tensions. For example, weighing the tensions on travel and transfer arcs with the
number passengers projected to use it, yields a minimization of travel times.

Note, given the origins and destinations of all passengers, the number of passen-
gers on a line and on a transfer still depends on the routes the passengers choose.
This choice can change due to the timetable. Thus, strictly speaking the weights can-
not be known a priori to the timetabling. This effect is often neglected, but poses a
further challenge in integrated planning. In particular, for dense networks or systems
with small periods, i.e., very frequent trains allowing passengers to choose different
paths through the network, this is likely to be of importance.

In total a PESP instances reads as follows:

Definition 6.1. Given a digraph G(V,A) together with two rational functions on the
arc set, � : A →Q and u : A →Q, a natural number P ∈N, and a cost vector c ∈Q

|A|,
the following mixed integer program is called a periodic event scheduling problem
(PESP):

min ∑
(i, j)=e∈A

ce(π j −πi + keP)

�e ≤ π j −πi + kePe ≤ ue ∀e(= (i, j)) ∈ A

π ∈Q
|V |,k ∈ Z

|A|.

The PESP has been shown to be NP-complete in [11, 13], even MAXSNP-hard
in [8], and to have an unbounded Chvatal rank in [9].

The PESP model is very versatile. One can include certain rolling stock, crew
scheduling, and line planning decisions into this timetabling model without com-
promising the characteristic structure of its IP-formulation, see [8]. Thus, it also
represents a method for the third type of challenges managed in the introduction,
namely, the partial integration of planning steps.

6.2.3.1 Solving the PESP

To solve the problems formulated as PESP three approaches are predominant. A
classical approach for periodic timetabling is the CADANS algorithm based on the
work of Schrijver and Steenbeck [14]. A second line of methods to solve large,
real-world PESP instances are mathematical programming methods mostly based
on special cuts and carefully chosen IP-formulations, see [8]. We will follow this
line in some detail here. Recently, in [6] it has been proposed to formulate PESP for
SAT-solvers to significantly increase the size of solvable instances.

To solve a PESP by integer programming methods such as cuts and strong for-
mulations the following structural properties are pivotal. We will prove them later
in a more general setting.

The first property is that there are optimal solutions with a tree structure, i.e.,
where ka can be chosen equal to 0 on the arcs a of a spanning tree in the network.
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In case G is a tree, solving the PESP instance is apparently trivial. The following
generalizes this observation.

• Let (π,k) be a feasible solution with tension x. For any tree T ⊆ G there is
a solution (π ′,k′) with the same tension x—thus maintaining feasibility and
optimality—but having ka = 0 for all a ∈ T .

• Let (π,k) be a feasible solution and the resulting tension x. For any spanning
tree T ⊆ G we can construct a feasible solution from x only in the following
way: For an arbitrary node i set πi = 0. Propagate the potentials π from node i
through the tree T using the tension without period, i.e., setting πb −πa = x(a,b)

iteratively along the tree arcs (a,b).

The second important concept are cycle bases. A cycle basis is a basis for the
linear subspace spanned by the incidence vectors of cycles in the vector space Q

|A|

spanned by the arc incidence vectors. Note that a cycle may have forward and back-
ward arcs. For the latter the incidence vector of the cycle has entry (−1). We give
some basic facts on cycle bases without proof.

A cycle basis is called integral, if all cycles are integer linear combinations of the
elements of the basis. Given a spanning tree T in a graph G, for each non-tree arc
e = (a,b) ∈ G \T there is a unique path from a to b in T . This path together with
e form a so-called fundamental cycle C(e,T ). All |A(G)|− |A(T )|+1 fundamental
cycles of T together form a cycle basis, called the strictly fundamental cycle basis
of T . Every strictly fundamental cycle basis is integral. For more details on cycle
basis confer [7, 8].

Next, we arrive at a reformulation of the PESP, the cycle basis formulation. To
this end we substitute the variables for the potentials π by those for the tensions,
i.e., π j −πi + kaP = xi j. Summing these equalities along a directed cycle C yields a
cycle equality:

∑
e∈C

xe = kCP

where kC = ∑e∈C ke. Note, we can replace any arc e = (a,b) by its inverted arc
e′ = (b,a) and multiplying the corresponding constraints by (−1), without changing
the PESP instance, effectively exchanging the lower bound �e and the upper bounds
ue for the inverted arc. Therefore, in case C is not directed, we can substitute it
with a cycle where all arcs e in one direction of C are replaced by their inverted arc
e′. Note this re-orientation of arcs might require to consider an arc with different
orientations for different cycles.

A tension vector x fulfills these cycle constraints for all cycles of an integral
cycle basis, if and only if it is the tension x of a solution (π,k) of the original PESP
formulation. If in addition xe ∈ [�e,ue], then it is the tension of a feasible solution
(π,k). In other words, for uniform modules any integral cycle basis gives rise to an
equivalent IP-formulation. This cycle basis formulation has computationally proven
significantly stronger than the original arc formulation, see [8].
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Finally, one can use cycles in a PESP to arrive at a special kind of rounding cuts.
Consider again a directed cycle C possibly using backward arcs e′. The following
two inequalities are valid.
⌈

∑e∈C �a −∑e′∈C ua

P

⌉
≤ kC and

⌊
∑e∈C ua −∑e′∈C �a

P

⌋
≥ kC

These so-called Odijk inequalities [13] further improve the performance of the
integer program. Such cycle inequalities have recently been shown to be separable in
pseudo-polynomial time in [1]. That paper [1] also demonstrates the high practical
value of the approach.

When solving PESP instances it is helpful to use Odijk inequalities together with
a cycle basis formulation using a short integral cycle basis. The length of a cycle
basis is the sum of the lengths of its cycles. Thereby, length of cycle C is the sum
of the spread of the constraints over all arcs, i.e., ∑e∈C |ue − �e|. Choosing a short
cycle basis with respect to this length is a heuristic approach to strengthen the IP-
formulation. The rational can be seen from the Odijk inequalities: the smaller the
numerators, the larger the rounding effect after dividing by the period. Short cycle
base formulations appear to be strong IP-formulations.

6.2.4 PESP with Multiple Periods

While in many cases periodic timetables operate by a single period P, there are
relevant, real-world examples of systems with different lines operating at different
periods. A public transport system, for example, is often comprised of lines with
different periods, e.g., subways running every 10 min, some buses running every
30 min, others every 5 min, and regional trains every hour. Also traffic lights in the
same urban area may well have different periods. Therefore, one has to plan events
with different periods in the same network. The model for this we discuss here has
first been presented in [12] under the name of Extended Periodic Event Scheduling
Problem, short EPESP.

For two events a and b with periods Pa and Pb the closest follow-up of an event
of b after an event of a is given by the minimum over k(a,b) of

πb −πa + k(a,b)P(a,b)(= x(a,b)),

where P(a,b) = gcd(Pa,Pb).
As an example consider a transfer from Line A to Line B at a station where Line

A always arrives πa minutes past the full period Pa and Line B always departs πb

minutes past the full period Pb. There is a train of Line A such that one can connect
to Line B with only x(a,b) minutes.

Therefore, in multi-period event scheduling we focus on the following con-
straints:

�(a,b) ≤ πb −πa + k(a,b)P(a,b) ≤ u(a,b),



124 Laura Galli and Sebastian Stiller

and the following objective

min ∑
(a,b)

c(a,b)(πb −πa + k(a,b)P(a,b)).

Together we arrive at the following multi-period PESP model:

Definition 6.2. Given a digraph G(V,A) together with two rational functions on the
arc set, � : A → Q and u : A → Q, a third natural valued function on the arcs, P :
A → N, and a cost vector c ∈ Q

|A|, the following mixed integer program is called a
multi-periodic event scheduling problem (mPESP):

min ∑
(i, j)=e∈A

ce(π j −πi + kePe)

�e ≤ π j −πi + kePe ≤ ue ∀e(= (i, j)) ∈ A

π ∈Q
|V |,k ∈ Z

|A|.

Note for a natural instance the arc-function P : A → N is derived from a node-
function P′ : V →N where P on an arc a from v to w is the greatest common divisor
of the P′ values of the nodes v and w, i.e., P(a = (v,w)) = gcd(P′(v),P′(w)). But
technically this will be irrelevant in what follows.

The minimum difference between two consecutive events of a and b is given
by x(a,b). The maximum difference between two consecutive events of a and b is
bounded from above trivially by the lesser of Pa and Pb. Still, within these bounds
every multiple of gcd(Pa,Pb) plus x(a,b) will occur for some combination of trains
from Line A and B. Thus, we do not optimize the transfer times for all passengers,
but only for those on the best combination of trains.

One can argue that this kind of optimization is best possible for mixed periods.
Put differently, the longer transfer times for other combinations of trains from lines
A and B is a result of the incompatible periods rather than the timetabling for these
periods. Nevertheless, two remarks of caution are in place.

First, in case passengers transfer twice on their journey, the mPESP may calculate
transfer times not attainable with any combination of trains: Using a train of first line
that has a fast connection to the second line may always lead to using a train on the
second line, that has a bad connection to the third line.

Second, also upper bounds u only bound those pairs of events with smallest dif-
ference. This must be kept in mind, in particular, when technical constraints are
modeled.

6.2.5 Solving PESP with Multiple, Nested Periods

The algebraic behavior of multi-period event scheduling is considerably less con-
venient. For PESP with a single period we stated that one can choose any spanning
tree and set all k on its arcs to zero without changing the tensions of a feasible so-
lution. In particular, each fundamental cycle has at most one arc with non-zero k.
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With multiple periods it is easy to construct instances where more than one arc on
a circle must have non-zero k to achieve a feasible solution. Some peculiarities of
multiple periods have been collected in [5].

The key notion to recover the machinery of PESP solving for mPESP is that of a
sharp tree, see [5].

Definition 6.3. For an mPESP instance and its graph G, a spanning tree T is called
sharp, if for each of its fundamental cycles C(e,T ) the set of periods on the arcs
of C(e,T ) has greatest common divisor equal to Pe, the period the non-tree arc e in
C(e,T ).

In an mPESP with only one period, i.e., a standard PESP, all spanning trees are
sharp trees.

The central lemma for mPESP and sharp trees is the following:

Lemma 6.1. If T is a sharp tree spanning G and (π,k) a feasible solution with
tension x, then there is a feasible solution with the same tension and k = 0 on all
arcs of T .

Proof. Consider the linear (diophantine) equation system defining the tension vector
x by equalities of the form π j −πi + k(i, j)P(i, j) = x(i, j). W.l.o.g. we can assume its
matrix M to be ordered such that the following holds: The matrix M starts with the
n−1 rows corresponding to the arcs in T . Restricted to the columns affecting the π
variables, these rows form a lower triangular matrix (the first column omitted). The
columns affecting k form a diagonal matrix.

Index the nodes according to their column and arcs according to their rows in M.
For two nodes v and w denote by P(v,w,T ) the unique path from v to w in T .

Let (π,k)0 be some solution. We construct a solution (π,k)n−1 over n−1 stages
denoted (π,k)i, i ∈ {1 . . .n−1}. For each i ∈ {1 . . .n−1} successively with increas-
ing row index we take four steps:

1. Set ki
i = 0.

2. Re-establish the correctness of the ith equation by changing the node value πi

corresponding to Mi,i, the right most non-zero entry in the first n− 1 columns,
i.e., π i

i := π i−1
i + Mi,ik0

i Pi. Let �(i) be minimal with Mi,�(i) �= 0, i.e., the other
node of arc i.

3. Propagate the new node value downwards along the tree. Formally: For all re-
maining three rows t ∈ {i + 1 . . .n−1} successively with increasing row index
set π i

t := π i−1
t +Mi,ik0

i Pi in case �(i) /∈ P(i, t,T ).
4. Re-establish correctness (in arbitrary order) for the equations of non-tree arcs

by adjusting their arc variables. Formally: For all j ∈ {n, . . . ,m} let 1 ≤ r <
s ≤ n − 1 be the nodes of arc j, i.e., Mj,r and Mj,s �= 0. Set ki

j := ki−1
j −

Mj,r(π i
r−π i−1

r )+Mj,s(π i
s−π i−1

s )
Pj

.

(We were a bit sloppy dropping exceptional handling of first row and column, and
omitting when π i

j := π i−1
j and likewise for k.)
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Obviously, each (π,k)i fulfills all equalities. Observe, we touch the arc variable
kt of any tree row only in stage t. Therefore, (π,k)i the solution of any stage i ∈
{1 . . .n− 1} has ki

t = 0 for all t ∈ {1 . . . i}. It remains to show for the non-tree arcs
j ∈ {n . . .m} that every ki

j is an integer, in particular, that

Pj |
[
Mj,r(π i

r −π i−1
r )+Mj,s(π i

s −π i−1
s )
]
.

For all nodes s we have π i
s − π i−1

s =| k0
i Pi |. Now, distinguish whether �(i) ∈

P(r,s,T ) or not. If �(i) is in, so is i and the ith arc is on the fundamental cycle of j
in T . Thus, Pj | Pi by condition of the lemma and we are done.

In case, �(i) /∈ P(r,s,T ) both nodes are changed by the same value. Therefore,
Mj,r(π i

r −π i−1
r )+Mj,s(π i

s −π i−1
s ) = 0, which completes the proof.

From this lemma we get the following theorem of Galli and Stiller [5] stating
that for sharp trees the cycle basis formulation is equivalent to the original arc for-
mulation.

Theorem 6.1. Let G be the graph of an mPESP instance. Assume there exists a
sharp tree T spanning G and let B be the strictly fundamental cycle basis resulting
from T . For an arc vector x the following three statements are equivalent:

1. The vector x is the arc tension of a node potential π , i.e., there is π and k such
that πb −πa + k(a,b)P(a,b) = x(a,b).

2. The vector x fulfills the cycle equality for every cycle C in G, i.e., there is kC ∈Z

such that ∑a∈C xa = kC ·gcd(C).
3. The vector x fulfills the cycle equality for every cycle C ∈ B.

Proof. The inclusion 2 ⇒ 3 being trivial, we show 1 ⇒ 2 and 3 ⇒ 1.

1⇒2: According to (1) we have x(i, j) = π j −πi +k(i, j)P(i, j) for all arcs (i, j) ∈
A. Summing along a cycle C (multiplying the equation of a with (−1)
for arcs a that lie in C contrary to its orientation) we get ∑(i, j)∈C x(i, j) =
k(i, j)P(i, j).

3⇒1: Since T is sharp and x fulfills the cycle inequalities, we get from
Lemma 6.1 that there is a node potential π corresponding to x with ka = 0 for
all arcs in T . Setting w.l.o.g. πs = 0 for some node s we can thus propagate
the x value along the sharp tree T and construct such a node potential π . It
remains to show that for every non-tree arc (i, j) ∈ A \T there is k(i, j) ∈ Z

such that

π j −πi + x(i, j) = k(i, j)P(i, j). (6.1)

Since C :=(P(i, j,T ),(i, j)) is in B, T is sharp, and P(i, j) = gcd(C) Eq. (6.1)
holds.
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6.2.6 Finding Sharp Trees

In general, mPESP instances do not contain sharp trees (cf. [5] for examples). We
say an mPESP instance has nested periods, if for each pair of periods Pa < Pb we
have Pa|Pb. For nested periods the graph G always contains a sharp spanning tree.
This can be seen constructively by the following algorithm.

For a given mPESP instance let r(Pe) be the number of different values for
periods that are larger than Pe. Assign to the arcs in G an artificial cost function
h(e) = r(Pe) ·X + |ue − �e|, where X is a sufficiently large number. Now construct a
minimum spanning tree for G according to h. In other words, we construct a mini-
mum spanning tree with respect to a lexicographic order, where the arcs with large
periods are preferred as tree arcs.

It is well-known for a minimum spanning T that each non-tree arc e is among the
most expensive in its fundamental cycle C(e,T ). By, construction and because the
periods are nested, this implies that the periods on all tree arcs must be equal to Pe

or a multiple of Pe. Therefore, the resulting spanning tree is sharp. (The reason for
the secondary ordering by the difference of lower and upper bound will be discussed
below.)

6.2.7 Accelerating mPESP Instances

With the above consideration one can use the same techniques to strengthen IP-
formulations for mPESP as for simple PESP, provided the instances contains a sharp
tree, e.g., if all periods are nested.

In the multi-period case Odijk inequalities have the following form:
⌈

∑e∈C �a −∑e′∈C ua

gcd({Pe : e ∈C})

⌉
≤ kC and

⌊
∑e∈C ua −∑e′∈C �a

gcd({Pe : e ∈C})

⌋
≥ kC

Thus, to get a strong rounding, one would prefer cycle basis that have large
gcd({Pe : e ∈ C}) and small length. To this end, in [5] the authors use strictly fun-
damental bases found by the above minimum spanning tree algorithm. The lexico-
graphically posterior ordering leads the algorithm to find a sharp tree for which the
strictly fundamental cycle basis heuristically is as short as possible.

The results reported in [5] show that these techniques for most instances yield a
significant reduction of the running time. But, more important with the chosen cycle
bases formulation several test instances could be detected as infeasible, for which a
standard arc formulation of the mPESP exceed the assigned running time without
result.
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6.3 Delay-Robust Event Scheduling: A Mathematical
Framework

As applied mathematicians we like to solve real world problems as well as develop
new theories. Optimization problems that arise in transport are diverse, ranging from
railways, airlines, maritime, urban transport and many others. These are complex
problems, where resources need to be allocated to human activities that span a given
planning horizon.

Modeling real-world problems is a challenging task, and the process usually goes
through different, iterated, phases. Yet, one can think of two main “levels”: (i) prob-
lem abstraction, and (ii) mathematical modeling. The choices made at the first level
strongly influence the other, and vice-versa. The first step we take when abstracting
is identifying the “relevant” entities, assessing their importance for the optimiza-
tion objective, and determining the “relevant” relations between them, establishing
which are closely connected to the optimization process. There is no given rule for
such a process, and as much trouble must be taken in reasoning from facts to rec-
ognize the relevant ones, as it is in establishing their relation. The second step of
abstraction, which naturally leads to mathematical modeling, is trying to remove
any dependence on real world objects with which it was originally connected, and
“generalizing” it so that it has wider applications or matching among other abstract
descriptions of equivalent problems.

Nowadays, a rich literature provides us with a wide array of models, but sys-
tematic classification in the literature can make the process of abstraction harder.
Indeed, over classification, and the forcing of facts into the compartments provided
for them, whether they fit or not, may prevent us from reaching the right level of
“generality”. For this reason, the availability of mathematical frameworks can be
very helpful. By mathematical framework, aka “class” of models, we mean a very
general mathematical model. In other words, a mathematical framework originates
from removing as much dependence as possible on the application objects in or-
der to allow a broader matching with other applications. Defining a mathematical
framework requires a certain amount of abstraction, or ought to be. Clearly, the
more general the framework, the wider its applicability. Yet, the downside of too
much generality, is the lack of characterization.

In this chapter, we present a mathematical framework called delay-robust event
scheduling, that can be used to model a rather broad class of scheduling problems
when subject to time uncertainty. Most railway optimization problems belong to
this class, thus the interest for the book.

Our goal is twofold: on one hand we tell our experience, recollecting how the
framework was devised and successfully applied to a real-world railway optimiza-
tion problem; on the other we believe it could be a profitable and useful study to
apply it to other optimization problem, for instance other railway applications, to
avoid the post hoc ergo propter hoc argument. The section is organized as follows.
In Sect. 6.3.1 we present a class of problems called event scheduling and a type of
network model called delay propagation network. In Sect. 6.3.2 we recall the con-
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cept of recoverable robustness and derive a specific class called delay-robustness.
Finally, in Sect. 6.3.3 we apply our framework to a real-world application taken from
the optimization of a railway system, namely Train Platforming Problem.

6.3.1 Event Scheduling and Delay Propagation Networks

When modeling problems where resources are allocated over time, it is often worth
paying attention to the way we are thinking about events in our application. The
system is subject to activities that change its “status” and implicitly define the set
of events of the optimization problem. Typically, the decision to be made is on
how to perform such activities, i.e., which resources to use and the corresponding
time instant. Clearly, resources can be human, machinery, financial etc., and more
generally represent something that the system needs in order to achieve some goal.
On one hand, a system tends to saturate or exceed the resources available. On the
other, resources are costly, therefore the corresponding cost is minimized in the
objective function. For example, in train timetabling problems, the main entities are
trains and the corresponding activities are arrival, departure or stop. Resources can
be platforms, tracks and other elements of the railway network. Therefore, events
correspond to arrival and departure at/from the stations or specific points of the
stations such as paths, stopping platforms, switches, crossings, etc.

Identifying events is key to verifying whether our analysis is sound or unsound,
whether we have any faults of thinking, whether we are unconsciously making as-
sumptions, which are either too specific or illogical, and seeing if we can improve
the quality and effectiveness of our model. Yet, the quantity and variety of events
in a real world application are of quite a different order from those that we actually
need to optimize. Therefore, one needs to recognize the activities from which the
events are generated, and whether those activities are subject to the optimization
process. Clearly, this process may not be straightforward when activities are interre-
lated, making it hard to pin down the correct order of relation. In what follows, we
are therefore considering problems under the headings of “activities” and “events”,
in their most general meaning, but without any other formal classification.

In other words, these are problems featuring time-related activities, called events,
having some “properties” that we need to decide upon, namely, roughly speaking,
“when” and “where” they take place, i.e., scheduling. This is what we call an event
scheduling problem.

The main difference with respect to standard scheduling problems is twofold.
First, in classical scheduling theory we often aim at minimizing the total comple-
tion time, so the main demand is on time. In event scheduling, this is not true in
general. In fact, the objective may well be a weighted sum of the resources that
are used and perhaps “how” they are used too (e.g., “when”, penalties for resource
“conflicts” etc.), so the stress is either on the resources or resources and “something
more”. Second, a distinguishing feature in event scheduling is that the constraints
on resources can be different from the classical processing constraints of a standard
scheduling problem.
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There exist many classical frameworks to represent the scheduling of events.
These frameworks rely on a graph representation (aka. network), and differ on the
semantic of nodes and edges of such graphs. Indeed, network flows can be used to
represent a surprisingly large number of applications in logistics and scheduling,
including event scheduling problems. One of the archetype models are time-space
(aka time-expanded) networks. This model is based roughly on formal logic, which
is used unconsciously in much of our reasoning and it is meant to avoid the draw-
back of explicitly considering all possible connections between actions. The idea is
to exploit the transitivity property of partial ordered sets which says that for activi-
ties i, j, k the following conclusion applies: (i≺ j)∧( j ≺ k) =⇒ i≺ k. A time-space
network is a directed graph where each node n is associated to a specific time period
t(n). An arc from node n1 to node n2 exists if and only if t(n2) ≥ t(n1). In other
words, the flow of events is only between nodes in the same time period or to nodes
in a future time period. Clearly, a flow in the network represents a sequence of events.
The structure of a time-space network depends on the application considered, yet,
we can identify the following main features:

• time is divided into discrete periods
• each vertex in the network is characterized by a spatial index and a time index
• there are three main classes of arcs:

1. arc in space, i.e., from one location to another with no change of timetables
2. arc in time, i.e., from one time period to another, with no change of location
3. arc in time-space, i.e., from one location in one time period to another lo-

cation in another location in another time period

The main idea behind time-space network is replicating resources over time and
space, each node of the network represents what-where-when and flow variables
represent the choice of a particular scheduling of events, i.e., the corresponding
problem can be modeled as some kind of network flow problem. Depending on
the application, different side-constraints and objectives will be needed. Neverthe-
less, these problems are usually variants or generalizations of static single/multi-
commodity network flow problems.

Another type of model used to represent the scheduling of events is the so called
time-activity network. This is a different type of network, in that the resources are
not replicated over time, because time is a “property” of the node. Each node rep-
resents what-where and time is a decision variable associated to the node (aka as
potential). From a mathematical point of view, this is a different type of prob-
lem, whose structure strongly depends on whether the events are periodic or non-
periodic. On one hand, non-periodic timetable problems are generally easier to
solve because they can be modeled as some kind of shortest path problem. On the
other, for fixed interval timetables, where all departure and arrival events must be
repeated periodically, models are more complex, yet more realistic. Interestingly,
time-activity networks were first defined for the Periodic Timetabling problem. In-
deed, most results on periodic timetabling are based on the Periodic Event Schedul-
ing model, because the associated periodic event activity network allows a flexible
modeling of timetables in public transport. Another class of problems that can be
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easily modeled using time-activity networks is Delay Management. Note that peri-
odic models are not well-suited for delay management problems, because delays are
in general non-periodic.

Finally, we present our network model, called delay propagation network, be-
cause, as we will see, it is used to model delay propagation in event scheduling
problems. We start observing that, in event-activity networks, a schedule assigns
event times πe ∈R to all events e ∈ E. Hence, an activity a : i → j is a time consum-
ing process between events i and j, which consumes the amount π j −πi of time. We
take this idea further, observing that “where” can represent a physical resource al-
located to the corresponding event for a time period defined by the schedule. Thus,
an event can be thought of as some time-space resource allocation for one of the
entities involved in the system. In other words, a delay propagation network is a
more “compact” representation with respect to the two previous ones, in that a node
only represents what (i.e., the event), while where-when are both properties of the
node itself. The optimization problem consists of deciding upon the property values
of each event according to some objective function and constraints. A schedule as-
signs event times πe ∈R and resources re ∈ R to all events e ∈ E. As a consequence,
events are no more replicated over time nor space. The other observation is that an
activity or arc a : i → j in the network is a resource and time consuming process
between events i and j that can be subject to delay propagation. Delay propagation
means that a change on time of node i may affect time of node j. Clearly, an arc of
the network represents a precedence relationship between two events and therefore
also represents how delays can propagate. Note that the arcs are buffered in the sense
that they may absorb delays up to a given amount. The corresponding buffer values
are uniquely determined by the property values of the events. The network structure
is not given “a priori”, but it is implicitly defined by the choices on the event prop-
erties (i.e., scheduling). In other words, the ability of the network to absorb delays
depends on the property values (i.e., where, when) assigned to the events, i.e., the
buffers are functions of the scheduling plan.

This kind of network is relevant in event scheduling problems for three reasons:

• It provides a compact representation. If resources and time periods are many,
replicating nodes may lead to extremely large networks.

• It provides a flexible representation. If the scheduling constraints are complex,
the network may be also complex.

• It provides a general representation. The network structure is independent from
the time and space requirements (i.e., scheduling model), as it only represents
precedence relationships.

6.3.2 Delay-Recovery Robustness

The delay-propagation network model naturally lends itself to a recovery robust
model. The goal is to compute a plan (i.e., resources and time) for a given system.
The system is subject to external disturbances that can propagate from one event
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to another generating delays. Yet, the plan may involve some buffer times, which
can absorb delays and ought to be selected carefully as function of the plan. In ro-
bust modelling, the evaluation of the plan does not only involve the nominal cost
(e.g., platform usage, nominal waiting times of passengers and/or trains), but also a
worst-case estimate on its performance for some scenarios) (e.g., disturbances that
are applied to it). Disturbances are of course propagated according to well-defined
rules represented by the delay-propagation network. In this context, the importance
of delay propagation is twofold. First, the amount of delay that is propagated pro-
vides a way to measure the performance of the system when subject to disturbances.
Second, in a recovery-robust model the plan may “react” by some specific recovery
actions and delay propagation is the simplest recovery action one can think of. In-
deed, delay propagation is a recovery action as it involves a change in the original
plan, more specifically a change in the time property of the scheduling plan. Thus,
neither the scenarios nor the propagation themselves do appear in the plan explic-
itly, but rather are just used for its advanced evaluation. The plan only comes with
the buffer times as well as with the most appropriate recovery actions. Delay prop-
agation is the simplest recovery action. Of course one can think of more complex
recovery actions, such as additional resources, or other rules like the possibility of
breaking a transfer, inverting train order, changing track or platform. All this can be
expressed using a delay propagation network. Clearly, the more complex the rules,
the more complex the network. In what follows, we will restrict ourselves to the
simplest recovery action (i.e., delay propagation) that corresponds to the simplest
recovery-robust model.

Delay-Recovery Robustness is based on the recoverable robust paradigm and
moves from the so called network buffering approach, both presented in [10, 16].
Recoverable robustness joins classical robust optimization and 2-stage stochastic
programming. In particular, we focus on a class of problems aimed at scheduling
events with time-distance requirements on the allocated resources, thus forming a
precedence relationship network, that we call delay propagation network. From a
recoverable robustness point of view, the recovery action is represented by delay
propagation, and our goal is to minimize the total delay propagation among all
the scheduled events. Indeed, a recovery action is a way to modify the nominal
solution in order to restore feasibility after a scenario realization. Minimizing delay
propagation means optimally distributing buffers on the network arcs. Indeed buffer
times can absorb delays, which otherwise would spread through. A good schedule
concentrates the buffers on strategic points allowing limited worst-case propagation.
The problem of distributing buffers in a given network to minimize the maximal
total delay that can be caused by initial disturbances was first presented in [3, 4, 10,
16] as the robust network buffering problem, which is a special case of recoverable
robustness. The framework we present here is more complex, as the definition of
the buffers is not direct but implicit in the definition of the nominal solution. Indeed,
buffer values are not variables themselves, but depend on the properties of the nodes,
i.e., on the scheduling. Formally, the framework can be defined as follows:

• A set E of events to be scheduled, i.e., for which we have to define when and/or
where they will take place with respect to an ideal timetable I .
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• Denoting by F the set of feasible schedules of events E , i.e., the feasible region,
a nominal problem of the form min{c(x) : x ∈ F} aims at scheduling the set of
events E so as to minimize a suitable nominal objective function c : F → R.

• A set S of possible scenarios, where each scenario s ∈ S is defined by the
external disturbance δ s

e ≥ 0 on the ideal timetable I , assigned to each event

e ∈ E and is represented by vector δ s ∈ R|E |
+ .

• Clearly, the events are not independent from each other, because different events
may be scheduled on the same or incompatible resources (in different time in-
stants), causing a disturbance on one event to propagate to others. We represent
this using a delay-propagation network N = (E ,A), with (e′,e) ∈ A if a delay
de′ on event e′ may propagate to a delay de on event e.

• Given N = (E ,A) and arc (e′,e) ∈ A, if the two events e′ and e are scheduled
on the same or incompatible resources, delay propagation may happen. Delay
propagation not only depends on where, but also when events are scheduled,
since a (some) delay may be absorbed if the events are sufficiently detached in
time. Mathematically, a delay de′ on event e′ may propagate to a delay de on
event e according to the relation de ≥ de′ − b((e′,e),x), where b((e′,e),x) is a
buffer time function b : A×F → R+, depending on the scheduling of the two
events e′ and e in the solution x ∈ F .

Note that buffer values are “implicit”, in the sense that they are function of
the scheduling choice. Buffers also represent the link between scheduling (nomi-
nal model) and delay propagation (delay-recovery model), when the system is sub-
ject to disturbance. Since buffer times model the absorption of delays, we assume
b((e′,e),x) to be infinite in case the events e′ and e do not interact in the solution x.

The network N is not necessarily acyclic (i.e., the order of the events may not be
fixed a priori), because it represents delay propagation before the “real” timetable
(scenario) is realized. The “real” timetable corresponds to the ideal timetable I
after the disturbances δ s take place according to some scenario s. Finally, S is not
necessarily finite nor countable.

We denote by ds
e the delay of event e for scenario s, which depends on the buffer

times (and hence on the solution x ∈ F). From a robust point of view, our objective
is to minimize the cumulative delay over all events associated with scenario s given
by ∑e∈E ds

e.
A rather straightforward goal of the delay-recovery counterpart of an event

scheduling problem minimizes the nominal objective function c(x) as well as the
maximum cumulative delay over all scenarios in S . The maximum cumulative de-
lay is a standard objective that can be easily expressed as a linear program, as shown
below. Yet, the framework allows one to use more complex objectives, such as the
expected delay or other delay functions (e.g., Kleinrock) which come at the cost of
more complex models.

The delay-robust problem can then be formulated as:

minc(x)+D, (6.2)
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subject to

x ∈ F, (6.3)

D ≥ ∑
e∈E

ds
e, s ∈ S , (6.4)

ds
e ≥ δ s

e , e ∈ E , s ∈ S , (6.5)

ds
e ≥ ds

e′ −b((e′,e),x), (e′,e) ∈ A, s ∈ S , (6.6)

Here, vector x represents the variables of the nominal problem. D is the maxi-
mum cumulative delay over all scenarios, and ds

e is the delay of event e for scenario
s, which depends on solution x according to b((e′,e),x), i.e., the buffer time of
arc (e′,e) for solution x. Note that the buffer times do not depend on the scenario,
but only on solution x. Constraints (6.4) define the value of variable D, while con-
straints (6.5) and (6.6) express the fact that the delay of event e is the maximum
between the external disturbance δ s

e and the delay propagated from each event e′

such that (e′,e) ∈ A, which is partly absorbed by buffer b((e′,e),x). We stress again
that since our recovery action consists in delay propagation, “delay” variables are in
fact “recovery” variables. As already pointed out, delay variables are used to mea-
sure the performance of the system as well as to express the system reaction when
subject to disturbance. Note that the disturbance δ s

e is a parameter, hence an input
that only depends on the chosen scenario. The delay ds

e, instead, is a variable whose
value depends on how the external disturbances are propagated, which in turn de-
pends on the chosen scheduling plan (i.e., buffers b((e′,e),x)).

6.3.2.1 The Scenario Set

Our scenario set is based on the following observation. For any scenario s ∈ S, the
total amount of external disturbances is bounded. This is formalized by ∑e∈E δ s

e ≤
Δ , for a given parameter Δ . In other words, the set of scenarios is defined by the
vectors:

{δ s ∈ R|E |
+ : ‖δ s‖1 ≤ Δ} (6.7)

This clearly leads to uncountably many scenarios, which can however be handled
easily using the proposition below.

Proposition 6.1. For the delay-robust problem (6.2), (6.3), (6.4), (6.5), and (6.6),
the compact scenario set defined by (6.7) is equivalent to the finite scenario set S
defined by the vectors

{δ s ∈ {0,Δ}|E | : ‖δ s‖1 = Δ}, (6.8)

which contains only |E | scenarios.
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The reader can refer to [3] for a proof. The importance of this proposition lays in
the fact that despite considering implicitly uncountably many scenarios, we can con-
struct a compact model that considers only the |E | scenarios in which the maximum
disturbance Δ is applied to one single event. This is clearly due to the worst-case
nature of a robust model. Our method applies to any set of scenarios that defines a
polytope, by restricting attention to one scenario for each vertex of the polytope. If
the polytope is a simplex, as in the current version, we simply get as many scenarios
as events. Otherwise, the number of vertices may grow exponentially, as it happens,
e.g., if we put different upper bounds on the delays of the events.

6.3.3 A Real-World Study: Delay Robust Platforming

The Train Platforming Problem (TPP) belongs to the class of event scheduling prob-
lems since it involves both a decision on resources (railway station elements such
as platforms and paths), as well as time. TPP is a special case of Train Timetabling.
One is given a major railway station and a set T of trains whose arrival and de-
parture times and entry and exit points at the station are specified. TPP calls for
assigning each of these trains a stopping platform, an arrival path from its entry
point to the platform and a departure path from the platform to its exit point, as
well as the corresponding times. Indeed, one can modify, a.k.a. shift, the arrival
and departure times within a given range. Note that a platform consists of a single
track inside the train station where the train stops. The platform does not include
sequences of tracks, (aka as paths) that the train uses to enter or leave the station. To
guarantee the existence of feasible solutions, we allow the trains to be assigned to
dummy platforms (i.e., platforms which do not exist in the considered station). Any
train assigned to a dummy platform is considered as a non-scheduled train leading
to a practically infeasible solution.

In the application we consider, an explicit list of arrival and departure paths is
given, along with the associated occupation time, i.e., the time taken to travel along
them (possibly dependent on the train), and a list of incompatible path pairs, rep-
resenting the fact that the two paths physically intersect each other. Note that path
incompatibility is static and not time-expanded. In other words, paths are physically
incompatible because they share common elements (e.g., tracks, switches, etc). Two
trains cannot occupy incompatible paths for a time window of duration larger than
a so-called conflict threshold. Also, no two trains can be simultaneously present at
the same platform. Finally, after a train leaves the platform, a minimum so-called
headway time (possibly dependent on the platform and the two trains considered)
must elapse before another train arrives at the platform.



136 Laura Galli and Sebastian Stiller

6.3.3.1 Events and Delay-Propagation Network

A scheduling plan for TPP looks as follows. For each train t ∈ T the nominal so-
lution defines (i) the instant in which t occupies (i.e., starts to occupy) its arrival
path, (ii) the instant in which t frees (i.e., ends to occupy) its arrival path, which co-
incides with the instant in which t occupies its platform, (iii) the instant in which t
frees its platform, which coincides with the instant in which t occupies its departure
path, and (iv) the instant in which t frees its departure path. All these “events” in
principle may be subject to external disturbances, which however in practice occur
essentially only on two of them, namely (1), in case the train arrives late at the sta-
tion (i.e., disturbance on event of type (i)), and (2), in case the platform operations
take longer than required (i.e., disturbance on event of type (iii)). In other words,
it is widely realistic to assume that the travel times along the arrival and departure
paths are not affected by external disturbances, but of course may be affected due to
propagation. Accordingly, to model TPP within our framework, the following two
events are associated with each train t ∈ T : arrival at , meaning that the train occu-
pies a given arrival path at a given instant, and departure pt , meaning that the train
frees its platform at a given instant. This defines E .

The associated delay-propagation network N = (E ,A) consists of the following
arcs in A joining events of the same train t ∈ T :

• (at , pt), meaning that a delay in at may cause a delay in pt , depending on the
travel time along the arrival path and the stopping time at the platform in the
nominal solution and the minimum possible values of these two times.

Moreover, there are the following arcs in A joining events of two trains t ′, t ∈ T :

• (at ′ ,at), meaning that a delay for t ′ in occupying its arrival path may cause a
delay for t in occupying its arrival path, in case the arrival times of t ′ and t are
sufficiently close and t ′ and t are scheduled on incompatible arrival paths or on
the same path;

• (at ′ , pt), meaning that a delay for t ′ in occupying its arrival path may cause a
delay for t in freeing its platform, in case the arrival time of t ′ and the departure
time of t are sufficiently close and t ′ and t are scheduled on incompatible arrival
and departure paths, respectively;

• (pt ′ ,at), meaning that a delay for t ′ in freeing its platform may cause a delay
for t in occupying its arrival path, in case the departure time of t ′ and the arrival
time of t are sufficiently close and t ′ and t are either scheduled on the same
platform, or on incompatible departure and arrival paths, respectively;

• (pt ′ , pt), meaning that a delay for t ′ in freeing its platform may cause a delay for
t in freeing its platform, in case the departure times of t ′ and t are sufficiently
close and t ′ and t are scheduled on incompatible departure paths or on the same
path.

The values of the buffer time for each arc joining the events of two distinct trains
are uniquely defined by the way in which these two events are scheduled in the
nominal solution, as the following examples show.
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Example 6.1. Assume that in the nominal solution trains t ′ and t stop at the same
platform, event pt ′ is scheduled at 10:00, and event at at 10:04 with 3 min to travel
along the arrival path, so that t occupies the platform at 10:07. Moreover, assume
that the headway time that must elapse between t ′ freeing the platform and t occu-
pying it is 2 min and that the 3-min travel time for t along its arrival path is fixed.
If the departure path of t ′ and the arrival path of t are compatible, the buffer time
b((pt ′ ,at),x) is equal to 5 min, as a delay of up to 5 min on pt ′ does not affect at ,
whereas a larger one does.

Example 6.2. Assume that in the nominal solution trains t ′ and t use respectively a
departure path and an arrival path that are incompatible. Event pt ′ is scheduled at
10:05, and event at at 10:00 with 3 min to travel along the arrival path, so that t can
free the arrival path at 10:03. If the conflict threshold is 0, the two trains cannot be
on the two paths at the same time, because the paths are incompatible. So the buffer
time b((at , pt ′),x) is equal to 2 min and a delay of up to 2 min on at does not affect
pt ′ , whereas a larger one does.

6.3.3.2 The Overall Delay-Robust Model and Its Solution

The nominal TPP objective function considered in [2] was derived after long dis-
cussion with the practitioners and had quite a few terms. So for the robust TPP we
focus on the minimization of the total cumulative delay D assuming c(·) identically
null. Our experiments show that omitting this term c(·) in the objective function of
the robust model provides solutions whose quality in terms of duration of the path
conflicts is comparable to that of the nominal ones, where c(·) is present.

As in [2], we represent the nominal solutions by associating patterns with trains.
The concept of pattern is used to encapsulate all the information about the resources
that are assigned to a train and the corresponding time. A pattern is a vector of
properties and consists of arrival path, departure path, platform, arrival time and
departure time. Specifically, for each train t ∈T there is a collection Pt of patterns,
each representing a feasible scheduling of both events at and pt illustrated above.
This has the advantage of encoding within the notion of patterns the constraints that
relate these two events.

The side constraints relating the patterns are then imposed as generic incompat-
ibilities between pattern pairs, defining an associated pattern-incompatibility graph
having one node for each train-pattern pair (t,P), with P ∈ Pt , and an edge joining
each pair (t1,P1), (t2,P2) of incompatible patterns. Two patterns are deemed incom-
patible if this implies occupying the same platform at the same time, or also using
routes that intersect at the same time or too close in time with respect to the con-
flict threshold. As to the definition of the buffer times, let ϕ(e′,P′,e,P) denote the
value of the buffer time b((e′,e),x) in case events e′ and e are scheduled respectively
according to patterns P′ and P.

The overall delay-robust problem can be formulated by using the following vari-
ables. For each t ∈ T and P ∈ Pt , variable xt,P is equal to 1 if train t is assigned
pattern P, 0 otherwise. Moreover, for each t ∈ T and s ∈ S let ds

at
and ds

pt
be the

two continuous variables expressing the delay of events at and pt in scenario s.



138 Laura Galli and Sebastian Stiller

Letting K denote the collection of the maximal cliques of the pattern-
incompatibility graph, the formulation reads:

minD

subject to

∑
P∈Pt

xt,P = 1, t ∈ T, (6.9)

∑
(t,P)∈K

xt,P ≤ 1, K ∈ K , (6.10)

xt,P ∈ {0,1}, t ∈ T, P ∈ Pt , (6.11)

b((e′,e),x) = ∑
P′∈Pt′

∑
P∈Pt

ϕ(e′,P′,e,P) xt ′,P′ xt,P,

(6.12)

and to (6.4), (6.5), and (6.6). Note that (6.3) is now given by (6.9), (6.10), and (6.11).
Constraints (6.12) can be linearized as shown in [2] so that the overall model is a
Mixed-Integer Linear Program (MILP).

We tested our framework on real-world instances from Rete Ferroviaria Italian,
the main Italian Infrastructure Manager. This is the same benchmark data used in
the deterministic study reported in [2], which considers the stations of Palermo Cen-
trale, Genova Piazza Principe, Bari Centrale and Milano Centrale. The scenarios are
defined by (6.8) with Δ = 30 min, i.e., a delay of 30 min on the arrival of a train
at the station or on the departure of a train from its platform. The results show that
the reduction of the total propagated delay with respect to the nominal solution is
significant, ranging between 12% and 29% for Palermo Centrale, between 19% and
35% for Genova Piazza Principe, between 0% and 23% for Bari Centrale, and be-
tween 1% and 44% for Milano Centrale, with an average of 17%. Therefore, the new
method finds solutions in which the total propagated delay is significantly smaller
than the one of the previous “nominal” solutions.

6.4 Conclusion

Timetabling is a central step in railway planning. With state-of-the-art methods one
can find robust solutions for large, real-world instances. Timetabling methods such
as the PESP can incorporate aspects of other planning stages. For multiple periods
within the same transport system planning becomes possible, provided the used
periods are somewhat harmonized.

Train timetabling can also be viewed as an event scheduling problem. We pro-
posed a framework to compute the delay-robust counterpart of event-based opti-
mization problems. Such a framework consists of the original (nominal) optimiza-
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tion problem linked to a delay-propagation network. The generality and simplicity
of the delay-propagation model allows one to attach it to the nominal formulation
together with linking constraints to translate nominal solutions into network buffers.
Our case study shows the effectiveness of the approach on real-world instances.
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Chapter 7
Railway Track Allocation

Gabrio Caimi, Frank Fischer, and Thomas Schlechte

Abstract This chapter addresses the classical task to decide which train runs on
which track in a railway network. In this context a track allocation defines the pre-
cise routing of trains through a railway network, which usually has only a limited ca-
pacity. Moreover, the departure and arrival times at the visited stations of each train
must simultaneously meet several operational and safety requirements. The problem
to find the “best possible” allocation for all trains is called the track allocation prob-
lem (TAP). Railway systems can be modeled on a very detailed scale covering the
behavior of individual trains and the safety system to a large extent. However, those
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microscopic models are too big and not scalable to large networks, which make
them inappropriate for mathematical optimization on a network wide level. Hence,
most network optimization approaches consider simplified, so called macroscopic,
models. In the first part we take a look at the challenge to construct a reliable and
condensed macroscopic model for the associated microscopic model and to facili-
tate the transition between both models of different scale. In the main part we focus
on the optimization problem for macroscopic models of the railway system. Based
on classical graph-theoretical tools the track allocation problem is formulated to
determine conflict-free paths in corresponding time-expanded graphs. We present
standard integer programming model formulations for the track allocation problem
that model resource or block conflicts in terms of packing constraints. In addition,
we discuss the role of maximal clique inequalities and the concept of configuration
networks. We will also present classical decomposition approaches like Lagrangian
relaxation and bundle methods. Furthermore, we will discuss recently developed
techniques, e.g., dynamic graph generation. Finally, we will discuss the status quo
and show a vision of mathematical optimization to support real world track alloca-
tion, i.e. integrated train routing and scheduling, in a data-dominated and digitized
railway future.

7.1 Introduction

A fundamental problem in railway planning is to assign each train a route in the
railway network together with precise arrival and departure times at each station
and major junction the trains visit. The railway network has only limited capacity,
e.g. each physical track can only be occupied by one train at the same time and each
station can only handle a limited number of trains simultaneously. The problem to
find the “best possible” allocation of tracks for all trains taking the limited network
capacity into account is called the track allocation problem (TAP).

Railway safety systems operate on the same principle all over the world. A train
has to reserve infrastructure blocks (certain parts of a physical track) for some
time to pass through. The situation that two trains reserve the same block of the
infrastructure within the same point in time is called block conflict. State-of-the-
art simulation systems provide accurate estimations of running times and block-
ing times with respect to a precise microscopic model, see Sect. 1.3.1 in Chap. 1
and Sect. 2.2.1 in Chap. 2.

Not so many years ago, timetable creation and so track allocation was a pure
political and rigid manual process where only in exceptional cases the usage of
software tools or mathematical models was exploited. The current practice in many
European countries is a functional segregation due to the liberalization into rail-
way passenger operators, freight operators, and railway infrastructure managing
companies. The infrastructure managers are responsible for the safe operation of
the timetable and have to integrate the requests of different operators simultane-
ously. The liberalization is one important booster of the application of mathematical
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models and optimization techniques in the railway industry—simply because rail-
way operating companies are more and more confronted with competition, cost
pressure, and ensuring of operational excellence.

In this chapter, we focus on the strategical or tactical planning task to produce
reliable macroscopic track allocations years or months before operations. The avail-
able granularity and the major objective of this optimization problem depends on the
taken perspective which can vary from public authorities, governments, or railway
infrastructure operators to train operating companies for passengers or freight trans-
port.

Nowadays, several commercial simulation tools exist that consider railway sys-
tems on a microscopic scale covering the behavior of trains and the safety system
to a large extent, see Chap. 1. However, representing the safety layer of a railway
system within a microscopic simulation tool is still a challenging goal in a currently
ongoing standardization and harmonization process in the (European) railway in-
dustry. Those microscopic models of the railway system are already very large even
for very small parts of the network. The reason is that all signals, incline changes,
and switches around a railway station have to be modeled to allow for precise run-
ning time calculations of trains.

