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Abstract. This paper examines the dynamic evolution process in Lon-
don stock exchange and attempts to model stock survivability resilience
in the financial networks. A big historical dataset of UK companies from
London stock exchange for 40 years (1976–2016) was collected and con-
ceptualized into weighted, temporally evolving and signed networks using
correlation coefficients. Based on the legal definition of corporate fail-
ure, stocks were categorized into Continuing, Failed and Normal groups.
Accordingly, we conducted analysis on (1) The long-term evolution pro-
cess of the entire population with statistical inference and visualization.
(2) Multivariate logistic modeling of survivability resilience using short-
term network measures, degree ratio (ri), node degree (ki), and node
strength (si). The results show an exponential market growth but with a
“fission-fusion” behavior in network topologies, which indicates dynamic
and complex characteristics of its expansion. On the other hand, regres-
sion and modeling outcomes show that the survivability resilience is cor-
related with ki and si. Moreover, the analysis of deviance suggests that
the survivability resilience could be described, by and large, as a function
of ki since it contributes the most significant difference. The study pro-
vides a novel alternative to look at the bankruptcy in the stock market
and is potentially helpful for shareholders, decision- and policy-makers.

1 Introduction

The understanding of topological characteristics and interdependence between
network components have been intriguing issues in network theory since such
structures and interactions commonly exist in a wide range of academic
fields [1,18]. And those topological and interdependence measures often have a
strong association with the performance of network components. In this paper,
we attempt to investigate such association between statistical network measures
and survivability of correlation-based interdependent stocks in a market.

In financial systems, categorizing corporate failure is essential in bankruptcy
studies [13]. The most frequently found interdisciplinary application of networks
and stocks’ survivability largely fell in forecasting bankruptcy with neural net-
work methods, including genetic fuzzy models [14], artificial networks [28], and
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hybrid models [15]. Other types of models have also been proposed for cen-
turies [17,21]. The majority of those models were constructed based on cor-
porate fundamentals, such as financial statement ratios, cash flows, and stock
returns, etc. To the best of our knowledge, most of the studies on bankruptcy
were focused on failed firms, but we found no attempts in bankruptcy studies
which models the company resilience and survivability with statistical measures
from network perspectives.

Complex networks usually have so complex topological structures that some-
times its visualization seems to be a “hairball”. Therefore, a considerable amount
of network studies have been focusing on the methods for reducing and simpli-
fying the network structure. For instance, the method of minimal spanning tree
(MST) [3,23], planar maximally filtered graph (PMFG) [22], threshold filter-
ing mechanism [11], and winner-takes-all approach [5]. Several recent studies,
on the other hand, focused on the methods of construction of interdependence,
including commonly-held Pearson [10] and partial correlation coefficient [25], and
covariance and Gaussian graphical model [26]. Apart from construction methods,
some works have focused on studying collective behavior and overall correlation
synchronicity in the stock market [9,12]. For years, abundant writings in stock
networks have been proposed such as [4,11,16,20]. In these previous studies, the
evolution process of stock networks was discussed briefly. Nevertheless, most of
them were merely based on either a short time period or a small fraction of
the population in a market [7,11]. In addition, we also found that most of the
previous studies neglected the negative signs/correlations between stock pairs.

Hence, we focus on all available trading stocks of UK corporates in London
exchange and frame three-fold purposes as (a) To study the long-term evolution
patterns in UK stock networks and analyze their particular dynamic features.
(b) To construct the stock network as temporal weighted networks with signed
edges, (unlike other previous works we took negative correlation coefficients into
account) and propose a network measure, degree ratio ri, to illustrate the overall
neighborhood of a node. (c) To characterize survivability resilience analysis of
stocks, which remained perennially vital without bankruptcy for a long time,
and to explore the highly descriptive parameters. We aim to answer: (1) How
does a correlation-based network of stocks evolve in long-term observation? (2)
How can we measure the overall neighborhood in signed networks? (3) What
network-related measures can we identify as the highly contributed variables to
characterize stock’s resilient behavior against bankruptcy?

