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Abstract. The Internet of Things (IoT) architecture primarily consists
of massive amounts of heterogeneous objects, equipped with sensing,
computing, and communication capabilities to continuously sense the
smart cities pulse. The coordinated collection of this data produces rel-
evant scalability and management issues not only in terms of communi-
cation but also in storage and computing to process and analyze large
amounts of incoming big data streams. In these systems, people also play
a pivotal role which includes both social and technical issues, making
the design of these solutions a very complex task. This paper overviews
the prevalent solutions and architecture design principles in loT-big data
ecosystems for smart cities sensing. Furthermore, we present the needs of
ToT-big data software ecosystems by exemplifying existing IoT systems.
We also provide useful insights towards future innovation to address open
issues and challenges that are identified based on the expected growth
of data in the next decade.
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1 Introduction

Motivated by the ever-increasing amount and value of data gathered and man-
aged by Internet-born companies, such as Google, Facebook, and Amazon, big
data software systems, specialized and tailored for the collection, storage, and
analysis of those largest data depots, are already a well-established reality.
Research efforts in this area not only highlights crucial issues, such as quality
of collected data and scalability of the overall sparse and widely distributed big
data systems, but also produced significant results, such as in the notable case
of NoSQL database solutions (e.g., Cassandra and MongoDB) that, opposed
to traditional SQL-based conventional database solutions, support horizontal
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scaling by design [1,2]. Concurrently, advances in communications and device
miniaturization enables the Internet of Things (IoT) vision, with smart objects
in conjunction with smartphones — that in 2013 outnumbered normal feature
phones — acting as sensors deployed over smart cities and equipped with sens-
ing, computing, and communication capabilities.

At the current stage, several research activities in IoT software design focus
on overcoming heterogeneity issues in both communication technologies and soft-
ware Application Programming Interfaces (APIs) for data gathering and man-
agement (see also the IoT architectures and applications sidebar). The goal is
to collect and analyze incoming big data flows, which are densely available and
harvested in urban areas, allowing for a very large-scale fine-grained sensing, by
exploiting all personal resources, mobile activities and collaborations. However,
the software design principles to develop a new class of IoT-big data solutions
defined as software ecosystems are still widely unexplored. For this to become
an effective technology, IoT-big data systems for smart cities sensing still have
to face several challenges. First, there has been a continuously growing net-
work infrastructure associated with the rise of IoT, generating more data (i.e.,
high volume) at an exponentially increasing rate (i.e., high velocity). This data
rate is overwhelming the conventional means of data management, calling for
new methods of collecting, storing, and processing information collected from
the Internet of Things. There are several exemplary models and technologies to
implement these new concepts in big data management in accordance within the
IoT framework. This ecosystem calls for an integrated architecture which com-
bines the functions of Service-Controlled Networking (SCN) through the mid-
dleware, orchestrating the service components of the cloud [3]. From the social
perspective, smart city sensing, which involves smartphone-enabled sensing, calls
for the identification of willing users to participate in sensing campaigns, keep-
ing them involved (e.g., by providing services, entertainment, and rewards), and
fostering their participation with active collaboration in data collection. This
requires user tasks to operate at specific locations (e.g., taking a picture of a
monument, tagging a place, etc.). However, the boundary between social and
technical challenges is not clear cut. The technical problem of minimizing the
global resource overhead by entrusting a minimal subset of users in a sensing
campaign requires analyzing their geo-social profile; to identify and infer which
users are most likely to successfully harvest the required data [4].

Focusing on big data, this emerging trend has been clearly recognized by the
market. IDC’s Digital Universe study in 2012 reports 18% of the United States’
digital universe is valuable (158 exabytes in 898 exabytes) when analyzed and
tagged properly. In the same report, it is predicted that by 2020, the useful infor-
mation will grow 17-fold corresponding to 40% of the digital universe forecasted
for 2020 (i.e., 2631 exabytes in 6617 exabytes). Another important research discov-
ery suggests that the cloud stored, processed, and transmitted 14% of the digital
universe in 2012 whereas cloud-based services will host 37% of the digital uni-
verse in 2020. These numbers call for the adoption of big data solutions in IoT
where volume and value of the data will be the driving factors in the evolution of
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big data software, optimization for real time systems, cybersecurity and forensics
for the next decade [5]. These numbers confirm that the challenges with the IoT-
big data will keep evolving throughout the next several decades. This article aims
to present a collection of methods, and theories, discuss prevalent architecture
design principles and identify the required technologies by detecting open issues
and challenges, which will provide insights for paving the way towards effective
ToT-big data solutions. We provide a survey of remarkable big data solutions for
the IoT, then we identify and discuss the open issues and challenges in the IoT-big
data ecosystems.