There are microscopic models that describe the railway system extremely de-
tailed and thorough. A major strength of microscopic models is that almost all tech-
nical details and local peculiarities are adjustable and can be taken into account, e.g.,
the rolling stock characteristics. Thus, microscopic models provide the advantage
that the calculation of the running times of the trains can be reasonably accurate.
Nevertheless, microscopic models are inappropriate for mathematical optimization
because of the size and the high level of detail.

Hence, most optimization approaches consider simplified, so called macroscopic,
models. In such models major parts of the topology and layout of real stations are
aggregated to single nodes with capacities. These capacities define the maximal
number of trains that can operate at the same time within the station or at one gate
of the stations, e.g., the number of platform tracks from the north inbound routes.
Consecutive block segments where no overtaking of trains can happen are aggre-
gated to single tracks connecting the station nodes. Moreover, the safety system in
macroscopic models is handled by so called minimum headway times which restrict
the departures of succeeding trains on these tracks.

The challenging part is to construct a reliable and condensed macroscopic model
for the associated microscopic model and to facilitate the transition between both
models of different scale. In Sect. 7.2 we will briefly discuss approaches to handle
the interaction between microscopic and macroscopic models.

Section 7.3 will present classical optimization models in case of macroscopic
railway problem formulations. Furthermore, we will highlight optimization algo-
rithms and recent state-of-the-art techniques in Sect. 7.4. Finally, Sect. 7.5 provides a
vision of mathematical optimization to support real world train routing and schedul-
ing in the future.
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7.2 On Microscopy and Macroscopy

In the following section we will discuss railway network and operation models of
different scale. The level of detail of a railway infrastructure or operation model to
consider depends on the quality and accuracy requirements for generating appropri-
ate results and, of course, on the availability and reliability of the data. For long term
and strategicplanning problems high accuracy data is often not manageable, might

Table 7.1: Comparison between the microscopic and the macroscopic railway model

Macroscopic element Microscopic counterpart

General train types Subset of (individual) train routes
Stations Unified connected subgraph

of the microscopic network
Tracks (connecting different stations) Unified consecutive block sections,

i.e., a path in the microscopic network
Running times on tracks Running times on block sections
for traintypes (in Δ ) for individual routes (in δ )
Headway times on tracks Blocking times on sections
for pairs of train types (in Δ ) for routes (in δ )

not exist, or cannot be provided on time without causing expenditure, e.g., [26].
Railway traffic is a high-grade complex technical system, which can be mod-

eled in various detail. Microscopic data is for example incline, acceleration, driving
power, power transmission, speed limitations, and signal positions. In particular, on
a microscopic level the infrastructure consists of small elements, so called block
segments. Each block segment is occupied by at most one train at the same time,
see the time-space diagram on the left hand side of Fig. 7.1. The time period, when
a train is physically traversing a block section, is called running time. Depending on
the certain attributes of the train, e.g., length and speed, the segment is blocked for
other trains for a certain amount of time, the blocking time. Hence, railway capacity
not only consists of a space dimension, i.e., which are the physical infrastructure el-
ements, but also of a time dimension composed of train movements, i.e., occupation
or blocking times.

Optimization on a microscopic level, as already mentioned, is still inconceiv-
able due to the enormous size and granularity of the data. Even more, it is not
needed because the decision to run a train or to let a train wait can be done on a
coarser—a macroscopic—level that could be based on the evaluations in a fine—a
microscopic—level. For example, all macroscopic running times can be deduced by
microscopic simulation data, assuming a standard acceleration and braking behav-
ior of the given train and its weight. Thus, all relevant switches, inclines, curves
or other velocity impacts are considered implicitly. Nevertheless, some aggregation
error in particular due to the different scales of times will be introduced. Note that
microscopic data is given in a finer granularity, e.g., the time discretization is often
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in seconds (δ ) in contrast to macroscopic data which is in general assumed to be dis-
cretized in minutes (Δ ). In the work [24] a definition of macroscopic elements and
their original microscopic counterparts can be found. Table 7.1 lists those elements
with respect to the railway safety system and the railway infrastructure resource
consumption.

Microscopic
Simulation

Micro-Macro
Transformation

Macroscopic
Optimization

aggregate

disaggregate

Fig. 7.1: Idealized closed loop between railway models of different scale for railway
track allocation by Schlechte [24]

The literature has suggested a number of top-down approaches, e.g., the authors
of [7] propose a comprehensive multi-level framework for railway scheduling start-
ing with a high-level commercial description of intended train services and aiming
at the generation of a conflict-free microscopic trains schedule as the final outcome.
In order to handle large microscopic networks an a priori decomposition into con-
densation and compensation zones was introduced and used in [5]. Depending on
the level of the intended train service, parts of the microscopic network are either
classified as condensation zones where the available capacity is saturated and scarce
or classified as compensation zones where capacity is available.

In [10] an optimization approach that iteratively solves a macroscopic delay man-
agement model first, and a microscopic train scheduling model afterwards, was de-
veloped. In a top-down approach to model railway systems, a coarse model of the
entire system is first formulated, specifying but not detailing any “real” sub-systems.
The success of such a top-down model depends on a reasonable choice of the model
on the top level (macroscopic model) and a powerful and suitable feedback mecha-
nism from the lower level (microscopic model). Otherwise, it might occur that the
conflict feedback of the lower level dominates the solution process or even worse
the procedure will not converge or terminate.

Hence, the question of generating “the best” macroscopic model was posed.
Schlechte [24] developed a bottom-up approach for automatic construction of re-
liable macroscopic railway models based on very detailed microscopic ones. Fig-
ure 7.1 shows the basic idea. On the left hand side a microscopic model is shown
as used in standard simulations with a time-space diagrams highlighting the block
occupation of three trains. The time is running from top the bottom. Thus, the first
two trains occupy six segments when running from left to right. The last train is
running from right to left. The transformation produces then a macroscopic model,
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which aggregates the real physical block (six undirected segments) to two directed
arcs. On the right hand side the capacity allocation can then be handled by minimum
headway times which restrict the departures of succeeding trains on correlated arcs
of the macroscopic model.

On the one hand these models are precise enough to allow for valid allocations
with respect to blocking times, on the other hand they are simplified and aggregated
to a coarse level, which allows for solving large scale optimization instances. As a
result, a macroscopic track allocation can be re-translated to the microscopic model.
Details how this automatic transformation works can be found in [25].

Based on this technique coarse macroscopic models can be automatically for-
mulated to allow for optimization of track allocations with respect to resource con-
sumptions, i.e., the calculation of running and headway times are incorporated in
detail. However, macroscopic formulations can only approximate the infrastructure
capacity. Depending on the used rounding mechanisms these models tend to over-
estimation, underestimation or even both, see [1]. Hence, constructing “the best”
macroscopic model depends basically on the given objective, i.e., providing an
upper bound of the capacity, a realistic capacity estimation or a valid and imple-
mentable track allocation. Based on those works a trend towards integrated frame-
works connecting the microscopic and the macroscopic level to allow for iterative
approaches has emerged, see [15]. In the remainder of the chapter we will focus on
the track allocation problem for macroscopic railway models.

7.3 Macroscopic Optimization Models

The authors of [22] and [8] provide a comprehensive recent survey on the numerous
problem and model formulations on railway track allocation, which all go back to
the pioneer works of Brännlund et al. [4] and Caprara et al. [9] on train timetabling.
A general classification according to solution methods was given by Liebchen [20]
and Caimi [5]. In Fig. 7.2 the approaches on macroscopic railway timetabling are
basically divided into two categories, periodic and non-periodic scheduling. The
focus in this chapter is on exact solution approaches based on Mixed Integer Pro-
gramming (MIP). In particular, we take the perspective of an infrastructure network
provider facing the non-periodic variant with a high priority of practical operability.
In contrast, the equivalent task from the perspective of a railway operator with the
focus on passenger connections is called periodic event scheduling.

The infrastructure network is a directed graph GI = (V I ,AI), where the nodes
V I represent stations, junctions, and crossings and the arcs AI represent connecting
railway tracks. Furthermore, we are given a set of trains R and each train r ∈ R is
associated with a subgraph Gr = (V r,Ar) ⊆ GI of the infrastructure network. Gr

represents the set of possible routes of r from its start to its destination. The aim is
to determine a route as well as the arrival and departure times of each train at each
of the stations on its chosen route. Between two trains r,r′ ∈ R using the same track
a ∈ Ar ∩Ar′ there is a minimal headway time ha(r,r′) ∈N (in minutes), which is the
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minimal time period that has to pass after the first train r has entered the track before
the next train r′ is allowed to enter the track. Note that in general the headway time
may be different for any two trains and any order of trains. Furthermore, there are
capacity constraints on the nodes that state that at most a certain number of trains
cu ∈ N may be at the same station u ∈V I at the same time t ∈ T .

One of the most successful models in the literature for solving the track allocation
problem is based on time expanded networks, see, e.g., [9]. Given a set of discrete
time steps T = {1, . . . , |T |}, we have for each train r ∈ R a time expanded network
Gr

T = (V r
T ,A

r
T ) where V r

T = V r ×T and Ar
T = Ar

run ∪Ar
wait with running and waiting

arcs

Ar
run = {((u, t),(v, t + tr

(u,v))) : (u,v) ∈ Ar}
Ar

wait = {((u, t),(u, t +1)) : u ∈V r
wait}.

The running arcs Ar
run connect nodes u,v ∈V r that succeed along the train path, i.e.

(u,v) ∈ Ar, with a time difference corresponding to the running time tr
(u,v) of r. The

waiting arcs Ar
wait connect nodes of succeeding time steps of a station u ∈ V r

wait at
which r is allowed to wait. A feasible schedule of train r then corresponds to a path
P ⊆ Gr

T from the first to the last station. The set Pr denotes all the potential paths.
In order to formulate the model as an integer program (IP), we associate a binary

variable xr
a ∈ {0,1} with each arc a ∈ Ar

T in each time expanded network, where
xr

a = 1 if and only if a is contained in the timetable or track allocation of train r.
The headway restrictions impose that two arcs a = ((u, tu),(v, tv)) ∈ Ar

T and a′ =

((u, t ′u),(v, t
′
v)) ∈ Ar′

T with t ′u − tu < h(u,v)(r,r
′) must not be used both in a timetable.

Therefore, we add the following packing constraints

Macroscopic
Timetabling

Periodic

Quadratic semi-
assignment

PESP

Tailored
methods

Mixed Integer
Programming

Non periodic

Heuristics
Mixed Integer
Programming

Fig. 7.2: Principal methods in the literature for macroscopic timetabling by
Caimi [5]
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xr
a + xr′

a′ ≤ 1, {(r,a),(r′,a′)} ∈ H, (7.1)

where H is the set of pairs of incompatible train arcs. Let

H :=
{

x = (xr)r∈R : xr ∈ {0,1}|Ar
T |,x satisfies (7.1)

}

denote the set of integer vectors satisfying all packing constraints. The capacity
constraints in the nodes mean that at each time instance t ∈ T at most cu ∈ N trains
may be in u ∈V I at the same time. Hence, the sum over all arcs representing a train
being in u at time t

K(u, t) :=
{
(r,a) : a = ((u′, t ′),(u, t)) ∈ Ar

T ,r ∈ R
}

must be at most cu

∑
(r,a)∈K(u,t)

xr
a ≤ cu, u ∈V I , t ∈ T.

Putting all together, the basic track allocation problem (TAP) can be formulated as
IP as follows:

Given arc weights wr ∈ R
|Ar

T |, r ∈ R,

maximize ∑
r∈R

〈wr,xr〉

subject to xr
a + xr′

a′ ≤ 1, {(r,a),(r′,a′)} ∈ H,

∑
(r,a)∈K(u,t)

xr
a ≤ cu, u ∈V I , t ∈ T,

xr ∈ Xr, r ∈ R,

(7.2)

i.e., we select for each train r ∈ R a feasible schedule xr ∈ Xr where Xr is the set
of arc incidence vectors of the paths Pr, so that all paths satisfy the packing and
capacity constraints and maximize a general weight function. Various aspects with
respect to time and space can be directly handled by the definition of wr. In addi-
tion, the model can be extended to tackle further real world aspects as running times
depending on stop decision or single-track sections on which trains are simultane-
ously operated in both directions, see [11, 24]. In [16] another notable approach was
introduced where hypergraphs are used to capture the interaction effects of resource
transitions.

7.3.1 Clique Separation

The basic model (7.2) is quite general and allows very flexible definitions of con-
flicts in terms of the set of pairwise conflicting arcs H (we defined conflicts only by
violated headway conditions, but other operational restrictions could be formulated
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as well). However, a disadvantage of the “packing-like constraints” (7.1) is the “lost
structure” which leads to weak linear programming relaxations of (7.2). We will
examine this issue for the case of headway conflicts.

For the given set of conflicting arcs H we create a conflict graph G = (V,E) with
node set V = Ar

run of all running time-arcs. In order to strengthen the linear relaxation
of the formulation, the pairwise conflict sets may be enlarged to inclusion-maximal
ones which correspond to maximal cliques in G. Certainly, constraints (7.1) can be
strengthened to constraints

∑
a∈C

xa ≤ 1, C maximal clique in G.

Although these constraints lead to much stronger relaxations, the disadvantage is
the potentially large number of maximal cliques in G, and thus the large number of
constraints, and hence the problem of detecting violated constraints. In the following
we will collect some basic facts about detection and occurrence of maximum cliques
in special graph classes.

In the general case the separation of the maximal clique constraints is hard. This
is because the minimal headway times are in general different for each train type
combination and for each stopping behavior combination. Lukac [21] gives an ex-
tensive analysis of the structure of clique constraints arising from triangle-linear and
quadrangle-linear headway matrices and proves that the time window of interest is
bounded by twice the maximum headway time.

The arguably simplest case is “full block occupation”, that is, the headway time is
set to the running time of the preceding train. In this setting headway times are com-
pletely independent from the type of the successor train and the graph G becomes an
interval graph. Figure 7.3 illustrates the construction of G and the maximal cliques
in that case. On the left hand side six trains are shown on one track from left to
right. Consider the time is going from bottom to the top. Thus, in the middle of
Fig. 7.3 the projected time intervals of the block occupation of each train are shown.
Consequently, overlapping intervals are in conflict and correspond to edges in the
conflict graph G on the right hand side. The gray area highlights the maximal clique
in G. Note there are two other maximal cliques of size 3. The maximal cliques of
the conflict graph are collections of compact real intervals. By Helly’s Theorem, see
[17], the intervals of each such clique contains a common point. It follows that the
conflict graph G has O(V ) inclusion maximal cliques, which can be enumerated in
polynomial time, see [24].

The authors of [6] provide an efficient algorithm to determine the maximal con-
flict cliques on the microscopic level. Moreover, they develop an alternative model
using the sequence of resources that each train path passes, encoded in a resource
tree. In tests with real-world data from the Swiss Federal Railways, the resource
tree conflict graph model was able to reduce the computation time by roughly two
orders of magnitude when compared to previous approaches.
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Fig. 7.3: Example for maximum cliques for block occupation conflicts

7.3.2 Configuration Networks

An alternative formulation for the track allocation problem that guarantees a conflict
free routing by allowing only feasible orderings was proposed by Borndörfer and
Schlechte [2]. Instead of excluding conflicting arc sets as described in Sect. 7.3.1,
the formulation is based on the concept of feasible arc configurations, i.e., sets of
arcs on a track without headway conflicts which correspond one-to-one to paths
in so called Configuration Networks. In [24] was shown that this model is an ex-
tended formulation of model TAP which can be directly solved by column genera-
tion techniques. Furthermore, the corresponding LP-relaxation of the extended for-
mulation based on configuration networks provides at least the same lower bound as
the packing formulation. Weaknesses of those formulations are the larger size and
poor convergence properties, see [14]. However, a major advantage of the configu-
ration models are the direct control of train orders and the possibility to use those
for branching or primal heuristics in order to construct high quality primal solutions,
see [12].

7.4 Algorithmic Techniques for the TAP

Real world railway networks are notoriously very large and hence lead to large
optimization models. For instance, in track allocation models the infrastructure net-
works comprise thousands of nodes (stations, switches) and arcs (tracks connecting
the nodes) as well as thousands of trains running on a single day in the network.
For these reasons advanced algorithmic techniques have been developed. We will
present some of them in this section.

The basic concept, which all those techniques built on, is decomposition of the
complete model into smaller subproblems. Each subproblem is solved indepen-
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dently several times and an overall algorithm coordinates the subproblem evaluation
in such a way, that a global solution can be derived. The standard decomposition ap-
proach is Lagrangian relaxation, which will be described shortly in the context of
track allocation problems below. In order to solve the decomposed model, several
methods have been proposed. Very successful ones are bundle methods which are
examined in Sect. 7.4.2. Finally, we describe the Dynamic Graph Generation tech-
nique, whose development has been motivated by large scale track allocation prob-
lems and which aims at managing the model size dynamically during the solution
process, so that the overall memory requirements are reduced dramatically.

7.4.1 Lagrangian Relaxation

Formally, the track allocation problem can be written as a mixed-integer program-
ming problem in the following compact way

maximize ∑
r∈R

〈wr,xr〉,

subject to xr ∈ Xr,

∑
r∈R

Mrxr ≤ b, (7.3)

by collecting all coupling constraints in the inequalities ∑r∈R Mrxr ≤ b, see Sect. 7.3.
An important observation is that omitting constraints (7.3) decomposes the problem
in several subproblems of the form

max{〈wr,xr〉 : xr ∈ Xr},

one for each train r ∈R. These subproblems turn out to be simple shortest-path prob-
lems in the time-expanded train graph. Therefore, the idea of Lagrangian relaxation
is to penalize the violation of the complicating coupling constraints (7.3) instead of
enforcing their validity. In fact, for a given Lagrangian multiplier vector y ∈ R

m
+,

the relaxation reads

maximize 〈b− ∑
r∈R

Mrxr,y〉+ ∑
r∈R

〈wr,xr〉,

subject to xr ∈ Xr.

It is easy to see that for any vector y ∈R
m
+ the optimal value of the relaxation is a

lower bound on the real optimal value. Therefore, the natural goal is to find the La-
grangian multiplier ỹ ∈R

m
+ that gives the best bound. This leads to the optimization

problem

ỹ ∈ argmin
y∈Rm

+

[
〈b,y〉− ∑

r∈R
max

{
〈wr − (Mr)T y,xr〉 : xr ∈ Xr

}]
. (7.4)
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This is a non-smooth, convex optimization problem. Algorithmically, it can be
solved using subgradient methods or bundle methods to be described in the next
section.

7.4.2 Bundle Methods

Bundle methods and subgradient methods are iterative algorithms to solve non-
smooth, convex optimization problems of the form min{ f (y) : y ∈ Y} with f a
convex function and Y ⊆ R

m a “simple” convex set. Both algorithms assume that
f is given via a function oracle that, for a given point y ∈ R

m computes the func-
tion value f (y) and a subgradient g ∈ ∂ f (y). Both types of algorithms are iterative
methods that evaluate the function f at certain trail points yk, k ∈N, and require the
function value fk = f (yk) and a subgradient gk ∈ ∂ f (yk). The algorithms use this
information to compute the next trail point yk+1 such that the sequence of trail points
converges to an optimal solution ỹ := limk∈N yk. In practice, bundle methods turned
out to have better convergence in practical applications, in particular for problems
of the form (7.4), hence we focus on them in this section.

The idea of Bundle methods (see [18, 19]) is to use the subgradient information
obtained by evaluating the function to build a cutting plane model (or “bundle”)
f̂k(y) := max{ fi + 〈gi,y− yi〉 : i ∈ I} ≤ f (y) of f with I a finite set and gi ∈ ∂ f (yi),
fi ≤ f (yi) for i ∈ I (see Fig. 7.4 for an illustration of the cutting plane model). This
model is then used to determine the next candidate ȳk+1 and the function is evaluated
at ȳk+1. If the function value f (ȳk+1) is reasonably close to the model value f̂k(ȳk+1)
the function accepts the trial point as new iteration point yk+1 ← ȳk+1. Otherwise, the
model seems to be a bad approximation of f at ȳk+1. Then the bundle method stays
at the old point yk+1 ← yk and uses the subgradient information gk+1 ∈ ∂ f (ȳk+1) to
improve the model.

The Lagrangian relaxation of the track allocation problem is equivalent to

min{ f (y) : y ≥ 0} ,
with

f (y) := 〈b,y〉+ ∑
r∈R

max
xr∈Xr

〈wr − (Mr)T y,xr〉,

see [11]. The feasible set is Y := {y ∈ R
m : y ≥ 0}. The function f (y) is convex as

sum of maximums of linear functions. For a given point yk, each optimal solution
x(yk) = (xr(yk))r∈R ∈×r∈R Xr of the inner problems defines a subgradient gk :=
b−∑r∈R Mrxr ∈ ∂ f (yk). Hence, one can apply subgradient or bundle methods to
solve the Lagrangian relaxation problem. In addition to an (approximate) optimal
solution ỹ of the Lagrangian relaxation, the algorithm also generates a sequence
(x̄r

k)k∈N of primal solutions x̄ ∈×r∈R convXr, such that each accumulation point
x̃ = (x̃r)r∈R of this sequence satisfies the coupling constraints (7.3). In particular,
such an accumulation point is an optimal solution of
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gk−1
gk

f (yk)

yk

Fig. 7.4: The blue function f has to be minimized. The two red subgradients gk and
gk−1 define a lower cutting plane model of f

maximize ∑
r∈R

〈wr,xr〉,

subject to xr ∈ convXr,

∑
r∈R

Mrxr ≤ b.

Note that x̃r ∈ convXr
� Xr is, in general, not necessarily an integral schedule but a

convex combination of feasible schedules for train r ∈ R. Although this (fractional)
solution is not an optimal solution of the IP formulation for the track allocation
problem, it provides an upper bound on the optimal value and is often used as a
starting point for rounding heuristics.

7.4.3 Dynamic Graph Generation

One major disadvantage of time expanded models is their enormous size if the num-
ber of time steps increases, e.g., due to a finer discretization. In track allocation the
time horizon typically consists of several hours up to several days and the discretiza-
tion step is often 1 min or less. Hence, the time expanded network of a single train
can have many thousands nodes and arcs, which leads to large memory require-
ments.

In practice there are often conditions that allow reducing the size of these net-
works. For instance, often a train may not be shifted arbitrarily in time but its sched-
ule may only deviate from an “ideal” schedule by a few minutes. However, this is
not always the case and further techniques are required to handle these huge models.
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Dynamic Graph Generation, see [11, 13], is a technique developed for the case
where the train schedules may deviate arbitrarily from some ideal timetable, but
the general objective is to have all trains run as early as possible. This is a reason-
able goal in many applications, because a train running late implies a high delay in
the train’s schedule, which should typically be avoided. In particular, the algorithm
focuses on the solution of the shortest path subproblems

max
{
〈wr − (Mr)T y,xr〉 : xr ∈ Xr

}
,r ∈ R, (7.5)

for some given vector y ∈ R
m
+. Note that during the solution process of the La-

grangian relaxation approach described in Sect. 7.4.2, these subproblems must be
solved w.r.t. changing vectors y.

Let Gr
T = (V r

T ,A
r
T ) denote the time expanded network of r ∈ R. In general, this

network is very large but because of the objective to run as early as possible, the
train schedules will mainly use the early time steps. However, it is important to note
that the model does not enforce this. It may be the case that some trains do get a large
delay and the corresponding schedules will use late time steps. But we do not know
in advance which trains are delayed. Hence, we have to prepare for the case that
each train might receive a large delay. The idea of Dynamic Graph Generation can
be described as follows. Instead of keeping the complete time expanded graph Gr

T
in memory, only a small subgraph Gr

mem = (V r
mem,A

r
mem) ⊆ Gr

T with |V r
mem| � |V r

T |
and |Ar

mem| � |Ar
T | is stored. Let Xr

mem ⊆ Xr denote the set of all schedules of train
r that correspond to paths in Gr

mem. The goal is to solve problem (7.5), but only

max{〈wr
mem,x

r〉 : xr ∈ Xr
mem} , (7.6)

is solved, which is a shortest path problem only in the stored subgraph w.r.t. some
special objective function wr

mem. Given an optimal solution P̃ ∈ Xr
mem the question

is to decide whether P̃ is also an optimal solution of (7.5). In general, this is not
possible without solving (7.5) itself, but then the approach would be pointless.

Fortunately, the special structure of the optimization problem enables us not only
to detect whether P̃ is an optimal solution but also gives a clue how to enlarge Gr

mem
if this is not the case. The idea is to split the stored subgraph Gr

mem into two parts,
the active subgraph Gr

act = (V r
act,A

r
act) ⊂ Gr

mem and the rest. The graph Gr
act is the

union of all paths that have been computed in some earlier iteration. The objective
function wr

mem : Ar
mem → R is defined as follows

wr
mem(a) :=

{
wr(a)− (Mr

a)
T y, a ∈ Ar

act,

wr(a), a ∈ Ar
mem \Ar

act.

In [11] was shown that if, for a given active subgraph Gr
act, the stored subgraph Gr

mem
is large enough the following property holds:

P̃ is optimal for (7.6) and P̃ ⊆ Gr
act ⇒ P̃ is an optimal solution of (7.5). (7.7)
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Furthermore it was shown that under reasonable technical conditions a stored sub-
graph Gr

mem satisfying (7.7) can be constructed efficiently. Thus, the algorithm can
test whether P̃ ⊆ Gr

act. If P̃ ⊆ Gr
act then P̃ is an optimal solution of (7.5). Otherwise,

the algorithms adds P̃ to Gr
act, possibly enlarges Gr

mem appropriately (so that (7.7)
is satisfied) and solve the shortest path problem w.r.t. the enlarged graph again, see
Algorithm 7.1.

Algorithm 7.1: Dynamic graph generation shortest path
Data: The active subgraph Gr

act and the multiplier vector y
Result: optimal solution P̃ ∈ Xr

loop
Determine appropriate Gr

mem ⊃ Gr
act satisfying (7.7);

Compute wr
mem;

Solve (7.6) � P̃ ∈ Xr
mem;

if P̃ ⊆ Gr
act then

return P̃
else

Gr
act ← Gr

act ∪ P̃
end

end

In fact, it was shown that under mild assumptions this algorithm always returns
after a finite number of iterations and the stored subgraph Gr

mem is only slightly
larger than the union of all computed paths Gr

act. Furthermore, the dynamic graph
generation approach allows dealing with models that do not have an a priori bound
on the number of time steps. Instead, the graphs grow dynamically as much as
needed to contain an optimal solution, see [11].

7.5 Status Quo and Future Opportunities

Research papers demonstrated that the presented mathematical models are able to
solve instances for corridors or regional areas (Fig. 7.6) in several case studies. In [3]
optimal track allocations for approximately 40 km from Brig to Domodossola and
back for a single day are computed and verified by simulations. In Fig. 7.5 the mi-
croscopic infrastructure of the Simplon corridor based on the simulation tool [23],
is shown. The microscopic network consists of 1154 nodes and 1831 edges where
roughly 200 trains can be scheduled a day.

To the best knowledge of the authors, there are no commercial software solutions
providing fully automated timetabling by using the discussed optimization models
and methods. Railway infrastructure manager use mainly tailor-made decision sup-
port tools provided by their in-house development teams.

railML.org is a major initiative towards a standardization of data for the rail-
way industry which started 2002, see www.railml.org. Since then, there are some

www.railml.org


156 Gabrio Caimi, Frank Fischer, and Thomas Schlechte

Fig. 7.5: Microscopic network of the Simplon corridor in Switzerland and detailed
representation of station Iselle

large and promising undertakings from the industry and the research community to
bridge the gap between theoretic case studies and real-world applications. Never-
theless, we believe there is a huge opportunity to fill this gap between theory and
practice in this particular application. On the scientific side, there are powerful tech-
niques to increase the tractability of those models. But, on the practical side due
to technical details on several layers, peculiarities of the dedicated railway system,
and a complex human interaction the technology transfer is very challenging. The
research community together with railway companies must work on defining stan-
dard processes such that the work will be then aligned and synergies can be created.
This will give software vendors a real possibility to offer a standardized software on
the market.
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Fig. 7.6: Macroscopic network of Baden-Württemberg (roughly 10% of the German
railway network) from an instance with 6 h planning horizon and about 2000 trains.
Each triangle denotes the current position of one train (long distance (red), short
distance (blue), freight (black))
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Abstract Deutsche Bahn, one of the largest European railway companies, offers
mainly two products to commercial and industrial customers for freight transporta-
tion. Customers with high demand order unit trains, that are pulled by one or two lo-
comotives from their respective origins to their destinations. In contrast, customers
with less demand order a limited amount of single cars, that are first pulled to a
classification yard. There they are grouped together with single cars from other cus-
tomers into a train unit. On the way from their respective origins via intermediate
yards to their destinations, the cars are reclassified several times, which is a time-
consuming and personnel-intensive procedure. To support the strategic long-term
planning process of the single car freight routing, a mathematical optimization tool
based on mixed-integer nonlinear programming was developed and is in practice
use since 2011. However, real-world constraints have changed over the last years.
For example, unit trains and single cars are no longer strictly separated products,
but they are more and more integrated: In some unit trains there are still residual
capacities that can be used for single cars. For some of these additional new require-
ments, the existing optimization tool has to be extended slightly by formulating new
additional mathematical constraints. For some other requirements, a substantial re-
development will be necessary in the future. The purpose of this chapter is to review
the existing single car routing model, to discuss how it is used in real-life, and to
demonstrate how it can be extended to meet the new requirements in the present and
future.

8.1 Introduction

At the major German railway company Deutsche Bahn (DB), the rail freight trans-
port is separated into single car transportation and transportation of unit trains. Cus-
tomers with high shipment demand (e.g., 20–30 cars) order unit trains to transport
their goods via rail. The unit trains are pulled by a set of locomotives from their
origin to their destination. In contrast, customers with less demand order only a
limited amount of single cars (e.g., 1–5 cars). To route these single cars through
the network, a locomotive pulls the cars to the next classification yard, where they
are grouped together with single cars from other customers to be transported again
to the next yard. On the way to their final destination the cars are reclassified sev-
eral times. A route is defined by the sequence of yards cars of a certain order pass,
beginning with their origin and finishing with their destination.

The problem of routing single freight cars was modeled as a mixed-integer non-
linear program, see Fügenschuh et al. [11] and Homfeld [13]. This model is used in
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practice for strategic long-term planning and simulation purposes at DB since 2011.
Input is a predicted or real demand matrix and the German rail freight network in-
cluding all yards and tracks that can be used by freight cars and trains. As the whole
German network is too large to be solved in acceptable time, the network is aggre-
gated. To do this, DB uses a hierarchy of yards that basically depends on the size and
handling capacity of a yard—Rangierbahnhof (Rbf) is the largest, Knotenbahnhof
(Kbf) and Satellit mit Rangiermitteln (SmR) follow. The Güterverkehrsstelle (Gvst)
is the smallest hierarchy class. There is no exact definition to this classification but
it helps defining a hub structure that is typical for this kind of problem. There are
several algorithms for aggregation and disaggregation of the network.

There are many applications for this model already. The main application is find-
ing optimal routes for future rail freight cars to predict the load of the railway net-
work and identify bottlenecks in yards and tracks. For this, the yard constraints are
relaxed to review the actual yard usage of the optimal routing solution for supporting
yard re-dimensioning decisions. Other applications include decision support in call
for proposals when new transportation networks are to be designed from scratch.

Furthermore, real-world constraints have changed since 2011. For example, unit
trains and single cars as two separated products are merged step by step: Some unit
trains contain residual capacities, that can be used for single cars in a first step. Both
entities are connected to build a full unit train.

For a company with a huge variety of projects, it would be obviously too ex-
pensive and too time-consuming to develop an optimization model and algorithm
for every new application or changed constraint. From this point of view, flexible
models are desired that can help a project team within days rather than months.

From a mathematical point of view, the existing model, which is introduced in
Sect. 8.3 on page 164 is already quite powerful. It is a multicommodity-flow prob-
lem with both linear and fixed costs, with node capacities, out-degree-constraints
and path restrictions.

We show how a smart parametrization and small changes (if any) to the model
provide solutions for a variety of different practical applications.

8.2 Survey of the Literature

The single car rail freight transportation problem first emerged in the literature in
the 1960s. For a survey of the approaches that were published till 1980 we refer
to [2]. Different model formulations were presented by Bodin et al. [6], Assad [3],
and Crainic et al. [9]. Keaton [16] presented a model that focuses on train building
instead of car routing.



164 A. Fügenschuh, H. Homfeld, M. Johann, H. Schülldorf, and A. Stieber

Newton [17] developed a model for a more general network budget design prob-
lem (BDP). The author formulated the railroad blocking problem (RBP) as a BDP
with additional constraints. The single car routing problem is similar to the railroad
blocking problem, but there are differences. One difference results from the fact,
that German trains are restricted to a maximum length, usually of 700 m due to the
length of bypass tracks in the German railway network. Freight trains are parked
on the bypass tracks when faster passenger trains pass by. The consequence of this
fact is, that a block of cars with a length of 710 m results in much higher train costs
than a block with a length of 690 m, because the first one needs two trains. Another
difference compared to the RBP is, that in our model shipment is not routed over the
shortest path, instead we minimize train costs as a main component and have to add
additional constraints that model the unique successor rule to prohibit distinct ways
between a pair of origin-destination (OD) nodes. For a more detailed comparison
between European and North American railway systems, we refer to [8].

An arc-based model was presented by Ahuja et al. [1]. Despite the special appli-
cation context, the single car routing problem has similarities to the broader class
of network design problems, see Balakrishnan et al. [4] for a general survey. Sim-
ilar structures occur, for example, in the design of telecommunication networks,
see Bley [5].

8.3 Model Formulation

A model for the single car railway freight routing problem was presented in [11].
Deutsche Bahn based its strategic analysis and simulation of the single car routing
on this model since 2011. For the reader’s convenience we give the model formula-
tion in a concise way as a general basis, so that we can concentrate on present and
future adaptations of the model to different application cases.

The model described in [11] is a nonlinear mixed-integer programming prob-
lem, which is linearized, so that linear programming based branch-and-cut (MILP)
solvers, such as [14], can be used for the numerical solution of given instances. For
an overview of the symbols used in the model formulation we refer to Table 8.1.
Some of the model parameters refer to a certain time period, usually assumed to be
one “model day”, which is an abstract 24 h period of weighted averaged transporta-
tion demands, that were aggregated over a longer period (usually 3–6 months).

To formulate the model, three families of integer variables are introduced. The
routes of the cars are described by decision variables xp

i, j ∈ {0,1} for all arcs (i, j) ∈
A and orders p ∈ K. It is xp

i, j = 1, if and only if station j is the successor of station
i in the route for the cars belonging to order p. The second decision of the model
is the number of trains from station i to j, for which we use the integer variables
ni, j ∈ Z+. Finally, we introduce the integer variables yi, j ∈ Z+, that decide on the
number of sorting tracks at station i on which trains are assembled exclusively in
direction of station j.
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The objective is to find economically optimal car routes, where the most crucial
cost component is the number of train kilometers. The other two components are of
less importance: the amount of used infrastructure (number of sorting tracks) and
the number of car kilometers.

min α1 · ∑
(i, j)∈A

δi, j ·ni, j +α2 · ∑
(i, j)∈A

yi, j +α3 · ∑
p∈K,(i, j)∈A

δi, j · xp
i, j, (8.1)

where α1,α2,α3 are user-defined weight parameters to give a human planner some
control on the global shape of the solution.

The necessary constraints can be assigned to three major groups: constraints for
the orders, for the trains and for the yards. The central constraints of the first group
are the multi-commodity flow conservation equations:

∀i ∈V, p ∈ K : ∑
j:(i, j)∈A

xp
i, j − ∑

j:( j,i)∈A

xp
j,i =

⎧
⎨

⎩

1 if i = op,
−1 if i = dp,

0 otherwise.
(8.2)

Table 8.1: Symbols used in the model formulation

Type Symbol Meaning

Sets
V Stations (yards and terminals)
A Links between stations
K Customer orders

Indices
i, j,k Stations (∈V )
p,q Orders (∈ K)

Parameters

op Origin of order p
dp Destination of order p
vp Number of cars of order p
�p Length of cars belonging to order p
wp Weight of cars belonging to order p
Tp Maximal travel time for order p
ui (Constant) waiting time at yard i
Hi Maximal car capacity at yard i
Ni Maximal number of trains on sorting track at yard i
Yi Number of available sorting tracks at yard i
δi, j The distance between stations i and j
ti, j Travel time from i to j including constant coupling times
Li, j Maximum length of trains between i and j
Wi, j maximum weight of trains between i and j

Variables
xp

i, j ∈ {0,1} Decision variable, = 1 iff order p goes from i to j
ni, j ∈ Z+ Decision variable on the number of trains from i to j
yi, j ∈ Z+ Decision variable on the number of sorting tracks from i to j

Typically, the operating rail freight company offers different services of trans-
portation such as express, premium, or standard (delivery within 24, 48, and 72 h
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respectively). The given input parameter ti, j denotes the travel time from station i
to j, including all constant times for coupling in yard i and decoupling in yard j.
By wp

i, j we denote the waiting time of the cars of order p spent in station i in the
direction of station j. The time limit constraints ensure feasibility of the subsequent
steps in the planning process:

∀p ∈ K : ∑
(i, j)∈A

wp
i, j + ti, j · xp

i, j ≤ Tp. (8.3)

The waiting time is a variable, that depends on the number of assembled trains on
the respective sorting track. As soon as enough cars have been assembled on the
sorting track, they are connected to a new train and re-enter the network to travel
to the next station. Consequently, the number of trains assembled per time period
on a particular sorting track ni, j and the waiting time wp

i, j of the cars of order p are
related in the following way:

wp
i, j =

T
ni, j

· xp
i, j, (8.4)

where T denotes the maximum waiting time for cars in a classification yard if only
one train departs per day. Equation (8.4) introduces a nonlinear constraint into the
model formulation. There are several options to deal with this nonlinear constraint,
that is, to linearize it. For the details we refer to [11].

Each yard i has a maximum capacity of cars Hi that it can handle per time period.
For large yards this value refers to the respective hump capacity, while for flat clas-
sification yards it refers to their shunting capacity. We may formulate the capacity
restrictions by the following constraints:

∀i ∈V : ∑
p∈K, j:(i, j)∈A

vp · xp
i, j ≤ Hi. (8.5)

Another station dependent parameter is the number of trains that can be assem-
bled per time period on a single sorting track Ni. Thus we get the constraints:

∀(i, j) ∈ A : ni, j ≤ Ni · yi, j. (8.6)

Each yard i has a total number of sorting tracks Yi, which leads to the following
capacity limit of assigned sorting tracks:

∀i ∈V : ∑
j:(i, j)∈A

yi, j ≤ Yi. (8.7)

The trains have an upper bound on the total length and weight of the cars due to
the length of bypass and sorting tracks and due to the strength of Deutsche Bahn
locomotives. If Li, j denotes the maximum length of trains between i and j and Wi, j

the maximum weight respectively, the following constraints have to be satisfied:
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∀(i, j) ∈ A : ∑
p∈K

�p · xp
i, j ≤ Li, j ·ni, j. (8.8)

∀(i, j) ∈ A : ∑
p∈K

wp · xp
i, j ≤Wi, j ·ni, j. (8.9)

The unique successor constraints model the way of operating the classification
yards. More precisely, if two different orders that share the same destination meet
at some station in the network, they are not allowed to split up their paths from then
on and therefore enter the same yards till the destination:

∀p,q ∈ K, p �= q,dp = dq, i ∈V,(i, j1),(i, j2)∈ A, j1 �= j2 : xp
i, j1

+xq
i, j2

≤ 1. (8.10)

If we do not include constraints (8.10) into the formulation, we will obtain a model
for the blocking of cars, a similar operational mode for classification yards.

The following constraints refer to the structure of the car routes with the aim
of achieving a model formulation that a MILP solver is able to solve faster. The
general idea for these kind of constraints was introduced in [10] under the term
heuristic cuts. Heuristic cuts are not exact in the way that they do not cut off parts
of the feasible solution. To impose a certain structure of the routes, a hierarchy level
hi for each station i ∈ V is introduced. The larger the station, the smaller the value
of hi. Cars first ascend in the hierarchy from small to large yards, then stay for a
while on that level, and finally descend from large to small again. Not all shipments
have to go to the highest level. In particular, when the transport distances are short,
the routes may stay more often on the lower levels. However, for long-distance
transports the routes typically go to higher levels as quickly as possible, because
there are enough capacities to reassign many cars to new trains while in lower levels
you can reclassify only few trains. For any car it is not allowed to ascend in the
hierarchy level after a descent. This behavior is ensured by the following hierarchy
constraints:

∀ j ∈V, p ∈ K : ∑
i:(i, j)∈A,hi≤h j

xp
i, j + ∑

k:( j,k)∈A,h j≥hk

xp
j,k ≤ 1. (8.11)

For a better understanding of these constraints we refer to a family’s holiday journey
on the roads. Here a vehicle may start on small roads in a residential area, then uses
streets to finally enter the motorway. Usually the vehicle is on the motorway for the
main part of the journey. Then the other way round it takes streets and small roads
to get to his destination.

8.4 Model Adaptation

The presented model was successfully deployed for DB’s strategic long-term
planning of single car rail freight transport. A screenshot of the graphical user
interface of the planning system with a national scenario running is shown on
page 169 in Fig. 8.1. Over the years, some requirements changed and new ones
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arose. We describe the upcoming situation referring to different application cases
and present how to cope with the new requirements through adaptations to the
optimization model.

8.4.1 Interlocking of Unit Trains and Single Cars

Customers of DB Schenker Rail (DBSR) have to specify the number of cars to be
transported as well as the corresponding times in the new business model in much
more detail and in advance, see Novak [18]. This gives DBSR the ability to provide
a more reliable transport plan for their customers. An early capacity checking is
possible while taking into account the entire network and concentrating on traffic
flows. This results in the identification of block trains. Block trains are unit trains
that have residual capacities in train length and weight. The unit trains are filled with
a sufficient number of single cars that have a similar destination nearby, so that the
train then is maximal in length or weight. These unit trains can be transported over
long distances without reclassification at yards. The new blocking concept provides
more reliable planning, more stable and often faster transportation, saves production
costs and aims to an optimal use of existing resources. First parts of the new concept
have been in use since the end of 2012. The new business model is going to be
implemented gradually. For more information we refer to [12].

According to the blocking concept, unit trains as long as they provide free capac-
ities do no longer use a direct trip from their origin to their destination, but have to
stop at intermediate yards to take and unload single cars. Since unit trains often are
imposed by tight time restrictions, they do not need to be classified in these inter-
mediate yards. For the model adaptation, this means we have to consider two sets of
orders. KS is the set of customer orders for single cars and KU is the set of customer
orders for unit trains with residual capacities, where the set of all customer orders is
K = KS ∪KU . Then we can use the basic model formulation as follows.

Flow conservation (8.2), time limit constraints (8.3) and (8.4), capacity con-
straints (8.5), (8.6), (8.7), (8.8), and (8.9) as well as the unique successor rule (8.10)
have to hold for the set of orders K. The hierarchy constraints only have to be satis-
fied for the set of single car orders:

∀ j ∈V, p ∈ KS : ∑
i:(i, j)∈A,hi≤h j

xp
i, j + ∑

k:( j,k)∈A,h j≥hk

xp
j,k ≤ 1. (8.12)

Since the unit train orders are built for long-distance transport without being reclas-
sified very often, the hierarchy constraints do not have to be fulfilled.

Unit trains are not classified at intermediate yards, even if they stop at a hump
yard, they will not be pushed over the hump for classification. However, unit
trains occupy classification tracks and shunting resources for coupling and decou-
pling of single cars at the respective yards, they have to satisfy the yard capacity
restriction (8.5).
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In general, unit trains hold more narrow time restrictions than single cars to
travel from their origin to their destination. Due to this reason hierarchy constraints
(heuristic cuts) as in (8.12) are not imposed on the unit train orders. Hence, unit
trains are able to traverse the railway network in a more flexible way.

8.4.2 Hierarchy Constraints Revisited

Hierarchy constraints provide a significant contribution to the solvability of the pro-
posed basic model (8.1), (8.2), (8.3), (8.4), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), and
(8.11). However, planning processes in recent years unfolded that this issue needs
to be reconsidered. Hierarchy cuts are based on certain hierarchy level assigned to
each classification yard. Each car has to follow the described structure of ascending
from small to large yards, staying there for a while and descending from large to
small yards again. It turned out that these constraints are too restrictive compared
to the practical planning process. However, introducing hierarchy cuts is extremely
beneficial for calculation time. To completely remove the cuts from the model would
result in practically unsolvable problem instances.

One possibility to deal with this question is to assign new hierarchy levels to the
yards, which may also depend on some characteristics of the local region, yard size
and order. As an example, consider a medium-sized yard near an automobile factory
having a certain number of long-distance unit trains. For some single cars, originat-
ing in that local region and having the same destination as the long-distance unit
trains, the yard can be regarded as a large yard. Since the hierarchy cuts are formu-
lated for a pair of yard and order, the specification of hierarchy level and constraints
can be done for each of those pairs separately to embed special characteristics of
the yards. This gives slightly more flexibility for the solution space, but on the other
hand does not lead to entirely unsolvable instances.

Another way to deal with this issue is to perform a kind of sensitivity analysis.
All hierarchy constraints are kept in the model as they are and the routes in the final
solution are analyzed. In case there are routes, that take the maximum number of
hierarchy levels (i.e., no hierarchy level is left out), a re-optimization is performed
removing the hierarchy cuts only for the respective orders of the routes. If the re-
optimization results in better global optimal values, these solutions will be used.
This procedure is then repeated in an iterative fashion.

8.4.3 Waiting Time Revisited

The goal of this adaptation is to implement a more detailed description of the wait-
ing time in classification yards. Railway freight shunting is a very complex proce-
dure, where Chap. 9 provides a good insight. Recall the waiting time from the basic
model, wp

i, j is described in (8.4). This number represents the time, cars of order p
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have to wait on a sorting track (i, j) to be assembled to a train, that then re-enters the
network. However, if the number of cars, that enter yard i for classification, reaches
a certain yard specific threshold (which is below the hump capacity Hi), congestion
starts and classification of cars needs additional time due to the high car volume in
the yard. This threshold is denoted by Si. As soon as the number of cars goes further
beyond Si the average delay for each car will increase even faster. A common way to
model the connection between the number of cars using a certain infrastructure and
the resulting delay is to apply a capacity restraint (CR) function. These functions
were first developed for describing jam situations in road traffic [15, 20], and [7] ap-
plied it to railway freight transport. Likewise we apply the adjusted and simplified
version of the CR function to model the average delay

τ
(

mi

κi

)β
,
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Fig. 8.2: CR functions with τ = 1, κi = 1000 and β ∈ {2,4,7,15}

where τ denotes the running time, κi the capacity limit of yard i, mi the number
of cars at yard i and β controls the growth of the penalization. Since we have no
running time for traversing a yard, we use τ as a scaling factor. Assuming there is a
maximum capacity limit Hi > Si for yard i, we have κi = Hi − Si. Congestion only
occurs, when the number of cars is between Si and Hi. We denote the new additional
waiting time by wi and the number of cars, that are processed in yard i during a
certain time period by

mi = ∑
p∈K, j:(i, j)∈A

vp · xp
i, j.
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With this, wi is defined in the following way:

wi =

⎧
⎨

⎩

0 if mi < Si,

τ ·
(

mi −Si

Hi −Si

)β
if Si ≤ mi ≤ Hi.

(8.13)

A visualization of the nonlinear CR function is given in Fig. 8.2. The respective time
limit constraints of the basic model (8.3) change to

∀p ∈ K : ∑
(i, j)∈A

(wp
i, j +wi · xp

i, j + ti, j · xp
i, j) ≤ Tp. (8.14)

Techniques for a linear approximation of (8.13) are described in [7]. The term wi ·xp
i, j

in (8.14) can be linearized using a straight-forward big-M formulation.

8.4.4 Restraint Order Acceptance

A further application for the basic model is in the area of marketing. So far, it is
assumed that the set of orders is considered as fixed input data. Clearly, some or-
ders require a higher effort for DB when being transported, mainly because they
emerge in regions with little traffic. In such situations it might be more economical
to transport these orders by other means of transportation, namely by trucks. With
the modifications described below, the model can be used to identify these critical
orders.

