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Abstract. Analyzing the structural properties of graphs, networks and
particularly complex networks is a research topic with ongoing inter-
est. One of the approaches in studying structural properties is finding
quantitative measures that encode structural information of the entire
network by a real number. Recently, a number of graph invariants, also
known as topological indices, have been used as measures to analyze the
whole structure of networks. In this paper, we study a class of large net-
works named Equilateral Tetra Sheet network ETTSn and Hex derived
network HDNn. We give the construction method for these networks
and extract its structural properties. Then, we employ a computational
technique called edge-cut method to obtain new analytical expressions
for certain topological indices, such as, the Wiener index (W ) and the
generalized Terminal Wiener index (TWK with K = {δ, Δ}). After that,
we compare the efficiency of the computed indices by using graphical
representations. At the end, we summarize our findings.

1 Introduction

The study of graphs, networks and particularly complex networks is a research
topic which attracts broad attention of numerous scholars. The main issue in
this area of research is to find suitable measures, and use them to quantify
and understand the structural information of networks. Once such measures
have been established, they can serve as a standard for exploring and analyzing
networks or for comparing and designing new networks.

During the recent years a large variety of measures or indices have been
defined as descriptors for networks [12]. They function as a universal language
to describe the chemical structure of molecules, the chemical reaction networks,
ecosystems, financial markets, the World Wide Web, and social networks. In
chemical and biological applications these measures are referred to as topological
indices [8]. The topological indices can be divided into many classes, some of
them are: Distance-based measures [16], which are based on the shortest paths
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between pairs of vertices; Degree-based measures [5], that are computed by using
vertex degree; and the measures based on both degrees and distances [1,9].

The history of graph invariants begins in 1947, when the physical chemist H.
Wiener used a descriptor called Wiener index for predicting the boiling points
of paraffin [17]. Many years after its introduction and success, a large num-
ber of other topological indices have been proposed in the literature and used
extensively for the development of quantitative structure-activity relationships
(QSARs) and quantitative structure-property relationships (QSPRs) in which
the biological activity or other properties of molecules are correlated with their
chemical structure [3]. Also, they gained an interest in other fields that use net-
work models to study complex systems.

The goal of this work is to calculate certain topological indices: the Wiener
index and the generalized Terminal Wiener index, for a class of networks. The
computation of this invariants identify how complex the network is and quantify
its robustness [4]. We focus on a class of large networks named Hex derived
Network HDNn and Equilateral Tetra Sheet Network ETTSn. These networks
have been studied in variety of context. They have been applied in chemistry
to model some molecular structure [10], in Robotic [15], and in communication
networks [14]. The analytical expressions for the topological indices that we aim
to calculate are normally obtained from the distance matrix of the corresponding
network. However, due to the complexity of networks that we want to analyze,
we use a powerful approach named the cut method [11]. The objective of this
method is to cut the associated network into smaller fragments and assembling
the indices of fragments to generate the property of the whole structure.

This paper in organized as follows: In Sect. 2, we introduce the basic con-
cepts and techniques employed in this work. In Sects. 3 and 4, we describe the
construction method of the two networks, Equilateral Triangular Tetra Sheet
ETTSn and Hex derived network HDNn, we define some structural properties
of these networks and we give there analytical expressions for the Wiener index
and the generalized Terminal Wiener index. Then, we compare these topolog-
ical indices using graphical representations. We summarize our findings in the
section of Concluding remarks 5.

2 Background and Notation

Throughout this paper, we use the terms graph and network interchangeably.
Let G = (V,E) be a graph with vertex and edge sets are V = V (G) =