2 10T Architectures and Applications

The Internet of Things (IoT) pervasively and ubiquitously interconnects billions
of devices with sensing, computing and communication capabilities as seen in
Fig. 1.

Furthermore, it is crucial to collect, aggregate and correctly represent the
data gathered at the sensor network level, where the data will be sent to the
next level, namely the middleware. The middleware acts as a layer between the
software application layer and hardware layer by parsing the data in order to
recognize certain trends or specific patterns to create reusable solutions for fre-
quently encountered problems such as heterogeneity, interoperability, security
and dependability. It is worthwhile noting that the majority of middleware solu-
tions currently do not provide the functionality of context-awareness and most
solutions are focused on device management. Hence, it will be critical to con-
tinue to work on the implementation of context-awareness into the middleware
solutions within the IoT [3].

In the IoT-big data ecosystem, the sensing plane consists of the sensors of var-
ious types; such as temperature, light, airflow, motion, humidity and several other
sensors purposed for various applications including vehicular networks, water
quality and e-health monitoring. The role of sensors in this architecture is con-
tinuously reporting the sensed data to the data plane through the middleware.
The middleware, as mentioned previously is responsible for aggregating data from
numerous sensors and presenting it to the data plane for pre-processing and stor-
age. The data plane offers short and long term storage for the aggregated data, and
it pre-processes the data for the Cloud platform which provides Data Analytics as
a Service [6] where embedded analytics and statistics libraries play a key role [7].
It is worthwhile noting that the data plane can also be implemented within the
cloud platform based on the storage-as-a-service concept in cloud systems. The
application plane receives software-as-a-service (SaaS) from the cloud platform
and interprets the analyzed data in accordance with the desired application e.g.,
e-health, smart metering, intelligent transportation systems, and so on.

In the corresponding architecture, data is collected via distributed sensors
that are uniquely identifiable, localizable and communicable. The collected data
goes from the user interaction with the embedded system, up to the local network
level and is then stored either on local servers or in the cloud, at which point
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Fig. 1. The loT-big data ecosystem with three planes that are connected through a
cloud platform.

the data is available for a variety of uses. The IoT architecture interconnects
sensors, RFID tags, smart phones, and other objects in a scalable manner.

In [8], the requirements of sensing objects driving the integration of cloud
computing and IoT are summarized as having huge computing and storage
capacity, web-based interfaces for data exchange and integration as well as pro-
gramming platforms, real-time processing of big data, inter-operability between
the sensing objects, cost-efficient, scalable on-demand access to the IT resources,
and security and privacy assurance. Therefore, the authors propose deployment,
development and management of the IoT applications over the cloud, namely
the CloudThings architecture. Recent progress in IoT has not only been made
in applications dealing with data analysis, but also in newfound approaches in
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structure, storage, and compression. The common goal in the related works is
to make the IoT data readily accessible and understandable to the end user.

A motivation of some of the recent progress has been a product of the Smart-
Campus project that includes two different scenarios where sensors would be
placed to determine the occupation rate of parking lots as well as regulating the
temperature through the control of doors leading outside [9]. These services on
the network would continuously collect data in real time in order to eventually
recognize patterns. The middleware plays a key role in the implementation of
this project because of several API’s used to send data, set up the configurations
for measurement retrieval, and to interact with collected data sets. The responsi-
bility of the middleware is to support the data reception as well as broadcasting
the configurations made on the sensors.

3 IoT-Big Data Design Guidelines

Figure2 illustrates the need for big data management schemes in an IoT-
dominated environment. Volume, variety and velocity of the data are driven
by the data quality assurance needs, uncertainty in social media accounts, and
networked devices being twice as the global population. Consequently, the tra-
ditional data warehousing solutions remain with low veracity in the IoT Era.