The idea is to introduce slack variables sp for each order p ∈ K into the flow
conservation constraints, to prevent all orders from being realized. The flow conser-
vation constraints from the basic model are adjusted in the following way:

∀p ∈ K, i = op : ∑
j:(i, j)∈A

xp
i, j − ∑

j:( j,i)∈A

xp
j,i − sp = 0,

∀p ∈ K, i = dp : ∑
j:(i, j)∈A

xp
i, j − ∑

j:( j,i)∈A

xp
j,i + sp = 0,

∀p ∈ K, i ∈V, i �= op, i �= dp : ∑
j:(i, j)∈A

xp
i, j − ∑

j:( j,i)∈A

xp
j,i = 0.

Additionally, a penalization term is inserted into the objective function. That means,
we extend the objective function (8.1) from our basic model as follows:

min α1 · ∑
(i, j)∈A

δi, j ·ni, j +α2 · ∑
(i, j)∈A

yi, j +α3 · ∑
p∈K,(i, j)∈A

δi, j · xp
i, j +α4 · ∑

p∈K
sp,

where α4 is a scaling factor. It prevents all orders resulting in higher scaled costs
than the value of α4 from being scheduled. The orders that were not accepted are
analyzed step by step according to their costs. The information that the realization
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of an order is highly expensive is then used by the planning department to enter into
negotiations with the corresponding customer.

8.4.5 A Multi-Period Approach Towards Robust Planning

Planning is done for a certain period of time, usually it is referred to one abstract
model day (24 h). However, the demand (set of orders) is not constant over a week,
it usually changes from one day to the other. In order to plan trains, locomotives

A B

C D

E F

100100

150150

100100

1010 1010

10101010

demand for
first day: 1 train

demand for
second day: 1 train

A B

C D

E F

100100

150150

100100

1010 1010

10101010

demand for
standard day: 0.5 trains

demand for
standard day: 0.5 trains

Fig. 8.3: The left figure shows a network with different demands for a period of 2
days. The right figure shows the average demand on a standard day. The respective
routes are visualized by black solid lines

and staff currently a single train schedule is computed from the proposed model.
Therefore, the given demand values are accumulated over a certain period of time
(e.g., a season of 3–6 months), and average values for one standard day are used
as input demand. Based on these average values a basic schedule is computed and
rolled out to every single day. This schedule will only be suitable if transportation
demand varies slightly. In case the demand significantly differs from one day to the
other, the quality of the resulting optimal solution may be weaker, as the example in
Fig. 8.3 demonstrates. Here, a network with six nodes A,B,C,D,E and F is given.
Train operation cost for one train traversing an arc is given on the respective arc.
In the left picture, there is a demand of one train from node A to node B and from
node E to node F on the second day. In case that average demand values are used
as input data, we obtain a demand of 0.5 trains for each of both days between nodes
A−B and E −F , as depicted in the right figure. This leads to scheduled trains from
A to C, E to C, C to D, D to B and D to F on both days, resulting in an objective
function value of 2 · 190 = 380. In case orders of different days are not combined
for scheduling as described in the left figure, we obtain an objective function value
of 2 ·100 = 200.
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There is a need for a schedule, that is robust against errors induced by averag-
ing orders over a certain period of time. One way to achieve this, is to compute a
schedule for every single day of the period. Let us consider the set of days P that
have to be differentiated. Then we introduce a set of links B ⊆ K×P between orders
and their specified days. The tuple (p,r) ∈ B denotes an order p ∈ K of a customer
with the specified day r ∈ P the order p refers to. The decision variables xp

i, j then
change to xp,r

i, j and ni, j to nr
i, j respectively. We have that xp,r

i, j = 1 if and only if order
k that is specified for day r goes from i to j, and nr

i, j ∈ Z+ represents the number of
trains from i to j on day r. The basic model may be adjusted as follows to fit to the
described situation:

min α1 · ∑
r∈P

∑
(i, j)∈A

δi, j ·nr
i, j +α2 · ∑

(i, j)∈A

yi, j +α3 · ∑
(p,r)∈B,(i, j)∈A

δi, j · xp,r
i, j , (8.15)

∀i ∈V,(p,r) ∈ B : ∑
j:(i, j)∈A

xp,r
i, j − ∑

j:( j,i)∈A

xp,r
j,i =

⎧
⎨

⎩

1 if i = op,
−1 if i = dp,

0 otherwise,

∀(p,r) ∈ B : ∑
(i, j)∈A

wp,r
i, j + ti, j · xp,r

i, j ≤ Tp,

wp,r
i, j =

T
nr

i, j
· xp,r

i, j ,

∀i ∈V : ∑
(p,r)∈B, j:(i, j)∈A

vp · xp,r
i, j ≤ Hi,

∀(i, j) ∈ A,r ∈ P : nr
i, j ≤ Ni · yi, j,

∀i ∈V : ∑
j:(i, j)∈A

yi, j ≤ Yi,

∀(i, j) ∈ A : ∑
(p,r)∈B

�k · xp,r
i, j ≤ Li, j ·nr

i, j,

∀(i, j) ∈ A : ∑
(p,r)∈B

wk · xp,r
i, j ≤Wi, j ·nr

i, j,

∀(p,r),(q,r) ∈ B, p �= q,dp = dq, i ∈V,(i, j1),(i, j2) ∈ A, j1 �= j2 :

xp,r
i, j1

+ xq,r
i, j2

≤ 1,

∀ j ∈V,(p,r) ∈ B : ∑
i:(i, j)∈A,hi≤h j

xp,r
i, j + ∑

k:( j,k)∈A,h j≥hk

xp,r
j,k ≤ 1.

We mention that this model is very similar to the approach of [19] with the difference
that in our model the number of trains can differ on each day, whereas Voll suggested
that also the number of trains have to be the same on each day for reducing planning
efforts and operational advantages.
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Due to the increased number of variables and constraints, the proposed model
may not easily being solved by standard optimization software. However, an optimal
solution to (8.15)–(8.25) will lead to a robust schedule, since each day is considered
separately.

8.4.6 Moving Horizon

In Sect. 8.4.5 we discussed how the model can be adapted to produce robust plans in
the sense that for different OD-matrices the assignment of the classification tracks is
the same, while the number of trains may differ. Now we present another possibility
how our model can be adapted to optimize different OD-matrices for each day of 1
week.

Note that—while optimizing one particular day—the travel times of orders might
be much higher than 1 day, i.e., the orders are affecting the next day. This was no
problem, because the OD-matrix was the same every day. However, if we dismiss
our assumption of a recurrent OD-matrix, there is the consequence that we have to
consider orders that remained from the previous day.

In Sect. 8.4.4 we showed a way how to model that an order can be declined, if
its production cost are too high. We can use this idea with another intention: instead
of generating an additional train, we leave an order for the next day. If we apply
our model for consecutive days, we will add the remaining orders to the following
OD-matrix, while prohibiting that it is left on two consecutive days.

This idea does not work properly though. In the formulation of Sect. 8.4.4 a de-
clined order is always left at its origin, while in the new interpretation we would like
to ship an order as far as possible towards its destination, unless there is no space in
the train left on the current day.

This can be modeled with the following extension of the formulation. We use the
formulation of Sect. 8.4.4 but we add an additional index i to the slack variable sp

with sp
i = 1, if order p is left at station i and 0 otherwise. Thus we change the flow

conservation constraints to:

∀p ∈ K, i = op : ∑
j:(i, j)∈A

xp
i, j − ∑

j:( j,i)∈A

xp
j,i − sp

i = 0,

∀p ∈ K, i �= dp : ∑
j:(i, j)∈A

xp
i, j − ∑

j:( j,i)∈A

xp
j,i + sp

i = 0.

Note that we do not need a particular constraint for the destination since the
meaning of sp

i that order p is left in station i also applies for the destination.
Now to model that the order is shipped towards its destination we have to set the

right costs. Let Dp(i) denote the distance of node i to the destination of order p. The
coefficient of the slack variable sp

i depends on the distance to the destination: the
closer the station i is to the destination, the lower the costs.
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min α1 · ∑
(i, j)∈A

δi, j ·ni, j +α2 · ∑
(i, j)∈A

yi, j +α3 · ∑
p∈K,(i, j)∈A

δi, j · xp
i, j +α4 · ∑

p∈K
Dp(i) · sp.

Note that, since Dp(dp) = 0, there is no penalty term if an order reaches its
destination. This formulation can be regarded as a generalization of the formulation
in Sect. 8.4.4 in the sense that it is possible to fix sp

i = 0 for all i �= dp.
With this extension we can now set up a moving horizon. We define our horizon

as a time span—1 day, for example—and reduce the maximum transportation times
of all shipments to this time span. If an order has a maximum transportation time
less than the time span, it will not be changed. Now we apply our model to this
first time window, obtaining positions of each order at the end of that time span
evaluating sp

i = 1. For the second time span, i.e., the next day, we add all orders
from the previous day to the OD-matrix that are not at their respective destination.
For those orders, we reduce the maximum transportation time by the time span, i.e.,
1 day.

With this framework, it is easy to set up more sophisticated techniques such as
adding “urgency” by increasing penalty costs for orders that have a high Dp/Tp

ratio, meaning that an order has to travel a rather large distance in a short time.
Also, it is possible to use overlapping time windows in a way that the routing of an
order from the previous time span can be revised in order to obtain a better overall
solution.

By this formulation, the model size would increase by considerably |V | · |K| vari-
ables. However, if the time span is sufficiently small, such as 6 or 12 h, the number
of orders will be reduced significantly.

8.4.7 Less-Than-Truckload Optimization

Besides rail freight traffic, DB Schenker Logistics is also one of the five biggest road
freight transportation company. Hence, our methods for modeling and solving the
car routing problem were also re-used to solve routing problems for road traffics.
This refers to the class of less-than-truckload (LTL) problems. The main difference
is the following. In rail freight transportation, we had a bilevel structure of entities:
the customers have wagons, which are assembled into trains. Now, in road freight
transportation, we have in fact a trilevel structure. The customers have loads on pal-
lets. The pallets are grouped into swapbodies (containers), and the containers are
transported by trucks, where each truck can carry one or two swapbodies. Swap-
bodies can be moved between trucks without being opened. In a terminal, a gate is
assigned to another terminal, i.e., the swapbody at that gate will be moved to the
respective terminal where it will be unloaded. It is possible that the pallets then are
assigned to another gate for a further terminal until they finally reach their respec-
tive destination. Also, it is possible that after departure of one swapbody, another
swapbody is used for the same destination. The overall objective is to deliver all
pallets to their destination with minimal costs.
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We can solve this problem heuristically by applying our model twice. First, we
consider the assignment of pallets to swapbodies. To apply our model, we regard a
terminal as station, the gates as classification tracks, and swapbodies as trains. The
pallets can be seen as the orders in our model. By this interpretation, we can set
the costs and parameters like capacities of the swapbodies and handling costs in the
terminal. In the first run we optimize the assignment of pallets to swapbodies and
obtain the number of swapbodies between the terminals as a result. For the second
run, we consider the swapbodies as orders where origin and destination of the order
correspond with origin and destination terminal of the swapbody. The volume of the
order is the number of swapbodies on the particular OD-pair. Now we have trucks—
regarded as trains in our model—carrying the swapbodies. A truck has the capacity
of two swapbodies. The objective for the second run is to move all swapbodies from
their origin to their destination at minimal transport costs that are linear in truck
kilometers.

We applied this method in several projects for DB Schenker Logistics. It turned
out to be very effective, and the solutions of this heuristic were regarded as very
plausible and accepted by the planners. Note that we used the original model de-
scribed in Sect. 8.3 and did not change a single line of code for solving this LTL
problem.

8.5 Conclusion

We presented a model for freight train car routing, that is in use at DB since 2011
for strategic planning and simulation purposes. Over the years, several demands
and new application scenarios emerged, that require an adaptation of the model by
adding new constraints, so that it is able to cope with these new scenarios. In most
cases, the modifications can easily be carried out, because the modifications are just
modest. However, the request of a robustification of the model is severe, so that
it would require to think about the solution process for a longer time in a future
research project.

The situation at DB shows that today the railway freight market is such a dy-
namic environment, that once established optimization tool have a very short life-
time in practice, and require a constant and continuous modification and extension
to newly emerging demands. For DB (or any large railway company) it is thus vital
to have a team of highly specialized experts in Operations Research, Mathematics,
and Computer Science at hand, that are able to understand the algebraic models,
formulate new requests as constraints, and work on numerical solution algorithms,
and, equally important, are able to speak the same language as railroad practition-
ers, in order to implement the solutions back in the company’s planning process,
and demonstrate a value added over the still dominating manual planning.
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Chapter 9
Optimization of Railway Freight
Shunting

Markus Bohlin, Ronny Hansmann, and Uwe T. Zimmermann

Abstract Railway freight shunting is the process of forming departing trains from
arriving freight trains. The process is continuously performed at rail yards. The
shunting procedure is complex and rail yards constitute bottlenecks in the rail freight
network, often causing delays to individual shipments. One of the problems is that
planning for the allocation of tracks at rail yards is difficult, given that the planner
has limited resources (tracks, shunting engines, etc.) and needs to foresee the con-
sequences of committed actions for the current inbound trains.
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The required schedules highly depend on the particular infrastructure of the rail
yard, on the configuration of inbound and outbound trains, and on the business ob-
jectives. Thus, new optimization tools as active decision support for the dispatchers
are closely tailored to the actual processes. Due to its practical relevance, a broad
range of variants has been discussed and solved by the scientific community in re-
cent years. For selected relevant variants, we describe their fruitful relation to scien-
tific research topics such as graph coloring, sequence partitioning, and scheduling,
we discuss their computational complexity and approximability, and we outline ef-
ficient optimization procedures.

In particular, we consider a set of models and algorithms which are applicable
in practice, and discuss their application to the shunting yards in Ludwigshafen,
Germany and in Hallsberg, Sweden. We also discuss similarities and differences
between the different approaches and outline the need for future research.

9.1 Introduction

Railway freight transportation is a classical application area of operations research;
a recent overview is given by Nemani and Ahuja [61]. In the literature, much of the
focus has been on railway freight in the U.S., where the infrastructure is typically
owned by the operator, freight trains are longer and heavier and the market share
for rail freight is higher than in Europe. For freight operations in particular, the
railroad blocking problem, which considers the formation of a cost-minimal freight
transportation plan, has been studied. In this problem, freight yards are considered
on a macroscopic level, and operations within the yard are not relevant.

However, this chapter is concerned with operations research approaches for
freight yard planning on a microscopic level, where the actual car movements and
shunting operations are considered. Consequently, the various solution methods for
the railroad blocking problem (cf. [1, 5, 7, 38, 46, 51, 62, 69]) are not directly ap-
plicable.

9.1.1 Classification Problems in Classification Yards

Railway freight transportation offers two distinct types of services. In full train load
service, all cars of a single train have the same origin and destination, while in
car load service, cars can have different origins and destinations. In the latter case,
freight trains are typically composed of individual cars, which share some legs of the
full journey. Transportation in a car load service involves one or more break-up and
formation steps, which are performed at specialized rail yards called classification
yards (also shunting yards, marshalling yards and hump yards). The services offered
at a classification yard include the following:
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• Arrival and departure: car registration.
• Arrival and departure: inspections, wherein cars are checked for damage.
• Corrective maintenance of cars which fail inspections.
• Decoupling of arriving trains (and coupling of departing trains).
• Train formation, i.e., assigning outbound cars to departing trains according to

destination.
• Train sorting, i.e., arranging the cars of a departing train according to a preferred

car order.
• Parking empty freight cars.

To enable these services, shunting yards are quite complex, and contain several
side tracks and smaller yards. The layouts of three shunting yards in Sweden are
shown in Fig. 9.1. Planning all above-mentioned services and operations in the entire
yard results in crucial, challenging tasks for the dispatchers. Uncertain arrival times,
ad hoc changing orders of inbound cars, tight capacities, and financial constraints
complicate the process and offer large potential for optimization.

In this chapter we focus on classification problems (CP) modelling train forma-
tion and train sorting as performed in a part of the shunting yard commonly named
as classification bowl. A solution of a CP assigns any inbound car of an arriving
train to a departing train. In more detail, a solution describes a schedule of the car
movements into and out of the so-called sorting tracks of the classification bowl.
Optimal solutions describe most efficient classification schedules for transforming
a fixed sequence of inbound cars into one or many departing trains with regard to
prescribed requirements. Typical goals and measures for the efficiency of a schedule
are discussed in Sects. 9.3 and 9.4.

Profit maximizing selections of inbound cars which can feasibly be shunted to
departing trains are studied in [15]. Other real-world applications with underlying
theoretical problems similar to CP have also been tackled by mathematical opti-
mization approaches: dispatching buses in parking depots, see Gallo and Di Miele
[35] and Hamdouni et al. [41]; stowage planning of containers in container ships,
see Avriel et al. [4]; storage planning of steel slabs in integrated steel production,
see König et al. [55], König and Lübbecke [53], and König [52]; job sequencing on
conveyor or automated storage systems, see Han [42] and Demange et al. [26].

9.1.2 Short Historical Review of Classification Methods

Rearranging cars remains one of the biggest challenges in operating freight railways.
In the literature, first methods for rearranging cars are called sorting schemes. Such
schemes construct a classification schedule for a requested outbound car sequence
without considering the inbound car order. Futhner’s method is one of the oldest
sorting schemes. According to [48], Harry Futhner was the first to apply it in practice
in 1880, i.e., to the parallel dead-ended tracks at Liverpool station.

Over the course of time, similar rule-based methods for rearranging cars were
developed and applied in practice. Among the most famous are the simultaneous,
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Fig. 9.1: Three shunting yards in Sweden. From left to right: Borlänge, Malmö and
Sävenäs

triangular, or geometric schemes. The first articles describing these schemes and
discussing their benefits and drawbacks—[6, 31, 32, 39, 56, 57, 63, 73]—were pub-
lished in railway magazines. On the one hand, the advantage of these rule-based
heuristical methods is their simplicity and transparency; experienced staff exactly
knows what to do, no matter how the inbound cars are actually ordered. On the
other hand, the required sorting may of course finish faster, with fewer tracks and
less shunting operations if it implements an optimal scheme computed by an exact
classification method. In the literature, cf. [54, 66], the oldest such strategy was in-
troduced by the Operations Research group at the Schweizer Bundesbahnen in the
late sixties of the last century. Under the direction of the mathematician Peter Schal-
tegger, they developed and implemented a mathematical optimization algorithm
in FORTRAN IV. Subject to certain assumptions, they could generate an optimal
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simultaneous schedule for the predicted order of inbound cars on a Univac 1107
within seconds. However at that time implementation of computed schedules in
daily operation was due to fail. One reason is that there were no adequate, fast
information management systems for the many employees involved in the process.
Alas, optimization methods did not replace rule-based schemes in practice. The next
three decades produced little methodological progress for train classification. On the
theoretical side, the effectiveness of rule-based strategies for different scenarios was
analysed, e.g., in [2, 3, 20–23, 64, 65, 67, 68].

In the course of time, technical advances in rail yards created the prerequisites
for a convenient use of automatically generated efficient schedules, e.g., automatic
switches and brakes replaced mechanical ones. Moreover, at least in principle, infor-
mation management systems became available. Nowadays a dispatcher may monitor
and control the classification process from a control center, and the few people who
are still physically involved are connected via fast communication networks.

As a consequence, on the practitioners side there is increasing interest for sup-
porting optimization tools. Before the turn of the millennium, practitioners and re-
searchers rarely worked together in this field. However, in recent years, quite a few
joint projects for rail operators and universities were launched. Luckily for the en-
gaged researchers, the underlying theoretical problems turned out to be challenging
as well as beautiful.

For the last decade, publications on shunting and classification problems have in
fact shown to address a hot topic from both the theoretical as well as the practical
perspectives. Recent introductory surveys and literature reviews are given by Boy-
sen et al. [14], Hansmann [43], and Gatto et al. [36]. Relevant references to details
and results are included in Sects. 9.3 and 9.4.

This chapter deals with offline variants of CP where all relevant information is
known in advance. Some online variants of CP are discussed in Hansmann [43].
Since robustness is not a particular issue in this chapter, we just briefly mention
some related literature. For example, robust approaches may allow solutions to be
valid even under disturbances such as delays and deviations in the predicted car
order. In particular, recoverable robustness, in which well-defined recovery actions
can be taken to correct the effects of a disturbance, has been considered for freight
shunting problems, cf. [59]. In general, recoverable robustness models have to be
simplified substantially in order to be tractable, and are therefore mostly of theo-
retical value. The concept was first considered for shunting by Cicerone et al. [18]
for two disruption types (a car being in the wrong place, and a new car being in-
troduced) and different recovery strategies. Büsing and Maue [16] uses the same
concepts and presents a general algorithm for finding a classification schedule that
allows a recovery strategy where k additional sorting steps can be inserted after the p
first steps while minimizing the total number of re-classification steps in the original
schedule.
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At the present time, despite all the mentioned research and developments, there
still exists no active optimization tool as decision support for the dispatchers in most
railway operating companies. One reason may be that it is hard to come up with a
standard approach. The schedules that need to be generated highly depend on the
particular infrastructure of the rail yard, the configuration of arriving and departing
trains, and the requested objective. Thus, algorithms for computing high quality
schedules still have to be tailor-made to the actual yard situation.

9.2 Classification Scheme of Classification Problem Variants

There is a huge number of quite different variants of CP; these result from alter-
native goals, from different assumptions on the track topology, on the necessary
chronology of car movements, or on the requirements for the sequence of outbound
cars in departing trains. In this chapter, the classification scheme and the necessary
notations from [43] are slightly adapted and extended.

First of all, we describe a generic framework including all CP variants. In all
CP variants, we consider a fixed sequence of inbound cars that approaches the clas-
sification bowl on a virtual inbound track, cf. Fig. 9.2. We do not allow that cars
arrive at the same time. If car u arrives earlier than car v, then u has to leave the
inbound track before v. In any variant and for any car, we allow a movement from
the inbound track to a sorting track in the classification bowl (i-t-move) as well as a
movement from a sorting track to a virtual outbound track (t-o-move).

Based on the above-mentioned generic framework, we list further properties and
requirements specifying a particular CP variant.

output/outbound sequence
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classification bowl
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Fig. 9.2: Schematic layout of a classification bowl and car movements
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9.2.1 Track Topology

There are various topologies of the classification bowl depending on the design and
the length of the sorting tracks. In the following, if we speak of tracks we refer only
to these sorting tracks.

9.2.1.1 Design

If the tracks are dead-ends and hence may be accessed only from one side, we speak
of stacks. Note that any two cars parked on the same stack will change their order
from arrival to departure if they are not additionally rearranged or shunted. Under
the same assumption, any two cars preserve their order from arrival to departure
when placed on a queue (queues), which is a one way track where the units arrive
at one end and leave at the opposite side. In the case denoted as stacks/queues, one
may freely decide whether a track is used as a queue or a stack track. Since this is
an unnecessary restriction from practical point of view, this rather is a theoretical
assumption. In the above three cases, both the entrance and exit are only on one—
possibly differing—side of the track, which is known in the literature as siso (single
in single out). In the following track designs, units may arrive at or depart from both
sides of the tracks: sido (single in double out), i.e., entrance is on one side, exit is
on both sides; diso (double in single out), i.e., entrance is on both sides, exit is on
one side; dido (double in double out), i.e., entrance and exit are on both sides. With
respect to the number t of tracks in the rail yard we denote the above-mentioned
track designs by t-stacks, t-queues, and so on.

9.2.1.2 Length

Of course, in real rail yards, tracks are bounded in length. In the general bounded
case, we consider sorting tracks with arbitrary (nonuniform) lengths. In the special
case b-bounded, at most b cars may be placed on each track. Though unbounded
track lengths are seemingly a rather theoretical issue, they may still well be reason-
able from a practical point of view. For a discussion on this, see Sect. 9.5.

9.2.2 Sorting Mode

9.2.2.1 Shunting

Remember, in any CP variant we allow i-t-moves and t-o-moves of the cars. The in-
frastructure and topology of some rail yards may enable further movements from the
virtual inbound track to the virtual outbound track (i-o-moves) or from the sorting
track to another sorting track (t-t-moves), cf. Fig. 9.2. If no t-t-moves are allowed,
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we speak of single-stage variants. Otherwise, we speak of multi-stage variants.
We refer to single-stage variants where i-o-moves are not allowed as ito-shunting
variants (in [43] called “no shunting” variants). A particular multi-stage variant al-
lowing i-o-moves is the so-called hump-shunting variant, practically motivated by
common hump yards, see Sect. 9.4.

9.2.2.2 Timing of t-o-Moves

In sequential variants, t-o-moves of the cars are not allowed before the parking pro-
cess is finished, that is, not before the i-o- or i-t-movement of the last incoming car.
In contrary, in concurrent or anytime variants, the parking process is not separated
in time from t-o-moves. However, in the concurrent case, cars of group g may be
t-o-moved only after the last incoming car of group g is either i-t- or i-o-moved. In
anytime variants, i-t-moves of cars are allowed at any point in time.

9.2.2.3 Splitting

The inbound cars are characterized by a particular distinctive criterion, e.g., their
destination, their designated departing train, or their construction type. We say that
cars satisfying the same criterion form a group.

Let us consider a sequential, ito-shunting variant with the additional require-
ment that the cars depart group by group. Then, it might be reasonable to require
0-split, that is, that all cars of one group are placed (en bloc) on the same sorting
track. Because, then, a shunting engine could carry the cars of one group out of the
classification bowl with a single pull-out-operation. For example, the 0-split assign-
ment of seven incoming cars to two sorting tracks as follows, ||− 3− 1− 1 → and
||−4−4−2−2 →, allows a groupwise departure with four pull-out-operations. In
general, the s-split condition requires that the cars of one group may be distributed
to at most s+1 sorting tracks with s ≥ 0.

The wish of reducing the number of pull-out-operations even further leads to the
particularly restrictive splitting condition chain-split, also reasonable for sequen-
tial, ito-shunting variants. In chain-split variants, cars may be distributed over all
tracks such that a single pull-out-operation per track leads to the required sequence
of the outbound cars. For example, the chain-split assignment of seven incoming
cars to two tracks as follows, ||− 2− 1− 1 → and ||− 4− 4− 3− 2 →, yields the
desired output sequence −4−4−3−2−2−1−1 → with two pull-out-operations.

Finally, in split variants, we may arbitrarily distribute the cars of one group to
the sorting tracks.



9 Optimization of Railway Freight Shunting 189

9.2.3 Requirement for Outbound Sequence

Of course, in order to obtain a particular CP variant, we need to define which out-
bound sequence of the cars is feasible and which is infeasible. Avoiding a lengthy,
summarizing description of various practically motivated assumptions at this point,
we distinguish later between usual requirements for single-stage classification, cf.
Sect. 9.3, and those which are common for multi-stage classification, Sect. 9.4.

9.2.4 Goal

So far, we stated that CP aims at schedules that contain information about car move-
ments that “efficiently” lead to a sequence of outbound cars as desired. What “effi-
ciently” means in practice depends on the particular CP variant, on the amount of
cars, on the capacities of the yard, as well as on the intention of the dispatchers.
Thus, CP variants with various objective functions were studied in the literature.
We discuss goals for single-stage variants in Sect.9.3, and later, in Sect. 9.4, other
objective functions tailored to multi-stage variants.

Table 9.1: Parameter values for CP variants

Track topology (α) Sorting mode (β ) Outbound Goal
Capacity Design t-o-moves Shunting Splitting sequence (γ) (δ )

unbounded (t-)stacks sequential ito-shunting 0-split (o-)ordered blocks t-min

(b-)bounded (t-)queues concurrent (h-)hump-shunting split (o-)free blocks h-min

(t-)stacks/queues anytime chain-split ordered pattern c-min

(t-)sido scheduled free pattern

(t-)diso time windows

(t-)dido sotwoc

We classify CP variants by an α|β |γ |δ notation, where α specifies the track
topology, β the sorting mode, γ the requirements for the outbound sequence, and δ
the goal, see Table 9.1 for a summary of studied parameter values. The parameter
values in the last two columns regarding γ and δ are discussed at appropriate points
in the following two sections.

9.3 Single-Stage Classification

In this section, we focus on ito-shunting variants. Firstly, we further classify these
CP variants by various requirements for the outbound sequence of cars.
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Requirements for Outbound Sequence

Remember, the incoming cars are classified by a distinctive criterion, that is, by
groups. We label the groups by consecutive natural numbers beginning from 1. In
many practically relevant variants, a block pattern of the outbound sequence of cars
is required that may be described by (a, . . . ,a,b, . . . ,b,c, . . . ,c, . . .) for short where
a, b, c, . . . are different group labels. In other words, the cars have to depart group
by group. In practice, the groups are often associated with departing trains. In this
case, the block pattern enables a train by train departure. However, if a departing
train delivers its cars to several unloading stations, then a block pattern for the train
itself might be reasonable. Because, then, the car groups may be decoupled at the
rear of the departing train at each unloading station without additional shunting. In
that case, the groups are associated with the unloading stations.

In a free blocks variant, we allow any of the g! possible block patterns of the
outbound sequence, where g is number of different groups of the inbound cars. In
other words, the cars have to depart group by group and the departing order of the
groups does not matter. On the contrary, in an ordered blocks variant, we only allow
the block pattern (1, . . . ,1,2, . . . ,2,3, . . . ,3, . . .) of the outbound sequence. That is,
we require that all inbound cars of group 1 depart consecutively at first, followed by
all cars of group 2, followed by all cars of group 3, and so on.

Allowing arbitrary patterns—not necessarily block patterns—for the outbound
sequence leads to free pattern and ordered pattern variants analogously. For
example, if the sequence of inbound cars consists of three cars of group 1, of
two cars of group 2, and of three cars of group 3, then the desired free pattern
(a,b,c,b,b,c,a,a) allows the two particular patterns (1,3,2,3,3,2,1,1) (either as-
sign group 1 to positions a) and (3,1,2,1,1,2,3,3) (or assign group 3 to positions
a) of the outbound sequence.

Now let us consider a particular ordered blocks variant which additionally re-
quires that the groups depart at predefined times. In these so-called time windows
variants, the arrival time and departure time for any car are given in advance, and
any feasible schedule to compute has to comply with these times strictly. For the
sake of a clear inbound sequence we assume that no two cars arrive at the same
time. Another assumption is that any two groups depart at different times. In other
words, a group is determined by all cars with an identical departure time.

Note that, we do not require a particular order of the departing cars within one
group.

Goal

For the ito-shunting variants discussed in this section, our goal is to compute a
feasible schedule that “occupies” only a minimum number of sorting tracks in the
classification bowl. This objective, abbreviated by t-min, is motivated by the fol-
lowing reasons. First, the less tracks used, the larger the number of unused sorting
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tracks, and, thus, the less the maintenance costs. Second, a large number of free
sorting tracks may be very useful in case of an unpredictable change in the inbound
sequence or of operational disturbances. In this sense, t-min contributes to the ro-
bustness of the schedules.

For many single-stage variants we present complexity results that mainly stem
from connections to either minimum sequence partitioning or to graph coloring. The
following subsection provides concepts and notations that are relevant for particular
sequence partitioning problems. For definitions regarding graph coloring and graph
classes we refer to a standard book on Graph Theory, for example, to Golumbic [37].

9.3.1 Notations

The inbound sequence of cars can be formulated as an integer sequence S =
(s1, . . . ,sn) that lists n natural numbers si, where 1 ≤ si ≤ g and g is the number
of groups, in a particular ordering. The i-th incoming car (car i) thus belongs to the
si-th group. Thinning S out results in a subsequence of S. That is, a subsequence of
S is either an empty sequence () or an integer sequence (s̃1, s̃2, . . . , s̃m) with s̃i = sji
for i = 1, . . . ,m and j1 < j2 < · · ·< jm. By this definition, S is a subsequence of S.

Concatenating two integer sequences S = (s1,s2, . . . ,sn) and T = (t1, t2, . . . , tm)
results in the sequence S ⊕ T = (u1, . . . ,un+m) with ui := si for i = 1, . . . ,n and
un+i := ti for i = 1, . . . ,m.

S = (s1, . . . ,sn) is called increasing if n = 1 or if si < s j for 1 ≤ i < j ≤ n; if
n = 1 or if si > s j for 1 ≤ i < j ≤ n, then S is called decreasing. We say a sequence
S is upper unimodal if it is either increasing, or decreasing, or if there is an index j
with 1 < j < n such that s1 < s2 < · · ·< s j and s j > s j+1 > · · ·> sn. The sequence
S = (s1, . . . ,sn) is said to be an arrow sequence if there is a partition of (s2, . . . ,sn)
into two subsequences R and T such that R is either empty or increasing with el-
ements larger than s1 and T is either empty or decreasing with elements smaller
than s1. Examples of upper unimodal sequences and of arrow sequences are shown
in Fig. 9.3.

Finally, S = (s1, . . . ,sn) is said to be unimodec if there is partition of (s2, . . . ,sn)
into two subsequences R and T (possibly empty) such that (s1)⊕R is upper uni-
modal and (s1)⊕T is decreasing. For example, the sequence (4,6,2,5,1,3) is uni-
modec, since (4,6,5,3) is upper unimodal and (4,2,1) is decreasing.

9.3.2 Complexity Results

In the following we list the results for ito-shunting, t-min variants from the litera-
ture. We start with relevant results for unbounded variants, followed by the results
for the b-bounded variants.
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9.3.2.1 Unbounded Variants

Table 9.2 summarizes the knowledge about special CP variants in which no two
incoming cars belong to the same group. In other words, the number n of inbound
cars equals the number g of different groups. In particular, the second last and the
last column of Table 9.2 list complexity and approximability results, respectively. If
c is the number in a cell of the last column, then a “fast” method (with polynomial
running time) is known for the corresponding variant which determines a schedule
that occupies at most c-times more tracks than the optimal schedule.

Table 9.2: Results for unbounded, ito-shunting, t-min variants with the following
properties: n = g (0-split=split), sequential, ordered (blocks)

No.
Track Equivalent to min partition of inbound

Complexity
Approximable

design sequence into subsequences that are within factor

1
stacks or

Isotone
O(n log n)

queues (well-known)

2 stacks/queues Monotone NP-harda 1.71b

3 sido Upper unimodal NP-hardc 2d

4 diso Arrow(“-like”) NP-hardc 2d

5 dido unimodec NP-hardc,d 3d

a Wagner [70]
b Fomin et al. [33]
c Di Stefano and Koči [27]
d Di Stefano et al. [28]

All variants listed in Table 9.2 are equivalent to the problem of finding a mini-
mum partition of the inbound sequence into subsequences with particular properties.
A partition into isotone subsequences means that all subsequences are increasing or
all subsequences are decreasing. If we speak of a partition into monotone subse-
quences, then any subsequence is either increasing or decreasing. Figure 9.3 gives
first insights into the connection to sequence partitioning for two example variants.

Further complexity results for dido,unbounded|ito-shunting,split|time win-
dows|t-min variants where the cars enter and leave the sorting tracks in pre-defined
directions are discussed in [19].

Of course, the hardness results listed in Table 9.2 carry over to the corresponding
variants with the common, more general assumption g ≤ n. Table 9.3 summarizes
further knowledge about unbounded, ito-shunting, t-min variants that mainly stem
from a fruitful connection to another well-known problem, the minimum vertex
coloring problem (MVC).

For several variants, one can construct geometrical objects that help to answer
the question whether any two groups (in 0-split variants) or any two cars (in split
variants) may be placed on the same sorting track or not. In particular, we may not
assign two cars or two groups to the same track in a feasible schedule if and only
if the two corresponding geometrical objects intersect. For a detailed construction
of theses objects—lines (1,2,3), intervals (4,5), triangles (6,7,8), chords (9,10,11),
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(1, 2, 3, 4, 5, 6, 7, 8)

(1, 2, 3, 4, 5, 6, 7, 8)

output/outbound sequence

input/inbound sequence:
S = (1, 3, 5, 4, 6, 8, 7, 2)(1, 3, 4, 6, 2)

(5, 8, 7)

output/outbound sequence

input/inbound sequence:
S = (1, 3, 5, 4, 6, 8, 7, 2)(8, 4, 1)

(7, 6, 5, 3, 2)

Fig. 9.3: Unbounded, ito-shunting, sequential, ordered (blocks), n = g variants:
feasible partition of inbound sequence into two upper unimodal subsequences for
sido (above) or into two arrow subsequences for diso (below)

L5

outbound sequence:

inbound sequence:

S =(1,

(1,1,2,2,3,3)

2 3 4 5 61

2, 2, 3)3, 1,

L1

L2

L4

L3

L6

Fig. 9.4: queues, ito-shunting, split, sequential, ordered blocks variant: the sec-
ond and the fourth incoming car can not go to the same track because the lines L2

and L4 intersect. Assigning the fourth and the fifth car to one track and the other
cars to another track yields a feasible schedule

or polygons with vertices on a circle line (12)—we refer to Hansmann [43] and Di
Stefano and Koči [27]; the numbers in the parentheses relate to the number of the re-
spective variants listed in Table 9.3. Though, for the interested reader, Figs. 9.4, 9.5,
and 9.6 might reveal how to construct the objects for three different variants.

Graphs whose vertices correspond either to the cars or to the groups, and in
which an edge between two vertices exits if an assignment of the corresponding
cars/groups to the same track is infeasible (i.e., if the corresponding geometrical
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T2

outbound sequence:

inbound sequence:

S =(2,

(1,1,2,2,3,3)

2 13

2, 1, 3)1, 3,

T1
T3

Fig. 9.5: stacks, ito-shunting, 0-split, sequential, ordered blocks variant: group 2
and group 3 can not go to the same track because the triangles T2 and T3 intersect.
Assigning group 2 and group 1 to one track and group 3 to another track yields a
feasible schedule

P2

inbound sequence: 1,S =(3, 2, 2, 3)

arrival times of cars

time

departure times of groups

P3

P1

Fig. 9.6: stacks, ito-shunting, 0-split, time windows variant: group 1 and group 2
can not go to the same track because the polygons P1 and P2 intersect. Assigning
group 1 and group 3 to one track and group 2 to another track yields a feasible
schedule

objects intersect) belong to well-known graph classes: permutation graphs, interval
graphs, point-interval graphs, circle-graphs, polygon-circle graphs. Feasible vertex
colorings of these graphs with minimum number of colors (result of MVC) match
feasible schedules with the least number of tracks used. Based on this connection
complexity results and solution methods can be derived, cf. Table 9.3. In particular,
for the variants in rows 1–8 optimal schedules can be computed by fast greedy meth-
ods. The hard variants in rows 9–12 can be solved to optimality by any exact method
for MVC, and in particular, for MVC of polygon-circle graphs, since any circle
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graph is a polygon-circle graph. Currently, it is an open question whether MVC of
circle graphs, and, thus, the variants in rows 9–12 are constant factor approximable.
Computational experience with LP- and Lagrangian-based branch-and-bound im-
plementations for MVC of polygon-circle graphs is discussed in [43]. Accordingly,
one can compute optimal schedules for the variants in rows 9–12 within reasonable
time for a moderate number of inbound cars.

Table 9.3: Results for unbounded, ito-shunting, t-min variants

No.
Track Sorting mode Outbound Equivalent

Complexity
design t-o-moves splitting condition to MVC of

1 queues
sequential

split ordered blocksor concurrent Permutation
or anytime graphs O(n log n)a

2 queues concurrent split time windows
3 Stacks sequential split ordered blocks

4 queues
sequential

0-split free blocksor concurrent Interval O(n log n)
or anytime graphs (folklore)

5 Stacks sequential 0-split free blocks

6 queues
sequential

0-split ordered blocksor concurrent Point-interval
or anytime graphs O(n log n)a

7 queues concurrent 0-split time windows
8 Stacks sequential 0-split ordered blocks

9 Stacks
concurrent

split ordered blocks
Subclass of NP-harda,e

or anytime circle graphs
10 Stacks anytime 0-split ordered blocks

11 Stacks concurrent split time windows Circle graphs NP-hardb

12 Stacks concurrent 0-split
ordered blocks or Polygon-circle

free blocks or graphs NP-harda

time windows

13
Stacks or

sequential
chain

ordered blocks O(n)
c

queues split

14
Stacks or

sequential
chain

free blocks
NP-hardd

queues split (2-approx.)a

a Hansmann [43]
b Di Stefano and Koči [27]
c Dahlhaus et al. [25]
d Dahlhaus et al. [24]
e Hansmann [44]
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9.3.2.2 b-Bounded Variants

Table 9.4 summarizes some knowledge for b-bounded, ito-shunting, split, t-min
variants. This table and the following explanations revise some incorrect statements
in Table 4.2 presented in [43].

For the anytime variants in rows 1 and 2 of Table 9.4, the bounded track length
is not restricting, because any car can depart immediately after it arrived on the
sorting track. In other words, the optimal “unbounded” schedules are also feasible
(and optimal) for the b-bounded case. This is also true for the concurrent, 0-split
variants in rows 1 and 2 if no group contains more than b cars (otherwise, there is
no feasible schedule at all).

Table 9.4: Results for b-bounded, ito-shunting, t-min variants

No.
Track Sorting mode Outbound Complexity
design t-o-moves Splitting condition “easy” for NP-hard for

1 queues anytime split ordered blocks
Any b

[O(n logn)]

2 queues
concurrent

0-split
ordered blocks or Any b

or anytime free blocks [O(n logn)]

3
stacks or

sequential 0-split free blocks b ≤ 3b Fixed b ≥ 8
queues (7/3-approx.)a

4
stacks or

sequential split ordered blocks
queues b ≤ 2 Fixed b ≥ 6

5
stacks or

sequential 0-split ordered blocks
(2.5-approx.)a

queues

6
stacks or

concurrent split time windows
queues b = 1b Fixed b ≥ 6

7
stacks or

concurrent 0-split time windows
queues

8 stacks
concurrent split

ordered blocks b = 1b Fixed b ≥ 6b

or anytime or 0-split

9 stacks concurrent 0-split free blocks b ≤ 2b General b

10 stacks sequential split ordered pattern b = 1 Fixed b ≥ 3c,d,e

11
stacks or

sequential chain-split ordered blocks
Any b

queues
[
O(n)

]
f

a Epstein and Levin [30]
b Hansmann [44]
c Winter [71]
d Winter and Zimmermann [72]
e Eggermont et al. [29]
f Hansmann [43]

The variants in row 3 where any group consists of exactly two cars are equivalent
to b/2-MES of interval graphs, which is shown to be NP-hard even for fixed b ≥ 4
in [8]. Thus, variants in row 3 are NP-hard for fixed b ≥ 8. Besides that, the optimal
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schedule for any instance of the variants in row 3 corresponds to an optimal solution
for an instance of the bin packing problem with conflicts (BPC) on interval graphs
(as conflict graphs). BPC seeks for a minimum vertex coloring in the conflict graph
whose vertices are assigned with natural weights complying with the additional re-
quirement that the weights of the vertices colored with the same color sum up to at
most b. Thus, BPC generalizes MVC and b-MES. Since, BPC is 7/3-approximable
on interval graphs [30], this is also true for the variants in row 3.

The variants in row 4 are equivalent to the mutual exclusion scheduling problem
(b-MES) of permutation graphs, which is shown to be NP-hard even for fixed b ≥ 6
in [50] and to be 2.5-approximable in [30]. b-MES can be stated as follows: find a
minimum vertex coloring in a graph such that at most b nodes are colored with the
same color.

The special cases of variants in row 5 with g = n are equivalent to b-MES of
permutation graphs. Thus, by previously mentioned results, variants in row 5 are
NP-hard for fixed b ≥ 6. The optimal schedule for any instance of the variants in
row 5 corresponds to an optimal solution of an instance of BPC on point-interval
graphs. Since, BPC is 2.5-approximable on point-interval graphs [30], any point-
interval graph is a perfect graph), this is also true for the variants in row 5.

Note that, for the variants in rows 6–9, there is no direct connection to graph
coloring as for its unbounded counterparts. Nevertheless, the NP-hardness carries
over from variants in row 4 to variants in row 6 as well as from variants in row 5
to variants in row 7. The reason is, that for any instance of the sequential case
we obtain an equivalent instance of the corresponding (concurrent,) time windows
case by setting the arrival time and the departure time for the i-th incoming car to i
and to n+ si, respectively.

That the variants in row 8 are NP-hard for fixed b ≥ 6 can be shown by a simple
reduction from their sequential counterparts. The idea is to add a car of an extra
group 0 at the end of the inbound sequence that has to depart before any other cars.

If an unbounded variant is NP-hard, this is also true for the corresponding
b-bounded variant for general b. Hence, variant 9 is NP-hard for general b.

After all, there still are interesting open theoretical challenges. For example,
for any NP-hard variant listed in Table 9.4, the threshold value b for which the
b-bounded case is polynomially solvable and for which the b+1-bounded case is
NP-hard is currently unknown.

The variants in row 3 are solvable in polynomial time for fixed b ≤ 3: for b ≤ 2
this is trivial; for b = 3 the ideas are as follows. There is a feasible schedule if and
only if the inbound sequence contains no group with more than three cars. In case
of feasibility, an optimal schedule results from assigning any group of three cars to
one track, from a maximum (feasible) matching of the groups containing two cars
to groups of a single car, and from arbitrarily filling other tracks with the unmatched
groups of one car [44].

The variants in rows 4 and 5 are solvable in polynomial time for fixed b = 2:
for the variants in row 4 this is due to its equivalence to 2-MES (of permutation
graphs), which is polynomially solvable; and, for the variants in row 5 the reasoning
is as follows. An incoming sequence containing a group with more than two cars



198 Markus Bohlin, Ronny Hansmann, and Uwe T. Zimmermann

does not admit a feasible 0-split schedule. Each group with two cars is assigned to
exactly one track. The assignment of the remaining cars to a minimum number of
tracks can be computed with a method for a variant in row 4, and therefore with the
known polynomial time method for 2-MES.

Finally, the optimal schedules of the variants in rows 6–8 with b = 1 and of the
variant in row 9 with b = 2 can be determined by optimal interval colorings [44].

9.4 Multi-Stage Classification

In this section, we focus on multi-stage variants that relate to hump yards, the
largest class of rail yards. Other multi-stage variants with the characteristics t-
stacks, b-bounded, sequential, split, ordered pattern, with no allowed i-o-moves,
with n = t ·b inbound cars and with an objective function relating to the number of
necessary t-t-moves are discussed in [17] and [13].

Figure 9.7 shows the schematic layout of the main part of a typical hump yard.

output/outbound sequence

input/inbound sequence
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Fig. 9.7: Layout of a typical hump yard

Trains arrive at an arrival yard (prior to our input) where the cars are inspected
and decoupled. Then, the inbound cars are pushed over the hump by a shunting
engine before rolling down one by one onto either appropriately chosen sorting
tracks (i-t-moves) or an outbound track (i-o-moves) by means of gravity. This pro-
cedure reduces the number of time-consuming pushing/pulling operations of cars by
shunting engines significantly. In the same convenient manner the hump is used for
t-t-moves and t-o-moves. At each humping step all cars placed on one sorting track
are pulled back over the hump. Then, these cars are again pushed over the hump
either to an outbound-track (t-o-move) or again to some sorting tracks (t-t-move).
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If we allow arbitrary many or h humping steps, we speak of hump-shunting or
h-hump-shunting variants of CP, respectively.

Not allowing humping steps before the last inbound car is pushed over the hump
corresponds to our sequential requirement (first t-o-move after last i-t-move and
last i-o-move). In contrary, in concurrent variants, humping steps are allowed at
any point in time during the roll-in process of the inbound cars. Note that we slightly
changed the definition of sequential and concurrent presented in [43] to enable a
broader classification scheme. Thus, some h-hump-shunting variants classified as
concurrent in [43] are classified as sequential in this chapter.

The following alternative requirement regarding the chronology of the humping
steps is denoted by scheduled. In this case, the points in time when humping steps
are performed are pre-defined in advance. Note that we assume instantaneous car
movements. In other words, in the concurrent and scheduled case, the roll-in pro-
cess of the sequence of inbound cars is instantaneously interrupted by the humping
steps.

