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Abstract. Evolutionary graph theory studies evolutionary dynamics
of a population which interactions are constrained by a graph struc-
ture. The replicator equation is one of the fundamental tools to study
frequency-dependent selection in absence of mutations, this work pro-
vides the replicator equation for a specific family of graphs, character-
ized by connected degree-regular communities, using the method of pair
approximation. The evolution of cooperation on such graphs is presented
as an application of the proposed equation, showing that cooperation is
sustainable for given conditions on the connectivity of the graph and on
the cooperation cost.

1 Introduction

Evolutionary Game Theory [EGT], introduced by [6] in the context of the study
of animal conflict, studies the behaviour of large populations of agents who
repeatedly interact strategically.

One of the basic assumptions in the early studies of evolutionary dynamics
is that every individual interacts with everyone else in the population with the
same probability, or equivalently matching is random. If matching is not ran-
dom, for example because there is a positive (negative) correlation between the
type of the individual and those with whom she interacts, then we say there
is positive (negative) assortative matching, due for example to kin selection [3]
or to geographic proximity [7]. In this case the focus is not only on individual
selection but on group selection, and on the competition among groups whose
fitness depends ultimately on the group composition.

Evolutionary Graph Theory [EGrT] takes a different approach, as individuals
occupy the nodes of a graph, that determines not only the interactions, but
also where a new born offspring will be placed (even if the interaction and the
replacement graph do not need to coincide, see for example [11]). The subject
of interest of EGrT is to study the impact of the topology on evolutionary
dynamics. [5] showed in their seminal paper the role of different topologies in
suppressing or amplifying selection. A minimal list of references related to the
present work is [10,12,13].
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One of the problematic aspects of the study of EGrT is its computational
complexity. Recently [4] showed that the complexity classes used in computer
science to classify problems and the algorithms to solve them can be used to
classify some of the problems of interest of EGrT, as the evolutionary processes
mimic some aspect of computations. They prove that for some of these problems
(for example finding the fixation probability of a structured population) it is not
possible to find a solution expressed by equations (unless P=NP).

The contribution of this paper is a replicator equation under different updat-
ing rules for a family of complex graphs that are characterized by local degree
homogeneity and global degree heterogeneity, that we call a multi-regular graph.
The paper is structured as follows: the first part introduces the replicator equa-
tion on regular graphs, explaining the result obtained by [10] and showing in
some detail how it is derived. Then a new family of graphs is introduced, and
using the framework of [10] the replicator equation for these graphs is derived.
This equation is then applied to study a simple example of evolution of coop-
eration on a multi-regular graph. A formula for computing the expected degree
distribution of a random multi-regular graph is proposed, and finally an algo-
rithm to generate graphs belonging to this family.

2 Replicator Equation on Regular Graphs

The Replicator Equation is one of the fundamental tools for the study of evo-
lutionary dynamics. Take an evolutionary game with n strategies and a payoff
matrix Π, where πij denotes the payoff that strategy i obtains against strategy j.
Say that the frequency of each strategy i ∈ n is given by xi, where

∑
i∈n xi = 1.

Define as fi =
∑

j∈n xjπij the fitness of strategy i and as φ =
∑

i∈n xifi the
average fitness of the population, then the replicator equation is:

ẋi = xi(fi − φ) for i ∈ n (1)

According to this equation the time evolution of the frequency of strategy i
in a well-mixed population depends on the relative advantage that i has in term
of fitness with respect to the average fitness of the population. It is deterministic,
does not consider mutation and assumes a well-mixed population. The trajectory
of this equation lies entirely on the (n − 1)-dimensional unitary simplex.

Reference [10] prove that if the game is played by a population placed on an
infinitely large regular graph of degree k, there exist a closed-form solution of
the replicator dynamics, which is a simple modification of the usual mean-field
equation:

ẋi = xi

[
n∑

j=1

xj(πij + bij) − φ

]

(2)

where ẋi is the derivative of frequency of the i-th strategy with respect to time,
πij is the payoff a player with strategy i gets when the other player adopts j, and
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φ =
∑n

ij=1 xixj(πij +bij). The bij term is the key parameter that is obtained as a
transformation of the initial payoff matrix, depending on the updating rule. The
three updating rules considered are “Birth-Death” [BD]: An individual is chosen
for reproduction with probability proportional to fitness. The offspring replaces
one of the k neighbour chosen at random. “Death-Birth” [DB]: An individual
is randomly chosen to die. One of the k neighbours replaces it with probability
proportional to their fitness. “Imitation” [IM]: An individual is randomly chosen
to update her strategy. She can imitate one of her k neighbours proportional to
their fitness. The three corresponding parameters are:

[BD]: bij =
πii + πij − πji − πjj

k − 2

[DB]: bij =
(k + 1)πii + πij − πji − (k + 1)πjj

(k + 1)(k − 2)

[IM]: bij =
(k + 3)πii + 3πij − 3πji − (k + 3)πjj

(k + 3)(k − 2)

(3)

3 Replicator Equation on Regular Communities

Consider a graph where nodes may have different degrees, but nodes with the
same degree tend to be connected together more than with nodes of different
degrees. The graph can be hence divided in degree-homogeneous communities,
bridged together by few connections. In order to be more rigorous in defining
this family of graphs, some preliminary definitions are needed.

Definition 1. Define as maximal degree-homogeneous vertex subset [DHVS] a
subset of vertices with the same degree such that from each vertex in this subset
there exist a path to any other vertex in the subset that traverses only vertices
in the subset.

A subset of the set of vertices V of the multi-regular graph, V (di) (of degree
di) can be found with the following procedure: pick a vertex of degree di, add it
to V (di). Then add all its neighbours with degree di. For each neighbour add all
its neighbours of degree di that are not yet in the vertex subset. Continue until
no remaining neighbour of the added vertices has degree di.

Definition 2. Define as multi-regular graph G the graph with the following
properties:

1. the degree of each vertex is some integer di where di ∈ [3, . . . , m].
2. each of the di neighbours of each vertex has degree di (interior vertex) or,

alternatively
3. di −di neighbours (with 1 ≤ di < di) have degree di and the remaining di −di

have degree dj �= di (frontier vertex).



872 D. Cassese

4. each V (di) has a number of vertices ni ≥ di + 1 and niki even.
5. each V (di) has an even number of frontier vertices.
6. G is connected.

First of all notice that for each possible degree di there can be more than
one V (di), the only case in which the V (di) is unique being when there is no
other vertex of degree di that is not directly connected with any of the vertices
in V (di). Clearly different V (di)s of the same degree have different vertices
because only neighbouring vertices of degree di belong to the same DHVS. In
plain words each distinct DHVS of degree di identifies1 a connected community
of nodes where all vertices have the same degree, but some of these vertices are
connected with (at least) one vertex outside that DHVS.

Properties [2] and [3] ensure that each community is degree-regular. Consider
that both interior and frontier neighbouring vertices of the same degree di belong
to the same V (di). The induced subgraph of V (di) is a regular graph of degree
di provided that we consider also the edges that from the frontier vertices of
V (di) goes outside V (di). Properties [5] and [6] ensure that the graph is at
least 2-connected, or in general, e-connected with e even. Property [4] simply
guarantees the existence of a regular graph of degree di on the vertices of V (di).

Fig. 1. Multi-regular graph with three V of degrees 3, 4 and 6. The gray vertices are
the frontier vertices which create a bridge with an adjacent V of different degree. The
blue vertices are interior vertices.

1 The loose wording is because it can’t be said that each DHVS spans a connected
regular subgraph, given that in the span(DHVS) there are all the vertices in DHVS
and all the vertices connected with these. Given that some of these vertices are
frontier vertices (by definition), some of their neighbours have a different degree
than the rest of vertices in the DHVS (hence the subgraph would not be regular).
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Now consider the local dynamics on a multi-regular graph. Under the assump-
tion that the strategies of players that are more than one step adjacent do not
affect local frequency, the replicator equation on each k-regular subgraph, if in
isolation, would be given by Fig. 1. In order to compute the global dynamics it is
necessary to take account of the distribution of each class of degree-homogeneous
subgraphs of G, by weighting each class-specific replicator equation for the fre-
quency of this class of subgraphs on the entire graph. Call P[Gdi

] the probability
that subgraph belongs to the class of di-homogeneous subgraphs, the global
dynamics on a multi-regular graph is then:

ẋs =
E[Δxs]

Δt

=
∑

di≥3

∑

k1+···+kn=di

[
xs

( di!