{v1, ..., vN} and E = E(G) = {e1, ..., eM}, respectively. The number of vertices
and edges of G is denoted by N and M , respectively. The distance d(u, v) between
two vertices u and v denote the length of the shortest path connecting these two
vertices. The diameter D(G) of G is defined as the maximum of the shortest
path between all vertices of G. We denote by deg(v) the degree of the vertex
v, and the vertex v ∈ V (G) is said to be pendent if deg(v) = 1. The number
δ = min{deg(v),∀v ∈ V (G)} is the minimum degree of G and the parameter
Δ = max{deg(v),∀v ∈ V (G)} is its maximum degree. A subgraph H of a graph
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G is convex if for any two vertices u, v of H, any shortest path between u and
v in G lies completely in H. The graph G is called a partial cube if its vertices
u can be labeled with binary strings l(u) of a fixed length, such that d(u, v) =
H(l(u), l(v)). Holds for any two vertices u and v of G, where H(l(u), l(v)) is the
Hamming distance between the binary strings l(u) and l(v), that is, the number
of positions in which l(u) and l(v) differ. The edges e = xy and f = uv are in the
relation Djoković-Winkler θ if d(x, u)+d(y, v) �= d(x, v)+d(y, u). The relation θ
is always reflexive and symmetric, and is transitive on partial cubes. Therefore,
θ partitions the edge set of a partial cube into equivalent classes F1, F2, ..., Fk,
called cuts.

Definition 1. Let G be a graph. Then the Wiener index of G is equal to the
sum of distances between all pairs of vertices of G. Mathematically:

W (G) =
∑

{u,v}⊆V (G)

d(u, v) (1)

One of the most recent extensions of the Wiener index is the Terminal Wiener
index, which was introduced by Gutman et al. [6].

Definition 2. Let Vp(G) ⊆ V (G) be the set of pendent vertices of the graph G.
Then the Terminal Wiener index is defined as the sum of distances between all
pairs of pendent vertices of G.

TW (G) =
∑

{u,v}⊆Vp(G)

d(u, v) (2)

Later, Ilic et al. [9], proposed a generalization for the Terminal Wiener index
called the generalized Terminal Wiener index.

Definition 3. Let G be a graph. For K ≥ 1, the generalized Terminal Wiener
index is defined as the sum of the distances between all pairs of vertices of
degrees K.

TWK(G) =
∑

{u,v}⊆V (G)
deg(u)=deg(v)=K

d(u, v) (3)

Toward more additional references, we refer to see [7,13,18,19].
The cut method is classified into two kinds based on the class of networks

to which it is being applied. A standard cut method is applied to networks that
fall under partial cubes and an extended cut method is applied to classes larger
than partial cubes.

Theorem 1. (Standard cut method) [11] Let G be a partial cube and let
F1, F2, ..., Fk be its cuts. Let n1(Fi) and n2(Fi) be the number of vertices in the
two connected components of G − Fi. Then

W (G) =
k∑

i=1

n1(Fi)n2(Fi) (4)
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Theorem 2. (Extended cut method) [2] Let G be a graph larger than partial
cube. Let Eλ(G), λ ≥ 1, denote a collection of edges of graph G with each edge
in G being repeated exactly λ times and let {Fi}k

i=1 be the convex cuts of Eλ(G).
Then

W (G) =
1
λ

k∑

i=1

n1(Fi)n2(Fi) (5)

Note that, an edge-cut F of G is said to be a convex cut if the two components
of G − F are the convex subgraphs of G.

Theorem 3. [9] Let G be a partial cube and {Fi}k
i=1 be its cuts. Let nK

1 (Fi)
and nK

2 (Fi) be the number of vertices of degree K ≥ 1 in the two connected
components of G − Fi. Then

TWK(G) =
k∑

i=1

nK
1 (Fi)nK

2 (Fi) (6)

As a consequence of above theorem, we have the following result

Theorem 4. Let G be a connected graph and let {Fi}k
i=1 be the convex cuts of

Eλ(G). Then

TWK(G) =
1
λ

k∑

i=1

nK
1 (Fi)nK

2 (Fi) (7)

Proof. For u, v ∈ V (G) and deg(u) = deg(v) = K, let Pu,v be a shortest path
between u, v in G. We can verify that: | E(Pu,v) ∩ Fi |= 0 if u, v belong to the
same component G − Fi, otherwise | E(Pu,v) ∩ Fi |= 1.