Because the 0-split requirement does not make sense for hump-shunting, we
only consider split variants in this section.

9.4.1 Requirements for the Outbound Sequence

The ordered blocks and free blocks requirements are suited for the hump-
shunting variant when forming one departing train (on one outbound track) with an
ordered blocks or a free blocks ordering of the cars.

Now, assume that o departing trains can be formed simultaneously (on o parallel
outbound tracks) and that the groups g<i +1, . . . ,g<i +gi have to leave in departing
train i where gi is the number of groups for departing train i and g<i is the total
number of groups for the trains 1, . . . , i− 1, that is, g<i = ∑i−1

k=1 gk. If we require
free blocks (or ordered blocks) for any of the departing trains, then the outbound
sequence is feasible if it decomposes into o subsequences S1, . . . ,So such that Si

only contains cars for departing train i and that Si has the structure free blocks
(or ordered blocks) for i = 1, . . . ,n. These requirements are abbreviated by o-free
blocks and o-ordered blocks, respectively.

For instance, consider the incoming sequence (2,4,1,5,3,3,2,3,5,4) of ten cars
for three outbound trains. The two (g1 = 2,g<1 = 0) groups 1 and 2 have to be
assigned to train 1, group 3 (g2 = 1,g<2 = 2) to train 2, and the two (g3 = 2,g<3 = 3)
groups 4 and 5 to train 3. Then, the outbound sequence (3,4,1,3,2,4,5,3,5,2) has
the 3-ordered blocks property, since it decomposes into the three subsequences
(1,2,2), (3,3,3), and (4,4,5,5) with ordered blocks.

By the previous requirements, we do not pay attention to the number of outbound
tracks available as well as to their capacities. However, these capacities are a limiting
factor when creating the overall classification schedule for simultaneous train for-
mation at hump yards, as too high traffic volumes can make it impossible to reserve
an outbound track for the full time interval between the first roll-in of a car for this
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train and the final departure of this train. Using the sorting tracks as a buffer area,
where cars of different departing trains may be temporarily stored, makes it possible
to simultaneously build more departing trains than there are outbound tracks.

In the soft time windows and outbound capacity variant abbreviated sotwoc we
consider a fixed number of available outbound tracks. Each outbound track (“for-
mation track”) f with length n f is assumed to be free at the very beginning. For
each incoming car i its length, the arrival time ai as well the latest departure time
di are known. In fact, di is the time when car i’s dedicated departing train leaves
the outbound track. We assume, that no two trains leave the outbound tracks at the
same time. Thus, we recognize all cars of one departing train o by an identical latest
departure time. In a schedule to compute, let to denote the point in time when a car
of departing train o is t-o-moved or i-o-moved for the first time. Then, a schedule is
feasible for this sotwoc variant if any car i is t-o-moved or i-o-moved not later than
di and if there is a free outbound track f (not blocked by other departing trains) at
time to that is long enough for all cars of departing train o. Thus, the assignment of
the departing trains to the outbound tracks has to be an implicit part of the solution.
For an example of a sotwoc variant, we refer to Fig. 9.9 in Sect. 9.4.5.

9.4.2 Goals

The size of the hump yard and the volume of traffic determine whether it is more
efficient to form the departing trains with a minimum number of used sorting tracks
for a given upper bound on the number of humping steps (t-min) or rather with as
few humping steps as possible for a given number of sorting tracks. We refer to the
latter objective as h-minimizing or h-min for short.

Because the pullback and roll-in operations of cars wear down switches and
tracks, it is also reasonable to relate the objective function to the number of car
movements over the hump. Thus, c-minimizing (c-min) variants aim at schedules
with a minimum number c of t-t-moves and t-o-moves of the cars over all humping
steps.

The goals h-min and c-min aim in a similar direction, still they are not equiv-
alent for any variant. For example, there always exists an optimal schedule for the
unbounded,stacks|sequential,hump-shunting,split|ordered blocks|h-min vari-
ant which also is optimal for the c-minimizing counterpart variant, cf. Sect. 9.4.3.
However, there are trivial examples (with three incoming cars of two groups) that
show the following for the same variants. There are “c-minimal” schedules that
are not “h-minimal”, and there other schedules which are “h-minimal” but not
“c-minimal”.
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9.4.3 Complexity Results

Table 9.5 summarizes complexity results for stacks, h-hump-shunting, split vari-
ants. Furthermore, the h-minimizing variant in row 2 is shown to be 2-approximable
in [43]; which is also true for the h-minimizing variant in row 3 with g = n, cf. [49]
and [45].

Note that the track length and track design listed in the second and third col-
umn only refer to the sorting tracks in the classification bowl. Assuming that
each outbound track is long enough for any departing train, the 0-hump-shunting
(= 0-stacks) sotwoc variant in row 4 with no humping steps (no sorting tracks are
used) is equivalent to MVC of interval graphs, and therefore solvable with a fast
greedy method. Under the same assumption, the unbounded variant in row 5 is
also easily solvable, cf. [9].

Table 9.5: Results for stacks, h-hump-shunting, split variants

No.
Track Track Sorting mode Outbound

Objective Complexity
design length t-o-moves condition

1 t-stacks unbounded sequential
(o) ordered t-, h-, Lineara,b

blocks or c-min

2 t-stacks unbounded sequential
free t-, h-, NP-harda

blocks or c-min

3 t-stacks b-Bounded sequential
ordered t- or NP-hardb

blocks h-min

4
0-stacks

(Irrelevant) Scheduled sotwoc c-min
NP-hardc

h = 0

5 1-stack
unbounded or

Scheduled sotwoc c-min
NP-hardc

b-bounded

a Hansmann [43]
b Jacob et al. [49]
c Bohlin et al. [12]

In the following we sketch the main ideas behind the algorithm presented in
[43] that solves the h-minimizing variant in row 1 of Table 9.5. It can be imple-
mented such that it runs in linear time in the size of the schedule to compute. In [49]
seemingly the same algorithm is described in different terminology for the special
case where no cars belong to the same group (g = n). Figure 9.8 shows the optimal
car moves for an example instance of this unbounded,2-stacks|sequential,hump-
shunting,split|ordered blocks|h-min variant. The list of observations and results
justifying Algorithm 9.1 reads as follows; for detailed proofs we refer to [43].

• For each car, we consider its path through the sorting tracks, i.e., the integer
sequence of the track numbers of visited sorting tracks. In our example, the first
inbound car (of group 7) takes the path (1,2,1), i.e., firstly to the upper sorting
track 1, secondly to track 2, and thirdly to track 1 again.
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• Cars taking the same path correspond to a subsequence of the inbound se-
quence. In our example, the cars of group 1 as well as the last inbound car are
i-o-moved with their first roll-in. These three cars constitute the subsequence
(1,1,2) of the inbound sequence (7,6,5,4,3,4,1,2,1,2).

• A path corresponds to a subsequence of the track execution order E =
(e1, . . . ,eh) where ei is the number of the sorting track “executed” at humping
step i. In our example, the path (1,1) of the car of group 5 is a subsequence of
E = (1,2,1).

• For fixed numbers of humping steps and of sorting tracks, the cyclic track
execution order E = (1,2, . . . , t,1,2, . . . , t,1, . . .) enables the largest number of
different paths. This number can recursively be computed in linear time. For
example, E = (1,2,1) enables seven different paths, E = (1,1,1) only four.

Step 1 in Algorithm 9.1 is equivalent to the variant in row 10 of Table 9.3, and
therefore executable in linear time in the number of inbound cars. This is also true
for Step 2 by a recursive computation. Finally, Step 3 and hence the complete Al-
gorithm 9.1 can be realized in linear time in the size of the schedule to compute,
that is, in O(nh∗) time where n is the number of incoming cars and h∗ is the desired
minimum number of humping steps.

Algorithm 9.1: Greedy for the CP variant:
unbounded,t-stacks|sequential,hump-shunting,split|ordered blocks|h-min

Step 1: Compute a minimum partition of the input sequence S into subsequences
S1, . . . ,Sp∗ such that S1 ⊕S2 ⊕·· ·⊕Sp∗ has the structure ordered g-blocks.
(
In the example in Fig. 9.8, the minimum partition of the input sequence

(7,6,5,4,3,4,1,2,1,2) with seven subsequences reads: (1,1,2), (2), (3,4),
(4), (5), (6), (7). Their concatenation (from left to right) yields the desired
ordered blocks output sequence. There is no partition into less subsequences
with the same property.

)

Step 2: Determine the minimum number h∗ of humping steps enabling (with cyclic
track execution) at least p∗ different realizable car paths.
(
Our example cont.: The cyclic track execution E = (1,2,1) with h∗ = 3

humping steps enables seven different paths, namely, (), (1), (2), (1,2),
(1,1), (2,1), (1,2,1), which is not possible with less than three humping
steps.

)

Step 3: For all p = 1, . . . , p∗, assign a suitable path p regarding the cyclic track
execution order with h∗ humping steps to all cars in subsequence Sp.
(
Our example cont.: We obtain an optimal schedule by assigning all cars in

S1 = (1,1,2) to the “fastest” path (), by assigning the car in S2 = (2) to the
second “fastest” path (1), by assigning the cars in S3 = (3,4) to the third
“fastest” path (2), and so on.

)
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||| ||||

1 1 2 2 3 4 4

|| |||
(1,2,1)(2,1)(1,1)(1,2)(2)(1)()

764 521 1 2 3 4

1 1 2
6 3 4
7 5 4 2

Paths of cars:

E = (1,2,1)

5 6 7
Before 3rd humping step:

E = (1,2,1)

1 1 2 2

5
6 3 4 7 4

Before 2nd humping step:

E = (1,2,

Before 1th humping step:

1 1 2

7 5 4 2

E = (1,
6 3 4

Fig. 9.8: unbounded,2-stacks|sequential,hump-shunting,split|ordered blocks|h-
min: optimal car moves and paths of the cars for the instance (7,6,5,4,3,4,1,2,1,2)

It is easily seen that the schedule computed by Algorithm 9.1 is also optimal for
the corresponding c-minimizing variant. Besides that, we get an optimal schedule
for the corresponding o-ordered blocks variant for forming o departing trains si-
multaneously by “gluing” together the o optimal schedules obtained by considering
the departing trains separately.

In the following two subsections we focus on real-world applications in rail yards
in Germany and Sweden. We describe the main ideas of the solution approaches and
summarize computational experiences. Similar approaches for other rail yards in
Europe were presented in the literature, for example in the Netherlands, cf. Freling
et al. [34], Kroon et al. [58] or in Switzerland, cf. Márton et al. [60].
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9.4.4 Real-World Results for BASF, Ludwigshafen, Germany

Within our 3-years project (2004–2007) together with BASF—The Chemical
Company—we developed and implemented methods for computing efficient sched-
ules for the train formation process and the corresponding shunting operations per-
formed at a large hump yard on the main production site of BASF in Ludwigshafen,
Germany. For the practically relevant 30-bounded,t-stacks|sequential,h∗-hump-
shunting,split|o-ordered blocks|c-min variant with h∗ as the minimum number of
humping steps needed, we implemented a heuristical as well as an exact solution
approach.

The idea of the heuristical method is to transform an optimal schedule of the re-
spective unbounded version (easily computable, see previous section) into a sched-
ule which complies with the track lengths. This is done by distributing the cars
assigned to an overfilled track to other free sorting tracks—if available. Of course,
by this “splitting”, the number of humping steps increases while the number of car
moves stays the same.

Optimal schedules complying with the track lengths were computed by solving
Binary Programs with the commercial solvers Cplex [47] and Gurobi [40]. We
omit these models and refer to Hansmann [43].

We summarize the computational experience for 30 real-world instances with up
to 400 inbound cars of up to 71 groups. Computing the schedules heuristically took
less than a second and the optimal schedules were obtained within a few minutes.
Due to a sufficiently large number of sorting tracks in BASF’s classification bowl,
the heuristically computed schedules were indeed feasible and no sorting track had
to be emptied twice (i.e., E = (1,2, . . . ,h∗)) according to the optimal schedules. On
the average over the 30 daily instances, the cars roll 1.44 times down the hump
according to the heuristically computed schedules, instead of 1.41 times as in the
optimal case. Moreover, the heuristical schedules use 0.85 humping steps more than
the optimal ones on average.

After all, our project partner preferred the schedules that are optimal for the un-
bounded case, due to the following reasons.

• Schedules complying with the track lengths are still often not directly appli-
cable, since cars rolling down to tracks are slowed down by automatic brakes
which may lead to gaps between the cars on the sorting track. Thus, it seems to
be more reasonable to compute optimal “unbounded” schedules and leave it to
the dispatcher to handle “full” tracks adequately.

• Already the flexible realization of the optimal “unbounded” schedules offers
major potential for dropping the overall processing time in comparison to the
rule-based schedules in daily action.

• The fast computation (within a second) of optimal “unbounded” schedules
makes it possible to react quickly on any disruptions or real time changes in
the order of the incoming cars.

• Optimal “unbounded” schedules can be computed without the aid of commer-
cial solvers.
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9.4.5 Real-World Results for Hallsberg, Sweden

The variant bounded,1-stack|scheduled,h-hump-shunting,split|sotwoc|c-min,
which corresponds closely to the operation of the largest Swedish hump yards in
Hallsberg and Sävenäs, was studied in a 4-year research effort started in 2010.
The initiative was performed together with the Swedish infrastructure manager
Trafikverket, and with support from Sweden’s largest freight operator Green Cargo
AB (as measured in number of freight trains). The variant is illustrated in Fig. 9.9.

The core of the problem variant is the allocation of formation tracks to outbound
trains, subject to a set of realistic constraints on train scheduling, arrival and de-
parture timeliness, and track capacity. In this variant, formation tracks have unique
lengths, and departing trains are required to strictly follow a fixed timetable. Fur-
thermore, the problem formulation allows the temporary storage of freight cars on
a single dedicated mixed-usage track, which is treated like a stack. This variant was
inspired by a real-world practice at the Hallsberg yard, and increases the number of
simultaneous trains that can be managed on the yard. In the real world practice, it

inbound sequence: 2,S =(1, 3, 2, 4)

arrival times of cars

time

departure times of trains

4,

humping steps

Fig. 9.9: unbounded,1-stack|scheduled,3-hump-shunting,split|sotwoc|c-min—
an example with six inbound cars for two outbound trains, two available outbound
tracks, and three humping steps predefined in time. All cars have length 1, one out-
bound track has length 1, the other length 2. A schedule with the minimum number
of 3 additional car moves (t-t or t-o) is depicted by the thick intervals: Trains 1 and 3
are assigned to the short outbound track, trains 2 and 4 to the longer one. The car
of train 3 rolls down at the first and second humping step; the first incoming car of
train 4 at the third humping step

is also possible that several shunting tracks are allocated for temporary car storage
during certain time intervals of the week only. However, the variant described here,
where a single track is employed, was seen as a reasonable compromise between
solvability and degree of detail. Further, the variant easily generalizes to the case
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where multiple tracks are used as long as all tracks are emptied at the same fixed
time points. For this problem, we have proposed and evaluated several optimization
models. The models include the following.

1. A series of mixed-integer linear programming (MILP) formulations using the
Big-M method, cf. [9],

2. a pure integer reformulation of the above, cf. [10],
3. a column-based integer programming model which is solved using branch-and-

price, cf. [11], and
4. a simplified reformulation of the first model as an arc-indexed integer linear

program, which has the same LP relaxation as the column-based model, cf. [12].

All models have been evaluated on real-world data from the Hallsberg yard. Fur-
ther, the last two models, being the ones which performed best in the experiments,
have been adapted for rolling horizon planning and evaluated on a 5-month histori-
cal data set. From this data set, 784 instances of different types and lengths, spanning
from 2 to 5 days, were created.

In the experiments, the arc-indexed model proved optimality on average twice
as fast as the column-based model for the independent instances, and three times
faster for the rolling horizon instances. For the arc-indexed model, the average solu-
tion time for a reasonably sized planning horizon of 3 days was 16 s. Regardless of
size, no instance took longer than 8 min to be solved. The results indicate that opti-
mization approaches are a suitable alternative for scheduling and track allocation at
classification yards.

9.5 Practical Relevance and Conclusions

From a more theoretical perspective, in recent research one tries to draw a line be-
tween “easy” and “hard” (NP-hard) variants. “Easy” means that a fast, i.e., polyno-
mial running time algorithm is known that computes optimal classification sched-
ules. However, this map of computational complexity is still rather incomplete. For
example, the complexity for the following two variants is open:

• queues,unbounded|ito-shunting,concurrent,split|free blocks|t-min,

• 1-stack,bounded|h-hump-shunting,scheduled,split|sotwoc|c-min under the
assumption that each outbound track is long enough for any departing train.

At first sight, some variants seem to be rather restricted from a practical point of
view, but we can provide some reasoning why corresponding methods might in fact
be very helpful in order to improve classification processes in practice.

Ito-shunting variants answer the question whether it is possible to form a depart-
ing train using only i-t-moves and t-o-moves. In the positive case the correspond-
ing solution method computes a classification schedule that does not require ad-
ditional time-consuming shunting operations, as, e.g., couplings, decouplings, and
engine moves. In the negative case t-t-moves are unavoidable and one will apply
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multi-stage methods. In the latter case, single-stage methods may help (as subrou-
tines) to compute efficient classification schedules for the multi-stage problem, cf.
Sect. 9.4.3.

Although tracks in rail yards are bounded in length, methods for the unbounded
case may propose classification schedules that are quite useful for the dispatcher in
practice, cf. Sect. 9.4.4. In general, when dropping such “hard” requirements as real
track lengths, optimal classification schedules are much easier to compute. Once a
track gets filled to its real capacity during actual operations, the dispatcher may redi-
rect cars scheduled for the filled track to another unfilled track in the classification
bowl or elsewhere in the yard.

Another benefit is that minimal “unbounded” schedules provide benchmarks for
“bounded” schedules. In particular, the minimum objective value of an optimal “un-
bounded” schedule defines a lower bound on the minimum objective value for the
respective bounded variant. Whenever a lower bound matches the objective value
of a “bounded” schedule, this schedule obviously is optimal.

To the best of our knowledge, the problem of finding an optimal layout of a new
or rebuilt rail yard by means of mathematical optimization approaches has not been
studied explicitly in the literature so far. An analysis of schedules obtained with
the proposed CP methods for scenario sets of instances modeling various traffic
volumes could help to decide on the future yard layout. In particular, it could give
hints how many sorting or outbound tracks are necessary or sufficient.

For real-world data from rail yards in Hallsberg, Sweden, and in Ludwigshafen,
Germany, we could compute efficient classification schedules complying with the
track lengths. In particular, we obtained very good solutions by fast heuristical meth-
ods or optimal schedules (under certain assumptions) in reasonable time, using ei-
ther commercial solvers, or tailor-made branch-and-bound-implementations, or col-
umn generation approaches. In theory, the computed schedules indicate that consid-
erable improvements are possible in daily action. For future research and projects,
we recommend to analyze and to quantify the real cost reductions that result from
supporting human experts by the knowledge of automatically optimized schedules.
Real significant savings would convince further practitioners of (mathematical) op-
timization tools and would justify the effort for (re-)developing tailor-made methods
whenever a new or different requirement in the rail yard has to be considered.
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Chapter 10
Optimization of Rolling Stock Rotations

Markus Reuther and Thomas Schlechte

Abstract This chapter shows a successful approach how to model and optimize
rolling stock rotations that are required for the operation of a passenger timetable.
The underlying mathematical optimization problem is described in detail and solved
by Rotation Optimizer for Railways (ROTOR), i.e., a complex optimization algo-
rithm based on linear programming and combinatorial methods. ROTOR is used by
DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for
the European high-speed network. We focus on main modeling and solving compo-
nents, i.e. a hypergraph model and a coarse-to-fine column generation approach.
Finally, the chapter concludes with a complex industrial re-optimization application
showing the effectiveness of the approach for real world challenges.

10.1 Introduction

The rolling stock, i.e., railway vehicles, is among the most expensive and limited
assets of a railway operator. The rolling stock is required to operate a timetable,
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i.e., each trip of the timetable needs to be assigned to a concrete vehicle which
offers the proposed passenger capacity and which is able to operate the given trip.
In this context a trip is a journey through the railway network with given departure
and arrival times and corresponding stations. Similar to the journey of passengers
also the concrete physical vehicles are performing sequences of trips which could
be even part of different railway lines as well as other activities like maintenance.
The implementation of a timetable by a rolling stock fleet, i.e., the assignment of
vehicles to trips, must be done in a most efficient way to be in the black. Note that
railway operators usually have only a limited fleet with vehicles of different types
and thus the assignment of vehicles to trips can be very flexible.

In order to have a master plan in operation, rolling stock rotations are created in
advance. This is done within the production process of a railway operator. A rolling
stock rotation is a cycle that covers timetabled trips. It is built in order to plan the
succeeding operation of timetabled trips by railway vehicles.

A railway timetable forms the majority of the input data for rolling stock rota-
tion optimization. The timetable consists of timetabled trips, which were created in
order to provide a reliable transportation offer for freight or, in our application, for
passengers of intercity express (ICE) vehicles. The creation of a railway timetable
is a highly complex and substantial task for its own, see Schlechte [26] for a thesis
on timetabling for railways.

Note that we consider rolling stock rotations as cycles. Indeed, this is a constraint
of the so called standard week (concept). The standard week is a rich planning con-
cept, which imposes the general assumption that everything will repeat after 1 week
of operation. By this assumption we do not have to deal with precise calendar dates.
Therefore, the standard week is applicable for long term (i.e., strategical consider-
ations) as well as for mid-term (e.g., 1 year before operation), and it is also used
for tactical plans, which are executed in, say, 6 weeks. Thus, the standard week
is an overarching planning concept for the preparation of operations. Almost each
decision made in operation w.r.t. rolling stock is derived from, or at least affected
by, a cyclic rolling stock rotation at DB Fernverkehr AG (DBF).

The reason for the huge amount of preparation, which railway operators spend,
is simply that railway operation nowadays is and always was complicated. For that
matter, our cooperation partner DBF is not an exception since it provides the largest
intercity passenger railway service in Europe. In fact, the proper complexity in
railway planning is only partially caused by aspects of size (e.g., the number of
timetabled trips to be covered by rolling stock rotations). The reason why it is com-
plicated and, moreover, expensive originates from the diversity of different require-
ments, which need to be respected entirely.

The major requirements can be summarized as vehicle composition rules, main-
tenance constraints, capacity constraints, and regularity stipulations. Each of these
requirements is already complex in its own right. Moreover, it can be almost im-
possible to treat these requirements sequentially, i.e., a step by step approach could
lead to infeasibilities or inefficient results. These most important requirements can
be informally described as follows:



10 Optimization of Rolling Stock Rotations 215

Fig. 10.1: A (small) railway timetable arranged in a torus for a cyclic standard week.
The trips of the timetable are covered by two rolling stock rotations: One cycle al-
ternates between blue paths (i.e., the trips of the timetable) and red connections. The
second rolling stock rotation is purple. The seven (not six) green graphs indicate the
railway infrastructure, which is utilized by railway vehicles on 7 days of operation.
The picture has been created using HyDraw [10]

• Figure 10.1 shows a cyclic passenger timetable that is valid on 7 days of oper-
ation. For each day of operation all given passenger trips are plotted as paths
arranged in a torus, in which time proceeds counterclockwise. A profile at a
specific time of this torus represents the current location of all vehicles operat-
ing the timetable. As one can see in this picture, a common structure of railway
timetables is that they are almost periodic, i.e., only a few of the given passenger
trips differ from day to day. This implies a first requirement for the rolling stock
rotations: They should reflect the periodicity of the timetable. This objective is
called regularity.

• Another main characteristic of nearly all railway systems is that railway vehi-
cles can be combined to form vehicle compositions. Among other things, the
expected passenger demand on a timetabled trip leads to an individual and rea-
sonable set of feasible vehicle compositions for each trip of the timetable. This
gives many degrees of freedom for the rolling stock rotations, which have to be
utilized.

• The rolling stock has to be maintained frequently. This leads to several mainte-
nance constraints with different technical backgrounds. We consider cumulative
time and distance resources which are classically constrained by upper bounds.
In order to comply to those bounds railway vehicles are required to be main-
tained in periodic intervals.

• Maintenance and also parking activities usually consume infrastructure and
crew capacity. Both types of capacity are limited. Moreover, also the number
of railway vehicles of a dedicated type (i.e., of a fleet) is not infinite as is well
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known. Infrastructure as well as fleet capacity constraints have to be consid-
ered explicitly in this application. Crew capacity is considered in succeeding
planning steps at DBF.

This set of requirements is minimal (w.r.t. set inclusion) to be considered in the
application at DBF. Moreover, their presentation here is very sparse. In reality, all of
these requirements branch into many details. These details are extensively addressed
in [25, Chapters 4 & 5].

10.2 Literature

In this section we give a brief but effective overview on literature that is closely
related to the rolling stock rotation problem (RSRP) as we consider it. The idea of
the section is not to provide an extensive survey, but to arrange the highlights of the
chapter in terms of the existing literature on rolling stock optimization.

Vehicle scheduling is extensively discussed in the literature, see Löbel [19] for
a survey. Ahuja et al. [1] present a mixed-integer programming (MIP) formulation
for a locomotive scheduling problem. The model is solved by a very large-scale
neighborhood search technique but does not include any maintenance constraints.
In [30] a large-scale non-linear integer programming formulation for the integrated
optimization of locomotive schedules including maintenance constraints is devel-
oped. Cordeau et al. [8] propose an integer programming model based on a multi-
commodity flow formulation for the integrated assignment of locomotives and pas-
senger cars to passenger trips. A three stage heuristic approach to incorporate main-
tenance tasks in precomputed rolling stock rosters is described in [3]. Furthermore,
[21] and [22] present two integer programming formulations and alter optimized
rolling stock rosters to incorporate maintenance tasks.

In [11] a MIP model for vehicle composition requirements is given. It considers
detailed rules for individual positions of vehicles in compositions. The most impor-
tant difference to our vehicle composition approach is that almost every timetabled
trip has predefined successor trips.

An integer programming model for vehicle composition requirements, but with-
out considering regularity or maintenance requirements, is given in [23]. The results
presented in [23] have also been developed in cooperation with our industrial partner
DBF.

Constraints that are very similar to the maintenance constraints in the RSRP
come up in duty rostering problems, e.g., constraints on the maximal working
time per week and the maximal number of successive working days of the drivers.
Behrendt [5] introduced several MIP formulations for the duty rostering problem
including constraints on cumulative resources such as working time. An adaption of
one of these models for the treatment of maintenance constraints for the RSRP is
presented in [25, Section 5.2].

The adaptation of the model for the maintenance requirements proposed in [5]
is mathematically equivalent to the model developed independently by Giacco et
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al. [14] for the optimization of rolling stock rosters.1 Giacco et al. [14] reported
computational results for scenarios of the Italian railway company Trenitalia. They
assume that the railway timetables are repeated on every day of operation and they
consider only the minimization of the number of vehicles as objective function.
Moreover, they do not integrate vehicle composition, regularity, and infrastructure
capacity in their model.

In [13] a two-step approach is presented for rolling stock rostering and mainte-
nance scheduling by extending the contribution of Giacco et al. [14] by another MIP
model that runs on top of the rolling stock rosters. This two-step approach is also
part of the thesis by Giacco [12].

Cacchiani et al. [7] present a fast heuristic for the train unit assignment problem
(which is similar to the RSRP).

Haahr et al. [16] present a path-based model for timetables involving an acyclic
time horizon. They claim that their model can easily take maintenance constraints
into account. This model and a branch-and-price algorithm are tested for re-
optimization instances of the suburban railway operator in Copenhagen (DSB
S-tog) without maintenance constraints. The paper [16] is part of the thesis by
Haahr [15].

Wagenaar et al. [29] present a model for railway rolling stock rescheduling. In
their approach so called maintenance appointments are taken into account. The
maintenance appointments are already scheduled for certain railway vehicles and
are particularly required to be respected after a disruption in their application.

A comparison of the approaches presented in [29] and [16] is made by Haahr
et al. [17]. Another literature comparison in terms of requirements for rolling stock
optimization can be found in Thorlacius et al. [27]. A literature overview on re-
optimization can be found in [24] and [2].

Conclusion. At this point it must be said that the literature on rolling stock ro-
tation optimization is rather fragmented in the sense that it is hard to identify a
significant common line (as we find it in comparison to, e.g., vehicle routing, see
Toth and Vigo [28]). One explanation for this issue is that rolling stock rotation op-
timization is a planning problem whose concrete shape strongly depends on several
side conditions. Examples for those side conditions are:

• Which railway operator of which country is involved in the optimization ap-
proach?

• What time horizon is to be considered?
• How has the timetable been constructed?
• Which railway vehicles (e.g., locomotives, carriages, or complete ICE vehicles)

are to be optimized?

The approach used in ROTOR to compute implementable rolling stock rotations
by a mathematical optimization algorithm is based on the following modeling par-
ticularities:

1 A rolling stock rotation plan (as we deal with) can be seen as a rolling stock roster.
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• A time horizon of seven individual days of operation is considered within
ROTOR.

• Regularity and handout optimization are not at all investigated in the literature
(to the best of our knowledge).

• ROTOR’s vehicle composition model is very detailed, i.e., even the orientation
of railway vehicles is considered.

• ROTOR’s model is fully integrated.

A slightly common line in the literature about rolling stock optimization is that
almost all publications agree that the maintenance constraints for railway vehicles
are important and, moreover, non-trivial to be tackled. In fact, there seems to be no
standard approach to tackle those constraints. This is a particular motivation for [25,
Chapter 3].

10.3 Model via Hypergraphs

The RSRP has its roots in a complex railway application. In this application it is
not always completely sharp which responsibilities belong to rolling stock rotation
planning and which do not. Therefore, we give a mathematical description in this
section in order to provide a clearly arranged frame for the responsibilities that we
take into account in this chapter. This description is rather short and formal and we
refer to [25, Chapters 4 & 5] for all the details of the RSRP.

We will show how hypergraphs can be utilized to model several aspects of rolling
stock rotation planning. In many classical works in the literature graphs are used to
model the individual activities of vehicles, i.e. via the set of arcs. In order to model
activities which several vehicles perform together hypergraphs turn out to be a very
elegant and powerful tool. In particular, the fact that railway vehicles can be coupled
together to form vehicle compositions is completely captured by the hypergraph.

The input data for the RSRP consists of a timetable that is composed of
timetabled trips, so called services, a graph-based hypergraph, maintenance con-
straints, and capacity constraints:

Timetable. The set of timetabled passenger trips is denoted by T . A trip t ∈ T has
a departure and an arrival date in the standard week as well as a departure and
arrival location.

Services. The set of services is denoted by S. A service s∈ S represents a dedicated
activity performed on a vehicle, e.g., refuel and maintain a railway vehicle at
Berlin.

Hypergraph. Let V be a set of nodes representing departures and arrivals of rail-
way vehicles operating passenger trips of T and let A ⊆ (V ∪ S)2 be a set of
directed standard arcs. The set of hyperarcs H ⊆ 2A is a subset of the power
set of the standard arcs A. Thus, an element of H is a set of standard arcs. The
RSRP hypergraph is denoted by

(V ∪S,A,H).
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The standard arc a = (u,v) ∈ A operates a trip t ∈ T if u ∈ V represents the
departure of t and v ∈ V represents the arrival of T . We say that the hyperarc
h ∈ H covers (or operates) the trip t ∈ T , if an arc a ∈ h ⊆ A operates t. We
denote the set of hyperarcs that cover the timetabled trip t ∈ T by H(t) ⊂ H.

Maintenance Constraints. The set of maintenance constraints is denoted by L.
A maintenance constraint l ∈ L is represented by a resource function rl : S∪
A �→ Q+ stating the resource consumption of arcs and maintenance services, a
resource upper bound Ul ∈ Q+, and a set of associated maintenance services
Sl ⊆ S. A resource path P ⊆ A is a simple path starting and ending at nodes of
Sl and it is feasible w.r.t. the maintenance constraint l if P fulfills

∑
a∈P

rl(a)+ ∑
s∈S(P)\Sl

rl(s) ≤Ul .

Here, S(P) ⊆V ∪S denotes the set of nodes that is covered by the path P. Note
that even a service of S(P)\Sl can consume resources, e.g., the time needed to
refuel a vehicle must also be considered in another maintenance constraint that
constrains the maximal amount of time between two succeeding maintenance
services. We say that each maintenance service of Sl resets the maintenance
constraint l.

Capacity Constraints. A capacity constraint b ∈ B consists of a resource function
rb : H �→ Q and a capacity bound Ub ∈ Q. Capacity constraints are used to
model, e.g., infrastructure capacity, see [25, Section 5.3]. We say that the set of
hyperarcs H� ⊆ H fulfills the capacity constraint b ∈ B if

∑
h∈H�

rb(h) ≤Ub. (10.1)

The output of the RSRP is a set of feasible (rolling stock) rotations:

Rolling Stock Rotation. A cycle C ⊆ A is a feasible (rolling stock) rotation w.r.t.
the maintenance constraint l if the resource consumption ∑a∈C rl(a) of the
whole cycle is zero or if each node of V ∪ S that is covered by C is contained
in a resource path that is feasible w.r.t. l. We denote by V (C) ⊆V ∪S the nodes
that the cycle C ⊆ A covers, i.e., V (C) :=

⋃
(u,v)∈A{u,v}.

We denote the RSRP as follows:

Rolling stock rotation problem (RSRP). We are given a set T of timetabled pas-
senger trips and a hypergraph (V ∪ S,A,H) with a cost function c : H �→ Q+,
a set L of maintenance constraints, and a set B of capacity constraints. The
RSRP is
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min
H�⊆H

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
h∈H�

c(h)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃C1, . . . ,Cn ⊆ A, n ∈ N :

V (Ci)∩V (Cj) = /0 ∀ i, j ∈ {1, . . . ,n} and

Ci is a feasible rotation ∀ i ∈ {1, . . . ,n}, l ∈ L and

⋃

h∈H�
h =

n⋃
i=1

Ci and

|H�∩H(t)| = 1 ∀ t ∈ T and

∑
h∈H�

rb(h) ≤Ub ∀b ∈ B

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

That is, the RSRP is to find a node-disjoint set of rolling stock rotations (which are
feasible w.r.t. all maintenance constraints) that form a set of hyperarcs such that each
timetabled trip is covered exactly once, all capacity constraints are fulfilled, and the
cost function is minimized.

Note that any solution to the RSRP is composed of node-disjoint cycles. There-
fore, a hyperarc of the form {(u,v),(w,v)} ⊆ A can not be part of a solution because
the node v would be covered twice. Therefore, we assume that each hyperarc h ∈ H
defines a perfect matching between its tail nodes {u ∈V |(u,v) ∈ h} and head nodes
{v ∈V |(u,v) ∈ h}.

Before we proceed with a mathematical program for the RSRP we introduce
some notation and definitions.

Notation and Definitions. We denote the subset of all hyperarcs covering the
timetabled trip t ∈ T as H(t) ⊂ H and we denote by H(a) ⊆ H the subset of hy-
perarcs that contain the standard arc a ∈ A. W.l.o.g. we assume that H(a) �= /0 for
each arc a ∈ A. If H(a) = /0, the standard arc a can never be contained in a feasi-
ble rotation because we are restricted to select hyperarcs for a solution. For a node
v ∈V ∪S we denote sets of incoming as well as outgoing hyperarcs (standard arcs)
of v as H(v)in and H(v)out (A(v)in and A(v)out), respectively. These notations are
formalized by definitions (10.2):

H(t) := {h ∈ H |h covers t} for trip t ∈ T,

H(a) := {h ∈ H |a ∈ h} for arc a ∈ A,

H(v)in := {h ∈ H |∃a ∈ h : a = (u,v)} for node v ∈V ∪S,
H(v)out := {h ∈ H |∃a ∈ h : a = (v,u)} for node v ∈V ∪S,

A(v)in := {(u,v) ∈ A} for arc a ∈ A,
A(v)out := {(v,u) ∈ A} for arc a ∈ A.

(10.2)

A Constraint Integer Program as Basic Model. ROTOR’s overall model for the
RSRP is a MIP model, which is presented in [25, Section 5.1] in its full shape. Here,
we consider a more compact basic model for the RSRP in order to have a convenient
reference in the proceeding sections. To this end, we use a constraint programming
notation for the maintenance constraints. Obviously, the constraint notation does not
help in solving RSRP instances, i.e., it is abstract and can be seen as a placeholder.
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The reason why we denote them in this way is that we do not want to anticipate
a dedicated modeling idea for these constraints. In fact, Reuther [25] develops two
different ways to tackle the maintenance constraints: In ROTOR’s industrial appli-
cation an extra MIP part is used, see Reuther [25, Section 5.2]. This part is sophis-
ticated and customized for the dedicated application at DBF. Additionally, in [25,
Chapter 3] a promising alternative, which is also based on a constraint programming
formulation, is presented.

Integer programming (IP). Many approaches for combinatorial optimization
problems use an IP formulation as basis. The presented approach for the RSRP is not
an exception. The major gain that we obtain from an IP model is the direct access to
its linear programming (LP) relaxation. This is advantageous for two reasons. First,
the solution of LP models of enormous size is a manageable task because a great
algorithmic progress achieved during the last 70 years meets fast computers with
much memory, nowadays. Second, beside the solution of LP models, the “only”
remaining task in solving IP models is to force that all integer variables have to take
integer values. This is also a standardized as well as computationally extensively
investigated problem.

Basic Model. As explained in Sect. 10.3 an instance of the RSRP is defined
through the following data: A hypergraph (V ∪S,A,H) with a cost function c : H �→
Q+, a set of maintenance constraints L with resource functions rl : S∪A �→Q+ and
resource upper bounds Ul ∈ Q+, and a set of capacity constraints B with resource
functions rb : H �→Q+ and capacity bounds Ub ∈Q+. We are now ready to present
the basic model for the RSRP. We introduce a binary decision variable xh for each
hyperarc h ∈ H that is equal to one if and only if h ∈ H is part of the solution and
denote the constraint integer programming model (BM):

min ∑
h∈H

chxh, (BM)

∑
h∈H(t)

xh = 1 ∀ t ∈ T, (10.3)

∑
h∈H(v)in

xh = ∑
h∈H(v)out

xh ∀v ∈V ∪S, (10.4)

∑
h∈H

rb(h)xh ≤Ub ∀b ∈ B, (10.5)

MAINTENANCE( l,x) ∀ l ∈ L,

xh ∈ {0,1} ∀h ∈ H. (10.6)

Program (BM) is composed of a linear objective function, a (hyper-) flow part, i.e.,
equalities (10.3) and (10.4), capacity constraints (10.5), and maintenance constraints
as well as the integrality constraints for the x-variables (10.6).
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Linear Objective Function. The objective function of model (BM) minimizes
the total cost of the hyperarcs associated with x-variables that take value one. Note
that the objective function is simply linear but, however, has still the ability to take
distinguished costs for correlated standard arcs into account. For example, we can
easily apply the model if a cost structure in which c({a1})+ c({a2}) > c({a1,a2})
for standard arcs a1,a2 ∈ A and hyperarcs {a1},{a2},{a1,a2} ∈ H is required. This
situation is not as easy to handle by using decision variables for standard arcs and
has an important industrial application, see Reuther [25, Section 4.4].

Flow Part. The flow part (i.e., equalities (10.3) and (10.4)) is a distinguished
feature of the basic model. It is responsible to force that the solution is a set of
cycles that cover the timetabled trips. Hereby, the covering constraints (10.3) as-
sign exactly one hyperarc to each timetabled trip t ∈ T , while the flow conservation
constraints (10.4) in combination with the integrality constraints (10.6) force the
solution to be a set of cycles. Note that the flow part is notationally identical in
terms of a standard graph but its column vectors are significantly different, i.e., they
belong to hyperarcs instead of standard arcs.

Reformulation by Using Standard Arc Variables. In order to make the mod-
eling of cycles more clearer we reformulate the flow conservation constraints in
the following way. We additionally introduce binary decision variables for standard
arcs, i.e., the variable ya takes value one if and only if the standard arc a ∈ A is part
of a solution. We couple these new arc variables to the hyperarc variables by:

ya = ∑
h∈H(a)

xh ∀a ∈ A (10.7)

and replace the flow conservation constraints of model (BM) by equalities:

∑
a∈A(v)in

ya = ∑
a∈A(v)out

ya ∀v ∈V ∪S. (10.8)

By substituting all y-variables in (10.8) according to equality (10.7) we notice that
we still deal with exactly the same solution space in terms of the x-variables of the
basic model. Obviously, the standard flow conservation constraints (10.8) together
with the integrality constraints for the y-variables force the solution to be a set of cy-
cles which is exactly what we wanted to illustrate by the reformulation. In addition,
we observe that the reformulation does not promise a gain because we additionally
would have to deal with a new type of variables, namely the y-variables, and a large
set of additional coupling constraints (10.7).

Inequalities for Capacity Constraints. Inequalities (10.5) are the natural for-
mulation for the capacity constraints (10.1) of the RSRP. They are used to respect
the capacity of fleets (i.e., the number of available railway vehicles) as well as the
capacity of maintenance and parking facilities, see Reuther [25, Section 5.3].

Maintenance Constraints. The maintenance constraints denoted in the basic
model (BM) play a central role in the RSRP. In fact, they are also responsible for
the need of graph-based hypergraphs such that the perfect matching between the tail
and head nodes of a hyperarc is precisely defined. The constraint notation of a main-



10 Optimization of Rolling Stock Rotations 223

Table 10.1: Industrial requirements of rolling stock rotations for ICE vehicles

Requirement Section in [25] Feasibility Optimality Modeling

Vehicle configuration 4.1 x x Hypergraph
Turn duration rules 4.2 x x Hypergraph
Railway topology 4.3 x Hypergraph
Deadhead trips 4.4 x x Hypergraph
Service paths 4.5 x x Hypergraph
Vehicle orientation 4.6 x x Hypergraph
Vehicle composition 4.7 x Hypergraph
Trip sequences 4.8 x Hypergraph
Coupling and decoupling 4.9 x Hypergraph
Regularity patterns 4.10 x Hypergraph
Re-optimization templates 4.11 x Hypergraph
Objective function 4.12 x Hypergraph
Maintenance constraints 5.2 x MIP
Capacity constraints 5.3 x MIP
Trunk constraints 5.4 x MIP

tenance constraint l ∈ L in model (BM) “only” states that the hyperarcs associated
with x-variables with value one have to feasible w.r.t. l.

Conclusion. We conclude this section by Table 10.1, which summarizes the in-
dustrial details of the RSRP that are explained in [25, Chapters 4 & 5]. This shows
the modeling power of hypergraphs for rolling stock rotation optimization.

Table 10.1 lists all requirements that we consider in our industrial application.
By column “feasibility” (“optimality”) we indicate if the corresponding requirement
has to be “primarily” considered in order avoid infeasible (suboptimal) rolling stock
rotations when solving RSRP instances. But those columns are rather secondary.

The last column of Table 10.1 denotes our argument for the usefulness of the
hypergraph, i.e., it denotes if the implementation of the corresponding requirement
is mainly accomplished by ROTOR’s hypergraph or by ROTOR’s MIP model.

We proceed with ROTOR’s algorithmic key concept when solving industrial
RSRP instances.

10.4 Solve via Coarse-to-Fine

In this section we highlight a coarse-to-fine (C2F) approach to solve certain linear
programs by column generation. The problems that we address contain layers corre-
sponding to different levels of detail, i.e., coarse layers as well as fine layers. These
layers are utilized to design efficient pricing rules. In a nutshell, the method shifts
the pricing of a fine linear program to a coarse counterpart. In this way, major de-
cisions are taken in the coarse layer, while minor details are tackled within the fine
layer. We elucidate this methodology by applying it to the RSRP.
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In fact, the C2F approach is motivated by the RSRP as we introduced it in the
previous section. In its industrial application, the RSRP consists of several “lay-
ers” that address different levels of detail. The major decisions of the RSRP deal
with covering timetabled trips by rolling stock rotations. This is a coarse layer of
the problem. At the same time minor decisions, for example, about the detailed ar-
rival of a multi-traction vehicle composition at some station, must be considered for
technical reasons. This defines a fine layer.

The paradigm of the approach is to work with a version of the fine model that is
restricted to a small subset of variables. This restricted model is iteratively extended
by using information from the coarse model. In other words, the coarse model is
used to identify the relevant decisions (i.e., variables) of the fine model by (hope-
fully) focusing the attention exactly to where it is needed.

The variable selection process is handled by column generation, see Luebbecke
and Desrosiers [20] for an introduction. The idea is to work with two LP models,
one for the coarse and one for the fine layer. A coarse LP model is constructed by
aggregating suitable rows of the fine LP model and, hopefully, turns out to be a
combinatorial optimization problem of low complexity, e.g., a network flow prob-
lem. Variables for the fine LP model are generated using the coarse LP model until
convergence. This method aims at a rapid solution progress and at a complete elim-
ination of stalling and tailing-off effects that are due to the fine layer. A comprehen-
sive literature review of related ideas can be found in [25, Section 2.2]. We proceed
with the description of the generic C2F idea in the next section and illustrate its
application to the RSRP afterwards.

10.4.1 C2F Column Generation for Linear Programs

In this section, we present the C2F idea for general LP models. The C2F idea is
embedded in the column generation algorithm (CGA) that we briefly recall:

Column Generation. Given index sets I = {1, . . . ,m} and J = {1, . . . ,n}, a ma-
trix A ∈Q

I×J , and vectors b ∈Q
I and c ∈Q

J , consider a linear program

min cT x s.t. Ax = b, x ∈Q
J
+ (MP)

and its dual

max bT π s.t. AT π ≤ c, π ∈Q
I .

We call program (MP) the master problem. If |J| is very large, the CGA is the
method of choice to solve the master problem (MP). By using the CGA one restricts
J to a subset J′ ⊆ J of columns to solve the restricted master problem (RMP), i.e.,

min c′T x s.t. A′x = b, x ∈Q
J′
+. (RMP)

Note that c′ and A′ are also restricted to the subset J′. We assume x j to be zero for
j ∈ J \ J′ in a vector x ∈Q

J , which makes x compatible for both the MP and RMP.
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In each iteration of the CGA we try to price columns (i.e., to find at least one
column that is added to program (RMP)) j ∈ J \ J′ by solving the pricing problem.
The pricing problem is to solve

c := min
{

c j −πT a j | j ∈ J
}

where a j ∈Q
m is the column vector of A for column j ∈ J and c j ∈Q is the objective

coefficient of column j. If c ≥ 0, we have a proof that an optimal solution x� for
program (RMP) is also an optimal solution for program (MP). Otherwise, we select
a set of columns J� ⊆ J such that at least one j ∈ J� has negative reduced cost d j :=
c j−πT a j, add the columns associated with J� to program (RMP), and continue with
re-optimizing program (RMP).

Column Selection by Layers. We are free in selecting columns for the set J� by
a column selection rule as long as at least one element of J� has negative reduced
cost. But, it is obvious that a better column selection rule improves the efficiency of
the CGA. In particular, it can be beneficial to add also columns with positive reduced
cost as we will see. We address applications where J is enumerated to check every
j ∈ J whether d j is negative, e.g., the simplex method. We call this enumeration
pricing loop.

The main idea is to introduce layers (precise definition follows) that are utilized
to improve two aspects of the CGA. The first one is to speed-up the pricing loop in
each iteration of the CGA. The second one is to refine the column selection rule.
The latter, aims at reducing the total number of iterations performed by the CGA
and to reduce the total number of columns generated.

We restrict our considerations for general LP models to two layers, namely the
coarse layer and the fine layer. The fine layer is equal to program (MP). The coarse
layer appears by the following considerations.

Let [·] : I �→ [I] be a coarsening projection that maps the index set I of the equa-
tions of program (MP) to a smaller coarse index set [I] of size | [I] | ≤ |I|. We use
this notation because the projection [·] induces an equivalence relation on the row
indices I, namely, i ∼ j ⇐⇒ [i] = [ j]. Let v ∈Q

I be a column vector with index set
I and let vi be the element of v with index i ∈ I. We define τ(v, i) to be the number
of non-zero coefficients in v supported by rows equivalent to row i, i.e.,

τ(v, i) := |{vk �= 0 | [k] = [i]}| .