The paper is organized as follows: Sect. 2 describes the data and methodology
for network construction, followed by analysis of the dynamic evolving process in
Sect. 3. In Sect. 4.1, three network measures are introduced and their statistical
analysis are presented. Section 4.2 consists detailed results and discussion on
survivability resilience, followed by final conclusions summarized in Sect. 5.

2 Data and Methodology

The data used in this paper are closing daily stock prices of 1415 UK companies
(1542 companies in total) traded on London stock exchange from 1976 to 2016.
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This large historical data has been gathered from DataStreamTM . In order to
conduct the aim of this paper, we categorized failed companies and continuing
companies based on the legal definition of corporate failure. For those which
belong to neither of those two groups, we treated them as normal population. (1)
Continuing group: those companies which are continuing to trade on the stock
market for the entire 40 years. (2) Failed group: those companies which filed
for any reason of bankruptcy within last four years of delisting are considered
failed. (3) Normal group: those companies which initially listed at some point
during the observation period and did not fail yet by end of the period.

The networks are constructed based on standard correlation coefficients. The
coefficients were constructed using logarithmic return for stocks pairwise with a
daily basis. Let ri(t) and pi(t) denote the log-return and close price of stock i at
time t, respectively. The daily log-return can be expressed as follows:

ri(t) = ln[pi(t)] − ln[pi(t − Δt)] (1)

where Δt is one trading day, Δt = 1. Then we write coefficients ci,j between
stock i and j as:

ci,j =
< ri(t) × rj(t) > − < ri(t) > × < rj(t) >

σi × σj
(2)

where < . > indicates the mean value and σi is the standard deviation of the
stock i in time series. The p−values were also computed for each coefficient
and used as the threshold to filter out those too-weak correlations. In order
to avoid severe topological information loss while pruning the edges (according
to the evidence shown in study [11], the edge density of stock network drops
sharply from ci,j = 0.1), we set p−value threshold as 0.01 to eliminate weak
correlations for −0.1 < ci,j < 0.1 and replaced them by “0”. We then constructed
and symbolized the coefficients as edge weights to represent the intensity of
connections. Similarly, edge signs were determined by the corresponding sign of
coefficients.

3 Long-Term Temporal Network Evolution

For long-term observation, networks were constructed based on the yearly and
half-yearly manner, which resulted in 40 and 80 networks in total, respectively.
The growth of networks in terms of four attributes show an exponential increase
in the number of nodes, n (Fig. 1(a)), the number of edges, m ( Fig. 1(b)), and
the mean degree of the network, < k > (Fig. 1(c)). Following an expansion in
n (growth rates of 0.03 for both sets) and m (growth rate of 0.1 for yearly and
0.05 for half-yearly), the density of networks, ρ, gradually decreases (Fig. 1(d)).
Interestingly, in subplot (a) different time windows have no significant influ-
ence on n at all. However, even having similar trends the plots (b), (c) and (d)
illustrate an overall notable decrement in m, < k > and ρ constructed based on
half-yearly window span comparing with those of yearly-constructed networks. It
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might be the effect of using smaller observation number to construct correlation
coefficients.

Also, it can be seen from subplot (b–d) the network evolves with significant
fluctuations. These static measures are strongly associated with the distribution
and number of edges, indicating a dynamic shrinking-and-expanding behavior in
sparsity and topology. This could be a set of responses of the market to external
stimuli. Hence, although the number of nodes (the population of the market)
was exponentially growing, the topology was evolving with a “fission-fusion”
behavior.

Figure 2 indicates an explosive expansion in n and distribution of positive and
negative edges with a “core-periphery-like” structure, wherein a few nodes are
highly interconnected and the rest are sparsely connected around the core [24].
The color of the nodes corresponds to their degrees centrality, with red as high
degree and green as low. Positive edges are indicated with yellow and negative in
light blue. The thickness of the edges is proportionally depicted by their weights.
One can see that most of the positive edges are concentrated around core area
while negative edges are towards the periphery and a number of high-degree
nodes form a core, which indicates an uneven distribution of edges and signs,
i.e., nodes in core area have high tendency to positively connect to other high-
degree nodes, but meanwhile, those nodes which have a large portion of negative
connections are marginalized.