Every edge e ∈ Eλ(G) is cut by precisely λ convex cuts {Fi}k
i=1. Then:

TWK(G) =
∑

{u,v}⊆V (G)
deg(u)=deg(v)=K

d(u, v) =
∑

{u,v}⊆V (G)
deg(u)=deg(v)=K

| E(Pu,v) |

=
1
λ

k∑

i=1

∑

{u,v}⊆V (G)
deg(u)=deg(v)=K

| E(Pu,v) ∩ Fi |

Which gives the Eq. 7. �	

3 Equilateral Triangular Tetra Sheet Network

In this section, we discuss a kind of large networks called Equilateral Trian-
gular Tetra Sheet Network ETTSn. We introduce the construction method of
this network, analyze its structural properties and we give close formula of cer-
tain topological indices.
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3.1 Construction Method

Let ETTSn be an Equilateral Triangular Tetra Sheet of dimension n, where
n denote the number of vertices in a side of this network. The ETSSn can
be built in the following iterative way. Initially, ETTS2 is composed of one
tetrahedron K4 also known as a triangular pyramid. ETTS3 is obtained from
ETTS2 by adding a layer of tetrahedrons around the bottom side of ETTS2.
Similarly, ETTSn is obtained from ETTSn−1 by adding a layer of tetrahedrons
around the bottom side of ETSSn−1. Figure 1, illustrates some iterations of the
Equilateral Triangular Tetra Sheet Network ETTSn.

ETTS2 ETTS3 ETTS4

Fig. 1. An example of Equilateral Triangular Tetra Sheet Networks, with n = {2, 3, 4}

From the construction method of the Equilateral Triangular Tetra sheet Net-
work and Fig. 1, we can extract some structural properties:

• The order of the network ETTSn is equal to:

N =
3n2 − 3n + 2

2
(8)

• The number of edges of ETTSn is equal to:

M =
9n2 − 15n + 6

2
(9)

• The diameter of the network ETTSn is:

D = n − 1 (10)

3.2 Calculation of Some Topological Indices of the Network ETTSn

In the following theorem, we use the extended edge-cut method in order to
obtain exact analytical expressions for the Wiener index W and the generalized
Terminal Wiener index TWK of the structure ETTSn.
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E1

X1

X2

Z1Y1

Fig. 2. Some edge cuts of Equilateral Triangular Tetra Sheet Network ETTS4

In this paper, we calculate the generalized Terminal Wiener index TWK in
the case of K equal to the maximum degree Δ and the minimum degree δ.
From the Fig. 1, the maximum degree of the network ETTSn is Δ = 12 and the
minimum degree is equal to δ = 3.

Theorem 5. Let ETTSn denote an Equilateral Triangular Tetra Sheet network
of dimension n, with n ≥ 2. Then:

W (ETTSn) =
72n5 − 60n4 − 80n3 + 60n2 + 8n

160
(11)

TWδ(ETTSn) =
2n5 − 5n4 + 20n3 − 40n2 + 53n

10
− 3 (12)

TWΔ(ETTSn) =
8n5 − 100n4 + 480n3 − 1100n2 + 1192n

160
− 3 (13)

Proof. We use horizontal, diagonal, and encircling edge cuts shown in Fig. 2.
Let Xi, 1 ≤ i ≤ n − 2, denote the horizontal edge cuts of ETTSn, as shown

in the Fig. 2. Similarly, for 1 ≤ i ≤ n − 2, let Yi denote the diagonal edge cuts
along the North-West and South-East directions and Zi denote the diagonal edge
cuts along the South-West and North-East directions as shown in the Fig. 2.
Let Ei, 1 ≤ i ≤ 3 + (n − 1)2, denote the encircling edge cuts of ETTSn, as
shown in the Fig. 2. We have the number of vertices of degree δ = 3 is equal to:
N{K=3} = 3+ (n− 1)2, and the number of vertices of degree Δ = 12 is equal to:
N{K=12} = n2−5n+6

2 .
Then, for 1 ≤ i ≤ 3 + (n − 1)2:

n1(Ei) = 1

n3
1(Ei) = 1

n2(Ei) = N − 1

n3
2(Ei) = N{k=3} − 1
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And, for 1 ≤ i ≤ n − 2:

n1(X1) = 5 n2(X1) = N − 5
n1(Xi) =

∑i
j=2 3(j + 1) − 2i + 7 n2(Xi) = N − n1(Xi)

n3
1(Xi) = i2 + i + 1 n3

2(Xi) = N{K=3} − n3
1(Xi)

n12
1 (X1) = 0

n12
1 (Xi) =

∑i
j=2(j − 1) n12

2 (Xi) = N{K=12} − n12
1 (Xi)