We denote the coarse vector or coarsening of v by [v] ∈ Q
[I]. The coarse vector [v]

is composed of the following coarse coefficients

[v][i] := ([v][i]1 , [v][i]2) :=

(min {vk �= 0 |k ∈ I : [k] = [i]}, max {vk �= 0 |k ∈ I : [k] = [i]}) · τ(v, i)

where we define [v][i] := (0,0) if {vk �= 0 |k ∈ I : [k] = [i]} = /0. Note that [v][i] is
a pair of numbers, namely, the minimal and the maximal non-zero coefficient in
the set of rows equivalent to row i, multiplied by the number of non-zero entries.
Let ([A· j]) j=1,...,|J| be the bimatrix of coarse column vectors of A. Typically, this bi-
matrix contains identical columns caused by the coarsening projection, which is a
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highly desirable effect. Later, in an implementation, we choose exactly one repre-
sentative for a set of identical columns but we denote the resulting bimatrix by [A]
with columns [J] and assume that [A] has as many columns as A has in order to not
leave the vector space of the columns of A. Further, we define the coarse objective
coefficient [c j] := mini∈J{ci | [i] = [ j]} for column j ∈ J.

Let π ∈Q
I be a dual solution vector of program (MP). We define2

[π][i] := (min {πk |k ∈ I : [k] = [i]}, max {πk |k ∈ I : [k] = [i]}).

Further, let a j, j ∈ J, be a column vector with objective coefficient c j. For the ease
of notation, the coarse reduced cost [d] is defined via coefficients [d j] := [c j]−
[π]T · [a j], j ∈ J, where we define the multiplication of pairs as (a1,b1) · (a2,b2) :=
max{a1a2, a1b2, b1a2, b1b2} for two pairs (a1,b1) ∈ Q

2 and (a2,b2) ∈ Q
2. Note

that the coarse reduced cost is not the coarsening of the reduced cost vector d. The
coarse reduction (R) of the master problem (MP) is

min [d]T x s.t. [A]x [=] [b] ,x ∈Q
[J]
+ , (R)

where we define

[A]x [=] [b] :⇔ [b][i]1 ≤ ∑
j∈J

[A· j][i]2 x j, ∑
j∈J

[A· j][i]1x j ≤ [b][i]2 ∀ [i] ∈ [I].

That is, the coarse reduction (R) approximates equations of the MP by two extreme
case constraints arising from the minimum and maximum non-zero coefficients in
equivalent rows. Note that the objective function of the coarse reduction is to min-
imize [d] (and not c); the reason for this will become clear in the sequel. We also
address the coarse reduction as coarse LP model and the MP as fine LP model.

The polytopes associated with programs (MP) and (R) are denoted by P(MP) and
P(R), respectively. Coarsening has the following simple but important properties.

Lemma 10.1. The coarse polytope associated with program (R) includes the fine
polytope associated with program (MP), i.e., P(R) ⊇ P(MP).

Proof. Let ∑i∈I:[i]=[k] ∑ j∈J Ai jx j = ∑i∈I:[i]=[k] bi for all [k]∈ [I] be the system of sums
of equivalent rows of program (MP). Every row of (R) is a relaxation of this (already
relaxed) system because each coefficient is respectively over- or underestimated.

Lemma 10.2. The coarse reduced cost always underestimate the (original) reduced
cost, i.e.,

[d j] = [c j]− [π]T · [a j] ≤ c j −πT ·a j = d j ∀ j ∈ J.

Proof. By definition we have [c j]≤ c j and each summand in πT ·a j is overestimated
by a summand of [π]T · [a j].

2 Note that the definition is different to the definition of the coarse coefficients. It is a correction of
the definition in [6, 25].
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Lemma 10.1 shows that the coarse reduction (R) provides an approximation of
the fine MP which has fewer rows and, thus, is probably easier to solve. We want
to take advantage of this approximation in a CGA for the fine LP model by shifting
the pricing to the coarse reduction. A naive way to do this is to solve the coarse
reduction w.r.t. the original objective function c (and not [d] for that it is defined) in
a first step, producing a set of columns

J� :=
{

j ∈ J
∣∣∣ [x�][ j] > 0

}
⊆ J,

and then to solve the fine master LP model in a second step, starting from pro-
gram (MP) restricted to the columns J�. However, this simplistic procedure is un-
likely to work well because of a lack of information exchange between the coarse
and the fine LP models.

C2F Column Generation Algorithm. Lemma 10.2 proposes an alternative
(w.r.t. the simple approach mentioned at the end of the last section), i.e., to use
the coarse reduced cost as objective function for the coarse reduction and, in addi-
tion, to prune the pricing loop by the coarse reduced cost. These generic ideas are
formalized in Algorithm 10.1 that illustrates one single iteration within a CGA.

1 C2FCOLUMNGENERATION ()
2 {
3 π� := SOLVE ( (RMP)) ; / / π� ∈Q

m i s an o p t i m a l dua l s o l u t i o n o f (RMP)
4
5 [π�] := COMPUTE (π� ) ; / / c o a r s e n d u a l s o l u t i o n a c c o r d i n g t o [·]
6
7 [d�] := COMPUTE ( [π�] ) ; / / compute c o a r s e reduced c o s t
8
9 [x�] := SOLVE ( (R)) ; / / [x�] ∈Q

[J] s o l v e s t h e c o a r s e r e d u c t i o n (R) w . r . t . [d]

10

11 J� :=
{

j ∈ J
∣∣∣ [x�][ j] > 0

}
; / / s e l e c t new columns f o r (RMP) by [x�]

12
13 i f (

{
j ∈ J�

∣∣d j < 0
}

= /0 )
14 {
15 [J�] :=

{
[ j] ∈ [J]

∣∣[d j
]
< 0
}

; / / “ p r i c i n g loop” i n c o a r s e l a y e r
16
17 Q :=

{
j ∈ J

∣∣ [ j] ∈ [J∗] ,d j < 0
}

; / / “ p r i c i n g loop” i n f i n e l a y e r
18
19 i f ( Q �= /0 ) / / Are t h e r e s t i l l co lumns w i t h n e g a t i v e reduced c o s t ?
20 {
21 J� := J� ∪{CHOOSE (Q)} ; / / add a t l e a s t one more column
22 }
23 }
24
25 re turn J� ;
26 }

Algorithm 10.1: C2F column generation for linear programs (only a single iteration
is outlined)
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The C2F CGA, as outlined by Algorithm 10.1, is based on an optimal dual solu-
tion of the fine RMP, see line 3. Then, the fine dual solution is coarsened according
to the coarse projection in line 5 and the coarse reduced cost are computed in line 7.

The C2F CGA solves the fine MP by using the coarse reduction as a primary
column selection rule, see lines 9 and 11 of Algorithm 10.1. The intention behind
this rule is to compute a reasonable combination of (hopefully) improving columns
by solving the coarse reduction. Using the coarse reduced cost as an objective aims
at a “good combination” of improving columns of negative reduced cost and further
columns of positive reduced cost that are “necessary” to complete the construction
of the solution. Column selection by the solution of the coarse reduction is crucial
for the performance of the C2F approach. Note that a similar idea (without coarsen-
ing and in the context of Lagrangian relaxation) has been introduced by Löebel [19,
Section 7.1.2] published under the name “Lagrangian pricing”.

After columns have been selected through the coarse reduction, the algorithm
iterates through a coarse pricing loop, see line 15. Note that this is only necessary
(for the proof of convergence) if it turns out that no columns with negative reduced
cost have been selected through the coarse reduction. This is indicated by the if-
statement in line 13 of Algorithm 10.1. On the basis of the set [J�] of coarse columns
with negative coarse reduced cost it is straightforward to check if there are fine
columns with negative reduced cost. Note that this check is pruned by the results of
the coarse pricing loop. By Lemma 10.2 we can not miss any columns in the fine
layer with negative reduced cost. That shows that the preselection by [J�] is exact.
Finally, if the set Q is not empty it is sufficient to select one element of Q in order
to ensure global convergence.

Algorithm 10.1 is iteratively called until convergence. It works particularly well
if the coarse reduction appears (better to say is arranged) as a simple combinatorial
optimization problem such as a standard assignment problem (AP) as it is the case
in the RSRP application.

10.4.2 Layers for Rolling Stock Rotation Optimization

Coarsening Rows by Coarsening Nodes. In the previous section, we proposed to
coarsen rows of an LP model such that the coarsening projection is “meaningful”
w.r.t. the concrete underlying optimization problem. Even if this is the basic idea,
we follow an equivalent but more indirect approach when we come to the RSRP-
specific approach in this section where we illustrate the implementation of the C2F
idea for the RSRP in ROTOR:

We define the coarsening projections in terms of the objects of ROTOR’s hyper-
graph that are associated with ROTOR’s MIP model. This is simple to denote and
easy to motivate. In addition, this was the application for that the C2F idea was
developed originally. To this end, we start with:

A Compromise. The final goal of this section is to solve the LP relaxation of
ROTOR’s overall MIP formulation for the RSRP. This model is presented in [25,
Section 5.1]. The C2F approach is motivated by complex industrial vehicle compo-
sition requirements that are extensively described in [25, Chapter 4] in detail.
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In order to keep the presentation here compact and understandable at the same
time, we apply the following compromise. We explain in a way by that the reader
is not required to know all details of ROTOR’s overall model, even if we sometimes
refer to it. Just keep in mind that this model is a large MIP formulation for that we
introduce two additional coarse layers in the following.

In fact, it is enough to remember how the basis model (BM) for the non-
maintenance relaxation (also without capacity constraints) of the RSRP as intro-
duced on page 221 works in order to follow the considerations of this section. We
briefly define only the required combinatorial details of the model, namely vehicle
composition aspects, that we need here.

Vehicle Composition in a Nutshell. We derive the coarse layers for the RSRP
from detailed combinatorial aspects of vehicle composition. Therefore, we explain
what is meant by fleet, vehicle orientation, position, vehicle composition, and vehi-
cle configuration in the following.

A fleet is a basic type of railway vehicles (e.g., the approximately 40 vehicles of
the ICE’s first generation owned by DBF form a fleet). The set F denotes the set of
fleets.

An orientation is an element of the set O = {Tick,Tack}. The orientation de-
scribes the two options of how vehicles can be placed on a railway track. This is
distinguished at DBF by the position of the first class carriage of the vehicle w.r.t.
the driving direction. Tick (Tack) means that the first class carriage is located at the
head (tail) of the vehicle w.r.t. the driving direction.

A (vehicle) composition c of size n ∈ N+ is an n-tuple of the form

c = (( f1,o1),( f2,o2), . . . ,( fn,on)) ∈ (F ×O)n,

i.e., a vehicle composition defines detailed positions, orientations, and fleets of rail-
way vehicles that are coupled together.

A (vehicle) configuration is a multiset of fleets and can be seen as a main charac-
teristic of a vehicle composition. We say that the vehicle configuration k is realized
by the vehicle composition c = (( f1,o1),( f2,o2), . . . ,( fn,on)) if k = { f1, . . . , fn},
i.e., if the multiset of fleets used in the composition c is equal to the vehicle config-
uration k.

In fact, the relation and, moreover, the difference between vehicle composition
and vehicle configuration is important for rolling stock rotation optimization and of
major interest for the C2F implementation.

Vehicle Composition by ROTOR’s Hypergraph. Each node v ∈V of ROTOR’s
hypergraph (V,A,H) (the set of service nodes S is not necessary to be considered in
the following) is constructed in such a way that it defines the fleet, the vehicle ori-
entation, the position, and the vehicle configuration (not to be confused with vehicle
composition) of a railway vehicle that traverses the node v. Each hyperarc h ∈ H of
ROTOR’s hypergraph is created in order to model the movement of a vehicle com-
position (not to be confused with vehicle configuration). The vehicle composition
derives from the nodes that h connects by its standard arcs.
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In fact, the main structure of model (BM) is implied by the underlying hyper-
graph (V,A,H). Therefore, it is natural to first define projections for (V,A,H) (pre-
cise definition follows) and to apply the C2F CGA afterwards. In addition, our de-
scription gains a lot of convenience from the discussion in terms of nodes, arcs,
and hyperarcs. We do not need to discuss every constraint of model (BM) sepa-
rately (even if this is necessary within ROTOR). Instead, all details (in particular the
coarse coefficient matrix) as required in an implementation derive from the hyper-
graph projections in a straightforward way.

The starting point for a hypergraph projection is the definition of how the nodes
of V are projected onto coarser nodes. Based on this definition we expose further
details in the next three subsections. To this end, we frequently consult Fig. 10.2.
This illustration serves as a running example and shows the relation of three layers
for the RSRP plus an additional figure that illustrates the vehicle configurations that
are allowed to be chosen for the trips of the input timetable at the very top.

The layers, namely, a composition layer G = (V,A,H), a configuration layer
[G] = ([V ] , [A] , [H]), and a vehicle layer [[G]] = ([[V ]] , [[A]] , [[H]]) induce hyper-
graphs themselves. They are strongly motivated by the vehicle composition require-
ments of the RSRP.

In the application at DBF the RSRP must be solved for the composition layer, but
many technical rules only apply to the configuration layer, which is much smaller
w.r.t. the size of the set of hyperarcs. In addition, we define the vehicle layer to set up
a super-coarse RSRP that provides a reasonable description of the major problem
characteristics (e.g., the total number of railway vehicles used in a solution) and
for that we design the coarse reduction such that it is combinatorially solvable in
polynomial time.

We proceed with the discussion of ROTOR’s three layers, namely, the composi-
tion layer, the configuration layer, and the vehicle layer.

Composition Layer. We define the composition layer simply as the hypergraph
(V,A,H) of the RSRP. It is illustrated on the very bottom of Fig. 10.2. The compo-
sition layer represents the most fine layer on that the RSRP and, in particular, the
LP relaxation of model (BM) needs to be solved.

The hypergraph (V,A,H) is constructed in such a way that each hyperarc h ∈ H
identifies a vehicle composition. In order to allow for this construction the nodes
V are particularly assembled. Since this assembly is essential for the coarsening
projections we describe it in the following.

We define an event as a triple (e, t, p) with e ∈ {d,a} defining the departure
(e = d) or the arrival (e = a) of an individual railway vehicle at position p ∈ Z+ in
a vehicle composition while operating the timetabled trip t ∈ T .

A node v ∈V of the composition layer is of the form of a four-tuple:

v = ((e, t, p),k, f ,o) (10.9)

where we assume the following notation:

• (e, t, p) identifies an event,
• k denotes the vehicle configuration (see Reuther [25, Section 4.1]),
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• f ∈ F declares the fleet, and
• o ∈ O = {Tick, Tack} states the vehicle orientation (see Reuther [25, Section

4.6]).

For example, let v ∈V be the node in the lowest line3 in Fig. 10.2. The node v can be
interpreted in terms of (10.9) as follows. The event of v is (d, t3,1), i.e., the departure
of a railway vehicle at position 1 of trip t3. The vehicle configuration and fleet in
that a vehicle through v departs are k = {Blue} and f = Blue (this is indicated by
the blue color). Finally, the orientation o while departing is Tick, which is indicated
by the white box that surrounds v and its corresponding arrival node.

By having nodes that are composed as denoted in (10.9) the construction of the
hyperarcs of (V,A,H) is straightforward even under detailed vehicle composition
requirements. Moreover, this form is the basis for the coarsening projections that
we introduce in the next sections.

Configuration Layer. The configuration layer is a further coarsening of the com-
position layer. It is mainly created in order to reduce the size for the RSRP hyper-
graph. The reduced size is achieved by simplifying vehicle compositions to vehicle
configurations as we will see. The configuration layer serves in particular as a tool
for pruning during our column generation algorithm. In addition, it prepares for the
implementation of the coarse reduction, which is not directly derived from the con-
figuration layer. Instead, we introduce an even more coarse layer in the next section
that is based on the configuration layer.

Let (V,A,H) be the hypergraph of the composition layer. The basic idea is to omit
the orientation and position of railway vehicles from (V,A,H) in order to coarsen it.
To this end, we introduce the following coarsening projections:

[v] := ((e, t, p),k) for v = ((e, t, p),k, f ,o) ∈V,

[a] := ([v] , [w]) for a = (v,w) ∈ A, and

[h] := {[a] |a ∈ h} for h ∈ H.

Again, let v ∈ V be the node at the lowest line in Fig. 10.2 which operates t3 ∈ T .
As illustrated the node v is projected onto a coarser node of the configuration layer
for that we can not distinguish its orientation anymore. Also the eight red nodes that
belong to the operation of t5 by the vehicle configuration {Red,Red} are coarsened.
Note that we still have four corresponding nodes in the configuration layer for them.
This ensures that the number of railway vehicles that cover the timetabled trip t5 is
equal in the configuration and composition layer.

We denote the hypergraph of the configuration layer as ([V ] , [A] , [H]) with
the canonical definitions: [V ] := {[v] |v ∈V}, [A] := {[a] |a ∈ A} and [H] :=
{[h] |h ∈ H}. In this way, the configuration layer is also a graph-based hyper-
graph that completely determines the coarsening of rows and columns in terms of
ROTOR’s MIP model.

3 In order to decrease confusion: The blue circle with the lowest y-coordinate in a natural Cartesian
system of coordinates for Fig. 10.2 is meant.
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Since the projections of the composition layer onto the configuration layer omit
the orientation and the position of railway vehicles, the hyperarcs of [H] can be
interpreted as connections of timetabled trips with vehicle configurations (not to
be confused with vehicle compositions). Indeed, this is the original motivation for
defining the configuration layer. Vehicle configuration plays a much more essential
role in the application than vehicle composition. Most of the time-dependent con-
straints, e.g., the minimal time needed for cleaning or refueling, refer “only” to the
configuration layer, i.e., they are independent of the concrete vehicle composition
that is realized. Of course, vehicle composition is important and necessary but it
mainly causes large hypergraphs. Vehicle configuration is much more responsible
for the hardness of the RSRP.

A comparison of the size of the composition and configuration layer, shows that
the cardinality of the set of hyperarcs in the composition layer (V,A,H) is exponen-
tial in the size of the set of hyperarcs in the configuration layer ([V ] , [A] , [H]), see
Reuther [25, Section 2.4.2].

Vehicle Layer. The vehicle layer is the coarsest layer that is created in ROTOR
for the RSRP. Its purpose is to derive an implementation of the coarse reduction.
Recall, that the coarse reduction is mainly solved to identify the “right” columns
while generating and we are, fortunately, not strictly bound to the generic procedure
proposed in Sect. 10.4.1. Therefore, the implementation of the coarse reduction in
ROTOR is strongly related but formally not completely equal to the generic LP
version. More precisely, it is based on the coarse reduced cost of the configuration
layer and the underlying graph of the vehicle layer is a further coarsening of the
configuration layer ([V ] , [A] , [H]).

The main motivation for the concrete implementation comes from the experience
in solving RSRP instances. In these instances, a main characteristic is the number
of railway vehicles that are used in a solution. Our observation is that this number
is often already very well approximated if we solve a very simplified version of the
original problem, namely a AP. In the following we describe how we setup this AP
on the basis of the configuration layer.

Let ([V ] , [A] , [H]) be the hypergraph of the configuration layer and consider the
following further coarsening projections:

[[v]] := (e, t, p) for [v] = ((e, t, p),k) ∈ [V ] , and

[[a]] := ([[v]] , [[w]]) for [a] = ([v] , [w]) ∈ [A] .

Given a configuration layer with ([V ] , [A] , [H]), we define the vehicle layer as
the (graph-based hyper-) graph ([[V ]] , [[A]] , [[H]]) with [[V ]] := {[[v]] | [v] ∈ [V ]},
[[A]] := {[[a]] | [a] ∈ [A]}, and [[H]] := {{[[a]]}| [[a]] ∈ [[A]]}.

The set [[H]] is only defined for the sake of an uniform notation. It is not a set of
proper hyperarcs (anymore). In fact, we disassemble the hyperarcs to standard arcs
in the vehicle layer in order to gain a coarse reduction which can be solved very
quickly.

Since we want to price on the basis of the standard arcs of an AP, we have to
migrate the coarse reduced cost, which are still associated with hyperarcs, to them.
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We do this via the partial coarse reduced cost [[c]] : [[A]] �→Q as:

[[c]] ([[a]]) := min

{
[dh]

|h|

∣∣∣∣ [a] ∈ [h] ∈ [H]

}

for each arc [[a]] ∈ [[A]]. Note that this formula is based on the coarse reduced cost
of the configuration layer, but [[c]] ([[a]]) for [[a]] ∈ [[A]] does formally not denote
reduced cost in terms of LP. Its purpose, namely to transfer the coarse reduced
cost associated with hyperarcs of the configuration layer to the standard arcs of the
vehicle layer, is heuristic. See Reuther [25, Section 2.4.3] for a motivation of this
definition.

As denoted, to further coarsen the node v from [v] to [[v]] means to also omit the
vehicle configuration k from v. This has the following essential effect. In the vehicle
layer ([[V ]] , [[A]] , [[H]]) there is only a single option of how to cover a timetabled
trip. This is illustrated in Fig. 10.2. On the contrary, in the composition layer there
are many options for the operation of the timetabled trip t3, i.e., |H(t3)| is large.
This is reduced to two possible vehicle configurations in the configuration layer and
further simplified to two departure and arrival pairs in the vehicle layer.

Finally, we are ready to denote the assignment pricing problem (APP) that serves
as coarse reduction in our specialized C2F CGA for the solution of the LP relaxation
of ROTOR’s MIP model for the RSRP. It reads:

min ∑
[[a]]∈[[A]]

[[c]] ([[a]])x[[a]], (APP)

∑
[[a]]∈[[A]]([[v]])in

x[[a]] = 1 ∀ [[v]] ∈ [[V ]] ,

∑
[[a]]∈[[A]]([[v]])out

x[[a]] = 1 ∀ [[v]] ∈ [[V ]] ,

x[[a]] ∈ {0,1} ∀ [[a]] ∈ [[A]] .

The decision variables in program (APP) correspond to the standard arcs of the
vehicle layer. A solution of the assignment pricing problem (APP) is a set of cycles
that cover all the departure and arrival pairs of the vehicle layer.

The assignment pricing problem (APP) is an AP, which we solve by the Hun-
garian method [18] in ROTOR’s implementation. The pricing strategy behind
model (APP) is simply: Whenever a hyperarc of the composition layer projects to
an arc of the AP’s solution, we add it to the RMP, i.e., price it.

For more details about ROTOR’s C2F implementation, especially computational
results, see Reuther [25, Chapter 2]. ROTOR’s C2F method is the algorithmic
key technology in solving large and complex industrial RSRP instances. One (re-
optimization) example is presented in the next section. The associated RSRP in-
stance would not have been solved without the C2F procedure.
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10.5 Apply via Re-optimization the Köln-Rhein-Main
Construction Site

We conclude this chapter with bad news that are actually very good news:

Bauarbeiten: ICE-Strecke von Frankfurt nach Köln zeitweise gesperrt [4]

This news appeared in the “FAZ” (a prominent German newspaper). It an-
nounced that the railway tracks for the high-speed ICE lines between Frankfurt
(Main) and Cologne would be completely closed on four succeeding weekends in
May 2015. The reason was that Deutsche Bahn had to rebuild 17 km long rails. In
this section, we call the corresponding occasion the Köln-Rhein-Main construction
site (KRM).

In general, the KRM was bad news: It caused an additional driving time of ap-
proximately 60 min between Frankfurt and Cologne because the railway vehicles
(i.e., ICEs) were redirected through rails via the Rhine. The rails of the redirec-
tion are not appropriate for high-speed operations. Therefore, the KRM directly
affected the timetable of eight ICE lines that usually run over the involved rails via
Montabaur with high speed and a high frequency, see Fig. 10.3.

However, the KRM is good news for mathematical optimization in the following
sense: Before the news were published, ROTOR was used by DBF in order to com-
pute appropriate rolling stock rotations for the KRM. This application is the subject
of this section.

Redirection via the Rhine. The KRM had drastic consequences for the oper-
ation of the ICE vehicles of DBF compared to other construction sites. The main
reason is that an increased driving time for eight (out of overall 27) ICE lines causes
unusually many “standard” rolling stock rotations to become infeasible. In fact, it is
the increase by 60 min that matters here because a driving time extension of, e.g.,
half an hour can sometimes be handled more easily: Many ICE lines operate with
a period of 1 h and, therefore, an often successful approach is to shift connections
between timetabled trips (i.e., turns) by one period. For the KRM it was not obvious
how to implement this approach, i.e., an easy solution was not at hand.

Scenario Isolation. During the planning of a construction site by DBF, rota-
tion planners try to make minimally invasive changes to the existing timetable and
rolling stock rotations. To this end, it is desirable to isolate the planning scenario as
much as possible from the remaining part of the ICE network. This is done in order
to minimize negative side effects (e.g., the propagation of delays and a decreased
volume of passenger of a construction site) on other parts of the ICE network.

For the KRM the isolation procedure was obvious: The timetable changes4 as
illustrated in Fig. 10.3 suggest that the operation (in particular the rolling stock rota-
tions) of all ICE vehicles of the category ICE-W5 of DBF are affected by the KRM.

4 We do not provide the detailed changes of departures and arrivals here. The important aspect is
that the eight lines illustrated in Fig. 10.3 were directly affected by the 60 min increased driving
time.
5 The “W” indicates that the ICE-W vehicles are equipped with “Wirbelstrombremsen”, i.e., eddy
current brakes.
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Amsterdam

Dortmund

Dusseldorf¨

Cologne

Montabaur

Frankfurt

Mannheim

Stuttgart

Munich

Basel

Brussels

Nuremberg

Wuppertal

Frankfurt Airport
tracks via Rhine

ICE line 41: Dortmund–Munich
ICE line 42: Dortmund–Stuttgart–Munich
ICE line 43: Dortmund–Basel
ICE line 78: Frankfurt–Amsterdam
ICE line 79: Frankfurt–Brussels

Canceled ICE lines : 45, 47, 49

Fig. 10.3: Redirection for the Köln-Rhein-Main construction site (KRM): All ICE
lines between Montabaur and Cologne were closed in order to rebuild rails (as in-
dicated by the sleepers without rails) on four succeeding weekends in May 2015.
Note that the figure only illustrates the situation at the weekend when the KRM is
performed, i.e., the ICE lines 41, 42, 43, 45, 47, 49, 78, 79, and 82 operate as usual
on the high-speed tracks between Frankfurt and Cologne from Monday to Friday.
Note also that the placement of the locations is true to scale

The corresponding ICE lines are the lines 41, 42, 43, 45, 47, 49, 78, 79, and 82. This
might not really appear as a minimally invasive isolation at first glance. In fact, in
case of the KRM it was the minimal set of ICE lines to consider!
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It turned out that line 82, which connects Frankfurt to Paris, could be treated
separately. The ICE vehicles for line 82 have special equipment for France and are
usually not mixed with the other ICE vehicles on other ICE lines.

RSRP Setup. For the remaining eight ICE lines an instance of the RSRP dedi-
cated to the KRM was set up by rotation planners of DBF as follows. The original
timetable for the seven remaining ICE lines for Monday to Friday was taken with-
out modifications. The timetabled trips of the ICE lines 41, 42, 43, 78, and 79 were
modified on the weekend in order to reflect the increased driving time caused by the
redirection via the Rhine. The trips of the ICE lines 45, 47, and 49 that operate on
the weekend were canceled. Then, allowed vehicle configuration requirements were
specified for the “KRM timetable”. Not surprisingly, rotation planners of DBF re-
ported that the setup phase took a long time because a lot of data had to be manually
modified for the KRM.

The standard rolling stock rotations were declared as reference rotations. Thus,
the KRM RSRP was a proper re-optimization scenario. It contained all industrial
requirements described in [25, Chapters 4 & 5] except for infrastructure capacity
constraints which were not actually needed.

Optimization Rounds. It is far too much to expect that ROTOR immediately
computed an outstanding result for such a complex industrial instance. Beside RO-
TOR’s pure computation time it is almost always certain that the first computations
will reveal data issues. Naturally, such a complex RSRP instance, which was manu-
ally set up “under fire”, will not immediately model what is desired in the first shot.
Therefore, we are not surprised that approximately four rounds were necessary to
obtain the first usable rolling stock rotations. And even if ROTOR had produced
those rotations in the first place, further rounds were needed to tune the timetable
and rotations.

Keep in mind, that rolling stock rotations often give rise to further timetable
changes which involve further optimization rounds. What we learn from this is that
optimization (equally whether automatic or manual) can easily run into a loop that
will never stop. This is a serious issue that all optimization approaches share and
which can be minimized by, e.g., software tools dedicated to the preparation of RO-
TOR’s input data and also for further processing ROTOR’s output data. Fortunately,
also those software tools are at hand at DBF. Thus, the optimization rounds, indeed,
came to an end.

The KRM RSRP. Most of the final results were obtained from ROTOR by com-
puting a solution to a certain RSRP instance at DBF. We call this instance KRM
RSRP in this section. In fact, it was contributed by DBF to our test set at Zuse In-
stitute Berlin (ZIB) and it is called RSRP_111R in [25, Section 7.3]. The timetable
of the KRM RSRP consists of 169 trains, 1025 timetabled trips, and 838 timetabled
trip sequences. Seven reference rotations are to be re-optimized and also seven fleets
are given. The rotation templates for these reference rotations lead to a refinement
of 15 original vehicle configurations to 30 refined configurations. ROTOR’s hyper-
graph for this instance has 69,751,046 hyperarcs and one maintenance constraint
(i.e., the regular inspection) is contained.
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8 (11) (5)1B2 2B1 1B21A1 2B1 2B2 1B1 1A2 1A21A1 1B2 1B2 1A2 2B2 1B21A1 1A2 1B1 2B2 1A1 1A2 1A1 2B2 1B1

8 (1) (4)1A1 1B2 2B1 1B21B1 2B1 2B2 1A2 1A2 1A21B1 1B2 1A2 2B21B2 1B21A2 1B2 1A21A2 1A2 2B12B1 2B2 2B22B1

9 (6) (7)2B1 2B2 1B1 1A2 1A21A1 1B2 1B2 1A2 2B2 2B2 2B2 2B21A1 1A2 1A1 1B1 2B22B2 1B2 1B21A1

9 (4) (1)2B1 2B2 1A2 1A2 1A21B1 1B2 1A2 2B21B2 2B2 2B2 1A21A2 1B1 2B21A11A21A2 2B2 1B1 1B12B2 1A1 2B2 2B2 1B1 1B1

10 (3) (11)1B1 1A2 1A21A1 1B2 1B2 1A2 2B2 2B2 2B2 1A2 1A2 1A1 1B1 2B21A11A2 1B2 1A2 2B1 1B2 2B11A1

10 (10) (10)1B1 1A2 1A22B2 1B2 1A2 2B21B2 2B2 2B2 1A2 1B1 2B21A11A2 1B2 1A2 1B2 1B11B1 2B21B1 1A1

11 (10) (8)1B2 1B2 1A2 2B2 2B2 2B2 1A21A1 1A2 1A1 1B1 2B21A2 2B2 2B2 1A1 1A2 1B2 1A2 1A21A11A2 1A2 1A2 1A2 1A1 1B2 2B1 1A21A2

11 (7) (13)1B2 1B2 1A2 2B22B2 2B2 2B2 1A21A2 1B1 2B21A11A21A2 2B2 2B2 1A1 1A2 1B2 1A2 1A21A21A2 1A2 1A2 1A2 1A2 1B21A21A11A2

12 (2) (13)2B2 2B2 1A21A1 1A2 1A1 1B1 2B21A2 2B2 2B2 1A1 1A21A1 1A2 1B1 2B2 2B2 1B2 1B2 1A1 2B2 1B1 1B2 1A11A1 2B1 1B21A2

1 (9) (8)2B2 2B2 1A1 1A2 1B1 2B21A11A2 2B2 2B2 1A1 1A21A1 1B1 2B2 2B21A2 1B2 1A1 2B21B2 1B1 1B11A2 2B2 2B2 1B1 1B1

13 (12) (6)1A2 1A1 1B1 2B2 2B2 2B2 1A1 1A21A1 1A2 1B1 2B2 2B2 1B2 1B2 1A1 2B2 1B1 1A2 2B11A1

13 (11) (6)1A1 1B1 2B21A2 2B2 2B2 1A1 1A21A1 1B1 2B2 2B21A2 1B2 1A1 2B21B2 1B1 1A2 2B11A2
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1 (2) (2)1B2 2B11A1 1B2 2B1 1B2 2B11A1 1B2 2B1 1B2 2B11A1 1B2 2B1 1B2 2B1

1 (2) (2)1B2 2B12B1 2B11B2 1B2 2B11A2 2B11B2 1B2 2B11A2 1A2 1A2 1A2 1A2

2 (1) (1)1B2 2B1 1B2 2B11A1 1B2 2B1 1B2 2B11A1 1B2 2B1 1B2 2B11A1 1B2 2B1

2 (1) (1)2B11B2 1B2 2B11A2 2B11B2 1B2 2B11A2 2B11B2 2B1 2B1 1A2 2B1 2B1
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1 (1) (1)1A2 2B1 2B1 1B2 1B1 1B1 2B21A1 1A1 1A2 1A1 1A2 1A1 1A1 1A2 1A1 1A2 1A1 1A1

1 (3) (2)1B22B12B1 1B1 2B21A11A2 1A2 1A1 1A21A1 1A1 1A1 1A2 1A1 1A2 1A2 1A2 1A2 1B1 1B1 1B1 1B1

2 (3) (6)1B1 1B1 2B2 1A1 1A2 1A1 1A21A1 1A1 1A1 1A2 1A1 1A2 1A2 1A1 1A2 1A1

2 (1) (5)2B21B11B1 1A2 1A1 1A21A11A2 1A1 1A1 1A2 1A1 1A2 1A2 1A2 1A2 1A1 1B22B11A1 2B1 1B2 1B2 2B1 1B21B2

3 (6) (2)1A1 1A2 1A1 1A2 1A1 1A1 1A2 1A1 1A2 1A2 2B1 2B1 1B21A1 1B1 1B1 2B2 1A1 1A2

3 (4) (1)1A2 1A1 1A21A1 1A1 1A1 1A2 1A1 1A2 2B1 2B1 2B1 2B1

4 (5) (5)1A1 1A1 1A2 1A1 1A2 1A21A1 2B1 2B1 1B2 1A1

5 (2) (6)1A2 1A21A1 1A1 1A2 1A1 1A2 1A2 1A2 1A2 1B22B11A1 1A1

5 (4) (4)1A1 1A2 1A1 1A2 1A21A1 2B1 2B1 1B2 1B1 1B1 2B2 1A1 1A2 1A1 1A2 2B1 1B21A1 1B1 1B1 2B2

4 (6) (3)1A1 1A1 1A2 1A1 1A2 1A2 1A21A2 1B22B11A1 1B1 2B21A1 1A2 1A1 1A21A1 1A2 1A2

6 (2) (3)1A2 1A2 1A2 2B1 2B1 1B2 1B1 1B1 2B2 1A1 1A2 1A1 1A21A1 1B1 1B1 2B2 1A1 1A2 2B1 2B1 1B2

6 (5) (4)1A2 1A21A1 1B22B11A1 1B1 2B21A1 1A2 1A1 1A21A11A2 1B1 2B21A1 1B1 2B2 2B2 1B1 2B22B2
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16 (10) (20)2B2 2B2 2B2 1A11A1 1B2 1B2 2B2 2B2 1B1 1A1 2B2 1B11A11A1 1A2 2B1 2B1 1B2 1A2 1A1 1A2 1A2 1B2 1A21A1

16 (25) (3)2B2 2B2 1A12B21A1 1B2 1B2 1A2 2B2 1B1 1A12B21A1 2B2 1B11A21A1 1A2 1B1 1B1 2B2 1B2 1B2 2B11B21A2 1B2 1B21A12B1

17 (18) (21)1B2 1B2 1B21A1 2B2 2B2 1B1 1A1 2B2 1B11A1 1A2 2B1 2B1 1B2 1A21A1 1A1 1A2 1B2 1A2 1A2 1A1 2B1 1B2 1A21A1

11 (20) (21)2B2 2B2 1B11A1 2B2 1B1 1A12B2 2B2 1B11A1 1A2 1B1 1B1 2B21A2 1A2 1A2 2B2 1B11A2 1B1 2B2 1B1 1A1 1A11B1 2B22B2 1B1 1A21A1

18 (14) (17)1B1 2B2 1B1 1A11A2 2B2 1B11A1 1A2 2B1 2B1 1B2 1A21A1 1A1 1A2 1B2 2B2 1B1 1A21A1 1A2 1B2

18 (3) (13)2B2 1B1 2B2 1B1 1A12B2 2B2 1B11A1 1A2 1B1 1B1 2B21A2 1A2 1A2 1A2 1B11A21A2 2B21A21A2 2B2 1B1 1B1 2B22B2 2B2 1A1 1A2 1B1 2B21A2 1A22B2

19 (21) (1)2B2 1B1 1A2 2B1 2B1 1B2 1A21A1 1A1 1A2 1A2 1B2 2B2 1B11A1 1B2 2B1 1A1 1B1 1A2 1A21A1 1A1 1A2 1A2 2B2

10 (27) (5)1A1 1B2 1A1 1B2 1A11A1 1B1 1B11A21A11A1 1A2 1A2 1B21A2 1B12B21A2 1B2 2B1 1B2 2B1 1B2 1B21A2 1B2 1B2 2B12B1 1A12B11B2

20 (16) (5)1B2 2B1 2B1 1B2 1A2 1A1 1A2 1A2 1B2 2B2 1B11A1 1B2 2B1 1B2 1A2 2B2 1A1 1A1 1B1 2B2 1A11A11A1

20 (21) (11)1B2 2B1 2B1 2B2 1A2 1B21A2 1B12B21A2 1B2 2B1 1B2 1A2 2B2 2B2 1B12B2 2B2 2B21A11B1

21 (17) (19)1A1 1A2 1A2 1B2 2B2 1B1 1B2 2B11A1 2B2 2B2 1A2 1A2 2B2 1A2 1A21A1 2B2 1B11A2

21 (11) (20)1A2 1A2 1B21A11A2 1B12B2 1B2 2B11A2 2B22B2 1A2 1A2 2B2 1A1 1A2 1A21A2

22 (25) (10)1B11A1 1B2 2B1 2B2 2B21A1 1A2 1A2 1A2 1A2 1B1 1B1 1A21A1

22 (13) (2)1B12B2 1B2 2B1 2B22B21A2 1A2 1A2 1A2 1A1 1B1 1B11A2 1B1 2B12B2 1A2 1A2 1B1 1B11A2

23 (3) (2)2B11A11B1 1B2 1B2 1A2 1A21A1 1A2 1A2 2B2 1A21A2 1A11A1 2B2 1B1

23 (1) (9)2B11B2 1B21B2 1A21A21A2 1A2 1A2 2B2 1A21A2 1A2 2B1 1A11A2 1B2 1B2 1B2 2B1

24 (27) (4)1B2 2B2 2B21A1 1A2 1A2 1A2 1A2 1B1 1B11A1 1B2 1B2 1A1 1A2 1A2 1A1 1A2 1B21A1

7 (6) (27)1B1 1B12B2 2B2 2B21A2 1A2 1A2 1A2 1A2 1A1 1A2 1B21A21A11A1 1B1 1B22B2 1B21A2 1B2 1B2 1A11B2 1B2 2B1 1B2 1B2 2B1

25 (30) (22)2B2 2B2 1A2 1A2 1A2 1A2 1B1 1B11A1 2B2 2B2 2B2 2B2 1A21A1 2B2 1B11A2 1A2 1B2

25 (17) (16)1B1 2B2 1A2 1A2 1A2 1B1 1B11A21A1 2B22B2 2B2 2B21A1 1B2 2B1 1A1 1A2 1A21A1 1A11A1

26 (9) (9)1A2 1A2 1A2 1A2 1B1 1B11A1 1B2 1B21A1 2B2 2B2 1B1 1A1 2B2 1B11A1 2B2 1B1 2B1 2B11A1

17 (29) (25)1B2 1B2 1B2 1A2 2B1 2B1 1B2 1A21A2 1B21B2 1A2 1A2 2B2 1B1 1A12B21A1 2B2 1B11A1 1A2 1A1 2B21A2 1A1 1B1 2B2

27 (7) (24)1A2 1B1 1B1 2B2 2B2 1B2 1B2 1A21A1 2B2 1B11A2 1A2 1A2 1B1 2B21A1 1A2 1B1 1B11A1 1A2 2B2 1B1

27 (7) (10)1A2 1B1 1B12B1 2B22B2 1A1 1B2 1B2 1A2 2B2 1B11A2 1A2 1A2 1B1 2B21A2 2B2 1B1 2B2 1A12B2 1B1 2B2 1A11A1

28 (11) (8)2B2 2B21A2 1B2 1B2 1A21A1 2B2 1B11A2 1B2 1B2 1B21A1 1A1 1A1 1B2 1A21B2 2B1 1A11A2 2B21A1

28 (2) (19)2B2 2B21B1 1B2 1B2 1A21A1 2B2 1B11A2 1B2 1B21A2 1A2 1A1 1B2 1A21A11A2 2B2 1B11A1 1A11A2 1A2 1A1 1A1 1A2 1A11A11A1

29 (4) (11)1B2 1A21A1 2B2 1B11A2 1B2 1B2 1A2 1A21A1 1A2 1A2 2B2 1A21A2 2B2 1B1 2B2

29 (5) (17)1B1 1B2 1B2 1A21A11B1 2B2 1B11A2 1B2 1B2 1A21A21A2 1A2 2B2 1B1 1A2 1A11A2 1B1 1B2 2B12B21A2 1B2 1A12B1

30 (2) (25)2B2 1B11A2 1A2 2B2 1A2 1A21A11A2

30 (9) (8)2B2 1B11B1 1A2 2B2 1A21A2 1A1 1A2 1B1 2B21A2 2B2 1B1 1B12B2 1A2 1A1
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1 (1) (1)1B2 2B1 2B2 1B11A1 1B2 2B1 2B2 1B1 1B2 2B1 2B2 1B1 1B2 2B1 2B2 1B11A1 1B2 2B1 2B2 1B1 2B2 1A1 2B2 1B1

1 (1) (1)2B1 2B2 1B11B2 1B2 2B1 2B2 1B1 1B2 2B1 2B2 1B1 1B2 2B1 2B2 1B11A2 1B2 2B1 2B2 1B1 2B21A2 1A1 2B21A1
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1 (7) (5)1A1 1A2 1A1 1A21A1 1A1 1A2 1A1 1A2 1A1 1A1 2B1 1A2 1A1 1B1 2B2 1A1 1A1 1A11A1 1A1 1B2 2B1 1A2 1A1 1A1 1A1

1 (6) (8)1A2 1A1 1A21A11A2 1A1 1A2 1A1 1A2 1A1 1A1 2B1 1A2 1A1 1B1 2B2 1A1 1A1 1A11A2 1A2 1A11A1 1A2 1A1 1A2 1A21A1

2 (3) (8)1A1 1A2 1A1 1A2 1A1 1A1 2B1 1A2 1A1 1B11A1 2B2 1A1 1A1 1A1 1A1 1A1 1A1 1A2 1A1 1A1 1A1 1B2 2B1 1A21A1

2 (2) (2)1A1 1A2 1A11A2 1A2 1A1 1A1 1A2 1A2 1A1 1B12B1 2B2 1A1 1A1 1A1 1A1 1A11A1 1A1 1A2 1A1 1A1 1A21A21A1 1A2 1A1 1A1

3 (4) (2)1A2 1A1 1A1 2B1 1A2 1A1 1B1 2B2 1A1 1A11A1 1A1 1A1 1A1 1A1 1B2 2B1 1A2 1A1 1A1 1A1 1A2 1A1 1A21A1

3 (4) (6)1A1 1A1 1A2 1A1 1B12B1 1A2 2B2 1A1 1A1 1A1 1A11A1 1A1 1B2 2B1 1A2 1A1 1A2 1A21A1 1A1 1A2 1A11A2

4 (5) (3)1A2 1A1 1B11A1 2B2 1A1 1A1 1A1 1A1 1A1 1A1 1B2 2B1 1A21A1 1A1 1A1 1A1 1A1 1A2 1A1 1A2 1A2 1A11A1

4 (8) (3)2B1 1A2 1A1 1B11A2 2B2 1A1 1A1 1A1 1A11A1 1A1 1B2 2B1 1A21A1 1A1 1A11A1

5 (1) (4)2B2 1A1 1A1 1A1 1A1 1A11A1 1A1 1B2 2B1 1A2 1A1 1A1 1A1 1A1 1A2 1A1 1A21A1 1A1 1A2 1A1 1A2 1A1 1A1

5 (7) (7)2B2 1A1 1A11A2 1A21A1 1A1 1A11A1 1A1 1B2 2B1 1A2 1A1 1A11A1 1A2 1A1 1A21A1 1A11A2 2B2 1B11A1 1A1 1A21A2 1A21A2

6 (8) (7)1A1 1A1 1A1 1A1 1B2 2B1 1A2 1A1 1A1 1A1 1A1 1A2 1A1 1A21A1 1A1 1A2 1A1 1A2 1A1 1A1 1A1 1A2 1A1 1A1

6 (3) (1)1A1 1A11A11A2 1A1 1B2 2B1 1A2 1A1 1A11A1 1A2 1A1 1A21A11A2 1A2 1A11A1 1A2 1A2 1A1 1A1 1A2 1A11A2 1A2

7 (6) (1)1A1 1B2 2B1 1A21A1 1A1 1A1 1A1 1A1 1A2 1A1 1A2 1A1 1A2 1A11A1 1A2 1A1 1A1 1A1 1A2 1A1 1A1 1A1

7 (5) (5)1A1 1B2 2B1 1A2 1A1 1A11A1 1A2 1A1 1A21A1 1A2 1A2 1A11A11A2 1A2 1A1 1A1 1A1 1A1 1A21A2 1A1 1A2 1A1 1A1

8 (2) (6)1A1 1A1 1A1 1A1 1A2 1A1 1A2 1A1 1A2 1A11A1 1A2 1A1 1A1 1A1 1A2 1A1 1B1 1B2 1A1 1A1 1A1 1A11A1

8 (1) (4)1A1 1A11A1 1A2 1A1 1A21A11A2 1A1 1A2 1A1 1A2 1A1 1A1 1A1 1A2 1A1 1B1 1A2 1A2 1A2 1A11A1 1A1 1A2 1A1 1A2
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1 (19) (7)1B2 1B2 1A2 1A21A1 1A2 2B2 2B2 1A21A2 1A2 2B2 1B1 1A2 1A1 2B2 1B1 1B21A1 2B1 1A2 1A2

1 (4) (23)1B2 1B21A21B1 1A21A21A2 1A2 2B2 2B2 1A2 1A1 1A21A2 1A2 1A2 1B2 1B1 2B2 2B22B2 2B2 1B1 2B21B1 1A22B2

2 (23) (30)1B2 1A21A1 1A2 2B2 2B2 1A21A2 1A2 2B2 1B1 1A2 1A11A1 1B2 1B2 2B1 2B1 1A22B1 2B2 1A21A1

2 (22) (28)1A21B21A2 1A2 2B2 2B2 1A2 1A11A2 2B2 1B1 1A2 1A11A21A1 1B2 2B1 2B11B2 1A2 1A21A12B1 1B1 2B2 2B2 1B12B2

3 (15) (23)1A2 2B2 2B2 1A21A2 1A2 2B2 1B1 1A2 1A1 1B2 1B2 2B11A1 1B1 1B1 2B2 2B2 1B1 1A2 2B2 1B1 1B11A1

3 (16) (18)1A2 2B2 2B2 1A21A2 2B2 1B1 1A2 1A11A2 1B2 2B11B21A2 2B1 2B1 1B2 1A2 1B1 2B2 2B21B1 1A2 1B1 1B1 2B2

4 (24) (29)2B2 2B2 1A2 1A2 2B2 1B1 1A2 1A11A1 1B2 1B2 2B1 1B1 1B1 2B2 1A2 1A2 2B2 1B11A1 2B2 2B2 1A2 2B2

4 (8) (1)2B2 2B2 1A2 1A1 2B2 1B1 1A2 1A11A21A1 1B2 2B11B2 2B1 2B1 1B2 1A2 1A11A21A2 1B21A1 2B2 2B2 2B2 1B11A2

5 (20) (12)1A2 1A2 2B2 1B1 1A2 1A11A1 1B2 1B2 2B11A1 1B1 1B1 2B2 1A2 1A2 1A2 1B1 1A2 2B21A1 1A1 2B1 2B2 1A2

5 (10) (29)2B2 1B1 1A2 1A11A21A1 1B2 2B11B21A2 2B1 2B1 1B2 1A2 1B1 1B11A21A2 1B2 1A11B2 2B2 2B2 1B1 1B1 2B2 1B12B2

6 (12) (14)1B2 2B11A1 1B1 1B1 2B2 1A2 1A2 1A2 1B1 1A2 1A2 1A21A1 1A1 1B2 1A1 1B21A2 2B1 1A2 1A11A1 1A2 1B2 2B1 1A2 1A11A1

19 (28) (14)2B2 1B11A1 1A2 1B1 1B1 2B21A2 1A2 1A2 1A2 1B11A21A2 1A2 1A21A21A2 1A1 1B2 1A1 1B21A2 2B1 2B2 2B21A2 2B1 1A1

7 (1) (27)2B2 1B1 1B1 2B21A2 1A2 1A2 1A2 1B11A1 1A2 1A2 1A2 1A1 1B2 1A1 1B21A2 2B1 1A2 1B11A1 1B2

26 (24) (24)1A2 1A2 1A2 1A2 1A1 1A2 1B11A2 1A21A11A1 1A2 1A21A2 1A1 1B2 1A1 1B21A2 2B1 1A2 1B11A2 2B2 2B2 1B11B1 1B1 1A2 2B11B1 2B2 1B11B1
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Fig. 10.4: KRM rotations in comparison to the reference rotations
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At the end of the year 2014, ROTOR version 2.3 computed a solution to the
KRM RSRP within approximately 1 day at DBF with an integrality gap below 1%,
see Reuther [25, Section 7.5].