Starting from big data-related aspects, major trends in the field of big data
gathering have an intense focus on the following four areas: velocity, variety,
volume and veracity. Velocity denotes a focus on high-speed processing/analysis
such as click-streaming and fast database transactions. Variety in the structures
of data being collected arises along the lines of Machine-to-Machine (M2M),
radio frequency identification (RFID), and different types of sensors. Volume
includes currently used services such as social networks, cloud storage, network
switches, thermo-metric/atmospheric/motion sensors, and so on. The primary
issues that must be considered when focusing on these three subjects are the
limitations of nodes’ buffer sizes and the maximum acceptable latency in data
collection [10]. Finally, veracity is defined as the potential of releasing useful
information out of unstructured big data. Indeed, handling of the data through
trusted sources improves the veracity of analytics as reported in [7].

The concept of big data has come about with a recent increase in the volume,
velocity, variety, and veracity of data collected via various sources but mainly
via IoT sensors. A cloud-based eco-system is envisioned to share and trade high-
quality data from a vast network of independently managed sensors in real time
[1,9]. While there has been considerable research with WSNs, using cloud-based
platforms to host sensor networks is one of the biggest challenges yet, and the
research regarding this topic has recently started.

This vision introduces a previously unexplored area of research. A few topics
which must be addressed in order to find a solution to this challenge are focuses
on high-quality data, an efficient collaborative emphasis for sharing/trading
data, the need of a markup language that can not only handle the network
but can also support data quality and enable domains to access live sensor feeds
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Fig. 2. The rise of the need for big data management in the loT-dominated environment
where majority of the data is collected by connected sensing devices.

as well as historical data [1]. According to this new vision, we propose some main
design guidelines and concepts useful to compare existing solutions in IoT-big
data literature (see also Table1).

3.1 State of the Art in Building IoT-Big Data Architectures

Today, IoT-big data systems, such as data collected from the global Fligh-
tradar24 flight monitoring system, are handled via software chain architectures.
The software chain basically maps processing phases of big data streams to
multiple components denoting data generation, intermediate and result stages.
As an example, the study in [11] uses the big data stream from a global flight
monitoring system and is processed via the Yahoo!S4 framework. The Yahoo!S4
framework is mapped onto five stages, namely the sensor, extractor, parser, for-
matter and outputter modules.

The sensor module can be implemented as a script which captures unstruc-
tured data. The extractor module is responsible for identifying and distinguish-
ing the events within the data streams. On each event, the parser module runs
data analytics processes such as filtering, pattern recognition and data min-
ing. The parser module can also be decomposed into multiple layers such as in
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the Lambda architecture where Hadoop serves as the batch layer for long term
data and Storm serves in the speed layer to manage real time data. Format-
ter and outputter are responsible for generation of the structured data out of
the unstructured data under analysis and maintaining them in a file system of
NoSQL database.

In an open IoT system, a similar software chain approach can be adopted.
As today’s technology is able to enable access to sensor readings through web-
based services; the sensor component can obtain the data of the IoT sensors
via APIs that enable access to web servers. The Open Geospatial Consortium’s
(OGC) IoT RESTful APT has been built on the OGC Sensor Web Enablement
standards in order to interconnect IoT objects, their data and applications over
the web via JavaScript Object Notation (JSON) data interchange format. The
API can be integrated to the sensor-end of the software chain in order to make
various IoT sensors of multiple participants connect to the web servers that are
compliant with the OGC standard [12].

3.2 Challenges Experienced in IoT-Big Data Systems

Focusing on IoT-big data systems, we identify some distilled guidelines based on
experiences within the ParticipAct sensing project [4], and identify four major
categories for design guidelines as support for spatio-temporal queries, minimal
overhead on IoT nodes, openness and security, and fast feedback and minimal
delay in producing quality-aware sensing data.

Support for Spatio-Temporal Queries. Support for spatio-temporal queries
over sensed data is a key factor when considering big data because of all possible
sources of where/when data might be pushed from, and it is also important to
keep track of sensed data chunks for future uses. First of all, as data is neither
temporally nor spatially static in the IoT, storage and scalability of retrieving
the data appears as an important issue due to the constant movement of data.