4 Survivability and Resilience Analysis

4.1 Short-Term Network Measures

In this section, we discuss and present the acceptability of selected measures
for characterizing purpose, that is we would like to have a feeling on what net-
work measures could differentiate stocks in different groups. In order to ana-
lyze detailed variations of network measures in each group, we focused on last
four years (2013–2016) and constructed networks with a smaller time window
of 20 days. In total, there are 1043 trading days from 2013 to 2016 and, there-
fore, 53 networks were obtained and filtered by same p−value threshold applied
previously.

As mentioned before, negative correlations are normally neglected for topo-
logical simplification in most previous literature. However, the nodes with a large
portion of negative correlations could have some characters that of great inter-
ests for understanding individual’s resilience and survivability. Hence, we paid
equivalent attention to both positive and negative correlations in this paper to
conceptualize our data as signed networks. It is important to notice that a nega-
tive edge literately represents the attribute of the edges as a negative relationship
or opposite synchronization, yet not means low or absent interaction between
nodes. Two nodes, on the contrary, could be highly interactive and have a strong
relationship with negative edge [19].

Different signs on edges could potentially result in clustering phenomenon in
balanced and almost-balanced topology [6]. Previous investigations have already
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Fig. 1. Evolution of network attributes in time (a) The number of nodes, n, (b) The
number of edges, m, (c) Mean degree of the network, < k > and (d) Density of the
network, ρ.

Fig. 2. Dynamic evolution of UK companies in London stock exchange from 1976 to
2016. The diameter of the network remains unchanged with small average path length
during evolution. It shows a small-world effect in networks at each evolving step. Node
color: red as high degree and green as low. Edge color: yellow as positive edges and
light blue as negative ones. The thickness of the edges is proportionally depicted by
their weights.
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shown that a network is clusterable if it is a balanced network [8] so that the
edges, which cross boundaries and connect nodes in different cliques, would be
negative ones, and positive ones are dispersed towards the center of a clique. This
particular feature is similar to what we observed in evolution visualizations.
Hence, we define a network measure, Degree ratio, which comprehensively
reflects an overall layout of a node’s neighborhood, i.e., how central the node is
in its own clique. Let k+

i denotes the number of positive edges of node i and k−
i

denotes the number of negative ones, here, the degree ratio of a node ri can be
correspondingly defined as the following equation. In other words, the ratio is
meant to reveal if there could be a possible explanation of survivability of nodes
in terms of their associated number of negative neighbors and their positions in
a clique.

⎧
⎪⎨

⎪⎩

ri = k+
i

k−
i

if k−
i �= 0

ri = k+
i if k−

i = 0

(3)

We then calculated ri for all nodes in each group and studied its distribution
at end of each year. In Fig. 3(I), of particular note is the fact that the log-log
plots of the Continuing group have obvious larger numerical values, compared to
other two groups. On the other hand, there is a clear dynamic changing pattern
can be observed for the Failed group. Figure 3(I-A) and (I-B) show that by end
of 2013 and 2014 the degree ratio distribution of most stocks in the Failed group
overlapped with that of the normal population. This indicates that most of the
Failed stocks were acting normally by end of 2013 and 2014, that is, they were
acting with the same characteristic as members of Normal group did. However,
by end of 2016, the difference among three groups become significant as shown
in Fig. 3(I-D). Note that a larger magnitude distribution in Continuing groups
differs a gradual increasing gap between the Failed group and Normal population
(see arrows).

The other two commonly-applied network measures are briefly explained as
follows (for interested readers, the elaboration can be found in most of the net-
work handbooks). Node degree is a straightforward nodal measure in complex
networks, which provides an indication of the importance of the node in terms
of the number of its neighbors. For an undirected network of n nodes, the degree
ki of node i can be expressed in adjacency matrix as:

ki =
n∑

j

Aij (4)

Yook et al. [27] and Barrat et al. [2] studied Node strength si of network
properties in weighted networks. It measures the importance of a particular node
in terms of its connection intensity. The node strength is defined as the sum of
the weights on its total connections/degree. Let Wij denotes the edge weight
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matrix corresponding to adjacency matrix Aij , the strength si can be expressed
as:

si =
j∑

n

Wij (5)

The Fig. 3(II-A to D) and (III-A to D) are the distribution of node degree
and node strength for each group at the same time shots. The results show a
similar tendency as revealed in degree ratio distribution. Thus, these three net-
work measures could be appropriate to characterize the performance difference
of stocks in each group.