KRM Rotations. The eight rolling stock rotations that ROTOR produced for the
KRM RSRP, namely the KRM rotations, are illustrated in Fig. 10.4. The rows of
the figure alternate between the reference rotations and the KRM rotations. The
red blocks indicate those parts of the reference rotations (which would have been
operated if the KRM did not exist) that became infeasible on the occasion of the
timetable changes for the KRM.

Even if the whole page with anonymous rollings stock rotations appears as
slightly over-ambitious to the reader, the figure clearly shows that the KRM rota-
tions are very (very) similar to the reference rotations between Monday noontime
and Friday noontime. This provides the opportunity to easily bridge between the
reference rotations and the KRM rotations on all the eight boundaries of the four
KRM weekends. These rotations were made “camera-ready” by rotation planners
of DBF in order to operate them in May 2015.
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Chapter 11
Railway Crew Management

Erwin Abbink, Dennis Huisman, and Leo Kroon

Abstract This chapter deals with railway crew management, thereby focusing on
the situation at Netherlands Railways (NS). NS is the main operator of passenger
trains in the Netherlands. In this context, railway crew management is the process of
guaranteeing in the most efficient way that the timetabled trains are supplied with a
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train driver and a sufficient number of conductors, thereby satisfying all the relevant
practical constraints. Crew management has long term capacity planning aspects
as well as short term scheduling, rostering, and dispatching aspects. In this chapter
we describe these planning and dispatching processes, thereby focusing on practical
issues. We also describe the planning support tools that are used by NS to support
these processes.

11.1 Introduction

Netherlands Railways (NS) currently (2015) operates about 4700 commercial pas-
senger trains on each working day. Here a train is not a physical object, but a
timetabled train service with a unique train number. This terminology is used in
the remainder of this chapter. Each train needs at least a train driver and a number
of conductors. The latter number depends on the length and the type of the corre-
sponding rolling stock composition.

To that end, NS employs about 3300 drivers and 3500 conductors, some of which
are employed part-time. In order to be able to carry out their work, these crew mem-
bers possess certain qualifications. For drivers these include route knowledge and
rolling stock knowledge. Having route knowledge means that a driver is familiar
with the routes on which he1 has to operate trains. He knows where to expect sig-
nals and where to adjust the speed of the trains to specific circumstances in the
railway infrastructure. Rolling stock knowledge relates to the specifics of the differ-
ent types of rolling stock. The conductors are also supposed to have a certain rolling
stock knowledge, but this is less detailed than the drivers’.

Carrying out the work on the trains in the most efficient way with the available
crew members is the result of an extensive planning and rescheduling process. This
chapter discusses several aspects of this process, its organization, and the tools that
are used within it. We focus on practical aspects that have not been described so
much in literature yet.

The remainder of this chapter is structured as follows. In Sect. 11.2 we describe
the main concepts in the crew management process in more detail. In Sects. 11.3
and 11.4 strategic and operational planning processes are presented. Section 11.5 de-
scribes the real-time rescheduling process. In Sect. 11.6 we describe two extended
versions of the well-known set covering model that are used as the kernel of the
planning support systems for the crew (re)scheduling processes at NS. Section 11.7
presents an overview of the developments that lead to the currently available plan-
ning support tools within NS. This chapter is finished with Sect. 11.8 where we
sketch some further developments that are relevant for crew management.

1 In order to simplify the formulations in this chapter, we assume that the crew members are male,
despite the fact that the number of women among the crew members is increasing. However, they
are still a minority.
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11.2 Main Concepts in Crew Management

In this section, we describe the main concepts in crew management in more detail.
First, we describe the demand side of crew management: the tasks that need to be
scheduled to operate the trains. Then we describe the concept of a duty, a sequence
of tasks to be carried out by a single crew member. Finally, we describe the depots
with their crew members (the supply side of crew management) and rosters, which
allocate the duties to the crew members.

11.2.1 Tasks

Each trip of a train from one station to the next defines a number of tasks: one
task for a driver and one or more tasks for conductors. A task means that a crew
member of the right type and with the right qualifications must be present at the
corresponding train, and either drive the train or provide service to the passengers.
Each task is defined by a start station and start time, and an end station and end
time, as specified by the timetable. Another characteristic of a task is the type of the
involved rolling stock.

Note that stations where the crew of a train cannot be changed are not really rel-
evant in the context of crew management. Therefore one can aggregate consecutive
tasks of the same type (driver or conductor) on the same train that start or end in
a station where the crew of a train cannot be changed. As a consequence, one may
assume that each aggregated task starts and ends in a station where a train starts or
ends, or where the crew of a train can be changed. In the following, we will use the
term “task” for “aggregated task”.

Apart from the trains in the commercial operation, also a number of trains are
operated for repositioning rolling stock units. These trains are often also timetabled,
and must also be supplied with a driver. Usually these trains do not need a conductor,
although sometimes such trains are also used for repositioning crew members.

The distribution of the total workload over the weekdays is about 15% per work-
day, and 13% and 12% on Saturdays and Sundays, respectively. On a normal work-
day, the total numbers of tasks for drivers and conductors are approximately equal to
10,000 and 12,000, respectively. The workload of the conductors shows two peaks
on workdays due to the higher passenger demand during peak hours, resulting in
more trains and in trains with more capacity (longer, double-deck).

11.2.2 Duties

In the planning process, the tasks to be carried out are organized into a number
of duties. Here each duty is a sequence of consecutive tasks to be carried out by
a single crew member and in most cases on a single day. Within each duty, two
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consecutive tasks end and start at the same station, and the second task starts later
than the first task has ended. The fact that duties are supposed to be carried out on
a single day is the result of the fact that NS operates only a small number of night
trains. Moreover, one of the rules used in the crew scheduling process of NS is that
each duty ends at the same location as where it started. This is in contrast with the
situation in larger countries, like, e.g., Germany, where an outbound duty may be
followed by an inbound duty with an overnight outside rest in between.

On a normal workday, the number of duties for drivers and conductors are ap-
proximately equal to 1000 and 1100, respectively.

Example

Figure 11.1 shows nine duties for drivers. The horizontal direction represents time.
The green horizontal lines represent the tasks to be carried out. The numbers above
the tasks denote the corresponding train numbers. The brown horizontal lines below
the tasks indicate that two consecutive tasks are carried out on the same rolling
stock composition. If this is not the case, then there must be a transfer time of at
least 20 min between two tasks.

For example, the first duty is a duty for depot Amsterdam (Asd), where the duty
starts around 6:00. Then it proceeds along The Hague (Gvc), Utrecht (Ut), Eind-
hoven (Ehv), Sittard (Std), Maastricht (Mt), and Heerlen (Hrl), to return around

Fig. 11.1: Nine duties for train drivers as shown in the CREWS system
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15:30 in Amsterdam. This duty transfers four times from one rolling stock com-
position to another, as is shown by the brown horizontal lines. The * (star) in the
middle of the duty indicates the meal break.

The yellow horizontal lines in the fifth, seventh, and ninth duty represent crew
repositioning tasks, also called passenger tasks, indicated by a “P”. These tasks are
not used for driving a train from one station to another but for repositioning a driver
from one station to another. In the other duties (not shown in the figure) there are
other tasks for drivers on the involved trains, which are used for actually driving
these trains.

11.2.3 Depots

The drivers and conductors of NS currently operate from 28 depots: each crew mem-
ber belongs to one crew depot, where each of his duties starts and ends. The depots
are typically located at the main stations in the network (like Amsterdam, Rotter-
dam, Utrecht, and Eindhoven), but also at the stations closer to the borders of the
country, either the natural borders of the country (like Den Helder and Vlissingen) or
the borders with the neighbouring countries (like Groningen, Enschede, and Maas-
tricht). The former depots are usually large, since they are visited by many trains,
and, as a consequence, they can easily cover a large number of tasks. The latter de-
pots are usually smaller. A main reason for the existence of these depots is that their
crew members can cover the tasks in the early morning from these stations as well
as the tasks in the late evening towards these stations.

11.2.4 Rosters

The rosters describe the allocation of the duties to the crew members. Within NS,
the crew members of each crew depot have been allocated to a number of roster
groups. The crew members within each roster group have more or less the same
qualifications.

The duties of each depot are allocated to the different roster groups: each roster
group has its own duties. In this allocation the contents of the duties and the quali-
fications of the members of the roster groups are taken into account. The allocation
of the duties to the crew members of the roster groups is based on a periodic roster.
As a consequence, if the roster is carried out completely as planned, then the crew
members already know a long time in advance on which days they will be on or off
duty. However, in practice there are usually deviations from the periodic roster, due
to vacations or illness of crew members.

Currently in many companies the allocation of duties to crew members is handled
by an individual rostering system. Here crew members can specify their preferences
for days and times on which they want to be on or off duty. This provides much more
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flexibility than a periodic roster. Although some experiments with such an individual
rostering system have been carried out, NS has not implemented such a system yet.

11.3 Strategic Planning

With respect to the capacity and the organization of the workforce, decisions have
to be made to make sure that the capacity of the workforce matches as well as
possible with the work to be carried out, both quantitatively and qualitatively. The
latter refers to the required qualifications of the crew members.

Strategic decisions have to be taken with respect to the number, the locations and
the capacities of the depots, both on the relatively short term and on the longer term.
Changing the number or the locations of the depots is not usual. It is more common
to change the capacities of the depots by hiring new crew members. Firing crew
members is very uncommon, but of course in the long run crew members quit, since
they retire or change jobs. Furthermore, transferring or delegating crew members
from one depot to another is incidentally possible.

It takes one (for conductors) to three (for drivers) years to fully train a new crew
member. This includes both theoretical training and practical on-the-job training.
As a consequence, the long term capacity management process has to anticipate
on long term changes in the workload. These are mainly determined by long term
changes in the line system, the timetable, the rolling stock capacity, and the labor
rules. Conversely, the decisions taken within the capacity management process, e.g.
with respect to hiring new crew members, have long lasting effects on the capacity
of the workforce.

A problem that is often faced in practice is that the capacity of the workforce
as a whole is sufficient to cover the total workload, but that part of the capacity of
the workforce is available at the wrong locations. This may have a negative influ-
ence on the efficiency of the crew scheduling process, since in such situations more
repositioning tasks will have to be scheduled in order to move the crew members
to the locations of the tasks to be carried out. According to the collective labour
agreements, such repositioning tasks are also considered as part of the work to be
carried out, and are paid as such.

Despite the strategic impact and relevance of the long term capacity management
process, models and tools for supporting this process are hardly available. The stud-
ies usually do not go beyond “what-if” analyses based on a forecasted timetable and
rolling stock circulation. As a consequence, in the remainder of this chapter we fo-
cus on the operational and real-time crew management processes, given the number,
locations, and capacities of the crew depots.
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11.4 Operational Planning

The operational crew planning process can be split in several steps, as depicted in
Fig. 11.2. The major part of the operational planning process is carried out within
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Fig. 11.2: Planning phases

the NS headquarters in Utrecht. However, the process of planning the rosters for the
crew depots, based on the planned crew duties, is carried out in the depots them-
selves.

In each stage of the operational planning process as well as in the real-time
rescheduling process, the crew (re)scheduling process follows the timetabling and
rolling stock (re)scheduling process. This is caused by the fact that the timetable
and the rolling stock circulation determine the tasks to be carried out by the crew,
as explained before.

The tasks are input for scheduling the duties. During the duty scheduling process,
the duties are anonymous. That means that the duties have not yet been allocated to
individual crew members. Thus the qualifications of the individual crew members
can not be taken into account in this stage of the planning process.

The finalized duties are used for creating the rosters. About six times a year, the
generic tasks, duties and rosters are modified. Each week, the schedules are adapted
to the specific exceptions on a calendar day.

When we expect severe weather conditions, we can adapt the schedules and
reduce the number of trains to be operated in advance. We call this Ultra-short
rescheduling, on the day before operation. We will discuss the most important steps,
the planning of generic duties, basic rosters, calendar duties and the Ultra-short term
rescheduling, in the following sections.
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11.4.1 Planning for Generic Duties

In principle, the timetable that is operated by NS is a periodic timetable with a
period of 1 h. Most of the lines in the system are even operated twice per hour with
an interval of exactly 30 min. However, there are slight differences between peak
hours and off-peak hours and weekends. Usually during peak hours a few additional
trains are scheduled in order to cope with the increased passenger demand.

Each year a new timetable, often based on a modified timetable, is introduced in
December. That is, a detailed plan for each generic day of the week is produced.
It is a plan for 7× 24 generic hours. This plan is based on the one hour periodic
timetable, but takes into account also the deviations from the periodic timetable in
more detail: the start and end of the day, the peak hours, and the weekends. The
rolling stock circulation is already such that the rolling stock that is needed in each
station for the start-up of the timetable on a certain day has arrived on that station in
the preceding night.

After creating the timetable and rolling stock circulation, detailed duties for the
crew members are created, thereby taking into account the available capacities of
the depots. If a certain depot does not have sufficient capacity for carrying out all its
tasks, then additional capacity is provided by scheduling repositioning tasks from
other depots. In each depot also a number of stand-by duties is scheduled. Crew
scheduling is the process of creating the total set of crew duties from scratch.

The generic set of duties for the complete week is used as input for the crew
rosters in the depots. The generic plan is modified only a few times per year. When
modifying the generic plan, the existing crew rosters in the depots are taken into
account. The crew duties are modified such that they fit as well as possible within
the existing crew rosters.

11.4.2 Crew Rostering

As it was mentioned in Sect. 11.2.4, NS currently uses a periodic crew rostering
system for allocating the anonymous duties to the crew members. Within NS this
process is carried out completely manually, although some experiments with auto-
mated rostering support have been carried out, see Hartog et al. [7] and Abbink [1].

As described in Sect. 11.2.4, each crew member belongs to exactly one roster
group in a crew depot.

The rostering process is carried out once per year in the crew depots, usually in
the autumn when the duties for the generic days in the next yearly timetable have
been completed and communicated with the crew depots.

Usually, a first step in the creation of a detailed roster for a roster group is the
creation of a pattern roster, describing the pattern of early, late, night and rest du-
ties. Herein also some additional duties must be scheduled, such as stand-by duties
and compensation duties. A compensation duty is an extra day off due to a certain
amount of irregular working times. Given the many aspects to be taken into account,
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creating a new pattern roster by hand is extremely difficult. Therefore, the previous
roster is often used as a basis for the new one, with only minor adjustments.

The second step in the rostering process is the allocation of the duties to the
different roster groups. This is accomplished by a negotiation process between the
representatives of the roster groups. In this process the characteristics of the duties
and the qualifications of the crew members of the roster groups are taken into ac-
count. Also a fair allocation of the attractive and less attractive duties among the
roster groups is aimed at. See also Sect. 11.6.2 for a further description of this as-
pect.

Finally, the duties that have been allocated to a roster group are attached to its
pattern roster. If at some point in this rostering process some roster groups cannot
find a feasible roster, then the allocation of the duties to the roster groups must be
revised or the pattern roster must be adjusted.

Examples of constraints that have to be considered in the rostering process are
the following: the rest time between two duties is at least 12 h, except when the first
duty finished after 2:00 a.m., then it is at least 14 h. The minimum rest time between
two duties is 14 h, if the first duty finishes after 2:00 a.m., the day following the day
this first duty starts. The maximum working time per week is 45 h, and over a period
of 13 consecutive weeks the average working time per week is at most 40 h. At least
once every 3 weeks there is a Red Weekend: a rest period of at least 60 h, starting
not later than Saturday 0:00 a.m. and ending not earlier than Monday 4:00 a.m.

From the crew members perspective, the quality of a roster is determined by the
sequencing of the roster days and the variety in the duties. Some examples: a series
of duties with the same type directly after each other is preferred over sequences of
different types of work. Here the type of a duty is either an early, late or night duty.
Two or more adjacent days off are preferred. Similar duties should be spread over
the roster. A lot of variety in the work is preferred (routes, rolling stock).

For more details and for optimization models that can be used in the rostering
process, we refer to [7] and [1]. Here the constraints to be satisfied are modeled
in an explicit way. Caprara et al. [6] describe models for crew rostering based on
set covering models that are very similar to the standard models for solving crew
scheduling problems, where the constraints to be satisfied are modeled more im-
plicitly.

11.4.3 Planning for Calendar Duties

In the following stage, a detailed plan for the calendar days is generated. Usually,
each calendar day requires a modified timetable. The latter may be due to the fact
that certain trains have to be cancelled because of maintenance or extension of the
railway infrastructure, or due to the fact that extra trains have been scheduled for a
special event, such as an exposition or a sports event. Especially during the week-
ends often a lot of maintenance of the infrastructure is carried out.
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The planning process for the calendar days is an ongoing process that is carried
out on a week-by-week basis. Thus this planning process covers 52×7×24 calendar
hours. Again the crew duties are modified such that they fit as well as possible within
the existing rosters in the depots. As far as possible, the same constraints are taken
into account as in the duties for the generic days.

The planning process for the calendar days is a rescheduling process , in which
one of the aims is to leave as many as possible of the duties the same as they are in
the plan for the generic days. However, sometimes it is inevitable to modify a large
number of duties.

11.4.4 Ultra-Short Term Rescheduling

In order to be able to better cope with snow during winters and other extreme
weather conditions, NS decided to develop an ultra-short term rescheduling pro-
cess. The aim of this ultra-short term rescheduling process is to reduce the number
of trains in case of expected snow or other extreme weather conditions. The reduced
number of trains is realized by decreasing the frequencies of the trains, in particular
on the main corridors. Due to the reduced number of trains, the remaining trains can
be controlled better by traffic control, and thus the probability of a snow-ball effect
of delays and cancellations is reduced. Therefore, the predictability of the railway
system remains higher than without these measures.

The decision to adapt the timetable, the rolling stock circulation and the crew
duties is based on the weather forecast on the day before the adapted schedules are
to be operated. The final go/no go decision for the adaptations is taken at 15:20 and
communicated at 16:00 on that day. Thus the timetable, the rolling stock circulation
and the crew duties must be adapted during the upcoming evening and night, al-
though some pre-processing can be done already in advance. In this ultra-short term
crew rescheduling process, the availability of fast and automated rescheduling tools
has proven to be indispensable.

A consequence of the application of the ultra-short term rescheduling process
was that the railway system remained better in control during bad weather condi-
tions. On the other hand, the reduced frequencies of the trains obviously also lead to
a reduced transport capacity. Therefore, after the first applications of this process,
this reduction in transport capacity was compensated by increasing the capacities of
the remaining trains where possible.

11.5 Real-Time Operations

The proof of the pudding is in the eating: the duties have to be carried out during
the real-time operations. On the day-of-operations, the allocation of duties to crew
members is determined by the crew rosters. However, it may happen that this is not
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possible due to illness or vacation of crew members. In that case, first the crew mem-
bers that have been allocated to a stand-by duty may be used to replace the absent
crew members. If these crew members are active already, then an ad hoc solution
must be found. The crew dispatchers in the dispatching centres are responsible for
covering as many tasks and duties by a crew member as possible.

Given the allocation of duties to crew members, rescheduling the duties is not
necessary as long as the timetable and the rolling stock circulation are carried out
as planned. However, if there are delays or disruptions, the duties may have to be
rescheduled. If a train has a serious delay and the driver has to transfer to another
train at a next station, then the other train may get a delay as well if the duties are
not rescheduled. In that case, the crew dispatchers will try to find an alternative crew
member who can carry out the tasks that are delayed otherwise. Also the delayed
driver will have to get an alternative continuation of his duty.

In case of a serious disruption, for example due to malfunctioning infrastructure
or rolling stock or due to an accident, usually a number of trains (or parts thereof)
are cancelled. In such a situation, the trains that are cancelled are selected based on
a certain incident scenario for the actual disruption. As a consequence, at least the
duties covering the tasks corresponding to the cancelled trains have to be resched-
uled, since the involved crew members may not be able to reach the next tasks in
their duties in time. However, in order to get some more flexibility in the reschedul-
ing process, also some additional duties may be rescheduled. The crew dispatchers
usually aim at minimizing the number of rescheduled duties.

Examples of aspects that have to be taken into account when rescheduling the
crew duties are the following: The rescheduled duties should still as much as possi-
ble satisfy the general constraints for the crew duties. Thus there is preferably a meal
break at an appropriate time and place if the duty length exceeds a certain minimum
length. Furthermore, the length of the duty may not be extended too much, and the
duty should end at its own depot. Due to the many constraints to be taken into ac-
count, and due to the fact that the crew duties do not follow a periodic pattern (as is
more or less the case for the rolling stock), crew rescheduling is usually considered
as the most difficult part of the disruption management process.

The real-time rescheduling process is carried out in five regional dispatching
centers, directed by the central Operational Control Center Rail located in Utrecht.
The fact that this process is carried out from five dispatching centers requires a lot
of coordination between these centers, which significantly complicates the real-time
crew rescheduling process.

11.6 Optimization Models

In this section, models and solution techniques for the crew scheduling (see
Sect. 11.4.1) and crew rescheduling (see Sect. 11.5) are described. We start with
a description of a number of relevant objectives and constraints.
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11.6.1 Objectives

NS considers three important objectives in crew planning: (1) efficiency, (2) ro-
bustness, and (3) quality of work. Efficiency means that the total crew costs are as
small as possible, both the planned costs and the realized costs. In principle, this
means that the workload should be carried out by a minimum number of crew mem-
bers, since these are the main cost drivers in this planning process. In the real-time
rescheduling process additional costs should be avoided by minimally extending
the original duty lengths (additional time must be paid), and by minimally using
taxis for repositioning crew members, additional to the taxis already included in the
planning phases.

The robustness of the crew duties, i.e. preventing propagation of delays via the
crew duties, depends on several elements, including the transfer times of the crews
when transferring from one rolling stock composition to another. The recoverability
of the duties in case of a disruption may depend on the structure of the duties.
If the rescheduling process is carried out manually, then duties with a relatively
simple structure may be easier to recover than more complex duties. However, it
has been demonstrated also that the availability of effective crew rescheduling tools
eliminates this advantage of simply structured duties, see Vlugt [14].

The quality of work is the quality of the duties as it is perceived by the crew mem-
bers. This quality of work is addressed via labor rules and company agreements,
for example, on the amount of variation in the duties as specified by the so-called
“Sharing-Sweet-and-Sour” rules. These rules are described in the next section.

Since several objectives have to be taken into account, a trade-off between these
objectives must be made until a solution has been found that is acceptable with
respect to all objectives. The availability of effective planning support tools is indis-
pensable here.

11.6.2 Constraints

The constraints that have to be respected in the crew scheduling process are rules at
the duty level and constraints at the depot level. Examples of constraints at the duty
level are the following: each duty starts and ends at the home depot, the length of a
duty should not exceed a certain maximum duty length, each duty longer than 5:30 h
should have a meal break of sufficient length, the transfer time when transferring
from one train to another should be at least 20 min, and each duty should have a
certain variation. The latter is expressed by an upper bound on the “repetition in
duty”, which means that a duty cannot cover any part of the railway network more
than a certain number of times.

Examples of constraints at the depot level are the following: per depot the number
of weekly duties should not exceed a certain number, per depot the weekly average
duty length should not exceed 8 h, per depot the weekly percentage of duties longer
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than 9 h should not exceed a certain upper bound, and per depot the weekly percent-
age of night duties should not exceed another upper bound.

Also the so-called “Sharing-Sweet-and-Sour” rules are to a large extent con-
straints at the depot level. These rules aim to quantify the fair allocation of the
“sweet” and “sour” workloads among the 28 crew depots. “Sweet” mainly repre-
sents the variety in routes and lines as well as the work on intercity trains. “Sour”
mainly represents the work on lines with a lot of anticipated passenger aggression
and the work on relatively old rolling stock. For example, for each depot at least
35% of the work should be on intercity trains. Furthermore, there is also an upper
bound on the standard deviation of these percentages over the 28 depots in order to
guarantee a fair allocation of the different types of work, see Abbink et al. [2].

11.6.3 Crew Scheduling: Model

The crew scheduling problem for generic days, as described in Sect. 11.4.1, is the
problem of most efficiently covering a number of tasks by a number of feasible du-
ties from scratch. As is well-known, the crew scheduling problem can be described
by an extended set covering model, see Caprara et al. [5]. Modelling the complex
constraints directly usually leads to models that are hard to solve.

To that end, let T be the set of tasks to be covered and let D be the set of potential
duties. The subset Dt ⊂ D consists of the set of potential duties covering task t ∈ T .
Every duty d has costs cd . Furthermore, let S be the set of additional constraints at
the depot level, and let ls and us be the corresponding lower and upper bound for
constraint s ∈ S. Finally, let ws,d be the coefficient of duty d ∈ D for constraint s ∈ S.

Next, the binary decision variable Xd indicates whether potential duty d ∈D is in-
cluded in the solution or not. Then the extended set-covering model, with additional
constraints at the depot level, can be formulated as follows:

min ∑
d∈D

cdXd (11.1)

subject to

∑
d∈Dt

Xd ≥ 1 for all t ∈ T (11.2)

ls ≤ ∑
d∈D

ws,dXd ≤ us for all s ∈ S (11.3)

Xd ∈ {0,1} for all d ∈ D (11.4)

Here (11.1) is the objective function, which states that the sum of the duty costs is to
be minimized. Constraints (11.2) guarantee that for each task t ∈ T at least one duty
covering this task is selected. It may sometimes be better to cover a task more than
once. If, for example, on a certain day the number of tasks going out of a crew depot
differs from the number of tasks going into that crew depot, then over-covering is
necessary. Moreover, even if over-covering is not necessary, it may sometimes be
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more efficient to allow over-covering. By allowing over-covering, other tasks may
be covered more easily, resulting in a larger decrease in costs than the additional
costs for the over-covered tasks.

Besides the regular tasks that must be covered, the formulation also allows to in-
clude a number of additional tasks in the model. These are tasks outside the set T , so
that they need not be covered according to (11.2). For example, one can add possible
taxi trips to reposition crew members from one location to another. These taxi trips
have certain costs, but may make the duties feasible and/or more efficient. Tasks
related to shunting activities at stations are examples of other additional tasks. They
can be included in the duties, but they can also be performed by dedicated shunting
crew members locally at the stations, when the crew duties become inefficient by
including these additional shunting tasks.

The additional constraints (11.3) are related to the constraints at the depot level,
such as the number of duties per crew depot, or the average length of the duties per
crew depot. In these constraints, us can be considered as the availability of a certain
resource, and ws,d as a parameter describing the amount of this resource used by
duty d. For example, let K be the set of depots, and let kd and ld denote the crew
depot and the length of duty d, respectively. Furthermore, let Ck denote the maxi-
mum number of duties for depot k (given the capacity of depot k), and let L denote
the maximum average length of the duties of each crew depot. Then the following
constraints (11.5) and (11.6) guarantee that the maximum number of duties and the
average duty length for each crew depot k ∈ K are not exceeded, respectively. These
constraints have the general structure described by constraints (11.3).

∑
d∈D: kd=k

Xd ≤Ck for all k ∈ K (11.5)

∑
d∈D: kd=k

(ld −L)Xd ≤ 0 for all k ∈ K (11.6)

11.6.4 Crew Scheduling: Solution Technique

The solution process for solving the extended set covering model usually consists of
a duty-generation module and a duty-selection module. The algorithm first generates
a large set of potential feasible duties. A duty is feasible if it satisfies all constraints
at the duty level. That is, it takes into account, for example, the maximum duty
length, and the location and duration of the meal break. Then the above described
extended set covering model is used to select the subset of feasible duties that covers
all tasks in the most efficient ways.

However, since the set of feasible duties can be extremely large, enumerating
all possible feasible duties a priori is usually not a practical approach. Therefore
a standard approach is to use dynamic column generation . This technique does
not generate all duties a priori, but it generates them on-the-fly during the solution
process. Within the solution process, dual information from the current solution is
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used to determine whether it is useful to extend the number of duties. An appropriate
way to determine this dual information is based on Lagrangian Relaxation instead of
Linear Programming. This dual information is used in the duty-generation module,
which checks for the existence of additional duties that may be useful to improve
the solution. The duty-generation problem can be solved as a resource constrained
shortest path problem in a network representing the crew tasks, see Caprara et al. [5].

If dynamic column generation is applied, then the solution process iterates be-
tween the duty-generation module (also called pricing problem) and the duty-
selection module (also called the master problem). The algorithm may delete fea-
sible duties that were generated in earlier stages and whose effectiveness turns out
to be low during later stages of the process. The latter is done to keep the number
of active duties manageable. Usually the duty-selection module heuristically looks
for a solution for the overall model, based on the currently available set of feasible
duties. After a number of iterations, the procedure may activate a fixing procedure
to select some duties that appear to be particularly efficient, and to fix them as be-
longing to the final solution. Then the algorithm repeats this process on the tasks
that have not yet been covered by the fixed duties.

Solving an instance of NS for a single day may take at least several hours to com-
pute a feasible solution with sufficient quality. Moreover, currently also instances of
NS for a complete week can be solved in up to a week of computation time, see
Abbink et al. [4]. The advantage of solving instances for a complete week is that
several of the constraints are expressed in weekly averages per depot, such as the
constraints on the maximum weekly average duty length per depot. Therefore the re-
sulting solution is usually more efficient than a solution that is obtained by requiring
such constraints on a day-by-day basis.

11.6.5 Real-Time Crew Rescheduling: Model

The model and solution process as described in Sects. 11.6.3 and 11.6.4 focus on
the planning process from scratch. As explained, it may take at least several hours
to compute a feasible solution with sufficient quality for an instance involving a sin-
gle day. Although this is an impressive improvement in comparison with a manual
planning process, it is far too long for the real-time disruption management process,
as described in Sect. 11.5. There a solution is needed within minutes, and hence a
suboptimal solution is better than no solution at all.

Moreover, the real-time crew rescheduling problem is different from the crew
scheduling problem (11.1), (11.2), (11.3), and (11.4) in the planning stage. First of
all, the real-time crew rescheduling process has to take into account the fact that
a number of duties have started already. The parts of these duties that have been
carried out already cannot be changed anymore. Thus for each active duty a fea-
sible completion must be found. Furthermore, whereas the crew scheduling prob-
lem (11.1), (11.2), (11.3), and (11.4) aims at the generation of anonymous duties,
one has to deal now with duties that have been allocated to individual crew mem-
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bers, each with their own qualifications. When rescheduling the duties, these have
to be respected.

In addition, in the crew scheduling problem (11.1), (11.2), (11.3), and (11.4) all
tasks must be covered, since the timetable and rolling stock circulation are fixed. In
the real-time crew rescheduling process this may not be true anymore. If it turns out
that certain tasks cannot be covered by a completion of a duty, these tasks will have
to be cancelled. If this is a task for a driver, then this means that the corresponding
train will not be operated. This is highly undesirable in itself, but in particular since
this also has consequences for the rolling stock circulation. If it seriously influences
the rolling stock circulation, then another iteration of timetable rescheduling, rolling
stock rescheduling and crew rescheduling will be required. Note that, if the driver
agrees, then it is allowed that a train is operated without a conductor, but this is
undesirable as well.

An issue that also plays a role in the real-time crew rescheduling process is the
fact that the duration of the disruption is usually not known at the start of the dis-
ruption, when the initial rescheduling of the duties has to be carried out. A common
approach here is to make an educated guess of the duration of the disruption, e.g.
based on experiences with similar disruptions in the past. If later on it turns out that
the duration of the disruption is different from the initially assumed duration, then
this is considered as a second disruption. At that point in time, another iteration of
timetable, rolling stock and crew rescheduling will have to be carried out.

Altogether, assuming a certain duration of the disruption, the timetable that will
be operated can be determined based on the involved incident scenario. From this
timetable and the rescheduled rolling stock circulation, the crew tasks to be covered
can be determined.

Now the real-time crew rescheduling problem can be described as follows. As
in (11.1), (11.2), (11.3), and (11.4), let T be the set of crew tasks to be covered.
Furthermore, let D be the set of original duties at the moment of rescheduling. This
set may be equal to the set of originally planned duties, but it may also be different
from that set due to earlier disruptions on the same day.

For each original duty d ∈ D, let Dd be the set of feasible completions of duty
d. Then, for each original duty d and for each feasible completion d′ ∈ Dd , let Xd

d′
be a binary decision variable, indicating whether or not feasible completion d′ ∈ Dd

is used to complete original duty d ∈ D. Furthermore, for each task t ∈ T , let Yt be
a binary decision variable indicating whether or not task t is cancelled. Then the
real-time crew rescheduling problem can be described as follows:

min ∑
d∈D

∑
d′∈Dd

cd
d′X

d
d′ + ∑

t∈T
κtYt (11.7)

subject to

∑
d∈D

∑
d′∈Dd : t∈d′

Xd
d′ +Yt ≥ 1 for all t ∈ T (11.8)

∑
d′∈Dd

Xd
d′ = 1 for all d ∈ D (11.9)
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Xd
d′ ∈ {0,1} for all d ∈ D; d′ ∈ Dd (11.10)

Yt ∈ {0,1} for all t ∈ T

The objective function (11.7) does not only focus on minimizing the total costs of
the completions of the duties, but also the costs of canceling tasks. Here κt rep-
resents the costs of canceling task t ∈ T . These canceling costs are very high and
dominate the other cost components, since canceled tasks must be avoided as much
as possible. Constraints (11.8) specify that each task t ∈ T is either covered by at
least one completion of a duty, or is canceled. Constraints (11.9) require that for
each original duty d ∈ D exactly one completion is selected.

Note that each original duty has the trivial completion consisting of taking a taxi
back to the home depot. However, in that case no additional tasks are covered by the
completion. If such trivial completions are selected for many original duties, then
many trains will be cancelled due to absence of the required crew. Note that in the
real-time crew rescheduling process it is hard to deal with constraints at the depot
level, such as constraints (11.3).

11.6.6 Real-Time Crew Rescheduling: Solution Technique

In the real-time crew rescheduling process, short computation times are essential.
If one needs a solution within minutes, but has to wait for it for hours, then this
solution is useless.

In order to deal with this time constraint and with the other details of the disrup-
tion management process [12], developed a solution method to be used for real-time
disruption management. Their algorithm is based on column generation techniques
combined with Lagrangian heuristics. In order to handle the very large number of
duties in practical instances, they first define a core problem with a limited number
of duties to be rescheduled. The core problem may exist of only the duties that must
be rescheduled.

If some tasks remain uncovered in the solution of the core problem, they perform
a neighborhood search to improve the solution by defining a new core problem for
each uncovered task. This new core problem is typically small such that a large part
of the solution of the previous step is fixed. Computational experiments with real-
life instances show that this method is capable of producing good solutions within
a couple of minutes of computation time, in particular in case of a relatively large
disruption.

As mentioned before, a complicating issue in the real-time crew rescheduling
process is the fact that the duration of a disruption is usually not known at the start
of the disruption. As a consequence, at the start of the disruption it is uncertain for
a number of tasks whether they have to be carried out or not. In order to deal with
this uncertainty [13], developed a method that is to some extent robust against the
duration of the disruption. They consider a minimum and a maximum duration of
the disruption. Furthermore, in their rescheduling model they focus on rescheduling
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the duties for the minimum duration of the disruption, but in such a way that, also
in the case that the disruption lasts longer, the duties can be modified easily to cope
with this. They call this approach quasi-robust, since the rescheduled duties are not
feasible independently of the duration of the disruption, but the duties can be made
feasible relatively easily under all possible durations of the disruption.

Abbink et al. [3] also developed a solver for supporting the real-time crew
rescheduling process based on multi-agent techniques. Here crew members are rep-
resented by virtual agents. If, due to a disruption, some agents cannot carry out
certain tasks within their duties, then these agents may ask their virtual colleagues
to support them by taking over some of these tasks. A virtual colleague may be able
to take over these tasks directly or indirectly. The latter means that he may be able
to take over these tasks, but only if someone else takes over some of his own tasks.
In this way a recursive negotiation process between the agents is carried out, which
usually leads to a solution in the end.

Although this approach performed especially well in disturbed situations involv-
ing not too many duties and relatively small delays, it performed on average worse
than the set covering based approach developed by Potthoff et al. [12]. However,
recently this agent-based approach method was enhanced into a local search heuris-
tic which can be used either as a mini-solver in itself or as a supporting tool in the
neighborhood search that is part of the set covering based approach of [12].

11.7 Planning Support System CREWS

The crew scheduling process within NS was carried out traditionally by many plan-
ners in a manual way, to some extent supported by relatively simple information
systems that mainly provided administrative functions. However, within NS it was
recognized already in the early 1990s that crew scheduling is one of the most com-
plex planning processes of a railway operator. Therefore, it was decided that auto-
mated planning support, also providing duty generating functions, was needed. This
was the start of a long research and development process.

11.7.1 CREWS: The First Phase

At that time NS chose for the CREWS system developed by Siscog in Portugal. This
system provided an extensive and user friendly system interface that was appreciated
by the planners. The algorithmic support was provided by an algorithm based on the
A∗-algorithm, see Morgado and Martins [11]. Unfortunately, it turned out that this
algorithm was not sufficiently powerful for finding solutions that were satisfactory
for the planners. In particular, due to the structure of the A∗-algorithm, it could
take into account the constraints at the duty level, but it could hardly deal with the
constraints at the depot level.
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Therefore the algorithmic part of the CREWS system was enhanced by combin-
ing it with the system TURNI developed by Double-Click in Italy, see Kroon and
Fischetti [9]. TURNI was complementary to CREWS in the sense that it consisted
of a powerful algorithm, based on dynamic column generation, and a very simple
user-interface. This combination of CREWS and TURNI was used satisfactorily for
a couple of years in the early 2000s.

Amongst others it was used to analyze a large number of different constraint
sets to be used in the crew scheduling process, in the end leading to the “Sharing-
Sweet-and-Sour” rules, see Abbink et al. [2]. Since this combination of CREWS
and TURNI was able to deal with these complex rules, which are really hard to
deal with manually, it was also appreciated by the planners. The combination of
CREWS and TURNI was used for generating the generic crew duties, as described
in Sect. 11.4.1.

11.7.2 CREWS: Stand-Alone

A next step in the development was the implementation into CREWS of a dedi-
cated model and solution technique for supporting the crew rescheduling process
for calendar days as described in Sect. 11.4.3. This model is very similar to the
model (11.7), (11.8), (11.9), and (11.10), since this process aims at rescheduling a
set of existing duties, instead of on scheduling the duties from scratch. However, also
constraints similar to (11.3) must be taken into account to deal with constraints at
the depot level. Moreover, this process is still a planning process. Therefore solution
quality is more important than computation time. The applied solution technique is
very similar to the one described in Sect. 11.6.4, see Huisman [8].

In a next step, the solution technique provided by TURNI was replaced by an
algorithm similar to TURNI’s, see Abbink et al. [4]. As a consequence, CREWS
became powerful enough to operate on its own, and thus TURNI became redundant.

One of the main advantages of the application of CREWS in the planning pro-
cess was that it allowed to carry out “what-if” analyses, by changing the parameters
of the system. As a consequence, it became possible to study the trade-off between
different objectives, such as efficiency and robustness. The latter is usually impossi-
ble in a manual planning process, where one is usually satisfied already after having
found one feasible solution. Additional advantages of the use of the algorithmic
support provided by CREWS were a more efficient planning process as well as a
reduction of the throughput time of the planning process. For more details on these
advantages, see Kroon et al. [10] and Abbink [1].
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11.7.3 CREWS: Real-Time Dispatcher

The next step in the extension of the CREWS system aimed at providing support for
the real-time crew rescheduling process. To that end [12], developed the reschedul-
ing algorithm described in Sect. 11.6.6. This algorithm was implemented in the real-
time dispatching module of CREWS, also called CREWS-RTD.

This system is based on the assumption that the real-time crew rescheduling pro-
cess is carried out in a centralized way by a single solver. At the moment that the
solver is started, the status quo of the duties is frozen: the duties cannot be modified
manually anymore, but only by the solver. Once a feasible and satisfying solution
has been obtained, it is checked against the duties in the real-world, and communi-
cated to the relevant stake-holders.

CREWS-RTD was first used in a rescheduling process that was set up in parallel
to the manual real-time crew rescheduling process. Currently this system is used reg-
ularly in disrupted situations due to delayed infrastructure maintenance or incidents
lasting several days. However, implementing and applying algorithmic support in
a real-time rescheduling process turns out to be even more complex than applying
such support in a planning process. Therefore, some further development and im-
plementation steps will be needed to make the use of CREWS-RTD in the real-time
rescheduling process common practice. These will be described in the next section.

11.8 Further Developments

In this chapter we described the status quo in the area of railway crew management
in the Netherlands. The operational crew planning process is currently to a large ex-
tent and satisfactorily supported by the crew scheduling tool CREWS. Nevertheless,
there are still several developments in the crew management area that may lead to
further improvements.

In particular, the implementation of the real-time crew dispatching system
CREWS-RTD is not yet complete. The system has been used many times in dis-
rupted situations, but its application in real-time rescheduling situations is certainly
not yet common practice. To improve this, it may first be useful to extend the system
with a tool that validates the duties in the system against what happens in reality, so
that, once the solver is used, it starts with a correct initial situation.

Furthermore, the disruption management process is still to be organized in a more
effective way. For example, a more centralized approach of the disruption manage-
ment process would be more effective than the current decentralized approach. Also
the application of objective rules describing which rescheduled duties are feasible
or not will be helpful in speeding up the disruption management processes. This
will enable silent digital communication between dispatchers and crew members,
and eliminate time-consuming negotiations.
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Another improvement would be to change the crew rescheduling rules in the dis-
ruption management process so that the crew rescheduling process becomes less
dependent on the rolling stock rescheduling process, and can hence be carried out
in parallel. This may save a lot of time in this time-critical process. A lower depen-
dence can be achieved, e.g. by stating that in case of disruptions one conductor per
train is sufficient.

Furthermore, there used to be not much flexibility in the crew scheduling and
rostering process. In principle all duties per crew type are scheduled based on the
same rules: one size fits all. For crew members it is possible to have a part-time job,
but then part-time refers to a limited weekly number of full size duties. However,
times are changing, and in order to remain attractive as an employer, NS may have
to introduce more flexibility in the duties. For example, a category of shorter duties
may be especially attractive to certain categories of employees. Note that shorter
duties may also be attractive for NS. Indeed, shorter duties enable a more efficient
covering of the workload during peak hours. Introducing such part-time duties will
have a significant impact on the scheduling and rostering process. Recently some
first steps into the direction of more flexibility in the rosters have been made.

Other developments involving the crews, in particular the drivers, are the ap-
plication of driver advisory systems and energy efficiency. A driver advisory sys-
tem supports the driver in his activities. The current driver advisory system of NS
(called RouteLint) just informs the driver about his environment: what is the posi-
tion, speed, and delay of the own train, and which trains are present in the direct
neighborhood of his own train. The next generation driver advisory system will
support the driver actively with speed advices: that is, where to accelerate to which
speed and with which acceleration, and where to reduce the speed again? Important
criteria for driver advisory systems are punctuality and energy efficiency.

At this moment (2015), automatic train operation (ATO) does not exist yet for
heavy rail systems. However, several metro and light rail systems are operated al-
ready by ATO. ATO is a challenging topic that receives a lot of research attention
nowadays. Although there are still many practical issues to be solved, it may not be
impossible that in the far future also trains in heavy rail systems will be operated by
ATO. This will simplify the railway crew management process to a process focused
on the conductors. Anyway, whether ATO is applied or not, railway crew manage-
ment will be a challenging topic, both from a practical and from a scientific point of
view.
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Abstract Train rescheduling problems have received significant attention in the
operations research community during the past 20–30 years. These are complex
problems with many aspects and constraints to consider. This chapter defines the
problem and summarizes the variety of model types and solution approaches de-
veloped over the years, in order to address and solve the train dispatching problem
from the infrastructure manager perspective. Despite all the research efforts, it is,
however, only very recently that the railway industry has made significant attempts
to explore the large potential in using optimization-based decision-support to facil-
itate railway traffic disturbance management. This chapter reviews state-of-practice
and provides a discussion about the observed slow progress in the application of
optimization-based methods in practice. A few successful implementations have
been identified, but their performance as well as the lessons learned from the devel-
opment and implementation of those system are unfortunately only partly available
to the research community, or potential industry users.

12.1 Introduction

12.1.1 Background and Scope

The challenge of managing disturbances and delays in railway traffic systems has
most likely existed ever since the launch of the first public railway system in the
beginning of the nineteenth century. With enlargements of the railway systems and
service networks, as well as introduction of new technology and more complex or-
ganizational structures, the potential sources of faults and their knock-on effects in-
crease. Managing railway traffic networks is today not only a technical achievement
and challenge, but appears at times to become more of an organizational challenge.
An organizational challenge in the sense that there are nowadays often so many sub-
systems, stakeholders and dependencies which hampers the ability to overview and
manage network activities in a proactive way and with a system perspective. Rail-
way system stakeholders thus need to jointly and stepwise start incorporating effec-
tive decision-supporting protocols and software in a much larger extent than now
and evaluate the strengths and weaknesses in a systematic and transparent manner
so that lessons learned reach beyond individual project groups and system suppliers.

The efforts dedicated in industry and in the research community to develop and
evaluate principles, methods and software for decision-support in railway traffic
management have increased significantly over the past 20 years. Larger European
projects such as COMBINE, ARRIVAL and ON-TIME has resulted in relevant re-
sults and pinpointed several challenges, but more emphasize on practical applica-
tions and evaluations is needed. The results from the large national tenders seen in
Europe recent years, and the forthcoming developed large-scale traffic management
systems (TMSs), will hopefully contribute to an increased knowhow in the field
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and shed some light on many important practical and theoretical questions. We will
discuss this aspect further later on in this chapter.

In this chapter, we first briefly introduce the research domain and main terminol-
ogy with emphasize on optimization-based decision-support for railway traffic man-
agement during disturbances. In Sect. 12.2, two common alternative modeling ap-
proaches and problem formulations are presented and discussed. In Sect. 12.3, com-
mon types of algorithmic approaches are presented and discussed, while Sect. 12.4
presents current and planned practical implementations.

12.1.2 Aspects of Disturbance Management in Railway Traffic
Systems

A disturbance in a railway network can occur due to a smaller incident such as an
over-crowded platform and unexpectedly long boarding times causing minor delays,
which the affected train may be able to recover from if there is sufficient buffer in the
timetable. Disturbances can also be more significant and occur due to, e.g., rolling-
stock breakdowns, power shortages, or signaling system failures.