Minimal Overhead on IoT Nodes. By this design guideline, we aim at
minimizing energy consumption due to computing and communication at IoT
nodes through optimizations of local sensing processes (such as, duty-cycling,
employing physical models/verifications, etc.) and, most important, of sensed
data transmissions toward the backend (such as, by locally bulking multiple data
samples in the same sent packet, coordinating IoT nodes in the same location
to avoid useless readings such as in WSN; etc.).

Openness and Security. Sensed data should be stored securely and encrypted
to protect it from possible threats. This challenge has been tackled in [13] through
the use of a distributed storage system using Shamir’s secret sharing as the
driving algorithm for both security and storage.
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Fast Feedback and Minimal Delay in Producing Quality-Aware Sens-
ing Data. This design guideline derives from the need to associate data with a
quality indicator based on the history of data sensed in the past. This requires
continuous profiling of sensed data in several different dimensions and grains
(such as time, space, weather, season, etc.) by exploiting big data storage to
keep all of these profiles ready, thus allowing fast computation for required feed-
back. Notable efforts within this direction are sensor webs such as IrisNet and
SensorWeb. Furthermore, projects like Aurora, Borealis, Cayuga, Stanford Data
Stream manager and System have explored many issues associated with stream
and event processing comprising the construction of algorithms and techniques
for data quality-aware sensor feed discovery service composition [1].

4 Remarkable Big Data Solutions

As big data continues to be researched, there has yet to be a single defining
breakthrough when it comes to solutions regarding IoT. This is due to many
variables that need to be considered when implementing an idea towards big data
in the IoT such as volume, security and storage. While solutions are currently
being researched and tested, there have been several instances of progress when
dealing with this topic.

4.1 Crowdsensing-Based IoT-Big Data Projects

The features in IoT-big data design guidelines make ParticipAct a complete
mobile crowdsourcing platform that encompasses the whole process from data
collection, to post-processing, to mining, and is available to the mobile crowd-
sourcing community as an open-source project [4]. In a related study, after the
detailed description of the whole architecture of ParticipAct and its technological
stack, some of the use case scenarios are presented. The corresponding scenarios
are currently being used to evaluate the potential of mobile crowdsourcing and
ParticipAct both qualitatively and quantitatively.

4.2 Smart Environment Projects

The SmartCampus experiment performed on the SophiaTech campus in France
[9]. The idea of this project focuses on the final product becoming an open
platform for different types of campus members to use the already deployed
sensors to build their own services or user defined sensors. Through this project,
concepts such as data retrieval and user-defined sensors are implemented into
realistic situations where big data and IoT are the focus. Data retrieval is applied
in a way where users can pull sensor properties using input filters or just the
sensor data itself. User-defined sensors are also introduced in this project as
virtual sensors where users can define a specific configuration and store it into
database where it can be executed using scripts when its dependencies produce
data.
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AllJoyn Lambda, a software architecture which integrates the Alljoyn frame-
work into Lambda architecture to enable big data analytics for IoT applications
[14]. The proposed architecture adopts the AllJoyn technology that is intended
for ToT. However it aims at overcoming the real time processing/storage and
management of the data obtained from smart environments by integrating the
MongoDB NoSQL database for storage and Apache Storm for real time analysis
of the data pushed from the smart objects.

As an emerging smart environment, the IoV concept has evolved from the
IoT, and it is presented in [15] where nodes are represented by vehicles and are
connected to form a Vehicular Ad Hoc Network (VANET). The biggest challenge
in IoV is processing this volume of data and delivering it to its destination,
which is done through various relay nodes. This paper analyzes the issue by using
Bayesian Coalition Game (BCG) and Learning Automata (LA). The use of BGC
trains the LAs to make moves correlating to each node/vehicle performing tasks
to make each player in the game safer and more aware. This proposal adopts
the Nash Equilibrium concept with respect to the probabilistic belief of players
in the coalition game.

4.3 Edge Computing Based Projects

The Available Network Gateways in Edge Location Services (ANGELS) frame-
work appeared as a result of the realization of the complexity of new applica-
tions in cyber-physical systems [16]. Services encompassing multiple domains
are beginning to come into effect. As astronomical volumes of data collected
will begin to require huge computing infrastructures for analysis, ANGELS
introduces a framework for fog-computing, which utilizes a key aspect of the
IoT field that has been overlooked thus far. The framework focuses on taking
into account the ability of resources available prior to the distribution of tasks.
Researchers have explored the idea of smart edge devices to perform portions of
IoT data analysis where edge devices are low-powered computational nodes such
as smart phones and home energy gateways. The proposed architecture consists
of servers and commodity computing nodes as well as these smart edge devices as
computational resources. This framework of heterogeneous computational nodes
includes resources ranging from large server-class systems down to low-powered
edge devices forming the basis of the fog computing paradigm. This solution
also involves parallel data computation along with capacity based partitioning
to accomplish a more streamlined approach to big data management.