Due to the symmetry of ETTSn network, we have n1(Xi) = n1(Yi) = n1(Zi)
and nK

1 (Xi) = nK
1 (Yi) = nK

1 (Zi), 1 ≤ i ≤ n − 2.
Clearly the set {Xi, Yi, Zi, Ei} partitions the set E2(ETTSn) into convex

cuts. By Theorems 2 and 4, we have

W (ETTSn) =
1
2

[ n−2∑

i=1

n1(Xi)n2(Xi) +
n−2∑

i=1

n1(Yi)n2(Yi) +
n−2∑

i=1

n1(Zi)n2(Zi)+

∑

i=1

n1(Ei)n2(Ei)
]

=
1
2

[
3

n−2∑

i=1

n1(Xi)n2(Xi) + (N − 1)(3 + (n − 1)2)
]

TW{K=δ}(ETTSn) =
1

2

[ n−2∑
i=1

nδ
1(Xi)n

δ
2(Xi) +

n−2∑
i=1

nδ
1(Yi)n

δ
2(Yi) +

n−2∑
i=1

nδ
1(Zi)n

δ
2(Zi)+

∑
i=1

nδ
1(Ei)n

δ
2(Ei)

]

=
1

2

[
3

n−2∑
i=1

nδ
1(Xi)n

δ
2(Xi) + (3 + (n − 1)2)(2 + (n − 1)2)

]

TW{K=Δ}(ETTSn) =
1

2

[ n−2∑
i=2

nΔ
1 (Xi)n

Δ
2 (Xi) +

n−2∑
i=2

nΔ
1 (Yi)n

Δ
2 (Yi) +

n−2∑
i=2

nΔ
1 (Zi)n

Δ
2 (Zi)

]

=
1

2

[
3

n−2∑
i=2

nΔ
1 (Xi)n

Δ
2 (Xi)

]

Which give the Eqs. 11, 12 and 13. �	
A comparison of topological indices of the Equilateral Triangular Tetra Sheet

Network is given in Fig. 3. Along the horizontal line the values of dimension of
ETTSn network and along the vertical line the values of the topological indices
are shown. In Fig. 3, we can see that all the topological indices are monotonically
increasing and they change the monotony with a high increase in some values
of dimension n. In general, the Wiener index shows a dominant change with
the increasing value of the dimension of the Equilateral Triangular Tetra Sheet
Network.
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Fig. 3. Comparison of topological indices of the Equilateral Triangular Tetra Sheet
Network ETTSn

4 Hex Derived Network

In this section, we discuss an other complex structure called Hex Derived Net-
work HDNn. We give the construction method of this network, analyze its struc-
tural properties and evaluate its certain topological indices.

4.1 Construction Method

Let HDNn be a Hex Derived Network of dimension n ≥ 2, such that, n denote
the number of vertices in a side of this structure. The construction of HDNn is
presented in the following iterative way. At first, HDN2 is a 2-dimensional hexag-
onal mesh composed of six tetrahedrons K4 (Fig. 4). Then, HDN3 is obtained
from HDN2 by adding a layer of tetrahedrons K4 around the boundary of
HDN2. The growth process to the next generations continues in a similar way,
such that, HDNn is obtained from the previous iteration HDNn−1 by adding a
layer of tetrahedrons K4 around the boundary of HDNn−1. Figure 4, illustrates
some generations of the Hex Derived Network HDNn.

Some structural properties of the Hex derived Network HDNn are defined
as follows:

• The number of vertices of the network HDNn is equal to:

N = 9n2 − 15n + 7 (14)
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HDN2

HDN3

Fig. 4. An example of Hex Derived Networks HDNn, with n = {2, 3}

• The number of edges of the network HDNn is equal to:

M = 27n2 − 51n + 24 (15)

• The diameter of the network HDNn is defined as:

D = 2n − 2 (16)

4.2 Calculation of Some Topological Indices of the Network HDNn

In the following theorem, we obtain exact analytical expressions for the Wiener
index W and the generalized Terminal Wiener index TWK in the case of k equal
to the maximum degree Δ and the minimum degree δ. From the Fig. 4, the
maximum degree of the network HDNn is Δ = 12 and the minimum degree is
equal to δ = 3.