Larger disturbances are in the context of railway traffic management sometimes
referred to as disruptions, although the words generally can be considered synony-
mous. The Oxford online dictionary defines disruption as disturbance or problems
which interrupt an event, activity, or process.

The distinction between smaller and larger disturbances has been discussed in
e.g., [4]. There, the following definition is used: . . . disturbances are relatively small
perturbations of the railway system that can be handled by modifying the timetable,
but without modifying the duties for rolling stock and crew. Disruptions are rela-
tively large incidents, requiring both the timetable and the duties for rolling-stock
and crew to be modified (ibid). Hence, the distinction primarily is based on what
type of actions that may be needed to cope with the incident rather than the ini-
tial sources of disruption. In this chapter we adopt the same distinction for sake of
clarity.

Disruptions often result in significant knock-on delays and longer period of par-
tial system unavailability. The railway system state transition over time can be il-
lustrated as a bathtub, see, e.g., [14], where the traffic is reduced to function only
partially during the disruption. That reduced level of traffic is then maintained until
the system goes back to full capacity again via a transition plan.

When a railway traffic network suffers from a disturbance or disruption, which
affects the scheduled railway transport services, the timetable needs to be modified.
The re-scheduling of the timetable consists of two main parts:

1. Traffic re-scheduling, where focus is on network capacity and the need of the
infrastructure manager (IM) to revise the timetable and allocation of track re-
sources for the affected trains to minimize delays;
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2. Transport service re-scheduling where focus is on the transport operating com-
panies (TOC) and their need to handle the timetable from a train service point of
view explicitly considering train connections and the effects on the rolling-stock
and crew schedules.

The latter part includes the delay management problem, where emphasize is on
effective policies for managing train connections and passenger flows during distur-
bances, in order to minimize passenger delays given a predefined set of available
train services. In contrast to traffic re-scheduling, the delay management problem
does traditionally not consider network capacity issues although the recent trend is
to incorporate an increasing level of detail and realism in the models [11].

Although the majority of research so far has focused on the mentioned perspec-
tives and types of re-scheduling problem individually, the interest in integrated ap-
proaches is increasing, see, e.g., [9].

Depending on the organizational structure of the railway systems and what au-
thority and control the traffic managers have, the decision-making may be dis-
tributed between several different stakeholders. In fully deregulated networks such
as the national railway systems of Sweden and Norway, the control of the in-
frastructure and traffic management lies on a neutral national transport authority,
while the trains and associated transport services are operated by several differ-
ent private companies. The decision-making during disturbances and disruptions is
then depending on two, or more, different organizations. The different types of re-
scheduling decisions can be divided as follows [15]:

• Re-timing of trains by allocating new arrival and departures times, including
modification of speed profiles and halting schedules.

• Re-ordering of trains by adjusting the meet-pass plans1

• Local re-routing, by allocating alternative tracks on the line between two sta-
tions, or within the stations.

• Global re-routing by allocating alternative paths in the network.
• Cancellations and/or turning trains earlier than expected.

The first three can normally be made by the IM without consulting the TOCs, but
the last two requires consultation with affected TOCs. In this chapter, we will con-
tinue discussing only real-time railway traffic disturbance management and focus
on the infrastructure manager perspective during re-scheduling.

The development and application of such computational real-time re-scheduling
support encompasses several challenges related to:

1. Human-computer interaction and requirements engineering concerning how to
define and configure the computational support as functionalities.

2. Specification and formulation of the specified re-scheduling problems as well
as development of appropriate solution methods.

3. System integration and communication including input data availability.

1 Meet-pass events are central operations in train dispatching and in particular in single-track lines.
In such lines, indeed, trains can only meet or pass each other in a station or sections where you
have parallel tracks. When trains are delayed, dispatchers must often identify suitable new meet or
pass points.
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Here we focus on the second aspect and particularly optimization-based models
and solution approaches. The research concerning development and application of
decision-support for railway traffic disturbance management has received signifi-
cant attention, which can be seen by comparison of different surveys and literature
reviews over the years, see e.g., [13, 21, 35].

Proposed models and problem formulations can be described and compared with
respect to a number of key properties such as infrastructure representation and level
of granularity, time representation and objective(s). Railway traffic and the associ-
ated train occupation of network resources is often modelled as train events, where
the events are assigned to specific time slots for the associated network resources.
The problem of deciding (a) which resource to assign to each train event, (b) in
what order different train events should be allocated the resources and (c) during
which time period, is then the core problem. This problem is often referred to as the
Train Dispatching problem (TD), see [18] and can be seen as a Job Shop Scheduling
Problem with blocking and no-wait constraints, see [27].

The TD problem is formulated in several different ways depending on how ca-
pacity limitations of the network are modelled. The models are often classified as
macro models or micro models, although there is no exact definition of what details
each level includes. Macro models typically disregard the railway signalling system
and consider the lines between stations as a set of parallel tracks. Micro models
consider these lines as a set of train paths, each defined by a chain of block sections,
crossings and signals.

In [24], two alternative MILP formulations to model the capacity restrictions on
stations on a macro level are proposed and benchmarked: A non-compact formula-
tion which counts the number of pairs of trains that simultaneously meet at a specific
station and then ensures this respects the capacity limit, and a compact formulation
where the station track occupancy by each train is modeled explicitly. Such ap-
proaches are often sufficient for single- and double-track lines, where there are less
complex junctions and stations. Examples of models which focuses on complex and
busy stations and network areas are presented in [6, 30]. There are also hybrid mod-
els which combine the use of macro and micro models. For example, Caimi et al. [5]
use a macro model for the compensation zones of the network, with simple topol-
ogy and low traffic, and a more detailed model for condensation zones, where it is
necessary to include more detail in order to ensure feasible solutions. A different
approach is proposed in [18], in which two-level strategies are adopted to optimally
solve the dispatching problem on a large network, where macro models are used for
the upper level and micro models are used for the lower level.

The majority of the problem formulations seen in the literature use a contin-
uous time representation, where disjunctive constraints (also referred to as big-M
constraints) are used to decide on the pairwise order of trains on allocated track seg-
ments. There are also a significant number of researchers who use a discrete time
representation, see, e.g., [3, 28]. In [16] results from a comparative analysis of these
two alternative ways of representing track occupancy over time are presented.

The objective(s) of the re-scheduling approaches have traditionally been to mini-
mize train delays in different ways considering, e.g., maximum consecutive delay, or
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train delays with different weights. The focus on minimization of passenger delays
and inconvenience rather than train delays has, however, increased, see, e.g., [34].
There is also a significant stream of research that also include aspects of energy-
efficient driving. Such approaches consequently include a more fine-grained model
of the infrastructure properties, network topology and train speed profiles in order
to compute train trajectories instead of approximations of run times.

For a more detailed description of common alternative modelling approaches and
problem formulations we refer to [22].

12.2 Alternative Graph and Disjunctive Formulation

This section focuses on microscopic models for train dispatching from the IM per-
spective, i.e., with the purpose of adjusting the timetable in response to disturbances
in order to minimize train delays.

Train traffic is controlled worldwide by signals, interlocking and Automatic Train
Protection (ATP) systems, which set up train routes, enforce train speed restrictions
and impose a minimum safety separation between trains to avoid train accidents.
Fixed block ATP systems ensure safety by allowing at most one train at a time
running on a resource of the network. Examples of resources are the platforms of a
station or the block sections of a line, i.e., portions of track between two consecutive
signals. The path of a train from its origin to its destination is therefore a sequence of
resources, each assigned exclusively to that train for a specific time interval, called
occupation time. This time takes into account the dwell time on a stop platform, or
the minimum traversing time of a block section, which depends on several factors,
such as the length of the block section, the train speed and length, and includes the
time between the entrance of the train head (its first axle) in the block section and
the exit of its tail (the last axle), plus additional time margins to release the occupied
block section and to take into account the sighting distance.

Due to the safety systems, a primary delay of a train due to an unexpected de-
lay may easily propagate to other trains in the network, causing secondary delays.
In fact, at least in areas with dense traffic, the amount of secondary delay due to
propagation may significantly exceed that of the originating primary delay, see [17].
The task of the dispatcher is then to adjust the timetable to limit as much as possi-
ble delay propagation by keeping a feasible plan of operations. Specifically, given
a railway network and train circulations in the network in a given time horizon,
the TD problem is the real-time problem faced by the dispatchers, which consists
in choosing:

1. a route for each train, i.e., a sequence of resources from its initial position, or
entry point, to its final position, or exit point, such that the train can physically
move from each resource to the next in the sequence;

2. a sequence of trains, for each resource traversed by multiple trains;
3. a schedule for each train, prescribing the time at which the train should start the

occupation of each resource along its route from its entry to its exit point. The
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schedule is feasible if there is no conflict, i.e., if no two trains try to occupy the
same resource at the same time. A train keeps a resource occupied from the start
of the occupation for at least the prescribed occupation time. However, having
reached the end of the resource, the train can keep it occupied for an additional
time if the subsequent resource on its route is not available, and blocks the
current resource preventing other trains from entering it. This fact may lead to a
deadlock status when there is a circular precedence among a set of trains, each
of them waiting for the access to a resource blocked by resource blocked by
another train in the set.

The main objective of the dispatcher is to design a deadlock-free schedule mini-
mizing a function of train delays. Typical objectives proposed in the literature range
from the minimization of the average delay, or of the maximum secondary delay
[10], to the minimization of convex functions of the train delays [25]. Microscopic
models to represent feasible solutions are based on the observation that by viewing
the trains as jobs and the resources as machines, the train dispatching problem is
similar to the job shop scheduling problem, in which the occupation time of a train
on a resource corresponds to the processing time of a job on a machine. However,
there are some specific aspects of the TD problem that must be taken into account.
For example a train, having reached the end of a resource, cannot enter the subse-
quent one if the latter is occupied by another train. In the scheduling theory this is
known as a blocking constraint. Moreover, other constraints can be defined, such as
a minimum departure time from specific resources (platform stops), or a maximum
travelling time between pair of resources that can be useful to ensure that a train does
not take too long to reach the next station. The latter constraint can be modelled as a
generalized no-wait constraint. Hence, the TD problem can be viewed as a job shop
scheduling problem with blocking and no-wait constraints. Once a routing is fixed
for each train, this type of problem can be effectively formulated by a disjunctive
formulation based on the so called alternative graph, see [27]. The alternative graph
generalizes the disjunctive graph model of the job shop scheduling problem by Roy
and Sussmann [31].

An alternative graph is a triple G = (N,F,A), with N being the set of nodes, F
the set of fixed directed arcs and A the set of pairs of alternative directed arcs. Arcs
in F and A are weighted, and let wi j be the length of arc (i, j). A selection S is a set
of arcs obtained from A by choosing at most one arc from each alternative pair. The
selection is complete if exactly one arc from each pair in A is selected. Given a pair
[(i, j),(h,k)]∈A and a selection S, if (i, j)∈ S then arc (i, j) is selected and arc (h,k)
is forbidden. The pair is unselected if neither (i, j) nor (h,k) is selected in S. Given a
selection S, G (S) denotes the digraph (N,F ∪S). The selection S is consistent if the
graph G (S) has no positive length cycles. An extension S′ of a consistent selection S
is a consistent selection such that S ⊂ S′. Given two nodes i ∈ N, j ∈ N, then lS(i, j)
denotes the length of the longest path from node i to node j in G (S).

In the disjunctive formulation of the TD problem based on the alternative graph,
set N includes two dummy nodes 0 and n, called start and finish respectively, such
that for each node i ∈ N there is a directed path from 0 to i and a path from i to n
in the digraph G ( /0) = (N,F). To each node in i ∈ N \{0,n} is associated the event
that a train starts the occupation of a resource. Let τi and ρi be the train and the
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resource associated to event i, respectively. Finally, let ti be a variable associated to
the starting time of event i ∈ N \{0}, while t0 = 0. Note that setting a value ti for all
i ∈ N \{0,n} corresponds to choosing a schedule for all trains.

Each arc (i, j), either fixed or alternative, represents a precedence relation con-
straining the start time (t j) with respect to the start time (ti). A fixed arc (i, j) ∈ F ,
where τi = τ j and ρ j is the resource traversed by τi immediately after ρi, represents
the constraint t j ≥ ti + wi j, where wi j is the traversing time of resource ρi by τi. A
fixed arc (0, i)∈ F represents the entrance of train τi in the network, or the departure
time of τi from a platform stop ρi, with w0i being the entrance time or the departure
time of τi, respectively. A fixed arc (i,0) ∈ F , with wi0 < 0, represents a firm dead-
line constraint ti ≤−wi0 for the start of occupation of train τi on resource ρi (recall
that t0 = 0). A deadline arc can be used, e.g., to represent the initial position of train
τi at time 0, in combination with arc (0, i) with w0i = −wi0.

A fixed arc (i,n) ∈ F , where i represents the arrival of τi at a platform stop ρi, is
used to compute the delay of τi at a station. To this aim, let δi represent the arrival
time of τi at ρi scheduled in the published timetable. By setting win = −δi, arc
(i,n) represents the constraint tn ≥ ti −δi, i.e., the arrival delay of τi at ρi. Similarly,
if εi denotes the originating delay of τi, setting win = −δi − εi corresponds to the
consecutive delay of τi at ρi. Hence, the minimization of the maximum (consecutive)
delay can be obtained by minimization of tn.

Alternative arcs are used to represent sequencing decisions. Given two trains τi

and τh traversing the same resource ρi = ρh, is necessary to decide a sequencing for
the two trains. Let ρ j and ρk be the resources traversed by τi and τh immediately
after ρi and ρh, respectively (see, Figs. 12.1 and 12.2). Then, arcs (i, j) and (h,k)
are added to F with weights wi j and whk equal to the traversing time of ρi by τi and
τh. In the example in Fig. 12.2, two trains A and B share resources 1 and 4. Hence,
for resource 1, τi = τ j = A, τh = τk = B, ρi = ρh = 1, τ j = 2, τk = 3. The pair
[( j,h),(k, i)] ∈ A represents the two sequencing alternatives. Arc ( j,h) corresponds
to giving precedence to train τi = A, since τh can enter ρi = 1 only after τi = A
has moved from resource ρi = 1 to ρ j = 2, while arc (k, i) corresponds to giving
precedence to train τh = B. Here, w jh represents the minimum time needed to release
ρi after the entrance of τi in ρ j and to make it available for τh. A similar discussion
holds for wki.

A feasible schedule for the TD problem can be obtained by defining a complete
consistent selection S and fixing all variables ti = lS(0, i), for all i ∈ N. Then tn is
the maximum (consecutive) delay of the schedule. Therefore, the TD problem is
the problem of finding a complete consistent selection S such that the length of the
longest path lS(0,n) is minimum.

To summarize, the formulation based on the alternative graph of the TD problem
is a disjunctive program:

min tn
s.t. t j − ti ≥ wi j (i, j) ∈ F

(th − t j ≥ w jh)∨ (ti − tk ≥ wki) [( j,h),(k, i)] ∈ A
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This formulation can be easily converted into a Mixed Integer Linear Program by
associating a binary variable x jhki to each disjunction, i.e., to each pair in A, equal
to one when ( j,h) is selected and equal to zero if (k, i) is selected. Then, the TD
problem can be formulated as a MILP as follows:

Fig. 12.1: A simple instance with two trains. The region contains four block sections
(from 1 to 4), each can be occupied by at most one train at a time. Block Sects. 12.2
and 12.3 can be viewed as a station, where block Section 12.2 is a siding. Trains A
and B are running in the same direction

0

A1

B1 BoutB4B3

AoutA4A2

n

i j

h k

Fig. 12.2: The alternative graph corresponding to the instance of Fig. 12.1 (with
solid fixed arcs and dashed alternative arcs)

min tn
s.t. t j − ti ≥ wi j (i, j) ∈ F

th − t j +M(1− x jhki) ≥ w jh [( j,h),(k, i)] ∈ A
ti − tk +Mx jhki ≥ wki [( j,h),(k, i)] ∈ A
x ∈ {0,1}|A|

The MILP formulation can be extended to the more general TD problem in which
both a route and a schedule must be defined for each train, i.e., the TD problem with
routing flexibility. This can be obtained by enlarging sets F and A to contain all
possible arcs for all possible train routes, and by adding for each alternative route
variables yuv ∈ {0,1} equal to 1 if route u is chosen for train v, and 0 otherwise.
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Let Fu be the set of fixed arcs associated to route u. Alternative pairs are associated
to all resources shared by two routes u and ū. Let nT be the number of trains to
be scheduled, Rv be the set of routes of train v, R =

⋃
v=1,...,nT

Rv, Auū be the set
of pairs of alternative arcs associated to the resources shared by routes u and ū,
A =

⋃
u,ū∈R Auū. Then, the train scheduling and routing formulation is the following:

min tn
s.t.
t j − ti +M(1− yuv) ≥ wi j (i, j) ∈ Fu;u ∈ Rv;v = 1, . . . ,nT
th − t j +M(1− x jhki)+M(1− yuτh)+M(1− yūτ j ) ≥ w jh [( j,h),(k, i)] ∈ Auū;u, ū ∈ R
ti − tk +Mx jhki +M(1− yuτi)+M(1− yūτk ) ≥ wki [( j,h),(k, i)] ∈ Auv;u, ū ∈ R
∑u∈Rv

yuv = 1 v = 1, . . . ,nT

x ∈ {0,1}|A|,y ∈ {0,1}|R|

12.3 Algorithmic Aspects

The big-M formulation introduced in the previous section provides the basis for a
number of solution approaches. In principle, one could simply adopt a commercial
solver to attack and solve practical instances of the big-M formulation. Unfortu-
nately, such natural but naive approach is likely to fail on most instances of some
practical interest. In fact, it is known that big-M formulations are rather weak and
the typical instances of train dispatching are simply too large to be attacked directly.
The solver would normally return bad quality solutions or no solution at all. To get
around this difficulty different authors followed different strategies, such as embed-
ding the big-M formulation into some smart algorithmic schema, or simply avoiding
the use of big-M formulations. We quickly go through the most common options:

1. Heuristics of various type
2. Branch&Bound, with bound computed with some combinatorial methods
3. Alternative formulations
4. Decomposition methods
5. A hybrid of the above approaches

Concerning point 1, the literature is very vast and varied, so we refer the reader to
the mentioned survey papers. As for point 2, the literature reports very few attempts,
as, e.g., [25] for mass transit and [10] for main line.

Proceeding with point 3, the classical alternative to the big-M formulation for
scheduling problems is the so called time-indexed formulation, where the time hori-
zon is discretized, and we have one binary variable yit for each atomic movement
(i.e., the occupation of a rail resource by a train) and each period. yit is 1 if and
only if the atomic movement i starts in period t. A major drawback of this approach
is that it tends to introduce a huge number of binary variables and packing con-
straints, even for small dispatching instances. Because of the tight computing times
enforced by the application—a solution must be returned in a few seconds in order
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to be assessed by dispatchers in real time. Time-indexed formulations are in general
preferred for off-line problems such as train timetabling. Only a few attempts have
been made also in train dispatching, such as Caimi et al. [6], Lusby et al. [23], Meng
and Zhou [28], and Şahin et al. [32]. Recently, a promising approach with only a few
continuous variables and as few binary variables as for the big-M formulation has
been presented in [19].

Point 4: An alternative and quite popular technique to tackle complicated mixed
integer linear programs is decomposition. The term decomposition basically denotes
the act to replace the original problem with a sequence of smaller subproblems. The
solutions to the smaller problems are then re-combined or extended to the original
large problem. If one fails in this phase, some kind of regret mechanism must be put
in place and the problem solved from the start. The two most common decomposi-
tions may be seen as operating in time and space, respectively.
Decomposing in time: rolling horizon. Rolling horizon is a classical decomposi-
tion approach (see, e.g., [28, 29, 36, 38]) in which the time horizon is decomposed
into smaller intervals and a subproblem is associated with each interval. Then the
subproblems are solved in chronological order. At each iteration, the (part of the) so-
lution associated with the previous subproblems is fixed, and only “few” additional
variables and constraints are left.
Decomposing in space: the macroscopic/microscopic decomposition principle.
A different but still very popular type of decomposition approach is the so-called
macroscopic-microscopic decomposition approach [33]. A typical two-stage imple-
mentation of this approach goes as follows: in a first stage stations are considered
as points with infinite capacity, and trains are scheduled along the line(s). In the
second stage, one checks if the schedule so found can be extended to an overall so-
lution, namely reconsidering in detail the actual topology of the stations. If one fails
in this phase, some of the decisions taken in the first stage must be reconsidered.
Different approaches differ in the way this mechanism is implemented. Most papers
resort to heuristic regret approaches [11, 12] or no approaches at all (e.g. [37]). In
contrast, an exact regret mechanism is developed in [18] and [20], based on integer
programming and logic Benders’ decomposition. The basic ideas goes as follows.
If we let t be the scheduling vector, and x be the binary vector associated with the
disjunctive terms, then the generic big-M formulation introduced in the previous
section may be represented as:

mincT t (12.1)

s.t.
(i) ALxL+ BLt ≥ wL,
(ii) BSt +ASxS ≥ wS

(iii) t real, xL,xS binary

Vector x has been written as x = (xL,xS) to distinguish between decisions asso-
ciated with stations (xS) and decisions associated with tracks between stations (xL).
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Observe that matrices AL,AS and vectors wL,wS contain in general big-M coeffi-
cients.

Next, we may identify blocks (i) and (ii) in Program (12.1). The two blocks only
share a small subset of t variables, namely those corresponding to arrivals and depar-
tures from stations. Indeed, leaving a station amounts to entering the line between
to successive stations, whereas leaving a track between two stations amounts to en-
tering the second station. It follows that block (i) may be seen as corresponding to
the macroscopic problem of controlling trains between stations, whereas block (ii)
corresponds to the microscopic problem associated with stations.

In Benders’ decomposition algorithm, we first solve the restricted problem (mas-
ter) obtained by dropping block (12.1.ii). This corresponds to taking dispatching
decisions for trains running on the line, neglecting what can happen in stations. Let
(x∗L, t

∗) be the optimal solution to the master problem. In order to established if t∗

can be extended to a feasible solution to (12.1.ii) we need to solve the so called
slave problem. It should be apparent by now that the slave problem corresponds to
solving a microscopic feasibility problem (for all stations), where arrival and depar-
ture times for all trains are fixed (by the master). If the slave problem has a solution
(t∗,x∗S) then we are done as (x∗L, t

∗,x∗S) is an optimal solution to (12.1). Otherwise
(x∗L, t

∗) cannot be extended to a feasible solution for the whole problem, and we
identify an inequality qT xL + rT t ≤ k which is satisfied by all of the feasible so-
lutions to (12.1) but is violated by (x∗L, t

∗). Such inequality is added to the master
problem and the process is iterated. A nice feature of the approach is that the slave
problem further decomposes into a number of independent sub-problems, one for
each station.

A different approach to space decomposition is presented in [8], where entire
administrative regions (areas) are actually collapsed into single nodes in order to
carry out inter-area coordination among trains.

Finally, another type of decomposition approach consists in partitioning trains
into groups of one or more elements and then solve the problem associated with
each group in sequence, as in [1].

Interestingly, the three decomposition approaches introduced above mimic, in
some sense, the actual behavior of human dispatchers, which somehow apply a
combination of these methods. Indeed, potential conflicts are typically solved by
dispatchers by neglecting the microscopic details (of the stations or of the tracks
between stations). Then train movements within stations are then controlled in the
necessary detail. Also, a dispatcher typically focuses on one or two trains at a time,
and only for the next few movements or conflict.

12.4 State of Practice

Even if the optimization literature has been drilling into train dispatching for over 30
years, to our knowledge there are very few operative TMSs which rely on optimiza-
tion algorithms to take or suggest dispatching decisions. This gap is also highlighted
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in recent surveys [4, 7] and papers such as Zhan et al. [38]. There are several rea-
sons for this discrepancy. There is little doubt that the first attempts to automatize
the dispatching process resulted in disappointing failures. This was possibly due
to the use of inadequate techniques (e.g., rule based systems rather than optimiza-
tion models and algorithms). The unavoidable consequence was an immediate and
long-lasting skepticism of railway infrastructure managers and train operators in the
sheer possibility of such automation. Another factor of resistance is related to the
particular relation between the two major actors of the TMS market, namely in-
frastructure managers and (large) system vendors. None of those actually is willing
to take the risk of innovation. By one hand, developing optimization based TMSs
requires large investments by the vendors, with uncertain outcomes. On the other
hand, railway operators, until very recently, did not press the vendors with specific
technological requirements, probably because of lack of strong motivations (such as
a real competitive market) or incentives. Indeed, in Europe infrastructure managers
are typically state-hold companies and they operate in monopolistic markets.

The situation seems now to be on the verge of a rapid change. A growing aware-
ness towards the potential of optimization-based TMSs is tangible. Infrastructure
managers and operators around Europe are starting to explicitly request the use of
optimization modules within TMSs, as we have observed in recent tenders, e.g.,
Denmark, Sweden and Norway. This fact actually forces the large vendors to pur-
sue a stronger collaboration with research centers, since developing optimization
tools for train dispatching is not an easy task.

Indeed, a few, large system vendors, finally started to claim their TMSs embed
some sort of optimization algorithms. This is the case, for instance, of the General
Electrics Movement Planner (see GE Movement Planner 2016). Unfortunately, the
only available material is a few brochures, where the company states to implement
business objective based optimization. Other large companies made similar claims
with poor supporting documentation. Also, after some personal (but far from ex-
haustive) investigation, we could not identify any of the OR specialists involved in
the development of such softwares, let alone scientific publications. A remarkable
exception is represented by Alstom, a large multinational company headquartered
in France, specialized in signaling systems and TMSs. A few years ago, in order to
prepare for a large tender in Sweden where the use of optimization was explicitly
required, Alstom decided to engage three academic groups with strong and long
lasting expertise in railway optimization. After a sort of pre-qualification, one of
these groups was selected to develop the optimization part of final product and is
now collaborating with Alstom. The optimization engine is now integrated in the
TMS offered by Alstom, but not yet in operation.

Indeed, according to what reported in the literature and what personally over-
heard or learned at specialized workshops, meetings, etc., the only few TMSs in
operation actively using optimization described in the scientific literature are de-
scribed in the remaining of this section (see also [2] for more details).

In all existing systems, the optimization routines are typically embedded in a
loop. First, the TMS acquires real-time information regarding the status of the net-
work (e.g., train positions, speeds, resource availability etc.). This information is fed



278 L. Lamorgese, C. Mannino, D. Pacciarelli, and J. Törnquist Krasemann

into the optimization modules, which, combining it with the required “static” infor-
mation (e.g., network layout, train connections), return one or more solutions to
the current dispatching problem. Dispatchers may also “manually” interact with the
systems providing further information (e.g., train delays or cancellations, network
disruptions, fixed meeting points). The total time allowed for this loop is rather tight,
typically a few seconds, setting a limit on the size and type of instances which can
be tackled.

To our knowledge, the first “optimization-based” support system reported in the
literature was embedded in a TMS developed by Bombardier Transportation, and
operated in some terminal stations of the Milano Underground between 2007 and
2008 [25]. The system was dismissed after a year because Bombardier lost a tender
for a complete renewal of the TMSs controlling the lines in Milano underground
system. The dispatching algorithm was an exact branch&bound. By contract clause,
the system had to prove to perform better than the dispatchers in order to be actually
purchased by Azienda Trasporti Milanese, the state-hold company managing Mi-
lano underground system. To this end, an intensive 1-week on-field test campaign
was set up in a terminal stations, which directly compared dispatchers against algo-
rithm. Each day, four “traffic equivalent” 1 h slots were identified: in two of them
the algorithm had full control over the trains, while in the other two the control
was assigned to the dispatchers. In spite of the small size of the station, the system
performed, on average, 8% better than dispatchers both in terms of deviations from
timetable and in regularity. Besides paper [25] a popular science description of this
experience is presented in [26].

Again Bombardier Transportation is behind the first main line optimization
based dispatching system. This was put in operation in Italy in 2011, on a single-
track regional line (Trento-Bassano del Grappa), see [24]. The use of the tool
was later extended to other lines in Northern, Southern and Central Italy, such as
Milano-Mortara, Piraineto-Trapani-Alcamo, Orte-Terontola-Falconara and others.
Table 12.1 gives some hints about the size and geometry of such regional lines.

Table 12.1: Infrastructure details

Line Stops Stations Length (m) Tracks

Trento–Bassano 22 14 95,711 Single
Piraineto–Trapani 12 12 93,532 Single
Alcamo–Trapani 14 13 116,119 Single

Orte–Terontola–Falconara 54 34 283,839 Mixed

Single stands for single-track, mixed stands for single and double-track

Because of very strict business rules adopted by the Italian Infrastructure Man-
ager (RFI), the optimization algorithm embedded in Bombardiers’ TMS is a heuris-
tic. For the same reason, the dispatching loop is semi-automated. The algorithm
finds alternative solutions each time it is called and presents them to the dis-
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patcher(s) ranked by cost. Statistics show that in 94% of the cases the first solution
proposed by the algorithm is accepted. It is worth noticing that such limiting busi-
ness rules were introduced to help dispatchers to quickly take difficult decisions. If
such rules would be ignored or dropped, then the full power of an exact optimiza-
tion algorithm could be exploited. Indeed, we have tried to quantify the possible
advantages to do this in [20], and it turns out that for the mentioned Orte-Terontola-
Falconara line a significant average increase of trains on time (+6.2%) and reduction
of trains heavily delayed (8.9%). The results presented in Table 12.2 refer to to a
specific week day in year 2013.

Table 12.2: Exact vs heuristic approach: comparisons on train punctuality

Method On time Delay≤ 10 Delay≤15 Delay>15

Heuristic 84.7% 86.5% 87.9% 12.1%

Exact method 90.9% 95% 96.8% 3.2%

A new release of the above TMSs has been recently deployed in a few lines
in Latvia, namely Daugavpils-Eglaine, Daugavpils-Krustpils, Rezekne-Krustpils,
Zilupe- Krustpils, Karzava-Rezekne, for a total of 52 stations, with 10 communica-
tion points and 8 station gates. These lines are mainly used for freight transportation
and run around 100 trains every 20 h. Again due to local business rules, the opti-
mization algorithm is heuristic. A major innovation is that, in a particular modality,
freight trains decision can be directly applied by the system without prior acceptance
by dispatchers.

In a recent project involving with the Norwegian infrastructure manager (JBV)
and train operating companies (NSB, FlyToget, CargoNet), an automatic dispatch-
ing system was put in operation at Stavanger control center in Norway, in February
2014. The system controlled trains on the Stavanger-Moi Line, which is 123 km
long, with 16 stations, 7 line stops and 28 block sections. On weekdays, the average
number of trains every 12 h is around 100. The system implements an exact, MILP
algorithm described in [18, 20]. Like in previous cases, the system presents solu-
tions in real-time to dispatchers which decide whether to accept the solutions. The
system was well received by dispatchers and management. The use of the system
in Stavanger for real-time dispatching was put on hold for legal reasons towards the
end of 2014, because of a competitive tender issued by JBV for the renewal of the
entire Norwegian signaling (and centralized traffic control) system.

Finally, concerning large stations rather than lines, the TMSs in Roma Tiburtina
station (12 line points, 30 stopping points and 62 interlocking routes) and the
multi-station of Monfalcone in Italy have been equipped with optimization algo-
rithms which re-schedule and re-route trains. The optimization modules include
both heuristic and exact algorithms. Tiburtina station is the second largest station
in Rome, and is considered one of the most important and complex stations in Italy.
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Abstract Should connecting trains wait for delayed feeder trains? Or is it better for
the passengers if trains depart on time?

Questions of this type are the subject of delay management, which will be treated
in this chapter from the point of view of the passengers. We start by discussing how
delays are propagated through a public transportation network, and how such prop-
agations can be modeled using event-activity networks.

We then focus on the question of finding an optimal solution to the delay man-
agement problem in case some (known) source delays have occurred. We discuss
which decisions can be made and how these can be reflected by variables and
constraints in integer programming models. In particular, we show how station
capacities and the limited capacity of the tracks can be taken into account. Spe-
cial emphasis will be given to the discussion of passenger-oriented objective func-
tions. We introduce several ways on how to measure the effects that delays have
on passengers and explain how to include the resulting objective functions in the
models.

Next, we discuss solution approaches for delay management. In particular, we
discuss heuristics that decompose the delay management problem and solve it
within short computation times. Finally, we give some insights into delay manage-
ment in practice. We review some simple delay management strategies used today
and discuss recent developments that make it possible to implement more advanced
methods in practice as well.

13.1 Introduction and Motivation

In highly connected train systems, as common all over Europe, passengers often
have to change trains, since it is impossible to give a direct connection between all
origin-destination pairs. In order to provide convenient connections, the timetable is
often constructed in such a way that train B departs shortly after train A has arrived.
However, if train A has a delay during the operations, the question is whether train B
should wait or depart on time. Delay management deals with this type of decisions.
More precisely, in delay management one looks at (small) source delays of a railway
system as they occur in the daily operations. In case of such delays, the scheduled
timetable is not feasible anymore and has to be updated to a so-called disposition
timetable. If a connecting train waits for a delayed feeder train, it gets delayed itself.
It is hence not clear in advance whether waiting for the delayed train or departing
on time is the better decision for the system as a whole. For railway systems, the
limited track capacity has to be taken into account in delay management as well: no
two trains may occupy the same piece of track at the same time, and safety distances
between trains have to be respected. This has to be taken into account when re-
scheduling trains in case of delays. In many cases, it may be favorable to change the
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order in which trains pass a specific piece of track. This type of decision is called
precedence decision. We may have precedence decisions on the tracks outside and
inside stations.

In the next section, we mention various models and solution approaches for de-
lay propagation and delay management. The main question in these models is to
decide which trains should wait for delayed feeder trains and which trains better
depart on time (wait-depart decisions). Note that the approaches and results pro-
vided in the following are applicable not only for railway networks but also for
other transportation networks such as bus or metro systems. Nevertheless we will
use the railway-related notion and talk only of trains and stations instead of buses or
bus stops.

With the following simple, real-world example we want to illustrate the key as-
pects of delay management. The railway network used in the example is depicted in
Fig. 13.1.

Haarlem

Leiden Central

The Hague Central

Schiphol Airport

The Hague HS

Rotterdam

Rijswijk

Fig. 13.1: Part of the railway network in the Netherlands. Rectangles represent sta-
tions. Dots indicate that trains of a certain line stop at the station. Solid lines repre-
sent Intercity trains; dashed lines represent regional trains

In this example, there are three train lines, each with a frequency of 30 min.
Line 1 runs from Haarlem via Leiden Central to The Hague Central. Line 2 con-

nects Schiphol Airport via Leiden Central and The Hague HS with Rotterdam. Both
lines are Intercity services, only stopping at the major stations. Line 3 is a local
service from The Hague Central via The Hague HS to Rotterdam, stopping among
other stations at Rijswijk. The timetable is constructed in such a way that there is a
cross-platform transfer of 2 min in Leiden Central between line 1 and 2, vice versa,
and in The Hague HS between line 2 and 3, vice versa. For simplicity, assume that
there are no running time supplements and there is no slack time in the transfers.
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The (relevant) passenger figures can be found in Table 13.1.

Table 13.1: Number of passengers from Haarlem, Schiphol and The Hague Central
to The Hague HS, Rijswijk and Rotterdam

Haarlem Schiphol The Hague Central
The Hague HS 100 200 –

Rijswijk 0 70 100
Rotterdam 100 400 200

Suppose that a train of line 1 has a delay of 5 min at arrival in Leiden Central.
The main question of delay management is now: Should train 2 wait (for 5 min)
or should it depart on time? If train 2 departs on time, 200 passengers (traveling
from Haarlem to The Hague HS and Rotterdam), cannot transfer as planned. The
total passenger delay is then 200 · 30 = 6000 min. If train 2 waits, all passengers
using train 2 will have a delay of 5 min. Moreover, 70 passengers to Rijswijk might
miss their transfer. Note that there are 800 additional passengers using train 2: 600
passengers travel from Schiphol to The Hague HS or Rotterdam and 200 passengers
travel from The Hague Central to Rotterdam. The total delay is 200 · 5 + 70 · 30 +
800 · 5 = 7100 min in the case train 3 does not wait. If both trains wait, the total
delay is 200 · 5 + 170 · 5 + 800 · 5 = 5850 min, which is the optimal solution in this
small example.

We can draw the following conclusions from the example. First, applying delay
management strategies can reduce the delay for passengers. Second, delay manage-
ment is non-trivial, because the whole network and all transfers should be taken into
account at once.

13.2 Delay Propagation

13.2.1 The Event-Activity Network

The public transportation network PT N = (V,E) models the physical railway
(or bus) network, i.e., V denotes the set of stations and E ⊆ V ×V the set of di-
rect connections or tracks. Each line in the transportation network is a path through
the PTN, and a (passenger) train is a path at a specific time. It is often assumed
that all lines in the PTN are served with a common period T , i.e., all departures or
arrivals are repeated every T time units.

A source delay (also called primary delay) of a train is a delay which is caused
by an external event, e.g., a signalling problem, a blockage of some track, some con-
struction site that prevented the train from arriving on time, an accident, or simply
a crowded station or bad weather conditions. Source delays may spread out into the
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system. This is due to several propagation rules; the most important ones are listed
in Table 13.2, an illustration of the first three is given in Fig. 13.2.

Table 13.2: Delay propagation

(i) If a train starts with a delay at some station, it is likely to arrive at the next station with some
delay (often the train can go faster than planned and reduce its delay)

(ii) If a train arrives at some station with a delay, it may depart from this station with some delay
(iii) If a train waits for a delayed feeder train, it may get delayed itself
(iv) If a train reaches the last station of its line with a delay, it might start its next trip also with a

delay
(v) Delayed trains may block platforms or track sections such that also trains using this infras-

tructure at a later time get delays

For solving the delay management problem it is important to keep track of these
propagated delays (also called secondary delays or knock-on delays). In order to
do so within an elegant framework, we introduce event-activity networks. Event-
activity networks are widely used in public transportation, in particular for finding
a timetable (e.g., [21, 22]), for timetable information (e.g., [15]), and in delay man-
agement (e.g., [29]).

v u
g

v
g g

v

g
h

(i) (ii) (iii)

Fig. 13.2: Delay propagation for driving (i), waiting (ii), and changing (iii) activities

Definition 13.1. Let PT N = (V,E) be a public transportation network and T be
a set of trains. We denote by T (v) the set of all trains that stop at station v. The
event-activity network N = (E ,A ) then consists of

1. the set of events E = Earr ∪Edep where an arrival event (v, t,arr) represents the
arrival of a train t ∈ T (v) at a station v ∈ V and a departure event (v, t,dep)
represents the departure of train t ∈ T (v) at station v ∈V ,

2. and of a set of directed edges, called activities A ⊂ E ×E . The set of activities
includes the following subsets:

• Await (waiting activities) are of type ((v, t,arr),(v, t,dep)) for some v ∈
V, t ∈ T (v) and represent dwelling of train t in station v,

• Adrive (driving activities) are of type ((v1, t,dep),(v2, t,arr)) for some
(v1,v2) ∈ E, t ∈ T (v1)∩T (v2) and represent a train t driving from sta-
tion v1 to its next station v2,

• Achange (changing activities) are of type ((v, t1,arr),(v, t2,dep)) for some
v ∈ V, t1, t2 ∈ T (v). They do not represent a train’s activity, but the possi-
bility for passengers to change from train t1 to another train t2 at station v.
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A part of an event-activity network is illustrated in Fig. 13.3.
We later add turn-around and headway activities to A . The event-activity net-

work has several important features:
Defining Timetables. First, it is a convenient model for defining timetables: A

timetable is given by assigning a time to each arrival and each departure of all trains,
i.e., it is specified by numbers πi for all events i ∈ E . For designing a timetable there
are usually lower bounds La > 0 on the duration of each activity a ∈ A given.
For a driving activity a = ((v1, t,dep),(v2, t,arr)) ∈ Adrive, the lower bound equals
the technically minimal driving time train t needs to go from station v1 to station
v2. For a waiting activity, the lower bound models the minimum waiting time a
train needs to allow passengers to alight and board. Finally, for a changing activity
a = ((v, t1,arr),(v, t2,dep)) ∈ Achange, La contains the time, a passenger needs for
getting off train t1, changing the platform, and boarding train t2. Sometimes, also
upper bounds are given, but these are usually neglected in delay management.

v1, g,dep

v0, g,arr v0, g,dep

v2, g,arr
Driving g

Waiting g
Driving g

v4, h,arr

v0, h,dep v0, h,arr

v3, h,dep

Driving hWaiting h
Driving h

Changing from h to gChanging from g to h

Fig. 13.3: An event-activity network with two vehicles g and h meeting at station v0

A timetable π is feasible if

π j −πi ≥ La for all a = (i, j) ∈ A ,

i.e., if it respects all minimal durations. If π j −πi > La the timetable contains some
buffer time

sa := π j −πi −La

for activity a. If π is a feasible timetable, all buffer times are greater than or equal
to zero.

Order of the Events. Secondly, from the event-activity network one can also
read off the order in which events take place: if there is an activity (i, j)∈A linking
event i and event j, then we know that event i takes place before event j. Since this
is transitive, we can define an order relation by

i ≺ j if there exists a directed path P in N from i to j.
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Note that this is in fact an order relation since N cannot contain directed cycles
because all lower bounds La for a ∈ A are strictly greater than zero. Hence N can
be ordered topologically by ordering the events i ∈ E according to their scheduled
times πi.

Passenger Paths. The third feature of the event-activity network will become
important in Sect. 13.3.4. Each directed path between a departure and an arrival
event presents a (unique) passenger route, and vice versa.

Delay Propagation. Finally, the fourth (and most relevant) feature of the event-
activity network is that it can be used for propagating delays which is discussed in
the next section.

13.2.2 Delay Propagation

Here we describe how delays are propagated. We use the event-activity network and
proceed in several steps. First, we briefly introduce where delays come from. Then
we discuss how the delay of an event i is propagated to its successor j along a single
activity a = (i, j) and for a bundle of activities, and finally we show how to compute
the delays for a given delay scenario. Let yi denote the delay of event i. We may
assume that yi ≥ 0 for all i ∈ E since trains are not allowed to depart earlier than
planned.

13.2.2.1 Source Delays

There are different possible (external) sources of delay:

• either a source-delayed event (if an event has to be shifted to a later time, e.g.,
since a driver got sick and his replacement arrives with a delay, or if some repair
work is finished at some specific point of time), in this case we have to add the
delay di to the scheduled time of event i,

• or a source-delayed driving, waiting, or turn-around activity (e.g., the train has
to go slowly due to a construction site or due to weather conditions), in this case
we add da to the minimal duration La of the respective activity.

Note that one can transform delayed events into delayed activities easily, but not vice
versa. We assume that di = da = 0 for all events and activities without source delays
(hence, in particular for all changing and headway activities). A delay scenario is
then defined as a set of source delays da ≥ 0 for a ∈ A and di ≥ 0 for i ∈ E .

13.2.2.2 Delay Propagation Along a Single Activity

(i) Let a train t have some delay yi = di when it starts from station v1, i.e., at
event (v1, t,dep). The next activity is a driving activity a = (i, j) from i to
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j = (v2, t,arr). Assume that da = 0, i.e., a has no additional delay. What is the
delay of event j? We have to distinguish two cases:

• yi ≤ sa: Then the delay of the train can be reduced to zero (by driving faster
than planned) on its way between stations v1 and v2. We obtain a zero delay
y j = 0 of event j.

• yi > sa: Then along activity a = (i, j) the delay yi can be reduced by sa but
is still propagated to event j. It satisfies y j ≥ yi − sa.

Together, we obtain

y j ≥ [yi − sa]
+ (13.1)

where [r]+ = max{r,0} as usual. Note that we have to write ≥ in (13.1) since
there could be other delays influencing event j.

(ii) The same observation holds for waiting activities, we obtain y j ≥ [yi − sa]
+ for

a waiting activity a = (i, j).
(iii) Now suppose a train t1 arrives at some station v with a delay, and there

is a changing activity a = (i, j) to another train t2 with i = (v, t1,arr) and
j = (v, t2,dep). For changing activities we have another distinction to be made:
In case the transfer is maintained, we can use the same formula as for driving
and waiting activities and the delay propagates according to y j ≥ [yi − sa]

+.
However, if the transfer is not maintained, the delay from train t1 will not in-
fluence train t2, i.e., we obtain

y j ≥
{

[yi − sa]
+ if the transfer is maintained,

0 otherwise.

Note that these wait-depart decisions, i.e., whether a transfer is maintained or
not is in the responsibility of the operator of the public transportation company.
In the next section we show how such decisions can be computed in a way
which is best for the passengers.

In order to model the other two propagation rules mentioned in Table 13.2 in the
same way, we need to introduce additional activities in the event-activity network.
These are the following:

(iv) Turn-around activities Aturn of type ((v1, t,dep),(v2, t,arr)) for v1,v2 ∈ V, t ∈
T (v1)∩T (v2) represent the empty ride of a vehicle from the last station v1

of its previous trip to the first station v2 of its next trip. The next trip may also
start at the same station, in this case v1 = v2. The duration La of a turn-around
activity is set to the minimal time needed before the vehicle can start again,
and may include cleaning time and the time for a driver’s break. Similarly as
for Await and Adrive, also for activities a ∈ Aturn delay is propagated according
to (13.1).

(v) Headway activities Ahead are of type ((v, t1,dep),(v, t2,dep)) for some v ∈
V, t1, t2 ∈ T (v). They represent that train t2 must wait some time La after train
t1 has left before departing from the same station v. Note that for modeling



13 Delay Propagation and Delay Management in Transportation Networks 293

oncoming traffic, it is convenient to allow also headways between departures
from different stations. The minimal headway time La depends on the speed of
the two trains and on the lengths of the blocks on their next track section, see
[31] for details. Note that basically we need headway activities between any or-
dered pair of events i, j using the same infrastructure. Headway activities usu-
ally come in pairs (i, j) and ( j, i). Both headway activities cannot be satisfied
simultaneously. The public transportation company has to make a precedence
decision, i.e., decide which train goes first. If train t1 leaves first, headway (i, j)
needs to be respected, if t2 leaves first, ( j, i) needs to be respected.

13.2.2.3 Delay Propagation for a Bundle of Activities

For the following let us define

¯A = Await ∪ Adrive ∪Aturn ∪{a ∈ Achange : a is maintained}
∪ {a = (i, j) ∈ Ahead : i has precedence over j} (13.2)

as the set of activities which are relevant for the delay propagation. These activities
have to be chosen by the operator who decides about the wait-depart and about the
precedence decisions. Usually, an event j has not only one, but several incoming
activities (i, j) ∈ A . Then event j can only take place after all incoming activities
are completed.

Example: Let j = (v, t,dep) be the head of a waiting, several changing and head-
way activities. Then j can take place if the train t is ready to depart and if all pas-
sengers from the feeder trains have arrived and the headways are respected.

Hence, the actual delay of j is the maximum of the propagated delays along all
incoming activities a = (i, j) ∈ ¯A , i ∈ E . We obtain:

y j =
[
max{yi − sa : a = (i, j) ∈ ¯A }

]+
. (13.3)

13.2.2.4 Delay Propagation for a Delay Scenario

We finally can derive a formula for computing the effects of a delay scenario in the
network. Hereby, we assume that each event will be scheduled as early as possible
in view of the delays. Note that the effects of a delay scenario crucially depend on
the decisions of the public transport company, i.e., on the wait-depart decisions in
the set Achange, i.e., which trains should wait for delayed feeder trains, and on the
precedence decisions to be made (i.e., on the set Ahead). Assume that these deci-
sions have been made. Then, in a first step, we sort the events E topologically. This
is possible if and only if the network (E , ¯A ) including the wait-depart and prece-
dence decisions does not contain a directed cycle. In the case that the precedence
constraints are chosen in the same way as originally planned, the topological order
can be found easily by ordering the events according to their scheduled times πi,
i ∈ E (independent of the wait-depart decisions).
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The delays of the events are then computed iteratively for all events in their topo-
logical order, j = 1,2, . . . , |E | as follows.