Fig. 3. Distribution of three network measures, Degree ratio, Node degree, and Node
strength in Continuing, Failed and Normal group. (I) Degree ratio, (II) Degree, and
(III) Node strength. (A) 2013. (B) 2014. (C) 2015. (D) 2016.

4.2 Multivariate Logistic Modeling

Generalized linear models using logit transformation as link function was applied
to perform multivariate logistic regression in both Continuing and Failed groups.
The logit models depict the relationship between response probabilities and the
predictors, node degree ki, degree ratio ri, and node strength si, and were pre-
sented in the form as:

logit(γ) = ln(
γ

1 − γ
) = A + B × k + C × r + D × s (6)
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where γ is the target group, A is the intercept term of the model and B, C,
and D are coefficients of the covariates. The members of the Normal group in
modeling were overshadowed since we are primarily interested in identifying the
highly-contributed network measures to stock survivability in Continuing and
Failed groups. Therefore, we modeled both groups separately and transformed
the dependent variable into binomial-distributed responses. For instance, in the
modeling of survivability probability members in the Continuing group would
be assigned by “1” and others would have values of “0”, and vice versa. Of
particular note is, in Table 1, the fact that the coefficients for both Continuing
and Failed groups by end of 2013 are estimated with relatively low discrepancy
comparing with the results obtained in other years. It takes only a moment’s
reflection to realize that it might be because the features of low survivability of
stocks in Failed group were not prominent at that time.

Table 1. Coefficients estimated for logit models

Continuing Intercept A B (Node degree, k) C (Degree ratio, r) D (Node strength, s)

2013 −3.060 0.007 0.018 −0.005

2014 −2.928 0.005 0.048 −0.018

2015 −3.108 0.007 0.010 −0.008

2016 −2.949 0.006 −0.103 −0.028

Failed

2013 −2.832 0.007 −0.007 −0.015

2014 −2.569 0 0.032 −0.006

2015 −1.433 −0.015 −0.172 0.024

2016 0.056 −0.034 −1.917 0.155

In Continuing group (Table 1), estimated coefficients for Intercept, A, and
Node degree, B, are relatively stable throughout entire four years with average
of -3.01 and 0.006 respectively. Results from Degree ratio, C, and Node strength,
D, on the other hand show instability and divergent features. Conversely, it is
hard to identify any convergent and stability in coefficients of the Failed group,
network measures in this group altered in each time, and this could imply the
unusual behavior of a node during the course of becoming increasingly vulnerable
until it failed, like violently fluctuated before bankruptcy. Therefore, we write
models for both groups in 2016 as:

logit(continuing) = −2.949 + 0.006k − 0.103r − 0.028s (7)

logit(failed) = 0.056 − 0.034k − 1.917r + 0.155s (8)

In order to investigate further, we performed an analysis of deviance to test
the significance of the interactive predictors. Table 2 consists of significance result
from coefficients estimation and analysis of deviance for each predictor. One
could notice that the node degree and strength are the first two significant
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Table 2. Results obtained by analysis of deviance