Theorem 6. Let HDNn be a Hex Derived Network of dimension n, with n ≥ 2.
Then

W (HDNn) =
1476n5 − 5070n4 + 6560n3 − 3810n2 + 844n

40
(17)

TWδ(HDNn) =
82n5 − 320n4 + 455n3 − 280n2 + 63n

5
(18)

TWΔ(HDNn) =
164n5 − 1230n4 + 3680n3 − 5490n2 + 4076n

40
− 30 (19)

Proof. We use horizontal, diagonal, and encircling edge cuts shown in Fig. 5.
Let Xi and X−i, for 1 ≤ i ≤ n−1, denote the horizontal edge cuts of HDNn,

as shown in the Fig. 5. Similarly, for 1 ≤ i ≤ n−1, let Yi, Y−i denote the diagonal
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X2

X−2

Y1

Y2

Z−2 Z−1

Fig. 5. Some edge-cuts of a Hex Derived Network HDN3.

edge cuts along the North-West and South-East directions and Zi, Z−i denote
the diagonal edge cuts along the South-West and North-East directions as shown
in the Fig. 5. Let Ei, 1 ≤ i ≤ 6(n−1)2, denote the encircling edge cuts of HDNn,
as shown in the Fig. 5.

We have the number of vertices of degree δ = 3 is equal to: N{K=3} =
6(n − 1)2, and the number of vertices of degree Δ = 12 is equal to: N{K=12} =
3n2 − 9n + 7.

Then, for 1 ≤ i ≤ n − 1:

n1(X1) = 2n − 1 n2(X1) = N − 2n + 1
n1(Xi) = 3

∑i−1
j=1(n + j − 1) + 2n + i − 2 n2(Xi) = N − n1(Xi)

n3
1(X1) = n − 1 n

(
2X1) = N − n + 1

n3
1(Xi) = (n − 1) + 2

∑i−1
j=1(n + j − 1) n3

2(Xi) = N{K=3} − n3
1(Xi)

n12
1 (X1) = 0

n12
1 (Xi) =

∑i−1
j=1(n + j − 2) n12

2 (Xi) = N{K=12} − n12
1 (Xi)

and, for 1 ≤ i ≤ 6(n − 1)2:

n1(Ei) = 1

n3
1(Ei) = 1

n2(Ei) = N − 1

n3
2(Ei) = N{k=3} − 1

Using symmetry, we have n1(Xi) = n1(Yi) = n1(Zi) = n1(X−i) = n1(Y−i) =
n1(Z−i) and nK

1 (Xi) = nK
1 (Yi) = nK

1 (Zi) = nK
1 (X−i) = nK

1 (Y−i) = nK
1 (Z−i),

for 1 ≤ i ≤ n − 1.
Therefore by using Theorems 2, 4 and described cuts, we get Eqs. 17, 18

and 19. �	
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Figure 6 shows the behavior of the indices for the Hex Derived Network HDNn,
where along the horizontal line the values of dimension n for the network HDNn

and along the vertical line the values of topological indices are shown. Similarly,
all the topological indices are increasing and change their monotony in some
values of dimension n. The Wiener index shows a dominant change with the
increasing value of the dimension n for the Hex Derived Network.

Fig. 6. Comparison of topological indices of the Hex Derived Network HDNn

5 Concluding Remarks

In this paper, we have given the construction method of two large networks:
Equilateral Triangular Tetra Sheet ETTSn and Hex derived network HDNn.
We have obtained exact analytical expressions for the Wiener index and the
generalized Terminal Wiener index in the case of K equal to the maximum
and the minimum degree. We have employed a powerful approach named edge-
cut method to obtain these expressions that have not been obtained before. The
results found in this paper will help to figure out the properties of Equilateral Tri-
angular Tetra Sheet ETTSn and Hex derived network HDNn. These out-finding
can also provide for opportunities to extend these networks and techniques to
materials of importance in complex networks.
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