• If event j does not have any incoming activity, then its delay is set to y j = d j.
• Else, j has at least one incoming activity i with (i, j) ∈ A . Since we proceed in

topological order we already know the delay yi for all these events i. We set:

y j = max
{

d j,max{yi − sa +da : a = (i, j) ∈ ¯A }
}
. (13.4)

We remark that the delay propagation can also be computed by using the distri-
bution of delays in a periodic event-activity network. The propagation of delays can
then be computed via their convolutions. In [18] it is shown that computing the con-
volutions iteratively leads to a stable process, i.e., it converges in distribution against
a stationary delay distribution. Also Kecman et al. [17] consider the prediction of
train delays using Bayesian networks.

13.3 Models: Integer Programming Formulations and Objective
Functions

In this section, we discuss how delay management problems can be modeled as in-
teger programs (IPs). To this end, we show in Sects. 13.3.1–13.3.3 how delay propa-
gation, precedence decisions on tracks and in stations, and platform re-assignments
can be modeled as constraints in an integer program. Based on this, in Sect. 13.3.4
we discuss different objective functions for delay management and explain how they
can be modeled in an integer program.

13.3.1 The Basic Model: Wait-Depart Decisions

Let N = (E ,A ) denote the event-activity network. Let us first assume that prece-
dence decisions and platform assignments in stations are fixed, e.g., inherited
from the previous timetable. Denote the set of corresponding headway activities
as ¯Ahead = {a = (i, j) ∈ Ahead : i has precedence over j}.

Since precedence decisions are fixed, in our first delay management model, we
only have to make the wait-depart decisions. To this end, we introduce variables

za :=

{
1 if transfer a is not maintained,
0 otherwise

for all a ∈ Achange. As before, the variables yi describe the delay of event i ∈ E . Our
first delay management model (DM) is as follows:

min ∑
i∈E

wiyi + ∑
a∈Achange

waza (13.5)
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such that

y j ≥ d j ∀ j ∈ Earr ∪Edep, (13.6)

y j ≥ yi − sa +da ∀a = (i, j) ∈ Adrive ∪Await ∪ ¯Ahead ∪Aturn, (13.7)

y j ≥ yi − sa −Mza ∀a = (i, j) ∈ Achange, (13.8)

za ∈ {0,1} ∀a ∈ Achange (13.9)

y j ∈ R ∀ j ∈ Earr ∪Edep. (13.10)

For each event j ∈ E , constraints (13.6), (13.7), and (13.8) make sure that

y j ≥ max
{

d j,max{yi − sa +da : a = (i, j) ∈ ¯A }
}

(13.11)

with ¯A as defined in (13.2). Note that if a changing activity a = (i, j) is maintained,
za = 0 and constraint (13.8) simply reads

y j ≥ yi − sa.

On the other hand, if a = (i, j) is not maintained, za = 1 and constraint (13.8) is
always fulfilled for M large enough. It can be shown that M := ∑a∈A max{da −
sa,0}+max{di : i ∈ E } is large enough (see [25]).

The objective function (13.5) minimizes the weighted sum of delays at events
i ∈ E and non-maintained changing activities a ∈ Achange. Hereby, wi and wa are
non-negative weights, representing the ‘costs’ of arriving or departing late, and of
not maintaining a transfer. We discuss the choice of these weights in more detail in
the first paragraph of Sect. 13.3.4. If the weights wi are positive for all i ∈ E , in an
optimal solution to (DM) we obtain

y j = max
{

d j,max{yi − sa +da : a = (i, j) ∈ ¯A }
}

as required in (13.4).
Note that all models presented in this chapter can be transformed easily to a

formulation which uses the actual times xi := πi +yi as variables by using the trans-
formation y j = x j − π j and sa = π j − πi − La for all a = (i, j) ∈ A . The times x j

are often called disposition timetable since they define the real arrival and departure
times in view of the delays.

The above integer programming formulation was first presented in [28] and has
been further developed in [4, 30]; see also [29] for an overview of various models. A
bi-objective version, which considers the delays of the trains and the number of lost
transfers simultaneously has been investigated in [3, 13]. Note that in these early
delay management models, the problem was studied without considering capacity
restrictions on tracks or stations and turn-around movements, i.e., setting ¯Ahead = /0
and Aturn = /0.
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13.3.2 Adding Precedence Decisions on Tracks

When a train has a delay and precedence decisions on tracks are left unchanged,
the following trains will receive a delay, too, unless the buffer times between the
trains are large enough. In this section we show how precedence decisions can be
integrated in the delay management IP.

In order to avoid delays, it makes sense to allow to change precedence decisions
in the delay management step. Remember that in Sect. 13.2 we introduced two head-
way activities whenever two trains use the same piece of track, namely an activity
(i, j) and a corresponding activity ( j, i) for the events i and j. To impose a prece-
dence constraint for the two trains, we have to select exactly one of these activities.
To this end, we introduce variables

gi j =

{
1 if (i, j) is selected,
0 otherwise

for each headway activity a ∈ Ahead. That is, event i is scheduled before event j, if
gi j = 1. To make sure that for each pair of headway activities exactly one is chosen,
we add the constraints

gi j +g ji = 1 ∀ pairs of headway activities in Ahead (13.12)

gi j ∈ {0,1} ∀a = (i, j) ∈ Ahead. (13.13)

Furthermore, for each headway activity we add the constraint

y j ≥ yi − si j −Mhead(1−gi j) ∀a = (i, j) ∈ Ahead, (13.14)

where si j represents the planned buffer time on headway activity (i, j).
Similarly to constraints (13.8), if Mhead is chosen big enough (see [25]), con-

straints (13.14) make sure that if and only if event i is scheduled before event j,
delay is propagated along activity (i, j).

By adding constraints (13.12), (13.13), and (13.14) to (DM) we obtain the fol-
lowing IP, which we refer to as (DM-prec).

min ∑
i∈E

wiyi + ∑
a∈Achange

waza (13.15)

such that

y j ≥ d j ∀ j ∈ Earr ∪Edep, (13.16)

y j ≥ yi − sa +da ∀a = (i, j) ∈ Adrive ∪Await ∪Aturn, (13.17)

y j ≥ yi − sa −Mza ∀a = (i, j) ∈ Achange, (13.18)

gi j +g ji = 1 ∀ pairs of headway activities in Ahead (13.19)

y j ≥ yi − sa −Mhead(1−gi j) ∀a = (i, j) ∈ Ahead, (13.20)

gi j ∈ {0,1} ∀a = (i, j) ∈ Ahead, (13.21)

za ∈ {0,1} ∀a ∈ Achange, (13.22)

y j ∈ R ∀ j ∈ Earr ∪Edep. (13.23)
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Note that due to Constraints (13.20), it is infeasible to set both gi j and g ji to 1.
Namely, if gi j and g ji would both be equal to 1, Constraints (13.20) for (i, j) and
( j, i) cannot both be satisfied. Hence, (13.19) can be replaced by

gi j +g ji ≥ 1 ∀ pairs of headway activities in Ahead. (13.24)

Delay management with precedence decisions was first introduced in [31].
Schachtebeck and Schöbel [24, 25] present several heuristic methods to solve the
problem. See, e.g., [3] for a model which takes capacity restrictions on the micro-
scopic level into account.

13.3.3 Adding Station Capacities and Platform Re-assignment

Precedence decisions do not only apply to tracks outside stations, but are also im-
portant within stations, since two trains cannot occupy the same platform track at
the same time. To make sure that this does not happen, even when delays occur,
we could use the headways as before. However, it is more efficient to introduce an
additional type of headway activities:

(vi) Astation are of type (i1, j2) = ((v, t1,dep),(v, t2,arr)) for some v ∈ V , t1, t2 ∈
T (v). They represent that a train t2 must wait some time La to go to a plat-
form after train t1 has left the platform. To allow precedence changes on plat-
forms, we introduce these activities in pairs, i.e., additionally to (i1, j2) we add
(i2, j1) = ((v, t2,dep),(v, t1,arr)) and require that exactly one of them is cho-
sen in any feasible solution to the delay management problem, as we did for
the headway activities on tracks, too.

We introduce additional variables

ḡi j =

{
1 if (i, j) is selected,
0 otherwise

for each headway activity a = (i, j) ∈ Astation. That is, event i is scheduled before
event j, if ḡi j = 1.

Similarly as for the other activities, we denote by sa := π j −πi −La the buffer
time of station headway activity a = (i, j) ∈ Astation. Analogously to the previous
paragraph, we can now ensure to obtain a timetable which is feasible in stations, by
adding the constraints

y j ≥ yi − si j −Mstat(1− ḡi j)∀a = (i, j) ∈ Astation (13.25)

ḡi1 j2 + ḡi2 j1 = 1∀ pairs of station headway activities in Astation (13.26)

ḡi j ∈ {0,1}∀a = (i, j) ∈ Astation (13.27)

to (DM-prec), for a large enough Mstat . Following the same argumentation as in
Sect. 13.3.2, we see that also in (13.26), the equality sign could be replaced with ≥
signs.
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However, when it is feasible with respect to the station layout, delay may be
further reduced by allowing platform changes. In the following we present a model
from Dollevoet et al. [8] to incorporate platform changes into delay management.
To model precedence constraints in this setting, for each arrival event j we define
P( j) to be the set of platforms where arrival event j could take place and introduce
a new set of variables which indicate at which platform p arrival event j takes place:

c jp :=

{
1 if arrival event j takes place at platform p,
0 otherwise

for all j ∈ Earr and all p ∈P( j). Since a train must depart from the same platform it
has arrived at in a station, we do not need to introduce platform assignment variables
for departure events.

We extend the set Astation to contain pairs of activities (i1, j2) = ((v, t1,dep),
(v, t2,arr)) and (i2, j1) = ((v, t2,dep),(v, t1,arr)) for all pairs of trains t1 and t2
which could be scheduled at the same platform at station v. Then we replace con-
straint (13.26) by

gi1 j2 +gi2 j1 ≥ c j1 p + c j2 p −1 ∀ pairs of station headway activities in Astation

and all p ∈ P( j1) (13.28)

c jp ∈ {0,1} ∀ j ∈ Earr,∀p ∈ P( j). (13.29)

These constraints ensure that ḡi1 j2 + ḡi2 j1 ≥ 1, if y j1 p = y j2 p = 1, i.e., we impose
a precedence constraint on the corresponding trains, if both trains are scheduled
on platform p. In the same way as before, if ḡi1 j2 + ḡi2 j1 = 2 for a pair of station
headway activities, Constraints (13.25) cannot be satisfied. This explains why we
can use an inequality sign in (13.28).

Furthermore, we require that each arrival event takes place at exactly one plat-
form, that is

∑
p∈P( j)

c jp = 1 ∀ j ∈ Earr. (13.30)

The integer program for delay management with precedence decisions and plat-
form re-assignment (DM-plat) reads as follows:

min ∑
j∈E

w jy j + ∑
a∈Achange

waza (13.31)

such that

y j ≥ d j ∀ j ∈ Earr ∪Edep, (13.32)

y j ≥ yi − sa +da ∀a = (i, j) ∈ Adrive ∪Await ∪Aturn, (13.33)

y j ≥ yi − sa −Mza ∀a = (i, j) ∈ Achange, (13.34)

y j ≥ yi − si j −Mhead(1−gi j) ∀a = (i, j) ∈ Ahead, (13.35)

y j ≥ yi − si j −Mstat(1− ḡi j) ∀a = (i, j) ∈ Astation, (13.36)

gi j +g ji = 1 ∀ pairs of headway activities in Ahead, (13.37)
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gi1 j2 +gi2 j1 ≥ c j1 p + c j2 p −1 ∀ pairs of station headway activities in Astation,

and all p ∈ P( j1) (13.38)

∑
p∈P( j)

c jp = 1 ∀ j ∈ Earr, (13.39)

za ∈ {0,1} ∀a ∈ Achange, (13.40)

ga ∈ {0,1} ∀a = (i, j) ∈ Ahead, (13.41)

ga ∈ {0,1} ∀a = (i, j) ∈ Astation, (13.42)

cip ∈ {0,1} ∀i ∈ Earr,∀p ∈ P(i), (13.43)

y j ∈ R ∀ j ∈ Earr ∪Edep. (13.44)

Besides delays, also platform changes are inconvenient for passengers, in partic-
ular for boarding passengers if changes are announced last-minute, and if passengers
have to walk far to the newly announced platform. In order to take this into account,
a term counting (weighted) platform changes could be added to the objective func-
tion, or the problem could be considered as a bi-objective problem with passenger
delays and number of platform changes as the two objective functions. See [11] for
further details.

13.3.4 Delay Management Objectives

In the preceding sections we discussed how to incorporate wait-depart decisions,
precedence decisions, and platform re-assignments as variables in an IP model for
delay management. Hereby, our objective function was a weighted sum of delays at
events and non-maintained transfers.

However, from a passenger’s perspective, delays at intermediate departures and
arrivals during the journey are less important: in the end a passenger would mostly
be interested in his delay upon arrival at his destination. This delay may be due to the
delay of the train with which he arrives at his destination, or due to the fact that he
missed a transfer because of a delay during the trip. In order to measure passenger
delays, we need data about the passengers’ travel plans as additional input.

We now discuss how passenger delays can be accounted for in delay manage-
ment. In the next paragraphs we describe different ways to include passenger delays
in the objective function. For the sake of a more compact representation, we do not
include precedence decisions or platform assignment in the models presented here.
However, the corresponding constraints and variables can simply be added to the
integer programs described here if these constraints should be included.

13.3.4.1 Delay Management with Constant Weights

For the simplest delay management formulation with passenger delay as objective,
introduced in [30], we assume that we know the planned route r for each passenger,
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which is specified as a path in the event-activity network. Let R denote the set of
all such routes.

There are two different effects that a train delay can have on a passenger:

1. In the first case, the passenger is able to travel on route r as planned (i.e., all
transfers on r are maintained). In that case, the delay of the passenger will be
the delay of the last train the passenger takes at arrival at his destination. I.e.,
the passenger is delayed by yi(r) for i(r) being the last event on route r.

2. In the second case, the passenger misses a transfer due to the delay of a feeder
train he is in. In that case, the passenger will have to take the next train to his
destination. For the sake of simplicity, we assume that in this case the passenger
has to wait one time period T until he can continue his journey as planned.
Hence, he is delayed by T minutes.

Note that for the second case to be correct we need to assume that the underlying
timetable is periodic with period T , that there are no source delays in the next time
period, that current delays do not propagate to the next period, and that the passen-
ger indeed waits one time period T , because he has no re-routing options. Delay
management with re-routing is considered in a later paragraph.

By setting the factors in the objective function (13.5) to

• wi := number of passengers with i as destination event and
• wa := T multiplied by the number of passengers who use changing activity a,

we obtain an objective function which reflects the passenger delay. We refer to (DM)
with the above-defined weights in the objective function as (DM-const).

However, even under the above-listed assumptions, we make a mistake by esti-
mating the total passenger delay with (13.5): In case that a passenger route r con-
tains n missed transfers, this route will contribute a penalty of nT to the objective
function, while the delay of the corresponding passenger is only T . Furthermore,
if a passenger misses a transfer, and there is a delay at the last event on his ini-
tially planned route, both are counted in the objective, while only the penalty for the
missed transfer should be counted. Hence, (13.5) with weights as described above
overestimates the actual passenger delay.

In the next paragraph we see how passenger delay can be modeled more accu-
rately, and give a condition under which the passenger delay estimated by (13.5) is
indeed accurate.

13.3.4.2 Delay Management with Fixed Routes

We now modify the delay management formulation from the preceding paragraph,
so that passenger delays are computed exactly. This model is based upon the same
assumptions as (DM-const). That is, we assume that the underlying timetable is
periodic with period T , that there are no source delays in the next time period and
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current delays do not propagate to the next period, and that the passenger indeed
waits one time period T in case of a missed transfer. This model was first introduced
in [28].

Again, let R denote the set of planned passenger routes. Denote by wr the number
of passengers on planned route r. To model passenger delay in an exact way, we
introduce additional variables

zr :=

{
1 if route r is not maintained,
0 otherwise

for all routes r ∈ R.
We then consider the following integer program (DM-route):

min ∑
r∈R

wr(yi(r)(1− zr)+T zr) (13.45)

such that

y j ≥ d j ∀ j ∈ Earr ∪Edep, (13.46)

y j ≥ yi − sa +da ∀a = (i, j) ∈ Adrive ∪Await ∪ ¯Ahead ∪Aturn, (13.47)

y j ≥ yi − sa −Mzr ∀r ∈ R,a = (i, j) ∈ Achange ∩ r, (13.48)

zr ∈ {0,1} ∀a ∈ Achange, (13.49)

y j ∈ R ∀ j ∈ Earr ∪Edep. (13.50)

Constraints (13.46)–(13.47) are the same as in (DM), they ensure that source de-
lays are taken into account and that delays are propagated along driving, wait-
ing, headway, and turn-around activities. Constraints (13.48)–(13.49) replace con-
straints (13.8)–(13.9) from (DM). They ensure that if a changing activity a is not
maintained, all variables zr for routes r which contain transfer a are set to zr = 1,
i.e., the route is marked as not maintained. The other way around, whenever for a
route r we have zr = 0, delay is propagated along all changing activities on this route
because in this case (13.48) reads

y j ≥ yi − sa.

The objective function (13.45) sums up the delay for each route, which, as spec-
ified above, is the delay yi(r) at the end event i(r) of the route r, if r is maintained,
and T otherwise.

Since delay variable yi(r) and path variable zr are multiplied in (13.45), the ob-
jective function of (DM-route) is not linear. However, it can easily be linearized by
setting ur := yi(r)(1− zr), i.e., ur is the delay in the last event on route r if the route
can be traveled on by the passenger, and 0 otherwise.

Adding the constraints

ur ≥ yi(r) −Mzr ∀r ∈ R, (13.51)

ur ≥ 0 ∀r ∈ R, (13.52)
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and replacing the objective of (13.45) by

min ∑
r∈R

wr(ur +T zr), (13.53)

we obtain a linear formulation (DM-route-linear) of (DM-route). As before, M :=
∑a∈A max{da − sa,0}+max{di : i ∈ E } is sufficiently large.

As explained beforehand, (DM-const) overestimates the objective value of (DM-
route). However, for some classes of delay management instances it can be shown
that a solution found by (DM-const) is an optimal solution to (DM-route) as well,
and that the objective value for both formulations is the same. The most remarkable
case are instances where the so-called never-meet property for delays holds. The
never-meet property ensures that each passenger route can be affected by at most
one source delay. To formalize this condition for the case of delay management
without precedence decisions, denote by Erelevant all nodes which are delayed when
all transfers are maintained and by Nrelevant the subgraph induced by these events.
Furthermore denote by E (i) the set of all nodes which can be reached from event i
if all transfers are maintained, and by N (i) the induced subgraph. We say that the
never-meet property holds if

1. for each source-delayed event i, N (i)∩Nrelevant is a tree, and
2. for each pair of source-delayed events i �= j E (i)∩E ( j)∩Erelevant = /0.

See [30] for a formal proof of the statement that in case of the never-meet property
(DM-const) and (DM-route) are equivalent.

Note that in event-activity networks containing pairs of headway activities, the
never-meet property is (almost) never fulfilled since each pair of headway activities
forms a cycle. Schachtebeck and Schöbel [25] describe a network reduction tech-
nique and show that it is sufficient for the never-meet property to hold in the reduced
network to obtain correspondence between the optimal solutions to (DM-const) and
(DM-route) and equality of the objective values.

13.3.4.3 Delay Management with Re-routing

The delay management objective functions in the preceding paragraphs were based
on the assumption that a passenger has to wait a full time period T if he misses a
transfer. However, in many cases there are different ways to reach the destination
if a transfer is missed. The problem of making wait-depart decisions to minimize
the sum of travel times under the assumption that passengers can re-route is called
delay management with re-routing (DMwRR).

To introduce the integer programming model for (DMwRR), we first assume
that passengers learn about all relevant delays and delay management decisions the
moment they arrive at their origin station. This could be the case whenever delay
management models are used to make a disposition timetable for foreseeable delays,
e.g., in case of construction works on the tracks. After presenting the model, we
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discuss how it can be used in situations where passengers have already left their
origin station when delays occur.

Instead of requiring information about all passenger routes r ∈ R, in (DMwRR)
we assume that we know each passenger’s origin station, destination station, and
arrival time at the origin station. We call these triples OD-pairs, the set of OD-pairs
is denoted OD , and the number of passengers belonging to an OD-pair m ∈ OD
is wm.

We extend the event-activity network N by adding an origin i = Org(m) and
a destination event j = Dest(m) for each OD-pair m ∈ OD . Each origin event i is
connected by origin activities Aorg(i) to all departures from the origin station which
take place no earlier than time(m), the arrival time of the passenger at the origin sta-
tion. Each destination event j is connected to all arrivals at the destination station by
destination activities Adest( j). We denote the origin and destination events by Eorg

and Edest, respectively, and by Aorg and Adest the sets of all origin and destination
activities. Note that by computing upper and lower bounds on the passenger travel
time, some origin and destination activities may be removed because they would not
be used in an optimal solution, see [9] for details.

Every path from origin event to destination event in (E ∪ Eorg ∪ Edest,Adrive ∪
Await∪Achange∪Aorg∪Adest) represents a possible route for the corresponding pas-
senger. To model the passengers’ route choice in the re-routing step, we introduce
additional binary variables

qm
a =

{
1 OD-pair m travels on activity a,
0 otherwise

for each activity a ∈ Adrive ∪Await ∪Achange ∪Aorg(Org(m))∪Adest(Dest(m)) and
each OD-pair m ∈ OD .

Furthermore, for each OD-pair m ∈ OD we introduce a real-valued variable tm

which represents its arrival time at the destination.
Our integer programming formulation of (DMwRR) reads as follows:

min ∑
m∈OD

wmtm (13.54)

such that

y j ≥ d j ∀ j ∈ Earr ∪Edep, (13.55)

y j ≥ yi − sa +da ∀a = (i, j) ∈ Adrive ∪Await ∪ ¯Ahead ∪Aturn, (13.56)

y j ≥ yi − sa −Mza ∀a = (i, j) ∈ Achange, (13.57)

qm
a ≤ 1− za ∀m ∈ OD ,a ∈ Achange, (13.58)

∑
a∈δ out(i)

qm
a = 1 ∀m ∈ OD , i = Org(m) ∈ Eorg, (13.59)

∑
a∈δ out(i)

qm
a = ∑

a∈δ in(i)

qm
a ∀m ∈ OD , i ∈ Earr ∪Edep, (13.60)
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1 = ∑
a∈δ in( j)

qm
a ∀m ∈ OD , j = Dest(m) ∈ Edest, (13.61)

tm ≥ πi + yi −M2(1−qm
a ) ∀ j = Dest(m) ∈ Edest,a = (i, j) ∈ δ in( j), (13.62)

za ∈ {0,1} ∀a ∈ Achange, (13.63)

qm
a ∈ {0,1} ∀m ∈ OD ,a ∈ A , (13.64)

y j ∈ R ∀ j ∈ Earr ∪Edep, (13.65)

tm ∈ R ∀m ∈ OD . (13.66)

Hereby δ out(i) and δ in(i) denote the outgoing and ingoing driving, waiting, transfer,
origin, and destination activities of an event i.

Constraints (13.55), (13.56), (13.57), (13.63) and (13.65) are adopted from
(DM) and ensure correct delay propagation. For each OD-pair m ∈ OD , con-
straints (13.59), (13.60), (13.61) are flow conservation constraints which ensure that
each passenger leaves the origin station and arrives at the destination station. In
these constraints, we implicitly exclude variables qm

a that are not defined from the
summation.

Constraints (13.62) set the arrival time of a passenger m to the arrival time on the
route that this passenger has chosen. Note that for all activities a ∈ δ in(i) but the one
chosen by the passenger, qm

a = 0, hence for M2 big enough, the constraint (13.62) is
always fulfilled. However, for the last activity a′ = (i′,Dest(m)) of the chosen route,
qm

a′ = 1, and hence constraint (13.62) reads tm ≥ πi′ +yi′ . This means that the arrival
time of passenger m is at least the arrival time on the last arrival event i′ on his route.
The objective function (13.54) minimizes the sum over the passenger arrival times
tm and hence ensures that tm is set to πi′ +yi′ in (13.62). Note that minimizing arrival
times is equivalent to minimizing passenger delays.

The DMwRR model can also be used to compute optimal wait-depart decisions
in case that passengers have already left their origin station. In this case, we simply
define the station which passengers reach next after learning about the delays and
being presented with re-routing options as Org(m) and the time they could board
trains at these stations as time(m).

DMwRR was introduced in [7, 9]. In [26] it was shown that the problem is NP-
hard, even if there is only one OD-pair. Different heuristic methods to solve the
problem using the basic model (DM) are proposed in [6, 27]. Dollevoet et al. [10]
describe an iterative method to solve the problem taking into account capacity con-
straints on a microscopic level.

So far in this section, we have presented several integer programming formu-
lations for the delay management problem. Some of these models incorporate the
limited capacity of the infrastructure or the re-routing of passengers in case of de-
lays. Although these models represent reality better, a drawback of these models is
their size in terms of binary variables and constraints. In Table 13.3, we report the
number of binary variables for some of the models from this section for a number
of instances in the Netherlands. For more information on the instances, we refer to
Dollevoet et al. [9, 11] and Dollevoet and Huisman [6].
We consider four instances. All instances consider the Mid-Western part of the
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Netherlands, where the railway network is very dense. Instances 1 and 2 include
a smaller part of the railway network than Instances 3 and 4. Instances 1 and 3
consider only long-distance trains, whereas Instances 2 and 4 also include regional
trains. The table lists some characteristics of the instance, the corresponding event-
activity network and the sizes of the integer programs for various formulations.
It should be noted that (DM-prec) and (DM-plat) consider the same network and
timetable, but solve the problem for a time horizon that is a little shorter. Further-
more, for (DMwRR), no number of binary variables is listed for Instance 4. This
model was too large even to be loaded into computer memory.

Table 13.3: Characteristics of the event-activity networks and sizes of the integer
programs for various delay management models

Characteristics of the instance Number of binary variables
Instance Stations Trains Transfers OD-pairs |Edep| (DM) (DM-prec) (DM-plat) (DMwRR)

1 10 117 1074 355 219 1074 1998 9597 6219
2 34 284 8068 3940 1022 8068 8045 37,972 461,494
3 16 168 7123 914 349 7123 3345 15,913 21,255
4 82 404 13,812 22,256 2053 13,812 12,877 48,841 –

13.4 Heuristics

In the previous section, several models and objective functions for the delay man-
agement problem have been discussed. These models can in principle be solved by
a commercial IP solver. However, in real-time operations, fast decisions have to be
made. In order to make good decisions, the whole network has to be considered.
As a consequence, central decision making is required. The central decision maker
should communicate each wait-depart decision to a dispatcher responsible for the
signals at a specific station. By keeping the signal on “red”, the train cannot depart.
By changing it to “green”, the train might leave. Such a decision process, including
the communication between different officers, takes usually a couple of minutes.
The computation time of solving a practical instance can therefore be at most a few
minutes in a real-world application. Solving the IP models from the previous section
to optimality might take too much time. As a consequence, in such cases, heuristics
are required. Therefore, in this section, we discuss heuristic algorithms for several
delay management models. We first focus on the wait-depart decisions only. Then,
we discuss delay management with precedence decisions, delay management with
platform re-assignments, and delay management with passenger re-routing.
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13.4.1 The Basic Decision: Wait or Depart?

Consider first the model (DM) without any capacity considerations, i.e., with
Ahead = Astation = /0. In that case, we only have to determine the wait-depart de-
cisions. Given the wait-depart decisions, the delays and the disposition timetable
can easily be computed by using (13.1) for the events in topological order.

In many cases, (DM) can be solved by commercial solvers in a short time. This
is demonstrated, for example, in [6, 9]. However, if instances would be too large
to be solved by a commercial solver, one could resort to rules-of-thumb to decide
which trains should wait and which trains better depart on time. In [1, 19] many
rules-of-thumb are described and compared in an online setting. We now describe
the most common policies.

A very simple rule-of-thumb is the no-wait rule. Here, connecting trains never
wait for delayed feeder trains. On the contrary, when using the all-wait rule, all
connecting trains wait for delayed feeder trains. In between these extremes is the
waiting time rule. When applying the waiting time rule, a waiting threshold τa is
determined for every changing activity a = (i, j) ∈ Achange in the system. If the
arrival of the feeder train, i, is delayed, one first determines how long the connecting
train, j, would have to wait in order to maintain the transfer. If this waiting time is
smaller than the threshold τa, the train waits. Otherwise, it departs on time. As an
example, consider a changing activity a = (i, j)∈Achange and assume that the arrival
of the feeder train, i, is delayed. The transfer is maintained if

yi − sa ≤ τa.

When determining the waiting thresholds τa, one can distinguish between long-
distance and regional trains (see [19]), between peak and off-peak hours (see [5]),
or use machine learning (see [1]).

Other rules-of-thumb incorporate the number of passengers that want to trans-
fer. For example, Schachtebeck and Schöbel [25] fix all changing activities with a
weight wa above a certain threshold. Kliewer and Suhl [19] compare the number of
passengers who want to transfer to the number of passengers already in the feeder
train or arriving at the next stop. A similar approach is used in [23], but based on
dynamically updating passengers’ routes: For every critical transfer, the passengers’
routes are computed for the case that it is maintained or it is not maintained (thereby
assuming fixed waiting time rules for all other transfers). Based on eight different
evaluation criteria it is then decided if such a critical transfer should be maintained
or not. The resulting software is currently tested in cooperation with Deutsche Bahn.

For all the rules-of-thumb described so far, the wait-depart decisions can be made
instantly.
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13.4.2 Adding Precedence Decisions: Which Train Goes First?

If the delay management model includes capacity considerations, one has to decide
both on the wait-depart decisions and on the order of the trains. If solving (DM-
prec) by a commercial solver takes too much time, one can decide on the order of
the trains heuristically. Recall from Sect. 13.3, that the order of the trains is encoded
by the variables gi j for (i, j) ∈ Ahead. The model (DM-prec) reduces to a model of
type (DM) if the precedence decisions are fixed. Given the precedence decisions,
or, equivalently, the set ¯Ahead, the wait-depart decisions can be obtained by solving
(DM) with a commercial solver or by using any of the rules-of-thumb described in
the previous section. A wide variety of rules-of-thumb can be applied to determine
the precedence decisions. In what follows, we discuss three rules-of-thumb that are
discussed in [25].

The heuristics from Schachtebeck and Schöbel [25] fix the precedence decisions
based on either the original timetable, or on a preliminary disposition timetable.
In the first case, the heuristic is referred to as First scheduled, first served (FSFS).
Here, the order of the trains is fixed to the order in the original timetable:

¯Ahead = {(i, j) ∈ Ahead : πi ≤ π j}.

In the second case, the heuristic is referred to as First rescheduled, first served
(FRFS). Here, in the first step, (DM) is solved without any headway constraints
(Ahead = /0). We obtain a preliminary disposition timetable xi := πi +yi for all i ∈ E .
Then, the precedence decisions are fixed according to this preliminary disposition
timetable, i.e., as

¯Ahead = {(i, j) ∈ Ahead : xi ≤ x j}.

In both cases, the model (DM) is solved with ¯Ahead as defined above. This means
for the second heuristic, that model (DM) must be solved twice. If this takes too
much time, one can also fix both the priority decisions and the wait-depart decisions
that are obtained when solving (DM). In that case, the disposition timetable can be
found by using (13.1) iteratively in topological order. This heuristic is referred to as
(FRFS-FIX).

The heuristics for (DM-prec) are compared on real-world instances from Ger-
many in [25]. It is shown that (FRFS) is slightly better than (FRFS-FIX). Both find
close-to-optimal solutions more often than (FSFS). However, there are a few sce-
narios for which the quality of (FRFS) and (FRFS-FIX) deviates much from the
optimum. Combining (FSFS) with (FRFS), by applying both and choosing the best
solution, one obtains the benefit of both heuristics. All heuristics can be executed
within seconds.
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13.4.3 Adding Decisions in Stations: Which Platform to Use?

The model (DM-plat) from Sect. 13.3 includes all precedence decisions and allows
to reschedule the platform assignment. Recall that a precedence decision must be
made for all pairs of trains that might use a common element in the railway infras-
tructure. This means that a decision variable ḡi j must be included for all pairs of
trains that stop at a common station. As a consequence, real-world instances of this
problem become huge and cannot be solved to optimality in a real-time setting. In
this section, we discuss an iterative algorithm from Dollevoet et al. [11] to solve
(DM-plat). The algorithm optimizes the platform assignment independently from
the precedence and wait-depart decisions. By doing so, the platform assignments
can be solved individually for each station.

Algorithm 13.1: Delay management with platform reassignment
Data: The parameters wa for a ∈ Achange and wi for i ∈ E
Result: Variables za for a ∈ Achange, yi for i ∈ E
Init: Fix the platform assignment to the planned platform assignment;
while Improvements are found & Maximum number of iterations not reached do

Solve model (DM-prec) with the current platform assignment;
forall the Stations v do

Determine a new platform assignment for station v;
end

end

The iterative algorithm is presented in Algorithm 13.1. It first fixes the platform
assignment to the scheduled one. Then, it optimizes the precedence and wait-depart
decisions for fixed variables cip. Using the disposition timetable, it identifies which
delays might be reduced by changing the platform assignment. It then maximizes
the potential for reducing these delays by optimizing the platform assignment. These
steps are repeated as long as the platform assignment changes. Note that, for fixed
values cip, problem (DM-plat) reduces to a problem of type (DM-prec), where only
precedence and wait-depart decisions have to be taken. Solving it, we obtain a solu-
tion yi for (DM-prec).

The most interesting step in the iterative algorithm is the optimization of the
platform assignment. In this step, we decide on the variables cip. Recall that cip = 1
if event i ∈ Earr is scheduled at platform p and 0 otherwise. In order to explain
the procedure to optimize the platform assignment, we introduce some additional
notation. First, we consider all events i ∈ E that take place at a given station v ∈V .
For each waiting activity (i, j) ∈ Await, yi and y j represent the delays of the train
when arriving and departing from station v, respectively. We define the platform
occupancy for this waiting activity as the interval [hi,h j], where hi = πi +yi − li and
h j = π j + y j + l j take into account the times needed to enter and leave the station,
respectively. A platform assignment schedules every waiting activity at v at a certain
platform in v, in such a way that the intervals [hi,h j] and [hi′ ,h j′ ] are disjoint if
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waiting activities a = (i, j) and a′ = (i′, j′) are scheduled at the same platform. We
are now ready to explain how to find a platform assignment that maximizes the
potential for reducing delays.

Some of the delays in the disposition timetable might be caused by the platform
being occupied when a train is about to enter a station. In order to determine which
delays can be reduced by changing the platform assignment, we determine for each
arrival event i ∈ Earr at station v, a target time τi. This target time represents the time
when the train would start entering the system if there would be no other trains in
the system. Let a = (k, i) ∈ Adrive be the unique driving activity whose head is i. If
there is a train at the platform before event i takes place, we define the target time by

τi = max{πi +di,πk + yk +da − sa}− li.

Here, again, li is the time needed to enter the station. If there is no train at the
platform just before event i takes place, or if yi = 0 in the disposition timetable, we
define τi = hi. In the platform assignment step, we now look for values τi ≤ qi ≤ hi

and a platform assignment, such that the intervals [qi,h j] are mutually disjoint for
all waiting activities that are scheduled at the same platform. The objective is to
minimize

∑
i

wiqi.

Here, wi is a weight that measures the importance of arrival event i. If qi < hi, there
is a potential for reducing the delay of arrival event i. It is proven in [11], that this
problem can be modeled as a flow problem and solved in polynomial time.

This implies that the platform assignment can be solved easily. Note that we only
consider the platform occupancy and assume that all trains can use all platforms
when determining the platform assignment. In particular, we do not take the routing
inside the stations into account. Even in this case, if trains could only use a subset
of the platforms, the platform assignment is NP-hard; see [20].

It then remains to solve the delay management model (DM-prec). This can be
done, for example, by using the IP formulation from the previous section with a
commercial solver or by using any of the rules-of-thumb described above. Numer-
ical experiments in [11] on a medium-size network show that running times can
be reduced by 70% by using the iterative approach. Here, the model (DM-prec) is
solved by a commercial solver. This speed up comes at the cost of an increase in
total delay of at most 1%. In particular, for a medium-size instance including both
regional and long distance trains, the running times decrease from around 10 min to
less than 3 min. For large-size instances with both regional and long distance trains,
the computation time is still too long. For these instances, model (DM-prec) should
be solved heuristically as well.
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13.4.4 Adding Decisions on Passengers Paths: Which Route
to Take?

An integer programming formulation for delay management with passenger re-
routing (DMwRR) is given by (13.54)–(13.66). A key feature of this model is its
objective function. In contrast to other delay management models, it computes the
delay for passengers by finding an alternative travel option whenever a transfer is
not maintained. By doing so, the delays for passengers can be computed more real-
istically.

Recall from the previous section that (DMwRR) integrates the problems of de-
ciding on the wait-depart decisions on the one hand, and on routing the passen-
gers through the railway network on the other. One can find optimal solutions
to (DMwRR) by solving its integer programming formulation with a commercial
solver. However, it is proven in [9] that (DMwRR) without any capacity considera-
tions is NP-hard even in special cases. In particular, it is shown to be NP-hard in [26]
in case there is only one OD-pair. As a consequence, solving large-scale instances
of (DMwRR) might require a considerable amount of computation time.

13.4.4.1 Passenger Re-routing with Constant Penalties

The heuristics for (DMwRR) decouple the optimization of the wait-depart decisions
from the passenger routing. We first decide on the wait-depart decisions by solving
any model from Sect. 13.3. These models decide on the wait-depart decisions and
determine the delays yi for all i ∈ E . Given these values, the routes that minimize
the arrival delay can be computed for all OD-pairs individually.

As described in Sect. 13.3.4, the parameters wi and wa can be related to the num-
ber of passengers that arrive with event i ∈ E and make use of changing activ-
ity a ∈ Achange, respectively. To incorporate the delay for passengers who miss a
transfer (corresponding to a changing activity a ∈ Achange), the objective includes a
penalty that represents the delay caused by missing the transfer. In Sect. 13.3.4, it
is proposed to multiply the number of passengers wa with the period time T : The
penalty is then given by waT . In our heuristic, we replace T by a parameter to be
determined and denote it by D. Using the set of OD-pairs OD , we then rewrite the
objective function as follows.

min
y,z ∑

i∈Earr

∑
m∈OD(i)

wmdi + ∑
a∈Achange

∑
m∈OD(a)

wmzaD.

Here, the set OD(i) contains all OD-pairs m ∈ OD that arrive with event i ∈ Earr

according to the planned timetable. Similarly, the set OD(a) contains all OD-pairs
m ∈ OD that planned to make use of changing activity a ∈ Achange. The delay for
passengers who miss a transfer is assumed to be equal to D. By varying the value
of D, one can evaluate different delay management strategies. It turns out that D
should be smaller than the period of the timetable, if there are multiple train lines
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along each edge e∈ E in the physical railway network (PTN). Intuitively, this makes
perfect sense: If there are more train lines along an edge in the network, there are
multiple travel options along that edge in each period. Therefore, passengers who
miss a transfer do not have to wait a complete time period, but can take any other
train going along the edge.

In Sect. 13.4.1, we introduced the no-wait and always-wait policies. By choosing
the value of the parameter D equal to zero, we obtain a no-wait policy. On the
contrary, if the penalty is set to a very high value, we obtain an always-wait policy.

13.4.4.2 Passenger Re-routing with OD-Dependent Penalties

The heuristic described in the previous paragraph includes a penalty D for all pas-
sengers who miss a transfer. The penalty represents the additional delay these pas-
sengers incur as a consequence of not being able to transfer from one train to an-
other. In reality, this additional delay will vary among the different OD-pairs. For
example, a passenger who misses a transfer will generally wait for the next train to
its destination at the transfer station. The additional delay for that passenger then
depends on the number of train lines that are operated between the transfer station
and the passenger’s destination. In order to improve the quality of the heuristic, we
now include in the objective a penalty Dm that depends on the OD-pair m. The value
of this parameter is updated in an iterative algorithm. We now first give an overview
of our approach in Algorithm 13.2 and then discuss its details.

The algorithm initializes the penalties Dm = 0 for all OD-pairs m ∈ OD . It
then repeats the following procedure for at most maxIter iterations. It first solves
a model without passenger re-routing using the penalties Dm. The output of this
model are the wait-depart decisions and the disposition timetable. Given this dis-
position timetable, the actual routes for the passengers can be computed. For each
OD-pair m ∈ OD , we thus find the arrival delay dm. From this arrival delay, we can
compute the additional delay Dm = dm − yi caused by missing the transfer, where
i is the event OD-pair m planned to arrive with. We keep track of whether the val-
ues Dm have changed in the current iteration. If all values Dm remain unchanged,
the algorithm terminates. Otherwise, we obtained new penalties Dm and repeat the
procedure.

This iterative heuristic has been implemented and tested on a real-world railway
network in [6]. Here, (DMwRR) is used without any headway activities. For these
instances, solving (DMwRR) to optimality takes up to 6 min for medium-sized in-
stances. For large instances, no solution can be obtained at all by using the IP. In the
heuristic, we implemented (DM-const), also without headway activities. It is shown
that the iterative algorithm generally converges within few iterations. The computa-
tion times are in the order of 10 s and thus allow for practical application. In terms
of quality, solutions obtained by the iterative heuristic are only slightly worse than
those obtained by using an exact algorithm. This suggests that the re-routing aspect
of delay management can be dealt with by iteratively solving a sequence of delay
management models that do not include passenger re-routing.
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Algorithm 13.2: DMwRR with OD-dependent penalties Dm

Data: The parameters wa for a ∈ Achange and wi for i ∈ E , maxIter
Result: Variables za for a ∈ Achange, yi for i ∈ E
Init: iter = 0;
Init: Dm = 0 for all m ∈ OD ;
Init: changed = true;
while changed & iter < maxIter do

changed = f alse;
Solve any model without re-routing with penalties Dm for m ∈ OD ;
forall the OD-pairs m ∈ OD do

Compute the arrival delay dm for OD-pair m;
Let i be the event OD-pair m planned to arrive with;
if Transfer missed & Dm �= dm − yi then

Dm := dm − yi;
changed = true;

end
end
iter = iter +1;

end

13.5 Practical Considerations and Conclusions

In practice, often simple waiting time rules are implemented. Examples of such rules
are: “Wait at most y minutes starting from the original timetable” (see Sect. 13.4.1
and, e.g., [1]). Often these rules are static, which means they are updated at most
once a year, and are the same for each day and for each period of the day, although
passenger demand might significantly differ between peak and off-peak hours, dur-
ing different days of the week, and during the year. As an example, in the Nether-
lands, two so-called waiting time rules are applied. One rule is applied for all trains
except the last train on a day, and the other rule is applied for a transfer to the last
train on a particular route. The first rule states that a train should wait for a feeder
train if this feeder train has less than x minutes delay. The delay of the feeder train is
measured at a certain specific location, typically a few kilometers before the transfer
station. The value of x is determined by the slack in the timetable, the number of
transferring passengers and the frequency of the trains. In the Netherlands, the most
common value for x is 0, i.e., most often a no-wait policy is applied.

Unfortunately, the use of exact delay management models and advanced heuris-
tics such as presented in this chapter, is still limited in practice. We think that there
are five main reasons for this:

1. Although punctuality has always been an important performance indicator in
the railway sector (both for operators and for infrastructure managers), this per-
formance is usually measured in terms of train punctuality.1 As a result, the
focus was on running trains on time instead of transporting passengers on time.

1 Train punctuality is often computed as the percentage of trains that arrive within x minutes of
their scheduled arrival time. Usually, this is not measured at all stations but only at a limited subset.
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2. The lack of accurate passenger data which are necessary to compute an optimal
solution.

3. The computational power required to compute optimal solutions of (advanced)
delay management models in real-time.

4. Delays are uncertain in practice while delay management models are determin-
istic.

5. In some countries, there are several railway operators which on the one hand
compete with each other but on the other hand should cooperate, because pas-
sengers might have to transfer from one operator to the other.

Although the last reason above is still a topic of ongoing political debate, we
believe that the first four reasons can be dealt with and thus the interest in exact
optimization models will change in the coming years.

Firstly, railway operators tend to focus much more on improving the service to
their passengers and attracting new passengers. As a consequence, they change their
focus from running trains on time to transporting passengers on time. In several
countries, including Switzerland, Denmark and the Netherlands, the national rail-
way operator reports passenger punctuality as key performance indicator. Passenger
punctuality is then measured as an approximation of the percentage of passengers
arriving within x minutes of their promised arrival time.

Secondly, smart cards and/or electronic ticketing are introduced in many coun-
tries. When using smart cards, a passenger has to check-in at his origin and check-
out at his destination station. As an effect, accurate passenger figures become avail-
able, even in real-time. The first and second development strengthen each other.
A nice example is the introduction of improved performance indicators on passen-
ger punctuality in the contract between the Dutch government on one side and the
main Dutch railway operator, Netherlands Railways, and the Dutch rail infrastruc-
ture manager, ProRail, on the other side (see [16]). In these indicators, the passenger
punctuality gives an indication of the percentage of passengers with a delay of less
than 5 respectively 15 min. This means that the difference between the actual ar-
rival time of a passenger and the planned arrival time according to the official travel
planner is less than 5 (15) min. Here, the promised arrival time is the arrival time
of the fastest option from the check-in to the check-out station, which can be made
directly after the check-in time in the official travel planner 2 days in advance. The
realized arrival time is the arrival time of the last train in the travel advice if all
trains were operated and all transfers were realized. In any other case, the realized
arrival time is estimated by the passenger’s check-out time. In 2015, the passenger
punctuality on the main Dutch railway network was 90.0% on 5 min and 97.0% on
15 min. According to the contract, in 2019 these two figures have to be improved to
91.3% and 97.3%, respectively.

Thirdly, the models as discussed in this chapter become more advanced and thus
more realistic. In addition, faster computers and algorithmic developments will de-
crease computation times. In this way, it is likely that advanced delay management
models can be solved fast enough to be used in real-time.

Finally, uncertainty can be taken into account by using a rolling horizon ap-
proach. This means that every time new information becomes available, a new in-
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stance of delay management is solved, see [19]. Some approaches even try to find
robust delay management solutions by taking into account further delays that may
occur, see [2].

Nevertheless, the use of exact algorithms is a promising tool when developing
rules of thumb as the ones developed in [1, 5]. These references show that more
advanced rules, which are still easily applicable in practice, give close to optimal
solutions. An example of such a rule might be “If train g has a delay of at most x
minutes, then train h should wait at station v”, where g, h, and x differ from station
to station, between periods of the day and between different days of the week. Such
rules can be updated much more frequently than is done currently by simulating
different wait-depart strategies and comparing the rule to the optimal solutions of
the exact models.

In [5], four critical transfers on the Dutch railway network are analyzed. For dif-
ferent source delays for each train, the optimal wait-depart decisions are computed
by the exact delay management model with passenger re-routing. In the optimal
decisions, x could vary for each train and thus for each time of the day. Since this
is difficult to manage for dispatchers, de Lugt used several statistical methods to
get generic rules-of-thumb for different time intervals during the day. As a result the
same decision is taken in such an interval. For instance, one could get a certain value
for the morning-peak, the off-peak hours and the evening peak. By introducing three
intervals instead of the same rule for the whole day (as currently done in practice),
the total passenger delay could be reduced by 20% in 3 out of the 4 considered
transfers.

In [1] values for x for all changing activities of trains g and h are determined, i.e.,
these values may vary from hour to hour. The authors use a machine-learning ap-
proach: For a large set of delay scenarios, the delay management problem is solved
exactly. From the resulting data, one can identify how long it makes sense to wait for
a delayed train (for every changing activity). The resulting numbers are then used
as a quick rule of thumb for the wait-depart decision in new scenarios. Using data
from the LinTim library (see [12, 14]) it is shown that this rule of thumb performs
best among all tested strategies.
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