Std. Error a z value Signif.b Deviance Resid. Dev.c

2013 Continuing

Intercept 0.206 −14.854 *** Null 969.51

Node degree 0.003 2.225 * 105.374 864.13

Degree ratio 0.025 0.731 2.013 862.12

Node strength 0.006 0.931 0.915 861.20

2013 Failed

Intercept 0.189 −14.980 *** Null 727.85

Node degree 0.003 2.451 * 0.014 727.83

Degree ratio 0.054 −0.128 6.702 721.13

Node strength 0.006 −2.234 * 4.108 717.02

2014 Continuing

Intercept 0.208 −14.105 *** Null 969.51

Node degree 0.003 1.543 49.590 919.92

Degree ratio 0.081 0.591 28.578 891.34

Node strength 0.008 2.140 * 5.778 885.56

2014 Failed

Intercept 0.177 −14.536 *** Null 969.51

Node degree 0.003 0.002 0.005 919.92

Degree ratio 0.130 0.246 0.341 891.34

Node strength 0.010 −0.553 0.301 885.56

2015 Continuing

Intercept 0.258 −12.057 *** Null 969.51

Node degree 0.004 1.896 o 83.667 885.84

Degree ratio 0.022 0.469 1.921 883.92

Node strength 0.006 1.257 1.685 882.23

2015 Failed

Intercept 0.186 −7.718 *** Null 727.85

Node degree 0.004 −3.997 *** 42.928 684.92

Degree ratio 0.121 −1.415 0.057 684.86

Node strength 0.013 1.748 o 3.316 681.54

2016 Continuing

Intercept 0.277 −10.629 *** Null 969.51

Node degree 0.003 1.824 o 65.895 903.61

Degree ratio 0.107 −0.970 8.637 894.97

Node strength 0.009 3.131 ** 10.748 884.32

2016 Failed

Intercept 0.152 0.370 Null 727.85

Node degree 0.012 −2.979 ** 348.720 379.13

Degree ratio 0.846 −2.264 * 0.080 379.05

Node strength 0.045 3.437 *** 10.210 368.84
a Standard Error. b Significance indicator: 0 ‘***’,0.001 ‘**’, 0.01 ‘*’, 0.05

‘o’. c Residual Deviance
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terms in coefficient estimation according to z−value tests. Most importantly,
the regression can only show us how variation in predictive variables co-occurs
with variation in response. What regression cannot show is a cause-and-effect
relationship since causation needs extensive studies to be analytically demon-
strated. All that regression analysis can tell us is the correlation exists among
survivability resilience, node degree, and strength.

Nevertheless, observations from deviance column suggest that the node
degree has the most significant difference in interaction terms. As can be seen
from the Continuing group, node degree obtains high deviance in all three predic-
tive variables, followed by degree ratio and node strength, with small differences
between them (except 2014). It denotes that the degree of a node contributes
more to the resilient response probability comparing with other two terms.

On the other hand, in the Failed group the deviance of node degree in first
two years, 2013 and 2014, were not as high as them in the Continuing group.
Yet in last two years (2015 and 2016, the delisted time for most of the stocks
in the Failed group), the node degree regains its dominant role in deviance
analysis, followed by increasing deviance in node strength. Therefore, there do,
as well, exists a positive influential power of node degree for characterizing low-
survivability response probability. Hence, the probability of resilience can be
roughly depicted as a function of node degree.

5 Conclusion

To conclude, (1) Although the overall network growth follows an exponential
expansion, there is a “fission-fusion” mechanism found in the network topology
for 40-years evolution. Such fluctuation could be the response of the market
to unexpected external shocks. (2) The network measure, degree ratio, acts as
an effective metric in signed networks and provides information on neighboring
edges. Nonetheless, no significant correlation was, in this case, found between
stock survivability resilience and degree ratio, i.e., uneven distributed negative
connections in stock networks do not necessarily imply the component surviv-
ability. Conversely, it has correlations with other two network measures, node
degree, and strength. (3) Analysis of deviance implies that node degree could be
one effective parameter to characterize the survivability resilience of UK equi-
ties in London stock exchange, but consideration of overall neighborhood, degree
ratio and node strength in signed networks, seem to be less descriptive.

This study provides insights for quantitatively assessing and modeling of sur-
vivability resilience of UK stocks in London exchange market, and proposes a
new perspective to measure company resilience and bankruptcy in interdepen-
dent complex networks with their statistical topological measures. The future
research could further develop the investigation in following ways:

• The network construction methods in this paper could be altered by using
excess returns by drawing more detailed investment data rather than just
daily returns from the stock price.
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• The modeling process could show considerations to company-related explana-
tory variables and other node centrality measures such as betweenness, close-
ness, transitivity and node entropy. Also one may reframe the models using
multinomial regression analysis by bringing the Normal group into full play.
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