k1! · · · kn!
qk1
1|i · · · qkn

n|iΠ(s;k1,...,kn)

)][
1 − ks

di

]
P[Gdi ]

/
Π̄

−
∑

di≥3

∑

k1+···+kn=di
j �=i

[
xj

( di!

k1! · · · kn!
qk1
1|j · · · qkn

n|jΠ(j;d1,...,dn)

)]ks

di
P[Gdi ]

/
Π̄

≈ w
( ∑

di≥3

(di − 2)2

di − 1
P[Gdi ]

)
xs(fs +

∑

di≥3

∑

j

xjbij(di)P[Gdi ] − φ)

(4)

Given the graph, hence its degree distribution, the factor w
(∑

di≥3

(di−2)2

di−1 P[Gdi
]
)

is a constant, and again just represents a change of time scale, so
we can rewrite (4) as:

ẋs = xs(fs +
∑

di≥3

∑

j

xjbij(di)P[Gdi
] − φ) (5)

Equation (5) is the replicator equation on a multi-regular graph.

4 Generating a Random MR Graph

In this section an algorithm for the construction of a Random Multiregular
Graph is proposed. The algorithm is based on a modified version of the pairing
model.

Fix the number of vertices to n and let di ≥ 3 the degree. Define as P(di) the
fraction of vertices with degree di. The nearest integer [nP(di)] is the number of
vertices with degree di; as in the pairing model, assume this number to be even.
Define also as r the ratio of vertex degree to vertices with the same degree to
vertices with other degrees.

1. Create a set of [n
∑

di
P(di)di] points.

2. Divide them in n buckets in the following way.
a. Take [nbP (di)] points and put them in [nbP (di)] different buckets.
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b. Add di − 1 points to each of these buckets.
c. Repeat the same procedure for all the other di. In this way for each di

there will be [nbP (di)] buckets with di points.
3. Pick a random point, say it is in a bucket with di points.
4. Join it with probability r to a random point among those in one of the

[nbP (di)] buckets with di points, and with probability 1 − r to any of the
other points at random. Continue until a perfect matching is reached.

5. Collapse the points, so that each bucket maps onto a single vertex of the orig-
inal graph. Retain all edges between points as the edges of the corresponding
vertices.

6. Check if the corresponding graph is simple.

Step 4 can also be changed by joining the picked point with any other point
at random. The reason for imposing the ratio of connections with other-degree-
vertices is because for some applications could be useful to control the formation
of dense degree-homogeneous subgraph with few “bridge” connections with the
outside. Here the fraction of frontier vertices is assumed uniform along the sub-
graphs, while it could be reasonable to make r vary with the degree di, depending
on the models considered. A version of the proposed alogrithm has been imple-
mented in Python, using Network which builds random multi-regular graphs
with specified number of frontier vertices, and is presented in the appendix.

5 Evolution of Cooperation

The evolution of cooperation has been largely studied both in EGT and EGrT,
[2,5,8,9]. Here we study cooperation with a 2 × 2 symmetric game, a classical
Prisoner’s Dilemma (PD) [1]. The two strategies are Cooperator and Defector,
and the game is described by the payoff matrix:

C D

C b − c −c

D b 0

Given that Defector is a strictly dominating strategy, D is a strict NE and
an ESS, hence the stationary state of the replicator equation (1) is at a point in
which everybody in the population is a defector, as the differential equation:

ẋc = xc(1 − xc)(−c) (6)

has two fixed points, at xc = 0 and xc = 1, and since the derivative at dẋc

dx

∣
∣
x=0

<

0 and dẋc

dx

∣
∣
x=1

> 0 the only stable equilibrium is where defectors win.
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When cooperation is studied on a regular graph interesting novelties emerge
[10]: while under BD updating there is no difference with well-mixed populations,
under DB updating cooperation is a stable state if b/c > d where d is the degree
of the regular graph. Analogously in the case of IM updating cooperation prevails
if b/c > d+2. In both cases what emerges is that in order to sustain cooperation
when agents are highly connected, the benefit/cost ratio has to be very high.