4.4 Big Data Stream Analysis Projects for Cyberphysical Systems

The proposal in [17] is tailored for cyber-physical systems, and it presents
an online spatiotemporal analysis, which would implement a grid-based single-
linkage clustering algorithm over a sliding window. This online time-space effi-
cient method satisfies the velocity demand of big data streams. A large-scale
real-world scenario including 300,000 sensors over the course of a year has been
established to evaluate the success of the algorithms.
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The rising necessity for robust and reliable services is leading to the cre-
ation of enormous amount of data, which has the possibility of exceeding the
storage capacity of current micro servers. This has led to Big data correlation
orchestrator (BigCO) which was implemented in a micro cloud server [18]. In
the same study, it is also addressed how multifaceted data could be interrelated
and analyzed with 3D modeling. On top of that, a streaming algorithm that
extends Ramer-Douglas-Peuker heuristic is presented. This proposed compres-
sion algorithm has achieved up to a 99.86% compression of sensor data. With the
recognition of consistent growth in the number of wirelessly connected devices,
the same study conducts in depth testing dealing with high volumes of data.
Their compression method along with the 3D modeling of data assesses the
velocity at which they can analyze large quantities of data from a varying pool
of sensors. BigCO implementation on a micro cloud server also offers portabil-
ity to the data collection and analysis mechanism. The overall design of this
orchestrator exhibits high veracity throughout the compression, modeling, and
the overall BigCO framework.

4.5 Distributed, Secure, Scalable Storage of IoT Data

In [13], a project focusing on secure and scalable IoT storage systems is presented
where the security system is derived from Shamir’s secret sharing algorithm.
However, a major focus is also placed in terms of volume when referring to IoT
storage systems. A distributed storage system was designed based on the idea of
the algorithm where any sort of incoming data is transformed into scaled shares
based on the size of the original files and is inaccessible without the retrieval of
all shares. This method considers volume in relation to scalability. This is done
through an infrastructure based on a client-peer system where a client takes
incoming data; transforms them into scaled shares creating smaller data pieces
which can eventually be reassembled to form the original file also taking security
into consideration. In terms of performance, this system does not account for the
velocity at which the data would be stored and retrieved due to a bottleneck.

4.6 Quality of Data (QoD)-Aware IoT Big Data Projects

In case of continuous retrieval of data through sensor feeds, it is important to
focus on the quality of data being pulled down. The project in [1] breaks the
idea of the Quality of Data (QoD) down into several aspects, which focuses on
availability of sensor feeds, latency, and trustworthiness. These qualities can be
used to determine the certain attributes of managing big data in a system where
attributes such as trustworthiness of data can be defined as veracity of data or
accuracy. Other attributes, such as latency and availability of sensors correlate
with the velocity of data being pulled down. The idea behind this project was
to create a model for sensor services, where, in order to enable seamless sharing
of sensor feeds from various sensors coming from different sources through the
cloud. While QoD takes into consideration velocity and veracity of the sensor
feeds, they stray from other aspects of big data such as volume and variety.
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Though a major focus is placed on the variety of data through the use of hetero-
geneous sensor feeds, this work does not fully aim to address the variety aspect
of big data.

4.7 Spatial Big Data Projects

Due to a gap in the development and applications of integrated information
systems for snowmelt flood early warning in water resource management, an
integrated system with IoT, geo-informatics (GIS, GPS, etc.), and cloud services
have been proposed for the monitoring and simulation of snowmelt flooding [19].
This study resulted in an increase in the effectiveness of decision-making because
of the availability of data and the integrated system to analyze all of the data in
an efficient enough manner to make a difference when it comes to split-second
decisions. This proposal goes off a popular practice in the field, which utilizes
environmental tracking and analysis. The architecture of this system collects
a wide variety of data from an assortment of information acquisition facilities.
The collected data calls for a storage facility that can handle large volumes of
information which this system architecture also takes into account. Then the
proposals computing and analysis facility as well as the network and software
used in this system accounts for high velocity collection and analysis of the data
without a loss in veracity through the whole process.

Projects specifically addressing spatial big data exhibits new challenges where
performance on large amounts of measurements is associated to specific locations
and the instance of time when they were conducted. In addition, the paradigm of
wireless networks data analytics varies from the classical data-mining paradigm
as it poses different challenges in scalability and computational time. While
relational data requires a linear time scale for computation for classification and
prediction, spatial data requires a cubic time scale which causes problems for
scalability both in terms of volume, calculation period and velocity. Although it
remains as a distinct category from relational big data, the research in [20] has
shown that existing parallel processing and computational framework algorithms
are powerful tools for implementing spatial processing frameworks but the proper
architecture for these tools are still being researched.

Dealing with spatial big data is considered one of the key challenges for the
development of future wireless networking applications in terms of big data.
Some underlying issues with this topic are that it currently requires a high level
of specialized knowledge in order to design and implement systems for processing
spatial big data. In order for this technology to grow and expand, it requires a
wider use of context and development of systems such that non-experts in the
field are able to build various applications using this technology. Therefore, a
more common language for reasoning and computational inference solutions is
necessary for development of these systems.



16 A. D. Cartier et al.

Table 1. Summary and comparison of the surveyed solutions

Application 'VolumeVelocity[VarietyVeracitySpatio-temp. Min. overhead |Openness- |Quality-aware
queries security sensing
Participact [4] v i 4 Vv v v v v
Smart campus [9] |/ Vi VA X V4 X X X
Alljoyn-Lambda [14]y/ VA VA X Vv X X v
ToV [15] va X X v X v X vV
ANGELS [16] va X va X X vV X vV
CPS [17] va v/ X X Vv Vv X X
BigCo [18] va v v v X Vv X X
Dist. storage [13] va X X X X X vV X
Quality of data [1] |Xx va X va X X 4 4
Flood warning [19] |/ va va Vi 4 V4 X X
Spatial data [20] va v X X v X X Vv

5 Summary

This paper has introduced the challenges in the IoT-big data ecosystem, and
overviewed recent applications as summarized in Table1. A majority of these
applications focuses on two or three of the four Vs typical of big data sys-
tems, yet solutions addressing all dimensions are emergent. Veracity is the most
neglected dimension in related work; hence trustworthiness assessment modules
are emergent in software architectures that are proposed for IoT data man-
agement. Focusing on specific IoT-big data challenges, availability of tools and
libraries for embedded data analytics are critical for use in the development of
middleware solutions for the IoT-big data ecosystem.

All these challenges, pointed out by the related work, will impact the handling
of the IoT data which is expected to contribute to the majority of the data
accumulation in the near future. NoSQL-based solutions are feasible to overcome
the storage challenges of big volumes of data while realtime analytics solutions
such as Storm or Spark suit well with the IoT stream data of high velocity.

6 Open Issues and Challenges

As the data will be scaled out to higher volumes, varieties and velocities with
the wide adoption of connected devices, IoT and big data will be two insep-
arable phenomena of the future. Major innovation should be on the analytics
software architecture that can handle analytics on long term and real time data.
Despite the availability of architectures, like Lambda, that address this issue,
optimization software is required for real time systems. OGC’s standardization
efforts for accessing IoT data is invaluable as heterogeneity of big data pushed
by the IoT objects can be handled. More importantly, we expect that even by
2020 less than half of the digital universe will consist of useful data because the
majority of the data will still be unstructured and untagged. Therefore, collec-
tion of the data, proper tagging and structuring to improve the value of the IoT
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data is critical. Furthermore, how to secure the data collected from IoT devices
and ensure privacy of personalized devices is a key problem. In fact, cloud-based
storage, processing and transmission of the data will be reaching 40% of the dig-
ital universe, introducing security as a service in cloud analytics as an emergent
issue. Finally, IoT sensors will push IoT data continuously, and typically in raw
form to be processed so to produce value. Hence, development of scalable and
analytics-backed visualization mechanisms for long term data is also important
to prevent data overloads for the IoT-big data systems.
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