Let’s now examine the replicator equation on a MRG for the above PD:
call xc the frequency of cooperators, (1 − xc) the frequency of defectors. The
replicator equation with BD updating is:

ẋc = xc(1 − xc)
(∑

di≥3

−c

di − 2
P[Gdi

] − c
)

(7)

so even in the MRG case with BD there is no difference between a well-mixed
and a structured population, as here the only stable fixed point is x∗

c = 0.
Things gets more interesting in the case of DB updating. The replicator

equation on MRG is:

ẋc = xc(1 − xc)
(∑

di≥3

di(b − c) − 2c

(di + 1)(di − 2)
P[Gdi

] − c
)

(8)

The equation above can be rewritten as:

ẋc = xc(1 − xc)
(bf(di,P[Gdi

], b, c) − cg(di,P[Gdi
], b, c)

∏
di≥3(di + 1)(di − 2)

)
(9)

where f and g are both multivariate polynomials in di. Cooperation will be sus-
tainable if the inequality b/c > g/f holds, unfortunately finding the roots of the
polynomials can be hard, even in the simplest case where there are only two degree
homogeneous subgraphs. We find an easy to intertpret upper bound of g/f .

Proposition 1. Cooperation is sustainable in a Prisoner Dilemma on a multi-
regular graph with death-birth updating if the relative benefit of cooperation is
greater than the average degree:

b

c
>

∑

di

diP[Gdi
] (10)

Proof. We know from (9) that cooperation is sustainable if b/c > g/f , as
dẋc

dx

∣
∣
x=1

< 0. We now prove that
∑

di
diP[Gdi

] is an upper bound for g/f . Con-
sider that we can write g/f as:

g

f
=

∏
di

(di + 1)(di − 2) +
∑

di
(di + 2)P[Gdi

]
∏

dj �=di
(dj + 1)(dj − 2)

∑
di

diP[Gdi
]
∏

dj �=di
(dj + 1)(dj − 2)

(11)
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Now write A =
∑

di
diP[Gdi

]
∏

dj �=di
(dj + 1)(dj − 2) and B =

2
∑

di
P[Gdi

]
∏

dj �=di
(dj +1)(dj − 2) (both of degree 2(n− 1)), and C =

∏
di

(di +
1)(di − 2) (of degree 2n).

The upper bound condition is then:

A + B + C

A
<

∑

di

diP[Gdi
] (12)

or equivalently:
A

(∑

di

diP[Gdi
] − 1

)
− B > C (13)

as
∑

di
di[Gdi

] ≥ dmin
i , where dmin

i is the lowest degree in the sequence, with

equality only in the degenerate case of a regular graph, then A
(∑

di
di[PGdi

] −
1
)

≥ (dmin
i − 1)A. Hence

A
(∑

di

diP[Gdi ]−1
)

−B ≥ A(dmin
i −1)−B =

∑

di

[(dmin
i −1)di −2]P[Gdi ]

∏

dj �=di

(dj +1)(dj −2)

(14)
Also

∑
di
P[Gdi

]
∏

dj �=di
(dj + 1)(dj − 2) ≥ Πmin where Πmin = min

di

∏
dj �=di

(dj + 1)(dj − 2) so clearly:
∑

di

[(dmin
i − 1)di − 2]P[Gdi

]
∏

dj �=di

(dj + 1)(dj − 2) ≥ [(dmin
i − 1)di + 2]Πmin (15)

Now rewrite C as C = Πmin(di + 1)(di − 2), so (13) holds if

[(dmin
i − 1)di − 2]Πmin > Πmin(di + 1)(di − 2) (16)

given dmin
i di > d2i as long as the graph is MR:

dmin
i di − di − 2 > d2i − di − 2 (17)

holds for every di and this ends the proof.

The RE in the case of IM updating is:

ẋc = xc(1 − xc)
(∑

di≥3

bdi − c(di + 6)
(di + 3)(di − 2)

P[Gdi
]
)

(18)

We find an equivalent condition for cooperation with IM updating.

Proposition 2. Cooperation is sustainable in a Prisoner Dilemma on a multi-
regular graph with imitation updating if the relative benefit of cooperation
respects:

b

c
>

∑

di

(di + 2)P[Gdi
] (19)
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Proof. As above, with A =
∑

di
diP[Gdi

]
∏

dj �=di
(dj + 3)(dj − 2) and B =

6
∑

di
P[Gdi

]
∏

dj �=di
(dj + 3)(dj − 2) and C =

∏
di

(di + 3)(di − 2) so that (20)
becomes:

dmin
i di − di − 6 > d2i − di − 6 (20)

always true when graph is MR.

So the higher average connectivity the higher the relative benefit necessary
to sustain cooperation, which means that on a MRG cooperation is sustainable
as long as highly connected subgraphs are a low fraction of all the subgraphs.
Hence we expect that the family of MRGs where P[Gd] is a power-law distribution
should favor cooperation under a relatively low benefit-cost ratio.

Assuming continuity of the degree, if the degree distribution has law p(d) =
(γ − 1)dγ−1

mind−γ , then cooperation prevails for

b

c
> (γ − 1)dα−1

min

d2−γ
max − d2−γ

min

2 − γ
(21)

where dmin and dmax are the minimum and maximum degree respectively.
As in [10] we also find equilibria in which both cooperators and defectors

coexist. Consider for example the Prisoner’s Dilemma in the general form:

C D

C R S

D T P

where T > R > P > S. The replicator equation under BD is:

ẋc = xc(1 − xc)
(

xcφ − ψ
∏

di
(di + 1)(di − 2)

)

(22)

where

φ =(T + S − P − R)
∏

di

(di + 1)(di − 2)

ψ =S
∏

di

(di + 1)(di − 2) +
∑

di

(S + R(1 + di) − T )P[Gdi
]

∏

dj �=di

(dj + 1)(dj − 2)

−P
∏

di

(di + 1)
[∏

di

(di − 2) +
∑

di

P[Gdi
]

∏

dj ,dk �=di

(dj − 2)(dk − 2)
]

(23)

Lemma 1. There exists multi-regular graphs for which the Prisoner’s Dilemma
in the general form has a mixed equilibrium.
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Table 1. Game 1: stable mixed equilibrium

C D

C 5 0

D 8 1

Fig. 2. Simplex of topologies (a) The vertices are the degenerate case of regular graphs
of degree 9 (green), 4 (blue) and 3 (red) respectively. (b) corresponding level of coop-
eration in equilibrium (y-axis) and average degree (x-axis).

Table 2. Game 2: unstable mixed equilibrium

C D

C 15 0

D 16 8

From (22) it is clear that a mixed equilibrium exists if 0 < ψ/φ < 1. At this
point we are not able to rigorously determine the conditions in terms of degree
distribution and payoffs under which there is a mixed equilibrium, but we show
its existence with some examples.

Consider as simple example a MRG with degree sequence (3, 4, 9) the RE is:

ẋc = xc(1 − xc)
(

xcφ − ψ

140

)

(24)

where φ = 140(T + S − P − R) and ψ = 140(S − P ) + 2P[Gd9 ](10R − 10P −
T + S) + 14P[Gd4 ](5R − 5P − T + S) + 35P[Gd3 ](4R − 4P − T + S). So we have
three equilibria, x∗

c = 0, x∗
c = 1 and x∗

c = ψ
φ . Hence we can have an equilibrium

where cooperators and defector coexist (Fig. 2). We shall now analyze how this
equilibrium varies according to the topology in different PDs in general form
(Table 1).
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Table 3. Game 3: both stable and unstable mixed equilibrium

C D

C 8 0

D 10 1

An interesting example is given by (Game 3). In this case depending on the
graph topology the mixed equilibrium can be either stable or unstable (Table 2).
When the equilibrium is unstable the x∗

c = 1 is stable, while as the average
degree increases towards its maximum the mixed equilibrium becomes stable,
even if the cooperation level is decreasing with the connectivity (Table 3). When
the average degree approaches 9, so where the graph is almost a regular graph
of degree 9, the only stable equilibrium is where defectors win, x∗

c = 0

6 Conclusions

This paper provides a version of the replicator equation on graphs. A specific
graph structure is constructed, called multi-regular graph, that keeps the relevant
properties of (local) regularity and connectedness, and the replicator equation
for this kind of graph is derived. The extended replicator equation depends on
the probability distribution of the degree-homogeneous subgraphs in a multi-
regular graph. Following a random regular graph approach we provide a formula
for computing these probabilities under random graph formation and an algo-
rithm based on the pairing model for the construction of random MRGs. We
then analyze the evolution of cooperation on MRGs, finding a condition for
the sustainability of cooperation, and we provide examples of how the degree
distribution of the MRG influence the dynamics.
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